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Abstract

Validation, comprising functional verification and performance evaluation, is critical for
complex hardware designs. Indeed, due to the high level of parallelism in modern designs, a
functionally verified design may not meet its performance specifications. In addition, the later
a design error is identified, the greater its cost. Thus, validation of designs should start as early
as possible.

This thesis proposes a compositional modeling framework, taking into account functional
and time aspects of hardware systems, and defines a performance evaluation approach to ana-
lyze constructed models.

The modeling framework, called Interactive Probabilistic Chain (IPC), is a discrete-time
process algebra, representing delays as probabilistic phase type distributions. We defined a
branching bisimulation and proved that it is a congruence with respect to parallel composi-
tion, a crucial property for compositional modeling. IPCs can be considered as a transposition
of Interactive Markov Chains in a discrete-time setting, allowing a precise and compact mod-
eling of fixed hardware delays.

For performance evaluation, a fully specified IPC is transformed, assuming urgency of ac-
tions, into a discrete-time Markov chain that can then be analyzed. Additionally, we defined
a performance measure, called latency, and provided an algorithm to compute its long-run
average distribution.

The modeling approach and the computation of latency distributions have been implemen-
ted in a toolchain relying on the Cadp toolbox. Using this toolchain, we studied communication
aspects of an industrial hardware design, the xSTream architecture, developed at STMicroelec-
tronics.

Keywords: performance evaluation, Interactive Probabilistic Chain (IPC), process algebra, Markov
chain, latency, hardware architectures.
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Chapter 1

Introduction

Electronic embeddedmultimedia devices, such asmobile phones, GPS, video ormusic play-
ers, electronic diaries, etc., are becoming more and more present in our daily lives. While these
devices were rather simple and dedicated to a single function few years ago, nowadays they
tend to be increasingly complex, merging several different functions. Mobile phones are the
most obvious example of this evolution. It is natural at the present time to have many rather
different functions enabled on the same phone device: camera, video recorder, music player,
HD-video player, web browser, GPS, diary, games, etc. While a dedicated hardware design
was able to ensure the required functions few years ago, at the present time, the combination
of several different functions in the same device requires a complex multipurpose hardware
design. Unfortunately, the technical requirements for such an embedded design are often con-
flicting. Computing capabilities have to be combined with power saving, complex functions
should be upgradable, etc. In addition, technical requirements may evolve during the lifetime
of a device, which is difficult to take into account in the design phase.

The ability to ensure complex tasks in an electronic device is directly linked to its processor
performance. The evolution of single processor performance followed Moore’s law for the last
thirty years: processor performance doubling every two years. Recently, however, certain phys-
ical limits (such as frequency and heat dissipation) of semiconductor-based chips have been
reached, which has caused a technological breakthrough in designs: Single-processor designs
have been replaced by multiprocessor designs. This corresponds to a switch from a mostly
synchronous world with little parallelism, to an asynchronous world with a high degree of par-
allelism. This transition started with designs of processors for personal computers and now
happens for embedded device processors. In addition, we are progressively switching to sys-
tems where software takes a larger and larger part. This kind of design may benefit of several
improvements: increased computation capabilities, fine-grain power management, homogen-
eity in the fabrication process, etc. Unfortunately, those improvements induce an increased
complexity. Indeed, different execution threads may interact or share resources. Maintaining
data coherency and preventing a shared resource from being improperly preempted is a key
problem. In other words, it makes sense to ensure that the design under development has
the ability to perform the targeted tasks. This process, well known by designers for a long
time, is called design verification. It occurs during the conception phase of the system, and
consists of establishing the correctness of the design, i.e., verifying that the system matches its
specification before implementation.

The verification process starts by providing a model of the system, i.e., finding a suitable
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2 Introduction

representation of its behavior in such a way that it can be analyzed. A classical approach for
modeling a system is to represent its behavior by defining a discrete set of states the system
may occupy (also called its state space), and by defining the evolution (or transition) function
from one state to another. Then, properties extracted from the system specification are verified
using themodel. The verification process covers two different activities, according to the nature
of the properties to be verified: properties linked to the functional behavior of the system or
properties linked to the timed behavior of the system.

The first aspect of correctness concerns the functional behavior of the system. It deals with
the way the system ensures its task and states, for instance, with properties such as: “is it
possible for the system to be definitively blocked” (e.g., two processes needing respectively a
resource preempted by the other), “will the system eventually fulfill its task ?”, “is the behavior
the one we were looking for ?”. The study of those functional properties is called functional
verification. To perform functional verification, a model depicting the functional behavior of
the system is needed. In this kind of model, the transition from one state to another is con-
sequently based on functional information (e.g., an action processed). For the case of an asyn-
chronous system, one may cite Labeled Transition Systems (LTS) as a typical formalism used in
the field of functional verification. LTS are directed graphs where vertices represent the states
of the modeled system and directed edges, labeled by an action, represent transitions between
states. Actions of LTS are considered atomic, i.e., they are taken instantaneously (there is no
time representation). An LTS allows to depict the functional behavior of a system: it only de-
picts the scheduling of its atomic actions, without providing information on the time elapsed
between actions. For asynchronous systems, interleaving semantics is used to depict parallel-
ism. For instance, if the LTS depicts two behaviors in parallel, all the possible interleaving of
actions of the two behaviors will be represented. LTS is a simple formalism that can be easily
manipulated, and is at the base of most of the functional verification techniques.

The second aspect of correctness concerns the performance of the system. It deals with the
time spent by the system to ensure its tasks and states, for instance, with properties such as:
“does the video-decoder ensure a video rate of 25 frame per second ?”, “what is the video buffer
size needed for streaming ?”. The study of those quantitative properties is called performance
evaluation. To deal with performance evaluation, a model depicting the evolution of the system
in time is needed. In this kind of model, the transition from one state to another represents the
progress of time. Onemay citeMarkov chains as a typical formalism in the field of performance
evaluation. Like an LTS, a Markov chain is also a directed graph where vertices represent the
states of the modeled system, but directed edges represent a probabilistic evolution, inducing
that time progresses, from one state to another. A Markov chain is a simple formalism that can
be easily manipulated, and is widely used to estimate performance measures of systems.

Up until few years ago, for processors with a low level of parallelism, correctness was
mainly ensured by answering functional verification questions. Indeed, problems concern-
ing performance targets could be generally fixed, under some conditions, by frequency ad-
justments, or by improving critical paths in the circuit. Performance requirements could be
reasonably assumed to be ensured if the system was functionally verified. For this reason, it
was common to consider performance only after the hardware system was fully designed and
functional correctness ensured.

At the present time, a functionally verified multiprocessor architecture may not reach its
required performance specifications. Indeed, due to concurrency, communications may be
delayed and latencies appear, directly worsening the system performance. A system non-
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compliant with timed specifications may require radical modifications of the architecture to
be rendered compliant. Such drastic modifications on fully developed systems are nowadays
unthinkable due to prohibitive hardware development costs. Performance evaluation is con-
sequently mandatory in addition to functional verification in the verification process of a sys-
tem. This implies that performance evaluation needs to be processed sooner, before the first
prototypes and even before having precise description of the architecture. Early evaluation
will prevent the designers from making choices that would lead to designs that are unable to
meet the requirements.

In the field of hardware systems presenting a high level of parallelism, the performance
concerning the achievement of a given task no longer relies on the single hardware design,
but also depends on all the tasks running concurrently. Unfortunately, depending on the tar-
geted task, performance is of critical importance (e.g., real-time or streaming applications).
Performance measures on isolated hardware elements (like throughput of an element) are con-
sequently no longer sufficient to ensure the ability of the system to complete the targeted task.
Performance evaluation has to take into account both the hardware design, and the software
running on it. We must therefore study the performance of a complex hardware system within
a defined application context.

The performance measures of interest in hardware systems may be of very different nature,
covering questions concerning applications (e.g., given an application context, a video decoder
has to run properly) or hardware elements (e.g., the communication bus has to ensure a pre-
cise throughput). We identified three major generic kinds of measures to be considered when
studying a complex hardware system:

– Resource utilization. These measures provide information concerning the utilization of
some elements, and mainly concern hardware elements (e.g., an hardware queue mean
occupancy). They can be used to identify under-utilization or over-utilization of some
resources and to size them properly.

– Throughput. These measures may provide information on hardware elements or on
applications. They are of main interest when studying the ability of the system to ensure
tasks highly dependent on time.

– Latency. These measures may provide information on hardware elements or on applic-
ations. We can identify local latencies (e.g., time to process an operation) or end-to-end
latencies (e.g., time to pass through a communication element). Due to high-level of par-
allelism in the studied systems, contentions may appear, worsening latencies. For some
applications, this may be annoying and has to be reduced as much as possible.

All these measures of interest concern behaviors on average or in the long run. Indeed,
our targeted systems (dedicated to the processing of not critical applications like streaming
applications) are not dealing with hard real-time applications, but they have to be able to
fulfill well their task on average.

The targeted performance measures depend on delays inherent in the modeled systems.
The classical approach taking time into account in models is to consider timers representing
those delays. The chosen model of time has to include a method of depicting all the delays
present in themodeled system. In the case of a hardware system, one could consider that delays
are constant and precisely known. Indeed, simple hardware elements composing the system
have generally a deterministic behavior, which presents few variability in time. Nevertheless,
modeling an application using precise delays would imply a great accuracy of the model that
we would prefer to avoid by considering application patterns instead. Indeed, because targeted
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results are long-run or average measures, we would prefer to abstract from a precise behavior
in time of an application, and consider a shape of behavior in time. In this case, a probabilistic
view of delays is preferred. We will consequently have to consider delays as random variables
characterized by their probabilistic distribution.

Example 1.1 illustrates the notion of delays and the targeted performance measure for a
very simple hardware element with applications, presenting little parallelism. This example
will be used throughout this thesis to illustrate important concepts simply.

Example 1.1. Consider a small hardware component: a First-In First-Out (FIFO) hardware queue.
The operation of inserting (resp. withdrawing) an element into the queue will be called push op-
eration (resp. pop operation). This terminology (push and pop) is classically used for stacks but is
inspired here by the terminology of xSTream queues (xSTream architecture, designed at STMicro-
electronics, is presented in chapter 7). Push and pop operations are processed using a hand-shake
scheme: the operations are initiated by a request and when they have been processed, a response is
sent back. For the push operation the response is just an acknowledgment, while the element at the
queue’s head is returned for the pop operation. Push and pop operations can be processed either in
parallel or sequentially according to the implementation.

Because we consider a hardware queue, its size is limited and operations are blocking: when a
push (resp. pop) operation is initiated by a request and the queue is full (resp. empty), the opera-
tion is blocked until there is a free place (resp. an available element). For processes inserting and
withdrawing elements in the queue, this behavior corresponds to a busy wait.

For performance evaluation purposes, the FIFO queue is studied in an application context: a pro-
ducer inserts (push operation) elements and a consumer extracts them (pop operation). This example
is depicted in figure 1.1. Considering this FIFO queue and its environment, we can distinguish two
hardware-related delays and two software-related delays. The hardware delays correspond to the
time physically needed to process operations in the queue. They are called the push operation delay
and the pop operation delay. The software delays are linked to the timed behavior of the producer
and consumer: how much time is spent between the end of an operation (push or pop response) and
the beginning of the next one (push or pop request)? Those delays are called production delay and
consumption delay. One can imagine that hardware delays are constant, while software delays are
considered as random variables.

Consequently, the system (the queue connected to a producer and a consumer) has five parameters:
– SQ: the size of the queue
– DPUSH : the push operation delay
– DPOP : the pop operation delay
– DPROD : the production delay
– DCONS : the consumption delay
We define the mean production rate (resp. consumption rate) as the number of elements pro-

duced (resp. consumed) on average by time unit. We will say that the queue is well used if the mean
consumption rate in the queue is greater or equal to the mean production rate. In practice we gen-
erally consider a well-used system, because a system that is not well-used is certainly not desirable:
after a transient phase, the queue will always overflow. Studying this hardware queue allows us to
investigate several performance results among which:

– Occupancy of the FIFO queue. This measure provides information to correctly size the queue.
Indeed, because it is an hardware queue, a trade-off between the performance (an infinite queue
ensures there is never blocked insertions) and the cost due to die area occupancy has to be found.
A queue that is often full is probably not large enough, while a queue that is often empty could
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Figure 1.1: A FIFO queue connected to a producer and a consumer

be smaller.
– Time between an operation request and the next one. This time is interesting for the study of

throughput measures concerning push and pop operations.
– Time between an operation request and the corresponding response. If this time is much greater

than the operation hardware delay, the operation is often blocked. For a push operation, it
means that the queue is not able to correctly absorb the traffic. For a pop operation, it means
that the consumer is often waiting.

– Time for an element to pass through the queue. This is the time between the push request to
insert the element in the queue and the pop response withdrawing it from the queue. This time
corresponds to the latency induced by the queue in the communication between the producer
and the consumer.

In industry, functional verification and performance evaluation of complex hardware sys-
tems are typically currently tackled as two independent tasks, relying on two different models.
This approach is the source of several problems: it causes effort and cost redundancy, incoher-
ence between the two models may appear, diverging evolutions in the two models may induce
difficulties in their maintenance, etc. At the moment, there is no available industrial method-
ology that covers both functional verification and performance evaluation of the same model.
To remedy this problem, a common model needs to represent both functional evolutions of the
system, and time evolutions. Typically, modeling frameworks for functional verification and
performance evaluation consider atomic actions depicting the functional behavior, and define
timers representing time periods that have to elapse between actions. One may imagine that
the transition from one state to another implies at the same time the occurrence of an action
and the elapsing of a period of time. In this case, an action is no longer atomic, but takes a
certain amount of time. A clear separation between time evolution and functional evolution
is preferable, because it is theoretically simpler without limiting the applicability of the ap-
proach (a non atomic action can be modeled using two atomic actions). This observation has
been illustrated in [NS91] for timed systems.

Given the need to validate complex hardware systems, one can thus propose some guidelines
for defining an adequate framework dedicated to functional verification and performance eval-
uation. In this aim, several questions have to be answered.

The first question arises in the modeling phase of the targeted systems, and concerns the
management of the complexity of models, to scale to models with a huge state space. To deal
with complexity, engineers are used to develop systems in a compositional and hierarchical
approach: complex systems are developed by assembly of several simpler subcomponents. In
the field of system modeling, this approach is mandatory for scaling to large systems with a
high level of parallelism: the whole system is divided into subcomponents that can be modeled
independently, and are then composed to get the final model. This kind of approach implies
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that one is able to explicitly express parallelism and interactions between subcomponents of
the system to model. In other words, subcomponents are modeled as independent entities
evolving in parallel, but interacting through means of synchronization. Such an approach
implies that the composition of twomodels has to remain representable in the chosenmodeling
framework.

When composing models of subcomponents in parallel using interleaving semantics, the
state space of the resulting model might, in the worst case, be the Cartesian product of the
subcomponents’ state spaces. A high level of parallelism between composed models generally
results in an exponential increase of the state space of the resulting model. This leads to the
so-called state space explosion problem: the model resulting from a composition is too large
to be analyzed (in the sense that it is too large to be numerically manipulated by modern
computers). Because complexity of studied systems (and thus size of the models) increases
faster than computing capabilities of computers (even considering clusters of computers), one
cannot count upon the next more powerful generation of computers to resolve future state-
space explosion problems.

An approach to circumvent the state space explosion problem is the use of compositional
minimizations using equivalences: some components of the system are replaced by equivalent
but smaller ones, i.e., minimized subcomponents (with respect to those equivalences). Those
minimizations are defined so as to preserve properties in the model. They rely on the defini-
tion of equivalence relations (also called bisimulations) between states with respect to the pre-
served properties. Given an equivalence relation, a model is minimized finding the smallest
one equivalent to it. By iteratively composing subcomponent models [GL01], and minimizing
the results, we construct a minimizedmodel of the whole system that should remain equivalent
to the one we would have obtained without minimization. In some cases, the approach based
on compositions and minimizations may avoid the state space explosion problem, because the
intermediate state spaces of compositions are reduced. In this thesis, the term “compositional
modeling approach” refers to the construction of a model using iterative composition and min-
imization.

When a model of the system is available, a second question arises. It concerns the way the
model is analyzed to get functional verification and performance evaluation results. One can
distinguish two classes of methods for evaluating the correctness of a system: simulation-based
methods and exact methods. Simulation-basedmethods consist in verifying properties or com-
puting measures by considering executions of the model. In contrast, exact methods consist in
computing results using a clearly defined mathematical framework. One can mention advant-
ages and drawbacks for the two approaches:

– For simulation-based methods, it is difficult to ensure exact results. Indeed, it would
imply that results are computed on an infinite execution in which all the behaviors of the
model have been tested. In most cases, simulation-based results are therefore not given
as ensured results, but with a confidence index with respect to the time of simulation
(i.e., until a criterion of convergence is reached) or the coverage of the set of possible
behaviors. Excepted for the evaluation of the confidence index of the results, simulation-
based methods remain rather simple techniques.

– Computed results are ensured using exact methods, i.e., if a result is found with formal
methods, it is correct and does not need a confidence index. But results using formal
methods are obtained at the cost of more complex algorithms.

Actually, the exponentially increasing complexity in hardware systems implies that simula-
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tions are takingmore andmore time to ensure a reasonable confidence index. Formalsmethods
are consequently becoming interesting as simulation-basedmethods reach their limits [Kur97].

In industry, formal methods are beginning to be used for the functional verification of
complex hardware systems [KGN+09, Ber05, Kur97], as a complement of simulation-based
methods. Conversely, simulation-based methods are the standard for performance evaluation.
However, formal methods are seen as a great aid to providing both functional and performance
results for such complex systems.

To summarize: the validation flow of a complex hardware system should ideally first rely on
a model covering both functional verification and performance evaluation. This model has to
depict both software and hardware parts of the system. Then, the model should be constructed
following a compositional approach. Finally, it should be analyzed using formal methods. The
expected results are the verification of functional properties, and performance measures in
terms of latencies, throughput and resource utilization.

