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Introduction

Positron emission tomography (PET) has become essential during the last decades to inves-
tigate human body mechanisms, to diagnose diseases and to develop new drugs which until
then could not be assessed through imaging techniques. In this context, the quanti�cation
of medical images is fundamental to investigate in-vivo physiological mechanisms. Further-
more, the demand increases for providing dynamic information from dynamic sequences of
nuclear imaging.

In oncology and neurology, it is primordial to assess the performance of drugs on pa-
tients and to monitor quantitatively the response of diseases to medicinal and non-medicinal
therapies. The more accurate the quanti�cation of the tissues response is, the earlier the
treatments can be adapted to better cure either cancers or neurological diseases. Several ac-
tions have been initiated in France to address such an issue, through �Plan Cancer� in 2002
which should bring the number of PET-scans in France to 80. �Plan Alzheimer�, initiated
in 2008 in France, also aims at accelerating research programs on new radiotracers and the
quanti�cation of their impact on tissues a�ected by diseases. For instance, �uoromisonidazol
(F-MISO) and �uorothymidine (FLT) are promising radiotracers under development. F-
MISO allows measuring hypoxia level in tissues, which is related to angiogenesis in tumours.
Angiogenesis is a much better indicator of tumour response to therapies than the measure-
ment of the volume of the tumour with conventional tracers in PET. In this way, therapies
are adapted earlier to better cure the tumour. This also applies to FLT with is a marker of
cellular proliferation, which is particularly relevant in oncology.

Such new radiotracers will bring better monitoring of patients' diseases only if nuclear
imaging fully takes advantage of quanti�cation.

1 The role of radiotracer arterial input function

Improvements on scanner technologies allow the dynamic acquisition of temporal frames
which gives access to dynamic information of physiological mechanisms. In order to estimate
physiological parameters, concentrations of tracers in tissues and blood must be quanti�ed
and compared (Patlak 83; Muzic 01). The concentration of the injected molecules labelled
with positron emitters in arteries is called �arterial input function� or �input function� and
is currently obtained through arterial blood sampling (Phelps 79; Gallezot 05).

This is an invasive procedure which is medically not trivial, requires quali�ed medical
sta� and is painful for patients. These constraints make it inappropriate for clinical stud-
ies and consequently, arterial blood sampling is mostly applied in practice to pre-clinical
investigations. However, the input function could be estimated using non-invasive meth-
ods. Some general features of input functions, obtained from blood sampling, were extracted
from population-based studies (Wakita 00) as well as through analytically modelled input
functions with a few parameters (Phillips 95), but the variability from patients to patients,
particularly for investigating pathologies, makes it not suitable. Furthermore, investigating
new molecules implies that no standardised or parametric arterial input function is available.

Research is led towards non-invasive estimation of the arterial input function from re-
constructed images of spatial distribution of radiotracers in tissues (van der Weerdt 01;
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Figure 1 � Input function obtained from arterial blood sampling, �rst min-
utes. Radiotracers were administrated through bolus injection. The radiolabelled
molecule is [18F]F-A85380 (Gallezot 05)

Naganawa 05). It is important to notice that nuclear imaging allows the estimation of
the concentration of radiolabelled molecules in arteries, not speci�cally the concentration of
the injected tracer. This means that for radiotracers which have metabolites in blood, the
di�erence between the input function and the β+-concentration, that will be called β+ input
function, can be signi�cant. Consequently, the estimation of the input function with the β+

input function is only relevant for tracers with a little amount of metabolites. This thesis
addresses the estimation of the input function from the non-invasive estimation of the β+

input function and it is assumed that they are similar in the rest of this thesis, which is
realistic for tracers with no or a few metabolites in blood. For cardiac investigations, it is
possible to extract the arterial input function from blood pool in vascular structures which
stand in images. However for investigations on other organs, it is usually di�cult to estimate
the arterial input function from images: either the spatial resolution is poor, preventing the
vascular structures from being identi�ed, or the sensitivity is poor and the images are de-
graded, which leads to estimations of arterial input functions which are dominated by noise.
It was also proposed to develop external detectors which are dedicated to the estimation of
the input function from arteries whose surrounding tissues take up less radiotracers than the
heart or the brain (Kriplani 06).

2 The problem

The injected dose does usually not exceed 370 MBq (10 mCi). This results in a very low
radiotracer concentration in arterial blood as illustrated in Fig. 1. This plot is obtained
from successive arterial blood samplings from the radial artery of a patient after the bolus
injection of a 18F-labelled molecule. This data was obtained at Frederic Joliot Hospital
Service (SHFJ), Orsay, France. The amplitude of the peak depends on the radiolabelled
molecules, but it is common that its average value after �rst minutes is below 4 kBq/ml. As
the volume of arteries is small (vessel diameters are about a few millimetres), this represents a
small amount of photons emitted by arteries during clinical acquisitions. When radiotracers
are injected more slowly than as a bolus, the width of the peak increases and the amplitude
decreases.

It has to be noticed that the concentrations in arteries and veins may only di�er within the
�rst minutes as shown in Fig. 1, but this depends strongly on the tracer which is injected.
The time it takes before concentrations in arteries and veins are equal depends on the
radiolabelled molecules. Only the concentration in arteries is of interest because this is the
arterial blood which provides organs with the radiolabelled molecules.
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Methods proposed until now in literature su�ered from the fact that surrounding tissues
contain a lot of activity (Chen 07), because their volume is large compared to arteries and
they usually take up the radiolabelled molecules whereas arteries are just a transport means.
As a result, we decided to investigate the possibility to perform a parallel acquisition: while
PET acquisitions are achieved on the brain of patients, we would like to acquire another
set of data at another location where surrounding tissues are far less radioactive. This
location should contain large arteries in order to maximise the number of photons which are
emitted from arteries. Arteries should also stand close to the surface of the body so that the
geometric e�ciency is good and the attenuation of 511-keV photons in the body is negligible.
As much as possible these arteries should stand far from the most active organs, for instance
the brain, the heart and the bladder. This led us to choose knees as the acquisition location,
justi�cations being given in chapter 2. Indeed, the popliteal artery which stands in the knees
are large (about 5 mm) as they are just in the continuity of the femoral artery. Furthermore
they stand in the middle of the knee, which is close to the surface since the corresponding
depth of the popliteal artery is about 50 mm from the skin. It was also considered to estimate
the arterial input function from the brachial artery, the carotid or the aorta, but in view of
the considerations which are exposed before, these solutions were rejected.

3 Outline

In order to increase the amount of collected photons, we took advantage of coded-aperture
imaging which o�er high-sensitivity and high-resolution (Accorsi 01). The methods devel-
oped during this thesis thus belongs to Single Photon Emission Computed Tomography
(SPECT). Classical reconstruction methods which are used with coded-apertures (correlation-
based algorithms) are not adapted to medical imaging because some hypotheses of the coded-
aperture theory are not respected in medical imaging. We suggested using coded-aperture
collimators combined with statistical reconstruction algorithms, instead of decorrelation tech-
niques which are usually used in conjunction with coded apertures. Indeed we think that
statistical reconstruction algorithms are complementary with coded-apertures for addressing
low-activity issues in emission tomography. On one hand, coded apertures have a trans-
parency reaching about 50%, which deeply increases the sensitivity of SPECT-systems with
classical pinhole, parallel or cone-beam collimators. On the other hand, statistical recon-
struction algorithms take into account the statistical modelling of Poisson variables, which
is very appropriate for low-signal imaging.

The use of statistical algorithms with coded apertures at 511-keV raises, however, new
problems. In particular, statistical algorithms require the computation of a system matrix
which models forward projections. Such a matrix allows the computation of the expected
projections of the spatial distribution of any objects in the �eld of view. The computation
of system matrices is based on ray-tracing techniques, but it must be made very e�ciently
because the coded-aperture collimators have complex geometries. Furthermore, the more
accurate the system matrix, the better the accuracy of reconstructions. However, improv-
ing the accuracy of system matrices usually involves more computer memory resources to
compute them. As the system matrix is used for every update in statistical reconstructions,
such a large matrix slows down the reconstruction time. Furthermore, as projections are
intermixed because of the coded aperture, the convergence is slower than with classical col-
limators. Using coded aperture collimators with statistical reconstruction algorithms thus
requires the development of new methods which e�ciently deal with such system matrices
and accelerate the convergence of reconstructions. The bene�ts of such imaging systems and
new algorithms are demonstrated on analytical data, then on Monte-Carlo generated data
and �nally on experimental data. Eventually β+-input function is estimated: a method is
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introduced which aims at estimating kinetics in the two main vessels of the knee (popliteal
artery and popliteal vein) from the whole data acquisitions, from blind source separation
techniques. This takes advantage of the decomposition of the spatiotemporal distribution of
the object on spatial distributions and temporal distributions.

Chapter 1 introduces concepts for understanding the choices and methods encountered in
the other chapters of this thesis. Chapter 2 motivates the choice of the popliteal artery for the
non-invasive measurement of the β+ input function. It also supports the choice of coded-
aperture imaging with a γ-imager, and provides new algorithms for e�ciently computing
system matrices required by statistical reconstruction algorithms. Chapter 3 describes new
innovative methods to optimise computations of statistical reconstruction algorithms and to
accelerate their convergence to solutions. Performances are illustrated by reconstructions of
analytical datasets, then Monte-Carlo simulations and �nally actual projections. Eventually
chapter 4 addresses the reconstruction of several frames by blind source separation with
positivity constraints, with the inclusion of the reconstruction step during the separation,
which is an original method for dealing with source separation.
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Bibliographical studies 1

This chapter presents concepts and methods useful to understand techniques that were de-
veloped in this PhD thesis as well as the choices about imaging devices and algorithms that
were made. It also provides state-of-the-art reviews in �elds that are related to the present
work. First, a brief description of pharmacokinetics and compartmental models is done to
illustrate the important role of arterial input function for investigations on new drugs. Then
a review of the methods that were investigated to measure input functions is presented. It
is then deduced that the non-invasive estimation of the β+-input function requires that it is
determined through nuclear imaging techniques, from reconstructed images. Consequently,
some basics on nuclear physics and nuclear imaging are provided. Then an exhaustive de-
scription of coded-aperture collimators is presented for applications in medical imaging. This
kind of collimators improves very signi�cantly the trade-o� between spatial resolution and
sensitivity of the imaging system. 3D and 4D statistical reconstruction algorithms based
on maximum-likelihood expectation-maximisation are then presented. This will be used to
reconstruct acquisitions made through coded-aperture collimators. A recent method called
non-negative matrix factorisation (NMF) is then introduced and will be used in the third
chapter to perform 4D-reconstructions by decoupling spatial and temporal distributions in
order to reconstruct spatial distributions from very low amount of detected photons. Finally,
some gradient-based optimisation algorithms are presented and they will be used to optimise
models that are encountered in NMF.

1.1 Pharmacokinetics and its models

Welling de�nes pharmacokinetics as "the study of the rate change of drug concentrations
in the body" (Welling 86). Pharmacokinetics investigates the interactions of drugs after
administration to patients: absorption, distribution, interaction and excretion. It plays a
predominant role in drug development as it allows the determination of characteristics of
new molecules, as their speci�cities to tissues and their dynamics in them. Such analyses
are mostly based on compartmental or non-compartmental models, which are detailed in
following sections.

In vivo nuclear imaging techniques are most often used for the characterisation of pharma-
cokinetics since they are almost the only quantitative methods (Zaidi 03) and their sensitivity
is incomparable (up to 10-11-10-12mol/L) (Jain 03).

Compartmental and non-compartmental analyses require that the arterial input function
is known. The arterial input function of a drug is the concentration of this drug in arterial
blood, more precisely in plasma. It is a time-dependent function, since the injected molecules
spread into the body, are taken up by tissues and eventually are cleared from the body.
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1.1.1 Compartmental analysis

Compartmental analyses model the body as compartments which constitute physiologically
separated pools. A compartmental model is characterised by its number of compartments
and the dependencies between them. All these compartments depend on each other through
rate constants ki. In compartmental analysis, it is usually assumed that distribution and
chemical interactions are �rst-order processes and that they do not saturate. From these rate
parameters, some macro parameters are de�ned that provide essential information on the
behaviour of the molecules under investigation and their physiological functions (Watabe 06).
Common macro-parameters are the distribution volume and the binding potentials. The
distribution volume is an indicator of the ability of the molecules to be taken up by tissues
and is commonly used for the study of new drugs. The binding potential is a combined
measure of the density of receptors and the a�nity of the molecules to these receptors. This
is of particular interest in drug development as the a�nity of the drugs to some receptors is
an indicator of the quality of the drug.

Compartmental analysis is a parametric analysis. Several types of models are available to
perform the compartmental analysis that models in vivo mechanisms. The number of com-
partments in the model depends on the chemical and biological properties of the molecules
under investigation. When compartmental models get complex, the number of unknown pa-
rameters increases, and it is usually not possible to estimate them because of considerations
on statistical variability.

1.1.1.1 One-compartment model

The one-compartment model is the most simple pharmacokinetic model. It assumes that
the drug is distributed in a single compartment. The most popular application of one-
compartment models is the blood �ow measurement with 15O labelled molecules using PET.
However, it can also be applied as a simpli�cation of more complex models (Welling 86).

Compartment A(t)
(body, blood or plasma ...)

Administered

drug

Eliminated

drugs

u(t) kel

Figure 1.1 � One-compartment model

In Fig. 1.1, u(t) is the quantity of molecules that enters the compartment as a function of
time and kel is the clearance. u is a mass (g) and kel is a rate constant that has the dimension
of the inverse of a time. On an in�nitesimal duration, the variation of drugs amount dm
in compartment is given by Eq. (1.1) as it is assumed that transfers inside and outside the
compartment are �rst-order mechanisms.

dm = du− kel ·m · dt (1.1)

The molecules are usually administrated to patients through bolus intravenous injections.
In this case, the function u(t) is close to a Dirac function, all the dose being injected within
a few seconds. In the following, it is assumed that u(t) is a Dirac function and then du = 0.
The evolution of the quantity of molecules in the compartment can consequently be modelled
as:

dm
m

= −kel · dt (1.2)

m(t) = m0 · e−kel·t (1.3)
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In practice, it is not possible to achieve a bolus injection that can be mathematically modelled
by a Dirac function, which makes the theoretical analytic model of the quantity of mass m to
be more complicated than in Eq. (1.3).

When drug administration is performed continuously as for infusion, it can be assumed
that du = k0 · dt and the evolution of the quantity of molecules in the compartment is then
given by Eq. (1.5)

dm
dt

= k0 − kel ·m (1.4)

m(t) = (k0/kel) ·
(

1− e−kel·t
)

(1.5)

The point of compartmental analyses is that it is possible to estimate from Eq. 1.3
or (1.5) the unknown physiological parameter kel from experimental measurements of the
quantity of mass m. This is performed for a series of time points. The measurement of m is
made possible through labelling molecules under investigation with radiotracers, so that the
amount of m can be quanti�ed through nuclear measurements or imaging, since the quantity
of mass m is proportional to the measured activity in the compartment of interest.

1.1.1.2 Model with more than one compartment

m1(t)

u1(t)

k1

m2(t)

u2(t)

k2

k1,2

k2,1

... mi(t)

ui(t)

ki−1,i

ki,i−1

...

ki

ki,i+1

ki+1,i

mn(t)

un(t)

kn

Figure 1.2 � Multi-compartment catenary model

More complex models are usually required to describe molecule behaviours in the human
body. Models are classi�ed according to the relations that exist between compartments. The
main models are the catenary model and the mammillary model (Welling 86; Vicini 00). For
the catenary model, it is assumed that the model is made of compartments that form a chain
as described in Fig. 1.2. Mass of molecules mi in every compartment i is ruled according to
Eq. (1.6) as long as no saturation appears in compartments. This can be written in a matrix
form as in Eq. (1.7) and can be solved through basis changes so that these ordinary di�erential
equations are decoupled. Another method is to use Laplace transform (Mayersohn 70).

∂mi

∂t
= ki−1,i ·mi−1 + ki+1,i ·mi+1 − (ki,i+1 + ki,i−1 + ki) ·mi + ui(t) (1.6)

By denoting ṁi =
∂mi

∂t
ṁ1
...
ṁi
...
ṁn

 =


a1 b1
c2 a2 b2

ci ai bi

cn an

 ·


m1
...

mi
...

mn

+


u1(t)
...

ui(t)
...

un(t)

 (1.7)
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This can be generalised into Eq. (1.8)

∂m
∂t

= Km + u(t) (1.8)

with K being any real matrix, meaning that any compartments can interact with other
compartments.

Fig. 1.3 addresses a three-compartment model, which is standard in pharmacokinetics
since it models FDG interactions in tissues, which is an glucose analog and is consequently a
good indicator of energy consumption by tissues. In this case, the distribution volume DV
and the binding potential BP can be expressed as functions of rate constants between com-
partments:

� Binding potential BP =
k2,3

k3,2

� Distribution volume DV =
k1,2

k2,1
(1 +BP )

1st compartment

(intravascular space)

FDG

2nd compartment

(extravascular space)

FDG

3rd compartment

(extravascular space)

FDG-6-P

u(t)

kel

k1,2

k2,1

k2,3

k3,2

Figure 1.3 � Three-compartment model

The mammillary model is another model, which assumes that there is a central com-
partment, as blood, connected to peripheral compartments. Peripheral compartments are
assumed to be unconnected one from another as in the example shown Fig. 1.4 (Schmidt 02).
The �rst compartment is usually the arterial blood, the second is called the free compart-
ment and corresponds to the unbound molecules in the extracellular space and the third
compartment usually refers to the speci�c binding compartment, which is the compartment
of interest. Indeed, it is usually made of the target tissues for which the new molecules are
designed. Finally the fourth compartment commonly refers to the non-speci�c binding com-
partment, which is a compartment that also interacts with the drugs. It is in competition
with the speci�c binding compartment.

Physiological parameters for such models are estimated by �tting model outputs to ex-
perimental data (Muzic 01). Depending on the molecules and on the kinetics models, the
determination of the arterial input function can be indispensable. For instance it is necessary
for the determination of cerebral metabolic rate of glucose by FDG-PET, which is usually
denoted CMRGlu.

1.1.1.3 Quantitative imaging

PET provides both the spatial distribution and the quantitative measurements of the con-
centration of labelled compounds as time-dependent functions, which are called time activity
curves (TAC). Several time frames can indeed be reconstructed from dynamic acquisitions.
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blood

free
ligands

Speci�c
binding

Non-speci�c
binding

u(t)

kel

k1,2

k2,1

k2,3

k3,2

k2,4 k4,2

Figure 1.4 � 4-compartment model, with competitive binding potential

This allows the estimation of TACs in tissues for the drugs under investigation. The com-
prehension of physiological processes depends on the ability to quantify physiological vari-
ables as the rate constants of transfers from one compartment to another. By deriving the
metabolic rate of the injected molecules as well as some other physiological parameters,
some mechanisms and diseases can be investigated and their evolution can be monitored.
For instance, the myocardial metabolic rate of glucose (MMRGlu) in cardiac studies allows
the assessment of the myocardial viability after infarction (Brogsitter 05). For brain inves-
tigations, the local cerebral metabolic rate of glucose (LCMRGlu) is directly connected to
cerebral functions and its estimation brings a lot of information on the activity of brain
structures (Sokolo� 77). LCMRGlu is a functional indicator of the brain tissues and can
be derived for a three-compartment model from Eq. (1.9), the �rst compartment being the
plasmatic compartment, the second and the third being made respectively of unmetabolised
and metabolised molecules in tissues (Phelps 79). This requires that the plasma arterial
input function CP (t) is known.

LCMRGlu =
C̄P ·

(
Ci(T )− k1,2

α2−α1

(
(k3,2 − α1)e−α1t + (α2 − k3,2)e−α2t

)
? CP (t)

)
LC ·

(
k2,1+k2,3
α2−α1

)
(e−α1t − e−α2t) ? CP (t)

(1.9)

where ? denotes the convolution operator, Ci is the tracer concentration in the tissue of
interest, CP is the tracer concentration in plasma, C̄P is the mean tracer concentration in
plasma over the acquisition, LC is a correction factor called the lumped constant, which com-
pensates for the transport and chemical di�erences between FDG and glucose (Graham 02).
Finally ki are the rate constants of a 3-compartment model as the one shown in Fig. 1.3. α1

and α2 (mol · s−1)are given by (1.10) and (1.11).

α1 =
k2,1 + k2,3 + k3,2 −

√
(k2,1 + k2,3 + k3,2)2 − 4k2,1k3,2

2
(1.10)

α2 =
k2,1 + k2,3 + k3,2 +

√
(k2,1 + k2,3 + k3,2)2 − 4k2,1k3,2

2
(1.11)

The estimation of the CMRGlu requires the estimation of the plasma input function CP (t)
as well as the rate constants that govern the compartmental model, whose determinations
also depend on the input function CP (t).

1.1.2 Non-compartmental analysis: multiple-time graphical analysis

Multiple-time graphical analysis (MTGA) provides information about the radioligands and
does not need that a particular compartmental model is speci�ed. It is a non-compartmental
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analysis. The only information which is required is whether there are some irreversible
compartments in the model or not. It may provide a measure of the tracer uptake in tissues
and on tracer binding. It was �rst introduced by Patlak for radioligands which were taken
up irreversibly by some of the tissues (Patlak 83). It was then generalised for radioligands
which bind reversibly to tissues (Logan 90).

1.1.2.1 Non-reversible ligands

After denoting ROI(t) and CP (t) the concentrations of radiotracers in tissues of the region

of interest (ROI) and in plasma at time t, respectively, the plot
(

ROI(t)
/

CP (t)
)

versus(
t∫

0

CP (t′)dt′
/

CP (t)
)
becomes linear after some time when the radiolabelled molecules are

irreversibly trapped in at least one compartment (Patlak 83). This is usually referred as the
steady-state condition. The linear portion of the plot can be written as:

ROI(t)
CP (t)

= Ki

t∫
0

CP (t′)dt′

CP (t)
+ V (1.12)

Ki and V can be determined graphically. Ki is called the in�ux constant and is a measure
of the amount of radiotracers which were taken up in tissues in relation to the amount of
available tracers in plasma. Ki depends on the tracer binding potential, the higher the
binding potential is, the higher the in�ux constant is. V is a constant which depends on
the regional blood volume and on the distribution volume of the reversible compartments.
ROI(t) is obtained from nuclear imaging and currently CP (t) is mostly obtained from arterial
blood sampling.

This is an easy method to obtain properties of new radioligands, as its binding potential.

1.1.2.2 Reversible ligands

In section 1.1.1.2, an equation which describes exchanges between compartments was written.
By considering that the plasma is a particular compartment and using concentrations instead
of quantities of mass, it can be rewritten (Logan 90; Logan 03):

∂C
∂t

= K ·C +K1 · CP (t) (1.13)

with C being the concentrations in the tissue compartments, CP being the concentration
of unmetabolized radioligands in plasma, K the matrix of transfer constants between tissue
compartments and K1 the vector describing the transfer from plasma to tissues. K1 is a
vector usually made of a single nonzero coe�cient. By de�ning a ROI in the reconstructed
images, the concentration in this region can be modelled with:

ROI(t) =
n∑
i

Ci(t) + VPCP (1.14)

with Ci being the concentration of the compartment i in ROI, n the number of com-
partments in ROI and VP being the blood volume contained in the ROI. As a result,(

t∫
0

ROI(t′)dt′
/

ROI(t)
)

can be written as in Eq. (1.15), which can be seen as a linear

equation when the second term becomes constant, which is usually true for time t higher
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than a cut-o� time t∗ which usually ranges from 20 to 90 min. The ith coe�cient of Un is 1 if
the ith compartment stands inside ROI, 0 otherwise.

t∫
0

ROI(t′)dt′

ROI(t)

 = (−UT
nK

−1K1 + VP )


t∫

0

CP (t′)dt′

ROI(t)

+
UT
nK

−1C(t)
UT
nC(t) + VPCP (t)

(1.15)

= DV ·


t∫

0

CP (t′)dt′

ROI(t)

+ int (1.16)

By plotting
(

t∫
0

ROI(t′)dt′
/

ROI(t)
)

versus
(

t∫
0

CP (t′)dt′
/

ROI(t)
)
, it is possible to esti-

mate the slope DV , also called the total distribution volume, and the intercept int of the

linear portion of the curve. ROI(t) and
t∫

0

ROI(t′)dt′ are obtained from reconstructed images

of the ROI and
t∫

0

CP (t′)dt′ from arterial blood sampling. For a two tissue compartment

model, the total distribution volume can be expressed with rate constants:

DV =
K1

k2

(
1 +

k3

k4

)
(1.17)

This means that a large DV indicates either a large number of tracer binding sites, through
(k3/ k4), or a large K1, which depends on the blood �ow in arteries and on the capillarity
of the tissues. DV is consequently a good indicator whether a radioligand binds to a target
area or not.

This method was evaluated on simulated data (Logan 03). A tissue TAC was generated
from a measured input function and a two tissue compartment model whose constant rates
are assumed to be known. This models the kinetics of 11C−racloprid, a radioligand which
binds to basal ganglia in the brain. When only points from t=80 to t =120 min are used
to perform the linear regression, DV is equal to 2.01 ml/ml, but when the regression is
performed on points between t = 80 and t = 250 min, DV is equal to 2.26 ml/ml, which
corresponds to bias of 20% and 9% respectively, the expected DV being 2.42 ml/ml. This
illustrates that the cut-o� time t∗ plays an important role in the estimation of the distribution
volume DV .

This method also requires that the arterial input function CP (t) is determined.

1.1.2.3 Graphical analysis without blood sampling

Graphical analysis were generalised in order not to use the arterial input function CP (t) but a
reference region instead (Patlak 85; Logan 00; Logan 03). This works for both reversible and
non-reversible ligands. A common reference region for brain investigations is the cerebellum.

When it is assumed that the radioligands are irreversibly trapped in at least one com-
partment, Eq. (1.12) can be replaced by Eq. (1.18) and the coe�cients Ki and V can be
estimated from acquisitions with only few time frames, and no input function (Patlak 85).

ROI(t)
REF(t)

=
Ki

DVREF

t∫
0

REF(t′)dt′

REF(t)
+ V ′ (1.18)
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When it is assumed that the radioligands are reversibly exchanged between compart-
ments, Eq. (1.15) can be applied to a reference region:

t∫
0

CP (t′)dt′ =
1

DV REF

 t∫
0

REF(t′)dt′ − intREFREF(t)

 (1.19)

which can be substituted in Eq. (1.15), with DV R = DV ROI/DV REF :
t∫

0

ROI(t′)dt′

ROI(t)

 = DV R


t∫

0

REFP (t′)dt′

ROI(t)

+DV R · intREF REF(t)
ROI(t)

+ intROI (1.20)

DV R is called the distribution volume ratio. The second term of the right-hand side is
usually negligible compared to the �rst term, which results in a linear expression when the
assumption that intROI and intREF are constant is valid. It can be observed that Eq. (1.20)
does not depend on the plasma input function

For a two tissue compartment model and choosing a reference region without binding
sites (which can be modelled with a 1 tissue-compartment model), the DV R is given by
Eq. (1.21) and can be simpli�ed to Eq. (1.22) if the ratios of transport constants are the
same in the reference region and in the region of interest.

DV R =
K1

k2

(
1 +

k3

k4

)/
KREF

1

kREF2

(1.21)

DV R ≈ 1 +
k3

k4
(1.22)

Simulations similar to Sec. 1.1.2.2 were performed in order to estimate the accuracy of
the method. It was found that DV R = 4.41 ml/ml, the expected value being 4.43 ml/ml
(error is lower than 1%) (Logan 03).

MTGA provides robust information on radioligands. A drawback of these methods is
that they only provide information on macro-parameters, as the binding potential or the
distribution volume for instance. Furthermore, they tend to underestimate DV and DV R,
and consequently the measure of the binding potential of the radioligands. Nevertheless,
because of their simplicity, they are particularly appropriate for early investigations of new
tracers properties, all the more so as no detailed compartmental model is required to lead
such an analysis.

1.2 Input function determination

It was explained in section 1.1 that the determination of the tracer-input function may be
fundamental to perform quantitative estimation of kinetics rate constants and consequently
estimate the sensitivity and speci�city of new molecules in target-tissues. It is commonly
measured through blood sampling, but this procedure may be painful and dangerous for
patients (Hall 71). It is also a time-consuming protocol that is not adapted to daily clini-
cal investigations. Furthermore it unnecessarily exposes the medical personal to radiation.
Number of methods were developed to estimate it in a non-invasive way or with minimal
invasion. Intending to measure the β+- input function in a non-invasive way, it is clear that
only the whole blood concentration can be estimated, not the plasma concentration. As
a result, such methods only present an interest for molecules with a low metabolic rate in
blood.
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1.2.1 Arterial blood sampling and other invasive techniques

This method is the gold standard technique. It is invasive but it is the most accurate way of
determining the β+-input function. Samples of blood are drawn from the patient and mea-
sured with a β- or γ-counter. This procedure was automated (Eriksson 88), which presents
the advantage to reduce the exposition of the medical sta� to the radiation. Furthermore,
as small volumes of blood are continuously drawn, the temporal resolution can go below the
second. Blood is drawn through a catheter and a peristaltic pump brings it to detectors. The
activity in blood samples were determined either by counting positrons with plastic scintilla-
tion detectors or by counting γ with BGO detectors. Measurements are performed in a lead
box whose walls are 5 cm-thick, which results in a background lower than 1 �. When the
blood activity is determined from counting positrons with a plastic scintillation detector,
the method is very sensitive but requires calibrations as the sensitivity of such a system
depends on the energy of the positrons, which varies depending on the positron energy and
consequently on positron emitters. Positrons must go through the wall of tubings before
being detected, the wall being 0.26 mm thick. The second detection method is based on the
detection of the two γ that are emitted in opposite directions when a positron annihilates
with an electron. This suppresses the problem of energy calibration as the energy of the
γ-particles that are emitted from a positron annihilation is 511 keV. The two γ are detected
in coincidence with two BGO scintillators. Both methods work �ne but errors were not
quanti�ed. As the temporal resolution is very good (1 s), studies on the dispersion function
of the blood sampling system were performed. Depending on the length of the catheter be-
tween its tip and the detectors, there is a delay in the activity measurement. This delay can
be corrected by appropriately deconvolving the input function by the dispersion function.
When detectors are placed 60 cm away from the tip of the catheter, the characteristic time
τ varies from 17 min−1 to 40 min−1, the speed of the peristaltic pump being respectively
2.5 ml/min and 5 ml/min, the inner diameter of the tubings being 0.94 mm. The input func-
tion which is derived with this method was used to estimate the rate constants k1 and k2

of a two-compartment model, as well as the cerebral blood volume CBV of a patient, which
is the volume of blood in a given mass of brain tissues. The input function is corrected
for dispersion. Radiolabelled molecules were 11C-raclopride and the aim was to quantify
the transport of these molecules through the blood-brain barrier, the two compartments
being respectively the arteries and the brain. It was found that k1 = 0.15 ml · g−1 ·min−1,
k2 = 0.48 ml · g−1 ·min−1 and CBV = 0.033 ml/g.

Similar methods were also investigated to estimate the arterial input function in rodents,
the di�culty being to draw very small volumes of blood. First an experimental set-up with
a blood counter and sampler was developed which continuously draws blood from rats or
mice (Lapointe 98). This blood is passed into a counter which measures the activity of
radiotracers in the blood by detecting the positrons emitted with a plastic detector. The
counting rate can be as high as 1 measure/s. Blood is then separated into independent
samples for further analyses. This experimental set-up uses an original technique to limit
the dispersion of activity in the tube. It is based on the injection of air bubbles between
samples, so that they do not mix one with another. This experimental system allows the
formation of samples up to 1 sample/s and samples can be as small as 10 µL. Samples can be
further processed, for instance their activity can be veri�ed with a well counter. Results are
in good agreement with the values measured in the counter. The volume of blood in samples
can be accurately determined by measuring the length of blood in samples. From the activity
and the volume of every sample, an accurate estimation of the radioactive concentration is
obtained. The standard deviation of the blood activity measured from the counter or from the
samples was lower than 4% for all experiments, whatever the drawing speed and the sampling
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frequency were. The delay between the peak of the input function at the catheter tip and
the sampler peak is well estimated, as the length of tubings between the tip of the counter
and the sampler is known. The delay between the input function peak and the sampler
peak was estimated and was 44.6 s which is in good agreement with the real delay which
was 44 s, the length of the tubing being 24 cm. The input function can then be corrected for
dispersion as the characteristic transport time from the artery to the sampler is known. The
plasma-to-blood ratio can be determined by centrifugating the samples. The plasma time
activity curve (TACP ) is then deduced from this ratio and the whole blood TAC which is
estimated either from the counter or from the samples. The amount of metabolites can also
be determined from the samples, which can be useful to investigate the pharmacokinetics
properties of the radiolabelled molecules in the blood. Although e�orts were made to control
the activity dispersion in tubings by placing the counter and the sampler close to the cannula
site, it is expected that the TACs which are measured in the counter or from the samples are
a �atten representation of the real arterial input function because of dispersion. Furthermore
a main drawback of such a system is that a large amount of blood is drawn from the rodents,
which corresponds to non-physiological conditions.

It was then proposed to use an integrated micro�uidic platform to collect smaller blood
samples (Wu 07) and consequently estimate kinetics parameters of mice under standard
physiological conditions. Samples as small as 220 nL were collected. This corresponds to a
total withdrawal of blood lower than 0.5% of the total weight of mice used in investigations.
The transport time of blood from the tip of the catheter to the sample wells was taken into
account by estimating the blood �ow in the chip, as well as the dead space between the tip
and the sample wells (7 µL). The blood curves which were obtained from the blood-sampling
device were compared to samples manually drawn directly from the left ventricle. An average
error of 6.0% was measured for the 4 mice which were observed. This article indicates
that the plasma-to-blood concentration ratio RP/B may not be constant during time, and
should be modelled with an exponential function as RP/B = 0.386 · e−0.191t + 1.165 when
the radiolabelled molecules are 18FDG in mice. Kinetics rate constants for the myocardium
and the brain of mice were estimated from the TACs in the heart and the brain and the
arterial plasma input function, the tissue TAC being obtained from microPET images and
the input function being estimated with the micro�uidic blood-sampling device. Fitting
the TACs in the myocardium and in the brain with these rate constants gives respectively
coe�cients of determination R2 of 0.99 and 0.90, which means that the model of TACs
that is derived from the estimated input function �ts well to the observed TACs from the
microPET. The goodness of Patlak �ttings (Patlak 83) is also excellent (R2 > 0.99). The
cerebral glucose metabolic rates for every 4 mice are then calculated from rate constants
as in (Phelps 79) and the result is 21.5± 4.3 µmol/min/100g. This method is consequently
adapted to the estimation of the arterial input function in mice. However, the input function
which is estimated is not corrected for tracer dispersion in the catheter, which results in
an input function whose peak is larger than the one of the real arterial input function.
It is important to notice that the dispersion of the arterial input function has a major
impact since the metabolic blood �ow can change by a factor 4, depending on whether
the dispersion is taken into account or not (Convert 07a; Convert 07b) (no correction on
dispersion: 1.12± 0.17 ml/g/min, with correction: 4.84± 0.8 ml/g/min). This correction
is performed by modelling the dispersion characteristic time as a function of the catheter
length and the blood �ow in the catheter. The real arterial input function is then obtained
by deconvolving the measured input function through Laplace transforms. This study points
out the importance of correcting the measured input function for dispersion.

It was also proposed to insert a β-probe in a large artery of small animals to measure the
activity of blood by direct detection of positrons (Pain 04). With this method, no blood is
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drawn from animals, which means that rodents are under standard physiological conditions
during investigations. Furthermore, no dispersion has to be corrected as the arterial input
function is directly measured from an artery. This potentially provides a more accurate
estimation of the input function than methods presented previously. However, a signi�cant
amount of the signal measured by the β-probe is due to the contribution of the tissues
which surround the artery. As a result, it was proposed to use a second β-probe which
estimates the background outside the artery. The arterial input function is then retrieved
by subtracting both signals. The results were validated by comparing the area under the
curve (AUC) of the input function estimated with the β-probe to the AUC of the input
function which was obtained from blood samples. The mean di�erence was calculated from
a 5-animal study and is 5%. From the input function measured with the two β-probes,
the kinetics rate constants of a 3-compartment model can be estimated, as well as the
18FDG metabolic rate in tissues. For striatum, the estimation of the 18FDG metabolic rate
in 3 rats shows a variation of 15%± 18% depending on whether the input function was
measured from the β-probe or from manually-drawn blood samples. Main advantages of
such a technique are that it can estimate the arterial input function without blood loss and
it is e�cient at detecting positrons (> 10%) which allows an excellent temporal resolution.
This is particularly interesting for short-lived radiotracers and for input functions which
have a narrow peak. The main drawback is that the sensitivity of the probe depends on
the position of the probe inside the artery. This limits the accuracy of the estimation of the
input function because of reproducibility considerations.

Arterial blood sampling methods result in an accurate estimation of the plasmatic input
funciton CP (t), but are invasive. Some investigations were done in order to estimate it in a
non-invasive way.

1.2.2 Image-derived input function extraction

Instead of drawing blood samples from subjects or from animals, it was investigated whether
the arterial input function could be estimated from reconstructed images. For that, a region
of interest is drawn on vascular structures. This segmentation is most often done manually,
but it may not be reproducible, because the results depend strongly on the operator who seg-
ments the data. Some methods were consequently developed to automate segmentation steps.
They rely on factor analysis (Bazin 80) or independent component analysis (Hyvärinen 01).
Factor Analysis of Dynamic Sequence will be developed in more details in section 1.6.1.

The arterial input function is usually denoted image-derived input function (IDIF) when
it is obtained from these methods. The extraction of the IDIF is usually performed from
sequences of cardiac images or brain images, as illustrated in the following.

1.2.2.1 Extraction of arterial input function from cardiac PET images

In cardiac imaging, it is possible to measure the arterial input function directly from the PET-
images. One method to estimate the arterial input function is to reconstruct the whole �eld-
of-view and to draw regions of interest on blood pools (van der Weerdt 01; de Geus-Oei 06).
4 vascular structures were compared in this study: the left atrium, the left ventricle, the
ascending aorta and the descending aorta. Input functions were estimated from every struc-
ture and the 4 MRGlu were derived from these 4 input functions. All MRGlu were compared
to the reference MRGlu obtained from the input function measured by arterial blood sam-
pling. The ratios were respectively 0.81 ± 0.06, 0.79 ± 0.08, 0.97 ± 0.07 and 1.00 ± 0.11.
The ascending aorta provides the best estimate of the input function, also the corresponding
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standard deviation is larger than for the descending aorta. The ascending aorta is a large
structure that consequently su�ers slightly from partial-volume e�ect and statistical noise.

Factor analysis was also applied to cardiac imaging in order to extract the pure blood
time-activity curves with 13N-ammonia (Wu 95) and FDG in small animal (Wu 96) in order
to estimate respectively the rate constants of a three-compartment model and the metabolic
blood �ow in dogs. This method has the advantage of dealing with the partial volume e�ect
as every pixel of the reconstructed images is viewed as a linear combination of the contri-
bution of every tissue. It also solves issues concerning segmentation of ROIs in images. The
mean di�erence between the arterial input function measured from arterial blood sampling
and from factor analysis was lower than 10% for monkey studies. The mean errors on the
estimation of kinetic parameters for monkey studies was lower than 8%, the kinetic model
being assumed to be made of three compartments.

Some non-invasive techniques were also tested on small animals (Laforest 05) but it is
di�cult to estimate the arterial input function because the spatial resolution of microPET
scanner is not su�cient to produce images without severe partial volume e�ect and spillover
e�ect when imaging mice's heart. However, for studies on rats, it was found that the error
on the area under the curve (AUC) of the estimated input function when compared the AUC
determined with blood sampling is 9.8%± 2.7%. This means that the input function can
be correctly estimated from a succession of cardiac PET images in rats.

1.2.2.2 Extraction of arterial input function from brain PET images

A few methods try to extract the arterial input function from the dynamic brain PET-images,
but this is a di�cult task because the vascular structures are small and the radiotracer con-
centration in surrounding tissues is usually high. As it is usually not possible to observe
carotids in reconstructed PET-images, in particular in early frames, it was suggested to
draw regions-of-interest from images obtained with MRI-scan whose spatial resolution is
much better and allows an accurate drawing of the ROI (Litton 97). At early time points,
the arterial input function seems to be well estimated although no error is given on the
di�erence between this method and arterial blood sampling. For later time points, estima-
tions of concentrations are not as good, due to important spillover e�ect from surrounding
tissues. This is the main drawback of the method. Furthermore, this method raises the
question of image registration from two very di�erent imaging modalities: MRI and PET.
It would be more appropriate to segment the vascular structures directly from the PET
images. Automatic segmentation through factor analysis (see Sec. 1.6.1) was proposed to
extract the shape of the input function and then to estimate physiological parameters, for
instance CMRGlu (Bentourkia 05). This results in estimations of the CMRGlu obtained
from automatic segmentation of brain arteries close to the CMRGlu obtained from arterial
blood sampling, numerical results being respectively 41.77 ± 6.29 µmol · 100g−1 ·ml−1 and
41.89± 3.13 µmol · 100g−1 ·ml−1 (mean bias < 1%, standard deviation ≈ 15%).

As an alternative to factor analysis, it was proposed to extract plasma time-activity curve
from dynamic brain PET images with an ICA-based method (Naganawa 05). ICA allows
the separation of sources that are not Gaussian-distributed, which is the case in the problem
of plasma time-activity curve extraction. In Naganawa's paper, the input function is not
assessed by identifying vascular structures in the brain images, but rather by estimating the
input function from the blood volume image which is the volume of the extravascular space
where blood is in. PET-images are pre-processed so that the extraction of the input function
is possible. The pre-processing consists in whitening the images by appending their opposite
at the end of the dataset: the dataset is twice as large as the PET-images and its average
value is zero. The di�erence between the blood volume image and the tissue image is then
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enhanced according to a standardisation that sharpens the distribution of the blood volume
image into a peak that is centred around 0 and in the same time concentrates the values
of the tissue image around 1 or −1. In this study the ICA was applied on the following
objective function that includes a penalty terms that constrains the solution away from 0:

G(u) = u6 − λ

m
exp

(
−|u|
m

)
(1.23)

where λ and m are two parameters in [10; 100] and [0.1; 0.5]. Results are robust to the
variations of these parameters. Source separation for such an objective function is based on
the ability of u6 to detect long tails of the distribution of the blood volume image and the
tissue image. Beyond the problem that this method returns negative values for some voxels
of the blood volume image, this method requires an arterial blood sampling because the
solution requires scaling, whereas such a puncture should be avoided as much as possible in
order to dispose of a non-invasive method. This method was applied on human FDG-studies
and the in�ux constantKi derived from a three-compartment model shows a good correlation
with Ki obtained from arterial blood sampling, the correlation coe�cient being ρ = 0.999
and the �tted line being y = 0.984x−3.34×10−4. Instead of deriving the input function from
the blood volume image with ICA, a method was also reported that uses ICA to identify the
carotid and the surrounding tissues (Chen 07). It requires late venous samples. It allows the
estimation of CMRGlu for human FDG studies which are very close to CMRGlu obtained
from arterial blood sampling, the regression line being y = 1.02x+2×10−4 and the coe�cient
of determination being R2 > 0.999.

An original method was proposed to incorporate the estimation of elementary temporal
functions as well as their factors in the reconstruction process (Reader 06). Among other
advantages, this allows the reconstruction of �rst frames with a better accuracy. This method
is further developed in section 1.5.2.2 that presents state-of-the-art method for dynamic
reconstructions. This method was tested on simulations and on clinical data. The mean
error was lower than 1%, with a mean noise error being about 20% as computed by authors.
The interpretation of clinical results is di�cult because temporal basis functions have no
physiological meaning. The arterial input function could however be viewed as a mixture of
temporal basis functions.

Image-derived input functions allow the estimation of macro-parameters as the CMRGlu or
MRGlu with good accuracy, but the temporal resolution in �rst minutes still su�ers from
the low e�ciency of imaging system. Most methods require to scale the input function with
late venous or arterial samples. Recent studies (Reader 06) seem to have the potential to
address the estimation of the input function accurately even in �rst minutes, although some
e�orts need still to be made.

1.2.3 External non-invasive measurement

Several non-invasive methods were proposed to estimate the arterial input function from
external detectors that are independent from the PET scanner. First, a transcutaneous de-
tector was developed that detects positrons emitted by 11C-tracers (Litton 90). The detector
is made of a plastic scintillator placed in contact with the carotid artery. It is not possible
to separate the contributions of the carotid artery and the jugular vein that stands close to
it. However, as the temporal resolution is excellent, the arterial peak can be observed before
the contribution of the jugular vein becomes signi�cant. The venous contribution then spoils
the measurements, although arterial recirculation is observed. If compared to the method
proposed by Eriksson in section 1.2.1, this method presents the advantage of no time shift
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between the actual radioatracer concentration that �oods in artery and the measurements.
Nevertheless, it only gives information in the very �rst instant, which is usually not su�cient.
Another plastic detector was designed (Watabe 95) that better rejects the background due
to γ-particles. It intends at measuring water labelled with 15O from wrist arteries. It is made
of two detectors: one measures the contribution of both the artery and the surrounding soft
tissues, the other detector measures the concentration in soft tissues only. The arterial input
function is retrieved from subtraction of these two measurements. These methods that are
based on the detection of positrons work better for positron emitters as 15O or 11C than for
18F because their positron range is larger than that of 18F. Thus, the probability of reaching
the plastic detector is higher. These methods are less appropriate for 18F-emitters, although
18F is also frequently used for radiopharmaceutical investigations.

