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RÉSUMÉ

Utilisation de la géomécanique pour résoudre des problèmes liés aux

structures géologiques: modélisation directe, inversion et restauration

Différentes applications de l’élasticité linéaire en géologie structurale sont présentées dans

cette thèse à travers le développement de trois types de codes numériques. Le premier

utilise la modélisation directe pour étudier les déplacements et champs de contraintes au-

tour de zones faillées complexes. On montre que l’ajout de contraintes inégalitaires, telles

que la friction de Coulomb, permet d’expliquer l’angle d’initiation des dominos dans les re-

lais extensifs. L’ajout de matériaux hétérogènes et d’optimisations, telles la parallélisation

sur processeurs multi-cœurs ainsi que la réduction de complexité des modèles, permettent

l’étude de modèles beaucoup plus complexes. Le second type de code numérique utilise

la modélisation inverse, aussi appelée estimation de paramètres. L’inversion linéaire de

déplacements sur les failles ainsi que la détermination de paléo-contraintes utilisant une

approche géomécanique sont développées. Le dernier type de code numérique concerne la

restauration de structures complexes plissés et faillées. Il est notamment montré qu’une

telle méthode permet de vérifier l’équilibre de coupes géologiques, ainsi que de retrouver

la chronologie des failles. Finalement, nous montrons que ce même code permet de lisser

des horizons 3D faillés, plissés et bruités en utilisant la géomécanique.

MOTS-CLÉS: Géologie structurale, élasticité linéaire, modélisation directe, inversion,

restauration
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ABSTRACT

Geomechanics to solve geological structure issues: forward, inverse and

restoration modeling

Different applications of linear elasticity in structural geology are presented in this the-

sis through the development of three types of numerical computer codes. The first one

uses forward modeling to study displacement and perturbed stress fields around com-

plexly faulted regions. We show that incorporating inequality constraints, such as static

Coulomb friction, enables one to explain the angle of initiation of jogs in extensional

relays. Adding heterogeneous material properties and optimizations, such as paralleliza-

tion on multicore architectures and complexity reduction, admits more complex models.

The second type deals with inverse modeling, also called parameter estimation. Linear

slip inversion on faults with complex geometry, as well as paleo-stress inversion using a

geomechanical approach, are developed. The last type of numerical computer code is

dedicated to restoration of complexly folded and faulted structures. It is shown that this

technique enables one to check balanced cross-sections, and also to retrieve fault chronol-

ogy. Finally, we show that this code allows one to smooth noisy 3D interpreted faulted

and folded horizons using geomechanics.

KEYWORDS: Structural geology, linear elasticity, forward modeling, inverse modeling,

restoration modeling
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“Imagination is more important than knowledge”

Albert Einstein
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Preface

This thesis is comprised of work that started a while ago, when I was unemployed after a

bachelor degree in geophysics and geology at the University of Montpellier II. It has been

continued at Stanford University within the research group of Pr David D. Pollard for four

years, mainly on correcting, rewriting, enhancing and optimizing an existing 3D boundary

element code. Then, several publications have emerged while at Igeoss, a start-up that

we created in 2004 in Montpellier with my brother Laurent (who did his PhD with Pr

David Pollard), and David Pollard himself.

After my return to France from Stanford to start Igeoss, the idea of doing a PhD came to

my mind when I realized that a VAE (”valorisation des acquis et de l’experience” which

can be translated to ”appreciation of achievements and experiences”) was now possible

in France to obtain the equivalent of a master degree in order to start a PhD. Marc

Daignières, a professor at the University of Montpellier II, successfully supported my

request against a faculty commitee and I was able to start in November 2006, under the

direction of Jean Chery (France) and Dave Pollard (USA).

Walking in the world of geomechanics, numerical methods, optimizations and program-

ming without any knowledge and background is not so simple, but can lead to new insights

with the help of the imagination (hence the quote of this thesis). Eleven papers are pre-

sented and one is in the appendix, which show the usefulness of linear elasticity. Although

during this period three other papers were published (see appendix C), I do not include

them within this thesis as I was only a little bit involved.

I particularly show in this thesis that using the simple conceptual model of linear elasticity

can lead to many application codes which are used to better understand geological struc-

tures using either forward, inverse or restoration modeling. The large number of publica-

tions using such codes by researchers around the world (more than one hundred twenty),

demonstrates their importance. A complete list of publications in different geological do-

mains can be obtained on the Igeoss support website at https://support.igeoss.com.

Doing this thesis was the opportunity to start the company Igeoss in 2004 in Montpellier,

and to continue the research on iBem3D, Dynel2D and Dynel3D while giving 13 inter-

national conferences and writing 11 papers as well as a patent for the estimation of the

state of stress in complex reservoirs using measures from well bores and faults geometry.
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Finally, Igeoss integrated Schlumberger, the world’s leading supplier of technology in

the oil and gas industry worldwide, after the acquisition in April 2010.
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4.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 BEM formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5 Iterative solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.7 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.7.1 Bufferized elemental matrices . . . . . . . . . . . . . . . . . . . . . 143

4.7.2 Parallelization on multi-core processors . . . . . . . . . . . . . . . . 143

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Adaptive cross approximation applied to system resolution and post-
processing for a 3D elastostatic problem using the Boundary Element
Method 146

Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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Introduction

Physical theories always deal with simplifications of nature, simply because modeling a

complicated structure such as the earth at a large scale using a microscopic atomistic

molecular model is unrealistic. Therefore, researchers tend to capture the most important

properties of real objects, and use them in a conceptual theoretical, then analytical and

numerical model, the goals being to explain and predict physical phenomena.

We can distinguish two types of physical models that provide foundations for all physi-

cal theories for modeling the material behavior: (1) microscopic discrete models, and (2)

macroscopic continuum models. At the microscopic scale, the particles are moving ac-

cording the influence of their mutual interaction forces given by the quantum mechanics.

At a much larger scale, objects are governed by continuum theories (solid mechanics, fluid

mechanics, elasticity, thermodynamics, electromagnetism, acoustic, and so forth). These

theories tend to describe the behavior of objects in our perception of four dimensional

space-time. Matter and energy are considered as a continuum in this framework, and

therefore mathematical representation of physical quantities is by means of continuous

(or piecewise continuous) functions of space and time.

These kind of problems can be solved exactly by mathematical manipulations (analytical

models), but the mathematical tools usually limit the possibilities to oversimplified mod-

els. Therefore, various techniques of discretization have been proposed and developed,

leading to numerical models involving approximation that approach the true analytical

solution as the number of discrete variables increases. The goal of these methods is to

numerically solve the partial differential equations (PDE). Well known methods are the

Finite Difference Method (FDM), the Finite Element Method (FEM) and the Boundary

Element Method (BEM).

The FDM is the earliest classical numerical treatment for solving PDE, and it replaces

the continuum solution by a set of lattice points. At each point, any differential operators

are replaced by finite difference operators, leading to a set of difference equations which

can be easily solved.

In FEM, the solution domain is discretized into a number of uniform or nonuniform finite

elements that are connected by mean of nodes, and the change in the dependent variable

with regard to location is approximated within each elements using a shape function.

The BEM uses the fact that equations in differential forms can often be transformed into

integral forms. It transforms the differential operator defined in the domain into an inte-

gral operator defined on the boundary. Hence, in BEM, only the boundary of domains of

interest need to be discretized.

Both FEM and FDM are similar in a sense that the entire solution domain has to be
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discretized, and a mesh is needed. In BEM, only the bounding surfaces (in 3D) are used.

The focus of this thesis is the continuum mechanics applied to the comprehension

of geological phenomena, using partial differential equation-based (PDE) modeling

with boundary conditions. More precisely, we are interested in quasi-static phenomena

(e.g. co-seismic events) in the sub-surface using linear elasticity, which proves to be a

good approximation and can provide new insights for the comprehension of earthquakes

and volcanoes or to study the state of perturbed stress field around a complexly faulted

area.

Three kind of numerical codes are developed: (1) forward modeling, (2) inverse modeling

and (3) restoration modeling.

1. Forward modeling studies the fault response to an imposed far field stress or strain

given the fault geometry and the boundary conditions. Result of such simulations

can be used, for example, to predict fractures due to faulting, or to study fault

triggering in an earthquake process.

2. Inverse modeling is a form of parameters estimation of what is usually imposed or

computed on faults in the forward sense (i.e. far field stress, fault slip distribution).

Given some observed deformation at Earth’s surface due to faulting at depth, the

aim is to invert for the slip distribution onto the faults that induced such observed

displacements, or to invert for a tectonic loading (also called paleostress in the

literature) which activated the faults which, in turn, generated the deformations at

the ground surface.

3. Restoration modeling is the study of the geological structures (geometry) back in

time using special boundary conditions onto a model which are related to geological

phenomena (e.g. sedimentation, erosion). This type of modeling allows one, for

example, to validate the structural interpretation of geological structures, to pre-

dict fractures due to folding, or to determine the faults chronology as we go back

in time. It is also used to localize and correct anomalous zones of high stress/s-

train concentration on 3D faulted and folded horizons, and therefore, operates has

a geomechanically-based smoothing filter.
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Contents of the thesis

This thesis is divided into three main parts containing a total of eleven papers that are

either published, submitted or in preparation. Another paper in preparation is presented

in appendix, which complete the work done during this thesis.

Part I is devoted to forward modeling using an elastostatic Boundary Element Method

(BEM) called iBem3D (the successor of Poly3D originally developed at Stanford Univer-

sity), and is composed of five chapters. We show, in this first part of the thesis, that the

conceptual model using the boundary element method can be extended to incorporate (i)

preventing of element interpenetration while allowing opening mode (ii) the static friction

with varying friction coefficient and cohesion, and (iii) the material heterogeneity using

complex shaped interfaces between regions of different material properties. A special

chapter is devoted to the optimization and parallelization of such a code, which is useful

for modeling material heterogeneity. Finally, a chapter applies the static friction to the

study of fracture orientation in extensional relays.

Part II of this thesis studies the inverse modeling using the same boundary element code,

and is subdivided in three chapters related to (i) slip inversion, (ii) paleostress estimation

and (iii) slip recovery. A chapter is devoted to the application of the slip inversion applied

to the Nias earthquake (Indonesia). Appendix A presents an optimization technique of

the slip inversion using the procedures described in part I.

Part III uses another numerical method, namely the Finite Element Method (FEM),

to restore structural interpretations for validation or prediction of fractures related to

folding (chapter 10). Chapter 11 also presents another application to restore 3D surfaces

(unfaulting and unfolding simultaneously) in order to localize anomalous geometries. It

proposes an algorithm to correct for the initial geometry by minimizing a user selected

criteria (e.g. stress, strain, area change, ...). These two tools are very useful for the correc-

tion of faults geometry before doing any forward or inverse modeling using the boundary

element codes presented in part I and II.

Part I: forward modeling using linear elasticity with a boundary element code.

Chapter 1 presents the foundation of this thesis. We show that using the

analytical formulation of the displacement field induced by an angular disloca-

tion in a homogeneous elastic whole- or half-space, it is possible to construct 3D

complex surfaces of displacement discontinuity made of triangular elements.

This formulation allows surfaces of discontinuity to have complex shapes and

tip-lines, as opposed to Okada’s formulation, currently the standard method in
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geophysics, where rectangular elements are used inducing inevitably overlaps

and gap between the elements. Application of such a code is wide in the do-

mains of structural geology and geomechanics. We present some of the major

applications that have already been published by a large community around

the world.

Chapter 2 proposes an iterative method to solve the system of linear equa-

tions. This technique allows one to reduce the model complexity from O(n3),

while using the Gauss elimination or LU decomposition, to O(kn2), where

k is the number of iterations required for the iterative solver. Moreover,

this solver allows the incorporation of inequality constraints on traction (e.g.

static Coulomb friction) and displacement (e.g. non-interpenetration of the

elements). As we will see, it also facilitates the parallelization on multi-core

architectures.

Chapter 3 presents an application of the inequality constraints from chapter

2 to the orientations of branching fractures at strike slip relay zones between

reactivated en echelon stylolites and joints. The chosen area is ”Les Matelles”

located near Montpellier, France. Specifically, it is shown that the orientation

of the domino within the relay zone is function of the friction.

Chapter 4 shows that the initial implementation of the boundary element

code, which was done for an homogeneous isotropic material, can be extend to

heterogeneous isotropic materials using special boundary conditions at inter-

faces separating regions of different material properties. These interfaces are

discretized as 3D triangulated surfaces that can have any shape.

Chapter 5 is devoted to the optimization of forward modeling. Even if

using an iterative approach (chapter 2) decreases the model complexity, it

remains a major drawback for computing large models made of hundreds of

thousands triangular elements, the memory needed being the same as when

using direct matrix inversion. Furthermore, the post-processing at observation

grids can be a penalization for the user, especially if the number of observation

points is large. This chapter presents the optimization of the computation by

using approximations and parallelization on multi-core processors, for both

the system resolution and post-processing. It is shown that the model com-

plexity is reduced from O(kn2), for an iterative solver, to ∼ O(kn), and that
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the post-processing at observation points (field points) is drastically reduced

and is a function of the position of the grids relative to the sources (surface

discontinuities).

Part II: Inverse modeling using linear elasticity with a boundary element code.

Chapter 6 presents the advantages of doing linear slip inversion on complex

fault geometries. Given some observations of deformations at the ground sur-

face (e.g. GPS, tiltmeters, satellite images, ...) as well as the fault geometries,

we invert for slip distributions onto the faults that generated such measured

deformations. Specifically, it is shown that such an approach using triangular

elements is more precise than traditional methods using rectangular-planar el-

ements. The code is applied to the Hector Mine earthquake, CA, and performs

better than when using rectangular elements.

Chapter 7 presents an application of the slip inversion for the Nias earth-

quake which occurred in 2005 in Indonesia. This study adds evidence that the

earthquake probably did not break the surface, and this has implications for

tsunami generation.

Chapter 8 presents a geomechanically-based technique to recover for the

paleostress that induced observed displacements onto the faults from seismic

interpretation. This technique is limited to one tectonic event, but can give a

good estimate of what could have been the orientation and magnitude of the

tectonic loading using mechanical interactions. While doing the stress inver-

sion, we invert at the same time for the unknown displacement discontinuities

onto the faults (e.g. strike-slip).

Chapter 9 presents another way of doing paleo-stress estimation using the

principle of superposition that applies in linear elasticity. This new method

can take into account various data sets such as fracture and secondary fault

plane orientation that formed in the vicinity of active faults, GPS, InSAR,

fault throw and slickenlines. It is shown that multiple tectonic events can

be recovered and the data may be segregated into their respective events.

Furthermore, such a method allows one to do real-time computation of the

faults slip and perturbed stress field while the user changes the imposed far

field stress.
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Part III: Restoration modeling using linear elasticity with a finite element code.

Chapter 10 is devoted to the validation of interpretations using a restora-

tion technique. Doing forward modeling, as describe in chapter 1, shows the

importance of the fault and fracture geometry to the resulting computed dis-

placement discontinuity onto them, and consequently to the associated per-

turbed stress field. For the majority of the numerical simulations, it is manda-

tory to validate such interpretations before analyzing the result of a forward

numerical simulation.

Chapter 11 presents a geomechanically-based smoothing filter for noisy

3D surfaces. It is shown that the filter removes geometrical artifacts where,

for example, high stress concentration occurs after unfolding and unfaulting,

while smoothing fault cut-offs and transforming high displacement gradients

at crack-tips into a more realistic geometry.

Additionally, we present in appendix A, an on-going project related to part II (Inverse

modeling using Boundary Element Method) for doing fast slip inversion using an iterative

solver. In appendix B, we present a sensitivity analysis for fault sealing and leakage for

both nuclear waste disposal and exploitation of natural resources.

The conclusions and perspectives are developed in part IV.
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Part I

Forward modeling using BoundaryElement Method
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Aperçu

La première partie de cette thèse est consacrée à la modélisation directe en développant

et utilisant iBem3D (ex-Poly3D), une méthode d’éléments frontières (BEM). Etant donné

la géométrie 3D des failles ainsi que le champ de contraintes à l’infini, il est possible

de déterminer les champs de déplacement et de contraintes perturbés autour de zones

complexes faillées (chapitre 1). Des améliorations de ce code sont proposées dans le

chapitre 2, où les contraintes inégalitaires sont ajoutées dans la formulation, ce qui permet

de simuler la friction Coulombienne et la non-interpénétration des plans de failles lors

d’un régime compressif. Dans le chapitre 3, nous donnons une application directe du

frottement pour étudier les angles de branchement des dominos dans un relais extensif.

Les améliorations comprennent aussi l’ajout de matériaux hétérogènes à l’aide d’interfaces

3D triangulées séparant deux régions ayant des propriétés mécaniques différentes (chapitre

4). Du fait qu’une telle amélioration induit un accroissement non négligeable dans le

nombre d’inconnues, des optimisations sont nécessaires (réduction de la complexité ainsi

que parallélisation sur des architectures multi-cœurs). Ces optimisations sont présentées

dans le chapitre 5.

L’annexe B présente une utilisation élégante des contraintes inégalitaires pour l’analyse

de sensibilité de differents paramètres. On utilise Scribble, un langage en Javascript

pour iBem3D, permettant d’exécuter rapidement des milliers de modèles. Dans cette

modélisation, trois paramètres interdépendants sont analysés pour étudier à la fois les

risques sismiques liés au stockage de déchets nucléaires et l’exploitation des ressources

naturelles: (1) l’épaisseur de la glace au-dessus des failles, (2) la friction sur les failles et

(3) la cohésion.
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Overview

The first part of this thesis is dedicated to forward modeling using iBem3D (former

Poly3D), a Boudnary Element Method (BEM). Having the faults geometry as well as

the far field stress, it is possible to determine the displacement and perturbed stress field

around complex faulted areas (chapter 1). Enhancements of iBem3D are proposed in

chapter 2, where inequality constraints are added in the formulation, allowing Coulomb

frictional behavior and non-interpenetration of elements making a fault in a compressional

regime. In chapter 3 we give a direct application of the friction to study the different

branching angles for the initiation of the jogs in extensional relays. Enhancements also

include heterogeneous materials by using complexly-shaped 3D interfaces separating two

regions with different materials properties (chapter 4). Since such an extension induces a

non-negligible jump in the number of unknowns, optimizations are necessary (complexity

reduction as well as parallelization on multicore architectures). This is done in the chapter

5.

Appendix B presents an elegant application of the inequality constraints for sensitivity

analysis. It uses Scribble, the Java-script language for iBem3D, to quickly run thousands

of models. In this particular modeling, three inter-dependent parameters are analyzed for

both nuclear waste disposal and exploitation of natural resources: (1) ice thickness above

the faults, (2) fault friction and (3) fault cohesion.
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Preamble

The following chapter presents the foundation of this thesis. We show that using the

analytical formulation of the displacement field induced by an angular dislocation in a

homogeneous elastic whole- or half-space, it is possible to construct 3D complex surfaces

of displacement discontinuity made of triangular elements. This formulation allows sur-

faces of discontinuity to have complex shapes and tip-lines, as opposed to the Okada’s

formulation, where rectangular elements are used inducing inevitably overlaps and gaps

between the elements. Application of such a code is wide in the domains of structural

geology and geomechanics. We review some of the major applications that have already

been published by a large community around the world.

About...
Poly3D versus iBem3D

Historically, the development of Poly3D started in 1993, and was written at

Stanford University by Andrew Lyle Thomas (Thomas, 1993) using the C language

and based on the work of Jeyakumaran (Jeyakumaran et al., 1992). In 1998, Yann

Lagalay came at Stanford for one year to work on the “Shadow’s effect” problem

(see section 1.9). A year after, I came in the group of Dave Pollard, and started to

correct some bugs, optimize the fundamental equations and rewrite the core code in

pseudo C++ (C++ wrapper around the C language).

Since then, the code was entirely rewritten in C++ while at Igeoss, adopting

the triangular elements instead of the more general polygonal formulation, for speed

and design considerations. Several enhancements are now part of the new code,

such as a fast iterative solver, parallelization on multicore architectures, H-Matrix

optimization, heterogeneity of materials, inequality constraints (static friction) and

paleo-stress evaluation. The new code is now named Ibem3D...

For this paper, Laurent Maerten wrote the “Applications” part while Dave

Pollard enhanced the manuscript and wrote the introduction, the verification part

as well as the conclusions.
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1.1 Résumé

Le but de cet article est de décrire iBem3D, un code C++ modulaire basé sur la théorie

des dislocations angulaires pour la modélisation en trois dimensions des fractures et failles

dans un milieu infini ou semi-infini, élastique, hétérogène et isotrope. Nous présentons

aussi les améliorations apportées à ce code ainsi que le grand nombre d’applications dans le

domaine de la géologie structurale depuis la première implémentation en 1993 sous le nom

de Poly3D. Le principal avantage d’utiliser une telle formulation pour décrire les failles

et fractures, réside dans la possibilité de modéliser des géométries complexes sans trou ni

recouvrement entre les éléments adjacents discontinus, ce qui est très problématique pour

les modèles utilisant des dislocations rectangulaires. Fiabilité, vitesse de calcul, simplicité

et exactitude des résultats sont améliorés dans la dernière version de ce code.

Les applications industrielles comprennent la modélisation des failles sous-sismiques, la

modélisation des réservoirs fracturés, l’interprétation et la validation de la connectivité des

failles et de la compartimentation des réservoirs, l’étude des zones déplétées, la réactivation

des failles et la stabilité des puits de forage sous pression. Les applications académiques

comprennent l’étude des tremblements de terre et la surveillance des volcans, l’atténuation

des risques sismiques ainsi que la modélisation de stabilité des glissements de terrain.
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1.2 Abstract

The purpose of this paper is to describe iBem3D, a C++ and modular computer pro-

gram based on the theory of angular dislocations for three-dimensional fracture and fault

modeling in an elastic, heterogeneous, isotropic whole- or half-space, and to present the

extensions as well as the wide range of applications in structural geology since its first

implementation in 1993 under the name Poly3D. The main advantage of using this for-

mulation for describing faults and fractures resides in the possibility of modeling complex

geometries without gaps and overlaps between adjacent triangular dislocation elements,

which is a significant shortcoming for models using rectangular dislocation elements. Re-

liability, speed, simplicity and accuracy are enhanced in the latest version of the computer

code. Industrial applications include subseismic fault modeling, fractured reservoir mod-

eling, interpretation/validation of fault connectivity and reservoir compartmentalization,

depleted area and fault reactivation, and pressurized well bore stability. Academic appli-

cations include earthquake and volcanoe monitoring, hazard mitigation and slope stability

modeling.

Keywords: 3D-BEM, Geomechanics, Faults interaction, Sub-surface modeling

1.3 Introduction

The rapidly increasing number of geologic, seismologic and geodetic data sets with abun-

dant and very precise spatial information on fault geometry and slip distributions promote

the development of more complex geometric and kinematic models of modern earthquake

ruptures and paleoseismic events. These data sets indicate that faults commonly are com-

posed of multiple discrete segments, each with a curved surface and curved tipline. Con-

struction of model fault segments using multiple rectangular dislocations (Okada, 1985)

introduces non-physical gaps and overlaps with associated stress concentrations and irreg-

ularities in slip distributions that may differ significantly from those in nature (Maerten

et al., 2005). Discretization of fault segments into a set of triangular dislocations enables

one to approximate the curviplanar surfaces and curved tiplines to a precision that is

consistent with the data (Jeyakumaran et al., 1992; Thomas, 1993; Maerten et al., 2005,

2009; Maerten, 2010).

The C computer code that was originally developed at Stanford University by Andrew

Thomas (Thomas, 1993) in 1993 was called Poly3D. The idea of using the angular dis-

location formalism to construct complex planar dislocations with constant displacement

discontinuity was first used by Jeyakumaran et al. (Jeyakumaran et al., 1992) in 1992.
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M. Jeyakumaran et al. (1992)

- Formulation for triangular elements

- Resolution using a direct solver

Figure 1.1: Poly3D versus iBem3D. Both of them are based on Comninou and Dun-
durs work (Comninou and Dundurs, 1975) and Jeyakumaran (Jeyakumaran et al., 1992).
While Poly3D employs polygonal elements, iBem3D uses triangular elements and relies
exclusively on an iterative solver. Compared to Poly3D, where the equations for the dis-
placement field were symbolically derived using a computer program, iBem3D uses hand
made derivatives (now running 4 times faster) and incorporates many enhancements.

Since then, due to the rapid evolution of computer power and the constant demand for

doing more complex and larger models, a new code has emerged, following the work of

Jeyakumaran (Jeyakumaran et al., 1992) for triangular elements. To develop the new

code, iBem3D, the C++ object oriented language was chosen and an iterative solver

now replaces the older direct solver (Gauss elimination). C++ allows modularity of the

code (Maerten and Maerten, 2008a; Maerten et al., 2009; Maerten, 2010) while the iter-

ative solver permits running larger models in a shorter time (Maerten et al., 2009). The

equations for the displacement field provided by Comninou and Dundurs (Comninou and

Dundurs, 1975) were entirely derived by hand for optimization considerations, whereas

Poly3D equations were symbolically derived using a dedicated software. The call to the

core equations now runs four times faster. Comparisons of Poly3D and iBem3D are sum-

marized in Figure 1.1 where the technological differences are highlighted.
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In this paper, we summarize the theory behind iBem3D along with verifications (sec-

tion 1.4), and present the latest improvements such as the implementation of material

heterogeneity, static friction, optimizations and parallelization, linear-slip inversion and

paleostress recovery (section 1.5). Finally, the wide range of academic, research and in-

dustrial applications are discussed in section 1.6.

1.4 Theory behind iBem3D

The theory of dislocations in elastic materials has been used widely over the past half cen-

tury to evaluate the displacement, strain and stress fields around faults in Earth’s litho-

sphere. Steketee discussed this theory and potential applications to geophysical problems

in two papers (Steketee, 1958b,a). He reviewed Volterra’s formulation for the dislocation

problem and presented a method for the construction of Green’s functions for the semi-

infinite space containing a surface of displacement discontinuity (the dislocation). The

Green’s functions can be integrated to calculate the displacement field around the planar

surface of discontinuity. These displacement fields satisfy the Navier equations which are

the governing equations for linear elastic theory. Spatial derivatives of the displacement

components provide the strain components, and incorporation of Hooke’s law for a homo-

geneous and isotropic elastic material gives the stress components. Thus, Steketee’s work

illustrates how the mathematical tools of dislocation theory enables one to compute the

displacement, strain and stress fields around idealized faults in an elastic half-space, but

it does not make explicit comparisons to geophysical data.

Chinnery used some results of Steketee to derive the particular solution for a vertical rect-

angular strike-slip fault of arbitrary dimensions and depth (Chinnery, 1963). He computed

and illustrated the displacement and stress fields, and compared the surface displacements

fields to those measured geodetically near active faults (Chinnery, 1961, 1963). The theo-

retical exposition of Steketee and the correlations to observations made by Chinnery had

profound effects on the geophysical research community as they set the stage for the use

of dislocation theory as one of the principal tools for the mechanical analysis of fault-

ing. This usage has continued from the early nineteen sixties to the present day with

many notable successes. Integration of Volterra’s dislocation over rectangular surfaces

in the half-space has been used in these studies (Maruyama, 1964; Press, 1965; Savage

and Hastie, 1966, 1969; Mansinha and Smylie, 1971; Davis, 1983; Ma and Kusznir, 1993).

Okada has reviewed this literature and perfected the analytical expressions for deforma-

tion at the surface of the half-space due to inclined shearing and opening rectangular

dislocation surfaces (Okada, 1992).
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For 2D solutions, a widely used numerical technique is the boundary element method

(BEM) (Crouch and Starfield, 1983), which has been used to model fault behavior (Mavko,

1982; Bilham and King, 1989), overlapping spreading centers (Sempere and Mac Donald,

1986), the emplacement of igneous dikes (Delaney and Pollard, 1981) and the growth of

joint sets (Olson and Pollard, 1989; Wu and Pollard, 1995) and veins (Olson and Pollard,

1991). One form of BEM is based on the dislocation and is called the displacement

discontinuity method (DDM).

The method pioneered by Steketee and Chinnery involves complicated and lengthy in-

tegrations even for simple geometrical figures such as rectangles. A different approach,

originally presented by Burgers (Burgers, 1939), was adopted by Yoffe (Yoffe, 1960) for

the problem of an angular dislocation in the infinite elastic medium. This solution was

then used to construct, in principle, the solution for dislocation polygons and polyhedra

in the infinite medium. More recent contributions to the material science literature con-

sider triangular loops of dislocation directly (Wong and Barnett, 1984; Barnett, 1985)

instead of superposition of angular dislocations, but do not offer a general solution for

the half-space problem. Comnimou and Dundurs extended the use of angular dislocation

to the half-space problem (Comninou and Dundurs, 1975) and thereby paved the way for

applications of this approach to geophysical problems in general and faulting in particular.

iBem3D is a computer program that calculates the displacements, strains and stresses

induced in an elastic whole- or half-space by planar triangular-shaped elements of dis-

placement discontinuity. Those elements are constructed by superposition of angular dis-

locations following the method described by Jeyakamuran, Rudnicki, and Keer (Jeyaku-

maran et al., 1992), and later by Thomas (Thomas, 1993). The elastic fields around

the elements are derived from the solution for a single angular dislocation in an elastic

half-space or whole-space (Yoffe, 1960; Comninou and Dundurs, 1975). Geologically, a

triangular element may represent some portion of a fracture or fault surface across which

the discontinuity in displacement is approximately constant.

Several triangular dislocation elements may be used to model faults or fractures, or even

may be joined to form a closed surface that may represent either a finite elastic body or a

void in an otherwise infinite or semi-infinite elastic body. This superposition provides the

means to model geological structures with complex, three dimensional boundaries and

shapes that are not possible to model effectively with the rectangular surface that has

been extensively used in dislocation modeling of faults and fractures in the earth (Okada,

1985, 1992). Attempts to model curved surfaces with rectangular elements, except in the

simplest cases, result in gaps and overlaps. In contrast, Fig. 1.2 shows how a complex 3D

fault surface may be approximated with triangular elements with no gaps or overlaps. The
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Figure 1.2: Construction of a complex fault geometry using triangular elements and
schematic representation of a surrounding observation grid. Boundary conditions on
triangular elements are a combination of displacement and traction. At each observation
point, displacement, strain and stress can be computed as a post-process. Also shown

is the 3D remote strain/stress

discretization of a three-dimensional fault surface into triangular boundary elements allows

the construction of a surface with any desired tipline and shape. Boundary conditions,

i.e., displacement discontinuities that are constant over an entire element or tractions

at the center of each element, are prescribed according to the local coordinate system

attached to the element (Fig. 1.4d). Additionally, remote stresses and/or strains can be

prescribed. Output at observation points (black dots in Figure 1.2) can be displacement,

strain, stress, principal strain and principal stress (Fig 1.2).

1.4.1 Angular, biangular and triangular dislocations

Among the different ways to build a triangular element with angular dislocations, the

simplest (Fig. 1.3) is created by superposition of three angular dislocations as described

by Yoffe (Yoffe, 1960). All three angular dislocations lie in the same plane, here the

(x, y)− plane, and the dislocation surfaces (lightly shaded areas) extend to infinity. This

construction does not enable a solution for the half-space problem as the lines of some

dislocations would cross the traction-free surface when the element is inclined. Conse-

quently, Comninou (Comninou and Dundurs, 1975) did not adopt this simple representa-

tion in their solution for the angular dislocation in the half-space. Instead, they used an

angular dislocation with one vertical leg perpendicular to the surface of the half-space.

An angular dislocation (A,α, β) (Fig. 1.4a) lies in a vertical plane that makes an angle
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Figure 1.3: Triangular element construction according to Yoffe (Yoffe, 1960). All
three angular dislocations lie in the same plane. This construction does not enable
a solution for the half-space problem as the lines of some dislocations may cross the

traction-free surface when the element is inclined

Figure 1.4: Angular, biangular, triangular dislocations and local coordinate system
used in iBem3D. (a) Angular dislocation representation, with its semi-infinite vertical
and inclined legs initiating at point A. (b) Biangular dislocation construction from two
angular dislocations. The inclined leg cancels at point B. (c) Triangular dislocation
construction from three biangular or six angular dislocations. All inclined and vertical
legs cancel, leaving a triangular loop represented by the element, where a constant
Burgers’s vector is applied. (d) Representation of the element local coordinate system

and the Burgers vector

β in the horizontal plane to the global y − axis, with one leg perpendicular to the free

surface. The two legs of the angular dislocation subtend an angle α, and extend to infinity

from a common vertex A. The uniform displacement discontinuity across the dislocation

is given by its Burgers vector. Given a point M in the elastic body, the displacement
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component ůi due to an angular dislocation (A,α, β) (Fig. 1.4a), is given by:

ůi(M) =
3∑

j=1

Ůij(M,A, α, β)bj = Ůijbj (Einstein notation) (1.1)

and is a linear function of the Burgers vector b. Coefficients of the matrix Ůij, called

the displacement influence matrix, are given by Comninou & Dundurs (Comninou and

Dundurs, 1975). Note that the half-space problem is solved using image dislocations and

a solution to the Boussinesq problem to remove tractions from the free surface (Comninou

and Dundurs, 1975). The Boussinesq solution provides corrective terms for the free sur-

face so that no shear stresses appear on it, and the image dislocations remove the normal

tractions.

The strain field at point M can be computed by partial derivation of (1.1) by using the

linearized Green-St Venant strain tensor:

ǫ̊ij =
1

2
(∇ů + ∇ůt) =

3∑

k=1

E̊ijk(M,A, α, β)bk = E̊ijkbk (1.2)

where ∇ů is the deformation gradient tensor. E̊ijk represents the strain influence matrix

due to an angular dislocation and is derived from:

E̊ijk =
1

2

(
∂Ůik

∂xj

+
∂Ůjk

∂xi

)
(1.3)

For linear elastic materials, the stress components are related to the infinitesimal strain

components using constitutive equations called Hooke’s Law. The general form of Hooke’s

Law is simplified for an isotropic material, so there are only two material constants. The

isotropic elastic material is one in which the elastic constants are the same regardless of

direction. Given the Hooke’s law

σij = 2Gǫij + λǫkkδij (1.4)

the stress tensor is given for infinitesimal deformation as

σ̊ij = 2G̊ǫij + λ̊ǫkkδij =
3∑

k=1

S̊ijk(M,A, α, β)bk

= S̊ijkbk

(1.5)
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where G is the shear modulus, λ the Lamé’s constant, δij the Kronecker delta, and ǫ̊ij is

given by (1.2). S̊ijk represents the stress influence matrix due to an angular dislocation.

A biangular dislocation, having two vertical legs, perpendicular to the free surface, con-

structed from two angular dislocations (A0, α, β) and (A1, α, β) (Fig. 1.4b). The resulting

displacement at point M is simply the superposition of contributions from the two angular

dislocations:

ūi(M) =
3∑

j=1

[Ůij(M,A0, α, β) − Ůij(M,A1, α, β)]bj

=
3∑

j=1

Ūij(M,A0,A1, α, β)bj = Ūijbj

(1.6)

Using the same process of superposition, a triangular element {A0, A1, A2} in the whole-

or half-space is build with three biangular dislocations (Fig. 1.4c). The superposition

of these dislocations are vertical surfaces defining a volume. This volume is semi-infinite

and vertically trending compared to the global coordinate system. The coincident legs

under each vertex cancel leaving a displacement discontinuity only in the triangle. The

Burgers vector b is constant over the triangular dislocation. The superposition of these

dislocations are vertical surfaces defining a volume. This volume is semi-infinite and

vertically trending compared to the global coordinate system.

The total displacement at point M resulting from a triangular dislocation made of three

dislocation segments, is therefore given by

ui(M) =
3∑

j=1

3∑

k=1

Ūij(M,Ak,Ak+1, αk, βk)bj = Uijbj (1.7)

the strain by

ǫij(M) =
3∑

k=1

3∑

l=1

Ēijk(M,Al,Al+1, αl, βl)bk = Eijkbk (1.8)

and the stress by

σij(M) =
3∑

k=1

3∑

l=1

S̄ijk(M,Al,Al+1, αl, βl)bk = Sijkbk (1.9)
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For a model made of n triangular dislocation elements, the displacement at any point M

is determined by superposition, i.e. by contribution of all the elements within the elastic

body:

ui(M) =
n∑

m=1

Um
ij b

m
j = Um

ij b
m
j (1.10)

where Um
ij are the displacement influence coefficients due to the mth element, and bm

j is

the jth Burgers vector component. The strain and stress also are given by the contribution

of all elements.

The Burgers vector b, for a given element e, can be divided into two displacement vectors,

u+ on the positive side of the element and u− on the negative side, and these are related

by:

b = u+ − u− (1.11)

In order to retrieve these vectors, one first calculates the displacement u+ at the element’s

centroid using equation (1.10) with an infinitesimal positive shift along the element’s nor-

mal as described in section 1.9.2.2 of the appendix. The displacement on the negative

side, u−, is then calculated using the prescribed boundary value and (1.11).

Note that one must use the corrective displacement presented in appendix if the observa-

tion point M is under the triangulated surfaces of discontinuity in the elastic half-space,

since the displacement field is not correctly calculated. This problem is directly linked to

the construction of the triangular element and the interpretation of the solid angle used

to define Burgers’function (see appendix).

1.4.2 Element boundary conditions

Each triangular dislocation is defined with three boundary conditions using the element

local coordinate system. This is constructed with x along the dip (direction of greatest

inclination in the element plane), z along the element’s normal, and y is the cross-product

of z and x. The y-axis is oriented toward north if the element is horizontal with respect

to the global coordinate system (Fig. 1.4d). Boundary conditions consist of the displace-

ment discontinuity component or traction component in each coordinate direction. When

all triangular dislocations within the model are prescribed with displacement discontinu-

ities, the displacement at any point within the elastic field is entirely defined by equation

(1.10). However, when triangular elements have prescribed traction boundary condition,
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one must first determine the corresponding Burgers components that produce these trac-

tions, and then proceed with (1.10).

Using Cauchy’s formula by resolving the stress tensor σij (Eq. 1.9) on the triangular

element’s plane using its centroid as the collocation point, the element’s traction can now

be defined by:

ti = σijnj = (Sijkbk)nj = (Sijknj)bk = Tijbk (1.12)

where nj represents the element’s normal components and Tij = Sijknj is the traction

influence matrix.

Using the traction formulation for a triangular dislocation, the total traction at the center

of a triangular element is simply the total traction exclusive of that imposed by the remote

loading at the center:

ti = Tm
ij b

m
j (1.13)

A system of linear equations is then constructed using (1.13), and solved for the unknowns

Burgers vector components

{t} = [T]{b} (1.14)

In equation (1.14), {t} represents the column of the initially prescribed traction vectors

(see next section 1.4.3), [T] is a dense matrix of traction influence coefficients, and {b}
the column of the unknowns Burgers vectors.

1.4.3 Remote loading

Initial boundary conditions are prescribed for each triangular element of the model based

upon the stress field σR that exists throughout the body before any slip or opening of the

elements. This remote stress is applied to the model by prescribing boundary conditions

that are the tractions resolved from this remote stress on the elements using Cauchy’s

formula (1.12). Then, one uses equation (1.14) to solve the system. Given the far field

remote stress σR and the normal n of an element e, the initial traction for this element is

given by t = −σRn. Therefore, the initial traction boundary vector for a given element

opposes the prescribed resolved far field stress onto this element, leading to equilibrium.

If a remote strain ǫR is prescribed, one first calculates the corresponding remote stress σR

using Hooke’s Law (1.4) and then proceeds as above.
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1.4.4 Post-processing at observation points

After the system (1.14) is solved, displacement, strain and stress components can be

computed anywhere within the elastic solid, by using the principle of superposition. For a

given observation point (field point), the resulting component is the sum of contributions

from all influencing elements (sources). For the displacement, equation (1.10) is used

directly. For strain and stress, equation (1.15) and (1.16) are used respectively:

ǫij(M) =
n∑

m=1

Em
ijkb

m
k + ǫRij = Em

ijkb
m
k + ǫRij (1.15)

σij(M) =
n∑

m=1

Sm
ijkb

m
k + σR

ij = Sm
ijkb

m
k + σR

ij (1.16)

where Em
ijk and Sm

ijk represent the strain and stress influence matrices at field point M

due to a source element m, respectively, and ǫR and σR the remote field strain and stress,

respectively. In equation (1.15) and (1.16), the perturbed strain/stress field due to slipping

triangular elements is simply superimposed on the remote stress/strain field.

1.4.5 Benchmarking the code

The basic element used by iBem3D is a planar dislocation loop with a triangular tipline.

The analytical equations for the displacement, strain, or stress fields around such an

element are not written down because the element is actually made up of a set of angular

dislocations and the effect of these are numerically summed within the code. Therefore

we must use a simpler dislocation solution for the purpose of benchmarking the code and

find a way to compare that to the output of iBem3D. Figure 1.5 shows a single dislocation

line extending along the z coordinate axis with a tangent vector in the positive coordinate

direction. The edge dislocation is positive with a Burgers vector directed along the x

coordinate axis. For comparison to this dislocation line we choose the simplest iBem3D

element, an equilateral triangular element with unit side length, a = 1. This element lies

in the (x, z)-plane with one side parallel to the z coordinate axis. The tangent vector

along that side points in the positive coordinate direction and the dislocation there is

a pure edge dislocation with Burgers vector directed along the x coordinate axis. The

origin of coordinates is placed at the midpoint of that side. Because the dislocation line

is infinite in length and the side of the triangular element is finite, we must restrict our

range to the region immediately surrounding the side of the element at the midpoint.
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Figure 1.5: Single edge dislocation e and iBem3D triangular element

For the purposes of bench marking, we choose the displacement field and the strain field

associated with the straight edge dislocation line (Weertman & Weertman (Weertman

and Weertman, 1964), p. 35-37). The stress components are proportional to the strain

components through Hooke’s Law (eq. 1.4), so using one or the other is sufficient. The

displacement components are:






ux = − b
2π

[
tan−1

(
y
x

)
+ λ+µ

λ+2µ

(
xy

x2+y2

)]

uy = − b
2π

[
µ

2(λ+2µ)
ln
(

x2+y2

C

)
+ λ+µ

λ+2µ

(
y2

x2+y2

)]

uz = 0

(1.17)

Here λ and µ are Lamés elastic constants (µ also is referred to as the shear modulus) and

b is the magnitude of the Burgers vector for the edge dislocation. The constant C is an

arbitrary (rigid) translation that does not appear in the strain equations because they

are derivatives of the displacements. Because the dislocation line is infinite in extent the

displacement parallel to this line is zero. The strain components are:






ǫxx = + by
2π

[
(3µ+2λ)x2+µy2

(2µ+λ)(x2+y2)2

]

ǫyy = − by
2π

[
(µ+2λ)x2−µy2

(2µ+λ)(x2+y2)2

]

ǫxy = − bx
2π

[
2(µ+λ)(x2+y2)
(2µ+λ)(x2+y2)2

]

ǫxz = ǫyz = ǫzz = 0

(1.18)

Note that the shear strain component along the line y = 0 is proportional to b/x, so as

the distance to the dislocation line becomes very small the strain becomes very large. In

fact there is a singularity in all the strain components at the dislocation line. While this

is mathematically correct it is non-physical, so we must restrict attention to the region at

some distance from the dislocation line where the strain (and stress) components are of

reasonable magnitude for the assumptions of linear elastic deformation to be meaningful.
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Figure 1.6: Verification of displacement (top) and strain (bottom) field equations for
an edge dislocation with r = 5b

It is generally agreed (Weertman and Weertman, 1964) that this distance is some multiple

of the Burgers vector, say about r > 5b, and the region inside this radius is called the

dislocation core. Furthermore, the elastic fields are based upon the concept of a contin-

uum, which breaks down for still smaller volumes where inhomogeneity of the crystalline

lattice becomes relevant. Therefore, to avoid the dislocation core, but remain close to the

dislocation line relative to the length scale of the triangular element we specify a range

r ≥ 5b (inset of Fig. 1.6).

For the iBem3D parameters, the elastic moduli λ and µ are chosen to be 20,000 MPa. The

dislocation has prescribed displacement boundary conditions with Burger’s vector equals
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to b = (10−6, 0, 0). The observation points are located on a circle in the (x, y)-plane such

that r = 5.10−6 and −180 < θ < 180, with a point every 10o (inset of Fig. 1.6).

The displacement distributions for the two non-zero components are shown in Figure 1.6,

top. These components are referred to the global coordinate system. The analytical

solution results are shown as continuous smoothed line and the iBem3D results are su-

perimposed as symbols. Note that the component ux varies from +b/2 at θ = −180o to

−b/2 at θ = +180o, thus accounting for the displacement discontinuity. The component

uy is continuous across the glide plane. The graphical comparison indicates that iBem3D

reproduces the analytical results quite well, and inspection of the numerical computations

demonstrate that the two solutions are identical to four significant figures. The distri-

butions of the strain components just outside the dislocation core are shown in Figure

1.6, bottom. Again the analytical results are plotted as smooth curves and the iBem3D

results are superimposed as symbols. The graphical comparison indicates that iBem3D

reproduces the analytical results quite well, and inspection of the numerical computations

demonstrates that the two solutions are identical to four significant figures.

A similar bench marking procedure was carried out using the analytical solution for the

single screw dislocation (Weertman & Weertman (Weertman and Weertman, 1964), p. 32-

35). Once again iBem3D reproduced the displacement and strain fields everywhere just

outside the dislocation core to four significant figures or better. These two tests demon-

strate that the physical fields of displacement and strain (and by implication stress) in the

region very near the edge of a triangular element are calculated by iBem3D with results

that are consistent with the fields for pure edge and screw dislocation lines. By implica-

tion, we expect the physical fields near an edge of an element with an oblique Burgers

vector will be consistent with the fields for the mixed dislocation.

In a similar way the displacement and stress components from iBem3D were compared to

those components from the analytical solution for a two-dimensional strip of displacement

discontinuity (Crouch & Starfield (Crouch and Starfield, 1983), p. 79-83). The comparison

was made at a radial distance r = 2a from the middle of the strip. Again the match is

identical to four significant figures. We suggest that these comparisons provide a robust

bench marking of the mathematical equations and coding in iBem3D for the near field of

the element tipline and the intermediate field of the discontinuity.
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1.5 Enhancements to iBem3D

As mention in previously, iBem3D incorporates several new enhancements compare to

Poly3D, thanks to the C++ object oriented design. Those are summarized below.

1.5.1 Heterogeneous material

Solutions for heterogeneous materials can be formulated using triangulated interfaces

between regions (Maerten and Maerten, 2008b). An interface is defined as a doubly tri-

angulated surface (one for each region), perfectly coincident, but with opposite normals.

Each region is characterized by a homogeneous and isotropic material but the elastic mod-

uli may be different in each. The interface between two different regions transmits the

mechanical influence of one region on the other by computing the corresponding Burg-

ers’s vectors for two adjacent elements on the interface using continuity and equilibrium

conditions prescribed in the global coordinate system:

{
u−

1 = u−
2 (continuity conditions)

t1 + t2 = 0 (equilibrium conditions)
(1.19)

In equation (1.19), u−
1 and t1, part of region 1, represent the displacement computed on

the negative side of each element and the traction, respectively. This formulation leads

to separate models for each region that are linked through the continuity and equilibrium

conditions at the interface (Maerten and Maerten, 2008b).

1.5.2 Friction and non-interpenetration

Friction and non-interpenetration present a subset of inequality constraints on traction

and displacement, respectively, for the general contract problem in mechanics. While

solving such problems, different algorithms can be used to incorporate these constraints.

The most popular ones are the Lagrange Multipliers, the Penalty Method and the Com-

plementarity Problem (Wriggers, 2002). However, these methods incorporates either new

equations into the system, artificial parameters, or the necessity to explicitly construct the

system matrix. In (Maerten et al., 2009), we use another technique based on successive

corrections of the solution. Compared to other techniques of contact management, this

new simple methodology, which does not use any incremental trial and error procedures,

brings more flexibility, while making the system more stable and less subject to round-off

errors, without significant computational overhead.

45



The incorporation of inequality constraints on traction and displacement now extends the

existing wide range of applications of iBem3D. For example, static friction can be used to

model the cohesive end zone (CEZ) of a fault (Martel, 1997; Davatzes and Aydin, 2003;

Cooke, 1997), where the greater friction reduces slip such that a (non-physical) infinite

stress state is avoided. This enhancement also can be used to study frictional behaviors

when faults or opening fractures approach interfaces separating regions of different mate-

rial properties (Maerten and Maerten, 2008b), or to understand the role of static friction

on fracture orientation in extensional relays along strike-slip faults (Soliva et al., 2010).

This tool will enable investigations leading to more accurate estimation of seismic hazard

in regions of active faults, better recovery of petroleum reserves from fractured reservoirs,

improved access to geothermal energy and reduced costs for remediation of contaminants

on fractured aquifers.

1.5.3 Linear slip inversion

Retrieving the slip distribution onto three-dimensional faults, given measurements of

ground displacements (e.g., from Global Positioning System (GPS) or synthetic aper-

ture radar interferometry (InSAR)) associated with tectonic events such as earthquakes

is of great interest. Three dimensional indirect boundary element methods are a good

candidate for the inversion. Usually, a weighted least squares approach combined with

a Tikhonov regularization is used (Johnson et al., 2001; Maerten et al., 2005). Then,

the system has to be solved with a constrained solver in order to reach a realistic conver-

gence. In (Maerten et al., 2005), we extend the forward formulation to linear slip inversion,

and show that using such a formulation is more precise than using rectangular elements

(Okada, 1985). For instance, gaps and overlaps between adjacent elements, which lead

to to numerical artifacts, do not exist on triangulated discontinuities. Consequently, this

technique more precisely captures information close to the fault elements.

1.5.4 Paleostress

Given data that constrains the faults geometry, as well as the boundary conditions on

the elements making up the fault, the choice of what remote stress or strain to apply

to the model may be problematic. In (Kaven, 2009), we show that using an iteratively

coupled double systems, it is possible to estimate the paleostress given measures of the

displacement discontinuity on some parts of faults. For example, throw or dip-slip mea-

surements may be available from reflection seismic interpretation. While inverting for the
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paleostress, we simultaneously recover for the unknown displacement discontinuities onto

the faults. This technique allows one to extend the faults geometry, if necessary, and to

compute the unknown dip- and strike-slip.

1.5.5 Optimization

Working with heterogeneous materials (section 1.5.1) requires triangulated interfaces with

traction boundary conditions for all three axes for all the elements. Because the interface

is decomposed into pairs of perfectly coincident discontinuities with opposite normals,

the number of unknowns grows rapidly. As a result, the system of equations to solve

requires a huge memory to store the dense system matrix and a long time to compute

the solution. Furthermore, post-processing at observation points can require lengthy

computational time. We described in (Maerten, 2010) the H-Matrix (Hackbusch, 1999)

combined with the Adaptive Cross Approximation (Bebendorf, 2000, 2008; Bebendorf and

Rjasanow, 2003) to significantly reduced the memory needed to store the dense matrix

and the time needed to solve the system of equations. This technique also is applied

to the post-processing at observation points, decreasing drastically the computational

time. Furthermore, in (Maerten, 2010), it is shown that this optimization can easily be

parallelized on multi-core architectures.

1.6 Applications

Numerical models of rock deformation based on continuum mechanics can provide signif-

icant means for the understanding of geologic structures and phenomena in the context

of theoretical research, teaching, hydrocarbon exploration and production as well as civil

engineering. Since 1993, scientists and engineers using Poly3D/iBem3D have been in-

tensively active, publishing more than 250 scientific papers, theses and abstracts related

to fracture mechanics and numerical modeling of tectonic processes. In this section, we

summarize both the research and the industry main applications illustrated by selected

figures. For an exhaustive list of Poly3D/iBem3D related publications, please visit the

following Internet link: http://www.igeoss.com/igeoss/research/publications.html
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1.6.1 Research and Academic applications

1.6.1.1 Teaching

Computational science methods are often used to investigate and illustrate complex geo-

logical phenomena. To provide geology students with opportunities to both visualize and

explore such phenomena, several teachers among them Dr. Linda Reinen from Pomona

College, USA (Reinen, 2008) and Dr. Michele Cooke from University of Massachusetts,

USA, have incorporated the program Poly3D/iBem3D into their undergraduate Structural

Geology course.

1.6.1.2 Fracture mechanics

A major and straightforward use of elastic dislocation is to study fracture mechanics.

Since its first version, Poly3D/iBem3D has been thoughtfully used to understand the

mechanics of (i) natural fault propagation (Willemse and Pollard, 2000), (ii) echelon

normal fault arrays (Willemse et al., 1996; Willemse, 1997; Crider, 2001), (iii) intersecting

faults (Maerten et al., 1999; Maerten, 2000), (iv) secondary fracture development (Martel

and Boger, 1998; Kattenhorn et al., 2000; Bourne and Willemse, 2001; Soliva et al., 2010),

(v) orthogonal cross joints (Bai et al., 2002) and (vi) normal fault linkage (Crider and

Pollard, 1998) and spacing (Soliva et al., 2006).

As a representative example, Bai et al. (Bai et al., 2002) demonstrate that orthogonal

cross joints do not necessarily require a systematic rotation of the regional stress field

by 90◦. They show that for vertical systematic joints developing in horizontal strata

under triaxial remote stress, where the least compressive stress is perpendicular to the

fracture planes, there is a local stress change for a critical ratio of fracture spacing to

height preventing the development of new parallel joints and promoting the development

orthogonal cross joints (Figure 1.7).

1.6.1.3 Structural geology

Understanding geological structures and processes normally requires the combination of

geological observations from outcrop, core, air photo or industry data such as seismic

reflection data, with idealized numerical models of rock deformation based on continuum

mechanics. Elastic models are often used because they are computationally simple and

adequately explain most of deformation observed in nature. For instance, faults are
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Figure 1.7: (a) Orthogonal cross joints in a steeply inclined carbonate bed from
the Monterey Formation, California. (b) Model configuration with four fractures of the
same dimension placed in the whole space of homogeneous, isotropic and elastic medium.
(c) Results of local stress switch between adjacent equally-spaced fractures. The sign
convention used here is that tensile stresses are positive and compressive stresses are

negative. Figure modified from Bai et al., 2002 (Bai et al., 2002).

modeled as three-dimensional surfaces of displacement discontinuity in a homogeneous,

isotropic, linear elastic material. This provides a first-order understanding of how fault

accommodate slip, interact, concentrate stress and deform the surrounding rock mass.

Perhaps of greatest importance is the fact that the solutions to the elastic boundary

value problem comply with Newtons laws of motion and they have an explicitly defined

constitutive law relating stress and strain in three dimensions.

Therefore, geologists have been using Poly3D/iBem3D to understand observed geolog-

ical structures such as fault-related folding and associated secondary fractures (Savage

and Cooke, 2003; Bellahsen et al., 2006; White and Crider, 2006; Allward-Fiore, 2006;

Mynatt et al., 2007; Shackleton and Cooke, 2007), deformation associated with thrust

faults (Griffith and Cooke, 2004; Olson and Cooke, 2005), strike slip faults (Brankman

and Aydin, 2004) and normal faults (Resor, 2003; Grant and Kattenhorn, 2004; Soliva

et al., 2008; Marshall and Cooke, 2008; Meigs et al., 2008). Figure 1.8 illustrates how

mapped displacement profiles along overlapping faults in Vallo di Diano, Italy, have been

geomechanically reproduced using linear elasticity (Soliva et al., 2008).
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Figure 1.8: (a) Location and overview of the Vallo di Diano segmented normal
fault zone on a digital elevation model. The overlapping normal fault segments are
mapped with red lines at the base of the fault scarps. (b) Three-dimensional view of
the fault surface, the mesh used in the model and computed displacement distribution.
(c) Comparison between Earth’s surface scarp topography profiles and displacement
computed at the surface in the model. Figure modified from Soliva et al., 2008 (Soliva

et al., 2008).

1.6.1.4 Active tectonics and earthquakes

The increasing availability of spatially rich geodetic data, specifically dense Global Po-

sitioning System (GPS) networks and synthetic aperture radar interferometry (InSAR),

offers researchers opportunities to construct increasingly complex geometric and kinematic

models of earthquake ruptures. Unfortunately, these high quality data now available to

geophysicists and geologists are not fully exploited in forward and inversion procedures

when using geomechanical methods based on rectangular dislocation segments (Okada,

1985; Johnson et al., 2001; Jónsson et al., 2002). Indeed, these methods, which tend

to oversimplify fault geometries, can lead to inconsistencies when inverting for slip on

earthquake faults, and they preclude a more complete understanding of the role of fault

geometry in the earthquake process.

With the use of angular dislocations (Comninou and Dundurs, 1975; Thomas, 1993;

Maerten et al., 2005), discontinuities can be discretized into triangular elements allowing

for the construction of three-dimensional fault surfaces that more closely approximate

curviplanar surfaces and curved tiplines without introducing overlaps or gaps, consistent

with the full extent of available data. The strengths of this method has been successfully

demonstrated for more than 10 years for (i) simulating stress transfer from one rupture
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Figure 1.9: Inversion results of the 1995 Kozani-Grevena earthquake, Greece for three
models: (a) the best fit planar model from nonlinear inversion, (b) a three-fault model
including major fault segments interpreted from aftershock hypocenters and surface
ruptures, and (c) a five-fault model including two antithetic faults also interpreted from
aftershock distributions. For each model, two images are presented: (top) an oblique
view of the model looking toward the east with the slip distribution calculated from
linear inversion of InSAR data, aftershock hypocenters, and surface rupture traces;
(bottom) the results of the forward model illustrating predicted surface deformation
(range change) with areas of no InSAR data in gray. Figure modified from Resor et al.,

2005 (Resor et al., 2005).

to nearby fault (Price and Bürgmann, 2002; Muller et al., 2003; Muller and Aydin, 2004;

Muller et al., 2006), (ii) modeling stress distribution around active faults (Fielding et al.,

2004; Lovely et al., 2009; Fielding et al., 2009), (iii) appraising different rupture geometry

(Rigo et al., 2004; Muller and Aydin, 2005; Akoglu et al., 2006; Marshall and Cooke, 2008;

Dair and Cooke, 2009), (iv) modeling rupture slip distribution (Burgmann et al., 2000;

Schmidt et al., 2005; Kreemer et al., 2006; Zhang et al., 2008; Cheng et al., 2009), and

(v) using slip inversion to model coseismic deformation associated with recent earthquake

as illustrated in Figure 1.9 (Maerten et al., 2005; Resor et al., 2005; Cakir et al., 2006).

1.6.1.5 Volcanoes

Swelling or collapse of volcanoes is often related to magma migration within and outside

the magma chamber. Therefore, analyzing the ground surface deformation along the

flanks of volcanoes over time can provide very good insight on the potential eruptions.

As for earthquake studies, GPS networks, InSAR data and microseismicity are commonly

used to study the volcanoes activity. Similarly, the same geomechanical tools based on

elastic dislocation can be used to model magma activities and potential interaction with
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Figure 1.10: 1996 earthquake-eruption sequence at the Karymsky Volcanic Group,
Kamchatka. (a) Numerical model construction. Perspective view of the boundary
element model setup. (b) Modeling results. Model simulation of inflation of a deep
magma reservoir. Coulomb failure stress change (CFS) calculated at faults parallel to
the NESW (N040) fracture system (red = faults are brought closer to failure, indicating
CFS increases; green = CFS decreases). Faulting is encouraged in exactly the area of
the 1996 earthquake main shock. Inflation therefore encouraged this earthquake. Figure

modified from Walter et al., 2007 (Walter, 2007).

nearby faults or dikes as illustrated in Figure 1.10 (Cailleau et al., 2007; Diez et al., 2005;

Klügel et al., 2005; Lundgren and Lu, 2006; Walter and Amelung, 2006, 2007; Walter,

2007; Yun et al., 2006).
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1.6.2 Industry and engineering applications

1.6.2.1 Subsurface fault interpretation

Complex geological structures, where faults are known to be challenging as they often are

poorly imaged, are known to be potentially good hydrocarbon reserves. As an example,

spatial continuity and linkage of faults may substantially affect fluid flow either by com-

partmentalizing the reservoir, or by increasing the tortuosity of flow pathways, whether

the faults act as seals or conduits. In such context, it is essential to check the consistency

of the subsurface structural interpretations as it will improve reservoir flow simulation

models and, in turn, significantly reduce the number of wells required to drain reserves.

Maerten et al. (Maerten, 2000) demonstrate how geomechanical models based on elastic

dislocation can be applied to improve the subsurface interpretation understanding and

obtain more realistic reservoir models. They have developed a method to infer, in three

dimensions, the fault tip-line geometry below the seismic resolution as well as potential

fault linkage. A 3D numerical model of the faulted reservoir and its surroundings is

constructed using seismic interpretation. Such a model, combined with an appropriate

set of boundary conditions is used to compute the fault slip distribution as well as vertical

displacement field. By comparing the interpreted fault slip distribution to the computed

slip distribution adjacent to potential intersection lines, the geomechanical models can

constrain the geometry of the faults as well as the location of the intersection line between

faults (Figure 1.11). The interpreted structure contour map and theoretical displacement

field also are compared to constrain the fault geometry.

1.6.2.2 Subsurface small-scale fracture modeling

Natural fractures such as small-scale faults and joints are known to be capable of signifi-

cantly altering the flow of hydrocarbons, either during the migration from the source to

the reservoir rock or during production of the reservoir. Therefore, understanding and

quantifying the spatial and temporal development of these features as well as their prop-

erties (e.g. geometry, throw, aperture, permeability, etc.) can have great economic impact

on the recovery of natural reserves. During the past ten years, methodologies based on

elastic dislocation have been developed, taking into account mechanical concepts and the

fundamental physical laws that govern fracture development to more realistically model

the spatial and temporal development of structural heterogeneities and to address these

economic issues.
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Figure 1.11: Analysis of the Oseberg reservoir compartmentalization, Northern North
Sea. (a) Interpreted structure contour map and normalized contoured slip distribution
on faults a and b. (b) Computed vertical displacement field and normalized slip distri-
bution on faults a and b from a first model using the interpreted fault geometries. (c)
Computed values from a second model using fault b linked to fault a. (d) Computed
values from a third model with fault a linked to fault b. Qualitative and quantitative
comparisons suggest that fault b is likely to be linked to fault a. Figure modified from

Maerten et al., 2000 (Maerten, 2000).

The basic methodology consists of calculating the stress distribution at the time of fractur-

ing using the available reservoir structure data such as faults, fractures and folds, and rock

properties and the tectonic setting that can be characterized by stress or strain magni-

tude and orientation. Then, the calculated stress fields, perturbed by the main structures,

combined with rock failure criteria are used to model natural fracture networks (i.e. type,

orientation, location, and spatial density). Applications to both outcrops (Kattenhorn

et al., 2000; Bourne and Willemse, 2001; Davatzes et al., 2005) and reservoirs (Maerten

et al., 1999; Bourne et al., 2000; Maerten et al., 2002, 2006) demonstrate how geomechanics

can provide a high degree of predictability of natural fracture networks. Poly3D/iBem3D

has been successfully applied to model subseismic faults (Maerten et al., 1999, 2006) in

Northern North Sea highly faulted reservoirs (Figure 1.12) as well as undetected joints in

naturally fractured carbonate reservoirs (Bourne and Willemse, 2001).

1.6.2.3 Perturbed stress field and fracture reactivation

In hydrocarbon reservoirs, fracture reactivation can have a significant effect on the flow

properties. The two main factors that allow quantitative modeling of fracture reactivation

are the geometry of preexisting natural fractures and the present day perturbed stress
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Figure 1.12: Subseismic fault modeling of the Oseberg reservoir, Northern North
Sea. (a) Three-dimensional view of the model mesh made of triangular elements. Base
Brent horizon (red) used as observation surface. (b) Three-dimensional visualization of
the predicted failure planes at observation points. Conjugate planes represent the two
Coulomb failure planes color coded by the magnitude of the normalized MCSS. (c) Com-
parison between observed and computed fault strike. (1) Fault map. (2) Computed fault
strike using the major approximately north-south (gray) faults and a remote loading
with a N80E direction of extension. (d) Comparison between observed and computed
fault density. (1) Density of the observed Upper Jurassic (black) faults. (2) Computed
fault density. All densities are normalized. Figure modified from Maerten et al., 2006
(Maerten et al., 2006). AAPG@2006, reprinted by permission of the AAPG whose

permission is required for further use.

fields. The later can have different origins but it is always caused by local deformation

such as the one observed around active faults, cavities, wellbore and salt formations for

instance. As a direct application of elastic dislocation, Tamagawa and Pollard (2008)

(Tamagawa and Pollard, 2008) show that in the Yufutsu field, Japan, nonproductive wells

were drilled in the area where the regional stress state prevails, and the most productive

well penetrates the area near the tips of active faults, where the stress concentrations lead

to enhancements in fracture permeability by opening or shearing.

1.6.2.4 Risk assessment

The design of roads, dams, tunnels and underground repositories to safely store waste

requires the conservative assessment of the risks that landslides, natural fracture re-

activation and earthquakes might pose. With that respect, researchers and engineers
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have efficiently used geomechanics and elastic dislocation to study landslide from a the-

oretical aspect (Martel, 2004) and to evaluate slope instability of the Corinth Canal,

Greece, due to nearby fault activation (Tselentis and Gkika, 2005). Over the past decade,

Poly3D/iBem3D has been used to carefully evaluate the potential risk of fracture reacti-

vation over time, during glacial loading and unloading cycles, at the Olkiluoto high-level

nuclear waste repository site, Finland (La Pointe et al., 2002; Soliva et al., 2010).

1.7 Conclusions

The C computer code Poly3D has been applied to a wide variety of problems in aca-

demic and industrial structural geology since 1993, with over 120 published papers that

acknowledge use of the code. Now iBem3D, a C++ computer code, provides a new for-

mulation of the three dimensional problem of multiple triangular dislocations arranged to

model faults and fractures in an elastic whole- or half-space using the boundary element

method. It offers significant enhancements over Poly3D including modularity, an iterative

solver, greater model size and complexity, reliability, speed, simplicity, and accuracy. We

anticipate that iBem3D will provide structural geologists with an even more versatile tool

for solving problems of faulting and fracturing in Earth’s brittle crust.

The problem in the calculation of the displacement field under triangular dislocation sur-

faces in an elastic half space made of superposed angular dislocations has been identified

and solved. It was directly linked to the construction of the triangular surface and inter-

pretation of the solid angle used to define the Burgers’s function φ.
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Figure 1.13: Shadow’s effect correction. Left: representation of the solid angle at
point P due to a triangular dislocation loop at point A. Right: Displacement field
computed under an horizontal dislocation before the correction (top) and after the

correction (bottom)

1.9 Appendix: Shadow effect correction

1.9.1 Description of the problem

The dislocation surface is represented mathematically by the multivalued terms found

in the displacement field expressions derived from Burgers’ function φ. At any point

M(x1, y1, z1) the function φ has a value proportional to the solid angle Ω subtended at

M by the dislocation surface. In Fig. 1.13, left, a representation of the solid angle, Ω,

at point P due to a triangular dislocation loop at point A is illustrated. The solid angle

is the projected area of this triangle onto a unit sphere centered at P . Depending on

which side of the surface of the triangular loop (planar case) the point P is located, the

solid angle will be either negative or positive. The sign depends on the orientation of

the triangular surface as determined by the normal vector n associated with it. With

the orientation convention given in Fig. 1.13, left, the sign of the solid angle Ω can be

expressed by −sign(P.A.n). Consider a particular component of the Burgers’ vector, bi

, acting in the i-direction. Then, the displacement component ui in the i-direction at a

point M is written as ui = biφ + f(M), where f(M) is a function of the position of M
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and is independent of φ (Burgers, 1939). Thus, a value bi is added to the displacement

component at x = 0 for any path that passes into the paper between the positive z1 and

z2 axes.

