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Chapter 1

Introduction

1.1 Time and frequency

The international system of units (SI) defines the seven basic units to describe length, mass,

time, electric current, thermodynamic temperature, amount of substance and luminous inten-

sity. The unit of time, the second (s), was defined originally by the mean solar day. In order

to define the second more accurately, the 13th general conference on weights and measures

(CGPM) adopted another definition based on atomic transition in 1967. The second is the

duration of 9192631770 periods of the radiation, corresponding to the transition between the

two hyperfine levels of the ground state of the cesium 133 atom.

Frequency is the number of occurrences of a repeating event per unit time. In SI units,

the unit of frequency is Hertz (Hz), named after the German physicist Heinrich Hertz. 1 Hz

means that an event repeats once per second. The frequency f is indeed the reciprocal of

the period time τ : f = 1
τ .

An atomic clock, also called a frequency standard, generates a stable signal for frequency

calibration or reference. Its frequency is stabilized to the transition frequency of the neutral

atom or ion. The primary frequency standard is a cesium atomic clock, which realizes the

definition of the time/frequency with a given accuracy. The atomic clocks based on other

transitions are therefore named as secondary frequency standards. In terms of the atomic

species, there are several types of atomic clocks, which can be active or passive, hot or

cold (atom temperature), neutral or ionic, in microwave or optical frequency (transition

frequency).

Nowadays, the SI second is the most accurate unit to be realized. Consequently, the

1



1. INTRODUCTION

frequency metrology becomes the core technique in metrologies and widely used in many

applications, such as:

• global positioning systems (GPS, GALILEO, GLONASS, Compass),

• synchronization of telecommunication system and secure communications,

• measurement of fundamental physical constants and other units,

• detection of the gravitational waves (LISA, LIGO...)

• geodesy (gravitational red shift),

• deep space navigation,

• radio telescopes (very long baseline interferometry).

1.2 Frequency metrology

1.2.1 The atomic clock

The atomic clock plays a central role in frequency metrology. Its performance is evaluated

in terms of:

• Accuracy: the degree of closeness between the clock frequency and the exact value of

the atomic transition with given experimental conditions.

• Stability/instability: the degree of clock frequency fluctuation for defined time scales.

1.2.1.1 A brief history

Fig.1.1 shows the principle scheme of a passive atomic clock, where the local oscillator’s

frequency is stabilized to the atomic transition.

The idea of using atomic resonance to measure time occurred as early as the nineteenth

century (Maxwell, 1873; Thomson & Tait, 1878). Many years later, use of an atomic beam

magnetic resonance as the basis of a clock was put forward (Rabi, 1945). The first atomic clock

was an ammonia maser device built in 1949 at the National Bureau of Standards (now NIST)

in the United States. It was less stable than existing quartz clocks, but served to demonstrate

the concept. In 1947, the separated oscillatory field method was invented for measuring the

2



1.2 Frequency metrology

Figure 1.1: Principle of a passive atomic clock.

resonance of the hydrogen molecular beam (Ramsey & Silsbee, 1951). This method improves

the accuracy of the transition frequency determination. In 1955, the first accurate atomic

clock, based on the hyperfine fundamental transition of the caesium-133 atom, was built at

National Physical Laboratory in the United Kingdom (Essen & Parry, 1955). It was a passive

atomic clock, and requires a microwave interrogation oscillator producing a probe signal at

the frequency close the atomic transition. Its fractional frequency stability was claimed to

be in the level of 10−9.

In 1960, the first atomic hydrogen maser was constructed and successfully operated at

Lyman Physics Laboratory of Harvard university in the United States. In this maser, hydro-

gen atoms in the upper hyperfine state of the fundamental level are continuously selected and

injected into a high quality-factor resonant cavity (Ramsey, 1965). It emits spontaneously a

stable microwave signal, therefore, is also called an active atomic clock.

Laser cooling and trapping techniques became mature in 1990s (Chu, 1998; Cohen-

Tannoudji, 1998; Phillips, 1998). These techniques significantly reduced the Doppler effect,

which limited the performance of the early atomic clocks. Finally, the first primary frequency

standard, based on Zacharias fountain concept (Ramsey, 1983), was operated at BNM-LPTF

(now LNE-SYRTE) in Paris in 1995 (Clairon et al., 1995). A fractional frequency uncertainty

of ∼ 10−15 was obtained.

Since 1995, the microwave fountain clocks have been improved to be mainly limited by

the quantum fluctuations effect. The fractional frequency instability of the fountain clocks is

3



1. INTRODUCTION

then (Santarelli et al., 1999)

σy(τ) =
∆ν

πν0

√
Tc

τN
, (1.1)

where ν0 is the transition frequency, ∆ν is the interrogation linewidth with the Ramsey

separated-field technique, Tc is the cycle time for determination the transition frequency,

τ > Tc is the integration time and N is the number of atoms detected for each cycle.

Optical frequencies are around 5 orders of magnitude higher than the operating frequency

of the microwave atomic clock, while the linewidth (∆ν) in the two spectral regions are

comparable. Consequently, an improvement in stability can be obtained by a standard on an

atomic transition in the optical rather than the microwave region.

New technologies, such as femtosecond frequency combs, optical lattices, ultra-stable

optical cavity and quantum information, enable the realization of more stable and accurate

optical clocks. These atomic systems include Al+, Ca+, Ca, H, Hg+, Hg, In+, Mg, Sr+,

Sr, Y b+ and Y b. Several optical clocks have already achieved better stability than the best

microwave clocks.

1.2.1.2 The state-of-the-art

The rubidium, cesium and hydrogen maser clocks are commercially available atomic frequency

standards without using the laser cooling technique. The best hydrogen maser exhibits a

fractional frequency stability of ∼ 10−15 for integration times longer than 104 s.

Two major types of cold-atom microwave frequency standards are the rubidium and

cesium fountain clocks, which typically show a fractional frequency stability of a few 10−16

for long term (Gerginov et al., 2010; Jefferts et al., 2007; Levi et al., 2006; Parker, 2010;

Szymaniec et al., 2005; Vian et al., 2005). The PHARAO1 atomic clock will be launched in

2013 with a projected fractional instability and accuracy of 10−16, according to the plan of

the ACES (Atomic Clock Ensemble in Space) project (Much et al., 2009). It is a cesium cold

atomic clock, and may become the best microwave clock in the future, thanks to improved

interrogation times as result of lack of gravity.

Either single ion isolated in a ion trap or atoms confined in optical lattices can be used to

realize optical frequency standards. Both methods enable the interrogation of atomic samples

in a confined space with dimensions less than the wavelength of the probe light (Lamb-Dicke

regime). Thus, the Doppler broadening of the clock transition is well reduced (Dicke, 1953).

1Projet d’horloge atomique par refroidissement d’atomes en orbit
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1.2 Frequency metrology

The neutral atom clock has achieved a fractional frequency instability of ∼ 10−16 (Campbell

et al., 2008), while the ion clock has reached a fractional uncertainty of slightly less than

10−17 (Chou et al., 2010).

The operation cycle of cold atoms/ions clocks is about 1 s or longer, limiting the control

bandwidth of the local oscillator’s frequency noise. Therefore, the Dick effect degrades the

frequency stability of clocks due to local oscillator noise and pulse operation with dead-time

(Dick, 1987; Quessada et al., 2003; Santarelli et al., 1998). Consequently, it is essential to

use ultra-stable local oscillators in these clocks. Fortunately, local oscillators stabilized to

the cryogenic sapphire or ultra-stable Fabry-Perot cavity can reach a fractional stability of

10−15 or better at 1 s integration time.

The general theory of relativity gives that the clocks frequency located at gravitational

potential U1 and U2 differ fractionally by (U1 − U2)/c2, where c is the speed of light. The

geoid is a hypothetical surface of constant gravitational potential. At present, the geoid

fluctuation effect limits the fractional frequency stability estimated to be a few 10−17 per

year (Kleppner, 2006; Pavlis & Weiss, 2003). In order to overpass this limitation, it may be

necessary to operate an optical clock in space, where spatial and temporal variations of the

Earth’s gravitational field are much smaller than on the ground.

1.2.2 Optical frequency synthesizer and frequency measurement

Optical frequency standards, as secondary standards, require calibration by comparison with

primary frequency standards. The first optical frequency measurement (∼ 1 THz) was carried

out in 1967 at MIT (Hocker et al., 1967). In 1986, an optical frequency synthesizer link-

ing infrared (30 THz) and microwave (9.2 GHz) frequencies was performed at BMM-LPTF

(Clairon et al., 1988). In 1990s, the early bridges from microwave frequency (9.2 GHz) to

visible optical frequency were established at BNM-LPTF and PTB1 (Schnatz et al., 1996;

Touahri et al., 1995). These synthesizer chains are complex and costly, including a lot of

frequency-conversion stages.

The invention of the optical frequency comb synthesizer provides a shortcut for converting

frequencies between the optical and micorwave/RF ranges (Diddams et al., 2000; Udem et al.,

1999). Taking advantage of the mode-locked laser and ultra-high nonlinear fiber techniques,

the optical comb compares the frequencies over a wide span from the mircrowave/RF to

1the national frequency metrology laboratory in Germany
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1. INTRODUCTION

optical frequencies in a single stage. This synthesizer can also directly yield an optical-to-

optical frequency conversion in its operational frequency range.

Figure 1.2: Operational frequency range of optical combs [from Thorpe & Ye (2008)], a)
Ti:sapphire mode-locked laser, b) erbium-doped fiber laser, c) ytterbium-doped fiber laser,
d) difference frequency generation, e) optical parametric oscillator, f) second-harmonic gen-
eration and sum-frequency generation, g) high-harmonic generation, note that d-g are the
frequency conversion techniques.

Fig.1.2 shows the operational frequency ranges of different optical combs, covering the

wavelength span from 75 nm to 10 µm. Optical frequency combs have also been used to

measure infrared frequencies with the sum-frequency generation (SFG) technique at 3.39 µm

(Mucke et al., 2004) and 10 µm (Amy-Klein et al., 2004, 2005). The fractional frequency

instability of a conversion between optical frequencies is in the range of 10−17 at 1 s, and

averages down to the range of 10−19 for integration times longer a few tens of second (Ma

et al., 2007). The instability of a conversion between microwave and optical signals is slightly

worse, mainly limited by the detection noise at the microwave frequency. It reaches about

10−16 at 1 s and in the range of 10−19 at 103 s (Zhang et al., 2010).

1.3 Laser frequency stabilization

The laser frequency is determined by the resonant mode of the laser optical cavity. Because

of spontaneous emission and cavity optical length variations, the linewidth of a diode laser

is typically in the megahertz region, while the linewidth of a fiber laser is in the kilohertz

region. In order to reduce the laser frequency noise, the laser frequency can be stabilized to

a more stable external reference.
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1.3 Laser frequency stabilization

There are several methods on laser frequency stabilization with various types of references,

whose stability determines the stabilized laser frequency in the control bandwidth. I would

like to introduce the techniques of laser frequency stabilization on a short ultra-stable Fabry-

Perot (FP) cavity and on a long fiber-based interferometer.

1.3.1 Principle

Figure 1.3: General scheme of a frequency stabilized laser.

Fig.1.3 shows the general scheme of a frequency stabilized laser. This scheme is a basic

negative feedback control system. An error signal indicating the laser noise is obtained by

comparing the laser signal with the external reference. And then, the loop filter corrects the

laser frequency noise with negative feedback.

1.3.2 Cavity-stabilized laser

1.3.2.1 A brief history

For the cavity-stabilized laser, the error signal was first obtained by detecting the transmission

signal of the cavity (Barger et al., 1973; White, 1965). This signal is proportional to the cavity

stored power.

A higher finesse of the cavity is a more sensitive discriminator of the laser frequency.

However, the time response of the transmitted signal is inversely proportional to the cavity

finesse. Consequently, a higher cavity finesse leads to a slower response of the error signal

and thus a bandwith reduction of the noise correction. With this approach, the slow response

of a high finesse cavity limits the bandwidth of the laser frequency noise suppression.

In order to solve the problem, an alternative method makes use of a reflecting reference

interferometer to produce the error signal (Wieman & Gilbert, 1982). This is a Michelson

interferometer with a mirror and a FP cavity at the ends of two arms respectively. Therefore,

it yields the phase difference between the incident and cavity-stored laser signals. Thus, the
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1. INTRODUCTION

response rate of this error signal is no longer limited by the cavity finesse, leading to a broader

bandwidth for the laser frequency noise rejection.

A better approach is the Pound-Drever-Hall (PDH) method borrowed from the microwave

cavity stabilization technique (Pound, 1946). It modulates the cavity incident signal with

a frequency much higher than the cavity response (Drever et al., 1983). Thus, the cavity

stored energy will be roughly constant when the laser frequency is scanned over the cavity

resonance. Cavity reflected signals are composed of resonant and off-resonant signals. Similar

to Wieman’s approach, this method detects the reflected signals from the cavity, therefore,

produces the phase difference between the incident and cavity-stored signals. Consequently,

the control bandwidth of the PDH method is also not limited by the cavity response. On

the other hand, this method separates the compared laser signals in frequency rather than

in space. As a result, this system has no additional noise induced by non-common optical

pathes as using Wieman’s approach. Furthermore, with the heterodyne detection in the

PDH method, it is easier to obtain a low noise detection than with the homodyne detection

of Wieman’s approach. Consequently, the PDH method has become one of the most popular

technique for laser frequency stabilization.

1.3.2.2 The state-of-the-art

The lowest noise lasers are realized using laser frequency stabilization onto a short rigid ultra-

stable high-finesse cavity with the PDH method (Alnis et al., 2008; Ludlow et al., 2007; Millo

et al., 2009b; Webster et al., 2007, 2008; Young et al., 1999). Thanks to improved coating

techniques, the cavity finesse can reach a level of 106, leading to a high signal-to-noise ratio

for laser frequency noise detection. Consequently, the laser frequency noise is mainly limited

by the length variation of the cavity. The best fractional frequency stability is in the range

of 10−16 at 1 s integration time for a 10 − 20 cm cavity. The laser frequency stability for

short term is limited by the thermodynamic effect of the cavity mirrors, which is inversely

proportional to the cavity length (Numata et al., 2004). Extension of the cavity length can

further improve the stability of the cavity.

On the other hand, the vibration sensitivity and temperature sensitivity has been studied

both theoretically and experimentally (Alnis et al., 2008; Legero et al., 2010; Millo et al.,

2009b; Webster et al., 2007). As a result, the requirement of the cavity vibrational and

thermal isolations from the environment thus been made less critical, which reduces the

complexity and cost of the whole system.
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1.4 Current challenge: frequency dissemination

However, the ultra-stable cavity-stabilized laser requires alignment of free-space optical

components and spatial mode matching. Moreover, this type of laser is expensive, bulky and

fragile, and usually works at a fixed frequency.

1.3.3 Fiber-stabilized laser

Chen (1989) originally put forward and experimentally demonstrated stabilization of a laser

frequency onto a fiber-based Mach-Zehnder interferometer. The tunable fiber-stabilized laser

was first reported about 10 years later (Boggs et al., 1998; Greiner et al., 1998). This technique

was later studied by additional groups (Barber et al., 2010; Cliche et al., 2006; Cranch, 2002;

Crozatier et al., 2006; Gorju et al., 2007; Jiang et al., 2010; Kéfélian et al., 2009a; Roos et al.,

2009; Satyan et al., 2009; Takahashi et al., 2008).

Fiber-stabilized lasers have shown a few excellent features:

• Ultra-low frequency noise: Its level is comparable with that of an ultra-stable cavity-

stabilized laser for Fourier frequencies higher than tens of hertz (Jiang et al., 2010;

Kéfélian et al., 2009a).

• High linearity frequency sweep: The non-linear frequency error is less than 50 Hz

peak-to-peak over a 600 MHz frequency span (Jiang et al., 2010), and the fractional

non-linearity reaches a sub-ppm (part per million) level over a ∼ 5 THz span (Roos

et al., 2009).

• Fast and wide range frequency tuning: The frequency scan rate is up to a few THz/s

(Gorju et al., 2007), and the sweep span is up to ∼ 5 THz (Roos et al., 2009).

In addition, these lasers are cheap, simple, compact and robust. The frequency noise of these

lasers is mainly limited by environmental noise, which can be improved using better isolation.

1.4 Current challenge: frequency dissemination

1.4.1 The need for ultra-stable frequency transfer

Ultra-stable frequency dissemination is necessary for many applications such as:

• Time and frequency metrology: Ultra-stable frequency standards are bulky and ex-

pensive devised that must be maintained by experts at metrology laboratories. The

9
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fractional frequency uncertainty of optical clocks has progressed to the level of 10−17

at a few hours integration time. In order to precisely and accurately evaluate these

clocks, frequency transfer links with a comparable or better stability have to be used

for comparing their frequencies.

• Fundamental test of physics: With recently developed atomic clocks and optical comb

synthesizers, frequency measurements can be used to test different models of funda-

mental physics to new boundaries. As an example, clock frequency comparisons allow

us to test the stability of the fundamental constants. Clock frequencies are dependent

on fundamental constants such as the fine-structure constant α (Fischer et al., 2004;

Fortier et al., 2007; Marion et al., 2003; Peik et al., 2004) and the electron-to-proton

mass ratio µ (Shelkovnikov et al., 2008). High-sensitivity frequency measurements are

also a key point for parity violation test in chiral molecules (Darquié et al., 2010).

• Astro-physics: In order to improve resolution, distributed antennas are used in as-

tronomical projets, including the very long baseline interferometer (VLBI), the NASA1

deep space network (DSN) and the Atacama large millimeter/submillimeter array (ALMA).

Stable time and frequency distribution must be applied for these systems to work prop-

erly.

• Particle physics: large particle accelerators, for instance the Deutsches Elektronen-

synthrotron (DESY), the large Hadron Collider (LHC). These system need a precise

phase control of the electromagnetic field for accelerating partial clusters and a precise

synchronization for detection Wilcox et al. (2009).

Time and frequency transfers have a close relationship and can convert each other. The

time transfer usually transmits a coded signal, while the frequency transfer transmits the

frequency signal. With a ultra-low noise oscillator tracking the received time transfer signal

at the remote end, a time transfer is equivalent to a frequency transfer within the tracking

bandwidth. With a dead-time free frequency counter continuously recording the frequency

transfer signal at the remote end, a frequency transfer is equal to a time transfer.

1the national aeronautics and space administration of the United States
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1.4 Current challenge: frequency dissemination

1.4.2 Satellite-based link

1.4.2.1 Traditional microwave link

The satellite-based transmission is the most widely used method for the time and frequency

transfer. These links are mainly based on the two-way satellite time and frequency transfer

system (TWSTFT) or the global positioning system (GPS).

The TWSTFT system typically uses communication satellites placed in geosynchronous

orbits with an altitude of ∼ 35800 km. The link is composed of an up-link and a down-link

with carrier frequencies of 14 GHz and 11 GHz respectively. The GPS system has 24 satellites

in ∼ 20200 km orbits. These satellites provide two down-link signals with carrier frequencies

of 1575 MHz and 1228 MHz. The transmission instability is at the level of 10−15 at one-day

integration time with the TWSTFT or GPS carrier-phase transfer technique. The standard

GPS technique is capable of giving a similar quality of data by averaging over two days or

longer (Bauch et al., 2006).

1.4.2.2 Microwave link for ACES

The link of ACES is a dedicated two-way microwave link, including two down-links and one

up-link. The satellite for ACES project will be placed in a 400 km orbit. The carrier frequen-

cies of one down-link and the up-link are in Ku-band (14.7 GHz and 13.5 GHz respectively),

which is similar to the TWSTFT system. However, it has an extra down-link in S-band (2.2

GHz), in order to determine the total electron content (TEC) and correct for the ionosphere

time delay. Furthermore, a higher coding rate (100 Mchip/s) is used in this link than that

of the TWSTFT and GPS systems, allowing a better time measurement resolution. This

microwave link can compare on board clock and earth-based clocks with a time resolution of

7 ps per day and 23 ps at 10 days, corresponding to ∼ 10−16 and ∼ 3 × 10−17 (Cacciapuoti

& Salomon, 2009; Cacciapuoti et al., 2007; Laurent et al., 2008).

1.4.2.3 Free-space optical link

One free-space optical link T2L2 (transfer time by laser link) system has been flying onboard

JASON-2 satellite in a 1336 km orbit since June 2008. By using very short light pulses, this

link realizes a synchronization between the ground clocks and space clock of the satellite.

Time transfer between several remote ground clocks is therefore obtained through these

individual space-ground time transfers. A common view mode can be realized for comparing
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ground clocks within 5000 km, while a non-common view mode has to be used for longer

distance time comparisons. The evaluation of T2L2 time transfer capability is presently

ongoing, and it offers a prospect to reach a time resolution of ∼ 10 ps after one day averaging

for clock comparisons in common view (Cacciapuoti & Salomon, 2009; Samain et al., 2007,

2009). It corresponds to a fractional frequency instability of ∼ 10−16 at one day integration

time.

Another type of free-space optical link transfers directly the optical frequency with a

continuous-wave (CW) laser signal. Djerroud et al. (2010) reports such a 5 km link between

a telescope and a ground target with a fractional frequency instability of 10−17 at hundreds

second integration time.

However, the performance of the free-space optical links strongly depends on the location

and the atmosphere conditions.

1.5 Fiber links

The fractional frequency stability of best atomic clocks has already reached the level of 10−16

or better at a few hours integration time. Clearly, the current satellite-based links do not

match the requirement of transferring these clocks’ frequencies.

Thanks to the improvement of fibre fabrication technique and the development of the

commercial communication system, fibre networks show features of low noise, low loss, and

are accessible almost everywhere in the world. Consequently, fibre links become a very

appropriate candidate for transferring ultra-stable frequency signals (Lutes, 1980).

There are three types of frequency transfer techniques using fiber (Foreman et al., 2007a):

• The microwave frequency optical link uses a CW laser carrier to transfer an am-

plitude modulation frequency on the laser signal (Calhoun et al., 2000; Daussy et al.,

2005; Kumagai et al., 2009; Lutes, 1980; Narbonneau et al., 2006; Ye et al., 2003). The

instability of the link can be improved by increasing the modulation frequency to reduce

the detection noise effect and scrambling the polarization to suppress the polarization

mode dispersion effect. With these improvements, a 86 km telecom urban link exhibits

a fractional instability of ∼ 10−15 at 1 s integration time, and below 10−18 at one day

(Lopez et al., 2008, 2010a).
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• The optical comb link transfers the mode-locked laser signal over the fiber networks

(Holman et al., 2004; Kim et al., 2008; Marra et al., 2010). This link transfers many op-

tical frequencies in a single operation. However, the power in each optical frequency is

very weak, therefore, limiting the transmission distance. Consequently, the transferred

frequency is usually just the repetition frequency and its harmonics for long-distance

transmission. The fiber dispersion should be compensated, so as to avoid any broaden-

ing of the laser pulse. Recently, a 50 km spooled optical fiber link showed a fractional

instability of a few 10−15/τ for integration times τ of 1−20 s (Marra et al., 2010). The

spectrum of this pulse laser is a 90-nm-wide comb centered at 1.56 µm.

• The optical carrier link presents the best frequency stability among these frequency

transmission techniques. It has been developed by several research groups (Foreman

et al., 2007b; Grosche et al., 2009; Hong et al., 2009; Jiang et al., 2008; Kéfélian et al.,

2009b; Lopez et al., 2010b; Ma et al., 1994; Musha et al., 2008; Newbury et al., 2007;

Terra et al., 2009, 2010; Williams et al., 2008). Almost all of these optical links with

distances of 100− 450 km show a fractional instability in the range of 10−19 with rather

short integration time (a few hours).

Note that a link can combine the above cited techniques. For instance, Wilcox et al.

(2009) describes a link, whose transfer frequency is in the microwave domain, whereas the

noise compensation is based on the measurement of the optical carrier phase.

1.6 Subject of the thesis

This thesis is dedicated to the development of continental distance frequency transfer links

with an instability of ≤ 10−18 for one-day integration. The long-term objective is to connect

all national laboratories metrology laboratories as well as some physics laboratories in Europe.

These physics laboratories (e.g. LPL, LKB...) would benefit from having access to the best

remote locale clock to perform ultra-high sensitivity tests of fundamental physics. We adopt

the approach of the optical carrier link.

This thesis contains following steps towards this objective:

1. Develop ultra-stable cavity-stabilized lasers to be the optical source for the link exper-

iments. These laser sources exhibit frequency fluctuations less than 1 Hz for 1 − 10
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s measurements. The stability is mainly limited by the thermodynamic effect of the

reference cavity.

2. Study and realize ultra-stable tunable fiber-stabilized laser systems. These lasers have

a flexible frequency tunability with ultra-low frequency noise comparable to the cavity-

stabilized laser for Fourier frequency higher than a few tens of Hertz. This type of laser

source can be used in the repeater station of the optical link and other for applications

(e.g. free space optical link).

3. Transfer the ultra-stable optical signal over 100− 200 km via dedicated fiber networks.

4. Transfer the ultra-stable optical signal via public networks on a dedicated channel.

5. Extend the link to 300 km with a cascaded approach.

1.7 Outline

This thesis contains five chapters:

• Chapter 1: Introduction.

• Chapter 2: Description and discussion of the home-made ultra-stable cavity-stabilized

laser.

• Chapter 3: Presentation of the fiber-stabilized laser.

• Chapter 4: Optical link with the description of the principle and a few experiments of

the optical carrier frequency transfer over 86− 300 km.

• Chapter 5: Conclusions and future work.
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Chapter 2

Ultra-stable cavity-stabilized laser

This chapter describes the development of a sub-Hz linewidth 1542 nm wavelength laser source

by stabilizing the laser frequency onto a cavity with the Pound-Drever-Hall (PDH) method

(Drever et al., 1983).

With the PDH method, the high finesse cavity determines the locked laser frequency,

because the laser frequency noise and other technical noises are suppressed below the cavity

noise by a high bandwidth control. The noise sensitivities of the high finesse cavity (due to

temperature fluctuations, mechanical vibrations, thermal noise etc.) become the limitation

of the laser frequency noise. Effects of the cavity’s material (Callen & Greene, 1952; Greene

& Callen, 1952; Numata et al., 2004), shape and mounting (Millo et al., 2009b; Notcutt et al.,

2005; Webster et al., 2007) were studied and understood. As a result, many sub-Hz linewidth

laser sources have been developed since late 1990s (Millo et al., 2009b; Notcutt et al., 2005;

Seel et al., 1997; Webster et al., 2007; Young et al., 1999). The lowest frequency noise lasers

are realized with an ultra-stable cavity up to now, even though an alternative approach to

the ultra-low noise laser are explored (Meiser et al., 2009).

We developed two cavity-stabilized sources with the PDH method for ultra-stable fre-

quency transfer experiments (Jiang et al., 2008; Kéfélian et al., 2009b; Lopez et al., 2010b).

These lasers also have been used in experiments of ultra-stable microwave frequency gen-

eration (Millo et al., 2009a,c) and evaluation of fiber-stabilized lasers (Jiang et al., 2010;

Kéfélian et al., 2009a). Our ultra-stable lasers present frequency noise and stability at the

state-of-the-art level.

This chapter briefly introduces the principle of the PDH locking. After that, it shows

the experimental setup, and discusses design considerations and various noise contributions
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2. ULTRA-STABLE CAVITY-STABILIZED LASER

of the stabilization system. Finally, it gives a detailed operational process and experimental

results of these developed lasers.

2.1 Principle of the PDH method

This part only gives a brief introduction on the PDH method. Detailed explanation on this

method can be found in several papers (Black, 2001; Day et al., 1992; Zhu & Hall, 1993).

Figure 2.1: Scheme of the PDH method.

