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Résumé

La majorit des algorithmes de reconstruction de surface sont optimiss pour sappliquer des
donnes de haute qualit. Les rsultats obtenus peuvent alors tre inutilisables si les donnes provi-
ennent de solutions dacquisition bon march.

Notre premire contribution est un algorithme de reconstruction de surfaces partir de donnes
de stro vision. Il combine les informations lies aux points 3D avec les images calibres afin de
combler limprcision des donnes.

Lalgorithme construit une collection de triangles 3D laide des images calibres et lissue dune
phase de prtraitement du nuage de points. Pour pouser au mieux la surface de la scne, on
contraint cette soupe de triangle 3D respecter des critres de visibilit et de photo-consistance.
On calcule ensuite un maillage partir de la soupe de triangles laide dune technique de recon-
struction qui combine les triangulations de Delaunay contraintes et le raffinement de Delaunay.

Notre seconde contribution est un algorithme qui construit, partir dun nuage de points 3D
chantillonns sur une surface, un maillage de surface qui reprsente fidlement les artes vives. Cet
algorithme gnre un bon compromis entre prcision et complexit du maillage. Dans un premier
temps, on extrait une approximation des artes vives de la surface sous-jacente partir du nuage
de points. Dans un deuxime temps, on utilise une variante du raffinement de Delaunay pour
gnrer un maillage qui combine les artes vives extraites avec une surface implicite obtenue partir
du nuage de points. Notre mthode se rvle flexible, robuste au bruit; cette mthode peut prendre
en compte la rsolution du maillage cibl et un champ de taille dfini par lutilisateur.

Nos deux contributions gnrent des rsultats efficaces sur une varit de scnes et de modles. Notre
mthode amliore ltat de lart en termes de prcision.
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Abstract

Tremendous progress has been made in recent years in 3D acquisition techniques. These de-
velopments triggered a growing demand for increasingly more accurate reconstruction of 3D
digital models. However, most of the current algorithms target surface reconstruction from
high quality data and can produce some intractable results when used with point clouds ac-
quired through profitable 3D point cloud acquisition methods. Also, over the past three decades
both surface reconstruction and mesh generation problems were addressed separately.

The first contribution of this thesis is the development of a simple yet original surface recon-
struction algorithm from stereo vision data. Our algorithm copes with the fuzziness of the data
by using information from both the multi-view passive stereo extracted 3D point clouds and
the calibrated images. After filtering and smoothing the point cloud, the algorithm builds for
each calibrated image a triangular depth map respecting the main contours of the image. The
triangles of all depth maps are then lifted in 3D space and merged together into a triangular
soup. Using a combination of both visibility and photo-consistency constraints, we filter the
soup to further enforce it’s consistency with the surface of the scene. Finally, a mesh is com-
puted from the triangle soup using a reconstruction method that combines restricted Delaunay
triangulation and Delaunay refinement.

Our second contribution is an algorithm that builds, given a 3D point cloud sampled on a
surface, an approximating surface mesh. We aim at an accurate representation of surface sharp
edges, providing an enhanced trade-off between accuracy and mesh complexity. We first extract
from the point cloud an approximation of the sharp edges of the underlying surface. Then a
feature preserving variant of a Delaunay refinement process generates a mesh combining a
faithful representation of the extracted sharp edges with an implicit surface obtained from the
point cloud. The method is shown to be flexible, robust to noise and tunable to adapt to the
scale of the targeted mesh and to a user defined sizing field.

Also we demonstrate the effectiveness of both contributions on a variety of scenes and models
acquired with different hardware and show results that compare favorably, in terms of accuracy,
with the current state of the art.
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The gods did not reveal
all things to men at the start;
but as time goes on, by searching,
they discover more and more.

Xenophanes (570-475 B.C.) 1
Introduction

1.1 Motivations

The generation of computer models that can satisfy high modeling and visualization demands
is required in different applications, way beyond the well established video-games market. Ap-
plications can range from preservation of historical heritage to e-commerce through computer
animation, movie production and virtual reality walkthroughs.

Although all the aforementioned applications require some specific processes, they can be classi-
fied by their final goal which is visualization, simulation or numerical calculation. One common
trend between all these applications is the ever increasing demand for accurate and usable com-
puter model of a physical object which best fits the underlying reality, be it to render high
definition images of the object from arbitrary view points under different lighting conditions,
or for accurate computations and simulations.

There are two common approaches to create computer models: either the geometry is designed
from scratch using some interactive modeling software, or the geometry is digitized from a
physical object using some data acquisition hardware and algorithms for reconstructing models
from the acquired 3D data. With the current advances in 3D data acquisition hardware, as well
as the advances of performance of commodity computers with graphics display capabilities, the
acquisition and model reconstruction approach is becoming more and more popular. Indeed,
in this thesis we will follow this trend and investigate the topic of surface reconstruction from
3D data acquired from a physical object.

The standard acquisition techniques can be roughly divided into two main categories: acqui-
sition by contact or acquisition without contact. In the first case, the shape is acquired by
touching the surface of the object on each relevant side with an adapted instrument. In this
thesis we rather focus on the second category of techniques, that is, when data is acquired from
the object by means of contact-free methods. More precisely, we are interested in the case were
3D point clouds are derived from laser scanners or by photogrammetric image measurements,
i.e. multi-view passive stereo.

Early work on surface reconstruction has been focused on data acquired from laser scanners.
Although most of these reconstruction methods are reported as successful; the nature of the
laser scanners greatly limits their usefulness for the type of scene we are particularly interested
in, that is, large scale outdoor scenes. The recent advances in automated multi-view passive
stereo matching algorithms can be seen as a valuable alternative for data acquisition. These
techniques can produce dense point clouds with a precision getting closer to laser scanner
measurements [Seitz et al., 2006]. However, the produced point clouds contain high levels of

1
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noise and lots of outliers. This is principally due to the unavoidable mismatches between images.
Therefore, it is often quite difficult to turn the generated point clouds into polygonal meshes
of high quality using the standard surface reconstruction methods. As such, these surface
reconstruction methods may produce rather incorrect or intractable results from these point
clouds. Consequently, it is safe to say that the correct reconstruction method depends on the
application first and for each application the right algorithm must be used.

While reconstruction of smooth surfaces from point sets has received a considerable amount
of efforts in the past twenty years, adding the piecewise property to the topic is enough to
reduce the number of publications by at least an order of magnitude. We can further narrow
the taxonomy by distinguishing the work which assumes that the features have been detected
from the input 3D point cloud and aim at preserving them, from the ones which recover the
features during reconstruction without having to extract them a priori. One more step in the
narrowing of the previous work can be made by listing the techniques able to achieve piecewise
smooth reconstruction from sparse and noisy data sets.

Of course, several techniques for post-processing (smoothing or fairing) the reconstructed sur-
face while preserving the features, be they tagged or inferred, exist. In this thesis we aim at
conceiving a reconstruction algorithm which would achieve both feature detection and mesh
generation altogether. This issue becomes even more challenging when the input data set is
entangled with noise. Furthermore, the feature detection and reconstruction process should
take into into account both the scale of the final reconstructed scene and the targeted budget
for the size of the output mesh.

This thesis is strongly related to an ANR (Agence Nationale de Recherche or French National
Research Agency) project, called Gyroviz1 (N◦ ANR-07-AM-013), whose goal is to produce au-
tomatic reconstruction of large scale outdoor scenes, typically scenes from cities, from sequences
of digital images. The Gyroviz project is an ambitious project carried on by a consortium com-
posed of complementary skills as it is depicted in Figure 1.1. In this project, the camera will
be equipped with motion and rotational tracking systems and the resulting information will be
used to speed up the stereo vision processing of the images to generate dense 3D point clouds.
The subject of this thesis addresses the next step in the reconstruction pipeline, where the set
of 3D points, outcome from the multi-view passive stereo processing of images, must be turn
into a mesh that is a pertinent and accurate representation of the scene.

1.2 Contributions

As already mentioned, substantial progress has been achieved in data acquisition through multi-
view passive stereo techniques. However, only a few reconstruction algorithms tackle success-
fully the problem of generating a 3D mesh that is a pertinent and accurate representation of
the scene from these acquired point clouds. In this thesis we approach this problem in the form
of two contributions described hereafter.

The first contribution of this thesis is the development of a simple yet original approach that
uses both the multi-view passive stereo extracted 3D point cloud and the calibrated images.
Our method is a three-stage process in which, the first stage pre-processes the extracted 3D
points through merging, filtering and smoothing. The second stage builds for each calibrated
image a triangular depth map respecting the main contours of the image. The triangles of all
depth maps are then lifted in 3D and merged together into a triangular soup. We advocate
for the combination of both visibility and photo-consistency constraints to further enforce the

1http://gyroviz.fr

http://gyroviz.fr
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Figure 1.1: The Gyroviz processing line and consortium members (blue).

consistency of the triangle soup with the surface of the scene. Finally, a mesh is computed from
the triangle soup using a reconstruction method that combines restricted Delaunay triangulation
and Delaunay refinement.

The proposed approach is evaluated through practical experiments and is compared to several
other methods: the method is shown to compare favorably with the state of the art when dealing
with significantly parched datasets as input and without any post-processing to improve the
precision of the resulting meshes. Parts of this work were integrated into a Cgal package
described in Appendix A.

Given a potentially noisy 3D point cloud, acquired by laser scanners, sampled on a piecewise
smooth surface, our second contribution is an algorithm that builds a mesh approximating
the surface with an accurate representation of the surface sharp edges, providing an enhanced
trade-off between accuracy and mesh complexity. For that, we base our method on a new robust
feature detection process based on the covariance matrices of the Voronoi cells. Our algorithm
first extracts from the point cloud an approximation of the sharp edges of the underlying surface.
A feature preserving variant of a Delaunay refinement process is then used to generate a mesh
combining a faithful representation of the extracted sharp edges with an approximation of the
implicit surface obtained from the point cloud by an implicit reconstruction process.

The proposed approach is shown to be flexible, robust to noise and tunable to adapt to the
scale of the targeted mesh and to a user defined sizing field. We demonstrate the effectiveness
of our new method on a variety of models including real scanned 3D data from indoor and
outdoor scenes.

1.3 Outline

The remainder of this thesis is organized as follows:

Chapter 2

In this chapter we give some background on the basic computational geometry concepts men-
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tioned throughout this thesis: Delaunay triangulations 2.1, and their weighted counterparts 2.2,
Medial axis and ε-sampling 2.3, Haussdorf Distance 2.4, and Restricted Delaunay triangula-
tion 2.5. The reader acquainted with these notions can safely skip this chapter.

Chapter 3

In this chapter we present in more details the input data and we provide practical details on
the acquisition techniques that are involved. We start by a quick overview of two common
laser range scanning techniques, namely time-of-flight and triangulation systems. Then two
different approaches we borrow to compute point clouds from supposedly calibrated images are
presented. We also present the goals that the Gyroviz project wishes to attain, as well as the
scientific and technical challenges to meet.

Part I: From 3D point clouds to meshes: State of the art

Chapter 4

In this chapter we propose, through a thorough survey, a classification of the different existing
surface reconstruction methods from 3D point clouds, with a particular attention on techniques
that are viable for datasets entangled with noise and possibly outliers. We also try to highlight
their pros and cons regarding the flexibility we wish to attain. The conclusion is drawn that most
of the mentioned methods target reconstruction from high quality range data. Consequently
there is a need for a surface reconstruction algorithm that is viable for point sets coming from
multi-view passive stereo acquisition methods. We recall that these point clouds are entangled
with noise and contain lots of outliers.

Chapter 5

In this chapter we propose an elaborate review of existing simplicial mesh generation methods.
We start by defining what is a simplicial mesh before describing the three main research direc-
tions followed in this domain. The conclusion is drawn that most researchers have seen surface
reconstruction and mesh generation as two separate problems. Only few papers combine both.
Consequently, combining both surface reconstruction and high quality mesh generation is a
research direction we got interested in and that we will expose in Chapter 7.

Part II: From 3D point clouds to meshes: Our contributions

Chapter 6

In this chapter we propose a novel method for reconstructing a 3D model from a point cloud
acquired from a set of calibrated images of a large scale outdoor scene. We start by giving
some background on the Delaunay refinement surface mesh generation method we employ, we
describe our method for multi-view reconstruction from calibrated images and we report some
numerical experiments which demonstrate that our results compare favorably with the current
state of the art.

Chapter 7

In this chapter we present a novel method for computing a feature preserving mesh from 3D
point clouds. We start by presenting the evolution of the literature from smooth to piece-
wise smooth surface reconstruction before presenting the few mesh generation algorithms that
combine surface reconstruction and mesh generation while preserving sharp features. Then,
we describe our method for point clouds possibly containing noise. Finally, we report some
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numerical experiments which demonstrate the effectiveness, robustness and flexibility of our
approach for the generation of compact, high-quality feature preserving meshes from various
datasets including point clouds acquired by laser scanners.

Chapter 8

This last chapter summarizes the contributions of this thesis, the benefits of the proposed ap-
proaches, recalls their limitations and the possible tracks for future work.

Appendix A

This appendix describes the point set processing toolbox we developed and made publicly
available through Cgal. It is particularly useful in order to filter and smooth point clouds
(Chapter 6), also to orient normals attached to the points (Chapter 7).

1.4 Publications of the author

• N. Salman and M. Yvinec. Video: High resolution surface reconstruction from overlap-
ping multiple-views. In Proceedings of the 25th Annual Symposium on Computational
Geometry, June 2009.

• N. Salman and M. Yvinec. Surface reconstruction from multi-view stereo. In ACCV
Workshop on Representation and Modeling of Large-Scale 3D Environments (Modeling-
3D), September 2009.

• P. Alliez, L. Saboret and N. Salman. Point set processing. In CGAL User and Reference
Manual. CGAL Editorial Board, 3.6 edition, October 2009.

• N. Salman, M. Yvinec and Q. Mérigot. Feature preserving mesh generation from 3D point
clouds. In Proceedings of the Eurographics Symposium on Geometry Processing, Lyon,
France, July 2010.





Do not worry about your
difficulties in mathematics,
I assure you that mine are greater.

Albert Einstein (1879-1955) 2
Background

I
n this chapter, we give some background on the basic computational geometry con-
cepts that are need in this thesis. We start by recalling some definitions and prop-
erties concerning the Delaunay triangulations of a set of points of Rd, and their

weighted counterparts. We then call back the notions of medial axis and ε-sampling of a
surface immersed in R3, followed by the notion of Hausdorff distance, restricted Delaunay tri-
angulation and its applications to surface mesh generation. For a comprehensive treatment and
for references to the extensive literature on the subject one may refer to the following books
[Boissonnat & Yvinec, 1998, de Berg et al., 2008] and research report [Cazals & Giesen, 2004].

2.1 Delaunay triangulations

Let P = {pi}i=1,...,n be a finite set of points in Rd.

2.1.1 Voronoi diagram

The Voronoi diagram associated to P, denoted V (P), is a cellular decomposition of Rd into
d-dimensional convex polytopes called Voronoi cells. There is one cell for each point pi of P
and the Voronoi cell of a point pi, denoted V (pi), is composed of the set of points of Rd closer
to pi than to any other point in P:

V (pi) = {p ∈ Rd : ∀j 6= i, ‖p− pi‖ ≤ ‖p− pj‖} .

The Voronoi cell V (pi) can also be considered as the intersection of n−1 half-spaces. Each such
half-space contains pi and is bounded by the bisector planes of segments [pipj ], j 6= i. V (pi) is
therefore a convex polytope, possibly unbounded.

In two dimensions, Voronoi edges, are the edges shared by two Voronoi cells, and Voronoi
vertices are the points shared by three or more Voronoi cells. In three dimensions, Voronoi
facets, edges and vertices are the geometric structures shared by two, three and four Voronoi
cells respectively.

7
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Figure 2.1: The Voronoi diagram of a set of points (red) is dual to the Delaunay triangulation
(blue), which satisfies the empty circle property (orange).

2.1.2 Delaunay triangulation

The Delaunay complex D(P) of P is the geometric dual of the Voronoi diagram V (P) in the
following sense. Whenever a collection V (p1), . . . , V (pk) of Voronoi cells have a non-empty
intersection, the convex cell whose vertices are p1, . . . , pk belongs to the Delaunay complex.
If we assume that the sampling P is in general position, i.e. includes no subset of d + 2
cospherical points, any cell in the Delaunay complex is a simplex. This cellular complex is then
a triangulation, called the Delaunay triangulation. It describes a partition of the convex hull
of P into d-dimensional simplices (edges for d = 1, triangles for d = 2, tetrahedra for d = 3).

Each simplex in the Delaunay triangulation is dual to a Voronoi face. In two dimensions, the
dual of a Delaunay triangle is the Voronoi vertex which is also the circumcenter of the triangle.
In three dimensions, each Delaunay tetrahedron is the dual of a Voronoi vertex which is the
tetrahedron’s circumcenter. The dual of a Delaunay facet is a Voronoi edge, the dual of a
Delaunay edge is a Voronoi facet, and the dual of a Delaunay vertex pi is a Voronoi cell V (pi).
Figure 2.1 illustrates these different dual relationships in two dimensions.

The Delaunay triangulation can also be defined through the empty circle (respectively empty
sphere in 3D) property [Delaunay, 1934]. A triangle (respectively a tetrahedron) is in the
Delaunay triangulation if and only if its circumcircle (respectively its circumsphere) does not
enclose any other points of P.

This type of triangulation comes with several nice properties that explain its frequent use in
geometric modeling, especially in surface reconstruction. In particular in 2D, the Delaunay
triangulation maximizes the smallest of its triangles angles. Another useful property is that its
external facets form the boundary of the convex hull of the set of triangulated points.

Complexity In 3D, the algorithmic complexity of the Delaunay triangulation is O(n2) or
more generally O(nlogn + nd

d
2 e) in d-dimensions [Boissonnat & Yvinec, 1998]. For a locally

uniform ε-sampling of a surface, the number of cells in the 3D Delaunay triangulation is quasi-
linear compared to n [Attali et al., 2003].
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Figure 2.2: A constrained Delaunay triangulation. Point A is invisible from the yellow triangle,
the triangle BFE is said constrained Delaunay.

2.1.3 Constrained Delaunay triangulation

The definition of a two dimensional constrained Delaunay triangulation is based on a notion
of visibility. Let G be a set of constraints forming a straight-line planar graph. Two points p
and q are said to be visible from each other if the interior of segment [pq] does not meet any
segment of G. A constrained Delaunay edge is an edge such that there exists a circle through the
endpoints of e that encloses no vertices of T visible from an interior point of e (see Figure 2.2).
The triangulation T of a set of points in R2 is a constrained Delaunay triangulation of G, if
each edge e of T is either an edge of G or a constrained Delaunay edge.

2.2 Power diagram and regular triangulation

Here we take as our finite set of objects a set of balls (instead of points) and consider as distance
function of a point p to a ball B(c, r) of radius r centered at c in Rd, the power of p to B.

2.2.1 Power diagram

We call power of a point p to a ball B(c, r) the real number

dpow(p,B) = ‖p− c‖2 − r2 .

Let B1(c1, r1) and B2(c2, r2) two balls in Rd. The power distance between B1 and B2 is defined
as follows:

dpow(B1, B2) = ‖c1 − c2‖2 − r2
1 − r2

2 .

By using this distance we can generalize the Voronoi diagram of a set of points to a set of balls
B = {B1, . . . , Bn} such that the power cell P (Bi) of a ball Bi is the region of space where a
non-weighted point p is closer to Bi, in terms of power distance, than to any other ball in B:

P (Bi) = {p ∈ Rd : ∀j 6= i, dpow(p,Bi) ≤ dpow(p,Bj)} .

It can be easily shown that the bisector, in terms of power distance, of two balls is a hyperplane
orthogonal to the line passing through their centers. This corresponds to the bisector of their
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Figure 2.3: The power diagram (left) and regular triangulation (right) of a set of five circles.

centers if they have equal radii. The intersection (non-empty) of the half-spaces bounded by
the bisecting hyperplanes between Bi and Bj for all i 6= j and that contains the points of space
with smaller power distance to Bi than to Bj , is a convex polytope.

The different power cells of B induce the power diagram: the cell complex containing power
regions and their faces. Note that similarly to the Voronoi cells, power cells may be unbounded.
The power diagram of a set of balls of equal radii coincides with the Voronoi diagram of their
centers. Power diagrams are very similar to Voronoi diagrams: the main difference is that some
balls may have an empty power region. Figure 2.3 illustrates a two-dimensional example of the
power diagram of five circles.

2.2.2 Regular triangulation

Taking the geometric dual of the power diagram yields what is called the regular triangula-
tion. The duality is defined in exactly the same way as for Voronoi diagrams and Delaunay
triangulations. That is why regular triangulations are also referred to as weighted Delaunay
triangulations. Namely, the regular triangulation contains an edge between the centers of two
balls if and only if their associated power cells share a common facet. As for points, we obtain a
triangulation of the centers of the balls in B, i.e. a partition of their convex hull into simplices
of dimension d. Similarly to the power diagram, the regular triangulation of a set of balls of
equal radii corresponds to the Delaunay triangulation of their centers. Figure 2.3 illustrates a
two dimensional example of the regular triangulation of five circles.

Two balls are orthogonal if their power distance is zero. In Rd, d + 1 balls have a unique
common orthogonal ball called the power ball. It can be straightforwardly verified that this
ball coincides with the circumsphere of their centers if they are all zero weighted points. The
empty sphere property of the Delaunay triangulation extends to the case of power distance. A
triangulation of a set of balls is regular if the power balls of all simplices are regular, i.e. their
power distances to all the balls is non-negative.

A ball can intersect or not its associated power cell, it can also have no power region in the
diagram, in which case no power cell is associated to it. A ball with no associated power cell
does not appear in the regular triangulation.
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Figure 2.4: Medial axis of a planar curve S.

2.3 Medial axis and ε-sampling

Let S be a smooth surface immersed in R3 and P ⊂ S a finite sample of points on the surface
S.

2.3.1 Medial axis

A ball in R3 is said to be empty if it does not contain any point of S inside of it. An empty
ball is maximal if it is not included in any other empty ball. The medial axis M(S) of S is the
set of all centers of maximal empty balls. The maximal empty balls are tangent to S in two or
more points (exception at the curvature maximum) of S. Figure 2.4 illustrates the medial axis
of a planar domain.

The transformation that associates to a shape its medial axis is not continuous. A small
perturbation of the shape can lead to a big perturbation of the medial axis. Thus, it is hard to
compute the medial axis. We can however get a stable approximation of the medial axis of a
surface from the Voronoi diagram of a sample of points on the surface [Attali et al., 2009].

2.3.2 Local feature size

The local feature size at a point x ∈ S, noted lfs(x), is a function lfs : S → R that measures the
minimal distance of x to the medial axis M(S) of S:

lfs(x) = min
y∈M(S)

‖x− y‖ .

In their work [Amenta & Bern, 1998] proved that the local feature size is a 1-Lipschitz function,
i.e. lfs(x) ≤ lfs(y) + ‖x− y‖ for all x, y ∈ S.

The function lfs can be seen as a measure of both the thickness and the local curvature of
an object. Ambiguities arise in reconstruction processes as soon as the samples are not dense
enough with respect to the local feature size of the shape.
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2.3.3 Sampling conditions

The sampling conditions allow to deduce properties of the surface from the point sample, and
in particular to estimate normals.

ε-sample A point sample P is called ε-sample of a surface S if and only if for each point
x ∈ S, there exist a point p ∈ P at distance at most εlfs(x), i.e. ‖x− p‖ ≤ εlfs(x).

The ε-sample criterion guarantees that a surface S is densely sampled in the regions of high
curvature and where two separate layers of the surface get close to each other. On one hand
[Dey et al., 2003] and on the other [Funke & Ramos, 2002] introduced the more general notion
of locally uniform ε-sample.

(ε, δ)-sample A point sample P is called (ε, δ)-sample of a surface S for δ < ε ≤ 1 if P is an
ε-sample of S and ‖p− q‖ ≥ δlfs(p) for all p, q ∈ P.

The ε-sample criterion gives a lower bound over the density of the sample, while the criterion
based on δ gives an upper bound and controls the position of the sample points to ensure a
certain uniformity of the sampling.

2.4 Hausdorff distance

The Hausdorff distance is a measure of the distance of two subsets of some metric space. In
this thesis we are interested in the case where these subsets are surfaces in R3.

Given two closed subsets X,Y of R3, the one-sided Hausdorff distance denoted h(X,Y ) is
defined as:

h(X,Y ) = max
x∈X

min
y∈Y
‖x− y‖ .

The one-sided Hausdorff distance, not as the name might suggest, is not a distance measure since
in general it is not symmetric. Symmetrizing h yields the Haussdorff distance as H(X,Y ) =
max (h(X,Y ), h(Y,X)) (see Figure 2.5).
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Figure 2.6: Left: the Voronoi diagram (red) and the Delaunay triangulation edges (blue) of a
point set restricted to a planar closed curve S. Right: on the top, the equivalent of a surface
Delaunay ball for a planar closed curve S; on the bottom, the center of a surface Delaunay ball
of a facet f ∈ DS(P) is the intersection of the Voronoi edge e, dual of f , with the surface S.

2.5 Restricted Delaunay triangulation and mesh generation

The notion of restricted Delaunay triangulation to a surface was first introduced by [Chew, 1993]
through a surface sampling algorithm, and then formalized by [Edelsbrunner & Shah, 1997],
who studied its properties. In particular they proved that the restricted Delaunay triangulation
is homeomorphic to the surface under some sampling conditions.

We call restricted Delaunay triangulation of P to S, denoted by DS(P), the sub-complex of the
Delaunay triangulation D(P) formed by the so-called restricted simplices. A simplex is said to
be restricted to S if its dual Voronoi simplex intersects S. In three dimensions, the Delaunay
triangulation restricted to a surface is formed of the Delaunay faces whose dual Voronoi faces
intersect the surface. Left part of Figure 2.6 illustrates an example in two dimensions.

Let f be a facet of DS(P) and let e be its dual Voronoi edge, any point of e∩S is the center of
a circumball of f empty of points of P. Hereafter, such a ball is called a surface Delaunay ball
of P (see right part of Figure 2.6).

Edelsbrunner and Shah proved that DS(P) is homeomorphic to S if each Voronoi cell satisfies
the closed ball property, that is if every Voronoi cell is homeomorphic to a closed ball. In
their work, [Amenta et al., 2000] proved that if P is an ε-sample, with ε ≤ 0.06, then the
restricted Delaunay triangulation DS(P) is a piecewise smooth linear surface homeomorphic
to S. From a geometrical point of view, the Hausdorff distance between DS(P) and S can be
made arbitrarily small, and normals and curvature can be consistently approximated from the
restricted Delaunay triangulation.

Building on these results, the meshing algorithm of [Boissonnat & Oudot, 2005] maintains the
restricted Delaunay triangulationDS(P) of a sampling P of the surface, and refines the sampling
P until it is dense enough for the restricted Delaunay triangulation to be homeomorphic to the
surface S and to be a good approximation of S in the Hausdorff sense. For a more detailed
description of this algorithm please refer to Section 6.2.1, and to Chapter 5 for a broad view
on the main automatic simplicial mesh generation techniques.





When you can measure
what you are talking about
and express it in numbers,
you know something about it.