For the case where the point P is inside the triangular prism, the solid angle Ω1 is positive

and it does not represent the solid angle associated with the triangular dislocation surface.

In this region, the construction of the solid angle is not correct. Indeed, it is the solid

angle, Ω2 , complementary of the solid angle Ω1, that is associated with the triangular

dislocation surface. In terms of Burgers’ function, for positions under the element we have

φcalculated = Ω1/4π (1.20)

However, to model the triangular surface of dislocation correctly, we should have taken

φcalculated = Ω2/4π. Furthermore, as Ω2 is negative, because of the orientation of the

triangular surface of dislocation and because Ω2 is the complement of Ω1, we have Ω1 −
Ω2 = 4π. Consequently

φcalculated =
Ω2 + 4π

4π
= φcorrect + 1 (1.21)

Thus, the calculated Burgers function will increase by unity for all points inside the

prismatic volume and a constant value bi will be added to the displacement component

in the i-direction

ui = bi(φ+ 1) + f(M) (1.22)

1.9.2 Solution of the problem

It has been found that a constant value bi must be subtracted from the ui component

of displacement for all points inside the prismatic semi-infinite volume defined by the

downward projection of a triangular surface with a tipline made of the non-vertical edges

of biangular dislocations. This correction must be implemented in order to create a

triangular surface of displacement discontinuity and can be interpreted as the removal of

rigid body translation.

1.9.2.1 Corrective displacement for observation points

The displacement computed at any observation point p in the elastic field is given by:

up =
∑

e

Uebe (1.23)
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where Ue is the displacement influence coefficients due to the element e at point p, and

be the Burgers vector of element e. The shadow effect at p due to a given element

e is corrected by adding to the computed displacement, the Burgers vector be of the

element e expressed into the global coordinate system. Computed displacement at p

receives such correction from an element e if p lies directly under the rigid body of e.

The sign of the correction is related to the orientation of the normal of e relative to the

global coordinate system. If the normal has a positive side-up, the correction has to be

subtracted to the displacement vector, otherwise it has to be added. The Burgers vector

be is originally expressed in element local coordinate system, and equation b̃e = Rebe

allows its transformation to the global coordinate system. Re represents the element

matrix rotation from local to global coordinate system. Therefore, up must be corrected

by the following equation:

up ≡ up −
∑

e

δpeRebe = up −
∑

e

δpeb̃e (1.24)

where δpe is an extended Kronecker delta which takes the values:

δpe =






0
if p is outside the prismatic semi-infinite

volume of e

−1
if p is inside the prismatic semi-infinite

volume of e and e has a normal side up

+1
if p is inside the prismatic semi-infinite

volume of e and e has a normal side down

(1.25)

Incorporating equations (1.24) in (1.23) to take into account data points that received the

“Shadow Effect” correction, gives:

up =
∑

e

(Upe − δpeRe)be =
∑

e

Ũpebe (1.26)

where Ũpe = (Upe − δpeRe) is the corrected displacement influence matrix at field point

p due to source element e. Consequently, when computing the displacement vector up at

any observation point p, one must use the corrected displacement influence matrix Ũpe

instead of Upe.

Applying this correction, we calculate the displacement field as illustrated in Fig.1.13

(right). This simple correction may be applied for any boundary condition.
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1.9.2.2 Corrective displacement for triangular elements

For a triangular element e, the computed displacement ue is discontinuous while going

from one side to the other. In order to compute u+
e , the displacement on the positive side

of the element, an infinitesimal shift ξ of the element’s center ce along its normal ne is

applied (equation (1.27)).

c+e = ce + ξne, with 0 < ξ ≪ 1. (1.27)

This ensure that the displacement will be effectively computed onto the positive side of the

element. Then, the same corrective procedure used for the observation points is applied.
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Preamble

In this chapter, we use an iterative approach that leads to three major enhancements.

First, the model complexity decreases from O(n3) to O(n2). Second, the resolution of

the system of equations and the post-processing at observation grids can easily be paral-

lelized on multi-core architectures. And third, adding inequality constraints on traction
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(e.g. static Coulomb friction) and displacement (e.g. non-interpenetration of the ele-

ments) can be implemented in a simple way using this formulation.

About...

Laurent Maerten participated in the testing of the new functionalities, and

Michele Cooke did a comparison with her 2D code Fric2D. She also reviewed the

manuscript before submission.
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2.1 Résumé

Certains des défis majeurs pour les géophysiciens et géologues structuralistes qui utilisent

ou développent des codes d’éléments frontières en trois dimensions (3D-BEM) sont: (i)

réduire la quantité de mémoire nécessaire pour résoudre de grands systèmes d’équations

à matrices denses, et (ii) d’incorporer des contraintes inégalitaires sur les forces (TIC) et

sur les déplacements (DIC). Ce dernier a deux buts: en premier lieu, par exemple, les con-

traintes inégalitaires peuvent être utilisées pour simuler des glissements par frottement (en

utilisant des TICs). Deuxièmement, ces contraintes peuvent empêcher l’interpénétration

des éléments tout en permettant le mode d’ouverture (en utilisant des DICs). Nous avons

développé une méthode qui intègre simultanément les deux types de fonctionnalité. Nous

montrons que l’utilisation d’un solveur itératif approprié évite non seulement l’allocation

de mémoire importante pour résoudre le système d’équations (ce qui permet de constru-

ire de très grands modèles ainsi que de simplifier la parallélisation sur des processeurs

multi-cœurs), mais admet également des fonctionnalités intéressantes telles que l’ajout

simple des TICs et DICs. Comparativement aux autres techniques de gestion des con-

tacts (par exemple, les multiplicateurs de Lagrange, la méthode de pénalisation ou de

complémentarité), cette nouvelle technique, qui n’utilise pas de procédure d’erreurs et

d’essais, apporte plus de souplesse, tout en rendant le système plus stable, moins sujet

aux arrondis et sans calcul supplémentaire exessif.

Nous comparons et validons l’utilisation des contraintes inégalitaires avec des solutions

analytiques et numériques en 2D.

72



2.2 Abstract

Some major challenges for geophysicists and structural geologists using three-dimensional

Boundary Element Method codes (3D-BEM) are: (i) reducing the amount of memory

required to solve large and dense systems; and (ii) incorporation of inequality constraints

such as traction inequality constraints (TIC) and displacement inequality constraints

(DIC). The latter serves two purposes. First, for example, inequality constraints can be

used to simulate frictional slip (using TIC). Second, these constraints can prevent element

interpenetration while allowing opening mode (using DIC). We have developed a method

that simultaneously incorporates both types of functionality of the inequality constraints.

We show that the use of an appropriate iterative solver not only avoids the allocation of

significant memory for solving the system (allowing very large models computation and

simplifying parallelization on multi-core processors), but also admits interesting features

such as natural incorporation of TICs and DICs. Compared to other techniques of contact

management (e.g. Lagrange Multipliers, Penalty Method or Complementarity Problem),

this new simple methodology, which does not use any incremental trial and error proce-

dures, brings more flexibility, while making the system more stable and less subject to

round-off errors without any computational overhead.

We provide validations and comparisons of the inequality constraints implementation

using 2D analytical and numerical solutions. Keyword: 3D-BEM, Iterative solver, In-

equality constraints, Friction

2.3 Introduction

For geophysicists and structural geologists, easy construction and rapid computation of

three-dimensional (3D) models composed of multiple frictional faults with complex ge-

ometries is fundamental to the study of earthquake triggering (e.g. (Muller et al., 2003))

and fault interactions (e.g. (Maerten, 2000; Dair and Cooke, 2009)), or to determine the

deformation associated with displacement discontinuities, such as faults and fractures, in

Earth’s crust. For example, frictional slip along faults controls fracture orientation at

extensional relay zones (e.g. (Auzias, 1995; Ohlmacher and Aydin, 1997; Soliva et al.,

2010)), the seismic cycle (e.g. (Tse and Rice, 1986; Zoback et al., 1987)), the distribution

and amount of slip along faults (e.g. (Burgmann and Pollard, 1994; Cowie and Scholz,

2003)), development of adjacent damage zone (e.g. (Martel, 1997; Cooke, 1997); Savage

and Cooke, in press) and frictional slip along bedding contacts influences layer flexure and

fracture/fault propagation (e.g. (Roering et al., 1997; Cooke and Pollard, 1997; Cooke
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and Underwood, 2001)). However, these studies that demonstrate the role of fault fric-

tion are all two-dimensional investigations of relatively simple fracture networks. Most

three-dimensional models of fracture systems are limited to frictionless faults because of

the difficulty of implementing frictional sliding along contacts.

Among the existing 3D numerical methods, the Finite and Boundary Element Methods

(FEM and BEM, respectively) are the most frequently used for investigation of crustal

deformation. Boundary element methods (Crouch and Starfield, 1983) have a great ad-

vantage over finite element methods (Hughes et al., 1976) because only the boundaries of

objects, and not the entire field, have to be discretized. This makes BEM model more

simple to construct than FEM and requires solution of fewer unknowns. The main ad-

vantage of FEM over BEM is that the constructed global stiffness matrix, which reflects

the node connectivity and boundary conditions, is sparse so that efficient techniques of

storage and inversion permit fast determination of the solution. In contrast, in BEM, an

element is influenced by all other elements within the model, which results in a dense

stiffness matrix. Even though only object boundaries are used in BEM, the stiffness ma-

trix may become very large and plagued with the associated problem of storage, time

needed to invert the system of equations, and errors accumulated during the inversion (n3

operations for a matrix of size n× n).

To incorporate inequality constraints, different formulations can be used in both FEM

and BEM. Major ones are Penalty Methods (e.g. (Crouch and Starfield, 1983; Wriggers,

2002)), Lagrange Multipliers (e.g. (Hughes et al., 1976)), and Complementarity Methods

(e.g. (Kwak and Lee, 1988)). Although the differences between the methods may be

negligible for small models, the memory requirements and time needed to find the solution

increase considerably with model complexity. Consequently, the results of complex models

depends on the robustness of the algorithm used to treat the inequality constraints. In

order to understand the benefits and limits of each method, we give a brief review of each.

For BEM, one of the simplest and the most frequently used algorithm for inequality

constraints is the penalty method (e.g. (Cooke, 1997)). In this method, an artificial

stiffness is defined for each element so that penetration between two contacting boundaries

is related to the normal contacting force by an arbitrary penalty factor. This method can

suffer from both high structural stiffness that can significantly affect the results and ill-

conditioning that worsens as penalty parameters are increased. Sometimes, solutions may

fail to converge or may converge to a wrong solution (Mijar and Arora, 2000).

The Lagrange multipliers method is more stable than the penalty method (e.g. (Bathe

and Chaudary, 1985)) and is primarily used in FEM. In order to enforce the normal
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and tangential displacement inequality constraints, extra variables are introduced in the

equations. Additional degrees of freedom make the system of equations much larger, and

it is difficult to implement into existing BEM code (Mijar and Arora, 2000; Man, 1994).

Furthermore, Lagrange multipliers method requires a continuous change of the number

of equations during the system resolution when a non-linear contact problem is simulated

(Eterovic and Bathe, 1991; Zhong, 1993).

Complementarity methods have the advantage that all boundary conditions along the

contact surface are incorporated into a single variational inequality and any available

minimization method can be used to solve the problem. Unlike the other methods, there

is no convergence problem, no artificial stiffness parameter, a single formulation can define

the boundary conditions and both small and large displacement problems can be solved

(De Bremaecker and Ferris, 2000). The method can easily be applied to 3D contact prob-

lems with friction (Klarbring, 1986; Klarbring and Bjorkman, 1988). However, the dense

matrix defining the system of equations needs to be explicitly constructed, which is some-

thing that we want to avoid in order to be able to run large models.

In this paper, we adopt the boundary element method because of the simplicity offered

by this method to construct complex models made of multiple faults and fractures. We

present a new and simple way to incorporate inequality constraints, such as contact man-

agement, within BEM using a block-iterative solver. Compared to other techniques of

contact management, this method avoids the addition of new unknowns into the sys-

tem of equations or the use of additional algorithms. With the new method, there is no

overhead for the system to converge toward the solution, no artificial parameters and no

incremental loading or trial and error procedures. Furthermore, the proposed iterative

solver allows for fast computation and parallelization onto multi-core architectures.

The paper is organized as follows. Section 2.4 briefly presents the Boundary Element

Method used as well as the block-iterative solver. Performance and convergence are dis-

cussed in sections 2.5 and 2.6, respectively. Finally, section 2.7 is devoted to the contact

management (frictionless and static Coulomb friction) along with verifications, compar-

isons and discussion on the effect of an incremental loading.

2.4 System definition

For the boundary element method used here, we adopt the analytical solution of angu-

lar dislocation in an elastic whole- or half-space described by Comninou (Comninou and
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Figure 2.1: Construction of a polygonal element. (a) Angular dislocation. (b) Two
angular dislocations are used to construct a dislocation segment. (c) Three dislocation
segments are superimposed to create a triangular element. (d) Complex surface made

of triangular elements

Dundurs, 1975) and implemented in the code Poly3D ((Thomas, 1993), Maerten et al.,

in preparation). A dislocation segment is defined as the superposition of two angular

dislocations, and a polygonal element is then constructed as a sum of dislocations seg-

ments (Fig. 2.1). Mixed traction-displacement boundary conditions can be used for each

constitutive element of the model. When traction boundary conditions are specified, we

solve for the corresponding unknown displacement discontinuity. As soon as all displace-

ment discontinuities are known, stress, strain and displacement can be computed at any

observation point within the elastic field as a post-process.

The following conventions are adopted throughout this paper: compression is negative and

a positive normal displacement means opening mode. Bold variables are for vectors or

matrices, and for any variable V written Va,b, a and b are for element and vector/matrix

index respectively.
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2.4.1 Boundary Element formulation

Given a point M in the elastic body, the displacement d̊ due to an angular dislocation

(A1, α1, β1) at point A1 is given by (see Fig. 2.1a)

d̊(M) = Ů(M,A1, α1, β1)u (2.1)

and is a linear function of the Burgers vector, u, or displacement discontinuity vector. An-

gles α1 and β1 are the trend and plunge of the angular dislocation at point A1, respectively.

Coefficients of the matrix Ů are directly given by Comninou and Dundurs (Comninou and

Dundurs, 1975). A bi-angular dislocation, having two vertical legs, perpendicular to the

free surface, is then constructed from two angular dislocations (A1, α1, β1) and (A2, α1, β1)

(Fig. 2.1b). The total displacement at point M is simply the superposition of the two

angular dislocation contributions

d̄(M) = [Ů(M,A1, α1, β1) − Ů(M,A2, α1, β1)]u

= Ūu
(2.2)

Using the same process of superposition, a triangular element {A1, A2, A3} (or a polygonal

element in the general case) is built with three bi-angular dislocations (Fig. 2.1c), where

the legs under each vertex have been canceled, leaving a displacement discontinuity only

in the triangle. The total displacement at point M resulting from a triangular dislocation

made of three dislocation segments, is therefore given by

d(M) =
3∑

i=1

Ū(M,Ai, Ai+1, αi, βi)u

= Uu

(2.3)

Once the displacement of a triangular element is known, the total solution at a point M

is recovered by considering the influence of all triangular elements comprising the model.

Similarly, the strain field at point M , due to triangular element, can be computed by

partial differentiation of (2.3) by using the linearized Green-St Venant strain tensor

ǫ =
1

2
(∇d + ∇dT) (2.4)
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where ∇d is the deformation gradient tensor. Equation (2.4) leads to the strain influence

matrix due to an angular dislocation

Eijk =
1

2

(
∂Uik

∂xj

+
∂Ujk

∂xi

)
(2.5)

which relates the strain at M and the element Burgers vector u by

ǫ(M) = Eu (2.6)

The stress tensor is given by Hooke’s law for infinitesimal deformation as

σij = 2Gǫij + λǫkkδij (2.7)

where G is the shear modulus, λ is the Lamé’s constant, δij is the Kronecker delta, and ǫ

is given by (2.4). Substituting (2.4) into (2.7) and using (2.6) yields the stress σ at any

point M induced by one triangular dislocation

σ(M) = Su (2.8)

S is called the stress influence matrix at a point M due to a triangular dislocation. The

element traction can now be defined using Cauchy’s formula by resolving the stress tensor

σ onto the triangular element plane using its centroid as the collocation point

t = σn (2.9)

where n represents the element’s normal. Combining (2.9) and (2.8), leads to

t = Tu (2.10)

where T = Sn is the traction influence matrix. Using the traction formulation for a

triangular dislocation, the total traction at the center of a triangular element is simply

the superposition of all tractions induced by the triangular elements within the elastic

body. A system of linear equations can then be constructed to solve for the unknowns

Burgers vector components

{t} = [T]{u} (2.11)

In equation (2.11), {t} represents the column of the initially prescribed traction vector

components of the triangular dislocations, [T] is a dense matrix of traction influence

coefficients, and {u} the column of the unknowns Burgers vector components.
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2.4.2 Block relaxation scheme

To solve the system of equations, we use an iterative method that consists of calculating

successive corrections and can be put in the framework of the successive subspace

correction method (Xu, 1992). This can be done using a simple relaxation method (such

as a Gauss-Seidel or Jacobi) where equations from the system aijxj = bi are traversed

one by one, and for the ith equation, the unknown value xi is obtained by pretending

that all other variables xj for j 6= i are known. This approach produces the following

update scheme for the variable xi

xi =
1

aii

(bi −
∑

j 6=i

aijxj) (2.12)

or

xi = xi +
1

aii

(bi −
∑

j

aijxj) (2.13)

where aii are scalars different from zero (the formulation (2.12) will be used in the re-

maining of the paper). It has been proved (Golub and Van Loan, 1996) that this scheme

converges if and only if the system is strictly diagonal dominant, i.e ∀i, |aii| >
∑

j 6=i |aij|.
Note that it is also possible to speed up the convergence by using a SOR (Successive Over

Relaxation) version (Golub and Van Loan, 1996).

In the method developed here, the central strategy of the modified iterative solver con-

sists of traversing the system by groups of equations instead of one by one; each group

corresponds to the equations of a given triangular element. This scheme is usually called

a “block relaxation scheme” (Saad, 1996), where the update reflects a sub-vector of the

solution vector, instead of only one component (called “point relaxation scheme”). Con-

sequently, coefficients aij are no longer scalars but squared matrices of size the number of

unknowns attached to the considered element.

Let Tu+t0 = 0 be the system of equations to solve (e.g. equilibrium equations), where T

is a stencil operator representing the Green’s function coefficients on unstructured meshes,

u the numerical solution and t0 the discretized forcing function. For a discrete model S

made of N (triangular) elements, the system of equations can be rewritten for a given

triangular element e as ∑

f∈S

Tefuf + t0
e = 0 (2.14)

with Tef being the matrix of Green’s functions at element centroid e (“field”) due to

element f (“source”) in e local coordinate system.

Equations for an element e represent one to three lines of the global system Tu + t0 = 0

(determined by the number of unknown displacement components). Equation (2.14) can
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now be expanded as follows to give the solution for the element e

ue = −T−1
ee {t0

e +
∑

f∈S−{e}

Tefuf} (2.15)

if we suppose that the self-effect Green’s function Tee is non-singular. Recall that solv-

ing equation (2.15) for an element e depends on the previously computed values uf for

elements f ∈ S − {e}, and the initially prescribed boundary value t0
e. In other words,

solving equation (2.15) for an element e at a given iteration, means that all other consti-

tutive elements f are considered with prescribed displacement boundary conditions, i.e.

by pretending that uf are known.

Solving the entire system is trivial since we have to loop over all the elements, and for

a current element e, we apply equation (2.15) to compute the unknown displacement

discontinuity components. Because the solution for an element e depends on the

previously computed values on the other elements, the initial guess of the solution for

the whole system will condition the speed of the convergence toward the final solution.

For the purpose of this work, the T Green’s functions used here are traction influence

functions (as described in section 2.4.1, equation (2.10)) and t0 is the initially prescribed

traction vector onto the elements, while u is the resulting displacement discontinuity vec-

tor or Burgers vector. Note that alternative Green’s functions, such as the displacement-

discontinuity/strain/stress, can also be used for the methodology described above.

Equation (2.15) can be rewritten in a more compact form

ue = −T−1
ee {t0

e + tef} = −T−1
ee te (2.16)

in which tef =
∑

f∈S−{e} Tefuf is the superposition of the traction vectors induced by

all the other triangular elements within the elastic field (induced traction), and T−1
ee is

called the inverse self-effect traction influence matrix for element e. The initial boundary

value, t0
e, is the resolved far field stress onto the element e in its local coordinate system.

The vector te = t0
e + tef is called the total traction and is defined as the sum of the initial

and induced traction for a given element e (Crouch and Starfield, 1983).

The Gauss-Seidel iterative solver is presented in algorithm (2.1). uprev represents the

computed displacement discontinuity for the current element e at the previous iteration,

and tol is the tolerance of the iterative solver
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forall e ∈ S do
compute T−1

ee

end
while ǫ > tol do

ǫ = 0
forall e ∈ S do

Requires: Traction boundary condition for at least one axis of e
uprev = current displacement on e
te = initial traction on e
forall e ∈ S − {e} do

te = te + Tefuf

end
ue = −T−1

ee te

ǫ = ǫ+ |(||ue||2 − ||uprev||2)/||ue||2|
set displacement on e

end

end

Algorithm 2.1: Solving iteratively the system of equations

2.5 Performance

Using this brute iterative solver requires calculating the traction influence matrices at each

iteration and for each element, which results in a slow computation similar to a direct

solver, even if its complexity is one order less. One way to speed up the computation is to

estimate a first guess for the solution by using a coarser model and extrapolate the solution

onto the original model. Also, we choose to allocate the influence coefficient matrices of a

given element e (the Tef matrices in equation (2.16)), according to the available Random

Access Memory (RAM) of the computer. At the initialization of the solver, each element

e will pre-compute and store all Tef . If the RAM is fully used, the remaining matrices,

if any, are computed “on the fly”. Furthermore, because no matrix inversion is required

while the solver is running, single-precision floating-point numbers can be used (4 bytes)

to store the Tef matrices instead of double-precision (8 bytes), saving half of the memory

without any lost of precision. If n represents the size of the system to solve (degree

of freedom), the complexity of the algorithm (number of operations needed to solve the

system) goes from O(n3), for the classical LU decomposition or Gaussian elimination, to

O(mn2) for the iterative solver, where m is the number of iterations.

This iterative solver also allows us to take advantage of new multi-core processor archi-

tectures, by parallelizing the computation onto different threads (where the number of

threads k is defined by the number of processors on the mother board times the number

of cores for each processor). At the beginning, the system is split into k sub-systems of

81



Solver configuration Solver time (s) Speedup

a: Direct (LU) 1h 25mn 1
b: Iterative 1h 13mn 1
c: (b) + Alloc 12mn 7
d: (c) + Guess 1mn 15s 68
e: (d) + Thread8 14s 364

Table 2.1: Time needed to solve a system of 8900 unknowns using different opti-
mizations and a tolerance of 10−5: (a) direct solver, (b) iterative solver, (c) iterative
solver using memory allocation, (d) iterative solver with a guess from a coarser mesh,

(e) iterative solver parallelization on 8 threads

close to equal sizes, one for each thread. Consequently, k iterative solvers are run in par-

allel. There is no need to update the communication between each sub-process during one

iteration because they share the same model memory. The only requirement is to update

the new displacement onto the elements at the end of each iteration (Jacobi method), in

order to avoid read/write conflicts.

It is worth to mention that the complexity of the system can be significantly decreased by

using techniques such as the Multipole-Expansion (Rokhlin, 1985; Greengard and Rokhlin,

1987), where fundamental equations are expanded into Taylor series, or H-Matrix (Hack-

busch, 1999) where algebraic manipulations of the dense system matrix combined with hi-

erarchical partition tend to make the system sparser for long distance effects. In (Maerten,

2010), we exploit the H-Matrix along with Adaptive Cross Approximation (Bebendorf and

Rjasanow, 2003) both to solve a system of equations as well as for the post-processing at

observation grids. In our opinion, this method is preferable to the Multipole-Expansion

because it is simpler and faster to implement, while giving the same performance. The

combination of H-Matrix along with Adaptive Cross Approximation does not rely on the

kernel functions before assembling the system matrix, as do multipole methods where

changing the kernel requires recoding of the approximant. The approximation is applied

to the matrix entries of the system during the construction (algebraic approximation).

Table 2.1 gives an overview of the computation time using different combination of opti-

mizations for a simple model composed of two intersecting normal faults. Models are run

on a Intel Bi-Xeon 5345 64 bits quadri-core at 2.33 GHz running Linux Ubuntu 7.10. From

this table, it is clear that the first guess combined with the elemental matrices allocation

and parallelization play an essential role in the time required to solution.
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2.6 Convergence

The strict diagonal dominance (SDD) of T−1 (or strict precedence rules) required for

convergence by Gauss-Seidel or Jacobi type of iterative solver can be understood by con-

sidering that the influence traction matrices, Tef , are functions of both the size of f and

the distance from the element source f to the element field e; Tef decreases as this dis-

tance increases. Because the self-effect relates the influence of an element on itself, the

self-effect has the minimum distance possible and therefore has the maximum coefficients.

However, this does not confirm the SDD. For example, when two adjacent elements e and

f , have a small angle between them, the distance between the two centers can be small

enough that SDD is not honored. In order to overcome this problem, the two systems,

related to e and f , have to be solved simultaneously.

It is interesting to mention that as long as the system is SDD, any arbitrary initial guess

will make the solver to converge toward the unique solution (Golub and Van Loan, 1996).

2.7 Inequality constraints

At a given iteration and for a given element e, equation (2.16) can be worked in two ways.

First, the total traction vector te can be modified by inequality constraints if necessary

before multiplication by T−1
ee to give ue. Second, the solution ue, which is related to

displacement, can be modify to respond to user prescribed inequality constraints. We call

these options respectively Traction Inequality Constraints or TICs (since they are related

to traction), and Displacement Inequality Constraints or DICs. TICs are applied to

the elemental induced tractions, functions of the initially prescribed boundary condition

for element e and the influence from the other elements, whereas DICs are applied to

the elemental displacement discontinuity solution itself. Since we are working with one

element at a time during an iteration, it is straight-forward to constrain the traction vector

and the displacement solution with inequalities.

The assignment of the TIC and DIC is summarized in algorithm (2.2). Lines 12

and 14 show respectively the assignment of the TICs and DICs. The implementation of

inequality constraints is very straightforward, in the sense that simple conditional tests

can be inserted for the induced traction vector and/or the displacement discontinuity

vector, which is described next.
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forall e ∈ S do1

compute T−1
ee2

end3

while ǫ > tol do4

ǫ = 05

forall e ∈ S do6

uprev = current displacement on e7

te = initial traction on e8

forall e ∈ S − {e} do9

te = te + Tefuf10

end11

Apply TICs on te12

ue = −T−1
ee te13

Apply DICs on ue14

ǫ = ǫ+ |(||ue||2 − ||uprev||2)/||ue||2|15

set displacement on e16

end17

end18

Algorithm 2.2: Modified iterative solver algorithm in order to take into account TICs
and DICs (lines 12 and 14)

2.7.1 Frictionless contact

In the following, te,n and ue,n denotes the normal component of the total traction and

displacement discontinuity vectors respectively for an element e. According to the model

geometry configuration and the applied stress/strain, some elements will open whereas

some others will close. Interpenetration of the side of the discontinuity is not realistic

and must be avoided while allowing opening of the discontinuity. This problem of contact

detection on boundaries was first formulated by Signorini (Signorini, 1959), and can be

expressed in terms of complementarity relations, for an element e, on normal traction te,n

and normal displacement ue,n by






ue,n ≥ 0

te,n ≥ 0

ue,n.te,n = 0

(2.17)

or in a simple form ue,n ≥ 0 ⊥ te,n ≥ 0, where the symbol ⊥ means that, in addition

of the inequalities in ue,n and te,n, one of the them must be null. These three conditions

state that if a contact occurs, no interpenetration should take place. Either ue,n ≥ 0

and consequently te,n = 0, or te,n ≥ 0 and in that case we should have ue,n = 0. The

non-interpenetration inequality constraint can be formulated in a simple way and used

on a crack while prescribing normal traction boundary condition. Either a DIC or a TIC
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can be employed to model frictionless contact problems as demonstrated in the appendix.

These two inequality constraints are described respectively in algorithms (2.3) and (2.4).

Requires: Traction boundary condition for the normal axis
if te,n < 0 then

te,n = 0
end

Algorithm 2.3: Non interpenetration using traction formulation

Requires: Traction boundary condition for the normal axis
if ue,n < 0 then

ue,n = 0
end

Algorithm 2.4: Non interpenetration using displacement formulation

By forcing the normal displacement of the element to be zero if stresses are compressive,

we imply that the induced traction will be such to prevent overlap. Thus, the total normal

traction for an element e, after the problem is solved, will be negative according to our

sign convention.

To demonstrate this we can take a simple example of one element e with traction boundary

conditions for the three axis. This element is subjected to a compressive far field stress

(σR) judiciously oriented to encourage interpenetration, and in this configuration t0e,n < 0.

In order to avoid interpenetration, the system to solve is defined as

{
Teeue + t0

e = 0

subject to ue,n ≥ 0
(2.18)

with

t0
e = Reσ

Rne (2.19)

and Re being the rotation matrix from global coordinate system to element e local co-

ordinate system, and ne is its normal. Because the normal displacement is negative

(interpenetration occurs), it is set to zero according to the inequality constraint, and we
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determine negative total traction in the normal direction, as shown in equation (2.20):

{
te,s

te,n

}
=

{
t0
e,s

t0e,n

}
+

[
T−1

ee,s 0

0 T−1
ee,n

]{
ue,s

ue,n = 0

}
=

{
t0
e,s + T−1

ee,sue,s

t0e,n < 0

}
(2.20)

(see equation (2.27) in appendix for the special form of T−1
ee )

2.7.1.1 Verification

In order to check the validity of the displacement inequality constraints, we create a model

with connected echelon faults subjected to a compressive far field stress oriented along

the oblique segments (Fig. 2.2.a). We allow both interpenetration and opening of the

segments comprising the fault. To visualize the deformation field around the model, a

planar rectangular observation grid cross-cuts the segments (Fig 2.2.a). Displacement is

computed at each point of the observation grid, and the grid is deformed according to the

computed displacement field.

In this model, horizontal and oblique segments are subjected to interpenetration and

opening respectively, as shown in case (1) of Figure 2.2.b, where boundary conditions on

triangular elements are set to zero traction for the dip, strike and normal directions.

To prevent interpenetration, a first solution imposes displacement boundary condition

for the normal direction on all the segments, which leads to the case (2) of figure 2.2.b,

where we effectively avoid interpenetration, but also opening along the oblique segments.

A second approach imposes traction boundary conditions along the X- and Y- axis of all

the segments, displacement boundary conditions for the Z-axis (normal to the elements)

for the horizontal segments (avoiding interpenetration), and normal traction boundary

conditions for the oblique segments, allowing opening (Fig 2.2.b, case (3)). This last

model is then compared with the use of the DIC uz ≥ 0, where all elements have traction

boundary conditions for the three axis (Fig. 2.2.b, case (4)). Results of case (3) and (4)

are perfectly similar in magnitude and distribution of aperture along the oblique segments

(left side of Fig 2.2.b) and no interpenetration occurs along the horizontal segments.

The advantage of using the DIC approach in case (4) compared to case (3), is that no

assumption is made on whether segments should be locked or not in the normal direction,

allowing us to build complex 3D models.
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Z

X

σ

Figure 2.2: Verification of the non-interpenetration inequality constraint for a fault
with connected echelon segments. (a) Model configuration. (b) Model results for differ-
ent configurations: (1) all segments are free to slip and to open or close; (2) all segments
are free to slip only; (3) horizontal segments are free to slip only, oblique ones are free
to slip and to open or close; (4) same as (1) but with the DIC un ≥ 0; Left: normal

displacement are plotted. Right: resulting deformed observation grid
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2.7.2 Static Coulomb friction

In this section, the quasi-static problem of contact with local Coulomb friction is formu-

lated in term of a traction inequality constraint (note that in this paper the Coulomb

friction is employed, but any other friction law can be employed). Static friction occurs

when the tangential velocity at a contact point relative to a point on the opposite side of

the discontinuity is zero; otherwise, the friction is called dynamic friction.

Static Coulomb friction can be formulated as follows:

Let µ and Co being the coefficient of friction and cohesion respectively, for a given polyg-

onal element. Coulomb friction law states that the norm of the shear traction cannot

exceed the criterion

c(te,n) = −µte,n + Co (2.21)

where te,n is the normal traction at element e, that is ||te,s|| ≤ c(te,n), where ||.|| is the

L2-norm. If the shear traction is less than the Coulomb friction criteria, no slip occurs

(“stick” mode). Otherwise, we have to reduce the shear traction to the value of the criteria

(“slip” mode).

Conditions of friction contact can be summarized as

{
ue,n ≥ 0 ⊥ te,n ≥ 0 (a)

||te,s|| ≤ c(te,n) (b)
(2.22)

Condition (2.22.a) maintains a non-interpenetrating contact while condition (2.22.b) adds

frictional slip to the contact. Since both conditions can be related to tractions only, a

TIC is employed for the description.

Suppose that, for a given iteration and a given element e, the total traction te = {t0
e +tef}

is computed prior to multiplication by T−1
ee (see eq. 3). If the normal traction is positive,

the element is opening, and the constraint does not apply. On the other hand, if the

normal traction is negative (interpenetration occurs), condition (2.22.a) is honored by

forcing the normal traction to be zero (see the frictionless case above), and then we check

the Coulomb friction criteria. If the norm of the shear traction is less than the criteria,

te,s is forced to be zero (stick mode). Otherwise, we reduce its norm to be equal to c(te,n).

More specifically, the norm of the shear traction can be decomposed into

||te,s|| = c(te,n) + δte,s (2.23)
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where δte,s is the excess shear traction. To remove δte,s from te,s, we allow a corresponding

amount of displacement along the slip vector, defined by

ue = T−1
ee

{
δte,s

te,s

||te,s||

}
(2.24)

This implementation is outlined in algorithm (2.5). Note that no DIC is employed in

algorithm (2.5) to prevent interpenetration since this is automatically honored, as seen in

the frictionless case (see also appendix). Only one TIC is used.

Requires: prescribed traction boundary conditions for the normal axis and at least for
the dip or strike axis
if te,n < 0 then

c = −µte,n + Co

if ||te,s|| > c then

te,s = (||te,s||−c)

||te,s||
te,s

else
te,s = 0

end
te,n = 0

end

Algorithm 2.5: Static Coulomb friction traction inequality constraint. Note that this
algorithm already incorporates the non-interpenetration constraint, as shown in appendix

2.7.2.1 Verification with a 2D analytical solution

The 2D model used by Phan (Phan et al., 2003) is composed of a planar crack of length

2a, inclined at an angle α from horizontal, with a constant coefficient of friction φ, and

subject to an horizontal compressive remote stress σ (Figure 2.3.a). Analytical solutions

of the normal traction tn, shear traction τ c
t and slip magnitude ∆ut are given by






tn = −σ sin2 α

τ c
t = σ sinα(cosα− sinα tanφ)

∆ut(η) =
4(1−ν2)τc

t

E

√
a2 − (η − a)2

(2.25)

where ν is the Poisson’s ratio and E the Young’s modulus.

In order to remove the boundary effect due to the comparison from 2D to 3D, the 3D

model was extended far from the zone of interest (Fig. 2.3.b), where the mesh is denser.

Young’s modulus and Poisson’s ratio are chosen to be 1 and 0.25, respectively. Two

different mesh densities are used (Fig. 2.3.c and d) in order to explore the effect of
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Figure 2.3: Comparison of the static Coulomb friction using a TIC and analytical
solution of Phan (Phan et al., 2003). (a) 2D model configuration. (b) Corresponding
3D model that has been extended far from the zone of interest. (c) Close view to the
coarse mesh around the zone of interest, and (d) dense mesh. (e) Comparison of slip

and residual normal and shear traction
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discretization. Comparison of the slip and the residual traction components is shown

in Fig. 2.3.e. As we increase the mesh density, the slip results approach the analytical

solution, whereas the residual traction results remain equal to the solution for both coarse

and dense meshes.

2.7.2.2 Comparison with the penalty method

The numerical method, Fric2D, developed by Cooke (Cooke and Pollard, 1997) is a 2D

boundary element code derived from Crouch and Starfield (Crouch and Starfield, 1983),

where the penalty method is employed to simulate frictional slip. Linear elements of

constant displacement discontinuity comprise the fractures, faults and the boundaries to

the model. The code utilized two types of elements. Along one set of elements, either

the tractions or the displacement discontinuity (i.e. opening or slip) is prescribed. These

elements are used for the boundaries and for conditions such as pressure filled cracks and

faults with applied stress drop. Along the second type of element the user prescribes

constitutive properties rather than tractions or displacement discontinuities. The four

constitutive parameters along these elements are cohesion, static friction, normal stiffness

and shear stiffness.

The penalty method utilizes these normal and shear stiffnesses to prevent interpenetration

of the elements. Very soft values for stiffness will allow some elastic interpenetration of

the elements while infinite values of stiffness forbids interpenetration. In practicality,

stiffnesses several orders of magnitude greater than the host rock stiffness should be used

to minimize interpenetration. One approach for determining appropriate stiffness, is to

treat the prescribed stiffness as an effective stiffness equal to the host rock stiffness divided

by the thickness of the fault zone (Crouch and Starfield, 1983). In this way, very thin

fault zones will have less elastic interpenetration than thick fault zones. Subsequently,

this interpenetration simulates the finite contraction across the thickness of the fault zone,

which in the model is treated as infinitely thin.

To solve for the deformation in non-linear systems incorporating frictional slip, Fric2D

iterates the solution until the percentage of shear traction change along all frictional

elements between one iteration and the next is less than a prescribed tolerance (Cooke

and Pollard, 1997). Additionally, the loading is applied in multiple monotonic steps

to minimize the path dependency of frictional slip. The frictional elements of Fric2D

have been used to solve problems of fault growth (Roering et al., 1997; Cooke and

Kameda, 2002; Buczkowski and Cooke, 2004; Cooke and Murphy, 2004; Del Castello and

Cooke, 2007), deformation along bedding planes (Cooke and Pollard, 1997; Cooke and
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Underwood, 2001), and the development of off-fault damage ((Cooke, 1997); Savage and

Cooke, in press).

In the models presented in this paper, the normal and shear stiffness were chosen to be 10

orders of magnitude greater than the host rock stiffness to prevent elastic interpenetration.

The tolerance is 10−4, which required fewer than 20 iterations to reach convergence for

the models presented here. The first set of models apply the load within one step. The

sensitivity of loading step is explored in the next section of the paper.

2.7.2.3 Model 1

The first model reproduces the fault geometry of the analytical case presented in section

2.7.2.1, but with two different friction profiles along the crack, a constant profile with

µ = 0.6 (Fig. 2.4), and a linear variation of µ from zero to one (Fig. 2.5). For the first

case, the 2D BEM, 3D BEM and the analytical solution for the displacement and residual

traction are plotted. For the second case, only the 2D and 3D BEM are compared. As

with the 3D BEM (see Fig. 2.3), mesh density impacts the 2D BEM solution; as we

increase the number of elements, we approach the analytical solution more closely. The

major difference between the 2D and the 3D BEM solution is that the former needs more

elements to approach the analytical solution than the latter (Fig. 2.4 top). For the

residual tractions, the coarse and dense meshes give the same result (Fig. 2.4 bottom,

where only result from the coarse model is plotted).

2.7.2.4 Model 2

The second model (Fig. 2.6) is composed of two interconnected fault segments making an

angle β. The larger fault, of length 4a, makes an angle α with respect to the horizontal

axis, and the smaller one, of length 2a, is connected at the middle of the former. A

horizontal compressive remote stress is applied to the model with magnitude σxx = −1,

and a constant friction coefficient µ = 0.6 is used (no cohesion).

Fig. 2.7 and 2.8 compare the results for the main and secondary fault, respectively.

Again, no difference between the 2D and 3D BEM is observed for both the displacements

and the residual tractions if we use a dense mesh for the 2D BEM.
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Figure 2.4: Constant friction coefficient profile. Comparison of the static Coulomb
friction for the 2D BEM code using the penalty method and the method described in
this paper (same model as in Fig. 2.3).The 2D BEM slip distribution is plotted for a

coarse and dense models, showing the discretization effect
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a linear variation of the friction coefficient from zero to one

94



x

y

2a

2a

2a

β
α

σxx

a   = 0.5
α    = 30
β    = 30
µ    = 0.6
σxx  = -1

Figure 2.6: Branching faults model configuration

S
li
p

Tr
a
c
ti

o
n

ts Fric2D 10 steps
ts Poly3D

ts Fric2D 1 step

tn Fric2D 10 steps
tn Poly3D

tn Fric2D 1 step

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.5 0 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.5 0 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.5 0 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.5 0 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.5 0 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

Fric2D 1 step coarse

Poly3D

Fric2D 10 steps coarse

Fric2D 10 steps dense

Figure 2.7: Main fault of the branching faults model. Comparison of the 2D and 3D
BEM code. The 2D BEM slip distribution is plotted for a coarse model with 1 and 10

loading steps and for a dense model with 10 loading steps
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Figure 2.8: Secondary fault of the branching faults model. Comparison of the 2D
and 3D BEM code. The 2D BEM slip distribution is plotted for a coarse model with 1

and 10 loading steps and for a dense model with 10 loading steps

2.7.3 Effect of an incremental remote loading

For previously presented numerical models, the remote loading was applied in one step.

In order to investigate the effect of an incremental loading on the result, we ran the same

models using multiple loading steps. For the new 3D BEM code, the results for any

geometrical configuration are identical to applying the remote loading in one go. This

suggests that the successive subspace correction method already incorporates the effect

of incremental loading, and therefore, this method does not require this computationally

time consuming process.
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However, multiple loading increments are needed for the penalty method within the 2D

BEM code as shown in the model results from section 2.7.2.4 (Fig. 2.7 and 2.8), where a

one and ten step loading increments are compared for coarse mesh models. Specifically,

the differences are mostly visible for the residual shear traction on the main fault (Fig.

2.7), where an incremental remote loading approaches the 3D BEM solution more closely

(see the residual shear traction ts onto the main fault in Fig. 2.7).

2.8 Conclusion

Using an iterative method to solve a dense system, not only avoids the memory alloca-

tion for the dense matrix, but also allows the incorporation of inequality constraints in a

simple, efficient and stable way. Implementing this technique avoids the use of additional

algorithms to deal with inequality constraints. No new equations are incorporated into the

system and no overhead is introduced for the convergence. The definition remains natural

and very straight-forward to implement, and does not introduced artificial parameters as

with the penalty method. No incremental loading and trial and error procedures are used,

and the method provides for constraints that can evolve with time or according to another

parameters (such as the cumulative slip for example) if necessary. Furthermore, such a

method permits dynamic addition or removal of equations to the system (i.e. adding/re-

moving polygonal elements), without reconstructing the entire system. This can occur,

for example, with crack propagation in 3D.

The incorporation of inequality constraints on tractions and displacement now extends

the existing wide range of applications of Poly3D. Three-dimensional modeling tools that

incorporate frictional sliding along complex networks of fractures faults will enable in-

vestigations leading to more accurate estimation of seismic hazard in regions of active

faults, better recovery of petroleum reserves from fractured reservoirs, improved access

to geothermal energy and reduced costs for remediation of contaminants on fractured

aquifers. Furthermore, static friction can be used to model fault cohesive end zone (CEZ)

(Martel, 1997; Davatzes and Aydin, 2003; Cooke, 1997), where variation of the friction

angle along a fault is used. This new feature can also be used to study frictional fault

behaviors while they approach interfaces separating regions of different material proper-

ties (Maerten and Maerten, 2008). Finally, displacement inequality constraints can be

employed to better constrain linear slip inversion (Maerten et al., 2005), which is part of

our current research.
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2.10 Appendix

According to equation (2.16), the traction and displacement discontinuity for a given

element e are closely related through the inverse self-effect traction influence matrix T−1
ee ,

and we see that even if it is a complementary problem on traction and displacement, the

special form of T−1
ee allows us to formulate the problem using only one TIC by constraining

te,n ≥ 0, or one DIC by forcing ue,n ≥ 0. Both approaches are not needed.

Since the DIC formulation is trivial for non-interpenetration, we will consider only the

TIC case, and show that forcing te,n = 0 if te,n < 0 is equivalent to imposing ue,n = 0. Let

te = {te,s, te,n} be the components of the total traction vector {t0
e + tef} from equation

(2.16). For the self-effect traction influence matrix Tee (traction influence matrix from

a polygonal element on itself), the coefficients are computed at the element’s centroid,

which means that all dislocation segments (edges) comprising the element lie in the same

plane as the centroid (Fig. 2.1.c), and, in the element local coordinate system (Fig. 2.1.c)

, results in zero shearing components for the normal direction (z components of Tee).

Therefore, Tee has the following form

Tee =





tee,11 tee,12 0

tee,21 tee,22 0

0 0 tee,33



 =

[
Te,s 0

0 Te,n

]
(2.26)

and its inverse being

T−1
ee =

[
T−1

e,s 0

0 T−1
e,n

]
(2.27)

Equation (2.16) now writes

ue =

[
T−1

e,s 0

0 T−1
e,n

]{
te,s

te,n

}
(2.28)
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By constraining te,n = 0 if te,n < 0, equation (2.28) reduces to

{
ue,s

ue,n

}
=

[
T−1

e,s 0

0 T−1
e,n

]{
te,s

0

}
(2.29)

which effectively gives ue,n = 0.
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Preamble

In this chapter, we apply the static Coulomb friction algorithm to a field example at

”Les Matelles”, southern France. The goal was to find natural features where the effect

of the friction is clearly observable. After some discussions, we choose the outcrop at

”Les Matelles” where reactivated joints and stylolites in extensional relays show different

branching angles for the initiation of the jogs. This angle is intrinsically dependent on

the friction coefficient. This effect was first described by Vincent Auzias in 1995 during

is PhD at Montpellier.

About...
Writing this paper gave us an opportunity to dedicate it to Maurice Mattauer, who

left us in April 2009 accidentally.
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3.1 Résumé

La friction des failles est un paramètre qu’il est difficile d’évaluer le long de la zone de

faille car sa détermination dépend de la connaissance de tout facteur contrôlant l’état de

contrainte autour des défauts. Dans les roches homogènes cassantes, un nombre limité

de ces facteurs, tels que la forme de la surface de faille, la proximité d’autres failles ou le

rapport de contrainte à l’infini, sont cruciaux pour lever cette indétermination. Dans cet

article, nous proposons d’analyser un exemple de terrain dans lequel toutes ces conditions

sont remplies et où la nature de la structure de glissement suggère des différences de

frottement statique. Nous comparons les orientations de la ramification des fractures

dans les zones de relais décrochantes en échelon pour des stylolites et joints réactivés

en cisaillement. Les données sont comparées à la photoélasticimétrie et des modèles

numériques 3D qui tiennent compte des conditions de contrainte à l’infini ainsi que du

rôle de la géométrie des segments décrochants. Sur la base des observations de terrain, ces

analyses mettent quantitativement en évidence le rôle important de la friction des failles

sur l’orientation des contraintes locales et sur la génération de la fracturation. Ce travail

souligne que les estimations de la friction, basées sur des analyses des modes de rupture

ou de contraintes in situ, doivent être accompagnées d’une étude approfondie de la forme

des failles en 3D, leurs segmentations ainsi que l’état de contrainte à l’infini.
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3.2 Abstract

Fault friction is a parameter that is difficult to asses along fault zones since its deter-

mination depends on the knowledge of any factor controlling the state of stress around

faults. In brittle homogeneous rocks, a limited number of these factors, such as the shape

of the fault surface, the vicinity of fault tips or the remote stress ratio, are crucial to

constrain for this determination. In this paper, we propose to analyse a field example in

which all these properties are met and where the nature of the slipped structure suggest

differences in static friction. We compare the orientations of branching fractures at strike

slip relay zones between en echelon stylolites and en echelon joints both reactivated in

shear. The field data are compared with both photoelastic and 3-D numerical models

that consider the remote stress conditions and the role of the geometry of the strike slip

segments. Based on field observations, these analyses quantitatively demonstrate the sig-

nificant role of fault friction on the local stress field orientation and subsequent fracture

formation. This work points out that estimations of fault friction based on analyses of

fracture patterns or in situ stresses must be accompanied with a thorough investigation

of the 3-D fault shape, its segmentation and the remote stress state.

Keyword: Fault, friction, relay, wing cracks, damage zone

3.3 Introduction

Static friction along faults is an extremely important parameter for the understanding of

the seismic cycle, the distribution of stresses, fracture patterns and damage zones around

faults. In the past decades many efforts have been made to estimate fault friction along

natural faults (e.g. (Hanks, 1977; Zoback, 1980; Brace and Kohlstedt, 1980; Lachen-

bruch and Sass, 1980; Zoback and Healy, 1984; Mount and Suppe, 1987; Brudy et al.,

1997; Zoback et al., 1987; Scholz, 2000)). The measure of static friction estimated using

laboratory tests on fault gouges is scale-limited, i.e. on gouge samples from a bore hole

cutting crossing the fault, and therefore may not represent the frictional state of the whole

surface. Other approaches, based on the analyses of the heat flow (Brune et al., 1969;

Lachenbruch and Sass, 1980; d’Alessio M. A. et al., 2003) or numerical modeling (e.g. (T.,

1985; Lovely et al., 2009)), allow discussion on the state of friction along the fault but are

quite indirect. The analysis of in situ stresses from bore hole measurements or fracture

patterns are considered as the best indicator of the frictional state along a fault (Zoback

and Healy, 1984; Zoback et al., 1987; Scholz, 2000).
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Assuming that fault cohesion can be close to zero on an active fault (Byerlee, 1978),

the static friction has been approximated by Amontons first law, in which the frictional

coefficient (µ) is expressed as a function of the shear (F ) and normal (N) components of

the forces applied to a frictional surface.

F = µN (3.1)

This law states that the friction coefficient of an infinitely long fault surface is directly

related to the orientation and the magnitude of the stresses close to this surface (Figure 3.1

a). This reveals that the analysis of the stress field around a fault can be used to determine

the static friction along a fault, in cases where the remote ratio of stresses applied to the

sliding surface is known. Therefore, any indicators of the stress field around faults (e.g.

bore hole analysis, faults or fracture patterns) provide the opportunity to quantify the

static friction. However, this analytical approach, based on Amonton’s first law, assumes

that the fault plane is rectilinear and that the fault tips are infinitely far from the study

area. Such a first order approximation is quite unrealistic for natural faults having tips,

being irregular, segmented or more complex in shape (Figure 3.1 b, c, and d). The local

orientation and magnitude of the stress field around a fault does not rely only on fault

friction, which makes its determination non-unique unless we have knowledge of the other

factors perturbing the local stress field.

In homogeneous rocks, the first parameter that has been considered as acting on the

local stress field, and more precisely on the crack angle to a fault, is the static friction

coefficient (e.g. (Petit and Barquins, 1988; Barquins et al., 1997; Martel, 1997; Ohlmacher

and Aydin, 1997a; Willemse and Pollard, 1998; Zhou, 2006; Mutlu and Pollard, 2008)).

However, the remote stress angle has been considered as very important (Barquins and

Petit, 1992; Ohlmacher and Aydin, 1997a) as well as the remote stress ratio (Auzias et al.,

1997; Kattenhorn et al., 2000; Zhou, 2006). Others factors more related to the geometry

and behaviour of the fault surface also seem to be very influential, as the 3-D geometry

of the faults (e.g. (Segall and Pollard, 1980; G.C.P. et al., 1994; Willemse, 1997; Maerten

et al., 2002; Bourne and Willemse, 2001), its spatial/temporal evolution ((Willson et al.,

2007; Lunn et al., 2008), Moir et al, this volume), and fault opening (Kattenhorn. S. and

Marshall, 2006). Therefore, any analysis of fault zones that aims to estimate the role

of fault friction on the stress field, or in contrast to determine the state of friction from

stresses analysis, must know any of these factors that can perturb the local stress field.

In this paper, we analyse a field example in which these factors can be estimated. Drastic

differences in fracture orientation between reactivated frictional stylolites (i.e. structures

of high friction coefficient) and frictionless joints (i.e. structures of low friction coefficient)
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Stress trajectory µ = 0
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Complex not frictional
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Stress trajectory µ = 0

σn = 0
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τ = 0

τ
=
 0

σ1

σ1

Figure 3.1: Comparison between the stress perturbation due to fault friction (a) and
the stress perturbation due to different examples of fault geometry (b, c and d). (b), (c)
and (d) are σ1 stress patterns inferred from photoelastic modeling (Joussineau et al.,
2003). The remote stress applied is uniaxial. Dots represent fault tips. This figure
shows that even for µ = 0, the orientation of σ1 can be oblique and even parallel to the

fault surface, rather than perpendicular as suggested by Amontons first Law.

suggest that friction is a prominent property influencing the stress perturbation at the

close vicinity of a fault. We chose to study fracture orientation at extensional relay zones

because the stress orientation has been described as quite stable in space along a relay

zone (compared to outside) due to the juxtaposition of the two extensive fault quadrants

(see Figure 3.1 c) (e.g. (Auzias et al., 1997; Ohlmacher and Aydin, 1997a)). We compare

the field data to photoelastic and 3-D numerical models to demonstrate and quantify the

significant role of static friction on the stress and fracture orientation at extensional relay

zones.
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3.4 Field data

3.4.1 Geological setting

The studied exposure, located close to Les Matelles (15 km North of Montpellier, France,

Figure 3.2), is a suitable site for the study of brittle tectonics in limestones and stress

perturbations around meso-scale faults (Rispoli, 1981; Fletcher and Pollard, 1981; Petit

et al., 1999). The brittle tectonic structures observed (Figure 3.3 a) were formed during

multiphase compressive tectonics allowing the formation of joints and stylolites. These

structures of similar dimension and orientation have been reactivated as slip surfaces dur-

ing a late tectonic event (Petit and Mattauer, 1995). Because of their different roughness,

joints and stylolites are expected to be of different frictional properties during slip. Most

of them show secondary fracturing and linkage at relay zones (Figure 3.3 b), that can be

used as indicators of the palaeostress orientation (e.g. (Rispoli, 1981; Petit and Mattauer,

1995)). It is therefore worthwhile to address with particular care on the geological setting

and history of the brittle structures that will be used to constrain the role of fault friction

on fracture orientation.

The studied exposure has been fully described in a number of previous studies (e.g.

(Rispoli, 1981; Taha, 1986; Petit and Mattauer, 1995; Petit et al., 1999)). This area

is located in the vicinity of a fault branch called the Lirou fault (Figure 3.2 b). The

Matelles fault zone, like many faults in the area, had both left-lateral strike slip related

to the Pyrenean shortening and normal slip related to the Oligocene rift extension in the

Languedoc. Middle cretaceous normal slip along the Matelles-Corconne fault zone is also

expected during the Durancian tectonic events.

The brittle deformation sequence described by Petit and Mattauer (Petit and Mattauer,

1995) begins by a vertical jointing stage of the limestone layers with two principal trends,

N020 and N140. The second stage is a first generation of stylolite formation oriented

N040. The third stage, the most important for our study, is the reactivation of the pre-

vious structures as sinistral and dextral strike slips due to a last shortening creating wing

cracks, en echelon veins and a second generation of stylolites around the reactivated de-

fects. As shown by this last generation of joints and stylolites formed, the last shortening

stage occurs with the maximum principal stress σ1 oriented NorthSouth. As suggested by

rock experiments, photoelastic models, numerical and analytical solutions (see (Wawersik

and Brace, 1971; Petit and Barquins, 1988; Barquins and Petit, 1992; Chaker and Bar-

quins, 1996; Lunn et al., 2008)) the presence of wing cracking around reactivated defects

(see Figure 3.3 b) implies remote stress conditions close to uniaxial loading (σ1/σ3 ≥ 10).
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Figure 3.2: Location and geological context of the study area. (a) Structural scheme
of the study area. (b) Geological map of the study area showing the Matelles fault and
the Lirou fault branch, modified from the geological map of St Martin de Londres, 1/50

000.
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a b

Figure 3.3: Field photographs of the study area. (a) Outcrop overview showing the
layered upper Jurassic mudstones damaged by a dense pattern of calcite sealed fractures
and stylolites. (b) First generation stylolites reactivated as sinistral strike slips showing
wing cracks and branched stylolites (see (Rispoli, 1981)). The length of the scale bar is

20 cm.

Conditions close to horizontal uniaxial stresses are possible at shallow depths, i.e. for little

confining pressure. The expected depth of faulting in the upper Jurassic limestone was

probably less than the thickness of the lower cretaceous series ( 200 m), which was poten-

tially yet well eroded during the Pyrenean shortening. This local stress state condition

(high ratio of maximum to minimum principal stresses, σH/σh) and reorientation of σ1

axis has been related to a restraining bend along the Les Matelles fault during Pyrenean

strike-slip movements (Rawnsley et al., 1992; Petit et al., 1999).

3.4.2 Extensional relay geometries

The last stage event provides the opportunity to analyse the geometry of branching at

relay zones between slipped overlapping stylolites vs. slipped overlapping joints(Figure

3.4 and 3.5a). The angle β defined as the angle between the orientation of remote σ1

relative to the joints or stylolites reactivated in shear (Figure 3.5 c), is quite variable

(variation of 40◦). A wide overlap of β angles are therefore found for reactivated joints

and stylolites containing relay zones. For similar β angles, the branching angle α (defined

as the angle between the slipped structure and the branching jog) is quite different with

respect to the nature of the reactivated structure. More precisely, for similar β angles,

α is larger for joints than stylolites (Figure 3.5 a and b). These observations are verified

on a α vs β graph, in which additional measures from the literature were reported for

comparison. Field data from stylolites and joints are consistent with the general scatter of
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Figure 3.4: (a) Examples of joints (left side) and stylolites (right side) reactivated as
left lateral strike slips. (b) Interpretation in terms of stress orientation using the remote
orientation of syn-kinematic joints and stylolites. The ”remote stress” orientation is
slightly different in the two cases because they were not measured at the same location
and that the larger Lirou fault probably modify the stress field orientation at this North-

South last compressive stage.
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Figure 3.5: Variation in the geometry of extensional jogs between stylolites and
joints reactivated in shear. (a) and (b) are field examples of reactivated stylolites and
joints, respectively. Coloured dashed lines represent the orientation of fractures in the
relay zones. (c) Graph of α and β angles for all the reactivated stylolites and joints
measured in the field. α and β angles are represented in a small scheme at the left.

Field observations show higher β angles for reactivated stylolites

all the data, and fit in two specific fields of branching configurations as described above.

Because of their different roughness (see (Delair and Leroux, 1978; Raynaud and Carrio-

Schaffhauser, 1992), for the analysis of non reactivated stylolites), joints and stylolites are

expected to be of different frictional properties during slip. Therefore, the question arising

from these observations and treated in the next sections is the following: Is this difference

of branching geometry really due to the frictional properties of the slipped structures?

The local orientation of relay branching fractures (α) gives a good approximation of the

local orientation of σ1 during fault slip of all the faults measured and at the same tectonic

event (e.g. (Auzias, 1995; Ohlmacher and Aydin, 1997b; Kattenhorn et al., 2000)). The

115



wide range of angle observed in the field therefore reveals wide variation in the ratio of

shear stress / normal stress, probably due to variations in static friction of the slipped

structures. This hypothesis will be tested below using analogue and numerical modeling.

3.5 Photoelastic modeling

3.5.1 Photoelastic method

A way to test the effect of friction is to analyze the stress field orientation using photoelas-

tic experiments around opened (not frictional, i.e. µ = 0) and closed defects (frictional).

Photoelasticity is an optical method of stress analysis within elastic translucent materi-

als like polymethylmethacrylate (PMMA), which present accidental birefringence when

loaded. These materials have the property of resolving the light which falls on them

at normal incidence into two components, each one coinciding with a principal plane of

stress. This property, due to a higher density of the material in these stress orientations,

implies a light transmitted at right angles (Hetényi, 1966). If a photoelastic sample is

placed between crossed polarizers, black fringes named isoclinics (light extincted, see Fig-

ure 3.6 b for an example) are observed on the second polarizer, i.e. the analyzer. Isoclinics

a b

Figure 3.6: (a) Experimental device of the photoelastic modeling. (b) Example of
isoclinic and isochromic fringes obtained in a vertical uniaxial loading experiment of

slipping overlapping open defects.

correspond to locations where the plane of the incident polarized light coincides with one

direction of principal stress within the sample. These isoclinics move when the polarizers

rotate together. By rotating the polarizers from 0◦ to 90◦, and drawing the corresponding

isoclinics, it is possible to map the orientation of the two principal stresses. A thourough

description of the same experimental device (Figure 3.6 a) and additional details about

the photoelasticity method can be found in De Joussineau et al. (Joussineau et al., 2003).
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To simulate the effect of fault friction on the stress field of extensional relay zone, two types

of PMMA models were compared: a first one composed of closed defects and assumed

to have friction, and the other one with opened defects and assumed to have negligible

friction. To produce open defects, the thin plates of PMMA (0.5 cm thick, 6.5 cm width

and 10 cm high) were sawn-off with a 300 µm thick micro-saw from central drill holes on

each interacting segments of 500 µm diameter. Closed defects were produced as planar

fractures propagated along linear traces drawn with a cutter on the PMMA surface. These

two types of models are subjected to loading with different β angle such as 20◦, 45◦ and

70◦. Here β is the angle between the axial loading and the planar defects forming the

relay zone.

The models are subjected to uniaxial conditions in order to be consistent with the field

conditions expected (see section 3.4). The axial compressive load is imposed by an elec-

tromechanic testing machine (Davenport 30 kN) and no lateral pressure is added. To

prevent bending of the PMMA plate under vertical loading, the samples are maintained

between vertical tighteners.

3.5.2 Experimental results of extensional relay stress pattern

The two types of models (frictional versus not frictional) show significant differences in

their local stress field distribution. Figure 3.7 presents stream lines of σ1 for not frictional

(a) and frictional configuration (b) subjected to a vertical loading with β = 20◦. The

stress field is less perturbed in orientation for the frictional case. Without friction, the

orientation of σ1 is normal to the faults (deviation of 70◦ from the remote σ1) and quite

stable along the relay zone. Also note that the stress field is perturbed outside of the

relay zone. In the frictional case, the stress field changes from the tip, where it is close to

vertical, to the center of the relay zone, where it reaches its maximum deviation of 45◦.

Additional tests, not presented here and done for variable overlap and constant spacing

between the defects, show the same maximum values of σ1 deviation and a better stability

of σ1 orientation in the relay zone as the overlap increases.

All the studied tests show results generally consistent with field observations. Figure 3.8

exhibits the compilation of the α and β angles data for all the tests done with constant

relay geometry. Note that α here corresponds to the angle between the slipped defect and

σ1 at the center of the relay zone. Tests with no friction lie in the graph area of high α

and relatively low β angles, which corresponds to the zone of slipped joints (of low friction

compared to slipped stylolites). In contrast, frictional tests data lie in the area of lower
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Figure 3.7: Drawing of σ1 obtained from the analysis of isoclinic fringes for (a)
uniaxial vertical loading of open defects, i.e. non frictional and (b) closed defects, i.e.

frictional.
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Figure 3.8: Comparison between α and β angles obtained by photoelastic modeling
with the dataset measured in the field.
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α and relatively high β angles, which corresponds to the zones of slipped stylolites (high

friction).

3.6 Numerical modeling

The numerical code used to investigate fault friction is a 3-D Boundary Element Method

(BEM) called Poly3D (Thomas, 1993). It relies on the analytical solution of an angular

dislocation in a homogeneous elastic whole- or half-space (Comninou and Dundurs, 1975).

As opposed to the Okada’s code (Okada, 1985), which uses rectangular elements, Poly3D

discretizes faults and fractures using triangular elements, and therefore avoids the creation

of overlaps and gaps between adjacent elements which perturb the solution (Maerten et al.,

2005). Mixed traction-displacement boundary conditions can be used for each constitutive

element of the model (tractions are shear and normal stresses resolved on the fault surface).

When traction boundary conditions are specified, we have to solve for the corresponding

unknown displacement discontinuity according to the initially prescribed traction values.

As soon as all displacement discontinuities are known (i.e. the slip patches), strain, stress

and displacement can be computed at any observation point within the elastic field. Note

that transient variations in friction coefficient or the dynamic stress field is not considered

(e.g., (Poliakov et al., 2002)).

In order to have a frictional behavior, the code has been extended to support inequality

constraints on traction and displacement. Specifically, the static Coulomb friction has

been implemented as a traction inequality constraint and validated by comparison with

analytical and numerical solutions (Maerten et al., 2009). For a given fault surface, the

coefficient of friction and cohesion can be prescribed globally onto a fault surface or locally,

each constitutive element having their own coefficients. Traction boundary conditions are

imposed along the three axis of each triangular element local coordinate system (dip,

strike and normal directions).

For a model subjected to a compressive far field stress, interpenetration of the elements

has to be avoided. This is achieved by using the displacement inequality constraint uz ≥ 0,

where uz represents the computed normal displacement of a triangular element. Again,

traction boundary conditions are imposed along the three axes of each triangular element

local coordinate system (Maerten et al., 2009).
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3.6.1 Model set up

Figure 3.9a and 3.9b depict the model configurations used for the BEM modeling for

joints and stylolites, respectively, and are built upon field observations (Figure 3.4). All

a b

5 cm

Figure 3.9: 3-D view of the geometry of the defects reactivated in shear used in
Poly3D for the numerical simulation. (a) 3-D geometry of the reactivated joints shown in
Figure 3.4 with the observation grid (dark square) on which the stresses are represented
in Figure 3.10. The position of the observation grid corresponds to the position of the
top of the limestone layer observed in the field. (b) 3-D geometry of the reactivated
stylolites shown in Figure 3.4. The observation grids (not shown here), on which the

stress field is presented in Figure 3.11, are placed at the same level than in (a).

the veins and stylolites traces in the vicinity of the zone of interest have been carefully

mapped and then vertically extruded in depth all along the limestone layer thickness,

giving rise to the 3D triangulated surfaces. As the Coulomb friction relates the shear to

the normal components of the forces applied to a frictional surface, traction boundary

condition for the three local axes (dip, strike and normal) of each constitutive triangular

element is used.

3.6.2 Modeling of joints reactivated in shear

The joints model, depicted in Figure 3.9a, is based on the field observations shown in

Figure 3.4, left side. These first generation joints are subjected to a far field remote stress

with uniaxial compressive condition and σ1 (in this area) oriented N170 as suggested
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by the presence of surrounding joints and stylolites (third brittle deformation stage, see

section 3.4). In order to display the stress orientation within the extensional relay resulting

from the computed displacement discontinuities, an observation grid is placed close to the

top of the model (Figure 3.9). Then, two simulations are performed: a first one, with a

constant coefficient of friction µ = 0.6 for all discontinuities and no cohesion, and a second

without any friction but with ”non-interpenetration” as a unique constraint. The elastic

material properties used for the surrounding limestone are ν = 0.25 and E = 1 GPa (see

(Hatheway and Kiersch, 1989)).