Fig.2.1 shows the basic layout of the PDH locking. Optical signals are drawn in solid line,

while other signals are drawn in dashed line. A ν frequency laser signal is phase/frequency

modulated by a radio-frequency (RF) signal at a frequency of Ω
2π (� ∆νcavity), where ∆νcavity

is the cavity resonance linewidth 1. Then, the input of the Fabry-Perot cavity contains optical

signals at frequencies of ν − Ω
2π , ν and ν + Ω

2π . When the carrier frequency ν is close to a

resonant frequency of the cavity, the reflected carrier wave can be regarded as a combination

of the reflected incident signal and the backward leakage of cavity-stored signal. We assume

that the optical carrier signal is coupled to a cavity mode. For high frequency laser frequency

fluctuation, The phase variation of the leakage signal at the resonant frequency does not

follow that of the incident signal at high frequencies; while the phase variation of reflected

sideband signals does, because the cavity directly reflects these non-resonant signals; thus,

the difference between them indicates laser frequency fluctuations δν without degradation

1the linewidth is the full-width of half-maximum transmission.
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2.2 Ultra-stable Fabry-Perot cavity

due to a slow frequency response of the cavity. The corresponding error signal is obtained by

demodulating the beat-note signal between the carrier and sidebands. The RF phase shifter

is required to set the phase relationship between the demodulation and detected signals to be

in phase, leading to a maximum demodulation efficiency. The slope of the error signal with

respect to the laser frequency fluctuation is given by Black (2001):

D =
8
√

PcPs

∆νcavity
, (2.1)

where Pc is the optical power in carrier, Ps is the optical power in one sideband, it has been

assumed that the carrier transmission contrast, the photo-detector’s quantum efficiency and

the demodulation efficiency are unity. The principle of this method is to use the cavity-

stored signal as reference to detect the phase/frequency noise of laser signal, which is not at

the cavity resonant frequency. In fact, a sideband signal instead of the carrier one can be

stabilized onto a cavity resonant frequency (Livas et al., 2009). The cost is that the detection

noise effect is higher when the same optical signals are used. However, this effect usually can

be reduced by using a higher incident optical power.

The laser frequency can be stabilized onto any cavity mode. However, for a flat-concave

Fabry-Perot cavity, a higher order mode may correspond to a broader mode linewidth and a

lower frequency discriminating efficiency due to the diffraction effect (Kleckner et al., 2010),

resulting in stronger technical noise effects. Furthermore, the TEM00 is the most robust

mode in terms of spatial coupling. As a result, the TEM00 mode is typically chosen for laser

frequency stabilization. It is worth noting that a high order mode coupling corresponds to a

bigger beam size, which may average down the thermodynamic noise effect.

2.2 Ultra-stable Fabry-Perot cavity

In this section, I introduce basic concepts on the Fabry-Perot (FP) cavity, and describe the

ultra-stable cavity, including the shape, material, mounting and noise effects.

2.2.1 Fabry-perot cavity

A FP cavity, also called a FP interferometer, is typically made of a spacer and two highly re-

flecting mirrors. Its resonant effect leads to frequency-dependent transmission and reflection.

In fact, the cavity length L and the mirror reflectance R =
√

Rmirror 1 ×Rmirror 2 determine

the cavity parameters: (Lipson et al., 1995)
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2. ULTRA-STABLE CAVITY-STABILIZED LASER

• The free spectral range (FSR) of the cavity is the frequency span between two successive

TEM001 modes given by

∆νFSR = c/2L, (2.2)

where c is the speed of light.

• The optical intensity decay time of the cavity τ is given by

τ ≈ |L lnR/c| ≈ L

c(1−R)
, (2.3)

where 1−R is much less than 1.

• The mode linewidth ∆νcavity is the full-width of half-maximum transmission. It is given

by

∆νcavity =
1

2πτ
. (2.4)

• The cavity finesse F is the ratio of the FSR to the mode linewidth. It is only determined

by the mirror reflectance R, and given by

F = ∆νFSR/∆νcavity ≈ π/(1−R) ≈ πτc/L (2.5)

• The quality factor of the cavity is the ratio of the resonant frequency to the mode

linewidth

Q = ν0/∆νcavity ≈ 2πτν0, (2.6)

where ν0 is the cavity resonant frequency (∼ 2×1014 Hz). One has Q ≈ ν0δφ/δν, where

δφ is the variation of a small phase difference between the cavity backward leakage

signal and the incident signal, δν is the laser frequency fluctuation around the cavity

resonance.

2.2.2 The ultra-stable cavity system

The reference cavity is a 10 cm FP interferometer with a pair of flat-concave highly reflecting

mirrors. The radius of the concave mirror is 50 cm. The specified finesse of the cavity is

better than 2 × 105, corresponding to ∆νcavity < 8 kHz. Having a low coefficient of thermal

expansion (CTE) is essential to the ultra-stable cavity. Both spacer and mirror substrate of

our cavity are made of ultra low expansion glass (ULE), whose CTE is typically as low as
1Usually, we stabilize the laser frequency onto the TEM00 mode of the cavity.

18



2.2 Ultra-stable Fabry-Perot cavity

Figure 2.2: Scheme of the ultra-stable cavity.

10 parts per billion (ppb) per Kevin. Indeed, ULE is a titania-doped silicate glass that has

a specified thermal expansion minimum at some temperature Tc around room temperature.

With sufficient thermal isolation and controlling the operation temperature to be about Tc,

the drift rate of this type of cavity can be reduced to < 2 × 10−16 /s (Alnis et al., 2008;

Webster et al., 2008). The cavity is supported by a cradle inside one layer thermal shield and

a vacuum chamber (see Fig.2.2). The whole reference cavity system is mounted on a bread

board, which is laid on a commercial vibration isolation platform. All of them are enclosed

with a wooden box with acoustic damping foams. The platform and the wooden box provides

an acoustic noise attenuation of 102 − 103 in amplitude.

2.2.3 Noise effects on the cavity system

There are various noise effects on the laser frequency induced by: thermodynamic noise of

the cavity, vibration, laser power variation, pressure fluctuation and temperature fluctuation.

The cavity system design is based on the analyses of these effects. It is worth noting that

these laser sources were designed for the optical link experiment with best performance laser

sources. Thus, we trade somewhat off the performance for simplicity.
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2.2.3.1 Thermodynamic noise of the cavity

The dominant limitation to the laser frequency noise is usually the thermodynamic effect of

the spacer, the mirror substrate and the mirror coating. The thermodynamic effect on laser

frequency can be evaluated, based on the fluctuation dissipation theorem (FDT) (Callen &

Greene, 1952; Greene & Callen, 1952). The induced laser frequency noise power spectral

density (PSD) is given by Numata et al. (2004) Sν−spacer(f) = ν2

L
4kBT
2πf

1
3πR2

sE
φspacer

Sν−mirror(f) = ν2

L2
4kBT
2πf

1−σ2
√

πEω0
φsub

(
1 + 2√

π
1−2σ
1−σ

φcoat

φsub

d
ω0

) , (2.7)

where Rs is the spacer radius 10 cm, L is the spacer length 10 cm, T is the temperature

∼ 300 K, E is the Young’s modulus 6.8 × 1010 Pa, σ is Poisson’s ratio 0.18 (ULE), φ is the

mechanical loss of materials 4 × 10−4 for the coating and ∼ 1.7 × 10−5 for ULE glass (in

power), ω0 is the beam radius ∼ 0.33 mm, d is the coating thickness 2 µm. For our cavities, the

thermodynamic effect due to the mirror coatings is ∼ 2×10−2/f Hz2/Hz which limits the laser

frequency noise for low Fourier frequencies, while the ULE spacer induces a thermodynamic

noise of ∼ 3 × 10−5/f Hz2/Hz. By using a lower loss material as the mirror substrate (e.g.

fused silica), this limitation can be reduced (by a factor of ∼ 4). However, the fused silica

mirror has a CTE about 2 orders of magnitude higher than that of ULE glass, requiring

a much better thermal isolation to maintain the same rate of the cavity temperature drift.

Actually, it is possible to combine the low thermodynamic effect of a fused silica mirror and

the low CTE of an ULE mirror by adding an ULE ring on the silicon mirror (Legero et al.,

2010).

2.2.3.2 Vibration sensitivity

The vibration noise leads to the cavity deformation, resulting in excess laser frequency noise.

Usually, the ultra-stable cavity system is isolated from this noise. However, use of a lower

vibration sensitivity cavity can decrease the vibration isolation requirement. Consequently,

it simplifies the isolation system. We design our cavity [see Fig.2.3 and Millo et al. (2009b)]

by starting from the idea of symmetry place and using an approach based on finite element

analysis (Alnis et al., 2008; Chen et al., 2006; Nazarova et al., 2006; Notcutt et al., 2005;

Webster et al., 2007). This cavity (see Fig.2.3 and Fig.2.4) is mounted on an aluminum

cradle with 4 Viton pads. The first point of this design is a minimization of the vibration
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2.2 Ultra-stable Fabry-Perot cavity

Figure 2.3: Drawing of the cavity (in mm).

Figure 2.4: Drawing of the cavity mounting (in mm): cavity support (green), ULE cavity
spacer (grey), ULE mirror (blue).
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sensitivities in all directions. The second point is a low vibration sensitivity variation with

respect to a supporting position change, requiring a comparably low mounting accuracy.

Experimentally, a cavity of the same configuration shows vibration sensitivities ( δl
l /a) to be

5 × 10−12 /ms−2 (z direction), 10−11 /ms−2 (y direction) and 3 × 10−12 /ms−2 (x direction)

(Millo et al., 2009b). The magnitude of these vibration sensitivities is at the state-of-the-art

level.

2.2.3.3 Laser amplitude noise effect

An optical power fluctuation results in a little resonant frequency fluctuation of the cavity.

This phenomenon may be caused by a coating absorption effect (Young et al., 1999) or a

radiation pressure effect (Caves, 1980; Dorsel et al., 1983). Whatever, this effect should be

proportional to the cavity circulating power for short terms. Thus, it can be approximated

as

C(f) =
δν(f)
δP (f)

= e
− f

∆νcavity
CpFν

L
≈ CpFν

L
, for f � ∆νcavity, (2.8)

where f is the Fourier frequency, δν is the variation of the laser frequency, δP is the variation

of transmission power, Cp is the conversion parameter mainly determined by the features of

the mirror and laser beam size, ν is the laser frequency, F is the cavity finesse, L is the cavity

length. In Young et al. (1999), this effect is about 1 Hz/µW of incident power. Their cavity is

made of the same materials as ours. According to Eq.2.8, we determine the parameter Cp to

be incident power
transmission power3× 10−21 m

µW .

2.2.3.4 Pressure fluctuation effect

Thanks to the low CTE of the spacer and mirrors (made of ULE) decreasing the thermal

isolation requirements, we use only one layer thermal shield. Consequently, the volume of

the chamber is small (∼ 10 liters). A 1
4 liter/s ion pump is sufficient to maintain the vacuum

to be a few 10−6 Pa. Thus, the effect of vacuum fluctuations is negligible in our case.

Another interesting effect is small scale refractive index fluctuation, which is usually

negligible. The motion of gas particles leads to a laser frequency noise power spectral density

(PSD) given by (Saulson, 1994)

Sν(f) = 25π5/2 α2
chemc2

λ5/2L3/2

ρ

v
e−

√
8πλLf/v Hz2/Hz, (2.9)
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2.2 Ultra-stable Fabry-Perot cavity

where f is the Fourier frequency, ρ the gas particle number in m−3, v the mean gas particle

speed in m/s, c the light speed in m/s, λ the laser wavelength in meters and αchem the

gas particle polarizability in units of volume (typically ∼ 10−30 m3). In practice, the laser

frequency noise induced by the gas particles motion is much below the technical vacuum

fluctuations, which are relevant to the variations of temperature and pressure. This induced

noise is independent of the cavity length. Experimentally, a ∼ 10−4 Pa vacuum level is

sufficient to realize a sub-Hz linewidth laser (Ludlow et al., 2007).

2.2.3.5 Temperature fluctuation effect

The temperature fluctuation degrades the cavity stability. In order to reduce the temperature

fluctuation effect, we isolate the cavity with the vacuum system and an acoustic damping

box.

Figure 2.5: Scheme of the vacuum system.

To also reduce radiative heating, we use a thermal shield. Fig.2.5 shows the vacuum

system scheme, where the thermal shield is used to enhance the thermal isolation. The

thermal shield is made of polished aluminum with inner and outer gold coatings, because

gold coatings give high reflectance over a broad spectrum span. The mounting configuration
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is rather simple. We fix four pieces of machined Teflon into the vacuum chamber with vacuum

glue, in order to block four short Viton rods (∼ 1.5 cm). In succession, we lay the thermal

shield on the Viton rods. After that, we put the cradle with the cavity in the shield. Here, four

little Viton rods are used to support the cradle, in order to reduce the thermal conductivity.

The radiation power is given by Stefan-Boltzmann law

P = AεσT 4, (2.10)

where A is the absorbtion area in m2, ε is the emissivity, σ is Stefan-Boltzmann constant

5.67× 10−8 W
m2K4 , T is the temperature in Kelvin. Thus, the temperature time constant can

be evaluated as

τ =
Cgm

dP/dT
≈ Cgm(A1ε1 + A2ε2)

3T 3A1A2ε1ε2σ
, (2.11)

where Cg is the heat capacity in J
gK and m is the mass in g. Assuming an emissivity of 0.02

for the shield, and a high emissivity (≈ 1) of the vacuum chamber and the cavity, the time

constants due to radiative coupling are estimated to be 2×105 s from the vacuum chamber to

the shield and 2×105 s from the shield to the cavity. The thermal attenuation is approximate

to be the time constant τ multiplied by 2πf , where f (� τ) is the temperature fluctuation

frequency. In our laboratory, the temperature control system has a ∼ 1 degree peak-to-peak

oscillation at ∼ 1/400 Hz. As for this signal, the total thermal attenuation through this

path is about ∼ 107. Thus, its radiative coupling effect is about 0.2 Hz peak-to-peak laser

frequency fluctuation. However, this isolation is less efficient for lower frequency temperature

variation. In addition, the acoustic-damping box also provides a one-order thermal isolation

with a time constant of ∼ 1 day. Note that the conduction path also degrades the thermal

isolation.

Usually, the optical signal coupled into the system is in the level of µW. A fraction of this

signal is absorbed by the mirrors of the cavity and windows of the vacuum system, whereas

this absorbtion rate is much below the exchanging rate of the thermal energy due to the

black-body radiation (see Eq.2.10). Thus, we neglect the effect of the laser signal absorption

on the cavity temperature.

2.3 Experimental setup

This section introduces the setup of the laser frequency stabilization system, which includes

the optical system and the electronic system.
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2.3.1 Optical system

Figure 2.6: Picture of the cavity in the vacuum chamber.

Fig.2.6 shows the picture of the cavity system, which is the key element of the laser

frequency stabilization.

The stabilized laser is a 1542 nm commercial fiber laser (Koheras Inc. 100 mW). The

linewidth of the free-running laser is less than 1 kHz for a 120 µs measurement. This laser

has two ports for laser frequency control: a temperature control port and a piezo-electric

transducer (PZT) control port. Their responses are slow, limiting the control bandwidth to

be less than tens of kilo hertz. In order to broaden the control bandwidth, we insert an free-

space acousto-optic modulator (AOM) into the optical path to correct the laser frequency.

The modulation delay time of this AOM is about 1 µs, which limits the control bandwidth

to be less than 1 MHz.

Fig.2.7 shows the scheme of the optical system. The fiber laser signal is coupled to free

space via the input optical collimator. Note that the fiber connecting the input collimator

and the output of fiber laser is a polarization-maintaining fiber. The polarization of the laser
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Figure 2.7: Scheme of the optical system (PD: photodiode; PBS: polarization beamsplitter
cube, QWP: quarter-wave plate, HWP: half-wave plate, AOM: acousto-optic modulator,
EOM: electro-optic modulator, PM: polarization maintaining, SMF: single mode fiber).

signal is adjusted to align to the first polarization beam-splitter (PBS) after passing through

a half-wave plate (HWP). Most of the optical signal passes through this PBS toward the

AOM, while nearly all the laser signal, which passes twice the AOM and the quarter-wave

plate, is reflected to the second PBS. Such an AOM double-pass configuration (in the dashed

frame) well maintains the spatial alignment when the AOM frequency is tuned (Donley et al.,

2005). The second PBS splits the laser signal into two parts. One part is sent to the cavity

for laser frequency stabilization; while the other is coupled out to be the stabilized laser

output. The power ratio between two parts is set by using a HWP in front of the second

PBS. After that, we modulate the phase of the laser signal for stabilization with an electro-

optic modulator (EOM). Unfortunately, the phase modulation is always accompanied with

some level of random amplitude modulation (RAM). The RAM leads to a disturbance on

the error signal, resulting in an additional laser frequency noise. This noise effect is sensitive

to the laser polarization state. Thus, a high quality polarizer is used to minimize the RAM.

After that, the laser signal is aligned to the cavity. The last PBS and QWP are applied to
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guide the cavity reflected signal to an avalanche photodiode, which produces the beat-note

signal of the optical carrier and sidebands.

Note that the incident surface of all optical components are tilted with respect to the

incident wave to avoid stray FP interferometer in the system. I optimize the laser beam profile

to match with the TEM00 mode by using lenses. The mode can be verified by monitoring

the beam profile of cavity transmission signal with a camera.

2.3.2 Electronic system

The electronic system mainly includes RF parts for modulation and demodulation optical

signals and a loop filter for generating the laser frequency control signals.

Figure 2.8: Scheme of the loop filter, K0 ∼ K4 are independently adjustable gains.

We use a 56 MHz quartz oscillator to produce simply the modulation and demodulation RF

signals. The RF phase shifter (see Fig.2.1) is a coaxial cable matched in length. The input of

the loop filter (i.e. servo amplifier in Fig.2.1) is the demodulated error signal. Its scheme is

shown in Fig.2.8. The sum output of the proportional gain and first three integrators controls

a voltage control oscillator (VCO), which drives the AOM, leading to a fast laser frequency

correction. The loop filter itself has a response bandwidth of about 2 MHz; while the maximum

loop control bandwidth is about 600 kHz mainly due to the limitation of the AOM control

delay. The AOM can only be tuned in a frequency range of ∼ 2 MHz, which is not enough

to compensate the frequency drift of the fiber laser. To enlarge the frequency control range,

we also control the laser frequency via the PZT stretcher port with a slow integration signal

of the VCO control voltage. In this way, the laser frequency can be corrected in a range of

> 1 GHz. Consequently, the laser can be stabilized for months without any adjustment.
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The detection noise of the photo-detector includes the shot noise and the Johnson noise.

The PSD of detection shot noise is given by (Black, 2001)

Se = 4hνPs, (2.12)

where Ps is the optical power in one sideband, it has been assumed that the photo-detector’s

quantum efficiency is unity. Eq.2.1) and Eq.2.12 give the laser frequency noise PSD (Black,

2001)

Sν(f) =
hν∆ν2

cavity

16Pc
Hz2/Hz, (2.13)

where h is the Planck constant. When a low incident optical power is used, the shot noise

effect could be weaker than the Johnson noise effect, which is inversely proportional to the

square of the incident power. For an ultra high finesse cavity (∼ 106), use of a few µW carrier

and ∼ 1 µW sidebands is usually sufficient to maintain the detection noise effect negligible.

The criterion is that the laser frequency noise is independent of the incident optical power

variation. In our case, the detection noise effect gets obvious only if the incident optical

power is less than ∼ 0.1 µW [Sν(f) ∼ 0.01 Hz2/Hz].

2.4 Operational process

The PDH method does not produce the error signal, if the laser is not coupled to the cavity

resonance. It is difficult to monitor and optimize mode couplings when the laser linewidth

is much larger than the cavity linewidth. In order to decrease the operation difficulty, most

of the research groups adopt a pre-stabilization stage (Ludlow et al., 2007; Notcutt et al.,

2005; Schoof et al., 2001; Young et al., 1999), even though it is not essential (Duan & Gibble,

2005). Our laser source has a linewidth of a few kHz, which is comparable to the linewidth

of the cavity resonance. Thus, no pre-stabilization stage is required. We develop our system

with following steps:

• Calculate the laser beam spatial intensity profile for the cavity mode coupling and

design the optical path from the fiber collimator to the cavity (Kogelnik & Li, 1966).

The 1/e2 widths (i.e. beam size) on the cavity mirrors are 0.31 mm and 0.35 mm. The

optical paths are shown in Fig.2.9, where the incident signal, the cavity reflected signal

and the laser output are drawn in solid, dotted and dashed lines respectively.
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Figure 2.9: Picture of the optical system in the acoustic isolation box.

• Preliminarily align the laser beam to the cavity. It will be very helpful if a visible laser

beam is used as a guide 1.

• Linearly sweep the laser frequency over more than a FSR with a signal generator con-

trolling the laser PZT port, and detect the transmission signal with a photodiode. We

usually find several peaks on the cavity transmission spectrum, which is monitored by

an oscilloscope with ”xy” mode, where ”x” is the output of the signal generator, ”y”

is the cavity transmission signal. These peaks correspond to the coupling mode of the

cavity. In this step, we can increase the cavity incident optical power to have a good

signal-to-noise ratio for monitoring.

• Optimize the mode coupling by adjusting mirror A and B (see Fig.2.9) until there is

only one well coupled mode over a FSR and the transmission signal should be as high as
1The visible laser beam can propagate through the cavity, because the high reflection coatings of the cavity

mirror are not efficient to that wavelength.
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possible. This mode usually is the TEM00 mode, which can be verified by monitoring

the transmission signal with a camera. When the TEM00 is coupled, the camera takes

an image of only one bright local spot.

• Maximize the detection efficiency, which is proportional to the peak-to-peak error signal,

by tuning the phase of the demodulation signal with an RF phase shifter (a delay cable).

In this step, we should keep the control loop open.

• Set the laser to be far away from the cavity resonance, and minimize the EOM amplitude

modulation effect by adjusting the polarizer (see Fig.2.7 and Fig.2.9).

• Stop sweeping the laser frequency and close the control loop to stabilize the laser fre-

quency onto the cavity.

• Finally, optimize the gains (see Fig.2.8) of the loop filter, according to the measured

laser frequency noise.

The carrier transmission contrast is measured to be more than 60%.

2.5 Measurement results

This section shows and discusses the experimental results, including cavity decay time, laser

amplitude noise sensitivity, the laser frequency noise, stability and vibration sensitivities.

2.5.1 Cavity optical decay time

The optical decay signal of this cavity is equal to Ae
t−t0

τ , where A is the initial optical power

at t0 time and t is the current time, τ is the cavity decay time. Once the laser can be locked

to the cavity, the cavity decay time can be accurately measured. First, we stabilize the laser

to the cavity. In succession, we record the optical transmission signal, and switch off the

incident optical signal with an RF switch on the AOM RF input. The optical decay signal is

then measured and shown in Fig.2.10. By fitting this signal, we determine the cavity decay

time to be ∼ 80 µs, corresponding to a cavity finesse of ∼ 8 × 105. Clearly, this is an ultra

high finesse cavity at the state-of-the-art level (see Tab.2.1).
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Figure 2.10: Measured optical decay in the cavity.

Table 2.1: Basic cavity Specifications

Item Value Unit

Cavity length.L 10 cm
Free spectral range.∆νFSR 1.5 GHz

Laser wavelength.ν 1.54 µm

Cavity decay time.τ 80 µs

Cavity linewidth.∆νcavity 2 kHz
Mirror reflectance.R 99.9996%

Cavity Finesse.F 800,000
Cavity quality.Q 1011

2.5.2 Sensitivity to the optical power

We constructed two independent and identical ultra-stable cavity-stabilized lasers. Thus, the

laser frequency fluctuation can be measured by comparing their frequencies. We determine a

cavity resonance shift of ∼ 10 Hz/µW with respect to the transmission power. With a few µW

transmission power of power stability better than 1% peak-to-peak, this effect is much less

than 1 Hz without extra power stabilization. According to Eq.2.8, the conversion parameter
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Cp of our cavity is 6 × 10−21 m
µW , which is comparable to that in Young et al. (1999) (see

Eq.2.8).

2.5.3 Frequency noise of the stabilized laser

Figure 2.11: Frequency noise PSD of two cavity-stabilized lasers, the measurement system
noise floor and the thermodynamic effect of cavity mirrors for two lasers.

The cavity-stabilized laser frequency noise is evaluated by using following steps. First, we

detect the beat-note signal between two cavity-stabilized lasers with a photodiode. The beat-

note signal is at a frequency of ∼ 380 MHz. The beat-note signal is down-converted to ∼ 25 MHz

by mixing with an RF signal provided by a commercial synthesizer. The measurement system

noise floor is dominated by the noise floor of a home-made low noise frequency-to-voltage

converter. In order to reduce the influence of this floor, we multiply the ∼ 25 MHz signal by

a factor of 4 by using low noise RF frequency multipliers. After that, we down-convert the

multiplied signal (∼ 100 MHz) to be 700 kHz with another commercial synthesizer. Then, we

transform the laser frequency fluctuations to voltage variations with the low noise frequency-

to-voltage converter. Finally, we evaluate the laser frequency noise by analyzing the converted

voltage signal with a fast Fourier transformer (FFT). The frequency noise PSD of the two

lasers is shown in Fig.2.11. In the range of 1 Hz to 10 kHz, it is well below that of a white
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frequency noise dominated 1 Hz linewidth laser. The 1/f noise for low Fourier frequency is the

contribution of the cavity mirrors’ thermodynamic noise. The calculated value (red dashed

line) well fits the experimental result.

2.5.4 Frequency noise of the free-running laser

Figure 2.12: Frequency noise PSD of a free running fiber laser and the measurement system
noise floor.

Fig.2.12 shows the free-running laser frequency noise. We use one cavity-stabilized laser

as the frequency reference to measure the frequency noise of the free-running laser. The only

difference from the last measurement is that we divide the beat-note frequency by a factor

of 10 instead of multiplying by 4. This is because the frequency-to-voltage converter requires

an input frequency in the range of 100 kHz− 1 MHz, whereas the free-running laser fluctuates

by a few MHz during a measurement. Consequently, the measurement range is enlarged 40

times compared to the previous experiment, leading to ∼ 9 MHz. The measurement system

noise floor, multiplied by a factor of 402 (see Fig.2.12), is still negligible in comparison with

the frequency noise of the free-running laser. The PSD of the laser frequency noise is about

4× 105/f , where f is the Fourier frequency.
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2.5.5 Frequency fluctuation of the stabilized laser

Figure 2.13: Fractional frequency instability of the two cavity-stabilized lasers (0.3 Hz/s
frequency drift has been removed).

We evaluate the laser frequency stability using the overlapping Allan deviation of the

beat-note frequency recorded with a Π-type counter. After removing a linear drift of about

0.3 Hz/s, the Allan deviation (see Fig.2.13) is less than 2×10−15 for 1s integration time. The

laser linewidth is less than 1Hz for a measurement time of < 10 s. The frequency instability

of the ultra-stable cavity-stabilized laser is mainly limited by the thermodynamic effect of the

cavity mirrors and environmental temperature fluctuations. By using lower thermodynamic

effect materials (e.g. fused silica and cryogenically cooled sapphire) and a longer cavity,

the cavity stability definitely can be further reduced. For a 10 cm cavity with fused-silica

substrate mirrors, the instability can reach a level of a few 10−16 for 1 s integration time.

However, these approaches lead to a significant extra complexity out of the scope of our work.

2.5.6 Vibration sensitivity

Fig.2.14 shows the vibration sensitivity of the cavity measured at 4 Hz Fourier frequency

along the 3 directions. We measure them with following steps:
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Figure 2.14: Vibration sensitivity of the cavity.