William T. Kelvin (1824-1907) 3
Acquisition of data sets

D
ifferent technical solutions have been developed to acquire 3D coordinates of points on
an object surface. In this chapter we will briefly review some of the principal solutions
in order to help the reader understand the data sets used to evaluate our reconstruc-

tion algorithms. For more details we refer the reader to the course notes [Curless & Seitz, 2000]
and PhD thesis [Labatut, 2009].

First, a quick overview of laser range scanning techniques is presented, then two different
approaches to compute point clouds from supposedly calibrated images are provided. Finally,
we will present the novel idea behind the Gyroviz project whose main motivation stems from
the observation of the limitations of the previous stereo approaches. Also, the availability of
lines of sight information associated to the point clouds acquired by means of multi-view passive
stereo is underlined. As will be seen in Chapter 6, this information will be of major importance
in our visibility based smooth surface reconstruction framework.

3.1 Point sets from laser scanners

When we want to capture an arbitrary surface, we need to sample 3D points densely across
the sequence of measurements. This consists in measuring the distance between the capturing
device and the target object. There exists a large number of optical scanners, based on different
techniques and adapted to different uses, from terrain survey and mapping to microscopic
studies. Here, we will talk about the two most common optical methods: time-of-flight and
triangulation scanning principles.

The Time-of-Flight (ToF) systems shown in Figure 3.1 work on the principle of return-time
of an emitted laser pulse. Namely, a laser pulse is emitted to the object surface and the distance
between the emitter and the reflecting surface is computed from the travel-time between pulse
emission and reception. These systems use rotating devices for the angular deflection of the laser
pulse and generally use simple algorithms for distance computation which may result in poor
accuracy. Typically, the error of the range measurements by time-of-flight systems are within
millimeters (e.g. 2mm for the Photon 120 scanner, 6mm for the ScanStation C10 scanner, 7mm
for the Optech ILRIS-3D, 10mm for the I-SiTE 8800 scanner). However, this accuracy remains
stable throughout the whole object surface as distances remain relatively short.

These systems range can reach several hundred meters and are often used in big-scale applica-
tions like scanning of terrains in different environments. In practice, the range is limited by the

15
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Figure 3.1: Time-of-flight scanner principle (left); OptechTMILRIS-3D time-of-flight LIDAR
scanner (right).

Note: One can practically attain results that challenge the maximum accuracy declared by
the ToF scanners manufacturers through a careful 3D acquisition and processing procedure
[Callieri et al., 2009].

requirement that the system does not harm pedestrians in the targeted area and by the gradual
spread of the beam with distance. Of more interest in this thesis, the use of time-of-flight
optical remote sensing technology (LIDAR) is growing rapidly, both in terms of the number of
application domains and in the prevalence of the method in real-world practice.

The second setup shown in Figure 3.2 for triangulation systems consists of an emitting
device, sending a laser beam at a defined, incrementally modified angle from one end of a
mechanical base onto the target object, and a CCD array (sensor) at the other end of this
base which records the laser beam (or stripe) positions on the object. Since the base distance
between the emitter and the sensor is known, as well as the orientation of the sensor and the
direction of the emitter, depth can be measured and the 3D position of the reflecting surface
element can be inferred.

The accuracy of triangle-based systems decreases with the square of the distance from the
emitting device to the object to measure [Everett, 1995]. Accuracy is improved however with
greater base distances between the emitter and the sensor but obviously this can also result in
“occluded” areas, to which either the emitter or the sensor loses the line of sight (see Figure 3.3).
A thorough analysis of the different source of measurement errors in triangulation range scanners
can be found in [Curless, 1997]. Accuracy therefore depends, inter alia, on the range for which
the scanner will be used. The absolute accuracy for such scanners is typically counted in a few
hundredths of a millimeter but their range is short, varying from a few centimeters to a few
meters, thus are mainly restricted to small-scale objects.

A few numbers to give orders of magnitude, the triangulation scanning device used to acquire
the dense multi-view stereo benchmark of [Seitz et al., 2006], a CyberwareTMModel 15, has a
depth accuracy of about 0.05mm to 0.2mm with a resolution of 0.25mm and one of the scanners
used in the Aim@Shape 3D scanning repository [aas, 2006], a MinoltaTMVivid, has similar
specifications (see Figure 3.4 for a small object indoor scan from the Aim@Shape repository).
In contrast, the accuracy of the LIDAR scanner used in the dense multi-view stereo benchmark
of [Strecha et al., 2008] can be of several millimeters. The size of the scanned object or scene
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Figure 3.2: Triangulation scanner principle (left); MinoltaTMVivid 910 triangulation scanner
(right).

is however significantly different: a few centimeters for the triangulation scanners, and several
decimeters for the LIDAR scanner (see Figure 3.4 for an example of a large-scale outdoor scan).

Note: Both time-of-flight and triangulation range finders are susceptible to produce a vari-
ety of incorrect points in the vicinity of edges. This is due to a weaker reflected signal, or
because the laser pulse hits the front and the back of the edge simultaneously. The coordi-
nate for a point that has hit the edge of an object will be computed based on an average,
therefore giving a noisy response for the depth value in that area. Typically, a range er-
ror may vary in this case from just a tenth of a millimeter to values of several decimeters
[Boehler et al., 2003]. This is something to keep in mind while reading Chapter 7.

object

laser
CCD

Figure 3.3: One of the acquisition problems: “occluded” areas. The visibility of the emitter
(red) and the CCD receiver (green). Some surface regions may be visible from the emitter and
not visible from the receiver and vice versa.

While technological advances on laser range scanning devices have greatly increased the avail-
ability of very high quality geometric measurements, in terms of density, uniformity and accu-
racy of sampling, some clear drawbacks raise when compared side-by-side with passive multi-
view stereo approaches:
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Figure 3.4: Point cloud from a triangulation scanner source Aim@Shape Ramses (left); from a
LIDAR scanner source Trianon (courtesy of Livio De Luca)(right).

• financial cost of scanning devices is not to be underestimated $70k-250k. It is way more
expensive than a standard consumer high-definition camera used by multi-view passive
stereo approaches;

• the acquisition process can be time consuming and necessitate laborious setups especially
for the acquisition of large-scale scenes;

• the number of generated points is huge: data acquisition rate can be quite high, reaching
more than half a million points a second for some laser scanner models (Faro Photon 120)
thus, the acquisition of billion sample points becomes more and more familiar. Such data
sets demand dedicated algorithms to either first downsample them [Wu & Kobbelt, 2004]
to make the surface reconstruction problem more tractable or require sophisticated out-of-
core [Bernardini et al., 1999] or streaming reconstruction algorithms [Bolitho et al., 2007]
to handle this huge amount of data with a reasonable memory footprint.

3.2 Point sets from multi-view passive stereo

A relevant alternative to point-sample an object or a scene is to use passive stereo techniques.
Opposed to laser scanners, high definition digital cameras are now common devices disseminated
in the mass market. However, to relate corresponding points in different images one cannot
simply rely on the acquisition of many images from various points.

Considering only the captured images, one principal problem consists in finding the struc-
ture from motion, where both the scene shape (structure) and the camera parameters (mo-
tion) consistent with a set of correspondences between the scene and image features are esti-
mated [Pollefeys et al., 2004]. In this process, the intrinsic camera parameters (focal length,
coordinates of the principal point, etc) are often supposed to be known [Nistér, 2004], or
recovered a posteriori through auto-calibration [Pollefeys et al., 2004, Triggs et al., 2000]. A
final bundle-adjustment is then typically used to optimize both camera parameters and 3D
points positions of the tracked features with a large non-linear least-squares optimization
[Triggs et al., 2000, Lourakis & Argyros, 2009]. An exhaustive overview of the methods for
estimating the epipolar geometry can be found in the computer vision reference books of
[Faugeras et al., 2001, Hartley & Zisserman, 2004].
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Figure 3.5: The epipolar geometry of two cameras indicated by their centers Ci and Cj .

In the following, we assume that n calibrated views are given, each with a corresponding image
Ii and a camera Pi that represents the mapping from the 3D point M = [x, y, z]T in a world
coordinate to its image coordinates mi = [u, v]T in Ii through the camera center Ci. We also
assume that images have been corrected for radial distortion and that the cameras are modeled
with the widely used pinhole model. Both world coordinates and image coordinates are related
by  u

v
1

 = Pi


x
y
z
1

 ,
where Pi is a a 3x4 matrix, called the perspective projection matrix. Also, we denote the
homogeneous coordinates of a vector v = [x, y, . . .]T by ṽ = [x, y, . . . , 1]T , we have

m̃i = PiM̃ .

The matrix Pi can be decomposed as Pi = A[R t] where A is a 3 x 3 matrix, called the camera
intrinsic matrix, that maps the normalized image coordinates to the original image coordinates,
and [R t], called the extrinsic parameters, the 3D rotation and translation displacement from
the world coordinate system to the camera coordinate system.

Given a point mi in the image Ii, its corresponding point mj in the image Ij is constrained
to lie on a line called the epipolar line of mi, denoted by lmi (see Figure 3.5). The line lmi is
the intersection of the epipolar plane Π, defined by mi, and the camera centers Ci, Cj , with
the image plane Ij . Furthermore, all epipolar lines of the points in the image Ii pass through
a common point ej called the epipole and defined as the intersection of the line CiCj with the
image plane Ij .

In order to match mi and mj , the following equation must be satisfied:

m̃T
j Fijm̃i = 0

where Fij is called the fundamental matrix [Luong & Faugeras, 1996] of the oriented camera
pair (i, j). Algebraically, Fijm̃i defines the epipolar line of lmi in image Ij . Intuitively, this
equation says that the correspondence in Ij of point mi lies on the epipolar line lmi .

Assuming that the choice of camera pairs is given, in the following we will briefly present two
standard point-cloud generation techniques from passive stereo. Namely, identifying “interest
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points” in the images and then matching them across the images, or by plane sweeping for
sparse depth maps computation. The two techniques we will describe and use are borrowed
from [Vu et al., 2009]. In order to test our surface fitting framework in Chapter 6 we will mainly
rely on the point clouds generated by the second approach, favoring density over matching
robustness.

3.2.1 Interest points

One common approach to acquire a 3D point cloud from a set of calibrated images is to start
by identifying interest points throughout all the images. To capture most of the geometry of
the sampled shape, [Vu et al., 2009] use two complementary types of interest points: Harris
corners which are typically lying on “corners” in images and Difference-of-Gaussian located
at the center of “blob-like” structures in images. In what follows we will briefly recall the
definitions and origins of these standard interest points.

Multi-scale Harris corners Given a grayscale two dimensional image I, this image is
convolved with a standard two dimensional Gaussian kernel with width σ

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ,

to give a scale-space representation [Lindeberg, 1993], Iσ = I∗Gσ, used to detect interest points
at local scale σ.

We now consider taking the shifted version Kσ of the image Iσ by a vector (u, v):

Kσ(x, y) = Iσ(x+ u, y + v) .

Let Iσx = ∂xI
σ and Iσy = ∂yI

σ denote the partial derivatives of Iσ. Moreover, let Gτ denote
the weighted Gaussian window function with an integration scale τ , introduced to integrate
over a weighted neighborhood of a point. The shifted image Kσ is approximated by a Taylor
expansion truncated to the first order terms:

Kσ(x, y) ≈ Iσ(x, y) + [Iσx (x, y) Iσy (x, y)]
[
u
v

]
.

The corresponding weighted sum of squared differences Sσ,τ between both images Iσ and Kσ

can then be approximated by:

Sσ,τ (u, v) ≈ (u, v)Mσ,τ

(
u
v

)
,

where Mσ,τ is called the multi-scale second moment matrix [Lindeberg & G̊arding, 1997] that
captures the intensity structure of the local neighborhood and is defined as:

Mσ,τ = Gτ ∗
(

Iσ
2

x Iσx I
σ
y

Iσx I
σ
y Iσ

2

y

)
.

Matrix Sσ,τ captures the intensity structure of the local neighborhood, thus large values of
Mσ,τ characterize corners at an image scale σ. If λ1, λ2 are the eigenvalues of matrix Mσ,τ ,
then there are three cases to be considered:

• If both λ1 and λ2 are small, so that local function Sσ,τ (x, y) is flat, the neighborhood of
a point is of approximately constant intensity, thus not an interest point.
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• If one eigenvalue is high and the other low, then only local shifts in one direction cause
little change in Sσ,τ (x, y) and significant change in the orthogonal direction; this indicates
an edge.

• If both eigenvalues are high, then shifts in any direction will result in a significant increase;
this indicates a corner.

Instead of computing explicitly the eigenvalues of Mσ,τ to find corners, strong local maxima of
the Harris measure [Harris & Stephens, 1988] applied to Mσ,τ , denoted harr(Mσ,τ ) are used:

harr(Mσ,τ ) = det(Mσ,τ )− κTr(Mσ,τ )2 = λ1λ2 − κ(λ1 + λ2)2 ,

where κ is a sensitivity parameter that has to be determined empirically. In the literature,
values in the range of 0.04 to 0.06 have been reported practicable. Also, this measure is usually
referred to as the multi-scale Harris corner measure.

Difference-of-Gaussian In the computer vision field, “blob detection” refers to the mod-
ules that aim at detecting points or regions that are either darker or brighter than the surround-
ing. One of the most common blob detectors is based on the Laplacian of the Gaussian (LoG).
Given an input image I, apply the Laplacian operator ∆ to the scale-space representation Iσ

of I:
∆Iσ = Iσxx + Iσyy = ∆(I ∗Gσ) = (∆Gσ) ∗ I .

Remark that the convolution and Laplacian operations are both linear and shift invariant, thus
their computation order can be interchanged.The LoG’s computation results in strong positive
responses for dark blobs and strong negative responses for bright blobs of size

√
σ. Using this,

the position and characteristic scale of blobs can be found by detecting strong local extrema of
the scale-normalized LoG image representation σ2∆Iσ.

In practice, the scale-normalized LoG operator can be approximated as the limit case of the
difference between two Gaussian smoothed images [Marr & Hildreth, 1980] (scale-space repre-
sentations):

σ2∆Iσ ≈ Ikσ − Iσ ,
where k is a constant multiplicative factor usually close to 1. This approach is referred to as
the Difference of Gaussians (DoG) approach. In a similar fashion as for the LoG blob detector,
blobs can be detected from scale-space extrema of the DoGs.

Note: Interest points, called keypoints in the SIFT framework [Lowe, 2004], are identi-
fied as local scale-space extrema of the DoG images. The SIFT descriptors are used by
[Labatut et al., 2007], later revamped into [Vu et al., 2009].

3.2.2 Matching interest points

Assuming that several types of interest points have been identified (multi-scale Harris corners,
DoGs), and that these image points are likely to correspond to different views of the same points
in the scene. The problem is then to decide which pairs of interest points, de facto, correspond
to the same scene 3D point.

To generate a 3D point cloud, one requires an efficient way to match them across images. All
potential pairs (i, j) of images are taken and for each interest point mi in the first image Ii of
this pair, its best possible match m+

j is sought respecting the following epipolar constraint :
m+
j should lie in a narrow band around the corresponding epipolar line lmi in the second image
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Figure 3.6: A potential match for a point can be found in a small band around the epipolar
line.

plane Ij . This situation is illustrated in Figure 3.6; the width of this band is fixed and depends
on the precision of the calibration process.

To find the best match m+
j for mi, the image region of Ij inside a window around the potential

match mj is reprojected in the reference image Ii via a plane parallel to the focal plane of the
camera Pi and passing through the potential reconstructed 3D point M . Here, it is assumed
that the scene surface is locally fronto-parallel to the camera Pi, i.e. the optical axis is aligned
with the Z-axis of the scene.

Note: Flat fronto-parallel scene surfaces are assumed in most area-based approaches. Ide-
ally, the matching window should take the distortion into account too. But, this is a “Who
comes first problem”: depth is needed for that, but depth is actually what is searched for.

The matching score can then be estimated using the Normalized Cross Correlations (NCC)
photo-consistency measure. Let W be a neighborhood around the image pixels:

< Ii,mi, Ij ,mj >=
1
|W |

∑
w∈W

[
(Ii(mi + w)− Īi(mi))× (Ij(mj + w)− Īj(mj))

]
,

with:
Īi(mi) =

1
|W |

∑
w∈W

Ii(mi + w) ,

then the NCC can be defined as follows:

NCC(Ii,mi, Ij ,mj) =
< Ii,mi, Ij ,mj >√

< Ii,mi, Ii,mi >< Ij ,mj , Ij ,mj >
.

Since the choice of an appropriate neighborhood W size is difficult, Vu et al. use a multi-level
matching strategy, where the matching criterion is the sum of Normalized Cross Correlations
for multiple fixed window sizes [Labatut, 2009].

The best matching interest point m+
j is then validated only if its matching score is above

some threshold and if it is also respectively validated the other way round, meaning that the
reference point has to be the best matching interest point of its best matching interest point.
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Figure 3.7: Plane sweeping principle. A visible point of the object lying on one of the planes
Πk at a point p, this point will be seen by both cameras with the same color. A point p′ lying
on a plane but not on the surface of the object, will not be seen by the cameras Ckey and Cref

with the same color.

It is only when both conditions are satisfied that an initial 3D point can be reconstructed from
the camera calibration and using standard triangular optimization [Hartley & Zisserman, 2004]
by minimizing the 3D point’s squared euclidean distance to the rays.

Finally, in order to take into account all possible points in other images (other than the initial
pair of images) which could match with the reference point, the initial 3D point is projected
in the other views, other potential unmatched interest points whose distance is less than a
given threshold are located using a 2D Delaunay triangulation data structure (see Section 2.1.2
for background on Delaunay triangulations). The closest unmatched interest points are then
merged with the original pair and a new 3D point is re-estimated from all the interest points.

The result of the following interest point matching step is a set of 3D points remembering
what images have observed them, with potentially high amounts of noise and outliers as it is
illustrated on the left of Figure 3.8 .

3.2.3 Sparse depth maps

When regions with large areas of insufficient textures are observed in the scene, the afore-
mentioned multi-view stereo approach, i.e. extracting and matching interest points, tends
to generate scattered points. This is particularly true in the case of large-scale architectural
outdoor scenes, where strong planar structures occur in abundance.

In their work, [Vu et al., 2009] start by computing a set of sparse depth maps between pairs of
images using a GPU-accelerated plane sweep approach [Collins, 1996, Yang et al., 2002]. The
3D space is iteratively traversed by a discrete number of equally spaced parallel planes between
the near far planes of a particular key view, as depicted in Figure 3.7. If the plane at some
depth passes through the surface of the object, the colors from the back-projected key image
and from the mapped reference images should be similar assuming Lambertian surfaces, i.e.
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surfaces that reflect light equally in all directions; conversely the colors from the back-projected
key image and from the mapped reference images will differ significantly where the surface of
the object does not intersect the plane. Vu et al. use the same thresholded multi-level NCC
measure as in Section 3.2.2 to assign the best matching depth value to the pixels of the key
view. By sweeping this plane through the 3D space between the near-far planes of the key view,
a correlation volume is generated. Applying a winner-takes-all strategy in this volume along
the rays of the key view gives then a depth map for that key view.

These initial depth maps are then fused and clusters of points are formed according to their
position in different camera frustums. An initial point set is then created by hierarchically
dividing the point clusters until the bounding boxes of their projections in the images are small
enough. This initial point set is then inserted into a 3D k-D tree [Bentley, 1975] data structure.
The latter being used to find the k nearest neighbors of each point. A plane is then fitted to
each point’s neighborhood using least-squares. The point is retained if the fit is good and its
position is iteratively refined using the aforementioned multi-level NCC matching score. The
final result is also a set of points associated to a set of cameras that have observed them. This
method generates noisy point clouds with outliers. However, it yields better results than the
aforementioned “extract and match” method on architectural scenes (see Figure 3.8 right).

While multi-view passive stereo methods start to be seen as a good alternative to laser scan-
ning devices by providing some very impressive “Yes, we can” results [Agarwal et al., 2009,
Furukawa et al., 2010, Frahm et al., 2010], these methods are nevertheless prone to errors due
to the quasi inevitable noise in the images (known also as optical and electronic noise). When
the images are noisy, the matching step in the point-sample reconstruction process becomes the
critical step. The main reason is due to the multiple possible correspondences when dealing with
a large number of images and interest points. Apart from noise in the images, mismatches are
also, algorithmically, almost inevitable leading to numerous outliers in the resulting 3D point
set. Depending on the geometry of the cameras and the repetitiveness of texture patterns, these
mismatches may even aggregate in structured groups of outliers producing non-existing struc-
tures in the point cloud. Another limitation of passive stereo is the non uniform distribution of
the sampling depending on the of textures in the scene.

The central motivation behind the Gyroviz project proposal, briefly described in the next
section, stems from the observation of the current limitations of image-based modeling systems,
which require practically a substantial amount of user interaction for the process of matching
interest points between the images. This limitation becomes even more critical when dealing
with massive image datasets. While a considerable amount of efforts has been put at solving this
issue from the algorithmic point of view [Goesele et al., 2007, Jancosek et al., 2009], the Gyroviz
project propose to address it primarily from the hardware side similar to [Pollefeys et al., 2008].

3.3 The Gyroviz project

As previously presented, for some content, automatic multi-view stereo matching procedure
is inherently an ill-posed problem, when too many degrees of freedom exist (e.g. repeated
patterns). The robustness of the process can be increased by resorting to human interaction in
order to identify and to match specific features observed in multiple images of the same scene.

The Gyroviz project intends to overcome these bottlenecks by proposing an innovative approach
for real time tracking from located frames. The idea is to couple an image acquisition device
with a set of inertial sensors in order to obtain an accurate measure of its physical location
and pose (see Figure 3.9). Both robustness and efficiency of the image matching problem are
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Figure 3.8: Point sets from multi-view passive stereo [Labatut, 2009]. Top: One of the Herz-
Jesu-p25 dataset [Strecha et al., 2008]. Left: Two different views of the point cloud generated
using interest point extraction and matching. Right: Two different views of the point cloud
generated using sparse depth maps (courtesy of Patrick Labatut).
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Figure 3.9: The Gyroviz project: Coupling an image acquisition device with a set of inertial
sensors. Left: Video camera coupled to a FOG, GPS and GuppyTMcamera. Right: Still camera
coupled to a FOG and GuppyTMcamera.

this way substantially improved, as the solution space of the matching problem is drastically
reduced, and the matching should always be provided with good initial guesses.

To support this scheme, the goal of the project is to include:

• a new specific inertial sensors based on “Fiber Optic Gyrometers” (FOG) which are at
least a thousand times more accurate than “Micro-Electro-Mechanical” (MEM) systems
and associated localization algorithms including real time inertial sensors drift compen-
sation (please refer to [Merlo et al., 2002] if interested in more details on the FOG prin-
ciples);

• a new portable acquisition system able to provide localization and shooting parameters
metadata associated to each frame. By localization we mean not only the geo-localization
of the acquisition device given by a low precision GPS device, but the very precise location
and pose of the device through six degrees of freedom including orientation.
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One geometry cannot
be more true than another;
it can only be more convenient.

Henri Poincaré (1854-1912) 4
Surface reconstruction from 3D points

G
iven only a finite set of unorganized points P = {pi}i=1,...,n assumed to lie on or near
an unknown surface S, the aim of surface reconstruction is to compute a surface S ′
from P that approximates S.

Surface reconstruction occurs in a large number of applications and has been an important
subject of research for over twenty years in the communities of computer graphics, geometric
modeling and computational geometry. In recent years, this research field has expanded signif-
icantly due to the improvements of 3D acquisition devices and algorithms (see Chapter 3). In
this chapter we propose a classification of the different existing surface reconstruction methods,
with a particular attention on techniques that are viable for datasets entangled with noise and
containing outliers. We will also try to highlight their advantages and their limits regarding
the flexibility we wish to attain.

Surface reconstruction techniques can be classified into two main approaches: the combinatorial
approach and the models fitting approach. A large number of combinatorial approaches try
to establish adjacency relations between points of a sample [Dey, 2004, Cazals & Giesen, 2006].
Most of these approaches were developed by computational geometers, who provided important
theoretical contributions to the problem of surface reconstruction, especially with the notions
of ε-sampling and restricted Delaunay triangulations to a surface. The reader can refer to
Chapter 2 for a reminder of these concepts that will be reused later on.

The second approach is based on the idea to approximate the sampled surface using a chosen
model, on the basis of global or local assumptions regarding the shape to be reconstructed.
During the last decade, the graphics community showed a strong enthusiasm for local implicit
approaches.

4.1 Combinatorial approach

The aim of combinatorial approaches is to establish adjacency relations (or connectivity rela-
tions) between neighboring points on the sampled surface. To achieve this goal without any
prior knowledge on the organization of the data set, on can rely on the topological information
that can be deduced from the proximity relations between points under some assumptions re-
garding the density of the sampling. Therefore, the combinatorial approaches exploit geometric
structures allowing to measure the proximity of points in space. Among these structures, the
Voronoi diagram and its dual Delaunay triangulation, are especially popular in computational
geometry. They present some interesting properties to solve the reconstruction problem.

29
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In the early eighties, [Edelsbrunner et al., 1983] introduced the α-shapes model in two dimen-
sions, establishing back then the first rigorous mathematical definition of the shape of a point
sample in the plane. In three dimensions, [Boissonnat, 1984] was the first to observe that the
Delaunay triangulation of a set of points sampled on the surface can contain a subset of facets
that are a good approximation of the sampled surface. Many algorithms were brought to us
since then, with the same general principle, that is, to filter the connectivity relations estab-
lished by the Delaunay triangulation to keep only the relevant ones. However, the conditions
and criteria to obtain a good approximation of the surface were not defined until much later.

Inspired by a theorem of [Edelsbrunner & Shah, 1997] stipulating that if every Voronoi face of
dimension d which intersects the surface does so in a topological (d1)-ball, then the restricted
Delaunay triangulation is homeomorphic to the surface, [Amenta & Bern, 1998] proved that if P
is an ε-sampling of a smooth surface with ε ≤ 0.1, then the restricted Delaunay triangulation of
P to S is homeomorphic to S. Naturally, in the context of surface reconstruction, the surface
S is unknown. Therefore, the large majority of combinatorial algorithms try to extract a
reasonable estimation of the restricted Delaunay triangulation from the Delaunay triangulation
of the input point sample. In practice, the sampling conditions are not always verified, for
example in the case of surfaces that are not locally differentiable. Some algorithms identify the
facets of the Delaunay triangulation whose dual Voronoi edge intersect an approximation of the
surface, in particular using estimated tangent planes, whereas other methods are based on the
idea that the surface to reconstruct separates the internal medial axis of the external medial
axis of a solid. Both informations can be obtained from the poles of the Voronoi diagram.

The connectivity relations established by the Delaunay triangulation are global by nature as
they involve all the sample points. Other combinatorial algorithms use a local approach by
considering the relation of closest neighbor in the Euclidean distance sense. These algorithms
use some adapted spacial localization data structures to obtain efficiently the nearest neighbors
of a given point.

In the following sections, we will present in more details the principal combinatorial methods.
We have chosen to divide them into three main categories depending on their nature: the
volumetric methods, the surface growing methods and the methods based on the Delaunay
triangulation using poles.