Figure 3.10a and b display the frictional and not frictional models, respectively. The

orientation of σ1 axis fit better with the strike of the branching fracture in the case where

the frictional coefficient equals zero. Since σ1 should be parallel to the strike of the

branching fracture, these models suggest that, at the initiation of the linkage, the slipping

joints were preferably not frictional. This is consistent with the absence of macroscopic

irregularities along these rectilinear structures.

3.6.3 Modeling of stylolite reactivated in shear

For the stylolites model depicted in Figure 3.9b, the uniaxial compressive far field stress

is oriented N015, as proved by the presence of surrounding joints and stylolites (see

Figure 3.4, right hand side, and Figure 3.9b in Petit and Mattauer (Petit and Mattauer,

1995)). Since this model is composed of two relays, two observation grids are placed in

the vicinity of them close to the top of the model. A first simulation is done using only

the non-interpenetration constraint (i.e. with µ = 0), whereas a second one employs a

constant coefficient of friction µ = 0.6 without cohesion.

Figure 3.11a and b displays the results on the two observation grids for the not frictional

and frictional models, respectively. As opposed to the previous joint modelling, the linking

structures are more consistent with high friction stress orientations.

3.6.4 Parametric analysis

A series of models have been done for variable friction and constant fault geometry con-

sistent with the overlapping segments of the experimental PMMA model. The 3-D shape

of the model is shown in Figure 3.12a. The results are analyzed on the observation grid

which allows to compare a configuration close to the field and the photoelastic modeling

(Figure 3.12b). The models were performed with variation of static friction coefficient and
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a

b

µ = 0

µ = 0.6

Figure 3.10: Model results for the joints reactivated in shear shown in Figure 3.9.
(a) Modeling result for µ = 0. (b) Modeling result for µ = 0.6. The small arrows on the

observation grid show the local orientation of σ1.
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a

b

µ = 0

µ = 0.6

Figure 3.11: Model results for the stylolites reactivated in shear shown in Figure 3.9.
(a) Model result for a µ = 0. (b) Model result for a µ = 0.6. The small arrows on the

observation grid show the local orientation of σ1.
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Figure 3.12: Input conditions for the parametric modeling. (a) Configuration of the
3-D model geometry with an example of computed displacement contours in color. (b)
Horizontal view of the model configuration showing the angles α and β. (c) Variables

used in the parametric study.

β angles as shown in Figure 3.12c. The elastic material properties used are the same than

above since a large part of the field data used for comparison were measured in limestone

(Figure 3.5).

The results are in good agreement both with field and experimental data. Figure 3.13

exhibits the compilation of the α and β angles data for all the tests done. As for the

experimental analysis, α corresponds to the angle between the slipped surface and σ1 at

the center of the relay zone. The numerical models with no or little friction lay in the

graph area of high α and relatively low β angles, which corresponds to the zone of slipped

joints (frictionless structures). In contrast, frictional models fit in the area of low α and

relatively high β angles, which corresponds to the zone of slipped stylolites (frictional

structures).
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Figure 3.13: Comparison of α and β angles between the data obtained by numerical
modeling, photoelastic modeling and the dataset measured in the field. A wide part of
α and β spreading can be explained by variations in frictional coefficient of the slipped

defects.

3.7 Discussion

3.7.1 Stress perturbation and friction of the slipping defects

The models are in good agreement with the field observations, however they do not cover

the entire range of data, especially for the low α angles (Figure 3.13). This point can be

discussed with respect to a limited number of unconstrained factors that may influence

the stress field around the slipping defects.

Inelastic deformations can modify the magnitude of residual stresses in the host rock

around faults, but this is probably not the explanation of the scatter observed in Figure

3.13 for two reasons. First, with respect to the brittle subsurface conditions of deforma-

tion, the studied limestone probably has negligible inelastic behaviour preceding its shear

yielding strength (Rispoli, 1981; Petit and Mattauer, 1995). Second, inelastic deformation

around fault, if any, has probably a larger influence on the stress magnitude than on the

orientation (Burgmann and Pollard, 1994), which one close to the fault must be directly

related to fault friction. This suggests that elastic models are relevant to simulate residual

stresses related to fault slip in this geological context, and that the spreading of field data

compared to the model is mainly due to others factors.
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The effect of 3-D fault geometry, especially the fault aspect ratio, on the stress distribution

around fault has probably little influence. Soliva et al. (Soliva et al., 2006) shows that

the dimension of the area of stress perturbation around a fault scales linearly with the

fault length since the fault growth is radial, and tends to be limited to a certain distance

when the fault height reaches a constant value. This means that for vertically restricted

fault by strata bounds, the 3-D shape can influence the orientation of the stress field at

about a distance around the fault equivalent to the layer thickness. In the present study,

for all the measures of angles made in the field (in the relay zones), the distance of the

fractures around the faults is always lower than the layer thickness potentially restricting

the faults (tens of cm). We therefore work in a window around the faults where the stress

perturbation should not be influenced by the fault aspect ratio (3D shape), and that all

the field measurements could be compared to 2-D photoelastic models or 3-D full space

models proposed.

The reason of the difference of scatter between the field data and the models is potentially

purely geometric. For all the model results presented in Figure 3.13 (both parametric and

photoelastic), the fault configurations are idealized as two planar surfaces with constant

overlap and spacing, whereas the field data are from faults more complex in shapes,

with variable overlap and spacing, curved, with multiple segments and potentially more

complex in 3-D.

We have shown that friction is the main factor controlling the stress perturbation and

the orientation of linking fractures. However the physical cause for this variation in

friction needs to be discussed. Obviously, this cause can be reasonably ascribed to the

difference of surface roughness between the stylolites and the joints. However, the analysis

of the roughness of the slipped defects is not very relevant on faulted stylolites since after

faulting they show a smoothed irregularity that is certainly different than the initial one.

The measure of roughness has been done on non reactivated stylolites (see (Delair and

Leroux, 1978; Raynaud and Carrio-Schaffhauser, 1992), for the quantitative analysis of

stylolites roughness in the same study area). However, these stylolites were not reactivated

potentially because of a threshold friction, then different than the initial state on the

faulted stylolites. On the other hand, efforts in measuring the surface roughness of the

slipped defects can not be very conclusive since it represents the finite strain.

3.7.2 Estimation of fault friction and upscaling

From three different approaches: (1) field study, (2) experimental modeling and (3) nu-

merical modeling, we have shown that the angle of fracture branching in strike slip relay
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zones is highly dependent on the frictional state of the overlapping faults.

It is worthwhile to note that the ”static” friction estimated at the relay zone corresponds

to the friction of the faults in the vicinity of the relay zone and at the time of the fault

interaction through the relay zone. This frictional property may therefore have evolved

through time and space with the progression of fault coalescence. The ”quasi-static”

friction estimated must be therefore considered as the time integrated friction of the

period of fault interaction through their stress field. We also must keep in mind that this

approach is only suitable along faults if the remote stress conditions are well known, since

the ratio of σH/σh is very important for the stress orientation in the relay zone (Auzias,

1995). Any indicator of the remote and relay zone stress field are worth considering.

With regard to estimation of fault friction on large scale active faults, particular care

must be taken with the stress field determined from data close to the Earths surface.

For depth shallower than 300 m, the orientation of the principal stress may be different

than the tectonic stresses predominant at depth (e.g. (Engelder, 1993)). On large faults

(kilometric scale length), it seems therefore more appropriate to provide an estimation of

fault friction based on the tectonic stress orientation or the fracture patterns measured in

deep bore holes, which are more representative of the brittle crust stress state.

This approach, based on field observation and numerical modeling at the relay zone,

seems therefore relevant for the estimation of fault friction along active fault segments

interacting through their stress field. Its main advantage compared to rock test measures,

is the in-situ estimation of the friction in its own geological context. We integrate a large

part of the fault surface around the relay zone (and it can be done outside as well), as

opposed to tests done on fault rocks, which correspond to a specific location of the fault

surface crossed by the bore hole. Moreover, this approach provides an overall value of

friction of the entire active fault zone, which may be composed of compartment with

various fault rocks, as for example coarse cataclasites or gouges which can be difficult

to analyze in laboratory tests. On the other hand, a limitation of this method is that

permanent deformation (e.g. measured by GPS) can not be used to estimate friction with

a quasi-static elastic model. Visco-elastic simulation of the lithosphere could be more

appropriated if it allows to simulate the precise geometry of the fault segments.

3.8 Conclusion

In situ static friction can be estimated along a fault plane if its shape, the far field stress

conditions and the stresses at its vicinity are well known. Joints and stylolites reactivated
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in shear show roughly different angles of linking fractures at their extensional relay zones.

The irregular shape of the stylolites and the rectilinear trace of the joints suggest that dif-

ferent frictional behaviour may explain these differences in branching angles. Photoelastic

and numerical modeling confirm this phenomenon. For the same remote stress conditions,

variation of the static friction along simulated faults explains a wide part of the range

of branching angle measured at relay zones. In particular, our paper reveals four main

points:

• A simple Amontons first law can not be used systematically to infer the static friction

along natural faults,

• To discuss the amount of friction along a fault, the analysis of the local stress field

must be compared to elasto-static approaches that integrate the effect of mechanical

interactions along ended faults, irregular in shape, segmented or more complex,

• Both field data, photoelasticity and numerical modeling show that wide variations of

friction can explain a large part of the variation in the angle of secondary fracturing

in the relay zones,

• Shear-reactivated joints have lower estimated static friction than shear-reactivated

stylolites.

3.9 Acknowledgments

We which to particularly thank and dedicate this paper to Maurice Mattauer who left us

in April 2009. He discovered the studied outcrop and recently participated to discussions

about this work at the laboratory and also in the field. The field work from Roger Soliva

was supported by an “Action Structurante 2006” grant from the laboratory Geosciences

Montpellier UMR5243. Thanks to the Igeoss’s consortium members for their support in

the development of Poly3D (now renamed iBem3D). W. Ashley Griffith and Roy Schlische

are thanked for their helpful comments.

128



References

Auzias, V. (1995). Photoelastic modeling of stress perturbations near faults and of the

associated fracturing: petroleum industry application, II: Mechanism of 3D joint devel-

opment in a natural reservoir analogue: the flat-lying Devonian Old Red Sandstone of

Caithness (Scotland). PhD thesis, Université de Montpellier II, France.
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Delair, J. and Leroux, C. (1978). Méthodes de quantification de la disparition de matiére
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Preamble

Many simplifications are used in the formulation of the elastostatic BEM code. The major

ones are linear elasticity (i.e. linear relations between the stress and infinitesimal strain

components), iso-thermal conditions, isotropic and homogeneous material with respect to

elastic moduli. Concerning the later, it is possible to extend the existing code to het-

erogeneous isotropic materials using the definition of complex 3D triangulated interfaces

separating two regions of different material properties. Special boundary conditions have

to be used at the interfaces in order to propagate the influence from one region to another
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(i.e. continuity conditions in displacements and equilibrium conditions in traction). The

following paper describes how to incorporate material heterogeneity within the boundary

element code presented in chapter 1 and 2 using an iterative approach, and compares

the method to a 2D analytical and numerical solution. Furthermore, it shows how to

parallelize the computation on multicore architectures.

About...
While reading Crouch and Starfield (Crouch and Starfield, 1983), I realized that

implementing material heterogeneity was not so hard. What a mistake when using

an iterative solver! It took me a long time to realize that, first, the self-effect was

incorrectly computed in Poly3D, and, second, that the special continuity conditions

at interfaces have to be solved simultaneously for a dual-element in order to have a

strict precedence rule.

Laurent Maerten helped me building models for validation.
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4.1 Résumé

Basées sur la solution analytique du déplacement du à une dislocation angulaire 3D, il

est possible de construire des boucles polygonales fermées avec un vecteur de Burgers

constant, et où le champ de contraintes est dérivé en utilisant l’élasticité linéaire dans un

milieu homogène, isotrope infini ou semi-infini. Dans ce code d’éléments frontières, chaque

faille est discrétisée par un maillage triangulaire où des conditions aux limites mixtes sont

prescrites.

Incorporer l’hétérogénéité des matériaux se fait en utilisant des doubles interfaces trian-

gulées avec des conditions de continuité et d’équilibre particulières. Les interfaces et les

failles peuvent donc avoir une géométrie complexe 3D sans trou ni chevauchement entre

éléments.

Nous utilisons un solveur itératif où le système d’équations est décomposé au niveau de

l’élément, permettant une formulation simple des conditions aux limites sur les failles et

sur les interfaces. Il est démontré que la stricte dominance diagonale ne peut être atteinte

que si les conditions de continuité et d’équilibre, pour un double élément donné, sont

résolues simultanément. En utilisant une méthode de Gauss-Seidel, nous avons donc réduit

la complexité tout en tenant compte automatiquement du caractère creux du système à

résoudre. De plus, en utilisant un solveur de type Jacobi, nous montrons que la résolution

du système d’équations peut simplement être parallélisée sur des procésseurs multi-cœurs.

Quelques comparaisons sont faites avec des solutions analytiques et numériques en 2D.

136



4.2 Abstract

Based on the analytical solution of the induced displacement caused by a 3D angular

dislocation, it is possible to construct closed polygonal loops with constant Burgers’s

vector, from which the stress is derived using linear elasticity in homogeneous, isotropic

whole- or half-space. In this BEM code, each fault is discretized as a triangulated mesh,

where mixed boundary conditions are prescribed.

Incorporate material heterogeneity is done by using triangulated interfaces made of dual-

elements with prescribed continuity and equilibrium conditions. Each interface and fault

can therefore have a complex 3D geometry with no gaps or overlaps between elements.

We use an interative solver where the system of equations is decomposed at the element

level, allowing a simple formulation of the boundary conditions for elements making a

fault, and continuity/equilibrium conditions at dual-elements making an interface. It is

shown that strict diagonal dominance can be achieved only if continuity and equilibrium

conditions, for a given dual-element, are solved simultaneously. Using a Gauss-Seidel-like

method, we consequently reduce the complexity while automatically taking care of the

sparsity of the system. Morevever, using a Jacobi-like solver, we show that the resolution

of the system can simply be parallelized on multi-core processors. Some comparisons with

a 2D analytical solution and a 2D BEM code are presented.

4.3 Introduction

In structural geology and geophysics, fault slip distributions play an important role for

the induced stress perturbation. This slip distribution depends mainly on the geometrical

configuration and boundary conditions along the faults, the remote boundary conditions

as well as the constitutive behavior of the host rock. In particular, it was shown that the

change in Young’s modulus of the rock can affect the slip distribution in a non negligible

way (Burgmann and Pollard, 1994). Therefore, it appears that heterogeneity cannot be

ignored.

In 2D, Crouch and Starfield (Crouch and Starfield, 1983) proposed a method to add

material heterogeneity into the Displacement Discontinuity Method (DDM). In 3D, it is

possible to apply this method using the Okada’s code (Okada, 1985) where fault surfaces

are discretized into planar rectangular elements. However, this formulation necessarily

introduces non-physical gaps and overlaps between adjacent elements which can perturb

the solution (Maerten et al., 2005).
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In this paper, we use the analytical solution of an angular-dislocation in elastic, homoge-

neous, isotropic whole- or half-space, where the stress is derived using linear elasticity in

homogeneous, isotropic whole- or half-space (Comninou and Dundurs, 1975). A bound-

ary element method is then formulated by discretization of all complex 3D faults into

triangular elements. This BEM code (called Poly3D (Thomas, 1993)) is very similar

to DDM ((Crouch and Starfield, 1983)), in which triangular elements of constant dis-

placement discontinuity are employed. The advantage compare to Okada’s code is that

three-dimensional fault surfaces more closely approximate curviplanar surfaces and curved

tiplines without introducing overlaps or gaps. Such formulation is very well suited to study

faults interaction in 3D, since only faults surfaces have to be discretized (see for example

(Maerten et al., 1999), (Maerten, 2000), (Muller et al., 2003) among others).

The addition of heterogeneous and isotropic materials is presented in this paper, and

particularly an iterative method for solving the system is investigated.

4.4 BEM formulation

The BEM formulation employed here is derived from the analytical solution of an angular

dislocation in 3D elastic whole- or half-space (Comninou and Dundurs, 1975). A trian-

gular dislocation (or more generally a polygonal dislocation) with constant displacement

discontinuity, or Burgers’s vector b, can be constructed ((Thomas, 1993), (Jeyakumaran

et al., 1992)) simply by superposition of six angular-dislocations (see Fig. 4.1).

Figure 4.1: Construction of a polygonal element. (a) angular-dislocation ,(b) a
dislocation-segment made of two angular dislocations, and (c) a polygonal-element made

of five dislocation segments of 10 angular-dislocations.

Mixed boundary conditions (BC) are prescribed, and when Neumann BC are specified,

we have to solve for the unknown Burgers’s components. After the system is solved, it

is possible to compute anywhere, within the whole- or half-space, displacement, strain or
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Figure 4.2: A dual-element part of an interface with equilibrium condition for trac-
tions (t1 = −t2) and continuity conditions for displacement (u−

1 = u−
2 ) on the negative

side (in global coordinate system)

stress at observation points as a postprocess.

Incorporate material heterogeneity (or general piecewise inhomogeneous bodies) requires

discretizing an interface between two regions of different material properties into two tri-

angulated meshes, one for each region. These two surfaces have the particularity to be

perfectly coalescent, but with opposite normals (see Fig. 4.2).

According to (Crouch and Starfield, 1983), continuity conditions on one side and equilib-

rium conditions on the other in element local coordinate system are applied (Crouch and

Starfield, 1983) at interfaces (Fig 4.2). Doing so requires particular attention for two main

reasons. First, since we are in 3D, it is impossible to have two opposite local coordinate

systems. Indeed, if xi denotes the vectors of the first coordinate system (i ∈ [0..2]) and

Xi the second, we have X0 = −x0, X1 = −x1 and X2 = X0 × X1 = (−x0) × (−x1) =

x0 × x1 = x2 6= −X2 (where × denotes the vector product). Consequently, we have to

express continuity conditions in global coordinate system. The second reason is that since

the displacement is discontinuous when going from one side of an element to the other, we

have to make sure that U−
ee, the self displacement influence matrix at the element center

on the negative side, is correctly computed. Due to the machine precision, it is not always

guaranteed, and consequently, we force the element center to be on the negative side by

applying an infinitesimal translation of the center along the reversed normal.

Therefore, equilibrium and continuity conditions can be written in global coordinate sys-

tem as:






1
τe= − 2

τe
1

u−e =
2

u−e

(4.1)

where polygonal elements e in region 1 and 2 are perfectly coincident (they are called dual
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elements in the remaining of the paper).

A global system of equations is then built, which incorporates both equlibrium, continuity

and boundary conditions:





1

TI

1

TF

2

TI

2

TF

−
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TF 0 0

0 0
2
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
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=
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

0

0
1

t0F
2

t0F






(4.2)

where I and F stands for elements at interfaces and faults respectively. D− and T

represent the displacement influence matrix on the negative side and the traction influence

matrix respectively, both of them in global coordinate system. The two first rows define

the equilibrium and continuity conditions at interfaces, while the last two represent the

classical boundary conditions applied to fault surfaces, and t0F represents the initially

prescribed traction boundary values for Neumann BC.

4.5 Iterative solver

In order to reduce the model complexity from O(n3) to O(n2) and to take advantage of

the sparsity of the system (Eq. 4.2), an iterative solver is used.

The Burgers’s vector solution at a regular boundary element e making a fault surface is

given by:

be = T−1
ee

{
t0e −

∑

f 6=e

Tefbf

}
(4.3)

where Tef denotes the traction influence matrix at the centroid of element e due to element

f .

Computing the solution for a dual-element part of an interface is tricky since we are dealing

with an iterative solver for which the convergence is guaranteed if and only if the system

is strict diagonal dominant (Golub and Van Loan, 1996), i.e. ∀i,∀j 6= i, |aii| > |aij|.
As an element e1 and its dual part e2 have the same geometry (only the orientation

changes), Te1e1
and Te2e2

have the same diagonal values, and strict diagonal dominance is

not honored (the same apply for D− matrices). Therefore, equilibrium condition in region

R1 and continuity condition in region R2 have to be solved simultaneously for a given
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dual-element. This leads to the following coupled elemental system:






1

be
2

be




 =




1

Tee

2

Tee

−
1

D−
ee

2

D−
ee




−1





−∑
f 6=e

1

Tef bf −
∑
g 6=e

2

Teg bg

∑
f 6=e

1

D−
ef bf −

∑
g 6=e

2

D−
eg bg





(4.4)

Eqs. (4.3) and (4.4) are then solved using a Gauss-Seidel procedure as shown in algorithm

4.1.

forall e ∈ S do
compute T−1

ee

end
while ǫ > tolerance do

forall element e ∈ region R1 do
if e 6∈ interface then

let t = initial traction vector of e
forall element f 6= e ∈ region R1 do

t = t− Tefbf
end
use Eq. (4.3)
update ǫ
set b to e

end
else

let t = 0 and u− = 0
forall element f 6= e ∈ region R1 do

t = t− Tefbf
u− = u− +D−

efbf
end
forall element g 6= e ∈ region R2 do

t = t− Tegbg
u− = u− −D−

egbg
end
use Eq. (4.4)
update ǫ

set
1

b to e

set
2

b to dual(e)
end

end

end

Algorithm 4.1: Solving iteratively the system of equations

This algorithm automatically takes care of the sparcity of the system, while allowing large

model computation since practically no memory allocation is required.
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4.6 Results

In order to check the validity of the formulation, we first compare the 2D analytical solu-

tion (Crouch and Starfield, 1983) of an annulus (with ν1 = 0.25,G1 = 1) inside a circular

hole in a large plate (ν2 = 0.25,G2 = 0.5) (Fig. 4.3.b), with a corresponding 3D model

(Fig. 4.3.a). The hole is subjected to an internal pressure of 0.001 Pa, and the computed

Figure 4.3: Comparison with a 2D analytical solution. (a) 3D model configuration,
(b) 2D model, (c) comparison of normalized σ3 (triangles) and σ1 (circles), where solid

lines are for the numerical solutions.

normalized σ3 and σ1 along the bold lines are compared. In order to avoid boundary

effects, the tubes, defining the annulus and the hole in 2D, are extended far from the zone

of interest, materialized by the squared observation plane (Fig. 4.3.a). It can be seen that

the computed values along the bold line in Fig. 4.3.a match the analytical solution.

Comparison with an existing 2D BEM code (Fig. 4.4) is described in (Burgmann and

Pollard, 1994). The model is composed of a penetrating fault inside an inclusion, and

various configurations are computed where the ratio of the Young’s modulus in the inclu-

sion to that of the host material, was set to 1, 0.1 and 10. It is subjected to a uniform

remote unit shear stress σyx of 1 MPa. The corresponding 3D model is composed of two

orthogonal vertical planar surfaces, one for the interface defining the inclusion and the

other for the penetrating fault. The other five sides of the box inclusion are not taken

into account. The bold lines in Fig. 4.4.a and 4.4.b represents the x-axis of Fig. 4.4.c.

Computed dip-slip component are reported onto the Y-axis. Again, the results match the

2D BEM solutions.
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Figure 4.4: Comparison with a 2D BEM code. (a) 3D model configuration, (b) 2D
model, (c) comparison of the computed dip-slip component onto the fault (along the
bold line in (a) and (b)). Triangles is for E∗/E = 1, circle for E∗/E = 0.1, and squares

for E∗/E = 10

.

4.7 Optimizations

Even if this iterative algorithm is in O(n2), it is slower than the direct solver, since at

each iteration and for each element, the influence matrices (traction and displacement)

due to all other elements have to be re-calculated.

4.7.1 Bufferized elemental matrices

We can highly increase the speed if we store elemental matrices Tef , D
−
ef , Teg and D−

eg from

Eqs. (4.3) and (4.4) for each element e. Of course, if we reach the maximum available

RAM (Random Access Memory), the remaining matrices have to be computed “on the

fly” in order to avoid memory “swapping”.

Furthermore, since the global system is never constructed nor inverted, there is no cu-

mulative roundoff error when using elemental matrices with floating precision (4 bytes)

instead double (8 bytes), allowing larger models to be computed.

Table 4.1 gives some examples of the gain of speed using a direct LU solver and the

iterative solver with and whitout allocation.

4.7.2 Parallelization on multi-core processors

The iterative solver allows taking advantage of the new multi-core processors architecture,

by parallelizing the computation onto different threads using the cross-platform package
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Table 4.1: Speed comparison (in seconds) for different model sizes, performed on Intel
Xeon 2Ghz with 8 cores running Linux Ubuntu. “LU” is the classical direct solver of
the whole system, “Iter” is the iterative solver with no memory allocation, “Alloc” is
the iterative solver with memory allocation, and “Thread” is the parallelized version on

2 or 8 threads. Models marked “x” where stopped before the end.
Model size LU Iter Alloc Thread 2 Thread 8

2200 49 380 9 8 6
4200 466 1018 46 26 8
9000 1145 5600 205 116 32

16000 x x 1200 690 205

(Trolltech, 2010) (where the number of threads k is defined by number of processors on

the mother board times the number of cores for each processor). At the beginning, the

system is split into k sub-systems (the decomposition technique is irrelevant), one for each

thread. Consequently, k iterative solvers are run in parallel. There is no need to update

the communication between each sub-process at the end of each iteration since they share

the same model memory. The only constraint is to update the new displacement onto the

elements at the end of each iteration by waiting for each thread to finish its job in order

to avoid read/write conflicts. This is simply achieved by using a Jacobi procedure instead

of the Gauss-Seidel one. Table 4.1 gives an overview of the computation time for k = 2

and k = 8.

4.8 Conclusions

Indirect BEM techniques appear to be an advantageous way of modeling stress pertur-

bation around faulted area in whole- or half-space since only the fault surfaces have to

be discretized as boundary elements. Implementing material heterogeneity requires little

effort and the use of an iterative solver have a great impact in terms of speed for the

system resolution and memory consumption. The Jacobi version of the iterative solver

also permits parallelization on multi-core processors in a simple and efficient way.

Since each dual element generates six unknowns into the system, it is necessary to reduce

the complexity, which is part of our current research.

144



References

Burgmann, R. and Pollard, D. D. (1994). Slip distribution on faults: effects of stress

gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction.

Journal of Structural Geology, 16(12):1675–1690.

Comninou, M. and Dundurs, J. (1975). The angular dislocation in a half space. Journal

of Elasticity, 5(3):203–216.

Crouch, S. L. and Starfield, A. M., editors (1983). Boundary element methods in solid

mechanics. George Allen and Unwin, London.

Golub, G. H. and Van Loan, C. F. (1996). Matrix computation. Johns Hopkins University

Press, Baltimore, MD.

Jeyakumaran, M., Rudnicki, J. W., and Keer, L. M. (1992). Modeling slip zones with tri-

angular dislocation elements. Bulletin of the Seismological Society of America, 82:2153–

2169.

Maerten, F., Resor, P. G., Pollard, D. D., and Maerten, L. (2005). Inverting for slip on

three-dimensional fault surfaces using angular dislocations. Bulletin of the Seismological

Society of America, 95:1654–1665.

Maerten, L. (2000). Variation in slip on intersectiong normal faults: Implications for

paleostress inversion. Journal of Geophysical Research, 105(25):553–565.

Maerten, L., Willemse, E. J. M., Pollard, D. D., and Rawnsley, K. (1999). Slip distribu-

tions on intersecting normal faults. Journal of Structural Geology, 21:259–271.

Muller, J. R., Aydin, A., and Maerten, F. (2003). Investigating the transition between

the 1967 mudurnu valley and 1999 izmit earthquakes along the north anatolian fault

with static stress changes. Geophysics Journal International, 154:471–482.

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space.

Bulletin of the Seismological Society of America, 75:1135–1154.

Thomas, A. L. (1993). Poly3d: a three-dimensional, polygonal element, displacement

discontinuity boundary element computer program with applications to fractures, faults,

and cavities in the earth’s crust. Master’s thesis, Stanford University.

Trolltech (2010). Qtconcurrent, http://www.trolltech.com.

145



CHAPTER 5

Adaptive cross approximation applied to

system resolution and post-processing for a

3D elastostatic problem using the Boundary

Element Method

F. Maerten(1,2)

(1) Igeoss, Montpellier, FRANCE

(2)University of Montpellier II, Geosciences, FRANCE

In press in Engineering Analysis with Boundary Element, 2010,

DOI: 10.1016/j.enganabound.2009.10.016

Reprinted with permission from Elsevier under the License Number 2426361287326.

Preamble

Enhancing a model using the techniques described in the previous chapters, leads to more

complex systems to solve. This is especially true when using heterogeneous materials.
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Since we are using boundary element techniques, the resulting system matrix is full pop-

ulated (dense). This implies three drawbacks. First, the memory needed to store the

system matrix grows as O(n2), where n is the number of unknowns. Second, the time

needed to solve the system is O(n2). Third, the time needed to compute the displacement,

strain and stress at observation grids as post-processing is O(pn), where p is the number

of observation points.

In this chapter, we try to reduce the complexity of such a formulation by approximation,

allowing large model computations. The post-processing is also optimized using the same

technique, and we show that the speed gained is a function of the position of the observa-

tion points according to the discontinuities making the model. As an example, computing

the displacement and stress field at one million observation points can be done in less

than 3 minutes using 9000 discontinuous elements, whereas it takes more than 17 hours

using the standard method.

About...
After giving a talk at the 30th conference on Boundary Elements and other Mesh

Reduction Methods, I discovered the H-Matrix technique, and hense this paper where

we use this thechnique for optimization of the iterative solver and post-processing...
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Aperçu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

148



5.1 Résumé

Nous présentons la technique d’optimisation basée sur les matrices hiérarchiques (H-

Matrix) combinée avec la méthode d’approximation adaptative croisée (ACA) appliquée à

des problèmes élastostatiques en trois dimensions (3D) et utilisant la méthode des éléments

frontières (BEM). Ce code est utilisé en géologie structurale et géomécanique pour évaluer

la déformation et le champ de contrainte perturbé associés à des surfaces de discontinuités

en déplacement. Une telle optimisation réduit significativement (i) le temps de calcul et

la mémoire nécessaire pour la résolution du système d’équations, mais plus important

encore (ii) le temps nécessaire pour effectuer le post-traitement aux points d’observation

où la déformation et le champ de contrainte perturbé sont à évaluer. Plus précisément, il

est montré que la structure H-matrix utilisée avec l’ACA, capte précisement la régularité

du noyau au cours de la phase de post-traitement en fonction de la position des points

d’observation, et optimise le calcul en conséquence. Combinée avec la parallélisation sur

architectures multi-cœurs, cette technique permet des calculs intensifs sur ordinateurs de

bureau ou portables. Des simulations numériques sont présentées, montrant les avantages

d’une telle optimisation par rapport à une approche classique.
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5.2 Abstract

We present the Hierarchical Matrix (H-Matrix) technique combined with the Adaptive

Cross Approximation (ACA) applied to a three-dimensional (3D) elastostatic problem

using the Boundary Element Method (BEM). This is used in structural geology and ge-

omechanics for the evaluation of the deformation and perturbed stress field associated

with surfaces of displacement discontinuity. Such optimization significantly reduces (i)

the time and memory needed for the resolution of the system of equations , but more

importantly (ii) the time needed for the post-processing at observation points where the

deformation and the perturbed stress field are evaluated. Specifically, it is shown that

the H-Matrix structure used with the ACA, clearly captures the kernel smoothness dur-

ing the post-processing stage according to the field point positions, and optimizes the

computation accordingly. Combined with the parallelization on multi-core processors,

this technique allows intensive computations to be done on personal desktop and laptop

computers. Numerical simulations are presented, showing the advantages of such opti-

mizations compared to the standard method.

Keyword: 3D boundary element method, Geomechanics, Hierarchical matrix, Adaptive

cross approximation, Multi-core parallelization

5.3 Introduction

For geophysicists and structural geologists, easy construction and rapid computation of

three-dimensional (3D) models composed of faults and fractures with complex geometries

is fundamental to the study of earthquake triggering and fault interactions, or to deter-

mining the perturbed stress field and deformation associated with displacement disconti-

nuities in Earth’s crust. Using a Boundary Element Method (BEM) greatly simplifies the

model definition since only the discontinuities have to be discretized, and the surrounding

rock does not need to be meshed using either triangles (2D) or tetrahedra (3D). In 2D,

Crouch and Starfield (Crouch and Starfield, 1983) proposed a method called the Displace-

ment Discontinuity Method (DDM). In 3D, a pioneering method is Okada’s code (Okada,

1985) where fault surfaces are discretized into planar rectangular elements. However,

this formulation necessarily introduces non-physical gaps and overlaps between adjacent

elements which perturb the solution (Jeyakumaran et al., 1992; Maerten et al., 2005).

Another method in 3D is the use of the analytical solution of an angular-dislocation in

an elastic, homogeneous, isotropic whole- or half-space (Comninou and Dundurs, 1975).
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An indirect Boundary Element Method is then formulated by discretizing all complex

3D faults into triangular elements. This BEM code, called Poly3D (Jeyakumaran et al.,

1992; Thomas, 1993; Maerten et al., 2005), employs triangular elements of constant dis-

placement discontinuity, and has been extended to incorporate heterogeneous materials

(Maerten and Maerten, 2008). The advantage compared to Okada’s formulation is that

three-dimensional fault surfaces more closely approximate curviplanar surfaces and curved

tip-lines without introducing overlaps or gaps between elements. Such a formulation is

very well suited to the study of fault interactions in 3D (see for example (Maerten et al.,

1999; Maerten, 2000; Muller et al., 2003) among others).

However, even if the problem dimension is one order less than the Finite Element Method

(FEM), it suffers from a fully populated system matrix because each triangular element

will be influenced by all the others, leading to a huge memory requirement, and long exe-

cution times to solve the system of equations (O(kn2) complexity when using an iterative

solver, where n is the number of triangular elements and k the number of iterations).

Moreover, doing post-processing at p observation points requires O(pn) operations for

each dependent variable, which can be considered as a penalty for users when p is large.

This is usually the case when studying the deformation and perturbed stress field for a

model using dense 3D grids as observation points.

We apply of the Adaptive Cross Approximation method (ACA) to the resolution of the

system of equations and more importantly to post-processing using multi-core architec-

tures, leading to a drastic reduction of the computational time as well as a memory

reduction, which allow large models to be computed on desktop or laptop computers.

The paper is organized as follows. Section 5.4 presents the formulation of the BEM

code used for the optimization. Section 5.5 reviews the Hierarchical Matrix (H-Matrix)

technique as well as the ACA method. Section 5.6 briefly describes the ACA applied to

resolution of the system of equations and section 5.7 is devoted to optimization in the

post-processing stage. Finally, section 5.8 discuss the parallelization of the post-process

on multi-core architectures.

5.4 Boundary Element formulation

For the boundary element method used here, we adopt the analytical solution of an angular

dislocation in an elastic whole-space (Yoffe, 1960) or half-space as described by Comninou

and Dundurs (Comninou and Dundurs, 1975), through the code Poly3D (Thomas, 1993).

This formulation is derived from the elastic theory of dislocations (Steketee, 1958b,a)

where a dislocation is represented by a cut in a infinite or finite elastic body. The two
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faces of the cut are deformed in different ways by applying some force distribution to

them, maintaining the original equilibrium state. The dislocation is then determined by

the shape of the cut and by the discontinuity of the components of the displacement vector

across the cut (called Burgers vector). It is obvious that the edge of the cut is a singular-

ity in general, but does not significantly perturb the results (Jeyakumaran et al., 1992).

Comninou and Dundurs (Comninou and Dundurs, 1975) give the analytical expressions

for the displacement components due to an angular dislocation in a elastic whole- or

half-space, which is used in our formulation to construct triangular elements made of six

angular dislocations and with constant displacement discontinuity. Then, any complex

discontinuous surface is discretized using such triangular discontinuous elements.

Given a point M in the elastic body, the displacement ů due to an angular dislocation

(A1, α1, β1) at point A1 is given by (see Fig. 5.1a)

ů(M) = Ů(M,A1, α1, β1)b (5.1)

and is a linear function of the Burgers vector b or displacement discontinuity vector.

α1 and β1 are the trending and plunging angles of the angular dislocation at point A1,

respectively. Coefficients of the matrix Ů are directly given by Comninou and Dundurs

(Comninou and Dundurs, 1975) and are not reproduced here. A bi-angular dislocation,

having two vertical legs, perpendicular to the free surface, is then constructed and is

made up of two angular dislocations (A1, α1, β1) and (A2, α1, β1) (Fig. 5.1b). The to-

tal displacement at point M is simply the superposition of the two angular dislocation

contributions

ū(M) = [Ů(M,A1, α1, β1) − Ů(M,A2, α1, β1)]b

= Ūb
(5.2)

Using the same process of superposition, a triangular element {A1, A2, A3} (or a polygonal

element in the general case) is build with three bi-angular dislocations (Fig. 5.1c), where

the legs under each vertex cancel, leaving a displacement discontinuity only in the triangle.

The superposition of these dislocations are vertical surfaces defining a volume. This

volume is semi-infinite and vertically trending compared to the global coordinate system

(Fig. 5.1.d). The total displacement at point M induced by a triangular dislocation made
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Figure 5.1: Construction of a polygonal element made of three dislocation segments.
(a) An angular dislocation construction in global coordinate system (xg,yg,zg) with its
trending (α1) and plunging (β1) angles. (b) Two angular dislocations are used to con-
struct a dislocation segment (A1, A2). (c) Three dislocation segments are superimposed
to create a triangular element (A1, A2, A3). (d) Triangular configuration where the legs
under each vertex cancel, leaving a displacement discontinuity only in the triangle. The
superposition of these dislocations are vertical surfaces defining a volume. This volume
is semi-infinite and vertically trending compared to the global coordinate system. (e)
The discretization of a three-dimensional fault into discontinuous triangular boundary
elements allows the construction of a surface with any desired tip-line and shape. The

dark triangle corresponds to the element in (c) and (d)

of three dislocation segments, is therefore given by

u(M) =
3∑

i=1

Ū(M,Ai, Ai+1, αi, βi)b

= Ub

(5.3)

Here, U is called the displacement influence matrix. Once the displacement due to a

triangular element is known, the total solution at a point M is recovered by considering

the influence of all triangular elements making the model.

The Burgers vector b, for a given triangular element, can be divided into two displacement

vectors, u+ on the positive side of the element and u− on the negative side, and are related
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by

b = u+ − u− (5.4)

which shows that the use of this double-layer kernel experiences a jump in the displace-

ment as a point M passes through the boundary of the domain. The Burgers vector is

expressed in the element local coordinate system constructed with x in the direction of

greatest inclination of the element, z in the direction of the element’s normal, and y is

the cross-product of z and x.

Similarly, the strain field at point M, due to triangular element, can be computed by

partial differentiation of (5.3) using the linearized Green-St Venant strain tensor

ǫ =
1

2
(∇u + ∇uT) (5.5)

where ∇u is the deformation gradient tensor. Equation (5.5) leads to the strain influence

matrix due to an angular dislocation

Eijk =
1

2

(
∂Uik

∂xj

+
∂Ujk

∂xi

)
(5.6)

which relates the strain at M and the element Burgers vector b by

ǫ(M) = Eb (5.7)

The stress tensor is given by Hooke’s law for infinitesimal deformation as

σij = 2Gǫij + λǫkkδij (5.8)

where G is the shear modulus, λ is the Lamé’s constant, δij is the Kronecker delta, and ǫ

is given by (5.5). Substituting (5.5) into (5.8) and using (5.7) yields the stress σ at any

point M induced by one triangular dislocation

σ(M) = Sb (5.9)

S is called the stress influence matrix at a point M due to a triangular dislocation.

The element traction can now be defined using Cauchy’s formula by resolving the stress

tensor σ onto the triangular element plane using its centroid as the collocation point

t = σn (5.10)
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where n represents the element’s normal. Combining (5.10) and (5.9), leads to

t = Tb (5.11)

where T = Sn is the traction influence matrix.

Using the traction formulation for a triangular dislocation, the total traction at the center

of a triangular element is simply the superposition of all tractions induced by the triangular

elements within the elastic body plus those due to a uniform (remote) stress state. A

system of linear equations can then be constructed to solve for the unknown Burgers

vector components

{t} = [T]{b} (5.12)

In equation (5.12), {t} represents the column of the initially prescribed traction vector

components of the triangular dislocations, [T] is a dense matrix of traction influence co-

efficients, and {b} is the column of unknown Burgers vector components.

The fully populated system (5.12) can be solved using an iterative solver for which the

complexity is of O(kn2) where k is the number of iterations and n the number of unknowns.

When all displacement discontinuities are known, stress, strain and displacement can be

computed within the elastic body at p observation points in O(pn).

5.5 Blockwise low-rank approximant

Among various methods of optimization (Rokhlin, 1985; Hackbusch and Nowak, 1989), the

H-Matrix technique (Hackbusch, 1999) combined with ACA (Bebendorf and Rjasanow,

2003) seems to be the most appropriate and the fastest to implement since approximation

is applied to the matrix entries of the system after assembling (algebraic approximation),

and does not rely on the kernel functions before assembling, as done by the multipole

methods (Rokhlin, 1985; Greengard and Rokhlin, 1987).

We describe the H-Matrix technique adopted in this paper as well as the ACA method, be-

fore concentrating on the optimization of the resolution of the system and post-processing.
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5.5.1 H-Matrices

H-Matrix is a method of clustering a matrix into several blocks such that near-field block

influences are evaluated in the usual way, whereas far-field blocks can be approximated

by interpolation or rank reduction.

In order to construct the block decomposition, a geometrical rule has to be chosen for the

clustering of the model. We adopt recursive bisection as it is fast and gives good results.

Using a kd-tree containing all sources and fields, a subdivision by bisection is operated

recursively, leading to a binary tree of blocks, where the root corresponds to the entire

model. The recursive subdivision stops when the number of items in a block reaches a pre-

scribed minimum. We end-up with a binary partition of the model made of blocks. Then,

what remains is to determine the near- and far-field block-pairs using this decomposition.

Given two blocks C1 and C2, the admissible condition

min(diam(C1), diam(C2)) 6 dist(C1, C2) (5.13)

is used to check whether C1 and C2 can be used for approximation. The diameter of a

set of points C, diam(C), is the maximal distance between any pair of points in C, and

is defined as

diam(C) = max
p,q∈C

‖ p− q ‖ (5.14)

The distance between two sets of points, dist(C,D), is defined as

dist(C,D) = min
p∈C,q∈D

‖ p− q ‖ (5.15)

In (5.13), C1 represents a block containing source elements, and C2 a block containing field

points. If the condition (5.13) failed, the subdivision of these blocks continues recursively.

Otherwise, {C1, C2} is considered as a candidate for far-field approximation. If the blocks

cannot be bisected anymore and the admissible condition is not met, near-field will be

used instead (full computation). This process starts at the root of the cluster tree, and we

end-up with a unique structure, called the H-Matrix. This hierarchical structure contains:






FC1,C2
block-pairs for near-field

SC1,C2
block-pairs for far-field

PC block parents of FC1,C2
and SC1,C2

(5.16)
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5.5.2 ACA

Once the matrix is partitioned into an H-Matrix structure, the far field block-pair SC1,C2

are approximated using the Adaptive Cross Approximation (Bebendorf and Rjasanow,

2003). According to the admissibility condition (5.13), blocks C1 and C2 are assumed to

be far apart so the underlying functions of the kernel are asymptotically smooth. This

simplification is not generated by approximating the kernel functions of the integral opera-

tor (see (Rokhlin, 1985; Hackbusch and Nowak, 1989; Greengard and Rokhlin, 1987)), but

rather by finding a low-rank approximant from few of the original matrix entries. There-

fore, it is not necessary to construct the whole matrix. One of the biggest advantages of

this method, compared to the kernel approximant, is that only the original matrix entries

are needed, and changing the kernel does not required recoding of the approximant.

Our goal is not to discuss the ACA algorithm in detail: for more informations see (Beben-

dorf, 2000, 2008; Bebendorf and Rjasanow, 2003).

5.6 H-Matrices applied to the resolution of the sys-

tem of equations

Using the H-Matrix structure defined previously, items within each terminal block consist

exclusively of triangular elements which are simultaneously sources and fields. While

building the structure recursively, the matrix AF related to a full block-pair FC1,C2
is

generated and stored without approximation. On the other hand, the matrix AS
k, of size

mk × nk and related to a sparse block-pair SC1,C2
, is generated using the ACA technique

and stored as two vector sets, u ∈ Rnk and v ∈ Rmk , satisfying AS
k =

∑k

l=1 ulvl
T, where

k is the rank-reduction approximation (Bebendorf and Rjasanow, 2003). AS
k is determined

for a prescribed accuracy δ and is related to A by

‖ A − AS
k ‖F6 δ ‖ A ‖F (5.17)

where ‖ . ‖F is the Frobenius norm.

The system of equations (5.12) is then solved iteratively using a block-Gauss-Seidel solver

(Saad, 1996). For geophysicists and structural geologists, this solver is preferable to the

GMRES because it incorporates inequality constraints on displacement, avoiding inter-

penetration of the elements, and traction, allowing frictional behavior without any in-

cremental loading, artificial parameters or new equations introduced within the system

(Maerten et al., 2009). The complexity of the algorithm is close to O(n), as shown in
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Figure 5.2: Time and memory versus size of the system to solve using ACA and
standard methods. Bold lines represent the time in seconds, thin lines are the allocated
memory in Mb. This graph suggests a complexity close to O(n) for both memory and

time

Fig. 5.2, for both time and memory. The ACA precision was set to δ = 10−1. Table

5.1 displays some results of the ACA, and these are compared to the standard iterative

method for various model sizes. Elapsed time, memory allocation and the number of iter-

ations are displayed. All models are run on a Intel bi-Xeon 2GHz with 8Gb of RAM, and

Table 5.1: Resolution of the system of equations : time, memory and number of
iterations comparison for different model configurations.

Dof Standard ACA Ratio

6,108
30s
142Mb
22 iter

10s
57Mb
85 iter

3
2.49
0.26

24,513
600s
2.3Gb
28 iter

70s
280Mb
93 iter

10
8.2
0.3

38,397
2700s
6Gb
41 iter

120s
456Mb
116 iter

23
13
0.35

68043
−
∼ 19Gb
−

240s
560Mb
151 iter

−
∼ 34
−

98364
−
∼ 39Gb
−

397s
1.5Gb
172 iter

−
∼ 26
−
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running Linux Ubuntu 8.10 64 bits. When the model size is greater than 38,397 degrees

of freedom (dof), we cannot launch the standard computation due to the limited size of

the RAM.

5.7 H-Matrices applied to post-processing at obser-

vation points

When all the unknown Burgers vectors are recovered as described in section 5.6, it is

possible to compute displacement, strain and stress at observation points anywhere within

the 3D elastic solid, and without any topological information attached to them.

For a model made of n triangular dislocation elements, the displacement at any point M

is determined by superposition, i.e. by contribution of all the elements within the elastic

body

u(M) =
n∑

i=1

Uibi (5.18)

where Ui is the displacement influence matrix at point M due to the ith element with bi

as Burgers vector.

Similarly, the strain and stress are given by

ǫ(M) = ǫR +
n∑

i=1

Eibi (5.19)

σ(M) = σR +
n∑

i=1

Sibi (5.20)

where Ei and Si represent the strain and stress influence matrices at point M due to an

element i, and ǫR and σR the far field strain and stress, respectively. In equations (5.19)

and (5.20), the perturbed strain/stress field due to slipping triangular elements is simply

superimposed on the regional strain/stress field. Since the number of observation points

can be greater than the number of elements, it is desirable to reduce the computation

time to be as fast as the resolution of the system of equations.

We describe here the principal contribution of this paper, that is, the use of the H-Matrix

formulation combined with the ACA technique to optimize the post-process, which is

of O(pn) for the standard method. Our goal is not to estimate the complexity of the

optimization since it depends on too many parameters related to the distribution of the

source and field points relative to each other. For the resolution of the system of equations,
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the problem was straightforward because the position of the field points was exactly the

same as the sources. However, we will give some benchmarks to show the potential of this

approach.

5.7.1 Matrix representation

As in section 5.5.1, a block decomposition is done first, then the near and far field block-

pairs are constructed. Compared to the method used for the resolution of the system of

equations, where items are simultaneously source and field, now field points are totally

different from source points, but these are added in the structure along with the sources.

Another major difference is that, terminal blocks do not store full or sparse matrices.

Instead, they are constructed and used ”on the fly” when needed, avoiding intensive

memory allocation.

When the recursive decomposition has finished and the block-pair structure has been built

(see definition 5.16), the post-process computation takes place. All near field block-pairs,

FC1,C2
, compute the displacement, strain and stress in the classical way by summing the

influence of the source elements to the field points, whereas all far field block-pairs, SC1,C2
,

use the ACA technique. To do so, we need to have a matrix representation of what has

to be computed. For a given source block C1 containing n1 triangular elements and field

block C2 containing n2 observation points, a way to represent the induced displacement,

strain or stress in matrix form is

A =





a00 · · · a0n1

...
. . .

...

an20 · · · an2n1



 (5.21)

where aij represents the vectorized form of the displacement, strain or stress at point i

due to element j, and are given by (5.22), (5.23) and (5.24), respectively.

aij = {ux uy uz}T
ij (5.22)

aij = {ǫxx ǫxy ǫxz ǫyy ǫyz ǫzz}T
ij (5.23)

aij = {σxx σxy σxz σyy σyz σzz}T
ij (5.24)

Let s be the size of aij, i.e. s = 3 for displacement and s = 6 for strain and stress.

In (5.21), each column represents a source element from C1, and a block-row of size s

represents a field point. The total displacement, strain or stress at an observation point i
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is computed by summing its corresponding rows from A. For instance, the contribution

at a field point i ∈ C2 due to all elements in C1, would be

wi =
∑

j∈C1

aij (5.25)

Using ACA leads to a sparse representation of A, denoted AS
k, and equation (5.25) is

optimally computed using

A ≈ AS
k =

k∑

l=1

ulv
T
l (5.26)

where ul ∈ RN2 and vl ∈ Rn1 ∀l ∈ [1, k], N2 = sn2, and k is the rank of the low-rank

approximant. The complexity of this algorithm, for a given AS
k, is O(k(n1 +N2)).

Algorithm 5.1 presents the optimized computation of wi for all i ∈ C2 using the Adaptive

Cross Approximation.

set N2 = s.n2

Input : set of vectors u and v from eq. (5.26)
Output: vector w = {0}N2

set r = {0}k // Temporary vector of dim k
for i=1 to k do

for j=1 to n1 do
ri += vi,j

end

end
for i=1 to N2 do

for j=1 to k do
wi+ = uj,i.rj

end

end

Algorithm 5.1: Summing displacement, strain or stress from n1 source points at n2 field
points using ACA. Notation: for a set of vectors v, vi,j represents the jth component of
the ith vector. The complexity is O(k(n1 +N2)), where s = 3 for displacement and s = 6
for strain or stress.

5.7.2 Example

The test model is composed of a single complex-shaped surface discontinuity made of 8,171

triangular elements with prescribed displacement discontinuity (computed from section

5.6), and an observation grid composed of 40,000 points for which we aim to compute the

displacement vector and stress tensor at each point. This grid, named ”Top”, is above and

close to the discontinuity. The model is embedded in a homogeneous elastic whole-space,
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Figure 5.3: Post-process model configuration. The observation grid is made of 40,000
points and the fault of 8,171 triangular elements, leading to 42 billion calls to the

fundamental solutions and their derivatives

and the simulation is done on the same computer as in section 5.6. This configuration

leads to 42 billion calls to the fundamental solutions and their derivatives in the whole-

space, and 84 billion calls in the half-space, and takes 40 and 80 minutes of computation

using the standard method, respectively.

Fig. 5.3 shows the model configuration used for the post-processing and Fig. 5.4 compares

the computed σxy to the standard method (bottom-right) for different tolerance δ of the

ACA (see equation (5.17) for the definition of δ). The minimum number of sources

and fields within a block is set to 16. We use a 10-band color table in order to show

the small variations compared to the standard method using different precisions for the

ACA. The elapsed time is t and r is the gained speed ratio compare to the standard

method. Even for a tolerance of δ = 10−1 (cf. Fig. 5.4, top-left), the displayed result is

comparable to the standard method (bottom-right) where the elapsed times are t = 68s

and t = 2400s, respectively, giving a speed ratio of 35. δ = 10−2 (bottom-left) gives a

better approximation for a speed ratio of 27. Table 5.2 summarizes the speed gained as

well as the error compared to the standard method. The computed overall error is given

by

error =
1

p
.

∑p
i=1 ∆σi

2

max(∆σi
2)

(5.27)

where

∆σi = σStandard
i,xy − σACA

i,xy (5.28)

for a given observation point i.

Even if the precision δ = 10−1 can be considered a good approximation, we provide the
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Figure 5.4: Comparison of σxy computed on 40,000 observation points for a model
composed of 8,171 triangular elements. Elapsed time comprises the computation of
the displacement and stress at all observation points. A 10-band color table is used in
order to better show the irregularities due to the approximation. Top left and right:
δ = 10−1, t = 68s, r = 35 and δ = 5.10−2, t = 87s, r = 27, respectively. Bottom
left: δ = 10−2, t = 152s, r = 16 (see text for explanations). Bottom-right: standard

method, t = 2400s, r = 1

Table 5.2: Post-processing: time comparison for different tolerances of the ACA. The
model is composed of 8,171 elements and 40,000 observation points.

Configuration Time Speedup Error(%)

Standard 2400s 1 -
ACA & δ = 10−1 68s 35 0.27
ACA & δ = 5.10−2 87s 27 0.1
ACA & δ = 10−2 152s 16 0.04

ACA & δ = 10−3 305s 8 0.0052
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Figure 5.5: Perspective view for different position of the grids (”Middle”, ”Top” and
”Far”) relative to the discontinuity

elapsed time for δ = 10−3, showing a non-negligible increase of the computational time

since a better precision leads to larger values of k.

5.7.3 Effect of field points distribution

Of course, the relative distance of the observation points to the sources controls the

structure of the H-Matrix, and therefore the speed of the post-processing. As an illus-

trative example, if we consider an observation grid of a given size far from the sources,

the H-Matrix structure will be such that only a few sparse block-pairs will be created.

In contrast, an observation grid cross-cutting the sources, will lead to many more full

and sparse block-pair, increasing the computational time. Consequently, the complex-

ity of the post-processing is clearly dependent on the distribution of the p observation

points relative to the n sources. This is shown in Fig. 5.5, where three identical observa-

tion grids, in terms of dimensions and number of observation points (40,000), have been

placed around the same discontinuity as in section 5.7.2, but in different locations. The

first grid is the same as in the previous example (”Top”), the second one cross-cuts the

sources (”Middle”), and the last one (”Far”) is at a distance two times the dimension of

the discontinuity. Table 5.3 summarizes the computational times for each grid using an

ACA precision δ = 10−1. For the standard method, whatever the position of the grid, the

time needed for the post-process is always 2400s. However, the H-Matrix clearly captures

the kernel smoothness: for the ”Middle” grid, the elapsed time is 136s, whereas for the

”Far” grid it is only 19s.

This can be understood by looking at the number of generated full and sparse blocks. To

do so, we ran several simulations for the ”Middle”, ”Top” and ”Far” grids, varying the

number of observation points from 40,000 to 160,000. We look at the number of generated

full and sparse blocks (table 5.4), as well as the mean sparse matrix size, rank and sparsity

(table 5.5).
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Table 5.3: Effect of the grid position made of 40,000 points. This table shows the
advantage of the H-Matrix structure which captures the ”smoothness” of the kernel for
post-processing. For each grid, the standard method leads to 2400s. Using H-Matrices,

the elapsed time differs considerably according to the position of the grid.

Grid Time (s) Speedup

Standard 2400s 1

Middle 136s 18
Top 68s 35
Far 19s 126

Table 5.4: Number of full (F) and sparse (S) blocks generated by the H-Matrices for
different sampling and position of the grids (”Middle”, ”Top” and ”Far”). p represents

the number of observation points.

p Middle Top Far

10k
F 5301
S 14828

F 2
S 1456

F 0
S 4

40k
F 6771
S 17762

F 0
S 994

F 0
S 6

90k
F 8575
S 21517

F 0
S 957

F 0
S 6

160k
F 7740
S 23147

F 0
S 656

F 0
S 10

For a given sparse matrix As
k ∈ R

n1×n2 of rank k, the sparsity Sp is given by

Sp = 100
k(n1 + n2)

n1n2

(5.29)

From these two tables, it is clear that the distance of a grid relative to the sources controls

the number of generated full and sparse blocks as well as the sparsity of the block-pairs.

For the ”Middle” grid, the number of generated sparse blocks ranges from 14,000 to 23,000,

whereas for the ”Far” grid it is only between 4 and 10. Furthermore, even if the sparse

matrix size for the ”Far” grid is large (see table 5.5), its sparsity is relatively low, ranging

from 0.24% to 0.68%, enabling fast computations.

Note that for the cases of the ”Top” and ”Far” grids, there is no full matrix generated,

avoiding O(np) calculation. For the ”Middle” grid, the generated full matrix size ranges

from (7 × 9) for 10,000 points to (27 × 10) for 160,000 points, which is relatively small

compared to the sparse matrices size. This is obviously preferable since the complexity of

a full matrix is the highest.
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Table 5.5: Sparse matrix information. Averaged matrix size (r = s.n2 and c = n1

stand for row and column, respectively), rank (k) and sparsity (Sp expressed in %) for
different model configurations.

p Middle Top Far

10k

r = 116
c = 42
k = 11
Sp = 36

r = 531
c = 177
k = 15
Sp = 11

r = 15000
c = 4085
k = 22
Sp = 0.6

40k

r = 333
c = 41
k = 11
Sp = 30

r = 2128
c = 267
k = 17
Sp = 7

r = 25300
c = 5447
k = 19
Sp = 0.4

90k

r = 613
c = 35
k = 10
Sp = 30

r = 4763
c = 278
k = 18
Sp = 7

r = 62250
c = 5447
k = 19
Sp = 0.4

160k

r = 1026
c = 32
k = 9
Sp = 29

r = 12946
c = 332
k = 19
Sp = 6

r = 52800
c = 6537
k = 14
Sp = 0.2

Finally, table 5.6 provides the elapsed time spent for the post-processing onto the different

grids, and shows the speed gained compared to the standard method. Fig. 5.6 plots the

corresponding times function for the number of observation points along a log-scale axis.

The elapsed time for the standard method is also displayed, showing its computational

inefficiency compared to the ACA method.

5.8 Parallelization on multi-core CPU

Today, processors are based on multi-core architectures, and the number of cores within

the CPU is growing from year to year. 8-core processors are currently available, and in

the near future, 16- or 32-cores will be introduced onto the market of personal desktop

and laptop computers. It is obviously natural to use such architectures for parallelization

when possible for any algorithms. We present the parallelization of the ACA for post-

processing, the principle being the same for solving the system of equations.
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Table 5.6: Post-process time (in seconds) for various sampling and position of a grid,
and comparison with the standard method. The ACA precision is δ = 10−1. The second
row for each value of p represents the speedup ratio relative to the standard method.
All grids have the same geometrical dimensions, and only the position and the sampling

(number of points) change.

p Middle Top Far Standard

10k
75
8

40
15

7
86

600

40k
136
18

65
37

10
240

2400

90k
210
26

106
51

14
386

5400

160k
510
19

216
44

23
417

9600

Figure 5.6: Post-processing optimization. Number of observation points versus time
for different position of the grids (”Middle”, ”Top” and ”Far”), and comparison with

the standard method. Note the log scale for the x-axis
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The basic idea is to split the set of observation points into Nc groups corresponding to

the number of available cores onto the CPU, and leading to Nc threads that have to be

run in parallel. For each thread, we use the same technique as described in section 5.7,

and all threads are put into a thread-pool. The package used for the thread management

is the QtConcurrent package (Trolltech, 2010), which greatly simplifies the programming

and can be employed without any X-server.

Since a global update has to be done after all threads have finished their job (generally, an

observation point is part of a more complex structure, where memory allocation is done

for a set of observation points, requiring barrier conditions to avoid read/write conflicts),

the total elapsed time will be equal to the slowest thread. Therefore, the major difficulty

is to judiciously split the set of observation points in the sense of the H-Matrix, so that

all threads will have the same amount of work to do. Since the approximation at field

points is based on the distance to the sources, we classify the observation points using the

distance to the sources barycenter, and a priority queue based on this distance is used.

While traversing the queue entirely, observation points are placed into the Nc threads

alternatively, leading to a more balanced representation than a naive subdivision.

Then, each thread constructs in parallel the H-Matrix representation, where all triangular

elements are introduced as sources, and runs the post-processing onto their associated field

points. The thread-pool, put in wait-condition, waits until all threads have finished their

job before effectively setting the computed values at observation points.

5.8.1 Example

We use the same model as described in section 5.6 and the same computer configuration.

Each processor on the mother board has 4 cores, leading to 8 available cores.

Results are given in table 5.7. It can be seen that the ratio of the time needed by the ACA

using 1 core and 8 cores is closed to 4 and not 7.5 as with the standard method. This is

mainly due to the partition of the problem into Nc sub-problems. Since the decomposition

in H-Matrix is done for each thread, the total number of block-pairs increases, and the

rank-reduction for a given SC1,C2
block-pair within a thread cannot be as optimal as in the

non-parallelized version. Also, it can be shown that this ratio is not due to the unbalanced

partition of the thread work. Table 5.8 presents the elapsed time spent for the slowest

and fastest threads during the post-processing using different sampling of the observation

grid, and shows that work done by the threads are almost identical. In this table, ∆

represents the difference in time normalized to the time of the fastest thread.
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Table 5.7: Parallelized post-processing on multi-core architecture: time comparison
for a model composed of 8,171 elements and the ”Top” grid made of 40,000 observation
points. The tolerance used for the ACA is δ = 10−1. Columns Speedup (1) and (2)

refer to the sequential standard and ACA versions, respectively.

Config. Cores Time (s) Speedup(1) Speedup(2)

Standard 1 2400 1 −
Standard 4 632 3.8 −
Standard 8 324 7.5 −
ACA 1 68 35 1
ACA 4 36 67 1.89
ACA 8 18 133 3.78

Table 5.8: Post-processing time needed by the threads for various number of the
observation points. The number of threads is 4, and ACA precision is δ = 10−1. p
represents the number of observation points and ∆ the difference in time normalized to

the time of the fastest thread.

p Min time (s) Max time (s) ∆ (%)

10k 19.5 22.1 13

40k 34.3 35.6 3.8

90k 55.7 57.5 3.23

160k 68.6 71.1 3.6

5.9 Conclusions and perspectives

The H-Matrix technique combined with Adaptive Cross Approximation and paralleliza-

tion on multi-core architectures, for the 3D elastostatic boundary element code, allows

one to quickly solve systems that would usually require a prohibitive amount of RAM

and time. This method was successfully applied to post-processing at observation grids,

showing the advantage of such an approach in terms of speed and the automatic capture

of kernel smoothness.

This technique has many consequences in term of future developments of the Poly3D

extensions, and we just mention a few of them.

1. First, modeling of material heterogeneity (Maerten and Maerten, 2008), which re-

quires the discretization of an interface separating two regions of different material

properties as a doubly triangulated discontinuity with traction boundary conditions

for the three axes (six unknowns for each doubly triangulated element), will be possi-

ble for complex models involving many regions. This kind of modelization generates
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many degrees of freedom and requires a prohibitive amount of RAM when using the

classical method of resolution.

2. Second, doing slip inversion (Maerten et al., 2005) using an iterative solver with

inequality constraints on displacement (Maerten et al., 2009) will greatly benefit

by the post-process optimization, as each triangular element is function of all ob-

servation points where a measure is used for the inversion. If we consider dense

interferograms generated by satellites, the number of observation points can be con-

siderable, and using a classical weighted damped least-squares approach without

optimization is unrealistic.

Finally, it is our intention to extend the parallelization technique on GPU (Graphic Pro-

cessor Unit) using CUDA (Keane, 2006) or OpenCL (Khronos-Group, 2009) language.
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Part II

Inverse modeling using BoundaryElement Method
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Aperçu

Comme indiqué dans la partie I, la géométrie des objets actifs (discontinuités) joue un

rôle important dans le comportement mécanique d’une roche. Toutefois, en plus de cette

géométrie des objets (failles et fractures) qui peut être déduite de l’imagerie sismique

et des études de terrain, d’autres types de mesures peuvent être utilisées pour mieux

contraindre un modèle ou pour retrouver des paramètres manquants. A titre d’exemple,

rien n’a été dit sur l’orientation et les magnitudes du champ de contraintes à l’infini qui

est imposé à un modèle pour calculer de combien les discontinuités doivent glisser afin

d’accomoder un tel chargement. L’observation des déformations en surface (données GPS,

inclinomètres, images satellites, ...) peut être utilisée pour retrouver les distributions de

glissement sur les failles qui ont généré ces déformations (chapitre 6). Une telle inversion,

cependant, donne une estimation de la distribution des déplacements sur les failles, mais

ne fournit aucune information sur la ou les paleo-contraintes (orientation et magnitudes)

ayant généré de tels déplacements. Néanmoins, cette inversion linéaire en déplacement

donne de très bons résultats pour les évènements co-sismiques comme démontré dans le

chapitre 6, ainsi que dans le chapitre 7, où le séisme de Nias (Indonésie), qui a eu lieu

en 2005, est étudié. L’annexe A présente une méthode itérative rapide pour faire de

l’inversion de déplacements, et est basée sur la méthode décrite dans le chapitre 5.

Le chapitre 8 présente une technique basée sur la géomécanique pour retrouver une paléo-

contrainte qui a induit les déplacements observés sur les failles. Cette technique est limitée

à un évènement tectonique, mais peut donner une bonne estimation de ce qu’aurait pu

être l’orientation et les magnitudes de la charge tectonique, ceci tout en utilisant les

interactions mécaniques entre discontinuités.

Finalement, le chapitre 9 décrit une nouvelle technique pour faire de l’inversion de paléo-

contraintes en utilisant plusieurs ensembles de données mesurées, tels les plans de frac-

turation, l’orientation de plans de failles secondaires (qui se sont formés dans le voisinage

des failles actives majeures), les mesures GPS, InSAR et les déplacements mesurés sur les

failles.
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Overview

As shown in part I, the geometry of the active objects (fault discontinuities) plays an

important role in the mechanical behavior of a faulted rock mass. However, in addition

to the geometry of the objects (faults and fractures) that can be deduced from seismic

images and field studies, other kinds of measurements can be used to better constrain

a model or to retrieve missing parameters. As an example, nothing was said about the

orientation and magnitude of the far field stress or strain that has to be imposed on a

model in order to calculate how the discontinuities accommodate such a tectonic loading.

Observations of deformations at the ground surface (e.g. GPS, tiltmeters, satellite im-

ages, ...) can be used to invert for slip distributions on the faults that generated such

measured deformations (chapter 6). Such inversion, however, gives an estimate of the slip

distribution on the faults, but does not provide any information on the tectonic loading

(orientation and magnitudes) as it might be a consequence of multiple tectonic events.

Nonetheless, this linear slip inversion gives very good results for co-seismic events as

demonstrated in chapter 6 as well as in chapter 7, where the Nias earthquake (Indonesia),

which occurred in 2005, is studied. Appendix A presents a fast iterative method for doing

slip inversion, and is based on the method described in chapter 5.