Instead of detecting positron, it was also proposed to detect γ-particles. This suppresses
the issue of the mean free path of positrons in tissues which is usually lower than the distance
between the artery and the detector, resulting in a low sensitivity of the counting systems.
A �rst investigation proposed to detect with a NaI scintillator the photons emitted from
15O and that come from the superior lobe of the right lung (Nelson 93). This technique
can only be used with positron-emitters that are in gaseous state because it measures the
amount of radiotracers in lungs, which restricts the choice of the emitters to 15O in medical
imaging. The injected dose ranged between 3.14 and 3.88 GBq (85 and 105 mCi). Such
a dose can only be injected for very short-lived radiotracers as 15O. The input functions
obtained respectively with this method and arterial blood sampling are visually very similar,
although no error on the non-invasive estimation of the arterial input function is given
by Nelson. It results in a mean error on the global cerebral blow �ow (CBF) of 6.8%, the
standard deviation being 4.9%. This means that CBF is well estimated from this non-invasive
technique and results are reproducible. It was also proposed to perform 3D-imaging on the
human radial artery by designing a small PET scanner whose ring diameter is 90 mm-large
so that the arm can �t through (Rajeswaran 92). γ-particles are detected in coincidence.
The spatial resolution is above 3 mm when the artery lumen is expected to be 1 mm-large.
As a result, this method su�ers from the contribution of the veins and surrounding tissues
that stand in the arm since it is not possible to accurately separate the artery contribution
from other tissue contributions. Another arm scanner was recently developed by a group
at Brookhaven. It is based on LSO-scintillators that are coupled to avalanche photodiodes
(APD) (Villanueva 03; Shokouhi 03; Kriplani 06; Kriplani 07). The spatial resolution of
this method is su�cient to discriminate the arterial and venous radiotracer distribution
by reconstructing the planar coincidence images. The e�ciency of this imaging system is
0.11 cps/Bq/cm−3 (4 cps/nCi/cm−3), which limits the temporal resolution. Furthermore,
this method strongly su�ers from partial volume e�ect, the voxel size being of the same
characteristic dimension as the diameter of the ulnar artery (≈ 1 mm). Some input functions
were estimated from this method (Kriplani 06), but no comparison to the real input function
is available.

1.2.4 Statistical modelling on a population

It is expected to perform no arterial blood sampling for the estimation of the arterial input
function, but non-invasive measurement gives inaccurate results. To overcome the main
limitation of non invasive external and image-derived measurements (insu�cient sensitivity
and spatial resolution), it was proposed to compute the arterial input function from an
analytical or statistical consideration. It was proposed to take the arterial input function
through parametric models (Phillips 95). In this study, parameters are estimated from only
6 arterial samples. For FDG-compartmental model, the plasma time-activity curve was
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modelled according to Eq. (1.24).

CP (t) = b
(
m · t · e−n·a·t + e−a·t

)
(1.24)

From this model, it was found that with only six arterial blood samples, it is possible
to achieve a solution with an error around ± 5%. Another example of population-based
analysis requires a unique arterial or venous blood sample (Wakita 00). It has the advantage
to decrease the exposure of the sta� to radiation and to simplify the drawing procedure since
only one sample has to be dealt with, to be compared to several dozens in other studies.
In this investigation, 120 patients underwent multiple blood sampling after FDG-injection.
A mean arterial input function was deduced from these 120 arterial input functions, which
will be called the standardised input function. It was observed that the variation between
patient arterial input function was minimal at 12 min after the injection. With only one
arterial blood sample 12 min after injection, it is then possible to estimate accurately the
arterial input function of any patients. The error was calculated and was 1.7% if compared
to multiple arterial blood sampling. The coe�cient of correlation is 0.997, denoting a low
standard deviation of results. The di�erence between the arterial concentration and the
venous concentration disappears after 40 min. As venous sampling is preferred to arterial
sampling, input functions are rather estimated from a late venous sample drawn 40 min after
bolus injection. It gives an error on input functions of about 3.6%, the correlation coe�cient
being 0.996. This shows that the arterial input function can be estimated from a single
sample, either arterial or venous, provided a standardised input function was previously
determined from a large number of patients which underwent arterial blood sampling.

Finally, it was investigated whether the arterial input function for every patient could be
retrieved with no sample at all. As in the previous method, a standardised input function
is derived from a large population and it is is then scaled according to the body surface
area (BSA) of the patient instead of a blood sample (Shiozaki 00). Once the standardised
input function is derived, this method requires no blood sampling at all but the error in the
estimation of CMRGlu in gray and white matter from input functions obtained with this
method are non negligible, respectively 8.9± 9.0% and 10.9%± 9.0%.

1.2.5 Hybrid methods

Hunter developed a simpli�ed kinetics model (SKM) to estimate the glucose metabolic
rate (MRGlu) of a tumour from a single venous sample and a single static image with
18FDG (Hunter 96). It is particularly relevant for estimating the MRGlu from patients who
can not tolerate prolonged imaging times or who can not undergo arterial blood sampling.
It is also an interesting alternative to full kinetics analysis which requires much longer ac-
quisition time than SKM, since the acquisition lasts only 15 min for SKM, which should
be compared to 1 to 3 hours for full kinetics analysis. This method is illustrated on lung
tumours which can be modelled with a 3-compartment 3-rate constant model (the fourth
rate constant k4 can be assumed to be negligible for such investigation). The concentration
CT in the tumour can be modelled as:

CT (t) =
K1k2

k2 + k3
e−(k2+k3)t

3∑
i=1

Ai

[
1− e−(bi−(k2+k3))t

bi − (k2 + k3)

]
+

K1k3

k2 + k3

3∑
i=1

Ai
bi

(
1− e−bit

)
(1.25)

if assuming that the arterial input function CP (t) is well described by a tri-exponential
function:

CP (t) =
3∑
i=1

Aie
−bi·t (1.26)
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First, MRGlu is calculated from the arterial input function measured from arterial blood
sampling, which is the gold-standard method, in order to have reference MRGlu values.
This will allow the assessment of the performance of SKM. For every patient, parame-
ters (A1, A2, A3, b1, b2, b3) are calculated by �tting Eq. (1.26) to blood concentrations ob-
tained from arterial blood sampling. Then, parameters (K1, k2, k3) are estimated by �tting
Eq. (1.25) to the measured activity in tumours from dynamic sequences of tumour images
obtained from PET. The reference MRGluref is then derived from:

MRGluref = Cglu
K1k3

k2 + k3
(1.27)

where Cglu is the concentration of glucose in blood. MRGluref was calculated before and
after treatment of a tumour for 13 patients, and results vary from 0.038 µmol/min/g to
0.37 µmol/min/g.

SKM intends at estimating MRGlu without performing arterial blood sampling on every
patient. SKM assumes that the �rst term in the right-hand side of Eq. (1.25) is small (about
10% of CT ). If neglecting it, the MRGlu depends on the activity in tumour CT and the
arterial input function through:

MRGlu = Cglu
CT (t)∑3

i=1
Ai
bi

(1− e−bit) (1.28)

CT (t) is calculated from a single 15 min-long acquisition of the tumour (from 45 min to
60 min after FDG-injection). The denominator is the area under the curve of the arterial
input function (which was modelled as a tri-exponential as mentioned before), as a result,
it can be calculated from the parameters (A1, A2, A3, b1, b2, b3) which determine the arterial
input function. The arterial input functions of a control group were modelled with such a
function and it was observed that characteristic times b1, b2 and b3 were almost constant
(b1 = 9.33 min−1 ± 0.92 min−1, b2 = 0.289 min−1 ± 0.022 min−1 and b3 = 0.0125 min−1 ±
0.0007 min−1). Amplitude coe�cients A1 and A2 are then assumed to be equal and their
value is supposed to be the ratio of the injected dose to the blood volume, which is estimated
from the lean body weight (by humans, there is about 70 ml of blood per kilogram of lean
body weight). The last amplitude coe�cient A3 is estimated from a late venous sample
collected 55 min after injection, as the in�uence of the two �rst exponentials is negligible
because of their much smaller characteristic times. MRGlu is also calculated before and
after treatment of the tumour and results with SKM vary from 0.050 µmol ·min−1 · g−1 to
0.35 µmol ·min−1 · g−1. The coe�cients of determination R2 are respectively 0.97 and 0.94
for pre- and post-treatment, which indicates that the error between the reference MRGlu and
the SKM-based MRGlu is small. Consequently SKM is an accurate method to estimate the
MRGlu of tissues. It only requires a 15 min-long static PET-acquisition of the tissue and a
single venous sample, provided that the input function can be modelled with a tri-exponential
function.

The method of Hunter was then extended to better estimate MRGlu (Sundaram 04).
It is called SKA-M and is also based on a single blood sample, the input function being
obtained by scaling a population-based input function with the concentration of radiotracers
measured in the blood sample. The main di�erence between SKM and SKA-M is that the
SKA-M takes advantage of several PET-images of the tumours. MRGlu is estimated by
�tting a regression line on Eq. (1.29)(

Tumour(t)
Apatient(t)

)
= K

(∫ t
0Apatient(τ)dτ
Apatient(t)

)
+ Vd (1.29)
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Tumour(t) is estimated from dynamic PET-acquisitions of the tumour, Apatient(t) is the
concentration of radiotracers in blood at the times t where the dynamic images of the tumour
were acquired, Apatient(t) is derived from the scaled population-based input function. K and
Vd are the parameters to be estimated through regression. The regression �ts well with the
data (r > 0.99, P < 0.001), the variance being lower than 4.6%. K correlates very well to
MRGlu obtained with Patlak graphical analysis since the bias between the K and MRGlu is
1.0%± 1.4%, whereas the bias is 15.1%± 3.9% when the method of Hunter is used instead.
The improvement which is brought by SKA-M can also be seen in terms of the number of
the estimations of MRGlu whose error is less than 20% compared to the MRGlu computed
from Patlak analysis. Whereas the error on MRGlu estimations was above 20% for 10 out
of 27 patients with Hunter's method (SKM), it decreases to 2 out of 27 with SKA-M. All
these improvements can be explained by the fact that SKA-M takes into account dynamic
information and consequently is able to model the unmetabolized 18FDG, SKA-M being
a measure of the rate of tracer uptakes and not a measure of tracer uptake. SKA-M is
consequently a good method for estimating the glucose metabolic rate of tumours, since it is
simpler than a full kinetics analysis (25 min-long dynamic PET acquisition without arterial
blood sampling) but has a better accuracy than SKM.

All these methods have advantages and drawbacks as summarised in Table 1.2.5, but none
is able to estimate non-invasively the arterial input function in the general case, that is
to say for any radiotracers and any patients. Either estimations are invasive and must be
corrected for dispersion, or they provide inaccurate input functions since macro-parameters,
as MRGlu, calculated with these input functions have large variability, or they require that a
hundred patients underwent arterial blood sampling before a standardised input function is
available for a new radioligand. Furthermore, analytical or statistical-based input functions
are not convenient for dealing with pathological patients, since the pathology can greatly
impact the input function. Nevertheless, all studies underline that the estimation of arterial
input functions can be non-invasive only if it is based on imaging techniques if it is expected
to work on new radioligands (no standardised input function is available in such a case).
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non accuracy temporal model
invasiveness resolution complexity

arterial blood - - ++ + ++
sampling

Image-derived estimation ++ + - +
from PET-images

Estimation from + + + +
external detectors

Statistical model - - - + -

Hybrid methods - - + ++ -

Table 1.1 � Summary of methods for estimating arterial input functions: advantages and
drawbacks

1.3 Some physics related to nuclear imaging

One of the alternatives that was presented in the previous section to estimate the arterial
input function is to measure the concentration of tracers in an artery in the arm with an
external detector (Kriplani 06). Moreover the determination of the TACs in tissues is based
on nuclear imaging, either Single Photon Emission Computed Tomography (SPECT) or
Positron Emission Tomography (PET). SPECT and PET are based on the use of pharma-
ceuticals labelled with radioelements. The way these imaging modalities work is developed
in section 1.3.2. When it is intended to understand the way a tissue or a set of tissues work
in the brain for instance, molecules are developed in order to bring to light speci�c mecha-
nisms. They are labelled with radiotracers so that they emit high energy photons that can
travel through tissues and consequently can be measured noninvasively with external detec-
tors. It allows performing in-vivo investigations. It the following sections, some concepts on
radioactivity will be presented as well as the way the photons are collected and transformed
into a signal that can then be numerically processed.

1.3.1 Radioactive decay and interaction of radiation with matter

Some atoms are unstable and emit particles in order to lose energy and become more stable.
This phenomenon is called radioactive decay and these atoms are said to be radioactive.
Such atoms exist in nature but can also be produced arti�cially through nuclear reactions.
The two main nuclear reactions in nuclear imaging are: β-decay where an electron e− or
positron e+ is emitted from the nucleus and γ-decay where a photon is emitted. α-particle
and β-particles travel a short range before interacting with matter, but γ-particles can travel
several meters before interacting. Their range depends on their energy. Detectors are devices
that have a high probability to detect these emitted particles when they are passing through
them. It is possible to use atoms that are radioactive and emit γ-particles to label molecules
and then estimate their quantity only from the amount of collected particles in detectors.

For the detection of high-energy photons, crystals are used because a high sensitivity is
required. Photons are detected by interacting with electrons of the crystal of the detector,
either through photoelectric e�ect or through Compton scattering. Crystal's properties are
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presented in next section. If the energy of photons would be higher than 1022 keV, it could
give rise to an electron and a positron through pair production but such high-energy photons
are rarely used in medical imaging. The photoelectric e�ect is a physic phenomenon where
a photon transfers all its energy to an electron. On the contrary, Compton scattering is the
scatter of a photon on an electron, where only a fraction of the photon energy is transferred
to the electron that recoils so that the energy conservation is respected. According to Klein-
Nishina formula, the energy of the photon after a Compton scatter is given by:

E′γ =
Eγ

1 + Eγ
mec2

(1− cos θ)
(1.30)

where θ is the new direction of the photon, me is the mass of an electron at rest and c is the
speed of light. This means that a 511 keV photon can transfer at maximum 340 keV through
Compton scattering, as shown in Eq. (1.32).

E∆ = Eγ − E′γ =
E2
γ(1− cos θ)

mec2 + Eγ · (1− cos θ)
(1.31)

max
θ
E∆(511 keV) = 340 keV (1.32)

511-keV photons are usually emitted from the annihilation of a positron with an electron,
the positron being originated from the decay of a β+-emitter. Principal β+-emitters that are
used for PET-imaging are listed in Table 1.2. The most important di�erences between these
β+-emitters are their half-life and their mean range in water, which is close to their range
in tissues. For instance radiotracers labelled with H15

2 O can only be used to observe fast
physiological phenomena as cerebral blood �ow, as the half-life of 15O is about 2 min. On
the contrary, 18F can be used to understand slower phenomena as for example the uptake of
18FDG in brain tissues.

Radio-isotope Half-life Mean-free path Examples of radio-pharmaceuticals
in water (Bailey 05)

11C 20.38 min 1.1 mm [11C]raclopride
13N 598 s 1.5 mm [13N]− ammonia
15O 122 s 2.5 mm [15O]H2O
18F 109.7 min 0.6 mm [18F]FDG

Table 1.2 � Main β+-emitters for medical imaging

1.3.2 Photon collection and image formation

When it is intended to detect high-energy photons as γ, a common technology is to use
a crystal (Webb 03). Some of the photons that enter the crystal interact with electrons,
either through photoelectric e�ect or Compton scattering. Crystals are scintillators that are
adapted to detect high-energy photons. The atoms who receive the energy of impinging
photons are in an excited state. When they return to their fundamental energy level, they
emit visible photons. The number of visible photons emitted from a scintillation event is
proportional to the energy of the photon that has excited atoms. Every scintillator is char-
acterised by the wavelength spectrum of the visible photons produced through scintillations.
At the back of the scintillator, a photocathode usually converts visible photons to electrons,
called photoelectron. This electron is ampli�ed through a photomultiplier and the resulting
signal is collected to the anode of the photomultiplier which generates an electric pulse. A
scintillator should have convenient properties:
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� a large attenuation coe�cient so that the impinging photons do not pass through it
without interacting. This means that scintillators should be dense and have a large
number of protons Z since attenuation coe�cients depend on the density ρ and Z5 for
high-energy photons (Leo 94).

� a large light output so that a large number of visible photons reach the photocathode,
which improves the spatial and the energy resolution. Consequently, it should be
transparent to visible photons so that scintillations can reach the photomultipliers.

In emission tomography, as long as the location of the photon is determined in the
scintillator, it is known that the photon comes from a line that passes through this point
as shown in Fig. 1.5 and 1.6. Several methods then allow knowing the direction where the
photons come from.

1.3.2.1 SPECT

In SPECT, information is collected with γ-cameras, which include: a collimator, a detector
and electronics. Detectors are either direct converters of high energy photons into electrons
or consist in a scintillation crystal coupled to photomultipliers. The collimator is the most
important part since it determines the spatial resolution and the statistics in images. Some
collimators can have only one hole, in this case there are called pinhole collimators. An
example is given in Fig. 1.5a. They can also have several holes that are parallel as in parallel-
beam imaging or converge to a remote point or line as for cone-beam and fan-beam imaging.
This is illustrated in Fig. 1.5b and 1.5c. Pinhole imaging allows the reconstruction of spatial
distribution with an excellent spatial resolution, at the expense of the sensitivity that is poor
since only the photons that pass through the pinhole can reach the detector and be used to
estimate the object distribution. Pinhole collimators are not adapted to high energy photons
such as those in PET-imaging because the edges of the pinhole are transparent at 511 keV.
This degrades the spatial resolution. Parallel-collimators can be used instead of pinhole
collimators, which improves sensitivity, but degrades spatial resolutions. Moreover, if it
would be expected to collimate 511 keV photons, which is rare, these collimators would have
to be thick and septas would have to be large so that only photons that have a direction
normal to the detector surface would pass through the collimator. As a result, parallel-
collimators would not be very sensitive at 511 keV. Instead of these collimators, cone-beam
and fan-beam collimators can be used to detect 511 keV photons, as they focus on a point
(respectively a line). This leads to very sensitive imaging systems which have a good spatial
resolution around the region of interest, but the spatial resolution degrades rapidly in regions

Scintillator

Collimator

Photomultipliers

(a) Pinhole collimator

Collimator

Photomultipliers

Scintillator

(b) Parallel-hole collimator

Photomultipliers

Scintillator

Collimator

(c) Cone-beam or fan-beam colli-
mator

Figure 1.5 � Collimators for SPECT imaging
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that are away from the focused region. These collimators are not adapted to reconstruct
large volumes.

1.3.2.2 PET

In PET, the direction where the photons are coming is assessed without the need of physical
collimators, although collimators can help discriminating random coincidences. After emis-
sion and a short range in matter, positrons annihilate with electrons into 2 511-keV γ-rays
at 180 degrees. As a result, by detecting both, the line where the positron and the electron
annihilate is known as it is illustrated in Fig. 1.6. This line is called line of response (LOR).
By detecting a large number of LOR, the spatial distribution of the object is estimated. As
the location of the emission of positrons and the location of their annihilation are di�erent
(characteristic distance is about 1 mm, see table 1.2 for more details), PET images provide
a map of the annihilation locations, not of the radiotracers distribution. This can be viewed
as an intrinsic spatial blurring, which limits the spatial resolution of PET.

LOR

Scintillator blocks

Annihilation
β+

Figure 1.6 � Directions of photons in PET

1.4 Coded-Aperture Imaging and Medical Applications

In previous section (see 1.3.2.1), three collimator families were indicated for SPECT-imaging.
The shape of the holes, their orientation as well as their distribution on the surface of the col-
limators impact the estimation of the radioactive distribution of the object. In this context,
an original family of collimators appeared in late sixties, called coded-aperture collimators.
Coded-aperture collimators were �rst developed for astrophysics applications (Dicke 68).
The aim is to design imaging systems that have similar spatial resolution than pinhole-based
imaging systems but with a much better sensitivity. It was then used for nuclear medical
imaging (Ohyama 84; Groiselle 00; Schellingerhout 02). It is expected that coded-aperture
collimators would su�ciently increase the sensitivity of an imaging SPECT system so that
it will be possible to measure arterial input functions with such collimators.

1.4.1 Pinhole and coded-aperture imaging: physical and mathematical principles

This section presents the basis of pinhole imaging and how it has been extended to coded-
aperture imaging.
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Figure 1.7 � Geometry of pinhole imaging

1.4.1.1 Pinhole imaging

Pinhole imaging denotes imaging with collimators consisting in a thin opaque plate with a
single hole in it. When an object is placed in front of the collimator, only photons that
travel through the hole can be detected by the detector on the other side of the collimator
as illustrated in Fig. 1.7. With pinhole imaging, acquisitions on the detector are reversed
and scaled copies of the spatial distribution of the object in the �eld-of-view (FOV). The
position of a point that is located in the emitting object is denoted r0 whereas it is denoted
ri in the detector. There is a one-to-one correspondence between a point of the object and
its projection on the detector through the pinhole collimator:

P (ri) ∝ O(r0) = O
(
−a
b
ri

)
(1.33)

where O is the spatial representation of the object that emits photons and P is its projection
onto the detector. The minus sign is due to the inversion of the image through the pinhole
and the ratiom = b/a is the magni�cation of the imaging system. If b is chosen larger than a,
then the projection is an enlarged representation of the object. a and b can be chosen to
achieve a magni�cation that compensates for the limited spatial resolution of the detector.
The main drawback is the reduction of the FOV. For a given detector dimension ddtc, the
size of the FOV is:

FOV = ddtc · a
b

(1.34)

There is no reconstruction step, the projection being directly a representation of the object in
the �eld-of-view. The previous considerations are applicable for perfect imaging systems, but
in practice, pinholes have a �nite dimension wc. It directly impacts the spatial resolution R of
the imaging system as illustrated in Fig. 1.8. Pinhole imaging can have very good spatial
resolution, but this is achieved at the expense of the sensitivity. Indeed, the smaller the
pinhole, the better the spatial resolution, but the lower the number of photons reaching the
detector.
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Figure 1.8 � Spatial resolution R is limited by the size of the pinhole

1.4.1.2 Coded-aperture imaging

Coded-aperture collimators are used in chapters 3 and 4 of this thesis to increase the statistics
of image. The main idea of coded-aperture imaging is to use several pinholes in the collimator
in order to improve the sensitivity. This leads to the acquisitions of several projections on the
detector surface that usually overlap. The initial object is retrieved through image processing
of these mixed projections. When only one point source, located in r0, is taken into account,
the photon �ux P on the detector is obtained through simple geometrical considerations:

P (ri) ∝ A
(
r0 +

a

z
(ri − r0)

)
(1.35)

∝ A
(
a

z
ri +

b

z
r0

)
(1.36)

where r0 represents the source position and ri is a position on the detector. a is the distance
between the collimator and the detector and z is the distance between the source and the
detector. A(r) is a binary function whose value is 1 if there is a hole in the mask at position ri,
0 otherwise. These notations are illustrated in Fig. 1.9. In coded-aperture imaging, some
assumptions must be done so that the projections overlap does not deteriorate the estimation
of the spatial distribution of the object. These assumptions are:

� Sources stand at in�nity

� Collimator is in�nitely thin and its septa are completely opaque.

According to the �rst assumption, all detected photons coming from a unique point source
have the same incidence, as illustrated in Fig. 1.10. Then, the image of a point-source
on the detector is not a point but the shifted pattern of the mask. In a sense, the coded

collimator detector

source

z

a b

r0
ri

Figure 1.9 � Projection of a point-source on a detector through a multi-hole collimator
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Figure 1.10 � Parallel incidence of photons impinging the collimator

aperture has encoded the position through the shift. As long as the hole size is larger than
photon wavelengths, interference is negligible and contributions of several point sources can
be viewed as the superposition of the independent contributions of every point source:

P (ri) ∝
∫
r0

d2r0 O(r0)A
(
r0 +

a

z
(ri − r0)

)
(1.37)

∝
∫
r′0

d2r′0 O
′(r′0)A′

(
ri − r′0

)
(1.38)

P ∝ O′ ? A′ (1.39)

where ? indicates the convolution operator and r′0, O′ and A′ are de�ned according to:

r′0 = − b
a
r0 (1.40)

O′(r) = O
(
−a
b
r
)

(1.41)

A′(r) = A
(a
z
r
)

(1.42)

In practice, an additional term is added to model contributions of noise, as for instance
Poisson �uctuations or electronic noise of the detector.

P ∝ O ? A+N (1.43)

When several sources are in the FOV, it is di�cult to interpret directly the projections, be-
cause the superposition of the contributions through every pinhole prevents from recognising
the mask pattern. However, as the original pattern of the coded aperture is known, it can
be used to reconstruct the source spatial distribution.

Projection P must be 'decoded'. First papers (Mertz 61; Brown 72) that have inves-
tigated the possibility to take advantage of several pinholes showed artefacts in the esti-
mated spatial resolution of objects because of wrong choices of the holes pattern. Then,
Fenimore proposed patterns for coded-aperture imaging with perfect autocorrelation prop-
erties (Fenimore 78). The pattern of a collimator is said to have perfect imaging properties
if the autocorrelation function of the mask function is a Dirac's delta function δ, as shown
in Fig. 1.11, where the pattern of the coded-aperture collimator is denoted A and ⊗ is the
periodic correlation operator. This means that the point spread function of the imaging
system is a Dirac.

From a mathematical point of view, a mask has perfect imaging properties if:

A⊗A = δ + C , C being a constant over all the image (1.44)
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A⊗A =
∑

k,lA(i, j)A(i+k, j+ l)⇔ ⊗ =

Figure 1.11 � The autocorrelation function of coded-aperture pattern A is a Dirac-function

More generally, when a decoding matrix G that satis�es Eq. (1.45) exists, the imaging system
whose collimator holes are de�ned by A is said to have perfect imaging properties.

A⊗G = δ + C ′ , C′ being a constant (1.45)

With such a decoding matrix, point source position O is estimated from Eq. (1.43) through:

Ô = P ⊗G (1.46)

= O ? A⊗G+N ⊗G (1.47)

= O +N ⊗G+ C ′ , C′ being a constant (1.48)

Such a correlation procedure is known as 'match �ltering' (Barrett 81). The interpretation is
that the correlation tests all possible shifts and returns a spot when decoding mask matches
the projection. Choice on G should minimise as much as possible the term N ⊗ G. An
example is given for a one-dimensional coded sequence in Fig. 1.12. In this �gure, the
projection P stands in the �rst row. It was periodically duplicated with 3 elements on left
and 4 elements on the right for the clarity of the explanation of the decoding procedure.
When the decoding matrix (7-element sequence) is in phase with the projection as in G0-
line, there are three pairs of holes (white boxes) that match. Otherwise, whatever the shift
of the decoding matrix is, there is always one and only one pair of holes that matches. The
position of such a pair is indicated with a coloured box in Fig. 1.12. From an arithmetic
point of view, black boxes correspond to 0 and white boxes to 1. In the decoding procedure,
the projection P and the decoding sequence Gi are multiplied term-by-term. The sum of the
7 multiplications is the value in the right column which is the decoded spatial distribution.
In this example, the projection P corresponds to the situation where a unique point source is
placed in the �eld of view of the collimator. This is what is observed in the decoded sequence,
with an ideal point spread function. As the sidelobes are �at, it is simple to subtract the
background. In return, it improves the signal-to-noise ratio (SNR). Such kinds of sequences
also exist in 2D and coded sequences will be presented in section 1.4.2.

In practice, decoding is performed very e�ciently through Fourier transforms:

Ô ∝ F−1

(
F(P )H ∗ F(G)

)
(1.49)

where H denotes the conjugate operator and ∗ is the element-by-element matrix multiplica-
tion. F and F−1 are respectively the Fourier transform and its inverse.

1.4.1.3 Autocorrelation versus balanced decoding

When using autocorrelation for decoding projections, the spatial distribution of the sources
is reconstructed over a non-zero constant background as shown in Fig. 1.12. For coded aper-
tures whose autocorrelation function is a Dirac, it is possible to de�ne a balanced decoding
matrix G from the matrix A as it is explained in Eq. (1.50), where (λ,N) = (1, 3). λ is the
number of hole pairs which matches when the decoding sequence is not in phase with the
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Acquired

sequence P︷ ︸︸ ︷
Periodic

duplication︷ ︸︸ ︷
Periodic

duplication︷ ︸︸ ︷

G−3 1
G−2 1
G−1 1
G0 3
G1 1
G2 1
G3 1

Figure 1.12 � Coded sequences and �at sidelobes

projection and N is the number of holes in the sequence. Using G instead of A as a decoding
matrix leads to the direct reconstruction of the spatial distribution of the source over a null
background.

Gi =

1 if Ai = 1

− λ

N − λ(< 0) if Ai = 0
(1.50)

If applied to the example of Fig. 1.12, it leads to:

F−1

(
F([1 0 1 1 0 0 0])H ∗ F([1, -1/2, 1, 1, -1/2, -1/2, -1/2])

)
= [0, 0, 0, 3, 0, 0, 0] (1.51)

instead of

F−1

(
F([1, 0, 1, 1, 0, 0, 0])H ∗ F([1, 0, 1, 1, 0, 0, 0])

)
= [1, 1, 1, 3, 1, 1, 1] (1.52)

With this decoding method, background subtraction is avoided.

1.4.1.4 From 1D sequences to 2D arrays

2D arrays are usually created directly from 1D coded sequence. It introduces supplementary
constraints, for instance the size of the sequence must not be prime if a 2D array of size p×q
is expected. Every element of the sequence must indeed correspond to a unique element of
the array. Furthermore, the 2D periodicity should also be taken into account as a periodic
correlation is used in the decoding process. A way to �ll a 2D array with 1D sequence
without deteriorating the perfect imaging properties is to diagonally �ll the 2D array as
shown in Fig. 1.13a where all diagonals of the 2D pattern are incremented from one case to
the other. The example in Fig. 1.13 shows that perfect imaging properties are maintained
from 1D-sequence to 2D-array. Decoding is still achieved with Eq. (1.49), but F is now the
2D Fourier transform and F−1 its inverse. Balanced decoding works as for 1D-sequence,
which results in a peak over no background constant.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7 13 4 10

11 2 8 14 5

6 12 3 9 15

(a) 1D sequence is diagonally folded in a 2D array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7 13 4 10

11 2 8 14 5

6 12 3 9 15

(b) The 1D-sequence and the 2D arrays have perfect imaging properties

Figure 1.13 � Perfect imaging properties are maintained from 1D sequence to 2D-array

1.4.1.5 Mask Mosaicking

9 15 6 12 3 9 15 6 12 3

4 10 1 7 13 4 10 1 7 13

14 5 11 2 8 14 5 11 2 8

9 15 6 12 3 9 15 6 12 3

4 10 1 7 13 4 10 1 7 13

14 5 11 2 8 14 5 11 2 8

Figure 1.14 � The mask of Fig. 1.13a is mosaicked

Mosaicking the mask consists in replicating it through periodicity. For instance, Fig. 1.14
shows the mosaicked version of the mask of Fig.1.13a. Mosaicking the mask is intended to
decrease the dimension of the detector. As it is shown in Fig. 1.15b, when the mask is not
mosaicked, the detector must be larger than the mask so that the whole pattern of the mask
(gray) is projected on the detector surface (white) when a source is out of axis. This is an
expensive solution because it requires a large detector. It is preferred to mosaick the mask
as in Fig. 1.15c so that the equivalent of the elementary pattern (gray) is acquired on the
detector (white), although this is a periodically shifted projection. As decoding procedure
is based on periodic correlation, the decoding result is similar to the case where the detector
is larger than the mask.
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(a) No mosaicking (b) The detector is larger than the
mask

(c) The mask is larger than the detec-
tor

Figure 1.15 � Mosaicking principle

1.4.2 Coded-aperture family

The previous section shows that some sequences are adapted to estimate source distributions
in the FOV of an imaging system without artefacts and with a good sensitivity. Although
such sequences are not very common, several methods are available to build them. Caroli
wrote a complete review on coded apertures (Caroli 87). The point is to dispose of a large
set of patterns that can be used with any geometrical and physical constraints of imaging
systems. Main pattern parameters that in�uence the e�ciency of imaging systems are:

� the open fraction ρ, which is the ratio of the open surface to the total surface. The
larger the ratio, the larger the number of photons pass through the collimator.

� the dimension of the pattern, so that the projection of a spatial distribution through the
collimator covers the whole surface of the detector, in order to maximise the e�ciency.

All the collimator patterns that are presented in this section are not mosaicked, for simplicity.

1.4.2.1 Random arrays

This kind of arrays does not present ideal imaging properties, they are just arrays where holes
are randomly distributed on the elements. It is presented to illustrate the peculiar properties
of coded apertures. The open fraction is chosen to be about ρ = 50%, so that they can be
compared to coded aperture array family that are presented in the next paragraphs. Their
autocorrelation function is close to a Dirac's delta function, but is not a Dirac delta function,
because of the random repartition of the holes of the mask elements. Any dimension and
any open fractions are achievable. No constraint limits the realisation of such collimators,
although one would usually prefer that the mask is self-supported, which means that all
mask elements are connected altogether. Signal-over-noise ratio (SNR) dependence on open
fraction ρ and on the number of mask-elements NT was investigated (Accorsi 01) and it
appears that SNR only depends on the number of holes according to:

SNR ∝
√
NT (1.53)

Two remarks are of interest on Eq. (1.53): �rst, the SNR does not depend on the open
fraction ρ, second, a random mask with an in�nite numbers of mask-elements would have
ideal imaging properties. In practice, it is not feasible to have a very large number of very
small mask elements. This explains why perfect imaging properties can not be achieved with
random arrays.
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(a) random mask pattern (b) Autocorrelation function

Figure 1.16 � Example of a random array and its autocorrelation function. Sidelobes are not
�at

1.4.2.2 Uniformly Redundant Arrays

Mathematical background is given by Johnsen (Johnsen 66): a framework for �cyclic dif-
ference sets� is presented, which was then used to generate �rst patterns that have perfect
imaging properties. Coded apertures were obtained through the use of cyclic di�erence
sets (Gunson 76; Fenimore 78). A cyclic di�erence set ∆(NT , N, λ) is a set of N integers
(αi) that veri�es:

∀ρ ∈ [[1, NT − 1]], card

({
(αi, αj) ∈ ∆2(NT , N, λ)/αi − αj ≡ ρ (mod NT )

})
= λ

(1.54)

NT is the number of elements that constitute the mask, N is the number of holes in the mask
and λ is the number of overlapping holes when decoding. Two main families are described
in the literature:

� Singer sets, where main parameters NT , N and λ are given by:

{NT , N, λ} =
{
tm+1 − 1
t− 1

,
tm − 1
t− 1

,
tm−1 − 1
t− 1

}
, t ∈ N (1.55)

� Hadamard sets which satisfy:

{NT , N, λ} = {4t− 1, 2t− 1, t− 1} , t ∈ N (1.56)

An example of Singer arrays is presented in Fig. 1.17a. It was used for increasing the
SNR in thyroidal imaging (Groiselle 00). The characteristic parameters are {t,m} = {49, 2}.
It leads to an open fraction which is:

ρ =
N

NT
=

492 − 1
492+1 − 1

≈ 2.0% (1.57)
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(a) 2D Singer pattern, 50 holes out of 2541
elements (≈ 2%)

(b) PSF after decoding procedure

Figure 1.17 � 43× 57 Singer 2D arrays

Among Hadamard sets, several methods allow the generation of coded apertures. De-
pending on the method, properties change as the dimension of the pattern or the lattice of
elements. However all the patterns that belong to the Hadamard set have perfect imaging
properties and their transparency N/NT is about 50% as it can be derived from Eq. (1.56).
Here are presented three methods for building coded-aperture collimators.

� Twin-prime arrays: the array that Fenimore used in his original paper on coded aper-
tures for achieving perfect imaging belongs to this family. It is built on a r × s array
with r and s being both prime and verifying r−s = 2. An example is given in Fig. 1.18,
where with r = 17 and s = 15. The mask elements are de�ned according to:

Ai,j =


0 if i = 0
1 if j = 0, i 6= 0
1 if cr(i) · cs(j) = 1
0 otherwise

(1.58)

where ∀p, cp(i) =

{
1 if ∃x ∈ [[1, p− 1]] / i ≡ x2 (mod p)
−1 otherwise

(1.59)

(a) 15× 17 URA pattern (b) Autocorrelation function

Figure 1.18 � Example of a uniformly redundant array and its autocorrelation function
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� Quadratic residues: this corresponds to the case where NT is prime. As a result, it
can not be directly folded in a 2D rectangular array. However, such sequence can be
folded on a hexagonal lattice, as in Fig. 1.19a. They are commonly called Hexago-
nal Uniformly Redundant Arrays, or HURA (Cook 84; Finger 85). They belong to
a special class of URAs called the skew-Hadamard URAs. They are antisymmetry
upon 60°. It presents the advantage that through a simple 60°-rotation, the mask
turns into the anti-mask which allows background subtraction from two successive ac-
quisitions (Gmar 04). It is de�ned from a few parameters called the order ν and the
multiplier r. For HURA construction, the order ν and the multiplier r verify:{

ν is prime and ν = 3 or ν = 12n+ 7
r2 ≡ r − 1 mod ν

(1.60)
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(a) Pattern on a hexagonal lattice (b) Decoded PSF

Figure 1.19 � Example of a Hexagonal Uniformly Redundant Array (HURA) (a) Coded
sequence, obtained from quadratic residues, and folded on a 2D hexagonal lattice. (b) The
autocorrelation function. Other HURA patterns are presented in Appendix 1

� m-sequences constitute the third sub-category of Hadamard arrays (Fenimore 83). It
corresponds to the case where NT can be written NT = 2t−1, with t > 1. The number
of open positions N is 2t−1 − 1 which means that the open fraction is about 50% as
the other URAs. The sequences are derived from polynomials of degrees m. A list
is available in (Fenimore 83). Such m-sequences are shown in Fig. 1.12 and 1.13 for
m = 3 and m = 4.

1.4.2.3 Pseudo-Noise Product arrays (PNP-arrays)

Pseudo-Noise Product arrays (PNP) (Gottesman 86) is a family of arrays that is more �exible
than Uniformly Redundant Arrays since coded apertures can be produced with dimensions
that were previously impossible. Furthermore, they are self-supported, which means that
holes never isolate a portion of the collimator, which simpli�es the mechanical construction
of the mask. They are obtained through the direct product of two 1-dimensional coded-
sequences. Indeed, it was proven (Luke 88) that the 2-dimensional arrays obtained from
such a direct product has a decoding matrix G that veri�es A⊗G = δ. If (ai) and (bj) are
two 1D pseudo-noise sequences, then the coded pattern A and the decoding matrix G are

35



respectively given by Eq. (1.61) and (1.62).

Ai,j =ai · aj (1.61)

Gi,j =

{
−(−1)Ai,j if ∃k so that Ai,k = 1
(−1)Ai,j otherwise

(1.62)

Fig. 1.20 shows an example of such a mask, its decoding array and the result of the decoding
procedure. Here the mask is square, which is very convenient as most detectors are also
square.

(a) 13× 13 PNP array (b) 13× 13 PNP decoding array (c) 13× 13 decoded projection

Figure 1.20 � PNP array

1.4.2.4 Modi�ed Uniformly Redundant Arrays

This family was introduced in a study made by Gottesman (Gottesman 89). It is not based
on cyclic di�erence sets nor pseudo-noise products, but still derives from quadratic residues.
The main idea is that perfect imaging properties can be achieved although the autocorrelation
function of the coded-aperture pattern A is not a delta function. The decoding matrix G
has to be appropriately designed so that the periodic correlation A⊗G is a delta function.
This new family of arrays increases by a factor of 3 the number of available coded apertures.
Useful sequences can be generated for any length L that is prime and that veri�es:

∃m ∈ N, so that L = 4m+ 1 (1.63)

Sequences are given by:

Ai =


0 if i = 0
1 if ∃m so that i ≡ m2 (mod L)
0 otherwise

(1.64)

These can be used to generate either square arrays or hexagonal arrays. Square arrays are
generated according to Eq. (1.65). Two examples illustrate such kind of arrays in Fig. 1.21.

Ai,j =


0 if i = 0
1 if j = 0, i 6= 0
1 if c(i) · c(j) = 1
0 otherwise

(1.65)

where

c(i) =

{
1 if ∃x ∈ [[1, p− 1]] / i ≡ x2 (mod p)
−1 otherwise

(1.66)
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(a) 7× 7 MURA array (b) 7× 7 MURA decoding array (c) 7× 7 decoded projection

(d) 43× 43 MURA array (e) 43 × 43 MURA decoding ar-
ray

(f) 43× 43 MURA decoded pro-
jection

Figure 1.21 � MURA patterns for 7 × 7 array and 43 × 43 array, their associated decoding
matrix and the resulting reconstructed PSF

The decoding matrix G is obtained from A according to:

Gi,j =


1 if i+ j = 0
1 if Ai,j = 1
−1 if Ai,j = 0

(1.67)

This family is very close to quadratic residue arrays because of condition in Eq. (1.66). Its

coded sequences have a throughput of
L− 1

2L
which converges rapidly to 50% as the sequence

length increases.

All the properties of these families are summed up in Table 1.3. There are some extra coded-
aperture families that are rarely used, so no further description in this thesis is provided to
the reader. It consists in geometric masks (Gourlay 83), dilute URAs (Wild 83).
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number of holes NT ρ =holes/elements lattice

Singer sets
tm+1 − 1
t− 1

N/NT ≈ 1/t

URA

- Twin prime
NT = r · s

r and s are twin prime
r − s = 2

2m − 1
2m+1 − 1

≈ 50%

- Quadratic residues NT is prime
2m − 1

2m+1 − 1
≈ 50%

(HURA) NT = 3 or 12m+ 7

- m-sequences NT = 2m − 1, t > 1
2m − 1

2m+1 − 1
≈ 50%

PNP

MURA
NT is prime
NT = 4m+ 1

NT − 1
2NT

≈ 50%

Table 1.3 � Summary of the properties of every coded-aperture family

1.4.3 Medical imaging applications and near-�eld domain

Medical imaging held attracted by the performance of the coded-aperture collimators
(Barrett 72; Rogers 80; Ohyama 84) since its early development in astrophysics. Indeed,
the increase of SNR would allow low-signal imaging, and consequently low-dose imaging.
As a larger choice of patterns that have perfect imaging properties were available, their
performances for medical imaging were investigating (Meikle 01; Schellingerhout 02). Some
assumptions are not valid anymore, such as the fact that sources stand at in�nity away from
the collimator. Some works have been done in order to analyse the artefacts that appear
because the far-�eld approximation does not hold anymore. Eq. (1.37) has to be modi�ed
into Eq. (1.68) in order to take into account the geometric e�ciency (Accorsi 01).

P (ri) ∝
∫
r0

d2r0 cos3(θ)O(r0)A
(
r0 +

a

z
(ri − r0)

)
(1.68)

with θ being a function of r0 and ri:

θ = arctan
(‖ri − r0‖

z

)
(1.69)

where θ is the incidence angle of the ray and the detector. It is not possible to estimate the
distribution O(r0) as with the far-�eld approximation because of the term cos3 θ. In the
far-�eld approximation, cos3 θ = 1. Accorsi proposed to expand the near-�eld term cos3 θ
through Taylor expansion. This approximation holds better when r0 � z, which corresponds
to imaging systems that have a small magni�cation ratio.

Zero-order and �rst-order artefacts are not presented but details on are available in Ap-
pendice 2. It demonstrates that the mask pattern should balanced and the object spatial
distribution should centred in the middle of the �eld-of-view so that artefacts are at their
minimum.

In this section, it was shown that coded-aperture collimators have a larger open fraction
than pinhole collimators. A large choice of patterns allows choosing a coded mask that �ts
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to detector dimensions. Although they were not primarily developed for medical imaging
applications, it is possible to perform high-sensitivity high-resolution imaging by respecting
a few rules in order to limit apparitions of artefacts. Next section will introduce reconstruc-
tion techniques used in emission tomography, since one can imagine that coded-aperture
collimators could be decoded by other methods than correlations.

1.5 Statistical reconstruction techniques

In this section, statistical reconstruction algorithms are presented. It explains how they
work, their advantages but also their drawbacks. Analytical reconstruction algorithms, as
for instance �ltered-backprojection, are not presented because it will not be possible to
apply them in the rest of the thesis, because they are not adapted to address low-signal
problems. In this thesis, it is intended at using such statistical reconstruction techniques
on SPECT-scans acquired with coded-aperture collimators in order to dynamically quantify
the concentration of tracers that �ows inside arteries. Results of chapter 3 take advantages
of such algorithms.

1.5.1 Statistical reconstruction through MLEM

First statistical reconstructions of a single acquisition are explained. They are based on an
algorithm called �maximum-likelihood expectation-maximisation� (MLEM). Its application
in medical imaging is due to Shepp & Vardi (Shepp 82). Statistical reconstruction tech-
niques take into account the statistical distribution of the acquired datasets that is Poisson-
distributed. Acquired observations are denoted y and the object is denoted λ. λ represents
the unobserved parameters to be estimated. The main idea is to maximise the likelihood
L(y|λ) to have y given λ with respect to λ. The maximisation is not trivial. It is usually
performed through EM-algorithm: it employs a complete data set z (Dempster 77) which
can not be observed but is related to observed data y, called the �incomplete� data set.
On one hand, the �complete� data set z is the set of observations that corresponds to the
independent acquisitions of the contributions of every voxel, which is a N -element set if the
object is made of N voxels. On the other hand, the �complete� data set y corresponds to the
real acquisition with contributions from all voxels. EM-algorithm is an iterative algorithm
and every iteration is made of two steps: expectation and maximisation.