1.1 Contributions

To tackle problems described in the previous section, we mainly focus on the modeling of
hardware systems and how to formally proceed with performance analysis. Consequently, the
contribution of this thesis is twofold:

– Our first contribution is the definition of the Interactive Probabilistic Chains (IPC), which
allow to model systems with both functional information and time information. In IPCs,
time is considered to be discrete and probabilistically distributed, i.e., a probabilistic de-
cision is authorizedwhen time progresses. Bymeans of discrete phase-type distributions,
any kind of discrete-time distributed delay can be modeled with IPCs.
The operational semantics of IPCs strictly separates functional aspects and time aspects.
This simplifies the definition of parallel composition. In particular, it is not necessary
to deal with synchronization of probabilistic distributions. Consequently, for IPCs, the
parallelism of functional behavior is defined asynchronously (according to the usual in-
terleaving semantics), while a synchronous semantics is used when dealing with paral-
lelism of timed behaviors. In addition, to authorize a compositional modeling approach
with intermediate minimizations, we define a probabilistic branching bisimulation equi-
valence of IPCs that we prove to be a congruence with respect to the parallel composition
operator.
By their nature, IPCs can be used to tackle both functional verification aspects and per-
formance evaluation aspects. Indeed, an IPC can be minimized to obtain an LTS or trans-
formed into a discrete-time Markov chain. The transformation of an IPC into a Markov
chain relies on an urgency assumption, i.e., actions occur as soon as they are allowed to
be taken.
We implemented the IPC modeling approach by reusing existing tools and APIs of the
Cadp toolbox [GLMS07], and by developing additional tools to deal with the synchronous
semantics of time in IPCs. We applied this implementation on to model the communic-
ation aspects of an industrial hardware design, the xSTream architecture, an adequate
case-study to evaluate the scalability of the IPC modeling approach.

– Our second contribution is the formal definition of a performance measure, the latency,
which characterizes the time elapsed between two particular set of states in a discrete-
time Markov chain. We show that the long-run average distribution of a latency can
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be expressed using classical steady-state and transient analysis techniques on Markov
chains. We show how this latency can be used for performance study of an IPC (namely,
by considering its transformation into in a Markov chain).
We provide an implementation of the computation of the long-run average distribution
of a latency on an IPC, and we compute some performance figures on the IPC models
of the xSTream architecture. On these models, we illustrated that we are able to cover
two out of the three measures of interest we identified for hardware systems, namely the
throughput and latencies.

1.2 Outline

In chapter 2, we present, in discrete-time and continuous-time settings, those aspects of
the Markov chain formalism that are necessary in the rest of the thesis. In particular, we recall
well-established techniques to obtain performance results from continuous-time and discrete-
time Markov chains. Then, we introduce an extension of Markov chains, called annotated
Markov chains that authorize to associate functional information to the states of a Markov
chain. Finally, we present the related formalisms of phase-type distributions and semi-Markov
chains.

In chapter 3, we introduce a performance measure on discrete-time annotated Markov
chains: the latency, as a random variable relying on the construction of particular set of states
that are identified by the actions they can perform. We focus on the computation of the aver-
age distribution of a latency on the long run. Although the definition of the long-run average
distribution of a latency relies on notions belonging to measure theory, we show that its com-
putation is possible based on steady-state and transient-state analysis of Markov chains.

Chapter 4 is dedicated to the presentation of the Interactive Markov Chains (IMC), an ad-
equate formalism to tackle both functional verification and performance evaluation. Indeed,
we intially planned to use IMCs to study hardware systems. Firstly, we recall the formal defin-
ition of the IMC formalism. Then, we shortly overview a practical methodology to apply this
formalism to the modeling of hardware systems. From IMC models, we show how to get per-
formance results by considering the performance model underlying IMCs, i.e., continuous-
time Markov chains. Finally, we illustrate the problems encountered with the IMC formalism:
the approximations of constant delays (and more generally of discrete-time delays) by expo-
nential distributions induces an error on computed performance results, that we are not able
to evaluate.

In chapter 5, we introduce the Interactive Probabilistic Chain (IPC) formalism, which is
the main contribution of this thesis. IPCs have the same modeling and performance analysis
capabilities as IMCs, but they model discrete-time delays exactly, i.e., without inducing ap-
proximation errors. Firstly, we define IPCs and provide their operational semantics. Secondly,
we focus on their performance analysis. Similarly to IMCs, the underlying performance model
of IPCs is a discrete-time Markov chain. We define a transformation of IPCs into annotated
Markov chains and show how a latency can be studied through the latency in the annotated
Markov chain associated to an IPC. Finally, we compare IMC and IPC semantics and highlight
a strong relation between those two formalisms.

In chapter 6, we present a prototype toolchain for studying systems modeled using the IPC
formalism. This tool chain is divided in two parts: the first one concerning the modeling of a



Outline 9

system as an IPC, and the second one tackling the performance analysis of this IPC. Currently,
our implementation enables the study of long-run average distributions of latencies.

In Chapter 7, we present the application of our toolchain to an industrial case-study, the
xSTream architecture. We present some models we studied, together with the obtained results,
highlighting the advantages of the IPC methodology for modeling hardware systems. We also
show that the latency measure allows to get useful insight concerning the performance of the
studied systems.

In chapter 8, we overview existing work related to the main contributions of this thesis,
namely IPCs and the latency performance measure on discrete-time Markov chains.

Finally, in chapter 9, we give some concluding remarks concerning the modeling and per-
formance evaluation of hardware systems. We also present some directions concerning further
research.
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Chapter 2

Performance Measures on
Markov Chains

In this chapter we present Markov chains, a formalism commonly used in computer-aided
performance evaluation methodologies [GH02, HKNP06, PA91]. Intuitively, a Markov chain
is a stochastic process used to depict systems evolving randomly in time. Markov chains
have been widely studied in the literature and efficient performance analysis methods exist
[Ste94, Hav00]. Indeed, due to their discrete state space, they are well adapted for numerical
representations and manipulations. In a Markov chain, time can be considered either dis-
cretely or continuously dividing Markov chains into two classes: discrete-time Markov chains
(DTMCs) and continuous-time Markov chains (CTMCs). The purpose of this chapter is to
present general definitions concerning DTMCs and CTMCs, together with established per-
formance analysis methods. We also introduce a formalism based on Markov chains, the an-
notated Markov chains (AMCs). Finally, we present phase-type distributions constructed over
Markov chains.

2.1 General Definitions of Markov Chains

2.1.1 Markov Process

Stochastic processes are well-studied formalisms to depict systems evolving in time. In a
stochastic process, the evolution in time is not deterministic but is described by probability
distributions.

Definition 2.1 (Stochastic process). A stochastic process X is a collection {Xt | t ∈ T } of ran-
dom variables Xt taking values in a set S , defined on a given probability space and indexed by the
parameter t, where t varies over some index set T ⊆ ]−∞,+∞[.

The set T is usually seen as the time parameter called the time range. If T is a discrete
countable set (usually, T = {0,1, . . .}), the process is called a discrete-time process. Otherwise, if
T is not countable (usually, T = R+), the process is called a continuous-time process.

Xt ∈ S denotes the value assumed by the process X at time t. The elements of set S are
called states, and the set S of all states forms the state space of the process. The state space is
either discrete or continuous.

11
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AMarkov process is a stochastic process satisfying the so-calledMarkov property. Informally,
this property expresses that the future of a Markov process only depends on its present (the
current occupied state) and not on its past (the previously occupied states).

Definition 2.2 (Markov process). A Markov process is a stochastic process satisfying the Markov
property: for any sequence of time points t0, t1, . . ., tn, tn+1 satisfying t0 < t1 < · · · < tn < tn+1 (time
points are ordered in time), the Markov property ensures that

Prob
{
Xtn+1 = xn+1 | Xtn = xn,Xtn−1 = xn−1, . . . ,Xt0 = x0

}
= Prob

{
Xtn+1 = xn+1 | Xtn = xn

}

For a Markov process, the distribution of Xtn on the state space at time tn can be determined
by the distribution of Xtn−1 only. Nevertheless, the distribution of Xtn may depend on the time
point tn considered. In the case that the distribution of Xtn is independent from tn, each time
point is a renewal point, and the Markov process is said to be homogeneous.

Definition 2.3 (Homogeneous Markov process). A homogeneous Markov process is a stochastic
process satisfying the Markov property and

(
∀t′ > t

)
, Prob

{
Xt′ = x

′ | Xt = x
}
= Prob

{
Xt′−t = x

′ | X0 = x
}

In the current work, we focus on homogeneousMarkov processes defined on a discrete state
space. They are called Markov Chains.

Definition 2.4. A Markov chain is a Markov process defined on a discrete state space.

2.1.2 Discrete-Time Markov Chain

Definition

In this section, we introduce notions concerning DTMCs. A full presentation of DTMCs
can be found for instance in [Nor98].

Definition 2.5 (DTMC). A stochastic process X = {Xt | t ∈ T } is a discrete-time Markov chain if X
is a discrete-time process and X is a Markov chain.

In a DTMC, the time increases discretely by time steps. Each move from one state to another
is processed in one time step and is called a transition. We consider the usual time range
used for discrete-time stochastic processes, i.e., T = N, which allows to denote a DTMC X =
{Xn | n ∈N}.

Let {Xn | n ∈N} be a homogeneous DTMC defined over the discrete and finite state space
S ⊂N. For every pair of states (i, j) ∈ S2, the probability of moving in one time step from state
i to state j at time n,

pij(n) = Pr{Xn+1 = j | Xn = i},

is called transition probability at time n from state i to state j. In a homogeneous DTMC, each
time point is a renewal point, i.e.,

(
∀n ∈N

)
pij (n) = pij (0) = Pr{X1 = j | X0 = i}.
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Thus, we define pij = pij (0) and pij is simply called the transition probability from state i to state

j. All probabilities out of a state are assumed to sum up to one, i.e.,
(
∀i ∈ S

)
,
∑
j∈S pij = 1. The

square matrix P = [pij ](i,j)∈S2 is called the transition matrix.

In a homogeneous DTMC, the sojourn time SJi in a state i ∈ S is the time spent in i before
moving to another state. For every state i ∈ S , SJi follows a geometric distribution parameter-
ized by the transition probability pii . Its distribution is defined by:

Pr {SJi = n} = p
n−1
ii × (1− pii)

The geometric distribution is the only memoryless discrete probability distribution, i.e., the
remaining time before leaving the state is independent from the time already spent in the
state. The memoryless property of the distribution of the sojourn time in a DTMC is a direct
consequence of the Markov property.

Consider the vector π(n) = [πi (n)]i∈S , where for every state i ∈ S , πi (n) = Pr {Xn = i}. π(n)
is called probability vector of the DTMC at time n and corresponds to the probability distri-
bution of the DTMC over the state space at time n. This probability vector satisfies

(
∀n ∈

N
)
,
∑
i∈S πi(n) = 1, which simply ensures that, at any time, the probability to be in the state

space is 1.

A homogeneous DTMC is fully characterized by its transitionmatrix and its initial probab-
ility vector π(0). Indeed, all possible evolutions can be computed from the initial probability
vector and the transition matrix of a DTMC. In the rest of the thesis, we limit our study to
DTMCs for which a single state is initially occupied. In practice, this assumption is in most
cases verified.

Example 2.1. Consider the hardware FIFO queue presented in example 1.1 with the following para-
meters in a discrete-time context:

– The queue size QS is set to one place, QS = 1
– The hardware related delays DPUSH (push operation delay) and DPOP (pop operation delay)

are respectively set to DPUSH = 2 and DPOP = 1 time steps
– The software-related delays DPROD (production delay) and DCONS (consumption delay) are

considered probabilistically. DPROD can take either 2 time steps with a probability 0.5 or 3
time steps with a probability 0.5. DCONS can take either 1 time step with a probability 0.5 or
4 time steps with a probability 0.5. We can notice that the FIFO queue is well used: there is,
on average, one element produced or consumed every 2.5 time steps.

Initially, we assume that the queue is empty, and that production and consumption delays have
to elapse before first insertions or extractions in the FIFO queue. This system can be modeled using a

DTMC X defined over a state space S = {s0, . . . , s29}. The transition matrix P =
[
psi sj

]
(si ,sj )∈S2

and the

initial probability vector π(0) =
[
πsi (0)

]
si∈S

of X are depicted in figure 2.1.

State properties

We introduce several classifications of states that will be used afterwards. Consider the
homogeneous DTMC {Xn | n ∈N} defined over the discrete and finite state space S ⊂N, and
characterized by its transition matrix P = [pij ](i,j)∈S2 and its initial probability vector π(0).
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1�2 0 0 0 0 0 0 1�2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1�2 0 0 0 0 1�2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1�2 0 0 0 0 1�2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1�2 0 0 0 0 1�2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0




π(0) = [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

Figure 2.1: Transition matrix and initial probability vector of a 1-place FIFO queue DTMC
model
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Given a state i ∈ S , the probability retki of returning to i in k time steps, when starting in i,
is defined by:

retki = Pr {Xk = i | X0 = i} .

If any return to i is a multiple of a value k > 1, the state i is said to be k-periodic. Otherwise, i is
said to be aperiodic.

Definition 2.6 (periodic state). a state i is said to be k-periodic (k > 1) if:

(
∀n ∈N

)
, gcd

{
n | retni > 0

}
= k

A DTMC is said to be aperiodic if all its states are aperiodic.

We also define the probability reti of ever returning to state i when starting in i by

reti =
∞∑

n=1

Pr
{
Xn = i | X0 = i ∧

(
∀n′ < n

)
Xn′ , i

}
.

Definition 2.7 (Transient and recurrent states). A state i ∈ S is said to be recurrent if, starting in
i, the probability reti to ever return to i is 1. If, starting in i, there is a non-zero probability to never
return in i, the state is said to be transient.

Then, we define the mean recurrence time meani of state i:

meani =
∞∑

n=1

n× Pr
{
Xn = i | X0 = i ∧

(
∀n′ < n

)
Xn′ , i

}
,

i.e., the average time needed, starting in i, to return to i.

Definition 2.8 (positive recurrent state). A state i ∈ S is said to be positive recurrent if, starting
in i, the mean recurrence time meani is finite, i.e., meani < +∞.

Definition 2.9 (ergodic state). a state i ∈ S is said to be ergodic, if it is aperiodic and positive
recurrent.

A DTMC is also said to be ergodic if all its states are ergodic.

Definition 2.10 (absorbing state). A state i is said to be absorbing if, when i is reached, it is
impossible to leave it. The transition probability pii of an absorbing state i is: pii = 1.

A DTMC is also said to be absorbing if one of its state is absorbing.

Probabilistic chain

By considering that initially a single state is occupied, one can introduce a characterization
of DTMCs as probabilistic chains as defined in [Her02]. Probabilistic chains provide a simple
graphical representation of DTMCs.

Definition 2.11 (Probabilistic chain). A probabilistic chain is a tuple 〈S, z{ , s0〉 where:
– S is a nonempty set of states
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Figure 2.2: Probabilistic chain of a 1-place FIFO queue DTMC model

– z{ ⊂ S × ]0,1] × S → N is a multi-set of probabilistic transitions such that for every state,

probabilities of outgoing transitions sum up to 1, i.e.,
(
∀s ∈ S

)
,
∑
s′∈S

{]
p | s

p
z{ s′

[}
= 1

– s0 is the initial state

For convenience, we write s
p
z{ s′ rather than (s,p, s′) ∈ z{ . To denote that there exists

p > 0 such that s
p
z{ s′, we write s z{ s′.

Example 2.2. The DTMC X modeling the FIFO queue of example 2.1 can be represented by the
probabilistic chainMP = 〈S, z{ , s0〉, depicted in figure 2.2. The initial state s0 is highlighted by
an incoming straight arrow.

A DTMC can be characterized by its transition matrix and its initial probability vector
(equal to one for one state and to zero for the others), or by a probabilistic chain. Consider
a DTMC X = {Xn | n ∈N}, over the state space S = {0,1, . . .}. The transition matrix of X is
P =

[
pij

]
(i,j)∈S2

and its initial probability vector is π(0) = [πi (0)]i∈S , with π(0) satisfying
(
∃!k ∈

S
)
,πk(0) = 1. The DTMC X can be characterized by the probabilistic chainMP = 〈S, z{ , k〉

satisfying:
– For each positive transition probability of X, there is a probabilistic transition in the

probabilistic chainMP , i.e.,
(
∀(i, j) ∈ S2

)
,

(
pij = p > 0

)
=⇒ i

p
z{ j

– The initial state k is the single state satisfying πk(0) = 1
Conversely, consider a probabilistic chain MP = 〈S, z{ , s0〉 defined over the state space

S = {0,1, . . .}.MP characterizes a DTMC X = {Xn | n ∈N} over the state space S = {0,1, . . .}. The
transition matrix of X, P =

[
pij

]
(i,j)∈S2

, and the initial probability vector of X, π(0) = [πi (0)]i∈S ,
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satisfy that:
– The transition probability pij of X, between two states i and j of S , is obtained by

summing probabilities over all the possible transitions i z{ j in MP , i.e.,
(
∀(i, j) ∈

S2
)
, pij =

∑{]
p | i

p
z{ j

[}

– The initial probability vector is null for every state but s0, the initial state of MP , for
which πs0(0) is equal to 1. In other words, we have πs0(0) = 1 and

(
∀j ∈ S,j , s0

)
,πj (0) = 0

Using probabilistic transitions, every time-step transition probability of a DTMC can be
expressed. In a probabilistic chain, there is a probabilistic transition between two states only if
the corresponding transition probability in the DTMC is non null. Notice that using multisets
of probabilistic transitions in the definition of probabilistic chains enables there to be several
probabilistic transitions between two states, even with the same probability.

Example 2.3. The DTMC X modeling the FIFO queue of example 2.1 can also be represented by
another probabilistic chain, different fromMP (depicted in figure 2.2). For instance, the transition

s1
1
z{ s2 ofMP could be replaced by two identical transitions s1

1�2
z{ s2, whilst characterizing the

same DTMC.