• First, we inject a sinusoidal 4 Hz modulation voltage signal to the feedback port of the

active vibration isolation platform, producing a single tone vibration in one direction

(vertical, transverse or axial direction of the cavity);

• Second, we measure the stabilized laser frequency, and simultaneously record the plat-

form vibration with a low noise seismometer;

• Third, we calculate the laser frequency noise PSD Sν(4 Hz) and the vibration noise

PSD SV (4 Hz) by using the obtained data;

• Finally, the vibration sensitivity is determined to be 1
ν

√
Sν(4 Hz)

SV (4 Hz)
(ν: the laser fre-

quency) at 4 Hz Fourier frequency.

The error bars are due to the vibration crosstalk between different directions. These measured

values are 2− 3 times higher than those of a similar cavity reported in Millo et al. (2009b),

because the simple mounting (shown in Fig.2.2) can not guarantee restoring forces of the

cavity support. With the vibration isolation platform, the vibration noise induces some peaks

between 100 Hz and 1 kHz on the laser frequency noise spectrum (see Fig.2.11). Actually, one

laser’s vibration platform was not working well, when we did the measurement. However, it
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does not dominate the laser frequency noise for low Fourier frequencies, and its contribution

on the laser linewidth and stability is negligible.

2.6 Summary

In summary, we have developed two independent ultra-stable cavity-stabilized lasers with

the PDH method. Their frequency noise is limited by the fundamental thermodynamic effect

of the cavity mirrors for Fourier frequencies lower than ∼ 10 Hz. The laser linewidth is

less than 1 Hz for a less than 10 s measurement. Its frequency instability is close to 10−15

for 1 s integration time. The laser performance exceeds the requirement of the optical link

experiment (see later).
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Chapter 3

Fiber-stabilized laser

This chapter is devoted to the technique of stabilizing laser frequency on an optical fiber delay.

It introduces the operational principle and experimental setup of the fiber-stabilized laser in

the first part. In succession, it gives the noise analysis of this system. The measurement

results include the frequency noise spectra, instabilities and the linearity of the laser frequency

sweep, in addition to a realization of digitally locking this laser to a cavity-stabilized laser.

The vibration sensitivity of the reference fiber and techniques for reducing this sensitivity are

discussed in the last part.

3.1 Introduction

The cavity-stabilized laser exhibits excellent performance. However, this approach requires

fine alignment of free-space optical components and spatial mode matching. Moreover, a high-

finesse cavity is expensive, bulky and fragile. Furthermore, the PDH method is not convenient

to tune the laser frequency. To have a more robust, simpler, cheaper, transportable and

frequency-tunable laser with low frequency noise, other stabilization techniques are required.

An alternative method is to use an optical fiber as a reference to stabilize laser frequency.

A pioneer experiment was done about 20 years ago, using the approach of stabilizing laser

frequency onto a fiber delay (Chen, 1989). In this case, a fiber interferometer with two arms

of different length was used to detect the laser frequency fluctuations.

In fact, as early as 1980, such a delayed interferometer was used for the measurement

of laser frequency noise and laser linewidth (Okoshi et al., 1980). The delay arm of the

interferometer is usually an optical fiber, because the fiber is low noise, low-cost, low-loss,
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easily-available and easily-splicable. When the delay line is longer than the coherence length

of the laser, one can measure directly the laser linewidth. With a shorter delay line, the

output of the interferometer gives the laser frequency fluctuation δν for Fourier frequencies

f much below the inverse of the fiber delay time. Then, the laser frequency fluctuation δν

can be corrected by adding a frequency adjustment of −δν. In practice, we stabilize the

interferometer output to an given value, which enables to stabilize the laser frequency.

Most of the previous experiments (Cliche et al., 2006; Cranch, 2002) adopted an homodyne

detection configuration with an about 100 m fiber delay line. The frequency noise Power

Spectral Density (PSD) has achieved about 10 Hz2/Hz ranging from 100 Hz to 1 kHz with a

1/f2 spectrum for lower Fourier frequencies. With a vacuum chamber and a double pendulum

vibration isolation, a recent fiber-stabilized laser (Takahashi et al., 2008) obtained a frequency

noise PSD of a few Hz2/Hz ranging from 10 Hz to 100 Hz and a few tens of Hz2/Hz at 1 Hz.

On the other hand, some other research groups focused on the frequency tunability of the

fiber-stabilized laser (Boggs et al., 1998; Greiner et al., 1998). They have demonstrated the

fast tunability (Gorju et al., 2007) and high sweep linearity (Barber et al., 2010; Roos et al.,

2009) of the fiber-stabilized laser.

In this chapter, I will present a fiber-stabilized laser (Kéfélian et al., 2009a) with frequency

noise PSD at least 20 dB lower than the previous reported results in the 1 Hz− 10 kHz range.

This performance is due to the use of a heterodyne detection configuration and a longer fiber

delay line (1 km) with appropriate environmental isolation. In addition, with a 2.5 km reference

fiber we obtained even lower frequency noise for low Fourier frequencies and demonstrated

that this laser maintains low noise feature when it is frequency swept at a few tens of MHz/s

(Jiang et al., 2010). The peak-to-peak non-linear error is about 50 Hz for a 40.5 MHz/s

frequency sweep over a 600 MHz span.

3.2 Operational principle

This section discusses the operation principle, the transfer function and configurations of the

interferometer, which is used to stabilize the laser frequency.

3.2.1 Laser frequency stabilization principle

As shown in Fig.3.1, the laser signal is fed into the interferometer which has two arms

of different length. The laser frequency fluctuation is measured by the interferometer and
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Figure 3.1: Principle scheme of a fiber-stabilized laser (τ = nL/c).

suppressed by using a negative feedback at the laser frequency control port with a signal

produced by the loop filter. The interferometer output depends on the laser phase difference

between the two arms, thus it depends on τ1 − τ2 or L1 −L2. Usually, one arm (the fiber) is

much longer than the other, which is as short as possible. As a result, the fiber delay time τ

determines the stabilized laser frequency. To realize a low frequency noise laser, the reference

fiber needs a good thermal and vibrational isolation. With a proper configuration (see later),

this stabilization approach allows well controlled laser frequency tuning without physically

acting on the interferometer reference.

3.2.2 Transfer function of a length unbalanced delay line interferometer

Figure 3.2: Length unbalanced interferometer (homodyne detection configuration).
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The length unbalanced delay line interferometer is shown in Fig.3.2. We introduce the

following notation:

• The laser phase ϕ(t).

• The laser frequency ν(t) = ν0 + δν(t), where δν(t) is the laser frequency fluctuation.

• The fiber length Lf .

• To simplify, we suppose that the short arm has null length and delay.

• The fiber length difference L between two arms, L is equal to Lf or 2Lf depending on

the interferometer configuration (see later).

• The fiber delay difference between two arms τ = nL
c , where n is the effective refractive

index, c the speed of light in vacuum.

• The detected phase difference φ(t) = φ0 + δφ(t) between two arms, where δφ(t) is the

phase fluctuation. One has φ(t) = ϕ(t)−ϕ(t−τ) ≈ 2πν(t)τ when ν(t) is approximately

constant during delay τ .

The output of the interferometer is the beat-note signal obtained by combining the laser

signals and detected by using a photodiode (PD). In our experiment, we use standard phase

noise measurement methods (Goldberg, 2000) to analyze the output of the interferometer.

Then, we define the transfer function of the interferometer as the ratio of δφ(t) to δν(t). The

transfer function in the frequency-domain is (Sheard et al., 2006) T (f) = δφ̃(f)

δν̃(f)
= 1−e−i2πfτ

if , [rad/Hz]

δφ̃(t) ≈ 2πτδν̃(t) for f � 1/τ
, (3.1)

where f is the Fourier frequency, δν̃(f) and δφ̃(f) are Fourier transforms of δν(t) and δφ(t).

The numerator 1 − e−i2πfτ describes the beat-note between the laser frequencies at time t

and t− τ . The denominator converts the frequency fluctuation to the phase fluctuation.

The frequency response of the interferometer is plotted both for phase (blue dashed line)

and magnitude (black solid line) in Fig.3.3. At low frequencies (f � 1/τ), the magnitude is

approximately equal to 2πτ . A longer fiber leads to a higher detection sensitivity. However,

the detection noise is not sensitive to the fiber length. Consequently, the longer fiber increases

the signal-to-noise ratio, resulting in a less detection noise effect. We have also to consider
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Figure 3.3: Frequency response of the interferometer, where the magnitude in dB is normal-
ized to the low frequency response (2πτ).

the effect of the fiber noise, since this fiber noise is coupled into the laser frequency when

the laser is stabilized. Standard deviation of the total fiber delay fluctuations τ , arising from

spatially uncorrelated local delay fluctuations (e.g. intrinsic thermal noise), is proportional

to
√

Lf Wanser (1992), while the error signal scales as Lf . As a result, a longer fiber leads

to a lower system noise. However, for a frequency of integer times 1/τ (= c
nLf

or c
2nLf

),

the interferometer has null response, corresponding to zero gain points in the loop response.

Maintaining a bandwidth much larger than 1/τ is feasible, but requires a complex servo-loop

design (Sheard et al., 2006) and may suffer from system oscillations. The use of a complicated

multiloop system (Yao & Maleki, 2000) can eliminate the oscillation problem. However, for

a system containing only one interferometer, a trade-off between a lower noise floor and a

higher noise rejection bandwidth has to be found.

We define the quality factor Q = ν0
δφ
δν = 2πν0τ of the interferometer by considering the

discrimination slope at the stabilization frequency. This definition is the same as that of the

PDH method. Using an interferometer with L = 2 km , the quality factor of the interferometer

is 1.2 × 1010 for a 1.542 µm wavelength laser, which is equivalent to the quality factor of a

10 cm cavity with a finesse about 9 × 104. Note that the high finesse cavities (Millo et al.,
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2009b; Zhao et al., 2009) have finesse of usually a few 105, up to 1 ∼ 2×106 for the best one.

Different types of interferometers can be used to stabilize the laser frequency onto the

fiber delay time, and these different configurations may lead to different performances and

different features, such as frequency tunability.

3.2.3 Homodyne detection and Heterodyne detection

In terms of the optical beat-note frequency, the detection configurations is either homodyne

detection or heterodyne detection.

Homodyne detection configuration shown in Fig.3.2 is the simplest configuration, in

which there is only one optical frequency. The output detected by a photodiode is

VPD = Vdark + VOpt + KPD cos(φ), (3.2)

where Vdark is the voltage caused by the photodiode dark current, VOpt is the voltage induced

by the received average optical power, KPD is the detected beating amplitude. The last

term of Eq.3.2 represents the laser frequency fluctuation. In this condition, the error signal

is obtained by comparing the detected signal VPD with a given reference voltage Vs. The

amplitude noise of the first two terms and the reference voltage Vs directly superimposes on

the error signal. In addition, the flicker electronic noise of the photo-detector for low Fourier

frequencies degrades the detection signal. Consequently, it is difficult to achieve an ultra-low

frequency noise detection floor. In closed loop, the phase φ takes a value φs imposed by Vs.

Thus, the locked laser frequency ν is limited to a discrete series of values [φs/(2π) + q]/τ ,

where q is an integer. φs/(2π)+q is the difference of optical wave cycles in two interferometer

arms. The phase φs can be adjusted in a range of [−π/2,π/2]. Thus, the laser frequency can

be tuned in a limited range of 1/2τ .

Heterodyne detection is the configuration, in which the interferometer output is the

beat-note signal between two optical waves of different frequencies. The interferometer con-

verts the laser frequency fluctuation into the phase fluctuation of the detected radio-frequency

(RF) signal. The effect of detection amplitude noises induced by Vdark and VOpt is less than

that of the homodyne detection, because the RF mixer has a low amplitude-to-phase conver-

sion coefficient of ∼ 10−2. Moreover, that configuration does not require a voltage reference

Vs, which can induce an additional noise. Furthermore, with a proper modulation frequency,

the detection noise could be only dominated by the quantum noise floor. Consequently,
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the heterodyne detection has a much lower noise floor compared with the homodyne detec-

tion. However, the heterodyne detection is more complex, because it has two extra stages:

modulation and demodulation.

3.2.4 Heterodyne detection methods

There are two methods to generate heterodyne detection signal: phase modulation and fre-

quency shift of the optical signal.

Figure 3.4: Heterodyne detection configurations with phase modulation methods (similar to
the PDH method).

Fig.3.4a shows a heterodyne detection configuration by using a phase modulation

method. An Electro-Optic Modulator (EOM) inserted in one arm of the interferometer

modulates the phase of the optical signal. The photodiode output VPD is then Vdark +VOpt +

KPDcos[φ + Amsin(2πfmt)], where Am and fm are the modulation depth and frequency. We

assume that the phase of the demodulation signal is synchronized to the modulation signal

by adjusting θRF . Then, the demodulated signal at the output is

〈Voutput〉 = Keff 〈cos [φ + Amsin(2πfmt)]sin(2πfmt)〉
= KeffJ1(Am) sin(φ)

, (3.3)

where Keff is the detection efficiency, relevant to the optical power and converting efficiency

of the photodiode and the RF mixer, J1(Am) is the first order Bessel function. The laser fre-

quency fluctuation δν is then measured. The term KeffJ1(Am) indicates that the maximum

detection sensitivity occurs for a modulation depth of about 1.8 rad. The modulation depth

is not a critical parameter if the laser frequency noise is not limited by the photo-detector’s
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noise. This configuration has a lower detection noise floor than the homodyne detection;

and it can have a lower power consumption compared with the frequency shift heterodyne

(see later), because an EOM can be driven by a lower RF power than an acousto-optic mod-

ulator (AOM). Another approach shown in Fig.3.4b has an equivalent function. However,

there is no active component in the interferometer; therefore, a better environmental isola-

tion can be done for the interferometer and a lower interferometer noise is expected than

the first approach. It is worth noting that the laser frequency can not be tuned for either

configuration.

Figure 3.5: Heterodyne detection configuration with frequency shift method.

In order to tune the laser frequency in a wide range, the heterodyne signal has to be

produced by using frequency shift method (see Fig.3.5) (Boggs et al., 1998; Greiner et al.,

1998). An AOM added in one arm of the interferometer shifts the optical frequency from ν to

ν + fRF . The photodiode RF output KPD cos(φ + 2πfRF t) is demodulated, giving the error

signal Keffcos(φ + θRF ) at the interferometer’s output. By applying a negative feedback on

the control port of the laser frequency, we can stabilize the phase φ+ θRF to be π/2 or 3π/2,

corresponding to the quadrature condition. Then, a phase adjustment δθRF of demodulation

signal leads to a PD output phase shift δφ = −δθRF , corresponding to a laser frequency

variation of δν = δφ/2πτ . The wide range tunability is the unique feature of the frequency

shifted heterodyne configuration. It is not easy to shift the phase of a RF signal in a large
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range by using a phase shifter. Thanks to the Direct Digital Synthesizer (DDS), we can

set a little frequency offset on the demodulation signal, which is equivalent to continuously

adjusting the phase with a wide range. Assuming that we set a nearly arbitrary frequency

offset ∆νRF onto the demodulation signal while the locking loop is closed, the laser frequency

follows the equation

ν(t) =
q + φ(t)

2π

τ
=

q + φ(0)
2π

τ
− δθRF (t)

2πτ
= ν0 −

∫ t

0

∆νRF

τ
dt, (3.4)

which indicates that the laser frequency is swept at a constant rate of ∆νRF
τ .

3.2.5 Mach-Zehnder interferometer and Michelson interferometer

Both Mach-Zehnder and Michelson interferometer with length-unbalanced arms exhibit the

laser frequency discriminating function.

Figure 3.6: Mach-Zehnder interferometer and Michelson interferometer.

The Mach-Zehnder interferometer shown in the upper part of Fig.3.6 comprises two

optical couplers and one Polarization Controller (PC). The PC is used for aligning the

polarization states of the combined optical signals. It should be automatically controlled

if the laser is expected to work without adjustment for a long time. This interferometer is

immune to the first order optical reflections in the interferometer, for the first order reflections

are not coupled in the photodiode. The optical reflections may significantly influence the
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frequency noise of a swept laser for low Fourier frequencies. This effect will be discussed

later.

The Michelson interferometer shown in the lower part of Fig.3.6 consists of one optical

coupler (usually 50/50 splitting ratio) and two Faraday Mirrors (FM-45o for single pass).

The FMs guarantee that the output polarization states are orthogonal to the input states

for backward reflected fiber-optic links (Kersey et al., 1991; Pistoni & Martinelli, 1991).

Consequently, the two combined waves at the Michelson interferometer output always have

the same polarization states, leading to a maximum beat-note amplitude without requiring

any polarization controller. Clearly, the Michelson interferometer is more suitable to build a

robust laser system. The cost is the doubling of the unbalanced delay time, which leads to

a narrower laser noise control bandwidth or an increase of the fiber intrinsic thermal noise’s

effect (see later).

3.3 Experimental setup

In our experiment, we use the frequency shifted heterodyne Michelson interferometer to

stabilize laser frequency. Since the laser frequency can be swept by setting a frequency offset

onto the demodulation signal, we call the laser an ”agile laser”.

3.3.1 Structure of the agile laser

Fig.3.7 shows the scheme of the agile laser, where the optical signals, RF signals and low

frequency signals are drawn in red solid, blue dot and black dashed lines respectively. An

acousto-optic modulator (AOM1) is placed into one arm of the interferometer and modulated

by a 70 MHz RF signal. Consequently, the heterodyne detection signal is at 2fAOM1 (140 MHz)

frequency. We use a home-made low phase noise tunable synthesizer (Fig.3.9) providing a

2fAOM1 + ∆νRF (t) RF signal for demodulation. Successively, a loop filter (LF) converts the

demodulated signal into laser frequency correction signals. These correction signals simulta-

neously act on a piezo-electric Transducer (PZT) stretcher controlling the laser cavity length

and a Voltage Controlled Oscillator (VCO), which drives AOM0. The control of the PZT

has a large dynamic range with a slow response; while the control of the AOM has a small

dynamic range with a fast response. Here, we combine benefits of both control ports to cor-

rect the laser frequency noise with a high control bandwidth and a large dynamic range. For

convenience, we use the AOM0 and the VCO, which we previously used in the experiment of
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Figure 3.7: Experimental setup scheme.

stabilizing the laser frequency to an ultra-stable cavity. All interferometer components are

pigtailed off-the-shelf fiber optical elements, which makes the system alignment-free, simple

and robust. The reference fiber is standard single mode fiber (SMF-28), which is widely used

in telecom system.

3.3.2 Electronic system

Figure 3.8: Loop filter scheme.
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The loop filter scheme shown in Fig.3.8 has a maximum bandwidth of about 2 MHz with a

proportional amplifier and 3 integrators. All the gains K0,K1,K2 and K3 are independently

adjustable. The summed output of the proportional amplifier and first two integrators con-

trols the VCO, leading to a fast laser frequency correction. The PZT stretcher port of the

commercial fiber laser is controlled by a slowly integrated signal of the VCO control voltage

for large range frequency corrections, which can not be achieved by adjusting the fAOM0 due

to the tuning range limited to ±1 MHz.

Figure 3.9: The scheme of the tunable synthesizer, BP (band-pass filter), HP (high-pass
filter).

A crucial part of the electronic system is the tunable synthesizer, which is specially de-

signed for this experiment. The synthesizer phase noise directly adds into the error signal at

the demodulation stage. And the servo system converts the synthesizer phase noise into an

equivalent laser frequency noise. Then, the synthesizer phase noise should be low enough.

The scheme of this synthesizer is shown in Fig.3.9. All the signals are synthesized from a

common 1 GHz source. The tuning function is realized by using a low noise Direct Digital

Synthesizer - DDS (AD9852) with a 200 MHz clock frequency reference. To obtain a low

phase noise tunable local signal, a double frequency conversion technique is used. We first

down-convert the 140 MHz heterodyne signal to an intermediate frequency of ∼ 5 MHz, and

then we mix it with a tunable DDS output signal at 5 MHz+∆νRF (t) to produce a base-band

error signal. We obtained the phase noise of the synthesizer shown in Fig.3.10 by analyzing

the beat-note between this synthesizer and another commercial one (RFR2032A). In fact, we
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believe that our synthesizer is less noisy than the commercial one consistent to its specified

noise. The phase noise effect of the tunable synthesizer is negligible in our experiments (see

section 3.4.6).

Figure 3.10: Phase noise PSD of ∼ 5 MHz demodulation signal.

3.4 Noise analysis

Since our target is the development of an ultra-low frequency noise laser, we have to carefully

evaluate the noise contribution of each part in the system. In the negative feedback control

system, the noises can be catalogued into two classes: in loop noise and out of loop noise.

The in loop noise includes the laser frequency noise and most of baseband electronic noises

(e.g. 50 Hz noise). The control system measures and corrects these noises within the control

bandwidth. The in-loop noise effect is proportional to K/(1 + G) in amplitude, where G is

the whole loop gain and K is the gain from noise source to the error signal. Thus, we can

limit this effect by setting proper loop gains G and K.

The out of loop noise includes the fiber intrinsic thermal noise, environmental coupled

fiber noise, stray optical reflections, the detection noise and the phase noise of modulation

and demodulation signals. It is the noise of the system reference. In control bandwidth,
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the control system does not correct these noises, but converts them into the laser frequency

fluctuations. We can not reduce them by optimizing the control system.

In this section, we only discuss the out-of-loop noise.

3.4.1 Effect of fiber intrinsic thermal noise

The intrinsic thermal noise of the fiber caused by random temperature fluctuations within

the fiber is a fundamental limitation of many fiber-based systems, such as acoustic sensors,

magnetometers, accelerometers and gyroscopes. Both the length and the index of refraction

are sensitive to the thermal motion of the fiber. In terms of the delay time, the effect on the

refractive index is almost one order of magnitude larger than that on the fiber length with

dn/dT ≈ 10−5 /K. These effects have been investigated theoretically (Glenn, 1989; Wanser,

1992) and experimentally (Knudsen et al., 1995). Recent calculation has also considered the

effect of a finite cladding (Foster et al., 2007). This calculation leads to significant differences

for Fourier frequencies lower than 10 Hz. The theoretical results agree with the measured

phase noise PSDs within 3 dB for Fourier frequencies from 10 kHz to 100 kHz (Foster et al.,

2007; Knudsen et al., 1995). However, these calculations have never been experimentally

verified for low Fourier frequencies, due to other noise sources dominating the measurements.

Here, we use Wanser’s approach to estimate the thermal noise effect on the laser frequency;

the thermal noise effect evaluated by using Foster’s approach will also be shown for Fourier

frequencies lower than 10 Hz.

According to Wanser’s approach, the thermal noise PSD of a fiber follows

Φ2(f) =
2πkBT 2L

κλ2

(
dn

dT
+ nαL

)2

· ln
[
k4

max + (2πf/Dth)2

k4
min + (2πf/Dth)2

]
[rad2/Hz], (3.5)

where κ is the thermal conductivity, T is the temperature, L is the fiber length, αL is the

thermal expansion coefficient, λ is the optical wavelength, Dth is the thermal diffusivity, kmin

and kmax are boundary conditions (Wanser, 1992). The usual values of these parameters are

listed in Tab.B.1. According to Eq.3.1, for low Fourier frequencies, the laser frequency noise

PSD induced by the thermal noise is Sthermal
ν (f) '

[
Φ(f)
2πτ

]2
= ν2kBT 2

L F(κ, n, dn
dt , kmax, kmin, Dth) [Hz2/Hz]

F(κ, n, dn
dt , kmax, kmin, Dth) =

(
dn

ndT + αL

)2 · ln
[

k4
max+(2πf/Dth)2

k4
min+(2πf/Dth)2

] . (3.6)

It is clear that a longer fiber leads to a lower thermal noise floor. Fig.3.11 shows the intrinsic
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Figure 3.11: Intrinsic thermal noise effect.

thermodynamic floor for a 1.5 µm wavelength laser with different lengths of SMF-28 fiber.

The cladding effect is also given for low Fourier frequencies, based on Foster’s calculation

result (Foster et al., 2007). This effect is important only for Fourier frequencies lower than

10 Hz and roughly follows a 1/
√

f law. For Fourier frequencies higher than a few Hertz,

this effect is well below 3× 10−3 Hz2/Hz for a 1 km fiber. Such a noise corresponds to a laser

linewidth less than 3π×10−3 Hz ≈ 0.01 Hz (Elliott et al., 1982). For lower Fourier frequencies,

it is less than that of a 10 cm ultra-stable cavity at the state-of-the-art (Alnis et al., 2008;

Ludlow et al., 2007; Millo et al., 2009b; Numata et al., 2004; Webster et al., 2008). Over

all Fourier frequencies, the cladding effect is well below the frequency noise of all reported

laser sources. This is the fundamental frequency noise limitation of a 1.5 µm wavelength laser

when a SMF-28 fiber is used as the reference.

3.4.2 Environmental noise effect

Environmental noise includes acoustic noise, seismic noise, air flow and temperature fluctu-

ation. Acoustic noise is mainly in the range from tens of hertz to hundreds of hertz. Seismic

noise, air flow and temperature drift are usually more pronounced at low frequencies less than

a few hertz. The length-unbalance interferometer is so sensitive to these noise sources that
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it needs a good isolation and/or compensation. There are many methods to reduce these

effects:

• Isolation of the reference fiber with an air-sealed or vacuum (Abraham & Cornell, 1998)

chamber eliminates the effect of acoustic noise, air flow and temperature drift.

• Use of a box with foam can dramatically reduce the effect of acoustic noise and tem-

perature fluctuation.

• With thermal isolations (i.e. Mylar) and/or an active temperature stabilization, the

temperature fluctuation effect decreases.

• A vibration isolation platform usually filters out acoustic and seismic noises for Fourier

frequencies higher than ∼ Hz.

• A very complex suspension system (Aso et al., 2006) can cancel seismic noise effect for

low Fourier frequencies < 1 Hz.

• Reducing the vibration sensitivities of the fiber decreases the influence of acoustic noise,

seismic noise and air flow.

Environmental effects can be sufficiently suppressed by using these methods concurrently.

In our experiment, we use a free standing fiber spool as the reference. We place it in a

toroidal shaped aluminum case for protection. After that, we put all the interferometer in

an aluminum box (0.26 m× 0.26 m× 0.165 m) with thermal isolation (Mylar of film). The box

is laid on a commercial compact passive vibration isolation platform (Minus K Inc., BM-10).

Both the box and the platform are enclosed in an acoustic and thermal isolation box (Volume

= 0.125 m3) with acoustic-damping foam (thickness = ∼ 5 cm) inside. Note that no active

thermal control is used in this experiment. We estimate that the decay time for temperature

changes is several hours and the acoustic noise insulation is 50− 60 dB.

3.4.3 Detection noise effect

Detection noise (Beenakker & Schonenberger, 2003) contains shot noise and Johnson noise

at optical signal detection stage.