1.5.1.1 Expectation step

The expectation step, also called E-step, derives the following conditional expectation:

Q(λ,λn) = E

[
ln

(
L(z|λ)

)∣∣∣∣∣y,λn
]

(1.70)

where L(z|λ) denotes the likelihood on the complete data set z for a given vector λ and
λn is the current estimate at iteration n. In emission tomography, the likelihood of the
�complete� data set and its logarithm are:

L (z|λ) =
M∏
i

N∏
j

z̄
zi,j
i,j e

−z̄i,j

zi,j !
(1.71)

ln (z|λ) =
M∑
i

N∑
j

zi,j ln z̄i,j − z̄i,j + C (1.72)
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with:

� zi,j being the number of photons emitted from voxel j and detected in pixel i. In
particular

∀i, yi =
∑
j

zi,j (1.73)

� z̄i,j is the conditional expectation E[zi,j |λ]: z̄i,j = E[ni,j |λ] = ai,j · λj
� ai,j is the probability that a photon emitted from voxel j would be detected in pixel i.

(ai,j) constitutes a matrix A which is commonly called system matrix or transition
matrix.

� C =
∑
ij

ln zij ! does not depend on λ

The result of the E-step for the (n+ 1)th iteration is then:

Q(λ,λn) = E

[
ln
(
z|λ
)∣∣∣∣y,λn

]
(1.74)

=
M∑
i

N∑
j

E[zi,j |(yi),λn] ln z̄i,j − z̄i,j + C (1.75)

With the assumption that (ni,j) are independent, it becomes:

Q(λ,λn) =
M∑
i

N∑
j

(
aijλ

n
j∑

k ai,kλ
n
k

· yi
)

ln ai,jλj − ai,jλj + C (1.76)

1.5.1.2 Maximisation step

The maximisation step, also called M -step, maximises the previous conditional expectation
Q(λ,λn) with respect to λ. λn is the best estimate at iteration n and consequently is
constant. Setting �rst derivative of Q(λ,λn) to zero leads to:

∀j, ∂Q(λ,λn)
∂λj

= 0 ⇔
N∑
i

(
ai,jλ

n
j∑

k ai,kλ
n
k

· yi
)

ai,j
ai,jλj

− ai,j = 0 (1.77)

⇔ λn+1
j =

λnj∑
i ai,j

∑
i

yi
ai,j∑
k ai,kλ

n
k

(1.78)

This optimisation is concave since λ 7→ Q(λ) is semi-de�nite negative. Indeed, the second
derivative of Q(λ,λn) only has negative coe�cients. At every iteration of this algorithm,
λn+1 veri�es

∑
i,j
ai,jλ

n+1
j =

∑
i
yi as demonstrated below:

∑
i,j

ai,jλ
n+1
j =

∑
i,j

ai,j
λnj∑
l al,j

∑
l

yl
al,j∑
k al,kλ

n
k

(1.79)

=
∑
j,l

∑
i

(∑
i ai,j∑
l al,j

)
yl

∑
j al,jλ

n
j∑

k al,kλ
n
k

(1.80)

∑
i,j

ai,jλ
n+1
j =

∑
i

yi (1.81)
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In particular, when the initialisation of the algorithm is made from a uniform image, the
activity λ0 in every voxel is:

λ0 =
∑

i yi∑
i,j ai,j

(1.82)

This algorithm allows the estimation of the spatial activity distribution. However, beyond
a certain point, reconstructed images start deteriorating, essentially because the most likely
solution is not the real activity distribution. This is why it is recommended to early stop
this algorithm.

This suggests that a priori information should be added through regularisation so that
no deterioration appears when the number of iterations increases.

1.5.1.3 Regularisation

Regularisation can be used to improve the robustness of reconstructions. Reconstructions
are inverse problems that are ill-posed (Idier 01). As a result, a way to stabilise numerical
solutions is to regularise the cost function. The main idea with regularisation is to add
a priori information (Green 90). The a priori information P (λ) is taken into account through
Bayes formula:

P (λ|y) =
P (y|λ) · P (λ)

P (y)
(1.83)

Logarithm-function is applied to this equation:

ln (P (λ|y)) = ln (P (y|λ)) + ln (P (λ))− ln (P (y)) (1.84)

The a priori information P (λ) is usually de�ned through a potential function λ 7→ V (λ)
according to:

P (λ) = exp (−β · V (λ)) (1.85)

= exp

(
−β
∑
s

∑
r∈Ns

ws,r · ϕ
(
λs − λr

δ

))
(1.86)

where the weighting term β determines the strength of the prior and δ is a range parameter.
Ns is the neighbourhood of pixel s and ws,r is a weight that indicates the neighbourhood
relation between pixels r and s. ϕ is a prior function, some examples will be given below. In
his work, Green proposed an algorithm called �one-step late� (OSL) which is derived from
MLEM that maximises the maximum a-posteriori activity distribution P (λ|y) of Eq. (1.83).
The update scheme for iteration (n+ 1) is:

λn+1
j =

∑
i
zij∑

i
aij + β

∂

∂λj
V (λ)|λ=λn

(1.87)

with zij being estimated according to:

zi,j = λnj ai,j
yi∑

j′ ai,j′λ
n
j′

(1.88)
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(zij) represents the �complete� data set. Numerous potential functions were proposed and
every of them impacts solutions di�erently. The global idea is to smooth region which
should have the same activity without smoothing edges where intensity variations have a real
physical justi�cation. Charbonnier reviews some of these priors (Charbonnier 97). A priori
functions can be classi�ed into two main categories: the potential functions that are semi-
de�nite positive, which insures that the solution that maximises Eq. (1.83) exists and is
unique. Some examples are the following potential functions and their �rst derivatives:

ϕ(t) = ln(1 + t2) ϕ′(t) =
2t

1 + t2
(1.89)

ϕ(t) = 2
√

1 + t2 − 2 ϕ′(t) =
2t√

1 + t2
(1.90)

ϕ(t) = 2 ln(cosh(t)) ϕ′(t) = 2 tanh(t) (1.91)

The second category is made of functions that are asymptotically convergent. Examples are:

ϕ(t) =
t2

1 + t2
ϕ′(t) =

2t
(1 + t2)2

(1.92)

ϕ(t) =
t2δn

2(
√
t2/2 + δ2/2)n

ϕ′(t) =
tδn(t2(1− n/2) + δ2)

(t2 + δ2)n/2+1
(1.93)

MAP converges faster than MLEM and the result is equivalent to post-smoothed MLEM
when the resolution is uniform in the whole image. MAP requires less iterations than MLEM
but every iteration requires a larger computational load.

Application of MLEM algorithm to emission tomography results in accurate estimation
of the spatial distribution of the object to be imaged. It allows the addition of a priori
information. However it is slow because it requires a lot of iterations to converge to solutions.
Furthermore, it requires that an accurate system matrix A was computed, which can be
di�cult because such a matrix should take into account several physical phenomena, as
scattering and spatial blurring for instance.

1.5.2 Dynamic reconstruction techniques

Demand on dynamic information is increasing because it is more informative on physiological
in-vivo mechanisms. 2D or 3D images are not su�cient to deeply understand the way
organs work and interact with radiolabelled molecules; the time sequence must be taken
into account. When independent 3D reconstruction methods are used, the better the time
resolution is, the worse the reconstruction quality per frame is. The system matrix is denoted
AM,N , the expected image is denoted yexp. The number of time frames is denoted T . Every
time frame t can be reconstructed according to the model:

(yexp)t =

 (yexp)t1
...

(yexp)tM

 = AM,N ·

λ
t
1
...
λtN

 = AM,N · λt (1.94)

Independent reconstructions of several sets of projections as in Eq. 1.94 can be modelled
through a unique equation:

(yexp)tot =


(yexp)1

...

...
(yexp)T

 =


AM,N 0M,N . . . 0M,N

0M,N AM,N
. . .

...
...

. . . . . . 0M,N

0M,N . . . 0M,N AM,N

 ·
λ

1

...
λT

 = H · λtot (1.95)

42



H is a system matrix which takes into account several time frames. It depends on AM,N

which is the system matrix for the static model representation. The unknown parameters
(λtj) are the intensities in every voxel j for every time frame t. The number of unknown
parameters increases linearly with the number of time frames, which is not convenient from
a computational point of view. Furthermore, the better the time resolution is, the less counts
every projection contains which leads to poor quality of reconstructions because of statistical
considerations. As a result, it is usually not possible to properly reconstruct independent
time frames. Some methods were proposed to deal with such a problem. They consist in
modelling the spatiotemporal distribution with less parameters than the total number of
parameters λtot is made of.

1.5.2.1 Model of the observations through inhomogeneous Poisson process

It was suggested to model dynamic data through inhomogeneous Poisson process in PET-
imaging (Nichols 02), which means that the radioactive concentration (λi) for every voxel i
in the object is modelled as a time-varying continuous function. Such a function is built
from a linear combination of cubic B-splines. Thus this method fully exploits the list-mode
by taking into account the exact detection time of every detected coincidence. This method
is based on the maximisation of the likelihood of arrival times of detected photons pairs and
does not rely on any physiological models. Inhomogeneous Poisson process is used to model
radioactive concentrations for all voxel j as:

λj(t) =
∑
l

wjlBl(t) (1.96)

where Bl(.) is the lth spline basis function, (wj,l) is the weight (also called �control vertex�)
of the lth B-spline. Instead of estimating the (N × T ) unknown parameters of λtot, the
(N × C) parameters (wj,l) are estimated. This presents an interest only if C < T . This
model assumes that the kinetics in all voxels is a linear combination of limited number C of
functions Bl. From Eq. (1.96), the model for the measured data is deduced:

ηi(t) =
∑
j

ai,j
∑
l

wjlBl(t) (1.97)

where ai,j is the probability that an annihilation which happens in voxel j is detected in
pair i and ηi(t) is the expectation that an event would be detected in the detector pair i
at time t. All parameters (wjk) can be represented in a matrix W . When N events are
detected at time (t1, . . . , tN ) during an acquisition which starts at Ti and ends at Tf , the
likelihood function of a Poisson process, whose rate function is given by η(t), is:

P (t1, . . . , tN |η(t)) =

(
N∏
k=1

η(tk)

)
· exp

− Tf∫
Ti

du η(u)

 (1.98)

When using list-mode data, detection time is accessible for every detected coincidence. Mea-
sured data are denoted D = {y, t1, . . . , tM} with y being the sinogram and
ti = {ti,1, . . . , ti,ni} being the time stamps of the ni events detected in the detector pair i.
As a result, the log-likelihood of obtaining D is:

L(D|(wj,l)) =
∑
i

∑
k

ln ηi(ti,k)−
∑
i

Tf∫
Ti

du ηi(u) (1.99)
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Some regularisations are added to the log-likelihood L(D|W ) in order to constrain smooth-
ness on spatial and temporal variations (ρ(W ) and φ(W )), as well as a negativity penalty ν(W ).
The objective function E is de�ned according to Eq. 1.100 to take them into account:

E = L(D|W )− αρ(W )− βφ(W )− γν(W ) (1.100)

A di�cult task is to maximise such a function because there is no reason it is concave.
The maximisation is performed through a conjugate gradient method. After maximising
the cost function E on W , the spatiotemporal distribution is obtained through Eq. (1.96).
This method assumes that kinetics of voxels can be decomposed on B-splines which is not
necessarily the optimal decomposition.

1.5.2.2 Model of the observations without a priori on temporal functions

It was seen in the previous section that the spatiotemporal distribution λtot could be modelled
from only a few parameters W . In this section, the method that is presented investigates
further this model, but without assuming that the kinetics of voxels should be decomposed
on a particular type of functions. In this investigation, TACs of every voxel are not modelled
from a prede�ned temporal basis functions, but rather through a linear combination of
C temporal basis functions that will be estimated in the reconstructions, as well as their
factors (Reader 06). The activity in voxel j at time t can be written:
∀(j × t) ∈ ([[1;N ]]× [[1;C]]),

λj(t) =
C∑
k=1

ckj · fk(t) =
C∑
k=1

ckj · fkt (1.101)

where (ckj ) are weighting coe�cients and (fk)k∈[[1;C]] is a set of C temporal functions. It
is then expected to estimate the weighted coe�cients (ckj ) and the temporal functions (fk)
that lead to the most likely solution λtot in Eq. (1.95). Every temporal function fk can be
represented as a T -long vector. Every ck can be represented as a N -long vector and has the
dimension of a 3D-image. The number C of temporal basis functions is not estimated, it is
an input parameter of the algorithm. All parameters ckj and all parameters fkt are stored
respectively in vectors θ and γ that are de�ned as:

θ = [c1
1 . . . c

1
N , . . . , c

C
1 . . . c

C
N ]T (1.102)

γ = [f1
1 . . . f

1
T , . . . , f

C
1 . . . fCT ]T (1.103)

where T is the transpose operator. θ is a (N × C)-long vector and γ is a (C × T )-long
vector. It is proposed in (Reader 06) to jointly estimate temporal basis functions γ and their
3D weighting coe�cients θ through alternate MLEM optimisations. One set of unknown
parameters (for instance the weighting coe�cients θ) is kept constant when the other (the
temporal functions γ) is optimised and vice versa. This means that Eq. (1.95) must be put
in the form of:

(yexp)tot = H1 · θ (1.104)

(yexp)tot = H2 · γ (1.105)

so that MLEM-algorithm can be applied on θ and γ. It is clear thatH1 depends onH and γ
and thatH2 depends onH and θ. In the following calculations, the set (fk) is assumed to be
made of 3 components (C = 3) for clarity. By denoting λtot = [λ1(t1) . . . λN (t1), . . . , λ1(tT ) . . . λN (tT )]T ,
λtot can be written with matricial notations:

λtot = Bf · θ (1.106)
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with

Bf =

F
1
1 F 2

1 F 3
1

...
...

...
F 1
T F 2

T F 3
T


(T ·N)×(3·N)

and F i
j = f ij

1
. . .

1


N×N

(1.107)

Indeed, from Eq. (1.101) and (1.107),

∀(i, j) ∈ [[1;T ]]× [[1;N ]],

λtoti·N+j = λj(ti) = c1
j · f1

ti + c2
j · f2

ti + c3
j · f3

ti

(Bf · θ)i·N+j =f1
ti · θj + f1

ti · θN+j + f3
ti · θ2N+j = c1

j · f1
ti + c2

j · f2
ti + c3

j · f3
ti

It would be demonstrated in the same way that:

λtot = Bc · γ (1.108)

with

Bc =

C
1
1 C2

1 C3
1

...
...

...
C1
N C2

N C3
N


(T ·N)×(3·T )

and Ci
j = cij

1
. . .

1


T×T

(1.109)

As a result, Eq. (1.95) can be modelled as:

yexp = (H ·Bf ) · θ +N1 (1.110)

yexp = (H ·Bc) · γ +N2 (1.111)

where Bf is a matrix that depends on the temporal basis functions γ and Bc is a matrix
that depends on the weighting coe�cients θ. N1 and N2 are Poisson noise. Optimisation
is then performed through alternate MLEM on Eq. 1.110 and 1.111 according to Shepp &
Vardi update scheme shown in Eq. (1.78).

This method was validated on PET-data. The number of detected coincidences is 60 mil-
lions. Reconstruction volume is made of 64 × 64 × 50 voxels whose side length is 1,2 mm.
Spatiotemporal reconstruction is performed on 100 time frames. Post-reconstruction smooth-
ing on both 3D spatial set of coe�cients and temporal basis functions was investigated. Only
spatial smoothing should be considered for this method, because temporal smoothing only
introduces bias without impacting the mean noise error. This method does not exploit
any a priori on the temporal basis functions and consequently, this method is very gen-
eral and can be convenient for estimating TACs. Limitations are that solutions depend on
the initialisation, on the choice of the number of functions that are taken into account for
reconstructions and on the frequency of the alternations of optimisations on γ and θ.

1.5.3 Direct and semi-direct estimations of kinetic parameters within reconstruc-

tions

It was then proposed to add a prior on time-activity curves of every voxel of a region of
interest in order to constrain the 4D solution (3D+time) so that it is also a correct solu-
tion for the compartment model for a given radioligand (Kadrmas 01). The prior is intro-
duced through maximum a posteriori. At every iteration, the optimal kinetic parameters
are computed, which means that the input function is available. The new kinetic param-
eters modify the prior in the next update of the solution, which results in a �nal solution
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which complies to projections but at the same time allows a robust estimation of kinetic
parameters. This method was applied for a two-compartment model on two patients, as well
as on simulations in order to quantify improvements compared to independent reconstruc-
tions. The radioligands were 99mTc-teboroxime and activity distributions were reconstructed
from SPECT-scans. It was shown that in most cases, the kinetic parameters k12 and k21 of
the compartmental model are better estimated than with reconstruction algorithms with-
out constraints on TACs of voxels. In simulations, the true value for k12 and k21 were
respectively 1.4 and 0.5 ml ·min−1 ·ml−1. With this new algorithm, the estimations are re-
spectively 1.402± 0.151 ml ·min−1 ·ml−1 and 0.535± 0.027 ml ·min−1 ·ml−1, whereas with
OSEM and a compartmental analysis from the reconstructed frames, the estimations are
1.491± 0.129 ml ·min−1 ·ml−1 and 0.524± 0.025 ml ·min−1 ·ml−1. This shows that k12 is
better estimated with the new method, but not k21. The most interesting parameter in such
analysis is usually the wash-in parameters k12 however, thus this method brings improve-
ments. This method requires that the input function is available but does not estimate it
by itself, which is a limitation of the method as it is di�cult to estimate the input function.
Furthermore, this method was only applied to a one-tissue compartment model, where only
two parameters must be estimated.

The idea of directly estimating kinetic parameters from sinogram data was then applied
to more complex kinetic models (Kamasak 05). This method, called parametric iterative
coordinate descent (PICD), directly estimates the kinetic parameters for every voxel. The
method was derived for a two-tissue compartment model but no restriction prevents this
method from working on more complex models. As previously, the input function CP (t)
must be measured or estimated beforehand and be supplied to the algorithm. The activity
λi in every voxel i is expressed as a function of kinetic parameters ϕi = [k1,i k2,i k3,i k4,i]Tas:

λi(ϕi, t) = [ai, bi]
[
α(ci, t)
β(di, t)

]
+ γ(t) (1.112)

with

ai =
k1,i

2∆i
(k2,i − k3,i − k4,i + ∆i) bi =

k1,i

2∆i
(−k2,i + k3,i + k4,i + ∆i) (1.113)

ci =
1
2

(k2,i + k3,i + k4,i + ∆i) di =
1
2

(k2,i + k3,i + k4,i −∆i) (1.114)

∆i =
√

(k2,i + k3,i + k4,i)2 − 4k2,ik4,i (1.115)

α(ci, t) =
(

CP (t) ?
[
e−ci(t)χ(t > 0)

])
· (1− VB)SAe−t/τ (1.116)

β(di, t) =
(

CP (t) ?
[
e−di(t)χ(t > 0)

])
· (1− VB)SAe−t/τ (1.117)

γ(t) = VBCWB(t) (1.118)

where χ is the Heaviside unit step function, CP (t) is the arterial input function, VB is the
fraction volume of blood per voxel, SA is the initial speci�c activity of the tracer, CWB is the
tracer concentration in whole blood and τ is the characteristic decay time of the radiotracer.
? is the convolution operator. The function de�ned as (k1,i, k2,i, k3,i, k4,i) 7→ (ai, bi, ci, di) is
a bijection and consequently all k.,i can be retrieved from (ai, bi, bi, di). Writing Eq. (1.112)
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with a matrix notation, the log-likelihood L(Y |ϕ) to have the sinogram for all time frames Y
given all kinetic parameters ϕ is given by Eq. (1.120):

Λ(ϕ) =

 λi(ϕ0, t0) . . . λi(ϕ0, tK−1)
...

...
λi(ϕN−1, t0) . . . λi(ϕN−1, tK−1)

 (1.119)

L(Y |ϕ) =
K−1∑
k=0

M−1∑
m=0

Ym,k ln((A ·Λ)m,k + µ)− ((A ·Λ)m,k + µ)− ln(Ym,k!) (1.120)

where µ may be an estimation of the number of accidental coincidences and A is a model
matrix of the imaging system. The maximisation of this likelihood is not performed through
a 2-step expectation then maximisation scheme, but rather through a 2-stage nested opti-
misation. This algorithm updates sequentially every voxel i by �rst looking for optimal ai
and bi, with the constraint (ai, bi ≥ 0), and then by looking for ci and di with the constraint
(ci ≥ di ≥ 0). The objective function is a second-order Taylor expansion of Eq. (1.120).
Some regularisations can be added but it is not discussed here because it is not the key con-
tribution of this study. This method was evaluated from simulations of a rat brain phantom.
The simulated radioligand was 11C-raclopride. The simulation models a 60-min acquisition
divided into 18 time frames. This method shows signi�cant improvements on the estimation
of all kinetic parameters compared to the estimation of kinetic parameters from reconstruc-
tions of independent frames. A normalised root-mean square error (nRMSE) was de�ned for
every kinetic parameter ki as:

nRMSE(ki) =

√∑
s∈S

(
ktruei,s − kestimatedi,s

)2

√∑
s∈S

(
ktruei,s − kind.framesi,s

)2
(1.121)

where S is the spatial domain where the nRMSE is computed. The reduction on the error
on the estimation of k1 and k4 with PICD was about 40% and the error reduction was about
80% for k2 and k3. Estimating kinetic parameters for every voxel decreases the number
of parameters to be estimated, as the kinetics of every voxel is completely de�ned from
4 parameters, instead of 18 estimations in this example. Nevertheless this method requires
that the arterial input function was previously measured or estimated.

Methods which were developed for 4D-imaging intend at modelling the variation of con-
centrations in voxels in order to estimate them from a small number of parameters. Such
kinds of methods should be investigated to attempt to estimate arterial input functions from
imaging modalities. Next section presents a method called �non-negative matrix factorisa-
tion� (NMF), that could also be used to build a 4D model of the activity spatiotemporal
distribution. The point of using such a method is that positivity constraints are handled
directly. Furthermore, new algorithms that are used to perform NMF take advantage of
projected gradient methods that are faster than other optimisation constrained algorithms.

1.6 Non-Negative Matrix Factorisation

Two techniques of the previous section intend at decomposing unknown parameters λi(t)
as a linear combination of weighted temporal functions. Furthermore, the new unknown
parameters are expected to be positive. This leads to investigate the capability of a method
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called �non-negative matrix factorisation� (NMF) that is presented in this section and will
be used and modi�ed in chapter 4 for estimating the β+ input function. NMF intends at
decomposing a matrix V on two non-negative matrices W and H. In this sense, it is a
source separation technique. It will be used to decompose the spatiotemporal distribution
of any object that is imaged into several spatial components and their associated kinetics.
This is expected to improve the estimation of the arterial concentration for temporal frames
where the amount of signal is low which prevents the spatial distribution of the artery
from being estimated. NMF is very interesting because it leads to solutions whose physical
interpretations are more intuitive than solutions that principal component analysis (PCA)
or independent component analysis (ICA) provide. For instance, performing PCA or ICA
on activity distributions return negative coe�cients, which can not be interpreted. NMF
avoids such situations. It was developed in the �eld of spectral data analysis and found
applications in part recognition in computer vision (Lee 99). Attempts have also been done
to apply NMF to medical imaging (Lee 01).

The main advantage if compared to PCA is that it is not assumed that the data is
Gaussian. Furthermore the decomposition returns two non-negative matrices that may be
interpreted in term of physical phenomena.

1.6.1 Factor Analysis of Medical Image Sequences

NMF is close to a method developed from 1980 and called the factor analysis of medical
image sequences (FAMIS) (Di Paola 82) which aims at decomposing the data as a linear
combination of elementary functions that are weighted by factors. For instance, a sequence
of T images which is made of M pixels can be represented by a (M × T ) matrix. Rows (xi)
are called trixels and represents the signal variation in pixel i for successive time frames. If
it is assumed that there are T acquired images and M trixels xi which are T -long vectors.
Although the number of trixels is usually large in medical imaging, the kinetics of only a few
tissues are su�cient to understand the variations in all trixels: every trixel can be viewed as
a linear combination of a limited number of elementary kinetics. This can be written with
matrix notations:

X = A · F (1.122)

where X is a (M ×T )-matrix that contains all the signal, A is a (M ×C)-matrix that repre-
sents weighting factors and F is a (C × T )-matrix that represents the elementary functions.
C is the number of tissues with independent kinetics that lay in the image, T the number
of time frames and M the number of pixels or voxels in any images of the sequences. In
practice, such a decomposition is very unlikely to exist because there are less coe�cients inA
and F than inX if the number of expected elementary functions is smaller than the number
of time frames. Consequently an additional noise term N should be taken into account. In
nuclear imaging, Poisson �uctuations are included in N .

X = A · F +N (1.123)

The �rst step to decompose X into A and F with FAMIS consists in performing a singular
value decomposition according to a metric that is adapted to the statistical properties of
X, namely all the observations xij of X are random draws from Poisson distributions with
unknown parameters νij (Benali 93). After this step, an orthogonal decomposition of noise-
free observations X̃ is obtained:

X̃ = X −N = U · V T (1.124)
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with U and V being two orthogonal matrices. This is a valid decomposition of the noise-free
matrix X̃, but U and V have no physical meaning. An oblique analysis is performed on
X̃ to decompose it on two matrices A and F under positivity constraints (Buvat 93). The
matrices A and F are estimated alternatively through regression according to χ2-metric. At
every iteration, negative coe�cients are either set to 0 or are penalized so that they converge
to 0 as the number of iterations increases. The algorithm stops when the number of negative
coe�cients is below a user-de�ned threshold. The result is a decomposition of the image
sequences X on two positive matrices A and F :

(A∞,F∞) = arg min
(A,F )

‖X −A · F ‖2M (1.125)

where M is a (T × T ) matrix that de�nes a metric on RT .
FAMIS allows the decomposition of a set of observations into the factorisation of positive

matrices through a succession of algebraic manipulations. The convergence of the regression
in the oblique analysis does not guarantee that the algorithm converges to the optimal
solution. Analysing convergence properties is easier with NMF as it will be shown in next
section.

1.6.2 Model of NMF

NMF is also an approximate decomposition since usually, V is not exactly decomposable
on two non-negative matrices, because V is usually made of more coe�cients than W and
H. The decomposition can be written as in Eq. (1.126), where R is a residue, that is not
necessarily non-negative.

V = W ·H +R (1.126)

A �rst method to perform such a decomposition relies on multiplicative updates (Lee 00).
In this paper, Lee proposes two types of algorithms depending on the cost function that is
taken into account. He developed methods that minimise Euclidean distance between V and
W ·H, as well as the Kullback-Leibler divergence D(V ||WH).

1.6.2.1 Observations are Gaussian variables

Least square methods minimise the distance between V andW ·H that is de�ned according
to:

D(W ,H) = ‖V −W ·H‖2F (1.127)

where ‖.‖F is the Frobenius norm ((Golub 96)). This corresponds to assume that coe�cients
of matrix V are realisations of Gaussian variables. Indeed, the likelihood LG(W ,H) ∝
P (V |W ,H) can be written under Gaussianity assumptions as:

LG(W ,H) ∝
∏
i,j

exp

(
−(vi,j − (WH)ij)2

2σ2
i,j

)
(1.128)

When all (σij) are equal to 1, maximising LG(W ,H) is equivalent to minimising the follow-
ing objective function:

E = − ln (LG(W ,H)) =
∑
i,j

(vi,j − (WH)ij)2 (1.129)

= −‖V −W ·H‖2F (1.130)
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Minimising E is complex because it is not a quadratic function. However, it becomes
quadratic if an alternate minimisation is performed on E, once with W being kept �xed,
the other with H being kept �xed. Lee demonstrated that the following update procedure
converges to a local minimum (Lee 00):

wn+1
i,j = wni,j

(WTV )i,j
(WTWH)i,j

(1.131)

hn+1
j,k = hnj,k

(V TW )j,k
(WHHT)j,k

(1.132)

This is a simple update procedure that can be implemented easily. It was applied in spectral
analysis and part recognition in computer vision. However, in nuclear imaging, it is usually
not possible to assume that the observations V are Gaussian-distributed.

1.6.2.2 Observations are Poisson variables

Lee proposed a second algorithm that minimises the divergence D(V ||W ,H):

D(V ||W ,H) =
∑(

vi,j ln
vi,j

(W ·H)i,j
− vi,j + (W ·H)i,j

)
(1.133)

This is denoted a divergence instead of a distance because this measure is not symmet-
ric. D(V ||W ,H) can be related to Kullback-Leibler divergence when ‖V ‖1 = 1 and
‖ W ·H‖1 = 1. It is sometimes referred as generalised Kullback-Leibler divergence. Min-
imising this divergence is equivalent to maximise the likelihood LP (W ,H) ∝ P (V |W ,H).
Indeed, when V is Poisson-distributed, LP (W ,H) can be written as:

LP (W ,H) =
∏
i,j

(W ·H)vi,ji,j · e−(W ·H)i,j

vi,j !
(1.134)

Maximising LP (W ,H) is equivalent to minimise the cost function E de�ned as:

E = ln (LP (W ,H))−
∑

ln vi,j ! (1.135)

=
∑
i,j

[
−vi,j ln(W ·H)i,j + (W ·H)i,j

]
(1.136)

= D(V ||W ,H)−
∑
i,j

[vi,j ln vi,j − vi,j ] where
∑
i,j

[vi,j ln vi,j − vi,j ] is constant

(1.137)

Lee proposed a multiplicative update algorithm for minimising the divergence D(V ||W ,H):

wn+1
i,j =

wi,j∑
l hj,l

∑
l

hj,l
vi,l

(WH)i,l
(1.138)

hn+1
j,k =

hj,k∑
l wl,j

∑
l

wl,j
vl,k

(WH)j,k
(1.139)

One can recognise the algorithm proposed by Shepp&Vardi (Shepp 82) which was applied
to solve the systems of Eq. (1.140) on the columns of H and on the columns of WT:

V = W ·H +N and V T = HT · WT +NT (1.140)
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1.6.3 Scale indetermination and order indetermination

The decomposition of V on W and H is not unique (Moussaoui 05). Indeed, di�erent
W and H can lead to similar (W ·H). Let choose W 0 and H0. Assuming that a de-
composition on C components is performed, any matrices WR and HR which are de�ned
by WR = W 0 ×R−1 and HR = R×H0 is also a solution if R ∈ GL(C,R) which is the
group of invertible (C ×C)-matrices. Positivity constraint on physical components imposes
that WR and R−1H are real positive matrices. For instance, by multiplying any diagonal
matrix D with strictly positive coe�cients with a permutation P matrix, a matrix R that
satis�es the previous positivity constraint can be built. The multiplication by the permu-
tation matrix P means that the columns of matrix W can be exchanged as long as rows
of matrix H are also exchanged without any in�uences on log-likelihood ln(W ,H). This
is called order-invariance. Columns of matrix W can also be scaled by multiplying W by
as strictly positive diagonal matrix as long the rows of matrix H are also scaled by matrix
D−1. This is known as the scale invariance. These invariances have no in�uence on the
calculation of WH.

NMF allows the decomposition of a spatiotemporal non-negative distribution on a non-
negative spatial matrix and a non-negative temporal matrix. This decomposition is usually
performed with iterative algorithms whose convergence is proven. This decomposition can
take into account the nature of the statistical noise in the spatiotemporal matrix when it is
either gaussian or Poisson. The main drawback of this method is that the solution depends
on the initialisation point, the solution is consequently local.

1.7 Gradient methods for the estimation of non-negative ma-
trix factorisation

The algorithms that Lee proposed can be viewed as a gradient method according to the
following considerations. When the observations are Gaussian-distributed, the �rst-order
Taylor expansion of any hn+1

j,k can be expressed as:

hn+1
j,k = hnj,k + ηi,j

∂E

∂hi,j
(1.141)

= hnj,k + ηj,k
[
(V TW )j,k − (WHHT)j,k

]
(1.142)

if setting ηj,k =
hnj,k

(WHHT)j,k
, Lee's �rst multiplicative update algorithm is obtained:

hn+1
j,k = hnj,k

(V TW )j,k
(WHHT)j,k

(1.143)

With a similar method, the update algorithm for W could be viewed as a gradient-based
algorithm. This could also be done when observations V are Poisson-distributed.

The algorithms that Lee proposed for performing NMF are straightforward to implement
but their convergence rates are not optimal as it is equivalent to a ascent gradient where
the size of the steps are �xed. New classes of constrained gradient optimisation can be used
to optimise cost functions encountered in NMF. However, such methods have only been
proposed in the literature to solve the class of problems where the data are assumed to
be Gaussian variables (Lin 07). Chu proposes an overview of the optimisation methods for
non-negative matrix factorisation (Chu 04).
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The direct minimisation of all parameters (wi,j , hj,k) = (x1, . . . , xn) that is required to
perform non-negative matrix factorisation is not quadratic, whatever the measure that is
chosen. However, it becomes quadratic if the observations are assumed to be Gaussian and
that the optimisation is performed alternatively on W and H. In the context of this PhD
thesis, the Gaussian approximation usually does not stand because the counts in pixels are
very low. Furthermore, it is wanted to update all parameters at every iteration in order to
reduce the risk to get trapped in a local minimum. Indeed, if W and H are respectively
made ofMW andMH variables, it can happen that the gradients∇SW

f(xk) and∇SH
f(xk)

are null on every subspace SW and SH , without gradient ∇SH⊕SW
f(xk) is null, with SW

and SH being the convex spaces where W and H respectively stand in. As non-negative
factorisations su�er from local minima, alternate optimisations seem not to be the best
choice. As a result, optimisations that can performed non-negative matrix factorisations can
not be viewed as a set quadratic problems because they are non-linear problems.

1.7.1 Optimisation through gradient descent

The general method to solve an optimisation problem on a multi-dimensional space is to
search iteratively points (xk) that makes the objective functional f decreasing. From an
initial point x0, the next point is searched on the descending gradient direction −∇f(x0).
This procedure is repeated iteratively according to Eq. (1.144), where∇f(xk) is the gradient
of objective functional f at point xk and αk is the step size that minimises f on the line
de�ned by α 7→ xk − α∇f(xk), which can be written as in Eq. (1.145).

xk+1 = xk − αk∇f(xk) (1.144)

αk = arg min
α≥0

f(xk − α∇f(xk)) (1.145)

The gradient ∇f(xk) being usually straightforward to derive, the tricky part is to choose
an e�cient step size αk at very iteration k. The gradient descent technique looks for an
optimal α through line search on line α 7→ xk − α∇f(xk), but this is time-consuming since
it requires numerous evaluations of f . Some more elaborated methods exist that provide
step sizes αk that make optimisations converge rapidly.

1.7.2 Newton and quasi-Newton methods

Non-linear optimisations mostly take advantages of Newton and quasi-Newton algorithm
methods, that used the Hessian Hess(f) of f or an approximation of it to derive αk e�ciently.
These algorithms assume that objective functions can be locally approximated by a quadratic
function in the neighbourhood of an optimal point.

Newton's optimisation uses Newton's method on the gradient ∇f(xk) in order to �nd
its roots. Taylor expansion of ∇f(xk) leads to:

∇f(xk + h) ≈∇f(xk) + Hessf(xk) · hT (1.146)

When xk + h is an optimal point, h is obtained through:

∇f(xk + h) = 0 ⇔ ∇f(xk) + Hessf(xk) · hT = 0 (1.147)

⇔ h = − [Hessf(x)]−1∇f(x) (1.148)

As a result, the sequence {xk} given by Eq. (1.149) de�nes an iterative scheme that optimises
objective functional f .

xk+1 = x− [Hessf(x)]−1∇f(x) (1.149)
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This method is very interesting because it has a quadratic convergence rate around the
solution. In order to ease the local convergence when quite far from the solution, a line
search can be added in

(
(Hessf(x))−1∇f(x)

)
-direction:

xk+1 = x− ρk [Hessf(x)]−1∇f(x) (1.150)

The main drawback of this method is that it requires to derive the Hessian of f and to invert
it at every iteration k. When the objective function f describes a large-scale problem, the
computation of the Hessian matrix Hf(xk) and its inversion are resource-demanding. Fur-
thermore, the inversion is not necessarily stable depending on Hessf(xk) condition number.

An alternative is to use quasi-Newton methods that replaces Hessf(xk) by a matrix Bk

that veri�es :

� Bk is positive-de�nite

� Bk is symmetric

� Bk veri�es: Bk (xk+1 − xk) =∇f(xk+1)−∇f(xk)

One of the most used quasi-Newton optimisation algorithms is the one called BFGS-algorithm,
from the name of its authors: Broyden, Fletcher, Goldfarb and Shannon. It gives an update
formula of the approximate Hessian B and the corresponding invert matrix B−1

k . Details
on this method are reported in Appendix 3. The new update formula is:

xk+1 = xk − ρkB−1∇f(xk) (1.151)

1.7.3 Optimisation on positive sets

BFGS method can be adapted to perform non-negative matrix factorisation by modifying the
objective function of the non-negative matrix factorisation problem of Eq. (1.130) and (1.137)
as:

E = ‖V −W 2H2‖2 for Gaussian observations (1.152)

or E =
∑(

vi,j ln
vi,j

(W 2 ·H2)i,j
− vi,j + (W 2 ·H2)i,j

)
for Poisson observations (1.153)

where ∀(i, j, k),
(
W 2
)
i,j

= w2
i,j and

(
H2
)
j,k

= h2
j,k. The drawback of such a method is

that the objective function does not look like a quadratic function at all which leads to poor
convergence rate.

1.7.4 Optimisation based on a projected gradient method

Projected gradient methods were developed to address constrained optimisations on convex
sets. For a problem whose solution is constrained on convex set Ω, the successive iterations
that approximate the solution have the form:

xk+1 = P (xk + αkdk) (1.154)

where P is the projection operator on convex set Ω, dk is the search direction and αk is the
step size that makes f decreasing on the line de�ned by α 7→ xk +αdk. Di�erent algorithms
were proposed that suggest di�erent step sizes αk. A way to determine e�ciently αk was
proposed in (Bertsekas 99). It sets αk = βt where β ∈ [0, 1] and t is the �rst non-negative
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integer that veri�es: f(xk+1)−f(xk) ≤ σ∇f(xk)T(xk+1−xk), σ being in [0, 1]. A common
choice for σ is σ = 0.01.

A more re�ned method is the Spectral Projected gradient method (Birgin 00). It presents
the advantage that the convergence is non-monotonic which allows escaping from some of the
local minima that are encountered in non-negative matrix factorisation. The search direction
is de�ned as:

dk = P

(
xk − 1

σk
∇f(xk)

)
− xk (1.155)

where σk is de�ned by σk =
(xk+1 − xk)T(∇f(xk+1)−∇f(xk))

(xk+1 − xk)T(xk+1 − xk) , which is deduced from

quasi-Newton method where the Hessian is approximated by σkI. It is the solution that
minimises ‖σ(xk+1 − xk) − (∇f(xk+1) −∇f(xk))‖22. At every iteration, the estimation of
the solution is updated according to:

xk+1 = xk + αkdk (1.156)

Contrary to previous methods, the line search that estimates αk is non-monotonic, which
means that it is not imposed that the objective functional f decreases at every itera-
tion (Grippo 86). Some local minima are then avoided.

1.8 Conclusions

Pharmacokinetics aims at understanding physiological mechanisms in tissues, at diagnos-
ing pathologies and at developing drugs to cure patients. This requires the development
of new molecules, whose in-vivo properties can be assessed through nuclear imaging by la-
belling these molecules with radioisotopes which emit positrons or photons. The dynamic
behaviour of these molecules provides information on the uptake potential of tissues and
on chemical mechanisms these molecules go through. Such phenomena can be quanti�ed
through pharmacokinetic studies, which can mainly be categorised into two kinds of anal-
yses: compartmental and non-compartmental analyses. Both requires that the radiotracer
concentration in plasma is dynamically measured or estimated beforehand for every analysis,
as radiotracer kinetic properties can not be derived only from tissue TACs. A large tissue
uptake can mean that radiotracers are very e�cient at binding to the tissue although a small
amount of radiotracers is brought to tissues by arteries, or on the contrary, it can mean that
radiotracers poorly bind to tissue but they are massively brought to tissues by arteries. The
binding potential of a new molecule to a target tissue being a key property, it is fundamental
to estimate the arterial input function in order to know how arteries supply the target tissues
with the new molecules.

The gold-standard technique for measuring the arterial input function is arterial blood
sampling, Most often the plasmatic input function is required because the radiotracer binds
to blood cells. Plasma is obtained by centrifugation. Arterial blood sampling is invasive and
painful for patients. Non-invasive or minimally-invasive methods would rather be used to
estimate input functions. Some methods for measuring or estimating input functions were
presented in this chapter and it is deduced that a general technique for estimating input func-
tions should take advantage of nuclear imaging, but improvements on sensitivity are expected
so that arterial input functions can be estimated accurately even in �rst minutes. Such a
technique should work for every β+-emitter, at least for cardiac and brain imaging, and for
newly-developed molecules whose input function shape is unknown, but it will not be able
to extract useful information for radiolabelled molecules with a strong metabolism in blood.
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An accurate estimation of the arterial input function allows complex pharmaceutical models
which better diagnose patients' diseases and their response to therapy. Some notions on
nuclear imaging were then introduced. Detailed information is provided on coded-aperture
imaging, which has the potential to achieve low-signal high-resolution imaging, which is par-
ticularly relevant for estimating arterial input functions, since arteries emit a small amount of
photons and their contribution must be separated from contributions of surrounding tissues,
particularly from veins.

Statistical reconstruction algorithms were then introduced because it is expected that
they better deal with decoding of medical images than correlation-based algorithms which
are normally used in coded-aperture imaging. Methods were explained for reconstructing
static and dynamic radioactive distributions. Dynamic statistical reconstructions mostly
rely on models of the spatiotemporal distributions. As a new model for dynamic nuclear
imaging, non-negative matrix factorisation was considered in order to decompose a spa-
tiotemporal distribution on a spatial matrix and a temporal matrix. Such a decomposition
is advantageously performed through gradient-based algorithms and some concepts on such
optimisation algorithms are given, as it will be used in next chapters.
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Imaging system design and

system matrix calculation 2

We aim at estimating the β+-input function from non-invasive measurements of the con-
centration of radiotracers in patients' arteries using an external detector. First we select
the most appropriate artery for such measurements. Then we propose an imaging system
based on the experience of our laboratory in the �eld of coded-aperture imaging (Gmar 04).
that takes into account geometric constraints (depth of the artery in tissues, distance of the
detector to the artery) and physical considerations (photon attenuations and detection e�-
ciencies at 511 keV (Berger 05)). It is then explained why correlation-based reconstruction
algorithms which are usually used to decode projections acquired with coded apertures are
not adapted for estimating 3D spatial distributions when thick coded collimators are used
for collimating 511 keV-photons. As an alternative, it is suggested to perform reconstruc-
tions with a statistical reconstruction algorithm, as the maximum-likelihood expectation
maximisation algorithm (MLEM) previously presented in section 1.5.1. Such an algorithm
requires the computation of a system matrix which models the imaging system. It can be
done through Monte-Carlo simulations, but more e�cient methods would be expected, for
example through ray-tracing. Three new techniques are presented to speed up the compu-
tation of system matrices. The accuracy and the computation time of these methods are
quanti�ed.

2.1 Definition of the device characteristics

The imaging system which is developed has to comply with some constraints imposed by
physiological considerations and by the devices which are available to perform the acquisi-
tions.

2.1.1 Physiological considerations about the location of measurements

Usually non-invasive measurements take place either over the radial artery in the wrist
(Shokouhi 03) or over the carotid in the neck (Litton 90). Other measurement locations could
be the aorta, but also the brachial artery in the arm, the iliac, femoral or popliteal arteries
in the leg. Pros and cons are investigated in order to determine a measurement location
which is appropriate for the estimation of the β+-input functions. The radial artery stands
close from the surface (<1 cm) which means that more than 85% (µtot(H20) = 0.17 cm−1

at 511 keV) of the emitted photons leaves the wrist. The wrist can be isolated from signals
coming from the rest of the body by making measurements behind a thin wall made of
lead. The main drawback of making the measurements at the radial artery is its small cross
section which is about 1 mm2. There exist larger arteries such as for instance the brachial
artery, the aorta or the femoral artery. The section of the brachial artery is larger (from
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Figure 2.1 � Model of a knee

1 to 5 mm2), which should result in a larger amount of photons emitted from this artery
than from the radial artery. However, it is di�cult to develop an imaging system adapted
to this artery which does not measure the contribution of the heart and the brain. The
carotid is a large artery whose section is about 30 mm2 (Ferrara 95). It stands close to the
surface. However it is close to the brain whose contribution would largely dominate the
contribution of the carotid. The aorta is an artery which is much larger than the carotid
since its section is between 300 and 700 mm2 (Naidich 07) and consequently it would emit
much more photons. However, it stands close to the heart which is much bigger (about
300 cm3) than the aorta (the volume of a 10 cm-long portion of an aorta is between 3 cm3

and 7 cm3) and consequently it is di�cult to extract the signal which comes from the aorta
from the signal coming from the heart. Furthermore the aorta moves during acquisitions,
which introduces large spatial blurring in reconstructions. It remains three arteries: the
iliac artery, the femoral artery and the popliteal artery. The sections of the common iliac
and the common femoral artery are between 30 mm2 and 80 mm2 (Radegran 00). The iliac
artery stands close to the bladder which is usually very radioactive because of the biological
clearance of the radiolabelled molecules. As a result, it is di�cult to extract the signal which
comes from the iliac artery from the signal coming from the bladder. The super�cial femoral
artery stands about 50 mm deep in the leg and it is surrounded by muscles, which may take
up the radiotracers. Finally, the popliteal artery has a section which is between 20 mm2 and
40 mm2 (Debasso 04). It passes through the knee and stands about 50 mm from the surface
of the knee. Moreover, surrounding tissues are mostly bones, cartilages and ligaments. The
perfusion of radiotracers in these kinds of tissues is slow (0.08 ml/cm3/min (Bronzino 06)).
By elimination, it is decided to select the popliteal artery for estimating the input function.
Indeed the carotid, the aorta, the iliac and the femoral arteries can not be good candidates
because of the organs in the neighbourhoods which contain a large amount of radiotracers
which would spoil the estimation of the concentration in these arteries. The radial and the
brachial arteries are not chosen because they are smaller than the popliteal artery.