Furthermore, chapter 8 presents a geomechanically-based technique to retrieve the pale-

ostress that induced observed displacements on the faults. This technique is limited to

one tectonic event, but can give a good estimate of what could have been the orientation

and magnitude of the tectonic loading using mechanical interactions. Chapter 9 describes

a new technique for doing paleo stress inversion using multiple data sets, such as fracture

and secondary fault plane orientations (that formed in the vicinity of active larger faults),

GPS, InSAR and fault slip measurements.
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CHAPTER 6

Inverting for Slip on Three-Dimensional Fault

Surfaces using Angular Dislocations

F. Maerten(1), P. Resor(2), D. D. Pollard(3), L. Maerten(1)

(1) Igeoss, Montpellier, FRANCE

(2) Department of Earth and Environmental Sciences, Wesleyan University, Middletown,

Connecticut, USA

(3) Stanford University, CA, USA

Published in BSSA, 2005, v. 95(5), pp 1654-1665

With kind permission from Dr. Andrew J. Michael, BSSA Editor in Chief.

Preamble

Given observations of deformation at the ground surface due to an earthquake, as well

the 3D geometry of the faults, is it possible to retrieve the displacement on the faults that

generated such observed displacements? The following paper provides an elegant solution

using complex triangulated fault surfaces, avoiding artifacts due to gaps and overlaps of

elements while using rectangular element formulations. It is shown for the Hector Mine

earthquake that such a formulation gives better results than a formulation using classical

rectangular dislocations.
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About...
After Dave Pollard and Phil Resor asked me to study the possibility of doing

slip inversion using Poly3D, I wrote down the formulation using a Least Squares

approach combined with a Tikhonov regularization with Laplacian smoothing for

triangulated surfaces. The conceptual model and the programming was done in few

weeks, and Laurent Maerten helped me to validate the model on synthetic examples

as well as on the Chichi earthquake, Taiwan (see the Stanford Structural Geology

and Geomechanics web page for a poster presentation).
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6.1 Résumé

La qualité croissante des données géodésiques (InSAR, tableaux denses de mesures GPS)

maintenant disponibles aux géophysiciens et géologues n’est pas pleinement exploitée lors

de la procédure d’inversion du glissement sur les failles. La plupart des méthodes courantes

d’inversion ustilisent des éléments de dislocation rectangulaires pour modéliser les surfaces

de ruptures d’un modèle, et donc simplifient exagérément la géométrie des failles. Ces

simplifications géométriques peuvent conduire à des incohérences lors de l’inversion du

glissement sur les failles pour un tremblement de terre donné, et ils s’opposent à une

compréhension plus complète du rôle de la géométrie des failles dans le processus d’étude

des tremblements de terre. Nous avons développé une nouvelle méthode d’inversion de

glissement en trois dimensions basée sur la solution analytique d’une dislocation angulaire

dans un milieu semi-infini, linéaire, élastique, homogène et isotrope. Cette approche utilise

le code Poly3D qui emploie un ensemble d’éléments triangulaires à déplacements constants

et discontinus pour modéliser des surfaces de failles. L’utilisation de tels éléments permet

de construire des modèles de failles qui approximent de façon plus précise les surfaces

courbes tridimensionnelles délimitées par des bords complexes: formes qui sont couram-

ment imagées par la réflexion sismique en trois dimensions et déduits des données de

réplique de tremblements de terre. Nous démontrons le potentiel d’une telle méthode

pour modéliser des géométries de ruptures en trois dimensions en inversant le glissement

associé au séisme d’Hector Mine (1999). Il en résulte que le modèle évite les anomalies

de déplacement liées à la superposition de dislocations rectangulaires utilisées dans les

modèles précédents, améliorant l’ajustement aux données géodésiques de 32%, et hono-

rant les surfaces de ruptures observées, ce qui permet des comparaisons plus directes entre

les données géologiques et géodésiques sur les distributions de glissement.
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6.2 Abstract

The increasing quality of geodetic data (InSAR, dense GPS arrays) now available to

geophysicists and geologists are not fully exploited in slip inversion procedures. Most

common methods of inversion use rectangular dislocation segments to model fault rup-

tures, and therefore over-simplify fault geometries. These geometric simplifications can

lead to inconsistencies when inverting for slip on earthquake faults, and they preclude a

more complete understanding of the role of fault geometry in the earthquake process.

We have developed a new three-dimensional slip-inversion method based on the analytical

solution for an angular dislocation in a linear-elastic, homogeneous, isotropic, half-space.

The approach uses the boundary element code Poly3D that employs a set of planar trian-

gular elements of constant displacement discontinuity to model fault surfaces. The use of

triangulated surfaces as discontinuities permits one to construct fault models that better

approximate curved three-dimensional surfaces bounded by curved tiplines: shapes that

commonly are imaged by three-dimensional reflection seismic data and inferred from re-

located aftershock data.

We demonstrate the method’s ability to model three-dimensional rupture geometries by

inverting for slip associated with the 1999 Hector Mine earthquake. The resulting model

avoids displacement anomalies associated with the overlapping rectangular dislocations

used in previous models, improving the fit to the geodetic data by 32%, and honors the

observed surface ruptures, thereby allowing more direct comparisons between geologic and

geodetic data on slip distributions.

6.3 Introduction

Geodetic inversions are a useful tool for estimating kinematic source parameters of earth-

quakes (e.g., (Stein and Barrientos, 1985; Lin and Stein, 1989; Freymueller et al., 1994;

Feigl et al., 1995; Yu and Segall, 1996; Wright et al., 1999; Reilinger et al., 2000)). Us-

ing static surface displacements associated with a given earthquake researchers seek to

better understand earthquake rupture processes by inverting for fault geometry and/or

slip distributions. The challenge is to find the most accurate geometry and slip distri-

bution supported by the data. The increasing availability of spatially rich geodetic data,

specifically dense GPS networks and synthetic aperture radar interferometry (InSAR), of-

fers researchers opportunities to construct increasingly complex geometric and kinematic

models of earthquake ruptures (e.g., (Johnson et al., 2001; Bürgmann et al., 2002; Jónsson
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et al., 2002; Sandwell et al., 2002; Simons et al., 2002)). Inverting for both fault geometry

and slip is a challenging non-linear problem. Here we prescribe a realistic geometry and

carry out the linear inversion for slip. We show, in particular, how spatially dense data in

the near-field admit models that incorporate realistic geometry when estimating coseismic

slip.

Geological and geophysical observations reveal that faults typically are not single planar

surfaces bounded by rectangular tiplines, but are composed of individual curved surfaces

with curved tiplines organized as multiple echelon, conjugate, and intersecting segments.

This conceptual model of fault geometry is based on observations from a variety of sources

including studies of earthquake surface ruptures (e.g., (Zhang et al., 1999; Lin et al., 2001;

Aydin and Kalafat, 2002; Treiman et al., 2002)), exhumed faults (e.g., (Martel, 1990;

Cartwright et al., 1995; Willemse et al., 1997; Peacock, 2002)), reflection seismology (e.g.,

(Willemse et al., 1996; Walsh et al., 1999; Maerten et al., 2000; Kattenhorn and Pol-

lard, 2001)), and aftershock patterns (e.g., (Waldhauser and Ellsworth, 2000; Carena and

Suppe, 2002; Kilb and Rubin, 2002; Chiaraluce et al., 2003)). To more precisely estimate

coseismic slip and thus to advance the understanding of earthquake source parameters

we advocate the incorporation of curved fault surfaces and tiplines in geodetic inversions

of coseismic deformation. Previous workers have attempted to incorporate non-planar

geometry by constructing faults from multiple rectangular dislocations after the solution

of Okada (e.g., (Johnson et al., 2001; Jónsson et al., 2002; Simons et al., 2002)). Although

these models have proved effective in certain applications, the curved surfaces and tiplines

of faults cannot be modeled with a set of rectangular dislocation segments without intro-

ducing non-physical gaps and overlaps.

In this paper we present a new method for slip inversion based on the solution for an

angular dislocation in an elastic half-space, employing triangular elements of constant

displacement discontinuity to model fault surfaces. Discretization of surfaces into trian-

gular elements allows for the construction of three dimensional fault surfaces that more

closely approximate curviplanar surfaces and curved tiplines without introducing overlaps

or gaps, consistent with the full extent of available data. We demonstrate the strengths

of this new method through a brief analysis of the fault rupture due to the 1999 Hector

Mine earthquake (Mw 7.1). We start with a planar segmented fault model based on the

work of Jónsson et al. (Jónsson et al., 2002) and compare these results to models that

more closely honor the observed surface rupture pattern along multiple curved and in-

tersecting fault segments. The resulting inversions show that models that more closely

honor the geometry of the surface ruptures also yield significant improvements in the fit

to the geodetic data.
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6.4 Method

Displacements dp at points (p) on the Earth’s surface due to slip me on elements (e) of a

buried fault can be described by a set of linear equations

dp = Ge,pme + E (6.1)

where E are the observational errors and Ge,p are the influence coefficients, or Green’s

functions, that describe how slip on a fault element produces displacement at the Earth’s

surface. This set of equations can be used to forward model surface displacements from

a known fault geometry and slip distribution, or as an inverse problem to model sub-

surface fault geometry and slip from an observed set of surface displacements. Inversion

for fault geometry is highly non-linear and thus computationally intensive even for very

simple geometries (Cervelli et al., 2001), while inversion for slip is a linear inverse problem

and thus relatively straight-forward. In this paper we present a new approach to solving

the linear inverse problem, inverting for slip on faults with geometry that is determined

a priori. Ideally the geometry is constrained through integration of multiple data sets

such as mapped surface ruptures, high-precision aftershock locations, reflection seismol-

ogy, and/or the results of non-linear inversion for a simplified fault geometry (e.g., for the

Hector Mine earthquake, see (Hurst et al., 2000; Jónsson et al., 2002; Simons et al., 2002)).

To implement the inverse problem, we seek a solution that simultaneously minimizes the

L2 norm (hereafter annotated with ‖‖2) of the data misfit and of the model roughness.

This approach allows fitting of the data to a desired threshold while introducing the geo-

logic concept that slip distributions are relatively smooth rather than oscillatory (Harris

and Segall, 1987). Minimizing the model roughness acts to prevent over-fitting of noisy

data and compensates for underdetermined model parameters and geometric inaccuracies.

The slip inversion problem can thus be written as

min‖Gm− d‖2 + ǫ2‖Dm‖2 (6.2)

where the first term ‖Gm − d‖2 is the L2 norm of the data misfit and the second term

ǫ2‖Dm‖2 is a measure of the model roughness. The data misfit is calculated by subtract-

ing the observed displacements d from the predicted displacements, which are themselves

calculated by multiplying the Green’s functions G by the modeled slip m. In the case

of InSAR data, the model also includes apparent surface displacements that appear as
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a uniform tilting associated with errors in modeling orbital parameters during data pro-

cessing (Hanssen, 2001). The model roughness term ǫ2‖Dm‖2 is composed of a scalar

smoothing parameter ǫ multiplied by the L2 norm of a discrete second-order difference

operator D. Inclusion of this term acts to minimize the second derivative, or Laplacian of

the modeled slip ∇2m, and thus minimizes the non-dimensional model roughness, defined

as the change in fault slip per length of fault squared and typically reported in units of

cm/km2 (Harris and Segall, 1987). The value of ǫ controls the amount of smoothing and

may be determined either from a trade-off curve, seeking to balance smoothing with data

fitting or by cross-validation (Harris and Segall, 1987; Du et al., 1992).

The approach we take to solve the slip inversion problem differs from previous work in the

form of the Green’s functions and the smoothing operatorD. The Green’s functions we use

are based on the analytical solution for the elastic boundary value problem of an angular

dislocation (Fig. 6.1a) in an infinite “whole” or semi-infinite “half” space composed of a

homogeneous and isotropic linear-elastic material (Comninou and Dundurs, 1975).

Comninou and Dundurs extended the solution for an angular dislocation in a whole space

(Yoffe, 1960) to an elastic half space. In the half-space solution an angular dislocation

lies in a vertical plane with one leg parallel to the z axis and a second leg inclined at

angle ξ from the first. A dislocation segment can be constructed by superimposing two

coplanar angular dislocations with opposite Burger’s (slip) vectors and equal angles β, at

two different vertex locations, ξ1 and ξ2 (Fig. 6.1b). The two dislocations cancel each other

except for the area of underlap, the dislocation segment. The solution for a triangular

dislocation patch (Fig. 6.1c) is generated by superposition of three angular dislocation

segments that share a common set of vertices, ξ1 through ξ2 (Jeyakumaran et al., 1992).

The vertical legs of the dislocations cancel leaving only the triangular dislocation patch.

Fault surfaces can be constructed by joining multiple triangular patches or elements.

This solution was implemented in a C-language computer program, Poly3D (Thomas,

1993), that calculates the three dimensional components of displacement, strain, and stress

anywhere in the elastic body. The first author has subsequently rewritten the code in C++

to: (i) make the code modular, thereby facilitating the development of new applications

such as the inverse formulation; (ii) correct the displacement field for points located

underneath dislocation elements; (iii) optimize the computation time; and (iv) develop a

3D graphical user interface (GUI) for the creation of Poly3D models and visualization of

model results . For more information and to download an academic version of the code

see http://pangea.stanford.edu/research/geomech/Software/Software.htm1. The Poly3D

code provides a direct kinematic solution with prescribed displacement discontinuities on

the elements making up the model faults, and a mechanical solution which prescribes
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Figure 6.1: Construction of a triangular dislocation patch from a set of six angular
dislocations. (a) A single vertical angular dislocation located at point ξ1 in a homo-
geneous elastic half-space where Cartesian coordinate x3 is vertical, positive upward
and the x1-x2 plane is the traction-free surface. β1 is the angle between the vertical
and sloping legs of the dislocation and ω is the smaller angle between the x1 axis and
the strike line of the dislocation plane. (b) Two-coplanar angular dislocations of equal
angles beta may be superimposed to create a dislocation segment with vertical legs.
(c) A triangular dislocation patch can be generated by superimposing three dislocation
segments that share three common locations (ξ1, ξ2, ξ3). The vertical dislocation lines

cancel leaving a tilted triangular dislocation element (after (Thomas, 1993)).

a uniform remote stress or strain state and tractions at the midpoint of each element,

or mixed boundary conditions. For slip inversion we use the kinematic solution for the

Green’s functions implemented in the code Poly3Dinv available with documentation at

http://pangea.stanford.edu/research/geomech/Software/Software.htm.

Due to the use of triangular elements, our calculation of the discrete Laplacian operator

∇2, also differs from previous slip inversions. Instead of a finite-difference formulation we

use the scale-dependent umbrella operator (Desbrun et al., 1999),

1Now available at https://support.igeoss.com
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∇2mi =
2

Li

3∑

j=1

mj −mi

hij

(6.3)

to approximate the discrete Laplacian for a triangulated 2-manifold. For a triangular

element i (Fig. 6.2), with adjacent elements j on its three sides (j = 1 : 3), hij represents

the distance from the center of element i to the center of element j, mj is the slip vector

of element j, and Li is the sum of the element center distances, Li =
∑n

j=1 hij.

Figure 6.2: Discrete Laplacian operator used in Poly3Dinv to smooth the slip dis-
tribution. Each displacement discontinuity component of an element (ei, dark gray) is
smoothed relative to its adjoining neighbors (ej , light gray). Distances between ei and

ej centers are hij .

Rearranging to isolate diagonal (mi) and off-diagonal terms (mj) yields a smoothing

operator of the form

mj(
2

Lhij

) +mi(
∑ 1

hij

) (6.4)

Superimposing this relation for all elements of the model yields a smoothing operator

(sparse matrix) that is used within the least squares formulation to minimize the roughness

of the solution. This operator is dependent on the length scale of the model, an effect

that can be removed by normalizing by the average value of hij.

In order to solve the linear minimization problem (eq. 2), we use a weighted damped least

squares approach:

m = (GTWeG+ ǫ2DTD)−1GTWed (6.5)
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where We is a weighting matrix that defines the relative contribution of each data point

to the total prediction error (Menke, 1984). We is typically a diagonal matrix calculated

from the normalized inverse of the data measurement errors. In multiple inversions entire

data sets may also be weighted relative to one another based on the relative measurement

precision of each data set (e.g. InSAR vs GPS, (Jónsson et al., 2002)). Equation (6.4) is

solved given the fault geometry and the input data (GPS or InSAR).

Additional constraints can be applied to reach a solution that is consistent with geological

concepts of faults. For example, a zero slip constraint may be applied at known fault tips.

These may include the base of the seimogenic crust and lateral fault tiplines extending

downward from mapped rupture terminations at the earth’s surface. In addition, individ-

ual slip components can be constrained to be unidirectional, e.g. right lateral, left lateral,

reverse or normal only, or any combination of dip slip and strike slip. These constraints are

imposed by using an iterative solution algorithm derived from the FNNLS solver (Bro and

de Jong, 1997) to solve equation (6.4) with any combination of non-negative, non-positive,

or unconstrained slip components.

6.5 Application to the 1999 Hector Mine Earthquake

We have chosen to evaluate the new approach to slip inversion using the October 16,

1999 Hector mine earthquake (Mw 7.1) because of the complexity of the observed surface

rupture geometry (Fig. 6.3) and the availability of high-quality data (Fig. 6.4) (e.g.,

(Jónsson et al., 2002; Sandwell et al., 2002; Simons et al., 2002; Treiman et al., 2002)).

The Harvard CMT fault plane solution for the event (Dziewonski et al., 2000) has a mo-

ment of 5.98 × 1019Nm, a strike of 336◦ and dip of 80◦ for the inferred primary nodal

plane, and a rake of 174◦ for slip on this plane (Table 1).

The Hector Mine Earthquake ruptured a set of fault segments with a trace length of 48

km in the Mojave Desert of California (Treiman et al., 2002). Surface ruptures occurred

on portions of the Lavic Lake fault, an unnamed northeast branch fault, and two strands

of the Bullion fault (Fig. 6.3). These included intersecting, echelon, and curving fault

segments as well as several parallel segments at the southern terminus of the surface

rupture. Observed offsets of surface features had a consistent right-lateral sense with a

maximum value of 5.25 ± 0.85 m. The sense of vertical offsets was more variable, except

in the Bullion Mountains area where there was consistent east-up offset (Treiman et al.,

2002).
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Figure 6.3: Map of the Hector Mine earthquake surface rupture (Treiman et al., 2002).
Gray lines are surface trace of 6-segment model (Fig 6.6 C and D). Lettered sections
refer to graphed segments in figure 6.6. Upper right inset shows location of Hector mine

earthquake (dark gray rectangle) in southeastern California.

Moment tensor solutions (e.g, (Centroid Moment Tensor , CMT; Dziewonski et al., 2000)),

geodetic inversions (Hurst et al., 2000; Jónsson et al., 2002; Simons et al., 2002), and after-

shock distributions (Hauksson et al., 2002) all suggest that the faults dip steeply ( 72−84◦)

to the northeast. Multiple geophysical data sets are available for modeling the coseismic

rupture associated with the Hector Mine earthquake including broadband seismology,

continuous and campaign GPS (Hurst et al., 2000; Agnew et al., 2002), and ascending

and descending radar interferograms (InSAR) (Jónsson et al., 2002; Sandwell et al., 2002;
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Simons et al., 2002). In particular, the availability of highly coherent ascending and de-

scending interferograms permits detailed modeling of near-field deformation (Fialko et al.,

2001; Sandwell et al., 2002). Our goal is primarily to evaluate slip inversions using the new

method and to demonstrate how using a model that admits more realistic fault geometry

may improve fault slip estimates.

A number of previous studies of the Hector Mine earthquake have inverted for coseismic

source parameters incorporating geodetic data. The results of these studies are summa-

rized in Table 1. Hurst and coworkers (Hurst et al., 2000) inverted for a single dislocation

source within two weeks of the event using data from the continuously recording Southern

California Integrated GPS Network (SCIGN). They solved a non-linear inversion prob-

lem for 8 source parameters (x-position, y-position, length, width, strike, dip, strike-slip,

dip-slip) using a simulated annealing approach. Ji et al (Ji et al., 2002) and Kaverina et

al. (Kaverina et al., 2002) performed joint inversions of geodetic and seismological data

for variable fault slip on simplified dipping three-fault models made up of multiple point

sources. Sandwell et al. (Sandwell et al., 2002) and Price and Bürgmann (Bürgmann et al.,

2002) created models that more closely honored the geometry of the observed surface trace

but with vertical faults. This approach allowed for construction of faults comprised of

multiple rectangular segments including along strike heterogeneities without generating

gaps or overlaps, but these models are inconsistent with the previously cited evidence for

eastward dipping fault planes. Simons et al. (Simons et al., 2002) and Jónsson et al.

(Jónsson et al., 2002) performed inversions using GPS and InSAR data that allowed for

more realistic dipping multi-segment models. These groups both performed non-linear

inversions for geometry and linear inversion for variable slip on their fault segments. The

resulting fault models included dipping segments with heterogeneities, but also generated

gaps and overlaps in the fault surface.

6.5.1 Modeling

We have created a series of fault models to compare the results of our method to pub-

lished results using rectangular dislocations and to illustrate the ability of this method

to incorporate more realistic three-dimensional fault geometries that more closely honor

observations of surface rupture geometry and fault dip. The faults in all of the models

dip 83◦ to the east based on the results of non-linear geodetic inversions of geodetic data

by Jónsson et al. (Jónsson et al., 2002). The faults in each of the models have been

discretized into meshes of triangular elements of approximately constant size and equi-

lateral geometry. The total number of elements ( 700) was kept nearly constant between

models to maintain roughly the same number of degrees of freedom and thus permit direct
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statistical comparison.

We take as our starting point the geometric model of Jónsson et al. (Jónsson et al.,

2002) that is comprised of 9 planar segments approximating the trace of the Lavic Lake,

unnamed northeast segment and Bullion faults (Fig. 6.5a). The panels have been dis-

cretized into 783 triangular elements. The large planar panels model the fault geometry

at approximately a 6-km scale and have gaps or overlaps at segment boundaries where the

strike of the fault changes. The second model incorporates a curviplanar fault surface that

approximates the mapped surface ruptures for the Lavic Lake and West Bullion faults and

the distribution of aftershocks for the unnamed northeast fault (Fig. 6.5b). The curvipla-

nar fault surfaces have been discretized into 683 triangular elements. The mapped fault

traces have along-strike undulations that are matched by the model fault to the extent

possible given the 2.3-km average element size. The minimum radius of curvature that

can be modeled by a continuous mesh of equilateral elements of this size isapproximately

1.6 km. This figure is based on the radius of curvature of an open tetrahedron formed by

3 adjoining elements. A third model was constructed to illustrate the strength of this new

method in modeling three-dimensional fault surfaces. This model honors the details of

the observed surface ruptures at a 2-km-scale (Fig 6.5c) including all six fault segments

with observed surface displacements and extends these segments to the northwest and

southeast beyond the observed rupture to allow for the possibility of unobserved slip at

the surface and/or subsurface slip that extended beyond the mapped surface rupture (see

(Simons et al., 2002) for further discussion). The model is discretized into 612 triangular

elements. The average element side is 2.6 km resulting in a maximum radius of curvature

of 1.8 km.

For each geometric model we performed a joint inversion for slip using the decimated

ascending and descending InSAR data sets of Jónsson et al. (Jónsson et al., 2002) and

Campaign GPS data ((Agnew et al., 2002), Fig. 6.4). The SAR interferograms are treated

as having a constant angle of incidence across the entire image with look vectors of [-0.38

0.07 -0.92] and [0.38 0.08 -0.92] for the descending and ascending phase data, respectively.

Slip is constrained to be a combination of right lateral strike slip and east-up dip slip

based on the results of previous geodetic (Hurst et al., 2000; Agnew et al., 2002; Jónsson

et al., 2002; Sandwell et al., 2002), geologic (Treiman et al., 2002), and seismological

investigations (Harvard CMT), (Dziewonski et al., 2000; Ji et al., 2002). Individual data

sets (GPS and InSAR) are weighted relative to data uncertainty as outlined by Jónsson

(Jónsson et al., 2002). We select the smoothing parameter using a trade-off curve where we

seek the smoothing value that minimizes slip roughness without significantly increasing

data misfit. The value ǫ = 0.07 yields an average roughness of 1.7 × 10−8 1/km2 for

model 1 (Fig. 6.5a) vs 5.7× 10−7 1/km2 for the unsmoothed solution while only reducing
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Figure 6.4: Geodetic data used for slip inversions. Coordinates are northing and east-
ing for UTM zone 11. a) Descending interferogram of Hector Mine earthquake coseismic
deformation (Jónsson et al., 2002) calculated from ERS-2 satellite descending passes on
September 15, 1999 and October 20, 1999. b) Ascending interferogram calculated from
ERS-2 satellite descending passes on November 12, 1995 and November 21, 1999. For
parts a and b each color cycle represents 10 cm of displacement in the satellite line-of-
site. The color gradient from blue to red to yellow is in the positive direction, toward
the satellite. c) GPS displacement vectors from . Ellipses represent 2-sigma uncertainty.
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the model misfit (weighted residual sum of squares, WRSS) by 22%. (All of the fault

models as well as the data and parameters used for the slip inversions are available in the

electronic edition of BSSA.)

6.5.2 Results

The resolved slip patterns in each of our models (Fig 6.5) are grossly similar to the results

of Jónsson et al. (Jónsson et al., 2002) (their Fig 8a), although we have chosen a slightly

rougher solution as our optimal model. For all three fault models the maximum strike-slip

is located on the Lavic Lake fault just northwest of the intersection with the northeast

branch at approximately 7 km depth. The magnitude of slip is 6.5 m, 6.6 m, and 7.0 m

for models a, b, and c, respectively. The dip-slip maximum is also located along the Lavic

Lake fault for all three models at approximately 5.5 km depth, but moves from north of

the intersection with the northeast branch fault in the planar fault model to south of the

intersection for the curviplanar fault models. The magnitude of the maximum dip-slip is

2.6 m for models a and b and 3.4 m for model c.

The introduction of parallel segments in the multi-segment model leads to slip partitioning

between the multiple faults segments in a manner similar to geological observations. Slip

on the lavic lake fault decreases to the southeast toward its intersection with the West and

East Bullion faults where slip is then partitioned on to each of these parallel segments.

The East Bullion fault has a maximum of 1.4 m of slip at its intersection with the Lavic

Lake fault and this tapers off to zero slip over about 10 km. The majority of slip, 2.5 m,

occurs on the West Bullion Fault and continues about 20 km to the south. The Mesquite

Lake fault has 3.5m of slip at 18 km depth. Slip at this depth is relatively poorly resolved

(Bos and Spakman, 2003) and these results are therfore not well constrained.

The seismic moment, moment magnitude, and best fit double couple (Jost and Herrman,

1989) for each of the models are presented in Table 1. All three models yield a moment

magnitude of 7.1 with decreasing total seismic moments. These results are similar, but

slightly lower than previous estimates of the moment using geodetic and seismic methods.

The best double couple for the three models is also similar to previous estimates with

primary nodal planes striking 332 − 333◦, dipping 82 − 83◦, and rakes of 175 − 176◦.

The series of models we have constructed fits the observed surface ruptures progressively

better; however, we also wish to know if it yields an improved fit to the geodetic data.

Goodness of fit is commonly estimated using chi squared tests that normalize the model

residual (weighted residual sum of squares, WRSS) by the model degree of freedom. This

second parameter, however, is difficult to estimate due to correlations between model

parameters introduced by smoothing (Cervelli et al., 2001; Jónsson et al., 2002). We
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Figure 6.5: Comparison of fault models, modeled slip distributions, and residuals
for descending and ascending phase InSAR and GPS data (from top to bottom). (a)
Planar segment model after Jónsson et al. (Jónsson et al., 2002). (b) Curviplanar model
approximating trace of major faults. (c) Six segment model that more closely honors
the geometry of the mapped surface ruptures (Fig 6.3). Note scale change for GPS
residuals in comparison to figure 6.4. Coordinates are northing and easting for UTM

zone 11.
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argue that by maintaining approximately the same number of elements and the same

smoothing parameter that the number of model parameters remains roughly constant

and therefore comparison of the WRSS between models is a reasonable estimate of the

relative quality of their fit. We therefore compare our models by presenting the change

in the WRSS for the combined and individual data sets as well as presenting a graphical

representation of model residuals for the three geodetic data sets (Fig. 6.5).

By incorporating a single curviplanar surface (Fig. 6.5b) we obtained a 8% improvement

in WRSS for the combined data sets. This model reduces the WRSS for the descending

phase InSAR by 14% and the ascending phase InSAR by 22%, however it leads to a 34%

increase in WRSS for the GPS data. The image of the descending phase residuals shows

a clear reduction in the near-field residuals that is most obvious near the kink between

the Lavic Lake and Bullion faults in the original model (Fig. 6.5a). This kink creates an

area of overlapping fault segments that generates a model residual greater than 10 cm,

also observable in the model of Jónsson et al. (Jónsson et al., 2002) (their Fig. 9b). In

the curviplanar model the residuals in this area are less than 10 cm. Simply smoothing

the initial planar-segment model, removing the overlaps and gaps removes this effect and

leads to a 2% reduction in the WRSS (results not presented). The increase in the WRSS

for the GPS data is largely due to a poorer fit at stations near the northeast branch fault

and along the Bullion faults near their intersection with the Lavic Lake fault.

By incorporating all of the segments where surface rupture was observed (Fig. 6.5c) we

obtain a 32% reduction in the total WRSS with a 23% reduction for the descending phase

InSAR data, a 45% reduction for the ascending phase InSAR data, and a 57% reduction

for the GPS data. This model is our preferred model as it significantly improves the fit

to the observed surface ruptures and the geodetic data. The reduction in misfit for the

descending phase InSAR data is most noticeable to the northwest of the intersection of

the Bullion and Lavic lake faults where the previous models had residuals greater than

10 cm which are reduced to less than 5 cm. The high residuals in the ascending InSAR

and GPS data near the intersection of these faults are also reduced.

The results of the multi-segment model (Fig. 6.5c) can be directly compared to geologic

observations of surface slip (Fig. 6.6). The geologic slip measurements (Treiman et al.,

2002) are point estimates and show significant variability over short distances while the

model estimates are averages over 2.6 km2 areas and are therefore smoother. The model

estimates generally agree with the range of the geologic estimates with a few exceptions.

The model predicts significantly more surface slip (2.4-m maximum) on the northeast

branch (Fig. 6.3, B-B’) than was observed (0.1-m maximum). This result suggests that

there may have been significant slip in the subsurface that did not reach the surface and

is consistent with previous geodetic inversions. There is a lack of geodetic data near
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Figure 6.6: Comparison between the slip of elements at the surface for multi-segment
fault model (Fig 6.5c) and the measured surface slip distribution from Treiman et al
(Treiman et al., 2002). Fault segments are illustrated in figure 3. A-A’ Lavic Lake-West
Bullion faults.. B-B’ northeast branch of the Lavic Lake fault. C-C’ East Bullion fault.
D-D’ linking structure between East and West Bullion faults. E-E’ Mesquite Lake fault.
Note different ordinate scales for D-D’ and E-E’. Fault intersections are marked with

dashed lines
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the surface trace of the northeast branch (Fig. 6.4) and near-surface slip in the model

is therefore poorly constrained. The model also predicts more slip on the Lavic Lake

fault (Fig. 6.3, northern end of A-A’) just north of its intersection with the northeast

branch than was observed geologically. This area is in the transition from the Bullion

Mountains to younger alluvial fan deposits and may therefore have been an area where

surface rupture was distributed or otherwise difficult to fully quantify. The slip on the

small linking structure (D-D’) is also overestimated, but is poorly constrained by near-field

geodetic data. The last area of significant difference is at the southern end of the West

Bullion fault (Fig. 6.3, southern end of A-A’) where the geodetic model again predicts

more slip than was observed at the surface. Previous researchers (e.g., see (Simons et al.,

2002)) also noted this discrepancy and although additional surface rupture was identified

(Treiman et al., 2002), there is still a notable deficit compared to the geodetic model

results. The observed surface rupture in this region was comprised of echelon cracks in

alluvial fan surfaces that may have been indicative of greater right-lateral slip at depth.

The comparison between the geodetic model results and geologic slip estimates suggest

that the geologic estimates are generally representative of near surface fault slip, but may

have a tendency to underestimate total slip due to near surface effects such as distributed

deformation in materials that may be softer and able to accommodate deformation without

macroscopic fracturing.

6.6 Discussion and Conclusions

Inversion for coseismic slip using angular elastic dislocations allows for incorporation of

more realistic geometries, and thus more realistic models of the seismic source. This

approach takes advantage of the increasing quantity and quality of geodetic data, in

particular the spatially dense near-field data acquired through interferometric radar tech-

niques (InSAR). The flexibility of the method permits the construction of fault models

with curved three-dimensional surfaces and tiplines. Fault surface traces can be taken

into account as well as subsurface constraints such as high-precision hypocentral locations

of aftershocks.

The method presented here may be modified to account for the reduced resolving power

with depth of geodetic data (Bos and Spakman, 2003) by adopting an adaptive meshing

algorithm (e.g., (Price and Bürgmann, 2002)). The method may also be extended to

incorporate inversion for fault geometry as well as slip. This problem is highly non-linear

and will require damping of the fault geometric roughness as well as slip roughness to
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obtain physically reasonable solutions.

In the case of the Hector Mine earthquake we have demonstrated that the method not only

provides grossly similar results to previous approaches using rectangular dislocations, but

also improves upon these results by removing artifacts associated with overlaps between

rectangular fault segments. By constructing a model that honors the geometry of observed

surface ruptures we have demonstrated that the fault geometry suggested by these data

can be incorporated into the model and also leads to an improvement in the quality of

the solution.
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Preamble

This chapter presents an application of the slip inversion method described in chapter 6

for the Nias earthquake (Indonesia), which occurred in 2005. It provides an explanation
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why the Nias earthquake did not produce a sizable tsunami.

About...
Corne Kreemer contacted me few months after the publication of the paper on slip

inversion. The goal was to use Poly3D-inverse and the available data to study the

Nias earthquake using a complex surface rupture.
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7.1 Résumé

Les donnés GPS (Global Positioning System) ont été enregistrées avec plus de 5 m de

déplacement co-sismique au cours du tremblement de terre de Nias (Mw = 8.7), le 28

mars 2005 en Indonésie. Le rejet vertical suggère de fortes contraintes sur la limite nord

et sud de la zone de rupture. La distribution de glissements co-sismiques retrouvée in-

dique des zones de glissements élevées près de l’épicentre et de la limite sud pour la

rupture du 26 décembre 2004 d’Aceh-Andaman, où les répliques ont été abondantes.

Six mois d’enregistrement de séries chronologiques post-sismiques sont mieux approximés

avec une fonction logarithmique qu’avec une fonction exponentielle, ce qui suggère que

la déformation post-sismique est probablement contrôlée par des post-glissements. Notre

modèle d’inversion prédit des post-glissements concentrés au-dessus et en dessous des

zones de glissements co-sismiques maximales où les répliques sont clairsemées. Le post-

glissement peu profond ajoute une preuve supplémentaire que le tremblement de terre n’a

sans doute pas atteint la surface (avec des conséquences pour la génération de tsunamis)

mais, au contraire, à causé des déformations asismiques dans les parties peu profondes de

la zone de subduction après l’évènement.
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7.2 Abstract

Global Positioning System (GPS) measurements registered up to > 5m of coseismic dis-

placements during the 28 March 2005 Mw = 8.7 Nias earthquake, Indonesia. The vertical

offsets put tight constraints on the northern and southern limit of the rupture. The in-

ferred coseismic slip distribution indicates high slip patches near the epicenter and near

the southern extent of the 26 December 2004 Aceh-Andaman rupture, where aftershocks

have been abundant. Six months of postseismic time-series are better fit with a loga-

rithmic instead of exponential function, suggesting that the postseismic deformation is

likely controlled by afterslip. Our inversion model predicts afterslip to be concentrated

both up- and down-dip from patches of maximum coseismic slip where aftershocks are

sparse. The shallow afterslip adds further evidence that the earthquake probably did not

break the surface (with implications for tsunami generation) and instead caused aseismic

deformation in shallow parts of the subduction zone after the event.

7.3 Introduction

The Mw = 8.7 Nias earthquake of 28 March 2005 happened three months after the Mw =

9.2 December 26, 2004, Aceh-Andaman earthquake and may be the largest aftershock

ever recorded. It was recorded by a network of nearby continuous Global Positioning

System (GPS) stations, namely the Sumatra GPS Array (SuGAr), which did not record

significant displacements related to the December event (Subarya et al., 2006), but was

optimally located to constrain the co- and postseismic deformation associated with the

March event. Here we model the co- and postseismic slip distribution for the Nias event

from the analysis of the GPS time-series (mainly) from the SuGAr array. The co- and

postseismic slip models are of particular interest, because of the size of this event, its

relationship to the December earthquake, and the intriguing observation that this event

did not create a sizable tsunami. These models provide insight into the seismic cycle (and

future hazard) along the Sumatra subduction zone in particular, and on the dynamics of

large subduction-type earthquakes in general.

Many studies have attributed postseismic transients in geodetic time-series to an afterslip

process down-dip from the rupture (Melbourne et al., 2002), but fast-decaying shallow

afterslip (Burgmann et al., 2002), as well as viscous relaxation (Pollitz et al., 2000) have

also been invoked occasionally as plausible mechanisms, with the different processes act-

ing over different time-scales (and probably concurrently) after an earthquake. Here we
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fit the postseismic time-series with simple analytical functions, which are first-order rep-

resentations of afterslip and relaxation processes.

7.4 Co- and Postseismic Displacements

Postseismic time-series for the Nias event were generated from the GPS station position

estimates. These time-series were then corrected for ongoing deformation after the Aceh-

Andaman event (Fig. 7.1). (The auxiliary material1 describes the times-series analysis in

Figure 7.1: Postseismic time-series for the 18 analyzed stations. Note that the time-
series are vertically displaced (see Table 1 for coseismic offset values). Solid and dashed
lines are best-fit logarithmic and exponential functions, respectively (The relaxation pre-
dictions are not shown for newly installed stations BSIM, LEWK, LHWA, and UMLH,
because the additional constant velocity that is solved for those stations differs between
the two models and changes the appearance of the timeseries.): (a) east direction, (b)

north direction, and (c) up direction.

detail.)

We performed a non-linear minimization scheme using the Levenburg-Marquardt method

(Press, 1992) to estimate for the December and March events the coseismic offsets and

postseismic deformation parameters simultaneously. The two postseismic processes we

consider independently are velocity-strengthening afterslip, which follows a logarithmic

decay (Marone et al., 1991),:

u(t) = c+ a ln(1 + t/τlog) (7.1)
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and a relaxation mechanism, which in its most simplistic form (and particularly near the

rupture) follows an exponential decay (Savage and Prescott, 1978):

u(t) = c+ a ln(1 − e−t/τexp) (7.2)

In (7.1) and (7.2) t is time since the earthquake, u(t) is the position (east, north, and

up), c is the coseismic offset, a is the amplitude associated with the decay, and τlog and

τexp are the logarithmic and exponential decay time, respectively, and are assumed to be

similar for all time-series. We did not assume parameters a or c to be similar between (7.1)

and (7.2). For stations BSIM, LEWK, LHWA, and UMLH that were installed in the few

months between the Aceh- Andaman and Nias earthquakes, we solved for an additional

constant velocity term in (7.1) and (7.2) and constrained t to be that obtained from

the 14 other stations. In solving for the postseismic parameters for the March event we

corrected for all stations the post 28 March 2005 times-series for the ongoing postseismic

deformation related to the 26 December 2004 earthquake. For this correction we assumed

that the postseismic time-series after the 2004 event is controlled by a similar (logarithmic

or exponential) decay mechanism as modeled for the March event.

Our estimated geodetic coseismic offsets and postseismic amplitudes for the Nias earth-

quake range between stations from several meters to millimeters (Fig. 7.2 and Table 7.1).

(Model parameters obtained for the December event are summarized in Table S1). With

Figure 7.2: Horizontal (black) and vertical (white) GPS offsets, scaled with the natural
log. Uncertainty ellipse is unscaled. Contours are slip magnitudes on increasingly
steeper surface at depth, and crosses are aftershocks from the NEIC catalog. Green
star is epicenter. (a) Coseismic, (b) postseismic from 180 days of predicted cumulative

afterslip.
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Table 7.1: Co- and Postseismic Parameters for March 28, 2005, Nias Earthquake

each model fitted separately, we find τlog = 6.2± 0.1 days and τexp = 77.8± 0.3 days. The

postseismic times-series are fit significantly better by (7.1) than (7.2): the data fit results

in χ2
µ = 3.2 and χ2

µ = 5.4, respectively. The χ2
µ for individual stations (Table 7.1) are

for all stations better (in the nearfield) or equal (in the far-field) when the logarithmic

function is considered (see also Fig. 7.1). We therefore assume for the remainder of the

paper that the postseismic deformation for the 6 months since the event is dominated

by afterslip, although we note that both (7.1) and (7.2) are simplifications that do not

fully address the intricacies of the 3-D stress and strain fields that arise for a case with a

complex slip distribution on a finite fault. The data furthermore suggest that there is no

temporal variation in the spatial characteristics of the afterslip process; that is, we can

assume one common decay time for all timeseries combined, with single decay magnitudes

for each time-series. We further note that the post 26 December 2004 time-series are fit

better by (7.1) than (7.2) as well (Table S1). This result justifies our assumption to adopt

a similar postseismic decay mechanism after both events when we correct the post 28

March time-series for ongoing postseismic deformation related to the December event.

7.5 Co- and Postseismic Slip Model

The large spatial variation in coseismic offset magnitudes (Fig. 7.2.a) places strong con-

straints on which to build a coseismic slip model. In particular, sites that moved up during

the earthquake must be situated above the rupture plane. Consequently, the northern ex-

tension of the rupture plane must lie between stations LEWK and BSIM (which is also

the exact southern limit of the Aceh-Andaman rupture (Meltzner et al., 2006; Subarya

et al., 2006)), and the southern limit must lie between PSMK and PTLO, (similar to the

southern extent of the 1861 M = 8.5 rupture (Natawidjaja et al., 2004)). We chose the

up-dip limit of our model plane to be the trench and the down-dip width to be the 50 km
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slab contour (Gudmundsson and Sambridge, 1998). We let the dip vary from 8o at the

surface to 23o at 50 km depth.

To model the coseismic slip distribution on the fault plane described above we used our

coseismic offsets as data input for the Poly3Dinv code (Maerten et al., 2005). This ap-

proach is based on a solution of an angular three dimensional dislocation in a linear,

homogeneous, and isotropic elastic half-space, and during the inversion the data misfit as

well as model roughness are minimized. We applied negativity constraints for left-lateral

and normal slip, and set the slip to zero at the down-dip fault boundary. Our preferred

coseismic slip model is shown in Fig. 7.2.a. The vertical postseismic offsets (Fig. 7.2.b)

indicate that the along-trench extent of afterslip is roughly similar to that indicated by the

coseismic data: the northern extent separates LEWK (which goes up) from BSIM (which

goes down), and the southern extent separates LHWA (which goes down) from PSMK

(which goes up). We therefore model the postseismic slip distribution on the same model

surface used for the coseismic rupture, except that we extend the fault plane to larger

depths to accommodate the possibility of significant deep afterslip. The decay amplitudes

control the pattern of afterslip distribution and as a function of time they control the

absolute magnitude of the slip distribution. We model the afterslip distribution for 180

days of accumulated postseismic deformation (Fig. 7.2.b).

7.6 Discussion and Conclusions

The total moment from our coseismic model is Mw = 8.37 for a shear modulus (m) of 30

GPa. This corresponds to a moment that is three times smaller than the Harvard CMT

estimate. A reconciliation of these values is possible when it is assumed that µ increases

rapidly with depth (e.g., µ = 100 GPa at 50 km), which is permissible (Bilek and Lay,

1999), and has also been argued for the 2004 Aceh-Andaman event (Kreemer et al., 2006).

In addition, if the slip were modeled using a layered Earth instead of half-space model,

more slip would be predicted at greater depths, which would increase the moment estimate

as well.

We observe maximum coseismic slip of over 10m in two distinct regions: one near the

epicenter and one near the northern extent of the rupture, abutting the southern extent

of the 26 December 2004 rupture. These two maxima are located underneath stations

BSIM and LHWA. The slip model is largely dominated by these two data points and so

our slip model may be biased. However, our solution is similar to a recent seismic model

(Walker et al., 2005) in which high slip is concentrated near the same locations as in our
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model, adding some confidence to our result. We observe that the areas with highest slip

also saw the highest aftershock activity. To test whether our chosen maximum depth of

50 km does not influence our model result, we also perform an inversion using the same

fault plane as was used in the postseismic model, and the results confirm that slip below

45-50 km is negligible. The model results are however less robust as to whether and how

much slip occurred near the ocean floor. We conclude that coseismic slip is constrained

to the same depths that were earlier identified as being locked for the same subduction

zone further to the south (Simoes et al., 2004).

We show that at least for over 6 months after the earthquake the postseismic times-series

are very well fit by a logarithmic function. They are fit significantly worse if an exponential

function is used, at least for the stations closest to the rupture. Although this statistical

difference may be outweighed by our use of simple first-order representations of the various

physical processes at play, we conclude that the postseismic deformation thus far has

likely, but not necessarily exclusively, been dominated by afterslip. Future work will need

to address the interplay of the various mechanisms (Montési, 2004; Pollitz et al., 1998),

which will lead to more sophisticated models of the earthquake process. Nevertheless,

our postseismic inversion results show some characteristic patterns. Afterslip of > 1m

is constrained to depths <∼ 9km, with an additional zone of large afterslip below the

northern part of the coseismic rupture. The deep afterslip is largely controlled by BSIM.

The shallow and deep regions have experienced little aftershock activity, emphasizing the

aseismic nature of the afterslip process. The total slip after 180 days adds up to a seismic

moment that is 50% of the main shock, equivalent to Mw = 8.17. The widespread afterslip

at shallow depths is profound and either reflects creep on the actual shallow fault plane

and/or relates to broad postseismic adjustment in the unconsolidated sediments. If the

coseismic rupture did not reach the surface, then it is expected that stresses at shallower

depths have changed in such a way that they could have driven the observed shallow

postseismic deformation. If true, this scenario will contribute to understanding why the

Nias earthquake did not produce a sizable tsunami.
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CHAPTER 8

Mechanical analysis of fault slip data
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Preamble

Having an idea of the fault geometry as well as the boundary conditions attached to them,

the choice of the far field stress or strain to apply to the model is still an unknown that

the user has to estimate using his intuition, existing tools, or by trial and error. In this

chapter, we show that using special iteratively coupled systems, it is possible to have

an estimate of the paleostress given some measures of the displacement discontinuity on

the faults (e.g. throw or dip-slip measurements from seismic interpretation) using me-

chanical interactions. While inverting for the paleostress, we recover simultaneously the

unknown displacement discontinuities on the faults. Therefore, this technique allows one

to extend the fault geometry if necessary and to compute the unknown dip- and strike-slip.
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About...
My contribution was to find the idea of doing paleostress using geomechanics, to de-

fine the formulation using the iBem3D kernel functions and to do the implementation

in C++. Later one, Dave Pollard told me that Ole Kaven, one of his PhD student,

was working on a paleostress manuscript, mainly for doing sensitivity ananalysis

and to have a nice historical background. Combining this new approach for doing

paleostress inversion and what Ole already has written, was an obvious consequence.

Note that, in this paper in preparation, the ChiChi model will be reformu-

lated using a more correct fault geometry. Also, as seen in Fig. 8.10 and 8.11, the

model was not set correctly in half-space.
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8.1 Résumé

L’inversion de contraintes est un outil utile et populaire pour les géologues structuralistes

et sismologues. Ces méthodes ont d’abord été introduites par Wallace [98] et développées

par Bott [15] et des études ultérieures continuent d’être fondées sur leur première série

d’hypothèses. Ces hypothèses fondamentales sont: (1) le tenseur des contraintes à l’infini

est spatialement uniforme dans la roche contenant des failles et constant dans le temps au

cours de l’histoire de l’évolution des failles, et (2) le glissement sur chaque surface de faille

a le même sens et la même direction que la contrainte cisaillante maximum du tenseur des

contraintes à l’infini résolue sur ces plans de faille. En outre, une implémentation correcte

nécessite que le glissement s’accumule sur des failles d’orientations diverses. Beaucoup

d’études utilisent ces méthodes pour des défauts isolés ou sur des systèmes de failles à

orientations limitées, ce qui peut conduire à des résultats erronés. Nous proposons une

nouvelle méthode qui intègre les effets de l’interaction mécanique de toutes les failles

ou systèmes de failles, et qui résout complètement le problème mécanique plutôt que

d’employer des relations empiriques entre glissement et contrainte ou déformation (ou

vitesse de déformation). Nous testons la méthode sur des modèles de failles synthètiques à

orientations différentes pour évaluer les effets de la non-planarité et trouvons que cette non-

planarité peut introduire des erreurs importantes, même dans des cas simples idéalisés.

Nous avons en outre testé l’effet de l’inversion en utilisant un jeu de failles synthétiques

comportant une diversité d’orientations et trouvé que le type d’inversion de Wallace-Bott

ne fonctionnait pas correctement pour ces types de modèles. Enfin, nous utilisons des

données publiées sur le tremblement de terre de Chi-Chi (1999, Taiwan), et trouvons qu’en

utilisant les données de surface seulement, puis les données de surface et des mécanismes

au foyer, ces deux modèles donnent des résultats similaires. Les orientations de contraintes

qui en résultent sont en accord avec les résultats d’inversion de Wallace-Bott. En outre,

la distribution des déplacements sur la surface de faille est en accord avec les inversions

cinématiques utilisant la déformation de glissements de surface co-sismiques. La méthode

d’inversion de contraintes en utilisant des données de glissements de failles peut donc

être améliorée de façon significative dans de nombreux cas, en utilisant une méthode de

résolution mécanique qui tienne compte de la géométrie des failles ou systèmes de failles.
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8.2 Abstract

Stress inversions are a useful and popular tool for structural geologist and seismologist

alike. These methods were first introduced by Wallace (Wallace, 1951) and expanded

by Bott (Bott, 1959) and subsequent studies continue to be based on their initial set of

assumptions. The fundamental assumptions are: the remote stress tensor is spatially uni-

form for the rock mass containing the faults and temporally constant over the history of

faulting in that region, and the slip on each fault surface has the same direction and sense

as the maximum shear stress resolved on each surface from the remote stress tensor. Fur-

thermore, successful implementation requires that slip accumulates on faults of diverse

orientation. Many studies employ these methods on isolated faults or on fault system

with limited ranges of orientations, which can lead to erroneous results. We propose a

new method that incorporates the effects of mechanical interaction of the entire fault or

fault system, solves the complete mechanical problem rather than employing empirical

relationships between slip and stress or strain (or strain rate). We test the method on

synthetic faults with various orientations to evaluate the effects of non-planarity and find

that the non-planarity can introduce significant errors even for simple idealized cases. We

further test the effect of diversity of fault orientations and find that Wallace-Bott type

inversions do not perform as well for limited ranges of orientations when compared to

the proposed method. Finally we use published data from the 1999 Chi-Chi, Taiwan,

earthquake, and find that the method using surface data only and surface data and sub-

surface focal mechanisms produce similar results. The resulting stress orientations are in

good agreement with results from Wallace-Bott inversions. Furthermore, slip distribution

results are in general agreement with kinematic slip inversions using coseismic surface

deformation. Stress inversion methods using fault slip data can thus be improved upon,

significantly in many cases, by solving a mechanical boundary value problem that takes

into account the geometry of faults or fault systems.

8.3 Introduction

Over the course of the 20th Century geologists sought to understand the origin and evo-

lution of faults, and the tectonic history of faulted regions, by relating fault orientation

and slip direction to the state of stress in Earths crust (e.g. (Anderson, 1942; Price, 1966;

Voight, 1966; Mandl, 1988)). This relationship may be elucidated through both forward

and inverse problem solving. In typical forward problems the equations of motion are

solved with a prescribed remote stress state as boundary conditions, yielding the local
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stress, strain, and displacement fields, and the slip distributions over the model faults

(e.g. (Hafner, 1951; Sanford, 1959; Couples, 1977; Burgmann and Pollard, 1994; Willemse

et al., 1996; Maerten et al., 1999)). Assumptions about the constitutive behavior, the mag-

nitudes of the strains, and the relative magnitudes of dynamic and static forces ((Malvern,

1969), Chs. 6, 4, and 8, respectively) enable one to reduce the underlying conservation

laws to the relevant equations of motion ((Pollard and Fletcher, 2005), Ch. 7). While the

correspondence of such models to faulting in Earths crust depends upon the accuracy of

the assumptions, each of which requires careful assessment, the efficacy of the method-

ology rests securely on the foundation of a complete mechanics (Fletcher and Pollard,

1990).

In typical inverse problems the directions of the remote principal stresses and a ratio of

their magnitudes are constrained by analyzing field data on fault orientations and slip

directions as inferred from striations such as slickenlines on exposed fault surfaces (e.g.

(Carey and B., 1974; Etchecopar et al., 1981; Angelier et al., 1982; Gephart and Forsyth,

1990; Angelier, 1984; Michael, 1987; Reches, 1987; Fry, 1999; Shan et al., 2004)). The

adoption of this methodology is facilitated by an instructive exposition and computer

codes in the textbook by Ramsay and Lisle (Ramsay and Lisle, 2000) and by the avail-

ability of other computer codes (e.g. (Huang, 1988; Hardcastle and Hills, 1991; Orife

et al., 2002)). The enthusiastic implementation of the methodology by the structural ge-

ology community is witnessed by global compilations of paleostress results from 250 sites

for the World Stress Map Project (Reinecker et al., 2004) and from 2,791 independently

chosen sites (Lisle et al., 2006) for a Special Issue of the Journal of Structural Geology on

”New Dynamics in Palaeostress Analysis” (Blenkinsop, 2006). The equations of motion

are not invoked for this inverse problem, and perturbations of the local stress field by

fault slip are ignored. In other words, the mechanical role played by the faults in the

tectonic deformation is not included explicitly in the analysis. Instead, two basic assump-

tions are made: (1) the stress field is spatially homogeneous and temporally constant;

and (2) the direction of slip and the direction of the maximum shear stress resolved on

each would-be fault plane are coincident. These assumptions enable the inversion, which

uses Cauchys Formula ((Fung, 1977), p. 62) to relate the tangential tractions (maximum

shear stresses) on planes with the measured fault orientations to the principal stresses in

the corresponding homogeneous stress field.

In a remarkably prescient paper, which to our knowledge is the earliest example of pa-

leostress inversion, Anderson (Anderson, 1905) began, without comment or justification,

by simply taking one principal stress direction as vertical at any point. This assumption

was addressed explicitly 37 years later by Anderson ((Anderson, 1942), p. 12 and Ch.
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VII). In his 1905 paper Anderson suggested that planes carrying the maximum tangential

stress ”will have much to do with determining the directions of faults in the rock”. He

understood that there are two orientations of such planes at any point; that these planes

intersect in the direction of the intermediate principal stress (Q); and that they make

equal angles of 45◦ to the greatest principal compressive stress (P). He extended these

relationships for stress at a point to rock volumes encompassing faults and conceived two

conjugate sets of would-be faults corresponding to a single state of homogeneous stress.

In calculating the resolved tangential stress on the conjugate planes Anderson used a

variant of the Cauchy Tetrahedron ((Malvern, 1969), p. 73) with one face corresponding

to a would-be fault and made an interesting analogy: ”This prism we suppose to exist

in the rock, somewhat as the statue exists beforehand in the block of marble...” Appar-

ently Anderson understood that slip on an actual fault would perturb the stress away

from its assumed homogeneous state. We appeal to his analogy of the would-be statue

residing in the block of marble and refer to the entire class of inverse problems based on

a homogeneous stress state as faultless paleostress analysis.

The next stage in the development of faultless paleostress analysis was introduced in the

middle of the last century when Wallace (Wallace, 1951) analyzed the maximum shear

stress (tangential traction) on planes of arbitrary orientation for a homogenous stress state

using Cauchys Formula (e.g. (Jaeger et al., 2007), p. 31). He illustrated the magnitude

and orientation of this shear stress on stereonets and Mohr diagrams. Appealing to

laboratory results and Mohrs theory ((Nádai, 1931), p. 61), Wallace proposed that ”faults

will tend to concentrate at orientations tangent to a cone, with apex angle less than 90◦

(45◦ radius), which has the axis of greatest compressive stress as its axis...” and that

”Orientation of net slip on faults can be correlated almost directly with orientation of

maximum shearing stress...”. In summary, he suggested that ”If a complete picture of

fault-plane orientations and net-slip orientations on several faults is available, it should

be possible to determine with some degree of certainty the orientation and nature of the

stress system producing the faults.”

Taking a somewhat different approach conceptually, Bott (Bott, 1959) contemplates the

likely presence of strength inhomogeneity in the form of older faults, joints, and cleavage.

Apparently supposing that whatever perturbation in the stress field due to the formation

of these structures had relaxed, he suggested ”These planes would remain unnoticed until

the shearing stress within them should exceed the strength...”. Furthermore, Bott sug-

gested ”...fracture would occur within the preferred plane in which the strength was first

exceeded, and the direction of the initial slip would be defined by the direction of the

greatest shearing stress within the plane”. Bott then preceded, as did Wallace (Wallace,
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1951) to employ Cauchys Formula (e.g. (Jaeger et al., 2007), p. 31) to derive the equation

relating the shear traction, τ , to the principal stress magnitudes (σ1 ≥ σ2 ≥ σ3):

τ 2 = σ2
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Here the principal stress directions are coincident with the coordinate axes and (n1, n2, n3)

are the components of the unit normal to the plane bearing the shear traction. Bott

concludes that oblique slip faults may occur in any orientation for a given orientation of

the principal stress axes if planes of suitable weakness lie in that orientation. In some of

the modern literature cited below the coincidence of the tangential traction (direction of

maximum resolved shear stress) and the slip direction is referred to as the Wallace-Bott

hypothesis.

A considerable effort has been made to distinguish and separate field measurements of slip

directions attributable to stress states that vary in space or time, so-called heterogeneous

data sets (e.g. (Armijo et al., 1982; Angelier, 1984; Huang, 1988; Hardcastle and Hills,

1991; Nemcok and Lisle, 1995; Yamaji, 2000; Shan et al., 2003; Liesa and Lisle, 2004; Shan

and Fry, 2005)). At the same time methods have been devised for error estimation of the

paleostress inversion (e.g. (Angelier, 1984; Choi, 1996; Orife and Lisle, 2003; Shan et al.,

2006; Sato and Yamaji, 2006)), for example by comparing the misfit between the maximum

shear stress directions (presumed slip directions) resolved from the preferred stress state

and the measured slip directions on the respective faults. These are valuable procedures

for the analysis, but they remain rooted in the two basic assumptions and therefore,

while testing self-consistency and goodness of fit, they do not provide independent tests

of the methodology. Shan et al. (Shan et al., 2006) have pointed out several reasons that

the basic assumptions would be violated, leading ”to dispersion in the parameter space

of measured fault/slip data, or even possibly the presence of superficially heterogeneous

fault/slip data. For the latter, we have meaningless data groups and false estimated

stresses through conventional inversion methods. This is indeed the Achilles heel of stress

inversion.”

Two related topics must be acknowledged, because they have developed in parallel with,

and sometimes intertwined with geological paleostress analysis. Seismological data are

used to identify the quadrants that contain the so-called P and T axes for a given earth-

quake focal mechanism (e.g. (McKenzie, 1969; Whitcomb et al., 1974; Aki and Richards,

2002)). Because the fault plane generally is not available to the seismologist, they face

the additional ambiguity of two orthogonal would-be fault orientations that stem from the
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representation of seismic sources as double-couple force systems (Lay and Wallace, 1995;

Vasseur et al., 1983; Michael, 1987; Gephart, 1990). Some researchers associate P and

T with the axes of greatest shortening and greatest extension, that is principal strains

or strain rates (Marrett and Allmendinger, 1990; Twiss et al., 1993; Twiss and Unruh,

1998), while others associate P and T with the axes of greatest and least compression,

that is principal stresses (Angelier and Mechler, 1977; Gephart and Forsyth, 1990; Julien

and Cornet, 1987; Jones, 1988; Michael, 1987; Ramsay and Lisle, 2000) for the fault in

question. Whether the interpretation leads to principal strains, strain rates, or stresses,

the reduction of what must be a heterogeneous field of these quantities around an active

fault to a homogeneous representation (Brune, 1968; Kostrov, 1968; Molnar, 1983; Jack-

son and McKenzie, 1988) draws into question the first basic assumption stated above. We

do not concern ourselves further with the seismological investigation of P and T, except

in so far as the evaluation of this assumption might reflect upon it.

The second related topic is the interpretation of fault data by geologists in a kinematic

context. That is, the orientations of faults and the slip directions inferred from striations

upon them are associated with the directions of a homogeneous field of principal strains

or strain rates and a ratio of their magnitudes (Reches, 1978, 1987; Aydin and Reches,

1982; Gauthier and Angelier, 1985; Wojtal, 1989; Twiss et al., 1991; Twiss and Unruh,

1998). Cladouhos and Allmendinger (Cladouhos and Allmendinger, 1993) refer to the

strain due to a population of faults within a region as the fault strain and investigate

this homogeneous quantity for cases where the infinitesimal strain approximation used by

those mentioned above is inappropriate (see also (Gapais et al., 2000)). Again, we do not

concern ourselves further with the kinematic interpretation of fault slip inversions, except

in so far as the evaluation of the homogeneous assumption might reflect upon it. Because

the models we employ use an isotropic and linear elastic constitutive law, the principal

stress and strain directions at any point are identical and the respective components

are proportional. The method of inversion proposed here, whether for remote principal

stresses or strains, applies the principles of continuum mechanics to a medium with explicit

surfaces of discontinuity in the displacement field, which are the model faults.

In an extensive review of fault slip inversion methodology Twiss and Unruh (Twiss and

Unruh, 1998) evaluate the relative merits of stress and kinematic interpretations, empha-

sizing that the kinematic quantity of interest should be the rate of deformation rather

than the strain or strain rate, and adding an additional unknown, the relative vorticity,

to the inversion problem in order to account for local block rotations (Twiss et al., 1991).

They distinguish the local scale of a single fault or earthquake rupture from the larger

global scale and assert: ”From a global volume we need a sufficiently large set of fault slip
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data in order to find an inverse solution for the homogeneous principal deformation rates

or the homogeneous principal stresses”. As part of our evaluation of the second basic

assumption we identify conditions under which such a global volume exists, and within

which fault slip is dependent upon both the global state of stress and the mechanical

interaction of the model faults. For the isotropic elastic solutions we employ, the relative

vorticity is identically zero.

One purpose of this paper is to provide new evaluations of the basic assumptions of pale-

ostress analysis. These assumptions have received some attention as the inversion method

was put into practice (Carey-Gailhardis and Mercier, 1987; Dupin et al., 1993; Pollard

et al., 1993; Orife and Lisle, 2003). In some studies independent data sets from seismol-

ogy (earthquake focal mechanisms) or geodesy (displacements from GPS surveys) have

been compared to fault slip directions (Roberts and Ganas, 2000; Kao and Angelier, 2001;

Blenkinsop, 2006). A direct evaluation of the assumptions would require an independent

measure of the tangential traction vector (maximum shear stress) acting on a fault surface

during slip, so the direction of this vector could be compared to the slip direction. A di-

rect evaluation also would require in-situ stress measurements at some distance from the

active faults to establish the homogeneity of the remote stress field (e.g. (Zoback et al.,

1987; Zoback, 1992)). Although technology exists today to infer the stress state from such

measurements in active tectonic regions (Amadei and Stephansson, 1997), they are not

possible for ancient faults. Instead, we evaluate the assumptions using a methodology

similar to that employed in forward modeling that invokes the equations of motion and

explicitly includes the faults and their associated fields of stress and deformation (Pol-

lard et al., 1993; Maerten, 2000; Maerten et al., 2005). A second purpose of this paper

is to draw attention to a new form of paleostress inversion using a complete mechan-

ics and to encourage its use. The computer code used here is available from IGEOSS

(http://www.igeoss.com/igeoss/) at a nominal cost for non-commercial research.

8.4 Accounting for a Complete Mechanics

The displacement discontinuity resulting from remotely applied stresses and tractions

acting on fracture surfaces are governed by principles of continuum mechanics, dominantly

those of linearly elastic theory that were first introduced by Inglis (Inglis, 1913), and

Griffith (Griffith, 1921, 1925), and later developed by Irwin (Irwin, 1957) and Williams

(Williams, 1987) and many others becoming a mature discipline (Lawn and Wilshaw, 1993;

Anderson, 1995) by the end of the 20th century. The concepts of fracture mechanics have

been used to explain a variety of rock fracture phenomena including aspects of faulting (see
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numerous examples in Atkinson (Atkinson, 1987). From these we understand that slip on

a particular segment of a fault is determined not only by the remote stress or strain tensor,

but also includes the effects of material properties of the surroundings (Lamé constants),

and the fault surfaces (friction) or fault zone (strength), the orientation and geometry of

the fault tipline and surfaces, and the effects of all other proximal segments of the fault

or fault system. Both analytical (e.g. (Rudnicki, 1980; Rice, 1980; Pollard and Segall,

1987; Burgmann and Pollard, 1994; Martel and Shacat, 2006)) and numerical (e.g. (Segall

and Pollard, 1980; Willemse, 1997; Maerten et al., 2005)) models have helped to elucidate

these relationships. The problem at hand (multiple three-dimensional faults that interact

mechanically with one another) requires the elastic boundary value problem to be solved

numerically.

Boundary element methods (Crouch and Starfield, 1983), such as the displacement dis-

continuity method employed in the numerical code Poly3D (Thomas, 1993; Maerten et al.,

2005) permit one to solve the elastic problem as a system of algebraic equations that relate

the tractions on a triangular element of the fault surface to the displacement discontinuity

on that element and all other elements that make up the fault or faults (Fig. 8.1).

The system of linear equations has the following general form:

τ e
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∑N
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ef
ssD

f
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ef
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ef
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f
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ef
nnD

f
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(8.2)

where e, f = 1, ..., N and N is the number of fault elements, τn, τs, τd are the normal,

strike-parallel and dip-parallel traction components at the element center, respectively,

and Dn, Ds, and Dd are the uniform normal, strike-parallel and dip-parallel displacement

discontinuity components between the two surface of the element (Fig. 8.1). The influence

coefficient matrices Akl (k, l = n, d, s) relating the corresponding displacement discontinu-

ity to the tractions follow from the analytical solution for the angular dislocation (Yoffe,

1960) in the half-space (Comninou and Dundurs, 1975) as extended to the polygonal sur-

face of unknown displacement discontinuities by Jeyakumaran et al. (Jeyakumaran et al.,

1992). The element local quantities are expressed in terms of the local coordinate axes

(Fig. 8.1) and require transformations into the global coordinate axes system, which can

be done in the computation of the influence coefficients directly. In general, the problem

at hand may be one with mixed boundary conditions (e.g. normal displacement disconti-

nuity components and both strike- and dip-parallel tractions), so equation (8.2) requires

restructuring to properly constrain the solution. In the remainder of this paper, Aef de-

notes the traction influence matrix at a field element e due to a source element f with
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Figure 8.1: Displacement discontinuity discretization, global (a) and local (b) refer-
ence systems and orientations of remote stresses.

slip vector Df . It is implied that these quantities account for all three vector components

at a particular element.