Shot noise follows a Poisson distribution. It is relevant to the photodiode current,

happening in the p-n junction. Its PSD, current variance per hertz of bandwidth, is given by

in
2 =

2e2ηPopt

hν
, (3.7)
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where e is unit of charge, η is the detector quantum efficiency, Popt is the total detected

optical power and hν is the photon energy. The mean power of the signal is

is
2 = 2

( eη

hν

)2
Popt1Popt2, (3.8)

where Popt1 and Popt2 are optical powers received from the two interferometer arms. Then,

the noise-to-signal PSD (double-sided) is given by

Φ2
shot =

2in
2

is
2

=
2hνPopt

ηPopt1Popt2
[rad2/Hz]. (3.9)

According to Eq.3.1, for low Fourier frequencies the laser frequency noise PSD induced by

shot noise is

Sshot =
2hνPopt

(2πτ)2ηPopt1Popt2
[Hz2/Hz]. (3.10)

Johnson noise is a thermal effect. Its PSD, voltage variance per hertz of bandwidth, is

given by

vn
2 = 4kBTR, (3.11)

where R is the equivalent source resistance at the primary RF amplifier’s input in ohms. The

signal power for the voltage received by the primary RF amplifier is vs
2 = 2

( eη
hν

)2
Popt1Popt2

R2

10Lin/10

Lin = −10 log[1−
(

R−50
R+50

)2
]

, (3.12)

where, Lin is the transmission loss in decibels due to a mismatch between R and the input

impedance of the primary RF amplifiers (50Ω). Thus, the noise-to-signal PSD (double sides)

is given by

Φ2
johnson =

2vn
2

vs
2

=
(

hν

eη

)2 4kBT10Lin/10

Popt1Popt2R
[rad2/Hz]. (3.13)

According to Eq.3.1, for low Fourier frequencies the laser frequency noise PSD induced by

Johnson noise is

Sjohnson =
(

hν

eη

)2 4kBT10Lin/10

(2πτ)2Popt1Popt2R
[Hz2/Hz]. (3.14)

Use of a longer fiber or higher input optical power leads to a lower detection quantum

noise effect, according to Eq.3.10 and Eq.3.14. In our experiments, the splitting ratio of the

coupler is 50/50; the transmission loss of AOM1 is about 3 dB for single pass; η is 0.9; R is

200Ω and the input power to the interferometer is about 200µW . For a 1 km fiber-stabilized

laser, the shot noise effect on the laser frequency is about 10−6 Hz2/Hz; the Johnson noise
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effect is about 4×10−5 Hz2/Hz. These effects are negligible, because they are much lower than

that of the fiber intrinsic thermal noise. In order to verify if there are other stronger detection

noise effects, we gradually decrease the input optical power for a 1 km fiber interferometer.

In this process, we increase the servo’s gain to maintain the optimum loop gain. No laser

frequency noise degradation is observed until the input optical power reaches a few µ W.

With such an input power, the Johnson noise dominates the detection floor, leading to an

additional noise of ∼ 0.1 Hz2/Hz, in agreement with the theoretical analysis.

3.4.4 Effect of localized parasitic optical reflections

Parasitic optical reflections of the interferometer are mainly localized at splices, connectors

and sharp bends of the fiber. The interaction of these reflected signals with the main signals

generate RF signals roughly of the demodulation frequency at the interferometer output.

After being demodulated, these RF signals are converted into parasitic disturbances on the

interferometer error signal. These disturbances degrade the frequency coherence of the laser,

especially when it is frequency swept. This part only discusses the effect of first-order stray

reflections, for the effect due to high order reflections is much weaker.

Figure 3.12: Parasitic reflection in the interferometer.

The scheme of parasitic optical reflection is shown in Fig.3.12. A stray reflection occurs

at the location Z. We introduce the following notation:
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• LZ is the distance from the coupler to the reflection’s location.

• −−−−→Er1(t) is the backward parasitic reflected signal (red dash line) at the interferometer

output.

• −−−−→Er2(t) is the forward parasitic reflected signal (blue dot line) at the interferometer

output.

• −−−→E1(t) is the main optical signal from arm1 (wide green line in arm1) at the interferometer

output.

• −−−→E2(t) is the main optical signal from arm2 at the interferometer output.

• Cr(Z) is the reflection coefficient in amplitude at Z location. We assume that this

parameter is in the same value for both parasitic reflections, because they are caused

by the same ”mismatch”.

• αAOM1 is the transmission coefficient of AOM1 in power.

• α1 is the transmission coefficient of arm1’s attenuator in power.

• α2 is the transmission coefficient of arm2’s attenuator in power.

• We will neglect the optical loss of the fiber, which is typically 0.2 dB/km for 1.5µ m

wavelength laser.

To obtain the maximum detection value, the splitting ratio of the optical coupler is 50/50.

The signals at the interferometer output can be expressed in complex representation as:

−−−→
E1(t) = 1

2α1αAOM1E0
−→e0e2πi

∫ t− 2nL
c

0 [ν(t′)+2fAOM1]dt′

−−−→
E2(t) = 1

2α2E0
−→e0e2πi

∫ t
0 ν(t′)dt′

−−−−→
Er1(t) = 1

2α1E0Cr(Z)−→er1e
2πi

∫ t− 2nLZ
c

0 ν(t′)dt′

−−−−→
Er2(t) = 1

2α1α
2
AOM1E0Cr(Z)−→er2e

2πi
∫ t− 4nL−2nLZ

c
0 [ν(t′)+4fAOM1]dt′

, (3.15)

where L is the fiber length, n is the fiber refractive index, E0 is the input signal amplitude,
−→e0 , −→er1 and −→er2 are unit polarization vectors of the signals.

If the laser frequency is swept at a constant rate ν ′, that is (ν(t) = ν0+ν ′t), corresponding

to ∆νRF = −2Lnν′

c , the beat-note signal between E1 and E2 is given by

I12(t) =
1
2
ηα1α2αAOM1E

2
0e2πi[(2fAOM1− 2Lnν′

c
)t+φ12] + cc, (3.16)
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where φ12 is a constant phase. The beat-note signals between −→E1 and −→Er1 or −→Er2 are given

by  I1r1(t, Z) = 1
2 |
−→e0 • −→er1| ηα2

1αAOM1Cr(Z)E2
0e2πi[(2fAOM1−

2(L−LZ )nν′
c

)t+φ1r1] + cc

I1r2(t, Z) = 1
2 |
−→e0 • −→er2| ηα2

1α
3
AOM1Cr(Z)E2

0e2πi[(2fAOM1−
2(L−LZ )nν′

c
)t+φ1r2] + cc

,

(3.17)

where φ1r1 and φ1r2 are constant phases. Since αAOM1 is about 0.5, we neglect the effect (I1r2)

of the forward reflection signal. After mixing with the demodulation signal at a frequency of

2fAOM1− 2Lnν′

c , I1r1 gives a week disturbance on the main error signal produced by I12. The

detected phase error is the angle between equivalent vectors of
−−−→
I12(t) and

−−−→
I12(t)+

−−−−−−→
I1r1(t, Z):

θ(t, Z) ≈ sin(φ0 + 2Lznν′

c t)
∣∣∣ I1r1(t,Z)

I12(t)

∣∣∣
= sin(φ0 + 2Lznν′

c t) |−→e0 • −→er1| α1Cr(Z)
α2

[rad]
, (3.18)

where φ0 is a constant phase.

In the worst case (i.e. |−→e0 • −→er1| = 1), this phase error leads to a laser frequency modulation

(see Eq.3.1 for low Fourier frequencies)

δν(t, Z) =
θ(t, Z)
2πτ

≈ sin(φ0 +
2Lznν ′

c
t)

α1Cr(Z)
2πα2τ

[Hz]. (3.19)

We can estimate the localized reflection coefficient using the measured swept laser frequency,

based on this equation.

The polarization state of the laser signal can significantly change over a transmission of a

few meters, because the SMF-28 fiber does not maintain the polarization state of propagation

signal. We assume that the polarization state of the parasitic reflection signal is statically

uniformly distributed. The mean power of the phase modulation on the error signal is then Pθ(f) ≈ 〈|I1r1(t,Z)|〉2
2〈|I12(t)|〉2 = 1

4

[
Cr(Z)α1

α2

]2
[rad2]

f = 2LZnν′

c

. (3.20)

Consequently, the power of laser frequency noise induced by this stray reflection is Pν(f) = Pθ(f)
(2πτ)2

= 1
4

[
Cr(Z)α1

2πα2τ

]2
[Hz2]

f = 2LZnν′

c

. (3.21)

For a non-swept laser, the parasitic reflected signal induces a laser frequency offset. This

offset is partly determined by the fiber parameters (−→er1, Lz, ν and n) according to Eq.3.18.
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3.4 Noise analysis

These parameters drift slowly because of temperature fluctuation. An excess frequency noise

therefore occurs due to the stray reflection.

This effect of both swept and non-swept lasers can be suppressed by using following

methods: reducing the stray reflection coefficients Cr(Z), using a longer reference fiber and

inserting more attenuation at the input of the long arm (see Fig.3.12) to decrease the ratio

of α1/α2.

3.4.5 Effect of fiber Rayleigh backscattering

Rayleigh scattering is the elastic scattering of light by particles much smaller than the wave-

length of light. In a single mode fiber, the Rayleigh scattering is due to the density fluctu-

ations of silica glass. It leads to a loss about 0.15 dB/km, corresponding to a loss coefficient

αL ≈ 3.5× 10−5 /m in power. A fraction αB ≈ 1/500 (Hartog & Gold, 1984) of the scattered

optical power is coupled into the backward propagation mode.

First of all, we consider the effect of first-order Rayleigh backscattering (RBS). This dis-

tributed reflection can be regarded as a series of reflections from a tiny length fiber located at

Lz ∈ [0, L] with length δl. Its reflection coefficient in amplitude is then
√

δlαLαB. According

to Eq.3.21, the power of laser frequency noise and its corresponding span of Fourier frequency

are  Pν [Lz, Lz + δl] = 1
4

[
α1

√
δlαLαB

2πα2τ

]2

δf = |fLz − fLz+δl| =
∣∣∣2LZnν′

c − 2(LZ+δl)nν′

c

∣∣∣ = δl 2nν′

c

. (3.22)

Consequently, the PSD of the RBS effect can be expressed as:

Sν−SRBS(f) = Pν [Lz,Lz+δl]
δf

=

{ (
α1
α2

)2
αLαBc

8n
1

(2πτ)2ν′ , f ≤ τν ′ = ∆νRF

0 , f > τν ′

[Hz2/Hz]

. (3.23)

The effect of the first-order RBS has the following characteristics:

• The induced frequency noise exists only for f ≤ τν ′;

• The frequency noise PSD is inversely proportional to the sweep rate;

• This effect can be reduced with a longer reference fiber or additional attenuations at

the input of arm1.
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Figure 3.13: Enhanced Michelson interferometer scheme with single stray reflection immunity.

In fact, this effect can be eliminated by distinguishing the main signal of the short arm

from the first-order reflection signals. Inserting AOM2 (see Fig.3.13) in the short arm leads

to the interferometer output at frequency of 2fAOM1 − 2fAOM2. This frequency is different

from any beat-note signal relevant to the single reflections of the long fiber. Consequently,

the laser frequency is immune from all first order parasitic reflections, as it is when using the

Mach-Zehnder interferometer. However, the double RBS effect can not be avoided in any

configuration. It leads to a fundamental frequency noise limitation of the swept laser, which

we now consider for the configuration in Fig.3.13, we have three signals at the interferometer

output: the mirror reflected signal
−−−→
E1(t) from arm1 (wide green line in arm1), the mirror

reflected signal
−−−→
E2(t) from arm2, and a summed signal

−−−−→
EDz(t) of all double RBS1 (red dash

line) from arm1 with a distance range of Dz to Dz + δl, Dz ∈ [0, L), because only their

beat-note signals are close to the demodulation frequency. These signals are
−−−→
E1(t) = 1

2α1αAOM1E0
−→e0e2πi

∫ t− 2nL
c

0 [ν(t′)+2fAOM1]dt′

−−−→
E2(t) = 1

2α2αAOM2E0
−→e0e2πi

∫ t
0 [ν(t′)+2fAOM2]dt′

−−−−→
EDz(t) = 1

2α1αAOM1E0CDz
−−→eDze

2πi
∫ t− 2n(DZ+L)

c
0 [ν(t′)+2fAOM1]dt′

, (3.24)

where −−→eDz is the unit polarization vector of this double RBS signal, CDz is the corresponding

reflection coefficient in amplitude. The double RBS occurs either before or after passing the
1The optical signal does not pass AOM1 between the two RBSs.
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AOM1, therefore, this reflection coefficient is then

CDz =

√
δl × 2

∫ L−Dz

0
(αLαB)2dx = αLαB

√
2δl(L−Dz), (3.25)

where x is the distance between the coupler and the close location of the backscatters, as

shown in Fig.3.13.

When the laser frequency is swept at a constant rate ν ′, corresponding to ∆νRF = −2Lnν′

c ,

the beat-note signal between −→E1 and −→E2 is given by

I12(t) =
1
2
ηα1α2αAOM1αAOM2E

2
0e2πi[(2fAOM1−2fAOM2− 2Lnν′

c
)t+φ12] + cc. (3.26)

The beat-note signal between −→E2 and
−−−−→
EDz(t) is given by

I2Dz(t) =
1
2
η |−→e0

−−→eDz|α1α2αAOM1αAOM2CDzE
2
0e2πi{[2fAOM1−2fAOM2− 2n(Dz+L)ν′

c
]t+φ2} + cc,

(3.27)

where φ2 is an initial phase. After demodulation, I12 generates a ideal discrimination signal

of the laser frequency, while I2Dz causes a week modulation signal at a frequency of 2nDzν′

c .

Using the same approach for calculating first-order RBS effect, the power of laser fre-

quency noise and its corresponding span of Fourier frequency are given by Pν [Dz,Dz + δl] = 1
4

[
CDz
2πτ

]2

δf = |fDz − fDz+δl| =
∣∣∣2DZnν′

c − 2(DZ+δl)nν′

c

∣∣∣ = δl 2nν′

c

. (3.28)

Then, the frequency noise PSD of double RBS effect is

Sν−DRBS(f) = Pν [Dz,Dz+δl]
δf

=

{
(αLαB)2c2

32π2n2
1

τν′

(
1− f

τν′

)
, f ≤ τν ′ = ∆νRF

0 , f > τν ′

[Hz2/Hz]

. (3.29)

This effect is inversely proportional to the swept rate of the laser. Down to 300 kHz/s

swept rate, it is lower than the intrinsic thermal noise effect. This effect is not strong, and it

still can be further suppressed by using following methods:

• Thermal treatments of the fiber to decrease the RBS reflection coefficient αB (Tsujikawa

et al., 2000);

• Increase of the interferometer delay, which however may lead to a narrower laser fre-

quency noise control bandwidth;
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• modulating the input optical signal (Cranch et al., 2003), which corresponds to an

increase of the laser sweep rate ν ′. However, this would cause additional frequency

noise of the stabilized-laser at the modulating frequency.

3.4.6 Effect of the modulation/demodulation signal phase noise

In the modulation and demodulation system, the tunable synthesizer is the most noisy com-

ponent. Its phase noise causes a laser frequency noise, whose PSD is equal to this phase

noise PSD (see Fig.3.10) divided by (2πτ)2 for low Fourier frequencies. This noise at 1 Hz

Fourier frequency ∼ 6 × 10−3 Hz2/Hz is comparable to the intrinsic thermal noise effect for

a 1 km fiber-stabilized laser; it is lower than this fundamental limitation for higher Fourier

frequencies. Then, using a 1 km or longer fiber, the laser frequency noise will not be limited

by this synthesizer’s phase noise for Fourier frequencies higher than 1 Hz. In fact, this effect

is over-estimated, because the measured phase noise of the tunable synthesizer was limited

by the measurement reference (the commercial synthesizer).

This effect should be lower than the fundamental noise limitation within the control

bandwidth. Thus, the phase noise of the tunable synthesizer may need to be reduced when

a fiber shorter than 100 m is used. This synthesizer phase noise can be reduced by using a

following process:

• Mix the DDS output ∼ 5 MHz with a n × 5 MHz (e.g. 50 MHz) signal synthesized from

the 1 GHz common frequency reference for producing a signal at ∼ 5n ± MHz, where n

is an integer;

• Extract only one sideband signal (e.g. ∼ 55 MHz) by using a tracking oscillator or a

narrow bandwidth RF filter;

• Divide the extracted signal by n ± 1 (e.g. 11) with a frequency divider to generate a

new synthesized ∼ 5 MHz signal.

The phase noise of the new synthesized signal would be reduced by a factor of (n ± 1)2 in

power compared with that of the original one, if the additional phase noise due to frequency

conversions is negligible.
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3.5 Experimental performance of fiber-stabilized lasers

The measurement focuses on the frequency noise of fiber-stabilized lasers with different

lengths of the reference fiber.

3.5.1 A 1 km fiber-stabilized laser

We return to the setup shown in Fig.3.7 of the fiber-stabilized laser with frequency shifted

heterodyne Michelson interferometer. Fig.3.14 shows the optical part pictures of a 1 km

fiber-stabilized laser, where the fiber, the optical coupler and the FM of short arm are in an

aluminum case without being fixed. By monitoring the interferometer output, two control

gain bumps are found at 40 kHz and 80 kHz, which are not far from 1/τ = 100 kHz. The

high-frequency gain bumps indicate a strong gain of the control loop, which guarantees an

efficient suppression of the in-loop frequency noise for low Fourier frequencies.

Figure 3.14: Optical part pictures of a 1 km fiber-stabilized laser.

The frequency noise measurement requires a conversion from the optical frequency noise

to a measurable signal. The conversion process is:

• First, we beat the optical signal with an ultra-stable cavity-stabilized laser signal (see

previous chapter) to generate a beat-note signal in RF domain (∼ 50 MHz).

• Second, we shift this beat-note signal to be about 700kHz by mixing it with an RF

signal produced by a commercial synthesizer.
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• After that, the frequency noise of the frequency shifted signal is converted into a voltage

signal with a frequency-to-voltage converter, which demands an input frequency range

of 0.1 ∼ 1 MHz.

• Finally, we measure the converted laser frequency noise, which is the sum contribution

of both lasers, with a Fast Fourier Transform (FFT) analyzer.

Figure 3.15: Frequency noise PSD of the 1 km fiber-stabilized laser versus cavity-stabilized
laser, two cavity-stabilized lasers and the intrinsic thermal noise effect of the 1 km fiber-
stabilized laser.

The frequency noise PSD (red solid line) of the beat-note signal between the 1 km fiber-

stabilized laser and a cavity-stabilized laser is shown in Fig.3.15. Compared with the fre-

quency noise (black dashed line) of two cavity-stabilized lasers, the frequency noise of the

fiber-stabilized laser is at least as low as that of one cavity-stabilized laser for Fourier fre-

quencies ranging from 30 Hz to 20 kHz. The frequency noise PSD (see Fig.3.16) of the free

running laser is reduced ≥ 50 dB for Fourier frequencies lower than 1 kHz. For Fourier fre-

quencies lower than 30 Hz, the fiber-stabilized laser is more noisy than the cavity-stabilized

laser. Nevertheless, over the range from 1 Hz to 20 kHz, the frequency noise PSD is well below

1 Hz2/Hz.
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Figure 3.16: Frequency noise PSD of the 1 km fiber-stabilized laser versus a cavity-stabilized
laser and the free running laser.

Figure 3.17: Frequency noise PSDs of the 1 km fiber-stabilized laser versus a cavity-stabilized
laser and some previous reported ones.
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The frequency noise PSD of a few previous fiber-stabilized lasers (Cliche et al., 2006;

Cranch, 2002; Takahashi et al., 2008) is well represented by characteristic points in Fig.3.17.

Over the range from 1 Hz to 10 kHz, the frequency noise PSD of our laser is at least 20dB lower

than that of these lasers. This is mainly due to the use of a longer fiber and a heterodyne

detection configuration.

Figure 3.18: Measurement noise floor and the equivalent frequency noise of the error signal.

The equivalent frequency noise of the error signal and the measurement noise floor dom-

inated by the noise of frequency-to-voltage converter are shown in Fig.3.18. For low Fourier

frequencies, the measured laser frequency noise is not limited by the measurement noise floor

and the in-loop noise; and neither the RF phase noise effect, nor the fundamental thermal

effect corresponds to the measured noise level. Then, this noise source should be in the

interferometer and induced by environmental noise such as: temperature fluctuations, air

flow in the aluminum case and seismic vibration. In fact, considering the noise contribution

of reference laser and measurement noise floor, the frequency noise is close to the thermal

fundamental limitation (∼ 1.5× 10−3 Hz2/Hz) at a Fourier frequency around 1 kHz.

We measured the frequency noise (see Fig.3.19) of this laser without using the vibration

isolation platform. Clearly, the isolation platform efficiently filters out the environmental
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Figure 3.19: Frequency noise PSD of the 1 km fiber-stabilized laser (Vs. a cavity-stabilized
laser) with/without a vibration isolation platform.

mechanical noise.

In order to verify if the noise introduced by the AOM, we also lock the laser frequency

without the AOM using phase modulation method (see Fig.3.4a). We obtain a same frequency

noise in the control bandwidth (< 20 kHz). It implies that the laser frequency noise is limited

by the noise of the fibers.

The frequency noise is strongly divergent for Fourier frequencies lower than 1 Hz. Those

low frequency noises cause the instability of the fiber-stabilized laser to be always higher than

10−13 at 1 s integration time for a tens of seconds measurement after removing a linear drift

of a few kHz/s.

3.5.2 A 2.5 km fiber-stabilized laser

Since we believed that the measured frequency noise of the laser was limited by environmental

noise, we made a better isolation for a 2.5 km reference fiber. We laid the fiber into an air-

sealed can and put multi-layer isolator (MLI) outside the large aluminum box to reduce the

thermal effect, which exists mainly in low Fourier frequencies.
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Figure 3.20: Frequency noise PSD of a 1 km/2.5 km fiber-stabilized laser.

The frequency noise (see Fig.3.20) of this fiber-stabilized laser is lower than that of the

1 km fiber-stabilized laser for Fourier frequencies lower than a few Hertz. However, the longer

fiber leads to a smaller control bandwidth, resulting in higher laser frequency noise at Fourier

frequencies of 2− 10 kHz.

The fractional frequency instabilities are also measured by counting the frequency of the

beat-note signal between the fiber-stabilized laser and the cavity-stabilized laser. The counter

is a dead time free Π-type counter, which is equivalent to a phase recorder. The normalized

overlapping Allan deviation is calculated after removing a linear drift of less than 1.5 kHz/s.

This deviation (see Fig.3.21) is about 10−14 at 0.1 s and 1 s integration times. The best

result for a 35 s measurement shows a potential instability of a few 10−15 at 1 s integration

time.

3.6 Digital lock of the fiber-stabilized laser

In this part, we show that this type of laser can be easily locked to an optical signal or an

atomic transition.

The experiment scheme with control parameters is shown in Fig.3.22. The gate-time of
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Figure 3.21: Fractional frequency instability of the 2.5 km fiber-stabilized laser after removing
linear drifts.

Figure 3.22: Digital phase-lock experiment scheme.
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the phase recorder is 0.1 s. The error signal is the difference between a given frequency and

the optical beat-note frequency between two lasers. According to this error, the programme

gives an adjustment of ∆νDDS and updates it to the DDS each 0.1 s. The control loop has

proportional and integral gains with a bandwidth of 2 Hz.

Figure 3.23: The locked and free-running frequency noise PSDs of the optical beat-note (the
bump about 0.1 Hz, we attribute to RBS, for no RBS suppression yet).

We obtain the locked and free-running beat-note frequency noise PSD (see Fig.3.23)

by Fourier transforming the recorded phase. The locking effect is obvious for low Fourier

frequencies. An excess noise occurs in the range from 0.3 Hz to 2 Hz, because of the optical

stray reflections of the interferometer. It definitely can be reduced by using single reflection

immune configuration (see Fig.3.13).

3.7 Experimental performance of the tunable laser

One advantage of fiber-stabilized laser is the large range frequency tunability. This section

describes experiments on the laser frequency noise, stability and frequency sweep linearity.
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Figure 3.24: Scheme of the tunable laser frequency noise measurement using another demod-
ulation interferometer.

Figure 3.25: Pictures of two interferometers.
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3.7.1 The frequency noise of the tunable laser

The frequency noise of a frequency-swept laser cannot be simply measured with the same

frequency-to-voltage technique used for the non-swept laser. Indeed the operating range of

the frequency-to-voltage converter is limited to about 1 MHz, much less than the hundreds

MHz sweeping range in our experiment. Extending the range by digital frequency division

would severely degrade the measurement noise floor. We present two alternative solutions

to overcome the limitation of the frequency-to-voltage conversion technique. One is based

on the sampling of the frequency by a high resolution counter, which will be shown later to

be interesting for low Fourier frequencies (< 30 Hz). In this experiment, a different solution

is used. We exploit a second 1 km Michelson frequency-shifted interferometer to convert the

laser frequency noise into an RF phase noise with a larger bandwidth. With this technique, a

linear optical frequency sweep is converted into a constant RF frequency shift. Fig.3.24 shows

the measurement scheme. Fig.3.25 shows photos of the interferometers. The phase noise of

the beat-note signal at the output of the measurement interferometer is evaluated with a

standard phase noise measurement technique. We use a low phase noise quartz oscillator

loosely phase locked on the RF output signal of the measurement interferometer (∼ 1 Hz

bandwidth). Thus, we obtain the phase noise, which is measured using a FFT analyzer, at

the output of the phase detector for Fourier frequencies higher than the control bandwidth.

The phase noise PSD is converted into an optical frequency noise PSD using the scaling

factor of 1/(2πτ)2, where τ is the measurement interferometer delay. With this technique,

the noise PSD is the sum of both interferometer contributions and the measurement noise

floor is relatively high, about 2 Hz2/Hz. Nevertheless, it is sufficient to reveal the effect of

Rayleigh backscattering.

The measured frequency noise PSD is plotted in Fig.3.26 for 1 MHz/s and 2 MHz/s sweeping

rates. The spectra are significantly degraded with respect to the non-tuned situation and

exhibit a quite peculiar shape characterized by several peaks and two steps. The peaks at

19 Hz, 38 Hz and 44 Hz, we attribute to the effect of localized stray reflection; the steps

at 10 Hz and 25 Hz for 1 MHz/s sweep, 20 Hz and 50 Hz for 2 MHz/s sweep, are a clear

sign of Rayleigh backscattering in both the reference and measurement fibers. We would

expect measured noise due to RBS for f < ν ′τ = ν2nL/c (see section 3.23), which gives

f < 10 Hz (L = 1 km), f < 25 Hz (L = 2.5 km) at ν ′ = 1 MHz and f < 20 Hz (L = 1 km),

f < 50 Hz (L = 2.5 km) at ν ′ = 2 MHz in exact agreement with our observation. By fitting
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Figure 3.26: Frequency noise PSD of the laser at frequency sweep rates of 1 and 2 MHz/s.

the measurements with Eq.3.23, we found α1/α2 = 0.7 and α1/α2 = 0.5 for the measurement

and reference interferometer respectively. These values are smaller than 1, which can be

explained by

• An additional splicing loss at the input of the long arm;

• An additional fiber loss due to a sharp bend at the input of the air-sealed can for the

reference interferometer.

3.7.2 First-order stray reflection immune laser

In order to remove the first-order parasitic reflection effects, especially RBS effect, we adopt

the single reflection immune configuration for the 2.5 km system (see Fig.3.13). We expect

to have a lower frequency noise for low Fourier frequencies. Then, we have to use other

measurement method instead of the previous one with 2 Hz2/Hz noise floor. We record the

beat-note frequency between this swept fiber-stabilized laser and the cavity-stabilized laser

by using a dead-time free counter model FX80 (KK Messtechnik). This counter is set in

the fastest working mode with a gate-time of 1ms. The absolute frequency resolution of this

counter is about ∼ 10−3/τ , where τ is the integration time in second 1 mHz at τ = 1 s. This
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resolution is much lower than the corresponding deviation between two laser frequencies. As

a result, the noise contribution from this counter is negligible. The frequency noise PSD

of the beat-note signal is calculated by Fourier transform of the frequency samples. The

spectral analysis range is limited to 500 Hz (half the inverse of the counter gate-time) and

the spectral power density is degraded by aliasing effect, which produces an measured excess

noise of 10−4f2 Hz2/Hz. This method exhibits a lower noise floor than the previous one for

Fourier frequencies lower than ∼ 100 Hz.

Figure 3.27: Frequency noise of the single-reflection-immune fiber-stabilized laser for various
frequency sweep rates, where the aliasing noise floor is the green dashed line.