Measuring the input function at the popliteal artery in the knee is an original choice and
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Figure 2.2 � Example of an input function obtained from arterial blood sampling, �rst 10 min-
utes. Radioligand is 18FF-A85380 with a bolus injection

is not yet described in literature. The most often selected artery for external measurements
is the radial artery in the wrist(see 1.2.3). The diameter of the popliteal artery which is
shown in Fig. 2.1 is more than twice larger than the diameter of the radial artery. This
means that for a given length and a given concentration of the artery, the activity is at least
4 times larger in the artery of the knee than in the artery of the wrist.

Measuring the arterial input function at the knee should induce almost no delay in the
estimation of the arterial input function at the brain. While the heart ejects blood in the
ascending aorta, a fraction goes to the brain, another to legs. As the blood �ow in the
arteries is high (about 1 m/s (Gabrielsen 92)), the time shift between the input function
that enters the brain and the input function that is measured at the knee is negligible
( <1 s). Furthermore, if the temporal resolution of the imaging system is higher than a few
seconds, this delay will not be measured. This input function is obtained from arterial blood
sampling, and details on the acquisition are given in section 2. Moreover it is important to
notice that a vein always stands close to an artery, especially when they are large. This can
be observed for the popliteal artery in Fig. 2.1b. The popliteal artery and vein stand in the
middle of the knee. A knee is about 100 mm-large. As a result, the knee is modelled as in
Fig. 2.1c in the examples presented in this thesis, with the vessels being at 50 mm from the
surface of the knee. This is a simple model where tissues are modelled by water, but it is
accurate enough to model the main vascular structures in the knee. In particular, no bone
is modelled, which remains realistic as long as measurements are not performed from the
front side of the knee. Tissues attenuate the �ux of photons which leave the artery, which
corresponds to a 60%-loss of the signal for a 50 mm-thick tissue. In the next section, the
material which is used for designing the imaging system is described.

2.1.2 Material

The laboratory where this PhD-thesis took place has experience with coded-aperture imaging
for industrial applications (Gmar 04). Such imaging modality has the potential to address the
non-invasive estimation of arterial input functions and this PhD-thesis studies the feasibility
of such a technological solution. The design of the imaging system is done in regard to the
materials available in our laboratory and at the hospital we are working with. The aim is to
develop an imaging system which is a�ordable. As a result it is decided to use the γ-imager
which is manufactured by Biospace Lab 1. This detector was coupled to a coded-aperture

1Biospace Lab, 10 rue Mercoeur, 75011 Paris, France
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Tungsten CsI(Na)
ρ (g · cm−3) 19.3 4.51

µT /ρ (cm2 · g−1) 1.34× 10−1 9.61× 10−2

µT (cm−1) 2.580 0.433
µPE/ρ (cm2 · g−1) 5.66× 10−2 2.00× 10−2

µPE (cm−1) 1.090 0.090

Table 2.1 � Densities, photon cross-sections and linear attenuation coe�cients for tungsten
and CsI(Na) for photoelectric (PE) and total (T) interactions at 511 keV

collimator, which has a much better e�ciency than classical collimators.

2.1.2.1 γ-imager

The detector used in this thesis is the bidimensional γ-imager manufactured at Biospace
Lab. This is a detector made of a circular CsI-scintillator whose diameter is 120 mm-large.
The scintillations are collected by a position-sensitive photomultiplier and this results in a
100 mm-large circular detection area (Russo-Marie 07). At 140 keV, the intrinsic spatial
resolution is 2 mm and the energy resolution is 11%. As it was not possible to perform
measurements at 511 keV as it will be explained in section 3.5, it is assumed that the
intrinsic spatial resolution of the imager does not change at 511 keV and is still 2 mm. This
assumption is plausible according to following considerations:

� On one hand, spatial resolution takes advantage of photons with higher energy since
they induce brighter scintillations.

� On the other hand, scintillations occur at shorter distance in crystals for 511-keV pho-
tons than 140-keV photons, as detailed in Appendix 4. This means that scintillations
occur further from photomultipliers, which impairs spatial resolution.

The energy resolution at 511 keV can be deduced analytically from the energy resolution
at 140 keV through Eq. (2.1) and is 5.8%.

ER(511 keV) = ER(140 keV)

√
140
511

(2.1)

= 5.8% (2.2)

This means that it is possible to discriminate photons which deposits less than 498 keV (1σ)
in the scintillator. The photons which are not discriminated represents 84% of the photo-
electric peak, since 1σ corresponds to 68% of a normal distribution and only the lower tail is
rejected (84%=68%/2+100%/2). It is important that the imaging system has a good energy
resolution because it allows the discrimination of photons that have undergone Compton
scattering either in tissues or in the collimator.

The e�ciency of the CsI-scintillator is derived from the total absorption µT /ρ of CsI-
crystals obtained from NIST-database (Berger 05) and given in Table 2.1. Both photoelectric
attenuation coe�cients µPE and the total attenuation coe�cients are provided in order to
show that at 511 keV, a large amount of interactions are not photoelectric interactions.
The total detection e�ciency of a 4 mm-thick CsI-crystal at 511 keV is 16%, but it drops
to 5.8% when only photons which deposit more than 472 keV (3σ of the photoelectric peak)
are taken into account. This result is obtained from a Monte-Carlo simulation with an energy
threshold set to 472 keV and an energy resolution set at 5.8% at 511 keV.
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rank step thickness collimation e�ciency number of opening
(mm) (mm) at 511 keV holes fraction

mask 1 9 1.26 4 64% 256 50%
mask 2 9 1.26 6 79% 256 50%
mask 3 6 1.85 12 95% 544 50%

Table 2.2 � Characteristics of the available HURA coded-aperture collimators

Figure 2.3 � Rank-6 HURA tungsten collimator: thickness: 12 mm, hole-to-hole distance:
1.85 mm

2.1.2.2 Coded-aperture collimator

A large choice of coded apertures is available and they are presented in section 1.4.2. As the
γ-imager used for measuring the input function is made of a circular scintillator, it is decided
to use a hexagonal pattern in order to maximise the overlap of the collimator shadow on the
scintillator. A few collimators were already designed in our laboratory (Gmar 04), and the
manufacture of coded-aperture collimators being complex and expensive, it is chosen to use
one of the available collimators. They were designed for photons with energy ranging from
662 keV to 1.25 MeV. Table 2.2 presents the characteristics of the 3 available masks. They
are all made of tungsten, whose linear attenuation coe�cients are given in table 2.1. The
�rst mask is the most appropriate to perform imaging at 511 keV since it is the thickest.
Indeed the collimator should be thick so that the collimation is e�cient. 12 mm of tungsten
stops more than 95% of the impinging photons at 511 keV.

In practice, due to considerations explained in section 3.5, the mask modelled in this
thesis is a 9 mm-thick tungsten collimator instead of 12 mm-thick, so that results can be
validated experimentally. The chosen mask is a rank-6 HURA whose characteristics are
described in section 1.4.2.2. The inter-motif distance is 1.85 mm. Fig. 2.3 shows such a
HURA collimator.

2.1.3 Imaging system design

As a single γ-imager is available for acquiring images at SHFJ department, it is not possible to
develop a coincidence system to collect photons emitted from vessels and tissues. This section
defends that a SPECT acquisition system with a coded-aperture collimator is able to achieve
performances close to the ones of a coincidence system. Furthermore, the development of a
SPECT system is cheaper than the development of a coincidence system, as a PET dedicated
to small animals or a set of 2 bidimensional detectors as the γ-imager presented in Fig. 2.4.

The e�ciency of the SPECT imaging system with a coded-aperture collimator is com-
pared to the e�ciency of a coincidence system made of 2 γ-imagers. Let us consider a
coincidence system based on 2 γ-imagers as in Fig. 2.4. The e�ciency εcoinc of such a system
can be approximatively given as a function of the geometric e�ciency εG, the e�ciency of
the tissues εatt and the detection e�ciency εdtc by Eq. (2.6). The detection e�ciency εdtc
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Figure 2.4 � A coincidence system based on 2 γ-imagers

is set to 5.8% which corresponds to the discrimination of photons which deposit more than
472 keV in the scintillator, as explained in the previous section.

εcoinc = εG · (εatt · εdtc)2 (2.3)

=
2× Sdtc

4πr2
0

· (e−µT ·r0 · εdtc)2 (2.4)

=
2× π502

dtc

4π502
· (e−0.017·50 · 5.8%

)2
(2.5)

= 3.1× 10−4 = 3.1� (2.6)

where Sdtc is the surface of each detector, r is the distance from the centre of the knee to the
detectors, r0 is the thickness of tissues crossed by the photon �ux and µT is the total linear
attenuation coe�cient of the tissues. The e�ciencies are respectively εG = 50%, εG = 43%,
and εdtc = 5.8% . The factor 2 in the geometric e�ciency εG comes from the fact that 2
photons are emitted in opposite directions. The last term is squared because the detection
probability of the two detectors are independent and a coincidence is registered only if both
detectors detect a photon. In this example, r = r0.

The e�ciency εSPECT of a SPECT system based on a single γ-imager is given by Eq. 2.7:

εSPECT = εG · εc · εatt · εdtc (2.7)

εSPECT =
2 · Sdtc
4πr2

· εc · e−µT r0 · εdtc (2.8)

By setting the collimator e�ciency εc at 50%, it is possible to derive the limit distance r so
that εSPECT ≥ εcoinc:

r = r0

√
εc

εatt · εdtc (2.9)

r = 50

√
50%

43% · 5.8%
(2.10)

≤ 224 mm (2.11)

Contrary to classical high-energy collimators, most of the coded apertures are 50% trans-
parent which increases the e�ciency of the imaging system. Coded collimators are chosen
instead of a random one because it was observed (Accorsi 01) that coded apertures recon-
struct spatial distributions which are less noisy than other collimators. As far as e�ciency is
concerned, it is better to use the γ-imager in a SPECT-system than in a coincidence system
as long as the γ-imager is placed at a distance smaller than 225 mm from the centre of the

62



1 mm

5 mm

(a) 2 cylinders

ε

S1 S2

activity distribution without blurring
activity distribution with blurring

(b) Projected activity distribution on the
line shown in Fig. 2.5a, with and without
blurring

0

1

2

3

4

5

6

0 0.5 1 1.5 2

ov
er
la
p
(%

)

σ (mm)

(c) Overlap of the �rst cylinder into the sec-
ond as a function of the spatial resolution

Figure 2.5 � Impact of the spatial resolution of the imaging system

knee, as deduced from Eq. (2.11). However, quality of information collected from such a
coincidence system is better than from such a SPECT system, despite the coded-aperture
collimator, since coincidence systems provide directly lines of responses where the photon
has been emitted from.

The spatial resolution of the imaging system must be good enough so that the artery and
the vein can be spatially separated in the reconstructions. Let's assume that two 5 mm-large
cylinders are placed one next to the other as in Fig. 2.5a. The distance between these two
cylinders is 1 mm as the artery thickness, also called the intima-media thickness (IMT),
is about 0.5 mm at the femoral artery (Vriend 06). Because of the spatial resolution of
the imaging system, these two distributions overlap, as shown in Fig. 2.5b. The overlap
coe�cient between the two distributions is calculated according to:

overlap(%) = 100× ε

ε+ S1 + S2
(2.12)

where ε is the dark-grey area in Fig. 2.5b and S1 and S2 are the left and right light-grey
areas. The spatial blurring is performed with a Gaussian kernel whose standard deviation is
denoted σ. The overlap of the two distributions depends on the standard deviation σ of the
kernel, as shown in Fig. 2.5c. According to this plot, it is chosen that the spatial resolution
of the imaging system should be at maximum σ=1 mm. In this case, the overlap is 2.6%.
Such a spatial resolution can be achieved if the γ-imager and the coded mask are placed so
that the magni�cation of the imaging system compensates for the limited spatial resolution
of the γ-imager. In section 2.1.2.1, it was assumed that the spatial resolution of the imager
is 2 mm at 511 keV. As it is expected that the spatial resolution of the imaging system is
1 mm so that it is possible to separate the artery from the vein as mentioned earlier in this
section, this means that a magni�cation factor of 2 is needed. By placing the collimator in
contact to the skin of the knee, the distance between the vessels and the collimator is about
50 mm. This means that the γ-imager should be placed 150 mm away from the centre of
the knee as it is illustrated in Fig. 2.6. This limits the �eld of view that can be imaged as
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Figure 2.6 � Con�guration of the imaging system

it is explained in section 1.4.1.1. From the central hole of the coded-aperture collimator, it
is derived from Eq. (1.34) that the dimension of the �eld-of-view of this imaging system is
50 mm for a magni�cation factor 2. The e�ciency of the imaging system is then derived
from Eq. (2.13):

=
π · 502

4π · 1502
· 0.5 · 43% · 5.8% = 6.9× 10−4 = 6.9� (2.13)

This e�ciency is more than twice better than the e�ciency of the coincidence system in
Eq. (2.6), which justi�es the choice of a SPECT-imaging system rather than a coincidence
imaging system.

2.2 System matrix calculation

2.2.1 Limitations of correlation-based reconstruction method

With the proposed geometry, the far-�eld approximation is not valid anymore. In addition
the collimation of 511-keV γ-rays requires thick collimators. In that condition, correlation-
based algorithms fail.

Furthermore, when coded-aperture collimators are thick, there is an ambiguity on the
decoding depth as illustrated in Fig. 2.7. Indeed the magni�cation of the projection of the
object slice o1 through the collimator slice c1 is equal to the magni�cation of the projection of
the object slice o2 through the collimator slice c2. Contrary to the case where the collimator
is thin, the depth of the spatial distribution can not be estimated from the scaling factor that
is applied to the decoding matrix before decoding the projection (Cannon 79). Moreover,
every collimator slice is partially transparent, which degrades the coding of the signal on the
detector. As decoding algorithms which are usually used in coded-aperture imaging su�er
from limitations for high-energy photons, it is suggested to take advantage of a statistical
algorithm such as MLEM which is presented in section 1.5.1 instead of correlation-based
decoding algorithms. Such an algorithm extracts available information in signal in an optimal
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way. In particular, Poisson �uctuations can be modelled in statistical algorithms, which
is not possible with correlation algorithms. This is especially relevant when the activity
of objects to be imaged is low. Some investigations have already been performed in this
direction (Berrim 96; Groiselle 00), but the open fraction of the coded aperture that was
used is lower than 1%. Although such a collimator increases the e�ciency of the imaging
system, it does not allow the estimation of the input function because the amount of detected
photons is not su�cient.

Such an algorithm requires that the imaging system is modelled with a system matrix
that allows the computation of the expected observations in detectors when any object is
placed in the �eld of view of the imaging system. The calculation of the transition matrix is
fundamental in the reconstruction process. Indeed, the better it models the imaging system,
the better reconstructions are. Every coe�cient ai,j of this matrix represents the probability
that a photon which is emitted from a voxel vj is detected in a pixel pi. It depends on
geometrical parameters such as the solid angle between the voxel and the pixel and the
distance between them, as well as on physical parameters such as the attenuation and the
scattering of photons in tissues and in the collimator, and the detection e�ciency of the
detector.

In this section, Monte-Carlo simulations are �rst used to investigate the computation of
a system matrix, then an analytical derivation is proposed to speed up the computations,
but requires that some physical phenomena are neglected.

2.2.2 Monte-Carlo simulations

As Monte-Carlo simulations are time-consuming, it is proposed to investigate the properties
of the estimation of system matrices by investigating the properties of the estimation of only
one of its column. When the system matrix models an object which is made of N voxels,
this decreases the computation time by a factor N . The nth column of the system matrix A
models the expected projections which would be obtained for photons emitted from the nth

voxel of the object.
Monte-Carlo simulations are performed with the GATE software, version 2.2. Simulations

are performed on a single 2.4 GHz 64-bit processor.

2.2.2.1 Con�guration of the simulation

The con�guration of the simulation is the following:
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� The centre of the collimator is located at (0, 0, 0). The axis of the collimator is oriented
towards the z-direction. The HURA collimator that is used is made of tungsten and
is 9 mm-thick as proposed in section 2.1.2.2.

� The centre of the detector is located at (x, y, z) = (0 mm, 0 mm, 100 mm) and the
normal of its surface is oriented towards the z-direction. It is 4 mm-thick. The prop-
erties of the scintillator (dimensions, material, energy and spatial resolutions) are set
to model the imager described in the section 2.1.2.1. The imaging system is assumed
to have a perfect intrinsic spatial resolution in order to quantify limit performances of
coded-aperture collimators. The energy resolution is set to 6% at 511 keV as justi�ed
in section 2.1.2.1.

� All particles were emitted from the voxel located at the centre of the object ((X,Y, Z) =
(0 mm, 0 mm,−50 mm)). This voxel is a box whose dimensions are 1 × 1 × 1 mm3.
2.1× 109 photons are emitted.

� Compton scattering is taken into account and it is chosen that only singles with an
energy above 485 keV contribute to the projection, which corresponds to 95% of the
photoelectric peak, according to Eq. (2.14):

2σ = 2 · FWHM

2
√

2 ln 2
= 2 · 6% · 511 keV

2.35
= 26.1 keV ( = 511− 485) (2.14)

� Emitted particles are photons whose energy is 511 keV. This means that the distance
between the location of the emission of positrons and the location of their annihilation
is not taken into account. It is chosen to do so in order to emit particles in a cone in
order to accelerate computations. With the con�guration described above, the detector
completely stands inside a cone with a half-angle being lower than 20°, according to:

arctan (50/(50 + 100)) = 18.4◦ (2.15)

The acceleration factor is then given by: 1
4π

2π∫
ϕ=0◦

20◦∫
θ=0◦

sin θdθdϕ

−1

=
(

1
2

(1− cos(20◦))
)−1

(2.16)

= 33.2 (2.17)

2.2.2.2 Results

It takes 100 hours to obtain the projection of Fig. 2.8a. This projection is a (128×128)-pixel
image. It presents the number of counts detected in every pixel. From this �gure, it is
possible to deduce the probability aij that a photon emitted from the voxel is detected by
every pixel of the detector, according to Eq. (2.18). The map of detection probabilities is
given in Fig. 2.8b.

prob =
counts

2.1× 109
· 1

2
(1− cos(20◦)) (2.18)

On the other hand, as counts are Poisson-distributed, it is possible to estimate the error
which is associated with every pixel from Fig. 2.8a and Eq. (2.19). Errors for the whole
image is presented in Fig. 2.8c according to:

Error =
1√

counts
(2.19)
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Fig. 2.8d shows the distribution of the error in the pixels. It is lower than 4%. The error
decreases as a quadratic function of the number of detected photons, which means that an
improvement on the error by a factor 2 (the error is then below 2%) requires simulations
with 4 times more photons, which increases the computation time by a factor 4.

(a) Detected photons (b) Probability map

(c) Error on the number of detected photons (d) Distribution of statistical errors

Figure 2.8 � Derivation of the probability map and the associated error from a Monte-Carlo
projection. Fig. 2.8b represents a single column of the system matrix A

Such kind of simulations should be performed for every voxel of the reconstruction volume
so that a system matrix can be built. This means that for a (21×21×21)-voxel object (it does
not cover the whole �eld-of-view), 9.5×105 hours (105 years) would be required. Computing
a whole system matrix with Monte-Carlo simulations would thus require huge computation
resources. However, future investigations could take advantage of recent accelerations on
Monte-Carlo simulations ((Martineau 09)).

2.2.3 Analytical determination of system matrices

As it takes long to compute accurately system matrices through Monte-Carlo simulations, it
is proposed to investigate whether this computation could be performed through analytical
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methods. This section explores this issue.

2.2.3.1 Hypotheses

The computation of system matrices through analytical methods implies that some hypothe-
sis are satis�ed. First, the analytical determination of system matrices can only modelled the
photoelectric e�ect and possibly �rst scattering of photons through Compton e�ect, not all
Compton scattering. As a result, it is decided to compare results which are obtained in next
sections with Monte-Carlo simulations where Compton scattering is inactive. Consequently,
the linear attenuation coe�cients should be set to the photoelectric contributions σPE in
the analytical determinations, not to the total contributions σT .

(a) The energy threshold is set to
472 keV (3σ)

(b) The energy threshold is set to
485 keV (2σ)

(c) The energy threshold is set to
498 keV (1σ)

(d) Compton scattering is not taken into ac-
count. No energy threshold is used

Figure 2.9 � Dected photons from simulation for 3 di�erent energy cut-o� (2.9a, 2.9b, 2.9c)
and without Compton scattering (2.9d)

However, such an hypothesis results in a systematic error, which corresponds to the
di�erence between the Monte-Carlo simulations with Compton scattering being taken into
account or not. Fig. 2.9 shows such Monte-Carlo simulations for 3 energy cuts. The energy
cuts for Fig. 2.9a, 2.9b and 2.9c are respectively 472 keV (3σ), 485 keV (2σ) and 498 keV (1σ),
which means that only photons which deposit in the scintillator more energy than these
thresholds are registered in the projections. Fig 2.9d shows the result of the same simulation
with no Compton scattering, the threshold being set to 472 keV. It can be seen that the
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Figure 2.10 � Root mean square between the simulation without Compton scattering and
simulations where Compton scattering is taken into account, for various energy cuts

projection which is the most similar to this last projection is the one with the energy threshold
set at 498 keV, the mean factor between these two projections being 0.90. It is then con�rmed
by the root-mean-square (RMS) representation in Fig. 2.10. The RMS is calculated according
to:

RMS(E) =

√√√√ 1
N

∑
i,j

(
IPE − IPE+C(E)

)2

(2.20)

where IPE is the projection with no Compton scattering, in Fig. 2.9d. IPE+C(E) is the
projection that takes into account Compton scattering with the energy threshold being set
at E. N is the number of pixels in the circular portion of these projections. From the plot
of Fig. 2.10, it is deduced that the energy threshold should be set close to the value of the
photoelectric peak in order to minimise the impact of Compton scattering, which can not be
fully modelled analytically. It can be noticed that the number of counts in the opaque portion
of the collimator (blue) is higher for Fig. 2.9d than for the three other �gures, although no
Compton scattering is taken into account. This is due to the energy threshold in the three
�rst �gures which rejects photons which interact with the scintillator through photoelectric
e�ect, whereas no threshold is used in Fig. 2.9d.

2.2.3.2 Theory: analytical formulation of system matrices

In this section, an analytical expression to compute every coe�cient aij of the system ma-
trix A is developped. It o�ers an alternative to Monte-Carlo simulations.

From Fig. 2.11, the probability that a photon emitted from A, which is located at rj =
(0, 0, 0), is detected in a volume element around B located at ri = (r, θ, ϕ) is given in
spherical coordinates by:

dP =
r2sinθdθdϕ

4πr2
· µddr · e−µclc(θ,ϕ) · e−µd(r−zin/ cos θ) (2.21)

where notations are presented in Fig. 2.11 and can be interpreted as follows:

�
r2sinθdθdϕ

4πr2
accounts for the geometric e�ciency

� µd dr is the probability that a photon which enters the volume element dV is detected

� e−µclc(θ,ϕ) is the probability that the photon passes through the collimator
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Figure 2.11 � Ray starting from the voxel vj and being detected in the pixel pi after crossing
the collimator

� e−µd(r−zin/ cos θ) is the probability that a photon which enters the detector reaches the
volume element dV

� zin is the z-coordinate of the entrance surface of the detector

� lc(θ, ϕ) is the length which is crossed by photons in the collimator as illustrated in
Fig. 2.12.

A change of variables leads to:

dP =
dx dy dz

4π(x2 + y2 + z2)
· µd · e−µcth(x,y,z)

√
x2+y2+z2/z · e−µd(z−zin)

√
x2+y2+z2/z (2.22)

This is the exact probability that a photon coming from A is detected in a volume element dV
in the scintillator. Then, the probability that a photon emitted from a voxel vj is detected in
a pixel pi is deduced in Eq. (2.24). The coordinate of a point A which stands in a voxel vj is
denoted rj = (X,Y, Z) and the coordinate of a point B in a pixel pi is denoted ri = (x, y, z):

ai,j =
∫∫∫

(X,Y,Z)∈vj

dXdY dZ
∆X∆Y∆Z

∫∫∫
(x,y,z)∈pi

µd dx dy dz · e−µclc(x,y,z,X,Y,Z)

4π((X − x)2 + (Y − y)2 + (Z − z)2)

× e−µd(z−zin)
√

(X−x)2+(Y−y)2+(Z−z)2/(Z−z) (2.23)

=
∫∫∫
rj∈vj

dXdY dZ
∆X∆Y∆Z

∫∫∫
ri∈pi

µddx dy dz cos2
(
θ(ri, rj)

)
4π(Z − z)2

· e−µclc(ri,rj) · e−µd(z−zin)/ cos(θ(ri,rj))

(2.24)
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2.2.4 Approximations for the analytical computation of system matrices

It is proposed to perform some approximations in order to compute Eq. (2.24) e�ciently.
As the integral in Eq.2.24 can not be derived analytically, it is proposed to perform some
approximations to e�ciently compute it. In this section, a point that is in a voxel vj is
located in {Xj ± ∆X/2;Yj ± ∆Y/2;Zj ± ∆Z/2} and a point that stands in a pixel pi is
located in {xi ±∆x/2; yi ±∆y/2; zi ±∆z/2}. zin is equal to (zi −∆z/2).

2.2.4.1 Derivation of probability ai,j

From Fig. 2.13 some approximations can be done to compute Eq. 2.24. The �rst approxima-
tion is to assume that cos θ is almost constant. cos θ is calculated for every vertex of voxels
rjv and every vertex of pixels rip. Neighbour values are compared and the maximum relative
di�erence is less than 1 % (0.95%) for the imaging con�guration described in section 2.1.3.
This approximation is a zero-order approximation on θ = θij + θh, with θij being the angle
between the centre of a voxel vj and the centre of a pixel pi as shown in Fig. 2.13, Eq. (2.26)
being the zero-order Taylor series expansion of the terms depending on θ. This justi�es the
approximation.

cos2(θ) · e−(a/ cos θ) ≈ [cos2(θij)− θh(sin(2θij) + a sin(θij))
] · e−(a/ cos θij) (2.25)

≈ cos2 θij · e−(a/ cos θij) (2.26)

Eq. 2.24 becomes:

ai,j =
∫∫∫
vj

∫∫∫
pi

dX dY dZ
∆X∆Y∆Z

dx dy dz
µd cos2 θij
4π(Z − z)2

· e−µclc(x,y,z,X,Y,Z) · e−µd(z−zi+∆z/2)/ cos θij

(2.27)

The second approximation is to assume that the intersection length of the collimator
and every ray which starts from a voxel vj and ends in a pixel pi is constant and

voxel vj

collimator

pixel pi

rayθ

Figure 2.13 � 2D-view of the imaging system. Proportions are respected
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Figure 2.14 � Distribution of the relative di�erence between intersecting lengths of neighbour
rays

its value is lc(xi, yi, zi, Xj , Yj , Zj) = lc(rj , ri). This approximation is justi�ed by Fig. 2.14,
which shows the distribution of the relative di�erence between neighbour rays. This dis-
tribution is derived from the computation of the intersecting lengths of an object which is
1 × 1 × 1 mm3 and made of 2 × 2 × 2 voxels on the detector made of 100 × 100 mm2 and
256 × 256 pixels. The intersecting length of any ray starting from the centre of a voxel of
the object and ending in the centre of a pixel is stored in a tensor L(nx, ny, i, j, k) where
(nx, ny) are the indices of the concerned pixel and (i, j, k) are the indices of the concerned
voxel. Two rays are said neighbours if their intersecting lengths with the collimator are stored
in neighbour cells of the tensor L. For instance, the rays corresponding to L(nx, ny, i, j, k)
and L(nx + 1, ny, i, j, k) are neighbours. With this de�nition, the rays corresponding to
L(nx, ny, i, j, k) and L(nx + 1, ny, i, j, k + 1) are not neighbours, because oblique neighbour-
hoods are not considered. Any relative di�erence between the lengths of two neighbour
rays l1 and l2 is computed according to Eq. (2.28):

∆R(l1, l2) = 100 · 2 · l1 − l2
l1 + l2

% (2.28)

Fig. 2.14 is built by computing all relative di�erences ∆R(li, lj) on neighbour lengths li
and lj and taking its histogram. This distribution is centred and its standard deviation is
32%, which justi�es the second approximation.

By denoting (Zm, ZM ) = (Zj−∆Z/2, Zj+∆Z/2) and (zm, zM ) = (zi−∆z/2, zi+∆z/2),
Eq. (2.27) becomes:

ai,j =
(∆x∆y)µd cos2 θij

4π∆Z
e−µclc(rj ,ri)

ZM∫
Z=Zm

zM∫
z=zm

dZ dz × e−µd(z−zi+∆z/2)/ cos θij

(Z − z)2
(2.29)

The third approximation is to assume that (Z − z) is constant while Z and z vary
respectively on a voxel vj and a pixel pi. Its mean value is (Zj − zi). This approximation is
justi�ed by the fact that the standard deviation of all (Z−z) is σ = 1.2 as given by Eq. 2.32.
This corresponds to a relative di�erence of all (Z − z) which is σ/µ = 7.9�. (Z − z) can
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consequently be considered as constant and equals to their mean (Zj − zi).

σ =
√
var(Z − z) =

√
var(Z) + var(z) as Z and z are uncorrelated (2.30)

=

√√√√√ 1
ZM − Zm

ZM∫
Z=Zm

(Z − Zj)2dZ +
1

zM − zm

zM∫
z=zm

(z − zi)2dz (2.31)

= 1.2 (2.32)

with(Zm, Zj , ZM ) = (98, 100, 102) and (zm, zi, zM ) = (−50.5,−50,−49.5). var denotes the
variance.

Eq. (2.29) becomes:

ai,j =
(∆x∆y)µd cos2 θij
4π∆Z(Zj − zi)2

× e−µclc(rj ,ri)
ZM∫

Z=Zm

ZM∫
z=zm

dZ dze−µd(z−zi+∆z/2)/ cos θij (2.33)

=
(∆x∆y)µd cos2 θij

4π(Zj − zi)2
× e−µclc(rj ,ri)

[
−cos θij

µd
e−µdz/ cos θij

]zM
z=zm

(2.34)

ai,j =
(∆x∆y) cos3 θij

4π(Zj − zi)2
× e−µclc(rj ,ri) ×

(
1− e−µd∆z/ cos θij

)
(2.35)
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This is a well-known result (Accorsi 01), where probability ai,j depends on:

�
∆x∆y

4π((Zj − zi)/ cos θij)2
cos θij , the geometric e�ciency

� e−µclc(rj ,ri), the attenuation due to the collimator

�
(
1− e−µd∆z/ cos θij

)
, the detection probability of impinging photons by the detector

(Zj − zi)/ cos θij is the centre-to-centre distance from the voxel to the pixel and ∆z/ cos θij
is the intersection length between the scintillator and the ray passing through the centres
of the voxel and the pixel. An example of detection probability map is shown in Fig. 2.15,

where no collimator is taken into account, i.e. all
(
lc(rj , ri)

)
are set to zero.

Figure 2.15 � Detection probabilities with no collimation according to Eq. 2.35

2.2.4.2 A more robust derivation of probability ai,j

The previous section proposes a way to compute (aij) and the derived formula has a direct
physical interpretation. It is possible not to use the third approximation, which leads to a
result which is more accurate without increasing the computation time. The physical inter-
pretation of the new formula is not as simple as the previous, and some part of this formula
can not be interpreted physically. When the third approximation is not used, Eq. (2.29) can
be written as:

ai,j =
(∆x∆y) · µd cos2 θij

4π∆Z
· e−µclc(ri,rj) · eµd(zi−∆z/2)/ cos θij

×
Zj+∆Z/2∫
z=zi−∆z/2

dz e−µdz/ cos θij

Zj+∆Z/2∫
Z=Zj−∆Z/2

dZ
(Z − z)2

(2.36)
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For clarity,

(
(∆x∆y) · µd cos2 θij

4π
·e−µclc(ri,rj) ·eµd(zi−∆z/2)/ cos θij

)
is denoted α. Integration

on Z leads to:

ai,j =
α

∆Z
·
zi+∆z/2∫
z=zi−∆z/2

dz e−µdz/ cos θij

(
− 1
Zj + ∆Z/2− z +

1
Zj −∆Z/2− z

)
(2.37)

=
α

∆Z
·
zi+∆z/2∫
z=zi−∆z/2

dz
2∆Z/2

(Zj − z)2 − (∆Z/2)2
· e−µdz/ cos θij (2.38)

= α

zi+∆z/2∫
z=zi−∆z/2

dz
e−µdz/ cos θij

(Zj − z)2
because (∆Z/2)2︸ ︷︷ ︸

=(1/2)2=0.25

� (Zj − z)2︸ ︷︷ ︸
≈1502=22500

(2.39)

Some changes of variables are performed in order to make appear incomplete gamma func-
tions:

aij = α · e−µdZj/ cos θij

zi+∆z/2∫
z=zi−∆z/2

dz
e−µd(z−Zj)/ cos θij

(Zj − z)2
(2.40)

= α · e−µdZj/ cos θij

w2∫
w=w1

dw
e−µdw/ cos θij

w2
(2.41)

with (w1, w2) = (zi − Zj −∆z/2; zi − Zj + ∆z/2)

= α · µd
cos θij

e−µdZj/ cos θij

x2∫
x=x1

dx e−x x−2 (2.42)

with (x1, x2) =
µd

cos θij
(zi − Zj −∆z/2; zi − Zj + ∆z/2)

= α · µd
cos θij

e−µdZj/ cos θij

( +∞∫
x=x1

dx e−x x−2 −
+∞∫
x=x2

dx e−x x−2

)
(2.43)

= α · µd
cos θij

e−µdZj/ cos θij

(
Γ(−1, x1)− Γ(−1, x2)

)
(2.44)

where Γ is the incomplete gamma function (Abramovitz 70). As a result, the probability
that a photon emitted from a voxel vj is detected in a pixel pi is:

ai,j =
(∆x∆y) · µ2

d cos θij
4π

· e−µclc(ri,rj) · eµd(zi−Zj−∆z/2)/ cos θij

×
(

Γ
(
−1, µd

cos θij
(zi − Zj −∆z/2)

)
− Γ

(
−1, µd

cos θij
(zi − Zj + ∆z/2)

)) (2.45)

A detection probability map, which is calculated according to Eq. (2.45), is shown in
Fig. 2.16a. The di�erence between the terms aij , which is derived according to Eq. (2.35)
and (2.45), is presented in Fig. 2.16b. Fig. 2.17 shows the impact of the parameters that
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(a) Detection probabilities with no colli-
mation and the new formula on aij given
Eq. 2.45

(b) Relative di�erence of the two methods.
The new method impacts the estimation dif-
ferently depending on the localisation

Figure 2.16 � Detection probabilities without the third approximation
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(c) In�uence of the linear attenua-
tion of the collimator

Figure 2.17 � In�uence of parameters Z, ∆z and µd on the derivation of the projection
matrix

in�uence the derivation of the probabilities aij . The di�erence between the classical method
of Eq. (2.35) and the new method given by Eq. (2.45) is negligible (< 1%) for the con�g-
uration of the imaging system that is used in this thesis, but should be handled carefully
while looking for increasing the sensitivity of the imaging system. Indeed, a better sensitivity
can be achieved by either decreasing the distance from the object to the scintillator, or by
increasing the thickness of the scintillator or by choosing a scintillator whose linear attenu-
ation coe�cient is high. They all amplify the relative di�erence between the classical and
the new methods. Furthermore, it is observed that the new derivation of aij is twice longer
to compute than the old derivation. For instance, it takes 360 ms to compute a (128× 128)
projection with Eq. (2.45) whereas it takes only 180 ms to compute it with Eq. 2.35.

Most of the computations of probabilities aij are fast, excepted the calculation of lc(ri′ , rj′).
The collimator contributes through an exponential term. The computation of (aij) is imple-
mented for every voxel vj in two steps. First, ai,j is calculated for every pixel pi without the
contribution of the collimator. A �rst image is obtained. Then, all collimator contributions
are calculated, which leads to a second image. Finally, both images are multiplied element-
by-element as suggested by Eq. 2.45. The next section addresses methods to e�ciently
compute the contribution of the collimator to the detection probability map.
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(a) HURA whose rank is 6 (b) Representation of the HURA with 12606 faces

Figure 2.18 � Representation of the collimator

2.3 Three different approximations and Results

In this section, three new ray-tracing methods are proposed to accelerate the computation
time of system matrices. We call them face-driven ray tracing techniques, by analogy to
ray-driven (Zeng 93) and pixel-driven methods (Zhuang 94). First, a few manipulations on
the faces representing the coded-aperture collimators are performed in order to increase the
performances of ray-tracing algorithms. Then a reference method which computes the contri-
bution of the collimator to probabilities (aij) is presented. The new ray-tracing methods are
then explained. The �rst method interpolates all intersection lengths from a short number
of intersection lengths. The second method takes advantage of a simpli�ed representation of
the collimator. Finally the last method derives all intersection lengths by taking into account
the successive contribution of every face.

The particularity of coded-aperture collimators is that a large number of triangles is
required to model them. This is an issue when a large number of intersections has to be
computed as for the computation of system matrices. In Eq. (2.35), all calculations of all
terms are direct, excepted the one describing the collimator contribution e−µclc(rj ,ri), since
the intersection length can not be known from the positions of the pixel and the voxel. It is
usually computed through ray-tracing techniques. When the collimator is described by faces
as shown in Fig. 2.18, intersections of every ray with all faces are calculated and intersection
distances are deduced from intersecting points. Classical techniques (Beck 85; Tabary 07)
are not adapted to coded-aperture collimators because the number of faces is very large
(several thousands). Furthermore, 511-keV photons are very penetrating and consequently
septa penetration can not be neglected. For instance, a 9 mm-thick tungsten shield only
stops 90% of the impinging photons, the total linear attenuation coe�cient at 511 keV
being µ = 2.59 cm−1. As a result no portion of the collimator can be considered as opaque:
all faces have to be taken into account. Computing intersections between the collimator and
every ray crossing it is time-consuming. The computation time increases linearly with the
number of pixels in the detector. Computing all the intersection lengths for the projection
of a single voxel through the collimator made of 12606 faces shown in Fig. 2.18 onto a
(128× 128)-pixel detector takes about 13 s on a single 3.2 GHz 64-bit processor. As objects
that are expected to be reconstructed are usually made of several thousands of voxels, the
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total computation time is large. For instance, one of the matrices which is used in this
thesis allows the reconstruction of objects made of (30× 40× 30) voxels. With such a ray-
tracing method, it takes more than 5 days to compute it. This is faster than Monte-Carlo
simulations, but can still be improved.

2.3.1 Simpli�cation of the representation of the coded-aperture collimator

The computation of the contribution of the collimator can be accelerated by simple consid-
erations on the representation of the collimator.

2.3.1.1 Complementary aperture

We observed that the frame of the collimator can be obtained from the frame of the holes
of the collimator. Indeed, intersection lengths of rays with the collimator that is shown in
Fig. 2.18b can be deduced from the intersection lengths of rays with the collimator that is
shown in Fig. 2.20a. The point is that the number of faces is smaller in this latter case,
which speeds up the calculation of the system matrix A. In Fig. 2.20a, the collimator is
represented by 2150 vertices, 6408 edges and 4272 faces, which is about 3 times less faces
than for the collimator in Fig. 2.18b. Intersection lengths which are calculated with the
complementary collimator are denoted Lc. Lc is related to the intersecting lengths lc of the
collimator through:

Lc(ri, rj) = thc/ cos θij − lc(ri, rj) (2.46)

where thc is the thickness of the collimator and θij is the incidence angle of the ray with the
collimator as shown in Fig. 2.19. Eq. (2.49) provides a new equation for the computation
of aij , which is only based on the intersecting lengths of the complementary collimator.
ψ denotes all terms in Eq. (2.35) or Eq. (2.45) but the collimator contribution.

collimator

thc ray

θ
lc

Lc

Figure 2.19 � Relation between
lc and Lc

ai,j = e−µclc(ri,rj)ψ (2.47)

= e−µc(thc/ cos θij−Lc(ri,rj))ψ (2.48)

= eµcLc(ri,rj)
(
e−µcthc/ cos θijψ

)
(2.49)
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(a) The complementary collimator (4272 faces) (b) The simpli�ed complementary collimator
(2876 faces)

Figure 2.20 � Representation of the complementary collimator. Fig. 2.20a is a basic tri-
angulation of the complementary collimator. This triangulation is used to generate this
collimator. Fig. 2.20b is an optimal Delaunay triangulation.

2.3.1.2 Delaunay simpli�cation

The number of faces can be further reduced by representing the complementary collimator
by a minimal number of faces. The result is presented in Fig. 2.20b where the complementary
collimator is composed of 1452 vertices, 4314 edges and 2876 faces, which further decreases
by 32 % the number of faces. Using this representation of the collimator speeds up the
calculation of the system matrix A by 30%.

Although the computation time of system matrices can be accelerated by using comple-
mentary collimators, computing intersections is still very time-consuming. This slows down
the computation of system matrices when the pattern of the collimators is made of a large
number of faces. As much as possible, a short number of intersections should be computed.

2.3.2 Reference technique for computing intersection lengths

A reference technique is described in (Beck 85) to compute every lc. This technique is tested
and serves as a reference to evaluate the new techniques which are developed in this thesis.

2.3.2.1 Method

The reference technique for determining the intersecting lengths lc is based on the computa-
tion of the intersecting points of every ray which starts from every voxel and ends in every
pixel with every face of the collimator and to derive the intersecting lengths lc from the
intersecting points. Fig. 2.21a shows three rays starting from a unique voxel and ending
in three di�erent pixels. For an imaging system which is made of an object containing of
21× 21× 21 voxels, a detector with 128× 128 pixels and a collimator made of 2876 faces as
in Fig. 2.20b, this results in the computations of 213× 1282× 2876 = 4.4× 1011 intersection
lengths lc. It is obvious that the computation time linearly increases with the number of
faces of the collimator, but also linearly increases with the number of pixels and with the
number of voxels.
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(a) Projection of the collimator frame on pixels

A

B

P

Q
R

L

I
F

(b) Intersection of a line
and a face

Figure 2.21 � Representation of rays crossing the collimator and the notations used to com-
pute intersections

The intersection I between the face F and the line L is computed e�ciently by solving
the system according to the notations of Fig. 2.21b:{

I ∈ L
I ∈ F ⇔

{−→
AI = λ · −−→AB−→
PI = α

−−→
PQ+ β

−→
PR

(2.50)

⇔


xA + λ(xB − xA) = xP + α(xQ − xP ) + β(yQ − yP )
yA + λ(yB − yA) = yP + α(yQ − yP ) + β(yQ − yP )
zA + λ(zB − zA) = zP + α(zQ − zP ) + β(yQ − yP )

(2.51)

This is a linear system with 3 equations and 3 unknown variables (λ, α, β). As a result, it
can be easily inverted and (λ, α, β) are retrieved. Because of the way α and β are de�ned in
Eq. (2.50), the intersecting point I stands in the face F if (α, β) ∈ [0; 1]2 and α+ β ≤ 1.

2.3.2.2 Results

Fig. 2.22a presents the detection probabilities which are associated with the voxel located
in (0, 0, 0). These probabilities are derived from Eq. (2.45) with the intersecting lengths lc
computed according to Eq. (2.51). This probability map is compared to the Monte-Carlo
simulation of Fig. 2.9d which is obtained without Compton scattering. The element-by-
element ratio of these two probability maps is shown in Fig. 2.22b. Fig. 2.22d shows that
the values spread around 1, as expected. However, it can be noticed that these two maps
di�er mostly on the edges of the collimators. The dispersion of the values of this image
is represented in the histogram of Fig. 2.22d. The mean of this distribution is 1.057 and
its standard deviation is σ = 7.08 × 10−2, which means that the probability map which is
obtained with this ray-tracing method is biased by a factor 5.7%. The standard deviation
tends to indicate that the result which is obtained through ray-tracing is close to the result
which was obtained previously with Monte-Carlo simulations. The main di�erence is the
computation time. Fig. 2.22c represents the time which is required to compute such proba-
bility maps, for a single voxel. It takes 2.5 s to compute a (128× 128)-pixel projection. The
computation times increase rapidly when the number of pixels increases, since Fig. 2.22c is
represented in log-scales.
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(a) Projection according to the reference
ray-tracing method

(b) Ratio of projections of Fig. 2.22a
and 2.9d
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(c) Computation time (d) Distribution of Fig. 2.22b

Figure 2.22 � Estimation of the probability map of a single voxel at 511 keV obtained with
the reference technique and comparison with the GATE simulation of Fig. 2.8b(without
scattering)

In conclusion, the reference analytical technique provides a detection probability map
close to the map obtained using Monte-Carlo simulations. Next section presents a method
using a smaller number of intersections for calculating system matrices. The number of
projections does not depend on the number of pixels in the detector. This method takes
advantage of interpolations to compute the whole system matrix.