The unknown displacement discontinuity vector at element e can be computed with an

iterative scheme using a block Gauss-Seidel like definition (Maerten et al., 2009):

τe = −AeeDe −
∑

f 6=e

AefDf (8.3)

which gives:

De = A−1
ee

{
τ 0
e +

∑

f 6=e

AefDf

}
(8.4)

In general, it is assumed that some components of displacement discontinuity De for

element e are unknown. In paleostress analyses, De is known at outcrops but nowhere

else along the fault. The matrix A−1
ee relates the known traction of element e to the relative
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displacement. τ 0
e represents the initial boundary value for an element e, and is determined

from the resolved far field stress σR onto this element in the local coordinate system using

Cauchy’s formula with appropriate rotation:

τe = ωeσ
Rne (8.5)

where ne is the element normal unit vector. The rotation matrix ωe relates the remote

stresses to the element local along-strike, along-dip, and normal traction components and

is comprised of direction cosines.

Confining pressures in the crust suppress opening of faults, so we enforce the condition

that the normal relative displacement is zero. This condition is known to be violated

near steps and bends in faults and near terminations of faults that are accompanied

by splay cracks (Mutlu and Pollard, 2008). Using the Andersonian stress state, that is

a traction-free surface and negligible topography, the vertical stress, σR
33, is a principal

stress (implying σR
13 = 0 = σR

23), so:

σR =





σR
11 σR

12 0

σR
21 σR

22 0

0 0 σR
33



 (8.6)

By orienting the global coordinate axes so the third normal stress component is vertical

we can modify the definition of the normal far field stress so the diagonal components of

this tensor also depend on the magnitude of the vertical stress. Furthermore, since the

addition of an isotopic stress does not change the resolved tractions on faults, (8.6) can

be simplified to:

σR =





σR
11 − σR

33 σR
12 0

σR
12 σR

22 − σR
33 0

0 0 0



 (8.7)

which then permits one to rewrite the sought after stress tensor components as:

σ̃R =

[
σ̃R

11 σR
12

σR
12 σ̃R

22

]
(8.8)

where the tilde signifies the difference between horizontal normal stress components and

the vertical normal stress. Anderson’s standard state of stress thus provides the basis

for the above assumptions, i.e. the horizontal perturbations to lithostatic stress with one

principal stress vertical.
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Now, consider a model comprised of n triangular elements (Fig. 8.1) with traction bound-

ary conditions for the strike and dip components and a displacement discontinuity condi-

tion for the normal component with magnitude zero. For a given element e, two equations

need to be solved: 



−τ 0

e,1 =
(∑

f AefDf

)

1

−τ 0
e,2 =

(∑
f AefDf

)

2

(8.9)

where τ 0
e,s, τ

0
e,d and some of the displacement discontinuity vectors D are unknown.

Combining equations 8.5 and 8.6, and recognizing that the remote stress tensor consists

of four independent components, we get:
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where ωe,ij are the direction cosines relating the element local traction components to the

remote stresses. For a given known or estimated value of σR
33, in simplified form (using

equation 8.9) becomes:

− ω̃e


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τ o
e,s

τ o
e,d

}
(8.12)

Using a Least Squares formulation ((Aster et al., 2005), p. 16) for all elements, we find:


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

σ̃R
11

σR
12

σ̃R
22





= (ω̃τ ω̃)−1 ω̃t

{
τ 0
e,s

τ o
e,d

}
(8.13)

We solve for the best-fitting unknown remote stress and resultant slip distribution on

portions of the fault or fault system where no slip data are available.

Note that equation (8.13) solves for the unknown σ̃R using the computed traction vector,

while equation (8.4) solves for the unknown slip vectors using the resolved traction vector

τ 0
e . Therefore, the solution algorithm has two steps: 1) use the initial remote stress

tensor σ̃R, resolve it onto the fault elements that have no relative displacement data, and

225



solve for the unknown relative displacements; 2) use the computed and known relative

displacements to solve for σ̃R. We choose an iterative solver that cycles between steps

1) and 2) until convergence. The determination of the relative displacement vectors for

the elements are constrained by the resolved far field stress, which makes this method

different from a linear slip inversion (Maerten et al., 2005). This process is outlined in

algorithm 8.

Data : Known slip vectors: Dk

Model: Unknown slip vector, Du, and remote stress, σ̃R

initialization: Set starting guess for Du and σ̃R

while not converged do
→ S1: Solve for the Du for each element e using the resolved σ̃R and Dk

→ S2: Solve the unknown σ̃R using Du and Dk

→ Post processing: Resolve σ̃R onto each element e and set as initial boundary
conditions

end

Algorithm 8.1: Paleostress iterative solver

Once the algorithm has converged, the full stress tensor can be obtained by adding the

isotropic normal stress to the diagonal. Then the Cartesian stress components σR
11, σ

R
12,

σR
22 are used to retrieve the orientation of the horizontal principal axes of the stress tensor

and their magnitudes.

8.5 Test Results for Stress Inversion

We test the proposed algorithm (Alg. 8) by comparing results of the inversion to those from

a typical faultless stress inversion. We use single faults with non-planar surfaces, solve the

forward problem to determine the slip on every element, randomly select varying fractions

of the elements for inversion, and evaluate the errors and variances of the results. Then we

use the same randomly selected slip data in a faultless inversion, and compare the results.

We employ the same strategy to test a multi-fault systems with varying orientations of

the individual faults. Finally, we use field data from the 1999 Chi-Chi earthquake along

the Chelungpu fault in Taiwan and contrast the results from these methods.

8.5.1 Heuristic Example: Single Fault Inversions

To establish the validity of the results of the proposed inversion technique, we test syn-

thetic models of isolated faults with elliptical fault tiplines, but non-planar fault surface
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Figure 8.2: Anisotropically rough synthetic fault surface used in forward models to
generate slip given the applied remote stresses (arrows). Lighting used to accentuate

fault roughness.

topography. We evaluate the error in our inversion technique using the magnitudes and

orientations of the remote stresses applied in the forward models. The fault surfaces

have anisotropic, approximately fractal roughness with the slip-parallel direction being

smoother than the slip-perpendicular direction (Fig. 8.2), and the roughnesses correspond

to values from the faults measured by Sagy et al. (Sagy et al., 2007), which are normal

faults of the Klamath Graben system with ≈100m offset. We choose a non-planar fault

geometry because the available data (e.g. (Power et al., 1987; Sagy et al., 2007)) indicate

faults have significant non-planarity or roughness.

We estimate error and variance bounds for the mechanics-based method for the idealized

fault (Fig. 8.3) by varying the percentages of elements used. For each percentage of

elements tested we first choose fractal, anisotropically rough faults and solve the problem

in a forward sense for the slip magnitudes and directions on every element given a remote

stress that acts to induce dip-slip on a fault. The horizontal remote stresses are σ̃R
1 =

σ̃R
11 = 5MPa (recall σ̃R

11 = σR
11 − σR

33), normal to fault strike, σ̃R
2 = σ̃R

22 = 1MPa parallel to

fault strike. The elastic properties of the isotropic and homogeneous medium are Young’s

modulus E = 5GPa and Poisson’s ratio ν = 0.25. The boundary conditions on the fault

prohibit opening or closing and result in a complete shear stress drop on all elements

(1349 elements). From the resultant slip distribution we randomly select 20 constellations
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Figure 8.3: Validation of results for varied percentage of elements used on a rough
fault. a) Misfit in degrees of orientation of horizontal principal stress from inversion. b)

% error in principal stress ratio, φ, from inversion results.

of elements and invert for the remote stress state using each. The we evaluate the mean

stress orientation and the standard deviation.

The prescribed principal horizontal stress orientations are approximated by the proposed

inversion method (Fig. 8.3a) with the greatest mean angular misfit of 7◦ for 1% (14)

elements used and 0.5◦ for 20% (270) elements used. Variances (standard deviations) in

the inversion results are large (> 40◦) for few elements but steadily decrease as more

elements are used to 1.5◦ for 20% with the exception of the 4% of elements. Here the

variance is 19◦ due to switching of the horizontal principal stress orientations. Misfits

of principal stress ratios decrease but remain greater than 20% for percentages up to 20

elements used (Fig. 8.3b). This is attributed to the modest range of orientations (spherical

variance, S2
s ≥ 0.99).

The mechanics-based methods permits one to solve for the slip distribution at every ele-

ment on the fault (Fig. 8.4). The general distribution of the slip is elliptical as expected

for an isolated planar fault with elliptical tipline (Willemse et al., 1996; Willemse, 1997).
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Figure 8.5: a) Orientation of horizontal principal stress for varied percentage of el-
ements used in mechanics based stress inversion and faultless inversions. Error bars
indicate variance within 20 model runs for each constellation of faults. Principal stress
orientation imposed in forward models is 90◦. b) Principal stress ratio, φ (φ = 0.5 in
forward models), from mechanics-based and faultless inversions for varying percentage

of elements used.

Deviations can be detected which are due to the non-planar fault surface, yielding hetero-

geneous resolved tractions, which, in turn, induce non-elliptical slip distribution. From

the known slip distribution of the forward model we randomly select elements used for

an inversion, which are depicted by the triangles in Figure 8.4ab. Figure 8.4b is the slip

distribution from the inversion , which exhibits small misfits (Fig. 8.4c).

We compare the remote horizontal stress magnitudes and orientations of the mechanics-

based inversion technique to those from the method proposed by Michael (Michael, 1987),

which solves the faultless inversion problem. We establish error and variance bounds for

the idealized fault (Fig.8.2) by varying percentages of elements used for inversion (Fig.

8.5). We use the same constellations of elements, their local orientations and the slip on

them to solve for the remote stress orientations (see details above).
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Both methods reproduce the mean stress orientation (normal to strike, 90◦) imposed in

the forward models well (Fig. 8.5a). The mean orientations from faultless stress inversion

methods deviate by at most 1.5◦ and usually as little as 0.5◦ for greater percentages of

elements used. Meanwhile the method proposed here deviates by as much as 8◦ when 1%

of elements are used but converges quickly on the correct orientation with more elements.

The method proposed has greater variances than faultless inversion methods for models

with few (< 5%) elements are used but has reduced variance when more elements are used.

Neither method performs well in reproducing the principal stress ratio for the given setup

(Fig. 8.5b). All estimates from the proposed methods are off by 20% or more compared

to greater than 30% for fault less methods. Variances in principal stress ratio decrease

for both methods with increased number of elements used. The difficulty in reproducing

the stress ratio in both methods underscores the importance of varied fault orientations

for both methods.

8.5.2 Heuristic Example: Fault System with Diverse Orienta-

tions

One of the commonly unenforced requirements of the faultless inversion is the necessity

to include various fault orientations within the fault system (Twiss and Unruh, 1998).

Here we test the effects of diversity of fault orientations on both faultless and the pro-

posed stress inversion results by populating the fault system with non-intersecting planar

circular faults at equal centroid spacing, but varying the individual orientations of the

faults (Fig. 8.6). We choose planar circular faults to minimize the effects of roughness

and tipline shape and to provide insight into the effects of fault system interaction and

diverse orientations. We use a ratio of spacing over fault-radius of 5% (minimum) to

avoid spurious numerical results, however, the model faults are mechanically interacting

(Willemse, 1997). We follow the same strategy laid out in the preceding section of run-

ning forward models to produce the reference solution and slip on every element, which

is selected randomly for inversions. We acknowledge that our model setup grossly un-

derestimates the complications and does not represent all mechanisms present in a real

fault system, but contend that the multiple fault scenario is an important one to test and

contrast with results of the faultless inversion.

We center 36 circular faults on an evenly spaced grid (Fig. 8.6), allow a variety of strikes

and dips for each fault in each forward model, select 5% of the elements for the com-

bined stress and slip distribution inversion using 20 randomly selected constellations, and
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see Fig. 8.6. a) Misfit in degrees of orientation of horizontal principal stress from inver-

sion. b) % error in principal stress ratio, φ, from inversion results.

evaluate the mean errors and standard deviations for each setup. The range of strike ori-

entations is permitted to vary 10◦ for each. Corresponding to the range in strike, we vary

the dip of each fault in increments of 5◦. The least range in orientations has strike ranging

from -5◦ to 5◦ and dips ranging from 85◦ to 90◦. The greatest range in orientations has

strikes ranging from -90◦ to 90◦, and dips ranging from 0◦ to 90◦. This gives a total of 18

variations on range of strike and dip. The remote stresses are σ̃R
1 = σR

22 − σR
33 = 5MPa,

σ̃R
2 = σR

11−σR
33 = 2.5MPa. The boundary conditions on the fault prohibit opening or clos-

ing and result in a complete shear stress drop. The homogeneous, isotropic, and linearly

elastic medium has Young’s modulus E = 5GPa and Poisson ratio ν = 0.25.

The resulting horizontal principal stress orientations closely fit the applied stresses in the

forward model (Fig. 8.7a): mean misfits are small (<0.5◦) and standard deviations are

all less than 2.5◦. The stress ratio, φ = 1/2, is reproduced well by the mechanics-based

inversion, since the misfit is less than 2.5% for all fault models (Fig. 8.7b).
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Figure 8.8: a) Orientation of horizontal principal stress for varied ranges of fault
orientations from mechanics based stress inversion and faultless inversions. Error bars
indicate variance within 20 model runs for each constellation of faults. b) Principal
stress ratio, φ, from mechanics-based and faultless inversions for varying orientations

used.

The sensitivity of the results to the range of fault orientations is compared for both in-

version methods in Figure 8.8. The mechanics-based inversion technique produces results

that are both very close to the imposed principal stress orientation and exhibit a small

standard variation. The greatest mean error does not exceed 1◦ with standard deviations

less than 0.5◦ for all ranges of orientations plotted. The faultless inversion technique

(Michael, 1987) exhibits greater mean errors and greater standard deviations (Fig. 8.8).

Mean errors are as great 15◦ for a range of 20◦ in strike and 5◦ in dip. The principal stress

ratio is in error by as much as 80%. However, both mean error and standard deviation

are reduced as the diversity of orientations is increased. While we expect that our model

reproduces well the forward models generated using the same methods when compared

to faultless methods, these results highlight the importance of mechanical interaction in

fault systems and thus address fundamental limitations to the faultless methods.
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8.5.3 Field Example: 1999 Chi-Chi Earthquake, Taiwan

Here we highlight the capabilities of the inversion method for a fault that has been studied

extensively because it hosted the 1999 ChiChi earthquake. We focus in particular, on the

paleo-stress inversions (e.g. (Lee et al., 2003; Blenkinsop, 2006)). The earthquake was

a consequence of the ongoing collision of the Phillipe Sea and Eurasian plates; the fault

ruptured along a surface trace of about 100km and produced some of the largest surface

slip ever recorded during a reverse faulting event (Lee et al., 2003). The fault trace itself

is continuous except near the distal ends in the north and to a lesser degree in the south

(Fig. 8.9). Along the fault trace 94 slip measurements have been reported (Lee et al.,

2003) that have provided the basis for several studies of the stress orientations (e.g. (Lee

et al., 2003; Blenkinsop, 2006)).

GPS surface displacements near the fault and throughout Taiwan have been used to kine-

matically invert for the coseismic slip on the fault (Johnson and Segall, 2004). Several

studies have explored the focal mechanisms preceding, during, and after the main shock

and provide a wealth of subsurface slip data, some of which occurred on the main shock

rupture surface (Wu et al., 2008). Given the wealth of geologic and geophysical data

available, we choose this setting to highlight the capabilities of the inversion technique

to illustrate how it can incorporate surface as well as subsurface data. It is worth not-

ing that even surface displacement away from the fault, such as GPS-derived coseismic

displacements could be incorporated to find a more robust estimate of the remote stress

tensor and the associated slip on the fault.

One of the limitations that is inherent to the mechanics-based method is that knowledge

of the unexposed geometry of the fault is required. However, in many settings ample infor-

mation exists on the increasingly accurate relocations of seismicity, providing important

insight into the structure and geometry of the fault of interest (e.g. (Carena and Suppe,

2002)). In the present case, we use subsurface geometries that fit the observed surface

coseismic displacements best, and combine these with the well documented geometry of

the fault trace. Johnson and Segall (Johnson and Segall, 2004) fit a main fault dipping

to the east at 26◦ to a depth of 12km, a secondary fault segment dipping south at 23 ◦,

which joins the main fault by a third segment dipping shallowly to the southeast, and a

horizontal décollement. Lee et al. (Lee et al., 2002) attempt to fit a more refined geome-

try at depth that smoothly joins the separate sections and invert for slip on the resultant

fault. Both studies find that maximum slip occurred in the northern section, near a bend

in the surface trace (Lee et al., 2002). We incorporate the detailed surface trace, and

the subsurface geometry by progressively smoothing the surface trace and projecting it
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Figure 8.9: Example of paleostress inversion location and data from Lee et al. (Lee
et al., 2003). Horizontal slip surveyed in Blenkinsop (Blenkinsop, 2006) and GPS dis-
placement vectors. Percentage (in parenthesis) adjacent to slip vector on the rupture
is the proportion of the slip to the slip recorded at the nearest GPS station on the

hanging-wall side of the rupture.
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at the preferred dip of 26◦ to a depth of 12km. We omit the horizontal décollement to

simplify the analysis. We further simplify the surface trace geometry at the northern end

to represent the change in strike without incorporating all the different fault strands, but

rather construct the fault to be one contiguous surface.

As input we use the surface slip data published by several workers (Lee et al., 2003;

Blenkinsop, 2006), resolve these on the nearest elements at the surface and enforce that the

recorded local strike of the fault trace is equal to the strike of the corresponding element.

We average the slip measurements at locations with more than one offset markers recorded,

while at others the triangular surface elements are large enough to necessitate that local

slip measurements be averaged and resolved onto the respective elements. The resolved

slip measurements are then imposed as known boundary conditions in the inversion. We

also include subsurface focal mechanism measurements relocated and inverted for by Wu

et al. (Wu et al., 2008), use the predicted rake, and scale the slip by the magnitude of

each individual event in one of the inversions to highlight the capabilities of the algorithm.

The material properties of the medium surrounding the fault are homogeneous, isotropic,

and linearly elastic with a Poisson’s ratio of 1/4 and a Young’s modulus of 5GPa. Because

the lithologies across Taiwan are highly variable the values chosen should be understood

as approximations to the effective material properties.

The inversion results highlight how the detailed surface slip data can produce robust

remote stress orientations, while also providing an alternative method to estimating sub-

surface slip. The first inverse model only uses surface data and is depicted in Figure 8.10.

Slip maxima occur at several locations with the largest near the bend in fault geometry

at 24.2◦ latitude. The maximum slip is roughly 14m, which overestimates the 10m of slip

in the subsurface from kinematic inversions using surface displacements records (John-

son and Segall, 2004; Lee et al., 2002). The direction of the most compressive principal

stress (092.4◦) indicates compression near the east-west direction and the stress ratio is

φ = 0.169. This result is close to that of faultless inversions (orientation of σ1 = 111◦,

φ = 0.2) considering the variance of stress orientation inversion results is 21◦, which indi-

cate in general that the principal stress direction, or orientation of crustal shortening, is

roughly west-north-west to east-south-east (Blenkinsop, 2006). The deviation of regional

principal stress orientations is likely due to averaging the slip data and simplifying the

geometry near the northern end of the fault.

The second inverse model includes three focal mechanisms from the catalog of Wu et al.

(Wu et al., 2008) that occurred on the day of the main shock and are resolved onto the

fault (Fig. 8.11). The resultant slip on the fault is very similar to that of the inversion

given above using only the surface data (Fig. 8.10). One notable difference is the slight
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Figure 8.10: a) Fault trace of the Chelungpu fault and fault surface mesh used in the
inversion. Blue crosses indicate locations of slip data. For slip vectors see Fig 8.9 and
Blenkinsop (Blenkinsop et al., 2006). Slip distribution from the inversion using only the

surface data.

deviation of slip near the resolved focal mechanisms, which are enforced exactly. The

most compressive principal stress orientation is 092.4◦ and the stress ratio is φ = 0.169,

are identical to those using only the surface data (Fig. 8.11a) and the stress ratio is

φ = 0.169.
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Figure 8.11: a) Fault trace of the Chelungpu fault and fault surface mesh used in the
inversion. Blue crosses indicate locations of slip data. For slip vectors see Fig 8.9 and
Blenkinsop (Blenkinsop et al., 2006). Slip distribution from the inversion using only the

surface data and the subsurface focal mechanism solutions.

8.6 Conclusions

Faultless stress inversion methods are based on two assumptions that require careful

evaluation when these methods are applied. In addition, their successful implementation

requires diverse orientations of fault. The implications of ignoring this requirement have

received little attention. We present a new stress inversion method that solves a complete

mechanics problem explicitly including the stress perturbations of the faults.
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We validate the method by solving a forward problem on two heuristic models and invert

for stress and slip distributions using a subset of the elements in the forward problem.

One heuristic model is that of a single fault with surface roughness similar to faults

encountered in the field (Sagy et al., 2007). The second heuristic model tests an array

of circular faults with varying ranges in orientations. Both models are reproduced well

during the validation with principal stress orientation generally reproduced to within a

few degrees, often less. Principal stress magnitude ratios are reproduced well for the

heuristic model of an array of faults with varying orientation, but rather poorly for the

single fault heuristic model.

When compared to commonly used faultless methods, the proposed method perform as

well for the heuristic model of a single rough fault for the principal stress orientations, but

better for the ratio of principal stress magnitudes. For the heuristic model of an array of

faults with varying orientations, the proposed method performs better in predicting the

stress orientations and principal stress magnitudes.

Inversions for stress and slip distributions simultaneously for the 1999 Chi-Chi, Taiwan,

earthquake provide robust results that compare well with principal stress orientations and

ratios found in previous studies. The results here also compare well with slip distributions

found using independent methods. Both inversion setups, one using only surface data, the

other incorporating subsurface focal mechanisms as well, yield meaningful stress orienta-

tions and slip distribution. These applications highlight the versatility and robustness of

the proposed method.
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traintes principales également utiliable en tectonique et en séismologie: la méthode des
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versité P. & M. Curie, Paris.

Cladouhos, T. and Allmendinger, R. (1993). Finite strain and rotation from fault-slip

data. J. Struct. Geol., 15(6):771–784.

Comninou, M. and Dundurs, J. (1975). The angular dislocation in a half space. Journal

of Elasticity, 5(3):203–216.

Couples, G. (1977). Stress and shear fracture (fault) patterns resulting from a suite of

complicated boundary conditions with applications to the wind river mountains. Pure

and Applied Geophysics, 115:113–133.

Crouch, S. L. and Starfield, A. M., editors (1983). Boundary element methods in solid

mechanics. George Allen and Unwin, London.

Dupin, J.-M., Sassi, W., and Angelier, J. (1993). Homogeneous stress hypothesis and

actual fault slip: a distinct element analysis. J. Struct. Geol., 15(8):1033–1043.

Etchecopar, A., Vasseur, G., and Daignieres, M. (1981). An inverse problem in microtec-

tonics for the determination of stress tensors from fault striation analysis. J. Struct.

Geol., 3(1):51–65.

242



Fletcher, R. and Pollard, D. (1990). Can we understand structural and tectonic processes

and their products without appeal to a complete mechanics? J. Struct. Geol., 21:1071–

1088.

Fry, N. (1999). Striated faults: visual appreciation of their constraint on possible pale-

ostress tensors. J. Struct. Geol., 21(1):7–21.

Fung, Y. (1977). A first course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs,

NJ.

Gapais, D., Cobbold, P. ans Bourgeois, O., Rouby, D., and deUrreistiete, M. (2000).

Tectonic significance of fault-slip data. J. Struct. Geol., 22(7):881–888.

Gauthier, B. and Angelier, J. (1985). Fault tectonics and deformation: a method of

quantification using field data. Earth and Planetary Sci. Lett., 74(1):137–148.

Gephart, J. and Forsyth, D. (1990). An improved method for determining the regional

stress tensor using earthquake focal mechanism data: Application to the san fernando

earthquake sequence. Comput. Geosci., 16(7):953–989.

Gephart, J. W. (1990). Fmsi: a fortran program for inverting fault/slickenside and earth-

quake focal mechanism data to obtain the regional stress tensor. Computers and Geo-

science, 16(7):953–989.

Griffith, A. (1921). The phenomena of rupture and flow in solids. Phil. Transactions of

the Royal Society, A221:163–198.

Griffith, A. (1925). Theory of rupture. In First International Congress for Applied Me-

chanics, pages 53–64. Delft. Waltham Int. Press.

Hafner, W. (1951). Stress distribution and faulting. Geol. Soc. America Bull., 62:373–398.

Hardcastle, K. and Hills, L. (1991). Brute3 and select: Quickbasic 4 programs for deter-

mination of stress tensor configurations and separation of heterogeneous populations of

fault-slip data. Computers & Geosciences, 17(1):23–43.

Huang, Q. (1988). Computer-based method to separate heterogeneous sets of fault-slip

data into sub-sets. J. Struct. Geol., 10(3):297–299.

Inglis, C. (1913). Stresses in a plate due to the presence of cracks and sharp corners.

volume 55, pages 219–230. Inst. Naval Arch.

Irwin, G. (1957). Analysis of stresses and strain near the end of a crack traversing a plate.

J. of Appl. Mech., 24:361–364.

243



Jackson, J. and McKenzie, D. (1988). The relationship between plate motions and seismic

moment tensors, and the rates of active deformation in the mediterranean and middle

east. Geophysical J., 88:46–73.

Jaeger, J., Cook, N., and Zimmermann, R. (2007). Fundamentals of Rock Mechanics.

Blackwell Publ., Malden, MA.

Jeyakumaran, M., Rudnicki, J. W., and Keer, L. M. (1992). Modeling slip zones with tri-

angular dislocation elements. Bulletin of the Seismological Society of America, 82:2153–

2169.

Johnson, K. and Segall, P. (2004). Imaging the ramp-décollement geometry of the
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Preamble

This chapter shows that using the principle of superposition, which is inherent to linear

elasticity, allows one to recover paleostress using a Monte-Carlo method in a very fast

way. Compared to the technique developed in chapter 8, this new method allows one to

use fracture orientation from well bores, and to estimate the number of tectonic events,

each measured fracture being classified into its respective event.
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9.1 Résumé

Les méthodes d’inversion de contraintes, qui utilisent des stries mesurées et/ou le rejet

sur les failles, sont principalement basées sur deux hypothèses: (i) le champ de contraintes

est uniforme au sein de la masse rocheuse englobant les failles (en supposant l’absence de

champ de contrainte perturbé), et (ii) le déplacement sur les failles a la même direction et

le même sens que le champ de contraintes à l’infini résolu sur les plans de failles. De plus,

il a été montré que les directions de glissements sont affectées par: (i) l’anisotropie de la

géométrie des failles; (ii) l’anisotropie du frottement sur ces failles (ondulations de surface);

(iii) l’hétérogénéité de la rigidité de la roche hôte, et (iv) les perturbations du champ de

contraintes local, principalement dues aux interactions mécaniques des failles entre elles.

Les interactions mécaniques dues à la géométrie complexe des failles dans les milieux

hétérogènes doivent donc être prises en compte lors du calcul d’inversion de contraintes.

Déterminer les paramètres de ces paléo-contraintes en présence de failles interagissant

entre elles nécessite de faire des milliers de simulations et requiet par conséquent un

temps de calcul non négligeable afin de s’ajuster aux données observées.

Dans cet article nous approfondissons cette approche avec la méthode des éléments frontières

en 3D en utilisant le principe de superposition qui s’applique à l’élasticité linéaire dans

un milieu semi-infini, hétérogène et isotrope. Compte tenu du rejet sur les failles, des

données de striation, des mesures de contraintes ainsi que la géométrie des failles, des

données GPS, d’orientation de fractures (joints, veines, dykes, stylolites), d’orientation

de plan de failles secondaires, on retrouve l’état de paleo-contrainte pour un ou plusieurs

évènements tectoniques, et ceci de manière rapide.

Nous montrons qu’en utilisant le principe de superposition, chaque simulation se fait en

temps constant quelle que soit la complexité du modèle sous-jacent, et que le modèle

n’a pas besoin d’être recalculée à chaque simulation. Les applications de cette méthode

sont multiples: interpolation de contraintes, modélisation de la fracturation, détection

des évènements tectoniques, contrôle de la qualité des failles interprétées, ou calcul en

temps réel du champ de contraintes perturbé lorsque l’utilisateur fait de l’estimation de

paramètres.
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9.2 Abstract

Methods for stress inversion, using measured striations and/or throw on faults, are mainly

based on on the assumptions that: (i) the stress field is uniform within the rock mass em-

bedding the faults (assuming no perturbed stress field), and that (ii) the slip on faults has

the same direction and sense as the resolved far field stress on the fault plane. However,

it has been shown that slip directions are affected by: (i) anisotropy in fault compliance

caused by irregular tip-line geometry; (ii) anisotropy in fault friction (surface corruga-

tions); (iii) heterogeneity in host rock stiffness; and (iv) perturbation of the local stress

field mainly due to mechanical interactions of adjacent faults. Mechanical interactions

due to complex faults geometry in heterogeneous media should be taken into account

while doing the stress inversion. Determining the parameters of such paleostress in the

presence of multiple interacting faults requires running a lot of simulations, and therefore

a huge amount of computation time in order to fit the observed data. In this paper we

investigate this approach with a 3D boundary element method using the principle of super-

position that applies to linear elasticity for heterogeneous, isotropic whole- of half-space

media. Given some measures of the fault throw, dip-slip and/or slickenline directions,

stress measurements as well as fault geometry, GPS data, fractures (joints, veins, dikes,

pressure solution seams with stylolites) or secondary fault plane orientations, we recover

the remote stress state for multiple tectonic events in a fast way.

We show that using the principle of superposition, each simulation is done in constant

time whatever the complexity of the underlying model and that the model does not need

to be recomputed. Applications of this technique range from stress interpolation and

fracture modeling, recovering of tectonic event(s), quality control on interpreted faults to

real-time computation of perturbed stress and displacement fields when the user is doing

parameters estimation.

9.3 Introduction

Understanding the origin and evolution of faults and the tectonic history of faulted regions

can be facilitated by relating fault orientation and slip direction to the state of stress in

Earths crust (Anderson, 1942; Price, 1966; Voight, 1966; Mandl, 1988). In typical inverse

problems the directions of the remote principal stresses and a ratio of their magnitudes

are constrained by analyzing field data on fault orientations and slip directions as inferred

from striations such as slickenlines on exposed fault surfaces (e.g. Angelier, 1984; Angelier

et al., 1982; Carey and B., 1974; Etchecopar et al., 1981; Fry, 1999; Reches, 1987; Shan

et al., 2004; Sato and Yamaji, 2006). The equations of motion are not invoked for these
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Figure 9.1: a) upper left - directions of principal stress axes with one vertical; b)
upper right - orthogonal planes carrying the maximum shear stress at a point or in a
volume with a homogeneous state of stress; c) lower left - conjugate normal fault planes;

d) lower right - schematic normal fault planes. From Anderson (Anderson, 1905).

inverse problems, and perturbations of the local stress field by fault slip are ignored. The

mechanical role played by the faults in the tectonic deformation is not included explicitly

in the analysis.

To our knowledge paleostress analysis of this kind began with the remarkably prescient

paper on the dynamics of faulting by E. M. Anderson published in 1905 (Anderson, 1905).

Here we provide a brief perspective on paleostress analysis by identifying two generations

in the development of this methodology, and then we distinguish a third generation, which

is the focus of the paper.

9.3.1 Generation 1: Anderson’s inversion for tectonic stress

regimes

Anderson (Anderson, 1905) began, without comment or justification, by taking one prin-

cipal stress direction as vertical (Fig. 9.1.a), but he addressed this assumption explicitly

37 years later in his book on the dynamics of faulting (Anderson, 1942, p. 12 and Ch.

VII). In his 1905 paper Anderson suggested that planes carrying the maximum tangential

stress “will have much to do with determining the directions of faults in the rock”. He

understood (Fig. 9.1.b) that for a triaxial stress state (P > Q > R) there are two ori-

entations of such planes at a point or throughout a homogeneous stress field; that these
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planes intersect in the direction of the intermediate principal stress (Q); and that they

make equal angles of 45◦ with the direction of greatest principal compressive stress (P).

These planes are geometrically orthogonal and mathematically “conjugate” (so related

as to be interchangeable in the enunciation of certain properties) in the sense that the

traction vectors acting upon them are equal in magnitude.

Anderson (1905) suggested that “the planes of faulting in any rock do not follow exactly

the directions of maximum tangential stress, but deviate from these positions in a more

or less determinate manner”. Without references to the existing literature, Anderson

declared: “If we suppose that the resistance which any solid (otherwise isotropic) offers to

being broken by shearing along any plane consists of two parts, one part being a constant

quantity and the other part proportional to the pressure across that plane, we shall arrive

at results which agree very well with the observed geological facts.” This resistance to

breakage by shearing is equivalent to that attributed to Coulomb (Coulomb, 1773), and

the so-called Coulomb failure criterion may be written (Jaeger et al., 2007, p. 90):

|τ | = S0 + µσ (9.1)

On the left hand side is the shear stress that promotes faulting. On the right hand side

are Andersons two resistance terms: S0 is the constant quantity (cohesion); µ is the

proportionality constant (friction); and σ is the normal stress (pressure).

In calculating the tangential and normal stress on the conjugate planes Anderson used a

variant of Cauchys tetrahedron (Malvern, 1969, p. 73), with one face corresponding to

a would-be fault, and made an interesting analogy: “This prism we suppose to exist in

the rock, somewhat as the statue exists beforehand in the block of marble... .” Clearly,

Anderson understood that slip on a fault would perturb the stress from the assumed

homogeneous state, so it is appropriate to think of his conjugate planes as would-be

faults. Therefore, we appeal to Anderson’s analogy and refer to his method, based on a

homogeneous stress state, as ’faultless’ paleostress analysis.

Anderson avoids grappling with the cohesion by “supposing a plane crack had actually

formed in this direction, and that movement were just about to begin along it...”, in this

case resisted only by friction, so S0 = 0 in Eq. 9.1. Subtracting the frictional resistance

from the shear stress and introducing the principal stresses (e.g. Jaeger et al., 2007, p.

23), Anderson derived (Anderson, 1905, p. 389):

P −R

2
(sin 2θ) − µ

(
P +R

2
− P −R

2
cos 2θ

)
= 0 (9.2)
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Here θ is the angle from the direction of P to the plane of interest. Anderson asserted that

this quantity “will be a maximum in the directions in which faulting will be the most likely

to occur”. Using differential calculus to find the maximum of as a function of θ, he derived

the relationship tan 2θ = 1/µ, which may be solved for the orientation of faulting, θc. For

example, taking µ = 1/
√

3, Anderson (Anderson, 1905, p. 389) calculated θc = 30◦(Fig.

9.1.c).

While clearly recognizing that faults in nature present more complicated geometries be-

cause of sequential development and mutual cross-cutting (Fig. 9.1.d), Anderson used

the relationships between the orientations of conjugate faults and those of the principal

stress directions to identify three tectonic stress regimes for faulting (normal, wrench,

and thrust), and he associated each with one of the principal stress axes being vertical

(greatest, intermediate, and least compression, respectively). For each regime the inter-

mediate principal stress direction was taken as coincident with the line of intersection of

two conjugate fault orientations, and the greatest principal stress bisected the acute angle

between these faults. Thus, this most elementary form of paleostress analysis provides

the orientations of the principal stress axes (with one assumed to be vertical) and their

relative magnitudes P ≥ Q ≥ R. While the necessary data for Anderson’s stress inversion

is the orientation of conjugate faults, the underlying theory is faultless.

9.3.2 Generation 2: inversion using slickenlines or focal mecha-

nisms

The second generation of paleostress analysis was introduced in the middle of the last

century when Wallace (Wallace, 1951) analyzed the maximum shear stress (tangential

traction) on planes of arbitrary orientation for a homogeneous stress state using Cauchy’s

Formula (e.g. Jaeger et al., 2007, p.31). Appealing to laboratory results and Mohr’s

theory (Jaeger et al., 2007, p.94) , Wallace proposed that “faults will tend to concentrate

at orientations tangent to a cone, with apex angle less than 90◦, which has the axis of

greatest compressive stress as its axis...” and that “Orientation of net slip on faults can be

correlated almost directly with orientation of maximum shearing stress...”. He suggested

that “If a complete picture of fault-plane orientations and net-slip orientations on several

faults is available, it should be possible to determine with some degree of certainty the

orientation and nature of the stress system producing the faults.”

Taking a somewhat different approach conceptually, Bott (Bott, 1959) contemplated the

likely presence of strength inhomogeneity in the form of older faults, joints, and cleavage.

Apparently supposing that whatever perturbation in the stress field due to the formation
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of these structures had relaxed, he suggested “These planes would remain ’unnoticed’

until the shearing stress within them should exceed the strength...”. Furthermore, Bott

suggested “...fracture would occur within the preferred plane in which the strength was

first exceeded, and the direction of the initial slip would be defined by the direction of the

greatest shearing stress within the plane”. Bott then preceded, as Wallace (Wallace, 1951)

did, to employ Cauchy’s Formula (e.g. Jaeger et al., 2007, p.31) to derive the equation

relating the shear stress (tangential traction), τ , to the principal stress magnitudes σ1 ≥
σ2 ≥ σ3 in a homogeneous stress field:

τ 2 = σ2
1n

2
1 + σ2

2n
2
2 + σ2

3n
2
3 − (σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3)

2

= (σ1 − σ2)
2n2

1n
2
2 + (σ2 − σ3)

2n2
2n

2
3 + (σ3 − σ1)

2n2
3n

2
1

(9.3)

Here the principal stress directions are coincident with the coordinate axes and (n1, n2, n3)

are the direction cosines for the unit normal to the plane of interest. In some of the modern

literature on paleostress analysis the coincidence of the tangential traction (direction of

maximum resolved shear stress) and the slip direction is referred to as the ’Wallace-Bott’

hypothesis.

Six quantities are necessary to define the six independent components of the stress tensor

at a point or in a volume subject to a homogeneous stress state. These quantities may

be taken as the three principal stresses σ1, σ2, σ3 and the three Euler angles (ψ, θ, φ)

that define the principal stress axes, for example with respect to a geographic coordinate

system. However, given only data on the slip direction (assumed coincident with that

of the maximum resolved shear stress) on arbitrary planes, one can only constrain the

Euler angles and a non-dimensional measure of the shape of the deviatoric stress tensor

(Etchecopar et al., 1981; Angelier, 1984). This can be understood by noting that the

direction of the maximum resolved shear stress depends on principal stress differences

(Ramsay and Lisle, 2000), which can be expressed as:

φ =
σ2 − σ3

σ1 − σ3

(9.4)

In typical inverse problems following the Wallace-Bott methodology the directions of the

remote principal stresses and the ratio of their magnitudes are constrained by analyzing

field data on fault orientations and slip directions as inferred from striations such as

slickenlines on exposed fault surfaces (e.g. Carey and B., 1974; Etchecopar et al., 1981;

Angelier et al., 1982; Angelier, 1984; Gephart, 1990; Michael, 1987; Reches, 1987; Fry,

1999; Shan et al., 2006). The adoption of this methodology is facilitated by an instructive

exposition and computer codes in the textbook by Ramsay & Lisle (Ramsay and Lisle,
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2000) and by the availability of other computer codes (e.g. Huang, 1988; Hardcastle and

Hills, 1991; Orife et al., 2002). The enthusiastic implementation of the methodology

by the structural geology community is witnessed by global compilations of paleostress

results from 250 sites for the World Stress Map Project (Reinecker et al., 2004) and from

2, 791 independently chosen sites (Lisle et al., 2006) for a Special Issue of the Journal

of Structural Geology on “New Dynamics in Palaeostress Analysis” (Blenkinsop, 2006).

Readers are referred to this special issue for a more extensive coverage of this methodology

and references to the literature.

A closely related methodology has developed in parallel with, and sometimes intertwined

with geological paleostress analysis in which seismological data are used to identify the

quadrants that contain the so-called P and T axes for a given earthquake focal mechanism

(e.g. McKenzie, 1969; Aki and Richards, 2002). Because the fault plane generally is

not available to the seismologist, they face the additional ambiguity of two orthogonal

would-be fault orientations that stem from the representation of seismic sources as double-

couple force systems (Vasseur et al., 1983; Michael, 1987; Gephart, 1990; Lay and Wallace,

1995). Some researchers associate P and T with the axes of greatest shortening and

greatest extension, that is principal strains or strain rates (Marrett and Allmendinger,

1990; Twiss et al., 1993; Twiss and Unruh, 1998), while others associate P and T with

the axes of greatest and least compression, that is principal stresses (Gephart, 1990; Julien

and Cornet, 1987; Michael, 1987; Jones, 1988; Ramsay and Lisle, 2000) for the fault in

question.

While this second generation of paleostress analysis employs data on the orientation of

faults and slickenlines, or earthquake focal mechanisms, the underlying theory is faultless.

In other words the mechanical role played by faults in the tectonic deformation is not

included explicitly in the analysis.

9.3.3 Generation 3: inversion using heterogeneous stress fields

At the same time that faultless paleostress analysis (generations 1 and 2) was being

developed and refined, geologists and geophysicists sought to understand the origin and

evolution of faults, and the tectonic history of faulted regions, by relating fault orientation

and slip direction to the state of stress in Earths crust using forward models. For example,

Anderson (Anderson, 1942, Ch. 7) calculated and interpreted the stress perturbations near

a model fault using the solution of Inglis (Inglis, 1913) for a highly eccentric elliptical hole

in an elastic plate. In typical forward problems the equations of motion are solved with a

prescribed remote stress state as boundary conditions, yielding the local stress, strain, and
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Figure 9.2: Various methods for recovering paleostress. (a) Technique as described
by Kaven et al. (Kaven, 2009). (b) Monte-Carlo method without optimization. (c) The
method described in this paper using the principle of superposition, which drastically

reduces the complexity of the model.

displacement fields, and the slip distributions over the model faults (e.g. Chinnery, 1961,

1963; Pollard et al., 1993; Burgmann and Pollard, 1994; Willemse et al., 1996; Maerten

et al., 1999). In these forward models the faults are explicitly defined in terms of their

geometry and boundary conditions are prescribed in terms of tractions or displacement

discontinuities. In this paper we take the same approach, but consider the inverse problem:

given the fault geometry and data on slip, or stress perturbations as interpreted, for

example, from secondary fractures, what was the tectonic (remote) stress state?

The idea of using a full mechanical scenario is not new for doing paleostress inversion (e.g.,

see Kaven, 2009). However, using multiple types of data to better constrain the inversion

is new and is presented in this paper. Data sets are of two types. Those which provide

only orientation information (such as fractures and secondary fault’s planes with internal

friction angle, as well as fault striations), and those which provide magnitude information

(e.g., fault slip, GPS, InSAR data set).

In (Kaven, 2009), the paleostress inversion was essentially computed using slip measure-

ments on fault’s planes (bi in figure 9.2 a). The method relies on an algorithm that has

two steps: (i) use the initial remote stress tensor σR, resolve it onto the fault elements

that have no relative displacement data, and solve for the unknown relative displacements

(bj in figure 9.2 a); (ii) use the computed and known relative displacements to solve for σR
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Input from well bores:

- Fracture orientation

- Secondary fault planes

- GPS and tiltmeters

Input for faults:

- Faults geometry

- Optional throw

- Optional constraints

Output:

- Displacement on faults

Output:

- Far field stress(es)

- Tectonic regime(s)

Input:

- Deformed horizons

(free-surface)

Figure 9.3: Sketch of a common geomechanical problem. The faults geometry is
known (and optionally, measured fault throw and imposed inequality constraints such
as normal, thrust, ...). The user has access to data from well bores (fracture orientation,
in-situ stress measurement, secondary fault planes) geodetic data (InSAR, GPS and tilt-
meter) as well as interpreted horizons. The goal of the presented technique is to recover
the remote stress state and tectonic regime for the tectonic event(s) as well as the
displacement discontinuity on faults, and then to have an estimate of the displacement

and perturbed strain and stress fields anywhere within the model.

(Fig. 9.2.a). An iterative solver, that cycles between steps (i) and (ii) until convergence,

is used.

Another method can be imagined based on a Monte-Carlo algorithm. It is outline in figure

(9.2 b). However, this technique proves to be unfeasible since it requires a long computa-

tion time, and for which the complexity is of O(n2 + p), where n and p are the number of

triangular elements making the faults and the number of data points, respectively. For a

given simulation, a random far field stress σR is chosen, and the corresponding displace-

ment discontinuity b on faults are computed. Then, as a post-process at data points and

depending on the type measurements, the cost functions are computed using either the

displacement, strain or stress field. For hundreds of thousands of simulations, the best

cost (close to zero) is retained as a solution.

In this paper, we extend the inversion for any kind of data that can be combined and

weighted together. We show that it provides a fast and reliable way of doing stress

inversion. Fig 9.3 depicts a typical problem of paleostress. The fault geometries are

known as well as data from well bores (fracture orientation, secondary fault planes, GPS

and tilt-meter data set). The goal of the technique detailed here is to recover the tectonic

event(s) as well as the displacement discontinuity on faults using such data set, and then

to have an estimate of the displacement and perturbed strain and stress field anywhere
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within the medium, using only data available from seismic interpretation, well bores and

field observations.

We show in the following that the use of the principle of superposition allows one to do

parameter estimations in a very fast way, each simulation being done in constant time

(section 9.4). Applications of such method are developed in sections 9.5, 9.6, 9.7 and 9.8.

9.4 Theory

In this section, we give an overview of the technique by briefly describing the numerical

method (section 9.4.1), the reduced remote tensor used for the simulation (section 9.4.2)

and the principle of superposition (section 9.4.3). Finally, we provide an estimate of the

complexity in section 9.4.4.

9.4.1 Modeling using iBem3D

The formulation is done using iBem3D, the successor of Poly3D (Thomas, 1993; Maerten

et al., 2005) and which is a boundary element code based on the analytical solution of

an angular dislocation in a homogeneous or inhomogeneous (Maerten and Maerten, 2008)

elastic whole- or half-space (Comninou and Dundurs, 1975). We choose to use an iterative

solver (Maerten et al., 2009) for speed considerations (Maerten, 2010) and parallelization

on multicore architectures. However, inequality constraints cannot be used as they are

non linear and the principle of superposition does not apply. In this code, faults are

represented by triangulated surfaces with discontinuous displacement. The advantage

compared to Okada’s code (Okada, 1985) is that three-dimensional fault surfaces more

closely approximate curviplanar surfaces and curved tip-lines without introducing over-

laps or gaps. Mixed boundary conditions are prescribed, and when traction boundary

conditions are specified, we have to solve for the unknown Burgers’s components. After

the system is solved, it is possible to compute anywhere, within the whole- or half-space,

displacement, strain or stress at observation points as a post-process. Specifically, the

stress field at any observation point is given by the perturbed stress field due to slipping

faults plus the contribution of the remote stress. Consequently, knowing only the per-

turbed stress field due to the slip on faults is not enough. Moreover, the estimation of

the fault slip from seismic interpretation is only given along the dip-direction. Nothing

is known along the strike-direction, and a full mechanical scenario is necessary to recover

the unknown components of the slip vector as it will impact the perturbed stress field.
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Changing the imposed far field stress (orientation and or relative magnitudes) will modify

the slip distribution and consequently the perturbed stress field. In general, a code such

as iBem3D is well suited for computing the full displacement vectors on faults (see for

example Maerten et al., 1999; Maerten, 2000; Muller et al., 2003, among others), and was

intensively optimized using the H-Matrix technique (Maerten, 2010). The main unknown

for the modeling remains the estimation of the far field stress that has to be imposed as

boundary conditions.

9.4.2 Reduced far field stress tensor

A model composed of multiple fault surfaces is subjected to a constant far field stress

tensor σR defined in the global coordinate system by:

σR =





a11 a12 a13

a22 a23

a33



 (9.5)

If we suppose a sub-horizontal far field stress (Anderson, 1905) (the present methodology

is not restricted to that case), Eq. 9.5 simplify into:

σR =





a11 a12 0

a22 0

a33



 (9.6)

Since the addition of an hydrostatic stress does not change σR, it is written:

σR =





a11 − a33 a12 0

a22 − a33 0

0



 =

[
ā11 a12

ā22

]
(9.7)

Consequently, we end up with the definition of a far field stress with three unknowns,

namely {ā11, ā22, a12}.

The far field stress tensor, as defined in Eq. 9.7, can be computed using only two param-

eters instead of the three {ā11, ā22, a12}. Using the spectral decomposition of the reduced

σR, we have:

σR = RT
θ σRθ (9.8)
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where

σ =

[
σ1 0

0 σ2

]
(9.9)

is the matrix of principal values, and

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
(9.10)

is the rotation matrix around the global z-axis (since we assume a sub-horizontal stress

tensor). By writing:

σ2 = kσ1 (9.11)

eq. 9.8 transforms into:

σR(θ, k) = σ1R
T
θ

[
1 0

0 k

]
Rθ (9.12)

Omitting the scaling factor σ1 due to Property 1 (see section 9.6.2.2), σR can be expressed

as a functional of two parameters θ and k:

σR(θ, k) = RT
θ

[
1 0

0 k

]
Rθ (9.13)

These two parameters are naturally bounded by:

{
−π/2 ≤ θ ≤ π/2

−10 ≤ k ≤ 10
(9.14)

if we suppose that uniaxial remote stress starts to occur when k ≥ 10. Note that for

k = 1, we find an hydrostatic stress tensor, which has no effect on a model. Note also

that using a lithostatic far field stress tensor (therefore a function of depth z), does not

invalidate the presented technique, and Eq. 9.13 transforms into:

σR(θ, k, z) = zRT
θ

[
1 0

0 k

]
Rθ (9.15)

and is linearly dependent on z.

We will use the simplified tensor definition given by Eq. 9.13 in the coming sections to

determine (θ, k), or equivalently (α1, α2, α3), according to measurements.
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9.4.3 Principle of superposition

The basic idea of the method proposed in this paper is to use the principle of superposition,

a well known principle in linear elasticity, to recover the displacement, strain and stress at

any observation point P using the pre-computed specific values from linearly independent

simulations. This principle stipulates that a given value f can be determined by a linear

combination of specific solutions. In the present method, recovering a far field stress

implies to recover the three parameters {ā11, ā22, a12}. Therefore, the number of linearly

independent solutions must be three. In other words:

f = F (σ) = F
(
α1σ

(1) + α2σ
(2) + α3σ

(3)
)

= α1F
(
σ(1)
)

+ α2F
(
σ(2)
)

+ α3F
(
σ(3)
)

= α1f1 + α2f2 + α3f3

(9.16)

where (α1, α2, α3) are real numbers, and σ(i) (for i = 1 to 3) are three linearly independent

remote stress tensors. If we choose F to be the strain, stress or displacement Green’s

functions, then the resulting values ǫ, σ and u at P can be expressed as a combination of

three specific solutions:






ǫP = α1ǫ
(1)
P + α2ǫ

(2)
P + α3ǫ

(3)
P (a)

σP = α1σ
(1)
P + α2σ

(2)
P + α3σ

(3)
P (b)

uP = α1u
(1)
P + α2u

(2)
P + α3u

(3)
P (c)

(9.17)

Similarly, using (α1, α2, α3) allows one to recover the displacement discontinuities on the

faults:

be = α1b
(1)
e + α2b

(2)
e + α3b

(3)
e (9.18)

and any far field stress is also given by as a combination of the three parameters:

σR = α1σ
(1)
R + α2σ

(2)
R + α3σ

(3)
R (9.19)

9.4.4 Complexity estimate

Changing σR usually requires recomputing the entire model in order to determine the cor-

responding unknown displacement discontinuities. Then, at any observation point P , the

stress is determined as a super imposition of the far field stress σR and the perturbed stress

field due to slipping elements. For a model made of n triangular discontinuous elements,

computing the stress state at point P requires first to solve for the unknown displacement
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discontinuities on triangular elements (for which the complexity is of O(n2)), and then

approximately 350n multiplications using the standard method. Using the principle of

superposition does not required recomputing the unknown displacement discontinuities

on triangular elements, and only 18 multiplications are needed. Note that the complexity

is independent of the number of triangular elements within the model, and is constant in

time.

We now give some direct applications of the method for real time evaluation of the defor-

mation and perturbed stress field while the user changes the far field stress (section 9.5).

Paleostress estimation using different data sets is presented in section 9.6. A method to

recover multiple tectonic phases is explained in section 9.7, and we show how this method

can be used for quality control on fault interpretation in section 9.8.

9.5 Real time computation

Before developing the paleostress inversion, we briefly give a method to compute in real

time the displacement discontinuity on faults as well as the displacement, strain and stress

fields at observation points while varying the orientation and/or magnitude of the far field

stress.

If the tectonic stress σR is given and three independent solutions are known, there exist

a unique triple (α1, α2, α3) for which Eq. 9.19 is honored, and Eq. 9.17 and 9.18 can be

applied. In matrix form, Eq. 9.19 writes:





σ
(1)
00 σ

(2)
00 σ

(3)
00

σ
(1)
01 σ

(2)
01 σ

(3)
01

σ
(1)
11 σ

(2)
11 σ

(3)
11










α1

α2

α3





=






σR
00

σR
01

σR
11





(9.20)

or in compact form:

Aσα = σR (9.21)

Since the three particular solutions σ(i) are linearly independent, the system can be in-

verted, which gives:

α = A−1
σ σR (9.22)

In Eq. 9.22, A−1
σ is pre-computed at initialization. Given a user remote stress σR, we

recover the three parameters (α1, α2, α3), then the fault slip as well as the displacement,
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strain and stress field are computed in real time using Eq. 9.18 and 9.17, respectively.

To do so, it is necessary to store, at initialization, the three particular solutions of the

displacement, strain and stress at each observation point, as well as the displacement

discontinuity on the faults. This technique allows the user to vary the orientation and

magnitude of σR, and to display interactively the associated deformation and perturbed

stress field.

9.6 Paleostress inversion using field measurements

As seen in section 9.4.1, the main unknown while doing forward modeling for the estima-

tion of the slip distribution on faults, and consequently the associated perturbed stress

field, are the orientation and relative magnitudes of the far field stress σR.

If field measurements are known at some given observation points (e.g. displacement,

strain and/or stress, fractures orientation, secondary fault planes that formed in the vicin-

ity of major faults), then it is possible to recover the triple (α1, α2, α3) and therefore for the

tectonic stress σR (section 9.6.2) and the corresponding tectonic regime (see appendix).

This section describes the method of resolution as well as the cost functions to minimize

different types of data.

9.6.1 Method of resolution

Using a Monte Carlo method (Hammersley and Handscomb, 1975; Rubinstein, 1981)

allows one to find the parameters (α1, α2 α3) which minimize the cost functions given

three independent far field stresses (see Eq. 9.19). However, even if (α1, α2 α3) is a

3-dimensional parameters-space, we saw in section 9.4.2 that it can be reduced to two

dimensions (namely, the parameters θ and k), the conversion being given by Eq. 9.22 (see

also figure (9.2.c) and algorithm 9.1 for a detailed description). Consequently, we drasti-

cally speedup the searching method by reducing the parameters-space by one dimension.

A simple sampling method can be done by considering a two-dimensional rectangular

domain for which the axes correspond to θ, and k. The 2D-domain is sampled randomly

with np points, and the associated cost function (defined in the coming sections) is used

to determine the point where we obtain the minimum cost. A refinement is then created

around the selected point and the procedure is repeated with a smaller domain. Algo-

rithm 9.1 depicts a simplified version of the procedure, for which there is no refinement.
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Of course, the sampling method presented here can be greatly optimized by various tech-

niques (McKay et al., 1979).

Algorithm 9.1: Paleostress estimation

Input: Faults geometry
Input: Data set
Output: σR // the estimated paleostress

Initialization: Compute 3 simulations using 3 linearly independent σ
(i)
R (1 ≤ i ≤ 3) and

the faults. Store the resulting displacement and stress fields at data points, and
displacement discontinuity at faults if necessary.
Initialization: Pre-compute A−1

σ (see Eq. 9.22)
Let c= 1 // initial cost
Let ᾱ = (0, 0, 0) // initial (α) solution
for i = 1 to np do

Randomly generate θ ∈ [−π/2, π/2]
Randomly generate k ∈ [−10, 10]
// Convert (θ, k) ∈ ℜ2 to (α) ∈ ℜ3:
Compute Rθ using Eq. 9.10
Compute σR(θ, k) using Eq. 9.13
Compute α using Eq. 9.22
// Compute the corresponding cost :
d = cost(α, data set)
if d ≤ c then

ᾱ = α
c = d

end

end

σR =
∑3

i=1 ᾱiσ
(i)
R

To see the benefit of the principle of superposition combined with a Monte Carlo method

(Fig. 9.2.c) compared to a naive method (Fig. 9.2.b), we can imagine a model composed

of 3, 000 triangular elements. To compute the displacement discontinuity on faults, the

model takes approximately 30s, and 5s to compute the stress at 200 data points. Using

the principle of superposition, recovering the paleostress using 10, 000 random simulations

takes 1mn40s. Using the naive method (i.e. recomputing the displacement discontinuity

on faults for each simulation), would required 4 days.

9.6.2 Geologic, geophysical, and geodetic data sets

The particularity of this method lies in a fact that many different kinds of data sets can

be used to constrain the inversion. We present in the following sections two groups of
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Figure 9.4: Fracture and conjugate fault-planes. (a) Orientation of σ3 relatives to
an opening fracture (joints, veins, dikes) given by its normal n in 3D. (b) same as (a)
but for a pressure solution seam with stylolites. (c) Orientation of σ1 and σ2 relative
to a conjugate fault-planes given by one of the normal n in 3D and the internal friction

angle θ.

data: the first one includes only orientation information and the second includes with

displacement and/or stress magnitude information.

9.6.2.1 Data sets containing only orientation information

Using fractures and stylolites orientations For opening fractures (joints, veins,

dikes) the orientation of the normal to the fracture plane indicates the direction of the

least compressive stress direction (σ3). Similarly, the normals to pressure solution seams

and stylolites indicate in the direction of the most compressive stress (σ1). We show that

using measurements of the orientations of fractures, pressure solution seams and stylolites

allows one to recover the tectonic regime which generated such features.

At any observation point P , the local perturbed stress field can be determined easily from

a numerical point of view by using three linearly independent simulations. The goal is

to determine the best fit of the far field stress σR, therefore parameters α1, α2 and α3,

given some orientations of opening fracture planes for which the normals coincide with

the directions of the least compressive stress σP
1 at P , or equivalently for which the plane

of the fracture contains the most compressive stress σ3 (see Fig. 9.4.a and b). By varying

(α1, α2, α3), the state of stress at any observation point P can be computed quickly using
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(a) (b) (c)

Figure 9.5: Example of a geomechanically-based fracture modeling from outcrop fault
data and observed three fracture data points using the method describe in this paper.
(a) model configuration showing the three fracture orientations used for the inversion
(green dots) as well as the interpreted faults (red lines). (b) computed fracture network.

(c) observed fracture network in the entire field.

the three pre-computed models. The cost function to minimize is:

ffrac(α1, α2, α3) =
1

m

∑

P

[
1 −

(
σP

3 .n
P
)2]

(9.23)

where . is the dot-product, n is the normal to a fracture plane, and m is the number of

observation points. We end up with the minimization of a function of three parameters:

Ffrac = min
α1,α2,α3

{ffrac(α1, α2, α3)} (9.24)

Similarly, for pressure solution seams and stylolites, the cost function is defined as in

equation 9.23 using the most compressive stress σ1 (see Fig. 9.4.c and d):

fstyl(α1, α2, α3) =
1

m

∑

P

[
1 −

(
σP

1 .n
P
)2]

(9.25)

Example: Nash Point (UK) Figure 9.5 displays an example using fracture orienta-

tions to determine the far field stress and consequently the perturbed stress field around

a complexly faulted outcrop. The right figure presents the observed fracture pattern at

NashPoint (Rawnsley et al., 1992) which apparently formed in the presence of the per-

turbed stress field due to active faults (red lines). In this example, we use only three

measurements of fracture orientation (left, green dots) to recover the paleostress and the

fault slip distributions. The recovered paleo stress is oriented N161 with a ratio of −1.5

(strike-slip faulting regime). After the paleostress has been resolved, the predicted frac-

ture pattern (lines perpendicular to the local least compressive stress) is computed on
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a dense observation grid (middle figure) and this is compared to the observed fracture

pattern.

Using secondary fault planes The orientation of secondary fault planes that develop

in the vicinity of larger active faults may be estimated using the Coulomb failure criteria

(Jaeger et al., 2007; Maerten et al., 2002) defined by:

tan(2θ) =
1

µ
(9.26)

where θ is the angle of the failure planes to the maximum principal compressive stress

(σ1) and µ is the coefficient of internal friction. Two conjugate failure planes intersect

along σ2 and the fault orientation is influenced only by the orientation of the principal

stresses and the value of the friction.

The cost function is therefore defined by:

ffault(α1, α2, α3) =
1

2m

∑

P



(σP
2 .n

P
)2

+

(
| sin−1

(
σP

1 .n
P
)
| − θ

π

)2


 (9.27)

where σ1 is the direction of the most compressive stress and σ2 is the direction of the

intermediate principal stress. The first term of the right hand side in Eq. 9.27 maintains

an orthogonality between the computed σ2 and the normal of the fault plane, whereas the

second term ensures that the angle between the computed σ1 and the fault plane is close

to θ (see Fig. 9.4.e).

Example 1: Normal and thrust fault Figure 9.6 shows two synthetic examples of

the same model using an inclined planar fault. Initially, the model is constrained by a far

field stress and at 200 observation points, where the two conjugate planes are computed

using an internal friction angle of 30◦. Then, for each observation point, one of the

conjugate fault planes is chosen randomly and used as input data for the stress inversion.

Figure 9.6 presents the inclination of the two conjugate fault planes for a normal (Fig.

9.6.a) and a thrust (Fig. 9.6.b) fault regime, respectively. For each of them, the plot of

the cost function at each observation point is displayed in Fig. 9.7. The recovered tectonic

regime, stress ratio and orientation match for both cases.

Example 2: Oseberg-Syd (Norway) Figure 9.8 presents an application to faulting

in the Oseberg-Syd field off-shore Norway (Maerten et al., 2002). Here the secondary
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(a)

(b)

Zoom

Zoom

Figure 9.6: Method applied to a synthetic example using two conjugate fault planes
selected randomly. Dip-azimuth and dip-angle of each conjugate fault planes are used
to do the inversion and the internal friction angle is θ = 30. The main active fault is
represented by the inclined rectangular plane. (a) Normal fault configuration and (b)

thrust configuration.

faults imaged on a seismic survey are used to recover the paleostress state. Figure

9.9 shows the cost distribution for each of the 2063 triangular elements making up the

secondary fault surfaces. The plot on top of the figure shows that some fault planes are

not well oriented according the recovered far field stress (reddish cost between 0.8 and 1).

The recovered paleostress is oriented N350 and has a stress ratio of 2.85 (corresponding

to a normal faulting regime).

The plot on bottom shows the distribution after removing those anomalous fault planes

from the simulation. The new recovered remote stress is now oriented N346.5 and has a

ratio of 2.7 (normal faulting regime). Estimated paleostress by Maerten et al. (Maerten

et al., 2002) using palinspastic restoration for the same region was estimated N350 with

a ratio of 1.4 (normal faulting regime).
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(a)

(b)

Figure 9.7: Cost function for the synthetic example from Fig. 9.6. (a) Normal fault
and (b) thrust fault. In both cases, the recovered regional stress tensor, displacement on
fault and predicted conjugate fault planes perfectly match the initial synthetic model.

Figure 9.8: Method applied to the Oseberg-Syb field, Norway. Major and secondary
faults are represented in red and yellow, respectively.
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Figure 9.9: Plot of the cost for each triangular element making the secondary fault
planes for the Oseberg-Syb field. Top: all fault planes are used for the simulation.

Bottom: only secondary faults below a given user cost threshold are used.

Using fault striations In this case, the cost function is defined as:

fstri(α1, α2, α3) =
1

m

∑

e

(1 − dc
e.d

m
e )2 (9.28)

where dc
e and dm

e represent the normalized slip vector from a simulation and the measured

one, respectively.
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9.6.2.2 Data sets containing magnitude information

The magnitude of displacements may be used to determine not only the stress orientation,

but also the magnitude of the remote stress tensor, instead of just the principal stress

ratio. To do so, the procedure is similar to that described previously. However, given Eq.

9.17.c and 9.18, it can be seen that there exists a parameter δ for which the computed

displacement discontinuity on faults and the displacement, strain and stress fields at

observation points scale linearly with the imposed far field stress. In other words:






δ.σR ⇒ δ.be

δ.σR ⇒ δ.uP

δ.σR ⇒ δ.ǫP

δ.σR ⇒ δ.σP

(9.29)

This leads to the following property:

Property 1:

Scaling the far field stress by δ ∈ ℜ scales the displacement discontinuity on

faults as well as the displacement, strain and stress fields at observation points

by δ.

Using this property, all measurements at data points are globally normalized before any

computation and the scaling parameter is noted δm (the simulations are also normalized,

but the scaling factor is irrelevant). After the system is solved, the recovered far field

stress, displacement and stress fields are scaled back by a factor of δ−1
m .

Using GPS data In this case, the cost function is defined as:

fgps(α1, α2, α3) =
1

2m

∑

P

[(
1 − uc

P.u
m
P

||uc
P||.||um

P ||

)2

+

(
1 − ||um

P ||
||uc

P||

)2
]

(9.30)

where um
P is the measured elevation changed at point P from the horizon and uc

P is the

computed elevation change for a given set of parameters (α1, α2, α3). The first term on

the right hand side in Eq. 9.30 represents a minimization of the angle between the two

displacement vectors, whereas the second term represents a minimization of the difference

of the norm.
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Using InSAR data In this case we are faced with two possibilities. Either the global

displacement vectors of the measures are computed using the displacement u along the

direction of the satellite line of sight s, which gives:

um
P = uinsar = u.s (9.31)

Then the same procedure used for the GPS case is employed with the computed uc
P.

Or, the computed displacement vectors are computed along the satellite line of sight

giving:

uc
P = u.s (9.32)

where . is the dot product. The cost function is consequently given by:

finsar(α1, α2, α3) =
1

m

∑

P

(
1 − uc

P

um
P

)2

(9.33)

Example Figure 9.10 presents a synthetic example using an InSAR data set. First a

forward model is run using one fault plane (Fig. 9.10.a) and one observation grid at the

surface of the half-space (red dots in Fig. 9.10.a). A satellite direction is chosen, and

for each observation points, the displacement along the satellite line of sight is computed.

Then, the procedure described in this paper is applied using the second form of the InSAR

cost function (Eq. 9.33). Figure (9.10.b) compares the original interferograms (left) to

the recovered one (right). Figure (9.10.c) shows how complex the cost surface can be,

even for a simple synthetic model. The surface is a function of θ and k, and the solution

is marked by a small black circle. The cost surface was sampled with 500, 000 points

(number of simulations), and took 18s on a laptop 2GHz processor with 2GB of RAM

running on Linux Ubuntu 8.10 32 bits.

Using flattened horizon Using the mean plane of a given horizon (flattened horizon),

we compute the change in elevation for each points making the horizon, and use it as in

a similar way to the GPS data for which only the uz component is provided.