4.1.1 Volumetric methods

The volumetric surface reconstruction method was introduced by [Boissonnat, 1984] through
a Sculpturing technique. Starting from the convex hull of the point sample (the external
facets of the Delaunay triangulation), cells are removed iteratively according to a shape and
size priority criterion of the external facets, as well as topological constraints. The cell removal
process is controlled by topological constraints, i.e. by prescribing the genus of the surface
of the resulting solid. In particular, these rules limit the algorithm to reconstruct surfaces of
zero-genus. Another major limitation is that the global heuristic governing the reconstruction
process makes the result dependent on the order in which the cells of the Delaunay triangulation
are removed. In some cases, the algorithm can stop prematurely, whereas another sequence of
operations could have lead to a better result [Veltkamp, 1995]. Some algorithms that are based
on sculpturing enabling topological modifications were proposed, but remain dependent on the
order of execution of operations [Attene & Spagnuolo, 2000].

More recently several algorithms were based on the definition of ordering relations of the De-
launay triangulation cells rather than on a global heuristic based on local criteria. The process
is then no longer subject to topological conditions, and the result depends no longer on the
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traversal order of the Delaunay triangulation cells. The Wrap of [Edelsbrunner, 2003], the
Flow Complex introduced by [Giesen & John, 2003] and the Geometric Convection algo-
rithm of [Chaine, 2003] fall into this category. To put it briefly, these algorithms are interested
in the gradient field ∇d of the distance function

d : R3 → R, x 7→ d(x) = min
p∈P
‖x− p‖ ,

induced by a point sample P of the surface. These algorithms are also interested in the relation
this distance function has with the relative positioning of the Voronoi diagram of P and its
dual Delaunay triangulation.

In the Wrap algorithm, Edelsbrunner defines a flow relation on the set of cells of the Delaunay
triangulation of the sample points through the gradient field ∇d. The reconstructed surface
produced by the Wrap algorithm is a subset of the Delaunay triangulation facets forming the
boundary of the union of stable manifolds of a subset of maxima of d, consisting of the all points
that converge towards these maxima following the flow induced by ∇d. The Flow Complex
algorithm is a recursive structure of stable manifolds which provides a similar reconstruction
to that of the Wrap algorithm. More recently, [Dey et al., 2005] proved that it is possible to
generate a correct reconstruction from the Flow Complex under the hypothesis that P is an
(ε, δ)-sampling with δ

ε fixed.

The sculpturing process can also be interpreted as the evolution of a surface through the
Delaunay triangulation of the point sample. In the Geometric Convection algorithm of
[Chaine, 2003] the sculpturing process is guided by a physical convection model introduced by
[Zhao et al., 2001]. The algorithm contracts a surface encompassing the sample points under
the influence of the gradient field −∇d until it reaches a stable state. The stable state being
based on the Delaunay triangulation and characterized by an oriented Gabriel property, i.e. for
all facets of the reconstructed surface, the diametrical half-sphere oriented towards the inside
of the surface is empty of sample points.

4.1.2 Surface growing approaches

The surface growing methods build a triangulated surface incrementally from the boundaries
of an initial surface. The surface can either be directly constructed by considering a global
topological criterion, or as a result of a post-processing step of a set of facets.

In his work [Boissonnat, 1984] proposed a second method that reconstructs incrementally a
triangulated surface of a point sample by growing the mesh starting from some seed facets. A
contour is propagated from the boundary of the current surface while considering local geometric
properties to determine the new triangles to form. Given an edge of the contour, the neighboring
points to this edge are projected on a locally estimated tangent plane. The next facet is built
from this contour edge and a neighboring point. The later is chosen in a way that the angle
at the vertex in the new facet opposite to the contour edge is maximized when this facet is
projected on the tangent plane. The process is repeated until the surface is closed and that all
points are considered. New seed facets can be created if the surface to be reconstructed has
more than one connected component. This method does not use the Delaunay triangulation,
however the author pointed out that the facets could be chosen from the Delaunay triangulation.
This algorithm reconstructs a consistent surface under some restrictive topological conditions.

α-shapes The concept of α-shapes was first introduced by [Edelsbrunner & Mücke, 1994].
It is an approach to formalize surface reconstruction from 3D point sets. The alpha-shape is
a generalization of the convex hull and a sub-complex of the Delaunay triangulation. Given
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Figure 4.1: Reconstruction using α-shapes in 2D. The input points (black) with α-balls centered
on them. From left to right: parameter α is increasing. The black edges form the α-complex
and the α-shape is the boundary of the green area.

a finite point set P, a family of “shapes” can be derived from the Delaunay triangulation of
the point set; a real parameter α controls the desired level of detail through α-balls which are
open balls with radius α (see Figure 4.1). The α-shape degenerates to the point-set P when
α→ 0 and to the convex-hull of P when α→∞. The α-shape method consists of three steps:
first, a Delaunay triangulation of P is computed, then the α parameter is selected and at last,
the simplexes that are to be included in the reconstructed shape are identified. This approach
allows fast, accurate, and efficient calculations of volume and surface area. One major drawback
is that the input points need to be uniformly sampled. The α-shapes can be extended to deal
with non uniform point sets [Edelsbrunner, 1992].

Several other algorithms based on the principle of incremental construction by advancing front
were developed. The Ball-pivoting algorithm of [Bernardini et al., 1999], inspired by the α-
shapes of [Edelsbrunner, 1992, Edelsbrunner & Mücke, 1994], builds the surface incrementally
by “rolling” a ball on the sample points. The surface is initialized from an oriented seed facet
such as a fixed radius ball passing through its three vertices is empty of sample points. The ball
pivots around one of the edges of the facet until it reaches another point, forming a new facet.
The process is repeated for all the edges of the current surface boundary. Once all edges have
been visited, some new seed-facets can be added if not all points were reached. The algorithm
produces a correct triangulation if the point sample is uniform. To handle non-uniform point
samples, multiple passes are required with variable ball radii. Also, the algorithm requires an
input point sample with oriented normals.

A more robust and flexible algorithm that filters the Delaunay triangulation of an unorganized
point sample was designed by [Cohen-Steiner & Da, 2004]. The growth criterion is based on
both distance and angle measures to choose the best facet at each step. These algorithms
provide a guarantee that the reconstructed surface is a combinatorial 2-manifold, however they
do not provide a guarantee on the approximation quality.

A drawback of maintaining a global topological criterion throughout the growth process is the
risk to derail the reconstruction process in case of an error. An alternative approach is to apply
the growth process to a subset of previously reconstructed facets or to selected facets according
to some geometric criteria without them constituting necessarily a coherent surface. The surface
growth process tries then to extract the surface to be reconstructed from this subset.

In their approach, [Ohtake et al., 2005b] propose to carry out the surface growing process by
forming the dual facets of a cover of the point sample with spheres. First, they start building a
spherical cover whose radius is linked to the local curvature, and where for each sphere a repre-
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sentative point of the neighborhood of points it contains is computed. Adjacency relations are
then established between representative points by examining the covering spheres intersection,
then a surface mesh is obtained by filtering these relations in a way that the incident facets to
a vertex form a plausible topological disk.

The approach of [Gopi et al., 2000] consists of approximating the surface around the neigh-
borhood of each point of the sample by a two dimensional local triangulation. The algorithm
proceeds in three stages, for each point p ∈ P. First, an oriented tangent plane is estimated
locally at p, the normals are then used to locally estimate the principal curvatures. The set of
points located in a ball centered in p and whose radius depends on the local estimated curvature
are then selected and projected on the tangent plane to p. A two dimensional Delaunay trian-
gulation of the projected neighboring points to p gives a first set of candidate triangles incident
to p, also called the Delaunay neighbors of p. Three points of the point sample form a facet of
the reconstructed surface if they are mutually contained in their Delaunay neighborhoods.

A Delaunay triangulation filtering algorithm based on the extension of the Gabriel complex
was introduced by [Adamy et al., 2002]. The Gabriel complex is a subset of the Delaunay
triangulation that contains the facets whose smallest circumspheres are empty of sample points.
The authors define an order on the Gabriel facets relative to the largest empty ball through their
vertices. A facet has a higher priority and is more likely to belong to the reconstructed surface
if it has one side of its supporting hyperplane where the points are far. The facet selection
algorithm builds a topological disk in every sample point from the ordered set of Gabriel facets.
This set of selected facets is then filtered to extract a surface. No guarantee is provided on the
result in three dimensions.

4.1.3 Methods using poles

The algorithms described so far are mainly based on local criteria to determine or select valid
connectivity relationships (except for the flow algorithm). Another family of algorithms exploits
the fact that a solid object can be seen as an infinite union of maximal balls centered on its
medial axis. For a sufficiently dense sample of points on a surface bounding a solid, a subset of
Voronoi vertices are close to the medial axis of this solid object. This global information has
been exploited both in volumetric algorithms and algorithms with a surface growing process.

More formally, the set of poles is a subset of Voronoi vertices. At most two poles can be
extracted for each Voronoi cell V (p), meaning that to each point p ∈ P corresponds at most
two poles. Let V (p) be a bounded Voronoi cell, the first pole v1 is the Voronoi vertex in V (p)
with the largest distance to the sample point p whereas the second pole is the Voronoi vertex
v2 in V (p) furthest away from p in the opposite half-space of v1, i.e. such that the vertex-pole
vectors −→pv1 and −→pv2 form an angle larger than π

2 . See Figure 4.2 for an illustration in the
two-dimensional and three-dimensional cases.

Crust The crust algorithm, or Voronoi filtering, was designed by [Amenta & Bern, 1998,
Amenta, 1999]. The algorithm considers the enrichment of the Delaunay triangulation of the
input point set P with all the poles Q. All facets of D(P) intersected by the medial axis
are eliminated if the poles are inserted in D(P). The facets of the Delaunay triangulation
D(P ∪ Q) connecting three points of P are then likely to belong to the restricted Delaunay
triangulation to the surface. This set of facets does not contain the final surface systematically,
but it contains a surface that is homeomorphic to S if P is an ε-sampling with ε ≤ 0.1. The final
surface is obtained by applying a second filtering process on these candidate facets, starting by
eliminating the triangles whose normals are far from the vertex-pole vectors. The remaining
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Figure 4.2: The poles. Voronoi cell V (p) of sample point p ad two poles v1 and v2. Left: 2D
case; right: 3D case.

facets are then oriented consistently, and a surface is extracted. Note that the crust algorithm
was one of the first algorithms to provide theoretical guarantees.

Cocone The Cocone algorithm was designed by [Amenta et al., 2000] as an improvement
over the Crust algorithm. Similarly, the algorithm computes a set of candidate facets and
then extracts a surface. This time the candidate facets are selected directly from the Delaunay
triangulation of the point sample using a criterion related to the geometry of the Voronoi
cells. The co-cone at a point p is defined as the intersection of the Voronoi cell of p, with the
complement of a double cone with apex p and fixed opening angle (≈ π

2 ) around the approximate
normal at p. The later can be approximated by the vertex-pole vector. See Figure 4.3 for an
illustration in the two-dimensional and three-dimensional cases. A facet is candidate if its dual
Voronoi edge intersects the co-cones of its three vertices. If the sampling is dense enough, these
candidate facets lie close to the original surface and the sampled surface can be extracted from
the candidate facets. The algorithm’s output is a surface homeomorphic to the original surface
if the input sampling is an ε-sampling with ε ≤ 0.06.

The original version of the Cocone algorithm is very sensitive to the sampling conditions, that
are hard to meet with practical data. For example, the estimated normals may not be cor-
rect, leading to a wrong choice for the facets. Several improved versions of this algorithm
were proposed. The Cocone algorithm was used to detect undersampled regions and borders
in [Dey & Giesen, 2001], and was then extended to guarantee the construction of watertight
surfaces [Dey & Goswami, 2003]. The same algorithm, associated to an oversampled regions de-
tection method [Dey et al., 2001a] was used to elaborate a point sample simplification algorithm
through undersampling [Dey et al., 2001b] A version of the Cocone algorithm was developed to
handle large point data sets [Dey et al., 2001c]. More recently, a robust to noise version of the
Cocone algorithm was studied [Dey & Goswami, 2006] with proves for Gaussian noise model.

Power Crust The Power Crust algorithm introduced by [Amenta et al., 2001] is an extension
of the Crust algorithm that combines concepts of medial axis, Voronoi diagram and power
diagram. The Power Crust algorithm is based on the observation that any point of a sampled
compact surface is on the interface of two medial balls: the outer ball to the surface and the
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Figure 4.3: The co-cone [Amenta et al., 2000] of a sample point p on a curve in 2D (left) and
a surface 3D (right) together with its Voronoi cell V (p) and poles v1 and v2.

inner ball. The medial balls can be approximated by the circumscribing balls of the Delaunay
cells dual to a pole, called polar balls. Amenta et al. have developed local criteria to distinguish
outer from inner polar balls and they developed a global heuristic to differentiate inner balls
from outer balls. If two adjacent polar balls intersect deeply, then the two corresponding poles
are likely to be from the same side of the surface. Whereas if two balls intersect shallowly,
one of the two cells is internal and the other external. The Power Crust algorithm computes
the power diagram of the poles weighted by the radius of their polar balls. The reconstructed
surface is the set of facets of the power diagram whose dual edges have an inner pole vertex
and an outer pole vertex.

The classification idea based on analyzing the poplar balls has been reused later on in other
algorithms. In their work, [Dey & Goswami, 2006] showed that the criteria based on the in-
tersection angle between polar balls suggested in the Power Crust algorithm, may fail in the
presence of noise. They however show that polar balls in these regions have small radii, thus
can be detected. Another algorithm derived from the Power Crust, called the Eigen Crust
was proposed by [Kolluri et al., 2004] in order to produce watertight surfaces. The Eigen Crust
algorithm handles undersampling, noise and outliers by using a spectral partitioning of the
graph of poles, to obtain a robust tetrahedra classification. A simple modification of the Power
Crust algorithm was suggested by [Mederos et al., 2005] improving the robustness of the origi-
nal algorithm to point samples corrupted with Gaussian noise, with the guarantee to produce
a surface homeomorphic to the sampled surface.

4.2 Models fitting

The surface reconstruction methods by models fitting seek to constrain an a priori determined
global or local mathematical model of a surface to minimize the gap between the model and
the data. Therefore, the reconstruction process comes down to an optimization problem. The
surface can be constrained to pass through the sample points, we speak of interpolation, or
close to the sample points, thus we speak of approximation.
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Figure 4.4: Signed distance function. For a given point x, its nearest neighbor p in the set
of input points (black) is found, then the distance d to the estimated tangent plane at p is
computed.

The model can be defined as a function depending on a finite set of parameters. The objective
is to find the values of the models parameters to interpolate or approximate the input data,
through a local or global approach; in this case we speak of parameters fitting. This was already
discussed in the previous section namely when local differential properties of the sampled surface
had to be estimated, as for example the normals, by tangent planes, or the curvatures, using
quadrics. More generally, a model can be represented by a parametric or implicit function. In
this section, we focus specifically on implicit surface models, which have fewer constraints and
are more flexible to reconstruct complex shapes through a local approach, taking advantage of
the ability to combine them easily. The ability of a model to provide a good approximation
of the original surface is in the choice of appropriate basis functions, which involves making
assumptions on the properties of the surface to be reconstructed, in particular of surface con-
tinuity. The nature of these functions and of the error to minimize, as well as the sampling
conditions make the fitting process more or less complex and reliable. To output a triangulated
mesh, these methods are often required to apply an isosurface extraction algorithm such as
the classic Marching cubes algorithm [Lorensen & Cline, 1987], its feature preserving variant
[Kobbelt et al., 2001] or the Delaunay refinement strategy (see Chapter 5 for more details on
mesh generation algorithms). Alternative surface reconstruction approaches consider fitting
deformable models, for which the reconstruction problem is solved iteratively by deforming
successively an initial continuous or discrete surface.

4.2.1 Reconstruction by fitting an implicit surface model

The problems boils down to interpolate or approximate the data points with the aid of a
continuous function f : R3 → R whose zero level set defines a surface close to the sampled
surface. To represent complex shapes, the function is usually constructed as a combination of
simple basis functions, using for example low degree implicit functions [Ohtake et al., 2005a].
The surface to be reconstructed may be globally approximated by combining functions that
locally approximate the surface, or by weighted sums of radial basis functions. Local methods
typically employ combinatorial structures to decompose the data in space or to establish prox-
imity relations between points. Many methods rely on the estimation of the surface differential
properties, needing to have a neighborhood structure on the sample points. Most often, the
neighborhood relations are chosen as the nearest neighbor relations in the Euclidean distance
sense. Some local approximation methods build a distance function to an implicit surface out
of distance functions to locally estimated tangent planes at each point, whereas other approxi-
mation methods consider the surface locally as the graph of a function defined on a parametric
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Figure 4.5: Sample point x has eight natural neighbors. The orange colored cell is created when
x is added to the Voronoi diagram depicted in red. The normalized surface of the green area
corresponds to the coordinate of x according to pi.

plane domain.

Signed distance functions The first implicit surface reconstruction method presented
to the graphics community was designed by [Hoppe et al., 1992]. This method estimates a
signed distance function d : R3 → R that is supposed to approximate the distance between a
point x ∈ R3 and the original surface. The zero level set of this function d(x) = 0 defines the
reconstructed surface implicitly. The distance of a point x to the surface is approximated by
the distance between x and the tangent plane associated to the closest sample point in space.
The sign of the distance function depends then on what side of the tangent plane x lies. The
tangent plane at a sample point p ∈ P is estimated in the least squares sense from the principal
components analysis (PCA) of the coordinates of this point p and its k nearest neighbors (see
Figure 4.4). The normal vector direction is given by the direction of minimal variance of the
position of points in this neighborhood. The tangent planes orientation is determined at a
later time on a global scale so that the tangent plane associated to two close points have a
similar orientation. The adopted strategy is to propagate normal orientation along a minimum
spanning tree in the sense of the Euclidean distance (see Appendix A).

The reconstructed surfaces have C0 continuity. This estimation and consistent orientation
technique of the tangent planes was later used on by various reconstruction methods that
require oriented normals at each sample point.

Such algorithms require a uniform sampling at least locally since otherwise the k-neighborhood
can be spatially biased in the case of oversampling for example, resulting in a poor estimation
of the tangent planes.

Natural neighbors interpolation of signed distance functions In their work
[Boissonnat & Cazals, 2000] proposed a reconstruction method through the sign of a function
f : R3 → R whose zero level set defines an implicit surface approximating the sampled surface.
The function f is built by interpolating the natural neighbors of signed distance functions
defined around each sample point. The natural neighbors of a point x are defined as the
neighbors to x in the Delaunay triangulation of P ∪ {x}. This information is of combinatorial
nature and can be made quantitative using the so-called natural coordinates. The natural
coordinate of a point x according to a point pi ∈ P is the normalized measure of the region
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Figure 4.6: Multi-level partition of unity implicit [Ohtake et al., 2003a]. Left: an octree is
computed according to the distribution of the input data points (black). For each cell of the
octree, a quadric surface (purple) is fitted to the points contained in a ball centered at the cell
center. The type of quadrics fitted is chosen accordingly to the distribution of points. Then,
the local reconstructions are “blended” to obtain the surface (red). Right: illustration of the
case where an edge is detected by normal clustering.

withdrawn from pi if x is added in the Voronoi diagram (see Figure 4.5). The function f at
a point x is then defined as the mean signed distance from x to the tangent planes of the
natural neighbors of x, thus requires a coherently oriented normal at x. The tangent planes
can be estimated through the poles, plus a heuristic for determining a consistent orientation
[Boissonnat & Cazals, 2001].

This method works in any dimension and is suitable for surfaces of arbitrary topology and
non-uniform sampling.

More recently [Mullen et al., 2010] designed a modular framework for robust surface reconstruc-
tion from unorganized, noisy and outliers-ridden point sets. Their idea is to use an unsigned
distance function to the input data followed by a global stochastic signing of the function. The
isosurface reconstruction is then obtained via a sparse linear solve.

Partition of unity The partition of unity approach decomposes the data domain into
smaller overlapping sub-domains, where the reconstruction problem is locally resolved. Initially,
the data are approximated in each sub-domain separately by functions fi : R3 → R, then the
local solution are “blended” together using a locally supported weighted sum:

f(x) =
n∑
i=1

wi(x)fi(x) ,

where n is the number of sub-domains. The functions wi : R3 → R are weighted functions having
compact support, centered on the sub-domains, and such that they sum to one uniformly on
the whole domain.

One of the earliest methods of surface reconstruction using this formulation is the natural
neighbors interpolation of signed distance functions method by [Boissonnat & Cazals, 2000]
described in Section 4.1.3. The tangent planes defined at each sample point correspond to the
local reconstructions, and the Delaunay triangulation of the point sample is the partition of
the data domain. Methods implementing approximations of higher degree have been developed
subsequently. [Ohtake et al., 2003a] proposed to reconstruct the surface locally using quadric
functions or piecewise quadric capturing the local shape of the surface. The partition of unity
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Figure 4.7: Moving least squares. Left: the tubular neighborhood T of the input points (black).
Right: A local reference plane Hx (orange) for the point x (red) is determines by minimizing a
local weighted sum of squared distances of the points (green) to the plane Hx. Point q (blue)
is the projection of x onto Hx.

is built using an adaptive octree, a local study of the normals deviation controls the choice of
surface model in each leaf-cell. This method is very effective on large sets of points and can
control the level of detail of the reconstruction. However, it is highly sensitive to the quality
of input data, especially to those of normals. Moreover, in order to detect sharp features, a
clustering of normals is performed (see Figure 4.6). [Tobor et al., 2004] used the partition of
unity approach with radial basis functions (RBF) to compute the local approximations, with a
hierarchical decomposition on a grid. This method reduces the complexity of the problem of
global reconstruction using RBF to handle large sets of points.

Recent attempts by [Nagai et al., 2009] at fitting smooth implicit functions through partition
of unity show promising results when it comes to robustness to noise.

Moving Least Squares The Moving Least Squares (MLS) surface model introduced by
[Lancaster & Salkauskas, 1981] is another local implicit surface reconstruction approach. The
particularity of this model is that the function representing the global surface is not explicitly
defined. Local approximations are only computed in the neighborhood of points where the
function is evaluated [Shen et al., 2004]. In recent years, this technique has found some success
in the graphics community, especially after the work of [Alexa et al., 2003], to model surfaces
from point samples without maintaining explicit connectivity, i.e. point set surfaces. We refer
the reader to the survey by [Kobbelt & Botsch, 2004] for more details on point-based techniques
in computer graphics.

Given a set of input points and their oriented normals, [Levin, 1998, Levin, 2003] proposed an
implicit surface model that approximates globally the data based on the MLS local approxima-
tion method. Levin defines an MLS surface (SMLS) through a projection operator ψ : T → R3

that projects all points located in a tubular neighborhood T , illustrated in Figure 4.7 left, of
that surface onto itself. The MLS surface is therefore defined as the set of points of T that
project on themselves:

SMLS = {x ∈ T |ψ(x) = x} .

In this approach, the function that models the surface is not explicitly determined, it is defined
implicitly through the projection operator. The heart of the method is a three steps projection
procedure that computes the projection of a point x 7→ ψ(x) on a local polynomial approxima-
tion of the surface Hx in a neighborhood that depends on the position of ψ(x). The first step
determines a local reference plane. This reference plane is later used as a parametric domain
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Figure 4.8: Radial basis functions. From left to right the value of the regularization parameter
λ increases.

to compute the local polynomial approximation of the surface. The first step is the toughest as
it requires to solve an iterative non-linear minimization problem to determine the direction of
the normal at ψ(x). The second step computes the local polynomial approximation, leading to
solve a standard linear least squares problem where the polynome coefficients are determined
by solving the system of linear equations. The last step computes the position of the projected
point on the local surface. Figure 4.7 illustrates the moving least squares approach in 2D.

Levin has shown that under some sampling density and continuity conditions, determined by
the weight functions used in the first step, the resulting surface is a C∞ manifold. The method
is naturally robust to Gaussian noise, but the projection process can fail if the local geometry
is not sufficiently sampled or if some outliers lie in the point sample.

Several authors revisited the original model of Levin to provide surface reconstruction al-
gorithms that are robust to noise [Xie et al., 2003], may reconstruct a multiresolution sur-
face approximation [Mederos et al., 2003], or that cope with outliers and represent piecewise-
smooth surfaces [Fleishman et al., 2005] (please refer to Section 7.1.2 for a detailed related
work on piecewise smooth surface reconstruction). [Scheidegger et al., 2005] designed a spe-
cific algorithm to triangulate an MLS surface through the Marching Cubes method. Also,
[Boissonnat & Oudot, 2004] applied their surface sampling method to MLS surfaces to produce
optimal triangulated surfaces based on the model of [Adamson & Alexa, 2003].

Several authors have looked at the overall validity of the MLS surface model. In their work
[Scheidegger et al., 2005] analyzed the stability of the original MLS projection operator depend-
ing on the proximity of points to the MLS surface. They also proposed an explicit definition
of the MLS surfaces in terms of critical points of an energy function defined in a vector field.
[Kolluri, 2008] proved the validity of the model designed by [Adamson & Alexa, 2003] for suf-
ficiently dense and uniform point clouds. Another extension of the MLS model suggested by
[Dey & Sun, 2005] provides reconstruction guarantees for non-uniform sampling conditions.

Radial basis functions Thirty years ago, in an extensive survey, [Franke & Nielson, 1980]
identified Radial Basis Functions as a relevant method to solve interpolation problems from
scattered data. Given a set of n points {pi} ⊂ R3 to which are attached scalar values {hi}, the
aim is to approximate a function f : R3 → R such that f(pi) ≈ hi for all pairs (pi, hi), while
minimizing an a priori chosen error E, that can be chosen for example as follows:

E(f) =
n∑
i=1

(f(pi)− hi)2 + λR(f) ,

where the first term corresponds to a least squares error, R is the regularity prior term and λ
is a positive scalar value, called regularization parameter. The later allows to tune the degree
of smoothness. When λ → 0, the surface closely fits the points. Contrariwise for large values
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of λ, the surface approximates the data points by increasing the regularity of the function.
Figure 4.8 illustrates an example in 2D.

As part of the RBF approach, the function that minimizes the functional E is defined from a
class of basis function φ : R→ R with local or global support depending on the choice of E, as
a linear combination:

f(x) =
m∑
j=1

wjφ(‖x− cj‖) ,

where {cj}j=1...m denotes a set of m constraint points, or centers, and {wj} denotes a set of
weights attributed to each basis function. The surface reconstruction problem is reduced to
determine the vector w = {w1, . . . , wm} by solving a system of linear equations.

The zero level set of the function f defines an implicit surface that interpolates or approximates
the constraint points. For a random point sample of a surface, all points are associated to
constraints such that f(pi) = 0. To avoid the trivial solution w = 0, additional constraint
points with non-zero values must be chosen from outside and/or inside the surface. These
constraints may, for example, be obtained by shifting along the data points oriented normals.

Early work in the graphics community on this surface reconstruction approach where pre-
sented by [Savchenko et al., 1995] followed by [Turk & O’Brien, 1999, Turk & O’brien, 2002].
The methods that are based on RBF with global support are particularly robust, however they
require solving dense systems of linear equations which makes it difficult to process samples with
more than tens of thousands of points (O(n3) complexity). To accelerate the evaluation and
handle large data sets, different approaches have been studied. In their work [Carr et al., 2001]
reduce the number of centers by a iterative selection procedure and use a quick evaluation
method of RBF, i.e. Fast Multipole Method, whose principle is to evaluate the basis function
approximatively beyond a given distance to the centers. [Morse et al., 2005] first and then
[Ohtake et al., 2003b] rely on compactly supported RBFs with adaptive support to handle
noise. However, the choice of adapted support radii is difficult for non-uniform point samples.
Also, this type of solution poses a scalability problem to handle large data sets. More recently
[Samozino et al., 2006] designed a novel surface reconstruction algorithm using compactly sup-
ported RBFs that bypasses these scalability limits by placing the RBF centers on the medial
axis estimated from the Voronoi diagram of the samples.