Because we are targeting performance results over a long run, we are not interested in the
transient behavior of an initialization phase in a DTMC. In other words, we want to take out
behaviors linked to transient states since their occurrence is negligible on the long run. For
the study of long-run behaviors, it is sufficient to consider a fully connected subset of the state
space, i.e., a subset of recurrent states. Such a subset ensures that every state of the subset is
reachable from every other state of the subset by a sequence of transitions. A fully connected
DTMC is called an irreducible DTMC.

Definition 2.12 (Irreducible DTMC). A DTMC X defined over the state space S ⊆N is said to be
irreducible if:

(
∀i, i ′ ∈ S

) (
∃(j1, . . . , jn) ∈ S

n
)

pij1 > 0 ∧ pjni ′ > 0 ∧
(
∀k ∈ [1,n]

)
pjkjk+1 > 0

We can transpose the definition of irreducibility of a DTMC to a probabilistic chain.

Definition 2.13 (Irreducible probabilistic chain). A probabilistic chainMP = 〈S, z{ , s〉 is said
to be irreducible if:

(
∀i, i ′ ∈ S

)
,
(
∃(j1, . . . , jn) ∈ S

n
)
, i z{ j1 z{ · · · z{ jn z{ i ′

In the following, we limit our study of DTMCs to irreducible ones, although DTMCs are
not always irreducible in practice.

Lemma 2.1. For every DTMC X over the finite state space S ⊂ N and defined by the transition

matrix P =
[
pij

]
(i,j)∈S2

, there exists an irreducible DTMC X ′ over the state space S ′ ⊂N and defined

by the transition matrix P ′ =
[
p′ij

]
(i,j)∈S ′2

satisfying:

S ′ ⊆ S and
(
∀(i, j) ∈ S ′2

)
p′ij = pij

The initial state of X ′ is chosen arbitrarily in S ′. We call such a DTMC X ′, an irreducible DTMC
induced by X.
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Figure 2.3: a non irreducible DTMC and two possible induced DTMCs

Proof. According to definition 2.7, we can show that if all states of a DTMC are transient,
the state space of the DTMC is infinite. Because the state space is finite, there is almost one
recurrent state i. The fully connected subset Si of S including i is consequently irreducible (if
i is absorbing, we have Si = {i}).

Several irreducible DTMCsmight be induced by one that is not irreducible, andwe consider
in fact one of those possible induced irreducible DTMC. However, we could imagine studying
all the induced DTMCs separately.

Example 2.4. Consider the DTMC X over the state space S = {s0, . . . , s3}, depicted by probabilistic
chain of figure 2.3(a). There are two induced DTMCs for X: either the DTMC X ′ over the state
space S ′ = {s1}, depicted by probabilistic chain of figure 2.3(b), or the DTMC X ′′ over the state space
S ′′ = {s2, s3}, depicted by probabilistic chain of figure 2.3(c). For X ′ , the initial state is obviously s1.
For X ′′, the initial state is arbitrarily set to s2.

The arbitrary choice of the initial state of an induced DTMC is justified by the fact that we
target long-run performance measures. Indeed, for this kind of measures, the initial state of
the DTMC has no influence.

Example 2.5. The DTMC X characterized by the probabilistic chainMP = 〈S, z{ , s0〉 of figure 2.2
is not irreducible. We can see, for instance, that the initial state s0 cannot be reached from any of the
states.

However, there is at least an irreducible DTMC X ′ induced by X. For instance, we can consider
the irreducible DTMC X ′ characterized by the probabilistic chain M′P = 〈S ′ , z{ , s7〉, with state
space S ′ ⊂ S , i.e., S ′ = S\{s0, s5, s6, s11, s12, s17}. The initial state ofM

′
P is arbitrarily set to s7. MCP

′

is depicted in figure 2.4. Notice that all possible induced DTMCs have the same state space S ′ .

2.1.3 Continuous-Time Markov Chain

Definition

In this section, we introduce notions concerning CTMCs. A full presentation of CTMCs can
be found in [Nor98].

Definition 2.14 (CTMC). A stochastic process X = {Xt | t ∈ T } is a continuous-time Markov chain
if X is a continuous-time process and X is a Markov chain.
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Figure 2.4: Irreducible probabilistic chain of a 1-place FIFO queue DTMC model

A CTMC moves from one state to another after a real-valued delay. Each of these moves
is called a transition. We consider the usual time range used for continuous-time stochastic
processes, i.e., T =R+.

Let {Xt | t ∈R+} be a homogeneous CTMC defined over the discrete and finite state space
S ⊂N. For every pair of states (i, j) ∈ S2, we define a transition rate at time t, rij(t), from state i
to state j,

rij(t) =

{
lim∆t→0

Pr{Xt+∆t=j | Xt=i}
∆t if i , j,

0 otherwise.

Because each time point is a renewal point in a homogeneous CTMC, the transition rate can be
rewritten:

(
∀t ∈R+

)
, rij (t) = rij(0) =

{
lim∆t→0

Pr{X∆t=j | X0=i}
∆t if i , j,

0 otherwise.

Thus, we define rij = rij (0), and rij is simply called transition rate from state i to state j.

In a homogeneous CTMC, the sojourn time SJi in a state i ∈ S is the time spent in i before
moving to another state. It is characterized by the set of transition rates from i,

{
rij

}
j∈S

. Indeed,

for every state i ∈ S , SJi follows an exponential distribution, exp(λ), parameterized by λ =∑
j∈S rij . Its cumulative distribution function is defined by:

Pr {SJi ≤ t} = 1− exp−(
∑
j∈S rij)t

As in the discrete-time case, the exponential distribution is the only memoryless continuous
probability distribution. The memoryless property of the distribution of the sojourn time in a
CTMC is also a direct consequence of the Markov property.

For a given state i, the distribution of the sojourn time in i, SJi , is also equal to the distri-
bution of the minimum of the distributions {exprij }j∈S (the class of exponential distributions is
closed for the minimum function). In the particular case where a single transition from state i
is possible, i.e., a single state j such that rij > 0, the distribution of SJi follows the exponential
distribution parameterized by rij . The transition from i to j happens consequently after an
rij-exponentially distributed delay. In the general case, when several transitions from state i
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are possible, there is a set S ′ ∈ S such that
(
∀j ∈ S ′

)
, rij > 0 (we consider S ′ as the largest set sat-

isfying this property). For every state j ∈ S ′ , the transition from i to j potentially happens after
an rij-exponentially distributed delay. Consequently, the transition from i will be the one that
happens earlier, i.e., the one that realizes the minimum of all the rij-exponential distributions.

From transition rates, we construct a matrixQ =
[
qij

]
(i,j)∈S2

, called the transition rate matrix,

that satisfies
(
∀(i, j) ∈ S2

)
, qij =

{
r(i, j) if i , j
−
∑
j ′∈S r(i, j

′) if i = j

Consider the vector π(t) = [πi (t)]i∈S , where for every state i ∈ S , πi(t) = Pr {Xt = i}. π(t)
is called probability vector of the process at time t and corresponds to the probability distri-
bution of the process over the state space at time t. These probability vectors satisfy

(
∀t ∈

R+

)
,
∑
i∈S πi(t) = 1.

A homogeneous CTMC is fully characterized by its transition rate matrix and its initial
probability vector π(0). Indeed, all possible evolutions can be computed from the initial prob-
ability vector and the transition rate matrix of a CTMC. In the rest of the thesis, we limit our
study to CTMCs for which a single state is initially occupied. In practice, this assumption is in
most cases verified.

Example 2.6. Consider the hardware FIFO queue presented in example 1.1 with the following para-
meters in a continuous-time context:

– The queue size QS is set to one place, QS = 1
– The hardware related delays DPUSH (push operation delay) and DPOP (pop operation delay)

are exponentially distributed with parameters λ and µ
– The software-related delays DPROD (production delay) and DCONS (consumption delay) are

exponentially distributed too, with parameters δ1 and δ2
Initially, we assume that the queue is empty, and that production and consumption delays have

to elapse before first insertions or extractions in the FIFO queue. This system can be modeled using a

CTMC X defined over a state space S = {s0, . . . , s7}. The transition rate matrix Q =
[
qsi sj

]
(si ,sj )∈S2

and

the initial probability vector π(0) =
[
πsi (0)

]
si∈S

of X are depicted in figure 2.5

State properties

As in the discrete-time case, states can be classified according to some properties. Consider
the homogeneous CTMC {Xt | n ∈R+} defined over the discrete and finite state space S ⊂N,
and characterized by its transition rate matrix Q =

[
qij

]
(i,j)∈S2

and its initial probability vector

π(0).

We define the probability reti of ever returning to state i when starting in i by

reti = Pr {inf(t > 0 : Xt = i | X0 = i) < +∞} .

Definition 2.15 (Transient and recurrent states). A state i ∈ S is said to be recurrent if, starting
in i, the probability reti to ever return to i is 1. If, starting in i, there is a non-zero probability to
never return in i (reti < 1), the state is said to be transient.
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Q =




−(δ1 + δ2) δ1 0 0 δ2 0 0 0
0 −(λ+ δ2) λ 0 0 δ2 0 0
0 0 −(δ1 + δ2) δ1 0 0 δ2 0
0 0 0 −δ2 0 0 0 δ2
0 0 0 0 −δ1 δ1 0 0
0 0 0 0 0 −λ λ 0
µ 0 0 0 0 0 −(δ1 +µ) δ1
0 µ 0 0 0 0 0 −µ




π(0) =
[
1 0 0 0 0 0 0 0

]

Figure 2.5: Transition rate matrix and initial probability vector of a 1-place FIFO queue CTMC
model

Then, we define the mean recurrence time meani of state i:

meani = lim
t→+∞

1
t

∫ t

0
inf(t > 0 : Xt = i | X0 = i)dt,

i.e., the average time needed, starting in i, to return to i.

Definition 2.16 (positive recurrent state). A state i ∈ S is said to be positive recurrent if, starting
in i, the mean recurrence time meani is finite, i.e., meani < +∞.

Definition 2.17 (ergodic state). a state i ∈ S is said to be ergodic, if it is positive recurrent.

A CTMC is also said to be ergodic if all its states are ergodic.

Definition 2.18 (absorbing state). A state i is said to be absorbing if, when i is reached, it is
impossible to leave it. The factor qii of the transition rate matrix of an absorbing state i satisfies:
qii = 0 (which implies that qij is null for all j).

A CTMC is also said to be absorbing if one of its state is absorbing.

Markovian chain

By considering that initially a single state is occupied, one can introduce a characterization
of CTMCs as Markovian chains as defined in [Her02]. Markovian chains provide a simple
graphical representation of CTMCs.

Definition 2.19 (Markovian chain). A Markovian chain is a tuple 〈S, d , s0〉 where:
– S is a nonempty set of states
– d ⊂ S × R+ × S → N is a multi-set of Markovian transitions, which are transitions with

transition rates
– s0 is the initial state

For convenience, we write s
λ
d s′ rather than (s,λ,s′) ∈d . To denote that there exists λ > 0

such that i
λ
d j, we write s d s′.
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Figure 2.6: Markovian chain of a 1-place FIFO queue CTMC model

Example 2.7. The CTMC X modeling the FIFO queue of example 2.6 can be represented by the
Markovian chainMM = 〈S, d , s0〉, depicted in figure 2.6. The initial state s0 is highlighted by an
incoming straight arrow.

A CTMC can be characterized by its transition matrix and initial probability vector (equal
to one for a single state), or by a Markovian chain. Consider a CTMC X = {Xt | t ∈R+}, over
the state space S = {0,1, . . .}. The transition rate matrix of X is Q =

[
qij

]
(i,j)∈S2

and its initial

probability vector is π(0) = [πi(0)]i∈S , with π(0) satisfying
(
∃!k ∈ S

)
,πk(0) = 1. The CTMC X

can be characterized by the Markovian chainMM = 〈S, d , s〉 satisfying:
– For each positive transition rate of X, there is a Markovian transition in the Markovian

chainMM , i.e.,
(
∀(i, j) ∈ S2

)
, qij > 0 =⇒ i

qij
d j

– The initial state s is equal to the single state k satisfying πk(0) = 1
Conversely, consider a Markovian chainMM = 〈S, d , s〉 defined over the state space S =

{0,1, . . .}. MM characterized a CTMC X = {Xt | t ∈ R+} over the state space S . The transition
rate matrix ofX,Q =

[
qij

]
(i,j)∈S2

, and the initial probability vector ofX, π(0) = [πi(0)]i∈S , satisfy:

– The transition rate rij between two different states i and j of S is obtained by summing

rates over all the possible transitions i d j in MM , i.e.,
(
∀(i, j) ∈ S2, i , j

)
, qij =

∑{]
λ | i

λ
z{ j

[}
. When states i and j are identical, we have qii = −

∑
j∈S,j,i qij .

– The initial probability vector is null for every state but s, the initial state ofMM , for which
πs(0) is equal to 1. In other words, we have πs(0) = 1 and

(
∀j ∈ S, j , s

)
, πj (0) = 0.

Using Markovian transitions, every transition rate of a CTMC can be expressed. In a
Markovian chain, there is a Markovian transition between two states only if the corresponding
transition rate in the CTMC is non null. Notice that usingmultisets of Markovian transitions in
the definition of Markovian chains permits there to be several Markovian transitions between
two states, even with the same transition rate.

Example 2.8. The CTMC X modeling the FIFO queue of example 2.6 can be represented by another

Markovian chain, different fromMM (depicted in figure 2.6. For instance, the transition s0
δ2
d s1

ofMM can be replaced by two identical Markovian transitions s0
δ2/2
d s1, whilst characterizing the

same CTMC.

Because we are targeting performance results for a long run, we are not interested in the
transient behavior of an initialization phase in a CTMC. In other words, we want to take out
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behaviors linked to transient state as in the discrete-time case. For the study of long-run be-
haviors, it is sufficient to consider a fully connected subset of the state space, i.e., a subset of
recurrent states. Such a subset ensures that every state of the subset is reachable from every
other state of the subset by a sequence of transitions. A fully connected CTMC is called an
irreducible CTMC.

Definition 2.20 (Irreducible CTMC). A CTMC X defined over the state space S ⊆N is said to be
irreducible if:

(
∀i, i ′ ∈ S

) (
∃(j1, . . . , jn) ∈ S

n
)

rij1 > 0 ∧ rjni ′ > 0 ∧
(
∀k ∈ [1,n]

)
rjkjk+1 > 0

We can transpose the definition of irreducibility of a CTMC to a Markovian chain.

Definition 2.21 (Irreducible Markovian chain). A Markovian chainMM = 〈S, d , s〉 is said to be
irreducible if: (

∀i, i ′ ∈ S
)
,
(
∃(j1, . . . , jn) ∈ S

n
)
, i d j1 d · · · d jn d i ′

In the following, we limit our study of CTMCs to irreducible ones, although CTMCs are
not always irreducible in practice.

Lemma 2.2. For every CTMC X over the finite state space S ⊂N and defined by the transition rate

matrix Q =
[
qij

]
(i,j)∈S2

, there exists an irreducible CTMC X ′ over the state space S ′ ⊂N and defined

by the transition rate matrix Q′ =
[
q′ij

]
(i,j)∈S2

satisfying:

S ′ ⊆ S and q′ij = qij

The initial state of X ′ is chosen arbitrarily in S ′. We call such a CTMC X ′ , an irreducible CTMC
induced by X.

Proof. The proof in the continuous-time case follows the same lines than the proof in the
discrete-time case (cf. lemma 2.1).

Several irreducible CTMCs might be induced by one that is not irreducible, and we con-
sider, as for DTMCs, one of those possible induced irreducible CTMCs. The arbitrary choice
of the initial state of an induced CTMC is also justified by the fact that we target long-run
performance measures.

Example 2.9. The CTMC X characterized by the Markovian chain depicted in figure 2.6 is irredu-
cible.

2.1.4 Steady-State and Transient Probabilities

In most cases, analysis of Markov chains relies on the computation of state probabilities.
In other words, for a Markov chain {Xt} (in discrete or continuous time setting) defined over
a state space S , the study of the probability vector π(t) = [πi(t)]i∈S is of main interest. π(t) is
generally called transient probability vector (because it depends on time).

We are particularly interested in the limit behavior of the transient probability vector when
time tends to infinity (limt→∞π(t)). This limit exists only if an equilibrium is reached by the
Markov chain. When it exists, this limit is called steady-state probability vector and is written
π = [πi]i∈S .
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State Probabilities of Discrete-Time Markov Chains

Consider a homogeneous DTMC X = {Xn | n ∈N}, over the state space S = {0,1, . . .}, char-
acterized by the transition matrix P =

[
pij

]
(i,j)∈S2

and the initial probability vector π(0) =

[πi(0)]i∈S , satisfying
(
∃!k ∈ S

)
,πk(0) = 1.

Due to homogeneity, the probability vector at time n+1, π(n+1), is given by the product of
the probability vector at time n, π(n), by the transition matrix P, i.e.,

(
∀n ∈N

)
, π(n+1) = π(n)×P.

We can easily obtain a value of the probability vector at time n as a function of the initial
probability vector: the probability vector of a DTMC at time n is obtained by multiplying the
initial probability vector with the transition matrix to the power of n.

Definition 2.22 (Computation of transient probability vectors). Consider a homogeneous DTMC
X = {Xn | n ∈N} characterized by the transition matrix P and the initial probability vector π(0).
The transient probability vector at time n, π(n), is given by:

(
∀n ∈N

)
, π(n) = π(0)×Pn

To compute the steady-state probability vector π, we have to ensure the convergence of
the transient probability vector when time n tends to infinity. For a DTMC, the steady-state
probability vector exists if the DTMC is ergodic, which is also simply ensured if the DTMC is
irreducible and aperiodic.

The ergodicity property of a DTMC enables us to compute its steady-state probability vec-
tor π as the limit ofπ(n) with n tending to infinity. It satisfies the fixed point equation: π = π×P.
The computation of the steady-state probability vector is essentially the resolution of the a lin-
ear system π × (P − I ) = 0, where I is the identity matrix, and 0 the null vector. This system
does not necessarily have a single solution. The only solution we are interested in is a probab-
ilistic distribution over the state space. In other words, we require that the solution satisfies:∑
i∈S πi = 1. Notice that the steady state probability vector is independent from the initial

probability vector.