Example Figure 9.11 shows the result when using such data. Initially, a complex

shaped fault is constrained by a far field stress, and will consequently slip to accommodate

the remote stress. At each point of an observation plane cross-cutting the fault, we

compute the resulting displacement vector and deform the grid accordingly. Then, the

inversion takes place using the fault geometry. After flattening the deformed grid, the

change in elevation for each point is used to constrain the inversion and to recover the
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Figure 9.10: Method applied to a synthetic example using an InSAR data set. (a)
model configuration showing the InSAR data points (red dots) as well as the fault
surface. (b) comparison of the fringes from original (left) and recovered (right) InSAR
grid. (c) Plot of the cost surface, function of θ (x-axis) and k (y-axis). Left: top view.

Right: perspective. The solution is marked by a small black circle.

previously imposed far field stress as well as the fault slip and the displacement field. The

comparison of the original and inverted dip-slip (Fig. 9.11.b) and strike-slip (Fig. 9.11.c)

match well (same scale). A good match is also observed for the displacement field at the

observation grid (Fig. 9.11.d).

Using dip-slip information In this case, the cost function is defined as:

fds(α1, α2, α3) =
1

m

∑

e

(
1 − bce

bme

)2

(9.34)
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(a)

(b)

(c)

(d)

Figure 9.11: Method applied to a synthetic example using a flattened horizon. (a)
model configuration showing the horizon (red dots) as well as the fault surface. (b)
comparison of the original (left) and recovered (right) dip-slip. (c) comparison of the
original (left) and recovered (right) strike-slip. (d) original vertical displacement from

flattened horizon (left) and recovered (right).

where bme is the measured dip-slip magnitude for a triangular element e, and bce is the

computed.

9.6.2.3 Using all available information

Previously described cost functions can be combined to better constrained stress inversion

by available data (fault and fracture plane orientation, GPS, InSAR, flattened horizons,
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dip-slip measurements from seismic reflection and fault striations). Furthermore, data can

be weighted differently, and each datum can also support a weight for each coordinate.

9.7 Multiple tectonic events

For multiple tectonic events, it is possible to recover the major ones, e.g. those for which

the tectonic regime and/or the orientation and/or magnitude are noticeably different.

The algorithm 9.2 presents a way to determine different events from fractures orientation

(joints, stylolites, conjugate fault planes) measure along well bores. After doing a first

simulation, a cost is attached at each observation point which shows the confidence of

the recovered tectonic stress relative to the data attached to that observation point. A

cost of zero and one means a good and a bad confidence, respectively (see Fig. 9.7 for an

example plot of the cost). By selecting only data points that are under a given threshold

value and running another simulation with these points, it is possible to extract a more

precise paleostress. Then, the remaining data points above the threshold value are used to

run another simulation and the paleostress state to recover another tectonic event. If the

graph of the new cost shows disparities, the above procedure is repeated until satisfactory

results are achieved. It is worth mentioning that during the determination of the tectonic

phases, the observation points are classified in there respective tectonic event. However,

the chronology of the tectonic phases remains undetermined.

9.7.1 Example

Two overlapping dipping faults are subjected to two tectonic regimes (see Fig. 9.12.a

and b). The first one, a normal fault regime, is oriented N115 with SH/Sh = 0.2 (Fig.

9.12.c, top). The corresponding fracture orientations (see Fig. 9.12.d) are computed on

a grid above the model (red dots in Fig. 9.12.a). The second tectonic regime is oriented

N150 with SH/Sh = −1.5 (see Fig. 9.12.c, bottom) and corresponds to a strike-slip fault

regime. The fractures orientation (Fig. 9.12.d) are computed on a second grid (green dots

in Fig. 9.12.a). After a first paleostress estimation is done using the two fracture sets,

the corresponding cost is displayed in Figure 9.12.e. It clearly shows two distinct clusters

of points (top and bottom of the graph). At this stage the resulting paleo-orientation

and stress ratio is irrelevant. Points that have a cost≤ 0.1 are selected for a new paleo-

stress estimation (gray box in Fig. 9.12.e). The paleostress is now oriented N115.1 with

a ratio SH/Sh = 0.198. This effectively corresponds to the first normal fault regime

imposed to the synthetic forward model. Using the estimated parameters αi from this
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Figure 9.12: Different tectonic events. (a) Model configuration showing the two
overlapping normal faults (meshes) as well as the two observation grids(red and green
dots). On each grid, joint orientations are computed using a given tectonic event (see
text). (b) Perspective view of the model. (c) Orientation of the first (top) and second
(bottom) far field stresses with relative magnitudes. Blue is for tension and red for
compression. (d) Resulting joint sets used for paleostress estimation. (e) Cost function
(y-axis) after recovery of a paleostress using joints orientation from the two grids. The
x-axis corresponds to the id of the grid points. (f) Resulting cost function after selection
of the best points in gray box from (e). (g) Resulting cost function after selection of

the remaining points in gray box from (f).

last simulation, a new cost is computed for the two grids (Fig. 9.12.f) which allows to

further discriminate the two clusters. Finally, the remaining points (gray box in Fig.

9.12.f) are used to determine the second tectonic event. The recovered paleo-stress is now

oriented N149.98 with a ratio SH/Sh = −1.501, which corresponds to the second far field

stress applied to the synthetic model, and for which the cost is close to zero for all data

points (see Fig. 9.12.g).
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Algorithm 9.2: Detecting multiple tectonic events

Input: ǫ a user threshold in ]0, 1[1

Input: S = all fractures from all wells2

Let: T = ∅3

while S 6= ∅ do4

Simulation: Compute the cost for each fracture in S5

if max(cost) < ǫ then6

if T = ∅ then7

Terminate8

else9

Let: V = S ∪ T10

Let: S = T = ∅11

foreach point p in V do12

if cost(p) ≤ ǫ then S+=p13

else T+=p14

end15

⇒ Found a tectonic event σR for fractures in S16

S = T17

T = ∅18

continue19

end20

end21

S = fractures below ǫ22

T + = fractures above ǫ23

end24

9.8 Seismic interpretation quality control

It is useful to have a method for quality control (QC) on interpreted faults geometries from

seismic interpretation. The basic idea is to use the fracture orientations from well bores

to recover the far field stress and the displacement discontinuities on active faults. Then,

the computed displacement field is used to deform the initially flattened horizons. We

then compare the geometry of the resulting deformed horizons to the interpreted ones. If

some mismatches are clearly identified (e.g., interpreted uplift and computed subsidence),

the fault interpretation is possibly false. For example, an interpreted fault might dip in

the wrong direction. Note that an unfolded horizon can be approximated by its mean

plane, as done in section 9.6.2.2.
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9.9 Conclusion and perspectives

We have shown using the simple property of superposition inherent to linear elasticity,

it is possible to do real-time computation of the perturbed stress and displacement field

around a complexly faulted area, as well as the displacement discontinuity on faults.

Furthermore, the formulation enables one to do rapid paleostress inversion using multiple

types of data such as fracture orientation, secondary fault planes, GPS, InSAR, fault

throw and fault slickenlines. Specifically, it was shown that using only fracture orientation

and/or secondary fault planes from well bores allows one to recover one or more tectonic

events, the recovered stress tensor being given by the orientation and ratio of the principal

magnitudes. Applications of these methods ranges from stress interpolation in a complexly

faulted reservoir, fractures prediction, quality control on interpreted faults as well as

real-time computation of perturbed stress and displacement fields while doing interactive

parameter estimation.
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Figure 9.13: Tectonic regimes by considering one axis vertical. (a) Normal fault
regime: σ1 is vertical. (b) Strike-slip fault regime: σ2 is vertical. (c) Thrust fault

regime: σ3 is vertical.

Appendix

For a given far field stress tensor, the tectonic regime can be determined easily using the

principal values σi and vectors σi (ordered in decreasing order). Since one axis is vertical,

we have (see Fig. 9.13 a, b and c):

Tectonic regime =






Normal : if σ1 is vertical

Strike-slip : if σ2 is vertical

Thrust : if σ3 is vertical

(9.35)
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Part III

Stru
tural restoration using FiniteElement Method
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Aperçu

Faire de la modélisation directe et inverse, comme vu dans les parties I et II, montre

l’importance de la géométrie des failles sur les déplacements discontinus calculés, et par

conséquent sur les champs de déplacement et de contraintes perturbés associés. Pour la

majorité des simulations numériques, il est donc recommandé de valider la géométrie d’un

modèle avant toute simulation numérique. Le chapitre 10 présente un moyen de valider

une interprétation à l’aide d’une technique de restauration géomécanique. Ce code est

différent de la méthode des éléments frontières vue précédemment, en ce sens que les plis

sont considérés comme les principaux générateurs de fractures. Il est également démontré

que cette méthode permet d’estimer la chronologie des failles entre elles.

Lorsque les surfaces utilisées viennent de l’interprétation sismique, les horizons extraits

peuvent être aussi très bruités, et peuvent présenter des bosses et effets d’escaliers, avec

des traces de failles et gradients de déplacement irréguliers. Le chapitre 11 présente un

filtrage basé sur un lissage géomécanique pour corriger les irrégularités sur les horizons

3D faillés et plissés, et par conséquent sur la reconstruction des surfaces de failles qui en

découlent.
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Overview

Doing forward and inverse modeling, as seen in part I and II, shows the importance of the

faults geometry to the resulting computed displacement discontinuity, and consequently to

the associated displacement and perturbed stress field. For the majority of the numerical

simulations, it is mandatory to validate such geometry before analyzing the results of

any numerical simulation. Chapter 10 presents a way of validating an interpretation using

a geomechanically-based restoration technique. This code is different from the Boundary

Element method described previously, in the sense that folds are considered as the main

driver for the generation of fractures. It is also shown that such a method allows one to

estimate fault chronology.

When using surfaces from seismic interpretation, the extracted horizons can be very noisy,

and can present bumps and steps with irregular fault cut-offs and displacement gradient

at fault tips. Chapter 11 presents a geomechanically-based smoothing filter to correct

such irregularities on 3D faulted horizons, and consequently on the reconstructed of fault

surfaces.
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CHAPTER 10

Chronologic modeling of faulted and

fractured reservoirs using

geomechanically-based restoration: Technique

and industry applications

L. Maerten(1), F. Maerten(1,2)

(1) Igeoss, Montpellier, FRANCE

(2) University of Montpellier II, Geosciences, FRANCE

Published in American Association of Petroleum Geologist Bulletin, 2006, v. 90, p. 1201-

1226.

Preamble

Structural verification of geometry can be done in 2D using balanced cross sections, which

is the goal of the restoration algorithm describes in this chapter, where a Finite Element

Method is employed.

Specifically, the advantage of using geomechanically-based restoration is studied on the

MacClay experiment for a sandbox model, where initial and final configurations are known,

as well as the complete kinematic, sediment deposition, boundary conditions and material
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properties. It is shown that this technique can help to elucidate fault development and

chronology, and help the user to check the validity of the interpretation of seismic images.

The extension to 3D is straightforward, but will not be discussed here.

About...
In this paper, my contribution was to define the conceptual model using an

innovative iterative solver which allows the incorporation of contact management

using a master/slave procedure. The initial implementation was done using the

Java language, and later in C++, allowing fast computation. Laurent Maerten used

the software to study a MacClay experiment as well as the Coulasou fold (near

Montpellier, France).
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10.1 Résumé

Nous avons développé une méthode de restauration basée sur la géomécanique pour

modéliser la déformation des réservoirs. L’approche, fondée sur la méthode des éléments

finis (FEM), simule le comportement physique des masses rocheuses et prend en con-

sidération l’hétérogènéité des propriétés des matériaux, le glissement banc sur banc ainsi

que l’interaction mécanique des failles entre elles. Pour démontrer le potentiel d’une telle

méthode, nous analysons la déformation et la croissance des failles dans le compartiment

supérieur (hanging wall) d’une faille normale listrique syn-sédimentaire d’un modèle de

bac à sable, qui fournit un analogue pour l’étude des réservoirs complexes. Les résultats

du modèle numérique sont ensuite analysés pour investiguer sur la chronologie des failles.

Le modèle numérique correspond bien au modèle physique et fournit des informations

supplémentaires quant à l’évolution du réservoir et sa déformation associée. L’approche

est aussi testée sur un exemple naturel de plissement en utilisant les données d’affleurement

pour l’étude de la déformation dans un régime compressif.

Ces exemples illustrent comment les failles et fractures indétectables, le cloisonnement

des réservoirs, les chemins de migration et pièges des hydrocarbures peuvent être compris

dans le contexte des processus tectoniques et comment cette compréhension peut être

exploitée dans la prise de décisions et la réduction des risques. Nous concluons que

la restauration géomécanique des réservoirs faillés et fracturés a un potentiel important

pour les applications industrielles par rapport aux techniques de restauration géométriques

conventionelles, qui n’ont pas de base mécanique.
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10.2 Abstract

We have developed a geomechanically-based restoration method to model reservoir de-

formation. The approach, founded on the finite element method (FEM), simulates the

physical behavior of the rock mass and takes into consideration heterogeneous material

properties, bedding slip and the mechanical interaction of faults. To demonstrate the

method’s potential, we analyze deformation and fault growth in the hanging wall of a

syn-sedimentary listric normal fault from a sandbox model, which provides an analog for

evaluating complex faulted reservoirs. The numerical model results are then analyzed to

investigate the chronology of faulting. The numerical model corresponds well to the phys-

ical model and provides additional insights about reservoir evolution and deformation.

The approach also is tested on a natural example of folding using outcrop data to study

contractional deformation.

These examples illustrate how undetected faults and fractures, reservoir compartmental-

ization, hydrocarbon migration pathways, and hydrocarbon traps can be understood in

the context of tectonic processes and how this understanding can be exploited in decision

making and reducing risk. We conclude that the geomechanically-based restoration of

faulted and fractured reservoirs has significant potential for industry applications com-

pared to common geometric restoration techniques, which lack a mechanical basis.

10.3 Introduction

Whether faults and fractures act as seals or conduits, and whether they are resolvable

or not on seismic reflection surveys, they can significantly affect hydrocarbon migration

and trap location as well as flow of hydrocarbons to wells during production. Therefore,

understanding the evolution of faults and fractures and physical properties through time

should improve reservoir simulation models and, in turn, significantly improve decision

making and reduce production risks.

Structural heterogeneities such as faults and fractures are known to be capable of signifi-

cantly altering the flow of hydrocarbons, either during the migration from the source to

the reservoir rock or during production of the reservoir. Therefore, understanding and

quantifying the spatial and temporal development of these features as well as their proper-

ties (e.g. geometry, throw, aperture, permeability, etc.) can have great economical impact

on the recovery of natural reserves. However, despite the tremendous detail now available

from 3D seismic reflection techniques (Dorn, 1998), many of these features cannot be

detected at the current resolution of the seismic reflection data, typically about 20 to 30
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m of throw for faults in North Sea reservoirs. Furthermore, while these geophysical tech-

niques adequately image the major geological structures, this only provides the present

day structural geometry of the subsurface, which often has resulted from multiple tectonic

events, thereby increasing the complexity of the analysis. In order to more realistically

model the spatial and temporal development of structural heterogeneities and to address

these economical issues, a variety of numerical techniques have been developed. They fall

into three main categories: 1) the geometric and kinematic approaches; 2) the stochastic

approaches, and; 3) the physical and geomechanic approaches.

The first category includes most of the restoration techniques used by structural geologists

to check the consistency of the subsurface structural interpretations. Measures of gaps

and overlaps between the restored parts of a model give qualitative values to check the

strength of the geological interpretation. The geometrical methods proposed to restore ge-

ological structures are based on a variety of algorithms, which aim at reproducing natural

deformation. For instance, the methods include balancing cross sections by flexural slip

(Dahlstrom, 1969; Hossack, 1979; Davison, 1986) to model deformation accommodated

by slip along infinite number of bedding interfaces. Vertical (Gibbs, 1983; Williams and

Vann, 1987) or inclined shear (White et al., 1986; Dula, 1991) techniques have been de-

veloped to simulate deformation accommodated by slip along infinite number of vertical

or inclined parallel faults respectively. Geometrical (Gratier et al., 1991; Samson, 1996;

Williams et al., 1997) unfolding methods for 3D surfaces have been proposed, based on

flexural slip and homogeneous inclined shear (Kerr et al., 1993). More simply, map view

restoration has been done using rigid translation and rotation of fault blocks (Dokka and

Travis, 1990; Rouby et al., 1993) to model larger scale deformation. An analytical ap-

proach for 3D surface unfolding has been proposed, based on surface parameterization and

global deformation minimization (Lévy, 2000). These methods are based on geometrical

assumptions (Rouby et al., 2000) such as preservation of area, minimization of deforma-

tion, of changes in segment length or minimization of shearing, constant fault slip, fixed

faults in space, or discontinuous rigid blocks.

Lately, the use of these techniques has been extended to predict areas that have undergone

large strains at subseismic reservoir scales and to relate the strains to structural hetero-

geneities such as faults and fractures (Hennings et al., 2000; Sanders et al., 2002, 2004).

Although they have the attractiveness of modeling the kinematic evolution of deformed

sedimentary basins back in time, these methods are not appropriate to compute fault block

deformation and fault slip distributions, which are necessary to model both the fault de-

velopment and the subseismic fractures. Natural deformation is a physical phenomenon

that involves parameters such as the initial geometry, the distribution of mass, rock me-

chanical properties, and the forces that cause the deformation. Therefore, it is uncertain
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which geometric restoration algorithm should be used to model rock deformation (Hauge

and Gray, 1996; Bulnes and McClay, 1999). Furthermore, these techniques are not based

on the fundamental principles of conservation of mass and momentum, which govern rock

deformation. Consequently, no rock mechanical properties can be incorporated in the

model, no stress boundary condition can be applied to simulate tectonic loading, and no

mechanical interaction among the faults is taken into account. In addition, only strain,

which is strongly dependent on the geometric restoration algorithm used, is calculated

(Erickson et al., 2000; Hennings et al., 2000; Rouby et al., 2000; Sanders et al., 2004)

while fracture mechanics tells us that the state of stress is required to explain how frac-

tures develop and interact.

Stochastic techniques often are based on the fracture power-law size distribution, cali-

brated using field or seismic data (Childs et al., 1990; Walsh and Watterson, 1991; Schlis-

che et al., 1996). For instance, the fractal model for faulting is used to predict the number

of subseismic faults by extrapolation of the power-laws (Sassi et al., 1992; Yielding et al.,

1992; Gauthier and Lake, 1993; Gillespie et al., 1993). Although the size distributions

are predictable, these techniques pay little or no consideration to physical concepts that

govern fault development. Consequently, they can not take advantage of the constraints

imposed by physical laws to predict the orientations and the location of these geological

features.

Recent studies ((Maerten et al., 1999; Bourne et al., 2000), Maerten et al., in press) have

shown that adding a geomechanical rationale to stochastical techniques improves their

predictive capability and leads to more realistic faulted and fractured reservoir models.

A finite element approach for 3D surface unfolding has been proposed, based on strain

minimization (Dunbar and Cook, 2003). These techniques fall into the third category.

As opposed to the geometric approach, the geomechanical approach takes into account

mechanical concepts and the fundamental physical laws that govern fracture and fault

development. The basic methodology consists of calculating the stress distribution at the

time of fracturing using the available reservoir structure data such as faults, fractures and

folds, and rock properties and the tectonic setting that can be characterized by stress or

strain magnitude and orientation. Then, the calculated stress fields, perturbed by the

main structures, combined with rock failure criteria are used to model fracture networks

(i.e. orientation, location, and spatial density). Applications to both outcrops (Katten-

horn et al., 2000; Bourne and Willemse, 2001; Bai et al., 2002; Guiton et al., 2003b; Healy

et al., 2004; Davatzes et al., 2005) and reservoirs ((Maerten et al., 1999; Bourne et al.,

2000; Guiton, 2001; Maerten et al., 2002), Maerten et al., in press) demonstrate how

geomechanics can provide a high degree of predictability of natural fracture and fault net-

works. The 3D boundary element method (FEM) has been successfully applied to model
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subseismic faults ((Maerten et al., 1999), Maerten et al., in press) in Northern North Sea

highly faulted reservoirs as well as undetected fractures in naturally fractured carbonate

reservoirs (Bourne et al., 2000). 3D FEM has been recently developed to forward model

diffuse fracture networks in folded sedimentary layers (Guiton et al., 2003a) and applied

to a Middle East folded hydrocarbon reservoir (Guiton, 2001). However, while numerical

models of rock deformation based on continuum mechanics provide an important tool for

characterizing geologic structures in the context of hydrocarbon exploration and produc-

tion, they do not effectively model past fracture development because of their geometric

dependence on the available present-day sub-surface structural model of the reservoir to

infer stress distribution.

In this contribution, we propose a new numerical method developed by L. Maerten and

F. Maerten (2001, personal communication) that combines the restoration of geological

structures with geomechanics. This technique allows computing geologic deformation and

perturbed stresses through time for key geologic settings and tectonic episodes. The

method, based on the FEM, simulates the geomechanical behavior of complex geological

structures such as folded and faulted rock. It honors the full complement of physical

laws that govern geological deformation, including conservation of momentum, mass and

energy. Therefore, physical laws and linear elastic theory replace kinematic and geometric

constraints used by the existing methods for the restoration of geological structures.

We apply the 2D FEM to analyze deformation and fault growth in the hanging wall of

a syn-sedimentary listric normal fault from a sandbox experiment (McClay, 1990). The

physical model constitutes a good quality analog for evaluating complex faulted and frac-

tured reservoirs. It provides good controls on both the interpretation of the observed

structures and the analysis of their development through time. The restoration method-

ology is described and we explain how fault chronology can be inferred and undetected

faults can be modeled. We also show how this technique applies to a natural example

of contractional structures and how it can help petroleum engineers to define reservoir

compartmentalization, hydrocarbon migration pathways, and trap geometries with the

goals of reducing production risks and improving the decision-making process.

10.4 Principles and Method

The geomechanically-based restorations described in this paper were performed with

Dynel, a 2D and 3D geomechanical computer program, which has been developed to

model complex geological structures with a variety of boundary conditions or constraints.

In this paper, we only consider the 2D formulation to restore geological cross sections.

297



10.4.1 Principles

Dynel is a continuum code based on FEM (Hughes, 1987) for modeling the behavior of

complex geological structures such as folded, fractured and faulted rock. Its formulation

can accommodate large displacements and strains for a heterogeneous, anisotropic and

discontinuous medium. Stresses that would exceed the elastic limit, and thereby subject

the model to non-recoverable deformation, are not taken into account (Novozhilov, 1953).

Models are discretized with linear triangular elements in 2D, which form a mesh that is

adjusted by the user to fit the shape of the structures under consideration. Each element

has assigned material properties that may differ from element to element, and each be-

haves according to a prescribed linear elastic law in response to constraints such as applied

and/or internal forces, displacements, and interface contact reactions. As opposed to the

standard implicit FEM (Hughes, 1987), where a global stiffness matrix is built for solv-

ing for the unknown displacements, we use an iterative solver based on the Gauss-Seidel

method (Golub and Van Loan, 1996). This solver allows forces to be transmitted from

node to node through the entire system until equilibrium is obtained. Nodal forces are

computed using the stress state of each connected element, and take into account other

forces such as external and contact forces.

This explicit formulation of the FEM used here makes it ideally suited for modeling

complex geological and geomechanical problems that consist of several stages, such as

restoration, sedimentation and erosion. Furthermore, this formulation results in much

less memory allocation and computation can easily be distributed among computers in a

cluster. The explicit solution scheme, also gives a stable solution to unstable numerical

processes. It permits one to develop new complex constraints such as unfolding on non

planar surfaces, contact interaction and mixing of different boundary conditions (i.e. dis-

placement and stress (traction) boundary conditions).

10.4.2 Method

Determination of the element and nodal deformation

Initially, the system is at rest in equilibrium (
∑
f = 0). Applying local forces, displace-

ments and/or stresses will make the system evolve. At iteration i, and according to the

prescribed boundary conditions, the nodes subjected to forces are displaced, causing defor-

mation of the connected elements. Next, the homogeneous displacement field associated

with the deformation of the elements is calculated. Then, the strain is derived from the

298



linear displacement field using the kinematic equations for finite or infinitesimal strain.

Using Hooke’s law (Jaeger et al., 2007), the stress tensor is calculated for each triangular

element. Nodal forces are then derived as a function of the element stress tensor. For

infinitesimal deformation, tensors and forces are computed in the global coordinate sys-

tem. For finite deformation, the displacement field, strain and stress tensors are computed

in the local coordinate system of each element in order to take into account rigid body

rotation. Finally, the forces are rotated back to the global coordinate system and contact

forces are added for each node.

Contacts at interfaces

Contacts are modeled using the concept of slave nodes and master segments (or master

surfaces in 3D), which is used in almost all FEM contact algorithms (Wriggers, 2002).

Consider two fault blocks in contact. If a node of the interface mesh of one block penetrates

a segment from the interface mesh of the second block, the node is considered a slave node

whereas the segment is considered a master segment. A contact force is then applied to

push the node back toward the outside of the element containing the master segment.

Thus, the contact force is directed toward the master segment along the normal to that

segment. The master-slave concept implemented here allows nodes to be both slave nodes

for an iteration and part of a master segment for other iterations. Therefore, to solve

fault-block contact problems, it is not necessary to assign the master and slave roles to

boundary surfaces.

Solving the system

The explicit solver is based on the Gauss-Seidel method, which allows nodal forces to

be transmitted from node to node, until equilibrium is reached. Each node is treated

independently from the others, and the order in which they are checked is irrelevant.

Gauss-Seidel is an iterative method for solving partial differential equations on a triangu-

lated surface (2D) or tetrahedrized volume (3D). When a node is checked, its new position

depends on the current positions of the connected neighboring nodes (Fig. 10.1). The key

feature of this algorithm is that it uses new information, for instance updated mesh node

positions, as soon as they become available, as opposed to the Jacobi’s method (Golub

and Van Loan, 1996) in which the update of each node depends only on the values at

neighboring nodes from the previous iteration.
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Figure 10.1: Iterative solver principle. (a) Initial mesh configuration with applied
force at node A. (b) At first iteration, node A is displaced according to force and the
two connected triangular elements are deformed accordingly. (c) At second iteration,
node B is displaced according to the sum of forces and the two connected triangular

elements are deformed accordingly.

For a given node, we calculate the force resulting from the deformation of each connected

element. The contact forces are then added. This force is then transformed back to a

displacement vector using the nodal stiffness matrix. This matrix is defined as the sum of

the stiffness matrices of the connected elements, for which the other nodes are considered

fixed. Then, the displacement constraints or displacement boundary conditions, such as

fixity, unfolding and unfaulting, are applied to the computed displacement vector. Finally,

the node is moved according to the new displacement vector and the iteration jumps to

the next node. The algorithm stops when the sum of the squared norm of the nodal

displacement vector is below a given threshold value.

Advantages and pitfalls

Linear elasticity is used as a tool for restoration because its fundamental properties are

well suited for such modeling. It is the most intuitive mechanical behavior that provides

a unique solution. Therefore, model results can easily be comprehended. Linear elasticity

honors the full complement of physical laws that govern geological deformation, including

conservation of momentum, mass and energy. As a result, physical laws replace kine-

matic or geometric assumptions commonly used for restoring geological structures, such

as preservation of segment length, surface area or volume. Linear elasticity is reversible,

which allows one to go back and forth from the restored to the initial state. Further-

more, since one usually does not know the path of deformation that should be used for

restoration, linear elasticity provides the simplest guess. Heterogeneous elastic properties

are taken into account to honor vertical and lateral variations in rock rheology, which

could have a significant effect on the restoration results (see below). In addition, mechan-

ical boundary conditions can be prescribed using linear elasticity. For instance, there is

no need to prescribe ad hoc conditions such as a pin plane, a fixed transport direction,
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discontinuous rigid blocks, or fixed faults. Moreover, stress boundary conditions can be

added to the model in order to take into account the far field tectonic stresses necessary

for modeling structural heterogeneities (Maerten et al., 2002).

The main limitation of using linear elasticity is that we know from laboratory experiments

(Jaeger et al., 2007) that rock does not behave as a perfectly elastic solid for all loading

conditions. Indeed, non-linear and non-recoverable stress-strain relations are observed

beyond the elastic limit. To some extent these inelastic behaviors can be approximated

by suitable reductions of the elastic stiffness, and by introducing explicit displacement

discontinuities into models that account, for example, for slip on faults.

10.5 Application to restoration and example tests

We applied the FEM to restore a simple 2D geological structure. The following examples

illustrate the effectiveness of the method to treat contact interfaces and to model hetero-

geneous material properties. They highlight that different solutions are obtained although

the model initial geometry is otherwise identical.

10.5.1 Model configurations

Three model configurations, which consist of symmetric folds with constant thickness,

have been investigated. The first is a three-layer model with bedding slip (Fig. 10.2.a).

The modeled bedding interfaces can slip with no friction but are constrained to stay in

mechanical contact to prevent any opening (i.e. gaps) and interpenetration (i.e. overlaps).

In this configuration the layers can mechanically interact, translate, rotate and deform

during the restoration. The mechanical properties of the model are homogeneous with a

Poisson’s ratio of 0.25 and a Young’s modulus of 10 GPa. The second configuration (Fig.

10.3.a) is a one-layer model with homogeneous material properties identical to the first

configuration. The third configuration (Fig. 10.3.a) is a one-layer model in which a stiffer

inclusion has been added. The mechanical properties of the inclusion are defined by a

Poisson’s ratio of 0.35 and a Young’s modulus of 100 GPa, while the rest of the model is

identical to the previous configurations. The base and the sides of the three models are

free surfaces and we use a finite plane strain deformation.

The basic 2D cross-section restoration procedure consists in constraining each node of

a stratigraphic horizon bounding a sedimentary layer (here the top one), to displace to

a target curve (here horizontal) representing the depositional topography. Each of the
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Figure 10.2: Restoration of a three layer folded beam with bedding slip interfaces.
(a) Mesh of the folded layers with homogeneous properties (E = 10 GPa, ν = 0.25).
Slip is allowed between layer interfaces. (b) Iso-contours of the computed σxx. Black is

tension and white is compression.

displaced nodes is constrained to stay on the target curve but is free to move parallel to

that curve. All the other nodes of the model, unless otherwise constrained, are free to

move until the system converges and equilibrium is reached.

10.5.2 Results

The result of the first model (see Fig. 10.2.b) shows flat restored layers with bedding slip

that increases to the right and to the left side of the model and in opposite sense. The

deformation is distributed among the three layers and produces bed-parallel compression

and tension at the layer top and bottom respectively. The unfolded lower layer is shorter

than the unfolded upper layer giving an overall inverted pyramid shape.

The single layer model however, gives notably different results (see Fig. 10.3.b). One still

observes bed-parallel compression and tension at the layer top and bottom respectively.

However, the magnitude of the stress is about 5 times greater than that for the slipping

layers, because those layers are thinner: layer parallel strain is proportional to the distance

from the middle (neutral) surface of a bending layer, and the stress in proportional to the

strain. Furthermore, the top boundary length is 2.3% shorter than this of the previous
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Figure 10.3: Restoration of a one layer folded beam. (a) Mesh of the folded beam
with location of an inclusion. (b) Iso-contours of the computed σxx for a model with
homogeneous properties (E = 10 GPa, ν = 0.25). (c) Iso-contours of the computed σxx

for a model with heterogeneous properties (E = 100 GPa, ν = 0.35 for the inclusion).
Black is tension and white is compression.

model whereas the bottom boundary is 7.2% longer. Therefore, although the initial

geometry is the same, the two first models give different restored geometries and different

perturbed stress field distributions. The purpose of the third model was to test the effect

of heterogeneous material properties. The result (Fig. 10.3.c) shows that a stiffer inclusion

perturbs the stress when the layer is unfolded. Near the top boundary of the inclusion

there is a large compression while near the lower boundary there is a large tension. The

geometry of the restored fold is similar to the previous model. However, the bottom

boundary of the fold is undulating rather than being straight as in the first and second

models. For the following set of experiments we use homogeneous material properties.

Changing the homogeneous mechanical properties of a model will not significantly change

the results, except for the computed stress magnitude since stress is linearly dependent of
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the Young modulus. As seen in Figure Fig. 10.3, only contrast in mechanical properties

would affect the results.

10.6 Experiment 1

We have evaluated the potential industry applications of this new technique by restoring

a section across a laboratory experiment. This has many advantages over a natural

example because: (i) the initial and final configurations are known; (ii) the complete

kinematic and sediment deposition path are recorded; (iii) the boundary conditions are

well controlled; and, (iv) the mechanical properties are known. The analogue modeling

experiment analyzed in this section consists of a syn-sedimentary listric normal fault with

rigid footwall. Because of its quality and applicability, this model has already been used

as a restoration case study (Bulnes and McClay, 1999; Erickson et al., 2000; Yamada and

McClay, 2003). The laboratory experiment is described in (McClay, 1990), we nonetheless

summarize it in the following section for the sake of clarity.

Simple listric fault detachment surfaces were simulated by using a molded footwall block

above which a plastic sheet, attached to the moving wall, translates the hanging wall at a

constant rate of 4.16 10−3cm.s−1 (see Fig. 10.4.a). The plastic sheet models a constant-

displacement condition on the base of the model, which implies a zero elongation parallel

to the fault surface and a strong décollement surface (see (Medwedeff and Krantz, 2002)).

The rigid nature of the footwall block means that the detachment surface has a constant

geometry throughout the experiment, thus limiting the deformation to the hanging wall

block. Homogeneous dry quartz sand has been used to simulate the brittle behavior

of the upper crust. Dry quartz sand (300µm) has essentially linear Coulomb rheology

with a friction angle of 31◦ (Ellis and McClay, 1988). During the 50% extension of

the model, 28 sand layers with alternating colors were added incrementally in order to

maintain a constant, horizontal upper free surface and to simulate syn-rift sedimentation

that would infill an extensional basin. The serial section of the completed and impregnated

model (Figure 10.4.b) shows the well established geometry of a roll-over anticline. In

this experiment, where the displacement is uniform over the entire fault surface, a crestal

graben system is developed. The fault sequence diagram of Figure 10.4.c shows nucleation

of new faults into this crestal graben.
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Figure 10.4: Physical experiment after McClay, 1990 (McClay, 1990). (a) Details
of the model apparatus with a simple listric detachment formed by pulling the plastic
sheet (attached to the moving wall) down and along the detachment surface. (b) Serial
section of the impregnated sand model after 50% of extension. (c) Line drawing showing
the deformed hanging wall and fault sequence inferred from sediment thickness variation

(McClay, 1990).

10.6.1 Numerical model configuration

The geometry of the completed analogue model was carefully interpreted and a finite

element mesh model was built (Fig. 10.5.a) honoring the geometry of both the faults

and the boundaries of the sediment layers. The syn-rift sequence has been divided into

6 packages, each with 5 increments of sedimentation, except for the youngest which is

comprised of 3 increments. These packages are used for the 6 stage restoration models

described below.

The mechanical properties throughout the model are homogeneous and are those of dry

quartz sand, with a Poisson’s ratio of 0.3, a Young’s modulus of 2MPa (Clark, 1966),

and a friction angle of 31◦. The base of the model is constrained to follow the shape of

the fixed listric basal fault (see Fig. 10.5.b) with no constant slip imposed. Nodes of the

base of the model can slide with no friction along the curved basal boundary in order to

accommodate the displacement during the restoration and to mimic the sandbox model

configuration. The modeled faults of the hanging wall block can slip with no friction but
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Figure 10.5: Configuration of the geomechanically-based restoration. (a) Finite ele-
ment mesh (triangular elements) of the physical experiment with homogeneous proper-
ties (E = 2 MPa, ν = 0.3). (b) Boundary conditions constraining the base of the model
to follow the shape of the fixed listric basal fault, the faults of the hanging wall block
to slip with no friction but to stay in mechanical contact, and the top of the model to

flatten along a horizontal target line.

are constrained to stay in mechanical contact, thus preventing any opening (i.e. gaps)

and interpenetration (i.e. overlap) of the fault walls. This configuration allows a degree of

freedom where the faults can mechanically interact, translate, rotate and deform during

the restoration. The right side of the model is a free surface.

The restoration consists on sequentially removing the upper syn-rift sedimentary layer

packages one by one, and to constrain the top of the next package to flatten along a

horizontal target line. This target line (see Fig. 10.5.b) corresponds to the constant

horizontal upper free surface of the analogue model. The nodes can slide with no friction

along the target line in order to accommodate the displacement during the restoration.

For each stage of the restoration, all the nodes of the model are free to displace with

respect to the constraints stated above and the faults are free to accommodate any slip

until the model equilibrates (
∑
f = 0) and the energy is globally minimized. We assume

a plane strain model with no material motion in and out of the cross section. In order to

simulate the flow behavior of the dry quartz sand approximately during the deformation,

we set the accumulated stress to zero with no associated strain after each restoration

stage, and the deformed geometry is used as input for the next restoration increment.
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10.6.2 Restoration results

We mapped the picture of the completed sandbox experiment onto the finite element mesh

using a texture mapping tool. This allows one to follow the deformation of the layers at

each stage of the restoration. The results of the restoration are shown in Figure 10.6.

The faults located in the roll-over anticline translate, rotate and deform as the restoration

Figure 10.6: Results of the geomechanically-based restoration from stage 0 to stage 6.
The picture of the physical experiment section has been mapped onto the finite element
mesh. White arrow indicates the antithetic normal fault interacting with studied fault
(see Fig. 10.8) marked with a black arrow. (a) and (b) indicates the locations of studied

cross-cutting relationships between intersecting faults.

sequence progresses, whereas faults located to the right in the model, only exhibit a
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translation. The changes in fault cross-cutting relationships through time, as observed

in Figure 10.6 (a) and (b), demonstrate how geomechanically-based restoration can deal

with complex fault geometry and interaction. For instance, the right-dipping fault of

intersection (b) in Figure 10.6, cross-cuts a left-dipping fault at stage 1, whereas it is the

left-dipping fault that cross-cuts the right-dipping fault at the next stage 2. These cross-

cutting relationships between faults help us understand the chronological development of

faults that is described below.

When analyzing the evolution of the sand layers, one observes that they roll back along

the basal listric fault to their original horizontal position, while the free right border of the

model translates without any rotation. In the final restored state (stage 6 of Figure 10.6),

the pre-rift beds are sub-horizontal, which is consistent with the initial configuration of the

physical sandbox experiment. However, close to the main bounding listric normal fault,

some beds dip slightly to the left (∼ 1.5◦). Some mismatches also are seen in the continuity

of the bedding interfaces across some of the faults. The origin of these discrepancies can

cautiously be attributed to different sources. First, the mechanical behavior of the dry

quartz sand might not be effectively modeled using elastic behavior. Second, remobilized

sand close to the faults may be involved in normal or reverse drag attributed to inelastic

deformation, which is not modeled. Third, we have not imposed a constant slip on the

décollement as in the physical model. And finally, the plane strain constraint used in the

numerical model may not necessarily be appropriate. Indeed, some motion of the dry

quartz sand parallel to the strike of the basal listric fault probably occurred during the

physical experiment.

Each of the 28 syn-rift sand layer increments of the physical experiment corresponds

to 0.5 cm of displacement at a constant rate of 4.16 10−3cm.s−1. Therefore, one time-

increment is about 120 seconds. This time-increment has been combined with the measure

of shortening after each restoration stage to produce Figure 10.7. This graph compares the

displacement rate imposed in the sandbox experiment with the displacement rate inferred

from the restoration, and it provides a quantitative means for evaluating the restoration.

The inferred displacement rate is constant and closely matches the one imposed in the

sandbox experiment. The best linear fit is given by

y = 4.11 10−3x+ 0.0.248 (10.1)

with R = 0.99915 and where 4.11 10−3 is the computed displacement rate in cm.s−1.
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Figure 10.7: Graph comparing the displacement rate imposed in the sandbox exper-
iment with the displacement rate inferred from the restoration. The inferred displace-
ment rate is constant and closely matches the one imposed in the sandbox experiment.

10.6.3 Fault development analysis

For each restoration stage we computed the slip distribution along the faults in order to

estimate the amount of fault activity through time. Since there is no mesh regeneration

between each restoration stage, we used the relative (x, y) coordinates of the nodes on

both sides of the faults to compute the slip distribution along the faults. Cumulative

slip distributions illustrate how the faults initiate, propagate, mechanically interact and

lock through time. As an example, Figure 10.8 shows for each stage, the cumulative slip

distribution along fault (c), which is also marked by a black arrow in Figure 10.6 (stage

0). For the sake of simplicity, the modeled fault is analyzed in a forward sense.

Initially there is no slip along the fault (c). Between stages 6 and 5, slip accumulates along

the upper 6.5 cm of the fault. There is little or no slip computed along the lower 2 cm

of the fault, therefore the fault has not yet reached its final length. The fault propagates

within the syn-rift sequence and offsets the top free surface as illustrated by the open slip

distribution curve. Between stages 5 and 4, slip quickly accumulates along the fault, ex-

cept in the lower centimeter. This highlights the highest intensity of fault activity, which

clearly shows an asymmetric slip distribution with maximum slip near the top free surface
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Figure 10.8: Cumulative slip distribution, for each stage of the restoration, computed
along the fault marked as a black arrow in Fig. 10.6. Dashed line locates the intersection
with the mechanically interacting antithetic normal fault marked as a white arrow in

Fig. 10.6.

as described in other studies (Childs et al., 1993; Maerten et al., 1999). Between stages 4

and 2, slip keeps accumulating and the fault reaches its final length in both the post-rift

and the syn-rift sequence. At stage 2, the fault does not offset the top free surface as illus-

trated by the slip distribution that goes to zero in the syn-rift sequence. Between stages

2 and 1, slip accumulates everywhere except along the lower 2 cm of the fault, where the

fault starts to lock. Between stages 1 and 0, the fault has entirely locked since no slip has

accumulated. This corresponds to the change in fault cross-cutting relationship observed

in Figure 10.6 (b) and described earlier.
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The dashed line of Figure 10.8 shows the location of the intersection with a major anti-

thetic fault marked by a white arrow in Figure 10.6 (stage 0). This fault mechanically

interacts with the studied fault and perturbs its slip distribution as illustrated by a higher

slip gradient. The fault interaction is the strongest between stages 5 and 3, where the

slip gradient is the highest. This also corresponds to the highest activity of the antithetic

intersecting fault. The perturbed slip distribution is consistent with previous indepen-

dent observations (Nicol et al., 1995; Maerten, 2000) and mechanical analyses (Maerten

et al., 1999). The mechanical interaction responsible for the perturbed slip distribution

is attributed, at least in part, to elastic deformation that modifies the local shear stress

acting on one fault as induced by slip on the other fault (Willemse, 1997; Maerten, 2000).

The entire model was analyzed in a forward sense in order to sequentially investigate the

development of the faults in the hanging wall of the basal listric fault. Slip distribution

along each fault was computed for each stage. It was then possible to infer the evolution

of deformation, the propagation and locking history of the faults, and the fault chronology

(see Fig. 10.9).

10.6.4 Active deformation area

The analysis of fault development, which has been inferred from the computed fault slip

distributions, shows that through time, the deformation or fault activity is always localized

close to the top free surface and just to the right of the base of the ramp (see Fig. 10.9).

This has been observed in many natural examples (Shelton, 1984; Williams and Vann,

1987), in sandbox experiments (Ellis and McClay, 1988; McClay, 1990; Withjack et al.,

1995) and has been explained using elastic and elasto-plastic geomechanical simulations

(Erickson et al., 2001). The location and magnitude of the deformation is directly related

to the shape of the basal listric normal fault that controls the rollover anticline geometry,

and therefore the distribution of the perturbed stress fields.

10.6.5 Fault propagation

The analysis shows that faults initiate close to the top free surface and propagate down-

wards in the pre-rift sequence and upwards in the syn-rift sequence, as observed for faults

(a) and (c) of Figure 10.9. The full length of the faults is attained at an early stage of

the deformation. The analysis also shows that new active segments of the faults always

form with a dip angle close to 60◦. This is consistent with the Coulomb failure criterion
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Figure 10.9: Sequential fault development analysis inferred from computed fault slip
distributions. Dashed faults are incipient faults, thick black faults are active faults, and

thin black faults are locked. Faults marked as a, b, c and d are referred in the text.

(modified from (Jaeger et al., 2007), p. 95) defined by:

tan(π − 2δ) = ± 1

tanφ
(10.2)

where δ is the dip angle of the fault plane, φ is the friction angle, and with the maximum

compressive stress (σmax) vertical. This criterion predicts that for dry quartz sand (φ =

31◦) that δ = 60◦. The final observed S-shaped geometry of faults, (a) and (c), can

therefore be explained in part by the propagation of the faults upwards and downwards

at 60 degrees to the vertical as the model rotates over the listric normal fault (i.e. rollover
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anticline).

10.6.6 Locking faults

Results from the fault slip analysis illustrate how the faults start to lock. When a fault is

fully developed, after initiating close to the top free surface and propagating downwards

in the pre-rift sequence, it starts to lock close to the base. Then, the locked segment of

the fault spreads upwards as seen for faults (a) and (b) (Figure 10.9). Another locking

mechanism observed in the restoration occurs when a fault is cross-cut by a propagating

fault. This is clearly observed for faults (a) and (c), locked by the propagating fault (d)

(Figure 10.9).

10.6.7 Fault chronology

The above observations based on the analysis of the computed fault slip distributions

permit one to infer the deformation and the fault development chronology of the entire

model. This chronology is in good agreement with the chronology inferred from the sedi-

mentation thickness variation analysis of the physical model (see Fig. 10.4.c). However,

the geomechanical model adds more than a fault chronology based on sediment thickness

analysis, since it tells us when and where faults propagate and lock in space and through

time.

10.6.8 Conclusions and applications to reservoir exploration and

production

The numerical model corresponds well to the physical model and provides additional in-

sights about the physics of the process and quantitative values of physical parameters. The

geomechanically-based restoration provides a way to quickly and efficiently assess the de-

velopment of the geological structures (i.e. faults) through time. This tool has significant

potential for understanding complex geological structures and for evaluating hydrocarbon

migration through time. Indeed, if one expects hydrocarbons to migrate along the active

segments of faults, one could infer hydrocarbon migration pathways directly and locate

areas of potential structural traps that could be economically interesting.
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10.7 Experiment 2

The objective of the following experiment is to predict fault location and geometry as

observed in the physical model. Therefore, a model without the faults is restored and

attributes of the computed perturbed stress field are compared with the location and

geometry of the faults, observable in the physical experiment.

10.7.1 Numerical model configuration

The geometry of the model corresponds to stage 0 of the previous experiment, where the

first package of the syn-rift sequence has been removed (see Fig. 10.10.a and 10.10.b). All

the faults of the deformed hanging wall have been omitted and the top boundary has been

interpreted as a smooth surface without any offsets caused by the observed faults. This

experiment could be viewed as a demonstration of how to interpret poor quality seismic

data, where faults cannot be detected from sedimentary interface offsets.

The mechanical properties throughout the model are homogeneous and similar to the

previous experiment with a Poisson’s ratio of 0.3, a Young’s modulus of 2 MPa, and a

friction angle of 31◦. The nodes at the base of the model are constrained to slide with

no friction and to follow the shape of the fixed listric basal fault (see Fig. 10.10.b). The

left side of the model is a free surface. The restoration consists on constraining the top

of the model to flatten along the horizontal target line that corresponds to the constant

horizontal upper free surface of the analogue model. The nodes can slide with no friction

along the target line in order to accommodate the displacement during the restoration.

All the other nodes of the model are free to displace until the energy is globally minimized.

We assume a plane strain model with no material motion in and out of the cross section.

A second model (see Fig. 10.11.a), similar to the previous one, has been setup in which

the base has not been constrained to follow the listric fault. This experiment could be

viewed as a demonstration of how to interpret poor quality seismic data, where faults as

well as the basal décollement cannot be detected.

10.7.2 Restoration results

Based on the restoration boundary conditions and mechanical parameters, one computes

the perturbed elastic stress field at the finite elements. Note that computed stresses are

the stresses produced by restoring the model. The inverse of these stresses corresponds

to the stresses that are computed if we deform the initial model geometry to the observed
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Figure 10.10: Model configuration and results of the second geomechanically-based
restoration. (a) Serial section of the impregnated physical experiment. The black line
corresponds to the smoothed interpreted sedimentary layer without fault offsets. (b)
Finite element mesh with homogeneous properties (E=2 GPa, ν=0.3) and boundary
conditions. The faults have been omitted in the model. (c) Iso-contours of the computed
maximum Coulomb shear stress (MCSS) resulting from the restoration and plotted over
the initial unrestored geometry. (d) Orientation of the predicted shear planes scale to
the MCSS. The size of the shear planes is proportional to the MCSS. Thick black lines
are the superimposed active faults predicted from stage 0 of figure 10.9. They closely
matched the highest values of MCSS and the orientation of the computed shear planes.
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Figure 10.11: Model configuration and results of experiment 2 without constraining
the base of the model. (a) Finite element mesh with homogeneous properties (E=2
GPa, ν=0.3) and boundary conditions. The faults have been omitted in the model
and the base is free. (b) Iso-contours of the computed maximum Coulomb shear stress
(MCSS) resulting from the restoration and plotted over the initial unrestored geometry.
(c) Orientation of the predicted shear planes scale to the MCSS. The size of the shear
planes is proportional to the MCSS. Thick black lines are the superimposed active faults

predicted from stage 0 of figure 10.9.

deformed geometry. Linear elasticity allows such back and forth analysis of the stresses

from the deformed to the undeformed states. The principal stresses (i.e. inverse) are then

combined with a failure criterion to create maps of both the predicted fault geometry and

the predicted fault location.

The modeled fault geometry can be estimated using the Coulomb failure criterion defined

in equation (10.2). Two conjugate failure planes intersect and the fault dip-angles are

influenced only by the angle of friction φ and the orientation of the local maximum and

minimum principal stresses, σmax and σmin, respectively. We chose the maximum Coulomb

shear stress (MCSS) as an index for fault location because it has been effectively used by

(Maerten et al., 2001) and Maerten et al. (in press) to model secondary normal faulting

in a North Sea reservoir. The MCSS is the maximum shear stress that would occur on

optimally oriented conjugate shear fractures as defined above. The value of the MCSS is
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determined by (Jaeger et al., 2007), p. 95:

MCSS = (
σmax − σmin

2

√
1 + tan2φ) − tanφ(

σmax + σmin

2
) (10.3)

where φ is the friction angle.

Figure 10.10.c shows the contours of the MCSS over the entire model. The highest stress

concentration is localized close to the top free surface and just to the right of the base of the

ramp. This corresponds to the area of highest fault activity inferred from the previous

restorations and is similar to the elastic and elasto-plastic geomechanical simulations

carried out by (Erickson et al., 2001). The right side of the model displays the lowest

MCSS stress values and corresponds to the region that has only been translated during

the extension. When the active fault segments, predicted from stage 0 of the previous

restoration experiment, are superimposed onto the map, they match with the highest

computed MCSS values.

Figure 10.10.d shows the orientation of the two shear failure planes derived from the

computed stresses over the entire model. The sizes of the displayed shear planes are

proportional to the computed MCSS. When the active faults, predicted from stage 0

of the previous restoration experiment, are superimposed onto the map, their geometry

closely follows the curved path of the computed shear plane orientations.

Figure 10.11.b also shows that without constraining the base of the model, highest stress

concentration still localizes close to the top free surface, which corresponds to the area

of highest fault activity inferred from the previous restorations. Orientation of the two

shear failure planes remains identical to the previous model close to the top free surface.

However, the orientation of the conjugate shear planes tends to deviate from the previous

model towards the traction free base of the model.

10.7.3 Conclusions and applications to reservoir exploration and

production

The geomechanically-based restoration not only provides a complete and robust set of

tools for inferring fault development chronology but also a tool to compute deformation

between the restored and the deformed states. The analysis of deformation (i.e. perturbed

stress field) can be used effectively in the oil industry to model undetected or sub-seismic

faults ((Maerten et al., 2002), Maerten et al., in press). These predictions may serve to

infer reservoir compartmentalization and to locate and exploit faulted regions of reservoirs.

317



10.8 Experiment 3

As an application of the geomechanically-based restoration technique to model contrac-

tional structures, we restore a decameter-scale fold, which crops out in the Coulazou gully

located near the Montpellier thrust fault, Southern France (see Fig. 10.12).

Figure 10.12: Simplified structural map of the central part of Gulf of Lion margin,
showing the contractional and extensional structures as well as the outcrop location.

Paleozoic basement is marked with crosses.

The Montpellier thrust fault is part of the thrusts and folds of the Pyrenean foreland

(Arthaud and Séguret, 1981) formed during Eocene. The thrusts have later been trun-

cated by NS-striking extensional structures developed throughout the late Oligocene-Early

Miocene rifting of the Gulf of Lion continental passive margin. The Mesozoic limestone

cover, which was involved in thin-skinned compressional tectonics during the Pyrenean

orogeny, outcrops in the Coulazou gully. The structural style of the area is character-

ized by a succession of EW trending, decameter-scale folds affecting mechanical units of

limestone layers that are several meters thick (Bazalgette, 2004). Figure 10.13 shows a

fold cropping out along the cliff bounding the Coulazou gully, and its interpretation in

a vertical cross section. The fold has a gentle concave downward shape affecting a 7 to

9 m thick competent limestone unit vertically bounded by softer marly units. The lower

marly calcareous unit, visible in the cross section, corresponds to a décollement level above
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Figure 10.13: Contractional fold of the Coulazou gully, southern France. (a) Outcrop
photograph. (b) Structure interpretation showing the main bedding interfaces and the

observed fractures.

which the fold has initiated. Layer-bounded mode I fractures cluster near the fold hinge.

Field observations (Bazalgette, 2004) suggest that some of the fractures are reactivated

pressure solution surfaces, probably developed during the Pyrenean compression prior to

folding.

10.8.1 Numerical model configuration

A finite element mesh (Fig. 10.14.a) was developed from the interpretation of the fold

that fits the geometry of the sedimentary layers. A finer mesh has been used near the

hinge in order to honor the highest fold curvature geometry. The mechanical properties

throughout the model are homogeneous and are those of limestone, with a Poisson’s ratio

of 0.25, a Young’s modulus of 30 GPa (Clark, 1966).

The modeled bedding interfaces can slip with no friction but are constrained to stay in

mechanical contact, thus preventing any opening and interpenetration of the layers. This

configuration allows a degree of freedom where the layers can slip, translate, rotate and
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Figure 10.14: Model configuration of the contractional fold restoration. (a) Finite
element mesh (triangular elements) with homogeneous properties (E=30 GPa, ν=0.25).
(b) Boundary conditions constraining the middle bedding interface of the model to
flatten along a horizontal target line. The boundary conditions sketched on the unfolded

model for clarity. (c) Unfolded finite element mesh.

deform during the restoration while they mechanically interact. The outside boundaries

of the model are free surfaces. We justify the free lower and upper boundaries by the fact

that the mechanical competent limestone unit is bounded by softer marly layers, where

décollement has probably occurred. In this example, the restoration consists of constrain-

ing all the nodes of the middle bedding interface to displace to a target horizontal line

representing the hypothetic pre-deformed geometry (Fig. 10.14.b). Each of the displaced

nodes can slide with no friction along the target line in order to accommodate the dis-

placement during the restoration. All the other nodes of the model are free to move until

equilibrium is reached. We assume a plane strain model with no material motion in and

out of the cross section.
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10.8.2 Restoration results

The result of the restoration (Fig. 10.14.c) shows sub-horizontal layers with a constant

thickness throughout the model. There is a small thickness variation with an increased

thickness from north to south, which is also observed in the structural interpretation. This

could be natural lateral thickness variation or artificial variation caused by the imperfect

perpendicularity between the camera direction and the cliff face (i.e. perspective distor-

tion). Slip occurred in all bedding interfaces giving an overall inverted pyramid shape

as observed in the synthetic example of Figure 10.2, where the unfolded lower layers are

shorter than the unfolded upper layers.

We mapped both the outcrop image of the fold and the fracture interpretation (Fig. 10.15

and Fig. 10.16.d) onto the finite element mesh in order to display the observed fractures

and bedding interfaces of the structure in what could have been its pre-deformed geometry.

They show rotated fractures that appear perpendicular to bedding.

Figure 10.15: Results of the geomechanically-based restoration. (a) The outcrop
photograph has been mapped onto the finite element mesh. (b) Unfolded photograph

showing sub-horizontal beds.

For sake of clarity, the stress displayed on Figure 10.16 (i.e. least principal stress σ3)

is the stress produced by folding the beds. The inverse of that stress corresponds to
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the maximum compressive stress (σ1) that is computed by unfolding the beds to sub-

horizontal beds. The deformation caused by the folding is distributed among the ten

layers and produces bed-parallel tension and compression at the layer top and bottom

respectively. Results show stress concentrations (tension) localized along the fold hinge

and articulations and in the extrados of the folds, which reasonably correlate with the

location of the observed fracture clusters. The restoration produces bed-parallel tension

that could ultimately reactivate preexisting bed-perpendicular stylolites or develop joints

(opening mode fractures) normal to bedding, as observed in Figure 10.16.a and b. The

high stress concentration magnitude computed from the unfolding can be explained by

the fact that stresses that exceed the elastic limit, and would be subject to non-linear

elastic deformation, are not taken into account. We would expect fractures developing in

such areas in response to the stress concentration. It is important to note that no far field

tectonic stresses have been added to the model. Therefore, the computed stresses only

reflect the deformation caused by unfolding.

Figure 10.17 shows the quantitative comparison between fracture frequency (i.e. frac-

ture/m) measured along 3 beds and computed stress σ3 along the same beds. The maxi-

mum fracture frequency matches the location of the highest value of σ3 for the 3 layers.

The asymmetric nature of fracture frequency with higher frequency to the left of the max-

imum is reproduced for layers A and B. Layer C displays a symmetric fracture frequency

graph that is also reproduced by the restoration.

10.8.3 Conclusions and applications to reservoir exploration and

production

We have shown that the geomechanically-based restoration technique can be applied to

restore both extensional and contractional structures. The technique provides a robust

tool for efficiently modeling diffuse deformation (i.e. undetected joints) from computed

stress field. These modeling efforts may serve to locate and exploit fractured regions of

reservoirs.

10.9 Conclusions

The restoration method presented here combines fundamental physical laws that govern

rock deformation, including conservation of momentum and mass, with the kinematic con-

straints necessary for restoring geological structures. The physical laws and linear elastic
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Figure 10.16: Comparison between observed fractures and computed stress. (a) Ob-
served fractures and iso-contours of the computed least principal stress (σ3) resulting
from the restoration and plotted over the initial unrestored geometry. (b) Observed
fractures and iso-contours of computed σ3 on the actual fold geometry. Note that σ3 is
the stress produced by folding the beds. The inverse of that stress corresponds to the
maximum principal stress (σ1) that is computed when we restore the folded beds to the
sub-horizontal beds. Fracture closely matched the highest values of σ3. A, B, and C

represents the graphs of figure 10.17.
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Figure 10.17: Comparison between observed fractures and computed stress. (a) Ob-
served fracture frequency (i.e. fracture per meter) for 3 different layers A, B and C.
Gray bands are area of no data because of vegetation. (b) Computed σ3 along the 3
layers A, B, and C. Fracture frequency closely matched the values of the least principal

stress σ3.

theory replace ad hoc kinematic and geometric assumptions commonly used by other

methods, including preservation of segment length, area, or volume. The main benefits

of such an approach are: (i) rock mechanical properties and their variation throughout

the geological model are taken into account; (ii) the mechanical interaction of faults and

slipping bedding surfaces are modeled; and (iii) the method applies the same principles to

restore geological structures from any tectonic setting. In contrast, kinematic and geomet-

ric models typically adopt different mechanisms and constraints to mimic the deformation

in different tectonic settings. In addition this method computes stresses from the restora-

tion and these can be related to small-scale structural heterogeneities (i.e. sub-seismic

faults, joints).
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The results of this study have shown that the geomechanically-based restoration approach,

despite its limitations in terms of inelastic deformation, allows one to successfully model

fault chronology as well as small-scale joints during restoration. We have demonstrated,

through the restoration of sand layers in a laboratory experiment, that the approach pro-

vides an efficient way to assess fault development through time. We suggest that the

approach could have significant potential for evaluating hydrocarbon migration pathways

through time and for locating structural traps. Using the same example, we have demon-

strated that such an approach could be used in the oil industry to model sub-seismic

faults. These predictions may serve to infer reservoir compartmentalization and to locate

and exploit faulted regions of reservoirs.

Finally, we have shown that this restoration technique can be applied to restore contrac-

tional structures and that it provides a robust tool for efficiently modeling diffuse deforma-

tion (i.e. jointing) necessary to exploit fractured reservoirs. Geological restoration based

on geomechanics appears a promising route towards improved reservoir characterization.
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CHAPTER 11

Geomechanically smoothing noisy horizons

F. Maerten(1,2), L. Maerten(1)
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Preamble

This chapter presents a geomechanically-based smoothing filter for noisy 3D horizons.

It is shown that the filter removes geometrical artifacts where, for example, high stress

concentration occurs after unfolding and unfaulting, while smoothing fault cut-offs and

transforming high displacement gradients at crack-tips to more realistic values.

About...
Laurent Maerten, as usual, did most of the modeling. Paul Griffith, from BG-Group,

participated to fruitful discussions.
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11.1 Résumé

Nous présentons un filtre de lissage d’horizons 3D faillés et plissés basé sur la géomécanique.

Ce filtre corrige de façon adaptative la géométrie en fonction d’un critère prescrit par

l’utilisateur et basé sur le changement d’aire, de déformation ou de contrainte. Un code

de restauration, s’appuyant sur une méthode itérative d’éléments finis (FEM) et basé

sur la géomécanique avec gestion des contacts, est utilisé comme outil pour détecter les

anomalies géométriques sur les surfaces 3D. Il est montré que ce type de filtrage supprime

les irrégularités géométriques où, par exemple, une concentration de contraintes élevées

est décelée après dépliage et défaillage, tout en lissant la trace des failles et les forts gra-

dients de déplacement en bout de faille en une géométrie plus plausible. Les surfaces de

faille 3D ainsi reconstruites depuis ces horizons filtrés sont par conséquent moins buitées.
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11.2 abstract

We present a mechanically-based smoothing filter for complex three-dimensional (3D)

folded and faulted horizons which adaptively corrects the geometry according to a user

prescribed criteria based on area change, strain or stress. A restoration code, built upon

an iterative Finite Element Method (FEM) in geostructural mechanics with contact man-

agement, is used as a tool to detect anomalous geometrical configurations on 3D surfaces.

It is shown that the filter removes geometrical artifacts where, for example, high stress

concentration occurs after unfolding and unfaulting, while smoothing fault cut-off and

transforming high displacement gradient at crack-tip into a more plausible geometry. Re-

constructed fault surfaces from such filtered horizons are consequently less corrugated.

Keyword: Finite Element Method, Iterative solver, Geomechanics, Filtering

11.3 Introduction

When using numerical codes in geomechanics for the determination of the perturbed

stress field or for the validation of interpretations, the geometry of the underlying model

is critical. As an example, using the Boundary Element Method (BEM) code iBem3D

(Maerten and Maerten, 2008; Maerten et al., 2005, 2009a,b; Maerten, 2010) requires a non-

noisy geometry of faults as they will mainly control the characteristic of the perturbed

stress field due to slipping surfaces. Noisy input geometries, such as corrugated or bumped

surfaces, will inevitably introduced artifacts within the result. Another example is given

by Dynel (Maerten and Maerten, 2006), a Finite Element Method (FEM) restoration

tool in 2D and 3D that allows validating seismic interpretations using geomechanics. If

input horizons are noisy in geometry, the resulting restored cross section or volume will

inevitably show high strain or stress concentration at bumps, or artifacts where steps are

present.

Therefore, it is necessary to filter input surfaces from eventual distorted geometries, while

keeping the natural features unchanged (e.g. opened crack-tips). Fig. 11.1 shows some

commonly observed distortions on a 3D interpreted seismic horizon, and are sevenfold.

First, some steps are observable (rectangles Fig. 11.1, and are mainly due to the bad

quality of the seismic images as well as the manually or semi-automatic detection of hori-

zons from the 3D seismic image. Second, fault cut-off (ellipsis in Fig. 11.1) are generally

wavy with kink angle due to the discretization of the surface. Third, fault tips (squares

in Fig. 11.1) can have exaggerated displacement gradient. Fourth, bumps (circles in Fig.

11.1) can be observed at some places which can be natural or resulting from the missed
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Figure 11.1: Example of a 3D horizon with geometrical irregularities. Top view of
the 3D horizon with displayed iso-contours of elevation. Four potential problems can be
observed: (1) steps on the surfaces (rectangles), (2) wavy fault cut-off with sharp angles

(ellipses), (3) bumps (circles), and (4) unrealistic fault tips geometries (squares).

interpretation. Fifth, the mesh discretization (density and topology) can leads to some

artifacts. Sixth, even if it is not used in present study, material heterogeneity can

have an impact, especially for high contrast of the Young’s modulus. Finally, material

anisotropy (e.g. material orthotropy), can also generate perturbations.

Different type of algorithms exist for noise removal. Some of them deal directly from ac-

quired data before the conversion into a mesh or meshes: mean and Gaussian linear filters,

conservative-smoothing, trimmed-mean, mode, median and symmetric-nearest-neighbor

non-linear filters (Hall, 2007).

Other methods work directly on triangulated meshes. When a mesh is constructed from

acquired data, measurement error can result in a rough mesh, and smoothing can attenu-

ate this noise. But in general, mesh post-processing algorithms may introduce undesirable

artifacts. The most common method for smoothing meshes is the Laplacian (Taubin, 1995;
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Desbrun et al., 1999), also known as diffusion. This filter has a couple of desirable prop-

erties. First, it does not modify the connectivity of a mesh, but only the position of the

vertices. The triangulation remains unchanged. Second, the discrete Laplacian can be

formulated so that smoothing a given vertex only requires direct connectivity information.

As the size of the mesh increases, the number of neighbors of a vertex remains constant.

Consequently, the Laplacian smoothing can be linear in space and time. The Laplacian

smoothing also suffers from undesirable properties. Shape distortion and shrinkage of the

mesh are the common ones.

We present a new method that can answers the previous pitfalls by using the rock mechan-

ics on triangulated 3D folded and faulted surfaces (2-manifold of genus 0 with external

and internal borders). This algorithm is based on the Finite Element Method for 3D sur-

faces that are unfolded and unfaulted at the same time on a target surface (e.g., a plane),

and which provides relevant information about anomalous geometries. The method does

geometrical corrections of the surface geometry in the initial space by minimizing a user

selected criteria (e.g. area variation or high strain/stress concentration) in the restored

space.

11.4 Features classification

In order to develop the mechanically-based smoothing filter, some remarkable features

have to be described first. For the moment, we are not interested in the magnitude of a

given criteria, but rather on the detection of the potential geometrical irregularities of an

horizon.

1. Perfectly developable surface

For a developable surface without any corrugation and fault traces, the result of the

unfolding process leads to no area-changed as shown in Fig. 11.2. In this example,

a crumpled squared thin sheet of paper, that has been digitalized using the Stanford

digital scanner, is unfolded on an horizontal and planar target plane. As expected,

unfolding this mesh produces a non-distorted planar surface, where the final area is

identical to the original one within an error of 0.0005%.