Another way to deal with the performance issues of the RBF approach is to proceed by partition
of unity. Both [Tobor et al., 2004] and [Ohtake et al., 2004] decompose the data into a hierarchy
of subdomains where the interpolation problem is solved locally. The local reconstruction are
blended at each node of the hierarchy, the root contains the function that corresponds to the
global reconstruction.

Indicator functions Given a set of input points and their oriented normals, an alternative
to the aforementioned functions is the indicator function. The later is valued one inside the
object and zero outside. [Kazhdan, 2005] noted that the gradient of the indicator function χ is
zero everywhere, except on the surface where it is equal to the surface normal (see Figure 4.9).
The sparse input normal field −→n estimated using an octree structure is extended everywhere
and the alignment of the indicator function with this normal field is computed in the least
squares sense by minimizing the functional:∫

Ω

‖−→n (x)−∇χ(x)‖2 dx ,

where the indicator function χ is relaxed to take any real value. Applying the divergence
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Figure 4.9: Poisson surface reconstruction [Kazhdan et al., 2006]. Left: the set of input points
and their oriented normals (black). The value of the indicator function χ is zero outside and
one inside the object. Right: the indicator gradient ∇χ(x) is non-zero on a neighborhood of
the input points.

operator leads to a Poisson problem:

∆χ = div−→n .

Initially solved in the Fourrier domain by a Fast Fourrier Transform (FFT) in [Kazhdan, 2005],
locally supported RBFs are used in [Kazhdan et al., 2006] on the cells of an adaptive octree
for efficiency and produces great results making the method until now very competitive as the
global L2 minimization naturally brings resilience to noise.

A variant of the Poisson reconstruction called adaptive Fourrier based surface reconstruction
was designed by [Schall et al., 2006, Schall et al., 2007]. This approach is based on the partition
of unity and performs an error guided subdivision of the input data points. The space decom-
position is based on an octree. A local solution is computed as a local characteristic function
for the points inside the cell using Kazhdan global FFT approach. Since the points inside a cell
do not represent a solid, the characteristic function may not be computed using the Poisson
global FFT approach. To avoid creating surface parts which are not represented by points, the
solution is to subdivide the octree cells if the resulting local approximation inside the cell is
not accurate enough. By iterating this procedure, overlapping local characteristic functions are
computed for each octree leaf of each part of the input with a user defined accuracy param-
eter. The final reconstruction is then obtained by combining the local approximations using
the partition of unity approach. The algorithm runtimes are better than the ones of Kazdhan,
however the characteristic function is only determined closed to the surface and not for the
whole volume.

This family of implicit approaches can be limited by their sensitivity to noise, outliers or non-
uniform sampling or even simply the lack of reliable and consistent normal information.

Graph cut based reconstruction Building signed distance functions requires that the
set of input points comes with consistently oriented normals. If the later are not provided, the
estimation of consistent orientations puts up many problems. Methods based on signed distance
functions often pose problems of topological noise, i.e. the reconstructed surface has not the
same genus as the original surface. This also poses problems for the meshing algorithms.

Recent research on combinatorial energy minimization has shown that globally optimal solutions
to discrete volumetric segmentation problems can be found efficiently by reformulating them
into a maximum flow/minimum cut problem of a specific spacial graph structure.
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Figure 4.10: Two dimensional graph min cut. Given a graph with weighted edges, find min-cut
between source and sink nodes.

An undirected graph G = 〈V,E〉 is defined as a set of nodes V and a set of undirected edges
E that connect these nodes. An example of such a graph is shown in Figure 4.10. Each edge
e ∈ E of the graph is assigned a non-negative weight we (cost). There are also two special
nodes called the sink and the source. A cut is a subset of edges C ⊂ E such that the sink
and the source become separated on the induced graph G(C) = 〈V,E\C〉. Each cut has a cost
which is defined as the sum of the costs of the edges that it severs:

cost =
∑
e∈C

we .

The minimum cut problem on a graph is to find a cut that has the minimum cost among all
cuts.

In their work [Hornung & Kobbelt, 2006] proposed a volumetric method for surface reconstruc-
tion from unstructured point sets that is based on an unsigned distance function to the set of
points, defined over a regular 3D grid. The authors identify the voxels intersected by the surface
using a graph structure embedded within the voxel grid and by implementing a combinatorial
energy minimization method to localize the surface.

The algorithm starts by a volumetric diffusion phase in the grid that enables to construct an
unsigned distance field in a narrow band around the points sample. The diffusion is effected by
scanning the grid with a mean filter, having previously initialized to one the voxels containing
points and the others to zero. A labeled graph is then built on the voxels located in this
neighborhood. Each node of this graph is associated to a facet of a voxel and the edges connect
the neighboring facets in the 8-connexity sense. Each edge receives a weight that is linked to the
potential value of the traversed voxel. An algorithm, based on the minimal surfaces framework
with graph cuts of [Boykov & Kolmogorov, 2003], computes a minimum cut that determines
the optimal set of voxels traversed by a smooth approximation of the original surface.

Recently [Lempitsky & Boykov, 2007] propose a global optimization framework for 3D shape
reconstruction from sparse noisy 3D data sets also based on the minimal surfaces framework
with graph cuts of [Boykov & Kolmogorov, 2003]. In contrast to earlier local or banded opti-
mization methods for shape fitting, they compute global optimum in the whole volume removing
dependence on initial guess and sensitivity to numerous local minima.
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4.2.2 Deformable models

The methods of this class deform an initial surface to obtain a good approximation of the
set of input points. Intuitively, the surface is obtained from an elastic membrane on which is
applied a deformation process to minimize an energy functional. Since the seminal paper of
[Kass et al., 1988] on active contours many applications of deformable models that evolve under
the sum of internal and external energies have been found in computer vision and graphics.
Generally, the methods based on deformable models are interesting for their robustness, but
require a good initialization and are prone to drop into a local minima. Hereafter we present
two classes of methods that use an implicit surface model.

Level sets framework In the level set framework of [Dervieux & Thomasset, 1980] and
of [Osher & Sethian, 1988], the time-varying model is represented as the zero level set of a
function in R3 whose level sets are all evolved. More recently [Zhao et al., 2001] proposed a
surface reconstruction method from an unorganized set of points whose principle is to contract
a closed surface enclosing all input points. The surface is represented implicitly by the dynamic
formulation of level sets.

More formally, a surface denoted S̃ enclosing the whole set of input points is deformed to
minimize an energy functional defined as a weighted area, where each surface element is weighted
by its distance to the closest point sample.

E(S̃) =
[∫

x∈S̃
dp(x)ds

] 1
p

, p > 0 ,

where d(x) is the distance between x ∈ R3 and its closest point in P, and ds a surface element.
The energy functional E is minimized to a local minimum by gradient descent by contracting the
initial covering surface. At each step, every point x of the surface S̃ evolves toward the interior
of the surface, along the normal direction to S̃ at point x denoted −→n (x) with a displacement
speed that is proportional to −∇d(x).−→n (x) + d(x)κ, where κ denotes the mean curvature. The
first term −∇d(x).−→n (x) reflects the attraction of the surface S̃ towards the data set, whereas
the second non linear term d(x)κ represents the tension of the surface. The surface evolution
process runs until reaching an equilibrium state characterized by the following:

∇d(x).−→n (x) + d(x)κ = 0 .

Zhao et al. compute an initial approximation of S taking only into account the gradient field
−∇d and use it as the initial surface S̃; this initialization scheme amount to perform the
convection of a covering surface in the gradient field −∇d. Provided that the initialization
is close to the optimum, this method is fast and robust to noise. Through its evolution; the
topology of the surface can also easily change, which is an important benefit of the implicit
representation.

Evolution of an explicit deformable mesh guided by a scalar field
[Sharf et al., 2006] presented recently a method based on an explicit deformable surface model,
represented by a mesh, evolving in a scalar field. An initial triangulated surface included in the
object volume is deformed locally by moving its vertices in the direction of their normals. The
evolution of this surface is guided by signed distance field sampled on an adaptive grid defining
an implicit representation of the targeted surface. Throughout this process, the displacement of
the mesh vertices is constrained to maintain the coherence of the surface that evolves (Laplacian
system). The authors control the reconstruction level of detail by considering several indepen-
dent evolution fronts with different properties to adapt to local forms. The mesh is dynamically
optimized according to the local geometry and the process terminates with an MLS projection
phase to capture the local details.
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4.3 A motive for further researches

Surface reconstruction from raw point clouds has received increasing attention in the past
decade due to the ever broadening range of point cloud acquisition sensors and computer vi-
sion algorithms that provide little to no reliable attributes (see Chapter 3). The inevitable
presence of noise and outliers makes the scientific challenge even greater, where any advance in
this direction can directly benefit surface reconstruction from point sets with some attributes.
A common line of attack to this problem involves filtering out outliers before resorting to a
reconstruction method as mentioned in the preceding sections.

Usually, the set of input points is first oriented, i.e. normals are computed, or, signed, i.e.
an inside/outside function is constructed based on the point set. However, outliers removal
is hardly automatic, thus requires an interactive adjustment of parameters (see Appendix A.4
for an outlier removal algorithm). Moreover, determining reliable normals with consistent
orientation from raw point sets can be as hard as reconstructing the whole surface itself:
although there are several choices to reliably estimate normal directions [Mitra et al., 2004,
Alliez et al., 2007], robust normal orientation is significantly more challenging, as recently re-
called by [Huang et al., 2009].

It should be noted that most of the aforementioned methods target reconstruction from high
quality data. Variational methods such as [Walder et al., 2005, Alliez et al., 2007], based on
generalized eigenvalue problems are better able to extract smooth surface from noisy data;
unfortunately robustness to outliers is forlorn and their current complexity does not scale well
with dataset size. Consequently there is a need to explore alternative surface reconstruction
solutions that would provide scalability as well as robustness to noise, outliers and possibly
undersampling. This is typically the case of datasets generated from multi-view passive stereo
methods. Indeed, in this thesis we will follow this trend and investigate the topic of surface
reconstruction from 3D data generated from multi-view passive stereo methods in Chapter 6.

Recently, in the field of photogrammetry [Goesele et al., 2007, Furukawa & Ponce, 2007] and
[Bradley et al., 2008] presented specifically designed heuristics to filter, densify and improve the
quality of point clouds or depth maps from multi-view passive stereo and to make some of the
most robust surface reconstruction techniques [Kazhdan et al., 2006] still applicable to these
refined point clouds. This issue was also remedied for data coming from multi-view passive
stereo by [Labatut et al., 2007, Vu et al., 2009] where reliable lines of sight are available thus
making it easier to classify outliers and to generate hight quality 3D meshes. More generally,
the more attributes we have the more robust the reconstruction can be.





In most sciences one generation
tears down what another has built,
and what one has established,
another undoes.
In Mathematics alone
each generation adds a new
storey to the old structure.

Hermann Hankel (1839-1873) 5
Automatic simplicial mesh generation methods

A
large body of literature discussing the hard task of automatic simplicial mesh gen-
eration has emerged over the past thirty years. In the following we provide a quick
overview of different methods for automatic simplicial mesh generation. These meth-

ods can be classified into three main categories: grid based methods, advancing front methods
and methods that are based on Delaunay triangulations. We would like to emphasize that this
classification is not exhaustive and/or strict, there also exist various other mesh generation
techniques that have been developed although none of them seems to be intensively used today.
It is nevertheless interesting to point out that Delaunay triangulations became popular in the
numerical and graphical calculus community, where several hybrid methods emerged.

The hybrid methods usually combine frontal or hierarchical grid based methods to Delaunay
triangulations to connect the vertices and generate a simplicial mesh. Namely, some of these
hybrid methods use an advancing front strategy to generate vertices that are later connected
using a Delaunay triangulation [Merriam, 1991, Marcum & Weatherill, 1995, Mavriplis, 1995,
Frey et al., 1996, Frey et al., 1998]. Whereas other methods [Schroeder & Shephard, 1990] com-
bine both hierarchical grid and Delaunay approaches to fully automatic mesh generation. The
resulting algorithm provides the linear growth rate and divide-and-conquer paradigm of the
octree method, with the simplicity and optimal properties of the Delaunay triangulation.

In this chapter, we will concentrate on the three main enumerated mesh generation cate-
gories. For a complete review of this topic we refer the reader to the following PhD the-
sis [Shewchuk et al., 1997], surveys [Owen, 1998, Bern & Plassmann, 2000, Du & Wang, 2006],
and book [Frey & George, 2008].

5.1 What is a simplicial mesh?

A mesh is a cellular complex partitioning an input domain into a finite number of elementary
cells. The definition of a complex implies that the cells are convex, and that any two cells are
disjoint or share a common lower dimensional face. Moreover, the cells of a mesh are required to
be elementary, meaning that they admit a bounded size description. Among meshes, simplicial
meshes are the ones where all the elements are simplices. In this thesis we are mainly concerned
by simplicial surface meshes in the three dimensional space, composed of simplices of dimension
less than or equal to two.

Meshes are one type of representation that is coveted in many areas of science and engineering
for they processing efficiency. We refer the reader to the following book [Botsch et al., 2010]
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that discusses the whole geometry processing pipeline based on simplicial meshes. Also, we
encourage the reader to explore the capacities of the broadly-useful mesh processing system by
[Cignoni et al., 2008] that we used for multiple tests and rendering.

5.2 Spatial decomposition mesh generation

Mesh generation methods based on grids, quadtrees in 2D or octrees in 3D, were widely studied
throughout the eighties. Many algorithms were brought to us since then, with the same general
principle, that is, in the three dimensional case, cubes containing the object or the domain to
be meshed are recursively subdivided until a defined size is met. The resulting cubes are then
subdivided into simplices. However, around the boundaries of the object, these methods require
extensive intersection computations and might generate irregular simplices. Although the re-
sulting meshes were satisfying in most cases [Yerry & Shephard, 1983, Yerry & Shephard, 1984,
Baehmann et al., 1987], no theoretical guarantees were provided on the quality of the produced
meshes.

The first algorithm to provide theoretical guarantees is a polygon meshing algorithm proposed
by [Baker et al., 1988]. In practice, they generate a triangular mesh using a basic uniform grid
such that all mesh elements have angles bounded between 13◦ and 90◦, with the exception of
regions where the input polygon has intrinsically angles smaller than 13◦. As designed, this
algorithm does not provided any control on the number of mesh elements, however the authors
propose to use more adaptive data structures to improve their algorithm, namely, by using
quadtrees instead of uniform grids.

Another algorithm was proposed by [Bern et al., 1990] in order to mesh a polygon with guaran-
tees on both the shape and size of the mesh elements. This idea was later reused and extended
by [Mitchell & Vavasis, 1992] to produce meshes with guarantees in 3D using octree data struc-
tures, and more recently to any dimension by [Mitchell & Vavasis, 2000]. The algorithm of
Mitchell and Vavasis fails however in practice to produce triangles with the guaranteed angles
in the three dimensional case. An alternative approach, also based on octrees, was suggested by
[Shephard & Georges, 1991] providing better results in practice without the theoretical guar-
antees on the size and shape of mesh elements.

The Marching Cubes mesh generation algorithm, proposed by [Lorensen & Cline, 1987], laid
the foundation for the extraction of a polygonal approximation of an implicit surface. To
put it briefly, the algorithm divides the three dimensional space containing the object into a
hierarchical grid of cubes. Each cube is defined by its surrounding eight grid vertices, and the
implicit function is evaluated for each of these eight vertices. If the sign of all eight values is
equal, the cube is entirely inside or outside the object. In this case, the cube is not intersecting
the surface of the object and therefore is not further processed. Cubes experiencing a sign
change across their eight vertices do intersect the object surface. Since there are two possible
signs for each vertex, namely, a negative sign for an interior point and a positive sign for
an exterior point, there is a total of 256 possible cases for each cube. The Marching Cubes
algorithm specifies how to generate polygons for each of these cases.

More recently, the Extended Marching Cubes algorithm designed by [Kobbelt et al., 2001] at-
tempts to solve two major problems of the classic Marching Cubes algorithm and that act
directly on the quality of the generated meshes. On one hand, the computation of exact inter-
section points, for which they suggest using linear interpolation. On the other hand, approxi-
mating sharp edges and corners, for which they examine not only the exact intersection points,
but also the normal vector at each point, and they use the combination of both to estimate
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the location of sharp edges and corners. Another feature-preserving approach was proposed in
[Ju et al., 2002]. It is able to generate accurate meshes with sharp features using an octree data
structure, resulting in meshes with fewer faces.

5.3 Advancing front mesh generation

Another very popular family of simplicial mesh generation algorithms is the advancing front,
or moving front method. The advancing front approach starts by building a mesh of the object
boundaries using a sizing field. This boundary mesh is used as the initial front. The object is
then incrementally filled with simplices that are made up of a front element connected to an
existing vertex of the mesh or to an inserted vertex in the inner area bounded by the front. At
each step of the algorithm, the front evolves dynamically and separates the meshed from the
unmeshed regions of the object. Each time a simplex is added, the front is locally updated and
the algorithm continues until the whole inside of the object is filled with simplices.

This approach was first introduced in two dimensions by [George, 1971] and studied extensively
by [Lo, 1985, Löhner & Parikh, 1988, Lo, 1991, George & Seveno, 1994, Löhner, 1996], in two
and three dimensions, among others. In practice, advancing front mesh generation methods
require a suitable choice of starting boundary mesh to ensure that the boundary mesh allows:
on one hand to generate a mesh of the object that respects the size criteria, on the other,
to avoid that two fronts with elements of different sizes will meet at the center of the object,
because then the method can’t help but create mesh elements of poor quality.

Advancing front methods allow significant control over the quality of the mesh elements: once
an element of the front is selected, the vertex used to create a new simplex is precisely chosen
to form the simplex of best quality. If this optimal vertex is too close to an existing vertex, the
simplex will be created using the most adapted vertex among the closest vertices. This produces
simplices of very good quality with the exception of regions where the fronts meet. Unlike the
aforementioned hierarchical grid mesh generation methods, the advancing front methods create
very good elements in the vicinity of the object boundaries.

Advancing front methods were adapted, in two dimensions, to generate anisotropic meshes
where the mesh elements quality does not rely anymore on a sizing field, but rather on metric
tensors field [Lee, 1999]. However, in three dimensions, the advancing front methods might
not always generate a simplicial mesh, especially when the geometry of the object is complex.
This front closeness problem [Du & Wang, 2006] is stil an unresolved issue, although vari-
ous heuristic approaches, such as element deletion and trial-and-deletion have been proposed
[Rassineux, 1998].

The advancing front method was also declined to mesh surfaces [Lau & Lo, 1996, Lo & Lau, 1998].
At each step, the front grows in a tangent plane to the surface, and the new vertices are projected
onto the surface. This method requires a lot of triangle-triangle intersection computations, to
verify that the elements of the generated surface mesh do not intersect.

Recently, [Scheidegger et al., 2005] adapted in a novel way the advancing front algorithm to
directly mesh point set surfaces (see Section 4.2.1 for a presentation of point set surfaces).
Their algorithm produces high-quality triangular meshes with bounded error, even in the case
noisy input data, and is capable of generating meshes with user-defined approximation errors.

More recently, [Schreiner et al., 2006] extended the approach in [Scheidegger et al., 2005] and
proposed an advancing-front algorithm that produces high-quality triangular meshes from many
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different types of source objects, including point-set surfaces. Their approach is based on defin-
ing a guidance field, based on local curvature information to determine the size of the triangles.
They start by computing in advance a specific guidance field that allows the mesh generation
scheme to adapt to areas of high curvature, shrinking the authorized triangle size as the ad-
vancing fronts grows towards such regions. The algorithm uses MLS (see Section 4.2.1 for a
presentation of MLS) for projection and curvature computations on point clouds. Consequently,
their method adaptively reduces the triangle sizes near sharp features and thus smooths sharp
edges.

5.4 Delaunay refinement mesh generation

The third category of simplicial mesh generation algorithms is composed of all algorithms that
refine a Delaunay triangulation. In such methods, an initial mesh is generated by simply
computing the Delaunay triangulation of a set of points. This “coarse” mesh is then iteratively
modified by adding one vertex after the other.

The interest of the meshing community for Delaunay triangulations arises from two principal
facts: Firstly, the Delaunay triangulation provides a canonical way to connect the vertices
through the empty sphere criterion (see Section 2.1.2 for some background on Delaunay tri-
angulations); Secondly, the Bowyer-Watson algorithm [Bowyer, 1981, Watson, 1981] provides
an efficient method to compute Delaunay triangulations incrementally in any dimension. This
technique describes how to update efficiently a d-dimensional Delaunay triangulation when
inserting a new vertex v. More precisely, each of the d-simplices of the triangulation whose
circumscribing sphere contains the vertex v is removed from the triangulation, which creates a
polygonal (in 2D) or a polyhedral (in 3D) cavity in the triangulation. The later is then updated
by connecting each of the cavity vertices to v. In practice, the almost linear efficiency of the
Delaunay mesh generation is a central advantage over the spatial decomposition and advancing
front methods.

Early mesh generation algorithms based on the Delaunay triangulation start to generate the
mesh vertices in a first stage and then they build a mesh in a second stage by computing the
Delaunay triangulation of the set of generated vertices. Following this principle, the algorithm
proposed by [Cavendish et al., 1985] starts to generate a grid of vertices out of slices of a three
dimensional object, the resulting mesh is a sub-complex of the Delaunay triangulation of these
vertices.

Although the Delaunay triangulations have been known for many years [Delaunay, 1934], it
was not until the work of [Hermeline, 1982] and [Frey, 1987] that the Delaunay triangulation
was utilized to guide the placement of vertices. Both articles lay the foundations of Delaunay
refinement mesh generation methods. The idea boils down to, in a first stage, insert the
vertices on the boundaries of the object to be meshed sufficiently close to each other so that
the elements of the boundary of the object are represented in the Delaunay triangulation as a
union of simplices. In a second stage, the simplices inside the object that do not satisfy the size
or shape criteria are destroyed by inserting a point in their barycenter or at the center of their
circumscribing sphere.

The mesh generation idea based on the Delaunay refinement paradigm has been reused later on
so much that it became by far the most popular of the simplicial meshing techniques. In the late
eighties, [Chew, 1989] introduced the first Delaunay refinement mesh generation algorithm with
theoretical guarantees. This algorithm can mesh a two dimensional polygon, with a Delaunay
triangulation, in a way that all three angles of any triangle inside the polygon are between 30◦
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and 120◦. This guarantee comes however at a cost: the input polygon cannot have internal
angles smaller than 90◦. Moreover, this algorithm produces a uniform mesh, i.e. all triangles
are more or less of the same size. A couple of years later, an extension of Chew’s algorithm was
proposed by [Ruppert, 1993] birthing a two dimensional meshing algorithm of planar straight
line graphs (PSLGs), i.e. polygons with potential holes and pending edges. Ruppert’s algorithm
uses a Delaunay triangulation where the size of triangles may vary depending on a size criterion,
so that all triangles angles are larger than ≈ 20.7◦. Ruppert showed also that the meshes
generated by his algorithm are optimal in terms of size. Moreover, he obtains similar guarantees
as the previously described hierarchical grid mesh generation algorithm of [Bern et al., 1990],
still, in practice, Ruppert’s algorithm generates meshes with fewer triangles. However, similarly
to Chew’s algorithm, Ruppert’s algorithm cannot mesh planar linear graphs with inter-edges
angles smaller than 60◦.

This limitation is lifted by the Corner Looping algorithm proposed by [Bern et al., 1994] and
by [Ruppert, 1995] were PSLGs are replaced by modified graphs that do not contain any small
angles. A few years later, [Shewchuk, 1996, Shewchuk, 2000, Shewchuk, 2002] introduced the
Terminator algorithm that can mesh planar linear graphs with small angles. To put it briefly,
Shewchuk’s algorithm generates meshes with an angle bound on triangles of up to 20.7◦ except
for the angles of triangles in the vicinity of small input angles. Compared to the Corner
Looping algorithm, the Terminator algorithm inserts less vertices around small angles. Later on
Schewchuk extended his algorithm into three dimensions in [Shewchuk, 1998] were he proposes a
method to mesh piecewise linear complexes, i.e. the nesting of polyhedra with possible pending
facets. The generalization to three dimensions is relatively straightforward, albeit not without
complications. Particularly, complications may arise in three dimensions when the algorithm is
asked to mesh objects with boundaries forming angles smaller than 90◦.

Based on idea proposed by [Cohen-Steiner et al., 2002], Cheng and Poon [Cheng & Poon, 2003]
designed the first algorithm that places protecting balls on the incident edges to facets form-
ing an angle smaller than 90◦. This idea was later modified and made more practical by
[Cheng et al., 2004, Cheng et al., 2007b, Cheng et al., 2007a].

In the early nineties, a smooth surface mesh generation algorithm based on the Delaunay refine-
ment paradigm was designed by [Chew, 1993].This algorithm was proposed however without the
theoretical study. More recently, [Boissonnat & Oudot, 2005] reprise the algorithm of Chew and
studied its termination condition and the approximation guarantees provided by this algorithm.
More details on Boissonnat and Oudot algorithm will be provided in Section 6.

5.5 A motive for further development

Meshes are commonly used in many applications to represent 3D shapes and are often gen-
erated by isosurfacing implicit representations obtained by surface reconstruction methods.
However, if automated, the mesh generation process is prone to errors, resulting in meshes
that are rarely fully satisfying. Practically, the mesh quality in term of vertex sampling
and triangle quality can be improved. This process is also called remeshing. Remeshing
is especially challenging when dealing with surfaces with sharp features. Recent approaches
[Tournois et al., 2009, Yan et al., 2009] need the practitioner to manually tag the edges of an
input mesh that correspond to features and then use some constrained optimization to sample
them properly. More recently, [Lévy & Liu, 2010] designed an algorithm that uses an anisotropy
field oriented along facet normals in a so called Lp Centroidal Voronoi Tesselation objective
function to preserve the sharp features of the input mesh without any need to tag them manu-
ally. Also their method has the nice property of globally optimizing the vertices locations.
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A large body of literature on the topics of automatic mesh generation and surface recon-
struction (described extensively in Chapter 4) emerged over the past thirty years. However,
what is noticeable, is that mesh generation and surface reconstruction were often tackled sep-
arately. To our knowledge, there have been only a handful of techniques that combined both
[Kobbelt et al., 2001, Schreiner et al., 2006, Boissonnat & Oudot, 2005, Cheng et al., 2007b]
along with their pros and cons, the challenge being to find a good balance between flexibil-
ity, robustness and accuracy. This is one research direction we got interested in, and that
will be brought to you in more details in Chapter 7, leading to the following publication
[Salman et al., 2010].



Part II

From 3D point clouds to meshes:
Our Contributions
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Nothing is more important than
to see the sources of invention
which are, in my opinion
more interesting than
the inventions themselves.