2.3.3 First technique: interpolation-based ray-tracing

In this section, the ray-tracing method interpolates most of the coe�cients from the compu-
tation of a limited number of intersection lengths. This aims at accelerating the computation
time of system matrices, with minor deteriorations on the accuracy of the probabilities (aij).

2.3.3.1 Method

A collimator can be viewed as a surface made of edges. For instance, the object shown in
Fig. 2.23a can be viewed as a piece of the collimator represented in Fig. 2.20b. Let's choose a
voxel located at (Xj , Yj , Zj). The frame of the collimator is projected by the central projec-
tion whose centre is this voxel on the pixel plane (z = zi) as shown in Fig. 2.23b. An example
of a projection is shown in Fig. 2.23c. All the projected points and intersection points are
used to build a Delaunay triangulation of this projection as shown in Fig. 2.23d. This tri-
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(a) Frame of a piece of a coded-aperture
HURA collimator

θ

(b) Projection of a point-source through a piece
of collimator on a detector

(c) Projection of the collimator frame on pix-
els

(xi, yi, li)

(d) Constrained Delaunay triangulation of
the projection of Fig. 2.23c

Figure 2.23 � Projection of the collimator frame on pixels

angulation is constrained, which means that all the edges which are present in Fig. 2.23c
are also present in Fig. 2.23d. Vertices which are physical neighbours in Fig. 2.23a are still
connected in Delaunay triangulation. Ray-tracing through the collimator is then performed
on rays starting from (Xj , Yj , Zj) and ending on vertices of the constrained Delaunay trian-
gulation. As shown in Fig. 2.23d, an intersecting length li is associated to every Delaunay
node whose coordinates are (xi, yi). Let's choose one of the triangle. It usually covers several
pixels as shown in Fig. 2.24. Intersecting lengths l(x, y) for every position in the triangle
are interpolated from a linear approximation. Indeed, (x1, y1, l1), (x2, y2, l2) and (x3, y3, l3)
constitute a plane (P) which is a good approximation of the intersection distance for rays
passing inside the triangle. The equation of the plane P is given by:

(P) : a · x+ b · y − l + c = 0 (2.52)

As vertices of the triangle belong to (P), the triplet (a, b, c) veri�es:x1 y1 1
x2 y2 1
x3 y3 1

 ·
ab
c

−
l1l2
l3

 =

0
0
0

 (2.53)
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(x2, y2, l2)

(x1, y1, l1)

(x3, y3, l3)
(xp, yp, lp)

x

y

l

Figure 2.24 � The projection of a face F covers several pixels

(a, b, c) are then deduced according to:ab
c

 =

x1 y1 1
x2 y2 1
x3 y3 1

−1

·
l1l2
l3

 (2.54)

As a result, the intersecting length for every pixel p being in the shadow of the face F at
(xp, yp) can be interpolated from an a�ne plane and the result is given by:

lp(xp, yp) =a · xp + b · yp + c (2.55)

=[xp, yp, 1] ·
x1 y1 1
x2 y2 1
x3 y3 1

−1

·
l1l2
l3

 (2.56)

The interpolation on a plane is motivated by the �rst-order approximation presented below.
It is assumed that the values of the intersecting lengths l at extremities are known. The
intersection length inside the triangle is a function of 1/ cos (θ(x, y)) as it was shown in
Fig. 2.12. It is given by:

l(x, y) =
α

cos (θ(xi, yi))
+ β (2.57)

Taylor expansion on a two-variable function f(x, y) = (g ◦ h)(x, y) is used:

f(xi + xε, yi + yε) ≈f(xi, yi) + xε · fx(xi, yi) + yε · fy(xi, yi) (2.58)

≈g ◦ cos(xi, yi) + xε · (−sin)(xi, yi) · g′ ◦ cos(xi, yi)
+ yε · (−sin)(xi, yi) · g′(xi, yi) (2.59)

When g(x) = 1/x and h(x, y) =
z√

x2 + y2 + z2
= cos (θ(x, y)), it comes:

l(x, y) = l(xi + xε, yi + yε) where xε � xi and yε � yi (2.60)

= β +
α

cos (θ(xi + xε, yi + yε))
(2.61)

≈ β + α


1

cos(θ(xi, yi))
+ xε ·

(
− xi · zi(

x2
i + y2

i + z2
i

)3/2
)
·
(
− 1

cos2(θ(xi, yi))

)
+yε ·

(
− yi · zi(

x2
i + y2

i + z2
i

)3/2
)
·
(
− 1

cos2(θ(xi, yi))

)
 (2.62)

≈ a · xε + b · yε + c (2.63)
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with

a = α

(
xi(

x2
i + y2

i + z2
i

)
cos3(θ(xi, yi))

)
; b = α

(
yi(

x2
i + y2

i + z2
i

)
cos3(θ(xi, yi))

)
(2.64)

c = β + α


1

cos(θ(xi, yi))
− x2

0(
x2
i + y2

i + z2
i

)
cos3(θ(xi, yi))

− y2
0(

x2
i + y2

i + z2
i

)
cos3(θ(xi, yi))

 (2.65)

A nearest neighbour approximation is applied to pixels covered by several triangles, only
centre of pixels matters. This is its centre which determines from which face the intersecting
length should be interpolated from. Once all the intersection lengths are interpolated, the
detection probabilities are deduced from Eq. (2.49).

2.3.3.2 Results

An example of a projection generated with such an algorithm is shown in Fig. 2.25a. Some
pixels are wrongly estimated. It takes 30 s to compute it. Fig. 2.25c shows the calculation
time of a single projection as a function of the number of pixels in the detector. It was
performed on a single 1.7GHz processor. The computation time for the reference technique
is shown for comparison. The point of this method is that the number of intersection cal-
culations depends principally on the collimator, not on the number of pixels. It becomes
advantageous when the number of pixels in the detector is higher than 512 × 512. When
the number of pixels is lower, the constrained Delaunay triangulation impacts strongly the
computation time, since it takes about 30 s to be performed. The number of calculations
of intersection lengths is constant when using this method. This is the number of inter-
polations which increases linearly with the number of pixels. As interpolations are much
faster to compute than intersecting distances, the new algorithm is faster than ray-driven
algorithms for detectors with a large number of pixels. Furthermore, special care should
be taken with rays which are aligned with edges, because the detection probability map is
then discontinuous, which is di�cult to take into account with this method. Furthermore,
this triangulation generates a very large number of triangles that are used for interpolating
values of pixels. The larger the number of triangles is, the slower the computation is.

It is chosen to quantify the error between the projection that is simulated with the Monte-
Carlo code GATE in Fig. 2.8b and the projection which is obtained with the interpolation
technique by calculating the ratio between these two projections. The result is shown in
Fig. 2.25b and it can be observed that the largest errors are located on the edges of the
collimator. Fig. 2.25d is then derived from Fig. 2.25b in order to quantify the error. The
mean of this distribution is 1.042, which means that there is a bias between both projections
that is lower than 5%. The standard deviation is σ = 8.47×10−2, which should be compared
to the standard deviation of the reference technique which was 7.08×10−2. The interpolation-
based method is consequently 16% worse than the reference technique. This means that the
error is larger with this method than with the reference method. This was expected because
most of the intersecting lengths are interpolated and consequently are not the exact lengths
of the intersection of rays with the collimator.
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(a) Detection probabilities of the pho-
tons that are emitted from the centre
voxel of the 3D spatial distribution

(b) Ratio of projections of Fig. 2.25a
and 2.8b

reference ray-tracing
interpolation-based ray-tracing
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(c) Computation time (d) Distribution of Fig. 2.25b

Figure 2.25 � Estimation of the probability map of a single voxel at 511 keV obtained with
the interpolation-based technique and comparison with the GATE simulation of Fig. 2.8b

2.3.4 Second technique: computing intersection lengths from collimator slices

A second method is proposed to compute system matrices, which does not rely on constrained
Delaunay triangulation.

2.3.4.1 Method

In this section it is assumed that the collimator is made of s thin slices which can be
represented as plane surfaces as in Fig. 2.26a. This hypothesis implies that rays either pass
completely through a slice or not at all. No intersection calculation is required anymore.
The contribution of the collimator in the calculations of (ai,j) becomes:

e−µcli,j = e−µc
P
s li,j,s (2.66)

where li,j,s is the length of the contribution of the slice s to the attenuation of the collimator.
For each slice, all the triangles are projected from the centre of the voxel j to the detector,
as it shown in Fig. 2.26b. As it can be observed in Fig. 2.27a, several pixels are usually
covered by projected slice triangles. If the pixel i is not covered by any triangles from the
slice s, then li,j,s = 0. From Fig. 2.27b, a relation is derived between the intersecting length
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(a) Thin slice of a coded-aperture collimator (b) Projection of point source through the
collimator on the detector

Figure 2.26 � Collimator is made of S slices that are projected successively on the detector

li,j,s, the incidence angle θi,j and the thickness ths. ∀i so that (xi, yi) ∈ (P1 P2 P3),

li,j,s =
ths

cos(θi,j)
(2.67)

Finally, the contribution of the collimator is obtained through:

e−µcli,j = e−µc/ cos θi,j
P
s(ths·δsi,j) (2.68)

where δsi,j is 1 if the ray starting from the centre of a voxel j and ending at the centre of a
pixel i crosses the slice s and 0 otherwise.

P1

P2

P3

(a) Projection of a collimator face
on pixels

Triangular piece of
a collimator slice

←
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j
0
, Z

j 0
)

θi,j

li,j,sths

(b) Intersection of ray and a triangular piece of a thin colli-
mator slice

Figure 2.27 � Projection of a triangular piece of collimator slice on a pixel grid
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2.3.4.2 Results

(a) Projection with 3 slices (b) Projection with 100 slices
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(c) The number of slices impacts the
accuracy of the projections and its
computation time

Figure 2.28 � Determination of an appropriate number of slices

Fig. 2.28 presents the impact of the number of slices which is used to model the collimator
on the accuracy of the projection of the collimator on the detector as well as the computation
time. When the collimator is modelled with a short number of slices as in Fig. 2.28a where
3 slices are used, discontinuities are observed on the edges of the collimator in the projection.
Conversely, when a large number of slices is used to model the collimator as for instance
in Fig. 2.28b where 100 slices are used, no discontinuities are visible in the projection but
the computation time becomes large. Fig. 2.28c shows the accuracy of the projection and
the associated computation time as a function of the number of slices. From this plot, it is
decided to model the collimator with 20 slices as it corresponds to an error in the projection
which is lower than 1% while the computation time per voxel is 0.65 s for a 128 × 128
projection. Computation times are obtained on a single 2.4 GHz processor.

The projection that is obtained for 20 slices is shown in Fig. 2.29a and this projection
is compared to the result which is obtained with the Monte-Carlo simulation of Fig. 2.8b
The ratio of these two projections is shown in Fig. 2.29. The mean of the distribution of the
pixel values of this images, which is shown in Fig. 2.29d, is 1.057 with a standard deviation
σ = 7.23× 10−2, which is 2.1% worse than with the reference technique (σ was 7.08× 10−2).
However, the computation time is much better as it is 4 times faster than the reference
technique for a 128 × 128 projection. Fig. 2.29c shows the computation time of a single
projection for various number of pixels in the detector. This method is always faster than
the reference technique.

The limitation of this method is that the accuracy of the computation of the system
matrices depends on the number of slices used to model the collimator. An exact method
would be preferred, as long as the computation time is comparable to this method.
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(a) Projection of the centre voxel on the
detector, which is made of 128×128 pix-
els

(b) Ratio of projections of Fig. 2.29a
and 2.8b
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(c) Performance of the computation of a the face-
based ray-tracing algorithm

(d) Distribution of Fig. 2.29b

Figure 2.29 � Estimation of the probability map of a single voxel at 511 keV obtained with
the collimator viewed as 20 slices and comparison with the GATE simulation of Fig. 2.8b

2.3.5 Third technique: face-based ray-tracing

A third and last method is now presented. It aims at computing e�ciently and accurately
system matrices when the collimator is made of a large number of faces. Contrary to the
two previous methods, it does not require any interpolations or approximations. Indeed, it
is possible to exactly derive the intersecting length between any ray and the collimator on
the base of a face-based method. First, this method is exposed in 2D for clarity, where the
ray intersects a unique piece of collimator. Then, it is extended to the 3D case. The general
method is then developed where a ray can intersect several pieces of collimator.

2.3.5.1 Method

First, this technique is explained from a 2D example. It is demonstrated that the exact
distance between A and B in Fig. 2.30 can be expressed as an function of (xd, yd). The
distance AB depends on the parameters (a1, b1, c1), (a2, b2, c2), (xi, yi) and (xd, yd). This
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O(xi, yi) L
L1 : a1x+ b1y + c1 = 0

L2 : a2x+ b2y + c2 = 0

Ld : adx+ bdy + cd = 0

D(xd, yd)

A

B

Figure 2.30 � Projection of a point through a plane-surface slice

distance is derived from the following system of equations:
A ∈ L
A ∈ L1

B ∈ L
B ∈ L2

⇔


(xA, yA) = (xi, yi) + λA(xd − xi, yd − yi)
a1 · xA + b1 · yA + c1 = 0
(xB, yB) = (xi, yi) + λB(xd − xi, yd − yi)
a2 · xB + b2 · yB + c2 = 0

By denoting (X,Y ) = (xd − xi, yd − yi)

⇔



(xA, yA) = (xi, yi) + λA(X,Y )
(xB, yB) = (xi, yi) + λB(X,Y )

λA = −a1 · xi + b1 · yi + c1

a1 ·X + b1 · Y

λB = −a2 · xi + b2 · yi + c2

a2 ·X + b2 · Y
⇒ AB =

(
−a2xi + b2yi + c2

a2X + b2Y
+
a1xi + b1yi + c1

a1X + b1Y

)√
X2 + Y 2 (2.69)

This is an exact derivation of the distance AB. This extends directly to 3D. When a ray
intersects two planes, the distance between the two intersection points is given by:

AB =
(
−a2xi + b2yi + c2zi + d2

a2X + b2Y + c2Z
+
a1xi + b1yi + c1zi + d1

a1X + b1Y + c1Z

)√
X2 + Y 2 + Z2 (2.70)

where Z = zd − zi. In the parenthesis of Eq. 2.70, the �rst term corresponds to the point A
which is the point where the ray enters into the collimator, whereas the second term cor-
responds to the intersection point where the ray goes out from the collimator. Instead of
computing intersections of every ray originating from 0(xi, yi, zi) and ending in every pixel
centre D(xd, yd, zd), the computation of the intersecting distances will be made more directly
according to Eq. (2.70). Every face describing the collimator is projected as in Fig. 2.23b,
and the pixels standing in its shadow are updated. Actually, if the ray enters the collimator
volume through face F , its contribution C is added to the pixel in the shadow, and if its
goes out, it is subtracted, with C being:

C =
aFxi + bF yi + cF zi + dF

aF (xd − xi) + bF (yd − yi) + cF (zd − zi)
√

(xd − xi)2 + (yd − yi)2 + (zd − zi)2 (2.71)

where parameters (aF , bF , cF , dF ) describe the plane where face F is in. This is applied to
all faces of a triangulated representation of the collimator as in Fig. 2.20b. Normal vectors
of faces are assumed to be pointing outside the collimator.
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(a) Projection of the centre voxel on the
detector, which is made of 128×128 pix-
els

(b) Ratio of projections of Fig. 2.31a
and 2.8b
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(c) Performance of the computation of a the face-
based ray-tracing algorithm

(d) Distribution of Fig. 2.31b

Figure 2.31 � Estimation of the probability map of a single voxel at 511 keV obtained with
the face-based technique and comparison with the GATE simulation of Fig. 2.8b

2.3.5.2 Results

The example of Fig. 2.31a models the detection probabilities obtained with the face-driven
technique. Fig. 2.31b is obtained by taking the ratio of Fig. 2.31a and Fig. 2.8b. It shows
that errors are still mostly distributed on the edges of the collimator. The distribution of
the values of this �gure are represented in Fig. 2.31d. The mean value of this distribution
is 1.057 and its standard deviation is σ = 7.08 × 10−2, which is equal to the standard
deviation of the reference technique. This is due to the fact that this technique does not take
advantage of interpolations or approximations. Fig. 2.31c shows that the computation time
increases logarithmically as the detector is re�ned in terms of number of pixels. However,
the performances are excellent since it takes about 800 ms to perform the projection of a
2900-face collimator on a 128× 128-pixel detector.

2.3.6 Oversampling

Although it is possible to calculate e�ciently and exactly the intersection lengths lc(ri, rj),
the computation of (aij) still su�ers from the approximations of Eq. (2.27) and (2.29). As
a result, it is proposed to investigate the error on the (aij) by oversampling the pixels and
the voxels. The re�nement frequency is denoted for voxels M ′ = M ′X ·M ′Y ·M ′Z and for
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pixels N ′ = N ′x ·N ′y ·N ′z. The centres of subvoxels are denoted {Xj′ , Yj′ , Zj′} and subvoxels
stand inside {Xj ± ∆X/2, Yj ± ∆Y/2, Zj ± ∆Z/2}. The centres of subpixels are denoted
{xi′ , yi′ , zi′} and subpixels stand inside {xi ±∆x/2, yi ±∆y/2, zi ±∆z/2}.

2.3.6.1 Method

The probability that a photon emitted from a voxel vj is detected in a pixel pi is equal to the
sum of probabilities that it is emitted from subvoxels vj

′
in vj weighted with the probability

that a photon emitted from vj is emitted from vj
′
. This can be expressed according to:

ai,j =
1
M ′

∑
vj′⊂vj

ai,j′ (2.72)

Furthermore, the probability that a photon emitted from vj
′
is detected in pi is equal to the

sum of the probabilities that it would be detected in subpixels pi
′
:

ai,j′ =
∑
pi′⊂pi

ai′,j′ · e−µd((zi′−∆z/2N ′z)−(zi−∆z/2))/ cos θi′j′ (2.73)

The exponential term accounts for the attenuation of the scintillator: by over-sampling the
thickness of the scintillator, it is necessary to take into account the attenuation of the �rst
scintillator slices. zi′ −∆z/2N ′z is the z-coordinate of the slice where pi

′
is in and zi−∆z/2

is the z-coordinate of the surface of scintillator. The probability ai,j is then derived from
Eq. (2.45), (2.72) and (2.73):

aij =
1
M ′

∑
vj′⊂vj

∑
pi′⊂pi

ai′j′ · e−µd(zi′−zi+(1−1/N ′z)·∆z/2)/ cos θi′j′ (2.74)

=
∑
vj′⊂vj

∑
pi′⊂pi

(∆x/N ′x)(∆y/N ′y) · µ2
d cos θi′j′

4πM ′
· e−µclc(ri′ ,rj′ )

× eµd(zi′−Zj′−∆z/2N ′z)/ cos θi′j′ · e−µd(zi′−zi+(1−1/N ′z)·∆z/2)/ cos θi′j′

×
(

Γ

(
−1,

µd
(
zi′ − Zj′ −∆z/2N ′z

)
cos θi′j′

)
− Γ

(
−1,

µd
(
zi′ − Zj′ + ∆z/2N ′z

)
cos θi′j′

))
(2.75)

=
∑
vj′⊂vj

∑
pi′⊂pi

(∆x/N ′x)(∆y/N ′y) · µ2
d cos θi′j′

4πM ′
· e−µd(Zj′−zi+∆z/2)/ cos θi′j′ · e−µclc(ri′ ,rj′ )

×
(

Γ

(
−1,

µd
(
zi′ − Zj′ −∆z/2N ′z

)
cos θi′j′

)
− Γ

(
−1,

µd
(
zi′ − Zj′ + ∆z/2N ′z

)
cos θi′j′

))
(2.76)

where i′ describes subpixels of a pixel pi and j′ describes subvoxels of a voxel vj . As volumes
of subvoxels and subpixels are smaller than the volume of voxels and pixels, zero-order
approximations on cos θ(rj , ri) and lc(rj , ri) as explained at page 71 are more consistent.
As a result, the approximations induce smaller errors for calculations of ai′,j′ than for the
calculations of ai,j . However, calculation time increases.

2.3.6.2 Results

Fig. 2.32 shows the impact of oversampling either the object or the detector or both on the
estimation of the probability map corresponding to a single box-shaped voxel. It can be
observed that the edges are not visible anymore in Fig. 2.32d than in the other projections
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(a) No oversampling (b) Oversampling of the detector

(c) Oversampling of the object (d) Oversampling of both the detector and the
object

Figure 2.32 � Projection of the centre voxel on the detector with oversampling. Fig 2.32a: no
oversampling. Fig 2.32b: the detector is oversampled (2 × 2 × 2). Fig 2.32c: the object
is oversampled (2 × 2 × 2). Fig 2.32d: Both the detector and the object are oversampled
(2× 2× 2)× (2× 2× 2)

of this �gure. Fig. 2.33a shows the ratio between the oversampled analytic method and the
Monte-Carlo simulation. It can be observed that the error on edges are not visible anymore.
The distribution of this �gure is plotted in Fig. 2.33b. Although this distribution is expected
to be centred around 1, it is centred around 1.087. The standard deviation of this distribution
is σ = 0.0193, which is better than any standard deviation presented before. The important
point to notice is that the standard deviation is decreased by oversampling, which means
that the projection su�ers less from errors. The bias that is observed can be easily corrected
by applying a correction factor.

Dimensions of voxels are 1 × 1 × 1 mm3. They could be subdivided in 8 smaller voxels
whose dimensions are 0.5 × 0.5 × 0.5 mm3. In the same way, pixels could be subdivided in
smaller volumes. The detector, which is modelled in this thesis, is made of pixels whose vol-
ume is 0.8×0.8×4 mm3. Each of them could be subdivided into smaller volumes, for instance
into 16 volumes whose dimensions would be 0.4× 0.4× 1 mm3. In this case, the calculation
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(a) Ratio of projections of Fig. 2.32d
and 2.8b

(b) Distribution of Fig. 2.33a

Figure 2.33 � Error estimation

time would increase by a factor 8× 16 = 128, which would result in a prohibitive computa-
tion time. As a result, the impact of oversampling parameters (M ′x,M ′y,M ′z, N ′x, N ′y, N ′z) is
investigated independently to determine which dimensions should be oversampled in priority
to optimally improve the accuracy of system matrices. First, the detector is oversampled in
the transverse direction, which is equivalent to the calculation of the probability matrix on
a detector with (N ′x×N ′y) times more pixels, which are (N ′x×N ′y) times smaller. Then, the
detector is oversampled along the depth of the detector. Secondly, the object is oversam-
pled, �rst in the transversal plane, then along its depth. By oversampling the voxels and the
pixels, the accuracy of the matrix increases, but also the computation time. The errors in
Fig. 2.34 are calculated according to:

error =

√√√√√ 1
N

∑
i,j

(
2 · Iij − I

ref
ij

Iij + Irefij

)2

(2.77)

where I is the image obtained through oversampling, for instance Fig. 2.32b, and Iref is the
image obtained by taking a large oversampling factor. For the plots shown in Fig. 2.34, the
sampling parameters which are used for computing the reference image Iref are all set to 1,
excepted the sampling parameters which are under investigation which are set to 16. N is the
number of pixels in the circular area. It is observed that oversampling the pixel depth or the
voxel depth results in less improvements on the accuracy than oversampling the transverse
directions of the voxels and the pixels. Furthermore, oversampling the transverse directions
of the voxels (M ′x ×M ′y) leads to a better improvement of the accuracy than oversampling
the transverse directions of pixels (N ′x ×N ′y).

It would seem better to calculate a re�ned system matrix instead of oversampling pixels
and voxels, but the computer's RAM requirement becomes too large. The typical sizes of
system matrices that are used in this thesis vary from 1 to 4 GBytes. By re�ning voxels
and pixels by a factor 2, the memory requirement increases by a factor (23) × (22) = 32,
which is complicated in practice because it would lead to matrices too large to be handled.
Moreover, it slows down reconstructions, which are already quite slow because information
is very intricate due to the use of coded aperture collimators.
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(a) In�uence of the transverse sampling parameters
N ′x and N ′y. The reference projection corresponds
to N ′x = 16 and N ′y = 16
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(b) In�uence of the axial sampling parameter N ′z.
The reference projection corresponds to N ′z = 16
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(c) In�uence of the transverse sampling parameters
M ′x and M

′
y. The reference projection corresponds

to M ′x = 16 and M ′y = 16
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(d) In�uence of the axial sampling parametersM ′z.
The reference projection corresponds to M ′z = 16

Figure 2.34 � In�uence of sampling parameters on the determination of the probability matrix

2.4 Discussion and conclusion

Estimating the β+ input function is a low-signal imaging problem. As a result, appropriate
choices must be made concerning the measurement location and the imaging system. It
is suggested to perform the measurement of the β+ input function at the popliteal artery,
which is an original choice. The diameter of this artery is large (about 5 mm) which results
in a large amount of emitted photons. The popliteal artery is located about 50 mm from
the surface of the knee, which results in an attenuation of the signal by tissues of 60%.
Furthermore, no organ with a large amount of radiotracers (heart, brain, bladder) is located
close to the knee. Other candidates are arteries which are either smaller arteries or arteries
with a very active organ in its surrounding whose signal dominates the signal coming from the
artery. Depending on the radiotracers, it could be interesting to perform the measurement
at the common femoral artery, which is larger than the popliteal artery, but the proportion
of radiotracers which is taken up by muscles should be low otherwise it would be complicated
to extract the signal coming from the artery.

The non-invasive estimation of the β+-input function requires the development of an
imaging system with a good e�ciency because of the low activity concentration during
typical PET acquisitions. A γ-imager is used to collect photons. E�ciency would be better
if some modi�cations could be made on the scintillator. Replacing the CsI scintillator by
a BGO scintillator would increase the e�ciency by a factor 2 (from 16% to 32% for a 4 mm-
thick scintillator at 511 keV). Furthermore, it was not possible to calibrate the imager for
acquisitions at 511 keV. When placing a 511 keV source in the �eld of view, only photons
which undergo Compton scattering and deposit less than 350 keV can be registered, because
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of an electronic collimation which rejects events whose energy was higher than 350 keV. This
would be useful to experimentally determine the energy resolution and the spatial resolution
of this imager at 511 keV, so that it can then be modelled into Monte-Carlo simulations. It
was chosen to develop a SPECT imaging system, because one unique γ-imager is available
at Service Hospitalier Frederic Joliot (Orsay), where acquisitions take place. A coincidence
system could be developed with a second γ-imager since it disposes of a LIST-mode which
allows the registration of the time stamp to every detected photon. The imaging system
which is proposed has an e�ciency which might be better than the e�ciency of a coincidence
system based on 2 γ-imagers, thanks to the coded-aperture collimator, which is about 50%
transparent to 511-keV photons. It is a rank-6 HURA collimator. It should be reminded
that information quality is better with a coincidence system than with a SPECT system,
although a coded aperture is used, since coincidence systems provide lines of responses which
are close from where photons were emitted, whereas SPECT systems do not.

The imaging system must have a good spatial resolution so that contributions of ves-
sels can be separated. This results in a choice of the magni�cation of the imaging system
which is set to 2, but a worse overlap could be accepted (up to 10%), which results in a
smaller magni�cation, a imager placed closer to the knee and consequently a better e�-
ciency of the imaging system. As correlation-based decoding algorithms reconstruct spatial
distributions with strong artefacts, it is suggested to take advantage of a statistical recon-
struction algorithm as maximum-likelihood expectation-maximisation algorithm (MLEM).
Such an algorithm requires the computation of a matrix which models the imaging system.
For 511 keV photons in SPECT, this matrix is large (several gigabytes), because no portion
of the collimator is completely opaque to radiation. As a result, the computation of such a
system matrix is time-consuming. Ideally, it should be computed through Monte-Carlo sim-
ulations, that models all the physics (photoelectric e�ect, Compton scattering, spatial and
energy resolutions, energy cuts). However, performing Monte-Carlo simulations on a single
processor takes a prohibitive time. The computation time could be reduced by several orders
of magnitude thanks to recent improvements made for accelerating GATE (Beenhouwer 08).
Such a version of GATE was not available yet. As an alternative, we proposed to use ray-
tracing methods to estimate system matrices within a reasonable computation time. The
new methods deeply accelerate the computation of every voxel to the system matrices, but
no every physical phenomena can be modelled with ray-tracing methods. In particular,
Compton scattering is not taken into account. This results in a systematic error of about
6% between the Monte-Carlo simulations and the projections obtained through ray-tracing.
It is shown that this error is minimal when the energy threshold in Monte-Carlo simulations
is close to the energy of the photoelectric peak. This means that simulations of datasets
with Monte-Carlo simulations in the next chapter should be made with an energy cut set to
500 keV (1σ of the photoelectric peak).

Instead of the Monte-Carlo simulations, an analytical approach is developed. First an
exact multi-dimensional integral expression of every coe�cient aij of the system matrix is
derived. As this integral can not be analytically solved, some approximations are applied.
This results in an expression which can be decomposed into two terms: a term which models
the geometry of the imaging system as well as the e�ciency of the detector and a term
which contains the contribution of the collimator to the system matrix. This two terms
are computed independently. An original expression is derived for the computation of the
�rst term. The improvement is not signi�cant when compared to the classical expression
for the imaging con�guration of this thesis, but should result in a better accuracy of the
�rst term when a better e�ciency of the imaging system is looked for. The second term
is derived through ray-tracing methods. Several ray-tracing methods are developed. They
are all compared to the reference ray-tracing method that consists in computing all the
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intersecting lengths of the rays starting from a voxel and ending in a pixel. Although
this method is much faster than Monte-Carlo simulations, it can be accelerated. The �rst
accelerating method is based on interpolations. Interpolations deteriorate the accuracy of
system matrices by 16%, however it speeds up the computation of system matrices when
the detector is made of a large number of pixels (> 1000× 1000). This method is not faster
than the reference technique for detectors with a smaller number of pixels because it requires
a constrained Delaunay triangulation which is time-consuming. Once this triangulation is
performed, the computation of the contribution of the collimator is fast because it consists
only in interpolations. The second method does not use constraint Delaunay triangulation.
It is faster than the reference technique and the accuracy can be controlled by the number of
slices which models the collimator. It is shown that describing a 9-mm-thick collimator with
20 slices results in a small error (2%) when compared to the reference technique. It does
not require the computation of any intersection nor any constrained Delaunay triangulation.
Finally a last technique is proposed. It is as accurate as the reference technique but faster.
Instead of computing system matrices ray-by-ray, this method computes system matrices
face-by-face. The acceleration factor varies from 2 to 4 depending on the number of pixels
in the detector. Finally it is presented how to include oversampling in the computation of
system matrices. Oversampling the voxels and the pixels decreases the error between the
Monte-Carlo simulations and ray-tracing methods. However it increases the computation
time. The oversampling directions do not impact similarly the reduction of the error. It is
demonstrated that voxels and pixels should only be oversampled in transaxial directions.

In conclusion we have selected the region of the knee for measuring the external mea-
surement of the β+ arterial input function using a gamma camera equipped with a coded
aperture. This chapter then presents methods to e�ciently and accurately compute sys-
tem matrices associated with this imaging con�guration in order to use maximum-likelihood
expectation-maximisation algorithm. The face-based method is chosen for generating system
based matrices for reconstructing spatial distribution in the next chapter.
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Statistical reconstruction

algorithm with

coded-aperture collimators

3

In this chapter, methods are presented to reconstruct object distributions with a statisti-
cal reconstruction algorithm as MLEM when projections are acquired with coded-aperture
collimators. These methods include a better handling of large system matrix as well as
accelerations of convergence rates.

Objects which are reconstructed in this chapter are either point-sources or a set of 2 cylin-
ders. This allows the investigation of the impact of the concentration of radiotracers in
objects and the spatial resolution of the detector on the reconstructed distributions. Re-
constructions are performed on analytical projections, then on projections generated with
Monte-Carlo simulations and �nally on real projections obtained by placing phantoms in the
�eld of view of an experimental set-up.

3.1 Handling of MLEM-algorithm with large system matrices

3.1.1 Matrix representation of MLEM-algorithm

In section 1.5.1, the iterative algorithm of Shepp and Vardi is presented. It maximises the
likelihood L(λ) ∝ P (y|λ), where y represents the observations in detectors and λ is the
object spatial distribution. This algorithm can be written through a matrix formulation in
order to e�ciently calculate updates in all voxels for every iteration:

λh+1 =
λh

(
[
1 . . . 1

] ·A)T
∗
(
AT · y

Aλh

)
(3.1)

Divisions, as well as the multiplication indicated with the symbol ∗, are element-by-element
operations. The matrix A is a system matrix which is computed according to the face-based
method described in the previous chapter. It models the geometry and the physics of the
imaging system.

3.1.2 Bene�ts of symmetries

With high energy photons, collimators are not completely opaque. This results in system
matrices which are very dense, unlike system matrices which are used for low-energy SPECT-
imaging. Computational resources limit the number of voxels which can be reconstructed
since the memory requirement for using system matrices increases linearly with the number
of voxels in objects. As a result, if symmetries exist, it is expected to take advantage of
them. This section describes how to handle symmetries to reduce memory load during
reconstructions.
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Figure 3.1 � Invariants with Cartesian coordinates. Collimators have not been represented,
but this does not change the invariants

Usually, an acquisition y is made of several projections {y1, . . . ,yP }. Let's assume that
every projection is made of M pixels and that the object is made of N voxels. Some projec-
tions may be orthogonal one to the other. Let's also assume for simplicity that the acquisition
is made of only two orthogonal projections {y1,y2}. For clarity, the mth pixel of the whole
acquisition is denoted pm whereas the mth pixel of any projection k is denoted pkm. This
means that pkm = p(k−1)·M+m. In Fig. 3.1, where coordinates are Cartesian, the probability
an,m that a photon emitted from a voxel n is detected in a pixel p1

m in the �rst projection P1

is equal to the probability an′,M+m that a photon emitted from a voxel n′ is detected in a
pixel p2

i in the second orthogonal projection P2. This means that matrix A is redundant.
Let's de�ne A1 and A2 the system matrices which model respectively projections P1 and
P2, y can then be modelled as:

y0

...

y2M−1


=



y1
0
...

y1
M−1

y2
0
...

y2
M−1


=



a0,0 . . . a0,N−1
...

. . .
...

aM−1,0 . . . aM−1,N−1

aM,0 . . . aM,N−1
...

. . .
...

a2M−1,0 . . . a2M−1,N−1


×

 λ0
...

λN−1

+NP (3.2)

y1 = A1λ+N1
P (3.3)

y2 = A2λ+N2
P (3.4)

withN1
P ,N

2
P andNP being respectively Poisson noise in projections P1, P2 and the Poisson

noise in the whole observations, and ai,j being the probability that a photon emitted from
voxel vj is detected in pixel pi. A1 is made of the �rst M rows of A and A2 is made of the
last M rows, as it can be observed in Eq. (3.2).

We are now looking for the coe�cient am,n′ which is redundant with coe�cient am,n in
order to express A2 as a function of A1. A2 is redundant with A1 only if it is chosen to work
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P1

P2

P3

P4

Figure 3.2 � Two orthogonal sets of two projections each. The �rst set is made of P1 and
P2, the second set is made of P3 and P4

with a square voxel grid as in Fig. 3.1 and 3.2. The number of voxels per row is denoted NX

and consequently, the total number of voxels is N = N2
X . It is then possible to represent

voxel indices (i, j) as a 1D-vector v where v(n) is given by Eq. (3.5). n′ is then deduced
from Eq. (3.5) and Fig. 3.1:

n = i ·NX + j (3.5)

n′ = (NX − 1− j) ·NX + i (3.6)

Half columns
[
a0,n . . . aM−1,n

]T and
[
aM,n′ . . . a2M−1,n′

]T in Eq. 3.2 are then equal.
Consequently A2 is obtained from the permutation of columns of A1. This corresponds to:

A2 = A1 · P where P is a permutation matrix (3.7)

From a computational point of view, it is more e�cient to exchange the columns of A1

through a permutation vector v rather than multiplying A1 by the corresponding permuta-
tion matrix P . When the number of projections is larger than 2, every part of the transition
matrix A which corresponds to orthogonal sets of projections Sk can be obtained from
A1 and permutation matrices (P 1,k)k∈[[1;K]] which can be viewed as permutation vectors
(vk)k∈[[1;K]]. Fig. 3.2 explains the di�erence between orthogonal projections and orthogonal
sets. The �rst set is made of projections P1 and P2 and the second is made of projections
P3 and P4. Both sets are orthogonal whereas projections are not two-by-two orthogonal. y1

is here made of projections P1 and P2 and y2 is made of P3 and P4 and M is the number
of pixels per set. The method which is presented in this section also deals with such kind of
con�gurations.

When the acquisition is made of K sets of projections which permute by rotation,

99



Eq. (3.2) becomes:

 y1
0
...

y1
M−1


 yk0

...
ykM−1


 yK0

...
yKM−1





=



A1 ×

1
. . .

1


A1 × P 1,k

A1 × P 1,K



×


λ0
...
...

λN−1

+NP (3.8)

This statistical model is only based on matrix A1 which is K times smaller than matrix A.
In this thesis, two projections at maximum are orthogonally acquired. This reduces by a
factor of 2 the size of system matrices which are used. When 360◦-tomography is performed,
this method reduces up to a factor of 4 the size of the system matrix if reconstructions
are performed on a Cartesian grid. It can be further extended in cylindrical coordinates
as described in Appendix 6 and save a lot of RAM requirement. The question is then
about performing multiplications with A and with AT by only using matrix A1 and the
permutation vectors vk, so that the memory requirement is kept low when updating the
spatial distribution λ according to Eq. (3.1):

λh+1 =
λh

([1 . . . 1] ·A)T
∗
(
AT · y

A · λh
)

(3.9)

3.1.2.1 Multiplication with A

We assume that matrixA is the model ofK orthogonal sets of projections. A is a (KM×N)-
matrix based on A1 as in Eq. (3.8). Every set is represented by M rows in A. We want to
calculate c = A · b.

∀i, ∃! (q, r)/ i = q ·M + r and 0 ≤ r < M . It then comes,

ci = (A · b)i = (A1 · P 1,q · b)r (3.10)

In practice, k copies, called bk of b are created and every permutation vk is applied on
every copy bk. Every bk is a permuted copy of b. We then multiply A1 with every bk. This
gives the kth portion of c as shown in Eq. (3.11).

A1

 bk0

bkN−1

 = A1P 1,k

 b0

bN−1

 =

 ck0

ckM−1

 (3.11)

With matrix notations, A can be written as:

A =


A1

A1 · P 1,2

...
A1 · P 1,K

 (3.12)
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3.1.2.2 Multiplication with AT

Similar assumptions as in the previous section are done. A is a (KM ×N)-matrix. We want
to multiply matrix AT with a vector c by only using A1, which is a (M ×N)-matrix, and
all permutations (vk)k∈[[1;K]]. The result of this multiplication is denoted b: b = AT ·c. The
block transposition of Eq. (3.12) leads to:

AT =
[(
A1
)T
,
(
A1 × P 1,2

)T
, . . . ,

(
A1 × P 1,K

)T] (3.13)

=
[(
A1
)T
, (P 1,2)T × (A1

)T
, . . . , (P 1,K)T × (A1

)T] (3.14)

c is divided in K parts ck whose size is M . We apply (A1)T on every ck and the result is
denoted bk:

bk = (A1)T · ck

We then permute every bk according to matrix PT
1,k = Pk,1 which is also a permutation

matrix and we sum all bk together:

b =
∑
k

P 1,k · bk

As a result, it is possible to compute MLEM-updates with just A1 and the permutation
vectors vk loaded in RAM, which decreases RAM by a factor K since the RAM requirements
of (vk)k∈[[1;K]] is negligible when compared to A1. A lot of memory is saved by performing
calculations in this way. However, this does not improve calculation performance, as cal-
culation time increases linearly with the number of projections. Slight improvements could
be observed because CPU performances depend non linearly on RAM load, especially with
large RAM.

3.2 Acceleration of MLEM convergence

MLEM is known for its low convergence (Chuang 04). Coded-aperture collimators slow
down even more the algorithm since projections are very intricate. Among accelerating algo-
rithms, ordered-subsets expectation-maximisation (OSEM) (Hudson 94) is the most popular
algorithm. We do not encourage to use it because it is not a convex algorithm and some
convergence troubles are expected because of the low number of projections and because the
projections are very intricate due to the use of coded-aperture collimators.

3.2.1 Principle

A new algorithm is proposed to speed up reconstructions. The aim is to e�ciently maximise
the log-likelihood E1 which is de�ned in Eq. 3.15.

E1 =
∑
i

(
−(Aλ)i + yi ln((Aλ)i)

)
(3.15)

The main idea to accelerate reconstructions is to adaptively perform reconstructions, starting
from a coarse representation of projections and adaptively re�ning the observations to �nally
use the �nest representation available. Let's say that projections are (Mx×My) images and
there are 2 projections. The system matrix is then made of (2×Mx×My) rows. By gathering
neighbour pixels, the number of observations and consequently the number of rows of the
system matrix are decreased. Using a smaller matrix decreases the time required to perform
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an iteration of MLEM. When neighbour pixels
(
pik
)
k∈N , which follow Poisson distributions

with parameter mik , are summed together by (2q−1 × 2q−1)-packet into a new pixel pi
′
,

pi
′
follows a Poisson distribution whose mean is

∑22(q−1)

k=1 mik . The new observation vector yq

has 22(q−1) less pixels than the initial observation y. A new log-likelihood function Eq is
de�ned from yq:

Eq =
∑
i

(
−(Aqλ)i + yqi ln((Aqλ)i)

)
(3.16)

where Aq is derived from A by appropriately summing rows. The log-likelihood E1 is
maximised by successively maximising log-likelihoods Eq, q being decreased as the algorithm
converges to a solution. However, updating λ so that Eq(λh+1) is greater than Eq(λh) does
not guaranty that E1(λh+1) is greater than E1(λh). As a result, controls are performed
on E1. When E1(λh) starts decreasing, next updates are performed to maximise the log-
likelihood Eq−1 instead of Eq. A �ner representation is also used if the log-likelihood E1

does not improve better than a factor 1.1 between two controls. This factor was chosen
empirically. This process is repeated until it is not possible to obtain a �ner representation
of the system matrix.

3.2.2 Binning procedure

y1 y2 y3 y4

y5 y6 y7 y8

y9 y10 y11 y12

y13 y14 y15 y16

y2
1 y2

2

y2
3 y2

4

Figure 3.3 � A (4× 4)-image binned into a (2× 2)-image

Binning procedure is not direct because observations are handled in a vector. As a re-
sult, pixels which are neighbours in detectors are not necessarily neighbours in the vector-
representation. Let's have a look to the example shown in Fig. 3.3. y2 is deduced from y
according to: y

2
1
...
y2

4

 = Q ·

 y1
...
y16

 (3.17)

where Q is a binning matrix made of 0 and 1 which indicates whether yi contributes to y2
i′ .

For q = 2, the vector y2 is 22 times smaller than the vector y. System matrix A can also be
multiplied by binning matrix Q, which also results in a matrix which is denoted A2 which is
also 22 times smaller than the matrix A. This can be generalised to higher levels of binning
q, in which case, the new system matrix Aq is 22(q−1) = 4q−1 times smaller than matrix A.
Consequently it also accelerates the computation time per iteration by a factor 4q−1. As
a large number of iterations must be done to unmixed information in projections acquired
with a coded-aperture mask, this accelerates the total reconstruction time.
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3.2.3 Implementation

Let's assume that observations are made of M pixels.

� The algorithm is initialised with a homogeneous vector λ0 which satis�es:

M−1∑
i=0

yi =
M−1∑
i=0

(Aλ0)i , i.e ∀j, λ0
j =

∑
i yi∑

i′,j′ ai′,j′
(3.18)

Whatever the rebinning pattern q is, if λ0 satis�es Eq. (3.18), it also satis�es:

M/4q−1−1∑
i=0

yqi =
M/4q−1−1∑

i=0

(Aqλ0)i (3.19)

� Log-likelihood is calculated with the �nest data representation. From Eq. (3.16)
and (3.18), it leads to:

E1(λ0) = −
∑
i

yi +
∑
i

yi ln

 ∑
i yi∑

i′,j′ ai,j
·
∑
j

ai,j

 (3.20)

� MLEM iterations are performed on λ from the binned observations yq so that iterations
are fast. Log-likelihood (Eq(λh))k∈N increases strictly when the algorithm iterates
according to:

λh+1 =
λh

([1 . . . 1] · (Aq))T
∗ (Aq)T yq

Aqλh
(3.21)

� Every 4q−1 iteration, a control is performed on the complete data representation y
to check if the likelihood E1 keeps on increasing. If so, MLEM iterations continue
with the same observation yq. Otherwise, �ner observation yq−1 is used with a new
system matrix Aq−1 derived from A. Controls are performed every 4q−1 iterations
because matrix Aq is 4q−1 times larger than matrix A. This means that the frequency
of controls is constant over time all along reconstructions.