2. Bumps

However, for a artificially distorted surface, stress concentration are well localized at

the asperities. This is shown in Fig. 11.3, which uses the same triangulated surface

as in Fig. 11.2 and where we artificially created an asperity.
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Figure 11.2: A developable surface. Left: crumpled squared thin sheet of paper that
has been digitalized using the Stanford digital scanner. Right-top: mesh used for the
unfolding. Right-bottom: Unfolded surface on a planar horizontal target. The change

in area is 0.0005

Figure 11.3: A developable surface with an artificial asperity. Left: marked asperity.
Right: after unfolding, high stress concentration is visible

3. Steps

From Fig. 11.1 (rectangles), ”steps” can be observable and are mainly due to the

interpretation discretization. These features are obviously not natural and are a

side effect of the segmentation process.

4. Fault tips

Fault tips usually present low displacement gradient since they represent the ter-

mination of a fault. Therefore, unrealistic high angle should be reduced to a lower

value (squares in Fig. 11.1).

5. Fault cut-off

The shape of the fault cut-off should be altered if necessary as shown in modified

”Big Smile” model (ellipses in Fig. 11.1 and Fig. 11.4, left), where the fault trace

was made irregular intentionally.

6. Discretization effect

Of course, the mesh density will control the overall aspect of the surface. For a coarse
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Figure 11.4: Irregular fault cut-off for the ”Big Smile” surface. Left: initial planar
surface before unfaulting. Right: unfaulted cut-off showing the presence of a high stress

concentrations

Figure 11.5: Mesh effect. Effect of the topological configuration and mesh density
after unfolding the surface. (a) Initial regular mesh of a developable surface and (b)
after unfolding, no concentration is observable. The surface is perfectly developable. (c)
Initial irregular mesh of a developable surface and (d) corresponding concentration due
to a bad topological configuration and coarse mesh discretization. Note that the area

change is relatively small (4%)

mesh, the topology as well as the fault cut-off cannot be represented precisely. For

features such as valley and ridges, triangular edges have to pass through them, in

order to minimize the distortions (Fig. 11.5).

7. Material heterogeneity

Even if we can generally consider seismic horizons as an interface between two
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Figure 11.6: Effect of mechanical properties. Unfolding of a non-developable
(Gaussian) surface with homogeneous (left), heterogeneous Poisson’s ratio (middle) and

Young’s modulus (right).

different materials, it is worth to mention the effect of the contrast in material

properties, as shown in Fig. 11.6. A 3D Gaussian is constrained to be unfolded on a

target plane, and three different scenarios are studied. The first one (left of Fig. 11.6)

supposes an homogeneous material (E = 1 and µ = 0.25), and the unfolding leads

to symmetric iso-values of change in area. The second and third one, play with the

variation of the Poisson’s ratio and Young’s modulus (Fig. 11.6, middle and right,

respectively). For half of the Gaussian, the Poisson’s ratio is set to µ = 0.49 and

the other part to µ = 0.01, the Young’s modulus being the same for the two parts.

After unfolding, stress concentration is observable when the Poisson’s ratio changes.

Similarly (right of Fig. 11.6), the change in Young’s modulus (E = 1 for the right

part, and E = 3 for the other) creates perturbed stress, while the Poisson’s ratio

remains the same for the whole Gaussian. Note that in both heterogeneous cases,

the resulting unfolded surfaces contour are different from the homogeneous case.

8. Material anisotropy

Anisotropic materials can also generate perturbed stress field. Consider an or-

thotropic material with a given angle of orthotropy and different value of the Young’s

modulus and Poisson’s ratio for the two local axis. This material will preferably will

stiffer in one direction than the other, leading to a stretched unfolded surface in the

direction of softer Young’s modulus.
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11.5 Iterative FEM method

The method described in this paper follows the same principles as the one presented in

(Maerten and Maerten, 2006). Rather that working in 2D, we extended the method to

3D surfaces (denoted 2.5D in the remaining of this paper) and volumes, but are only

interested in the former. In order to detect geometrical irregularities, we employs Dynel,

a restoration technique on a planar target surface for folded and faulted surfaces while

unfaulting the fault traces at the same time without friction.

Dynel is a continuum code based on FEM (Hughes, 1987) for modeling the behavior of

complex geological structures such as folded, fractured and faulted rock. Its formulation

can accommodate large displacements and strains for a linear, heterogeneous, anisotropic

and discontinuous medium.

Models are discretized with linear triangular elements in 2.5D, which form a 3D mesh.

Each element has assigned material properties, if necessary, that may differ from element

to element, and each behaves according to a prescribed linear elastic law in response to

constraints such as applied and/or internal forces, displacements, and interface contact

reactions. As opposed to the standard implicit FEM (Hughes, 1987), where a global stiff-

ness matrix is built for solving for the unknown displacements, we use an iterative solver

based on the block Gauss-Seidel method (Golub and Van Loan, 1996). This solver allows

forces to be transmitted from node to node through the entire system until equilibrium

is obtained. Nodal forces are computed using the stress state of each connected element,

and take into account other forces such as external and contact reaction forces. We will

see in section 11.6 that this formulation allows fast update of the local stiffness matrices,

without the need to reconstruct the entire global matrix, leading in fast computations.

11.5.1 Determination of the element and nodal deformation

Even if the processes of unfolding and unfaulting is done in 2D, we have to take into

account the 3D nature of the triangles. To do so, the stiffness matrix associated to each

element is computed using the initial nodes position in the element’s local coordinate

system. For a given node the nodal stiffness is determined using the stiffness matrices of

the incident elements after a rotation into the global coordinate system, and by pretending

that, for a given node, all the other neighboring nodes are fixed. Elemental and nodal

stiffness matrices are computed at initialization, which greatly improves the speed of the

solver.
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Initially, the system is at rest in equilibrium. Unfolding and unfaulting will make the

system evolve by deforming the elements and consequently by generating internal strain

at elements. The strain is then transformed to a stress by using the Hooke’s law (Jaeger

et al., 2007). Nodal forces are then derived as a function of the element stress tensor.

Using the element local coordinate system is twofold. First, it takes into account rigid

body rotation. Second, it allows fast computations by avoiding the use of the rotation

matrix from global to local and local to global coordinate system.

At iteration i, and according to the prescribed boundary conditions, the nodes subjected

to internal and external forces are displaced, causing deformation of the incident elements.

The stress state associated to an incident element is computed at the considered node.

This process is done for every connected elements, and the corresponding forces at the node

are summed-up in the global coordinate system. The total nodal force is then transform

back to a displacement vector using the nodal compliance matrix being the inverse of

the nodal stiffness matrix and pre-computed at initialization. Then, and according to

the node boundary conditions, the node is virtually displaced in order to detect eventual

contacts using the master/slave technique. Finally, the contact forces are added at the

involved nodes.

11.5.2 Contacts at interfaces

Contacts are modeled using the concept of slave nodes and master segments, which is

the same technique used in (Maerten and Maerten, 2006). Consider two fault blocks in

contact. If a node of the interface mesh of one block penetrates a segment from the

interface mesh of the second block, the node is considered a slave node whereas the

segment is considered a master segment. A contact force is then applied to push the

node back toward the outside of the element containing the master segment. Thus, the

contact force is directed toward the master segment along the normal to that segment.

The master-slave concept implemented here allows nodes to be both slave nodes for an

iteration and part of a master segment for other iterations. Therefore, to solve fault-block

contact problems, it is not necessary to assign the master and slave roles to boundary

surfaces. During the restoration process nothing is imposed about the movement of the

fault traces. Only the closing of traces is imposed, while they are allowed to slip with no

friction as the mesh deform.
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Figure 11.7: Force propagation in Dynel. (a) Initial geometry and external force
applied to node A. (b) After the node has moved, internal forces, due to the deformation
of the incident triangular elements, appear at nodes A, B, C and D. (d) At next iteration,
the node B is moved according to its force, generating new internal forces at nodes A,
B, D and E. This process continue for all nodes until all the system is at equilibrium

11.5.3 Solving the system

The explicit solver is based on the block Gauss-Seidel method, which allows nodal forces

to be transmitted from node to node, until equilibrium is reached. Each node is treated

independently from the others in order to allow fast nodal stiffness update, and the order in

which they are checked is irrelevant. Gauss-Seidel is an iterative method for solving partial

differential equations on a triangulated surface (2D) or tetrahedrized volume (3D). When

a node is checked, its new position depends on the current positions of the connected

neighboring nodes (Fig. 11.7). The key feature of this algorithm is that it uses new

information, for instance updated mesh node positions, as soon as they become available,

as opposed to the Jacobi’s method (Golub and Van Loan, 1996) in which the update of

each node depends only on the values at neighboring nodes from the previous iteration.

For a given node, we calculate the force resulting from the deformation of each connected

element. The contact forces are then added. This force is then transformed back to a

displacement vector using the nodal stiffness matrix. This matrix is defined as the sum of

the stiffness matrices of the connected elements, for which the other nodes are considered

fixed. Then, the displacement constraints or displacement boundary conditions, such as

fixity, unfolding and unfaulting, are applied to the computed displacement vector. Finally,

the node is moved according to the new displacement vector and the iteration jumps to

the next node. The algorithm stops when the sum of the squared norm of the nodal

displacement vector is below a given threshold value.
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11.6 Geomechanical smoothing filter

In this section, we describe the main algorithm to correct the geometry of a noisy surface

using the processes of unfolding and unfaulting.

After the unfolding and unfaulting processes have finished to converge, i.e. the nodal mean

squared displacement is less than a user prescribed threshold, the geometrical correction

algorithm takes place while the previous two others processes continue to be activated.

The goal of this algorithm is to modify the nodes geometry in initial space, and therefore

the associated stiffnesses (nodal and at the incident elements), in order to minimize a user

selected criteria (area change, stress, strain) within a given range in the restored space.

Since the direction of the minimization is unknown, some preliminary tests have to be

launched for the six possible directions (−x, x, −y, y, −z, z). To do so, and for a given

direction vector d, a candidate node is virtually moved in the initial space of δd, where

δ is a small value compare to the incident edges length to the node. Then, the criteria is

computed at this node and compared to the reference value at the same node to see if it

has been reduced. The direction which minimize the best the criteria is retained as the

candidate and the node is effectively moved of δd, changing its geometry in the initial

space. Incident element stiffnesses are then updated, as well as the nodal stiffness. The

unfolding and unfaulting processes are run until the new forces, resulting of the change in

geometry of the considered node, are in equilibrium. Then, the algorithm goes to another

anomalous node.

It is worth to mention that this algorithm converge for any geometrical configuration

(given a range of correction), since the initial geometry modifications can accommodate

the criteria. The overall process is presented in algorithm (11.8), whereas the nodal

minimization is outlined in algorithm (11.9).

As it is hard to evaluate the complexity of such method, we give timing for some models.

Table 11.1 resumes the timing of some models presented in this paper using the corrective

algorithm or not. Timing on horizon from Fig. 11.15 shows that user interaction remains

possible.
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Figure 11.8: Overall mechanically-based filter Algorithm combined by the unfolding
and unfaulting processes
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Figure 11.9: Mechanically-based filter Algorithm for a given node candidate. The
six possible directions of correction are tested before choosing the right one. Then, the

initial node position is modified accordingly
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Table 11.1: Elapsed time (in seconds) for some models presented in this paper. Algo-
rithms ”Fold”, ”Fault” and ”Corr” correspond to unfold, unfault and the geometrical
correction, respectively. Models ”Sheet of paper”, ”Sheet of paper+bump”, ”Gauss”,
”Big smile” and ”Horizon” refers to models in figures 11.1, 11.2, 11.3, 11.6, 11.11 and

11.15, respectively.

Model Nb nodes Algo Time (s)

Sheet of paper 2000 Fold 2

Sheet pf paper+bump 2000 Fold+Corr 2

Gauss 1000 Fold 0.5

Big smile 800 Fold+Fault+Corr 0.2

Horizon 14000 Fold+Fault+Corr 5

11.7 Verifications

In order to check the validity of the proposed algorithm, we tested it for some of the

features described in section 11.4 on synthetic examples.

11.7.1 Bumps

Fig. (11.10) shows the geometrical correction applied to the artificially created bump on

a 3D surface. Before correction (Fig. 11.10 top right), a high change in area is observable,

whereas after correction (Fig. 11.10 bottom left), the bump is removed and the remaining

nodes are not altered by the algorithm, significantly reducing the user selected criteria

concentration (Fig. 11.10, bottom right).

11.7.2 Fault’s tip

Fig. 11.11 show the effect on the ”Big Smile” model. After unfaulting, area-change

concentration occurs at the tip of the fault after unfaulting. This concentration cannot

be removed by the algorithm, since a small change along x or y (in-plane) increases the

area-change (Fig. 11.11 bottom right).
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Figure 11.10: Bump correction. (a) initial modified geometry pointed by the black
arrow; (b) resulting area change after unfolding where a high concentration is observable
at the bump location; (c) after geometrical correction of the mesh (the removed bump
is pointed by the black arrow); (d) corresponding area change iso-contours, where the

high concentration has disappeared

11.7.3 Wavy fault cut-off

Using the same modified ”Big Smile” model from Figure 11.11, the algorithm smooths

the fault cut-off, reducing the high area-change concentration at kink angles, leading to

smooth lines (Fig. 11.11 bottom left).

11.8 Application

The following model describes a complete example applied to a noisy interpreted 3D

seismic horizons. It is shown that bumps, steps, fault cut-off and tips are altered by the

algorithm.
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Figure 11.11: Fault cut-off correction. (a) initial geometry of the noisy fault cut-off;
(b) corresponding area-change concentration close to the sharp angles of the fault trace;
(c) after geometrical correction, the fault trace is smoothed, and (d) corresponding area
change where the high concentration has disappeared leaving only the concentration at

the crack tip.

11.8.1 Local surface correction

The input surface is the one used in the introduction to present some of the commonly

observed anomalous features, and is shown in Fig. 11.1 (see also Fig. 11.12 for a 3D

exaggerated (x2) perspective view). The goal is to remove in one go the observed anoma-

lous geometries such as bumps, steps, fault cut-off and tips. Unfolding and unfaulting

the horizon shows many perturbations, especially at fault cut-off (Fig. 11.13). Applying

the geometrical correction algorithm reduces significantly the perturbation (Fig. 11.14),

where only concentrations at fault tips remain visible. Figure 11.15 compares the horizon

with iso-contours of elevation before (top) and after (bottom) correction. Bumps and

steps have been removed, fault cut-off are now smoothed, and displacement gradient at

fault tip are reduced. Figure 11.16 presents iso-contours of the displacement in x (top),

y (middle) and z (bottom) of the nodes using the initial geometry. Specifically, the z-
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(a)

(b)

-3034 m

-3595 m

Z

Figure 11.12: Folded and faulted horizon. (a) Top view (orthographic) with iso-
contours of elevation; (b) Perspective 3D view (2x exaggeration).
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1 (no change)

Af/Ai

Figure 11.13: Area-change perturbation before correction. After unfolding and
unfaulting, high area-change perturbation are localized at bumps, steps, kink-angle of

fault cut-off and fault tips. (a) restored space and (b) initial space.
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(b)
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Figure 11.14: Area-change perturbation after correction. (a) iso-contours of pertur-
bations in restored space (same scale as in Fig. 11.13) and (b) in initial space.
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(a)

(b)
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Figure 11.15: Comparison of the elevation iso-contours for the (a) initial geometry
and (b) corrected geometry.
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(c)

(a)

53 m

-53 m

(b)

Figure 11.16: Iso-contours of the corrective displacement components: (a) along the
x-axis; (b) along the y-axis and (c) along the z-axis with a perspective view.

correction clearly shows that the correction was preferentially applied to bumps and steps.

Figure 11.17 shows displacement field for the whole surface (top), and at specific locations

close to fault cut-off (bottom left) and fault tip (bottom right). Consequently, smoothing

the fault cut-off implies that the 3D fault traces will be smoothed as well. Fig. 11.18 (top)

presents the initial geometry of the reconstructed part of a fault, showing a corrugated

surface. After correction, the reconstructed fault surface is smoothed (Fig. 11.18 middle).

A close view to both surfaces (Fig. 11.18 bottom) shows that the presence of steps in the

original geometry of the horizon generate a wavy fault surface, whereas after correction,

this side effect is removed, leading to a more plausible fault surface.
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(a)

(b) (c)

60 m

0 m

D

Figure 11.17: Displacement field showing the in-plane correction. (a) stream-lines
for the whole horizon; (b) close view of the vector field at a kink angle along a fault

cut-off, and (c) vector field at a fault’s tip.
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(a)

(b)

(c)

Figure 11.18: Smoothing a fault surface. Effect of the geometry correction (steps,
fault cut-off and fault’s tip) on the reconstruction of a fault surface: (a) initial ge-
ometry with iso-contours of area-change perturbation (left); (b) final geometry where
the fault-cut-off has been smoothed and steps have been removed; (c) close view of
the reconstructed part of the fault surface using the initial (top) and final geometry

(bottom).
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Figure 11.19: Extended fault’s tips. (a) Before correction. The extended fault’s
tips are circled. (b) After correction, displacement gradients at fault’s tips have been

increased.

11.8.2 Extending fault tips

In order to see the strength of such method to correct fault cut-off and displacement

gradient at tips, we extended some fault traces by cutting the triangulated surface at the

fault tips, resulting in an implausible geometry (Fig. 11.19, top left) while maintaining a

high area-changed concentration. After running the algorithm, fault traces are smoothed

as expected, and the extended parts recover a more natural displacement gradient, (see

Fig. 11.19 bottom left). Figure 11.19 top right and bottom right shows iso-contours of

the criteria used to detect anomalous regions (i.e. area-changed). It is shown that high

concentration have been reduced and globally smoothed.
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11.9 Conclusions

We have shown that using a geomechanical smoothing filter to correct for anomalous ge-

ometry has positive effects. The filter automatically remove steps that can occur from

the picking resolution of the interpretation. Anomalous bumps are also erased and kink

angle at fault cut-off as well as fault displacement gradient at tips are smoothed. Recon-

structed fault surfaces are globally less corrugated. Instead of doing a global correction,

the user have the possibility to locate and select zones of anomalous geometry and apply

the presented algorithm to the selection only. As it is fast enough, user interaction allows

to pick a threshold value for the correction, and see the corresponding result in real time.
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Figure 11.20: Evolution of the number of publications, conference abstracts, theses
and users using iBem3D (Poly3D) since 1993 and until 2005

As seen in the three main parts of this thesis, linear elasticity still can be considered a

useful tool for sub-surface modeling as it gives a first good approximation of the geological

phenomena. This is demonstrated by the growing number of publications and thesis based

on these tools: iBem3D (formally called Poly3D) and Dynel2D/3D. Fig. 11.20 shows the

evolution of the international scientific publications, thesis and conference abstracts for

iBem3D (Poly3D) in research and industry from 1993 to 2005.

Linear elasticity can be used as a forward tool (part I) and allows one to estimate the

perturbed stress field in a complexly faulted area in a efficient way, given the geometry

and boundary conditions on the faults making a model, as well as the far field stress.

Direct applications range from the study of earthquake triggering and volcanoes model-

ing, fault interactions, the determination of the deformation associated with displacement

discontinuities, such as faults and fractures, in Earth’s crust, sub-seismic fault modeling,

joint modeling, interpretation/validation, fault connectivity and reservoir compartmen-

talization, depleted area and fault reactivation, pressurized well bore stability, and mine

and mine-shaft modeling (chapter 1). Implemented within a BEM code (e.g., iBem3D), it

allows one to add frictional and non-interpenetration behaviors (chapter 2). Frictional slip

along faults controls fracture orientation at extensional relay zones (chapter 3), the seismic

cycle, the distribution and amount of slip along faults, development of adjacent damage

zone and frictional slip along bedding contacts influences layer flexure and fracture/fault

propagation. Heterogeneous materials with complex geometrical interfaces separating

meddia with different material properties is investigated and implemented in chapter 4.
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Finally, model complexity reduction is presented in chapter 5 for both the resolution of

the system of equations and the post-processing at observation points.

Linear elasticity also allows one to do inverse modeling, i.e., to recover for the unknowns

model parameters using geologic, seismologic and geodetic data (part II). Given the faults

geometry as well as the rapidly increasing number of geodetic data with high precision, slip

inversion offers a way to determine the slip distribution which induced the input geodetic

observations to a precision that is consistent with the data (chapter 6). This technique was

successfully applied to the Nias earthquake (Indonesia) which occurred in 2005 (chapter 7).

The method for fast optimization presented in chapter 5 is used for linear slip inversion

in appendix A in combination with displacement inequatily constraints (DICs). This

new formulation permits one to use the large data sets as well as more complex faults

geometry made of thousands of triangular elements. A second type of inversion is to

determine the remote stress given the geometry of the faults as well as some measure of

the slip distribution from seismic interpretation (chapter 8). This tool can give a good

approximant of what could have been the far field stress (magnitudes and orientations)

which produced such observed displacement on faults. The principle of superposition is

used in chapter 9, and provides an efficent, stable and fast way of doing far field stress

estimation using multiple types of data.

Finally, linear elasticity makes possible restoration modeling in a simple and efficient way

(chapter 10), e.g. to determine the perturbed stress field due to folding (and eventually

to faulting). This technique can help to understand fault development and chronology,

and help the user to check the validity of their interpretation from seismic images. In

chapter 11, we use the principle of geomechanically unfolding and unfaulting 3D surfaces

to detect anomalous geometries in noisy horizons from seismic interpretation. An itera-

tive algorithm is then applied to the horizon to correct for the 3D geometry in its initial

space. It is shown that bumps, steps and fault cut-off are smoothed, while fault tips

are modified such that they present a more plausible displacement gradient. Since the

constraint of restoration of an horizon onto a target is not a natural boundary condition,

it generates residual tractions at the free surface that perturb the stress field. Therefore,

fractures prediction have to be carefully used in such a case (see for instance Lovely et

al., Geomechanical analysis of the Volcanic Tableland extensional fault system, Bishop,

CA and evaluation of mechanics-based restoration methods, In preparation for AAPG

Bulletin).

Of course, linear elasticity has many limits, as it is based on infinitesimal deformations.

Complex models with large deformations (involving plastic zones) cannot be handle by
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such codes, and other formulations have to be used. Specifically, the user must be aware

that linear elasticity accurately represents deformations of few percents, and for the case

of iBem3D, one has to make sure that the computed displacement discontinuities on a

fault do not exceed a few percents of the fault size.

Perspectives for forward modeling
Within the field of linear elasticity, our goal is to extend the functionality of such modeling

tools in order to incorporate a way to do Discrete Fracture Network (DFN) generation

using the perturbed stress field due to slipping faults as well as the remote far field

stress. One way of generating such fractures is to combine BEM and FEM, the former

to compute the perturbed stress field and the later to create fracture patterns (see for

example Iben et al., 2006, Generating Surface Crack Patterns, Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Computer Animation).

Using the same perturbed stress field, we think that it is possible to determine the opti-

mum well path in a complex faulted reservoir, avoiding collapse of the well bore. Having

the perturbed stress field due to slipping faults (computed from a numerical simulation),

a well bore trajectory can be computed efficiently by avoiding regions where the stress

field will plausibly collapse the well bore.

Fracture propagation in mode I is another problem that should be amenable to such tools,

and especially iBem3D for which the crack grow can be computed efficiently without re-

meshing of the entire elastic medium.

Another interesting feature is to implement the thermo-poro-elasticity in iBem3D, but

this functionality is still under investigation.

Perspectives for inverse modeling
One of our current research investigations is the use of an iterative solver for doing slip

inversion, as it will use the new features developed in chapter 2 (specifically the displace-

ment inequality constraints), chapter 4 (for the addition of heterogeneous materials) and

chapter 5 (for fast optimization). We give a brief overview of this on-going project in

appendix A.

Perspectives for restoration modeling
For this type of modeling, we investigate the possibility of adding plasticity during the

restoration of highly folded structures. Also, even if the Finite Element Method is rela-

tively well suited for doing restoration, we investigate the use of a MeshLess (or MeshFree)
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method, as it offers many advantages compare to FEM. This method allows one to do

very large deformations, and has the ability to avoid the use of topological structures

which are critical in three dimensions for the stability of the simulations.
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In appendix A, we provide a paper in preparation, and which fit in part II (”Inverse

modeling using Boundary Element Method”).

Appendix B presents an application of parameter estimation for fault sealing and leakage

for both nuclear waste disposal and exploitation of natural resources, using the static

Coulomb friction (chapter 2).

The last appendix C provides three other publications along with a list of conferences

abstacts and titles of internal publications from the Rock Fracture Project (RFP) at

Stanford.
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APPENDIX A

Fast iterative slip inversion

F. Maerten(1,2)

(1) Igeoss, Montpellier, FRANCE

(2) University of Montpellier II, Geosciences, FRANCE

In preparation for EABE

Preamble:

This appendix shows that the combination of the iterative solver (chapter 2) with the

optimization presented in chapter 5 can drastically decrease the computation time when

doing slip inversion and allow the use of displacement inequality constraints (chapter 2)

to better constrain the inversion. The inequality on displacements allows to specify if a

fault is normal or reverse, left or right lateral, and bound the norm of the displacement

within a user prescribed range.
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About...
The main goal of this research is to find a way for reducing the model complexity in

order to do slip inversion in inhomogeneous bodies using complexly shaped interfaces

(chapter 4). Another goal is to see if the displacement inequality constraints, as

defined in chapter 2, can be used in such a code.
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A.1 Résumé

Retrouver la distribution de glissements sur des failles en trois dimensions étant donné

certaines mesures du déplacement (donnés GPS ou InSAR) associée à des événements

tectoniques tels que les tremblements de terre, est d’un grand intérêt. La méthode in-

directe des éléments frontières en trois dimensions se révèle être un bon candidat pour

opérer cette inversion. Habituellement, une approche des moindres carrés pondérés, com-

binée à une régularisation de Tikhonov, est utilisée. Puis, le système doit être résolu sous

contraintes inégalitaires afin de converger le modèle vers une solution réaliste. Toutefois,

en raison du vaste ensemble de données disponibles (en particulier de données InSAR)

et de la complexité du système de failles utilisé, le temps nécessaire pour construire le

système d’équations peut être relativement long et la mémoire nécessaire pour le stockage

de la matrice se révéler insuffisant. En outre, le solveur sous contraintes peut présenter

un temps de calcul non négligeable et qui est fonction de la complexité géométrique du

modèle utilisé ainsi que des contraintes inégalitaires associées.

Dans cet article, nous montrons que grâce à l’utilisation d’une approche itérative com-

binée aux méthodes des matrices hiérarchiques et d’approximation adaptative croisée, le

système d’équations peut être construit et résolu de manière très rapide, tout en permet-

tant l’utilisation de contraintes inégalitaires en déplacement . Nous montrons un exemple

avec une analyse comparative de ce nouvel algorithme à une méthode classique des moin-

dres carrés sous contraintes.
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A.2 Abstract

Retrieving the slip distribution onto three-dimensional faults given some measures of the

ground displacements (e.g. GPS or synthetic aperture radar interferometry) associated

with tectonic events such as earthquakes is of great interest. Three dimensional indirect

boundary element methods reveal to be a good candidate to operate the inversion. Usually,

a weighted least squares approach combined with a Tikhonov regularization is used. Then,

the system has to be solved with inequality constraints in order to better converge toward a

realistic solution. However, due to the large set of data available (especially from InSAR)

and the more complex fault system used, the time needed to construct the system of

equations can be relatively long, and the memory needed for the storage grows as a

squared of the number of unknowns. Furthermore, the constrained solver can exhibit a

long computation time depending of the model complexity and the inequalities used.

In this paper, we show that using an iterative approach combined with the H-Matrix and

Adaptive Cross Approximation methods, the system of equations can be constructed and

solved in a very fast way, while allowing the incorporation of the displacement inequal-

ity constraints. We show an example along with benchmarking, and compare this new

algorithm to an existing direct inverse method using a classical constrained least-squares

solver.

Keywords: earthquake, slip inversion, iterative method, H-Matrix, Adaptive Cross Ap-

proximation

A.3 Introduction

Modern methods of data acquisition allow denser measurement of ground surface dis-

placements with better precision. Recovering for slip onto the faults that produced such

observed displacements is of main interest for the geophysicists for the comprehension of

earthquake triggering (see for example (G.C.P. et al., 1994)). To do so, numerical methods

are widely used either in forward sens (e.g. (Muller et al., 2003)) or by doing slip inver-

sion (e.g. (Johnson et al., 2001; Jónsson et al., 2002; Maerten et al., 2005)). Boundary

Element Method (BEM) seems to be the most appropriate technique for modeling inverse

problems (Okada, 1985; Maerten et al., 2005) since only the fault discontinuities have to

be discretized and not the entire volume of interest as done by the Finite Element Method.

The solution presented by Maerten et al. (Maerten et al., 2005) reveals to be better suited

for that purpose than the Okada’s code (Okada, 1985) since it uses triangular elements

to model complex fault geometry, avoiding gaps and overlaps between adjacent elements
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(Jeyakumaran et al., 1992; Maerten et al., 2005) which can perturbed the solution. This

method takes advantage of GPS and InSAR data set to recover for the slip distribution,

and is combined with a Fast Non-Negative Least Squares solver (FNNLS). The strenghs

was demonstrated through a brief analysis of the fault rupture due to the 1999 Hector

Mine earthquake (Mw 7.1).

Nowadays, due to the available dense data acquisition resulting from satellite interferom-

etry, as well as the possibility to model more complex fault systems (therefore increasing

the number of unknowns), the computation time to construct and to solve the system of

equations becomes a drawback using a direct approach. Our intention, in this paper, is to

show that using an iterative approach (Maerten et al., 2009a) combined with H-Matrix

(Hackbusch, 1999) and Adaptive Cross Approximation (ACA) (Bebendorf and Rjasanow,

2003), it is possible to solve inverse problems in a fast way, allowing, for example, a quick

parameters estimation (e.g. fault geometry) if necessary. Furthermore, as demonstrated

in (Maerten et al., 2009a), the iterative approach allows the use of displacement inequality

to better constrain the model to converge toward a realistic solution.

The paper is organized as follow. After reviewing the formulation of the inverse prob-

lem using an iterative approach, we apply the H-Matrix and ACA to the construction

and resolution of the least squares problem. Finally, an example is provided along with

benchmarks.

A.4 BEM formulation

For the boundary element method, we employ the analytical solution of an angular disloca-

tion in a homogeneous elastic whole- or half-space (Comninou and Dundurs, 1975), which

has been extended to account for heterogeneous materials (Maerten and Maerten, 2008).

In this code, each fault is discretized as a triangulated mesh, where mixed boundary con-

ditions are prescribed. This BEM code (called iBem3D (Maerten et al., 2009b)) is very

similar to the 2D Displacement Discontuinuity Method (DDM) (Crouch and Starfield,

1983), in which triangular elements of constant displacement discontinuity are employed.

The advantage compare to Okada’s code, which uses rectangular and planar elements, is

that three-dimensional fault surfaces more closely approximate curviplanar surfaces and

curved tiplines without introducing overlaps or gaps between adjacent elements. Such a

formulation is very well suited to study faults interaction in 3D, as only faults surfaces

have to be discretized (see for example (Maerten et al., 1999), (Maerten, 2000), (Muller
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et al., 2003) among others).

As described by Maerten et al. (Maerten et al., 2005), a linear slip inversion can be done

by using a weighted damped least squares approach. Displacements up at points p on the

Earth’s surface due to slip be on elements e of a buried fault can be described by a set of

linear equations:

up = Dpebe + E (A.1)

where E are the observational errors and Dpe are the influence coefficients, or Green’s

functions, that describe how slip on a fault element produces displacement at the Earth’s

surface.

To implement the inverse problem, we seek a solution that simultaneously minimizes

the L2 norm (hereafter annotated with ‖‖2) of the data misfit and of the model rough-

ness. This approach allows fitting of the data to a desired threshold while introducing the

geologic concept that slip distributions are relatively smooth rather than oscillatory. Min-

imizing the model roughness acts to prevent over-fitting of noisy data and compensates

for underdetermined model parameters and geometric inaccuracies. The slip inversion

problem can thus be written as

min‖Db− u‖2 + ǫ2‖S‖2 (A.2)

where the first term ‖Db − u‖2 is the L2 norm of the data misfit and the second term

ǫ2‖S‖2 is a measure of the model roughness. The data misfit is calculated by subtracting

the observed displacements u from the predicted displacements, which are themselves

calculated by multiplying the Green’s functions D by the modeled slip b.

However, this technique suffers from the limited amount of RAM of the computers neces-

sary to store the system of equations, and the long time needed for its construction and

its resolution due to the use of a Fast Non-Negative Least Squares solver (Maerten et al.,

2005).

A.4.1 Iterative formulation

The displacement at the an observation point located at the earth surface depends on the

displacement discontinuity from all triangular elements making the faults, and is expressed

as:

up =
∑

f

Dpfbf (A.3)
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Extracting a single triangular element e from Eq. A.3 gives:

Dpebe = up −
∑

f 6=e

Dpfbf (A.4)

Using a least-squares approach for all observation points p and a given element e, we have:

∑

p

[
DT

peWpDpe

]
be =

∑

p

DT
peWp

{
up −

∑

f 6=e

Dpfbf

}
(A.5)

where up is the observed displacement at point p, Dpe the displacement influence matrix

at p due to element e, and bf the current displacement discontinuity or Burgers’s vector

at elements f . Wp represents the weight matrix that defines the relative contribution of

each data point p to the total prediction error (Menke, 1984).

Equation A.5 can now be written:

be = A−1
e

{
ue −

∑

f 6=e

Befbf

}
(A.6)

with 




Ae =
∑

pD
T
peWpDpe

ue =
∑

pD
T
peWpup

Bef =
∑

pD
T
peWpDpf

(A.7)

The naive construction of this system of equations is given in algorithm A.1. In equation

A.6, matrices Bef , for all elements f , are stored in row-wise since bf are successively

refined at each iteration (see algorithm A.2), and has dimensions ne × ne, where ne is the

degree of freedom of the element e. Therefore, for a given element e, it is stored in the

form [Bef ] =
[
Bef0

...Befn−1

]
.

A.4.2 Tikhonov regularization

Instead of using a Tikhonov regularization into the least-squares formulation as done

in (Maerten et al., 2005), we choose to separate the implementation from the normal

equation. For a given iteration, we first recover for the unknown Burgers’s vector for each

element. Then, a post-processing regularization is applied at each element e using its

adjacent elements g. The computed displacement be at element e is smoothed according
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forall element e do
forall observation point p do

compute Dpe

Ae += DT
peWpDpe

ue += DT
peWpup

forall element f 6= e do
compute Dpf

Bef += DT
peWpDpf

end

end

end

Algorithm A.1: Naive algorithm to compute the elemental matrices at the intialization
stage of the iterative solver

to elements g using equation A.8:

be =
1

(1 − ǫ)we + ǫ
∑

g wg

[
(1 − ǫ)webe + ǫ

∑

g

wgbg

]
(A.8)

with wg being a weighting parameter for the adjacent elements g (e.g. area), and ǫ a

smoothing parameter such that ǫ ∈ [0, 1[. This process is described in algorithm A.2.

It can be noted that the best value of ǫ can be iteratively refined using an iterative

Tikhonov regularization algorithm (Henn and al., 2001). This thechnique prevents the

user to search for the best smoothing parameter, since it will be found automatically by

minimizing the objective (or misfit) function.

In Appendix A.6, we propose a formulation with the Tikhonov regularization in the normal

equation. This formulation was not tested yet, but will be compared soon to the previous

implementation in terms of stability and speed of the convergence.

A.4.3 Solving the system with inequality constraints

After the system of equations is built, the model is solved using a block Jacobi, as described

in (Maerten et al., 2009a), which allows the incorporation of displacement inequality con-

straints or DICs (e.g. non interpenetration of elements) and traction inequality constraints

or TICs (e.g. static friction). In order to better constrained the inversion, our interrest

here is to use some special forms of the DICs for a given element e with Burgers’s vector

be, i.e:

A ≤ be,i ≤ B (A.9)
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where be,i represents the ith component of the element’s Burgers’s vector be, and A and

B are the user prescribed bounding values. The overall process for solving the system

iteratively is presented in algorithm A.2.

call algorithm (A.1) or (A.3) // Construction of the system
while not converge do

forall element e do
apply equation (A.6) // Solve for b̄e
apply the displacement inequalities

end
forall element e do

apply equation (A.8) // Tikhonov regularization on b̄e
end
forall element e do

be = b̄e // Set the solution
end

end

Algorithm A.2: Inequality constraints, Tikhonov regularization and method of resolu-
tion of the system using a Jacobi iterative solver

A.5 Reducing the model complexity

Compare to the direct inversion, which is in O(pn), where n and p are the number of

elements and data points respectively, the model construction using the naive algorithm

A.1 is in O(pn2), and for each element and each observation point, the displacement

influence matrix has to be computed, which makes it very slow. On way to reduce the

computation time (but not the complexity) is to use the fact that for a given observation

point p, the Dpf influence matrices, for all element f , have to be computed only once.

Hense, the algorithm A.1 is transformed into algorithm A.3. But still, the complexity

remains hight.

Among various methods of optimization (Rokhlin, 1985; Hackbusch and Nowak, 1989), the

H-Matrix technique (Hackbusch, 1999) combined with ACA (Bebendorf and Rjasanow,

2003) seems to be the most appropriate and the fastest to implement since approximation

is applied to the matrix entries of the system after assembling (algebraic approximation),

and does not rely on the kernel functions before assembling, as done by the multipole

methods (Rokhlin, 1985; Greengard and Rokhlin, 1987).
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forall observation point p do
set row matrices Rn = 0
forall element e do

compute Dpe

set R[e] = Dpe

end
forall element e do

Ae += R[e]TWpR[e]
ue += R[e]TWpup

forall element f 6= e do
// Use the pre-calculated Dpf stored in R
Bef += R[e]TWpR[f ]

end

end

end

Algorithm A.3: System construction speedup

A.5.1 H-Matrices

H-Matrix is a method of clustering a matrix into several blocks such that near-field block

influences are evaluated in the usual way, whereas far-field blocks can be approximate by

interpolation or rank reduction.

In order to construct the block decomposition, a geometrical rule has to be chosen for the

clusterization of the model, and we adopt recursive bisection as it is fast and gives good

results.

Using a kd-tree containing all sources and fields, a subdivision by bisection is operated

recursively, leading to a binary tree of blocks where the root corresponds to the entire

model. The recursive subdivision stops when the number of items in a block reaches a

prescribed minimum. We end-up with a binary partition of the model made of blocks,

and what remains to do is the determination of the near- and far-field block-pairs using

this decomposition. Given two blocks C1 and C2, the admissible condition

min(diam(C1), diam(C2)) ≤ dist(C1, C2) (A.10)

is used to check whether C1 and C2 can be used for approximation. diam(C), the diameter

of a set of points C, is the maximal distance between any pair of points in C, and is defined

as diam(C) = maxp,q∈C ‖ p − q ‖, where dist(C,D) is the distance between two sets of

points, and is defined as dist(C,D) = minp∈C,q∈D ‖ p−q ‖. In Eq. (A.10), C1 represents a

block containing source elements, and C2 a block containing field points. If the condition

(A.10) failed, the subdivision of these blocks continues recursively. Otherwise, {C1, C2}
is considered as a candidate for far-field approximation. If the blocks cannot be bisected
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anymore and the admissible condition is not met, near-field will be used instead (full

computation). This process is started at the root of the cluster tree, and we end-up with

a unique structure, called H-Matrix.

A.5.2 ACA

Once the matrix is partitioned into an H-Matrix structure, the far field block-pair PC1,C2

are approximated using the Adaptive Cross Approximation (Bebendorf and Rjasanow,

2003). According to the admissibility condition (A.10), blocks C1 and C2 are assumed to

be far apart so the underlying functions of the kernel are asymptotically smooth. This

low rank approximant is not generated by approximating the kernel functions of the inte-

gral operator (see (Rokhlin, 1985; Hackbusch and Nowak, 1989; Greengard and Rokhlin,

1987)), but rather by finding a low-rank from few of the original matrix entries. Therefore,

it is not necessary to construct the whole matrix. One of the biggest advantages of this

method, compared to the kernel approximant, is that only the original matrix entries are

needed, and changing the kernel does not required recoding of the approximants. Our

goal is not to discuss the ACA algorithm in detail: for more informations see (Bebendorf,

2000, 2008; Bebendorf and Rjasanow, 2003).

A.5.3 Applying H-Matrix and ACA to the system construction

Since a long computation time is expected during the system construction for the evalu-

ation of the displacement influence matrices at observation points due to triangular ele-

ments (matrices Dpe and Dpf from Eq. A.6), they are approximated using the H-Matrix

and ACA techniques.

A block decomposition is done using both source elements (triangular elements) and field

points (observation points from grids). While building the structure recursively, the matrix

AF related to a full block-pair PI/J is generated and stored without approximation. On

the other hand, the matrix AS
k, of size mk ×nk and related to a sparse block-pair PI/J , is

generated using the ACA technique and stored as two vector set, u ∈ Rnk and v ∈ Rmk ,

satisfying

AS
k =

k∑

l=1

ulv
T
l (A.11)

where k is the rank-reduction approximation (Bebendorf and Rjasanow, 2003).
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For a sparse block-pair PI/J , where I and J are a set of field points and sources respectively,

we have:

[ATWA]b = ATW(d − c) (A.12)

with 




A =





Dp1e1
... Dp1en

...
...

Dpme1
... Dpmen



 (a)

c =
{∑

g∈J Dp1gbg · · ·
∑

g∈J Dpmgbg

}T

(b)

d = {dp1
· · · dpm

}T (c)

b = {be1
· · · ben

}T (d)

(A.13)

In the following sub-sections, we study the model partition as well as the optimization

of the left and right hand side of Eq. (A.12). We use the notation ui,j to denote the ith

component of the jth vector of the ACA decomposition given in Eq. (A.11).

A.5.3.1 Model partitioning

We use the same technique as the one described in (Maerten et al., 2009b) for the post-

processing optimization. A block decomposition is done using both source elements (tri-

angular elements) and field points (observation points from data set). Compared to a

method used for the system resolution of a forward modeling where items are simulta-

neously source and field, now we clearly make the distinction while building recursively

the block decomposition. For instance, when a block has to be bisected, we make sure

that the newly created blocks will contain field points. When the recursive decomposition

is done, the computation of the influence matrices takes place. All near field block-pairs

PI/J compute the displacement influence matrices in the classical way, whereas all far field

block-pairs use the ACA technique. For a given far field block-pair PI/J containing nJ tri-

angular elements and nI observation points, a way to represent the induced displacement

in matrix form is:

A =





D00 · · · D0nJ

...
. . .

...

DnI0 · · · DnInJ



 (A.14)

where Dij represents the displacement influence matrix at point i due to element j. Using

ACA leads to a sparse representation of A, denoted AS
k, and matrix (A.14) is optimally
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computed using

A ≈ AS
k =

k∑

l=1

ulvl
T (A.15)

Assuming that each source element in PI/J have two degrees of freedom (unknown in-

plane displacement discontinuity) and that each field point is provided with a measure

of the displacement in one direction, then ul ∈ RnI and vl ∈ R2nJ ∀l ∈ [1..k], where

k is the low-rank approximation. The complexity of this algorithm, for a given AS
k, is

O(k(nI +N2J)).

A.5.3.2 Fast evaluation of ATWA for an element e

Given an admissible block-pair PI/J , the matrix ATWA is fast evaluated for each element

e ∈ J having two degrees of freedom (slip vector) using the ACA decomposition with rank

k from Eq. (A.11):

[ATWA]e =
k∑

l=1

ũl

[
v2

j,l vj,lvj+1,l

sym v2
j+1,l

]

e

(A.16)

where e is a source in PI/J with index j, and ũl is given by:

ũl =
∑

p∈I

wpu
2
p,l (A.17)

For all block-pairs PI/J (admissible or not), the resulting [ATWA]e are summed-up for a

given element e:

Ae =
∑

q∈{PI/J}

[ATWA](q)
e (A.18)

Ae is then inverted and stored for the element e at initialization.

A.5.3.3 Fast evaluation of ATW(d − c) for an element e

For the right hand side of equation (A.12), we use the classical ACA product of matrix-

vector. Since unknown displacement discontinuities b are successively corrected at each

iteration, we need to reevaluate the right hand side in a fast way. Having computed, in

ACA sense, the matrix A for the admissible block-pair PI/J (see equation A.13.a), the

vector c = Ab is first computed in O(k(p + n)) using all field points p ∈ I and elements

f ∈ J . Since sub-matrices Dpe from A are the same as those used in the evaluation of c,

storage can be saved. Then, for each element e, the product [ATW(d− c)]e is evaluated
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and summed-up for all block-pairs:

ce =
∑

q∈{PI/J}

[ATW(d − c)](q)
e (A.19)

A.6 Conclusions

We have shown that doing linear slip inversion on complex fault geometry using an itera-

tive approach can be optimized using H-Matrix and Adaptive Cross Approximation, and

leads to fast inversions. This method does not need to use an auxiliary constrained least

squares solver (such as the FNNLS) to incorporate displacement inequalities. Compare

to a classical approach, the Tikhonov regularization is not incorporated into the normal

equation, but as a post-processing at each iteration of the block Jacobi iterative solver.

Results perform well compare to a direct inversion, and the gain in speed and memory

allows modeling more complex systems using denser data set.

Future developments include (i) the iteratively refinement of the smoothing parameter ǫ

using an Iterative Tikhonov Regularization algorithm (Henn and al., 2001), (ii) the use of

tiltmeters and stress/strain (Flodin et al., 2005) data set, as well as (iii) the parallelization

on multi-core architectures (Maerten, 2010).
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A.7 Appendix: Tikhonov regularization in the nor-

mal equation

For an element e having three adjacent elements fi, i ∈ [1..3], the Laplacian writes

Sef =





see sef1
sef2

sef3

sef1
sf1f1

0 0

sef2
0 sf2f2

0

sef3
0 0 sf3f3





e

(A.20)

where sij is a weighting parameter relating element i and j and is function of the distance

from center to center. Incorporating Sef into the normal equation A.2, Eq. A.5 changes

to:

Aebe = ue − uǫ
e (A.21)

where 




Ae =
∑

p DT
peWpDpe +

(
ǫ2
∑3

i=0 s2
efi

)
I

ue = DT
peWp

{
up −∑f 6=e Dpfbf

}

uǫ
e =

∑3
i=1 [ǫ2sefi

(see + sfifi
)Ibfi ]

(A.22)

and I is the matrix identity. Using the center to center as weighting parameters, and sef

writes: {
see = −2L̄/L

sef = 2/L/def

(A.23)

with L =
∑

i defi
and L̄ =

∑
i d

−1
efi

.
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APPENDIX B

Fault reactivation and fault properties: 3D

geomechanical modeling approach and

application to nuclear waste disposal

R. Soliva(1), L. Maerten(2), F. Maerten(1,2), I. Aaltonen, L. Wilkström(3) and J. Mattila(4)

(1) Géosciences Montpellier, Université Montpellier 2, Place E. Bataillon, 34095 Mont-

pellier cedex 5, France

(2) IGEOSS, Parc Euromédecine, 340 rue Louis Pasteur, 34790 Grabels, France

(3) Posiva Oy, Olkiluoto, FIN-27160 Eurajoki, Finland

(4) Geological Survey of Finland, P.O. Box 96, FIN-02151 Espoo, Finland

2nd International Conference on Fault and Top Seals - From Pore to Basin Scale, Mont-

pellier, France, 2009.

Preamble:

Fault sealing and leakage are key parameters for both nuclear waste disposal and exploita-

tion of natural resources. These parameters are related to mechanism of deformation that

change in space along the fault planes and through time as the overall deformation of the

subsurface area evolves. The challenging methodology described in this contribution aims

at relating computed fault reactivation (i.e. fault slip and residual stresses) to potential
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fault sealing and/or leakage through time.

This extended abstract is the contribution to the 2nd International Conference on Fault

and Top Seals - From Pore to Basin Scale, held in Montpellier, France, 21 - 24 September

2009. It presents the application of Scribble, the Java-script language for iBem3D (former

Poly3D), to quickly run thousands of models for sensitivity analysis. In this particular

modeling, three inter-dependent parameters are analyzed: (1) ice thickness above the

faults, (2) fault friction and (3) fault cohesion.

B.1 Résumé

Les défauts d’étanchéité et de fuites sur les failles sont les deux paramètres clés pour

l’étude du stockage des déchets nucléaires et l’exploitation des ressources naturelles. Ces

paramètres sont liés au mécanisme de déformation qui change dans l’espace le long des

plans de faille et dans le temps lorsque la déformation globale du sous-sol évolue. La

méthodologie décrite dans cette contribution vise à relier la réaction des failles (c’est à

dire le déplacement sur les failles et les contraintes résiduelles) au potentiel d’étanchéité

et de fuites de celles-ci dans le temps.

Ce résumé étendu est notre contribution à la 2eme Conférence internationale sur Fault and

Top Seals - From Pore to Basin Scale, qui s’est tenue à Montpellier, France, du 21 au

24 septembre 2009. Elle présente une application de Scribble, le langage Javascript pour

iBem3D (ex- Poly3D), afin d’exécuter rapidement des milliers de modèles dans le but

de faire une analyse de sensibilité de paramètres. Dans cette modélisation particulière,

trois paramètres interdépendants sont analysés: (1) l’épaisseur de la glace au-dessus d’un

système de failles, (2) la friction et (3) la cohésion sur ces failles.
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B.2 Abstract

We present Poly3D, a three-dimensional elastostatic code using the Boundary Element

Method in heterogeneous elastic whole- or half-space, with application in structural ge-

ology and geomechanics for the evaluation of the deformation and perturbed stress field

associated with surfaces of displacement discontinuity. After the presentation of the the-

ory behind Poly3D and its wide range of applications, we describe the recent developments

such as (i) the incorporation of static friction and non-interpenetration, (ii) the incorpora-

tion of material heterogeneity using complex 3D interfaces separating regions of different

material properties, (iii) a module for doing slip inversion using GPS and InSAR dataset,

(iv) a module for doing paleo-stress and slip recovery, and (v) optimizations and paral-

lelization on multi-core architectures. Each new feature will be illustrated with examples

showing their importance for the comprehension of natural phenomenons.

B.3 Introduction

Fault sealing and leakage are key parameters for both nuclear waste disposal and exploita-

tion of natural resources. These parameters are related to mechanism of deformation that

change in space along the fault planes and through time as the overall deformation of the

subsurface area evolves. The challenging methodology described in this contribution aims

at relating computed fault reactivation (i.e. fault slip and residual stresses) to potential

fault sealing and/or leakage through time. As a test case, we use the fast 3D boundary

element code Poly3D (Thomas, 1993; Maerten et al., 2005) from IGEOSS, for modeling

fault reactivation in the Olkiluoto nuclear waste repository site, Finland.

B.4 Methodology

The methodology can be resumed as follow:

1. Building of 3D fault model that must be as close as possible to the geological reality.

Faults are triangulated surfaces suited for Poly3D;

2. Setting the constant parameters such as the rock type and half space options;

3. Setting the fault variable parameters that can be friction, cohesion and fluid pres-

sure;
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4. Setting the 3D far field stress as a variable. This far field stress coming tectonic

forces or ice load can be heterogeneous (i.e. gradients);

5. Run of hundreds of simulations with varying parameters;

6. Global automatic analyzes of the results (i.e. 3D graph) in order to evaluate which

combinations of parameters lead to fault reactivation;

7. Spatial analyzes of the results looking at individual fault that have been reactivated

(i.e. slip and residual stresses);

8. Establish a relationship between fault slip or residual stresses and deformation mech-

anisms in order to infer fault seal and leakage capacity.

B.5 Example case study

The Olkiluotto repository site is located in faulted and fractured gneisses, which has

been deformed during several tectonic phases (Andersson et al., 2007). These tectonic

deformations allowed the formation of interacting and intersecting ductile thrust faults

formed at depth. These deformation zones were exhumed and reactivated during late

extensional and compressional events in a more brittle context. Kilometre scale brittle

deformation zones therefore formed during poly phased tectonic events and are subjected

to be reactivated in the future during glacial loading and unloading cycles.

B.6 Model configuration

The 3D model geometry has been build from surface mapping, well bore, tunnels and

seismic reflection data. It includes 10 intersecting thrust faults with dip angles varying

from 30 to 70 degrees (see Fig. B.1a).

Since the aim is to model the effect of a vertical ice sheet, the principal parameter to use

as a variable is the applied state of stress, which is strongly dependent on the thickness

of the mass above the faults (see Fig. B.1b). Extrapolating the present stresses to the

future (i.e. 115 000 yr) and with the addition of a variable ice sheet thickness, a resulting

stress gradients can be calculated and applied to the model. Data derived from in situ

bore hole measurements and rock tests were provided and used as constant (i.e. elastic

moduli) or variable (i.e. cohesion, friction) parameters in this preliminary study (Hudson

and Johansson, 2006).
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Figure B.1: Model configuration. (a) 3D fault model as triangulated surfaces and
(b) measured in-situ stresses used as a base for the far field stress boundary conditions.

Figure B.2: Model results. (a) 3D rupture envelope. (b) Iso-surfaces of maximum
slip for the entire model. (c) Fault slip distribution computed for 2000 m of ice, a

friction of 0.085 and a cohesion of 2 MPa.

B.7 Model results analysis

A total of 1331 Poly3D simulations have been run using the far filed stresses, the friction

and the cohesion as variables. Each run in which at least one triangular element of the

fault surfaces has slipped is identified as a “slipping model”. The runs, in which no

triangular element has slipped is identified as “non slipping models”. Figure B.2a and b

shows 3D graphs illustrating slipping and non slipping models as 3D fields separated by

a rupture envelope, which is function of friction, cohesion and ice thickness.

Figure B.2c illustrates how individual run can be analyzed. Here fault slip distribution

is displayed with slip vectors. Only some zone of the faults have slipped in response too

fault mechanical interaction, friction, cohesion and far field stress.
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B.8 Conclusions

The preliminary results of the methodology presented here appear promising. The method-

ology aims at relating computed slip or residual stress along reactivated faults with fault

sealing and leakage capacity. The methodology has been applied and tested on the Olk-

iluoto nuclear waste repository site, Finland but could be applied to petroleum reservoirs,

where depletion can affects fault reactivation, hence fault leakage.
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Other publications and conferences
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The reader might find it interesting to see all the other publications, proceedings and

conferences that I participated since 2000, and will find other useful information related

to the developed softwares and applications.

C.1 Other international publications

Maerten, L., Pollard, D.D., and Maerten, F., 2001, Digital map-

ping of three-dimensional structures of the Chimney Rock fault

system, central Utah: Journal of Structural Geology, v. 23, p.

585-592.

Abstract

Part of the Chimney Rock fault system, located on the northern San Rafael Swell, Utah,

was mapped by integrating air photograph interpretation and differential global positioning

system (GPS) location data. Fault slip, slip directions, and hanging wall subsidence/foot-

wall uplift were digitally recorded in the field along and between the normal faults using

Trimble PathFinder equipment and software. GPS was used to record (with sub-meter

precision) the location of each measurement as well as the UTM coordinates and elevation

of stratigraphic markers at the top of the Jurassic Navajo Sandstone and near the base of

the overlying Carmel Formation. The fault system, as well as the associated deformation

of the sedimentary layers within the fault blocks, have been precisely characterized using

this technique. The geographic coordinates and local elevation were transferred to gO-

cad to produce a three-dimensional surface representation of a selected resistant limestone

layer, by interpolating the elevation between the collected data points using imposed con-

straints such as the dips of the layers and the locations of the major faults. Separations

of the selected horizon from the footwall to the hanging wall were used to calculate the

dip-slip distribution along the faults. The digital field data were compared with the results

of numerical modeling based on continuum mechanics to study the mechanical interaction

among intersecting normal faults and the effects of this interaction on slip distribution

and direction. This project illustrates the complete circle from digital mapping to data

analysis to numerical modeling to quantitative comparison of theoretical models and field

data.
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Muller, J.R., Aydin, A., and Maerten, F., 2003, Static stress

changes on the 17 August 1999 Kocaeli (Izmit) earthquake rup-

ture segments due to the 22 July 1967 Mudurnu Valley earth-

quake, Turkey. International Journal of Geophysics.

Abstract

The last major rupture along the North Anatolian fault (NAF) prior to the Izmit and Dzce

earthquakes in 1999 was the Ms= 7.1 1967 July 22 Mudurnu Valley Earthquake, which

ruptured approximately 80 km along the surface of the west-central NAF. The geographic

continuity of the Mudurnu Valley and Izmit ruptures corresponds to the historical westward

progression of major earthquakes along the NAF and encourages us to test the stress-

triggering effects of the 1967 earthquake on the 1999 earthquake. Although the triggered

earthquake sequence from 1939 to 1999 has been investigated by earlier workers, this study

addresses several outstanding problems related to this most recent earthquake interaction

in light of more detailed fault configurations and a posteriori knowledge of the 1999 events.

The questions we hope to answer are: (1) did the stress perturbation caused by the 1967

Mudurnu Valley earthquake promote failure at the 1999 Izmit earthquake hypocentre and

along Izmit fault segments? (2) Why did the 1999 Izmit earthquake rupture along faults in

the centre of the IzmitAkyazi depression rather than along the western continuation of the

Mudurnu Valley fault that ruptured in 1967? (3) What is the rupture configuration at the

western end of the 1967 earthquake fault that would most favour slip on the 1999 August

17 Izmit earthquake fault? Using a 3-D boundary element method, we test three possible

rupture configurations for the 1967 Mudurnu Valley earthquake. Coulomb stress changes

are calculated on major faults within the region due to non-uniform slip associated with

the 1967 Mudurnu Valley earthquake. We find that for all three potential 1967 Mudurnu

Valley rupture geometries there are positive Coulomb stress changes at the hypocentre of

the 1999 Izmit earthquake. We also find, however, that only when subsurface rupture of

the 1967 Mudurnu Valley earthquake deviates from the mountain-front fault and extends

towards Lake Sapanca does an Izmit rupture segment (Sakarya segment) receive greater

Coulomb stress changes than the mountain-front fault west of the Mudurnu rupture.
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Lovely, P. and Flodin, E. and Guzofski, C. and Maerten, F. and

Pollard, D.D, 2010, Geomechanical analysis of the Volcanic Table-

land extensional fault system, Bishop, CA and evaluation of mechanics-

based restoration methods. In preparation for AAPG Bulletin.

Abstract

Numerical models and field data are integrated to perform a geomechanical analysis of

the Volcanic Tableland fault array, an outcrop analogue for subsurface normal fault sys-

tems. A geomechanical approach is used to infer 3D fault geometry from outcrop data, and

a paleostress inversion technique is employed to establish appropriate physical boundary

conditions for forward models. Past studies suggest that larger Tableland faults developed

through linkage of smaller faults, implying that small faults may be the oldest in the study

area. While this mechanism of fault growth is clear from mapped traces of some faults,

other large faults are relatively linear. We provide evidence in the form of throw distri-

butions that even long, linear fault traces likely grew by linkage of smaller faults. Other

studies suggest that geomechanical models may be used to understand stress perturbations

due to slip on large (seismic-scale) faults, and thus to infer density and orientation of

subseismic-scale faulting. Regions of densest subseismic faulting on the Tableland corre-

late with tensile stress shadows, suggesting that it would be inappropriate in the case of

this field site to predict subseismic faulting from stress perturbations due to slip on larger

faults, and that the growth of larger faults has not led to initiation of new subseismic-

scale faults, but may inhibit the growth of existing faults. Further geomechanical models

corroborate previous work that suggests Tableland faulting results from flexural stresses in

the rollover anticline in the hanging wall of the Basin and Range-scale White Mountain

fault, several kilometers to the east. We conclude by comparing forward model kinemat-

ics with results of mechanics-based restoration models. A critical evaluation suggests that

restoration models may not accurately reflect the kinematics of forward deformation.

C.2 Rock Fracture Project abstracts, Stanford, CA

1. Maerten, F. and Maerten, L., 2002, Poly3DGUI, a new graphical interface for

industrial use: architecture and functionality. In D. Pollard & A. Aydin, eds.,

Proceedings of the Stanford Rock Fracture Project, v. 13, p. F1-F4.

2. Maerten, L. and Maerten, F., 2002, Dynel: New tools for the restoration of 2D

and 3D geological structures. In D. Pollard & A. Aydin, eds., Proceedings of the

Stanford Rock Fracture Project, v. 13, p. G1-G5.
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3. Maerten, F. and Maerten, L., 2001, DYNEL: a new 3-D geomechanical method

for modeling geological structures. In D. Pollard & A. Aydin, eds., Proceedings of

the Stanford Rock Fracture Project, v. 12, p. E1-E10.

4. Maerten, F. and Maerten, L., 2001, Poly3D: a 3D geomechanical program for

fault related problems in petroleum reservoirs. In D. Pollard & A. Aydin, eds.,

Proceedings of the Stanford Rock Fracture Project, v. 12, p. F1-F4.

5. Du Bernard Rochy, X. and Maerten, F., 2001, Grain-scale deformation mechanics.

In D. Pollard & A. Aydin, eds., Proceedings of the Stanford Rock Fracture Project,

v. 12, p. G1-G7.

6. Maerten, F., 2000, Current status of Poly3D: In D. Pollard & A. Aydin, eds.,

Proceedings of the Stanford Rock Fracture Project, v. 11, p. M1-M8.

7. Maerten, F., 2000, Improved Poly3DPro interface (Graphical Interface for Poly3D).

In D. Pollard & A. Aydin, eds., Proceedings of the Stanford Rock Fracture Project,

v. 11, p. R1-R7.

C.3 Conference abstracts

1. Maerten, F., Maerten, L., D. D. Pollard, 2010, Paleostress analysis using

full mechanical scenario : Stress Controls on Faulting, Fracturing, and

Igneous Intrusion in the Earth’s Crust, Anderson conference, University

of Glasgow

Abstract

Methods for stress inversion (originally initiated by Anderson in 1905) using mea-

sured striations and/or throw on faults, are mainly based on on the assumptions that:

(1) the stress field is uniform within the rock mass embedding the faults (assuming

no perturbed stress field), and that (2) the slip on faults has the same direction and

sense as the resolved far field stress on the fault plane. However, it has been shown

that slip directions are affected by: (1) anisotropy in fault compliance caused by

irregular tip-line geometry; (2) anisotropy in fault friction (surface corrugations);

(3) heterogeneity in host rock stiffness; and (4) perturbation of the local stress field

mainly due to mechanical interactions of adjacent faults. Mechanical interactions

due to complex faults geometry in heterogeneous media should be taken into account

while doing stress inversion. Determining the parameters of such paleostress in the

presence of multiple interacting faults requires running a lot of simulations, and

therefore a huge amount of computation time in order to fit the observed data.
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In this contribution we investigate paleostress analysis using a linear elastic 3D

boundary element method for heterogeneous, isotropic whole- of half-space media.

Given the complex triangulated fault geometries as well as some measures of the

fault throw or dip-slip, slickenline directions, stress measurements, GPS or InSAR

data, open fractures (joints, veins, dikes), pressure solution seams with stylolites, or

secondary fault plane orientations, we interactively recover the remote stress state for

multiple tectonic events. Synthetic and field examples are presented which validate

the proposed technique.

2. Maerten, F., Maerten, L., P. Gillespie, 2010, Interactive determination

of perturbed stress field in complex reservoirs using geomechanics and

data from well-bores: AAPG Geosciences, Technology Workshop on The

Role of Fracture and Geomechanical Characterization in the Hydrocar-

bon Industry, Rome

Abstract

We use a 3D elastic computer code to recover for complex perturbed stress field in

reservoirs. Multiple types of data can be used to constrain the computation such as

fractures orientation, secondary fault planes with internal friction angle, GPS data,

measured fault throw from seismic interpretation as well as fault slickenlines. We

show that this innovative technique allows to recover for orientation and magnitude

(or ratio) of each recovered tectonic event, and permits fracture prediction in complex

reservoirs.

3. Soliva, R., Maerten, L., Maerten, F., Aaltonen, I., 2009, Wilkstrm, L.,

Mattila, J., Fault reactivation and fault properties: 3D geomechanical

modeling approach and application to nuclear waste disposal: 2nd Inter-

national Conference on Fault and Top Seals From Pore to Basin Scale,

Montpellier, France

Abstract

We present the preliminary results of a methodology that consists on modeling 3D

fault reactivation and to relate both the computed fault slip and residual stresses to

fault seal and leakage capacity. A series of geomechanical simulations is run on a

3D fault model, which integrates friction, cohesion, far field stress and fluid pres-

sure as variables. The hundreds of simulations are analyzed as a whole in order to

determine the likelihood of fault reactivation with respect to the variable parameters.

Each reactivated fault is then analyzed independently. Fault sealing and/or leakage

capacity can be estimated when the relationship between computed fault slip and/or

residual stresses and fault zone deformation mechanisms is known. The methodology

has been applied and tested on the Olkiluoto nuclear waste repository site, Finland.
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The method can be applied to petroleum reservoirs, where depletion can affects fault

reactivation, hence fault sealing and leakage reliability.

4. Maerten, F., 2009, Poly3D, a 3D elastostatic code using the boundary

element method with applications in structural geology and geomechan-

ics, USGS, Denver

Abstract

We present Poly3D, a three-dimensional elastostatic code using the Boundary Ele-

ment Method in heterogeneous elastic whole- or half-space, with application in struc-

tural geology and geomechanics for the evaluation of the deformation and perturbed

stress field associated with surfaces of displacement discontinuity. After the presen-

tation of the theory behind Poly3D and its wide range of applications, we describe

the recent developments such as (i) the incorporation of static friction and non-

interpenetration, (ii) the incorporation of material heterogeneity using complex 3D

interfaces separating regions of different material properties, (iii) a module for doing

slip inversion using GPS and InSAR dataset, (iv) a module for doing paleo-stress

and slip recovery, and (v) optimizations and parallelization on multi-core architec-

tures. Each new feature will be illustrated with examples showing their importance

for the comprehension of natural phenomenons.

5. Maerten, F., Maerten, L., 2009, PaleoStress and slip recovery on complex

faults geometry using mechanical interactions: Application to fractures

prediction: AAPG annual convention. Denver

Abstract

Methods for stress inversion, using measure striation and/or throw, are mainly based

on the assumptions that (i) the stress field is uniform within the rock mass embedding

the faults (assuming no perturbed stress field), and that (ii) the shear traction has

the same direction and sens as the resolved far field stress onto the fault plane.

However, it has been shown that slip direction are highly affected by (i) anisotropy in

fault compliance caused by irregular tipline geometry, (ii) anisotropy in fault friction

(surface corrugations), (iii) heterogeneity in host rock stiffness and (iv) perturbation

of the local stress field mainly due to mechanical interactions of adjacent faults.

Therefore, mechanical interactions due to complex faults geometry in heterogeneous

media have to be taken into account while doing stress inversion.

We investigate this approach using Poly3D, a 3D Boundary Element Method (3D-

BEM) using linear elasticity in heterogeneous, isotropic whole- of half-space. Given

some measures of the fault throw and/or dip-slip (plus constraints such as slikenline
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directions if any), as well as the faults geometry, we recover for paleo-stress directions

and magnitudes as well as for the unknown slip components onto the faults.

Having the paleo-stress as well as for the slip distribution onto the faults, it is then

possible to compute anywhere within the 3D elastic field, the strain, stress and dis-

placement. Particularly, the perturbed stress field can be used to predict fractures

and subseismic faults. We show examples from different field areas, such as complex

faulted reservoirs.