Definition 2.23 (Steady-state probability vector calculation). Consider an ergodic homogeneous
DTMC X characterized by the transition matrix P . The steady state probability vector, π, satisfies:

{
π × (P − I ) = 0∑
i∈S πi = 1

Unfortunately, computation of the steady-state probability vector of a DTMC force us to
assume the aperiodicity property, in addition to the irreducible property (still assumed as pre-
requisite for the DTMC being studied). We prefer not to limit our study to aperiodic DTMCs.

Example 2.10. The DTMC characterized by the probabilistic chain depicted in figure 2.7 is periodic.
Indeed, the number of transitions needed to return in each state s1 and s2 is a multiple of two. Its
transient state probabilities do not converge. Indeed,

πs0(n) =

{
1 if n is even
0 otherwise

and πs1(n) =

{
0 if n is even
1 otherwise

The transient probability of s0 or s1 alternates between 0 and 1 in time without converging.
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1

1
s0 s1

Figure 2.7: A simple periodic probabilistic chain

To avoid dealing with periodic considerations, we consider the long-run average vector
π̃ = [π̃i]i∈S of transient probabilities using the Cesáro limit construction.

Definition 2.24 (Cesáro limit). Given a sequence a = (ai )i∈N, the sequence of Cesáro averages
c = (cn)n∈N is defined by:

cn =
1
n

n∑

k=1

ak

If it exists, the Cesáro limit of the sequence a is the limit to infinity of the sequence of its Cesáro
averages cn.

For a time-homogeneous irreducible DTMC, the long-run average vector π̃, is ensured to
exist [Tij03] and is constructed as the Cesáro limit of the sequence of transient probability
vectors, (π(n))n∈N.

Definition 2.25 (DTMC long-run average vector). The long-run average vector π̃ = [π̃i]i∈S of a
DTMC is given by:

(
∀i ∈ S

)
, π̃i = lim

n→∞



1
n

n∑

k=0

πi(k)




When π(n) converges, its Cesáro limit π̃ is known to coincide with the limit of π(n) (i.e., the
steady state probability π). Informally, the long-run average vector corresponds to the average
fraction of time spent in each state. In the rest of the thesis, we are mainly interested in the
average fraction of time spent in each state. Consequently, when talking about the steady-state
probabilities of a DTMC, we refer to long-run averages and we will write π instead of π̃.

Considering long-run average vectors instead of steady-state probability vectors allows us
not to limit the study to ergodic DTMCs, but to all irreducible ones. It implies that the results
presented later can be theoretically applied to arbitrary irreducible DTMCs considering the
long-run averages. In practice, an aperiodic DTMC is preferable because of facilities concern-
ing the computation of steady state probabilities.

Example 2.11. Because the DTMC depicted in figure 2.7 is periodic, the transient state probabilities

do not converge. However, the Cesáro limit of the sequences
(
πs0(n)

)
n∈N

and
(
πs1(n)

)
n∈N

of transient

probabilities of s0 and s1 exists. Using [r] as notation for the floor function applied to an arbitrary
real number r, the n-th Cesáro averages of the transient probability sequences are given by:

π̃s0(n) =
1
n

∑n
i=0πs0(i) =

[ n2 ]
n −−−−−→

n→∞

1
2

π̃s1(n) =
1
n

∑n
i=0πs1(i) =

[ n+12 ]
n −−−−−→

n→∞

1
2

The Cesáro averages sequences converge to 1
2 that is the long run average fraction of time spent in s0

and s1, π̃s0 = π̃s1 =
1
2 .
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State Probabilities of Continuous-TimeMarkov Chains

Consider a homogeneous CTMC X = {Xt | t ∈R+}, over the state space S = {0,1, . . .}, char-
acterized by the transition rate matrix Q =

[
qij

]
(i,j)∈S2

and the initial probability vector π(0) =

[πi(0)]i∈S , satisfying
(
∃!k ∈ S

)
,πk(0) = 1. The transient probability vector of a CTMC satisfies a

differential equation function of the transition rate matrix Q.

Definition 2.26 (Computation of transient probability vectors). Consider a homogeneous CTMC
{Xt | t ∈R+} characterized by the transition rate matrix Q and the initial probability vector π(0).
The transient probability vector at time t, π(t), satisfies the differential equation:

dπ(t)
dt

= π(t)×Q with initial condition π(0) (1)

As for DTMCs, to compute the steady-state probability vector π, we have to ensure the
convergence of the transient probability vector when time t tends to infinity. This convergence
is ensured when a CTMC is ergodic, i.e., when it is irreducible.

We assumed previously that CTMCs studied are irreducible, thus ergodic. This assumption
ensures the existence of the steady-state probability vector. For the steady-state probability
vector, the equation (1) is satisfied too. Due to convergence we have time independence, and
the equation can be rewritten as:

0 = π ×Q

Hence, the computation of the steady-state probability vector boils down to the resolution
of a linear system of equations. As for DTMCs, the solution we are interested in is a probability
distribution over the state space satisfying this equation.

2.2 Annotated Markov Chains

2.2.1 Definitions

Markov chains are the starting point for performance evaluation. However, the compu-
tation of many complex measures requires extra-information, not present in a Markov chain.
Usually, a reward function R : S 7→ R, defined over the state space S of the Markov chain, is
used to associate a real value to each state [Her02]. We generalize this approach by associat-
ing to each state an annotation that is not necessarily a real value. To this aim, we define an
annotation function over the state space S of a Markov chain.

Definition 2.27 (Annotation function). Consider a set A of arbitrary objects, endowed with the
equality (=) and inequality (,) comparison operators. An Annotation function A : S 7→ A over a
state space S of a Markov chain is a function that associates to each state s ∈ S an element of the set
A.

Using an annotation function, annotations are integrated directly in a more general form-
alism than Markov chains: the annotated Markov chains (AMCs). We define annotated Markov
chains using their probabilistic chain or Markovian chain characterization.

Definition 2.28 (DTAMC). A Discrete-Time Annotated Markov Chain is a tuple 〈S, z{ , s,A 〉,
where:
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Figure 2.8: DTAMC corresponding to a 1-place FIFO queue DTMC model

– 〈S, z{ , s〉 is a probabilistic chain
– A is an annotation function defined over S

Definition 2.29 (CTAMC). A Continuous-Time Annotated Markov Chain is a tuple 〈S, d , s,A 〉,
where:

– 〈S, d , s〉 is a Markovian chain
– A is an annotation function defined over S

We can easily show that AMCs are more expressive than MCs. Indeed, every MC can be ex-
pressed as an AMC. Consider a setA = {∅} containing one single element∅. For aMarkov chain
M over a state space S , define the annotation function A : S 7→ A such that

(
∀s ∈ S

)
,A (s) = ∅.

The Markov chain M can be expressed as an AMC, considering the annotation function A .
Moreover, all states having the same annotation, there is no more information in the construc-
ted AMC than in the MC.

We illustrate the use of AMCs in the two following examples: the first one in discrete-time
setting and the second one in continuous-time setting.

Example 2.12. Consider the DTMC modeling the FIFO queue of example 2.1 and characterized
by the irreducible probabilistic chain depicted in figure 2.4. Call MP = 〈S, z{ , s7〉 this DTMC.
We construct a DTAMC MAP = 〈S, z{ , s7,A 〉 over MP with the annotation function A : S 7→
{True,False}3 ×N that associates to each state three booleans values pushRq, popRq, popRsp, and
an integer value size. pushRq is True if the initiation of an element insertion in the queue (push
request) occurs. popRq is True if the initiation of an element extraction from the queue (pop request)
occurs. popRsp is True, if the end of an element extraction from the queue (pop response) occurs.
size denotes the current size of the queue in the state. The DTAMCMAP is depicted in figure 2.8. On
this figure, each state is labeled with the current size of the queue and pushRq, popRq or popRsp if
those booleans are True.

Example 2.13. Consider the CTMC modeling the FIFO queue of example 2.6 and depicted by the
Markovian chain of figure 2.6. Consider the annotation function A : S 7→N that associates to each
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Figure 2.9: CTAMC corresponding to a 1-place FIFO queue CTMC model

state the current size of the queue. The corresponding CTAMC is depicted in figure 2.9. Each state is
labeled with the current size of the queue.

2.2.2 Performance Measures on Annotated Markov Chains

As underlined previously, state probabilities are only the starting point for performance
evaluation. Indeed, the information contained in state probabilities, despite its importance, is
difficult to exploit on largeMarkov chains. For instance, considering a onemillion stateMarkov
chain, what is the steady-state probability of a particular state? This information is useful
only if we can associate this state to a particular functional behavior of the modeled system.
Moreover a single functional behavior of the modeled system may correspond to several states
of the Markov chain model.

Example 2.14. Consider the CTMC model of the one-place queue of example 2.6 and depicted by the
Markovian chain of figure 2.6. For instance we are interested in the functional behavior of the queue
“The queue is empty”. An interesting measure is the average fraction of time the queue is empty. Just
as with the CTMC model, it is not possible to answer this question. Using information provided by
the CTAMC depicting the same example (figure 2.9), we can say that the queue is empty in states s0,
s1, s2 and s3 of the CTAMC model. This information allows us to answer the question: the average
fraction of time the queue is empty corresponds to the sum of steady-state probabilities of the states
s0 to s3.

Annotated Markov chains provide enough information to compute a wide class of per-
formance results. Indeed, we can associate any kind of functional information to states of a
Markov chain. We generalize the computation of complex performance results using reward
functions to the computation of complex performance results using AMCs. We define our own
reward function computed from annotations of an AMC (instead of defining rewards directly
on states). The advantage of the use of AMCs is that annotations can be used to group states as
illustrated in example 2.14.

Definition 2.30 (Reward function). Consider an AMC, defined over a state space S , and endowed
with the annotation function A : S 7→ A. A reward function, R is a function used to get a real value
from annotations associated with each state, i.e., R : A 7→ R.

Awide class of performancemeasures is then given by sum of states probabilities, weighted
by rewards associated to states, as underlined in [Her02]. We provide a definition of this kind
of measures for transient and for steady-state probabilities.
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Definition 2.31 (Time-dependent performance measures). Consider an AMC defined over a state
space S = {s1, . . . , sn}, having the annotation function A : S 7→ A and a reward function R : A 7→ R.
For each time instant t (either in continuous-time settings with a CTAMC or in discrete-time settings
with a DTAMC), the expression: ∑

si∈S

πsi (t)R(A (si))

defines a performance measure on the AMC at time t.

Definition 2.32 (Long-run performance measures). Consider an AMC defined over a state space
S = {s1, . . . , sn}, and having the annotation function A : S 7→ A, and a reward function R : A 7→ R.
The expression: ∑

si∈S

πsiR(A (si))

defines a performance measure on the AMC on the long-run.

Example 2.15. We can formalize the result given in example 2.14 using a reward function. The
annotation function of the CTAMC depicted in figure 2.9 is A : S 7→N. Let us consider the reward
function R : N 7→ {0,1} such that R(n) = 1 if n = 0, and R(n) = 0 otherwise. In other words, the
reward associated with each state is 1 only if the current size of the queue is 0. The average fraction
of time the queue is empty is given by:

∑

si∈{s1,...,s7}

πsiR(A (si))

2.2.3 Equivalences on Annotated Markov Chains

Equivalence relations for comparing Markov chains are important in practice. Moreover
they can be used to aggregate states of a Markov chain, finding the smallest equivalent Markov
chain. These aggregations have to preserve properties concerning the system behavior. The no-
tion of aggregation generally known as lumpability [Hil96] relies on the definition of a suitable
partitioning of the state space, which is ensured to remain a Markov chain. We prefer using
the definition of bisimulations introduced in [Her02] for probabilistic and Markovian chains,
because those bisimulations match with general definitions of lumpability avoiding the need
to define a suitable partition on state space. Moreover, bisimulations ensure that the aggrega-
tion still leads to a probabilistic or Markovian chain. We directly present those bisimulations
on annotated state Markov chains, adapting the reward preserving bisimulations presented in
[Her02] to AMCs.

Bisimulation of Discrete-Time Annotated Markov Chains

For every DTAMCMP = 〈S, z{ , s,A 〉, consider the cumulative probability function γP :
S × 2S 7→ [0,1] that cumulates the transition probabilities from a state s′ ∈ S to a set of states
S ⊆ S :

γP(s
′ ,S ) =

∑

s′′∈S

{]
p | s′

p
z{ s′′

[}
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Definition 2.33 (DTAMC probabilistic bisimulation). Given a DTAMC MP = 〈S, z{ , s,A 〉,
probabilistic bisimulation equivalence (∼

P
) is the coarsest equivalence relation on MP such that(

∀(s1, s2) ∈ S2
)
, s1 ∼P s2 implies that for each equivalence class C of ∼

P
,

γP(s1,C) = γP(s2,C)

A (s1) = A (s2)

Two DTAMCs are probabilistically bisimilar if their initial states are equivalent according
to the DTAMC probabilistic bisimulation (∼

P
).

Note that this bisimulation can be applied to a pure probabilistic chain, considering it as
a DTAMC, as seen in section 2.2.1 (each state receives the same annotation). On a pure prob-
abilistic chain, this bisimulation has an interesting property: the second condition (equality of
annotations) is always true. Only the first equation remains. But this equation implies that all
the states are equivalent. Indeed, for each state s′ ∈ S , outgoing transitions sum to 1 by defini-
tion, which implies γP(s′ ,S) = 1. It means that the probabilistic bisimulation is not interesting
for pure probabilistic chains: all probabilistic chains are equivalent.

In addition to comparing DTAMCs, the probabilistic bisimulation ∼
P
can be used to get

the smallest DTAMC (in terms of state space size) equivalent to another one. Getting the
smallest equivalent DTAMC consists in minimizing the state space of the model. This smallest
equivalent DTAMC is called the quotient.

Definition 2.34 (DTAMC quotient). Given a DTAMCMP = 〈S, z{ , s,A 〉, the quotient ofMP

is the DTAMCMP/∼P
defined over the state space S/∼P

satisfying:

– MP/∼
P
andMP are equivalent (MP /∼

P
∼
P
MP)

– for every DTAMCM′P , defined over the state space S ′, and equivalent toMP (and toMP/∼P
),

we have card(S/∼
P
) ≤ card(S ′)

We say that a DTAMC is minimal if its size is the same as the size of its quotient.

Example 2.16. The DTAMCMAP = 〈S, z{ , s7,A 〉 depicted in figure 2.8 is minimal.

Now consider the DTAMCMAP
′
= 〈S, z{ , s7,A

′〉 with an annotation function A ′ similar to

A , but limited to booleans popRq and popRsp (A ′ : S 7→ {True,False}2).MAP andMAP
′
only differ

in their annotation functions.

A representation of the DTAMC MAP
′
could be given by figure 2.8, ignoring size and pushRq

values in annotations. MAP
′
is not minimal any more. Sets {s24, s29}, {s23, s28} and {s25, s22} are

equivalent classes with respect to ∼
P
. The quotientMAP

′

/∼
P

ofMAP
′
is depicted in figure 2.10.

Bisimulation of Continuous-TimeAnnotated Markov Chains

For every CTAMC MM = 〈S, d , s,A 〉, consider the cumulative probability function γM :
S × 2S 7→R+ that accumulates the transition rates from a state s′ ∈ S to a set of states S ⊆ S :

γM(s′ ,S ) =
∑

s′′∈S

{]
λ | s′

λ
d s′′

[}
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Figure 2.10: Minimized DTAMC of a 1-place FIFO queue DTMC model

Definition 2.35 (Markovian bisimulation). Given a CTAMC MM = 〈S, d , s,A 〉, Markovian

bisimulation equivalence (∼
M
) is the coarsest equivalence relation on MM such that

(
∀(s1, s2) ∈

S2
)
, s1 ∼M s2 implies that for all equivalence class C of ∼

M
,

γM(s1,C) = γM(s2,C)

and A (s1) = A (s2)

Two CTAMCs are Markovian bisimilar if their initial states are equivalent according to the
CTAMC Markovian bisimulation (∼

P
).

Contrary to the discrete-time case, all states of a pure Markovian chain are not necessarily
equivalent. However the annotations avoid aggregating equivalent states in the Markovian
chain that do not have the same annotation.

As for DTAMCs, the Markovian bisimulation ∼
M
can be used to get the smallest CTAMC (in

terms of state space size) equivalent to an other. This smallest equivalent CTAMC is called the
quotient and we say that a CTAMC is minimal if it is of the size of its quotient.

Definition 2.36 (CTAMC quotient). Given a CTAMCMM = 〈S, d , s,A 〉, the quotient ofMM is
the DTAMCMM/∼

M
defined over the state space S/∼

M
satisfying:

– MM/∼
M

andMM are equivalent (MM/∼
M
∼
M
MM)

– for every DTAMCM′M , defined over the state space S ′, and equivalent toMM (and toMM/∼M
),

we have card(S/∼
M
) ≤ card(S ′)

Example 2.17. The CTAMC depicted in figure 2.9 is minimal. Moreover, if we do not consider the
annotations of this CTAMC (we just consider the pure CTMC depicted in figure 2.6), we have still a
minimal CTAMC (or CTMC). Now, consider that the rates are all equals, i.e., δ1 = δ2 = λ = µ. With
those settings, the CTAMC is no longer minimal. Its quotient is depicted in figure 2.11.
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Figure 2.11: Minimized Markovian chain of a 1-place FIFO queue DTMC model

2.3 Semi-Markov Chains

A semi-Markov chain (SMC) [Kul95, Cin75] is an extension of a Markov chain. In an SMC,
sojourn times in states are governed by general distributions, compared to exponentially dis-
tributed sojourn times in a CTMC and geometrically distributed sojourn times in a DTMC.
In this section, we introduce the principal concepts of SMCs that are used in the following
chapters. If transitions of SMC are labeled, they are also called labelled SMC, as in [LHK01].
Labeled SMC is the formalismwe adopt throughout this thesis, but we simply talk about SMC.