Fig.3.27 shows the laser frequency noise spectra. In non-swept conditions, the measured

noise is close to that of Fig.3.20 up to about 20 Hz. For higher Fourier frequencies, aliasing

effect plays a significant role and limits the measurement noise floor. In swept conditions,

the noise level reaches the measurement noise floor at Fourier frequencies higher than ∆νRF .
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At frequency ∆νRF , however, each spectrum still exhibits a step, which is characteristic of

the single RBS effect (see Eq.3.23). Assuming that a fraction of main signal is reflected

twice in the long arm and does not pass through AOM1 between two reflections, it will be

in the same frequency and propagation direction as before. Consequently, it contributes

to the beat-note signal at frequency 2(fAOM1 − fAOM2) and induces a frequency noise. If

the localized reflections in the middle of fiber, the step of induced frequency noise will be

at a frequency of < ∆νRF (see Eq.3.28). Then, this noise should be induced by a double

reflection, which contains a single RBS and a localized stray reflection close to one end of the

reference fiber. This noise follows Eq.3.23 by substituting (α1/α2)2 with 2 × R, where R is

the power reflection coefficient of the localized reflection. The factor of 2 is due to this double

reflection occurs either before or after passing through AOM1. Indeed, the RF signal at the

interferometer output displayed on a RF spectrum analyzer shows bright lines at 2fAOM1

and 2fAOM2 frequencies, which indicates ∼ 1% optical stray reflections located between the

optical coupler and AOM1 or AOM2. We attribute this localized reflection to the fiber’s

sharp bend at the entrance of the air-sealed can. Under this supposition, the calculated laser

frequency noise PSD well fits the measured one. In principle, the stray reflections can be

reduced to a level of ∼ 10−4 or better, corresponding to a 20 dB lower frequency noise than

this measured one.

The instability of the fiber-stabilized laser (see Fig.3.28) is also measured in this con-

figuration. After removing a linear drift, the swept laser shows instabilities of ∼ 10−14 for

integration time from 0.1 s to 1 s. The frequency instabilities of swept and non-swept laser

are same for integration time shorter than 10 ms, corresponding to a phase jitter of ∼ 0.4 rad.

The phase jitter is much smaller than 1. Then, we can track a linear frequency drift optical

signal (e.g. a stable signal from a satellite) by using this laser with a control bandwidth of

∼ 100 Hz.

3.7.3 Linearity of the frequency-swept fiber-stabilized laser

For an agile laser, the tuning linearity is an important feature. The chromatic dispersion of

the fiber, parasitic reflections, the variation of fiber delay δτ and the change of fiber delay

drift δτ ′ simultaneously degrade the laser tuning linearity.

The fiber chromatic dispersion D(λ) leads to a fiber delay change. As a result, the chirping
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Figure 3.28: Fractional frequency instability of the single RBS immune fiber-stabilized laser
for various sweep rates (linear drifts has been removed).

rate becomes

ν ′ =
∆νRF

τ [1− D(λ)λc
n ]

. (3.30)

The Sellmeier equation (Sellmeier, 1971) based on Cauchy’s equation for modeling dispersion

(Jenkins & White, 1981) describes the dispersion of light. For the SMF-28 fiber, the chromatic

dispersion is the differentiated Sellmeier equation

D(λ) ≈ S0

4

(
λ−

λ4
0D

λ3

)
,

ps

nm · km
, 1200nm ≤ λ ≤ 1600nm, (3.31)

where S0 [0.092 ps/(nm2.km)] is the zero dispersion slope, λ0D(1302 nm < λ0D < 1322 nm) is the

zero dispersion wavelength, λ (1542 nm) is the operation wavelength. Eq.3.31 and Eq.3.30

determine a relative non-linearity term [dν ′/(ν ′dλ) ≈ 1.8 × 10−5 (nm−1) or dν ′/(ν ′dν) ≈
1.4× 10−7 (GHz−1)] due to the fiber chromatic dispersion.

In practice, the residual fiber delay fluctuations due to temperature drift, vibrations and

parasitic reflection effects cause much stronger non-linearity than the chromatic dispersion

effect for a sweep of span less than ∼ GHz. We sweep the laser at a rate of 40.5 MHz/s (see

Fig.3.29 trace 1) over a 600 MHz range. In order to clearly demonstrate the sweep linearity, we
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Figure 3.29: The beat-note between swept laser and cavity laser and its fluctuations without
the linear drift.

Figure 3.30: The frequency noise PSD of the swept laser.

removed the linear change from the recorded beat-note frequency (see Fig.3.29 trace 2). The
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non-linearity is mainly due to the localized stray reflections’ effect characterized by periodic

variations. This characteristic can be easily found from its plot and spectrum (see Fig.3.30).

The periodic variations correspond to parasitic fiber Fabry-Perot interferometers of ∼ 2.5 m

and ∼ 30 cm with free spectral ranges of ∼ 40 MHz and ∼ 350 MHz. The peak-to-peak frequency

deviation is about 50 Hz, which is much larger than that due to the fiber chromatic dispersion.

To calibrate the relative sweep accuracy, we have to determine the delay time τ with

the following procedure. We measure for a few seconds the frequency of the beat-note signal

with the reference laser using the dead time free counter as shown before. We set sequentially

∆νRF to 40 Hz and −40 Hz, and then we experimentally determine the sweep rates. This

procedure cancels out the fiber delay time drift during the measurement. The timing of the

measurement is very well known and only limited by the counter timebase. The difference of

the sweep rates (32.44037 MHz), corresponding to an 80 Hz ∆νRF , is then calculated. Using

Eq.3.4 we precisely determine τ to 2.466064 × 10−5 s. This accurate calibration holds for

a short period of time (about 1 hour) limited by temperature drift. On the long term, an

accuracy of 10−6 or better is achievable with temperature stabilization (in the level of 0.1 K)

and/or by using a fiber with lower thermal sensitivity. Then we sweep the laser at different

rates ranging from 0.4 MHz/s to 40 MHz/s. The sweep rate error is the frequency difference

between the measured and expected sweep rates. The expected rate equals to the sum of

a constant laser drift measured prior to the sweep and a linear frequency ramp calculated

using the τ and ∆νRF . To avoid the transient error of the laser and the counter degrading

the measurement accuracy, hundreds of samplings following the sweep rate shift is removed.

Note that the transient time of this laser is estimated to be < 1 ms. We evaluate the relative

sweep rate accuracy (see Fig.3.31), which is defined by the ratio between the sweep rate error

and the nominal sweep rate. It is about 1 part per million (ppm). Each measurement of the

sweep rate lasts about 4 s, and the error bars are calculated by using the measured frequency

instabilities of the swept laser at 4 s integration time.

This measurement demonstrates the potential of the technique, although the frequency

drift (< 1.5 kHz/s) still limits the accuracy especially at low sweep rates. With careful

temperature control the drift can be reduced at least below 100 Hz/s, or maybe even much

less if temperature insensitive fibers become available. Beyond 10 MHz/s, the non-linear error

is below 1 ppm. It is worth recalling that with the present drift rate of the laser, this result

requires a frequency reference for periodically calibrating the drift (each 5-10 minutes). The

76



3.8 The vibration sensitivity of the fiber-spool

Figure 3.31: The relative chirp rate accuracy with respect to the sweep rate.

reference can be either a molecular transition (Knabe et al., 2009) or a low drift cavity (< a

few Hz/s).

The maximum sweep rate of our system is presently about 60 MHz/s limited by the

fact that the piezoelectric transducer response was not optimized. We expect that a well

engineered setup could achieve at least one order of magnitude larger frequency sweep rates

still exhibiting low frequency noise.

3.8 The vibration sensitivity of the fiber-spool

The fiber-spool vibration sensitivity Γ is the relative variation of the fiber delay time with

respect to the acceleration. It is defined as ∆τ/(τ∆V ), where ∆V is the acceleration variation

in unit of ms−2. For the free-standing 1 km fiber-spool used in previous experiments, the

vibration sensitivity is 1 − 2 × 10−10 /ms−2 at a few Hz Fourier frequency. This result is

obtained by comparing simultaneously measured PSD of the laser frequency noise and the

fiber-spool vibration at the Fourier frequency (∼ 7 Hz), where the laser frequency noise is

dominated by the vibration noise effect. Our ultra-low frequency noise lasers are realized in

the condition of using a vibration isolation platform. However, the platform is unsuitable for
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many applications. In order to develop a laser with the similar performance as previously

shown results without using the platform, the vibration sensitivity of the fiber-spool needs to

be reduced. This section discusses a technique for decreasing the fiber vibration sensitivity

and several preliminary experiments.

3.8.1 Introduction

The first report on an ultra-low vibration sensitivity fiber-spool (∼ 10−11/ms−2) is Huang

et al. (2000). In that experiment, they wound fiber-spools onto two cylinders of same size.

The vibration sensitivity of the fiber-spools in the axial direction (∼ 3 × 10−10/ms−2) is

tens times higher than that in radial directions (0.5 − 1 × 10−11 /ms−2). In order to reduce

the vibration sensitivity, they fixed the two cylinders at symmetric positions with respect to

the axial direction and spliced the two fiber-spools into one. In terms of the axial direction,

the fiber delay responses of the two parts are inverse each other, leading to a low vibration

sensitivity for the total fiber. In fact, a systematic approach based on the same principle (i.e.

compensation) has been used for designing ultra-stable cavities mounted vertically (Chen

et al., 2006; Ludlow et al., 2007; Notcutt et al., 2005) or horizontally (Millo et al., 2009b;

Nazarova et al., 2006; Webster et al., 2007). They study the cavity deformation by using a

finite element method. For a well designed 10 cm cavity, the compensation effect leads to a

vibration sensitivity ≤ 10−11 /ms−2 in all directions. We will follow the same route to reduce

the fiber-spool’s vibration sensitivity.

Assuming that the fiber delay time variation δτ is proportional to the fiber deformation

δl, a compensation of the fiber deformation is equivalent to that of the delay time. It is

nearly impossible to simulate the deformation of a free standing fiber, because it has too

many degrees of freedom. However, by tightly winding the fiber onto a rigid support, we can

estimate the deformation of the fiber by using a finite element analysis to the support. The

winding tension ought to be high enough to guarantee that the fiber deformation δl follows

the deformation of the support linearly. Moreover, it should not be too high to maintain a

low fiber loss and a linear relation between δτ and δl. With a proper winding tension, the

fiber delay variation could be approximately expressed by a function of geometric parameters

of the support and its held positions. Theoretically, in this condition we can determine and

optimize the vibration sensitivity in the axial direction of the support.

The optimization process may not be so straightforward as that of the cavity design for

two reasons. First, the fiber delay variation with respect to the support deformation is more
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complex than that for a cavity, the distance between two central points of mirrors. In other

words, we need to do an extra step to transform the support deformation into the fiber length

variation. A finite element analysis would not enable to determine directly the variation, due

to the fact that the fiber is soft and contains several layers with very different mechanical

characters. An alternative solution is to evaluate this variation by using an empirical trans-

forming equation obtained from experiments. Second, we want this fiber-stabilized laser to

be transportable, which requires a tight holding of the support. Consequently, the forces

acting on the support at holding positions are difficult to model.

In Huang’s approach, they used two separated supports. We propose to use only one

symmetric support held at the middle for simplifying the holding device. The target is

to have a reproducible vibration sensitivity in axial direction comparable with that of other

directions (≤ 10−11 /ms−2). We will minimize the vibration sensitivity by using following

process:

• Step1 : Create a simple ideal model for simulation the fiber vibration sensitivity or

refine the model according to the experimental result obtained in step3.

• Step2 : Design supports and determine the holding method for minimizing the vibration

sensitivity or verifying the simulation model.

• Step3 : Measure the vibration sensitivity of the fiber-spools wound onto these supports.

This process is finished once the target is realized, or else go back to step1.

Further reduction of vibration sensitivity in all directions can be done by choosing the support

materials with a higher specific stiffness E/ρ, where E is the Young’s modulus and ρ is the

density, because the deformation of the support is proportional to E/ρ of the material.

3.8.2 Experimental setup

Fig.C.2 is the drawing of the support, which is designed following a preliminary finite element

analysis. In addition to this support, we built three cylinders with the same profile as the

designed support and a hole (∼ 2 cm diameter) through the axes. All of these supports

are made of Titanium, because Titanium is relatively easy to be machined, stiff (E/ρ ≈
2.6 × 107 m2/s2) and not sensitive to the temperature fluctuation, which is more than 10 K

during the measurement. We wind SMF-28 fiber (see appendix C) onto the designed support

and two cylinders, and polyimide-coated fiber onto the third cylinder. The winding tension
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Figure 3.32: Drawing of the designed support (in mm).

is about 0.1 N for all the fiber-spools. We also make use of two 500 m glued fiber-spools to

verify the compensation effect due to a symmetric structure.

We did these experiments in Boulder (USA) with colleagues from NIST. Their laboratory

has a vibration platform, which can generate white-like vibrations in a given Fourier frequency

range. This platform has been used in the vibration sensitivity measurement of RF oscillators,

such as optoelectronic oscillators (OEO) (Howe et al., 2007; Taylor et al., 2008). With this

platform, we can evaluate the vibration sensitivity in a broad Fourier frequency range instead

of a single frequency.

The measurement setup is shown in Fig.3.33. We use a Michelson interferometer with a

frequency shifted heterodyne configuration to measure the vibration sensitivity of the fiber-

spool. One arm of the interferometer is the measured fiber-spool placed onto the vibration

platform, which generates vibrations with the PSD of Sa(f) (ms−2)2/Hz. The other arm

(reference arm) is a fiber-spool with the same length as the measured one. This length-

balanced interferometer is not sensitive to the laser frequency noise (see Eq.3.1), allowing a

less critical requirement for the laser frequency noise. The AOM is driven by a 95 MHz RF
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Figure 3.33: The measurement scheme of the fiber-spool vibration sensitivity.

signal, leading to a 190 MHz detected signal. We divide the frequency of the detected signal

to 2.375 MHz by using a digital frequency divider (/80), in order to enlarge the detection

dynamic range. The phase noise of this 2.375 MHz signal can be measured with a standard

phase noise measurement technique. We use a low phase noise commercial synthesizer loosely

phase locked on this signal with a control bandwidth of ∼ 1 Hz. Thus, we obtain the phase

noise Sφ(f) rad2/Hz, which is measured by using a FFT, at the output of the phase detector

for Fourier frequencies higher than the control bandwidth. We introduce strong vibrations

so that the phase noise Sφ(f) is mainly determined by the effect of vibrations Sa(f). The

vibration sensitivity is then

Γ =
∆τ(f)

τ
√

Sa(f)
= 80

c

2πnLν

√
Sφ(f)
Sa(f)

[/ms−2], (3.32)

where L is the fiber length multiplied by 2.
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3.8.3 Measurement results

According to previously published results (Howe et al., 2007; Huang et al., 2000; Taylor

et al., 2008) and the preliminary finite element analyses, the vibration sensitivity in the axial

direction of the rigid support is one to two orders of magnitude higher than that in the radial

direction. Therefore, we only focus on the vibration sensitivity of the fiber-spool in this

direction.

Figure 3.34: The two glued fiber-spools and their vibration sensitivities.

The first experiment aims at proving the compensation effect by using a symmetric struc-

ture. We glue two 500 m glued fiber-spools onto two sides of an aluminum disc (see Fig.3.34).

Due to the symmetric structure, the vibration responses in axial (vertical) direction of the

fiber-spools are inverse. When the two fiber-spools are spliced in series, the vibration sensi-

tivity shown in Fig.3.34 is much lower than each of them. Over the measuring range from

10 Hz to 300 Hz, the vibration sensitivity (∼ 10−10 /ms−2) is reduced more than 40 times.

This vibration sensitivity is stable and reproducible, nearly independent of the holding po-

sitions on the disc. Clearly, the symmetric structure efficiently compensates the fiber-spool

vibration sensitivity. The reducing ratio is a few tens, which is comparable to the ratio of the

sensitivities between axial and radial directions. It demonstrates that using a highly sym-

metric structure for axial direction can realize our target. Note that the winding direction is

irrelevant, only the holding geometry matter.
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Figure 3.35: The measured fiber-spool and its vibration sensitivity.

The second experiment is to measure the vibration sensitivity of a 2.1 km SMF-28 fiber

wound onto the designed support with 0.1 N winding tension. This support is tightly fixed

onto an Invar post by using 8 screws (see Fig.C.2 and Fig.3.35). The measured vibration

sensitivity is about 2 × 10−10 /ms−2 in the measurement frequency range of 10 − 500 Hz at

the onset of the experiment. We continually redo the same measurement, while the operation

temperature rises up more than 10 K during hours. The temperature increase is due to a

great amount of heat energy produced by the operating vibration platform. Ultimately, the

vibration sensitivity gradually decreases to the level of about 4× 10−11 /ms−2 in the Fourier

frequency range of 20−500 Hz. Furthermore, putting hundreds grams mass on the top surface

(not center) of the support causes an obvious sensitivity variation. A reasonable explanation

is that the 0.1 N winding tension is not enough to make the fiber length variation well following

the cylinder deformation. As a result, the temperature drift or the force action leads to a

winding tension variation, resulting in a change of the vibration sensitivity. We suppose that

a higher temperature corresponds to a tighter fiber tension. Thus, a tighter winding may

lead to a lower vibration sensitivity.

In the third experiment, we rewind the fiber onto the designed support with a 0.75 N wound

tension. The losses of the fiber-spool are less than 1 dB, which is acceptable. The vibration

sensitivity shown in Fig.3.36 is about 7 × 10−11 /ms−2. The white-like vibration sensitivity

is a signal, indicating that a better compensation can be done. This vibration sensitivity
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Figure 3.36: The vibration sensitivity of fiber-spool with a 0.75 N tension.

shows very robust features such as: it is independent of the temperature fluctuation. It is

also independent of putting mass on the top surface of the support and roughly same for

many times measurement (even mounting the support upside-down). These robust features

indicate that the fiber-spool delay time variation well follows the cylinder deformation and

more tension would not improve. This result tells us that the feasible winding tension should

be between 0.1 N and 0.75 N. We also turned the fiber spool over (upside-down) and held at

different position (see Fig.3.37). The measured vibration sensitivities are in the range of from

∼ 2 × 10−11 /ms−2 to ∼ 7 × 10−11 /ms−2. Major differences are induced by asymmetrically

winding of spool. Compared with the target, these vibration sensitivities still need to be

reduced by a factor of a few to ten. Nevertheless, they are close to that of a 10 cm ultra-

stable cavity at the current state-of-the-art of ∼ 10−11 /ms−2(Ludlow et al., 2007; Millo et al.,

2009b; Nazarova et al., 2006; Seel et al., 1997; Webster et al., 2007). Note that the specific

stiffness E/ρ is similar for Titanium and cavity-used Ultra-Low Expansion (ULE) glass.

We also measured the vibration sensitivity of a 650 m ployimide-coated fiber, which is

wound onto a cylinder with 0.1 N winding tension. This kind of fiber has the same core and

cladding dimensions as the SMF-28 fiber as shown in Appendix C. For protection, SMF-28

fiber has three extra layers from inner to outer: extremely soft coating∼ 30 µm, hard coating∼
30 µm and tight buffer ∼ 325 µm. However, ployimide fiber just has one layer of thin (∼ 20 µm)
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Figure 3.37: The fiber-spool with other held methods and its vibration sensitivity (0.75 N

2.1 km SMF-28 fiber spool).

and very hard polyimide coating out of cladding as shown in Appendix C, which allows it

working in vacuum or high temperature environments. We suppose that the polyimide-coated

fiber in similar manner as a bare fiber, may be easier to be analyzed with a finite element

method. Fig.3.38 shows the holding method and the vibration sensitivity of the polyimide-

coated fiber-spool. Over the measured range of 20−500 Hz, the vibration sensitivity is mainly

in the range of 10−11 /ms−2. However, the sensitivity is strongly frequency dependent, when

the cylinder is held in the center (see A of Fig.3.38). It should be due to the fact that the

winding tension of 0.1 N is not enough.

Finally, we measured the vibration sensitivity of fiber-spools with different length and

holding way. These fiber-spools are wound with different tensions (0.75 N and 0.1 N) onto

cylinders. The measured vibration sensitivities are in the range of 3× 10−10 to 1.5× 10−9 for

Fourier frequencies of 20− 500 Hz.

In summary, the preliminary results indicate some positive conclusions:

• The symmetric compensation effect could be efficient enough to realize a reproducible

vibration sensitivity of the fiber-spool(≤ 10−11/ms−2) in axial direction compatible

with that of other directions.
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Figure 3.38: The polyimide-coated fiber-spool and its vibration sensitivity (650 m 0.1 N), A:
center holding, B: edge holding.

• The feasible winding tension exists for SMF-28 fiber; the optimum tension should be a

value in the range of [0.1,0.75] Newton.

• The measured vibration sensitivity (∼ 7 × 10−11 /ms−2, see Fig.3.36) is stable and

frequency independent when the designed support is fixed on the Invar post at the

center. And it definitely can be further minimized in this configuration.

In addition, we have several extra measurement results, which may be helpful for establishing

the simulation model. It is worth noting that there are uncertainties (e.g. winding quality) in

these experiments, making the relation between support deformation and fiber delay variation

complex. However, the vibration sensitivity is only ∼ 10 times higher than the target and

further improvement can definitely be done. We believe that our target can be achieved in

near future.

3.9 Summary and prospectives

This chapter has introduced the technique of laser frequency stabilization on a fiber delay,

analyzed the various noise effects and given the noise rejection methods. With appropriate

86



3.9 Summary and prospectives

configuration and fiber length, our fiber-stabilized lasers show following features:

• Ultra-low frequency noise: their frequency noise PSDs are more than 20 dB below those

of the previous published fiber-stabilized lasers, and comparable with that of an ultra-

stable cavity-stabilized laser for Fourier frequencies higher than 30 Hz.

• Ultra-high sweep linearity: 50 Hz peak-to-peak non-linear error in a ∼ 600 MHz sweep

range.

• High short-term stability: with a 2.5 km reference fiber in an air-sealed can, the insta-

bility of both non-swept and swept lasers is about 10−14 for 0.1− 1 s integration times

after removing the linear drift.

Furthermore, this laser is simple, robust and low cost.

These fiber-stabilized lasers can be used in many applications, including optical track-

ing oscillator (including phase coherent tracking of optical signal from a satellite)(Wolf

et al., 2009), optical frequency-modulated continuous-wave reflectometry (Geng et al., 2005),

low noise interferometric sensors (Hough & Rowan, 2005), optical processing of RF signals

(Lavielle et al., 2003) and so on.

In all experiments, the reference fiber is placed onto a vibration isolation platform, which

is not convenient for manipulating. Furthermore, once the thermal effect is greatly sup-

pressed, the vibration noise effect may not be negligible for low Fourier frequencies even

with a vibration isolation platform. Especially, one want to use the laser used in a noisy

environment. We have done a few preliminary experiments for reducing the fiber vibration

sensitivity. These measured fiber-spools have shown the vibration sensitivity in the range of

high 10−11 /ms−2. The result implies that a ≤ 10−11 /ms−2 vibration sensibility is achievable.

Considering the drift of the non-swept laser, the instability of the 2.5 km fiber-stabilized

laser is in the range of 10−12 at 1s integration time. This instability can definitely be reduced

by a factor of 10 by adding additional thermal isolations for the interferometer. Even in this

condition, the laser instability is still much higher than that of an ULE glass cavity-stabilized

laser. This is due to the fact that the temperature coefficient of SMF-28 fiber is about 10−5 /K,

which is ≥ 103 times higher than that of ULE spacer. This effect can be reduced by periodic

calibrations with a more stable reference. However, the best solution should be reduction of

the fiber temperature coefficient. A possible approach is use of a low temperature coefficient

fiber or different type fibers canceling out their temperature drift effect.
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Chapter 4

Long distance ultra-stable optical

frequency transmission

This chapter is devoted to the technique of ultra-stable optical frequency transmission via

optical fiber networks. In the first part, I explain the principle and limitations of the noise

cancellation. Then, I introduce the experimental setup and show several experiments of the

optical link, including optical frequency transfers over 86 km, 2×86 km and 108 km urban fiber

networks. Finally, a 150 km + 150 km cascaded link with a repeater station is demonstrated

over optical fibers simultaneously carrying Internet data traffic.

4.1 Introduction

Ultra-stable frequency transmission between distant laboratories is required by many appli-

cations: time and frequency metrology (Amy-Klein et al., 2004; Bauch et al., 2006; Ludlow

et al., 2008; Musha et al., 2008; Terra et al., 2009), fundamental physics (Shelkovnikov et al.,

2008), particle accelerators (Pellegrini, 2006; Wilcox et al., 2009), the synchronization of

deep-space network and astronomy antenna arrays (Calhoun et al., 2007; Layland & Rauch,

1997). The field of optical frequency standards is rapidly progressing, and the fractional un-

certainty level of 10−16− 10−17 has been already demonstrated (Campbell et al., 2008; Chou

et al., 2010). And these accurate frequency standards are complex, expensive and bulky

equipments, and usually located in different countries. As a consequence, an ultra-stable fre-

quency transmission with a fractional frequency instability of 10−18 (or below) at one day is

required to compare the frequency of present (and future) optical clocks over large distances.
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Long-distance frequency comparisons of ultra-stable clocks enable to evaluate not only

the performance of these clocks, but also the geoid fluctuations. The geoid was mapped

by years of observations of terrestrial gravity and satellite orbits. The altitude is estimated

with a typical uncertainty of 30− 50 cm per year, corresponding to a frequency gravitational

redshift change of a few 10−17 (Kleppner, 2006; Margolis, 2010; Pavlis & Weiss, 2003).

The mature satellite-based links for frequency comparison show a fractional instability of

about 10−15 for one day integration. Currently developed satellite-based links for advanced

space missions, Atomic Clocks Ensemble in Space (ACES) (Cacciapuoti & Salomon, 2009) and

Time Transfer by Laser Link (T2L2) (Samain et al., 2009), have been designed with the goal

of comparing frequency in the level of < 10−16 at one day. However, the performance of these

free-space links is also determined by the location and atmosphere conditions. Nevertheless,

ground links with better stability are required to compare the frequency of the best optical

clocks in the near future.

Fibre networks are the best candidates for the ground links to transfer an ultra stable

frequency, due to their good intrinsic stability, low loss, reliability and wide accessibility.

There are three methods to transfer frequency via the fiber networks (Foreman et al., 2007a):

amplitude modulation (AM) frequency transfer of a radio frequency (RF) or microwave signal.

(Calhoun et al., 2007; Daussy et al., 2005; Kumagai et al., 2009; Lopez et al., 2008, 2010a;

Lutes, 1980; Narbonneau et al., 2006; Shillue et al., 2004; Wilcox et al., 2009; Ye et al., 2003),

optical frequency comb transfer (Holman et al., 2004; Kim et al., 2008; Marra et al., 2010) and

optical carrier frequency transfer (Foreman et al., 2007b; Grosche et al., 2009; Hong et al.,

2009; Jiang et al., 2008; Kéfélian et al., 2009b; Lopez et al., 2010b; Ma et al., 1994; Musha

et al., 2008; Newbury et al., 2007; Terra et al., 2009, 2010; Williams et al., 2008). The optical

carrier frequency transfer presents the lowest instability among these methods. Thus, it is

suitable to realize long-distance ultra-stable frequency transfers at ∼ 1000 km scale or even

longer, and compare the frequencies of optical clocks in all Europe. Usually, the transferred

laser signal is at a wavelength of ∼ 1.5 µm, corresponding to the lowest fiber transmission

loss window (∼ 0.2 dB/km). Recently, optical links have been developed in several countries.

They all exhibited a fractional frequency instability of ∼ 10−19 or lower for 100 − 200 km

frequency transfer, although not all evaluated with an equivalent statistics tool.