6. Lepage, F., Laverne, T., Maerten, F., Desmarest, D., Quetelard, E., Palo-

mas, M., Maerten, L., 2007, 3-D model building and geomechanically-

based volume restoration: The next generation tool: American Associa-

tion of Petroleum Geologists Annual Convention

Abstract

For many years structural geologists have been using computer tools to construct bal-

anced 2D and 3D structural models. The tools available to restore geological struc-

tures are based on a variety of geometric techniques, which aim at reproducing natu-

ral deformation, constrained by assumptions such as preservation of area or volume,

minimization of deformation, minimization of changes in segment length. While

the challenge of restoring structural models could be attributed to inadequate data,

hardware, and software in the past, the challenge today is to integrate a complete

mechanics into the methodology. Indeed, it is established that rock deformation is a

physical process that involves parameters such as the initial geometry, the distribu-

tion of mass, rock properties, and the constitutive laws that govern the deformation.

Therefore, we propose the next generation tool that allows elastically-based 3-D vol-

ume restoration. The method, when realistically well constrained, honors the fun-

damental physical laws that govern deformation, that are (i) conservation of mass,

(ii) conservation of momentum and (iii) conservation of energy. Mechanically-based

decompaction as been implemented based on both the heterogeneous rock properties

assigned to the model and the compaction rule chosen. This innovation permits fault

slip during decompaction and does not unrealistically deform the model. We describe

the complete workflow from interpreted horizons and faults, to 3-D model building,

to model setup, to volume restoration. We offer examples to illustrate the appli-

cations in the oil and gas industry for the characterization of structurally complex

reservoirs.

7. Maerten, L., Maerten, F., Griffiths, P., Pike, N., 2007, A methodology for

automated correction and validation of seismic horizon and fault inter-

pretation using DYNEL, a geomechanically-based 3-D restoration tool:
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American Association of Petroleum Geologists Annual Convention

Abstract

To reduce exploration risk and optimize production in structurally complex areas, the

geological interpretation must be physically and mechanically reliable. Despite the

advances in 3D seismic techniques and in the availability of computationally-robust

interpretation software, the challenge associated with interpreting complex structures

in seismic reflection data is that highly deformed areas surrounding faults, folds and

salt surfaces are often poorly imaged.

We present a methodology to help geophysicists quickly check the mechanical strength

and weakness of their interpretation and to automatically correct the faulted hori-

zon geometry. The workflow consists on restoring interpreted seismic horizons and

relating the concentrations of computed attributes such as stress or strain to ar-

eas of interpretation uncertainty. The technique used, based on the finite element

method, allows unfolding and unfaulting of 3D horizons using the physical behaviour

of rock mass. A fast algorithm has been developed to automatically correct the in-

terpreted structures in zones that exhibit anomalous stress or strain concentrations

after restoration. The modified horizons are then imported back to the seismic data

interpretation software for comparison with the seismic volume.

This approach is able to mechanically check and correct seismic data interpretation.

Its application to both synthetic and reservoir data demonstrates a high degree of

reliability in the characterization of structurally complex reservoirs.

8. Maerten, F., Maerten, L., Davatzes, N. C., 2007, Poly3D boundary ele-

ment code with inequality constraints: More potential to model natural

structures: European Geosciences Union, Geophysical research abstracts,

v. 9, p. 06729

Abstract

Some of the major challenges using boundary element codes are: (i) limiting the

amount of memory necessary to solve large and dense systems; and (ii) incorporating

traction inequality constraints (TIC) and displacement inequality constraints (DIC).

The latter serves two purposes: first to simulate friction using the Coulomb criteria

(TIC) for instance; and second to bound the displacement discontinuity onto the

modelled fractures (using DIC). Since Poly3D is now widely used around the world

as a research tool for studying fracture mechanics, rock deformations, earthquakes

and volcanoes, we have developed a method that addresses these two purposes at the

same time. We show that the use of a discrete iterative solver not only permits to

compute very large model by avoiding allocation of significant memory while solving

the system, but also authorizes new unexpected features to be implemented such as
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TIC and DIC. To illustrate these new potential, we give an example of one particu-

lar TIC, the static Coulomb friction, for the modeling of cohesive end zones (CEZ)

to explain the low value of the kink angles observed in the faults in the Waterpocket

monocline (Utah, USA). We also give an application of one DIC for characterizing

secondary features such as stylotites around curving and overlapping fractures, in

Jurassic limestone from Montpellier area, Southern France.

9. Maerten, F., Maerten, L., 2006, Improved understanding of observed 2D

and 3D geological structures using geomechanically-based approaches:

EGU, Vienna, Austria

Abstract

Recent advances in geologic mapping techniques, reflection seismology, aftershock

location and GPS measurements allow geoscientists to image surface and subsurface

structures with greater precision. We present 2 numerical approaches that help im-

proving the understanding of these imaged structures by bringing rational physical

principles to the geological interpretations.

Poly3Dinv is a 3D slip-inversion method based on the analytical solution of an angu-

lar dislocation in a linear-elastic, homogeneous, isotropic, half-space. The approach

uses the boundary element method (BEM) that employs planar triangular elements

to model complex fault surfaces. Slip inversion techniques are used by geophysicists

to invert for coseismic slip associated with earthquakes. We used this first tech-

nique to investigate the 3D geometry of normal faults by integrating high-precision

aftershock locations and published geological and geodetic data sets from the 1995

Kozani-Grevena earthquake in Greece.

Dynel is a new generation restoration tool based on the finite element method (FEM),

which allows unfolding and unfaulting of complex 2D and 3D structures using the

physical behavior of rock mass and taking into account rock heterogeneous mechanical

properties as well as physical boundary conditions. The technique has been used to

understand the development and the geometry of a decameter-scale fold, which crops

out in the Coulazou gully located near the Montpellier thrust fault, Southern France.

Through these two examples we show that the geometric flexibility of the geomechan-

ical techniques and the ability to integrate available data sets can lead to improved

understanding of observed 2D and 3D geological structures.

10. Delaval, C., Maerten, L., Subsol, G., Micallef, J.-P., Goudot, P., Yachouh,

J., Maerten, F., Chemouny, S., 2006, A 3d computer-assisted method

for the strategy and assessment of therapy of the weakened mandible:

Proceedings of Computer Aided Radiology and Surgery, 12th Computed.
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International Journal of Computer Assisted Radiology and Surgery, v. 1,

p. 433-435

Abstract

Departments of Maxillofacial Surgery and Stomatology receive every year patients

with mandible which are lysed, resected or edentulous because of age or a tumoral

disease. The loss of substance due to cysts or tumors weakens the ramus and corpus

of the mandible. This weakness leads to fracture risk during chewing, especially when

the Maxillo-Facial surgeon cuts a part of the mandibular bone in an interrupting way

or not. Moreover, the loss of teeth induces the resorption of the bone surrounding the

roots, named alveolar bone. This bone height diminution also leads to a mandibular

weakness that increases the fracture risk and makes the repair harder.

The goal of our research is to set-up and to assess a suite of computerized tools that

will analyze the 3D CT-Scan images of the patient and assist the practitioner, in

clinical routine:

(a) to design patient-specific geometrical and biomechanical models of the mandible;

(b) to apply masticatory forces and stresses which are specific to the patient to be

treated (with respect to age, alimentary habits and anatomy);

(c) to analyze bone strains with the Finite Elements Method.

In order to:

(a) predict the threshold of the fracture risk that will allow to decide a treatment;

(b) plan and simulate a therapy if it is required (for example by defining the critical

height of the mandible to preserve in the case of a tumoral surgery);

(c) assess the therapy by a retrospective evaluation of the clinical case and a cor-

relation with the computed results.

Many studies have used Finite Element Models to evaluate the mechanical strains

developed within the mandibular bone [Weingrtner et al., 1997; Vollmer, 2000; Erk-

men, 2005] but most of them deal with the behavior of the bone material located near

dental implants [Ftterling et al., 1998; Nagasao et al., 2002]. Thus, the biomechan-

ics of the edentulous mandible remains not well known so far [Veyrune, 2000].

11. Maerten, L., Maerten, F., Arbeaumont, A., Mutlu, O., Pollard, D. D.,

2006, What should be balanced in the construction and restoration of

cross sections?: Geological Society of America Abstracts with Programs,

p. 49-6

Abstract
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Advances in 3D seismic reflection surveying, in the power of desktop computers,

and in the availability of computationally-robust software support the development

of the next generation of cross section construction and restoration tools. While the

challenge of quantifying magnitudes of deformation in diverse tectonic settings could

be attributed to inadequate data, hardware, and software in the past, the challenge

today is to integrate a complete mechanics into the methodology.

As an example we review the classic reconstruction of the Sprsel fold from the Jura

Mountains of Switzerland by Laubscher based upon conservation of line length and

area. This methodology is compared to a geomechanical reconstruction using the

finite element method (FEM) and based upon conservation of mass in which the

material time derivative of density balances the product of mass density and the

divergence of the velocity field. In Laubscher’s reconstruction the Mesozoic strata

are kinematically constrained to form two complementary kink bands terminating

downward at a mobile layer resting on a detachment at the top of a rigid basement.

The FEM analysis is based upon conservation of linear and angular momentum in

which the product of density and the material time derivative of velocity balances

the resultant surface and body forces. The kinematics of folding and deformation of

the mobile layer and basement follow from these laws of nature rather than being

pre-supposed. The equations of motion, derived by combining the conservation laws

with appropriate constitutive laws, can be solved to extract deformational histories

from diverse tectonic environments so one can compare model rates and geologic

rates of deformation.

We offer three examples to illustrate the power of the geomechanical methodology: 1)

restoration of detached sedimentary strata over salt from the North Sea extensional

province to evaluate the evolution of the salt body and associated structures through

time; 2) restoration of normal faults of the Rhine graben to mechanically validate the

structural interpretation and relationships between intersecting normal faults; and

3) restoration of contractional structures in the deep-water fold and thrust belts of

the Niger Delta, to elucidate thrust fault propagation and quantify the magnitude of

shortening.

12. Flodin, A. E., Maerten, F., Maerten, L., 2005, A geomechanically-based

inverse method for interpolating the three-dimensional stress field in a

faulted reservoir: Geological Society of America, Rocky Mountain Sec-

tion, Abstracts with Programs, v. 37, p. 51

Abstract

Information concerning the nature of the stress field in a reservoir is necessary for

many oilfield applications, such as pre-drill wellpath planning and fault seal analysis.
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Available data usually include stress orientation and magnitude estimates of various

quality along a limited number of wellbores. Current methods to map the reservoir

volume stress field from these point and/or line data range from simplistic averaging

to more sophisticated interpolation and geostatistical techniques. We present a new

method to interpolate stress throughout a reservoir volume using a geomechanically-

based numerical boundary element code, Poly3D, coupled with a weighted damped

least-squares inverse solver. The primary advantage of this methodology over others

is that the stress solution includes the effect of elastic interactions among faults. The

code uses as input a 3D fault framework, with or without mapped displacements, and

estimates of stress orientation and magnitude from wellbores, which can be weighted

to data quality. Output is in the form of a best-fit’ remote stress field, which is in

turn used to forward model the volumetric stress field. Results illustrating the utility

of our tool are presented for a number of faulted reservoir scenarios.

13. Resor, P. G., Maerten, F., Pollard, D. D., Maerten, L., 2005, Coseismic

slip estimate for the 1999 Hector Mine earthquake using a multi-segment

fault model: Penrose Conferences, Mammoth Lakes, California

Abstract

Reconciling geologic and geophysical observations of coseismic slip for modern earth-

quakes is critical in order to evaluate the significance of paleoseismic observations

and thus understand the role that coseismic slip plays in long-term strain distribution

of the Eastern California Shear Zone. In order to make a more direct comparison

between estimates of coseismic slip for the 1999 Hector Mine earthquake (Mw 7.1)

we have created a three-dimensional fault model using triangular dislocation patches

in place of the more commonly used rectangular patches. This geometric model in-

cludes dipping fault segments that honor the observed surface rupture geometry at

a kilometer-scale including fault bends, intersections, and parallel segments without

introducing artificial overlaps or gaps. Coseismic slip on this model is estimated us-

ing a damped least squares linear inversion. The resulting model yields an improved

fit to the geodetic data (32% reduction in weighted residuals) over more simplified

fault models. The resulting slip distribution can be directly compared to geologic ob-

servations of surface slip (Figure). The geologic slip measurements (Treiman et al.,

2002) are point estimates and show significant variability over short distances while

the geodetic model estimates are averages over 2.6 km2 areas and are therefore

smoother. Geodetic model estimates generally agree with the upper range of the ge-

ologic estimates with a few exceptions. The majority of these exceptions are regions

where the geodetic model estimates exceed the geologic estimates. At least in some
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cases these discrepancies appear to be in areas of poorly-consolidated surface mate-

rials that may lead to distributed deformation rather than localized faulting. These

results suggest that geologic estimates may tend to under-estimate coseismic slip.

14. Maerten, F., Maerten, L., 2004, 3-D Geomechanical Techniques to Bet-

ter Characterizing Complex Structural Models: (i) Slip Inversion and

(ii) Restoration: American Association of Petroleum Geologists Annual

Convention, v. 13, p. A90

Abstract

We present 2 geomechanical approaches to better characterizing 3-D structural mod-

els by bringing rational physical principles to the geological interpretation.

The first one is a 3-D slip-inversion method based on the analytical solution of

an angular dislocation in a linear-elastic, homogeneous, isotropic, half-space. The

approach uses the boundary element method (BEM) that employs planar triangular

elements to model complex fault surfaces. Slip inversion techniques, usually used by

geophysicists to invert for coseismic slip associated with earthquakes, is used here

to determine the characteristics of faults, where they are poorly imaged. We have

tested the method on a field case study from the Bishop Tuff, California, where the

unseen 3-D fault geometries and slip distributions have been predicted using the only

available data; (i) the fault pattern (fault trace map) and, (ii) the measured surface

deformation (structure contour map).

The second technique is based on the restoration of interpreted geological structures.

The method, based on the finite element method (FEM), allows unfolding and un-

faulting complex 2-D and 3-D structures using the physical behavior of rock mass

and taking into account rock heterogeneous mechanical properties as well as physical

boundary conditions. New algorithms have been developed to automatically correct

the interpreted structures in zones that exhibit anomalous stress and/or strain con-

centrations subsequent to restoration. The technique has been tested on several 2-D

and 3-D cases and we show how such geomechanically-based restoration can lead to

better characterization of structural models.

15. Maerten, L., Maerten, F., 2004, Chronologic modeling of faulted and

fractured reservoirs using geomechanically-based restoration: American

Association of Petroleum Geologists Annual Convention, v. 13, p. A90

Abstract

We present a new geomechanical tool that allows chronologic modeling of reservoir

deformation. The method aims at restoring complex geological structures such as

folded and faulted rock. It is based on the finite element method and simulates
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the physical behavior of rock mass and takes into consideration rock heterogeneous

mechanical properties, fault mechanical interaction as well as tectonic stresses.

To illustrate the method’s potential for evaluating faulted and fractured reservoirs,

we analyze deformation and fault development, though time, in the hanging wall

of a syn-sedimentary listric normal fault. As a case study example, we use one

of the sandbox experiments carried out by McClay in 1990. A model of the final

deformed stage of the analogue experiment was created and restored chronologically

by removing the sedimentary layers one after the other. At each restoration stage,

fault slip distributions are computed to facilitate the understanding of fault nucle-

ation, propagation and sealing. The model is then analyzed in a forward sense so

as to chronologically investigate fault development and deformation in the hanging

wall of the basal listric fault. The numerical model corresponds well to the physi-

cal model and provides additional insights about the basin (reservoir) evolution and

deformation.

We conclude that the geomechanically-based 2-D and 3-D restoration of complex

geological structures, has considerable potential for industry applications on fractured

reservoir characterization and production. This method allows to characterizing,

for key geologic and tectonic episodes, subseismic faults and fractures, reservoir

compartmentalization, hydrocarbon migration pathways, and hydrocarbon traps.

16. Maerten, F., Maerten, L., Resor, P. G., Muller, J. R., Pollard, D. D.,

2003, A new method for slip inversion for faults with complex geometry:

European Geophysical Society, Nice, France, Geophysical Research Ab-

stracts, v. 5, p. 07473

Abstract

The increasing data quality now available to the geophysicist and geologist (fault

trace mapping, high quality InSAR data, GPS measurement, and aftershock relo-

cations) are not today fully exploited in slip inversion procedures. Most commonly

used methods use idealized rectangular dislocation segments to model complex fault

ruptures, which requires simplified fault geometries. These geometrical simplifica-

tions can often lead to inconsistencies when inverting for slip on earthquake faults.

We have developed a new three-dimensional slip-inversion method based on the ana-

lytical solution of an angular dislocation in a linear-elastic, homogeneous, isotropic,

half-space. The approach uses the boundary element code Poly3D that employs pla-

nar triangular elements of constant displacement to model fault surfaces. The use

of triangulated surfaces as the discontinuities, permits one to construct fault mod-

els with complex three-dimensional shapes and irregular tiplines with no overlaps or

gaps, which better honor fault surface traces as well as subsurface constraints such as
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relocated aftershocks or refletcion/refraction seismic data. We have used the method

to invert for coseismic slip associated with several earthquakes, employing a variety

of observational data including: (i) GPS data, (ii) InSAR measurements of coseis-

mic displacements, and (iii) relocated aftershocks. We show that the method yields

similar results to previous inversions, but improves the fit to data in areas of complex

fault geometry.

17. Resor, P. G., Maerten, F., Pollard, D. D., 2003, Inverting for heteroge-

neous slip on three-dimensional fault systems: a first step toward under-

standing fault mechanics: Geological Society of America Abstracts with

Programs, v. 35(6), p. 112

Abstract

Many studies of earthquake triggering and fault interaction have relied on highly-

idealized fault geometries and slip distributions. Geological and geophysical observa-

tions, however, reveal that faults typically are not single planar surfaces with uniform

slip bounded by rectangular tiplines, but are composed of multiple curved surfaces with

curved tiplines and heterogeneous slip distributions. The segments typically are orga-

nized into echelon, conjugate, and intersecting patterns. The discontinuities, bends,

intersections, and slip heterogeneities generate stress concentrations that may pro-

mote or inhibit slip on nearby faults and thus play an important role in the mechanics

of fault systems. It is therefore important to incorporate both realistic fault geometry

and slip distributions when evaluating models of fault mechanics.

We have developed a new three-dimensional slip-inversion method based on the ana-

lytical solution for an angular dislocation in a linear-elastic, homogeneous, isotropic,

half-space. The approach uses the boundary element code Poly3D that employs a set

of planar triangular elements of constant displacement discontinuity to model fault

surfaces. The use of triangulated surfaces as discontinuities permits construction

of fault models that better approximate curved three-dimensional surfaces with no

overlaps or gaps, bounded by curved tiplines. Slip inversion on three-dimensional

surfaces therefore allows investigations of fault models that incorporate more realis-

tic geometry and heterogeneous slip.

We have applied the method to invert for coseismic slip associated with the 1999

Hector Mine and 1995 Kozani-Grevena earthquakes, using InSAR and GPS obser-

vations of surface displacements. Three dimensional fault models were constructed

by integrating available data sets including mapped surface ruptures, relocated af-

tershocks, and previous inversions for subsurface geometry. The resulting models

improve the fit to the near-field geodetic data and more faithfully honor observations
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of fault rupture geometry. Models such as these form the starting point for more

complete evaluations of fault mechanics and failure criteria.

18. Maerten, F., Maerten, L., Resor, P. G., 2002, Slip Inversion on Complex

Fault Surfaces Using Angular Elastic Dislocations: American Geophysi-

cal Union Fall Meeting, Eos Transaction, v. 83(47), p. F361

Abstract

We present a new 3D slip-inversion method based on the analytical solution of an

angular dislocation in a linear-elastic, homogeneous, isotropic, whole- or half-space.

The approach uses a boundary element method (BEM) that employs planar trian-

gular elements of constant displacement to model fault surfaces. Discretization of

surfaces into triangular boundary elements allows the construction of complex 3D

fault surfaces with irregular tipline and no overlaps or gaps. A damped least squares

method is used to minimize the functional —C.b-d— + E—Z.b—, where b repre-

sents the slip distribution on the faults, C the influence coefficient matrix and d

the observed deformation data. Z is a discrete Laplacian operator for triangulated

2- manifolds, which serves as the measure of the roughness of the slip distribution,

and E represents the smoothing parameter. We have tested the method on synthetic

forward elastic models using complex 3D fault geometry. Only one component of the

computed displacement field (Ux, Uy, or Uz) was needed to constrain the inversion.

Slip inversion results were used to refine initially simple models, developing more

complex models that approached the fault geometry of the original forward model.

We have also used the method to invert for fault slip on several natural examples

employing a variety of observational data including: (i) field measurements of de-

formed stratigraphic layers, (ii) GPS and (iii) inSAR measurements of coseismic

displacements.

19. Maerten, L., Maerten, F., 2002, New Numerical Tool for Inverse and

Forward Modeling of Complex Geological Structures: Application to the

Analysis of a Sandbox Experiment: Geological Society of America Ab-

stracts with Programs

Abstract

We present a new geomechanical computer tool based on the finite element tech-

nique, which simulates the behavior of complex geological structures such as folded

and faulted rock. The model undergoes infinitesimal or finite linear elastic deforma-

tion and is composed of a heterogeneous, anisotropic medium. Inelastic deformation

is accommodated by discontinuities (faults and fractures). Applications of this new

tool include the forward analysis of tectonic folding and faulting in sedimentary

basins and mechanically-based 2D and 3D structural restoration.
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To demonstrate the capability of the new tool we analyzed fault development in the

hanging wall of a syn-sedimentary listric normal fault. Because the complete defor-

mation history is known, an example was taken from one of the sandbox experiments

carried out by McClay (1990). A model of the final deformed stage of this analogue

model was created and restored sequentially by removing the upper sedimentary lay-

ers one by one. The top of the next upper sedimentary layer was constrained to

be horizontal while the base of the model was constrained to follow the shape of the

listric basal fault. The faults were constrained to stay in contact and for simplic-

ity to have zero friction. The elastic properties were homogeneous throughout the

model. For each step the faults were free to accommodate any slip until the model

equilibrated (F=0) and the elastic deformations were minimized. We mapped the

picture of the final stage of the sandbox experiment onto the numerical model grid in

order to follow the deformation of the layers during each step of the restoration. The

model also was analyzed in a forward sense in order to sequentially investigate the

development of the faults in the hanging wall of the basal listric fault. The chronol-

ogy of the numerical fault development is compared to the chronology inferred from

the analysis of sedimentation thickness variations and both fault geometry and slip

distribution are described.

The numerical model corresponds well to the physical model and provides additional

insights about the physics of the process and quantitative values of physical param-

eters. We conclude that this tool has significant potential for analyzing physical

models and natural examples of complex geological structures.

20. Muller, J. R., Aydin, A., Maerten, F., 2002, Rupture Progression Along

Discontinuous Oblique Fault Sets: Implications for the Karadere Rup-

ture Segment of the 1999 Izmit Earthquake, and a Future Rupture in

the Marmara Sea: 1st International Symposium of the Faculty of Mines

(ITU) on Earth Sciences and Engineering, Istanbul, Turkey

Abstract

Understanding the mechanical interaction of obliquely intersecting fault segments

is imperative for assessing the seismic hazard along the North Anatolian fault and

within the Marmara Sea. The 1999 Mw=7.4 Izmit, Turkey earthquake offers an

opportunity to study how coseismic rupture can transfer across two fault sets with

an oblique intersection angle of at least 20 to produce a surface rupture of 150 km.

The so-called double-bend transition between the Arifiye-Karadere-Glyaka segments

provides an interesting example of fault interaction in that the Karadere fault ex-

tends further to the southwest and northeast than the limits of coseismic surface

rupture. We test the both the effects of the double-bend fault geometry as well as
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the mechanical interaction with neighboring discontinuous fault segments on con-

fining slip to a reduced region of the Karadere fault and allowing the double-bend

rupture to occur. We use boundary element modeling to characterize the fault ge-

ometry and stress boundary conditions most favorable for rupture on oblique fault

sets. Our investigation involves first analysis of the effects of regional stress direc-

tion on rupture of oblique faults as well as the effects of rupture on one fault on

triggering slip on a vertical and dipping oblique segments. We then characterize the

Karadere segment rupture transition in light of these results in addition to testing

the effects of changing dip along the length of the Karadere fault as its northern

portion forms the southwestern margin of the Dzce basin and its southern portion

forms the southeastern margin of the Sakarya basin.

Finally, we comment on the implications of our results on a future rupture in the

Marmara Sea and how fault interaction may increase or decrease the tendency of

such a rupture in utilizing the intersecting oblique fault sets there.

21. Pollard, D. D., Maerten, F., Maerten, L., Resor, P. G., Allward-Fiore,

P., 2002, Forward 3D Modeling of Complex Fault Systems Using an Elas-

tic Boundary Element Method: Geological Society of America Abstracts

with Programs

Abstract

Poly3D, a fast 3D boundary element numerical code and Poly3DGUI a graphical

user interface, facilitate the forward modeling of multiple mechanically interacting

faults with complex 3D tiplines and irregular surface geometries, limited only by data

precision and computing power and memory. Poly3D is based on the analytical so-

lution for an angular dislocation in a half space composed of a homogeneous and

isotropic linear-elastic material (Comninou & Dunders, 1975). Six angular disloca-

tions are superimposed to define triangular dislocation elements that are combined

to model complex 3D fault shapes without gaps or overlaps. Boundary conditions

on these elements are either a uniform displacement discontinuity or the traction

vector at the element center. Tectonic deformation can be simulated using remote

strain boundary conditions. The GUI runs under the Windows operating system on

a PC using OpenGL and Open Inventor technologies. The power of the C++ lan-

guage combined with fast PC graphics cards and gigahertz CPUs enable real-time 3D

simulations of the faulting process and stunning visualizations of deformed horizons,

slip distributions, and displacement vector and stress tensor fields.

Forward modeling results from three recent studies use a variety of geologic and geo-

physical data sets to constrain fault geometries and tectonic histories. 1) GPS data
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on faults and deformed limestone beds within the Carmel formation are used to in-

vestigate fault slip distributions and fault interaction for four sets of intersecting

normal faults at Chimney Rock, Utah. 2) GPS measurements and a high resolution

DEM are used to analyze the 3D geometry of deformed sandstone beds within the

upper Esplanade formation in both the hanging and foot wall of a crustal-scale nor-

mal fault in the western Grand Canyon, Arizona. 3) Digital orthoquad photographs,

digital topographic maps, and GPS field data on sandstone beds of the Frontier for-

mation within the Emigrant Gap anticline, Wyoming, are used to investigate the

relationship between fold shape and the underlying thrust fault geometry and slip

distribution. In each study the geometric flexibility of Poly3D and the visualization

capabilities of Poly3DGUI have led to new insights into the processes of faulting,

fault interaction, and fault-related folding.

22. Pollard, D. D., Maerten, F., Resor, P. G., 2002, Using Aftershock Reloca-

tions and 3D Mechanical Models to Understand the Integrated Behavior

of Normal, Antithetic, and Strike-Slip Faults During Crustal Extension:

USGS presentation

Abstract

23. De Joussineau, G., Maerten, F., Maerten, L., Bouissou, S., Barquins,

M., 2001, Modeling Faults as Frictional Surfaces : Effect of Fault Sur-

face Morphology on Sliding Regime and Slip Distribution: Workshop

”Fault Zone Characterization for Tectonic Numerical Modelling”, Frank-

furt, Germany

Abstract

Slip is often irregularly distributed along faults after seismic events even if theoret-

ical models predict symmetric and smooth profiles. Among the various mechanical

heterogeneities that can explain such irregular slip distribution, those in fault sur-

face morphology are very likely agents. However, because it is difficult to investigate

fault surface morphology at depth, the relation between surface morphology and slip

distribution heterogeneities has been poorly studied.

In order to give some phenomenological ideas on this relationship, a new type of ex-

periments was developed consisting in analyzing slip distribution along fault models

of known morphology. Both analogue and a numerical modeling were carried out to

characterize the role of sliding surface morphology in sliding regime and slip distribu-

tion along faults. The analogue experiments consisted in uniaxial compression tests

at constant loading rate on PMMA (polymethylmethacrylate) plates (16x10x0.6 cm3)
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containing finite oblique defects (4 cm-long) representing faults. Two types of fault

models were used: fault models with ground surfaces (FMGS), where asperities worn

by the surfaces are geometrically similar and regularly spaced, and fault models with

natural fracture surfaces (FMNS), where surfaces exhibit fractographic structures

and hence irregular asperities; this morphology was obtained by propagating natural

mode I cracks in the plates. During the experiments, slip distribution profiles were

constructed by measuring the relative displacement of markers perpendicular to the

sliding surfaces for different stages of shortening in the sample.

Results show that fault morphology determines both the sliding regime and the types

of slip distribution along these sliding surfaces. In the analogue experiments, along

FMGS, stable sliding giving a symmetric smooth distribution was observed. Con-

versely, for FMNS, stickslip was observed, and the slip distribution exhibited signif-

icant irregularities in a globally symmetric profile (see Fig.1). These slip hetero-

geneities ranged from 0.01 L (for the smallest ones) to 0.1 L (for the largest ones),

L being the fault model length. This can be compared with slip heterogeneities ex-

hibited by the Superstition Hills Sequence (California) after the 1987 event, which

range from 0.02 L to 0.1 L, L being the fault length. The analysis of such slip het-

erogeneities evidences four types of local slip behavior, which seem to be present on

slip profiles along active faults. These types are interpreted in terms of interplay

between local asperities of various size and spatial distribution.

The numerical models come in complement to the analogue experiments and are used

here to understand, at a smaller scale, the effects of a known fault surface morphol-

ogy on the sliding regime, the slip profile, and the stress distribution through time.

The models were done with DYNEL, an 2D explicit finite element code, where the

process of solving a global stiffness matrix is replaced by a multi-agent system algo-

rithm, which allows forces to be transmitted from node to node through the entire

system until equilibrium is obtained. The flexibility of the method permits to sim-

ulate the behavior of complex geometrical structures using a model that undergoes

infinitesimal linear elastic deformation in a heterogeneous, anisotropic and discon-

tinuous medium, where discontinuities and contacts are well handled. The model

configuration consisted on sliding a rectangular object along a fixed one, so that

one edge of each object stays in contact with one edge of the other object. Differ-

ent models were realized to simulate contrasted contact surface geometries, ranging

from an idealized sinusoidal surface morphology to more irregular and more realistic

surfaces. For each model, we calculated the relative displacement between the two

sliding surfaces for different stages. We also computed the absolute motion through

time of several points along the irregular interfaces as well as the stresses in order to
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characterize the interactions between asperities during displacement. Results clearly

show that the geometry of the asperities in contact during sliding controls the small-

scale slip distribution variations (see Fig.2). Mechanical contacts and interactions

are associated with a stress perturbation as well as a reduction of slip compared to

the slip that would occur along perfectly smoothed surface. The models also show that

the contacts of the asperities control the sliding regime as observed in the analogue

experiments.

In spite of the non scaled conditions of the experiments and the marked differences

between experimental and natural faults, these experiments may help to interpret the

discrepancy observed between theoretical slip distribution profiles and the displace-

ment measured along active faults. They also evidence the role played by surface

morphology in sliding regime and slip distribution along faults.

24. Maerten, L., Maerten, F., Muller, J. R., Pollard, D. D., 2001, Modeling

three-dimensional (3D) complex fault geometries using elastic boundary

element code: Workshop ”Fault Zone Characterization for Tectonic Nu-

merical Modelling”, Frankfurt, Germany

Abstract

For geomechanical studies, a first order approximation is to treat a faulted rock

mass as a homogeneous isotropic linear elastic material cut by discontinuities. Even

though this approximation ignores sedimentological heterogeneities and the inelas-

tic part of the rock deformation, it captures the first-order relationship among fault

geometry, slip distributions, and structure contours by accurately representing the

3D geometry of the mapped faults. Recent advances in geologic mapping, aftershock

location, and reflection seismology allow geoscientists to image surface and subsur-

face structures with greater precision. These images demonstrate that earthquake

ruptures typically occur along faults or fault systems that display complex 3D ge-

ometries.

A good candidate for such studies is the three-dimensional boundary element method

(BEM) based on the displacement discontinuity and the governing equations of lin-

ear elasticity theory. The advantage of the BEM, as opposed to the Finite Element

Method (FEM) is that only the ”boundary” surfaces themselves are discretized by

polygonal elements, while the surrounding material need not be modeled explicitly.

Poly3D, a 3D boundary element code and user interface developed at Stanford Uni-

versity, enables the integration of these varied data sets to constrain fault geometry

and accurately models the complex geometries, limited only by data precision and
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computing power. Poly3D is based on the analytical solution for the elastic bound-

ary value problem of an angular dislocation in a half space composed of a homoge-

neous and isotropic linear-elastic material (Comninou & Dunders, 1975). One of

the major advantages that such 3D BEM has over other commonly-used dislocation

models (e.g. based on Okada, 1985) is the use of a triangular rather than rectangular

uniform dislocation patch. The triangular shape enables one to model complex 3D

surfaces without gaps or overlaps (see Fig.1). A further advantage is the possibility

of using remote strain boundary conditions to simulate tectonic deformation and/or

traction boundary conditions to simulate stress drop on fault segments, which allow

for the effect of mechanical interaction between the faults.

Poly3D has been applied to numerous fault related problems over the last 5 years.

We present results from three recent studies that have focused on fault interaction,

fault related deformation and earthquake triggering using a variety of geologic and

geophysical data sets to constrain fault geometries and deformation. 1) GPS field

mapping of faults and deformed strata is used to investigate fault slip and fault inter-

action around a set of normal faults at Chimney Rock, Utah (see Fig.2). 2) Large-

scale geologic mapping and measured slip distributions are integrated with published

geophysical data to study the interaction between the 1967 Mudurnu Valley and 1999

Kocaeli earthquakes in Turkey (see Fig.3). 3) Industrial 3D seismic refection data

is used for modeling the subseismic deformations in the inter-well regions of an oil

reservoir (see Fig.4). In each of these studies the geometric flexibility of Poly3D and

the ability to integrate available data sets has led to new insights into the processes

of faulting, fault interaction, and earthquake triggering.

25. Maerten, F., Maerten, L., 2001, Unfolding and Restoring Complex Geo-

logical Structures Using Linear Elasticity Theory: American Geophysical

Union Fall Meeting, Eos Transaction, v. 82(47), p. F1150

Abstract

We present a new method to unfold and restore geological structures in 2D and 3D

using elasticity theory. A primary motivation for such restoration is to check the

consistency of the geological interpretations. Also, measures of the deformation be-

tween the restored state and the deformed state give quantitative estimates of strain

that can be compared with observed strain markers. Different geometrical and kine-

matic methods have been proposed in the past 30 years to restore geological structures.

Most restorations have been performed in 2D, either in cross section or in map view,

based primarily on area conservation. The methods include (1) unfolding in cross

section by flexural slip or by vertical or inclined shear; and (2) unfaulting in map
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view by rigid block translation and rotation of fault blocks. Geometrical and analyti-

cal unfolding methods for 3D surfaces have been proposed, based on flexural slip and

homogeneous inclined shear.

In this new method, structures are unfolded onto a datum defined by the user. The

datum can assume any shape. One advantage of using elasticity for the unfolding

process is that the solution is unique. The second advantage is that the surface is

treated as continuous and deformable, as opposed to other methods where the surface

needs to be subdivided into rigid elements. The last and most important advantage

is that the method does not use the commonly assumed geometrical assumptions that

are (i) conservation of area, (ii) minimization of the changes in segment length (or

minimization of the shearing) and (iii) minimization of the deformation energy. In-

stead, this method honors the fundamental physical laws that govern deformation,

that are (i) conservation of mass, (ii) conservation of momentum and (iii) conserva-

tion of energy. Therefore, physical laws and linear elastic theory replace geometrical

assumptions used by the existing methods for the restoration of geological struc-

tures. Examples illustrate how unfolding can be accomplished for 2D cross-sections,

3D surfaces and 3D volumes. Heterogeneous material properties as well as varying

boundary conditions yield different but unique solutions even if the model is other-

wise identical. One can compute stresses and strains within the deformed surface

and these can be related to smaller scale fractures and faults, which might have a

large economic impact.

26. Pollard, D. D., Maerten, F., Maerten, L., Resor, P. G., Muller, J. R.,

Aydin, A., 2001, Improved 3D Modeling of Complex Fault Geometries

Using Poly3D, an Elastic Boundary Element Code: American Geophys-

ical Union Fall Meeting, Eos Transaction, v. 82(47), p. F835

Abstract

Recent advances in geologic mapping, aftershock location, and reflection seismology

allow geoscientists to image surface and subsurface structures with greater precision.

These images demonstrate that earthquake ruptures typically occur along faults or

fault systems that display complex 3D geometries. Poly3D, a 3D boundary element

code and user interface, enables the integration of these varied data sets to constrain

fault geometry and accurately models the complex geometries, limited only by data

precision and computing power. Poly3D is based on the analytical solution for the

elastic boundary value problem of an angular dislocation in a half space composed of

a homogeneous and isotropic linear-elastic material (Comninou & Dunders, 1975).

One of the major advantages that Poly3D has over other commonly used dislocation

models (e.g. based on Okada, 1985) is the use of a triangular rather than rectangular
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uniform dislocation patch. The triangular shape enables one to model complex 3D

shapes without gaps or overlaps. A further advantage of Poly3D is the possibility of

using remote strain boundary conditions to simulate tectonic deformation and trac-

tion boundary conditions to simulate stress drop on fault segments. Poly3D has been

applied to numerous problems of fault interaction and earthquake deformation over

the last 5 years. We present results from three recent studies that have focused on

fault interaction and earthquake triggering using a variety of geologic and geophys-

ical data sets to constrain fault geometries and deformation. 1) GPS field mapping

of faults and deformed strata is used to investigate fault slip and fault interaction

around a set of normal faults at Chimney Rock, Utah. 2) Large-scale geologic map-

ping and measured slip distributions are integrated with published geophysical data

to study the interaction between the 1967 Mudurnu Valley and 1999 Kocaeli earth-

quakes in Turkey. 3) Aftershock triggering and the development of normal fault

systems are investigated by integrating high-precision aftershock locations and pub-

lished geological and geodetic data sets from the 1995 Kozani- Grevena earthquake

in Greece. In each of these studies the geometric flexibility of Poly3D and the ability

to integrate available data sets has led to new insights into the processes of faulting,

fault interaction, and earthquake triggering.

27. Maerten, L., Maerten, F., Gillespie, P., 2000, Poly3D: a 3D Geome-

chanical Program Used to Solve Fault Related Problems in Petroleum

Reservoirs: NPF Meeting, Stavanger, Norway.

Abstract

Spatial continuity and linkage of faults may substantially affect fluid flow either by

compartmentalizing the reservoir, or by increasing the tortuosity of flow pathways,

according to whether the faults act as seals or conduits. Therefore, understanding

fault linkage geometry and predicting subseismic faults should improve reservoir flow

simulation models and, in turn, significantly improve well planning.

Methods have been developed to infer, in three dimensions, the fault tip-line geometry

below the seismic resolution and potential fault linkage as well as subseismic faults

in reservoirs, using 3D seismic data and Poly3D, a boundary element elastic model.

The purpose of the demo is to show how Poly3D can be used to treat these problems.

Two examples from the North Sea oil field, illustrate how such geomechanical anal-

yses can predict fault connectivity, reservoir compartmentalization and subseismic

fault prediction. In the first, a 3D numerical model of the faulted reservoir and its

surroundings is constructed using seismic interpretation. Such a model, combined

with an appropriate set of boundary conditions is used to compute the fault slip dis-

tribution as well as the vertical displacement field. By comparing the interpreted
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fault slip distribution to the computed slip distribution adjacent to potential inter-

section lines, the geomechanical models can constrain the geometry of the faults as

well as the location of the intersection line between faults.

The second example describes a method for predicting the positions and orientations

of subsesimic faults in the rock volume. The large seismic faults and their associated

observed slip distributions are brought into Poly3D in order to determine what the

stress conditions were around the seismic faults at the time of faulting. The computed

stress field is then combined with the Coulomb failure criterion in order to predict the

orientations and densities of the smaller faults; this information is represented as a

pair of grids (e.g. density and strike grid). The grids can then be used to condition

3D stochastic model of faulting which uses a power-law distribution to simulate the

sizes of the subseismic faults.

28. Muller, J. R., Aydin, A., Maerten, F., 2000, Mechanical interaction be-

tween the July 1967 Mudurnu Valley and August 1999 Izmit earthquakes

using detailed fault mapping and 3-D BEM modeling: American Geo-

physical Union Fall Meeting, Eos Transaction, v. 81(48)

Abstract

The last major rupture prior to the Izmit and Duzce earthquakes in 1999 was the Ms

= 7.1 July 22 1967 Mudurnu Valley earthquake to the southeast. The mechanical

interaction between the 80 km long 1967 rupture and the next potential rupture (the

130 km long 1999 Izmit rupture) was modeled by earlier workers. These models,

however, didn’t identify and address several interesting problems related to this in-

teraction due primarily to the lack of detailed fault configurations and couldn’t have

the knowledge of recent events available today. The geometric relationship between

the two rupture traces poses two interesting problems. First, why did slip not con-

tinue to extend along the western continuation of the fault that ruptured in 1967?

In its easternmost portion, the 80 km Mudurnu Valley surface rupture overlapped 25

km of a fault segment that ruptured in 1957 (Ambraseys and Zatopek, 1969). To the

west, the generally continuous rupture terminated near Kanlicay with additional mi-

nor slip segments located to as far north and west as Lake Sapanca. Past the western

termination of the 1967 rupture, the geomorphological and structural suggests that

the Mudurnu Valley fault extends further to the west along the mountain front that

marks the boundary between basement and cover which reaches the Bay of Izmit near

Golcuk. We suggest that the change in orientation of the Mudurnu Valley fault near

Karapucek reduces the tendency for continued westward propagation of slip along

that fault. Boundary element modeling shows that the tendency for right-lateral slip

is instead favored along the Izmit earthquake fault segments within the broad valley
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to the north. Second, if the 1967 earthquake enhanced the failure along the Izmit

earthquake fault, why did the Izmit earthquake epicenter appear to be on the Gulcuk

segment to the west instead of segments closer the termination of the 1967 rupture?

We calculate changes in Coulomb stress on the five major Izmit fault segments due

to interpolated slip during the Mudurnu Valley earthquake. The greatest increases

in the tendency for right-lateral slip on the Izmit fault segments occurs in a region

near the town of Arifiye, approximately 50 km east of Golcuk. This region of right-

lateral Coulomb stress increase corresponds with a local maximum of surface slip

(4.3 m). This suggests that if the Mudurnu Valley earthquake were to trigger failure

on the Izmit fault, the area near Arifiye would be a likely epicentral region. These

results match well with the seismic inversion analysis of Cemen, et al. (2000) which

suggests two subevents of moment release during the Izmit earthquake, the first and

larger of which is located near Arifiye, the second and smaller near Golcuk.
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APPENDIX D

Résumé étendu
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Les théories physiques utilisent toujours une simplification des lois de la nature, sim-

plement parce que modéliser des structures complexes, telle la Terre à une large échelle

en utilisant un modèle atomistique à l’échelle moléculaire, est irréaliste. Les chercheurs

tendent donc à capturer les propriétés importantes des objets à modéliser, et les utilisent

dans un concept théorique, analytique et numérique, le but étant d’expliquer et de prédire

les phénomènes naturels.

Nous pouvons distinguer deux types de modèles physiques qui sont les fondements de

toutes les théories physiques pour modéliser le comportement des matériaux: (1) le modèle

microscopique discret, et (2) le modèle macroscopique continu. A l’échelle microscopique,

les particules bougent en fonction de l’influence des forces d’interactions mutuelles et sont

régies par la mécanique quantique. A une échelle beaucoup plus grande, les objets sont

régis par des théories continues (mécanique des solides, des fluides, élasticité, thermody-

namique, électromagnétisme, acoustique, etc...). Ces théories tentent de décrire le com-

portement d’objets tels que nous les percevons dans notre monde espace-temps à quatre

dimensions. Matière et énergie sont considerées comme continues et donc la représentation

mathématique des quantités physiques s’opère grâce à l’utilisation de fonctions continues

(ou continues par morceaux) de l’espace et du temps.

Ces problèmes peuvent êtres résolus par des manipulations mathématiques (modèles an-

alytiques), mais ces outils se limitent souvent à des sur-simplifications des modèles. Par

conséquent, diverses techniques de discrétisation ont été proposées et développées, don-

nant lieu à des modèles numériques et utilisant des approximations proches des solutions

analytiques lorsque le nombre de variables discrètes augmente. Le but de ces méthodes est

de résoudre des équations aux dérivées partielles (PDE). Les méthodes les plus connues

sont les Différences Finis (FDM), les Eléments Finis (FEM) et les Eléments Frontières

(BEM).

La méthode FDM est la méthode de traitement classique des PDE. Elle remplace la so-

lution continue par une grille de points. En chaque point, tous les opérateurs différentiels

sont remplacés par des opérations de différence finies, donnant lieu à un groupe d’équations

qui peut être facilement résolu.

Dans la méthode FEM, le domaine de solution est discrétisé en un nombre uniforme et non-

uniforme d’éléments finis qui sont connectés par l’intermédiaire de nœuds. Le changement

des variables dépendantes, au regard de la position, est approximé dans chaque élément

en utilisant des fonctions de forme.

La méthode BEM utilise le fait que les équations sous forme différentielle peuvent souvent

être transformées sous forme intégrale. Elle transforme donc l’opérateur différentiel défini

dans le domaine, en opérateur integral défini sur le bord du domaine. Donc, dans cette
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méthode, seule les frontières des domaines d’intérêt ont besoin d’être discrétisées.

Les méthodes FEM et FDM peuvent être considérées comme similaires dans le sens où

tout le domaine de solution doit être discrétisé, et qu’un maillage est nécessaire (structuré

ou non). Pour la méthode BEM, seules les surfaces des bords (en 3D) sont utilisées.

Le but de cette thèse est l’étude de la mécanique des milieux continus appliquée à la

compréhension des phénomènes géologiques, en utilisant des modélisations basées sur les

équations aux dérivées partielles avec conditions aux limites. Plus précisément, nous nous

intéressons aux phénomènes ’quasi-statiques’ dans la croute superficielle de la terre (par

exemple les évenements co-sismiques), en utilisant l’élasticité linéaire, qui a prouvée être

trés fiable en première approximation pour la plupart des structures étudiées pour la

compréhension des tremblements de terre et volcans, ou pour étudier l’état du champ de

contrainte perturbé autour de régions complexes et faillées.

Trois types de codes numériques sont développés au travers de cette thèse sous forme de

trois grandes parties: (I) les modèles directs, (II) les modèles inverses, et (III) les modèles

de restauration.

La première partie est dediée à la modélisation directe en utilisant un code elasto-statique

d’éléments frontières (BEM), appelé iBem3D (le successeur de Poly3D originalement

développé a l’université de Stanford). Ce type de modélisation permet d’étudier la réponse

faite par des failles soumises à un champ de contraintes regional, étant donné la géométrie

des failles et des conditions aux limites sur celles-ci. Les résulats de telles simulations peu-

vent être utilisés, par exemple, pour prédire la fracturation due à la déformation associée

aux glissements des failles, ou pour étudier la réactivation de failles lors d’un processus

d’étude de tremblements de terre.

Le premier chapitre présente les fondements de cette thèse. Nous montrons qu’en utilisant

une formulation analytique du calcul du champ de déplacement induit par une disloca-

tion angulaire dans un milieu infini ou semi-infini, homogène, élastique et isotrope, il est

possible de construire des surfaces triangulées complexes en 3D avec des déplacements

discontinus. Une telle formulation permet d’avoir des surfaces de discontinuités de forme

et de bord complexes, s’opposant au modèle d’Okada, actuellement considéré comme la

méthode standard en géophysique, et où les éléments ont une forme rectangulaire in-

duisant des recouvrements et trous dans le maillage. Les applications d’un tel code sont

vastes dans le domaine de la géologie structurale et de la géophysique. Nous présentons

quelques applications clefs qui sont publiées depuis quelques années par une large com-

munauté scientifique de part le monde.

Le deuxième chapitre propose une méthode itérative pour la résolution du système d’équations

d’iBem3D à n degrés de libertés. Cette technique permet de reduire la complexité du

418



modèle de O(n3) à O(k.n2), où k représente le nombre d’itérations nécessaires. De

plus, cette méthode permet d’incorporer les contraintes inégalitaires en force (par ex-

emple, la contrainte de friction Coulombienne) et en déplacement (par example, la non-

interpénétration des éléments lorsque soumis à une contrainte compressive). Cette méthode

permet aussi une paralélisation simplifiée sur des architectures multi-coeurs.

Le chapitre trois présente une application des contraintes inégalitaires pour l’étude des

fractures branchées dans des zones de relais extensifs formés de stylolites ou de joints en

échelon. La localisation géographique choisie est celle des “Matelles”, située près de Mont-

pellier. Il est montré que l’orientation des dominos dans ces zones de relais est fonction

de la friction au niveau des fractures en échelon.

Le chapitre quatre montre que l’implémentation d’origine du code iBem3D, qui était

fait pour des milieux élastiques homogènes et isotropes, peut être étendue à des milieux

hétérogènes, ceci en utilisant des conditions aux limites particulières au niveau des inter-

faces entre deux régions à contraste rhéologique différent. Ces interfaces sont discrétisées

en surfaces triangulées pouvant avoir des géométries complexes.

Le chapitre cinq est dédié à l’optimisation du code iBem3D. En effet, même si l’utilisation

d’un processus itératif décroit la complexité du modèle à O(k.n2), il reste tout de même

un problème majeur pour l’étude de gros modèles faits de centaines de milliers d’éléments

triangulaires, la mémoire nécessaire étant du même ordre que la résolution du système,

c’est-à-dire en O(n2). De plus, le post-traitement au niveau des grilles d’observation peut

pénaliser l’utilisateur, plus particulièrement si le nombre de points d’observation est grand.

Ce chapitre présente l’optimisation de calculs par l’utilisation d’approximations et de la

parallélisation sur architecture multi-coeurs, pour la résolution du système d’équations

ainsi que pour le post-traitement. Il est montré que la compléxité d’un modèle passe de

O(k.n2) à ∼ O(k.n) pour le temps d’exécution, et de O(n2) à ∼ O(n) pour la mémoire. De

même, le post-traitement au niveau des points d’observation est reduit considérablement

et est fonction de la position de la grille par rapport aux surfaces de discontinuités (c’est

à dire les failles).

La deuxième partie de la thèse étudie la modélisation inverse, encore appelée estimation de

paramètres, en s’appuyant sur le même code déléments frontières. Ce type de modélisation

est donc une estimation de paramètres de ce qui est générallement imposé ou calculé en

modélisation directe (par exemple, le tenseur des contraintes en des points de l’espace 3D,

le déplacement mesuré le long des failles, etc...). Etant donné des déformations mesurées à

la surface de la terre ou en profondeur dues à des glissements de failles, le but est de retrou-

ver les déplacements associés le long de ces failles qui ont induit de telles déformations,

ou de retrouver le ou les évènements tectoniques qui ont activé les failles, qui à leur tour,

ont déformé la surface de la terre.
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Le chapitre six présente un modèle d’inversion de déplacement sur les failles étant donné

des données GPS et/ou InSAR, et expose les avantages d’une telle formulation basée sur

iBem3D et utilisant des géometries complexes. Plus précisement, il est montré qu’une

telle approche, basée sur des éléments triangulaires, est beaucoup plus précise que celle

se basant sur des éléments rectangulaires (Okada). Ce code est appliqué au tremblement

de terre Hector Mine (1999), CA, et donne des résultats beaucoup plus précis qu’avec la

formulation Okada. Parallèlement, nous montrons indirectement que même pour un trem-

blement de terre de grande magnitude comme celui-ci (M7.1), la plupart des déformations

sont élastiques.

Le chapitre sept présente une application de ce code d’inversion des déplacements pour

le tremblement de terre de Nias qui se produisit en 2005 en Indonésie. Cette étude met

en évidence que ce tremblement de terre n’a certainement pas atteint la topographie de

surface, ce qui a des implications pour la génération de tsunamis.

Le chapitre huit présente une méthode geomécanique pour retrouver la paleo-contrainte

régionale qui a induit des déplacements observés le long des surfaces de faille (à par-

tir d’interprétations d’images sismiques). Cette technique, bien que limitée à un seul

évenement tectonique et pour un seul type de mesure, peut donner une bonne estimation

de ce que furent l’orientation et les magnitudes du tenseur des contraintes, estimation

qui utilise les interactions mécaniques entre failles. Lors de l’inversion du champ de con-

trainte, les déplacements inconnus sur les surfaces de failles sont simultanément retrouvés

(par exemple, les déplacements décrochants).

Le chapitre neuf présente une autre façon de faire de l’estimation de paleo-contraintes en

utilisant le principe de superposition qui s’applique à l’élasticité linéaire. Cette nouvelle

méthode peut prendre en compte divers types de données telles que l’orientation de frac-

tures, de stylolites, de failles secondaires qui se sont formées proche des failles actives,

mais aussi des données GPS, InSAR ou de déplacements sur les failles avec ou sans in-

formation de striation. Il est montré que plusieurs évènements tectoniques peuvent être

retrouvés et que les données sont automatiquement classées dans leur évènement respectif.

De plus, une telle méthode permet de calculer de façon interactive les déplacements sur

les failles ainsi que les champs de déplacement et de contrainte pertubés associés lorsque

l’utilisateur change les magnitudes et l’orientation du champ de contrainte regional ap-

pliqué au modèle.

La troisième partie de cette thèse est consacrée à la restauration de structures complexes

et utilise la méthode des éléments finis (FEM).

Le chapitre dix est dédié à la validation d’interprétations en utilisant la technique de

restauration. Faire de la modélisation directe, comme vu précédemment, a montré l’importance
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de la géometrie des failles et fractures sur les résulats des calculs des déplacements dis-

continus sur les failles, et par voie de conséquence, sur les champs de déplacement et

de contrainte associés. Pour la majorité des simulations numériques, il est primordial

de valider de telles interprétations avant toute analyse des resulats de modèlisation di-

recte. Ce chapitre présente donc un outil de vérification ’pré-simulation’ basé sur la

géomécanique.

Le chapitre onze, quant à lui, propose une méthode de lissage d’horizons sismiques faillés

et plissés, basée sur la restauration de surfaces triangulées 3D. Il est montré qu’un tel filtre

gomme les artefacts géométriques où, par exemple, une forte concentration de conraintes

apparait après dépliage et défaillage. Les traces de failles sont lissées et les trop faibles ou

forts gradients de déplacement sont réajustés en conséquence, produisant des terminaisons

de failles réalistes.

Finalement, en annexe est présenté un projet de recherche sur une méthode numérique

permettant de faire de l’inversion linéaire du déplacement sur les failles en utilisant di-

verses méthodes développées dans cette thèse: (1) utilisation d’un solveur itératif pour

pouvoir utiliser les contraintes inégalitaires en déplacement; (2) la méthode d’optimisation

par approximation afin de résoudre des problèmes beaucoup plus conséquents et plus rapi-

dement.
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Lévy, B. (2000). Topologie algorithmique combinatoire et plongement. PhD thesis, Uni-

versity of Nancy, Nancy, France.

Liesa, C. and Lisle, R. (2004). Reliability of methods to separate stress tensors from

heterogeneous fault-slip data. J. Struct. Geol., 26(3):559–572.

Lin, A., Ouchi, T., Chen, A., and Maruyama, T. (2001). Co-seismic displacements, folding

and shortening structures along the chelungpu surface rupture zone occurred during the

1999 chi-chi (taiwan) earthquake. Tectonophysics, 330:225–244.

437



Lin, J. and Stein, R. S. (1989). Coseismic folding, earthquake recurrence, and the 1987

source mechanism at whittier narrows, los angeles basin, california. J. Geophys. Res.,

94:9614–9632.

Lisle, R., Orife, T., Arlegui, L., Liesa, C., and Srivastava, D. (2006). Favoured states

of palaeostress in the earth’s crust: evidence from fault-slip data. J. Struct. Geol.,

28(6):1051–1066.

Lovely, P. J., Pollard, D. D., and Mutlu, O. (2009). Regions of reduced static stress drop

near fault tips for large strike-slip earthquakes. Bulletin of the Seismological Society of

America, 99:1691–1704.

Lundgren, P. and Lu, Z. (2006). Inflation model of uzon caldera, kamchatka, constrained

by satellite radar interferometry observations. Geophysical Research Letters, 33:L06301.

Lunn, R. J., Willson, J. P., Shipton, Z. K., and Moir, H. (2008). Simulating brittle fault

growth from linkage of preexisting structures. J. Geophys. Res., 113,B07403.

Ma, X. and Kusznir, N. (1993). Modeling of near-field subsurface displacements for

generalized faults and fault arrays. Journal of structural geology, 15:1471–1484.

Maerten, F. (2010). Adaptive cross approximation applied to the solution of system of

equations and post-processing for 3d elastostatic problems using the boundary element

method. Engineering Analysis with Boundary Elements, 34:483–491.

Maerten, F. and Maerten, L. (2008a). Iterative 3d bem solver on complex faults geometry

using angular dislocation approach in heterogeneous, isotropic elastic whole or half-

space. In Brebbia, editor, Boundary Elements and other Mesh Reduction Methods

XXX, pages 201–208, Southampton. BEM 30, WITpress.

Maerten, F. and Maerten, L. (2008b). Iterative 3d bem solver on complex faults geometry

using angular dislocation approach in heterogeneous, isotropic elastic whole or half-

space. In Brebbia, editor, Boundary Elements and other Mesh Reduction Methods

XXX, pages 201–208, Southampton. BEM 30, WITpress.

Maerten, F., Maerten, L., and Cooke, M. (2009a). Solving 3d boundary element problems

using constrained iterative approach. Computational Geosciences.

Maerten, F., Maerten, L., Pollard, D., and Lagalaye, Y. (2009b). ibem3d, a three-

dimentional boundary element method using angular dislocations for sub-surface struc-

tures modeling. In preparation for Journal of Geophysical Research.

438



Maerten, F., Resor, P. G., Pollard, D. D., and Maerten, L. (2005). Inverting for slip on

three-dimensional fault surfaces using angular dislocations. Bulletin of the Seismological

Society of America, 95:1654–1665.

Maerten, L. (2000). Variation in slip on intersectiong normal faults: Implications for

paleostress inversion. Journal of Geophysical Research, 105(25):553–565.

Maerten, L., Gillepsie, P., and Pollard, D. (2002). Effect of local stress perturbation on

secondary fault development. Journal of Structural Geology, 24:145153.

Maerten, L., Gillespie, P., and Daniel, J.-M. (2006). 3-d geomechanical modeling for

constraint of subseismic fault simulation. AAPG Bulletin, 90:1337–1358.

Maerten, L. and Maerten, F. (2006). Chronologic modeling of faulted and fractured reser-

voirs using geomechanically-based restoration: Technique and industry applications.

AAPG Bulletin.

Maerten, L., Pollard, D. D., and Karpuz, R. (2000). How to constrain 3d fault continuity

and linkage using reflection seismic data: a geomechanical approach. AAPG Bull.,

84:1311–1324.

Maerten, L., Pollard, D. D., and Maerten, F. (2001). Digital mapping of three-dimensional

structures of the chimney rock fault system, central utah. Journal of Structural Geology,

23:585–592.

Maerten, L., Willemse, E. J. M., Pollard, D. D., and Rawnsley, K. (1999). Slip distribu-

tions on intersecting normal faults. Journal of Structural Geology, 21:259–271.

Malvern, I. (1969). Introduction to the Mechanics of a Continuum Medium. Prentice-Hall.

Man, K. (1994). Contact Mechanics Using Boundary Elements. Computational Mechanics

Publications, Southampton, UK.

Mandl, G. (1988). Mechanics of tectonic faulting. Models and basic concepts. Elsevier,

Amsterdam.

Mansinha, L. and Smylie, D. (1971). The displacement fields of inclined faults. Bull.

Seism. Soc. of America, 61:4731–4743.

Marone, C. J., Scholz, C. H., and Bilham, R. (1991). On the mechanics of earthquake

afterslip. J. Geophys. Res., 96:8441–8452.

Marrett, R. and Allmendinger, R. (1990). Kinematic analysis of fault-slip data. J. Struct.

Geol., 12(8):973–986.

439



Marshall, S. T. and Cooke, M. L. (2008). Effects of nonplanar fault topology and me-

chanical interaction on fault-slip distributions in the ventura basin, california. Bulletin

of the Seismological Society of America, 98:1113–1127.

Martel, S. (1997). Effects of cohesive zones on small faults and implications for secondary

fracturing and fault trace geometry. Journal of Structural Geology, 19:835–847.

Martel, S. and Shacat, C. (2006). Mechanics and interpretations of fault slip. In Aber-

crombie, R., DiToro, G., Kanamori, H., and McGarr, A., editors, Radiated Energy

and the Physics of Earthquake Faulting, pages 207–216. American Geophysical Union

Monograph 170.

Martel, S. J. (1990). Formation of compound strike-slip fault zones, mount abbot quad-

rangle, california. J. Struct. Geol., 12:869–882.

Martel, S. J. (2004). Mechanics of landslide initiation as a shear fracture phenomenon.

Marine Geology, 203:319–339.

Martel, S. J. and Boger, W. A. (1998). Geometry and mechanics of secondary fracturing

around small three-dimensional faults in granitic rock. Journal of Geophysical Research,

103:21,299–21,314.

Maruyama, T. (1964). Statical elastic dislocations in an infinite and semi-infinite medium.

Tokyo Daigaku Jishin Kankyoso Iho, 42:289–368.

Mavko, G. (1982). Fault interaction near hoolister, california. J. Geoph. Res., 87:7807–

7816.

McClay, K. R. (1990). Extensional fault systems in sedimentary basins: A review of

analogue model studies. Marine and Petroleum Geology, 7:206–233.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three

methods for selecting values of input variables in analysis of output from a computer

code. Technometrics, 21:239–245.

McKenzie, D. (1969). The relation between fault plane solutions for earthquakes and the

directions of the principal stresses. Bull. Seismol. Soc. Am., 59:591–601.

Medwedeff, D. A. and Krantz, R. W. (2002). Kinematic and analog modeling of 3-d ex-

tensional ramps: Observations and a new 3-d deformation model. Journal of Structural

Geology, 24:763–772.

440



Meigs, A. J., Cooke, M. L., and Marshall, S. T. (2008). Using vertical rock uplift patterns

to constrain the three-dimensional fault configuration in the los angeles basin. Bulletin

of the Seismological Society of America, 98:106–123.

Melbourne, T. I., Webb, F. H., Stock, J. M., and Reigber, C. (2002). Rapid postseismic

transients in subduction zones from continuous gps. J. Geophys. Res., 107(B10), 2241.

Meltzner, A. J., Sieh, K., Abrams, M., Agnew, D. C., Hudnut, K. W., Avouac, J., and

Natawidjaja, D. H. (2006). Uplift and subsidence associated with the great aceh-

andaman earthquake of 2004. J. Geophys. Res., 111(B02407).

Menke, W. (1984). Geophysical Data Analysis: Discrete Inverse Theory. International

Geophysics Series, Academic, San Diego.

Michael, A. (1987). Use of focal mechanisms to determine stress: a control study. J.

Geophys. Res., 92(B1):357–368.

Mijar, A. and Arora, J. (2000). Review of formulations for elastostatic frictional contact

problems. Structural and Multidisciplinary Optimization, 20:167–189.

Molnar, P. (1983). Average regional strain due to slip on numerous faults of different

orientations. J. Geophys. Res., 88:6430–6432.

Montési, L. G. J. (2004). Controls of shear zone rheology and tectonic loading on post-

seismic creep. J. Geophys. Res., 109(B10404).

Mount, V. and Suppe, J. (1987). State of stress near the san andreas fault: Implications

for wrench tectonics. Geology, 115:11431146.

Muller, J. R. and Aydin, A. (2004). Rupture progression along discontinuous oblique fault

sets: implications for the karadere rupture segment of the 1999 izmit earthquake, and

future rupture in the sea of marmara. Tectonophysics, 391:283–302.

Muller, J. R. and Aydin, A. (2005). Using geomechanical modeling to constrain the fault

geometry within the marmara sea, turkey. Journal of Geophysical Research, 110:B03407.

Muller, J. R., Aydin, A., and Maerten, F. (2003). Investigating the transition between

the 1967 mudurnu valley and 1999 izmit earthquakes along the north anatolian fault

with static stress changes. Geophysics Journal International, 154:471–482.

Muller, J. R., Aydin, A., and Wright, T. J. (2006). Using an elastic dislocation model

to investigate static coulomb stress change scenarios for earthquake ruptures in the

eastern marmara sea region, turkey, buiter, s. j. h. & schreurs, g. (eds). Geological

441



Society of London Special Publication - Analogue and Numerical Modelling of Crustal-

Scale Processes, 253:397–414.

Mutlu, O. and Pollard, D. (2008). On the patterns of wing cracks along an outcrop scale

flaw: a numerical modeling approach using complementarity. Journal of Geophysical

Research, 113.

Mynatt, I., Hilley, G., and Pollard, D. D. (2007). Inferring fault characteristics using fold

geometry constrained by airborne laser swath mapping at raplee ridge, utah. Geophys-

ical Research Letters, 34:L16315.
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TITRE: Utilisation de la géomécanique pour résoudre des problèmes liés aux struc-

tures géologiques: modélisation direct, inversion et restauration

RÉSUMÉ: Différentes applications de l’élasticité linéaire en géologie structurale sont présentées

dans cette thèse à travers le développement de trois types de codes numériques. Le premier

utilise la modélisation directe pour étudier les déplacements et champs de contraintes autour

de zones faillées complexes. On montre que l’ajout de contraintes inégalitaires, telles que la

friction de Coulomb, permet d’expliquer l’angle d’initiation des dominos dans les relais exten-

sifs. L’ajout de matériaux hétérogènes et d’optimisations, telles la parallélisation sur processeurs

multi-cœurs ainsi que la réduction de complexité des modèles, permettent l’étude de modèles

beaucoup plus complexes. Le second type de code numérique utilise la modélisation inverse,

aussi appelée estimation de paramètres. L’inversion linéaire de déplacements sur les failles ainsi

que la détermination de paléo-contraintes utilisant une approche géomécanique sont développées.

Le dernier type de code numérique concerne la restauration de structures complexes plissés et

faillées. Il est notamment montré qu’une telle méthode permet de vérifier l’équilibre de coupes

géologiques, ainsi que de retrouver la chronologie des failles. Finalement, nous montrons que ce

même code permet de lisser des horizons 3D faillés, plissés et bruités en utilisant la géomécanique.

ABSTRACT: Different applications of linear elasticity in structural geology are presented

in this thesis through the development of three types of numerical computer codes. The first

one uses forward modeling to study displacement and perturbed stress fields around complexly

faulted regions. We show that incorporating inequality constraints, such as static Coulomb

friction, enables one to explain the angle of initiation of jogs in extensional relays. Adding

heterogeneous material properties and optimizations, such as parallelization on multicore archi-

tectures and complexity reduction, admits more complex models. The second type deals with

inverse modeling, also called parameter estimation. Linear slip inversion on faults with complex

geometry, as well as paleo-stress inversion using a geomechanical approach, are developed. The

last type of numerical computer code is dedicated to restoration of complexly folded and faulted

structures. It is shown that this technique enables one to check balanced cross-sections, and

also to retrieve fault chronology. Finally, we show that this code allows one to smooth noisy 3D

interpreted faulted and folded horizons using geomechanics.
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