Definition 2.37 (Semi-Markov chain). An SMC is a tuple 〈S,A, �z{ ,D, s0〉 where:
– S is a non empty set of states
– A is a set of actions
– �z{ : S×A×]0,1]×S is a multiset of labeled probabilistic transitions such that for every state,

probabilities of outgoing transitions sum up to 1, i.e.,
(
∀s ∈ S

) ∑
s′ inS∧a∈A

{]
p | s

a
�

p
z{ s′

[}
=

1
– D : S ×A× ]0,1]× S 7→ (R+ 7→ ]0,1]) is a function that associates to each labeled probabilistic

transition a general probability distribution function
– s0 is the initial state

Intuitively, in a state s of an SMC, the choice of a successor of s is performed probabilistic-
ally according to the probabilistic distribution given by the set of probabilistic transitions that
can be taken by s. The sojourn time in s then follows the distribution associated to the chosen
transition. For every SMC, it is possible to associate a DTMC, abstracting from actions and
probability distribution functions associated to transitions. This DTMC is generally known as
the embedded DTMC of the SMC. A formal definition of SMCs and embedded DTMCs can be
found in [LHK01].

Definition 2.38 (Embedded DTMC of an SMC). Consider an SMC MS = 〈S,A, �z{ ,D, s0〉.
The embedded DTMC ofMS characterized by the probabilistic chainMP = 〈S, z{ , s0〉 satisfies:

(
∀(s, s′) ∈ S2

) (
∀a ∈ A

) (
∀p ∈ ]0,1]

) (
s
a
�

p
z{ s′

)
=⇒

(
s

p
z{ s′

)

In an SMC, as for Markov chains, we can study the average fraction of time π̃s spent in each
state s on the long run. According to [LHK01], the long-run average vector π̃ = [π̃s]s∈S can be
computed from the steady-state probability vector of the embedded DTMC of the SMC (recall
that when talking about the steady-state probability vector of a DTMC, we refer to its long-run
average vector of transient probabilities, cf. 2.1.4). To provide a definition to π̃, we first need
to introduce some notions.
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Consider an SMCMS = 〈S,A, �z{ ,D, s0〉. For every state s ∈ S , the probability distribu-
tion of the sojourn time in s, DSJ : S ×R+ 7→ [0,1], (i.e., the distribution of the time spent in s
before moving, each time s is reached) is defined by

(
∀s ∈ S

) (
∀t ∈R+

)
DSJ(s, t) =

∑

s′∈S

{]
p ×D(s,a,p, s′)(t) | s

a
�

p
z{ s′

[}

For convenience, we write D(s
a
�

p
z{ s′) instead of D(s,a,p, s′). To define π̃, we assume as

[LHK01] that the system will stay in each state with at least some non-zero probability, and
that the expected value E

[
DSJ(s, .)

]
of each sojourn time distribution is finite.

Definition 2.39 (long-run average of time spent in states of an SMC). Consider the SMCMS ,
MS = 〈S,A, �z{ ,D, s0〉, its embedded DTMCMP ,MP = 〈S, z{ , s0〉, and the steady state prob-
ability vector π = [πi]i∈S ofMP . For every state s ∈ S , the long-run average π̃s of time spent in s is
given by:

π̃s =
πs E

[
DSJ(s, .)

]

∑
s′∈S

(
πs′ E

[
DSJ(s′, .)

])

2.4 Phase-Type Distributions

In this section we introduce a subclass of Markov chains allowing to depict a wide range of
probability distributions.

Definition 2.40 (Discrete phase-type distribution). Consider a DTMC such that all states are
transient but one that is absorbing. The distribution of the time needed, from time 0, to reach an
absorbing state is a discrete phase-type distribution.

Definition 2.41 (Continuous phase-type distribution). Consider a CTMC such that all states are
transient but one that is absorbing. The distribution of the time needed, from time 0, to reach an
absorbing state is a continuous phase-type distribution.

Phase-type distributions present a very interesting property [Neu81]:
– The class of discrete phase-type distributions is dense in the field of all discrete-time

probability distributions
– The class of continuous phase-type distributions is dense in the field of all continuous-

time probability distributions
This property implies that any discrete-time (resp. continuous-time) probability distribution
can be fit arbitrary close by a phase-type distribution.

Example 2.18. The simplest discrete and continuous phase-type distributions are the geometric dis-
tribution and the exponential distribution. Those distributions are depicted in figure 2.12 with there
associated absorbing Markov chain.

2.5 Discussion

Markov chains are a simple formalism to depict systems with time information. Neverthe-
less, for a large system, the construction of the Markov chain model remains a tedious task,
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Figure 2.12: Exponential and geometric distributions are phase-type distributions

reserved to a small group of experts. In addition, a direct modeling of complex systems with
Markov chains is generally based on assumptions that have no formal justification. The ac-
curacy of models depends on the expertise of people in charge of the modeling. To construct
large Markov chains, a compositional approach relying on the assembly of smaller subcom-
ponents models of a manageable complexity, would increase our confidence in the accuracy of
the models.

When considering timed systems, one has to model time aspects like delays of the systems.
Phase-type distributions are an interesting application of Markov chains. Theoretically, they
can be used to approximate any kind of time distributions. Consequently, we should be able
to model any kind of timed model using Markov chains (in discrete settings or in continuous
settings).

Markov chains have been widely studied, and established performance analysis methods
exist. Those performance analysis methods rely on functional information associated to the
states of Markov chains. Functional information is in most cases directly taken into account
in the definition of Markov chains. For the sake of clarity, we preferred to distinguish Markov
chains fromMarkov chains with functional information, defining the annotatedMarkov chains.
We illustrated the use of AMCs by associating to each state a reward, constructed on annota-
tions. The notion of reward is one of the established approach to analyze Markov chains. In
the next section, we define a complex performance measure on DTMCs, the latency, that can
be seen as an application of the reward notion.



Chapter 3

Distribution of Latency in a DTMC

In the previous chapter, we saw that complex performance measures, based on state prob-
abilities of a Markov chain, are a suitable target for studying complex systems. In this chapter,
we formalize the notion of latency for DTMCs. It is a generalization of the latency defined
in [CHLS09]. We define latency as a random variable denoting the number of time steps re-
quired, from one set of states, to observe a given number of times states of another set. We
then provide solutions computing the long-run average of latency distributions. The latency
distribution can be classified in the measures computed as a weighted sum of steady-state
probabilities. We illustrate the study of two latencies in a FIFO queue.

3.1 Preliminaries

We introduce some notions concerningmeasure theory, inspired from [KNP07, Seg95]. The
following definitions, lemmas and their proofs can be found in books dealing with measure
theory as [Bog07, Bil95, Coh80, KSK76].

Definition 3.1 (σ-algebra). Consider an arbitrary non-empty set Ω and a family F of subsets ofΩ,
F ⊆ 2Ω . F is a field on Ω if:

– the set Ω is in F
– F is closed under complementation,

(
∀S ∈ F

)
Ω\S ∈ F

– F is closed under finite union,
(
∀S0, . . . ,Sn ∈ F

)
∪ni=0Si ∈ F

A field F is a σ-algebra if it is also closed under countable union,
(
∀{Si}i∈N Si ∈ F

)
∪i∈NSi ∈

F .

The elements of a σ-algebra are called measurable sets, and the pair (Ω,F ) is called a meas-
urable space. Considering an arbitrary non-empty setΩ and a family F of subsets ofω, F ⊆ 2Ω ,
there exists a unique smallest σ-algebra containing F . It is called the σ-algebra generated by
the family F and we write it ΣF .

Definition 3.2 (measure). Consider a measurable space (Ω,F ). A function µ : F 7→ [0,+∞[ is a
measure on (Ω,F ) if:

– µ is null for the empty set, µ (∅) = 0
– µ is positive for every set,

(
∀S ∈ F

)
µ (S ) ≥ 0

– For all countable families {Si}i∈I⊆N of pairwise disjoint sets inF , we have µ (∪i∈ISi) =
∑
i∈I µ (Si)

35
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If µ is a measure on the measurable space (Ω,F ), the tuple (Ω,F ,µ) is referred to as a
measure space.

Definition 3.3 (probability measure). Consider a measurable space (Ω,F ). A function µ : F 7→
[0,1] is a probability measure on (Ω,F ) if:

– µ is a measure on (Ω,F )
– µ is equal to one for Ω, µ (Ω) = 1

If µ is a probability measure on the measurable space (Ω,F ), the tuple (Ω,F ,µ) is referred
to as a probability space, where the set Ω is called the sample space, and the elements of F are
called events.

Definition 3.4 (semi-ring). Consider an arbitrary non-empty setΩ and a family F of subsets ofΩ,
F ⊆ 2Ω . F is a semi-ring if:

(1) the empty set ∅ is in F
(2) for all sets S1,S2 ∈ F , their intersection is in F , S1 ∩S2 ∈ F

(3) for all sets S1,S2 ∈ F with S2 ⊆ S1, the set S1\S2 is the union of finitely many disjoint
sets S ′1 , . . . ,S

′
k in F , S1\S2 = ∪

k
i=1S

′
i

Lemma 3.1 (Measure on the σ-algebra generated by a semi-ring). Consider a semi-ring F on an
arbitrary non-empty set Ω, and a function µ : F 7→ [0,+∞[ satisfying:

– µ (∅) = 0
– For all families {S1, . . . ,Sk} of pairwise disjoint sets in F , µ

(
∪ki=1Si

)
=

∑k
i=1µ (Si)

– For all countable families {Si}i∈I⊆N of pairwise disjoint sets in F , µ (∪i∈ISi) ≤
∑
i∈I µ (Si)

The function µ extends to a unique measure on the σ-algebra generated by F .

3.2 Latency Definition

Consider a homogeneous DTMC X = {Xn,n ∈N} defined over a state space S and initially
in a state s. X is characterized by the probabilistic chainMP = 〈S, z{ , s〉. We use Xs to denote
the DTMC characterized byMs

P = 〈S, z{ , s〉, i.e., the DTMCwhere the initial state is s instead
of s.

Recall that in the DTMC X, the transition probability psisj from a state si ∈ S to a state sj ∈ S
is obtained by summing over all the possible transitions si z{ sj inMP :

(
∀(si , sj ) ∈ S

2
)

psi sj =
∑{]

p | si
p
z{ sj

[}

An execution of the DTMC X is represented by a path inMP . A path σ = s0 s1 s2 · · · is a
non-empty sequence of states in S , satisfying:

(
∀i ≥ 0

)
si z{ si+1

A path σ = s0 s1 s2 · · · can either be finite or infinite and we let σ@i denote the ith state of the
path σ , i.e., σ@i = si . For a finite path, we write σq. last(σq) is the last state of σq and |σq| is the
length of σq. For instance, for a finite path σq = s0 s1 s2 s3 s4 we have last(σq) = s4 and |σq| = 4. The



Latency Definition 37

length of a finite path is not the number of states along the path, but the number of transitions.
A finite path σq of length n is a prefix of an infinite path σ if

(
∀i

)
(0 ≤ i ≤ n) σq@i = σ@i

Paths(s) and Pathsq(s) denote respectively the set of all infinite and finite paths starting in state
s of S .

Firstly, we define a probability associated with a finite path, by multiplying successive
transition probabilities along the path.

Definition 3.5 (Probability of a finite path). For every finite path σq ∈ Pathsq(s) of length n (|σq| = n)
we define the probability Ps {σq}:

Ps {σq} =



1 if n = 0∏

1≤i<n

pσ[i]σ[i+1] otherwise

Secondly, we define the cylinder set C(σq) ⊆ Paths(s) as the set of all infinite paths with
prefix σq.

Definition 3.6 (Cylinder set induced by a finite path). The cylinder set C(σq) ⊆ Paths(s) is defined
as:

C(σq) = {σ ∈ Paths(s) | σq is a prefix of σ}

We first prove that the set F of cylinder sets C(σq) where σq ranges over the finite paths
Pathsq(s) with the empty set ∅ form a semi-ring.

Lemma 3.2 (Cylinder sets form a semi-ring). The set F of cylinder sets and the empty set, F =
∅∪ {C(σq)}σq∈Pathsq(s) form a semi-ring over Paths(s).

Proof. Firstly, we prove that the intersection of two sets of F is in F (property (2) of defini-
tion 3.4). Consider two cylinder sets C1 and C2 in F . C1 and C2 are generated by two finite
paths σq1 and σq2. We can distinguish several possibilities:

– Consider that the two finite paths differ :
(
∃i ∈N i ≤ |σq1| ∧ i ≤ |σq2|

)
σq1@i , σq2@i

In this case, the intersection of the two cylinder sets is empty C1 ∩C2 = ∅ and is thus in
F , ∅ ∈ F .

– Or Consider that one of the finite paths is a prefix of the second one. We tackle the case
for which |σq1| ≤ |σq2|: (

∀i ∈N i ≤ |σq1|
)

σq1@i = σq2@i

We can deduce that C2 ⊆ C1 and consequently C1∩C2 = C2, which is also in F , C1∩C2 ∈

F .
Secondly, we prove that for two cylinder sets C1 and C2 with C2 ⊆ C1, C1\C2 is the union of

finitely many disjoint sets of F (property (3) of definition 3.4). if C1 = C2, we have C1\C2 = ∅

and the result is obvious. Now, consider that C2 ⊂ C1. We have |σq1| ≤ |σq2| and
(
∀i ∈N i < |σq1|

)
σq1@i = σq2@i.
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We can thus write that :

C1\C2 = {σ ∈ Paths(s) | σq1 is a prefix of σ and σq2 is not a prefix of σ}

=
{
σ ∈ Paths(s) | σq1 is a prefix of σ ∧

(
∃i ∈N |σq1| ≤ i < |σq2|

)
σ@i , σq2@i

}

=
|σq2 |⋃

i=|σq1|+1

{σ ∈ Paths(s) | σq1 is a prefix of σ ∧σ@i , σq2@i}

=
|σq2 |⋃

i=|σq1|+1

⋃


σq′

∣∣∣∣∣∣∣∣

∣∣∣σq′
∣∣∣ = |σq2 | ∧(

∀k ≤ |σq1 |
)
σq′@k = σq1@k

∧ σq′@i , σq2@i



{
σ ∈ Paths(s) | σq′ is a prefix of σ

}

The set {σ ∈ Paths(s) | σq′ is a prefix of σ} is a cylinder set and the union is finite because of the
finite state space of the DTMC.

Then we define a function Prs : F 7→ [0,1[ over the semi-ring F :

(
∀σq ∈ Pathsq(s)

) {
Prs {C(σq)} = Ps(σq)
Prs {∅} = 0

satisfying the following properties:
– For all families {C1, . . . ,Ck} of pairwise disjoint sets in F , Prs

(
∪ki=1Ci

)
=

∑k
i=1Pr

s (Ci).
– For all countable families {Ci}i∈I⊆N of pairwise disjoint sets inF , Prs (∪i∈ICi ) ≤

∑
i∈I Pr

s (Ci).
According to lemma 3.1, the function Prs is a probability measure on the σ-algebra gener-

ated by F . We call this σ-algebra ΣPaths(s).

Let us consider the σ-algebraΣPaths(s) defined from the initial state s, and the corresponding
probability measure Prs. On the basis of Prs, we can define various probability measures such
as the transient state probabilities in the DTMC.

Definition 3.7 (Transient state probabilities). The probability of being in state s at time n0 is given
by

πs(n0) = Prs {σ ∈ Paths(s) |σ@n0 = s }

To make the notion of latency precise, we identify two sets of states α ⊆ S and ω ⊆ S and
a function k : α 7→ N+, over the set of states α. The latency corresponds to the number of
time-steps required, from a state s ∈ α, to observe k(s)-times a state of ω, k(s) depending on the
state s ∈ α. k(s) denotes the number of observations of a state of ω defining the latency starting
in s. The latency L(α,ω,k) is a function over time and the paths starting in the initial state,
L(α,ω,k) : Paths(s) ×N 7→ N∪ ⊥, which associates the value of the latency in a path σ starting
at a given time n0. L(α,ω,k) (σ,n0) is undefined (⊥) if the state σ@n0 < α, i.e., if σ@n0 does not
correspond to a starting state for the latency.

Definition 3.8 (Latency at time n0 in a path). For every path σ starting in the initial state of the
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Figure 3.1: Markov chainMP illustrating the latency measure

Markov chain, σ ∈ Paths(s), we have:

L(α,ω,k) (σ,n0) =



⊥ if σ@n0 < α
n if s = σ@n0 ∈ α

and
(
∃S =

{
n′1,n

′
2,n
′
k(s)

}) (
0 ≤ n′1 < · · · < n

′
k(s) = n ∧

(
∀n′ ≤ n

)

(n′ ∈ S )⇐⇒ (σ@(n0 +n′) ∈ω)

)

∞ otherwise

The latency starting at time n0 of a path σ is potentially infinite if σ@n0 ∈ α and it is not
possible to observe k(s)-times a state of ω in the the path after time n0.

Example 3.1. Consider the DTMC MP of Fig. 3.1 and sets α = {s1, s3} and ω = {s0}. The values
k(s1) and k(s3) are defined such that k(s1) = k(s3) = 1, i.e., the considered latency corresponds to the
observation of the first occurrence of a state of ω, for every starting state of α.

We list some paths illustrating the latency value:
– Every path σ with prefix (s0 s1 s4 s0) satisfies L(α,ω,k) (σ,1) = 2 (σ@1 = s1 ∈ α, σ@(1 + 2) =
s0 ∈ ω and the state of the path between time 1 and time 3 (i.e., at time 2) is s4 <ω).

– Every path σ with prefix (s0 s1 s4 s0 s3 s2 s2 s2 s0) satisfies L(α,ω,k) (σ,4) = 4 (σ@4 = s3 ∈ α,
σ@(4+4) = s0 ∈ ω, and the states of the path between time 4 and time 8 are not in ω).

– Every path σ with prefix (s0 s3 s2 s2 s4) satisfies L(α,ω,k) (σ,2) =⊥ (σ@2 = s2 < α).

On the basis of the probability measure Prs, we define the probability distribution of the
latency at time n0, defined as following.