Gottfried Leibniz (1646-1716) 6
Smooth surface reconstruction

I
n this chapter we describe an original method to reconstruct a three dimensional scene
from a sequence of calibrated images. Our approach uses both the dense 3D point
cloud extracted by the multi-view passive stereo algorithm described in Section 3.2

and the calibrated images. It combines depth maps construction in the image planes with
surface reconstruction through restricted Delaunay triangulation. The presented method may
handle very large scale outdoor scenes. Also, its accuracy has been tested on numerous outdoor
scenes including the multi-view benchmark proposed by [Strecha et al., 2008]. Our results show
that the proposed method compares favorably with the current state of the art.

6.1 Introduction

6.1.1 Motivation

Various applications in Computer Vision, Computer Graphics and Computational Geometry
require a surface reconstruction from a 3D point cloud extracted by stereovision from a sequence
of overlapping images. These applications range from preservation of historical heritage to e-
commerce through computer animation, movie production and virtual reality walkthroughs.

As described in our surface reconstruction survey in Chapter 4, early work on surface recon-
struction has been focused on data acquired through laser range scanners, with character-
istics that the obtained 3D point cloud is dense and well distributed [Ohtake et al., 2003a,
Kazhdan et al., 2006, Hornung & Kobbelt, 2006, Mullen et al., 2010]. Although these recon-
struction methods have been reported as successful, the nature of the laser scanners greatly lim-
its their usefulness for large-scale outdoor reconstructions as reminded in Chapter 3. This is es-
pecially true when range finders need to be attached to flying balloons [Banno & Ikeuchi, 2005]
to get, for instance, a detailed reconstruction of a large-scale outdoor scene such as the Bayon
temple at Angkor in Cambodia [Banno et al., 2008].

The recent advances in multi-view passive stereo provide an exciting alternative for outdoor
scenes reconstruction. However, the extracted 3D point clouds are entangled with redundancies,
a large number of outliers and noise. Fortunately, on top of these point clouds, the additional
information provided by the calibrated images can be exploited to help surface reconstruction.

In this chapter we will build on this idea and describe an original method to reconstruct a three
dimensional scene from a sequence of calibrated images.
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6.1.2 Related work

Over the past three decades there have been significant efforts in surface reconstruction from
images, typically targeting urban environments or archaeological sites. This has led to the
development of various algorithms whose results are getting significantly closer to the precision
of surface reconstruction from point sets acquired from laser range scanners. It is arduous to
bring up a classification of these works since many algorithms combine different approaches.

According to a recent survey provided by [Seitz et al., 2006], surface reconstruction methods
can be roughly classified into four categories. The first category works by computing a cost
function on a three dimensional volume, which is used later on to extract a surface mesh from
it. It includes the voxel coloring algorithms [Seitz & Dyer, 2002] and the graph cut algorithms
[Kolmogorov & Zabih, 2002, Vogiatzis et al., 2005, Lempitsky et al., 2006, Tran & Davis, 2006,
Vogiatzis et al., 2007]. The second class includes the variational methods and work by itera-
tively evolving a surface to minimize an error function. This category includes methods based
on level sets [Faugeras & Keriven, 1998a, Faugeras & Keriven, 1998b, Pons et al., 2007] which,
as the space carving methods [Kutulakos & Seitz, 2000], starts from a large initial volume
and shrinks it to fit the surface (for more details on level set methods please refer to Sec-
tion 4.2.2). The third class of methods is based on the combination of multiple depth maps, en-
suring a consistent 3D scene [Strecha et al., 2004, Gargallo & Sturm, 2005, Strecha et al., 2006,
Merrell et al., 2007, Goesele et al., 2007, Zach et al., 2007, Pollefeys et al., 2008]. Finally, we
call the fourth category of algorithms as hybrid algorithms as they combine multiple approaches.
These hybrid methods usually proceed in two phases: First, they extract a set of interest points
that are robustly matched across the images; second, they fit a surface to the reconstructed 3D
points, possibly using the information coming from the images.

Among the presented classes our method falls in the last category. Techniques closest to ours
generally start with a two dimensional Delaunay triangulation of the projections of the extracted
3D point clouds on the plane of one of the images, and then lift the triangulation into 3D space to
obtain a surface model. In their work, [Pollefeys et al., 2004] use this two dimensional Delaunay
triangulation and lifting approach on the interest points from one of the images, to create a mesh
model. If the reconstructed 3D points are uniformly distributed, their Delaunay triangulation
produces triangles of balanced sizes and shapes, suitable for polyhedral representation of a
curved surface. Hence, this method works well for dense point samples, but for sparse point
clouds, it often links points from different planar surfaces, leading to artifacts where some of
the triangulation edges may not coincide with physical edges.

The concept referred to as Image-Consistent Triangulation in multi-view stereo reconstruction
methods was first addressed by [Morris & Kanade, 2000]. They start by building an initial
surface mesh based on lifting a two dimensional Delaunay triangulation of an acquired 3D point
set of the scene. An edge swapping technique, is then used to traverse possible triangulated
surfaces with vertices on the 3D positions of the matched interest points. They use a greedy
approach to search for the triangulation whose connectivity is “photo”-consistent with the
greatest possible number of views. In the same vein, [Nakatuji et al., 2005] detect texture
discontinuities in images and swap the edges of the initial triangulation of a given 3D point
set of the scene to match the detected discontinuities as much as possible. This results in
a triangular mesh that is compatible with the physical object shape. Both approaches rely
on statistical methods, such as simulated annealing, to find the optimal triangulation. These
statistical methods are computationally expensive, and their convergence cannot be guaranteed.
Therefore, both approaches [Morris & Kanade, 2000, Nakatuji et al., 2005] work well mainly
with sparse input point clouds.

Hybrid approaches have been proposed by combining the calibrated images informations and
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visibility constraints. The first algorithm addressing three dimensional scene reconstruction
from sparse 3D data with arbitrary geometry and multiple occluding objects was presented
by [Manessis et al., 2000]. A complimentary algorithm was proposed by [Hilton, 2005], he lifts
in 3D space the two dimensional Delaunay triangulations in all views, and then rejects 3D
triangles depending on the visibility constraints of all views. This algorithm is reliable and
computationally efficient, the output is a set of triangulated surface patches consistent with all
visibility constraints, but not a mesh.

Surface reconstruction from multiple views can also be thought in terms of the scenes they
can handle. The requirements for the ability to handle large-scale scenes discards most of
the multi-view stereo reconstruction algorithms including the algorithms listed in the Middle-
bury challenge [Seitz & Dyer, 2002]. The methods which have proved to be more adapted to
large-scale outdoor scenes are the ones that compute and merge multiple depth maps. How-
ever, in many situations, the reconstructed three dimensional models lack of accuracy or com-
pleteness due to the difficulty to consistently take visibility into account. Recently, three dif-
ferent accurate reconstruction algorithms have been proposed in [Furukawa & Ponce, 2007],
[Labatut et al., 2007, Vu et al., 2009] and [Lafarge et al., 2010] to overcome this difficulty.

In their work, [Furukawa & Ponce, 2007] proposed a reconstruction method that generates and
propagates a dense set of patches. This method relies on a careful succession of heuristics to
filter and expand sets of oriented patches. The final surface is reconstructed through Poisson
surface reconstruction of [Kazhdan et al., 2006] which does not handle any visibility issue. In
the same year, [Labatut et al., 2007] designed an algorithm that mixes interestingly a three
dimensional volumetric approach and an implicit method. They build a 3D Delaunay triangu-
lation of their quasi-dense 3D point cloud. From that triangulation they reconstruct the scene
object by labeling the tetrahedra as inside or outside the object. A globally optimal label assign-
ment is efficiently found using graph cut optimization methods on the triangulation adjacency
graph. Adjacency edges are weighted according to photo-consistency and the visibility con-
straints. Recently, Labatut et al. revamped each individual step of their approach and added a
mesh-based variational refinement step in [Vu et al., 2009]. More recently, [Lafarge et al., 2010]
interestingly mix a three dimensional mesh and geometric primitives, using a Jump-Diffusion
process [Grenander & Miller, 1994], to output compact models while preserving details. To our
knowledge, among the works described above, only [Vu et al., 2009, Lafarge et al., 2010] have
shown a real foretaste of scalability and impressive results on large-scale outdoor scenes.

In this lineage of highly scalable approaches, [Jachiet et al., 2010] designed an algorithm for au-
tomatic simplified piecewise planar three dimensional reconstruction and completion from large
3D point sets that are entangled with noise and outliers. Their method has shown impressive
practical results, but does not aim at detailed reconstructions, it rather focuses on reconstruc-
tion with strong shape priors to build geometrically simplified models from point clouds that
can attain millions of points.

To demonstrate the efficiency of our reconstruction results we will rely on the publicly available
quantitative challenge from the review of [Strecha et al., 2008] currently led by [Vu et al., 2009].

6.1.3 Contributions

Our reconstruction method is close to [Hilton, 2005] and to the Image-Consistent Triangulation
concept proposed by [Morris & Kanade, 2000]. It consists in a pipeline that handles large-scale
scenes while providing control over the density of the output mesh.

A triangular depth map is built in each image plane, respecting the main contours of the image.
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The triangles of all the depth maps are then lifted in 3D, forming a 3D triangle soup. The
similarity of the triangle soup with the surface of the scene is further enforced by combining
both visibility and photo-consistency constraints. Lastly, a surface mesh is generated from
the triangle soup using Delaunay refinement methods and the concept of restricted Delaunay
triangulation. The output mesh can be refined until it meets some user-given size and quality
criteria for the mesh facets.

The reminder of this chapter is organized as follows. Section 6.2 gives some background on the
mesh generation technique needed in our approach. In Section 6.3, we describe in details the
different steps of our algorithm. Section 6.5 discusses numerical experiments that demonstrate
the potential of our approach for reconstructing cluttered scenes from real-world data, before
we conclude in Section 6.6.

6.2 Background

In this section we give some background on the Delaunay refinement mesh generation algorithm
of [Boissonnat & Oudot, 2005]. We will use this algorithm to obtain our output mesh from the
generated triangle soup. Please refer to Chapter 2 for a description of the geometric concepts
used in our method.

6.2.1 Delaunay refinement surface mesh generation

The Delaunay refinement surface meshing algorithm builds incrementally a sampling P on
the surface S whose restricted Delaunay triangulation DS(P) is a good approximation of the
surface S. Recall that if P is an ε-sample of S for a sufficiently small ε then DS(P) is a
good approximation of S in a topological and geometric sense [Amenta & Bern, 1998]. One
drawback of the concept of ε-sample is the fact that it is hard to control if a sample is an ε-
sample of a surface, and even harder to construct an ε-sample of a given surface. In their work
[Boissonnat & Oudot, 2005] introduced the notion of loose ε-sample whose main advantage over
ε-sample is that they are easier to check and construct, while remaining asymptotically identical
to ε-samples. They also proved that if a loose ε-sample of S, with ε ≤ 0.091, can be constructed
then DS(P) will be a good approximation of S.

Let P be a finite set of points and ε a real positive number. The point set P is called a loose
ε-sample of S if the following conditions are satisfied:

1. P ⊂ S;

2. DS(P) has vertices on all connected components of S;

3. the center c of all the surface Delaunay balls of P is at a distance of P smaller or equal
to ε lfs(c).

Because the surface S is unknown, the lfs is not known as it depends on the thickness and
curvature of the object. Thus, the third condition is replaced by a distance criterion that
adapts to local curvature and controls the approximation, and a size criterion which should
take care of the thickness. The algorithm starts by sampling a small initial set of points P on
S. In practice, three points per connected component of S are sufficient. Then it computes
the Delaunay triangulation D(P) and its restriction DS(P). This initial approximation is then
refined until it meets the following quality criteria for facets of DS(P):
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• minimum angle α – This quality criterion ensures that the facets of DS(P) are well
shaped. The parameter α is the lower bound for the minimum angle of any mesh facet.
The algorithm is guaranteed to end if α ≤ 30◦.

• maximum edge length l – This sizing criterion is the upper bound for the maximum
edge length of a facet of DS(P).

• maximum surface distance d – This criterion governs the approximation accuracy of
the mesh elements. The parameter d is the upper bound for the distance between the
center of a facet of DS(P) and the center of any surface Delaunay ball of this facet. This
parameter has to be small compared to the aforementioned maximum edge length l to
increase the approximation accuracy of the resulting mesh.

The refinement process tracks bad facets in DS(P), i.e. facets that do not comply to the
meshing criteria. Each bad facet is killed out of the mesh by inserting the center of its surface
Delaunay ball. Such a Delaunay refinement meshing algorithm is greedy, it inserts points one
after the other and maintains the current set of points P , D(P) and DS(P). It also maintains
a list of bad facets. The refinement routine is iterated until there is no more bad facets left.

The key to [Boissonnat & Oudot, 2005] algorithm flexibility is it’s ability to mesh surfaces as
general as piecewise smooth surfaces. The only assumption that is made is that the input
surface representation is amenable to simple geometric queries, namely intersection with a line
segment. Put differently, the shape to be discretized is required to be known through an oracle
that given a line segment detects whether the segment intersects the surface, and if so, returns
the intersection points. Thus, the input shape can be represented as any surface reconstructed
from a 3D point set, an implicit function or even as a triangle soup. Moreover, such a Delaunay
refinement surface meshing algorithm yields a quality surface mesh, free of self-intersections.

6.3 Algorithm

Our algorithm consists in a pipeline that handles large-scale scenes while providing accurate
reconstructions. The algorithm takes as input a sequence of calibrated images and a set of
tracks, provided by the multi-view passive stereo technique described in Sections 3.2. Each
input track stores its 3D point location as well as the list of camera locations from which it was
observed during acquisition. The algorithm consists in three main steps:

1. merging, filtering and smoothing of the tracks;

2. using the pre-processed 3D points and the camera projection matrices we extract a triangle
soup that minimizes visibility and photo-consistency violations;

3. computing from the triangle soup a mesh modeling the scene.

The different steps of our algorithm are illustrated in Figure 6.1. The following sections describe
the three steps of the algorithm in more details.

6.3.1 Merging, filtering and smoothing

Given a set of calibrated images we first start by extracting a set of 3D points using the multi-
view passive stereo technique of [Vu et al., 2009] described in Section 3.2. Figure 6.2 shows the
typical input to our surface reconstruction algorithm provided by the point cloud extraction
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Figure 6.1: Reconstruction pipeline overview. Calibrated images are used by the multi-view
passive stereo algorithm of [Vu et al., 2009] to extract a 3D point cloud. (1) We will first pre-
process the 3D point cloud. (2) Using the pre-processed 3D points and the camera projection
matrices we extract a triangle soup that minimizes visibility and photo-consistency violations.
(3) Finally, we use the triangle soup as a surface approximation and build the output 3D model.
Note that the triangles lying on the table were voluntary removed for readability.
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algorithm. In this case the results were obtained from a set of twenty-five images taken from
slightly different view points.

In the following, we call line-of-sight the segment from a camera location to the 3D position
of a track seen by this camera. Despite the robust matching process used by the multi-view
passive stereo algorithm, the extracted tracks require some pre-processing including merging,
filtering and smoothing.

Note: The merging, filtering and smoothing routines described in this section are part of
the Point set Processing package [Alliez et al., 2010b] of Cgal [cga, 2010], thus are publicly
available and can be tested by the reader. Please refer to Appendix A for a more detailed
overview of the functionalities provided by the point set processing package.

Merging – The first pre-processing step in our method consists in merging tracks whose
positions are too close. We do that by building an incremental Delaunay triangulation of the
3D positions of the tracks. Each time a track 3D position is to be added, its nearest neighbor
is requested. Depending on the distance between the 3D positions of these two tracks, one of
two cases can arise:

• if the nearest neighbor is close, with respect to a threshold t1, the two tracks are merged
in a single one and the list of cameras is updated to include the union of the cameras of
the two merged tracks;

• if the closest neighbor is at a distance larger than t1 then both tracks are preserved in the
final set of tracks.

Filtering – As tracks are coming from characteristic points detected in the images, their 3D
locations should be densely spread over the surface of the scene objects. Thus, tracks which
are rather isolated are likely to be outliers. Another criterion used to further filter out outliers,
is based upon the angle between lines-of-sight. When a 3D point location is computed from
lines-of-sight forming small angles, the intersection computation is imprecise and the 3D point
is likely to be an outlier. For these reasons we use two criteria to detect outliers in the set of
tracks: the distance to neighbors and the cone angle.

• Distance to neighbors - This criterion aims at eliminating tracks far away from densely
populated regions of space. We compute for each track with 3D position pi the average
Euclidean distance dk(pi) from pi to its k-nearest neighbors.

dk(pi) =
1
k

∑
pj∈kNN(pi)

‖pi − pj‖2 .

In practice, for the 3D point clouds of the scenes we wish to reconstruct, the distribution
of the average distance to the k-nearest neighbors tends to be Gaussian-like. Thus, if σ
is the standard deviation of the distance distribution, we eliminate tracks with distance
higher than 3σ.

• Cone angle filtering - This criterion aims at eliminating the tracks which have been
observed from only a few camera locations or from a set of cameras in directions forming
small angles from the 3D point. We compute for each track with 3D position pi the
aperture angle of the smallest cone with apex at pi containing all cameras that observe
point pi. Tracks with cone angles smaller than a threshold t2 are discarded. Note that
this criterion is very useful for filtering 3D point clouds extracted from a set of images
taken from a video sequence.
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Smoothing – The final pre-processing step smooths the remaining tracks using a smoothing al-
gorithm based on a polynomial fitting of osculating jets and reprojection [Cazals & Pouget, 2003].
In contrast to [Cazals & Pouget, 2003], we use Gaussian weights for the optimization steps. Let
p0 be the 3D position of a track and kNN(p0) = {p1, . . . , pk} its k-nearest neighbors. A prin-
cipal component analysis (PCA) of this set of nearest points provides a first order estimate of
the tangential plane at p0 and the reference domain for the polynomial fitting. The estimated
normal −→n0 of this tangent plane at the point p0 is the solution of the following optimization
problem:

min
‖−→n‖=1

k∑
m=1

〈−→n , (p0 − pm)〉2γ(‖p0 − pm‖) ,

where γ(x) = e−
x2
2 is a Gaussian weight function giving more importance to points close to p0.

This estimated tangent plane is only used as the reference domain to compute a bivariate
polynomial approximation to the neighboring points kNN(p0) with the estimated tangent plane
as reference domain. Using the weights hm = γ(‖p0 − pm‖), the paraboloid π(x, y) = ax2 +
by2 + cxy + dx+ ey + f minimizing

min
π∈Π2

2

k∑
m=1

(π(xm, ym)− zm)2hm ,

where Π2
2 denotes the bivariate polynomials of second degree, can be found by solving the

following linear system of equations

AT

 h1 0
. . .

0 hk

A


a
b
...
f

 = AT


h1z1

h2z2

...
hkzk

 ,

with

A =

 x2
1 y2

1 x1y1 x1 y1 1
...

x2
k y2

k xkyk xk yk 1

 .

Practically, for each track 3D position, we compute its corresponding low degree polynomial
surface that approximates its k-nearest neighbors as aforementioned. We then project the
track 3D position onto the computed polynomial surface following the normal to the graph of
the polynomial at the origin (0, 0): −→n0 = (−d,−e, 1)T . In the presence of noise, this normal
approximates much better the surface normal than the previously computed first order estimate
of the tangent plane.

Note: For all the presented results we used t1 = 0.001β, where β is half the diagonal of the
bounding box of the point cloud, t2 = 0.08radian, and k equals to 150 and 85 respectively
for the filtering and smoothing step.

6.3.2 Triangle soup extraction

The next step in our method combines the pre-processed tracks and the input images to build
in each image plane a triangular depth map that comply with the image discontinuities. The
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Figure 6.2: Top to bottom: three images out of twenty-five of the Herz-Jesu-p25 dataset of
[Strecha et al., 2008]; oblique view of the extracted point cloud, note how points are close to
one another; un-zoomed view, note the high number of outliers; top view note the high amount
of noise.
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triangles of each depth map are then lifted into 3D space forming a triangle soup which will
require further filtering to minimize violations of visibility and photo-consistency constraints.

Depth Maps Construction – Since straight or curved edge segments appearing in the im-
ages are one of the most important keys for understanding or reconstructing the scene from
two dimensional images, it is expedient to include this edge information in the depth maps
construction process.

A typical edge is a set of points where the brightness intensity of the corresponding pixels
changes most strongly in their neighborhood. Thus, on a two dimensional image the edge
corresponds to a contour and often a sharp edge or an occluding boundary in 3D space.

A simple yet powerful method for edge detection is to perform a contrast analysis into the
input images using gradient-based techniques. To that aim, we used the standard Canny edge
detection algorithm [Canny, 1986], that has the following properties:

• high positional accuracy of an edge, even with aliasing;

• good sensitivity to high frequency data;

• reduction of the data (many pixels dont produce edge points).

The last of these properties, i.e. reduction of the data, is important as it can make a significant
difference in the computation time of the depth maps.

First, the input image I is convolved with a Gaussian kernel G(x, y) = e−(x2+y2)/2σ2
of standard

deviation σ (typically σ = 2), to give a scale-space representation S = G ∗ I.

Then the gradient of the image is computed by feeding the smoothed image L to a convo-
lution operation with the derivative of a Gaussian mask in both the vertical and horizontal
directions. Note that the Gaussian mask and its derivative are separable, allowing the two
dimensional convolution operations to be simplified. Practically, we compute the gradient of S
using the centered three-by-three first difference Sobel filters, to produce two images Sx and Sy
respectively for the x and y partial derivatives:

Sx =

 1 0 −1
2 0 −2
1 0 −1

 ∗ S and Sy =

 −1 −2 −1
0 0 0
1 2 1

 ∗ S .
From these gradients, the gradient magnitude M and the gradient direction Θ can be deter-
mined:

M =
√
S2
x + S2

y .

Θ = arctan (Sy/Sx) ,

The magnitude image M will contain large values where image gradients are strong. However,
when using the Sobel filters the edges can be very thick or narrow depending on how much the
image was smoothed. Thus, to identify the edges properly, the multi-pixel wide edges should be
thinned down to single pixel width. This is done using the non-maxima suppression technique
which has the effect of suppressing all values along the direction of the gradient that are not
peak values. The Canny algorithm starts by rounding the angle of the gradient direction Θ to
one of four angles representing the vertical, horizontal and two diagonals.

Practically, a three-by-three neighborhood window is applied to the magnitude image M . At
each pixel, the center element of M in the window is compared to its two neighbors along the
gradient direction given by the angle value. If the magnitude value of the center element is
smaller than one of its two neighbors, then it should not be classified as an edge element and



6.3. ALGORITHM 65

Figure 6.3: Top to bottom, left to right: one image out of twenty-five of the Herz-Jesu-
p25 dataset of [Strecha et al., 2008]; the extracted edges using the Canny edge detector
[Canny, 1986]; set of ctracks whose projection is close to an edge (orange); approximation
of the detected contours as a set of non-intersecting polylines (purple).

its magnitude value is set to zero . From this non-maxima suppression stage, a set of edges are
identified and are retained in the form of a non-maxima suppressed image N .

Finally, instead of using a single threshold value for the image N , the Canny algorithm in-
troduced hysteresis thresholding which takes N and applies two thresholds θ1 and θ2, where
θ1 > θ2. When a pixel magnitude in N is greater than θ1 it is recorded as definite edge, when a
pixel magnitude is under θ2 it is recorded as non edge, and when a pixel magnitude is between
θ2 and θ1 it is recorded as candidate edge. Next, all candidate edge that can be traced back
to a definite edge via adjacent candidate edges are also marked as definite edges. This pro-
cess mollifies problems associated with edge discontinuities by identifying strong edges, while
preserving comparatively weaker edges, and while maintaining some level of noise reduction.
Figure 6.3 illustrates a typical output of this edge detection procedure.

We then compute, in each resulting binary image, an approximation of the detected contours as
a set of non-intersecting polygonal lines with vertices on the projection of the tracks. For this
we consider in each image the projection of the tracks located in this image. We call contour
track, or ctrack, a track whose projection on the image is close to some detected contour. We
call a non-contour track, or nctrack, any other track. We consider the complete graph over all
ctracks of an image and select out of this graph, the edges which lay over detected contours.

The selection is performed by a simple weighting scheme adapted from the field of Computa-
tional Biology [Needleman & Wunsch, 1970]. We traverse every edge of the graph sequentially,
if the edge passes through a contour pixel, it is a match, and we give the edge a reward score
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Figure 6.4: Weighting scheme: Delaunay triangulation of ctracks (black dots) superimposed
to a binary image, only edges with a positive weight (straight blue line) are considered as an
approximation of the detected contours.

of +1. Empirically, it is more likely that the edge does not lay on the contour if it crosses a big
gap of length L. Said differently, it is more likely that an edge crossing L adjacent non-contour
pixels is not part of the contour, than an edge crossing L small gaps of length 1. Therefore,
we will use an affine gap penalty that will favor single gaps over longer gaps of the same total
length. We will use a gap opening penalty o > 0 and a gap extension penalty e > 0 where
e > o (typically e = 2 and o = 0.5), to encourage gap introduction rather than gap extension.
A gap of length L is then given a penalty p = o+ (L− 1)e. The edge weight is then computed
as the sum of match scores and gap penalties and only edges with a positive weight are kept.
A sketch of the polygonal line approximation of the contours is illustrated in Figure 6.4.

Inherently, whenever there is n ctracks aligned on an image contour, we select the n(n − 1)/2
edges joining these tracks. Albeit, we wish to keep only the n − 1 edges between consecutive
ctracks on the contours. For this reason we use a length criterion to further select a subset of
non-overlapping edges fashioning the polygonal approximation of the contour.

In practice, in order to speed up the computation, we chose to consider the Delaunay triangula-
tion over all ctracks instead of building a complete graph. Other steps of the algorithm remain
unchanged were Delaunay edges are considered instead of the complete graph edges. This gives
a good approximation because of the high density of ctracks per image. Figure 6.3 illustrates
the output of this step.

In each image plane, edges in the polygonal contour approximation are used as input segments
to a two dimensional constrained Delaunay triangulation with all projected tracks, ctracks and
nctracks, as vertices. The output is a triangular depth map per image. The triangles of this
depth map are then lifted in 3D space using the 3D coordinates computed by the multi-view
passive stereo algorithm. However, lifted depth maps from consecutive images partially overlap
one another and the triangle soup includes redundancies. When two triangles share the same
vertices, only one is kept.

Triangle soup filtering – The vast majority –but not all– triangles of the soup lie on the
actual surface of the scene. However, at occlusion boundaries, the depth map construction
step might produce triangles that connect foreground surfaces to background surfaces. In the
sequel, we note Γ = {τ0, . . . , τn} the 3D triangle soup. We wish to filter Γ to remove erroneous
triangles. Operationally, we proceed as follows:
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Figure 6.5: Visibility constraints: the point M seen in the current view through mi has its free
space violated by triangle τ seen in another view.

1. The visibility constraint states that the line-of-sight from a camera position to the 3D
position of a track seen by this camera belongs to the empty space, i.e. it does not
intersect any object in the scene. Therefore a triangle intersected by some line-of-sight
should be removed from Γ (see Figure 6.5). However, this rule has to be slightly softened
to take into account the smoothing step described in Section 6.3.1, where the tracks 3D
positions have been slightly changed. More specifically, each triangle τi in Γ gets a weight
wi equal to the number of lines-of-sight intersecting τi. We then discard from Γ any
triangle with a weight wi greater than a threshold t3. Practically, we insert all elements
of Γ in an axis aligned bounding box tree (AABB tree) data structure, in order to speed
up the triangle-ray intersection detection queries.