Fig. 3.4 is an example of the computation times required to reconstruct a spatial dis-
tribution with and without acceleration, the object being made of two cylinders. It shows
that the adaptive binning method signi�cantly accelerates the reconstruction time. This
algorithm is convex and consequently converge to a unique solution. The convexity comes
from the controls which are achieved on the log-likelihood E1. Updates from binned projec-
tions only accelerate reconstructions, the objective function which is optimised is always the
log-likelihood E1, from the beginning of the algorithm.

In the following sections, the objects which are reconstructed are either made of a point-
source or made of 2 cylinders whose axis-to-axis distance is 6 mm and their diameters are
5 mm-large, which is the expected con�guration for the popliteal artery and vein in a knee.
It is assumed in the rest of this thesis that the mean radiotracer concentration in vessels
is 1.1 kBq/ml (30 nCi/ml), which is coherent with the concentrations measured from blood
samples in several investigations at Service Hospitalier Frederic Joliot, Orsay (Gallezot 05).
For a two-hour clinical acquisition, this means that every voxel (1 mm3) standing in a vessel
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Figure 3.4 � Acceleration of the reconstruction

emits 8000 photons. Radioactive decay is not taken into account because it is radiotracer-
dependent. However, considering the radioactive decay would decrease this amount of pho-
tons.

1.11 kBq
1000 mm3

× 2 · 3600 s = 8000 photons/mm3

Next sections investigate whether it is possible to accurately reconstruct spatial distributions
with such a small amount of emitted photons. It is assumed in the following reconstructions
that the tissues are not modelled which means that the photons are emitted in air and do
not have to cross and scatter in 50 mm of tissues. Reconstructions are �rst performed on
projections which are generated analytically, then on Monte-Carlo simulations and �nally
on real projections which are acquired with the γ-imager described in section 2.1.2.1. Re-
dundancies in the system matrix and the acceleration technique are applied to e�ciently
reconstruct objects from projections which are acquired through a coded-aperture.

3.3 Reconstruction of analytical projections

In this section, projections are generated from the system matrix which is used to reconstruct
objects. This presents the advantage that the imaging system is perfectly modelled by the
system matrix. As a result it will provide the limits of the performances which can be
expected by the imaging system.

3.3.1 Generation of noise-free analytical projections and analytical projections

with Poisson �uctuations

Let's compute a system matrix A which models the imaging system de�ned in the previous
chapter. A reference object λref is then generated on a voxel grid by setting activities in
its voxels according to the expected spatial distribution. For instance, only one voxel is
non-null when it is wanted to investigate the characteristics of a reconstructed single point.
Mean expected projections yexp are then generated analytically by multiplying this reference
distribution with matrix A. The mean expected projection is then given by Eq.(3.22):

yexp = A · λref (3.22)

When λref is a point-source and the system matrix A models the imaging system of Fig. 2.6,
the expected projection is the one shown in Fig. 3.5a. It is then possible to generate a
projection y which takes into account Poisson �uctuations by drawing for every pixel pi

of y a sample from a Poisson distribution whose parameter is yexpi . An example is shown
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(a) Expected noise-free projection (b) Expected projection with Poisson noise

Figure 3.5 � Analytical generation of a projection for a point-source (a) without noise, (b)
with Poisson noise. First, the expected projection is computed from Eq. (3.22), then Poisson
noise is taken into account

in Fig. 3.5b. As the relative error of a sample which is drawn from a Poisson distribution
whose mean is m is given by 1/

√
m, the larger yexpi is, the smaller the in�uence of Poisson

noise is.

3.3.2 Reconstruction of a point-source

The �rst step is to observe the reconstructions of a point-source. A single projection is �rst
taken into account as for the con�guration which is presented in Fig. 3.6. Reconstructions
from projections without Poisson noise will be investigated, then, Poisson noise will be taken
into account in the projection. Finally reconstructions are performed from 2 projections.

3.3.2.1 Reconstruction of a point-source from a noise-free projection

y

z

x
scintillator

r0=50 mm

r=150 mm

point-source

collimator

Figure 3.6 � Con�guration for acquiring a single projection

First, a point-source is reconstructed from a single noise-free projection. This allows the
investigation of the systematic error, as no statistical noise impacts the reconstruction. The
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(a) 128×128 initial noise-
free projection

(b) Central slices of the estimated distribution in the zx-, yz- and xy-planes

Figure 3.7 � Reconstruction of a point-source from a single noise-free projection

binning level projection size iterations time (s) log-likelihood

5 8× 8 102400 1098 3337911180
4 16× 16 128832 2187 3337923092
3 32× 32 139024 3874 3337928403
2 64× 64 140356 4837 3337929310
1 128× 128 140360 4842 3337929312

Table 3.1 � Evolution of the reconstruction of the spatial distribution of a point-source from
a noise-free projection

fact that the object is made of a point-source results in a projection shown in Fig. 3.7a.
From this single projection, the distribution of the object is reconstructed and the result
is presented in Fig. 3.7b. The reconstruction is performed with the accelerated MLEM-
algorithm presented in section 3.2. The reconstruction is initialised with a binning level
equals to 5, which means that �rst iterations of the estimation were performed on a 8 ×
8-image which is a rough representation of Fig. 3.7a. Table 3.1 presents the number of
iterations performed for every binning level, as well as the time it takes. The evolution of
the log-likelihood based on the �nest representation of the projection is also presented. This
shows that a very large number of iterations are performed within a short time, when the
projection is coarse (for instance it takes 10 ms to perform one iteration when the binning
level is 5), whereas it takes about 1 s to perform an iteration with the whole projection.
The reconstruction is stopped when the likelihood does not improve better than a factor 1.1
between two successive iterations. Calculations are performed on a 2.4GHz 64-bit processor
whose RAM is 16 GBytes. As the projection is made of 128× 128 pixels and the objects is
made of 21 × 21 × 21 voxels, this results in a system matrix of 1.15 GBytes, probabilities
being stored with double-precision (8 bytes). It was tried to use system matrices with
single-precision (4 bytes), but numerical instabilities appeared and the likelihood computed
with Shepp and Vardi algorithm decreased after a certain number of iterations, which is
theoretically impossible.

The characteristics of the reconstructed point-source are estimated by �tting Gaussian
functions on principal directions as shown in Fig. 3.8, where reconstructed curves correspond
to the main directions of Fig. 3.7. Fittings are performed through least-square minimisation.
From the estimated standard deviations σx, σy and σz of the Gaussian functions, the full
width at half maxima (FWHM) of the reconstructed point are calculated and are respectively
0.37 mm, 0.33 mm and 1.22 mm in the x-, y- and z-directions. The standard deviation and
the FWHM are related for a Gaussian function through:

FWHM = 2σ
√

2 ln(2) (3.23)

The FWHM are excellent when compared to the size of the voxels (1 × 1 × 1 mm3), as
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Figure 3.8 � Example of the �tting of Gaussian functions on a reconstructed 3D point

it is �rst observed qualitatively in Fig. 3.9b. It is important to notice that the FWHM
is worse in the z-direction which is the main axis of the imaging system. Furthermore,
the estimated activity in the most active voxel is 0.76 × 1012 photons, whereas the input
activity is 1.0×1012 photons, which means that the error on the activity estimation is biased
(24%). When the activity in the region of interest (ROI) around the peak is computed (3σ
of the Gaussian �ts), all the activity is retrieved. As a result, it appears that a point-source
distribution can be accurately estimated from a noise-free projection. The error between the
initial spatial distribution and the reconstructed distribution is 3.0 × 10−3. It is calculated
according to:

error =

√
1
N

∑
i,j,k

(
λ(i, j, k)− λref (i, j, k)

)2

max
i,j,k

(
λref (i, j, k)

) (3.24)

with λref being the spatial distribution of the reference object (the point-source), λ being
the reconstructed distribution and N being the number of voxels in the object.

The proposed imaging system is well-adapted to reconstruct a point-source from a single
noise-free projection when the reconstruction algorithm is a MLEM.

3.3.2.2 Impact of Poisson �uctuations on reconstructions of point-sources from a single

projection

In practice, the projections are Poisson-distributed and it cannot be considered that the pro-
jection is noise-free. This section investigates the impact of Poisson �uctuations on recon-
structions. Fig. 3.9a presents an example of a projection which takes into account Poisson
�uctuations. The object is a point-source which emits 1012 photons. The value in every
pixel of the projection is obtained by randomly drawing a sample from a Poisson distribu-
tion whose mean is the value of the same pixel in Fig. 3.7a. The spatial distribution of the
point-source is estimated from this projection and the reconstructed distribution is shown
in Fig. 3.9b. This �gure represents the three slices (transverse, sagittal and coronal planes)
containing the voxel with the highest activity. It can be noticed that Poisson �uctuations
impact the amplitude of the reconstructed peak as well as its FWHM. When the activity of
the point-source is smaller than 1012 photons, for instance when it emits 106 photons, less
photons are detected in the projection, as shown in Fig. 3.9c. The amplitude of the recon-
structed point under-estimates the real activity of the point-source and the reconstructed
spatial distribution spreads on several voxels, as illustrated by Fig. 3.9d.

The ratio between the reconstructed amplitudes and the initial amplitudes is quantita-
tively investigated by reconstructing multiple noisy datasets: for 7 di�erent activities of the
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(a) Initial projection.
343 × 106 photons are
detected

(b) Central slices of the estimated distribution obtained from Fig. 3.9a, in
the zx-, yz- and xy-planes. The point-source emits 1012 photons.

(c) Initial projection.
321 photons are detected

(d) Central slices of the estimated distribution obtained from Fig. 3.9c, in
the zx-, yz- and xy-planes. The point-source emits 106 photons.

Figure 3.9 � Reconstruction of a point-source from a single projection, with Poisson �uctu-
ations

point-source (from 106 to 1012 photons), 5 projections are constructed each time in order
to obtain the mean and the standard deviation of the ratio for every activity. Fig. 3.10a
shows that the maximum reconstructed amplitudes are biased. The maximal reconstructed
activities are between 2 and 5 times smaller than the real simulated activities. This is due
to the fact that the activity is distributed to several voxels because of the non-perfect spatial
resolution of the imaging system. This is commonly called the partial volume e�ect. This
bias is more severe for low activities of the point-source. However, by summing the activities
of voxels in the region-of-interest (ROI) around the voxel with the highest intensity, the total
estimated activity is close to the simulated activities (the ratios of the initial activities and
the activities in the ROI are close to 1). The ROI is de�ned by taking 2σ (95%) of the spatial
distribution of the 3D reconstructed point. There are two abscissa on this �gure and on the
following ones: the top abscissa indicates the number of detected photons in the projection,
whereas the bottom abscissa indicates the number of photons emitted from the source.
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Figure 3.10 � Accuracy of the reconstructed spatial distributions
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Figure 3.11 � Impact of the activity of the point-source on the FWHM of reconstructed
points

In Fig. 3.10b, the error between the reference spatial distribution and the reconstructed
distributions is shown. The error decreases when the activity in the point-source increases,
which is expected since high activities correspond to small Poisson �uctuations. It converges
to 5.0× 10−3, whereas the error for the noise-free reconstruction was 3.0× 10−3. This result
is consequently worse but comparable to the noise-free reconstruction. Errors are calculated
according to Eq. (3.24).

Contrary to Fig. 3.7b, the reconstructed point has tails around its peak. Every recon-
structed spatial distribution is �tted with Gaussian functions on the 3 main directions as in
Fig. 3.8. From the standard deviations σ of the Gaussian functions which are estimated for
all these 5 × 7 reconstructions, the FWHM are derived according to Eq. (3.23) and repre-
sented in Fig. 3.11. It illustrates that the FWHM in the z-direction, which is the normal
direction to the detector surface, is worse than in the two other directions. The FWHM
remain almost constant (0.4 mm) in the x- and y-directions, whereas it decreases down to
1.6 mm in the z-direction when the activity increases. The di�erence with reconstructions
from a noise-free projection are small, the di�erence being respectively 8%, 21% and 31%.

The reconstruction of point-sources estimates accurately the activity of the initial point-
source as long as it is measured from a ROI around reconstructed points. The FWHM in
the z-direction is deteriorated when a small amount of photons are detected (< 106 detected
photons) and is always larger than in x and y-directions.

3.3.2.3 Reconstruction of a point-source from 2 projections

We suggest to add a second projection in order to improve the spatial resolution in the z-
direction. The con�guration of the imaging system becomes the one presented in Fig. 3.12.
The second acquisition system is obtained by rotating the �rst one by 90° around the y-
direction. Acquisitions with a point-source in the �eld of view are reconstructed for 7 activi-
ties, ranging from 106 to 1012 emitted photons. Independent noisy datasets are reconstructed
for each of the 7 activities in order to evaluate statistics of estimated parameters. Fig. 3.13b
shows the spatial distribution reconstructed from Fig. 3.13a. It illustrates qualitatively the
fact that reconstructions of 2 coded projections with the MLEM-algorithm result in an ac-
curate estimation of a point-source although the amount of detected photons is very low
(<1000 photons).

Reconstructed distributions estimate correctly initial distributions as it is shown in
Fig. 3.14a and 3.14b. Contrary to the case where a single projection is taken into ac-
count, the maximum amplitude of reconstructed distributions is well estimated, excepted
when the point-source does not emit enough photons (<109 emitted photons) but the total
activity on the ROI around reconstructed points is always the expected activity since the
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Figure 3.12 � Con�guration for acquiring two orthogonal projections

(a) Two orthogonal projections (b) Central slices in the transverse, coronal and sagittal planes

Figure 3.13 � Reconstruction of a point-source from 2 projections with strong Poisson �uctua-
tions due to low amount of signal in the point-source (106 emitted photons). 470 and 484 pho-
tons are respectively detected in projections of Fig. 3.13a.

ratio is always 1. The error goes rapidly to zero as the simulated activity in the point-source
increases as shown in Fig. 3.14b.
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Figure 3.14 � Accuracy of the reconstructed spatial distributions

FWHM of reconstructed distributions are estimated in x-, y- and z-directions. This
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results in the Fig. 3.15, where it is shown that the FWHM of the 3D reconstructed points
decreases as the activity increases. When compared to Fig. 3.11 where reconstructions
are performed from a single projection, it is important to underline that the estimation of
the FWHM in the z-direction is much better (from 3.5 mm to 0.9 mm for a point-source
emitting 106 photons). Moreover, the FWHM in the y-direction is better than in the two
other directions. This can be explained by the fact that the y-direction is a transverse
direction for both projections, while other directions are the axial direction of at least one
of the projections.
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Figure 3.15 � The FWHM of reconstructed points depend on the activity of the point-source

Adding a second projection, orthogonal to the �rst one, results in a better reconstructions
of point-sources, especially for low-activity point-sources. The quanti�cation of the activity
of the point-source is excellent, the spread of the reconstructed point is smaller than a voxel
in all three directions.

3.3.3 Reconstruction of 2 cylinders

(a) 3D representation
with an isosurface

(b) Mean view of the
distribution in the (yz)-
plane

(c) Mean view of the
distribution in the (zx)-
plane

(d) Mean view of the
distribution in the (xy)-
plane

Figure 3.16 � Reference activity distribution

It is then investigated whether 2 cylinders could be reconstructed. The goal is to quantify
the concentration of radiotracers in cylinders, since the two cylinders model an artery and
a vein. First the spatial distribution λref of two cylinders is generated on a voxel grid as
shown in Fig. 3.16 which represents the mean view on (xy), (xz) and (yz) planes, as well as
a 3D representation of the two vessels. If the whole voxel stands inside the cylinder, all the
activity is taken into account but if the voxel stands on the border of the cylinder, its activity
is weighted by the intersecting volume of the voxel with the cylinder. The object which is
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generated is made of two cylinders whose diameter is 5 mm and their length is 21 mm. The
axis-to-axis distance is 6 mm, which means that only 1 mm separates the surface of these two
cylinders. According to results obtained from reconstructions of point-sources, it should be
possible to separate them. In the example of Fig.3.16, every voxel which is inside a cylinder
emits 1011 photons.

3.3.3.1 Reconstruction of 2 cylinders from a single noise-free projection

artery

vein

collimator

scintillator

r0=50 mm

r=150 mm

knee

z

x
y

Figure 3.17 � Con�guration for acquiring a single projection

(a) Noise-free projection (b) Mean view in the
(yz)-plane

(c) Mean view in the
(zx)-plane

(d) Mean view in the
(xy)-plane

Figure 3.18 � Reconstruction of 2 cylinders from a single noise-free projection

A projection is generated from this spatial distribution by multiplying the reference
distribution λref with the system matrix A of the imaging system, as for generating the
projection corresponding to a point-source in the previous section. The noise-free projection
which is generated from this object is presented in Fig. 3.18a and it allows the reconstruc-
tion which is presented in Fig. 3.18b, 3.18c and 3.18d. Table 3.2 presents the number of
iterations, the computation time and the log-likelihood at every binning level of the recon-
struction. These three images are obtained by computing the mean of all the slices of the
reconstructed distribution in directions x, y and z. As a result, estimated activities in voxels
should be invariant along the axis of the cylinders, which is not the case: the reconstruc-
tion su�ers from a poor homogeneity of the reconstruction inside cylinders, especially in the
(yz)-plane. This raises a question about the quanti�cation ability of the imaging system.
Fig. 3.19 is a histogram of the concentration in the voxels which stand inside the cylinders.
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binning level projection size iterations time (s) log-likelihood

8 8× 8 339200 3538 3327563117259
4 16× 16 403072 6321 3327696329579
3 32× 32 431744 10177 3327710233799
2 64× 64 437556 14025 3327711270260
1 128× 128 437557 14028 3327711270413

Table 3.2 � Evolution of the reconstruction of 2 cylinders from a single noise-free projection

Figure 3.19 � Distribution of the activity in the cylinders

It would be expected that a large amount of voxels has an activity concentration which is
1011 photons/voxel rather than such a distribution where only a short number of voxels
reaches this concentration. Nevertheless, there is as much activities in the reconstructed
cylinders than in the initial distribution since 30.0 × 1012 photons are emitted per cylinder
in the initial distribution in Fig. 3.16 and it is estimated that the two cylinders in Fig. 3.18
emit respectively 30.0× 1012 and 31.1× 1012 photons. The error between the reconstructed
and the expected spatial distribution is 0.135, as derived from Eq. (3.24).

The cylindrical structures are observable and well separated in Fig. 3.18. The cylinders
in Fig. 3.18c have an ellipsoidal shape, which underlines a poor spatial resolution in the
z-direction. FWHM are estimated from this �gure. Its mean activity in the two main
directions (horizontal and vertical) are represented in Fig. 3.20 and they are �tted with
Gaussian functions in order to retrieve the standard deviations of these two curves and
consequently their FWHM. For instance, the FWHM in the transverse and in the axial
direction are respectively 3.0 and 6.8 mm in Fig. 3.20. The transverse FWHM is the mean of
the FWHM of the two peaks on the left �gure. This should be compared to 3.1 and 3.1 mm
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Figure 3.20 � Estimation of the FWHM in the transverse and axial directions from Fig. 3.18c
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for FWHM in x and z-directions in Fig. 3.16c, the di�erences being respectively 3% and
120%. This means that the spatial distribution of the two cylinders are well estimated in the
transverse direction, but su�ers from a poor spatial resolution in the axial direction. These
FWHM should not be confused with the resolution of the imaging system, these FWHM are
the pro�les of cylinders.

As the projection is noise-free, these results on the quanti�cation ability of the imaging
system, on the reconstruction error and on the FWHM present systematic errors which are
the limits of this imaging system when associated with a statistical reconstruction algorithm
as MLEM.

3.3.3.2 Impact of Poisson �uctuations on reconstructions of 2 cylinders

(a) Initial projection.
2.1 × 106 photons are
detected

(b) Mean view of the dis-
tribution in the yz-plane

(c) Mean view of the dis-
tribution in the zx-plane

(d) Mean view of the dis-
tribution in the xy-plane

Figure 3.21 � 3D spatial distribution obtained from a unique projection. Distributions in
Fig. 3.21b, 3.21c and 3.21d are the mean of all slices in the (yz), (zx) and (xy)-planes. The
concentration in cylinders is 107 photons/voxel.

An object made of two cylinders is simulated in the �eld of view of the imaging system.
Its spatial distribution is similar to Fig. 3.16. The projection in Fig. 3.21a is reconstructed
with the accelerated MLEM of section 3.2. It leads to the 3D spatial distribution presented
in Fig. 3.21b, 3.21c and 3.21d. Qualitatively it is observed that the transversal resolution is
correct, but the resolution in the direction normal to the surface of the collimator is far above
the millimetre. This is quanti�ed by reconstructing spatial distributions for concentrations
ranging from 104 to 107 photons/voxel. For every concentration, 5 independent projections
are generated in order to obtain the mean and the standard deviation of every investigated
parameters. The in�uence of the concentration in cylinders on the reconstruction errors,
which are calculated according to Eq. (3.24), is presented in Fig. 3.22a. As expected, the
error decreases for large concentrations, down to 0.18, the error from noise-free projection
being 0.135. When the concentration is set to 104 photons/voxel, the amount of detected
photons is not su�cient to accurately reconstruct the spatial distribution. This can be
observed in Fig. 3.22a, 3.23a and 3.23b, where the error bars are large for the left-hand point.
Reconstructions with this concentration are not presented in Fig. 3.22b since it is not possible
to �t Gaussian functions in Fig. 3.21c to estimate the FWHM of reconstructed distributions.
When the concentration increases, the FWHM is almost constant in the transverse direction
(2.5 mm) whereas it decreases in the axial direction (from 30 to 13 mm). The error bars of
the left-hand point of the axial FWHM is large (6 mm), which indicates this result is not
reproducible.

Quanti�cation of the concentration in cylinders is then performed. Fig. 3.23a shows the
ratio of the maximum reconstructed concentration in the two cylinders over the concentration
in the reference object. It is observed that this ratio is far above 1 for low concentration. This
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Figure 3.22 � Characteristics of the reconstructed cylinders
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Figure 3.23 � Characteristics of the reconstructed cylinders

can be explained by important inhomogeneities for low concentration which results in over-
estimations of some voxels in cylinders, as shown for instance in Fig. 3.21d. It converges to
0.85 for high concentrations, which is an under-estimation of the real concentration. It can be
explained by the spatial resolution of the imaging system which is not perfect, which results
in a spread of the cylinders with a diminution of the amplitude of the concentration. Instead
of quantifying the concentration from the maximum reconstructed concentration, it can be
derived from the mean concentration in a ROI de�ned on every cylinder. Fig. 3.23b shows
that the concentration of cylinders is better estimated from the ROI-based ratio than from the
maximum concentration. Indeed it is less sensitive to variation of concentration in cylinders
and the estimations are more reproducible since error bars are in general smaller. The ratio
when the concentration in cylinders is 107 photons/voxel is 0.82, which is 3% worse than for
Fig. 3.23a, but it can be easily calibrated since it does not depend on the concentration for
concentration higher than 105 photons/voxel.

Reconstructions su�er from a poor resolution in the axial direction, especially for low
concentrations. The quanti�cation performances are also a�ected by low concentrations. As
a result, it is suggested to consider a second projection. It should be orthogonal to the �rst
one so that the two projections are complementary.
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3.3.3.3 Reconstructions of 2 cylinders from 2 analytical projections

y

z

x

Figure 3.24 � Con�guration for acquiring two orthogonal projections.

(a) Noise-free projections (b) Mean views of the reconstructed distribution

Figure 3.25 � Reconstruction of 2 cylinders from 2 noise-free projections

The second set of detector and coded-aperture collimator could not have stood in the
axis of the vessels because this can not be achieved in practice, the leg continuing in the
same direction as the vessels. The axis of the leg is denoted ey and consequently the second
acquisition system is obtained by rotating the �rst one by 90° around the y-direction. The
distribution of the two cylinders are reconstructed from two noise-free projections, shown in
Fig. 3.25a. The diameter of the cylinders is 5 mm and the axis-to-axis distance is still 6 mm.
The mean views are presented in Fig. 3.25b. This distribution is very similar to the expected
distribution of Fig. 3.16. The error between these two distributions is 4.4 × 10−2. It is the
limit error which can be expected from the reconstruction of 2 cylinders from 2 projections.
Results which are presented in next sections can not have errors below this limit, because
reconstructions from analytical projections do not su�er from modelling issues of the imaging
system by the system matrix, projections being generated with the same matrix as the
one used to reconstruct spatial distributions. The maximum reconstructed concentration
in the two cylinders are respectively 12.6 × 109 and 12.7 × 109 photons/voxel, which are
overestimations of the initial distribution of the two cylinders since their concentration is
in reality 1010 photons/voxel for this example. The total activity on a ROI de�ned on
95% (2σ) of the distribution for the two cylinders are respectively 3.03 × 1012 and 3.09 ×
1012 photons. As it is expected from the initial object of Fig. 3.16 that each cylinders emits
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(a) Two orthogonal analytic projections (b) Mean views of the reconstructed distribution

Figure 3.26 � Reconstructed distribution of 2 cylinders from 2 analytical projections. The
number of detected photons are respectively 21308 and 21223 photons.

3.06× 1012 photons, these results show that the concentration in cylinders can be quanti�ed
accurately. The FWHM in the x and z-directions are respectively 3.09 and 3.07 mm and it
was expected that it was 3.12 mm (<2%) and 3.07 mm (<4�), which con�rms the good
performances of reconstructions from two noise-free projections. Poisson noise is then added
to projections and an example is shown in Fig. 3.26a for the concentration in cylinders being
105 photons/voxel. The result of the reconstruction from these two projections is shown in
Fig. 3.26b.

As it is expected to estimate the concentration in vessels, the quanti�cation ability of
the imaging system is investigated for 4 activities (from 104 to 107 photons/voxel). First, it
is observed in Fig. 3.27a that the maximum reconstructed concentration in cylinders is not
an appropriate estimator since it largely overestimates the reference concentration, the best
ratio being 1.9. This is due to inhomogeneities in the reconstructed volumes, as it can be
observed in Fig. 3.26b. A better estimator can be derived from the total activity which is
reconstructed in every cylinder. Fig. 3.27b shows the ratio of the reconstructed total activity
in each cylinder over the total activity in each cylinder of the reference object in Fig. 3.16.
The reconstructed total activities for cylinders 1 and 2 are derived from a 3σ-ROI around
each cylinders. Ratios are almost constant (ratio=0.8±0.2) excepted for the �rst point which
corresponds to a concentration in cylinders which is 104 photons/voxel. The reconstruction
error is plotted in Fig. 3.28a. It decreases when the concentration increases, without converg-
ing to a limit. For a concentration of 107 photons/voxel in cylinders, the error is 7.7×10−2,
which should be compared to 4.4×10−2 when reconstructions are performed from 2 noise-free
projections. The quanti�cation of the concentration in cylinders is reliable from concentra-
tion being larger than 105 photons/voxel. It was expected that the quanti�cation should be
extracted from reconstructions where the concentration is 8000 photons/mm3, which means
that concentrations in vessels can not be quanti�ed with this imaging system, unless the
activity which is injected to patients is 12 times higher, which is not feasible because of
radioprotection considerations.

Fig. 3.28b shows the FWHM in the x and z-directions. When compared to Fig. 3.22b
where only one projection was used to reconstruct the two cylinders, the spatial resolution
in the z-direction is improved. For instance, when the concentration in cylinders is 107 pho-
tons/voxel, the FWHM in the z-direction decreases from 13 to 2.8 mm. The FWHM in the
x-direction is 2.8 mm, which is larger than the reconstruction from a single projection, but
closer to reality as the expected FWHM in the x and z-directions is 3.1 mm (see section
3.3.3.1). This shows that it is possible to estimate the spatial distribution of the two vessels
from a very limited amount of detected photons if two orthogonal projections are acquired.
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Figure 3.27 � Quanti�cation ability of the imaging system for 2 cylinders in the �eld of view
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Figure 3.28 � Accuracy of reconstructions

Using analytically-generated projections allows the investigation of the impact of the
concentration of the vessels on the quality of the reconstructed spatial distribution, as no
modelling problem exists since the observations are generated from the system matrix used
to reconstruct the spatial distributions. It was demonstrated that it is possible to recon-
struct accurately spatial distributions from noise-free projections. The impact of Poisson
�uctuations a�ects strongly the spatial resolution in the z-direction, but this can be com-
pensated by using a second projection, orthogonal to the �rst one. Such a con�guration
with two projections allows the accurate reconstruction of point-sources and objects made
of 2 cylinders. These results are the limit performances, since the projections are generated
from the system matrix used to reconstruct objects, there is consequently no discrepancy
between the projections and the system matrix.

3.4 Reconstructions of Monte-Carlo simulated projections

Results which are presented in this section are obtained from the simulations of two or-
thogonal projections with the particle transport code GATE (Jan 04). The objective is to
demonstrate that spatial ditributions can be accurately reconstructed although the system
matrix does not model exactly the imaging system. Every projection is simulated indepen-
dently according to Fig. 3.29, which models the con�guration with two projections already
shown in Fig. 3.24. For all Monte-Carlo simulations presented below, the energy resolution
is set to 5.8% at 511 keV and the energy threshold is set to 470 keV which corresponds to
99% (3σ) of the photoelectric peak.
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Figure 3.29 � Acquisition of two orthogonal projections

3.4.1 Reconstruction of a point-source from 2 Monte-Carlo projections

The characteristics of reconstructed points are evaluated from reconstructions of point-
sources. First, Compton scattering is switched o� in Monte-Carlo simulations, in order to
validate results which were previously obtained with analytical projections. Then Compton
scattering is added to simulations and �nally characteristics of reconstructions are performed
for 4 di�erent intrinsic spatial resolutions of the detector (from 0 mm to 3 mm).

3.4.1.1 Coherence with analytical projections

(a) Monte-Carlo projections (b) Middle slices

Figure 3.30 � Example of projections and the corresponding reconstructed point. The point-
source emits 109 photons. The number of detected photons are respectively 456213 and
460665 in Fig. 3.30a.

(a) Monte-Carlo projections (b) Middle slices

Figure 3.31 � Example of projections and the corresponding reconstructed point. The point-
source emits 106 photons. The number of detected photons are respectively 425 and 452 in
Fig. 3.31a.

First, no Compton scattering is taken into account into Monte-Carlo simulations. Pro-
jections are simulated for activities of the point-source varying from 106 to 109 photons. The
intrinsic spatial resolution of the detector is for the moment set to 0 mm. Two examples
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Figure 3.32 � The FWHM of reconstructed points depend on the activity of the point-source

are shown in Fig. 3.30a and 3.31a corresponding to these limit activities. The result of the
reconstructions associated with these projections are respectively presented in Fig. 3.30b
and 3.31b. Qualitatively, it is observed that the reconstructed point is very sharp for activ-
ity being 109 photons in the point-source, but tails appear for smaller activities, indicating
a degradation of the spatial resolution of the imaging system. It also induces a stronger
bias on the maximum reconstructed activity. This is investigated in more details in the next
paragraph.

The FWHM of the 3D reconstructed points are larger than for analytical projections
as shown in Fig. 3.32, but does not exceed 1.3 mm even for low activity point-sources.
The FWHM in the y-direction is slightly better than in the two other directions which
can be explained by the fact that the y-direction is always a transverse direction to the
simulated orthogonal projections. All FWHM converge to 1 mm for point-sources with high
activity whereas it was 0.74, 0.66 and 0.76 mm for analytical projections (see section 3.3.2.3).
Although it corresponds to a degradation of the spatial resolution of the imaging system,
these FWHM are comparable and close to 1 mm which is the size of voxels and the spatial
resolution which is expected to obtain.

As it can be observed in Fig. 3.33a, the reconstructed amplitude of peaks is biased, since
the ratio between the maximum reconstructed activity and the real activity in the point-
source should be 1. Biases decrease as the number of photons in the simulations increases,
but is at best 0.48. As for reconstructions from analytical projections, this can be explained
by the spatial spread of the reconstructed point-source. By de�ning a ROI around the peak
(2σ), and summing all activities of voxels which stand in this ROI, a better estimation of
the activity of the point-source is obtained, the ratio reaching 0.67 at best, instead of 1.
This may be explained by the fact that the energy resolution was set to 5.8% at 511 keV
and the energy cut-o� was set to 470 keV. The main di�erence between the ratio based
on the maximum reconstructed activity and the ratio based on a ROI is that the latter is
almost constant (ratio=0.65±0.04) for a large range of activities of the point-source. It was
investigated why this ratio is not equal to 1, but no explanation has been found that would
explain this discrepancy. If knowing this ratio, reconstructions can be easily calibrated: a
correction factor of 1.5 might be applied in order to retrieve the amplitude of the point-source
from the total reconstructed activities in the ROI around the reconstructed point. In this
case, reconstructions might become quantitative, althougth the estimation of the correction
factor would not be trivial.

Fig. 3.33b shows the reconstruction errors as a function of the activity of the point-source.
Although the error decreases as the activity increases, the error is far larger for reconstruc-
tions which are based on Monte-Carlo simulations than for reconstructions based on ana-
lytical projections shown in Fig. 3.28a. For instance, when the activity of the point-source
is 109 photons, the error is 3.9 × 10−4 for reconstructions from two analytical projections
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Figure 3.33 � Accuracy of the reconstructed spatial distributions

whereas it is 5.3× 10−3 from Monte-Carlo simulations.

Although performances are not as good as for reconstructions based on analytical pro-
jections, the results presented here are still correct. FWHM are 20% worse and a correction
factor F = 1.5 might be used to quantify the activity of point-sources. Nevertheless results
are reproducible even for point-sources with low activity.

3.4.1.2 Impact of Compton scattering

(a) Monte-Carlo projections (b) Middle slices

Figure 3.34 � Example of projections and the corresponding reconstructed point for the
spatial resolution being SR=3 mm. The point-source emits 109 photons. The number of
detected photons are respectively 563600 and 556785 in Fig. 3.34a

(a) Monte-Carlo projections (b) Middle slices

Figure 3.35 � Example of projections and the corresponding reconstructed point for the
spatial resolution being SR=3 mm. The point-source emits 106 photons. The number of
detected photons are respectively 592 and 577 in Fig. 3.35a

In reality, it is not possible to discriminate all photons which undergo Compton scattering.
Compton scattering is consequently added to Monte-Carlo simulations in order to investigate
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Figure 3.36 � Accuracy of the reconstructed spatial distributions

its impact on reconstructions. Two examples are shown in Fig. 3.34 and 3.35 for high and
low-activity point-sources (109 and 106 emitted photons). For both activities, reconstructions
appear to be correct. The error, the FWHM and the amplitude of the reconstructed point
are systematically investigated for every reconstruction. Reconstructions are performed for
4 activities (from 106 to 109 emitted photons). For every activity, 5 independent pairs of
projections are generated through Monte-Carlo simulations, in order to estimate the mean
and the standard deviation of every parameter of interest.

Neither the maximum reconstructed activity nor the total activity in a ROI de�ned
around the reconstructed points succeed in quantifying the amplitude of the point-source,
as shown in Fig. 3.36a which represents theses quantities over the expected activities. Con-
trary to previous reconstructions, it seems that the maximum reconstructed activities better
estimate the expected concentration than the total activity on a ROI de�ned around the
point-source. In both cases, reconstructions should be calibrated, which seems easily feasi-
ble as the ratios are almost constant (0.8 for the ratio corresponding to maximum activities
and 1.4 for the ratio calculated from the ROI). Up to now, ratios were always smaller than 1
for reconstructions of point-sources. The correction factors would be respectively 1.25 and 0.7
to correct the two ratios of Fig. 3.36a. This di�erence can be explained by approximations
made for computing the system matrix. It was indeed assumed that system matrices would
only be modelled by photons which would deposit all their energy at once in the detector,
which means in practice that the linear attenuation coe�cient for the collimator and the
detector are the photoelectric attenuation coe�cients µPEW and µPECsI (see section 2.2.3.1). In
reality, some photons deposit all their energy in the scintillator through several interactions
and it is not possible to discriminate them. As a consequence, too many photons are de-
tected, which results in an overestimation of the total activity in the peak. Fig. 3.36b shows
the reconstruction errors. Reconstructions are very reproducible since the error bars are
small when compared to the mean errors. Furthermore, mean errors decrease as the activity
of the point-source increases. Adding Compton scattering results in smaller reconstruction
errors than for without it. This can be explained by the fact that correction factors are not
included in the calculation of errors. As the maximum reconstructed activities are closer to
the real activity when Compton scattering is modelled, this results in smaller errors.

Finally, the FWHM are represented in Fig. 3.37. It ranges from 0.88 to 1.17 mm. For the
activity of the point-source being 109 photons, the FWHM in the x, y and z-directions are
respectively 1.05, 1.00 and 1.06 mm, whereas it was about 1 mm for projections generated
without Compton scattering. This means that Compton scattering does not a�ect a lot the
spatial resolution of the imaging system.
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Figure 3.37 � The FWHM of reconstructed points depend on the activity of the point-source

Adding Compton scattering does not a�ect signi�cantly reconstructions. The correction
factor might be modi�ed from F = 1.5 to F = 0.7 but it is still possible to quantify the
activity of point-sources. The FWHM are not impacted by Compton scattering.

3.4.1.3 Impact of the intrinsic spatial resolution of detectors

Up to this point, it is assumed that the intrinsic spatial resolution (SR) of the detector
is perfect, although this resolution is 2 mm at 140 keV (Russo-Marie 07). The intrinsic
spatial resolution is the standard deviation of the spot which is measured when a beam of
photons is impinging the detector with a normal incidence. It is expected that the intrinsic
spatial resolution of the detector impacts the spatial resolution of the imaging system. With
Monte-Carlo simulations, it is possible to generate projections with a de�ned intrinsic spatial
resolution. As a result, projections are generated with the detector spatial resolution varying
from 0 mm to 3 mm.

Fig. 3.38a and 3.39a show 4 projections where the spatial resolution of the detector is
set to 3 mm in the Monte-Carlo simulations. Fig. 3.38b and 3.39b are the results of the
reconstructions based on these two sets of projections. It is observed that reconstructed
point-sources have tails, which were almost invisible in previous examples. Fig. 3.40a shows
the impact of SR on the error of the reconstructed distributions, according to Eq. (3.24). It is
observed that the error increases as SR decreases, but the order of magnitude is kept similar
(from 2.2× 10−3 for SR=0 mm to 8.4× 10−3 for SR=3 mm, the activity of the point-source
being 109 photons). The mean error does not decrease when the activity increases, which
means that these errors are systematic errors and does not depend on the activity of the
point-source. Reproducibility of reconstructions is better for high-activity point-sources as
indicated by the small error bars.

Fig. 3.40b shows the in�uence of SR on FWHM of the reconstructed point-sources. For

(a) Monte-Carlo projections (b) Middle slices

Figure 3.38 � Example of projections and the corresponding reconstructed point-source for
the spatial resolution being SR=3 mm. The point-source emits 109 photons. The number
of detected photons are respectively 571388 and 577765
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(a) Monte-Carlo projections (b) Middle slices

Figure 3.39 � Example of projections and the corresponding reconstructed point-source for
the spatial resolution being SR=3 mm. The point-source emits 106 photons. The number
of detected photons are respectively 539 and 572

every reconstruction, the FWHM is computed by taking the mean of the FWHM in the three
direction x, y and z. The FWHM is 1 mm when the detector spatial resolution is 0 mm,
but it increases to 1.15, 1.30 and 1.60 mm for detector spatial resolution being respectively
1 mm, 2 mm and 3 mm.

Finally, the impact of the detector spatial resolution on the quanti�cation of the point-
source is investigated. Fig. 3.41a shows that the maximum reconstructed activities is very
dependent on the detector spatial resolution whereas the total activity on a ROI de�ned
on the reconstructed point-source is far less sensitive, as shown in Fig. 3.41b. Although
these two curves are biased since they should be equal to 1, it might be possible to apply
a correction factor to the ROI-ratio, which is almost constant (1.4±0.03). This factor does
not depend on the detector spatial resolution. The correction factor would be 1/1.4=0.7, as
in section 3.4.1.1.
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Figure 3.40 � Impact of the intrinsic spatial resolution of the detector

The reconstructions of point-sources from 2 Monte-Carlo projections result in small er-
rors. The main di�erence with reconstructions based on analytically-generated projections is
the bias between the maximum reconstructed activities and the simulated activities. This is
explained by the fact that the system matrix does not model Compton scattering, which re-
sults in a larger number of detected photons in Monte-Carlo projections than in analytically-
generated projections. However, this di�erence can be corrected since the bias is very similar
for all activities of the point-source. Moreover, the impact of the detector spatial resolution
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Figure 3.41 � Impact of the intrinsic spatial resolution on quanti�cation

on the reconstructions was investigated. Large spatial resolutions of the detector induce a
broadening of the reconstructed point-source and smaller maximum reconstructed activities.
However the total activity in the reconstructed point-source does not depend on the detector
spatial resolution, consequently it might possible to quantify the activity of the point-source
from this estimator by applying a correction factor F which depend neither on the resolution
of the detector nor the activity of the simulated point-sources.

3.4.2 Reconstruction of 2 cylinders from 2 Monte-Carlo projections

(a) 2 Monte-Carlo projections (b) Mean yz-plane (c) Mean zx-plane (d) Mean xy-plane

Figure 3.42 � Reconstructed distribution for concentration being 104 photons/voxel in Monte-
Carlo simulations, the number of detected photons in projections being respectively 4070
and 3901 (Fig. 3.42a). The detector spatial resolution is 0 mm.

(a) 2 Monte-Carlo projections (b) Mean yz-plane (c) Mean zx-plane (d) Mean xy-plane

Figure 3.43 � Reconstructed distribution for concentration being 106 photons/voxel in Monte-
Carlo simulations, the number of detected photons in projections being respectively 393979
and 409403. The detector spatial resolution is 0 mm.

The performance of the imaging system is then investigated with Monte-Carlo simula-
tions of 2 cylinders emitting 511-keV photons. The axis-to-axis distance is 6 mm. Results
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(a) 2 Monte-Carlo projections (b) Mean yz-plane (c) Mean zx-plane (d) Mean xy-plane

Figure 3.44 � Reconstructed distribution for concentration being 106 photons/voxel in Monte-
Carlo simulations, the number of detected photons in projections being respectively 393314
and 408781. The detector spatial resolution is 3 mm.
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Figure 3.45 � Impact of the concentration in cylinders on reconstruction errors, with the
intrinsic spatial resolution (SR) of the detector varying from 0 mm to 3 mm

are presented for 3 concentrations in cylinders (from 104 to 106 photons/voxel) and for 4
intrinsic spatial resolutions of the detectors (from 0 to 3 mm). Every projection is simulated
5 times in order to obtain the mean and the standard deviation of every parameter of interest
of the correpsonding reconstructed point-sources (FWHM, error, estimated concentrations).
Fig. 3.42a shows an example of projections obtained from Monte-Carlo simulations, where
the concentration in cylinders is 104 photons/voxel. The number of detected photons in
projections are respectively 4070 and 3901. For this example, the intrinsic spatial resolu-
tion of the detector is supposed to be perfect (SR=0 mm). The reconstruction from these
projections leads to Fig. 3.42b, 3.42c and 3.42d. The reconstructed distribution is not homo-
geneous inside the cylinders, furthermore cylindrical structures are hardly visible. When the
concentration in cylinders is 100 times larger, the reconstructed spatial distribution estimates
correctly the original distribution as it is qualitatively shown in Fig. 3.43. A last example
shows the impact of the detector spatial resolution in Fig. 3.44, where it is set to 3 mm.
When compared to the previous example where the spatial resolution was set to 0 mm, it
can be seen that the two cylinders are less separated. The reconstruction error is shown in
Fig. 3.45. It is observed that the mean error decreases when the concentration increases.
Furthermore, results become more and more reproducible as the error bars also decreases
when the concentration increases. It is surprising that the errors associated to large spatial
resolutions of the detector are better than errors associated to good spatial resolutions, es-
pecially for high concentrations. It would be expected that a large spatial resolution of the
detector would deteriorate the reconstructions.

As reconstructions may su�er from important inhomogeneities, the FWHM of the cylin-
ders and their concentrations are estimated from the mean view of the (xz)-plane. The
mean views corresponding to Fig. 3.42c are shown in Fig. 3.46. Such a �gure also shows
the �tting of Gaussian functions on the mean projected concentrations of Fig. 3.42c. The

126



2σx1 2σx2
0

1

2

3

4

-10 -5 0 5 10

co
u
n
ts

x-direction

Reconstruction
Gaussian �tting

(a) Fit of 2 Gaussian functions on the
mean distribution in the x-direction

2σz

0

1

2

3

4

5

6

7

8

9

-10 -5 0 5 10

co
u
n
ts

z-direction

Reconstruction
Gaussian �tting

(b) Fit of a Gaussian function on the mean
distribution in z-direction

Figure 3.46 � Mean views of Fig. 3.42c in the x and z-directions
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Figure 3.47 � Estimated FWHM of cylinders in the x- and z-directions, with the intrinsic
spatial resolution (SR) of the detector varying from 0 mm to 3 mm

reconstructed points of Fig. 3.46a can be viewed as the mean row of Fig. 3.42c or as the
mean column of Fig. 3.42d. The reconstructed points of Fig. 3.46b can be viewed as the
mean row of Fig. 3.42b or as the mean columns of Fig. 3.42c. Although the reconstructed
distribution is not homogeneous, the �tting of Gaussian functions on mean views in x and
z-directions is accurate, although some discrepancies are observable at borders. The FWHM
is calculated from the standard deviation of the �tted Gaussian functions σx1, σx2 and σz
and the result is presented in Fig. 3.47. It shows that the detector spatial resolution tends to
increase FWHM. The impact of SR on FWHM is stronger for low concentrations. Increasing
concentrations has opposite e�ects on the FWHM in the x and z-directions. It tends to de-
crease the FWHM in the x-direction whereas it increases the FWHM in the z-direction. For
high concentration (109 photons/voxel), FWHM in x and z-directions respectively converge
to 3.6 and 3.5 mm, whatever the detector spatial resolution is. These results are larger than
the expected FWHM, which are 3.1 and 3.1 mm (see section 3.3.3.1).