Definition 3.9 (Probability distribution of the latency at time n0).
(
∀n ∈N∪ ⊥

)
PrnL(α,ω,k)

(n0) = Prs
{
σ ∈ Paths(s)

∣∣∣L(α,ω,k) (σ,n0) = n
}

One may be interested in the value of PrnL(α,ω,k)(n0) when time n0 tends to infinity, i.e., the

steady state distribution of the latency. Unfortunately, the steady state distribution of the
latency may not exist. However, we can define a related measure representing a long-run
average of latency distributions.
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Let σ be a path randomly taken in Paths(s). We define the randomvariable 1[n]
(
L(α,ω,k) (σ,n0)

)

that indicates whether L(α,ω,k) (σ,n0) = n (in this case, it is equal to one) or not (in this case, it
is equal to zero):

(
∀n0 ∈N

) (
∀n ∈N∪ ⊥

) (
∀σ ∈ Paths(s)

)
1[n]

(
L(α,ω,k) (σ,n0)

)
=

{
1 if L(α,ω,k) (σ,n0) = n
0 otherwise

We can then define the random variableΦn,n0 , which totals the number of times the latency
was equal to n in σ before time n0 and normalized by n0. This random variable is defined as
follows:

Φn,n0 =
1
n0

n0∑

i=0

1[n]
(
L(α,ω,k) (σ,n0)

)

The expected value E
[
Φn,n0

]
of the random variable Φn,n0 corresponds to the average fraction

of time the latency is equal to n before time n0. The limit, when n0 tends to infinity, of this
expected value, defines the long-run average probability distribution of the latency

Definition 3.10 (Long-run average probability distribution of the latency). The long-run aver-

age fraction of time Pr
n
L(α,ω,k)

the latency is equal to n is given by

(
∀n ∈N∪ ⊥

)
Pr
n
L(α,ω,k)

= lim
n0→∞

E
[
Φn,n0

]
= lim
n0→∞

E



1
n0

n0∑

i=0

1[n]
(
L(α,ω,k) (σ,n0)

)



where σ ranges randomly over Paths(s).

The long-run average distribution of the latency is consequently given by the distribution
Pr
n
L(α,ω,k)

with n ∈N∪ ⊥.

Lemma 3.3.

(
∀n ∈N∪ ⊥

)
Pr
n
L(α,ω,k)

= lim
n0→∞

1
n0

n0∑

i=0

Prs
{
σ ∈ Paths(s) | L(α,ω,k) (σ,n0) = n

}

Proof. By direct computation of the expected value, we have for every value n ∈N∪ ⊥:

Pr
n
L(α,ω,k)

= lim
n0→∞

E



1
n0

n0∑

i=0

1[n]
(
L(α,ω,k) (σ,n0)

)



= lim
n0→∞

1
n0

n0∑

i=0

E
[
1[n]

(
L(α,ω,k) (σ,n0)

)]

= lim
n0→∞

1
n0

n0∑

i=0

(
1× Pr

{
1[n]

(
L(α,ω,k) (σ,n0)

)
= n

}
+0× Pr

{
1[n]

(
L(α,ω,k) (σ,n0)

)
, n

})

= lim
n0→∞

1
n0

n0∑

i=0

Pr
{
1[n]

(
L(α,ω,k) (σ,n0)

)
= n

}

= lim
n0→∞

1
n0

n0∑

i=0

PrnL(α,ω,k)(n0)

= lim
n0→∞

1
n0

n0∑

i=0

Prs
{
σ ∈ Paths(s) | L(α,ω,k) (σ,n0) = n

}
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3.3 Computation of the Latency Distribution

In this section, we provide an easily-computable expression of the long-run average distri-
bution of the latency.

Lemma 3.4. The probability distribution of the latency at time n0 satisfies:

(
∀n ∈N∪ ⊥

)
PrnL(α,ω,k)(n0) =



∑

s∈α

πs(n0)× Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}
if n ∈N

1−
∑

s∈α

πs(n0) if n =⊥

Proof. By direct calculus from definition 3.9. The case were the value n is equal to ⊥ is direct:
at time n0, the latency is undefined if the occupied state is not in the set α.

For a value n that differs from ⊥, we have:

PrnL(α,ω,k)(n0) = Prs
{
σ ∈ Paths(s) | L(α,ω,k) (σ,n0) = n

}

=
∑

s∈S

Prs
{
σ ∈ Paths(s) | σ@n0 = s ∧ L(α,ω,k) (σ,n0) = n

}

=
∑

s∈S

Prs {σ ∈ Paths(s) | σ@n0 = s} × Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

=
∑

s∈S

πs(n0)× Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

︸                                         ︷︷                                         ︸
0 if (σ@0)<α

=
∑

s∈α

πs(n0)× Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

Lemma 3.5. The long-run average probability distribution of the latency satisfies:

(
∀n ∈N∪ ⊥

)
Pr
n
L(α,ω,k)

=



∑

s∈α

πs × Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}
if n ∈N

1−
∑

s∈α

πs if n =⊥

Proof. By direct calculus from definition 3.3. The case were the value n is equal to⊥ is obvious.
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For a value n that differs from ⊥, we have:

Pr
n
L(α,ω,k)

= lim
n0→∞

1
n0

n0∑

i=0

PrnL(α,ω,k)(n0)

= lim
n0→∞

1
n0

n0∑

i=0



∑

s∈α

πs(n0)× Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

=
∑

s∈α

lim
n0→∞

1
n0

n0∑

i=0



πs(n0)× Pr

s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

︸                                         ︷︷                                         ︸
value independent from n0




=
∑

s∈α


 lim
n0→∞

1
n0

n0∑

i=0

πs(n0)




︸                    ︷︷                    ︸
long-run average state probability

×Prs
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

=
∑

s∈α

πs × Pr
s
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

Actually, we are interested in the long-run average probability distribution of the latency
when it is defined, i.e., when the latency differs from ⊥. Consequently, we normalize the dis-
tribution so as to keep only the values where the latency is defined.

Definition 3.11 (Normalized long-run average distribution of the latency). The normalized
long-run average distribution, P̃r, of the latency is defined by

(
∀n ∈N

)
P̃r
n
L(α,ω,k)

=
∑

s∈α

πs∑
s′∈απs′

× Prs
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}

We can see that the normalized long-run average distribution of the latency is a (normal-
ized) weighted sum of the steady-state probabilities. For each state s ∈ α, the weighting factor

Prs
{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}
,

which is time-independent, characterizes the probability that the latency, from the state s, is
equal to n. Additionally, we can say that, for a given state s ∈ α, the set of all weighting
factors where n ranges over N is also the distribution P̃r

n
L({s},ω,k)

of the latency starting in s. This
distribution can be computed considering the execution tree induced by the set of execution
paths

{
σ ∈ Paths(s) | L(α,ω,k) (σ,0) = n

}
n∈N

, for which the latency starting in s is defined.

Definition 3.12 (Execution tree induced by the set of execution paths for which the latency is
defined). For each state s ∈ α, the execution tree induced by the set of execution paths for which the
latency is defined is an absorbing Markov chainMP (s) starting in s. The absorbing Markov chain
MP (s) is constructed over the set of path S inMP , starting in s and such that the time dependent
latency at time 0 is defined:

S =
{
σ ∈ Paths(s) |

(
∃n ∈N

)
L(α,ω,k) (σ,0) = n

}
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Figure 3.2: Markov chainMP and extracted subchainsMP(s1) andMP(s3)

For each path σ ∈ S , the prefix σq of length |σq| = n of σ is also a finite path inMP(s), and σq@n is
an absorbing state ofMP(s).

For each state s ∈ α, the absorbing subchainMP(s) can be used to compute the distribution
P̃r
n
L({s},ω,k)

by transient analysis: the distribution of the time needed to reach an absorbing state

inMP (s) is equal to the distribution P̃r
n
L({s},ω,k)

.

The computation of the normalized long-run average distribution of the latency depending
only on steady-state and transient probabilities, the worst-case time complexity for computing
latencies is determined by the time complexity of algorithms used to compute steady state and
transient probabilities computations.

Example 3.2. We consider the DTMC MP and the studied latency of example 3.1 (MP is drawn
again in figure 3.2(a)). The parameters of the latency are: α = {s1, s3}, ω = {s0} and k(s1) = k(s3) = 1.

We can construct two absorbing subchains, MP(s1) and MP(s3), starting in s1 and s3, which

allow to compute the latency distributions starting in s1 and in s3, P̃r
n
L({s1},ω,k)

and P̃r
n
L({s3},ω,k)

.MP(s1)

andMP(s3) are depicted in figure 3.2(b), where the black-filled states are the absorbing states.

The latency distribution P̃r
n
L(α,ω,k)

is depicted in figure 3.3. The distributions P̃r
n
L({s1},ω,k)

and

P̃r
n
L({s3},ω,k)

, weighted by their respective (normalized) steady state probabilities,
πs1

πs1+πs3
and

πs3
πs1+πs3

,

are also depicted in figure 3.3.

3.4 Latency Distribution in Practice

We presented a way to compute the distribution of a latency in the previous sections. The
definition of a latency relies on the identification of two sets of states α and ω of the DTMC,
and a function k that associates to each state of α a positive integer value (k : α 7→N+). In the
previous section, we did not provide information on how those sets α and ω and this function
k are obtained. In this section, we illustrate the computation of latency distributions with a
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Figure 3.3: Latency distribution inMP

simple but significant example, and we present how α, ω, and k are fixed. To this aim, we
use the DTAMC formalism: it provides us with on one side a DTMC and on the other side
functional information allowing us to construct α, ω and k. We first recall that a latency is
defined as the number of time-steps required from a state s ∈ α to observe k(s)-times a state of
ω. In other words, an occurrence of latency starts in a state of s ∈ α, and ends when the k(s)-th
observation of a state of ω is processed.

The example chosen is the hardware FIFO queue presented in example 1.1 of chapter 1. The
parameters of the queue are set as in example 2.1 of chapter 2. As a reminder, those parameters
are:

– queue size QS is 1
– push operation delay DPUSH is 2 time steps
– pop operation delay DPOP is 1 time steps
– production delay DPROD is either 2 time steps with a probability 0.5 or 3 time steps with

a probability 0.5
– consumption delayDCONS is either 1 time step with a probability 0.5 or 4 time steps with

a probability 0.5
This example is modeled by the DTAMCMAP = 〈S, z{ , s7,A 〉 presented in example 2.12.

The annotation function associates to each state four pieces of information:
– a boolean pushRq that is True if the state corresponds to the initiation of an element

insertion in the queue (push request)
– a boolean popRq that is True if the state corresponds to the initiation of an element ex-

traction from the queue (pop request)
– a boolean popRsp that is True if the state corresponds to the end of an element extraction

from the queue (pop response),
– and an integer size that is the current size of the queue

The DTAMCMAP is depicted in figure 2.8.

On this system, We are focusing on two different latencies:
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Figure 3.4: Minimized DTAMC of a 1-place FIFO queue DTMC model

– the pop operation latency
– the end-to-end latency

We use the methodology presented in previous sections to compute the distribution of those
latencies. The end-to-end latency is an interestingnotion that has already been studied [LMdS08]
with other formalisms. In this chapter, we generalized the latency defined in [CHLS09] to be
able to support end-to-end latencies.

3.4.1 Pop Operation Latency

The pop operation latency in the queue corresponds to the time elapsed between the pop
request and the corresponding pop response. On the DTAMCmodelMAP , pop request and pop
response actions are respectively identified by popRq and popRsp booleans associated to each
state. This information defines the sets of states α and ω: α is the set of states where popRq is
True, and ω is the set of states where popRsp is True.

The FIFO queue model ensures a behavior with no reentrant pop operations: a pop request
will always be followed by a response before the next request. This information defines the
function k: whatever the starting state s ∈ α of the latency, the first occurrence of a state in ω
denotes the end of the latency, i.e.,

(
∀s ∈ α

)
,k(s) = 1.

We can see that the only information used in the annotation function ofMAP to construct
the sets α and ω and the function k are the booleans popRq and popRsp. We can thus consider
the DTAMCMAP

′
= 〈S, z{ , s7,A

′〉 presented in example 2.16, with annotation function A ′

limited to popRq and popRsp boolean values (A ′ : S 7→ {True,False}2). Because MAP
′
is not

minimal, we compute the pop operation latency distribution on its quotientMAP
′

/≈
depicted in

figure 2.10. The minimal DTAMCMAP
′

/≈
is drawn again in figure 3.4

The pop operation latency distribution, computed onMAP
′

/≈
is defined by:

– α = {s7, s9, s16, s19, s21, s23}
– ω = {s8, s15, s22}
– k : α 7→N+
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s → 1
The latency distribution of the pop operation for this system is depicted in figure 3.5. The

latency definition provided in article [CHLS09] would have been sufficient to process this ex-
ample.

3.4.2 Queue End-to-End Latency

The latency definition provided in article [CHLS09] is not sufficient when we consider
latencies where several occurrences may overlap (the start of an occurrence of the latency may
happen before the end of the previous one). This is typically the case of the end-to-end latency
we study in this section.

The end-to-end latency in the queue corresponds to the time needed for an element to
pass through the queue. More precisely, it is the time elapsed between the push request of
an element and the corresponding pop response (which withdraws the same element). On
the DTAMC model MAP , push request and pop response actions are respectively identified
by pushRq and popRsp booleans associated to each state. This information defines the sets of
states α and ω: α is the set of states where pushRq is True, and ω is the set of states where
popRsp is True.

According to the number of elements in the queue, the first encountered pop response after
a push request does not necessarily correspond to the withdrawal of the inserted element but
may correspond to the withdrawal of a previously inserted element. Indeed, when a push re-
quest is processed, all the elements already present in the queue have to be withdrawn before
the currently inserted one. This implies that there are a number of pop responses correspond-
ing to the number of elements in the queue, to withdraw present elements. Then, the next pop
response corresponds to the withdrawal of the element inserted. The function k depends con-
sequently on the number of elements present in the queue when the push request is processed.

We can see that the only information used in the annotation function ofMAP to construct the
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Figure 3.6: Minimized DTAMC of a 1-place FIFO queue DTMC model

sets α and ω and the function k are the booleans pushRq and popRsp and the integer size. We
can thus consider the DTAMCMAP

′′
= 〈S, z{ , s7,A

′′〉, with annotation function A ′′ limited
to pushRq and popRsp boolean values and size integer value (A ′′ : S 7→ {True,False}2 ×N).
MAP

′′
is consequently the DTAMC MAP depicted in figure 2.8, ignoring the popRq boolean

value. Looking at this figure, we can see that MAP
′′
is not minimal: {s3, s18, s21}, {s2, s13, s19},

{s1, s7} and {s9, s14} are equivalent classes with respect to ∼
P
. We compute the pop operation

latency distribution on its quotientMAP
′′

/≈
depicted in figure 3.6.

The end-to-end latency distribution of the queue, computed onMAP
′′

/≈
is defined by:

– α = {s4, s13, s22, s28}
– ω = {s8, s15, s22, s25}
– k : α 7→N+

s →

{
1 if s ∈ {s4, s13, s22}
2 if s = s28

The end-to-end latency distribution for this system is depicted in figure 3.7.

3.4.3 Discussion

In this chapter we have introduced the latency performance measure on DTMCs. We
provided a mathematical definition of the (long-run average) distribution of a latency and a
way to compute it. The computation of the distribution relies on the calculation of steady state
probabilities of the DTMC and transient analysis of extracted absorbing DTMCs. Actually,
computing the latency distribution relies on the construction of the discrete phase-type distri-
bution associated to the latency. We generalized the definition of a latency in a DTMC given in
[CHLS09], which enables us to take into account end-to-end latencies.

The definition of a latency is sufficiently generic to cover a large amount of performance
measures. Precisely, a latency may cover two of the three targeted performance measures we
presented in introduction: throughput and latency. A throughput measure is generally the
counterpart of a latency measure: it is the inverse of this latency measure. Hence, a throughput
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can be studied by using its associated latency. The latency in a system is directly linked to
the definition of latency we gave in a DTMC: it is the amount of time elapsed between two
particular time points that correspond to particular functional states of the system.

The definition of a latency in a DTMC relies on the identification of two sets of states. As
illustrated in the examples, those two sets are identified according to a functional information,
and annotatedMarkov chains are consequently a suitable formalism to associate functional in-
formation to states of a DTMC. As for every complex performance measure on Markov chains,
a latency relies on our ability to construct a significant annotatedMarkov chainmodel for every
kind of system.



Chapter 4

Interactive Markov Chains

As seen in chapters 2 and 3, Markov chains are an interesting formalism for performance
evaluation. A lot of measures may be computed, when associating some functional information
to states. Unfortunately, the Markov chain model of a large system is almost unachievable by
direct means. Interactive Markov Chains (IMC) [Her02] are an elegant framework that com-
bines LTS with CTMCs by strictly separating time and actions. The IMC formalism answers
almost all the requirements we mentioned in introduction: models allow to tackle both func-
tional verification and performance evaluation, they are constructed in a compositional way
and the time model is compatible with delay of the systems to be modeled.

In IMCs, the underlying performance model is a CTMC. Consequently, IMCs provide an
efficient way to construct accurate CTMCmodels of complex systems. IMCs could be an answer
for the construction of annotatedMarkov chains, which would permit performance evaluation,
as presented in chapter 2.

This chapter gives a short overview of the formalism of interactive Markov chains. We in-
vestigated how, using IMC models of complex hardware systems, performance measures could
be computed. For those systems, some approximations are needed. Consequently, we iden-
tified the need of evaluating the accuracy of performance measures computed on underlying
CTMCs of IMCs.

4.1 Interactive Markov Chains

4.1.1 Definition

Interactive Markov Chains are a stochastic extension of process algebra that strictly sep-
arates action-based transitions (also called interactive transitions) from time-based transitions
(called Markovian transitions) representing delay whose duration follows an exponential dis-
tribution. Let A denote the set of actions, including an internal action τ. We assume that ac-
tions are taken instantaneously (but may be differed in time), and that Markovian transitions
induce an exponentially distributed sojourn-time in states.