2. We also filter out any triangle whose vertices, at least one of them, are only seen by
grazing lines-of-sight. In practice, a triangle is kept if the angle between the line-of-sight
and the triangles normal does not exceed a given threshold (see Figure 6.6), typically 60
degrees is used in our experiments to characterize a grazing line-of-sight.

3. Depending on the density of the pre-processed tracks, the triangle soup can contain“big”
triangles, i.e. triangles whose circumradii are big compared to the scale of the scene. We
use shape and photo-consistency to filter big triangles.
A triangle is said to be anamorphic if it has a too big radius-edge ratio, where the radius-
edge ratio of a triangle is the ratio between the radius of its circumcircle and the length
of its shortest edge. Anamorphic big triangles are likely to lie in free space and should
be discarded. Big triangles with regular shapes are filtered using a photo-consistency
criteria:
A 3D triangle τi in Γ is photo-consistent, if its projections into all images where τi ver-

tices are visible, i.e. consistent images, correspond to image regions with the same “tex-
ture”. More precisely, among these consistent images, the one where the projected triangle
presents the largest area is chosen as the reference image. After computing the homogra-
phies between the reference image and all other consistent images [Chen & Medioni, 1997],
all triangles in the consistent images are warped onto the reference image and compared to
it through NCC (see Section 3.2.2 for details on NCC). The NCC values are in the range of
-1 to 1 , with 1 indicating a perfect correlation between triangles (exact match). A value
of -1 indicates an inverse correlation and values near zero indicates a false match. We
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Figure 6.6: Cross-section of the triangle soup and camera viewing cone (green). Lines-of-sight
are cast from the camera center C to each triangle that is seen by this camera. A triangle is
kept (red) if the angle between the line-of-sight and the triangles normal does not exceed a
given threshold.

compute the average NCC value and compare it to a fixed threshold. The threshold value
we use is 0.7, thus if the NCC value exceeds this threshold, the projected triangles are as-
sumed to match and τi is preserved. In our algorithm we use NCC because it is known to
be less sensitive to illumination changes between the views. Also, we only use consistent
images where the angle between the normal of τi and the line-of-sight through the center of
the image is small. This scheme gives head-on view more importance than oblique views.

6.3.3 Reconstruction

For the final step, we use the Delaunay refinement surface mesh generation algorithm designed
by [Boissonnat & Oudot, 2005] and described in Section 6.2.

Recall that this algorithm needs to know the surface to be meshed only through an oracle that,
given a line segment, detects whether the segment intersects the surface and, if so, returns
the intersection points. Since the triangles of Γ minimize violations of visibility and photo-
consistency constraints, they can be used as an approximation of the surfaces we wish to model.
We implemented the oracle required by the meshing algorithm using the triangles of Γ as an
approximation of the surface. By doing so, the oracle will test and compute the intersections
with Γ to answer to the algorithm queries. Technically, we use the updated AABB tree data
structure from the filtering stage, to perform the intersection test efficiently.

In other words, to produce meshes with different resolutions, we just have to apply the recon-
struction step on the extracted triangle soup and alter the Delaunay refinement parameters
(α, l, d) (see Figure 6.7).

6.4 Implementation

We have implemented our approach in C++, using both CImg and Cgal libraries. The Cgal
library, i.e. Computational Geometry Algorithms Library [cga, 2010], defines all the needed
geometric primitives and provides very efficient algorithms to compute Delaunay triangulations
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Figure 6.7: Fountain-p11 dataset of [Strecha et al., 2008]. Top to bottom, left to right: 3D
meshes resulting from our reconstruction step. By altering the parameters (α, l, d) in the re-
construction step, the output mesh becomes coarser, but, the fountain shape remains.

in both two and three dimensions [Boissonnat et al., 2000]. More specifically, the implemen-
tation is robust to degenerate configurations and floating-point error, through exact geometric
predicates, while being able to process millions of points per minute on a standard workstation.

The Cgal library also provides the point set processing package [Alliez et al., 2010b], among
others, needed in the pre-processing step of our algorithm and that will be described in
more details in Appendix A. Moreover, it provides access to the AABB tree data structure
[Alliez et al., 2010c] which is an efficient data structure for intersection detection queries. More
importantly it provides us with an implementation of the Delaunay refinement surface meshing
algorithm [Rineau & Yvinec, 2010] that we use in the last step of our algorithm.

The CImg library, i.e. C++ Template Image Processing Toolkit [cim, 2010], is a toolkit for
image processing that defines classes and methods to manipulate generic images. We use it for
the edge detection, the constraint retrieval and the photo-consistency filtering step.

The oracle we implemented to test and compute the intersections with Γ to answer to the
Delaunay refinement surface mesh generation algorithm queries is defined by the following
code.

1 #include <boost/static_warning.hpp >

2 #include <utility >

3 #include <CGAL/iterator.h>

4 #include <CGAL/AABB_tree.h>
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5 #include <CGAL/AABB_triangle_primitive.h>

6 #include <CGAL/AABB_traits.h>

7

8 template <class K, class TriangleIterator > // Value type Triangle_3

9 class AABB_trianglesoup_oracle

10 {

11 typedef AABB_trianglesoup_oracle Self;

12

13 public:

14 typedef typename K:: Point_3 Point_3;

15

16 typedef Point_3 Intersection_point;

17 typedef Self Surface_3;

18

19 typedef CGAL:: AABB_triangle_primitive <K,TriangleIterator > AABB_prim;

20 typedef class CGAL:: AABB_traits <K,AABB_prim > AABB_traits;

21 typedef CGAL::AABB_tree <AABB_traits > Tree;

22

23 private:

24 Tree *m_pTree;

25

26 public:

27 Tree* tree() const{ return m_pTree; }

28

29 // constructors

30 AABB_trianglesoup_oracle (){ m_pTree = NULL; }

31 AABB_trianglesoup_oracle(Tree *pTree) { m_pTree = pTree; }

32

33 class Intersect_3

34 {

35 const Self& self;

36

37 public:

38 typedef typename Tree:: Object_and_primitive_id Obj_prim_id;

39

40 public:

41 Intersect_3(const Self& self) : self(self ){}

42

43 template <class SegmentType >

44 CGAL:: Object operator ()( const Surface_3& surface ,

45 const SegmentType& segment) const

46 {

47 typedef boost ::optional <Obj_prim_id > Object_and_primitive_id;

48

49 Intersection_point intersect_pt;

50 std::vector <Obj_prim_id > obj_prim_vect;

51 std::vector <Point_3 > point_vector;

52 surface.tree()-> all_intersections(segment ,

53 std:: back_inserter(obj_prim_vect ));

54

55 std::vector <Obj_prim_id >:: iterator it = obj_prim_vect.begin ();

56

57 for(;it!= obj_prim_vect.end(); ++it)

58 {

59 const Point_3* p = CGAL:: object_cast <Point_3 >(&(it ->first ));
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60 if(p)

61 point_vector.push_back (*p);

62 }

63 if(point_vector.empty ())

64 return CGAL:: Object ();

65 else

66 return CGAL:: make_object(CGAL:: centroid(point_vector.begin(),

67 point_vector.end ()));

68 }

69 }; // end class Intersect_3

70

71 Intersect_3 intersect_3_object () const { return Intersect_3 (*this); }

72

73 }; // end class AABB_trianglesoup_oracle

6.5 Results

In our experiments, we used for the point cloud pre-processing step the values of parameters
(t1; t2; k), as listed at the end of Section 6.3.1. Moreover, the visibility constraint threshold
t3 , defined at the end of Section 6.3.2, is fixed at 5 rays. Leaving aside the time required
by the multi-view passive stereo track extraction step, in our experiments the runtime of the
reconstruction ranges from 9 minutes for 200 000 tracks on 8 images to 38 minutes for 700 000
tracks on 25 images, on an IntelQuad Xeon 3.0GHz PC.

Strecha et al. [Strecha et al., 2008] provide quantitative evaluations for six outdoor scene
datasets. To our knowledge these are the only available datasets and evaluation benchmark
that allows comparison on large scale scenes. The evaluation of the reconstructed models is
quantified through the cumulative error distribution, showing, for each deviation σ, the per-
centage of the scene recovered within an error less than σ. The deviation is estimated with
respect to the ground truth model acquired with a LIDAR system (please refer to Section 3.1
for more details on the acquisition process used in [Strecha et al., 2008]).

We have tested our approach on the fountain-p11, entry-p10, castle-p19 and Herz-Jesu-p25 par-
ticularly challenging datasets. Focusing on the fountain-p11 dataset, Figure 6.8 shows, two of
the images, the extracted triangle soup, our reconstruction and the cumulative error distribution
compared with the distributions obtained by other reconstructed methods. The multi-view pas-
sive stereo cloud has 392 000 tracks from which 35 percent were eliminated at the pre-processing
step. Our algorithm has successfully reconstructed various surface features such as regions
of high curvature and shallow details while maintaining a small number of triangles (500k).
The comparison with other methods; VU [Vu et al., 2009], FUR [Furukawa & Ponce, 2007],
ST4 [Strecha et al., 2004], ST6 [Strecha et al., 2006], ZAH [Zaharescu et al., 2007] and TYL
[Tylecek & Sara, 2009] illustrates the effectiveness and flexibility of our method as it generates
small meshes that are accurate and complete while being visually acceptable. Please note that
we do not employ any post-processing variational refinement as in [Vu et al., 2009], that might
be an interesting step to explore to get more accurate output meshes.

Moreover, Figure 6.9 illustrates the ability of our algorithm to take into account user-defined
size and quality criteria for the mesh facets on the Herz-Jesu-p25 dataset. Figure 6.10 shows
our reconstruction results for the entry-p10 and the Herz-Jesu-p25 datasets. For extended
results we refer the reader to the challenge website [Strecha et al., 2008].
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Figure 6.8: Top-left: two images of fountain-p11 dataset of [Strecha et al., 2008] and the ex-
tracted triangle soup. Bottom: our reconstruction (500 000 triangles). Top-right: the cumula-
tive error distribution (SAL for our work) compared with others. For comments please refer to
main text.

To show the ability of our algorithm to cope with much bigger outdoor scenes and its ability
to produce meshes that take into account the user budget for the size of the output mesh,
we have chosen to test our method on an aerial acquisition of the Aiguille du Midi mountain.
This dataset also refered to as the Aiguille du midi dataset was graciously provided to us
by Jean-Philippe Pons1 and the copyright goes to Bernard Valet 2 for data acquisition and
calibration and to the CERTIS 3. It includes fifty-one images, the extracted cloud has 6 700
000 points with lots of outliers. At the pre-processing step, eighty percent of the points were
eliminated. The reconstructions shown in Fig. 8 are obtained with α equals 20 degrees and the
couple (d, l) is set as (0.01, 0.035) and (0.002, 0.01) in unit of the bounding box half diagonal.

1http://certis.enpc.fr/~pons
2http://www.bvallet.com
3http://certis.enpc.fr/index.html

http://certis.enpc.fr/~pons
http://www.bvallet.com
http://certis.enpc.fr/index.html
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scene mesh times (TS,R) figure
3D points triangles

entry-p10
243 130 pts

223 300 503 465 (5,4) 6.10

fountain-p11
392 489 pts

231 884 503 591 (8,4) 6.8

Herz-Jesu-p25
712 105 pts

501 788 1 200 755 (25,13) 6.10

Aiguille-du-Midi 131 202 272 792 (240,9)

6 788 290 pts 465 419 992 140 (240,20) 6.11

Table 6.1: Statistics of model reconstruction examples. Running times are in minutes, (TS,R)
denote respectively the triangle soup extraction and mesh generation.

This enabled us to reconstruct from a single extracted triangle soup output meshes of various
resolutions (270 000 triangles and 1 000 000 triangles respectively in Figure 6.11). Note that
details such as antennas and bridges are recovered even in the coarsest model. Table 6.1 shows
the number of 3D points, the number of triangles for each reconstructed mesh and the time for
the reconstruction algorithm.

6.6 Conclusion

In this chapter, we have presented a surface reconstruction algorithm from stereo vision data.
Our algorithm copes with the fuzziness of the data by using information from both the multi-
view passive stereo extracted 3D point clouds and the calibrated images. After filtering and
smoothing the point cloud, the algorithm builds for each calibrated image a triangular depth
map respecting the main contours of the image. The triangles of all depth maps are then lifted in
3D space and merged together into a triangular soup. Using a combination of both visibility and
photo-consistency constraints, we filter the soup to further enforce its the consistency with the
surface of the scene. Finally, a mesh is computed from the triangle soup using a reconstruction
method that combines restricted Delaunay triangulation and Delaunay refinement. Visual and
quantitative assessments applied on various large-scale datasets indicate the good performance
of our algorithm compared to the state of the art methods in terms of accuracy of the mesh
representation.

During the triangle filtering stage, it is sufficient for a triangle to not satisfy one of the con-
straints, to discard it from the triangle soup. As a result, the final triangle soup might contain
some holes, thus, not cover the entire surface of the object leading to incomplete 3D meshes.
This limitation is clearly visible in Figure 6.10.

To overcome this limitation, one solution would be to consider using a hole-filling heuristic on
the resulting mesh. One common approach is to triangulate each connected component of the
surfaces boundary, thus filling each hole with a patch that has the topology of a disc. We however
would rather consider taking inspiration in the very recent work of [Toldo & Fusiello, 2010] and
fill the gaps through, heuristically, at the triangle soup construction stage. Also, to get more
accurate and visually pleasing results we want to consider taking inspiration in the work of
[Vu et al., 2009] and possibly add a post-processing variational refinement step to our generated
meshes. Finally, we would like to incorporate in the reconstruction process a scale dependent
sharp edges detection and recovery procedure to build geometrically simplified models.
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Figure 6.10: Top to bottom: two images of entry-p10 and Herz-Jesu-p25 datasets provided by
[Strecha et al., 2008]; our reconstruction of entry-p10 (500 000 triangles); our reconstruction of
Herz-Jesu-p25 (1 200 000 triangles).
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Figure 6.11: On the left: two images of the Aiguille du midi dataset ( c©B.Vallet/IMAGINE);
below: our low resolution reconstruction (270 000 triangles). On the right: our high resolution
reconstruction (1 000 000 triangles). Note how most details pointed by yellow arrows are
recovered in both resolutions.

6.7 Publications

A preliminary version of this work appeared as a video in the ACM Symposium on Computa-
tional Geometry 2009 [Salman & Yvinec, 2009] and as a short paper in the Asian Conference
of Computer Vision Workshop on Representation and Modeling of Large-Scale 3D Environ-
ments (Modeling-3D) 2009 [Salman & Yvinec, 2009] followed by an extended version in the
International Journal of Virtual Reality [Salman & Yvinec, 2010].

Part of this work has also led to the development of the point set processing Cgal package
[Alliez et al., 2010b].



The oldest, shortest words
– “yes” and “no” – are those
which require the most thought.

Pythagoras (582 - 497 BC) 7
Piecewise smooth surface reconstruction

W
e address the problem of generating quality surface triangle meshes from 3D point
clouds sampled on piecewise smooth surfaces. Using a feature detection process
based on the covariance matrices of Voronoi cells, we first extract from the point

cloud a set of sharp features. Our algorithm also runs on the input point cloud a reconstruction
process, such as Poisson reconstruction, providing an implicit surface. A feature preserving
variant of a Delaunay refinement process is then used to generate a mesh approximating the
implicit surface and containing a faithful representation of the extracted sharp edges. Such a
mesh provides an enhanced trade-off between accuracy and mesh complexity. The whole process
is robust to noise and made versatile through a small set of parameters which govern the mesh
sizing, approximation error and shape of the elements. We demonstrate the effectiveness of our
method on a variety of models including laser scanned datasets ranging from indoor to outdoor
scenes.

7.1 Introduction

7.1.1 Motivation

Surface reconstruction consists in inferring the shape of an object from a 3D point cloud sampled
on the surface. The problem of automatic surface reconstruction from point samples has received
considerable amount of efforts in the past twenty years. Surface reconstruction problems occurs
in different flavors according to the quality of the data which are more or less entangled with
noise, and the properties of the reconstructed object whose surface can be smooth or structured
with sharp features. Moreover, an implicit description of the reconstructed object is enough
for some applications, whereas some other require a data structure more amenable to further
processing, like a mesh.

In this chapter, we focus on the case where the sampled surface is piecewise smooth and the
output sought after is a high quality triangle mesh approximating the surface. Our goal is to
generate from the input point cloud a mesh including a faithful representation of sharp edges,
thus, improving the trade-off between the accuracy and the size off the mesh. We propose for
that an algorithm which experimentally proves to be fairly robust to noise.

77
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7.1.2 Related work

Reconstruction and quality surface mesh generation are often tackled separately in the liter-
ature. We first review the approaches dealing with the problem of robust reconstruction of
piecewise smooth surfaces, before reviewing the approaches that combine reconstruction and
quality surface mesh generation.

Towards piecewise smooth reconstructions.

In the quest to achieve both noise robustness and recovery of sharp features, one can identify
reconstruction approaches ranging from smooth to sharp through “nearly”-sharp.

Smooth surfaces. As noise and sparseness are common in laser scanner datasets, we have seen
in recent years a variety of approaches for robust reconstruction of smooth surfaces. A popular
approach consists of searching an implicit function whose zero level set fits the input data points.
The searched implicit functions can take different forms, being for instance approximated signed
distance functions to the inferred surface [Ohtake et al., 2005a, Guennebaud & Gross, 2007] or
approximated indicator functions of the inferred solid [Kazhdan et al., 2006]. Implicit functions
methods often provide spectacular robustness to noise. However most of them assume that
the data points come with oriented normals and are sampled from a smooth surface. The
latter assumption leads to erroneous surface reconstruction at locations where the smoothness
assumption is not met.

Note: A more detailed survey on smooth surface reconstruction methods is available in
Chapter 4.

An intermediate step toward handling sharp features consists of using locally adapted anisotropic
basis functions when computing the implicit function [Dinh et al., 2001]. In their approach,
[Adamson & Alexa, 2006] perform piecewise polynomial approximation through anisotropic
moving least-squares (MLS). More recently, [Oztireli et al., 2009] used a kernel regression tech-
nique to extend the MLS reconstruction to surfaces with sharp features. While satisfactory for
some applications (e.g., visualization as opposed to mesh generation), these approaches gener-
ate surfaces which are more accurate around sharp features but are still smooth. In addition,
boosting the anisotropy of a function is a dangerous game when simultaneously targeting ro-
bustness to noise, as such a strategy may amplify noise instead of the true features (features
and noise are ambiguous as both are high frequency). Furthermore, a purely local distinction
between smooth parts and sharp edges is likely to yield fragmented edges while a global feature
extraction approach can favor long edges in order to recover the true structure.

Handling sharp features. This brings out another thread of work aimed at extracting long
sharp features. When the input point cloud is endowed with normals, perceptual grouping
rules can be used to infer smooth surface patches [Guy & Medioni, 1997] and sharp features
may then be recovered as intersections of adjacent patches. When normals are not provided,
one can use a multi-scale approach to decide if a point is on a feature [Gumhold et al., 2001,
Pauly et al., 2003], and construct a minimum-spanning tree to recover the approximate feature
graph. A couple of years later, [Demarsin et al., 2007] used PCA to estimate the normals of
the input sample points, the latter are then clustered based on the normal variation in local
neighborhood. Points near the cluster boundaries are tagged as feature points. Smooth ap-
proximations of the sharp features are then obtained by fitting smooth curves from the minimal
spanning tree of the tagged data points. In their work, [Daniels et al., 2007] designed an ap-
proach to extract feature-curves using a method based on a robust MLS projection operator
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which locally projects points onto the sharp edges, and grow a set of polylines through the
projected points. An alternative approach was suggested by [Jenke et al., 2008] as they extract
the feature lines by robustly fitting local surface patches and by computing the intersection of
close patches with dissimilar normals. Both methods show satisfactory results even for defect-
laden point sets. More recently, [Weber et al., 2010] proposed a fully automatic method that
uses Gauss map clustering for feature detection. This method does not rely on local surface
reconstructions, and no normal information is required.

However, it should be noted that none of the of the feature estimation methods cited above
come with theoretical guarantees. Recently, [Merigot et al., 2009] proposed a robust estimation
of curvature tensors based on a covariance measure defined from the data points Voronoi cells.
Their method provides theoretical guarantees on robustness under bad sampling and noise
conditions (this method will be described in more details in Section 7.2.1).

One way to make a local, binary distinction between smooth parts and sharp features consists
of performing a local clustering of the inferred normals to the surface [Ohtake et al., 2003a].
If this process reveals more than one cluster, the algorithm does not fit just one low-degree
implicit function, but as many quadrics as the number of clusters. This leads to faithful local
reconstruction of a sharp edge as the intersection of two implicit primitives in the case of two
clusters. A corner is reconstructed as the intersection of three or more primitives. Note in
passing that the method misses tips (sharp point that are not incident to any sharp crease),
cusps and darts.

In order to achieve improved robustness, [Fleishman et al., 2005] segment neighborhoods of
points by growing regions belonging to the same part of the surface. Robustness is obtained by
using a forward search technique which finds reference planes corresponding to each segmented
region. While constituting an important progress, the method requires very dense point clouds,
and is rather expensive. Also, potential instabilities in the classification can create fragmented
surface parts. Targeting even higher robustness, [Lipman et al., 2007] enrich the MLS projec-
tion framework with sharp edges by defining an indicator field for local singularities based on
the error of the MLS approximation. However, they choose to restrict their approach to a single
singularity within each point neighborhood, which significantly limits the type of feature points
that can be handled.

Some other approaches [Reuter et al., 2005, Guennebaud & Gross, 2007] require some explicit
user interaction to enrich the input point cloud. Their projection operators take into account
the sharp features building upon the user-defined tags.

Coupling reconstruction and mesh generation.

One popular approach that couples reconstruction and mesh generation is the extended march-
ing cubes introduced by [Kobbelt et al., 2001]. The input is assumed to be a discretized signed
distance function enriched with oriented normals, the latter being used to decide whether or not
a voxel contains a sharp feature. If a voxel is classified as containing a feature, some additional
vertices are constructed within the voxel and placed at intersections between the planes defined
by the vertices and their affiliated normals. This approach works robustly and efficiently by
truly coupling feature extraction and mesh generation. Nevertheless, it relies on the marching
cubes process which is well known to produce rather poor quality surface meshes.

Two approaches which are able to generate quality surfaces while preserving the features
[Daniels et al., 2007, Jenke et al., 2008] proceed sequentially by first extracting a set of fea-
tures, then using the advancing front method proposed by [Schreiner et al., 2006]. The latter
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produces quality isotropic meshes from different inputs including MLS representations, and can
control the density of the mesh by pre-computing a guidance field. The algorithm uses time-
consuming pre-processing of the point cloud in order to construct a guidance field, as well as a
final post-processing using MLS projections.

A relevant alternative to the marching cubes and advancing front strategies is the Delaunay
refinement paradigm [Boissonnat & Oudot, 2005]. In this method the surface mesh is intersec-
tion free by construction as filtered out of a 3D Delaunay triangulation. A number of additional
guarantees are also provided after termination of the refinement process, such as a good shape of
elements, a faithful approximation of geometry and normals, and a low complexity of the mesh.
More interestingly in our context, Delaunay refinement is able to couple reconstruction and
mesh generation. At the intuitive level, the refinement procedure is combined with a sensing
algorithm probing an implicit surface defined from the data points. The probing is performed
along Voronoi edges of sampling points which are not only longer - hence more effective at
probing - than the short edges of the marching cubes but also data-dependent as they become
more and more orthogonal to the sensed surface as the refinement process goes along.

However, in [Boissonnat & Oudot, 2005] sharp features are not explicitly handled, hence they
are not accurately represented in the output mesh. One way to circumvent this drawback
is to extract the feature lines and to constrain the Delaunay refinement to preserve them.
However, it is well known that the presence of constrained edges where meeting surface patches
form small angles, endangers the termination of the Delaunay refinement [Shewchuk, 2000].
Recently, [Cheng et al., 2007b, Cheng et al., 2007a] propose to deal with this problem using
the method of protecting balls set up around sharp features. Protecting balls prevent the
insertion of refinement no point is inserted into these protective balls.

Although not directly fit into the following classification, it is worth noting that a fully auto-
matic feature-sensitive remeshing technique was designed recently by [Lévy & Liu, 2010] and
compares favorably with Dey et al. Delaunay refinement and protecting balls approach. They
use an anisotropy field oriented along the input mesh facets normals in a so called Lp Cen-
troidal Voronoi Tesselation objective function to recover sharp features without any need to
tag them manually. Their approach has the nice property of optimizing the mesh vertices
locations resulting in nearly equilateral facets of homogeneous sizes.

Note: A more extensive survey on algorithms for mesh generation is available in Chapter 5.

7.1.3 Contribution

In what follows we argue that some modifications of the implicit smooth surface reconstruction
algorithms can produce results with accuracy on par with the best current piecewise smooth
reconstruction methods. Given a 3D point cloud sampled on a piecewise smooth surface, our
algorithm consists of two steps. In the first step, we extract from the input 3D point cloud a set
of polylines approximating the sharp edges of the object. This feature extraction is based on the
robust feature estimation framework of [Merigot et al., 2009]. In parallel, our algorithm runs on
the data points a reconstruction process, providing an implicit surface, i.e. an implicit function
whose zero level sets approximates the data points. The second step of our algorithm gener-
ates a mesh approximating the implicit surface while including a faithful representation of the
extracted sharp edges. This step runs a feature preserving version of the Delaunay refinement
meshing algorithm, based on the meshing algorithm of [Boissonnat & Oudot, 2005] and using
the mechanism of protecting balls introduced by [Cheng et al., 2007b, Cheng et al., 2007a]. An
overview of the method is illustrated in Figure 7.1.
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Figure 7.2: The shape of Voronoi cells depends on the whole set of data, and some cells are
unbounded (left), and is very sensitive to noise (right).

The technical tools used in this algorithm are directly steered by recent work [Merigot et al., 2009,
Cheng et al., 2007a]. However, they have not been used previously in this combination, and we
argue that it is this particular synthesis of existing ideas which is the key of its success.

The main benefits of our algorithm are:

• Accuracy.
The method provides a meshed representation of a point sampled object with an enhanced
trade-off between accuracy and mesh size.

• Robustness.
The method is robust to noise and stable under sparse sampling.

• Flexibility.
The method offers considerable flexibility as it can be tuned with respect to the scale and
the targeted size of the mesh.

The remainder of this chapter is structured as follows: We first describe our feature extraction
process (Section 7.2) before we explain our feature preserving mesh generation (Section 7.3.1)
in detail. We then describe our implementation and the datasets used for our tests and show
results for a large number of parameter settings (Section 7.5) before we conclude. Please refer
to Chapter 2 for a detailed description of the geometric concepts used in our method.

7.2 Feature extraction

7.2.1 Feature detection

A point on a piecewise-smooth surface, is called a “sharp” feature point, if the surface has no
tangent plane at this point. The locus of feature points on a piecewise-smooth surface has the
structure of a graph.

We are given a point cloud P sampling a piecewise-smooth surface S. In order to allow the
mesh generation algorithm to faithfully reproduce the sharp features of S, we need to extract
from the input point cloud an approximation of the feature graph of S. Our first goal is
to identify the data points that are close to sharp edges. To this aim, we use the method of
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Figure 7.3: The Voronoi cell of a point on the surface of a cube is pencil, flat or cone shaped
depending on the number of “small” eigenvalues of its covariance matrix.