We transferred the frequency of an ultra-stable laser signal over 86 km and 2 × 86 km

urban dedicated fiber. The compensated link showed a fractional frequency instability of a

few 10−16 at 1 s integration time and a few 10−19 at 104 s (Jiang et al., 2008). In addition,
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we transferred the same optical frequency over 108 km link using a section of public fiber

networks. This link presented a fractional frequency stability of a few 10−16 at 1 s and below

10−19 at 104 s (Kéfélian et al., 2009b). This experiment opens the way of using the public

telecom networks to transfer the ultra-stable optical frequency. Recently, we transferred

optical signal over a 150km+150km cascaded multiplexed link with a repeater station. This

link showed a stability of 3× 10−15 at 1 s and 4× 10−19 at 104 s (Lopez et al., 2010b). The

objective is development of a ∼ 1000 km optical link with a ≤ 10−18 instability at one-day

integration time.

4.2 Principle of the optical link

This part explains the operational principle of the optical link, and gives detailed analyses

on the noise cancellation technique.

4.2.1 Introduction

The goal of an optical link is to reproduce a local frequency reference at the remote end

of the fiber link. Several noises accumulated along the optical fiber degrade the transferred

frequency signal by perturbing its phase. For instance, thermal and mechanical fluctuations

change the optical path through the fiber, thus inducing fluctuations of the propagation delay.

The delay fluctuations correspond to phase/frequency variations of the transferred signal.

Figure 4.1: General scheme for the noise compensation of frequency transfer.

The so-called ”Doppler cancellation technique” was originally used in the free space fre-

quency transmission about 30 years ago (Vessot et al., 1980). Optical frequency transfer

with the same principle was done later (Ma et al., 1994). The scheme is shown in Fig.4.1,

where the link can be the optical fiber or any other media. It is actually a general scheme of
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Doppler noise cancellation for the signal transmission. The local system compares the round-

trip signal to the local signal, therefore, measures the sum of the forward and backward phase

fluctuations of the propagating signals. The phase fluctuation of the fibre is mainly induced

by the length and refractive index variations, which equally impact the forward and back-

ward propagation phase approximately. Therefore, phase fluctuation of forward transmission

is half of the round-trip phase fluctuation, and it can be measured and compensated.

This noise cancellation technique enables to compensate laser phase fluctuations which

are identical for both propagation directions. However, for some noises [e.g. due to the

polarization mode dispersion (PMD)] this is not case, leading to an imperfect noise cancella-

tion. Moreover, fibre delay leads to a detection delay, resulting in limitations on the control

bandwidth and noise rejection ratio (Newbury et al., 2007).

4.2.2 Link noise determination and compensation

Figure 4.2: Scheme of a compensated fiber link (with time-domain notations).

Fig.4.2 shows the scheme of a compensated fiber link. It can be used to transfer the

frequency of an RF/microwave amplitude modulation (AM) signal, a pulsed laser signal (i.e.

optical comb) or an optical carrier. The actuator can be piezo-controlled fiber-stretchers

and thermally controlled fiber spools. In the case of an optical carrier frequency transfer,
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the actuator is usually an acousto-optic modulator (AOM). The effect of an AOM on the

polarization states of the optical signal, which can lead to a PMD noise, is much weaker than

that of a fiber-stretcher.

The link is modeled as an ideal link and a noise source, which produces a phase noise φf .

The frequency signal νlocal is fed into the fiber link after passing the phase actuator. In this

part, we suppose that νlocal [= dφref (t)/dt] is an ideal source independent of time. At the

remote end the received frequency is

νremote =
d[φref (t− τ) + φc(t− τ) + φf,forward]

dt
= νlocal +

d[φc(t− τ) + φf,forward]
dt

, (4.1)

where φref is the phase of the frequency reference source, φf is the phase noise of the link,

φc is the compensation phase and τ is the delay time of the fiber link for a one-way transfer.

By using a mirror or a circulator, a fraction of the optical signal is retro-reflected into the

link at the remote end. This reflected signal arrives at the local end, and passes the phase

actuator again. After that, a phase comparator compares the phase difference between this

signal and the local signal, yielding the round-trip phase fluctuation

∆φ = φref (t)− φref (t− 2τ)− φc(t)− φc(t− 2τ)− φf,forward − φf,backward. (4.2)

Finally, ∆φ is stabilized to be a constant value by controlling the phase with the actuator.

Thus, we can obtain

dφref (t)
dt

=
d[φref (t− 2τ) + φc(t) + φc(t− 2τ) + φf,forward + φf,backward]

dt
. (4.3)

This noise cancellation is only effective for the low Fourier frequencies f � 1/(4τ), where{
dφf,forward

dt ≈ dφf,backward

dt
dφc(t)

dt ≈ φc(t−τ)
dt ≈ φc(t−2τ)

dt

. (4.4)

Eq.4.1, Eq.4.3 and Eq.4.4 give {
d[φc(t−τ)+φf,forward]

dt ≈ 0
νremote ≈ νlocal

. (4.5)

Thus, the link noise is compensated.
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4.3 Operational requirements

4.3.1 Requirement of a robust phase-locked loop

As shown in the principle scheme (see Fig.4.2), the compensation system is a phase-locked

loop (PLL). In fact, the main PLL contains a few PLLs acting as narrow bandwidth RF

filters.

The rule of thumb for a PLL is that the phase jitter, φrms at the input of phase comparator,

has to be much less than 1rad, so as to prevent the PLL from loss of cycles or unlock.

This jitter is dominated by the noise for Fourier frequencies higher than the loop control

bandwidth, because it is an in-loop noise. Consequently, we can guarantee that the PLL is

robust if φrms(fl, fh) � 1 rad (see Appendix A), where fl is the control bandwidth and fh is

the upper bound of the detection bandwidth.

For the main PLL, fl is less than 1/4τ , and the phase jitter of the link φrms−opt is usually

more than 1rad. In order to maintain the PLL operating properly for a long time, we have to

divide the frequency (by a factor of n) of the link noise detection signal to reduce the in-loop

phase jitter (i.e. φrms = φrms−opt/n � 1 rad).

4.3.2 Frequency shift at the remote end

The forward and backward propagation signals, for the round-trip noise determination, should

have a frequency difference of ∆νshift.

The phase comparator (Fig.4.2) contains a photodiode which produces beat-notes of op-

tical signals. In additional to the round-trip signal for link noise cancellation, a lot of stray

reflected signals are also coupled into the photodiode. For a 100km optical link, even though

there are no localized parasitic reflections, the Rayleigh backscattering leads to a stray re-

flected signal of ∼ 0.2% of the incident power. This result is calculated, based on the parame-

ters of 0.15 dB/km Rayleigh loss, ∼ 1/500 (Hartog & Gold, 1984) coupling ratio in power from

Rayleigh loss to the backward propagation mode and 0.2 dB/km propagation loss. Clearly,

the effect of these stray reflections is not negligible if the round-trip signal is at the frequency

of these signals. In order to avoid this effect, the frequency of the round-trip signal has to

be shifted at the remote end. Thus, the round-trip signal is at a different frequency than

these stray reflections. Consequently, the beat-note signal between the round-trip signal and

the local reference signal can be selected by using an RF bandpass filter, while the beat-note

signal related with stray reflections is filtered out, see Ma et al. (1994).
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4.4 Fundamental and technical limitations

In this part, I discuss fundamental limitations and noise effects of the optical link.

4.4.1 Fundamental limitation due to the delay

Figure 4.3: Scheme of an actively compensated fiber link (with Laplace-domain notations).

The compensated link has a limited control bandwidth and noise rejection ratio, because

of the fiber delay, as first pointed out by Newbury et al. (2007); Williams et al. (2008). Fig.4.3

shows the link scheme with Laplace-domain notations. It gives
Φc(s) = {Φs(s)− [Φs(s) + Φc(s)]e−2τs − Φc(s)

−Φf (s)e−(2τ−τ1)s − Φf (s)e−τ1s}G(s)
Φo(s) = Φs(s)− [Φs(s) + Φc(s)]e−τs − Φf (s)e−(τ−τ1)s

, (4.6)

where Φs(s) is the phase noise of the frequency source, Φf (s) is the phase noise of the link

occurring at time τ1 from the local end, Φc(s) is the compensation phase, Φo(s) is the end-

to-end beat-note (baseband), which corresponds to the phase noise of the link, τ is the laser

propagation delay from the local end to the remote end, G(s) is the transfer function of the

loop filter. We assume that the source produces an ideal frequency signal, i.e. Φs(s) = 0.

According to Eq.4.6, the transfer function from fiber noise to the compensated link noise is
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given by
Φo(s)
Φf (s)

= −1 + (1− e−2τ1s)G(s)
1 + (1 + e−2τs)G(s)

eτ1s−τs. (4.7)

At low Fourier frequency (f � 1/4τ), the frequency response magnitude of this transfer

function decreases, while the gain of the loop filter increases. However, this magnitude can

not be reduced arbitrarily, even if an infinite gain is applied by the loop filter. The minimum

magnitude of the frequency response is

lim
|G(s)|→+∞

∣∣∣Φo(s)
Φf (s)

∣∣∣ =
∣∣∣1−e−2τ1s

1+e−2τs

∣∣∣
=

∣∣∣ sin(2πτ1f)
cos(2πτf)

∣∣∣
= 2πτ1f, for f � 1

4τ

, (4.8)

where s = 2πjf is the Laplace variable, f is the Fourier frequency. For low Fourier frequencies,

the minimum residual phase noise is the free-running link noise scaled by 2πτ1f . However,

a high control gain would significantly amplify the link noise around the frequency of ∼ 1
4τ ,

according to Eq.4.8. In order to obtain a high link stability, a trade-off should be found

between a lower feedback gain at the frequency of ∼ 1
4τ and a higher feedback gain for lower

frequencies.

Assuming that the noise is uniformly distributed and uncorrelated over the link, the mean

residual noise ratio in power would be not less than:

Rp(f) =
∫ τ

0

(2πτ1f)2

τ
dτ1 =

1
3
(2πτf)2, for f � 1/(4τ). (4.9)

The link phase noise in amplitude is proportional to the square root of the link length L;

while the noise rejection limit is inversely proportional to the link length. Consequently, the

link residual phase noise (in amplitude) presents a L3/2 law for low Fourier frequencies for

uniformly distributed noises (Williams et al., 2008).

4.4.2 Laser source noise effect

The phase noise of the laser source also affects the measured link performance. In order to

evaluate this effect, we assume that the link is ideal (i.e. Φf (s) = 0). According to Eq.4.6,

the transfer function from the laser noise to the compensated link noise is given by

Φo(s)
Φs(s)

= (1− e−τs)
1 + (1− e−τs)G(s)
1 + (1 + e−2τs)G(s)

. (4.10)
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The first factor (1− e−τs) corresponds to the link noise detection system acting as a delayed

self-heterodyne interferometer (DSHI). It contributes to the phase/frequency power noise

with a factor of 4sin2(πfτ) (Okoshi et al., 1980; Rubiola et al., 2005).

The second factor is the contribution of the link compensation, which is unity for G(s) = 0

(i.e. no control). The magnitude of this factor is the same than the right side of Eq.4.7 with

τ1 = τ/2, corresponding to the link position at the middle. On the other hand, the mean

residual ratio of the free-running link noise is comparable to the residual noise ratio at the

middle position (see Eq.4.7 and Eq.4.9). Thus, the laser source frequency/phase noise

effect is negligible if the τ-time DSHI output of the laser noise is much less than

the free-running link noise.

4.4.3 Detection noise effect

For the optical carrier frequency transfer, the photodiode yields an heterodyne detected signal

of about hundred MHz. At such a frequency, the detection noise is usually dominated by wide

bandwidth noises: shot noise and Johnson noise.

Shot noise follows a Poisson distribution related to the photodiode current. Its phase

noise power spectral density (PSD) is given by

Φ2
shot =

hν(Popt1 + Popt2)
ηPopt1Popt2

≈ hν

ηPopt2
rad2/Hz for Popt1 � Popt2. (4.11)

where η is the detector quantum efficiency, hν is the photon energy, Popt1 and Popt2 are optical

power of the reference and retro-reflected signals received by the phase comparator.

Johnson noise is due to thermal effect inside a resistor. The standard resistance of the RF

system is 50 Ω, Thus, the phase noise PSD induced by Johnson noise can be approximately

written as

Φ2
johnson =

(
hν

eη

)2 2kBT

50Popt1Popt2
[rad2/Hz], (4.12)

where T is the temperature in Kelvin, kB is Boltzmann’s constant.

According to Eq.4.11 and Eq.4.12, shot noise effect is equal to Johnson noise effect for

Popt1 = 1 mW. The detected signal-to-noise ratio can not be efficiently improved by further

increasing the power of Popt1(= 1 mW), because shot noise is independent of Popt1. Conse-

quently, the reference signal power should be about 1 mW or higher, in order to obtain a low

noise detection.
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For instance, both the local reference and link injected powers are 1 mW for a 200 km link.

The round-trip signal will be in the range of 10−9 mW without any optical amplifier. The

detected phase noise will be in the order of 10−7 rad2/Hz. This phase noise corresponds to a

phase jitter of ∼ 1 rad for a few MHz detection bandwidth, which can lead to the main PLL

loss of cycles or out of lock. This noise effect could be efficiently reduced by increasing the

round-trip signal’s power.

However, the input optical power of the link is limited by stimulated Brillouin scattering

(SBS). The origin of SBS is a physical phenomenon called electrostriction. Electrostriction

is a property of all electrical non-conductors, or dielectrics, that causes them to change their

shape under the application of an electric field. Due to this effect, a high density laser beam

stimulates acoustic vibrations and backscattered Stokes light in the fiber. The fiber refractive

index is then modulated, forming a moving Bragg grating, which enhances the backscattering

effect. Once the input laser density is over a threshold, the reflected power increases rapidly.

The threshold is usually a few mW for the SMF-28 fiber, and depends on the fiber length.

Note that the SBS signal frequency is downshifted about 11 GHz, far away from the frequency

of detected signals. As a result, the SBS effect does not directly disturb the compensation

system. It is negligible when the input optical power of the link is below the SBS threshold.

In order to get a low noise detection, optical amplifiers (see below) have to be used for a

long distance link (e.g. ∼ 200 km).

4.4.4 System noise floor

The link noise cancellation technique is based on the assumption that phase fluctuations

are identical for forward and backward propagation directions. We have discussed the fun-

damental limitation due to the fiber delay, which is relevant to the time asymmetry with

respect to noise detection and compensation for the two propagation directions. In addition

to this limitation, there are a few limitations induced by the path, frequency and group delay

asymmetries. These limitations may lead to a system noise floor of the fractional frequency

instability higher than that caused by the fiber delay for long integration times.

4.4.4.1 Non-common optical fibers

A few fibers in the system are not part of the main PLL (see blue lines in Fig.4.2). The noise

occurring in these fibers, mainly induced by the temperature fluctuation, may determine the

floor of the measurement system for long terms. The fiber (SMF-28) has a temperature
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coefficient CT of ∼ 10−5 /K. Assuming that the temperature fluctuations of these fibers are

homogenous, the frequency fractional instability due to this fluctuation will be

σy(τ) ≈ ∆τ

τ
=

CT ∆Tnla
cτ

≈ 5× 10−14 la∆T

τ
, (4.13)

where ∆τ is the delay time fluctuation of the compensated link, la is the asymmetry length of

fiber in meter, ∆T is the temperature fluctuation in Kelvin during time τ . The asymmetry

length is the length difference between the local reference arm and non-common part of

round-trip arm at local end (blue and green lines in Fig.4.1).

In our laboratory, the temperature fluctuation is about 1 Kelvin peak-to-peak with a

period of about 400 s, corresponding to an instability of a few 10−16 at 200 s integration

time for 1 m length asymmetry (see Eq.4.13). In order to realize and measure an ultra-stable

frequency transfer, it is essential to minimize and match the non-common fiber lengths and

make a good thermal isolation for the optical system. The isolation also reduces effects

induced by the acoustic noise and the air flow.

4.4.4.2 Forward and backward frequency shift

The forward and backward propagation signals have a frequency difference of νshift, in order

to reduce stray reflection effect (70 MHz in our case). This frequency shift results in an

imperfect phase noise compensation, because a delay change corresponds to different phase

variations for the forward and backward signals.

Assuming the link noise induces an equal delay fluctuation ∆τ for both forward and

backward signals, the phase change of the backward propagation signal is

∆φback = ∆τ × νback

= ∆τ × νfor(1 + νshift

νfor
)

≈ ∆φfor(1 + 3.5× 10−7)
, (4.14)

where ∆φfor and ∆φback are phase variations, νfor and νback are frequencies of the forward

and backward propagation signals.

Since the noise correction system imposes φc = −∆φback+∆φfor

2 , it leaves an uncorrected

phase fluctuation: ∆φfor + φc ≈ 2 × 10−7∆φfor. Thus, the instability of the compensated

link is then

σy(τ)link ≈ 2× 10−7σy(τ)free, (4.15)

where σy(τ)free is the free-running link instability for an integration time of τ . This effect

limits the residual instability no less than ∼ 2 × 10−7 of the free-running link instability
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for a single span transfer. It can be reduced by decreasing νRF or with a digital frequency

processing.

4.4.4.3 Chromatic dispersion effect

The forward and backward frequency shift νshift also causes an imperfect phase noise com-

pensation due to the chromatic dispersion of SMF-28 fiber, which is ∼ 17 ps/(nm · km) at

1542 nm. The backward propagation delay fluctuation ∆τback can be approximated as:

∆τback = ∆τfor[1 + D(λ)∆λc/n]
≈ ∆τfor(1− 2× 10−9)

, (4.16)

where ∆τfor is the forward propagation delay fluctuation, ∆λ is wavelength difference with

respect to νRF , c is the speed of light, n is the fiber index. Clearly, the chromatic dispersion

effect is negligible by comparing 4.16 and 4.14.

4.4.4.4 Polarization mode dispersion effect

The birefringence of SMF-28 fiber typically leads to a PMD of ≤ 0.1 ps/
√
km, corresponding

to ≤ 1 ps for a ∼ 100 km fiber link.

In the paper of Lopez et al. (2008), the PMD effect of an 86 km RF modulation frequency

transfer leads to a fractional instability of ∼ 10−16 at 104 s integration time. This instability,

corresponding to the worst specified value of the PMD effect, is too high to transfer an ultra-

stable signal. Fortunately, this effect can be averaged out by scrambling the polarization of

the laser signal. Experimentally, the long-term instability is reduced by more than 1 order

of magnitude with this approach (Lopez et al., 2008, 2010a)

However, we have never observed the PMD fluctuation effect in the level of a few 10−15/τ

up to 104 s for 86 − 300 km optical carrier frequency transfers. This is due to the fact that

the actuator (an AOM) causes much less polarization variation of the optical signals than

the fiber stretcher used for the RF modulation frequency transfer. On the other hand, the

fiber is buried in the ground, and well fixed and isolated. Consequently, PMD fluctuations of

the fiber link are slow, and its effect is negligible. Note that the wavelength-dependant PMD

effect is also negligible, because the frequency of the laser source is ultra-stable.
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4.5 Experimental setup

In this part, I introduce the setup of the first experiment and some considerations of the

system design. This setup is partly modified in successive experiments.

4.5.1 Fiber link

Figure 4.4: The telecom link between SYRTE and LPL.

The fiber link consists of two parallel 43 km fibers, which connects two laboratories in Paris

area (LNE-SYRTE at Observatory de Paris and LPL at University Paris 13) (see Fig.4.4).

Both fibers are made of a few different sections of buried fibers, which are spliced together.

We connect these two fibers to realize an 86 km urban link with both ends at the same place.

The losses and length were measured with the optical time domain reflectometry method.

Total losses are 20 dB for the 86 km link. This link has been used to transfer the microwave

frequency (Daussy et al., 2005; Grosche et al., 2007; Lopez et al., 2008, 2010a; Narbonneau

et al., 2006).

4.5.2 Optical system

Fig.4.5 shows the optical part of the 86 km fiber link experiment.
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Figure 4.5: Scheme of the 86 km fiber link (AOM: acousto-optic modulator, PLL: phase locked
loop, PD: photodiode).

The laser source is an ultra-stable cavity-stabilized laser. The laser light is split into

three parts with two fiber couplers. Two of them are the reference signals for measuring the

link stability and the phase noise of the round-trip signal. The third signal is injected into

the fiber link through an optical circulator followed by an acousto-optic modulator (AOM1

with frequency f1 ≈ 40 MHz). To compensate the phase noise φf accumulated along the

fiber, part of the signal at the remote end is reinjected into the link through another optical

circulator after being frequency-shifted by AOM2 (with frequency f2 = 70 MHz). This return

signal, which passes twice through the link and experiences a phase noise ∼ 2φf , is mixed at

the local end with the reference signal on photodiode PD1. The round-trip signal is shifted

by the frequency 2f1 + f2 from the local signal before arriving at PD1 (see Fig.4.5), which

distinguishes it from the stray reflected light and makes the detection system immune to

parasitic reflections. The output of PD1 at frequency 2f1 + f2 carries the round-trip phase

fluctuations. It is phase-locked to a synthesized RF signal by using a voltage-controlled

oscillator to control the phase of AOM1.
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The PLL applies the correction φc(f)(≈ −φf (f)) to the AOM1 frequency f1 for low

Fourier frequencies (� 1/4τ).

The reference optical power at the input of the polarization controllers is ∼ 1 mW; the link

input power is ∼ 1 mW; the insertion loss of AOMs is ∼ 3 dB; the insert loss of the circulators

is ∼ 2 dB; the coupling ratios to the photodiode are 10% of the reference signal and 90% of

the round-trip signal in power.

We measure the optical frequency instability by analyzing the beat-note at frequency

f1 + f2 provided by mixing the single-trip and reference signals on photodiode PD2. Two

polarization controllers are employed for optimizing the beat-note signal amplitudes.

The optical system is entirely composed of commercial off-the-shelf pigtailed telecom-

munications components. The unmatched fiber length of the optical system is less than

20 cm. In order to further reduce the system noise floor, this system is enclosed in a

∼ 60 cm×80 cm×30 cm space with thick aluminum plates, Mylar, bubble wrap and aluminum

foils.

4.5.3 Electronic system

Fig.4.6 shows the scheme of the electronic system with following components and functions:

• A 150 MHz narrow bandpass filter (∼ 5 MHz) is used for filtering out not only the signals

related with stray reflections (e.g. at 80 MHz) of the link but also the wide bandwidth

detection noise. The bandwidth of the 110 MHz bandpass filter is not very critical (it

is a few tens of MHz), because the received optical power is much higher and thus the

detection noise is negligible.

• A logarithmic amplifier is one whose output voltage Vout is K times the natural loga-

rithm of the input voltage Vin. This can be expressed as

Vout = K log(
Vin

Vref
), (4.17)

where Vref is the normalization constant in voltages and K is the scale factor in voltage.

By controlling the Vref to be proportional to Vin, Vout can be stabilized to be constant,

even though the input power Pin = 〈V 2
in〉/50Ω fluctuates by a few tens of dB. The

logarithmic amplifiers are used to stabilize the detected RF powers, allowing the gain

of the control system to be insensitive to the amplitude variations at photodiodes’
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Figure 4.6: Scheme of the electronic system and instability measurement, L: RF logarithmic
amplifier, P: RF power amplifier, PD: photodiode.

output. These variations are mainly due to the polarization fluctuations of optical

signals.

• A tracking oscillators is a low noise oscillator whose phase is locked to an input signal in

a control bandwidth. For Fourier frequencies below the control bandwidth, its output

follows the phase fluctuation of the input signal. For Fourier frequencies higher than

the control bandwidth, it exhibits its own phase noise. Here, the tracking oscillators

are used as ultra-narrow bandwidth RF filters. The control bandwidths of tracking

oscillator 1 and 2 are ∼ 100 kHz, which is a trade-off between reducing the broadband

detection noise and capturing the link noise. The third tracking oscillator, having a

10 Hz control bandwidth, is used for filtering out the high frequency link noise. Note
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that we have to verify if these PLLs are robust, i.e. φrms(fl, fh) � 1 rad. In order

to obtain a measurement noise floor of ≤ 10−16/τ , the instability of the third tracking

oscillator should be about or below 10−10 at 1 s. We develop a home-made tracking

oscillator as shown in Fig.4.7. The 100 MHz oscillator is a commercial OCXO (oven

controlled crystal oscillator) with a typical instability of ≤ 10−11 at 1 s. Although the

2.75 MHz signal in Fig.4.6 is mixed up to 5 MHz, which almost doubles the requirement

of the oscillator’s stability, this oscillator is still good enough for this application. The

loop filter gives a proportional gain of ∼ 10 Hz bandwidth and an integral gain for

frequencies below ∼ 2 Hz.

Figure 4.7: Scheme of the 10 Hz bandwidth tracking oscillator, where LF is the loop filter.

• The digital frequency dividers are suitable for the RF signal in the range of 100 MHz−
1 GHz. They are used to enlarge the compensation control dynamic and hence improve

the robustness of the main PLL. This is essential for the long distance optical carrier

frequency transfer. In these experiments, the residual phase jitter of the round-trip

signal is usually comparable to or higher than 1 rad. Especially in real telecom link,

noise due to human activities is not stationary, and can be several times higher than

the average level. The dividing ratio, dependent on the link noise and length, should

be higher for longer or noisier links.

• The phase detectors are RF double-balanced mixers.

• The loop filter (LP) is a simple proportional-integral amplifier. The transfer function

G(s) of the LP and the VCO can be written as (K1 + K2/s)/s, where K1 and K2 are

proportional and integral gains.
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• The frequency counter (K+K GmbH) is a high resolution dead-time free Π-type counter,

which is equivalent to a phase recorder. The range of input frequency is from hundreds

kHz to ∼ 64 MHz, and the measurement error for a 10 MHz signal is lower than 0.02π rad

for integration time from 1 s to 104 s. We use three channels simultaneously to record

the frequency of the compensation signal, full bandwidth and 10 Hz bandwidth end-to-

end beat-note.

• The shift frequency of AOM2, the RF reference of the frequency counter and link noise

demodulation signal are synthesized from a 10 MHz common signal reference.

This design is highly robust, allowing a long time locking. According to Eq.4.11, Eq.4.12

and the parameters of the optical system, the effects of shot noise and Johnson noise on

the end-to-end beat-note are estimated to be a few 10−11 rad2/Hz and a few 10−10 rad2/Hz

respectively. The detection noise effect, accumulated over the detection bandwidth of a few

MHz, is much less than 1 rad. Thus, the tracking oscillator for the link noise compensation

(150 MHz) can work properly.

4.6 Experimental results of a dedicated link

In this section, I show the experimental results of the 86 km urban dedicated link.

4.6.1 The 86 km link

Fig.4.8 shows the phase noise PSD of the 86 km free-running and compensated link.

The phase noise of the free-running link is obtained by using the end-to-end beat-note

after the tracking oscillator and a frequency-division by 40. It is connected to the counter

channel #3 (see Fig.4.6). Alternatively, we down-convert this signal to the baseband by

mixing it with a 2.75 MHz signal produced by a synthesizer. The phase variation of this signal

is much less than π/2 during a phase noise measurement. The phase noise is measured by

analyzing the baseband signal with a fast Fourier transformer (FFT). In this measurement,

AOM1 is driven by a stable 40 MHz signal provided by the synthesizer instead of the VCO

output.