It is then investigated whether the concentration in cylinders could be accurately esti-
mated from reconstructed distributions. It requires that the total activity in every cylinder
as well as their diameter are estimated. The maximum reconstructed concentration in each
cylinder is not a good estimator of the concentration in cylinders because of important
inhomogeneities in the reconstructions, which results in an over-estimation of concentra-
tions in some voxels whereas in some other voxels, the concentration is under-estimated.
Fig. 3.48a and 3.48b present the maximal estimated concentration in cylinder 1 and in cylin-
der 2 for 4 spatial resolution of the detector. It shows that the maximum concentrations
largely overestimate the real simulated concentrations but does not strongly depend on the
detector spatial resolution. The best ratios are respectively 2.3 and 2.7 for the �rst and
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the second cylinders and it corresponds to the largest concentration (106 photons/voxel).
No interpretation can be done from the lowest concentration (104 photons/voxel) since the
reconstructions are not reproducible as suggested by the large error bars. These ratios de-
pend on the concentration in the two cylinders and consequently it seems inappropriate to
attempt to use a correction factor on such reconstructions, even with a calibration procedure.
A more robust estimator of the initial concentration is the mean activity in the region of
interest which corresponds to 95% (2σ) of the Gaussian distributions. All the activities in
this ROI are summed together and the total activity for every cylinder is then normalised
by the volume of cylinders to obtain the mean concentrations. Here it is assumed than the
volume of cylinders is known, but in reality it should be estimated from reconstructions.
The ratios of these mean concentrations and the expected concentrations are then plotted in
Fig. 3.48c and 3.48d. These ratios do not depend strongly on the detector spatial resolution
either. As for the study of the reconstructions of point-sources from Monte-Carlo simulations
in section 3.4.1.3, it is observed that the concentrations are over-estimated since it would be
expected that the ratio would be around 1 whereas its value is 1.4 for high concentrations.
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Figure 3.48 � Quanti�cation ability of the imaging system with the accelerated MLEM-
algorithm, the intrinsic spatial resolution (SR) of the detector being varied from 0 mm
to 3 mm

This section con�rms the results obtained from the reconstructions of two cylinders from
analytical projections: the concentration in cylinders can be estimated from reconstructions
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as long as a correction factor is applied, which should be set 0.7. This correction factor does
not depend on the concentration in cylinders. Furthermore, the impact of the detector spatial
resolution was investigated. It deteriorates the estimation of FWHM for low concentration
but does not a�ect the quanti�cation of the concentration in cylinders. Reconstructions
corresponding to concentration below 105 emitted photons/voxel are not reproducible. This
con�rms what was noticed for reconstructions based on analytical projections. Under clinical
conditions, it is not possible to quantify the concentration in cylinders which is expected to
be 8000 photons/voxel, unless patients are injected with 12 times larger activity (2.2 GBq,
60 mCi), which is not possible because of radioactive protection considerations.

3.5 Reconstructions of real projections

An experimental set-up was designed in order to validate the previous numerical results. We
used the γ-imager described in section 2.1.2.1. This imager can measure the energy of the
detected photons so that it is possible to discriminate some of the photons which undergo
Compton scattering either in tissues or in the collimator. This camera is calibrated so that
it is not possible to detect photons which have an energy higher than 350 keV because of
the electronic discrimination. This is a problem for validating our method since it intends
at working with photons whose energy is 511 keV.

First, it is explained how we built a collimator with the same transparency for 140 keV
photons as tungsten for 511 keV photons. Then point-sources are reconstructed from 2 pro-
jections acquired with this experimental set-up and �nally, reconstructions of 2 cylinders are
performed.

3.5.1 Model of an experiment based on 511-keV photons with an experiment

based on 140-keV photons

The available imager was not set to detect 511-keV photons. As a consequence, we built a
coded-aperture collimator which has the same attenuation coe�cient at 140 keV as tungsten
at 511 keV, namely µW(511 keV) = 2.57 cm−1, and we made experiments with either 122-keV
or 140-keV photons. The aim is to validate that it is possible to reconstruct the 3D spatial
distribution of two vessels with a good spatial resolution although the activity is very low.
With such a collimator, we can partially validate our method at 511 keV with a γ-camera
which is not set to work at 511 keV, but works well at 140 keV.

The new coded aperture collimator whose total linear attenuation coe�cient is expected
to be 2.57 cm−1 at 140 keV is made of an alloy of zinc (Zn) and tin (Sn). These metals have
a fusion temperature which are respectively 420°C and 232°C, consequently melting them
into an alloy is quite simple. From Bragg's rule, the attenuation coe�cient of the alloy µa
can be calculated according to Eq. (3.25) (Leo 94).

µa = ρa

(
wZn

µZn
ρZn

+ wSn
µSn
ρSn

)
(3.25)

where µa, µZn and µSn are the attenuation coe�cients of the new alloy, zinc and tin
at 140 keV, ρa, ρZn and ρSn their densities, and wZn and wSn are the weighting fractions
of zinc and tin. A good approximation of the density ρa is ρa = wZnρZn + wZnρZn. As a
result, as wSn = 1 − wZn, the weighting fraction wZn which leads to a compound that has
a linear attenuation coe�cient µa = 2.57 cm−1 at 140 keV is the solution of a second-order
polynomial in wZn:

µa = (wZρZ + (1− wZ)ρS)(wZ
µZ
ρZ

+ (1− wZ)
µS
ρS

) (3.26)
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Figure 3.49 � ZnSn coded collimator

and its solution is:

wZn =
1
2

√(
µSnρZn

µZnρSn − µSnρZn +
ρSn

ρZn − ρSn

)2

− 4
(µSn − µa)ρZnρSn

(ρZn − ρSn)(µZnρSn − µSnρZn)
(3.27)

− 1
2

(
µSnρZn

µZnρSn − µSnρZn +
ρSn

ρZn − ρSn

)
(3.28)

Numerically, it gives: wZn=80% and wSn=20%, with
µZn
ρZn

= 0.261 cm2 · g−1 and
µSn
ρSn

= 0.717 cm2 · g−1 at 140 keV, ρZn = 7.36 g · cm−3 and ρSn = 7.14 g · cm−3. Attenua-

tion coe�cients are obtained from NIST database of photon attenuations (Berger 05).
A ZnSn-alloy is melted into a cylinder from 177 g of tin and 532 g of zinc (25%-75%),

which results in a linear attenuation coe�cient µa = 2.74 cm−1 according to Eq. 3.27, and
con�rmed by the software XCOM (Berger 05): µa = 2.74 cm−1. The diameter of the cylinder
is 60 mm-large and its height is 35 mm. It is cut into 1 mm-thick slices in order to machine
the pattern of the coded aperture by laser etching. If the slices would be thicker than 1 mm,
the pattern would not have straight sides. All the slices were then stacked together to form a
9 mm-thick HURA collimator whose attenuation coe�cient at 140 keV is the one of tungsten
at 511 keV. This means that this collimator has the same transparency for 140 keV photons
as tungsten for 511 keV photons. It was expected to build a 12 mm-thick collimator as the
one available in section 2.1.2.2, but only 9 slices were available after the etching process.
This collimator is shown in Fig. 3.49. This collimator is adapted to the γ-imager as shown
in Fig. 3.50.

The system matrix has to take into account the fact that the detection e�ciency of
the scintillators is higher at 140 keV than at 511 keV. At this energy, the photoelectric
attenuation coe�cient of CsI-crystals is 3.14 cm−1 and the intrinsic spatial resolution of the
detector is 2 mm. A new system matrix is computed in order to reconstruct projections
which are acquired at 140 keV with this collimator.

3.5.2 Reconstruction of a point-source

First, a point-source is placed in the �eld-of-view of the imaging system in order to validate
results which were previously obtained with Monte-Carlo simulations. The point-source
which is a sphere made of cobalt 57 (57Co). Its diameter is 1 mm. 85% of the decays
which occur correspond to the emission of 122 keV photons. The activity of the point-source
at the moment of the acquisition was 793 kBq (December 4th, 2007) since its activity was
822 kBq 14 days before (November 21st,2007). Its half-life is 271.79 days, which means that
its activity can be assumed to be constant for all acquisitions made on December 4th, 2007.
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(a) Description of the experimental set-up

A

B

C

point source

(b) Kinematics scheme

Figure 3.50 � Experimental set-up

3.5.2.1 Experimental set-up

The experimental set-up used to acquire projections is shown in Fig. 3.50. The point-source
can be displaced thanks to 2 sliders and a revolute joint as shown in Fig. 3.50b. A �rst
projection is acquired, then the point-source is rotated by 90° thanks to the revolute joint B
to acquire a second projection, which is equivalent to keep the point-source still and rotate
the imaging system. It is important to notice that in the kinematics scheme, the slider joint
C stands after the revolving joint B, otherwise it would not be possible to simulate the
acquisition of the second projection. Each acquisition lasts 37 s. Projections were acquired
for several positions of the point-source, the position of the point source being changed with
the knob C. Some acquisitions were also performed while the point-source was moving in
the �eld-of-view thanks to the slider joint A which was connected to a step-by-step motor, in
order to model a line-source. These results are not presented here, since simpler experiments
were then performed with real line-sources, as presented later.

3.5.2.2 Results

(a) Projections acquired at 0° and 90° (b) Central slices of of the estimated distribution in the zx-, yz-
and xy-planes

Figure 3.51 � Reconstruction of a point-source from experimental projections. The number
of detected photons in projections are respectively 485 and 498, which corresponds to a
point-source emitting 105 photons

The energy windows of the detector is [103 keV − 150 keV]. Two projections are ac-
quired which last 37 s each. The number of detected photons for these projections are
respectively 136698 and 136351, which corresponds to e�ciencies 6.38� and 6.36�. Ev-
ery projection is acquired in LIST-mode, which means that the detection location of every
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detected photons Activity of the point-source number of independent
(counts) (emitted photons) projections

103 1.075× 105 5
104 1.075× 106 5
105 1.075× 107 2

2.73× 105 2.93× 107 1

Table 3.3 � Initial activities in the object and corresponding number of detected photons.

photons in the pixel is registered individually. This allows the generation of several pro-
jections from a unique acquisition and the number of counts per projection can be chosen.
It is decided to generate projections which have the same number of counts as the projec-
tions generated with Monte-Carlo simulations. These sets of projections are reconstructed
with the appropriate system matrix. The initial activities in the object are given in Ta-
ble 3.3. Fig. 3.51 shows an example of a reconstructed point-source from two projections
which contain respectively 485 and 498 detected photons. Although the number of detected
photons is small, the reconstructed point-source only spreads on a few voxels. The in�uence
of the activity of the point-source on the reconstruction error, on the FWHM and on the
quanti�cation performances of the imaging system is then investigated.

Quanti�cation performances can be derived either from the maximum reconstructed
activities or from the total activities in a ROI de�ned around the reconstructed points.
Fig. 3.52a shows the ratio of these quantities over the expected activities. It illustrates that
reconstructions are biased, however the bias does not depend on the activity (bias=0.38±0.006
for the ratio based on the maximum reconstructed activities and bias=0.06±0.006 for the
ratio based on the ROI). As a result, a correction factor might be applied to retrieve the
expected activity of the point-source. It should be set to 1/0.38=2.6 so that the ratio based
on the ROI becomes almost equal to 1. In this case, reconstructions might become quanti-
tative. The correction factor would not be derived from the ratio based on the maximum
reconstructed activities because it does not account for the tails of the reconstructed points,
which also contain activity. The ROI-based ratio is a more robust estimator of the activ-
ity of the point-source than the maximum-based ratio. The reconstruction errors are then
observed in Fig. 3.52b. As no reference object is available, the reference λref is chosen to
be the result of the reconstruction with the maximum number of detected photons. This
allows the investigation of the statistical error. λref is weighted to account for the activity
in point-sources with lower activities for the computation of the error:

error =

√
1
N

∑
i,j,k

(
λ(i, j, k)− c · λref (i, j, k)

)2

max
i,j,k

(
c · λref (i, j, k)

) (3.29)

where c is the weighting coe�cient that makes possible to compare two reconstructions with
di�erent activities. For instance, the weighting coe�cient for the left-hand point in Fig. 3.52b
is derived from Table 3.3 and is:

c =
103

2.73× 105
= 3.6× 10−3

The error for the case where all the detected photons in LIST-mode are taken into account
is not represented since it is the reference object and consequently the error is null. It is
observed that the reconstruction error decreases as the activity in the point-source increases,
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Figure 3.52 � Accuracy of the reconstructed spatial distributions

as expected. The error bars are small when compared to the mean errors, which means that
the reconstructions are very reproducible even for low activities.

For analytical and Monte-Carlo projections, the three FWHM depend on the activity of
the point-source. Fig. 3.53 shows how the activity impacts the FWHM when the projections
are obtained through the experimental set-up presented above. The FWHM are almost
constant, from 1.8 to 1.4 mm. This is worse than for Monte-Carlo simulations where the
spatial resolution of the detector was set to 2 mm. However, in Monte-Carlo simulations, the
point-source was simulated as a real point with no volume whereas the point-source here is a
1 mm-sphere, which can explain that the three FWHM are in average 20% larger. As before,
the FWHM is smaller in the y-direction. The reason is that the y-direction is a transverse
direction for both projections and it was observed that the spatial resolution of the imaging
system is better in the transverse direction than in the axial direction.
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Figure 3.53 � The FWHM of reconstructed points depend on the activity of the point-source

Reconstructions of point-sources from real projections con�rm that the activity of a point-
source can be accurately estimated with our imaging system and a statistical reconstruction
algorithm, as long as a correction factor F is applied to the reconstructions. The correction
factor F is larger for reconstructions of real projections (F = 2.6) than for Monte-Carlo
simulated projections (F = 0.7). The three FWHM are not degraded when compared to
Monte-Carlo simulations.
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3.5.3 Reconstruction of 2 cylinders

3.5.3.1 Experimental set-up

In this set of acquisitions, a syringe is �lled with 740 kBq of 99mTc (0.02 mCi). 99mTc
emits 140 keV photons which can be detected by the γ-imager. The diameters of the sy-
ringe is 4.6 mm. The active length of the syringe is 30 mm. As a result, the volume of
reconstruction must be increased in order to reconstruct such an object. It is now made of
30× 40× 30 voxels which are 1× 1× 1 mm3. The syringe is placed in the �eld of view with
the experimental set-up shown in Fig. 3.54a. The experimental set-up allows the vertical
translation of the syringe so that the location of the syringe can be modi�ed. Furthermore,
this experimental set-up allows the rotation of the translation system and the syringe, and
consequently a second projection can be acquired, orthogonally to the �rst projection. For
any vertical translation of the syringe, two orthogonal projections are acquired. The kine-
matics scheme of this set-up is shown in Fig. 3.54b. It is made of a slider joint controlled by
the knob C, in order to control the vertical positions of the syringe, and a revolute joint B
to turn the source and then acquire a second projection.

The syringe is vertically translated 2 mm by 2 mm and at every location, 2 orthogonal
projections are acquired. Acquisitions last 1 min each. In the results presented below, two
cylinders are placed in the �eld-of-view. It is obtained by acquiring orthogonal projections,
the syringe being shifted by 6 mm between the �rst set of acquisitions and the second. The
two projections are summed together and the two orthogonal projections are also summed
together in order to obtain projections that would correspond to an acquisition where two
syringes would be placed in the �eld of view, the distance between their axis being 6 mm.
The two pairs of projections which are used to reconstruct the results below are acquired
97 min and 148 min after that the syringe was �lled with 99mTc. This means that at the
time of acquisitions, the number of emitted photons per voxel over 1 min is respectively
n1 = 6.8 × 104 and n2 = 5.9 × 104 photons. It is therefore expected to reconstruct a
concentration about 7.0× 104 photons/voxel in cylinders, as summarised in Table 3.4.

n =
activity
volume

× acquisition time× exp
(
− ln 2

decay time
half-life

)
(3.30)

n1 =
0.02 · 10−3 · 37 GBq
π · 2.32 · 30 mm3

× 60 s× exp
(
− ln 2

97 · 60 s
6.01 · 3600 s

)
= 6.8× 104 (3.31)

n2 =
0.02 · 10−3 · 37 GBq
π · 2.32 · 30 mm3

× 60 s× exp
(
− ln 2

148 · 60 s
6.01 · 3600 s

)
= 5.9× 104 (3.32)

detected photons Activity of a 1-mm3 box inside syringe number of independent
(counts) (emitted photons) projections

1.75× 104 1.95× 103 5
1.75× 105 1.95× 104 3
6.3× 105 7.0× 104 1

Table 3.4 � Initial activities in the object and corresponding number of detected photons
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(a) Description of the experimental set-up

B

C

line source

(b) Kinematics scheme

Figure 3.54 � Experimental set-up

3.5.3.2 Results

(a) Orthogonal projections (b) Mean xy-plane (c) Mean zx-plane (d) Mean zy-plane

Figure 3.55 � Reconstructed spatial distributions from two real projections, acquired at 0° and
90°. The number of detected photons in projections are respectively 290432 and 284158.

(a) Orthogonal projections (b) Mean xy-plane (c) Mean zx-plane (d) Mean zy-plane

Figure 3.56 � Reconstructed spatial distributions from two real projections, acquired at
0° and 90°. The number of detected photons in projections are respectively 7891 and 7703.

Fig. 3.55a and 3.56a show two examples of pairs of projections obtained from the experi-
mental set-up described above. The mean reconstructed views in Fig. 3.55 and 3.56 illustrate
that the concentration in cylinders plays an important role in reconstructions. In Fig. 3.55,
two cylinders are clearly visible, although their homogeneity is poor, but in Fig. 3.56, cylin-
ders can not be seen. However, in both cases, it is possible to extract information from
the mean vertical and horizontal views of Fig. 3.55c and 3.56c which are represented in
Fig. 3.57a and 3.57b. Gaussian functions �t well with mean spatial distributions when the
concentration in the cylinder is high, but the �ttings are not as good for cylinders whose
concentration is low.

Contrary to previous investigations with analytical and Monte-Carlo projections, the ref-
erence distribution is not directly available. It is known that the object is made of 2 cylinders
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Figure 3.57 � Fit of Gaussian functions for the quanti�cation of FWHM in x and z-directions
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Figure 3.58 � Impact of the concentration in cylinders on reconstructions, from 9 recon-
structed distributions
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whose diameter and length are respectively 4.6 mm and 30 mm, but their locations is subject
to uncertainty because the experimental set-up does not allow the exact positioning of the
syringe. In particular, the syringe is not perfectly parallel to the collimator and the imager,
as it can be observed from Fig. 3.55. As a result, the error can not be computed from a refer-
ence spatial distribution. Consequently, the reconstruction based on the projections with the
largest number of detected photons is chosen as a reference, and reconstructions with lower
counts are compared to this reference distribution. The result is shown in Fig. 3.58a and it
can be observed that the error for the right-hand point is null, since this reconstruction is the
distribution which is taken as a reference. The concentration in cylinders is then quanti�ed
from the ratio between the total reconstructed activity in each cylinder and the expected
total activity in the cylinders. It is shown in Fig. 3.58b. The estimation of the total activity
is biased but can be corrected by applying a correction factor of 1/0.26=3.8. The ratio based
on the maximum reconstructed concentrations is shown to illustrate that no quanti�cation
can be expected from this estimator. It strongly depends on the concentration in cylinders
and varies from one cylinder to another.

Finally, the FWHM are estimated and it is almost constant, excepted for the reconstruc-
tions which correspond to the lowest concentrations of the cylinders. The FWHM in the
x-direction converges to 3.5 mm and the FWHM in the z-direction converges to 4.2 mm. The
expected FWHM are 3.1 mm, which means that the estimated FWHM are over-estimated
but still close to the expected values. The di�erences are respectively 13% and 35%.

The concentration in cylinders can be quanti�ed from reconstructions based on real
projections which contain more than 16000 photons. This corresponds to a concentration
in the cylinders of this experiment of 2000 emitted photons/voxel, but for 511 keV photons,
it would correspond to a concentration of 20000 emitted photons/voxel. Although this
imaging system is able to reconstruct the 3D spatial distribution of 2 cylinders which emit a
small amount of photons, it is not su�cient to consider estimating the concentration in the
popliteal artery of patients with activities which are commonly injected (185MBq, 5 mCi).

3.6 Discussion and conclusion

This chapter provides methods to deal with system matrices associated with imaging sys-
tems containing coded-aperture collimators. These matrices are large (several giga-bytes)
and consequently their redundancies should be exploited. It is illustrated that smaller sys-
tem matrices can be loaded in memory as long as the imaging system is made of orthogonal
sets of projections. However, this does not work if the attenuation of the object is not invari-
ant by 90°-rotation, since it would a�ect the probabilities aij . Inhomogeneous attenuations
can be taken into account by introducing an attenuation matrix which pre-corrects the spa-
tial distribution λ at every iteration. Spatial distributions can then be reconstructed from
a system matrix which is redundant. A new method to accelerate reconstructions is also
proposed. It adaptively uses several levels of re�nements of the projections and of system
matrices in order to speed up �rst iterations of reconstructions. The transition from one level
of re�nements to another should be discussed. Either the control log-likelihood E1 starts
decreasing and the re�nement must be decreased, or E1 keeps on increasing but tends to
converge to a limit. In this case, it was chosen to decrease the re�nement level when im-
provements were not better than a factor 1.1 between two controls, but this factor was
chosen from empirical tests. By the end, the �nest representation of projections is used and
the algorithm stops when E1 does not improve better than a factor 1.1. More elaborated
stopping criteria could be used (Veklerov 87). The reconstruction of the spatial distribution
is convex, however, the algorithm is stopped before convergence because it would result in
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solutions extremely noisy because the solution is not regularised. As a result, the solution
depends on the solutions computed at each iteration and consequently, it depends on the
criteria used to change binning levels and to stop the algorithm. However the di�erence
on the log-likelihood and the obtained solutions is very small. A question raised by this
adaptive method concerns the regularisation of this algorithm. It is based on the successive
maximisation of di�erent log-likelihood functions, as a result it would be di�cult to intro-
duce a prior which has the same in�uence on all log-likelihoods. A priori information could
be added to reconstructions in order to compensate for the low amount of signal. Smooth-
ing should correct for most of inhomogeneities, but more elaborate regularizations should
be very adapted to the reconstructions of 2 vessels in a knee, as Gauss-Markov-Potts prior
models (Mohammad-Djafari 06).

A way to decrease reconstruction errors would be to model the detector spatial resolution
into system matrices. It can be achieved by convolving every column, which corresponds
to expected projection from a single voxel, by a point-spread function. The point-spread
function should not be a 2D Gaussian function but a more elaborate point-spread func-
tion because the incidence of photons is not necessarily normal to the detector surface: the
point-spread function should be a ellipse-like function. This corresponds to the addition of
some blurring in the system matrix, which induces a worse condition number of the system
matrix. From this point of view, improving the model of the matrix does not automatically
necessarily result in better reconstructions. The system matrices which are used for recon-
structing spatial distributions correspond to a collimator with perfect imaging properties for
correlation-based algorithms, not for the MLEM-algorithm. This means that coded-aperture
collimators may not be optimal for low-activity imaging, although their performances o�er
an excellent trade-o� between a good resolution and a high sensitivity. Collimators with
'perfect imaging properties' for statistical reconstruction algorithms should be looked for, as
for correlation-based reconstruction algorithm.

Furthermore, no tissue are modelled around the vessels for the examples presented in
this chapter, although it is expected that the vessels stand 50 mm-deep in the knee. Adding
these tissues would result in a diminution of the signal as well as an increase of the fraction
of the photons which undergo Compton scattering. It would deteriorate reconstructions.
Another phenomenon which would deteriorate reconstructions is the detection noise. The
detector noise was measured and it was 1.7 counts/s (cps) at 140 keV when no source was
placed in the �eld-of-view of the imager. This means that for a clinical acquisition which
lasts 2 hours, 12240 photons are detected per detector because of the detector noise. It is
expected that this noise decreases at 511 keV as detectors are usually less sensitive when the
energy threshold of the imager is increased. For the real projections which were presented
in this chapter, this detector noise is negligible because acquisitions last at maximum 1 min
with sources which are much more radioactive than the vessels in patients. As a result,
detector noise accounts for about 100 photons in projections whereas about 15000 photons
are detected per acquisition. Reconstructions with real projections from the experimental
set-up should be further validated with 511 keV and the tungsten coded-aperture collimator.
In particular, it would be of interest to estimate the detector spatial resolution at this energy.

Moreover there is no background activity in the results presented in this chapter, although
it is expected that radiotracers spread in the whole body, at least in capillaries. The section
of popliteal vessels being small (π × 0.252 = 0.20 cm2) compared to the section of the knee
(π × 502 = 78.5 cm2), even a low concentration outside the vessels brings an important
contribution to projections. For instance, if the concentration in tissues is 200 times smaller
than in vessels ((78.5/0.2)/2=200), there are as many detected photons which come from
one of the two vessels than from the rest of the knee. In examples presented in this chapter,
the reconstruction volume was limited because of RAM requirements, this is why the length
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of modelled cylinders is at maximum 30 mm. In reality, vessels pass through the whole
�eld-of-view of the detector and longer �eld of view should be modelled. Photons starting
from 85 mm away from the axis of the imaging system can pass through a hole of the
coded-aperture collimator and reach the detector, although the longest �eld-of-view was
40 mm-long.

Better performances would be expected if the CsI-scintillator would be replaced by BGO-
scintillators. Indeed, BGO-crystals are more sensitive than CsI which means that more
photons would be detected. BGO is 8 times more e�cient than CsI at detecting 511 keV
photons when the scintillator is 4 mm-thick, and 3 times more e�cient when only counting
photons which are detected at once by photoelectric e�ect. The fact that BGO is slower than
CsI is not a problem for measuring the β+ input function, since just a few thousand photons
are detected in 2 hours. The lower light output is not a problem because with 511 keV
photons, the light output is still correct. LSO would be a less interesting candidate because
of the natural radioactivity of lutetium, which adds a supplementary source of noise. It
exists coded-aperture collimators with larger opening fraction than 50%. It would allow the
collection of a larger amount of signal but projections would be more intricate. A trade-o�
between the quantity of information and its quality should be looked for in order to �nd an
optimal opening fraction.

In this chapter, it is shown that coded-aperture collimators and a statistical algorithm
such as MLEM are complementary to address low-activity imaging. Examples are taken
from analytical projections, then from Monte-Carlo simulations. Finally, reconstructions
from real projections are performed. As the system matrices which are used to reconstruct
the spatial distributions shown in this chapter are large (several giga-bytes), symmetries
are used to decrease the memory load during the reconstruction iterations. Furthermore,
information which is contained in coded projections are very intricate, which leads to poor
convergence rates of the reconstruction algorithm. A new method is developed to accelerate
the reconstructions. It is based on an adaptive re�nement of the observations. Results
indicate that the improvement on the sensitivity of the imaging system are not su�cient.
Concentrations at least 10 times higher than concentrations in patients' vessels would be
required to expect an estimation of the mean concentration of the artery and the vein over a
clinical acquisition. Furthermore it is expected to separate signals coming from the artery and
from the vein every 20 s, not for a whole clinical acquisition. Next chapter investigates how
to estimate concentrations for such small time frames from the reconstructions of projections
acquired from the whole acquisition.
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Spatiotemporal

reconstruction 4

This chapter presents new methods which deal with the reconstruction of spatiotemporal
distributions. It takes advantages of temporal correlations of the spatial distributions.

In the following, it is assumed that objects in the �eld of view are still. Only their kinetics
changes along time. As it is expected to estimate the kinetics of an artery and a vein, the
assumption is mostly made that there are at maximum two components to separate. Fig. 4.1
presents concentrations in an artery and a vein, obtained from blood samples. This is the
ground-truth kinetics that it is intended to estimate. These radioactive concentration are
obtained from an investigation where 174 MBq (4.7 mCi) of 18F-radiolabelled molecules are
injected to a patient. Blood samples are taken from an artery and a vein every 15 seconds
just after injection and 10 minutes by the end. These samples are then placed in a γ-counter
and their radioactive concentration is measured. These data are corrected from radioactive
decay that corresponds to the time it takes to bring it to the γ-counter, however, it is not
corrected for the radioactive decay of the tracer since the injection time. This means that
these concentrations are the real concentrations of the blood that �oods in the artery and the
vein at the time the samples are drawn. The area under the curve is 7.57× 106 counts/ml
for this investigation that lasts 120 min. This means that the average concentration is
about 1 kBq/ml (about 30 nCi/ml). In the following development, experimental validations
are based on cylinders that are 30 mm-long and whose diameters are 4.6 mm-large, as a result
most of the cylinders in Monte-Carlo simulations are cylinders with such dimensions so that
it is possible to compare reconstructions from Monte-Carlo simulations with experimental
acquisitions. It can then be deduced from Eq. (4.1) that every cylinder emits about 3.8×106

photons during a clinical acquisitions that lasts 2 hours. Radioactive decay is not taken into
account because it is radiotracer-dependent, but this means that the following amount of
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Figure 4.1 � Ground-truth kinetics. (4.1a) Kinetics evolutions over the whole clinical acqui-
sition. (4.1b) Kinetics evolution in �rst minutes
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emitted photons is the highest expected limit.

7.57 · 106 counts/ml×
(
π × 4.62

4
× 30

)
mm3 = 3.8× 106 photons (4.1)

This is the amount of photons emitted during an acquisition. In Sec. 4.1, a method is
described to estimate the kinetics of every object in the �eld of view from observations
coming from the detector. Section 4.2 improves this method through the incorporation of a
reconstruction step. These methods are blind-source separation methods and take advantage
of nonnegative-matrix factorisation, which is explained in section 1.6. Both principles of
the methods and validations are given. Validations are obtained from either Monte-Carlo
simulations or real projections that are obtained from the experimental set-up of Fig. 3.54.

4.1 Source separation in detector-space

First we investigate the simple case where there is no reconstruction of the spatial distribution
of the source and where the kinetics are very distinguishable as the one presented in Fig. 4.2b.
The basic idea is to separate components on the basis of their spatiotemporal distribution.
Let's have C objects which emit 511-keV photons in front of a pixellised detector as presented
in Fig. 4.2a. No collimator is used. Every pixel value in the detector is a realisation of a
Poisson distribution.

(a) Simulation con�gurations. Cylinders are
4.6mm-large and 30mm-long. Scintillator di-
mensions are (100× 100× 4) mm3
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(b) Simulated activities of vessels

Figure 4.2 � Simulation of the spatiotemporal distribution of two cylinders, which represent
an artery (red) and a vein (blue)

Let's have a series of (128 × 128)-images, corresponding to the dynamic acquisition of
these sources whose activities vary along 16 time frames. We �rst generate 16 frames using
Monte-Carlo simulations, where two cylinders are placed in the �eld-of-view. The cylinders
are 30 mm-long and their diameter is 4.6 mm-large. The axes of these cylinders are located
3 mm above the surface of the scintillator, which means that the distance between the border
of the cylinder and the surface of the scintillator is 0.5 mm: there are almost in contact.
This is not possible in reality because the depth of vessels in the knee is about 50 mm, but
this con�guration is taken to illustrate source separation steps. Every cylinder contribution
is simulated independently so that it is possible to compare the solutions given by source-
separation algorithms to the real spatio-temporal distribution. They are generated with
GATE (Jan 04) according to Fig. 4.2. No collimation is taken into account. Positions of
both sources remain unchanged but their intensities (brightness) vary according to Fig. 4.2b.
The total projection over all frames of every vessel is presented in Fig. 4.3a where the left

142



�gure corresponds to the artery and the right �gure corresponds to the vein. Three frames are
shown in Fig. 4.4. Contributions of the artery and the vein vary according to Fig. 4.3b and are
subjects to Poisson �uctuations. These curves are known only because the two components
are generated independently. These are the curves estimated from the projections containing
both the arterial and venous contributions. The red and blue cylinders in this example have
similar average intensity.

(a) Simulated projection of the artery and the vein over all
time frames
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(b) Kinetics of artery and vein

Figure 4.3 � Total contributions of the artery and the vein (Fig 4.3a) while they are in
contact with the scintillator surface. These are Monte-Carlo simulations. Fig. 4.3b shows
their measured kinetics in the detector as if they are acquired independently.

(a) frame 1 (b) frame 8 (c) frame 16

Figure 4.4 � 3 temporal frames. Fig. 4.4a represents the �rst frame where contribution of
the artery largely dominates the contribution of the vein, while in Fig. 4.4c, the contrary
happens. In the middle frame, both vessels contribute similarly

The whole acquired data can be represented by a (M × T )-matrix S as illustrated in
Eq. (4.2), where every row corresponds to a pixel m of the image/detector and every column
of S corresponds to a time frame t. The number of observations and time frames are
respectively denoted M and T . The point is to retrieve the kinetics of every source from
spatiotemporal matrix S. The separation of the contributions of every source is based on
matrix S.

The acquired frames are the contributions of both sources weighted by their kinetics.
As a result we want to factorize this matrix so that we can estimate the kinetics of every
source and their intensity evolution as a function of time. The factorisation would look like:
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S =

T←−−−−−−−→
...

...
. . . si,j . . .

...
...

 M
←−−−→ (4.2)

Figure 4.5 � Visualisation of matrix S. Every column t is a lexicographic representation of
simulated projections at frame t as in Fig. 4.4a, 4.4b and 4.4c

S = X ·K with X being the spatial components and K the kinetics components:

 si,j

 = M

←−
−−
→

C←−−−→
...

...
xi,1 xi,2
...

...

×
T←−−−−−−−→[

. . . k1,j . . .

. . . k2,j . . .

]xyC (4.3)

While the number of components C is small when compared to the dimensions of the
matrix S, it is very unlikely that such a matrix factorization exists, since S is made
of 16× (128× 128) = 245760 coe�cients, while X and K are respectively made
of (128× 128)× 2 = 32768 and 16 × 2 = 32 coe�cients, for a total of 32800 coe�cients,
which reduces by a factor of ≈ 8 the number of variables to estimate. This matrix factoriza-
tion is largely over constrained. As a result, we are looking for an approximation instead of
an exact decomposition:

S ≈X ·K (4.4)

A �rst immediate solution is obtained from a Singular Value Decomposition (SVD) where
only the C �rst components are taken into account. Any matrix can be decomposed into
two orthonormal matrices U and V and a diagonal matrix D as:

S(M,N) = U (M,N) ·D(N,N) · V T
(N,N) (4.5)

where SM,N indicates that S is (M ×N)-matrix. By setting all the diagonal coe�cients of

(a) First component (b) Second component (c) Third component

Figure 4.6 � First components of SVD decomposition
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D to zero but the C �rst ones, an approximation of S is obtained:

S(M,N) = U (M,C) ·D(C,C) · V T
(N,C) (4.6)

By denoting X = U and K = D · V T, an approximation of S on two matrices is
obtained, but this approximation is not non-negative. Fig. 4.6 presents the three �rst spatial
components corresponding to the SVD decomposition. The third component is shown only
to demonstrate that this component contains no signi�cant information, only noise. The �rst
component in Fig. 4.6a is the average spatial distribution and is non-negative. However, the
second component contains both positive and negative coe�cients. By using an appropriate
mixing matrixR, a linear combination of these two components are obtained, which is mostly
non-negative.
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Figure 4.7 � Linear combination of {X,K} solution obtained from SVD

For instance, by applying R =
1
2

[
1 1
−1 1

]
as in Eq. (4.7), components are almost non-

negative as shown in Fig. 4.8. Matrices X and K are normalised so that the sum of every
spatial component is 1. In this case, K represents the real estimated counts coming from
every vessel.

X ′ = X ·R K ′ = R−1K (4.7)

It can be noted that spatial components are not non-negative, but only a few pixels are
negative. Furthermore, the spatial components are not locally symmetric around the main
activity distribution as it can be observed in Fig. 4.7. On the other hand, activity is lower
than the real activity since in Fig. 4.3a, maximum activity is higher than 6 × 106 counts
while in Fig. 4.7, it does not exceed 5× 106 counts.

Figure 4.8 � Candidate for non-negative matrix factorisation, from SVD

By setting negative values to zero, a non-negative solution is obtained in Fig 4.8. The
corresponding kinetics is still the one shown in Fig. 4.7.
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As it is not possible to exactly decompose the matrix S on two non-negative matri-
ces X and K, a question arises about the nature of the residual that can be de�ned
as N = S −X ·K. In radiation physics, observations are Poisson-distributed which en-
courages the residual N to be modelled with Poisson noise. Instead of looking for a matrix
factorization as in Eq. (4.3), we are now looking for {X,K} that maximises the likelihood
L(X,K) ∝ P (S|X,K) with the constrains that X and K are non-negative. As all (si,j)
are realisations of Poisson-distributed variables, the likelihood L(X,K) (and its logarithm)
can be written:

L(X,K) =
∏
i,j

e−(XK)i,j (XK)si,ji,j

si,j !
(4.8)

ln(L(X,K)) = −
∑
i,j

(XK)i,j +
∑
i,j

si,j ln((XK)i,j)− ln(si,j !) (4.9)

In order to maximise the likelihood to have X and K, the spectral projected gradient
method described in Sec 1.7.4 is applied on the cost function E which is closely related to
the likelihood L(X,K) using Eq. (4.10).

E = − ln (L(X,K)) + ln(sij !) =
∑
i,j

(
(XK)i,j − si,j ln ((XK)i,j)

)
(4.10)

=
∑
i,j,r

xirkrj −
∑
ij

si,j ln

(∑
r

xirkrj

)
(4.11)

The minimisation of E with the spectral projected gradient method requires the derivation
of its partial di�erentiations on xnc and kct:

∂E

∂xn,c
=

∑
j

kc,j −
∑
j

sn,j
kcj∑

r′ xir′kr′t
=

((
U− S

XK

)
KT

)
c,t

(4.12)

∂E

∂kct
=

∑
i

xic −
∑
i

sit
xic∑

r′ xir′kr′t
=

(
XT

(
U− S

XK

))
c,t

(4.13)

where U is the unitary matrix: ∀(i, j), Uij = 1. When applied the constrained minimisation
with the gradient derived in Eq. (4.12) and (4.13), the algorithm is not stable because some

terms in
1

AXK
tends to +∞ when AXK is close to 0. As a result, we propose to make a

modi�cation on the likelihood in Eq. 4.8 by adding a term ε = 10−200 to every (XK)i,j :

L(X,K) =
∏
i,j

e−(XK)i,j+ε((XK)i,j + ε)si,j

si,j !
(4.14)

The objective function E and its gradient becomes:

E =
∑
i,j

(
(XK)i,j + ε− si,j ln ((XK)i,j + ε)

)
(4.15)

∂E

∂kct
=

(
XT

(
U− S

XK + ε

))
c,t

(4.16)

∂E

∂xn,c
=

((
U− S

XK + ε

)
KT

)
c,t

(4.17)
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The solution (X,K) which is looked for and the intermediate steps (Xn,Kn) should not
result in (XK)ij = 0 since this minimises the likelihood instead of maximising it as it can
be seen from Eq. 4.8. Adding ε is a security which prevents such a situation from happening.

The spatiotemporal distribution of Fig. 4.8 is used to initialise the projected gradient
minimisation, with a slight modi�cation: the kinetics is rescaled so that the subproblem
de�ned by the objective function E(α) in Eq. (4.18) is optimal:

E(α) =
∑
i,j,r

xir(αkrj)−
∑
ij

si,j ln

(∑
r

xir(αkrj)

)
(4.18)

∂E

∂α
= 0 ⇔

∑
ij

(XK)ij =

∑
ij
sij

α
(4.19)

The solution is obtained when the gradient is null which happens when α =

∑
ij
sij∑

ij
(XK)ij

.

This leads to solution presented in Fig. 4.9. The coe�cient α is found to be close to 1 as it
is expected: α = 1.09.
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Figure 4.9 � Spatial and temporal components that are used to initialised the NMF-algorithm

The spectral projected gradient algorithm is then applied on the objective function E in
Eq. 4.15, with the initial point being the spatio-temporal distribution of Fig. 4.9. It converges
to the solution shown in Fig. 4.10. The di�erence between the initial log-likelihood and the
log-likelihood at convergence is about 8800 as shown in Fig. 4.11. This means that the
solution obtained after the optimisation is about exp(8800) more likely. The kinetics is very
similar to the one obtained in Fig. 4.7, but the spatial components are now non-negative. The
convergence rate of the algorithm, which is shown in Fig. 4.11, illustrates the fact that the
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Figure 4.10 � Result of the source separation based on the maximum likelihood

147



algorithm converges within a few hundred iterations. For instance, it took 30 s to estimate
this factorisation.
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Figure 4.11 � Convergence of the non-negative matrix factorisation

When the scintillator is not in contact with the vessels as in the previous example, but
rather 50 mm away as it is expected when acquisitions measure vessel activities at the knee
location, it is di�cult to retrieve the initial kinetics. Fig. 4.12 shows the initial kinetics (circle
points) simulated with GATE, as well as the estimation of the spatio-temporal distribution
obtained when the estimation is based on Eq. (4.7). The estimated kinetics is very di�erent
from the expected one. Fig 4.13 which shows the result obtained with non-negative matrix
factorisation does not give signi�cantly better result, although this solution is exp(4220)
times more likely. This means that from a statistical point of view, there is not enough
counts to separate the two sources.
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Figure 4.12 � Estimation of the spatiotemporal distribution on two components through
SVD-based method when the scintillator is 50 mm-away from the vessels
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Figure 4.13 � Re�nement of the spatio-temporal estimation through minimisation of the
objective function of Eq (4.15)

In the next section, it will be shown how spatiotemporal distributions can be better
improved, by estimating the spatial components in the object-space rather than in the pro-
jection space.
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4.2 Components lay in the object-space

As it mentioned in the discussion of article (Aykac 01), the �TAC (should) be derived from
sinograms and not images�. This section presents a method based on this idea, although
there is no sinogram in coded-aperture imaging but coded observations. First a new model
for non-negative matrix factorisation is introduced to estimate the spatial components in the
object-space instead of the image-space. This requires that reconstructions are incorporated
in the non-negative matrix factorisation. The method is illustrated with examples with one
component, then with two components. As for classical NMF, this method has several local
minima. As a result, special care should be taken to initialise the algorithm. It is initialised
from a SVD-based method as in the previous section, but also from the segmentation of the
spatial component obtained from the 1-component model which admits a unique maximum.

4.2.1 Model

It is intended to perform non-negative matrix factorization. A is supposed to be known. We
use Poisson statistics for modelling observations S:

S = AXK +N (4.20)

The likelihood L(X,K) = Prob(S|X,K) is:

L(X,K) =
∏
i,j

e−(AXK)i,j (AXK)si,ji,j

si,j !
(4.21)

An objective function E is derived from likelihood L(X,K). An additional term ε is added
for the robustness of the algorithm as in Eq. (4.14):

E =
∑
i,j

[
(AXK)i,j + ε− si,j ln

(
(AXK)i,j + ε

)]
(4.22)

It is needed to compute ~∇E on every xa,b and kb,c so that the spectral projected gradient
minimisation can be applied to estimate the most likely non-negative matrix factorisation:

∀(a, b, c), ∂E

∂xa,b
=
(
AT

(
U− S

AXK + ε

)
KT

)
a,b

(4.23)

∂E

∂kb,c
=
(

(AX)T

(
U− S

AXK + ε

))
b,c

(4.24)

Calculations are detailed in appendix 5. This is very di�erent from performing NMF in the
image-space. Indeed, A acts as a �lter and it constrains the spatial components Y of the
factorisation of S to be in the image Im(A) of A:

S = Y K = (A ·X) ·K (4.25)

In the following developments, the term �spatial components� refers to the spatial compo-
nents X in object-space, not to the spatial components Y in the image-space.