Definition 4.1 (Interactive Markov chain). An IMC is a tupleM = 〈S,A, −−→ , d , s0〉, where
– S is a nonempty set of states,
– A is a finite set of actions including the internal action τ,
– −−→ ⊂ S ×A× S is a set of interactive transitions,
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– d ⊂ S ×R+ × S→N is a multiset of Markovian transitions,
– and s0 ∈ S is the initial state.

M will denote the set of all IMCs over A.

For convenience, we write s1
a
−−→ s2 rather than (s1,a, s2) ∈ −−→ and we write s1

λ
d s2

rather than (s1,λ, s2) ∈d . In addition, s1 −−→ s2 means that there exists an action a ∈ A such

that s1
a
−−→ s2. Similarly, s1 d s2 means that there exists a rate λ ∈N+ such that s1

λ
d s2.

To allow the composition of IMCs in a hierarchical and modular manner, we consider the
language of IMCs, IMCL (noted IML in [Her02]). IMCL is defined by the following grammar. We
use λ,µ,ν, . . . to range over rates (i.e., over R+), a,a1, . . . to denote actions in A, and B,B1, . . . for
behaviors denoting an expression of the language.

Definition 4.2 (Language IMCL). Let A bet a set of actions not including τ, A ⊂ A \ {τ}. Behaviors
of the language IMCL are described by the grammar:

B ::= δ | a ;B | λ ;B | B1 [ ]B2 | B1 |[A]|B2 | hide A in B | B̃

We write B to denote the set of all possible behaviors B. The operators of the language will
be referred as:

– The termination symbol δ denotes a blocked behavior.
– The expression “a ;B” denotes a sequential composition and is an action-prefixed behavior.
– The expression “λ ;B” denotes also a sequential composition and is a delay-prefixed beha-

vior.
– The expression “B1 [ ]B2” denotes a nondeterministic choice between B1 and B2.
– The expression “B1 |[A]|B2” denotes a parallel composition with a synchronization set (in

Lotos-style [BB87]).
– The expression “hide A in B” denotes abstraction and is an hidden behavior.
– Finally a possibly recursive behavior is defined by a rule of the form B̃ = B.
The formal semantics of the language IMCL is defined in a structured operational semantics

style by mapping each behavior B onto an IMC.

Definition 4.3 (Semantics of IMCL behaviors). The operational semantics of a behavior B0 over the
set of actions A is defined as the IMCM = 〈B,A, −−→ , d ,B0〉, where −−→ and d are defined by
the inference rules of figure 4.1.

We define the same operators as operators of IMCL, with the same semantics for IMCs. For
instance, “M1 |[A]|M2” denotes the parallel composition of two IMCs M1 and M2 with syn-
chronization on actions of the set A ∈ A.

The intuitive meaning of the semantics of IMCL is the following:
– the blocked behavior δ cannot perform any action (including the internal τ action) and

cannot interact anymore with its environment.
– The action-prefix “a ;B” may perform the action a and then behaves like B (rule (1.a)).
– The delay-prefix “λ;B” will behave as B after a λ-exponentially distributed delay (rule (1.b)).
– The nondeterministic choice “B1 [ ]B2” depends on behaviors B1 and B2 (either they can

take a Markovian transition or they can take an interactive transition). We can distin-
guish four possibilities:

– Either behavior B1 can take an interactive transition,B1
a
−−→ B′1. In this case, “B1 [ ]B2”

can take a transition
a
−−→ and behaves like B′1 (rules (2.a)).
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a;B
a
−−→ B

(1.a)
λ;B

λ
d B

(1.b)

B1
a
−−→ B′1

B1[ ]B2
a
−−→ B′1

(2.a)

B1
λ
d B′1

B1[ ]B2
λ
d B′1 (2.b)

B2
a
−−→ B′2

B1[ ]B2
a
−−→ B′2

B2
λ
d B′2

B1[ ]B2
λ
d B′2

B1
a
−−→ B′1 a<A

B1|[A]|B2
a
−−→ B′1|[A]|B2

(3.a)

B1
λ
d B′1

B1|[A]|B2
λ
d B′1|[A]|B2

B2
λ
d B′2

B1|[A]|B2
λ
d B1|[A]|B

′
2

(3.b)
B2

a
−−→ B′2 a<A

B1|[A]|B2
a
−−→ B1|[A]|B

′
2

B1
a
−−→ B′1 B2

a
−−→ B′2 a∈A

B1|[A]|B2
a
−−→ B′1|[A]|B

′
2

B1
a
−−→ B′1 a<A

hide A in B1
a
−−→ hide A in B′1

(4.a)
B1

λ
d B′1

hide A in B1
λ
d hide A in B′1

(4.b)

B1
a
−−→ B′1 a∈A

hide A in B1
τ
−−→ hide A in B′1

B̃=B B
a
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a
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B̃=B B

λ
d B′
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λ
d B′

(5.b)

Figure 4.1: Operational semantics of IMCL
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– Or behavior B2 can take an interactive transition, B2
a′
−−→ B′2. In this case, “B1 [ ] B2”

can take a transition
a′
−−→ and behaves like B′2 (rules (2.a)).

– Or behavior B1 can take a Markovian transition B1
λ
d B′1. In this case “B1 [ ] B2” can

take a transition
λ
d and behaves like B′1 (rules (2.b)).

– Or behavior B2 can take a Markovian transition B2
µ
d B′2. In this case “B1 [ ] B2” can

take a transition
µ
d and behaves like B′2 (rules (2.b)).

– The behavior “B1 |[A]| B2” depends also on behaviors B1 and B2, and we can distinguish
five possibilities:

– Either behavior B1 can take an interactive transition, B1
a
−−→ B′1, with a < A. In this

case, “B1 |[A]|B2” can take a transition
a
−−→ and behaves like “B′1 |[A]|B2” (rules (3.a)).

– Or behavior B2 can take an interactive transition, B2
a′
−−→ B′2, with a < A. In this case,

“B1 |[A]|B2” can take a transition
a′
−−→ and behaves like “B1 |[A]|B

′
2” (rules (3.a)).

– Or behaviors B1 and B2 can take the same interactive transition, B1
a′′
−−→ B′1 and

B2
a′′
−−→ B′2, with a′′ ∈ A. In this case “B1 |[A]| B2” can take a transition

a′′
−−→ and

behaves like “B′1 |[A]|B
′
2” (rules (3.a)).

– Or behavior B1 can take a Markovian transition B1
λ
d B′1. In this case, “B1 |[A]|B2” can

take a transition
λ
d and behaves like “B′1 |[A]|B2” (rules (3.b)).

– Or behavior B2 can take a Markovian transition B2
µ
d B′2. In this case, “B1 |[A]|B2” can

take a transition
µ
d and behaves like “B1 |[A]|B

′
2” (rules (3.b)).

– The hidden behavior “hide A in B” behaves like B for which all actions of A are replaced
by τ (rules (4.a) and (4.b)).

– Finally the behavior B̃ = B behaves like B (rules (5.a) and (5.b)).
Notice that parallel composition is processed by interleaving of transitions (Markovian or

interactive transitions) without adjusting rates of Markovian transitions. It is allowed by the
memoryless property of the exponential distribution.

4.1.2 Properties of IMCs

We introduce several properties on IMCs. The first property deals with the competition
between a τ-transition and Markovian transitions in a state of an IMC.

Definition 4.4 (Maximal progress). An IMCM = 〈S,A, −−→ , d , s0〉 is said to be maximal pro-
gress cut if and only if

(
∀(s, s′) ∈ S2

)
s

τ
−−→ s′ =⇒

((
∄s′′ ∈ S

)
s d s′′

)

Given an IMC M , we call “maximal progress cut IMC of M”, written as M 6d�τ , the largest
maximal progress cut IMC contained inM .

The second property tackles the problem of competition between arbitrary interactive trans-
itions (including τ), and Markovian transitions in an IMC.
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Definition 4.5 (Urgency). An IMC M = 〈S,A, −−→ , d , s0〉 is said to be urgency cut if and only
if (

∀(s, s′) ∈ S2
) (
∀a ∈ A

)
s

a
−−→ s′ =⇒

((
∄s′′ ∈ S

)
s d s′′

)

We can notice that an urgency cut IMC is by definitionmaximal progress cut. Given an IMC
M , we call “urgency cut IMC ofM”, written asM 6d�A , the largest urgency cut IMC contained in
M .

Finally, we introduce a property linked to the number of interactive transitions that can be
taken in a finite time interval.

Definition 4.6 (Non-Zeno). An IMCM = 〈S,A, −−→ , d , s0〉 is said to be non-Zeno if and only if
it can perform only finitely many actions in a finite time interval. We ensure this property on IMCs
by bounding the number of possible actions taken in sequence (i.e., in a single time instant):

(
∀(s, s′) ∈ S2

) (
∃k ∈N

) (
∀n ∈N

) (
∀(s1, . . . , sn) ∈ S

n
)

s −−→ s1 −−→ ·· · −−→ sn −−→ s′ =⇒ (n ≤ k)

The non-Zenoness property expresses that in a finite time interval, it is not possible to take
an infinite number of interactive transitions. In particular, an IMC with loops of interactive
transitions is not non-Zeno. The non-Zeno property allows to find a value k corresponding to
the length of the longest sequence of interactive transitions in an IMC.

The definition of non-Zenoness property we gave is sometimes called implementability prop-
erty [NS91]: the existence of a bound on the number of actions is ensured for any chosen time
interval.

4.1.3 Markovian Strong and Branching Bisimulations

As seen for Markov chains in chapter 2, it is essential to have methods allowing to com-
pare different processes. Comparing processes requires the definition of equivalence relations
between processes. Bisimulations for IMCs, defined in [Her02], reflect the coexistence of inter-
active transitions and Markovian transitions. Bisimulations of IMCs rely on bisimulations for
labeled transition systems [vGW96, Mil90] and bisimulations for CTMCs (a generalization for
CTAMC was introduced in section 2.2.3).

The definition of bisimulations for IMCs are given considering an extension of the predicate
γM introduced for CTAMCs in section 2.2.3. Consider an IMC M = 〈S,A, −−→ , d , s0〉 ∈ M .
The predicate γM : S ×2S 7→ [0,1] computes the cumulative transition rates from a state to a set
of states, (

∀s ∈ S
) (
∀S ⊆ S

)
γM(s,S ) =

∑

s′∈S

{]
λ | s

λ
d s′

[}

In addition,a new predicate,γ0 for interactive transitions, is needed. The predicate γ0 :
S ×A× 2S 7→ {True,False} states if, from a given state, it is possible to reach a set of states with
a given action, i.e.,

(
∀s ∈ S

) (
∀a ∈ A

) (
∀S ⊆ S

)
γ0(s,a,S ) =


True if

(
∃s′ ∈ S

)
s

a
−−→ s′

False otherwise
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Finally, we introduce some notations. s
τ
−−→� is an abbreviation for ¬γ0(s,τ,S) and means

that s′ is not able to fire a τ-transition. M /E denotes the set of equivalence classes of M with
respect to relation E and [s]/E denotes the equivalence class with respect to E containing the
state s.

Using those notations, one can provide the definition of the strong Markovian bisimulation
that allows to compare IMCs. Intuitively, the strong Markovian bisimulation states that if two
processes are strongly bisimilar, they have to simulate each other (functionally) and that for
the overall transition rates of each process to the same equivalence class are equals.

Definition 4.7 (strongMarkovian bisimulation of IMC). Strong Markovian bisimulation equival-
ence (∼) is the coarsest equivalence relation onM such that s1 ∼ s2 implies for all actions a ∈ A and
all equivalence classes C of ∼ (C ∈M /∼):

(1) γ0(s1,a,C) =⇒ γ0(s2,a,C),

(2) s1
τ
−−→� =⇒

(
s2

τ
−−→� ∧ γM(s1,C) = γM(s2,C)

)
.

When comparing IMCs, one may want to abstract from internal computation, and thus
internal transitions τ. The branching bisimulation [HL98, vGW96] is a weaker notion of equi-
valence that permits to abstract from internal computation.

Definition 4.8 (IMC branching Markovian bisimulation). Branching Markovian bisimulation
equivalence (≈) is the coarsest equivalence relation on M such that s1 ≈ s2 implies for all action
a ∈ A and all equivalent class C of ≈ (C ∈M /≈):

(1) γ0(s1,a,C) =⇒ either (a = τ ∧ s2 ∈ C) or
(
∃s′2

) (
s2

τ∗
−−→ s′2 ∧ s1 ≈ s

′
2 ∧ γ0(s

′
2,a,C)

)

(2) s1
τ
−−→� =⇒

(
∃s′2

τ
−−→�

) (
s2

τ∗
−−→ s′2 ∧ s1 ≈ s

′
2 ∧ γM(s1,C) = γM(s′2,C)

)

Two IMCs M1 andM2 are said to be strong (resp. branching) Markovian bisimilar, if their
initial states are strong (resp. branching) Markovian bisimilar.

Lemma 4.1. If two IMCs are strong Markovian bisimilar, they are also branching Markovian bisim-
ilar: (

∀(M1,M2) ∈M
2
)

M1 ∼M2 =⇒M1 ≈M2

Proof. Consider two states s1 and s2 strongly Markovian bisimilar, s1 ∼ s2, and an equivalence
class C ∈M /∼. By definition, if γ0(s1,a,C) holds, then γ0(s2,a,C) holds. Taking s

′
2 = s2, condition

(1) of the branching Markovian bisimulation is verified.

On the same idea, if s1
τ
−−→� , then s2

τ
−−→� and γP(s2,C) = γP(s1,C). Taking s

′
2 = s2, condi-

tion (2) of the branching Markovian bisimulation is verified.

In addition to comparing IMCs, a bisimulation can be used to define the smallest IMC (in
terms of state space size) equivalent to another one. This smallest equivalent IMC is called
quotient. One may define a quotient according to the strong Markovian bisimulation ∼ and a
quotient according to the branching Markovian bisimulation ≈.

Definition 4.9 (IMC quotient). Given an IMCM = 〈S,A, −−→ , d , s0〉 and a bisimulation E , the
quotient ofM according to E is the IMCM/E = 〈S/E ,A, −−→ /E , d /E , [s0]/E 〉. M/E verifies:

– M/E andM are bisimilar (M/E E M)



Interactive Markov Chains 55

– for every IMC M ′, defined over the state space S ′, and bisimilar toM (and toM/E ), M
′ E M ,

we have card(S/E ) ≤ card(S ′)

We say that an IMC is minimal (with respect to a bisimulation E ) if its size is the same as
the size of its quotient.

In the previous section, we introduced maximal progress cut and urgency cut allowing to
define subclasses of IMCs. Themaximal progress cut present an interesting property according
to the bisimulations: maximal progress cut preserves the strong Markovian bisimulation.

Lemma 4.2. An IMCM and its maximal progress cut IMCM 6d�τ are strongly Markovian bisimilar:

(
∀M ∈M

)
M ∼M 6d�τ

Proof. The condition (2) of the strongMarkovian bisimulation is only defined for states that do
not allow to take a τ-transition. Because a maximal progress cut IMC M 6d�τ only differs from
M on states allowing to take a τ-transition, this property is ensured.

Contrary to the maximal progress, the urgency cut does not preserve bisimulations. Indeed
by cuttingMarkovian transitions that compete with interactive ones, the condition (2) of strong
and branching Markovian bisimulations are not ensured.

As corollary, lemma 4.2, together with lemma 4.1, implies that maximal progress cut pre-
serves the branching Markovian equivalence:

Lemma 4.3. An IMCM and its maximal progress cut IMCM 6d�τ are branching Markovian equival-
ent: (

∀M ∈M
)

M ≈M 6d�τ

Proof. Direct implication from lemma 4.2 and lemma 4.1.

Finally, we can deduce that the quotient of an IMCwith respect to the branchingMarkovian
bisimulation is also maximal progress cut.

Lemma 4.4. The quotientM/≈ of an IMCM is maximal progress cut:

(
∀M ∈M

) (
M/≈

)
6d�τ

Proof. By definition, for every IMC M , the state space of M 6d�τ is smaller or equal to the state

space ofM . In particular, given an IMCM , the state space of
(
M/≈

)
6d�τ

is smaller or equal to the

state space ofM/≈ .

The definition of a quotient (definition 4.9) ensures that for every IMCM ′ branchingMarkovian
bisimilar to M/≈ , the state space of M/≈ is smaller or equal to the state space of M ′. Because(
M/≈

)
6d�τ
≈M/≈ (lemma 4.3) we have that

(
M/≈

)
6d�τ

andM/≈ have the same state space: the quo-

tient is consequently maximal progress cut.
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4.1.4 Congruence Property of Markovian Branching Bisimulation

One may be interested in the preservation of the bisimulations with respect to the compos-
ition operators of IMCL. Indeed, it is interesting to know if applying a same operator (sequence,
composition, etc.) of IMCL on two equivalent IMCs yields two equivalent IMCs. This so-called
congruence property is of importance for the parallel composition of IMCs (|[· · · ]|). Indeed, the
state space explosion may mainly occur when composing processes in parallel. In this case, it
is interesting to reduce state space of processes before composing them.

Theorem 4.1 (Congruence with respect to |[· · · ]|). The branching Markovian bisimulation is a
congruence with respect to the parallel composition operator, i.e.,

(
∀ (M1,M2) ∈M

2
) (
∀M3 ∈M

) (
∀A ⊆ A\{τ}

)
M1 ≈M2 =⇒M1 |[A]|M3 ≈M2 |[A]|M3

The congruence property with respect to composition operators in IMCs authorizes to fol-
low a compositional approach: models can be minimized at intermediate composition to re-
duce the state space. It is a solution to circumvent the state space explosion problem.

4.2 Interactive Markov Chains in Practice

In this section, we briefly present a methodology that can be applied to model complex
systems using IMCs. Then, we investigate the accuracy of performance measures obtained
from IMCs, in particular when using IMCs to model constant delays.

4.2.1 Modeling and Analysis of Systems with Interactive Markov Chains

In this section, we focus on the methodology to be followed to model and analyze systems
using the IMC formalism.