The contribution of the laser source noise (see Fig4.8) on the 86 km free-running link

measurement is calculated according to Eq.4.10 and the measured laser phase noise (see
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Figure 4.8: Phase noise PSD of the 86 km free-running and compensated links and the laser
source noise contribution to the 86 km free-running link measurement.

previous chapter). This contribution is much lower than the measured phase noise of the free-

running link for Fourier frequencies lower than ∼ 1 kHz, and thus for Fourier frequencies below

1/4τ (∼ 580 Hz). The effect of the laser source’s phase noise is negligible on the measurement

for these Fourier frequencies (see previous section). For higher Fourier frequencies, this effect

is also negligible, according to the integrated phase noise of the compensated link shown in

Fig.4.9. Clearly, most of the noise energy of the compensated link is in the bandwidth from

20 Hz to ∼ 500 Hz, because of the free-running link noise distribution and the noise rejection

limitation due to propagation delay. The phase jitter is about
√

0.16 = 0.4 rad for Fourier

frequencies higher than 1 Hz. It means that the optical signal transmitted over the 86 km

urban link is still coherent to the local signal. Note that the loop filter has been optimized

to minimize the phase jitter φrms(1 Hz, 100 kHz) of the link.

Fig.4.10 shows the fiber noise compensation response of the link with the ratio of the phase
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Figure 4.9: Integrated phase noise of the 86 km compensated link.

noise PSD of the compensated link to the free-running link. By fitting the experimental result

with Eq.4.7, we determine that the loop filter has a proportional gain of 1/τ (∼ 2300 Hz)

and an integral gain of ∼ 50Hz [i.e. G(s)=(2300+50/s)/s]1. This response exhibits three

sections: the proportional gain limited span between ∼ 20 Hz to ∼ 220 Hz, the integral gain

limited span between a few Hz to ∼ 20 Hz and the delay limited range below a few Hz.

As shown in Fig.4.6, a dead-time free Π-type counter simultaneously samples the fre-

quency of the VCO output (i.e. the free-running link, channel #1), the full bandwidth

end-to-end beat-note (∼ 100 kHz limited by the tracking oscillator2, channel #3), and the

∼ 10 Hz bandwidth end-to-end beat-note (channel #4). Overlapping Allan deviation of these

signals are then calculated and shown in Fig4.11. With a 10 Hz measurement bandwidth, the

link instability is ∼ 1.5×10−16 at 1 s, 2×10−18 at 100 s and a few 10−19 at 104 s. It is limited

by the system noise floor for integration time longer than 100 s. The instability decreases as

1/τ for short times, which is consistent with the fact that the transferred signal is dominated

by high frequency noise, because a first-order filter does not suppressed the noise at higher

frequency sufficiently. Note that the air conditioning degrades the instability at ∼ 200 s, and

this system noise floor can be reduced by better length-balancing and isolating the optical

1The outer 1/s indicates the VCO.
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Figure 4.10: phase noise PSD ratio of the compensated link to the free-running link: the
measured result (blue trace), the simulated result (black dashed line) and the limitation due
to fiber delay (red dotted line).

system.

Regarding the ultra-stable frequency dissemination, the transferred signal can be tracked

with a local ultra-stable laser source, whose phase is locked to the incoming signal with a

low control bandwidth (e.g. 10 Hz), in order to filter out the high frequency link noise in the

optical domain. For instance, we use our ultra-stable laser source as this tracking oscillator at

the remote end of the 86 km link, and assume that an ideal PLL control with 10 Hz bandwidth

for the tracking is done. Thus, the output of the tracking laser will exhibit the phase noise

of the link at frequencies lower than 10 Hz and of its own for frequencies higher than 10 Hz

(see solid lines in Fig.4.12). The phase jitter of this optical oscillator, with respected to the

ultra-stable transferred signal, is less than 0.02 rad2, corresponding to ∼ 0.1 rad phase jitter

and a fractional frequency instability of σy(τ) =∼ 10−16/τ . The optimum control bandwidth

of the tracking oscillator depends on the noise level of the link and the optical oscillator. It

is worth noting that the noise of the transferred signal for high frequencies is also filtered out
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Figure 4.11: Overlapping Allan deviation of the 86 km free-running fiber, the 86km full
bandwidth link, the 86 km 10 Hz bandwidth link and the measurement noise floor (i.e. 0 km

link).

by the tracking oscillator. However, we are usually more interested in the long-term stability,

which is not sensitive to the high frequency noise.

4.6.2 A 2 X 86 km link

Grosche et al. (2007); Newbury et al. (2007); Williams et al. (2008) have reported the per-

formance of longer links extended by adding spooled fiber to urban links. To implement a

longer link with a more realistic setup, in 2008 we devised a scheme to pass twice through

the 86 km link, leading to a 2× 86 km full urban link.

4.6.2.1 Experimental setup

Fig.4.13 displays the scheme of the 2× 86 km link. The signal passes twice through the 86 km

link, with AOM shifters to mark the paths of the signals, and erbium-doped fiber amplifiers

(EDFA) to amplify the optical signal.

The round-trip optical losses of the passive 2 × 86 km link is about 80 dB. Considering

the other extra losses (e.g. due to AOMs), the detection quantum noise is ∼ 10−7 rad2/Hz
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Figure 4.12: Phase noise PSD of the 86 km compensated link (red) and the ultra-stable laser
stabilized to a free-running reference cavity (black).

according to Eq.4.11 and Eq.4.12. The detected phase jitter of the tracking oscillator 1 (out

of the control bandwidth, i.e. > 100 kHz) is ∼ 1 rad after passing through the 5 MHz bandpass

filter. Such a phase jitter can lead to an unlock of tracking oscillator 1 (see Fig.4.6). In order

to realize a stable operation, we have to improve the signal-to-noise ratio by amplifying the

optical signal with EDFA.

At that time, we had only unidirectional EDFAs, which are not suitable to be thermally

isolated because of their high power consumption. When the EDFAs are used as out-of-loop

components, it significantly degrades the link performance. Consequently, we had to cancel

the noise of EDFAs in addition to the noise of the link with a scheme shown in Fig.4.13.

The optical signal is fed into the 86 km link through an optical coupler. At the other

end of the 86 km link, the signal is reflected by a ”frequency shift mirror”, which consists of

an optical circulator, an erbium-doped fiber amplifier (EDFA1) and an AOM (AOM2). The

mirror-reflected signal is partly coupled to the remote end after passing through the 86 km

fiber again. The return signal inversely passes through the same path from the remote end

to the local end. EDFA1 with a ∼ 11 dB gain is implemented to compensate the extra losses

due to the recirculation. The losses are 6 dB for double-pass through the combiner (C on
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Figure 4.13: Scheme of 2× 86 km link, EDFA: erbium-doped fiber amplifier, AOM: acousto-
optic modulator, PD: photodiode.

Fig.4.13), 3 dB for the optical circulator of the ”mirror” and 2 dB for AOM2. Thus, this link

is equivalent to a 172 km span link without any intermediate optical amplifier.

At the remote end, another optical amplifier (EDFA2 with about 20 dB gain) was added

to amplify the return signal. In order to compensate the EDFAs’ noise, the round-trip signal

should pass the EDFAs twice, while the link transferred signal (the link output at the remote

end) passes these EDFAs once. This is naturally the case for EDFA1 but not for EDFA2.

To compensate contribution of EDFA2’s noise, we add a recirculation loop at the remote

end. AOM3 is inserted in this loop to identify the single-pass and double-pass signals. The

round-trip signal is transmitted successively through the circulator, EDFA2, AOM3, EDFA2,

AOM4 and the circulator, while the link-transmitted signal passes sequentially through the

circulator and EDFA2 to the output (i.e. the measured signal shown in Fig.4.13).

We introduce the following notations: f1(= 40 MHz) is the frequency shift of AOM1,

f2(= 70 MHz) is the frequency shift of AOM2, f3(= −65 MHz) is the frequency shift of AOM3
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and f4(= 95 MHz) is the frequency shift of AOM4. The round-trip beat-note signal detected

on PD1 has a frequency of 2f1 + 2f2 + f3 + f4 = 250 MHz, while the end-to-end beat-note

signal on PD2 at f1 + f2 = 110 MHz is used to measure the link stability. This setup can be

simplified by using bidirectional EDFAs.

4.6.2.2 Stability of the link

Figure 4.14: Phase noise of the 2× 86 km free-running and compensated link.

Fig.4.14 displays the 2 × 86 km link’s phase noise PSD with and without compensation.

As expected, the correction bandwidth is about half of the one obtained for the 86 km link

due to the link delay (see Fig.4.8). The integrated phase jitters from 1 Hz to 1 kHz are about

2.4 rad and 53 rad (rms) with and without compensation respectively.

Fig.4.15 shows the fractional frequency instability of the 2 × 86 km link. The Allan

deviation is about 4×10−16 at 1 s and in the range of 10−19 at 104 s with a 10 Hz measurement

bandwidth. The system noise floor is measured by replacing the urban fiber with an equivalent

optical attenuator. This result is mainly limited by the thermal effect of the optical system’s

non-common paths.

In addition, we have used a Λ-type counter without the 10 Hz filter to highlight the counter

effect (see Appendix A) and enable a comparison with the results of Newbury et al. (2007);
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Figure 4.15: Fractional frequency instability of the free-running link (triangles), compensated
2× 86 km link with 10 Hz measurement bandwidth (circles) and full measurement bandwidth
(∼ 100 kHz) link sampled with Π-type counter (squares) and Λ-type counter (stars), diamonds
indicate the system noise floor (i.e. 0 km link).

Williams et al. (2008) obtained with a 251 km link composed of 76 km urban fiber, 175 km

spooled fiber and four inline EDFAs. The Allan deviations obtained with the Λ-type counter

are shown by the star points in Fig.4.15. These deviations are lower than those obtained with

a Π-type counter, owing to an additional filtering of the Λ-type counter. In order to avoid

the dead-time effect, the deviations at 1 s, 10 s and 100 s are calculated from the frequency

samples obtained with the corresponding gate-times at 1 s, 10 s and 100 s respectively. For

longer integration times (i.e. > 100 s), the deviation is calculated with frequency samples

with a 100 s gate-time. Indeed, even through the Allan deviation is used, the Λ-type counter

has already filtered out part of noises for Fourier frequencies higher than 0.01 Hz. It leads to

a reduction factor of 2/3 on the Allan deviation for integration time above 100 s. Results

are found similar to the data presented in Newbury et al. (2007), and in agreement with a

1/τ3/2 slope for short term (τ ≤ 10 s). For integration time longer than 10 s, this deviation

is roughly equal to the system noise floor which is dominated by the noise at low Fourier

frequencies (< 0.1 Hz). It is consistent with the fact that the Λ-type counter has an additional
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low-pass filter than the Π-type counter (Dawkins et al., 2007).

4.6.2.3 Discussion and scaling rules

Comparison between our results of the 2× 86 km link and 251 km link Newbury et al. (2007)

is not straightforward. First of all, the noise levels of the free-running links are different,

because the 251 km link included 175 km fiber spools which are less noisy.

Furthermore, when the length of the fiber is virtually doubled by the recirculation tech-

nique, the phase noise PSD of the free-running link is twice that of a single-pass double-length

fiber, as detailed below.

Under the assumption that the fiber phase noise is uniformly distributed and uncorre-

lated, the phase noise PSD is proportional to the length of the fiber, i.e. Sφ(L) ∝ L. However,

with the recirculation technique the laser wave experiences twice the phase fluctuation δφ

at each point of the fiber. Both contributions occurring at the same point are correlated

[i.e. δφfirst−pass = δφsecond−pass] for noises, whose frequency is much lower than 1/4τ . Con-

sequently, for these Fourier frequencies (� 1/4τ), the phase noise PSD of a 2L length link

realized by recirculation is expected to be four times that of a L length fiber, because the

phase noise PSD is proportional to δφ2 and δφ2L−link =
∫ 2L
0 δφdl = 2

∫ L
0 δφdl = 2δφL−link.

The phase noise PSD for the recirculated link is twice of the one expected for a real 172 km

link. Consequently, the stability results obtained for the recirculated link should be consid-

ered as an upper bound for a real link of the same length.

4.6.3 Improved experimental setup

We modified the optical system after the previous experiments with the 86 km dedicated fiber,

in order to improve the robustness and reduce the system noise floor.

Fig.4.16 shows the scheme of the improved optical setup. We use an optical coupler and

two Faraday mirrors (FM) to realize the round-trip noise detection instead of the previous

configuration based on optical circulators. The FM rotator rotates the polarization of the laser

signal by 45◦ for single pass. These FMs guarantee that the polarization states of backward

reflected laser are orthogonal to the input states (Kersey et al., 1991; Pistoni & Martinelli,

1991). As a result, the two combined FM-reflected waves at PD1’s input always have the

same polarization states, leading to a maximum beat-note amplitude without requiring any

polarization controller. AOM2 is inserted before the FM at the remote end, and shifts the

optical signal twice. Since it is driven with f2 = 35 MHz instead of the previous value of
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Figure 4.16: Optical part scheme of improved experimental setup (AOM: acousto-optic mod-
ulator, PLL: phase locked loop, PD: photodiode, FM: Faraday Mirror - 45◦ for single pass ,
where PLL control belongs to the electronic part.

70 MHz, the link noise detection signal and the measurement signal maintain their previous

frequencies. Thus, we can keep using the previous electronic system, except for providing a

35 MHz signal rather than a 70 MHz signal to drive AOM2.

There are two benefits with such a configuration:

• The polarization states are automatic aligned, making the system more robust.

• It reduces the number of optical components and shortens the system optical path

compared with the previous configuration (see Fig.4.5), corresponding to a lower system

noise floor (Grosche et al., 2009).

Fig.4.17 shows the system noise floor of the improved system, which is lower than that of

the previous setup for integration times longer than 100 s.
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Figure 4.17: System noise floors of the improved optical system and the previous one.

4.7 Towards longer links

We have shown the performance of 100− 200 km optical link, which is comparable to reports

from other research groups (Hong et al., 2009; Musha et al., 2008; Newbury et al., 2007; Terra

et al., 2009; Williams et al., 2008). However, the frequency comparison between metrology

laboratories usually requires longer links. For example, the distance between Physikalisch-

Technische Bundesanstalt (PTB) in Germany and LNE-SYRTE is about 1000 km. This

section addresses a new configuration of optical link for longer distance frequency transfers.

4.7.1 How to extend the link to the continental scale?

There are a few limitations to the extension of the link. This part discusses requirements of

the link performance, operation and availability for a continental scale link.

A longer link exhibits a higher free-running phase noise, whereas the control bandwidth

and ratio of the noise correction are fundamentally limited by the propagation delay. The

residual noise is proportional to L3/2 for low Fourier frequencies, where L is the link length.

In practice, the link fractional stability, determined by the accumulated link noise, may be

even worse than L3/2 for longer links, because fiber noise is not homogenously distributed
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and its spectrum is not follows a specific law. If a better link performance is required, it is

necessary to divide the long link into a series of cascaded shorter links.

The other critical limitation of long optical link is the transfer attenuation, which limits

the round-trip signal amplitude. It can not be compensated by a higher input power due

to the SBS effect. This degrades the link noise detection, and could result in the unlock or

loss of cycles of tracking oscillator 1, which is the front end of the detection system. The

phase jitter of tracking oscillator 1 induced by the wide bandwidth detection noise should be

kept much lower than 1 rad. This jitter is proportional to the square root of the detection

bandwidth, where the bandwidth (a few MHz) is limited by the bandpass filter following

PD1. The detection bandwidth should be large enough to detect most of the link noise

(usually a few hundred kHz) for link noise evaluation and cancellation. By reducing the

detection bandwidth, the detected signal-to-noise ratio can be improved by only ∼ 10 dB,

corresponding to the loss of a 50 km fiber. Optical amplifiers could be used at detection,

but they usually exhibit a high amplified spontaneous emission (ASE) noise when the signal

is weak (e.g. nW for a 300 km link without any intermediate amplifier). Thus, the signals

need to be amplified by adding in-line amplifiers for optical links longer than a few hundred

kilometer or a shorter link with large attenuation (e.g. 50 dB).

A research group in Germany is developing a 900 km link, which connects PTB and MPQ1

(Predehl et al., 2009). They have transferred the ultra-stable optical signal over a 480 km link

with an fractional frequency instability of 2 × 10−14 at 1 s integration time and 2 × 10−18

at 104 s (Terra et al., 2010). This link is composed of a single segment and two in-line

fiber Brillouin amplification (FBA) optical amplifiers. These amplifiers exhibit higher gain

and lower noise than the EDFA, although it requires a pump power of up to 30 mW and an

accurate frequency control on the pump.

However, it is quite difficult to obtain such a long dedicated fiber networks, since dedi-

cated fibers are usually not for free. On the other hand, telecommunication networks have

been established all over the world. Then, if we can use these existing networks, frequency

transfer could be achieved between any remote laboratories. In that case, we have to share

the fiber network with the telecommunication operator and adopt the well-known approach

of wavelength division multiplexing. Our signal should propagate simultaneously with the

optical carriers on which the digital data stream of Internet traffic are encoded, but on a

different frequency channel, as explained in details below. With this new approach of a mul-

tiplexed link, we have to face a higher phase noise than with a dedicated link, due to the
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multiple connectors and human activities in some parts of the public telecommunication net-

works. Consequently, we have to split the link into a few segments, in order to improve the

link performance. The segments’ length depends of the segments noise level, and is typically

around 100− 300 km.

4.7.2 Extension with multiplexed networks

Using the public network is a very attractive idea, but the ultra-stable signal has to be

transferred simultaneously with the other optical carriers, on which the digital data stream

of Internet traffic are encoded. Fortunately, we can take advantage of the existing dense

wavelength division multiplexing (DWDM) technique.

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology

which multiplexes the optical signals on a single fiber by using different wavelengths/frequencies

of laser carrier. This enables a multiplication of transferring capacity. WDM refers orig-

inally to optical signals multiplexed within the 1550 nm band, in order to efficiently make

use of the working span of erbium doped fiber amplifiers (EDFAs), which is approximately

1525 − 1565 nm (C band) or 1570 − 1610 nm (L band). It is the most popular technique

for optic communications nowadays. The international telecommunication union (ITU) has

defined the ITU grid channels of DWDM networks to be 100 GHz/channel from 190.1 THz to

197.3 THz. New techniques allow a wavelength-division of 25 GHz/channel.

DWDM optical transmitters are set to a specific frequency and multiplexed together onto

a fiber. The signal in each channel has to be de-multiplexed from signals in the fiber, because

the optical detector cannot distinguish one frequency from another. The device, used to

accomplished the multiplexing/de-multiplexing, is an optical add/drop multiplexer (OADM

- a kind of frequency dependent directional coupler).

French national telecommunication network for technology, education and research (RE-

NATER) is a DWDM public network. We applied for a dedicated channel (ITU #44) of a

few segments of RENATER to extend our link. The used OADM is a three-port commer-

cial component, which can insert or extract the signal in ITU #44 from the networks with

isolation better than 25 dB for the adjacent channels (∆ν = 100 GHz) and better than 40 dB

for other channels. The losses are about 1.2 dB for the add-drop channel and below 1 dB for

other channels.

Our ultra-stable signal is thus transmitted on a specific channel of the RENATER net-

work. Such a propagation on a telecom network induces some constraints and difficulties on
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the optical link scheme. First of all, the telecommunication network is designed to unidirec-

tionally propagate signals, which enables to relax constraints on stray reflections and avoid

any parasitic lasing effects in EDFAs; whereas the optical link requires bidirectional propa-

gation. Furthermore, standard telecommunication networks often have conversions between

optical signal and electrical signal in nodes, whereas the optical frequency dissemination has

to be purely optical from the local end to the remote end. Therefore, OADMs have to be

installed to bypass most RENATER’s equipments at each node. Finally, all the equipment

will be installed in the telecom networks stations. Thus, they have to operate without any

laboratory facility.

4.7.3 A 108 km optical link with 22 km public networks

This experiment is to test the optical frequency transfer via public fiber networks.

4.7.3.1 Link configuration

Figure 4.18: Schematic of the 108 km link, OADM: optical add-drop multiplexer, Comp:
compensation system, WDM: wavelength division multiplexing, EDFA: bidirectional erbium-
doped fiber amplifier, ITU: international telecommunication union, λ1: 1542.14 nm, λ2:
1550.12 nm.
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This link is composed of four spans with a total length of 108 km (Fig.4.18). The first

span is a dedicated fiber from the urban network which connects LNE-SYRTE and LPL,

and extends over 43 km. The second and third spans are two 11 km fibers connecting the

information service and technology center of university Paris 13 to a data center facility of

the RENATER network located in Aubervilliers (near Paris). These two fibers transfer digital

data through both the upstream and downstream with a rate of 10 Gbit/s in the channel

ITU #34 (1550.42 nm). Our laser signal is at a wavelength of 1542.14 nm, which is in the

channel ITU #44. At Aubervilliers the transferred optical frequency signal is sent into the

other 11 km fiber toward University Paris 13, and then into a second 43 km dark fiber linking

University Paris 13 to Observatoire de Paris. Four bidirectional off-the-shelf optical add-drop

multiplexes (OADM) are employed for combining and separating these optical signals. Total

attenuation of the link is about 38 dB. The 22 km round-trip between university Paris 13

and Aubervilliers has significant losses of 15 dB, which is attributed to the large number of

connectors and the 4 OADMs. The signal injected into the 11 km fiber at university Paris 13

is 35 µW. Except for a bidirectional EDFA added at the remote end, the optical system is the

same as shown in Fig.4.16.

4.7.3.2 Experiment results

Internet traffic was unaffected during the whole period of the test (about three weeks). The

bit-error rate was continuously monitored, and no transmission failure was observed. This

was a crucial point, since the University Paris 13 is the access point of a metropolitan area

network of about 100 km serving several high schools and universities.

The link stability performance is evaluated from the end-to-end beat-note signal. The

optical phase noise PSD of the 108 km link is shown in Fig4.19 with and without compensation.

The phase noise reduction reaches around 35 dB at 10 Hz, which is limited by the link delay

(see Eq.4.8). The free-running phase-noise PSD (per unit of length) of the two 11 km fibers

[14 rad2/(Hz · km) at 1 Hz] is ten times higher than the one of the 86 km fiber. The phase

jitter of the optical signal from 1 Hz to 1 kHz increases from 0.4 rad to 1.5 rad due to the

22 km extension.

Fig.4.20 shows the fractional frequency instability of the 108 km link for four days of

continuous operation (red circles) measured with a Π-type frequency counter and 10 Hz

bandwidth. The fractional instability of the free-running fiber (black squares) is in the range

of 10−15 for integration times longer than a few seconds. The link fractional instability (10 Hz
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Figure 4.19: Phase noise PSD of the (a) free-running 108 km, (b) compensated 108 km links
and, in dotted curves, (c) free-running 86 km and (d) compensated 86 km links.

Figure 4.20: Fractional frequency instability of the 108 km free-running (black squares) and
compensated link (red circles) and measurement noise floor (blue triangles).
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bandwidth) is 4 × 10−16 at 1 s integration time and scales down as 1/τ from 1s to 5000 s.

After 104 s, it reaches a floor at about 7×10−20. Without 10 Hz filtering, the Allan deviation

is about five times higher between 1 s and 5000 s. The average frequency offset between the

local signal and the transferred signal over the link is comparable to zero within the error

bars with or without filtering. The Internet network degrades the short-term link stability,

but not the long-term stability.

This experiment paves the way of using public fiber network to transfer ultra-stable

frequency signal.

4.7.4 Repeater station

The multiple sub-link approach allows a broader noise compensation bandwidth compared

with a single span link, but requires a repeater station between each segment.

4.7.4.1 Function of the repeater station

Figure 4.21: Scheme of a cascaded link, where ν is the optical frequency and νRF is the
frequency shift.

Fig.4.21 shows the scheme of a cascaded link. The N th station of the link implements

three functions. First, it processes a return optical signal to the previous station (N-1), in

order to stabilize the incoming link (named N). Second, it produces a local signal by phase-

locking a local optical oscillator to the signal from the previous station (N-1), and sends this

signal to the next station (N+1). Third, it compensates the noise of the next link (N+1) by

using the retro-reflected signal from the next station (N+1).

4.7.4.2 Configuration of the station

The repeater station should be placed in a telecommunication station, where the access is

restricted. Consequently, this station has to work automatically for a long period.
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Figure 4.22: Scheme of the N th repeater station, FM: Faraday mirror (45◦ for single pass),
PD: photodiode, LO: local oscillator, AOM: acousto-optic modulator, L: logarithmic ampli-
fier, µC : micro-controller, LF: loop filter.

The scheme of the home-made repeater station is shown in Fig.4.22. The station includes

three functional parts: (A) the remote end of the previous link, (B) the laser source, (C) the

local end of the next link. The optical, RF, baseband analog and digital control signals1 are

shown in red (or grey) solid, black solid, dotted and dashed lines respectively. These logic

signals are essential to restart the link operation, while the system is not normally operating.

4.7.4.3 Function and operational process of sub-systems

The remote end (part A in Fig.4.22) is exactly the same as that of the improved experimental

setup. It sends back part of the frequency-shifted laser signal from the previous station, and

couples the rest to the laser source module.

In order to process the incoming signal from station N-1 with a frequency of ν, we apply an

optical configuration shown in part B in Fig.4.22. The local optical oscillator (Koheras Basik

OEM) is a narrow linewidth fiber laser system based on a distributed-feedback technique.

This laser is used as an optical tracking oscillator with a bandwidth of 100 − 150 kHz. We

use a digital phase/frequency detector rather than a classic mixer, so as to obtain a robust

lock. This detector leads to a broad capture range of PLL. Furthermore, it can distinguish

1Usually, a digital control signal has two states: ’0’ and ’1’.
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which input frequency is higher, while a mixer can not. Thus, we can guarantee that the

local laser frequency can only be locked to ν − 75 MHz but not ν + 75 MHz. However, the

detector requires a larger signal-to-noise ratio for the input signals compared to a mixer, in

order to avoid cycle slips.

A microcontroller (µC1) manages the automatic locking process with three steps. In the

first step, a fast voltage ramp is applied to the laser PZT, thus tuning the laser frequency,

and the input signal power of the logarithmic amplifier is monitored. When this power is

above a reference level, meaning that the laser frequency is close to ν ± 75 MHz, the voltage

ramp is stopped. Indeed, the laser frequency has swept over the right position after the ramp

being stopped. In the second step, the laser PZT is driven by a slow voltage ramp of opposite

sign. When the logarithmic amplifier input signal is high enough and the output signal of the

digital phase/frequency detector (D) is passing across zero with the right slope, meaning that

the laser frequency is closed to ν−75 MHz, this ramp is stopped. In the final step, the locking

loops (see Fig.4.22) are sequentially closed. µC1 enables the integral and proportional gains

of the fast loop at first. After that, it closes the slow loop with an integral gain. This system

is very robust, allowing a long time operation (without re-locking for a few days).

At the local end (part C in Fig.4.22), the operational process of the loop (controlled

by µC2) is exactly equivalent to that in part B. A combined-function of tracking oscillator

and frequency-divider (÷960) is realized by using a DDS. The DDS, with a 1 GHz frequency

reference provided by a VCO, simultaneously generates a 150 MHz signal and a 156.25 kHz

signal. We lock the VCO with a bandwidth of 100− 150 kHz by using the beat-note between

the 150 MHz signal and the link noise detection signal. Thus, the 156.25 kHz output of the

DDS is the tracked and divided round-trip signal. Note that the operation of tracking is also

controlled by µC2.

All RF signals are synthesized from a single local RF reference (see Fig.4.22). Thanks to

the choice of the beat-note frequencies at 75 MHz and 150 MHz, the RF reference frequency

drift effect is eliminated. The local laser is locked to the input signal (after AOM2) with

a −75 MHz shift. The transferred signal to the next station is shifted to this local laser by

+75 MHz, since the return signal from the next station is locked to the local laser signal with

a 150 MHz shift. Both frequency shifts are synthesized from the same RF local oscillator of

the station. Since they are opposite in sign, their sum is zero.
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Figure 4.23: Scheme of the optical module (the ellipse part of Fig.4.22), FM: Faraday mirror,
PD: photodiode, I2, I3 and I4 are fiber lengths.