[Merigot et al., 2009] based on an analysis of the shape of Voronoi cells through their covariance
matrices.

As remarked in [Alliez et al., 2007], information about the normal directions of the underlying
surface can be obtained through eigenanalysis of the covariance matrices of the Voronoi cells of
the points that sample this surface. Recall that the covariance matrix of a bounded domain E
of R3 with respect to a base point p is defined by

cov(E, p) =
∫
E

(x− p)(x− p)Tdx .

The eigenvectors of this matrix capture the principal axes of E while the ratio of the eigenvalues
gives information on the anisotropy of E.

By construction, the shape of Voronoi cells depends on the whole set of data, and some cells are
unbounded (see Figure 7.2 left). In order to get more local information, [Merigot et al., 2009]
introduce an offset parameter R and consider for each data point p of P, the covariance matrix,
M(p,R), of the intersection of the Voronoi cell V (p) with a ball, B(p,R), of radius R centered
at p:

M(p,R) = cov (V (p) ∩B(p,R), p)

The principal drawbacks of Voronoi-based methods is their high sensitivity to noise (see Fig-
ure 7.2 right). To alleviate the effect of noise, [Merigot et al., 2009] smoothes the information
contained in the covariance matrices using convolution. The method computes for each point
p the convolved Voronoi covariance matrix, CVCM for short, M c(p,R, r), by summing the
covariance matrices of all points q of P at a distance less than r to x:

M c(p,R, r) =
∑

q∈B(p,r)

M(q,R)

The crucial remark is that, as it is illustrated in Figure 7.3, sample points lying on smooth
surfaces, called smooth points, have a pencil shaped Voronoi cell; hence their CVCM has two
“small” eigenvalues and a larger one, with the eigenvector corresponding to the large eigenvalue
directed along the surface normal. Sample points that are close to sharp edges, called edge
points, have rather flat Voronoi cells; therefore there CVCM has a single “small” eigenvalue
and two larger ones, and the eigenvector corresponding to the small eigenvalue is directed
along the edge. Sample points close to feature graph nodes, called corner points, tend to have
cone-shaped Voronoi cells thus all three eigenvalues have comparable values.

Based on those observations, the algorithm we use to detect feature points (edge and corner
points) is the following. We compute the CVCM, M c(p,R, r), of each point p ∈ P, and sort the
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Algorithm 1 Detect potential sharp edges points in P
Input: a set of 3D points P
Output: a set F of pairs of points (p, e2(p)), p ∈ P and e2(p) is the edge direction.
for all points p ∈ P do

Compute the Voronoi covariance measure M
for all points p ∈ P do

Compute the convolved Voronoi covariance measure M c and diagonalize it.
Compute the ratio λ0/λ1

if λ0/λ1 < t1 then {p is on an edge or corner.}
Compute the ratio λ1/λ2

if λ1/λ2 ≥ t2 then {p is on an edge.}
F ← (p, e2(p))

eigenvalues of this matrix by decreasing order λ0(p) ≥ λ1(p) ≥ λ2(p). If the ratio λ0(p)/λ1(p),
is greater than a threshold t1, p is a smooth point. Else, if the ratio between λ1(p)/λ2(p), is
greater than a threshold t2, p is an edge point. Else, point p is a corner point. We gather, in a set
F , the pairs (p, e2(p)), where p is a point classified as an edge point and e2(p) is the eigenvector
of its CVCM corresponding to the smallest eigenvalue λ2(p), which is supposed to be aligned
with the sharp edge direction. Note that we choose not to keep in F , the pairs corresponding
to corner points because of the instabilities of the data around these positions. Instead, we will
recover corner points as extremities of sharp edges, as we will see in Section 7.2.3.

Figure 7.4: Detected edge points on the fandisk model (courtesy of Joel Daniels II ), with
various threshold t1 and t2 values. Note the differences with (b) marked by a small arrow.
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Parameters - The method needs four parameters: the offset radius R, the convolution radius
r and both thresholds t1, t2; and can be summarized by the pseudo-code in the Algorithm 1.
Parameter R should be chosen smaller than the external reach of the underlying surface defined
as the smallest distance from a point of the surface to the external medial axis. Parameter r
has two different roles: besides smoothing the information, it determines the curvature radius
under which a curved area is considered as a sharp feature. Consequently, it should be chosen
depending on the noise level and on the sizing field of the targeted mesh. In all our experiments,
we fixed parameter R to be one tenth of the point cloud bounding sphere radius and r to be
a tenth of R, which leads to good results. Moreover, we allow the user to modify t1 and t2
manually, using an interactive interface. Figure 7.4, shows an example of the effect of the choice
of parameters t1 and t2 on the set of detected edge points.

7.2.2 Feature clustering

In [Merigot et al., 2009], it is proven that the convolved covariance matrix is robust to noise, by
deriving a bound on the quality of the results as a function of the Hausdorff distance between
the point cloud and the sampled surface. However, the reconstruction of the sharp feature
graph is left unaddressed in this work. Here, we need to approximate the sharp edges with
polygonal lines. In their work [Daniels et al., 2007] presented a technique for solving a similar
problem. We however proceed differently taking advantage of the edge direction information
we get from the CVCM analysis.

Our goal here is to group edge points of F into clusters, where each cluster samples a straight
or bending sharp edge. For that, we need a similarity measure that will quantify if two edge
points belong to the same sharp edge.

A pair (pi, pj) of edge points is said to be a close pair if the Euclidean distance d(pi, pj) is less

than ρk(pi), where ρk(pi) = 1
k

√∑k
l=1 |pi − pl|

2, the sum running on the k nearest neighbors to
pi in F . Two close points pi, pj ∈ F belong to the same cluster if the angles αi = ∠(e2(pi), pipj)
and αj = ∠(e2(pj), pipj) are smaller than a given threshold θ.

This criteria is injected in an union-find algorithm (Algorithm 2) that partitions points of F
into clusters Fi. In addition, if only one of the angular conditions is satisfied for a close pair
(pi, pj), say αi < θ but αj ≥ θ, point pj is classified as an extremity point of cluster Fi and
included in a set Ei of extremity points related to Fi. These extremity points will be of use to
elongate the constructed polylines in Section 7.2.3, facilitating the resolution of the polylines
junction recovery problem. Moreover, our implementation prunes clusters consisting of few
points (|Fi| ≤ 6) and unlabels the potential extremity points associated to them.

Parameters - The identification of good clusters relies on an appropriate selection of parame-
ters θ and k. For big values of θ the detected clusters will be thick, thus it will be hard to sort
the clustered points, a step we need for recovering the features. For our purposes, θ = 15◦ and
k = 20 provided sufficiently thin and representative clusters to facilitate the feature recovery
procedure (Figure 7.5), without the need to apply the thinning heuristics of [Lee, 2000].
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Algorithm 2 Clustering points in F
Place each point pi ∈ F in its own cluster Fi with it’s potential extremity points Ei = ∅
for all points pi do

for all pj ∈ F such that d(pi, pj) < ρk(pi) do
if pj and pi are not in the same cluster (Fj 6= Fi) then

Compute angle αi = ∠(e2(pi), pipj)
Compute angle αj = ∠(e2(pj), pipj)
if αi ≤ θ and αj ≤ θ then

Merge the clusters Fi and Fj
Merge Ei and Ej

if αi ≤ θ and αj > θ then
Ei ← pj

Figure 7.5: Result of the clustering step on the octa-flower (left) and twirl (right) models.

7.2.3 Feature recovery

In the following our aim is to recover from each cluster, provided by the previous step, a polyline
that will best fit the shape of the underlying sharp edge.

For each cluster Fi we build a polyline Poly(Fi) by applying iteratively a procedure succ(p)
that discovers the successor of a point p (Figure 7.6 top). We start at a random seed point
p ∈ Fi. The successor s(p) of p is defined as follows: we consider the subset N(p) ⊂ Fi of points
included in a ball of radius rp centered at p. All points in N(p) are then projected onto the line
defined by p and the edge direction e2(p). Points in N(p) can be divided into two subsets by
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P oly(Fi)

Ei
p c

pFi s(p)

N+(p)

Figure 7.6: Illustration of feature recovery step. Top: procedure succ(p) that discovers the
successor, s(p), of a point p ∈ Fi. Bottom: after smoothing the polyline Poly(Fi), we elongate
it at each endpoint p using the detected extremity points Ei.

inspecting the position of their projections relative to p. If p is the starting point, we choose
randomly one of the subsets to be N+(p). Otherwise, let N+(p) be the subset of points whose
projections are in the direction opposite to the predecessor of p. Then, s(p) is defined as the
point in N+(p) with closest projection to p. The procedure succ(p) is applied iteratively until
an endpoint is reached, i.e. a point for which N+(p) is empty. The procedure is then restarted
from the seed point in the opposite direction.

The polyline Poly(Fi) and the edge directions attached to its vertices are then smoothed using
a standard PCA based smoothing process.

To lengthen the recovered feature polylines Poly(Fi), we use the detected potential extremity
points Ei attached to each cluster. For each endpoint p ∈ Fi, if Ei is not empty, we search for
neighboring points pj ∈ Ei such as the Euclidean distance d(p, pj) < rp. All such points are
projected onto the line defined by p and the edge direction e2(p). Then, we compute the centroid
c of the projected points located on the half-line defined by p and not containing the projection
of N(p). Recall that because p is an endpoint N+(p) is empty and N (p) = N−(p). Finally,
point c is added to the polyline as the successor of p and attached a direction e2(c) = e2(p).
Point c is considered as the new endpoint of Poly(Fi) (see Figure 7.6 bottom).

Our implementation maintains for each polyline Poly(Fi) a value corresponding to the polyline
length that will be of use in the feature junction recovery step to prevent joining the endpoints
of a single short polyline.

Parameters - The recovered polyline result is dependent on the size of the selected neigh-
borhood. The radius parameter rp should be related to the local feature size of the polyline
to be recovered. Optimally, one should study the effect of the neighborhood size and propose
an optimal neighborhood-size-selection scheme. Practically, we do not have this information,
hence we choose rp = ρk(p) where k = 5.

Junction recovery – In order to build a realistic approximation of the sharp feature graph,
we need to construct appropriate junctions between the constructed polylines. The task is
simplified as we have extended the polylines and thus reduced the search space for potential
junctions. Note that sharp edges joined at vertices of the feature graph are classified as follows:
a dart is incident to a single sharp edge; a cusp is incident to two sharp edges forming a sharp
angle at the junction; a corner is incident to three or more sharp edges.

A natural solution is to merge in a single vertex, polylines endpoints that are spatially close.
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Figure 7.7: Sketch of the junction recovery step.

We could simply take as position for the merged vertex the barycenter of the merged endpoints.
However, to increase the accuracy of the approximation of sharp feature junctions we proceed
as follows:

For each endpoint p of Poly(Fi), we start by constructing the set J (p) of endpoints that are
within a ball B(p, rjunc) of radius rjunc centered at p. In case there is no endpoint in J (p)
other than p itself, we tag p as a dart and continue. Otherwise, |J (p)| ≥ 2 and we compute
the junction position as follows. For every pair of endpoints pj , pk ∈ J (p), we consider the two
points qj , qk which are the closest points such that qj belongs to the line Lj passing through pj
and directed along e2(pj) and qk belongs to the line Lk passing through pk and directed along
e2(pk). The junction point is computed as the barycenter of the set of closest points, except
that each closest point that is not in the ball B(p, rjunc) is replaced by the endpoint p in the
barycenter computation (See Figure 7.7).

Our procedure has the advantage of being easy to implement and is computationally inexpensive
since it does not introduce any plane nor surface fitting and intersection computations. An
example of finding junctions from polylines including three junction cases, darts, cusps and
corners is illustrated in Figure 7.8. Note that we do not capture tips, i.e. vertices incident to
zero sharp edges but are sharp.

Parameters - The radius parameter rjunc should be chosen large enough, in order to cover the
empty space between the polylines endpoints. On the other hand, generally, rjunc shouldn’t
be larger than the length of the shortest polyline – which would lead to both of its endpoints
being merged into a single junction. In practice, we found that choosing rjunc to be equal to
five times the average spacing of the ending four points of a polyline leads to good results.

7.3 Feature preserving mesh generation

Besides extracting sharp edges, our algorithm runs on the data points a reconstruction pro-
cess, such as Poisson reconstruction [Kazhdan et al., 2006] or any variant of moving least
square [Guennebaud & Gross, 2007], providing an implicit description of a surface approxi-
mating the data points. Such an implicit surface is represented as a function (R3 → R) whose
zero level set approximates the data points. Our goal in this section is to show how, using a
feature preserving variant of a Delaunay refinement mesh generation algorithm, we obtain a
surface mesh approximating the implicit surface and including a faithful representation of the
sharp edges extracted in the previous Section 7.2.3.
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Figure 7.8: From Left to right, top to bottom: feature recovery for the octa-flower model and
a closeup view of the recovered sharp edges and the recovered junction (black dot); recovered
features for the twirl model; a dart and multiple corners are recovered from the smooth feature
model; and multiple border cusps are recovered from the half cylinder model.
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7.3.1 Delaunay refinement surface mesh generation

To generate a mesh approximating the implicit surface, we use the surface meshing algorithm
of [Boissonnat & Oudot, 2005]. This algorithm is a Delaunay refinement, based on the notion
of restricted Delaunay triangulation and described in more details in Section 6.2.

Such a Delaunay refinement surface meshing algorithm yields a quality surface mesh, free of self-
intersections. However, since features are not handled explicitly, they are poorly represented in
the output mesh (see Figure 7.12 middle).

Parameters - The parameters of the Delaunay refinement mesh generation algorithm are the
parameters of the criteria defining the bad facets. Recall that a facet is bad if either some facet
angle is smaller than α, or some facet edge is longer than l or the distance between the center
of the facet and the surface is more than d.

7.3.2 Feature preserving extension

As already mentioned, the standard Delaunay refinement algorithm does not reconstruct sharp
edges accurately. Moreover, enforcing these sharp edges to be in the output mesh, may affect
the termination of the algorithm (Section 5.4). One clever way to overcome this limitation
has recently been proposed by [Cheng et al., 2007b] and experimented in [Cheng et al., 2007a].
Their idea is to place protecting balls around the sharp edges and junctions, and then turn them
to weighted points for further meshing. Building upon this technique, we use this mechanism
to protect our detected polylines with balls before starting the Delaunay mesh refinement.
Following [Cheng et al., 2007b], the protective balls have to satisfy the following properties:

• protecting balls are centered on sharp features and each feature is completely covered by
the union of protecting balls centered on it;

• any two balls have an empty intersection, except balls with consecutive centers on a given
sharp feature that intersect significantly but do not include each other’s center;

• any three balls have an empty intersection.

Note: A similar feature preserving mesh generation strategy was employed by
[Boltcheva et al., 2009] to generate high quality meshes from 3D multi-tissue medical images.

Once the protecting balls have been computed, they are regarded as weighted points and inserted
altogether, as initial vertices, in a weighted Delaunay triangulation, i.e. regular triangulation.
The Delaunay refinement process is then performed using this weighted Delaunay triangulation:
at each step, the refinement process computes the weighted version of a bad facet surface center.
This point is affected a zero weight and inserted in the weighted Delaunay triangulation.

Such a weight setting, together with the protecting ball properties, enforces the fact that two
protecting ball centers, consecutive on a sharp feature polyline are guaranteed to remain con-
nected by a restricted Delaunay edge [Cheng et al., 2007b]. Furthermore, owing to the fact that
no three balls intersect, the refinement process never inserts refinement points in the union of
the protecting balls nor probes the surface in this protected region. This ensures the termina-
tion of the refinement process whatever may be the dihedral angle formed by smooth patches
incident on a sharp feature.

Protecting balls have a crucial influence on the sizing of the output mesh. On one hand,
protecting ball centers define the approximation of sharp features in the final mesh, and the
sizing parameter l of the Delaunay refinement cannot be smaller than the spacing between
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Figure 7.9: A 2D example of how protecting balls are placed. The union of protecting
balls covers the gap between the implicit surface (orange) and the extracted feature polylines
(blue,green).

protecting ball centers. On the other hand, as it is illustrated in see Figure 7.9, to provide
a surface mesh with facets incident to the mesh edges approximating a sharp feature, the
refinement process requires that the union of protecting balls covers the gap between the implicit
surface and the extracted feature polylines.

In practice, to compute the protecting balls, we first keep all endpoint vertices of the detected
polylines Poly(Fi) and then sample points on Poly(Fi) according to some user defined uniform
distance d′. Then, the algorithm tries setting a uniform weight wp = 2/3 ∗ d′ on sample points.
If the resulting set of balls do not comply with the above rules, it is locally fixed by adding new
sample points and reducing ball radii.

Parameters - In our experiments, the mesh generation step depends on a single user-defined
parameter δ. Indeed, we use as unit length the quantity avg defined as the mean of the
distances from each input data point to each one of its six first nearest neighbors. Then,
we fix the protecting ball parameter and Delaunay refinement parameters to: d′ = δ ∗ avg,
α = 25◦, l = 2 ∗ d′, d = 0.6 ∗ d′. An example illustrating the effect of parameter δ on the output
mesh resolution can be seen in Figure 7.10.

7.4 Implementation details

Our prototype is implemented in C++ using, as in the previous chapter, the robust primitives
provided by the Cgal library [cga, 2010]. We use Cgal 3D triangulation as the core data struc-
ture to compute the Voronoi covariance matrices of the input point cloud [Merigot et al., 2009].
The Cgal library also provides us with an implementation of the Poisson reconstruction
method [Kazhdan et al., 2006] to compute an implicit surface from the input point cloud. Lastly
Cgal provides an implementation of the Delaunay refinement surface meshing algorithm of
[Boissonnat & Oudot, 2005].

In their work, [Merigot et al., 2009] described two practical approaches to compute the Voronoi
covariance matrix at a scale R of a point cloud. Recall that the Voronoi covariance matrix at
a scale R of a point cloud P is the measure M(p,R), of the intersection of the Voronoi cell
V (p), where p ∈ P, with a ball, B(p,R), of radius R centered at p. Their first method to
compute the VCM of a point cloud at a scale R, is a Monte-Carlo approximation that has the
notable advantage of being easy to implement but is in practice slow at execution. The second
algorithm they designed and use for their experiments is an approximation by 3D tesselation.
It is much faster but is complex to implement.
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V (p)V (p)

Figure 7.11: Two different methods for computing the Voronoi covariance matrix at a scale R.
The intersection of the the Voronoi cell V (p) with a ball B(p,R) is approximated using: ap-
proximate tesselation of [Merigot et al., 2009] (left); our clamped approximation (right). Note
how we project the vertices of V (p) on the ball (blue arrows).

In our work we implemented an algorithm we call a clamped approximation that has the ad-
vantage of being faster than both aforementioned algorithms, while remaining very easy to
implement. The principal idea to keep in mind is that covariance matrices have the nice prop-
erty of being additive. Thus, one can simply decompose the intersection of the Voronoi cell with
the ball, into tetrahedra and compute the covariance matrix of each tetrahedron analytically
[Alliez et al., 2007]. For that, we project or “clamp” the vertices of each Voronoi cell onto the
sphere of radius R centered at the same point. And then build tetrahedra by connecting each
of the triplet clamped vertices to the center of the Voronoi cell. This can be done because the
intersection of the Voronoi cell and the ball is star-shaped with respect to the center of the
Voronoi cell. A sketch of our algorithm is illustrated in Figure 7.11 as well as the approximate
3D tesselation of [Merigot et al., 2009].

The output of this algorithm yields an approximate tetrahedralization of the intersection of
the Voronoi cell with the ball of given radius R. We then use the closed-form formulas of
[Alliez et al., 2007] to compute the covariance matrix of this approximate intersection.

A crucial component for reaching good timings is the efficient answer to queries for the subset
of a point cloud contained in a given ball. Such a query is required for computing the CVCM
used to detect edge points, it is also used for clustering edge points, and finally for recovering
and joining the feature polylines. We have chosen to implement these queries using the ANN
library [Mount & Arya, 2010]. Note that Poisson reconstruction assumes that the input points
come with oriented normals. Here, we take advantage of the result from the eigenvector analysis
of the CVCM. Each data point is attached a normal direction corresponding to the eigenvector
of its CVCM with largest eigenvalue. The normals are oriented using the method described
by Hoppe et al. in [Hoppe et al., 1992] and provided by the point set processing package
[Alliez et al., 2010b] described in more details in Appendix A.
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Figure 7.12: Feature preserving mesh generation on synthetic data sets. From left to right:
Our extracted polylines overlayed to the input point cloud; Delaunay refinement mesh of the
Poisson implicit surface; output of our feature preserving mesh generation. Top: octa-flower ;
middle: carved object (courtesy of Philipp Jenke); and bottom: blade models.

7.5 Experimental results

Experiments where conducted on various datasets, we report here some of them: five “clean”
synthetic models (fandisk, octa-flower, carved object, blade, block), a synthetic model with
added noise (fandisk), the raw output of a triangulation-based MinoltaTMVivid laser scanner for
an indoor model (Ramses), and the raw output of a time-of-flight LeicaTMCyrax laser scanner
for an outdoor urban scene (Church of Lans le Villard). We refer the reader to Section 3.1 for
more details on laser range scanning acquisition methods.

All results presented here have been produced using fixed values of the parameters that are
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(a) fandisk (b) block

Figure 7.13: Quantitative evaluation of the accuracy versus mesh size :(a) the fandisk model,
points on the curve correspond to values 10, 7, 4.5 and 3.5 of δ (b) the block model, points on
the curve correspond to values 9, 6, 3 and 1.5 of δ. The Hausdorff distance plotted vertically is
given in units of 1

200 of the bounding box diagonal length.

mentioned in the Parameters paragraph at each of the algorithm steps, except for the three
parameters t1, t2 and δ.

Parameters effect – In Figure 7.4 we illustrate the effect of tuning the parameters t1 and t2
for the feature detection step, on the fandisk model. Notice how t1 acts on isolating smooth
points from edge and corner points, whereas t2 stirs the separation between edge and corner
points.

Accuracy versus mesh size – Figure 7.10, illustrates the effect of parameter δ on the output
mesh resolution. Here we have chosen t1 = 50, t2 = 6 and protected the extracted polylines
with balls obtained for respectively δ = 3.5 (a), δ = 7 for (b).

We further evaluated our method on the three synthetic datasets, shown in Figure 7.12.
The octa-flower model is interesting as it has curvy, sharp features. The two other models
carved object, and blade show the ability of our approach to recover sharp edges from sparse
samplings (≤ 50k points). Notice, that in the case of carved object and blade, the original
models are 3D meshes, but the vertices of those meshes are not lying on the feature lines.
The initial triangle edges are zigzaggy along the feature lines. Again all comparisons are run
with the same sizing field parameter δ, hence the same parameters for the Delaunay refinement
algorithm.

As already mentioned, our goal is to improve the accuracy for a given mesh size, by ensuring
a faithful representation of sharp edges. To illustrate our achievement with respect to this
goal, we show, for each model in Figure 7.12, two meshes computed with the same value of
parameter δ, hence the same value of the Delaunay refinement algorithm parameters (α =
25◦, l = 2 ∗ d′, d = 0.6 ∗ d′).
For quantitative evaluation of the accuracy improvement, Figure 7.13 shows an approximation
of the Hausdorff distance between the generated meshes and the ground truth model for various
size of the generated mesh. Note that, the feature preserving Delaunay refinement (FPE) always
outperforms standard Delaunay refinement (PIF) and that the effect is all the more important
for coarse meshes.
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Figure 7.15: Feature extraction and preserving mesh generation for the fandisk model corrupted
with uniform noise of 1% of its bounding box. From top to bottom, left to right: the detected
edge points (t1 = 50, t2 = 6); the associated feature directions; the extracted feature polylines;
the output mesh with (δ = 7). Note how choosing large protective balls patches the small gaps
(pointed by small arrows) between feature polylines.

Figure 7.14 is another illustration of the ability of our method to enhance the trade-off between
accuracy and mesh size through feature extraction and preservation. Note that the only way
for standard mesh generation methods (marching cubes and Delaunay refinement) to diminish
the aliasing effect produced by the lack of feature lines is to generate high resolution meshes.
However, as observed by [Kobbelt et al., 2001] oversampling will not solve the aliasing problem,
since the surface normals in the reconstructed mesh will not converge to the normal field of the
object.

Complex datasets – In order to evaluate the ability of our feature extraction method to
cope with noise, we perturbed the points sampled on the fandisk model. The perturbation is
uniform and has an amplitude of 1% of the diagonal of the dataset bounding box. Keeping the
same set of parameters (t1, t2) as for the unperturbed fandisk model, Figure 7.15 shows the
detected edge points. Although the edge points are more diffused with this amount of noise, the
computed feature directions remain quite stable. Moreover, despite introducing strong noise,
the feature extraction step constructed almost all sharp edges.

Note: Choosing large protecting balls, i.e. δ = 7, forces some missing junctions between
polylines to appear in the output mesh.

To evaluate the practical usability of this new approach, we applied it to two laser scan datasets
acquired from two different environments. The first one is an indoor laser acquisition of the
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Figure 7.16: Left: input point cloud of Ramses model down-sampled to about 27% of the
original dataset (top), extracted feature polylines (bottom). Middle: meshed Poisson implicit
function. Right: output of our feature preserving mesh generation (5k facets).

Ramses model, Figure 7.16. The second is an outdoor laser acquisition of the Church of Lans le
Villard in France, Figure 7.17. These datasets pose some problems compared to the synthetic
models presented previously as near sharp features data are sparse and entangled with a high
level of noise.

Note: Note that although Poisson reconstruction is not the most adapted surface recon-
struction method for noisy datasets, our feature preserving output remains considerably
more accurate and complete that the Delaunay refinement mesh of the Poisson implicit sur-
face. We are confident that using other more robust to noise implicit surface reconstruction
method [Mullen et al., 2010] will even provide better meshes.

The total time required to construct the feature polylines depends on the number of detected
sharp edges points. Our prototype program has not been optimized and the details shown in
Table 7.1 are just given for indication (on a laptop with 3.5Gb memory, Intel R©CoreTM2 2.7Ghz
processor).

Limitations – Since feature extraction and smooth surface reconstruction are run indepen-
dently, the extracted feature graph may have a certain discrepancy with respect to the smooth
reconstructed surface. The feature preserving mesh generation algorithm yields a surface mesh
with a faithful representation of sharp features provided that the protecting balls cover the gap
between the extracted features and the reconstructed smooth surface. This condition puts one
more constraint on the parameter δ and, hence on the mesh accuracy and sizing. Figure 7.18
illustrates what happens when the protecting balls do not cover the gap between the implicit
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surface and the extracted polylines.

The pipeline currently described does not support adaptive sampling and the generation of
meshes with non uniform sizing field. This however is not a real limitation of the method but
simply results from our concern to limit and simplify the parameters of the algorithm.

7.6 Conclusion

In this chapter, we have presented an efficient and robust feature preserving mesh generation
strategy from 3D point clouds. The approach we use builds a bridge between implicit surface
reconstruction and mesh generation.

The method first extracts from the input point cloud a set of feature polylines through a
feature detection process based on the covariance matrices of Voronoi cells. In parallel our
algorithm runs on the input point cloud a reconstruction process, providing an implicit surface.
A feature preserving variant of a Delaunay refinement process is then used to generate a mesh
approximating the implicit surface and containing a faithful representation of the extracted
sharp edges. The presented algorithm was implemented and successfully applied on various
datasets including laser scanner datasets to generate meshes with enhanced trade-off between
accuracy and size, even when sparse and noisy 3D point clouds were inputed.