4.2.2 One-component model

This section presents how NMF can be used to reconstruct several time frames simultane-
ously. Examples which are presented here are based on real data acquired according to the
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experimental set-up described in section 3.5.3. Observations are registered in list-mode, as
a result it is possible to generate any kinetics by creating temporal frames with as many
detected photons as wanted. Modelling the spatiotemporal distribution with a single com-
ponent means that it is intended to factorise S as:

S = A ·

x1
...
xn

 · [k1 . . . kT
]

+N (4.26)

where N is a noise matrix. When a single component is taken into account, partial dif-
ferentiations on temporal components (kj) can be solved analytically, which leads to a new
objective function which only depends on the spatial components (xi):

E =
∑
i,j

(AX)ikj −
∑
i,j

si,j ln (AX)ikj (4.27)

∀β, ∂E

∂kβ
=
∑
i

(AX)i −
∑
i

si,β
kβ

(4.28)

From Eq. 4.27, we can solve K that maximises E:

∀β, ∂E

∂kβ
= 0 ⇔ ∀β, kβ =

∑
i si,β∑

i (AX)i
⇔ K =

[
1 . . . 1

]
S[

1 . . . 1
] ·A ·X (4.29)

∑
i (AX)i is a scalar which only depends on A and X. As for any spatiotemporal distri-

bution S, the optimal temporal parameters K are known, it is only needed to optimise on
spatial component X. Eq 4.27 and 4.29 lead to:

E =
∑
i,j

(
(AX)i

∑
i′ si′,j∑

i′ (AX)i′

)
−
∑
i,j

si,j ln
(

(AX)i

∑
i′ si′,j∑

i′ (AX)i′

)
(4.30)

=
1∑

i′ (AX)i′

∑
i

(AX)i
∑
i′,j

si′,j

−
∑
i,j

(
si,j ln(AX)i + si,j ln

∑
i′
si′,j − si,j ln

∑
i′

(AX)i′

)
(4.31)

=
∑
i′,j

si′,j −
∑
i,j

si,j ln
∑
i′
si′,j −

∑
i,j

si,j

(
ln(AX)i − ln

∑
i′

(AX)i′

)
(4.32)

Partial di�erentiation on xα gives:

∂E

∂xα
=−

∑
i,j

si,j

(
ai,α

(AX)i
−

∑
i′ ai′,α∑

i′(AX)i′

)
(4.33)

=−
∑
i,j

si,j

(
ai,α

(AX)i

)
+

∑
i,j

si,j

 ∑
i′ ai′,α∑

i′(AX)i′
(4.34)

=−
(
ATS

[
1 . . . 1

]T
AX

)
α

+
( ∑

i,j si,j∑
i′(AX)i′

)
(AT

[
1 . . . 1

]T)α (4.35)

=

(
−AT

(
S
[
1 . . . 1

]T
AX

−
∑

i,j si,j∑
i′(AX)i′

))
α

(4.36)
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The algorithm is initialised with a positive homogeneous image X0: ∀i, (X0)i = x0 > 0.
The value of x0 does not impact the algorithm. Indeed applying Eq. (4.36) to a homogeneous
spatial component results in a null gradient. The objective function E is minimised with
the spectral projected gradient method that uses Eq. (4.36) as the gradient of the objective
function. The estimation of the spatio-temporal distribution for a one-component model is
shown in Fig. 4.14. The algorithm estimates the kinetics in every frame and the spatial
distribution of the object.

(a) Integration of all time frames for every projection

(b) Integration of all the projections
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(c) Representation of the spatial distribution in (xz),
(xz) and (yz) planes

Figure 4.14 � Reconstruction of all frames simultaneously

Identical solution would have been obtained by performing the following two-step proce-
dure: �rst, the total spatial distribution λtot is estimated from the observations which are
acquired for the whole time frames. Secondly, the spatial distribution λt for every time frame
t is obtained by weighted the total distribution λtot with the number of photons detected in
the time frame t over the total number of detected photons.

4.2.3 Model with several components

The estimation of the β+-input function requires that at least two components are taken
into account in the NMF-model, because it is expected to separate the contribution of the
artery from the contribution of the vein. This section shows several procedures to estimate
the spatio-temporal distribution of every of the components. The objective function and its
gradient are determined previously in Eq. (4.22), (4.23) and (4.24).
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4.2.3.1 Initialisation

The initialisation is important because:

� This algorithm is not convex, consequently it gets trapped in local minima

� The convergence rate is faster if the initialisation point is not too far from the conver-
gence point

From Eq. 4.22, it is possible to set an initial point which is quite good. It is assumed
that for the initialisation, the temporal components in K are identical, not necessarily ho-
mogeneous. This assumption means that:

∀j, j′, k, kjk = kj′k (4.37)

The objective function can then be written:

E =
∑
i,j

(
(AXK)i,j − si,j ln

(
(AXK)i,j

))
(4.38)

=
∑
i,j

AX
1
...
1

 [k1 . . . kT
]

i,j

−
∑
i,j

si,j ln


AX

1
...
1

 [k1 . . . kT
]

i,j

 (4.39)

=
∑
i,j

(
AX

[
1 . . . 1

]T)
i
kj −

∑
i,j

si,j ln
((
AX

[
1 . . . 1

]T)
i
kj

)
(4.40)

=
∑
i,j

(
AX

[
1 . . . 1

]T)
i
kj −

∑
i,j

si,j ln
(

(AX
[
1 . . . 1

]T)i
)
−
∑
i,j

si,j ln kj (4.41)

Di�erentiation on kt results in:

∂E

∂kt
=
∑
i

(
AX

[
1 . . . 1

]T)
i
−
∑
i

si,t
kt

(4.42)

which means that:

∀t, ∂E

∂kt
= 0 ⇔ ∀t, kt =

∑
i si,t∑

i

(
AX

[
1 . . . 1

]T)
i

=
∑

i si,t∑
i,j (AX)i,j

(4.43)

⇔ k =

[
1 . . . 1

]
S[

1 . . . 1
]
AX

[
1 . . . 1

]T (4.44)

K is then retrieved using:

K =
[
1 . . . 1

]T · k (4.45)

This means that whatever the spatial distribution of components is, by assuming that the
temporal components are initialised from identical components, an optimal initialisation
point for K is found. If it is also assumed that all coe�cients of X are equal, it comes:

kt =
∑

i si,t
x0 ·

∑
i,j ai,j

(4.46)

However, this leads to poor estimations of the spatiotemporal distribution. Indeed, the algo-
rithm is trapped in local minima far from the optimal solution. In fact, the one-component
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model converges to a more likely solution than the solution given by the two-component
model which is initialised with homogeneous X and identical temporal components in K.
This is due to the fact that the two-component model has several local minima whereas
the one-component has none. As a result, attempts are done to initialise the two-component
model from the one-component solution. The second spatial component and the second tem-
poral component are chosen to be homogeneous and small compared to their respective �rst
components in order not to impact too much the objective function. The two components
are shown in Fig. 4.15. It can be seen that the algorithm does not succeed in separating the
two components. The initialisation should be more accurate so that it is possible to estimate
the input function.

(a) Integration of all the projections for the �rst component

(b) Integration of all the projections for the second component
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Figure 4.15 � Reconstruction of all frames altogether

4.2.3.2 SVD-based initialisation

It is expected that a better initialisation point can be estimated by performing a SVD of the
total reconstructed distribution. Before performing SVD, reconstructions are performed on
every time frame. All time frames can be e�ciently reconstructed by estimating the most
likely parameters of the model:

S = A ·Λ +NP (4.47)
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where Λ is (N × T ) matrix. The likelihood that a matrix Λ gives rise to the observation
matrix S is:

E = ln(P (S|Λ)) (4.48)

=
∑
i,j

−(A · Λ)i,j + si,j ln((A · Λ)i,j) + Cst (4.49)

The most likely solution is obtained through a maximisation procedure which requires the
calculation of the gradient of E in Eq.(4.49):

∀m,n, ∂E

∂λm,n
=
∑
i

−ai,m + si,n
ai,m

(AΛ)i,n
(4.50)

=

(
AT

(
S

AΛ
− U

))
m,n

(4.51)

Constrained optimisation is then performed in order to maximise Eqs. (4.49). This optimi-
sation is concave because the second derivatives of E are negative, as it can be derived from
Eq. (4.50). SVD is then applied on the matrix Λ. Every column t of Λ is the most likely
solution to have the tth column of S. By applying a linear combination to the components
that are obtained with SVD, as in Eq. (4.7), a quite positive estimation of the spatiotem-
poral distribution of the artery and the vein is obtained, as shown in Fig. 4.16. Although it
separates the components, this separation is not complete as the shape of the second com-
ponent is visible in the �rst component in Fig. 4.16a and vice-versa. Furthermore, the error
between the estimated kinetics and the reference kinetics is large, as shown in Fig. 4.16b.
As a result it is proposed to perform a NMF by initialising the algorithm with this solution,
in order to improve the estimation of the spatiotemporal distribution. First, the negative
coe�cients of the spatial and temporal components are set to zero. Then the NMF-algorithm
is applied in order to �nd the most likely solution which models S. The obtained solution
is shown in Fig. 4.17. Although the spatial components are almost identical to the one ob-
tained in Fig. 4.16a, the estimation of the temporal components is slightly better as shown
in Fig. 4.17b. Fig. 4.17c shows the convergence of the algorithm. It is observed that the
solution obtained with NMF is about exp(5000) times more likely than the solution obtained
using SVD. It can be noticed that there is a bump around the tenth iteration. This is due
tot the fact that the spectral projected gradient method does not impose that the objective
function decreases from one iteration to the other (Birgin 00). This allows escaping some
local minima.

The accuracy on the estimation of the kinetics components is not su�cient to determine
the β+-input function, especially when the kinetics are not as simple as in the previous
examples. Furthermore, the kinetics that are simulated in the two previous examples are
30 times larger than what is expected to measure in real acquisitions. As a result, it is
suggested to help the algorithm by segmenting the spatial components from the spatial
solution of the one-component model.

4.2.3.3 Reconstructions with either known X or known K

Two more alternatives exist to improve the estimation of the components of the spatiotem-
poral distribution:

� if the spatial components in X are known, for example by segmenting the spatial
component of the solution of the one-component reconstruction

154



(a) Integration of the three projections. The �rst component is
shown in the �rst row, the second component in the second row
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(b) Temporal components

Figure 4.16 � Representation of the two �rst components that are obtained by applying a
linear combination to the SVD of the estimated matrix Λ

(a) Integration of the three projections. The �rst component is
shown in the �rst row, the second component in the second row
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(b) Temporal components
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Figure 4.17 � Estimation of the spatiotemporal distribution of the object, initialisation from
the solution shown in Fig. 4.16
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� if kinetics in K are known, for example from the counts measured in detectors and a
priori information on the kinetics of tissues which are in the �eld of view.

In these cases, reconstructions are convex, because E becomes positive semi-de�nite. Indeed,
if it is assumed that the spatial matrix X is known, the second derivative of E in Eq. (4.22)
is obtained by di�erentiating Eq. (4.24):

∂2E

∂kb′,c′∂kb,c
=
∑
i

(AX)ib
sic′(AX)ib′

(AXK + ε)2
ic′
≥ 0 (4.52)

By di�erentiating ∇XE in Eq. (4.23), it would be shown that if K is assumed to be known,
the optimisation on X is also convex. This is applied to estimate the β+-input function.
In the following examples, the estimations of kinetics are performed from real data. The
centre-to-centre distance between the two cylinders is 10 mm.

(a) Three projected views of the arterial spatial distribution

(b) Three projected views of the venous spatial distribution

Figure 4.18 � The two spatial components which are obtained using the segmentation of the
1-component distribution shown in Fig. 4.14a

First, the spatiotemporal distribution is estimated with the one-component model. The
spatial component is then segmented and Fig. 4.18 shows the two obtained components.
Then, the optimal initial temporal matrix K is estimated with Eq. (4.45), with the assump-
tions that both temporal components are identical in the initial point K0. The objective
function E in Eq. (4.22) is then optimised on parameters K and the estimated kinetics are
shown in Fig. 4.19. Depending on the amount of information, the estimation of β+-input
function can be correct. In Fig. 4.19a, the amount of detected photons which is taken into
account is 3 times larger than what is expected in real clinical investigations. The error on
the estimation of the kinetics is large, which means that the amount of detected photons is
not su�cient. Nevertheless, when the amount of detected photons is about 10 times larger
than what is expected from clinical acquisitions, the kinetics are well estimated, as shown in
Fig. 4.19c and 4.19d
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(a) Estimation of concentration from kinetics
which are 3 times larger than the expected con-
centration in vessels

(b) Estimation of concentration from kinetics
which are 6 times larger than the expected con-
centration in vessels

(c) Estimation of concentration from kinetics
which are 9 times larger than the expected con-
centration in vessels

(d) Estimation of concentration from kinetics
which are 12 times larger than the expected con-
centration in vessels

Figure 4.19 � Estimation of the arterial and venous concentrations from 4 various levels of
concentrations

4.3 Discussion

As the amount of detected photons is low, especially in the �rst temporal frames, it is not
possible to reconstruct accurately the spatial distribution of the vessels from a single frame,
and consequently, it is not possible to discriminate the contribution of the artery from the
contribution of the vein. In this chapter, it is proposed to model the spatiotemporal distri-
bution of either the projection or the object as the product of two decoupled distributions:
a distribution describing the spatial components which lay in the object and a distribution
of the temporal components describing the kinetics of the spatial components. This decom-
position is based on non-negative matrix factorisation. It is �rst applied on projections in
the detector. A more likely solution (X,K) than the solution obtained with the SVD-based
method is found. However, the solutions are accurate only if the detector is in contact with
the vessels, which is in practice not possible because vessels stand several centimetres inside
the knee.

It is then proposed to apply NMF in the object-space, which requires that reconstructions
must be incorporated to NMF. Reconstructions are taken into account by modifying models
of NMF so that the system matrix is taken into account. When the estimation is performed
on only one component, the results are good, that is to say the mean spatial distribution
and the mean kinetics are properly estimated. The one-component algorithm is not convex,
however it seems that it admits a unique optimum, although no proof is found. When several
components are taken into account in the model of NMF, problems with local minima prevent
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from converging to acceptable solutions and it is not possible to separate the contribution
of the artery from the one of the vein. As a result, it is suggested to estimate the spatial
distribution of the object from the one-component model which gives an acceptable solution,
then to segment it in order to build two spatial components and �nally, the kinetics are
estimated by optimising the NMF-model while keeping the spatial components unchanged.
This results in a good estimation of the kinetics components, as long as the concentration
in the object is about ten times larger than what is expected in clinical investigations.

As it is not possible to inject a dose which is about ten times higher because the dose de-
posited in the patients should not be too large, the temporal resolution should be decreased.
Further investigations should be led towards an adaptive algorithm that would bin the de-
tected photons in frames so that the estimated kinetics would be below a threshold which
would be supplied by the user. This seems possible to be achieved by taking advantage of
the list-mode of the γ-imager which registers detected photons one-by-one.

On the other hand, the methods which are developed in this chapter should be reg-
ularised in order to decrease the risk to get trapped in local minima, as it is done for
other spatio-temporal decompositions (Ou 08). Regularisations can be introduced into non-
negative matrix factorisation. Two cases occur: either the observed matrix S is decomposed
on one component, or it is decomposed on more than one component, which requires the
introduction of a new a priori function.

4.3.1 Regularisation of the one-component model

Regularisation appears to be necessary because the AXK-algorithm reconstructs high fre-
quencies, which leads to reconstructions having no physical meaning. Fig. 4.20 presents a
comparison of the reconstruction of a single cylinder at three successive iterations. Recon-
struction of high frequencies may be explained by the system matrix imperfections. This
can be avoided by regularising the spatial distribution X. This can be done by adding a
term to Eq. (4.41):

E =−
∑
i,j

si,j

(
ln(AX)i − ln

∑
i′

(AX)i′

)
+ β · Φ(X) (4.53)

where β is a parameter controlling the impact of the prior on reconstructions. Φ is called
an a priori function. A priori functions rely on Gibbs prior as explained in section 1.5.1.3.
As the one-component model only depends on X, regularisations can be applied as if it was
a static reconstruction. Regularisation is more complicated when several components are
taken into account in the model.
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(a) iteration 20 (b) iteration 100 (c) iteration 700

Figure 4.20 � Comparison of reconstructions as iterations increase

4.3.2 Regularisation of the N-component model

The way the regularisation is applied is slightly more complicated than for the one-component
model. Some adaptations have to be made on classical regularisation methods so that they
can be applied on NMF-algorithms. Indeed, because of considerations of section 1.6.3, it
exists a class of pairs {X,K} which gives constant result for the calculation of the likelihood.
Let's assume that the a posteriori objective function which takes into account the spatial
regularization can be written as:

E =
∑
i,j

[
(AXK)i,j − si,j ln

(
(AXK)i,j

)]
+ β · Φ(X) (4.54)

Let's also assume that (X0,K0) is a solution of Eq. (4.54) and α > 0. Then (
X0

α
,
K0

α
)

is a better solution since the �rst likelihood term is constant and the regularisation term
decreases. In order to avoid this e�ect, regularization term has to be modi�ed, but in a
way that makes its gradient still easily analytically derivable. It is proposed to write the
regularisation term as in Eq. (4.55):

Φ(X,K) =
C∑
c=1

nx−1∑
i=0

ny−1∑
j=0

nz−1∑
k=0

ϕ(sc · (xci+1,j,k − xci,j,k
))

+ ϕ
(
sc ·
(
xci,j+1,k − xci,j,k

))
+ϕ

(
sc ·
(
xci,j,k+1 − xci,j,k

)) 
(4.55)

where sc =
∑T−1

t=0 kc,t is the sum of the cth component of matrix K which is represented by
its cth row. The gradient of Eq.(4.55) is derived in Eq. (4.57) and (4.58).
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∂Φ(X,K)

∂xξα,β,γ
=
∑
i,j,k,c

δξ,c · sc ·


δβ,jδγ,k (δα,i+1 − δα,i)ϕ′

(
sξ · (xξi+1,j,k − xξi,j,k)

)
+δα,iδγ,k (δβ,j+1 − δβ,j)ϕ′

(
sξ · (xξi,j+1,k − xξi,j,k)

)
+δα,iδβ,j (δγ,k+1 − δγ,k)ϕ′

(
sξ · (xξi,j,k+1 − xξi,j,k)

)

 (4.56)

= sξ ·


ϕ′
(
sξ · (xξα,β,γ − xξα−1,β,γ)

)
− ϕ′

(
sξ · (xξα+1,β,γ − xξα,β,γ)

)
+ϕ′

(
sξ · (xξα,β,γ − xξα,β−1,γ)

)
− ϕ′

(
sξ · (xξα,β+1,γ − xξα,β,γ)

)
+ϕ′

(
sξ · (xξα,β,γ − xξα,β,γ−1)

)
− ϕ′

(
sξ · (xξα,β,γ+1 − xξα,β,γ)

)

 (4.57)

∂Φ(X,K)
∂kξ,τ

=
∑
i,j,k


(xξi+1,j,k − xξi,j,k) · ϕ′

(
sξ · (xξi+1,j,k − xξi,j,k)

)
(xξi+1,j,k − xξi,j,k) · ϕ′

(
sξ · (xξi,j+1,k − xξi,j,k)

)
(xξi+1,j,k − xξi,j,k) · ϕ′

(
sξ · (xξi,j,k+1 − xξi,j,k)

)

 (4.58)

where δ is the Kronecker symbol. This new a priori function does not su�er from the e�ect
described at the beginning of this section because (sc) prevents the spatial components from
collapsing. This function is convex as long as the potential function ϕ is convex.
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Conclusion & Perspectives

The development of new drugs require that their interactions with tissues are well under-
stood. The physiological mechanisms these new molecules are involved in are investigated in
pharmacokinetics with compartmental analysis by labelling these molecules with radioele-
ments, so that their distribution can be imaged in-vivo. Such analyses require that the
radiotracer concentration in the blood is known as a function of time, so that the uptake of
the molecules by tissues can be compared to the amount of molecules they receive. When
the amount of metabolite is small, the concentration of the radiotracers in arterial blood is
well estimated by the concentration of positron emitters in arterial blood, also called �β+

arterial input function". Currently, it is estimated by drawing blood samples from patients,
but a non-invasive method would be preferred. This can be achieved by imaging vessels and
measuring the activity in the reconstructed images. However, the low concentration and
the small volume of arteries lead to low activities whose spatial distribution is di�cult to
estimate. Furthermore a good spatial resolution is required because there is always a vein
that stands close to any artery. The signal that comes from the vein can be viewed as a
noise and should be separated from the signal that comes from the artery.

In the �rst chapter, it was chosen to measure the β+ arterial input function from the
popliteal artery that stands in the knee, because it is a large artery that is close to the
surface of the body. Furthermore, it stands far from the main active organs which decreases
the background noise. It was decided to develop an imaging system with coded-aperture
collimators rather than a coincidence imaging system. As the conditions for perfect coded-
aperture imaging can not be ful�lled in medical imaging with high-energy photons, it was
suggested to reconstruct spatial distributions that are acquired with coded-aperture masks
with statistical algorithms that maximise the likelihood of the observations. Such methods
require the computation of a system matrix that models the imaging system. For high-
energy photons, this matrix is dense and the computation time is long because it takes
time to take into account the contribution of complex collimators as coded-aperture masks.
Consequently, some methods are proposed to e�ciently compute the system matrix. It
results in improvements of a factor up to 4 on the computation time, without deteriorating
on the accuracy of the system matrix. These methods are faced-based ray-tracing algorithms.

Reconstructions were performed in the second chapter. Reconstructions of spatial distri-
butions were �rst investigated with just one projection, then with two orthogonal projections.
Performances of such an imaging system were investigated and the impact of the activity on
the error of the reconstructed distribution was estimated, as well as the impact of the con-
centration on the spatial resolution between two cylinders. Reconstructions were performed
from projections that were �rst generated analytically, then from Monte-Carlo simulations
and �nally from real projections. These investigations show that it is possible to separate
the artery from the vein with the amount of detected photons that is expected to collect
for clinical acquisitions. Some methods were proposed to take advantage of symmetries in
the con�guration of the imaging system, in order to decrease the memory load for recon-
structions, which can be a limitation when the objects are made of a large number of voxels.
Furthermore, an accelerated MLEM-algorithm was proposed because the convergence rate
of MLEM is slow. Indeed, in coded-aperture imaging, the observations are very intricate and
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a large number of iterations is required to estimate spatial distributions. This acceleration
is based on an adaptive use of the observations, where a rough representation of the projec-
tions is used for �rst iterations whereas the �nest available representation is used when the
algorithm is close to converge.

Although the second chapter shows that it is possible to separate the spatial distribution
of the artery from the vein, this can not be done for every temporal frame, because there are
not enough detected photons, in particular in �rst frames. Consequently, it was proposed to
look for non-negative matrix factorisations that accurately model spatiotemporal observa-
tions in detectors. Such factorisations were estimated from projected gradient methods that
constrain the factorisation to be positive. It was �rst applied in the detector-space, which
returns more likely solutions than SVD-based methods. A new method was then introduced
that incorporate the reconstruction in non-negative matrix factorisations. This new method
achieves accurate decompositions when the factorisation is performed on one component,
but when it is expected to model spatio-temporal distributions with more components, the
algorithm converges to local minima and the factorisation does not model properly the un-
derlying structures of the distributions. As an alternative, it was proposed to segment the
two vessels from the spatial component that was estimated from the one-component model
and then to estimate the most likely associated kinetics. This results in accurate estimations
of temporal components if the radiotracer in vessels is at least ten times larger than from
clinical investigations. Otherwise, kinetics estimations are noisy.

Some limitations have to be mentioned concerning this thesis. First, no background
activity is taken into account: although it was decided to measure the β+-input function
from the popliteal artery in the knee, which is mostly made of bones and cartilages, some
muscles are in the �eld of view and should uptake some of the radiotracers. Secondly, some
validations should be performed with 511 keV photons, by appropriately calibrating the
γ-imager. Finally it seems important to notice that coded-aperture collimators that were
used for this thesis are not necessarily optimal for reconstructing spatial distributions with
statistical algorithms. Some investigations should be led to determine an optimal collimator
that results in an optimal system matrix for addressing low-dose imaging. A larger number of
projections should also improve reconstructions but this requires that more symmetries are
taken into account in order to keep the system matrix with dimensions that can be handled.
This suggests that the spatial distribution should be reconstructed in cylindrical voxels as
it is mentioned in Appendix 6. In such a case, reconstructions should also be parallelised so
that the reconstruction time become short enough for routine use.

The results that this thesis provides can have applications for other low-dose imaging. For
instance, some cameras are developed for detecting tumours in cancer surgery (Menard 98)
and it would be of interest to increase the sensitivity of such an imaging system. It could
also be applied for building high-energy high-resolution and high-sensitivity imaging systems,
which are for the moment only addressed by PET-systems which are expensive. Finally, it
could be applied to scintigraphic imaging in order to lower the dose that is administrated to
patients.
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1. HURA patterns 165

1 HURA patterns

Here are shown some HURA patterns that could be used for coded-aperture collimators. For
a given surface, it o�ers choices on the number and the dimensions of mask elements.

(a) Order ν = 139 (b) Order ν = 151

(c) Order ν = 331 (d) Order ν = 619



166 Appendix A. Appendices

2 Minimisation of near-field artefacts for coded-aperture
imaging

Zero-order and �rst-order artefacts will be investigated in next sections, and some methods
are presented to correct those artefacts (Accorsi 01).

2.1 Zero-order artefact

Taylor expansion is performed on cos3
(

arctan
(‖ri−r0‖

z

))
. When only the zero-order term

is taken into account, expression (1.68) becomes:

P (ri) = cos3

(
arctan

(‖ri‖
z

))∫
r′0

d2r′0 O
′(r′0)A′

(
ri − r′0)

)
(A.1)

where r′0, O′ and A′ are respectively de�ned in Eq. (1.40), (1.41) and (1.42) . It is not
possible to estimate directly the spatial distribution of the source O(r0) because P (ri) is

not a correlation of O and A. However, by dividing P (ri) by cos3
(

arctan
(‖ri‖

z

))
, the object

is retrieved from Eq. (A.2) which is very similar to the solution obtained with the far-�eld
approximation in Eq. (1.49). The projection P (ri) was just corrected before decoding by
array G. The spatial distribution of the object is derived by adapting Eq. 1.49 into:

Ô = F−1

F
 P (ri)

cos3

(
arctan

(‖ri‖
z

))

H

? F(G)

 (A.2)

This approximation physically means that it is assumed that all the source distribution
stands in the centre of the �eld of view, as the cos-term does not depend on r0 in this
approximation.

2.2 First-order artefact

The previous approximation can be re�ned by taking into account the �rst-order term of the
Taylor expansion of cos3

(
arctan

(‖ri−r0‖
z

))
, which is shown in Eq. (A.3)

cos3 arctan
(‖ri − r0‖

z

)
|1

= cos3 arctan
(‖ri‖

z

)
3

z2 + ‖ri‖2 (ri · r0) (A.3)

After applying the zero-order correction, Eq. (A.4) is obtained.

P (ri)

cos3
(

arctan
(‖ri‖

z

)) = O ? A− 3a
b

ri
z2 + ‖ri‖2 ·

∫
r′0

d2r′0 r
′
0O
′(r′0)A′

(
ri − r′0

)
(A.4)

The second term on the right-hand side of Eq. (A.4) should be as small as possible so
that O can be retrieved from deconvolution without too much artefacts. Accorsi analysed
what these �rst-order artefacts Ô1 look like (Accorsi 01). The integral can be viewed as
the �rst moment of inertia of the object distribution O′ that is weighted by pattern A. The
integral can be viewed as a constant, denoted O′′, because for coded aperture masks, binary
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functions A distribute rather uniformly 0 and 1 : the convolution consequently depends
slightly on shifts and the integrals are rather similar for every decoded point ri.

P (ri)

cos3
(

arctan
(‖ri‖

z

)) ≈ O ? A− 3a
b

ri
z2 + ‖ri‖2 ·O

′′ (A.5)

Decoding the second term which characterises the �rst-order artefact Ô1 leads to:

Ô1(r0) = −3a
z
O′′ ·

∫
ri

d2ri
ri

z2 + ‖ri‖2G(ri + r0) (A.6)

From Eq. (A.6), it can be noted that the shape of the �rst-order artefact only depends on
decoding matrix G. Accorsi proposed to shift the decoding pattern G so that it is centred.
This method is known as �pattern centring�. An example is presented in Fig. A.1. Artefacts
are less sharp in Fig. A.1c than in Fig. A.1b. In order to further decrease this term, Accorsi
recommends to acquire a �rst projection of the object and moves the imaging system laterally
in order to centre the acquired distribution on the detector so that O′′ goes to zero. In this
case, the �rst-order artefact disappears because O′′ then goes to zero.

(a)
ri

r2
i + z2

term (b) Decorrelation of �rst-order
term as the integrand of Eq. (A.6)

(c) Decorrelation based on a
centred-pattern decoding matrix

Figure A.1 � 1st-order artefact and impact of pattern centring for a 59×61 twin prime URA

2.3 Second-order artefact

When zero-order and �rst-order artefacts are corrected, second-order artefacts become visi-
ble. It was also studied by Accorsi, but it only gives a prediction of the way artefacts look
like. No method is proposed to reduce or suppress them. As a result, this family of artefacts
is not presented here, all the more so as the physical interpretations are unclear.
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3 BFGS-method for non-linear optimisation

Newton's method gives an update scheme to the minimisation problem min
Rn

f :

xk+1 = x− ρk [Hessf(x)]−1∇f(x) (A.7)

While it is intended at minimising an objective function f that is non-linear, derivation of
[Hessf(x)]−1 is time-consuming and possibly unstable. BFGS-method takes advantages of
approximations of the hessian and its inverse to update e�ciently the best current points xk.
It is quasi-Newton method which means that the solution is looked for as the root of∇f(xk).
In quasi-Newton method, the hessian Hessf(xk) is approximated by a matrix Bk. f attains
its minimum when expressions (A.8) and (A.9) are veri�ed.

∇f(xk) + Hessf(xk)(xk+1 − xk) = 0 (A.8)

f is de�nite positive (A.9)

At every iteration, �rst step is to determine the search direction pk. Setting Eq. (A.8) to 0
and approximating the hessian Hessf(xk) by Bk, the new search direction pk is given by:

pk = −B−1
k ∇f(xk) (A.10)

Line search on α 7→ f(xk−αpk) is then performed and leads to a new point xk+1 = xk−αkpk.
After denoting sk = αkpk and yk = ∇f(xk+1) −∇f(xk), the hessian at iteration k + 1 is
updated with the addition of two rank-1 matrices :

Bk+1 = Bk +
1

yTk sk
yky

T
k +

1
sTkBks

Bksks
T
kBk (A.11)

The inverse of Bk in Eq. (A.10) is calculated very e�ciently through Sherman-Morrison
formula:

B−1
k+1 = B−1

k +
sTk yk + yTkB

−1
k yk(

sTk yk
)2 (sksTk )− 1

sTk yk

(
B−1
k yksk + skyTkB

−1
k

)
(A.12)
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4 Impact of the energy of photons on the spatial resolution

The mean probability detection height is given by Eq. (A.13) where pthrough(z) is the prob-
ability that a photon reaches depth z and d pdetection(z) is the probability that a photon is
detected between z and z+ dz. l is the intersecting length of the trajectory of photons with
the scintillator.

h =

l∫
z=0

z · pthrough(z) · d pdetection(z) =

l∫
z=0

z · e−µdz · µddz (A.13)

=
1
µd

µdl∫
w=0

dw w e−w =
1
µd
γ(2, µdl) (A.14)

where γ is the lower incomplete gamma function (Abramovitz 70).

Figure A.2 � Mean height of detection in the 4 mm-thick scintillator

At 511 keV, the linear attenuation coe�cient µd is 9 × 10−3 mm−1 while it is 31 ×
10−2 mm−1 at 140 keV. This means that the average detection height in the scintillator is
deeper at 140 keV than at 511 keV, which tends to deteriorate the spatial resolution. Indeed,
it decreases the full surface at half maximum (FSHM) of the point spread function of the
scintillator process PSF (z).



170 Appendix A. Appendices

5 Derivation of the gradient of the likelihood for 'AXK'-
method

∂E

∂xn,c
=

∂

∂xn,c

∑
i,j,r,s

ai,rxr,sks,j −
∑
i,j

si,j ln

(∑
r,s

ai,rxr,sks,j

) (A.15)

=
∑
i,j

ai,nkc,j −
∑
i,j

si,j
ai,nkc,j∑

r,s ai,rxr,sks,j
(A.16)

=
∑
i,j

ai,n

(
si,j

(AXK)i,j
− 1
)
kc,j (A.17)

=
(
AT
(

S

AXK
− U

)
KT

)
n,c

(A.18)

∂E

∂xn,c
=
(
AT
(

S

AXK
− U

)
KT

)
n,c

(A.19)

∂E

∂kc,t
=

∂

∂kc,t

∑
i,j,s

(AX)i,sks,j −
∑
i,j

si,j ln

(∑
s

(AX)i,sks,j

) (A.20)

=
∑
i

(AX)i,c −
∑
i

si,t
(AX)i,c∑
s(AX)i,sks,t

(A.21)

=
∑
i

(AX)i,c

(
si,t

(AXK)i,t
− 1
)

(A.22)

=
(
XTAT

(
S

AXK
− U

))
c,t

(A.23)

∂E

∂kc,t
=
(
XTAT

(
S

AXK
− U

))
c,t

(A.24)

Eq. (A.18)
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6 Cylindrical image representation

As coded aperture collimators generates large system matrix for statistical reconstruction
algorithm, it is important to avoid redundancy in its calculation. Furthermore, it seems possi-
ble to increase number of projections that are used in the reconstruction without increasing
the required RAM. This method takes advantage of symmetries that can be observed in
transition matrix. While using Cartesian coordinates, just two symmetries can be exploited,
while using cylindrical coordinates, number of symmetries increase as illustrated in Fig. A.3.
While calculating the transition matrix, we can take advantage of invariants. It is then not
required to calculate transition matrix for all n projections pk since it can be directly deduced
from projection p1. First, let calculate the transition matrix just for p1, that is to say we
calculate the probability that a photon which is emitted from any voxel j is detected in pixel
i of p1. Let then say that there are v voxels per sector, then coe�cient ai′,j of transition
matrix A is equal to coe�cient ai,j , with i′ = v × (k − 1) + i. k is the index number of the
projection. Consequently, it is as fast to calculate the transition matrix for one projection
as for n-projections.

Figure A.3 � Invariants in cylindrical image representation

6.1 Construction of the cylindrical image representation

Among speci�cations, we would like that:

� voxel size is almost constant (about 1 mm3)

� characteristics dimensions are almost equal (about 1× 1× 1 mm3)

There are several solutions to mesh the image in cylindrical coordinates. If voxel volume
is constant, we can still choose:

� radial sampling distance to be constant (Rn = (n+1)∗R0), which leads to an increase
of voxels in crowns as pn = 2 · n− 1. Problem is that rn/ln → +∞ as n increases.

� increase of voxels in crowns is regular, i.e pn = n, in this case rn is proportional to ln
and proportional ratio depends on the number of sectors m.

If incrementing by 1 the number of voxel in every sector of a m-sector circle (which is
m-invariant, i.e m-rotation of 2π/m is the identity transformation) and choosing to have :

r1 : π · r2
0 = π/m · ((r1 + r0)2 − r2

0

)
(A.25)

r2 : π · r2
0 = π/(2 ·m) · ((r2 + r1 + r0)2 − (r1 + r0)2

)
(A.26)

rn : π · r2
0 = π/(n ·m) ·

( n∑
k=0

rk

)2

−
(
n−1∑
k=0

rk

)2
 (A.27)

n ·m · r2
0 = R2

n −R2
n−1 (A.28)

R2
n = n ·m · r2

0 +R2
n−1 (A.29)

As a result, R1 = r0 ·
√

1 +m, R2 = r0 ·
√

1 + (1 + 2) ·m, R3 = r0 ·
√

1 + (1 + 2 + 3) ·m.
We demonstrate through induction that:

Rn = r0 ·
√√√√1 +m ·

n∑
k=0

k
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r0 = R0 r1

R1

l1

r2

R2

l2

rn

Rn

ln

Figure A.4 � Voxel distribution and notations

We then deduce the step rn and the curvilinear abscissa ln:

rn = r0

√√√√1 +m ·
n∑
k=0

k −
√√√√1 +m ·

n−1∑
k=0

k

 (A.30)

ln =
2π

m× nRn (A.31)

=
2πr0

m× n

√√√√1 +m ·
n∑
k=0

k (A.32)

This respects the �rst speci�cation, that is to say that every voxel has the same volume.
However, we will see that second speci�cation is not respected, indeed:

rn/ln =
m · n
2π

1−
√

1 +m ·∑n−1
k=0 k

1 +m ·∑n
k=0 k

 (A.33)

=
m · n
2π

(
1−

√
1− m · n

1 +m ·∑n
k=0 k

)
(A.34)

=
m · n
2π

(
1−

√
1− 2 ·m · n

2 +m · n · (n+ 1)

)
(A.35)

∼
n→∞

m · n
2π

(
1−

√
1− 2

n

)
(A.36)

∼
n→∞

m

2π
(A.37)

As a result, depending on the number of sectors which are used in the cylindrical image
representation, the ratio between the curvilinear abscissa ln and the side of the voxel rn is
constant, but in general not equal to 1, which leads to rectangular voxels. If choosing m = 6,
then rn ' ln. Problem is that having just 6-sector is very limiting. Indeed, 90◦ is not one of
the invariant: we can not perform orthogonal acquisitions.

As far as I'm concerned, having 8 sectors could be nice, since it takes into account the
most common projections: 0◦, 45◦ and 90◦-invariants. 12-sectors representation is good to
since it o�ers to have 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦ and so on.

Best trade-o� would be to use 24-sector representations since it has invariants along most
common angles: 0◦, 15◦, 30◦, 45◦, 60◦ 75◦, 90◦ and so on.
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The idea to deal with large number of sectors is to decrease the frequency of evolution
of the number of voxels per crown. Problem is that if the frequency is not the inverse of
an integer (this is never the case), then the number of voxels per crown per sector is not
integer. As a result, we round it to the closest integer. We can de�ne the radii in terms of
the frequency of the evolution of the number of voxels per crown per sector:

Rn = r0 ·
√√√√1 + f ·m ·

n∑
k=0

k (A.38)

= r0 ·
√√√√1 + 2π ·

n∑
k=0

k, with f = 2π/m (A.39)

rn becomes:

rn = r0 ·
√√√√1 + 2π ·

n∑
k=0

k −
√√√√1 + 2π ·

n−1∑
k=0

k

 (A.40)

It converges to r0 ·
√
π = 1 for n→∞:

rn = r0 ·
√√√√1 + 2π ·

n∑
k=0

k

1−
√

1 + 2π ·∑n−1
k=0 k

1 + 2π ·∑n
k=0 k

 (A.41)

= r0 ·
√

1 + π · n(n+ 1)

(
1−

√
1− 2πn
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k=0 k
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= r0 ·
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1 + π · n(n+ 1)

(
1−

√
1− 2πn

1 + π · n(n+ 1)

)
(A.43)

∼
n→∞ r0 · n ·

√
π

(
1−

√
1− 2

n

)
(A.44)

∼
n→∞ r0 · n ·

√
π

(
1− (1− 1

2
· 2
n

)
)

(A.45)

∼
n→∞ r0 ·

√
π (A.46)

∼
n→∞ 1 (A.47)

If we want to be sure that voxels are smaller than a given surface, we should choose the
following formulation: ceil(2 ∗ π/m ∗ [1 : 7]). Reference surface is given by π · r2

0. The
equivalence of a 1 × 1 × 1 mm3 voxel in Cartesian coordinates corresponds to a radius r0

that is equal to 1/
√
π ' 0, 564 mm.

Radii do not depend on the number of sectors m. However, the number of crowns will
be di�erent, depending on the number of symmetries/sectors. In table 6.1, the number of
voxels per crowns is given by: round(2 ∗ π/m ∗ [1 : 7]).

It is noticeable that all voxels have more or less equal surfaces. The point is that at
in�nity (but it works well far before), sides of any voxels are equal.

6.2 General remarks

It has to be noticed that we can have more projections than the number of invariants in the
cylindrical image representation. Let say we want 60 projections and the object represen-
tation is made of 12 invariants. Transition matrix will be calculated for the �rst 60/12 = 5
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crowns
nb sectors frq 1 2 3 4 5 6 7

m=3 2π/3 ' 2 2 (4.5%) 4 (4.5%) 6 (4.5%) 8 (4.5%) 10 (4.5%) 12 (3.4%) 14 (2.3%)
m=4 2π/4 2 (27%) 3 (4.5%) 5 (6.1%) 6 (4.5%) 8 (1.9%) 9 (4.5%) 11 (0.04%)
m=6 2π/6 ' 1 1 (4.5%) 2 (4.5%) 3 (4.5%) 4 (4.5%) 5 (4.5%) 6 (4.5%) 7 (4.5%)
m=8 2π/8 1 (27%) 2 (27%) 2 (15%) 3 (4.5%) 4 (1.9%) 5 (6.1%) 5 (9.1%)
m=12 2π/12 ' 0.5 1 (91%) 1 (4.5%) 2 (27%) 2 (4.5%) 3 (14.6%) 3 (4.5%) 4 (9.1%)
m=24 2π/24 ' 0.25 1 (280%) 1 (91%) 1 (27%) 1 (4.5%) 1 (23%) 2 (27%) 2 (9.1%)

m=3

m
=
4

m=6 m=
8

m
=
12

m=24

Figure A.5 � Voxel distribution, depending on the number of sectors m

projections, and the rest of the transition matrix will be deducted from this elementary ma-
trix. This reduces by a factor of 12 the calculation time of the transition matrix, and by a
factor of 12 the RAM requirement.

6.3 Discussion

Similar analysis could be done in spherical coordinates. The point is that the observations
would be more informative because less correlated since they are taken from wider points of
view than in classic tomographies where detectors acquire information around a unique axis.



Notations

v vector notations are bold, with lower case
M matrix notations are bold with upper case
A static transition matrix, alias system matrix
y measured data for one acquisition
λ spatial variables to be estimated through reconstruction algorithms
X Spatial components in the spatiotemporal reconstructions

Every column of X corresponds to one component
K Kinetics components in the spatiotemporal reconstructions

Every row of K corresponds to one component
η model of acquired data
T the transposition operator
M number of pixels in all detectors
N number of voxels in reconstructed
T number of time frames in acquisitions
m subscript of one of the M pixels, m ∈ [1,M ]
n subscript of one of the N voxels, t ∈ [1, N ]
t subscript of one of the T time frames, t ∈ [1, T ]
FOV Field-of-View
m Quantity of mass (g)
F Fourier transform, either 1D or 2D transformations depending on the sequences it is applied to
F−1 Inverse Fourier transform
A Mathematical representation of a coded aperture
G Decoding matrix
⊗ periodic correlation
? convolution operator
∗ element-by-element multiplication
CP (t) radiotracer concentration in plasma at time t
ki,j rate constant from compartment i to compartment j
CBV cerebral blood volume
TAC time activity curve
AUC area under the curve
DV distribution volume
BSA blood surface ratio
MRGlu metabolic rate of glucose
CMRGlu cerebral metabolic rate of glucose
ICA independent component analysis
NMF non-negative matrix factorisation
MLEM maximum-likelihood expectation-maximisation
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Résumé Cette thèse traite de l'estimation de la concentration dans le sang artériel de
molécules marquées par un radioélément émettant des positons. Cette concentration est ap-
pelée �fonction d'entrée artérielle β+�. Elle doit être déterminée dans de nombreuses analyses
en pharmacocinétique. Actuellement, elle est mesurée à l'aide d'une série de prélèvements
artériels, méthode précise mais nécessitant un protocole contraignant. Des complications
liées au caractère invasif de la méthode peuvent survenir (hématomes, infections nosocomi-
ales).

L'objectif de cette thèse est de s'a�ranchir de ses prélèvements artériels par l'estimation
non-invasive de la fonction d'entrée β+ à l'aide d'un détecteur externe et d'un collimateur.
Cela permet la reconstruction des vaisseaux sanguins a�n de discriminer le signal artériel
du signal contenu dans les autres tissus avoisinants. Les collimateurs utilisés en imagerie
médicale ne sont pas adaptés à l'estimation de la fonction d'entrée artérielle β+ car leur
sensibilité est très faible. Pour cette thèse, ils sont remplacés par des collimateurs codés,
issus de la recherche en astronomie. De nouvelles méthodes pour utiliser des collimateurs à
ouverture codée avec des algorithmes statistiques de reconstruction sont présentées.

Des techniques de lancer de rayons et une méthode d'accélération de la convergence
des reconstructions sont proposées. Une méthode de décomposition spatio-temporelle est
également mise au point pour estimer e�cacement la fonction d'entrée artérielle à partir
d'une série d'acquisitions temporelles.

Cette thèse montre qu'il est possible d'améliorer le compromis entre sensibilité et réso-
lution spatiale en tomographie d'émission à l'aide de masques codés et d'algorithmes statis-
tiques de reconstruction ; elle fournit également les outils nécessaires à la réalisation de telles
reconstructions.

Abstract This work deals with the estimation of the concentration of molecules in arterial
blood which are labelled with positron-emitting radioelements. This concentration is called
�β+ arterial input function�. This concentration has to be estimated for a large number
of pharmacokinetic analyses. Nowadays it is measured through series of arterial sampling,
which is an accurate method but requiring a stringent protocol. Complications might occur
during arterial blood sampling because this method is invasive (hematomes, nosocomial
infections).

The objective of this work is to overcome this risk through a non-invasive estimation of
β+ input function with an external detector and a collimator. This allows the reconstruction
of blood vessels and thus the discrimination of arterial signal from signals in other tissues.
Collimators in medical imaging are not adapted to estimate β+ input function because their
sensitivity is very low. During this work, they are replaced by coded-aperture collimators,
originally developed for astronomy.

New methods where coded apertures are used with statistical reconstruction algorithms
are presented. Techniques for analytical ray-tracing and for the acceleration of reconstruc-
tions are proposed. A new method which decomposes reconstructions on temporal sets and
on spatial sets is also developped to e�ciently estimate arterial input function from series of
temporal acquisitions.

This work demonstrates that the trade-o� between sensitivity and spatial resolution in
PET can be improved thanks to coded aperture collimators and statistical reconstruction
algorithm; it also provides new tools to implement such improvements.
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