4.7.4.4 Optical module

The telecom station’s environment is usually much noisier and less stable (temperature) than

that of the laboratory. Consequently, the fiber pigtail lengths of the optical system have been

minimized and finely length-matched, in order to reduce the effect of the residual thermal

fluctuations.

The compact optical module (see Fig.4.23) is realized by splicing off-the-shelf fiber-optic

components. This module contains all non-common optical paths with respect to the link

signal. This module is housed in an aluminum box (3 cm× 10 cm× 18 cm) covered by a thick

polyurethane foam layer (5 cm) for shielding the thermal noise. Moreover, the temperature

is actively stabilized around 298 K (i.e. 25 ◦C) by using a Peltier element. The temperature

variation is less than 0.02 K when the ambient temperature fluctuates about 1 K.

The system noise floor shown in Fig.4.24 is measured in the laboratory environment with

zero length link and full detection bandwidth. This floor is much lower than that of previous

systems, approximately 10−17 at 1 s, and averages down in the range of 10−21 at 1 hour.

This low instability is due to the fact that the optical system is well length-balanced and

temperature-controlled.
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Figure 4.24: The instability of the repeat station system.

4.7.5 A 150 km + 150 km cascaded multiplexed optical link

This part shows the results of an experiment on a cascaded optical link, composed of two

segments of Internet network fibers and one repeater station.

4.7.5.1 Link configuration

The overall scheme of the 150 km + 150 km optical link (LPL-Nogent l’Artaud-LPL) with an

intermediate repeater station located at Nogent l’Artaud (100 km east of Paris) is depicted in

Fig.4.25. This link starts and ends at LPL, and is composed of three different fiber spans. In

each span, there are two identical parallel fibers labeled as up-link and down-link. The up-link

is used for transferring the link signal from LPL to Nogent l’Artaud, consisting of 114 km of

fiber carrying Internet traffic and 36 km of dedicated dark fiber. The down-link represents the

link from Nogent l’Artaud to LPL with the same configurations as the up-link. The first span

is composed of two 11 km fibers connecting the information service and technology center of

University Paris 13 to a Data Centre Facility (DCF) located in Aubervilliers (Interxion1).

The digital stream between University Paris 13 and Aubervilliers is encoded on an optical

carrier on channel ITU #34 (1550.12 nm), whereas the ultra-stable signal is carried by the

channel ITU #44 (1542.14 nm). The second span is composed of two 36 km urban dark fibers
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Figure 4.25: Schematic setup of 150 km+150 km cascaded link, OADM: optical add-drop mul-
tiplexer, EDFA: erbium-doped fiber amplifier, ITU: international telecommunication union,
LPL: Laboratory of laser physics at university Paris 13.

which connect the two DCFs of Interxion 1 and TeleHouse 2 located in downtown Paris.

The third span is composed of two 103 km long-haul intercity fibers simultaneously carrying

Internet data traffic. In this part the digital data signals are transferred over channels ITU

#42 and ITU #43, only 0.8 nm and 1.6 nm away from the link signal. At Nogent l’Artaud

the link signal arriving from up-link is processed in the repeater station and sent into the

down-link back to LPL.

Eight OADMs are used to insert and extract the link signal from the Internet fibers.

The round-trip attenuation for each 150 km link is more than 100 dB due to fiber losses,

OADMs and the large number of connectors. In order to compensate the losses, we used two

bidirectional EDFAs for each link.
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Figure 4.26: Phase noise PSD of the different subsections of the link: LPL-Interxion1-LPL of
22 km (red solid), LPL-Telehouse2-LPL link of 94 km (blue solid), and LPL-Nogent l’Artaud-
LPL link of 300 km (black dashed).

4.7.5.2 Measurement results

Fig.4.26 shows the phase noise PSD of the various segments composing the link. It indicates

that the Interxion1-Telehouse2 segment is the noisiest one. It is not surprising, because this

segment is located in the downtown Paris, therefore, suffers more noise induced by human

actions.

The optical phase noise PSD of the 150 km + 150 km cascaded optical link is shown in

Fig.4.27 with and without compensation. The phase noise reduction is about 50 dB at 1 Hz,

which is limited by the fundamental limitation due to fiber delay. For Fourier frequencies

below 5 Hz, both spectra exhibit some peaks which are probably due to seismic noise, since

the optical fibers are likely to be buried along the railway tracks.

Fig.4.28 shows the variation of the link propagation delay over 3.5 days. Curve-a displays

the variation of the 150 km+150 km free-running propagation delay measured by replacing the

Nogent l’Artaud station with an optical amplifier. It gives the free-running fiber propagation

delay fluctuation (< 3 ns), corresponding to a mean temperature change of less than 0.25 K.

Curve-b shows the equivalent delay fluctuation of the compensated 150 km+150 km cascaded

129



4. LONG DISTANCE ULTRA-STABLE OPTICAL FREQUENCY
TRANSMISSION

Figure 4.27: Phase noise PSD of the free running 150 km+150 km (black line) and compensated
150 km + 150 km link (red line).

link, which is about ∼ 10 fs peak-to-peak. Curve-c is the equivalent fluctuation of the free-

running up-link obtained by recording the frequency of AOM1 at LPL. It includes the delay

fluctuation of the up-link and an equivalent delay fluctuation introduced by AOM2 at Nogent

l’Artaud, whose frequency is drifting because there is no ultra-stable local RF reference at

Nogent l’Artaud.

Fig.4.29 shows the fractional frequency stability of the 150 km+150 km link for four days of

continuous operation, measured with the Π-type frequency counter. The free-running fiber

instability (blue circles) is measured simultaneously by sampling the compensation signal

applied to AOM1. The Allan deviation is 3× 10−15 at 1 s integration time and scales down

as 1/τ from 1 s to ∼ 1 day reaching 7 × 10−20 (measurement bandwidth 10 Hz). With the

full bandwidth (∼ 100 kHz), the Allan deviation is about 3 times higher.

4.8 Summary and conclusion

4.8.1 Summary

The performance of the optical link is mainly determined by the noise level of the free-

running link and the fundamental limitation due to the fiber delay. According to reported
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Figure 4.28: Variation of the optical link equivalent propagation delay (10 s sampling gate-
time): (a) end-to-end propagation delay of the 150 km + 150 km free-running optical link
recorded without repeater station at Nogent l’Artaud (red trace); (b) end-to-end propagation
delay of the 150 km + 150 km cascaded compensated link (black trace); (c) correction signal
(applied to AOM1 at LPL) of the 150 km up-link (red dashed trace).

experimental results, free-running link noise level can be very different from place to place,

as shown in Fig4.30. Note that the link located in Tokyo is partly mounted in aerial cables,

while all others are fully buried in the ground. Consequently, a cascaded link with short

segments may be required, when noisy fiber networks are used. The shorter segment should

be used for noisier networks, in order to well suppress the link noise.

The asymmetric noise effects, with respect to the propagation direction and path, have

been discussed and evaluated. These effects are negligible for a well-engineered long-distance

optical link.

At first, we transferred the optical signal with a 86 km dedicated urban networks (Jiang

et al., 2008). Taking advantage of the existing of public DWDM networks, we have extended

the optical link by using a dedicated channel of these networks (100 GHz of width) (Kéfélian

et al., 2009b). Recently, a cascaded link was implemented in order to well suppress the

link noise (Lopez et al., 2010b). The fractional frequency instabilities listed in Tab.4.1 are

mainly limited by the fundamental limitation on noise suppression due to fiber delay. The

measurement bandwidth is about 10 Hz. The frequency instabilities are 3 − 5 times higher
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Figure 4.29: Fractional frequency instability of the 150 km + 150 km free-running link (blue
circles), compensated link measured without (red triangles) and with a 10 Hz filter (black
squares).

than Tab.4.1 when we use a measurement bandwidth of ∼ 100 kHz.

Table 4.1: Instability of optical links

Length L (type) σy(1s) σy(104 s)

86 km (dedicated fiber) ∼ 10−16 6× 10−19

2× 86 km (dedicated fiber) 3× 10−16 6× 10−19

108 km (dedicated channel) 4× 10−16 8× 10−20

150 km + 150 km (dedicated channel) 3× 10−15 4× 10−19

These results are calculated by using the overlapping Allan deviations of frequency sam-

ples recorded with the dead-time free Π-type counter.

4.8.2 Conclusion and perspective

A primary target of this project is to compare the frequencies of optical clocks located in

France and Germany. Assuming the noise level along the link is comparable to that of the

150 km + 150 km link, the stability of this ∼ 1000 km link with the cascaded configuration is
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Figure 4.30: Phase noise level of fiber networks in different locations.

estimated to be in the range of 10−19 at one day integration time, which is compatible to the

scientific target.

The key point of long distance cascaded link is the robustness of their repeater stations,

which may be required to automatically operate over years.

At present, the repeater station does not have automatic adjustment of the beat-note

amplitude between the local signal and the signal from the previous station. The polarization

states can vary significantly with time, which may lead to a vanishing signal and result in

the system out of lock. In the future, an automatic control system has to be implemented to

maintain the beat-note power.

With these developments, we can think of future optical links, which extend to Ger-

many, Italy and Great Britain, and finally connect most of the progress optical measurement

laboratories in Europe, as shown in Fig.4.31.
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Figure 4.31: Prospect optical links for Europe.
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Chapter 5

Conclusions and Future work

This chapter concludes the thesis with a summary of the developments of ultra-stable laser

sources and long distance optical links, and proposes several topics that should be considered

in continuation of this work.

5.1 Ultra-stable laser sources

5.1.1 Cavity-stabilized laser

An ultra-stable cavity-stabilized laser was developed in order to provide the laser source for

the optical link experiment.

The laser source is realized by stabilizing the frequency of a commercial fiber laser onto

an ultra-stable FP cavity with the PDH method. In the thesis, I discuss considerations of

the system design and analyze various noise effects in detail. The stabilized laser exhibits a

sub-Hz linewidth for ≤ 10 s measurement times. Its fractional frequency instability is about

10−15 at 1 s integration time, mainly limited by the fundamental thermodynamic noise of

the reference cavity.

This laser exceeds the requirement of the optical link experiment. It has been used as the

ultra-stable laser source for all the optical link experiments.

5.1.2 Fiber-stabilized laser

Fiber-stabilized lasers were developed for the repeater station of the optical link, where a

robust and low noise local optical oscillator is required.
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Compared with the ultra-stable cavity laser, the fiber-stabilized lasers are more robust,

more compact, simpler, cheaper and more convenient for frequency tuning.

By combining advantages of the heterodyne detection, the Michelson interferometer con-

figuration and a longer reference fiber, our fiber-stabilized lasers exhibit a significant improve-

ment on the frequency noise than previously reported fiber-stabilized lasers. The frequency

noise of this laser is well below 2 Hz2/Hz for frequencies higher than 1 Hz, and is comparable

to that of our cavity-stabilized laser for frequencies higher than tens of Hertz. At present,

the performance of the fiber-stabilized lasers is mainly limited by the environmental noise,

which can be reduced further. A 2.5 km fiber-stabilized laser shows a highly-linear frequency

tunability with frequency errors less than 50 Hz peak-to-peak for a 40.5 MHz/s frequency scan

over 600 MHz. I have observed and explained the effect of Rayleigh backscattering (RBS) on

the frequency-scanning laser for low Fourier frequencies. Moreover, a fundamental limitation

due to double RBS is presented in the thesis.

This laser can be used for the optical link project, especially as the local laser source in a

repeater station. It can also be used in Doppler-free optical frequency transfer between the

ground and a low-orbit satellite, because of its unique agile and accurate frequency tunability.

5.2 Optical link

This thesis is devoted to the development of long distance ultra-stable optical frequency

transfer. A long-range objective is to compare the frequency of optical clocks at LNE-SYRTE

and PTB over a distance of ∼ 1000 km.

This thesis has demonstrated the principle and limitations of an optical link via optical

fibers. The link delay induces the main limitation1, since it limits the bandwidth of the noise

correction control signal.

At first, we demonstrated an 86 km optical link composed of dedicated fibers connect-

ing LNE-SYRTE and LPL. Later, we devised a double-pass configuration to simulate a real

172 km optical link. In succession, we successfully performed a pioneer experiment of ultra-

stable optical signal transfer over a section of public networks, where link signals propagate in

a dedicated channel of ITU (#44, 1542.14 nm). In the most recent experiment, we transferred

the ultra-stable optical frequency through two 150 km cascaded segments. Most of this link

1It was first put forward in Newbury et al. (2007).
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belongs to public fiber networks. These optical links (86 − 300 km) have shown a fractional

instability in the range of 10−19 for 104 s integration time with a 10 Hz measurement band-

width. The performance of these links is close to the fundamental limitation due to the link

delay.

According to the experimental results, we estimate that the link between LNE-SYRTE

and PTB would exhibit an fractional instability of ≤ 10−18 within one day integration. This

link can well reproduce the frequency of the best optical clock at the remote end with a

transfer bandwidth of ∼ 10 Hz.

5.3 Future work

In the future, we may consider following extensions to this work:

• A robust and transportable ultra-stable laser is required for some applications (e.g.

space projects), therefore, it is useful to develop an ultra-stable cavity system with

suitable mounting for this application.

• We need to study and minimize the vibration sensitivity of the fiber-stabilized laser.

This thesis includes a preliminary study towards this goal.

• The temperature drift effect of fiber-stabilized laser should be reduced, if this laser is

to be used as an independent laser source. It can be realized by a properly engineered

thermal compensation/isolation of the fiber or by stabilization of the laser frequency to

a more stable reference, such as an atomic transition.

• For a single-interferometer fiber-stabilized laser, the frequency noise control bandwidth

is proportional to the inverse fiber delay. A multi-loop technique with fibers of different

lengths can be used to broaden the control bandwidth without raising the frequency

noise floor.

• The beat-note between the optical signals from a repeater station and its previous

station has to be in an acceptable power range by an automatic alignment of the optical

signals’ polarization states, so as to realize a robust cascaded optical link. One possible

approach is based on an automatic selection among two or three beat-notes between

these optical signals with different polarization states. Another possible method is based

on the polarization control of the local optical signal by using an automatic servo.
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• Once the optical beat-note signal has been automatically optimized, the optical link

performance could be improved by using a local tracking optical oscillator at the re-

mote end as a source of the backward signal for the round-trip phase noise detection.

Compared with the EDFA-amplified round-trip method, this return signal can be made

stronger, and would reduce the broadband noise introduced by the EDFA.

• The fiber Brillouin amplification (FBA) developed at PTB exhibits higher gain and

lower noise than the EDFA, although it requires a pump power of up to 30 mW and an

accurate frequency control on the pump. Also, it is worth noting that this technique

may lead to crosstalk on other signals for a public network. However, it is interesting to

study the FBA which can simplify the optical link configuration at suitable conditions.

• In order to compare the best atomic clocks over an intercontinental distance, a com-

posite optical link with both ground and space segments is a possible solution. The

T2L2 has shown very good performance. However, ground stations of satellite-based

links should be placed far away from the big cities where the best atomic clocks are

usually located, mainly due to considerations on the climate conditions. On the other

hand, the optical carrier frequency transfer based on satellites should be developed, so

as to avoid (or reduce the number of) intermediate frequency conversions. Therefore,

it may simplify the link configuration.
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Appendix A

Characterization and measurement

of frequency stability

Characterization and measurement of frequency stability are of fundamental importance in

frequency metrology.

A.1 Output signal model

The frequency stability of an oscillator indicates the degree of output frequency fluctuation

in concern with a nominal frequency. Thus, the output of the oscillator can be written as

[see for instance Barnes et al. (1971); Rutman & Walls (1991)]:

V (t) = [V0 + ε(t)]sin[2πν0t + φ(t)], (A.1)

where φ(t) is a random process denoting phase noise, V0 is the nominal amplitude, ν0 is the

nominal frequency, ε(t) represents the amplitude noise. This signal has an instantaneous

frequency defined as:

ν(t) =
1
2π

d[2πν0t + φ(t)]
dt

= ν0 +
1
2π

dφ(t)
dt

(A.2)

Frequency noise is the random process described by

∆ν(t) ≡ ν(t)− ν0 =
1
2π

dφ(t)
dt

, (A.3)
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which is directly related to phase noise, as will be seen later. It is useful to introduce a

normalized frequency fluctuation (i.e. the fractional frequency fluctuation):

∆y(t) =
∆ν(t)

ν0
with y(t) =

ν(t)
ν0

. (A.4)

Based on the random process model, two sets of tools are introduced for oscillator char-

acterization:

• The spectral densities of phase and frequency noise in the so-called Fourier frequency

domain.

• The variances/deviations of the averaged frequency fluctuations in the time domain.

In principle, the variances/deviations can be derived from spectral densities. In practise, they

have different advantages and drawbacks because of the measurement limitations due to the

measurement time, rate and bandwidth.

A.2 Fourier frequency domain

In the Fourier frequency domain, phase and frequency noises are usually characterized by the

double-sided power spectral density (PSD) in a bandwidth of 1 Hz, Sφ(f) and S∆ν(f). They

characterize the power density versus frequency, giving the so-called ”frequency spectrum”.

They are related by the law (Barnes et al., 1971):

S∆ν(f) = f2Sφ(f), (A.5)

which corresponds to the time derivative between ∆ν(t) and φ(t). The units are Hz2/Hz and

rad2/Hz respectively. It is worth noting that single-sided PSD is also widely used, e.g. the

single-sided phase noise PSD

Lφ(f) =
1
2
Sφ(f), (A.6)

with a unit of rad2/Hz (or dBc/Hz = dB rad2/Hz).

The normalized frequency noise PSD is sometimes used, and is related with S∆ν(f) and

Sφ(f) by

Sy(f) =
1
ν2
0

S∆ν(f) =
f2

ν2
0

Sφ(f). (A.7)

With this PSD, the noise levels of signals at different frequencies can be compared. The PSD

can be classified by the power law model, where the spectral densities vary as a power of

140



A.3 Time domain

f , so as to analyze and distinguish noise sources. Thus, the PSD becomes a sum of specific

noises:

Sy(f) =
2∑

a=−2

haf
a, (A.8)

where these items are named as white phase noise (a=-2), flicker phase noise (a=-1), white

frequency noise (a=0), flicker frequency noise (a=1) and random-walk noise (a=2). For a

given oscillator, the PSD in different frequency span may be dominated by one or two terms.

Each term is usually related with a specific noise source.

Spectral densities of phase noise or frequency noise are measured by a spectrum analyzer

(analog or digital). The time is rather long for measuring a low Fourier frequency PSD,

therefore, the PSD are usually measured for Fourier frequencies higher than 1 Hz or 0.1 Hz.

Line-width, the full width at half-maximum (FWHM) of a spectrum, is a popular and

traditional term for the characterization of the laser frequency noise. The laser linewidth is

strongly related to the temporal coherence, characterized by the coherence time or coherence

length. A laser source dominated by white frequency noise has a linewidth given by πh0

(Elliott et al., 1982), where h0 is the double-sided PSD in Hz2/Hz. For a laser dominated by

higher order specific noises, the measured linewidth depends on the measurement time. Thus,

this term is not very suitable for characterizing a free-running ultra-stable source, where the

white frequency noise is not dominant for low Fourier frequencies. However, it can give a

direct idea of the noise level to whom is acquainted with this term.

A.3 Time domain

A.3.1 Allan deviation

Random frequency process is characterized by several sample variances/deviations in the

time domain. The original one is the two-sample standard deviation (also called Allan

deviation), which is the square root of the two-sample zero dead-time variance σ2
y(τ) defined

as (Allan, 1966; Barnes et al., 1971; von Neumann et al., 1941):

σ2
y(τ) =

〈
(yk+1 − yk)2

2

〉
, (A.9)

where {
yk = 1

τ

∫ tk+τ
tk

y(t)dt = xk+1−xk

τ

tk+1 = tk + τ
. (A.10)
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in which xk and xk+1 are measured time delays made at tk and tk+1 times. 1/τ is the fixed

sampling rate which gives zero dead-time between frequency measurements.

The first estimator is:

σ2
y(τ0,M) =

1
2(M − 1)

M−1∑
k=1

(yk+1 − yk)
2 =

1
2τ2

0 (M − 1)

M−1∑
k=1

(xk+2 − 2xk+1 + xk)2, (A.11)

where M is the number of frequency samples, and τ0 is the sampling time. The Allan variation

σ2
y(nτ0,M) can be calculated with non-overlapped or overlapped method, where n (≥ 1) is

an integer. The non-overlapped variable estimator is

σ2
y(nτ0,M) =

1
2(M

n − 1)

M
n
−1∑

k=1

(ynk+n−ynk)
2 =

1
2(nτ0)2(M

n − 1)

M
n
−1∑

k=1

(xnk+2n−2xnk+n +xnk)2.

(A.12)

The overlapping method, introduced in Howe et al. (1981) and Allan & Barnes (1981), is a

more efficient estimator of σ2
y(τ), which is calculated by the following equation:

σ2
y(nτ0,M) =

1
2(M − 2n + 1)

M−2n+1∑
k=1

(yk+n − yk)
2. (A.13)

The result obtained by using overlapping or non-overlapping method has no bias with respect

to the definition (see A.10).

The Allan deviation σy(τ) can be calculated from Sy(f) (Cutler & Searle, 1966).

σy(τ) =

√∫ ∞

0
Sy(f)

sin4(πfτ)
(πfτ)2

df. (A.14)

A.3.2 Other deviations

However, the slope of σ2
y(τ) versus τ is the same of τ−1 for the white and flicker phase noises.

In order to distinguish these two type noises, the modified Allan variance MODσ2
y(τ) is

therefore put forward (Allan & Barnes, 1981; Howe et al., 1981). The slope of MODσ2
y(τ)

for these noise are τ−3/2 and τ−1 respectively. MODσ2
y(τ) is estimated by the equation:

MODσ2
y(nτ0,M) =

1
2(nτ0)2(M − 3n + 2)

M−3n+2∑
i=1

[
n+i−1∑

k=i

(yk+n − yk)

]2

. (A.15)

Various other variances similar to the modified Allan variance were also introduced, in-

cluding the Hadamard variance (Baugh, 1971), the modified Hadamard variance, and so on.
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All of them filter phase fluctuations by using a finite-difference method. Consequently, their

frequency responses show different frequency response slopes, which are helpful for analyzing

the specific noise contribution. For example, one compares the frequencies of atomic clocks

via a long-distance optical link. The frequency stability of atomic clocks is usually funda-

mentally limited by a white frequency noise, while the optical link is dominated by a white

phase noise. Under this condition, the modified Allan deviation can rapidly determine the

white frequency noise limitation of these clocks, thanks to its filtering function for the white

phase noise. It is worth nothing that these estimators have a bias from the Allan variance.

These deviations can also be calculated from Sy(f). For example, the modified Allan

deviation is given by (Rutman & Walls, 1991)

MODσy(nτ0) =

√∫ ∞

0
Sy(f)

sin6(πfnτ0)
(πfnτ0)2sin2(πfτ0)

df. (A.16)

A.3.3 Phase/Time jitter

Sφ(f) is usually measured in a frequency span from fl (> 0) to fh. Consequently, a simpli-

fied estimator, Phase jitter is given by φrms(fl, fh) =
√∫ fh

fl
Sφ(f)df , indicating the phase

variation. Time jitter Trms(fl, fh) = φrms(fl, fh)/2πν0 is also widely used to express the

uncertainty of a remote synchronization induced by the noise in a given bandwidth.

A.3.4 Frequency counter

Frequency counter is the basic instrument for the measurement of the frequency stability in

the time domain, which records the frequency of a RF/microwave signal. Here, I introduce

three type of counters: the traditional counter (i.e. Π-type counter), the high resolution

triangle counter (i.e. Λ-type counter) and the high resolution dead-time free Π-type counter

(also named phase recorder).

The frequency sample νn is equal to
∫ Tn+τ
Tn

w(t)ν(t)dt, where Tn is the starting time of

the nth samples and w(t) is the weighting function (see Fig.A.1). The frequency sample of

Λ-type counter is an averaged value of many sub-samples (blocks in Fig.A.1b), leading to

an efficient suppression of the white phase noise like the modified Allan deviation (Dawkins

et al., 2007). Comparisons of different counter samples and deviation resulting from specific

noise are listed in TableA.1. For white/flicker phase noise dominated signal, significantly

different results would be obtained with different counters or deviations.
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Figure A.1: Weighting function of frequency sampling, a) traditional Π-type counter, b)

Λ-type counter, c) dead-time free Π-type counter, τ is the gate time and τd is the dead-time.

Table A.1: Comparisons of Standard Allan Deviation (Π-type Counter), Triangle Deviation

(Λ-type Counter), and Modified Allan Deviation Resulting from Characteristic Noise. Note

that fH (usually fH � 1/τ) is a cutoff frequency dependent on the working mode of the

counter.—obtained from Dawkins et al. (2007)

Noise Type Sy(f) Allan σy(τ) Triangle Modified Allan

White Phase h2f
2

√
3fH

4π2τ2 h2

√
8

3fHτ σy(τ)
√

1
2fHτ σy(τ)

Flicker phase h1f
1

√
1.038+3 ln(2πfHτ)

4π2τ2 h1

√
12.56

3.12+3.434fHτ σy(τ)
√

3.37
3.12+3.434fHτ σy(τ)

White Freq. h0

√
h0
τ

√
1.33σy(τ)

√
0.5σy(τ)

Flicker Freq. h−1f
−1

√
2 ln(2)h−1

√
1.30σy(τ)

√
0.67σy(τ)

Rand. Walk h−2f
−2

√
2
3π2h−2τ

√
1.15σy(τ)

√
0.82σy(τ)

Both traditional and Λ-type counters yield a dead-time between two adjacent frequency

samples. The dead-time degrades the phase conjugation between recorded frequencies, can

even lead a white phase noise dominated signal to be seen as a white frequency noise domi-

nated signal (Blair, 1974). In order to estimate the Allan deviation σy(τ) without a bias, the

only method is use of data obtained by the dead-time free Π-type counter.
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Appendix B

Parameters of the SMF-28 fiber
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Table B.1: Parameters of the SMF-28 fiber

-obtained from Glenn (1989), Knudsen et al. (1995), Chang et al. (2000) and the datasheet

of SMF-28 fiber.

Parameter Symbol Value Unit

Attenuation Latt ∼ 0.2 @ 1.542 µm dB
km

Boltzmann constant kB 1.38× 10−23 J
K

Boundary condition parameter kmax 2/ω0 = 3.846× 105 m−1

Boundary condition parameter kmin 2.405/af = 3.848× 104 m−1

Chromatic Dispersion Dcd 1.7− 1.8 @ 1.55 µm ps
nm·km

Chromatic Dispersion Slope D′
cd ≤ 4 @ 1.54− 1.55 µm ps

nm2·km

Effective refractive index n 1.468 @ 1.55 µm

Fiber cladding radius af 62.5 µm

Fiber length L km

Mode-field radius ω0 5.2 ± 0.4@ 1.55 µm µm

Polarization Mode Dispersion Dpmd ≤ 0.1 ps√
km

Temperature T 300 K

Thermal conductivity κ 1.37 W
m·K

Thermal diffusivity Dth 0.82× 10−6 m2

s

Thermal expansion coefficient αL 0.55× 10−6 K−1

Thermo-optic coefficient dn/dT 9.2× 10−6 K−1

Wavelength λ 1542 nm
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Appendix C

Cross-section and dimensions of

SMF-28 and polyimide-coated

fibers

Figure C.1: Cross-section and dimensions of SMF-28 fiber.
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C. CROSS-SECTION AND DIMENSIONS OF SMF-28 AND
POLYIMIDE-COATED FIBERS

Figure C.2: Cross-section and dimensions of polyimide-coated fiber.
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