As for future work, it would be interesting to apply our method to more challenging datasets
provided by multi-view stereo reconstruction. We also plan to make our code available in the
point set processing package of Cgal [Alliez et al., 2010b] as it might be useful in the fields
which require simplified and realistic geometric models, like in urban modeling.

7.7 Publication

This work has been published in the SGP conference [Salman et al., 2010],

• N. Salman, M. Yvinec and Q. Mérigot. Feature preserving mesh generation from 3D point
clouds. In Proceedings of the Eurographics Symposium on Geometry Processing, Lyon,
France, July 2010.
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Figure 7.17: From top to bottom, left to right: input point cloud of Church model (courtesy of
INPG) down-sampled to about 7.2% of the original dataset; extracted feature polylines; meshed
Poisson implicit function; output of our feature preserving mesh generation (18k facets).
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Model/ Parameters |F| Timings [sec]
#points t1, t2, δ (1) (2) (3) (4) Fig.
fandisk/200k 50, 6, 3.5 2k 153 17 20 24 7.10

50, 6, 7 2k 153 17 20 7 7.10
noise 1% 50, 6, 7 3k 126 32 41 7 7.15
octa-flower/167k 25, 4, 3.5 3k 96 19 53 13 7.12
carved object/30k 16, 4, 4 2k 18 13 18 12 7.12
blade/50k 100, 7, 2.5 4k 34 52 32 9 7.12
block/40k 8, 2, 6 2k 16 20 37 7 7.14
Ramses/210k 150, 7, 5 8k 108 112 67 17 7.16
Lans church/500k 90, 10, 5 17k 368 306 184 78 7.17

Table 7.1: Statistics of our prototype implementation. The timings are given for each of the
4 stages in our method: sharp edges points detection (1); clustering (2); polyline construction
and junction (3); and feature preserving mesh generation (4).

Figure 7.18: Two views of the output of our feature preserving mesh generation on the twirl
model when protecting balls are not big enough to cover the gap between the implicit function
and the extracted polylines.





Without continual growth and
progress, such words as
improvement, achievement,
and success have no meaning.

Benjamin Franklin (1706-1790) 8
Conclusion

8.1 Summary

In this thesis we have addressed the problem of reconstruction of high quality 3D meshes from a
set of scattered 3D points acquired from both multi-view passive stereo and laser range scanners.
Two cases were considered.

First, we have proposed a method to reconstruct a 3D scene from an unstructured point cloud
produced by a typical multi-view passive stereo pipeline and the calibrated images. The ap-
proach we use builds a bridge between multi-view stereo reconstruction algorithms and methods
used in surface meshing. Particularly, our approach combines depth maps construction in the
image planes with surface reconstruction through restricted Delaunay triangulation. A tri-
angular depth map is built in each image plane respecting the main contours of the image.
The triangles of these depth maps are then lifted into 3D space forming a triangle soup. The
similarity of the triangle soup with the surface of the scene is enforced through visibility and
photo-consistency constraints. A surface mesh is then generated using a Delaunay refinement
surface mesh generation strategy. The accuracy of the presented method has been tested on
numerous large-scale outdoor scenes. Our results show that the proposed method compares
favorably with the current state of the art. Also, we stress the fact that some of the tools we
have produced while building this algorithm are general and are not necessarily restricted to
surface reconstruction but rather to process point clouds.

In the second approach, we have presented an efficient and robust feature preserving mesh
generation strategy from 3D point clouds. The approach we developed combines implicit surface
reconstruction and mesh generation. We start by extracting from the input point cloud a set of
feature polylines through a robust feature detection process based on the covariance matrices
of Voronoi cells. Also we follow the current trend in surface reconstruction, and run, in parallel,
on the input point cloud an implicit reconstruction process, providing an implicit surface. A
feature preserving variant of a Delaunay refinement process is then used to generate a mesh
approximating the implicit surface and containing a faithful representation of the extracted
sharp edges. The presented algorithm was implemented and successfully applied on various
datasets including indoor and outdoor laser scanner datasets to generate meshes with enhanced
trade-off between accuracy and size, even when sparse and noisy 3D point clouds were inputed.
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8.2 Limitations and perspectives

Both aforementioned contributions can benefit from further enhancements. Let us mention a
few of them that are of interest to us.

In our first contribution presented in Chapter 6, during the triangle filtering stage, it is sufficient
for a triangle to not satisfy one of the mentioned constraints, to discard it from the triangle soup.
As a result, the final triangle soup can contain holes leading to 3D meshes that are incomplete.
To overcome this limitation, one solution would be to consider using a hole-filling heuristic on
the resulting mesh. One common approach is to triangulate each connected component of the
surfaces boundary, thus filling each hole with a patch that has the topology of a disc. We
however would rather consider taking inspiration in the recent work of [Toldo & Fusiello, 2010]
on gap-filling and try to apply it to our filtered triangle soup.

Being conservative at the reconstruction stage of our pipeline comes at the price that our
reconstructed models are limited to the details captured by the filtered triangle soup. At
the intuitive level, the Delaunay refinement procedure we employ is coupled with a sensing
algorithm (oracle) probing the filtered triangle soup defined from the pre-processed point cloud.
To obtain more accurate and visually pleasing results we would like to consider a final variational
refinement to be applied to the generated meshes as a lightweight post-processing, by taking
inspiration in the work of [Vu et al., 2009]. Additionally, incorporating in the reconstruction
process a scale dependent sharp edges detection and recovery procedure to build geometrically
simplified models is also expected.

In our second contribution presented in Chapter 7, since feature extraction and smooth sur-
face reconstruction are run independently, the extracted approximate feature graph may have
a certain discrepancy with respect to the smooth reconstructed surface. The feature preserv-
ing mesh generation algorithm yields a surface mesh with a faithful representation of sharp
features provided that the protecting balls cover the gap between the extracted features and
the reconstructed smooth surface. In the current implementation, the user provides a constant
scalar field used as an upper bound for the distance between two protecting ball centers that
are consecutive on a sharp edge. In practice, the user has to choose large enough protecting
balls to cover the mentioned gap, as the current implementation can only refine balls. Said
differently, the user has to intuit or guess the size of the largest gap to choose a correct starting
size of protecting balls. For this reason, it would be more “flexible” to adapt the size of the
protecting balls more locally. One straightforward way of obtaining gap-adaptive protecting
balls would be to replace the current implementation with a process that works as follows:
start by sampling the protecting balls in a first stage as described in Section 7.3.2 given the
user defined balls radius, then, for each polyline grow the size of the balls that do not cover the
gap between the extracted polyline and the implicit surface to cover it and make sure that the
sampling conditions [Cheng et al., 2007b] remain locally satisfied. This might seem simple at
first sight, but we expect multiple particular cases to arise especially in the vicinity of polylines
junction points.

We think, it would be interesting, for the Gyroviz project, to evaluate our feature extraction
process on fairly simple real-world buildings for which the number of sharp edges can be enu-
merated a priori once the observation scale is fixed and compare to the number of features
extracted. The number of extracted features would be computed by measuring the percentage
of ground truth sharp features that are within a distance smaller than a certain threshold to the
extracted sharp features by our algorithm. We think that extracting 80% of the sharp features
would be satisfactory for reconstructing urban scenes in which buildings are entirely framed by
the camera.
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Computing feature preserving meshes from point clouds is a topic of high practical relevance.
Although our method showed to behave robustly in the experiments we conducted, we think that
a more in depth quantitative evaluation and clear comparison to other alternative approaches,
for instance [Daniels et al., 2007, Jenke et al., 2008], has to be done. This raises the more
interesting question that is: why not establishing an online public benchmark conceptually
similar to [Seitz et al., 2006, Strecha et al., 2008], that would evaluate feature extraction and
mesh generation algorithms from point clouds? One possibility would be to provide new 3D
point clouds constructed from mesh models. The meshes will serve as the geometrical ground
truth to evaluate the quality of: the extracted sharp features for the algorithms limited to
feature extraction, and the feature preserving meshes for others. The evaluation set would
include for instance, the distance from the practitioner’s extracted approximate feature graph
to the nearest ground truth sharp features, the percentage of extracted sharp features and an
approximation of the Hausdorff distance between the generated meshes and the ground truth
models. Algorithms would then be compared relative to these tests.

On a smaller scale, we plan to exploit the Delaunay refinement mesh generation algorithm
flexibility to apply our method to more challenging datasets. Although the method was found
to behave robustly in the experiments we conducted in the presence of noise, the CVCM feature
detection technique we employ is only robust to “some outliers” [Merigot et al., 2009]. This
limitation is particularly visible when we try to extract sharp features from the datasets, used
to test our first contribution, provided by multi-view passive stereo acquisition. The feature
extraction step produces some intractable results as illustrated on the left side of Figure 8.1. To
help our feature extraction step working with these datasets, entangled with noise and outliers,
one solution would be to extend our second contribution with the filtering heuristics described
in Section 6.3.1. Applying a filtering stage is only a first attempt to solve this hard problem.
The preliminary results we got are encouraging as illustrated on the right side of Figure 8.1.

Finally, we are working to make our code available and we hope that it will be useful in the
fields which require simplified and realistic geometric models.
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Figure 8.1: From top to bottom: side view of the input point cloud from the Herz-Jesu-p25
dataset [Strecha et al., 2008]; side view of the identified edge points; front view of the associated
feature directions; and the extracted polylines. Left column: unprocessed point cloud. Right
column: inliers.



C makes it easy to
shoot yourself in the foot;
C++ makes it harder, but when
you do, it blows away your whole
leg.

Bjarne Stroustrup A
Point set processing in Cgal

S
urface reconstruction from point sets is often a sequential process with the following
steps: point set acquisition; outliers removal; simplification to reduce the number of
input points; smoothing to reduce noise in the input data; normal estimation and

orientation when the normals are not already provided by the acquisition step; and surface
reconstruction. In what follows, we describe the algorithms we developed, in collaboration with
Pierre Alliez and Laurent Saboret for the Gyroviz project, to pre-process the point sets before
surface reconstruction. Note that surface reconstruction algorithms were also integrated to
Cgal in [Alliez et al., 2010a] for the Gyroviz Project.

A.1 Introduction

This Cgal component implements methods to analyze and process unorganized 3D point sets.
The input is an unorganized 3D point set, possibly with normal attributes (un-oriented or ori-
ented). This point set can be analyzed to measure geometric properties such as average spacing
between the points and their K nearest neighbors. It can be processed with functions devoted
to the simplification, outliers removal, smoothing, normal estimation and normal orientation.
The processing of point sets is often needed in applications dealing with measurement data,
such as surface reconstruction from laser scanned data (see Figure A.1).

Figure A.1: Point set processing. Left: 275k points sampled on the statue of an elephant with
a Minolta laser scanner. Right: point set after clean-up and simplification to 17k points.
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analysis processing normals

points with
un-oriented normals

clean points
with oriented normals

point set clean point set

bounding box

bounding sphere

centroid

average spacing

simplification

outlier removal

smoothing

estimation

orientation

Figure A.2: Point set processing pipeline for surface reconstruction. The algorithms listed in
gray are available from other Cgal components (bounding volumes and principal component
analysis).

In the context of surface reconstruction we can position the elements of this component along
the common surface reconstruction pipeline (Figure A.2) which involves the following steps:

1. scanning and scan alignment to produce a set of points or points with normals (alignment
is not yet covered in Cgal);

2. outliers removal;

3. simplification to reduce the number of input points;

4. smoothing to reduce noise in the input data;

5. normal estimation and orientation when the normals are not already provided by the
acquisition device;

6. surface reconstruction [Alliez et al., 2010a] deals with surface reconstruction from point
sets with normal attributes.

A.2 Input/Output

A.2.1 Property Maps

The algorithms of this component take as input parameters iterator ranges of 3D points, or of
3D points with normals. The property maps are used to access the point or normal information
from the input data, so as to let the user decide upon the implementation of a point with
normal. The latter can be represented as, e.g., a class derived from the Cgal 3D point, or
as a std::pair<Point 3<K>, Vector 3<K> >, or as a boost::tuple<..., Point 3<K>, ...,
Vector 3<K> >.

Another component provides property maps to support these cases:

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Kernel_23_ref/Class_Point_3.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Kernel_23_ref/Class_Vector_3.html
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• CGAL::Dereference property map<T>;

• CGAL::First of pair property map<Pair> and
CGAL::Second of pair property map<Pair>;

• CGAL::Nth of tuple property map<N, Tuple>.

Where CGAL::Dereference property map<Point 3> is the default value of the position prop-
erty map expected by all functions in this component. See below examples using pair and tuple
property maps.

Note: Users of this package may use other types to represent positions and normals if they
implement the corresponding property maps.

A.2.2 Streams

We provide functions to read and write sets of points or sets of points with normals from the
following ASCII file formats:

• XYZ (three point coordinates x y z per line or three point coordinates and three normal
vector coordinates x y z nx ny nz per line);

• OFF (Object File Format) [Phillips et al., 1993].

CGAL::read xyz points
CGAL::read off points
CGAL::write off points
CGAL::write xyz points

A.2.3 Example

The following example reads a point set from an input file and writes it to a file, both in the
XYZ format. Positions and normals are stored in pairs and accessed through property maps.

1 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

2 #include <CGAL/property_map.h>

3 #include <CGAL/IO/read_xyz_points.h>

4 #include <CGAL/IO/write_xyz_points.h>

5

6 #include <utility > // defines std::pair

7 #include <vector >

8 #include <fstream >

9

10 // types

11 typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

12 typedef Kernel :: Point_3 Point;

13 typedef Kernel :: Vector_3 Vector;

14

15 // Point with normal vector stored as a std::pair.

16 typedef std::pair <Point , Vector > Pwn;

17

18 int main(void)

19 {

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Property_map_ref/Class_Dereference_property_map.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Property_map_ref/Class_First_of_pair_property_map.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Property_map_ref/Class_Second_of_pair_property_map.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Property_map_ref/Class_Nth_of_tuple_property_map.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_read_xyz_points.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_read_off_points.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_write_off_points.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_write_xyz_points.html
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20 // Reads a .xyz point set file in points [].

21 // Note: read_xyz_points_and_normals () requires an output iterator

22 // over points and as well as property maps to access each

23 // point position and normal.

24 std::vector <Pwn > points;

25 std:: ifstream in("data/oni.xyz");

26 if (!in ||

27 !CGAL:: read_xyz_points_and_normals(

28 in,std:: back_inserter(points),

29 CGAL:: First_of_pair_property_map <Pwn >(),

30 CGAL:: Second_of_pair_property_map <Pwn >()))

31 {

32 std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;

33 return EXIT_FAILURE;

34 }

35

36 // Saves point set.

37 // Note: write_xyz_points_and_normals () requires an output iterator

38 // over points as well as property maps to access each

39 // point position and normal.

40 std:: ofstream out("oni_copy.xyz");

41 if (!out ||

42 !CGAL:: write_xyz_points_and_normals(

43 out , points.begin(), points.end(),

44 CGAL:: First_of_pair_property_map <Pwn >(),

45 CGAL:: Second_of_pair_property_map <Pwn >()))

46 {

47 return EXIT_FAILURE;

48 }

49

50 return EXIT_SUCCESS;

51 }

A.3 Analysis

Function CGAL::compute average spacing() computes the average spacing of all input points
to their k nearest neighbor points, k being pecified by the user. As it provides an order
of a point set density, this function is used downstream the surface reconstruction pipeline to
automatically determine some parameters such as output mesh sizing for surface reconstruction.

A.3.1 Example

The following example reads a point set in the XYZ format and computes the average spacing.
Index, position and color are stored in a tuple and accessed through property maps.

1 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

2 #include <CGAL/compute_average_spacing.h>

3 #include <CGAL/IO/read_xyz_points.h>

4

5 #include <vector >

6 #include <fstream >

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_compute_average_spacing.html
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7 #include <boost/tuple/tuple.hpp >

8

9 // Types

10 typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

11 typedef Kernel ::FT FT;

12 typedef Kernel :: Point_3 Point;

13

14 // Data type := index , followed by the point , followed by three integers

15 // that define the Red Green Blue color of the point.

16 typedef boost ::tuple <int , Point , int , int , int > IndexPointWithColorTuple;

17

18 int main(void)

19 {

20 // Reads a .xyz point set file in points.

21 // As the point is the second element of the tuple (with index 1)

22 // we use a property map that accesses the 1st element of the tuple.

23 std::vector <IndexPointWithColorTuple > points;

24 std:: ifstream stream("data/sphere_20k.xyz");

25 if (! stream ||

26 !CGAL:: read_xyz_points(

27 stream , std:: back_inserter(points),

28 CGAL:: Nth_of_tuple_property_map <1, IndexPointWithColorTuple >()))

29 {

30 std::cerr << "Error: cannot read file data/sphere_20k.xyz"

31 << std::endl;

32 return EXIT_FAILURE;

33 }

34

35 // Initialize index and RGB color fields in tuple.

36 // As the index and RGB color are respectively the first and

37 // third -fifth elements of the tuple we use a get function

38 // from the property map that accesses the 0 and 2-4th elements

39 // of the tuple.

40 for(unsigned int i = 0; i < points.size (); i++)

41 {

42 points[i].get <0>() = i; // set index value of tuple to i

43

44 points[i].get <2>() = 0; // set RGB color to black

45 points[i].get <3>() = 0;

46 points[i].get <4>() = 0;

47 }

48

49 // Computes average spacing.

50 const unsigned int nb_neighbors = 6; // 1 ring

51 FT average_spacing = CGAL:: compute_average_spacing(

52 points.begin(), points.end(),

53 CGAL:: Nth_of_tuple_property_map <1,

54 IndexPointWithColorTuple >(),

55 nb_neighbors );

56 std::cout << "Average spacing: " << average_spacing << std::endl;

57

58 return EXIT_SUCCESS;

59 }
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Note: Other functions such as centroid or bounding volumes are found in other Cgal
components: CGAL::centroid, CGAL::bounding box and CGAL::bounding sphere.

A.4 Outliers Removal

Function CGAL::remove outliers() deletes a user-specified fraction of outliers from an input
point set. More specifically, it sorts the input points in increasing order of average squared
distances to their k nearest neighbors and deletes the points with largest value.

A.4.1 Example

The following example reads a point set and eliminates 5% of its points. It uses the default
position property map CGAL::Dereference property map<Point 3> (it is the default position
property map of all functions in this Cgal component).

1 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

2 #include <CGAL/property_map.h>

3 #include <CGAL/remove_outliers.h>

4 #include <CGAL/IO/read_xyz_points.h>

5

6 #include <vector >

7 #include <fstream >

8

9 // types

10 typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

11 typedef Kernel :: Point_3 Pt;

12

13 int main(void)

14 {

15 // Reads a .xyz point set file in points [].

16 // The Dereference_property_map property map can be omitted here as

17 // it is the default value.

18 std::vector <Pt> points;

19 std:: ifstream stream("data/oni.xyz");

20 if (! stream ||

21 !CGAL:: read_xyz_points(stream , std:: back_inserter(points),

22 CGAL:: Dereference_property_map <Pt >()))

23 {

24 std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;

25 return EXIT_FAILURE;

26 }

27

28 // Removes outliers using erase -remove idiom.

29 // The Dereference_property_map property map can be omitted here as

30 // it is the default value.

31 const double removed_percentage = 5.0; // % of points to remove

32 const int nb_neighbors = 24; // considers 24 nearest neighbor points

33 points.erase(CGAL:: remove_outliers(points.begin(), points.end(),

34 CGAL:: Dereference_property_map <Pt >(),

35 nb_neighbors , removed_percentage),

36 points.end ());

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Kernel_23_ref/Function_centroid.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Principal_component_analysis_ref/Function_bounding_box.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Surface_reconstruction_points_3/Chapter_main.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_remove_outliers.html
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37

38 // Optional: after erase(), use Scott Meyer ’s "swap trick" to trim

39 // excess capacity

40 std::vector <Pt >( points ).swap(points );

41

42 return EXIT_SUCCESS;

43 }

A.5 Simplification

Two simplification functions are devised to reduce an input point set, either randomly or using
a grid-based clustering approach.

Function CGAL::random simplify point set() randomly deletes a user-specified fraction of
points from the input point set. This algorithm is fast.

Function CGAL::grid simplify point set() considers a regular grid covering the bounding
box of the input point set, and clusters all points sharing the same cell of the grid by picking as
representant one arbitrarily chosen point. However, the grid simplification algorithm is slower
than CGAL::random simplify point set().

A.5.1 Example

The following example reads a point set and simplifies it by clustering.

1 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

2 #include <CGAL/grid_simplify_point_set.h>

3 #include <CGAL/IO/read_xyz_points.h>

4

5 #include <vector >

6 #include <fstream >

7

8 // types

9 typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

10 typedef Kernel :: Point_3 Point;

11

12 int main(void)

13 {

14 // Reads a .xyz point set file in points [].

15 std::vector <Point > points;

16 std:: ifstream stream("data/oni.xyz");

17 if (! stream ||

18 !CGAL:: read_xyz_points(stream , std:: back_inserter(points )))

19 {

20 std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;

21 return EXIT_FAILURE;

22 }

23

24 // simplification by clustering using erase -remove idiom

25 double cell_size = 0.001;

26 points.erase(CGAL:: grid_simplify_point_set(points.begin(),

27 points.end(), cell_size), points.end ());

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_random_simplify_point_set.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_grid_simplify_point_set.html
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Figure A.3: Point set simplification through grid-based clustering. Removed points are depicted
in red. Notice how low-density areas (in green) are not simplified.

28

29 // Optional: after erase(), use Scott Meyer’s "swap trick" to trim

30 // excess capacity

31 std::vector <Point >( points ).swap(points );

32

33 return EXIT_SUCCESS;

34 }

A.6 Smoothing

Function CGAL::jet smooth point set smooths the input point set by projecting each point
onto a smooth parametric surface patch (so-called jet surface) fitted over its k nearest neighbors.
For a more detailed description of the method please refer to Section 6.3.1.

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_jet_smooth_point_set.html
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A.6.1 Example

The following example generates a set of nine points close to the xy plane and smooths them
using eight nearest neighbors:

1 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

2 #include <CGAL/jet_smooth_point_set.h>

3 #include <vector >

4

5 // types

6 typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

7 typedef Kernel :: Point_3 Point;

8

9 int main(void)

10 {

11 // generate point set

12 std::vector <Point > points;

13 points.push_back(Point( 0.0, 0.0, 0.001));

14 points.push_back(Point (-0.1,-0.1, 0.002));

15 points.push_back(Point (-0.1,-0.2, 0.001));

16 points.push_back(Point (-0.1, 0.1, 0.002));

17 points.push_back(Point( 0.1,-0.1, 0.000));

18 points.push_back(Point( 0.1, 0.2, 0.001));

19 points.push_back(Point( 0.2, 0.0, 0.002));

20 points.push_back(Point( 0.2, 0.1, 0.000));

21 points.push_back(Point( 0.0,-0.1, 0.001));

22

23 // Smoothing.

24 const unsigned int nb_neighbors = 8; // default is 24 for real -world

25 // point sets

26 CGAL:: jet_smooth_point_set(points.begin(), points.end(), nb_neighbors );

27

28 return EXIT_SUCCESS;

29 }

A.7 Normal Estimation

Assuming a point set sampled over an inferred surface S, two functions provide an estimate of
the normal to S at each point. The result is an un-oriented normal vector for each input point.

Function CGAL::jet estimate normals() estimates the normal direction at each point from
the input set by fitting a jet surface over its k nearest neighbors. The default jet is a quadric
surface. This algorithm is well suited to point sets scattered over curved surfaces.

Function CGAL::pca estimate normals() estimates the normal direction at each point from
the set by linear least squares fitting of a plane over its k nearest neighbors. This algorithm is
simpler and faster than CGAL::jet estimate normals().

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_jet_estimate_normals.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_pca_estimate_normals.html
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Figure A.4: Normal orientation of a sampled cube surface. Left: un-oriented normals. Right:
orientation of right face normals is propagated to bottom face.

A.8 Normal Orientation

Function CGAL::mst orient normals() orients the normals of a set of points with un-oriented
normals using the method described by [Hoppe et al., 1992] in Surface reconstruction from
unorganized points. More specifically, this method constructs a Riemannian graph over the
input points (the graph of the k nearest neighbor points). Each edge between two points of this
graph is assigned a weight measuring the discrepancy for propagating the normal orientation
along this edge. We follow Hoppe et al. and use the absolute value of the dot product of two
linked normals as a measure of normal variation. The normal orientation is then propagated
along the minimum spanning tree computed of this graph starting at a seed point with fixed
normal. The result is an oriented normal vector for each input un-oriented normal, except for
the normals which could not be successfully oriented.

A.8.1 Example

The following example reads a point set from a file, estimates the normals through PCA over
the six nearest neighbors and orients the normals:

1 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

2 #include <CGAL/pca_estimate_normals.h>

3 #include <CGAL/mst_orient_normals.h>

4 #include <CGAL/property_map.h>

5 #include <CGAL/IO/read_xyz_points.h>

6

7 #include <utility > // defines std::pair

8 #include <list >

9 #include <fstream >

10

11 // Types

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Point_set_processing_3_ref/Function_mst_orient_normals.html
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12 typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

13 typedef Kernel :: Point_3 Point;

14 typedef Kernel :: Vector_3 Vector;

15

16 // Point with normal vector stored in a std::pair.

17 typedef std::pair <Point , Vector > PtVecPair;

18

19 int main(void)

20 {

21 // Reads a .xyz point set file in points [].

22 std::list <PtVecPair > points;

23 std:: ifstream stream("data/sphere_20k.xyz");

24 if (! stream ||

25 !CGAL:: read_xyz_points(stream ,

26 std:: back_inserter(points),

27 CGAL:: First_of_pair_property_map <PtVecPair >()))

28 {

29 std::cerr << "Error: cannot read file data/sphere_20k.xyz"

30 << std::endl;

31 return EXIT_FAILURE;

32 }

33

34 // Estimates normals direction.

35 // Note: pca_estimate_normals () requires an iterator over points

36 // as well as property maps to access each point ’s position and normal.

37 const int nb_neighbors = 18; // K-nearest neighbors = 3 rings

38 CGAL:: pca_estimate_normals(points.begin(), points.end(),

39 CGAL:: First_of_pair_property_map <PtVecPair >(),

40 CGAL:: Second_of_pair_property_map <PtVecPair >(),

41 nb_neighbors );

42

43 // Orients normals.

44 // Note: mst_orient_normals () requires an iterator over points

45 // as well as property maps to access each point ’s position and normal.

46 std::list <PtVecPair >:: iterator unoriented_points_begin =

47 CGAL:: mst_orient_normals(points.begin(), points.end(),

48 CGAL:: First_of_pair_property_map <PtVecPair >(),

49 CGAL:: Second_of_pair_property_map <PtVecPair >(),

50 nb_neighbors );

51

52 // Optional: delete points with an unoriented normal

53 // if you plan to call a reconstruction

54 // algorithm that expects oriented normals.

55 points.erase(unoriented_points_begin , points.end ());

56

57 // Optional: after erase(), use Scott Meyer ’s "swap trick"

58 // to trim excess capacity

59 std::list <PtVecPair >( points ).swap(points );

60

61 return EXIT_SUCCESS;

62 }
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