Modeling a hardware system with IMCs consists in writing models with time informa-
tion expressed as exponentially distributed delays. Arbitrary continuous delay distributions
can be fit arbitrarily close by continuous phase-type distributions (characterized by absorbing
CTMC, see chapter 2), which provides us an interesting time model for IMCs, for which any
kind of delays can be taken into account. Consequently, the simplest solution to model sys-
tems with IMCs consists in introducing delays compositionally, in a constraint-oriented way:
delays, modeled by continuous phase-type distributions in separated processes, are seen as
time constraints and composed in parallel with the functional specification of the system to be
modeled.

The modeling of arbitrary delays by continuous phase-type distributions is at the heart of
the modeling methodology of IMCs. As a consequence, some details concerning the way to
model arbitrary delays are needed. We can first analyze the different kind of delays we want to
model. One can distinguish two types of delays:

– Definite delays. Those delays are known by designers and represent a characteristic of
the system. In hardware systems, they correspond to time characteristic of hardware
elements and they typically consist in a constant amount of time (counted in a number
of clock cycles).
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– Delay patterns. Those delays are not precisely known and are defined according to as-
sumptions concerning a timed behavior. One can distinguish two different use of this
kind of delays:
– Either they are out of control of designers and are independent of the system. For in-

stance, it is usual to suppose that the expected life time of a component is exponentially
distributed.

– Or they may be used to abstract from a real behavior that is not precisely known.
As an example, we will use delay patterns to model applications. Since application
behaviors depend on implementation (and may vary according to external influence),
we will use delay patterns to model them, assuming that the chosen pattern is a good
representation of a real behavior.

The approximation of an arbitrary delay by a continuous phase-type distribution can be
made as close as wanted from the distribution [Neu81]. In most cases, obtaining a better ap-
proximation of a delay consists in considering a phase-type distribution characterized by an
absorbing CTMC with a larger state space. Efficient tools [HT02] implement the phase-type
approximation of arbitrary distributions, the quality of the approximation being given by lim-
iting the state space of the resulting CTMC.

Hence the best phase-type approximation may be characterized by a CTMCwith an infinite
state space. Because we are targeting finite-state space models, one has to find a trade-off
between the accuracy of the phase-type approximation and the size of the state space of the
corresponding absorbing CTMC. We consequently distinguish two kind of phase-type models:

– Exact models. If the delay to be modeled still follows a continuous phase-type distribu-
tion (for instance an exponentially distributed delay), the model is exact in the sense that
there is no error between the model and the delay to be modeled.

– Approximated models. If the delay to be modeled does not follow a continuous phase-
type distribution, the model is approximated in the sense that we limit the state space
of the characterizing CTMC, inducing an error between the model and the delay to be
modeled.

Delays are consequently exactly or approximately modeled by continuous phase-type dis-
tributions and can be inserted in the functional model of the system. After inserting delays, we
obtain an IMC that can be analyzed to extract performance results. The analysis of an IMC re-
lies on an underlying model that is a Markov decision process (MDP), i.e., a CTMC presenting
nondeterminism. In most cases, and under some conditions (for instance, if there is no under-
specification in the model), the underlying model is simply a CTMC, which can be obtained
using properties like maximal progress, urgency cut, or applying branching minimization. A
description of the problem of nondeterminism and under-specification in IMCs can be found
in [Her02]. In the following, we consider that, from an IMC, we are able to generate a CTMC
to be analyzed.

4.2.2 Accuracy of CTMC Performance Analysis

The performance measures we target (latency, throughput and resource utilization) rely on
state probabilities of the underlying CTMC of an IMC (mainly steady state probabilities). Con-
sequently, the accuracy of those measures depends a lot on the accuracy of state probabilities.
In a first approach we can identify two sources of errors concerning the state probabilities.

Firstly, numerical computations may induce errors. This problem is mainly related to the



58 Interactive Markov Chains

implementation of the algorithms used to obtain state probabilities. We do not tackle the
problem of accuracy related to those errors since it is out of the scope of this thesis.

Secondly, phase-type approximations of arbitrary delay distributionsmay induce errors. To
avoid the state space explosion problem, if delays to be modeled do not follow a continuous
phase-type distribution, their approximated phase-type model must have a state space as small
as possible. A trade-off between the accuracy of the results (i.e., accuracy of state probabilities)
and the state space of the model has to be found. To reach this trade-off, a possible solution
is the study of a confidence interval on computed performance results, as a function of the
individual errors relative to each phase-type approximation.

Concerning errors due to phase-type approximations of arbitrary delay distributions, one
has to differentiate delay patterns from definite delays. For a delay pattern, we are not able to
evaluate the error between the phase-type model and the delay, because we do not know the
real delay to be modeled but just an assumed pattern. In this case, we do not consider that
the phase-type model induces an error on the computed results. The computed performance
results are thus given under the hypothesis that the phase-type model used is a reasonable
assumption, representative of the real timed behavior.

In the rest of this section, we illustrate the difficulty of computing a confidence interval for
performance measures computed from IMCs.

4.2.3 Bounding the Error on Performance Measures: Hardware Constant Delays
Example

Theoretically, it is possible to approximate every arbitrary distributed delay with an error
tending to zero. If the delay to be modeled does not follow a phase-type distribution, the state
space of the absorbing CTMC characterizing its phase-type model may tend to infinity when
the error tends to zero. We illustrate this fact by considering the phase-type approximation of
a constant delay.

Example 4.1. An Erlang distribution is a phase-type distribution characterized by two parameters
k and λ. It is a sequence of k successive exponential distributions (k phases) characterized by the
parameter λ. The cumulative distribution function and expected value of a random variable X,
following an Erlang distribution erl(k,λ), are

Fk,λ(x) = Pr {X ≤ x} = 1−
k−1∑

n=0

exp−λx(λx)n

n!
and E [X] =

k

λ

As all phase-type distributions, it is characterized by an absorbing CTMC

Q =




−λ λ 0 0

0
. . .

. . . 0
0 0 −λ λ
0 0 0 0



and π(0) =




1
0
...
0




Consider a constant delay. It is an important delay to model in hardware systems (hardware
operations take a constant amount of time). Erlang distributions are good candidates to approximate
constant delays. Consider the constant delay with duration D for which the cumulative distribution
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Figure 4.2: Different Erlang distributions with identical mean values

erl(1,1/D) (a)
erl(5,5/D) (b)

erl(20,20/D) (c)
erl(100,100/D) (d)

constant delay D (e)

D
0

0.2

0.4

0.6

0.8

1
Probability

Time

Figure 4.3: Approximation of a constant delay D by different Erlang distributions

is depicted by the solid line (e) in figure 4.3. The simplest approximation, adjusting its mean to D,
is the erl(1,1/D) distribution or exp(1/D) (figure 4.2(a) and line (a) in figure 4.3). When increasing
the number of phases, still keeping the overall mean to D (i.e., when the number of phases increases,
we decrease rates to keep the same overall mean value D, as illustrated in figure 4.2(c)), the Erlang
distribution is closer to the constant delay D as depicted in figure 4.3. Theoretically, the best approx-
imation of a constant delay is an Erlang distribution with an infinite number of phases (k→∞) and
λ tending to zero.

In practice, because we are dealing with models that have to present a finite state space,
the number of phases of the phase-type models must be limited. The limitation of phase-
type models is needed if we want to avoid the state-space explosion problem, when composing
models in parallel: the more parallelism there is, The more state-spaces of phase-type models
have to be reduced to avoid the state-space explosion. Indeed, when considering parallelism
for phase-type modeled delays, state spaces of modeled systems increase exponentially with
the number of phases of the approximations.
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Example 4.2. The state space of the IMC corresponding to the parallel composition of n k-phases
Erlang distributions has kn states.

Sincewe are not able to deal with infinite state space phase-type and infinite CTMCmodels,
a trade-off between the accuracy of the targeted performance measure and the model size has
to be found. This kind of trade-off is usual: measures are based on initial hypotheses (our
approximations), and, according to the final confidence interval on the measures, hypotheses
are adjusted to minimize the error. Unfortunately, a drawback of this methodology is that it
assumes the margin of error on the computed measure to be available.

The first task in the computation of a confidence interval on performance measures is the
approximation of the error between each real delay to be modeled and its phase-type approx-
imation. The distribution of this error gives us an information on how the model diverges from
the real delay.

Example 4.3. Consider an Erlang distribution erl(k,k/D), with cumulative distribution function
F(t), approximating a constant delay D, with cumulative distribution function C(t). We define the
error between the two distribution functions as the function e(t) = |C(t)− F(t)|. We are interested in
the cumulative distribution function E(t) of the error e(t). This example is depicted in figure 4.4.

The cumulative distribution function E(x) of the error is given by

E(x) = Pr {e(t) ≤ x} =

{
1 if x ≥ f (D)
Ep/Em(x) if x < f (D)

with Em the area under e(t) depicted as a filled area in figure 4.4 (formally the integral of e(t) between
0 and +∞), and Ep(x) the area under e(t) for t taking values between 0 and f −1(x) and between

1− f −1(x) and +∞ depicted by the hashed area in figure 4.4 for x = a.

For instance, with the knowledge of E(x), it is possible to adjust the number of phases of the
Erlang distribution to provide results like “the error between the constant delay D and the Erlang
approximation is less than D/10 with a probability 0.95”.

Then, knowing all the errors between definite delays and their respective phase type ap-
proximations, a new question arises: how do those errors combine with respect to the com-
puted steady state probabilities in the CTMC, and is it possible to get the margin of error on
the targeted performance measure? This question has no simple answer, errors due to approx-
imations may compensate each other, implying an exact result on steady state probabilities, or
they may cumulate, inducing an error on the steady state probabilities that is not obviously
linked to approximation errors. We illustrate this problem on the following example.

Example 4.4. We illustrate the problem of evaluation of the error on steady state probabilities of the
CTMC with respect to the errors of phase type approximations. Consider three different operations
O1, O2 and O3, characterized by execution times D1, D2 and D3, which are definite delays. We
focus on three different configurations, which are simple illustrations of typical behaviors allowed by
process algebras:

– Operations O1 and O2 are executed in sequence. At the end of the operation O2, the operation
O3 is processed. This configuration consists in executing the operation O3 after the sequence
of operations O1 and O2, i.e., after a delay equal to D1 +D2.

– OperationsO1 andO2 are started simultaneously. When the first operation ofO1 andO2 ends,
the operation O3 is processed. This configuration corresponds to parallelism of operations O1
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C(t): constant delay D
F(t): erl(k,k/D)

e(t): error |C(t)− F(t)|
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Figure 4.4: Approximation of a constant delay D by different Erlang distributions

and O2 with race condition: the first operation ending enables the start of O3. Consequently,
O3 is started after a delay equal to min(D1,D2).

– Operations O1 and O2 are started simultaneously. When both operations O1 and O2 are pro-
cessed, the operation O3 is processed. This configuration corresponds to the parallelism of
operations O1 and O2 with synchronization point at the end of the operations, enabling the
execution of operation O3. Consequently, O3 is started after a delay equal to max(D1,D2).

In the three configurations, at the end of the operation O3, the system loops. We consider that
delays D1, D2 are constants, D1 = 4 time units and D2 = 3 time units, and that delay D3 is exponen-
tially distributed, on average equal to 2 time units. We study the long-run average fraction of time,
ΠO3

, spent to process O3.

Because those configurations are simple, one can first compute the exact solution of the problem.
For instance, semi-Markov chain formalism [LHK01] can be used to compute exact results:

– first configuration: ΠO3
= D3
D1+D2+D3

= 2
9

– second configuration: ΠO3
= D3

min(D1,D2)+D3
= 2

5

– third configuration: ΠO3
= D3

max(D1,D2)+D3
= 1

3
Secondly, one can compare the exact results with approximated results obtained using phase-type

approximations of delays. The constant delays D1, D2 are approximated by Erlang distributions D̃1,
D̃2:

– D̃1 is an Erlang distribution given by parameters (n1,λ), with λ = n1
D1

– D̃2 is an Erlang distribution given by parameters (n2,µ), with µ =
n2
D2

.
For each configuration, one can study the long-run average fraction of time ΠO3

to process op-
eration O3, with respect to the quality of Erlang approximations (i.e., the number of phases used)
of delays D1 and D2. Actually, for those configurations, the error on the long-run average fraction
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of time spent in each state is directly linked to the errors between the expected value of sequence,
minimum and maximum of Erlang distributions, with respect to the values of sequence, minimum
and maximum of the real delays Erlang distributions have to model.

For the time duration of the sequence of operations O1 and O2, the considered model relies on the
sequence of the Erlang distributions D̃1 and D̃2. Whatever is the length of the Erlang distributions
D̃1 and D̃2 (i.e., for every values n1 and n2), the expected value of D̃1 + D̃2 is equal to D1 +D2:

E
[
D̃1 + D̃2

]
= E

[
D̃1

]
+E

[
D̃2

]
=D1 +D2

In this case, on average, there is no error induced by the Erlang approximations. Consequently,
there is no error on ΠO3

between the real system and the model with Erlang approximations.

For the time duration of the minimum of operations O1 and O2, the absorbing CTMC character-
izing the minimum of the Erlang distributions D̃1 and D̃2 is depicted in figure 4.5. We can study the
expected value of the minimum of D̃1 and D̃2 according to the number of phases n1 and n2. We depict
this minimum for n1 and n2 ranging between 1 and 30 in figure 4.6. Notice that the expected value
of the minimum returned by the model is always under-approximated (equal to 1.71 time units in the
case of using two exponential distributions to approximate delays D1 and D2, against a real value of
3). The long-run average fraction of time spent to process O3 is consequently always over-evaluated.

For the time duration of the maximum of operations O1 and O2, the absorbing CTMC character-
izing the maximum of the Erlang distributions D̃1 and D̃2 is depicted in figure 4.7. We can study the
expected value of the maximum of D̃1 and D̃2 according to the number of phases n1 and n2. We depict
this maximum for n1 and n2 ranging between 1 and 30 in figure 4.8. Notice that the expected value
of the maximum returned by the model is always over-approximated (equal to 5.29 time units in the
case of using two exponential distributions to approximate delays D1 and D2, against a real value of
4). The long-run average fraction of time spent to process 03 is consequently always under-evaluated.

Moreover, considering a different value for D3 has an impact on the long-run average time spent
to process O3. Indeed, the relative weight of operation O3 on the time execution of the system is
modified.

The previous example illustrates that, errors due to phase-type approximations may be
counterbalanced or may induce an error on the steady-state probabilities of the system. Even
considering very simple systems, it seems to be intractable to predicate how phase-type ap-
proximation errors of definite delays combine, with respect to the targeted performance meas-
ures.

4.3 Discussion

In this chapter, we presented interactive Markov chains, a formalism that can theoretically
provide an answer to almost all problems concerning performance evaluation of hardware
systems. Indeed, IMCs can be used to compositionally model complex hardware systems with
a great precision and to generate CTMCs that would be unachievable by direct means.

Theoretically, IMCs authorizes to model any kind of timed system with an arbitrary accur-
acy. Nevertheless, for some delays to be modeled, the counterpart of an arbitrary accuracy is
that infinite or very large state-space models are required. This is mainly the case for constant
delays widely present in hardware systems. This is not compatible with our aim of exploring
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of the entire state-space of models. A trade-off between the state space of models and their
accuracy has to be reached.

As a consequence, approximations of delays are mandatory to limit the size of the state
space and to process a numerical analysis of models. Approximations deliberately introduce
errors in a model. Thus, to trust performance results computed on IMCs, an evaluation of
the impact of introduced errors on computed performance results is required. However, we
are not aware of a way to evaluate the impact of approximation errors on the performance
results. Actually, we showed that depending on the interaction of the models we compose,
approximation errors may be additive or destructive.

Another approach would be to use another formalism, which would allow to model delays
precisely and thus avoid to introduce approximation errors. We present such a model in the
next chapter by switching to a discrete-time context, adequate for modeling constant delays of
hardware systems.
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Chapter 5

Interactive Probabilistic Chains

This chapter introduces the formalism of Interactive Probabilistic Chains (IPC), which
combines labeled transition systems and discrete-time Markov chains, transposing interactive
Markov chains [Her02] in a discrete-time context. Although IMCs and IPCs share similarities,
mainly in the way they provide compositionality to scale to models of large systems, the dif-
ferent nature of time between IMCs and IPCs (continuous versus discrete) implies significant
differences in their construction and analysis. The IPC formalism aims at avoiding errors due
to approximation of constant delays (as in IMCs), whilst preserving its strong points: hierarch-
ical composition and abstraction abilities that are mandatory for an industrial use.

In a first section, we define the IPC formalism. Then, we define a way to associate a DTAMC
and an SMC to an IPC so as to allow performance evaluation. In a third section, we illustrate
the use of the IPC formalism on two examples. We show how the associated DTAMC is con-
structed in practice, to ensure the applicability of performance evaluation methods presented
in previous chapters (such as latency distribution computation). Finally, we study the relation
between IMC and IPC formalisms.

5.1 Interactive Probabilistic Chains

In this section we present the syntax and operational semantics of IPCs. We introduce
several properties, used in the next sections, which define subclasses of IPCs. We also discuss
strong and branching bisimulations of IPCs, allowing to compare and minimize them.

5.1.1 Definition

An IPC has to be expressive enough to depict timed probabilistic transitions and interact-
ive transitions. Timed probabilistic transitions (simply called probabilistic transitions) refer to
DTMC transitions considering each probabilistic transition as a time step. Interactive trans-
itions refer to transitions of labeled transition systems and are based on atomic actions. Let
A denote the set of actions, including an internal action τ. We assume that actions are taken
instantaneously (but may be differed in time), and that every probabilistic choice takes exactly
one time step.

Definition 5.1 (Interactive probabilistic chain). An IPC is a tuple P = 〈S,A, −−→ , z{ , s0〉,
where

67
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– S is a nonempty set of states,
– A is a finite set of actions including the internal action τ,
– −−→ ⊂ S ×A× S is a set of interactive transitions,
– z{ ⊂ S × ]0,1]× S→N is a multi-set of probabilistic transitions, satisfying:

(
∀s ∈ S

) ((
∃s′ ∈ S

) (
∃p ∈ ]0,1]

)
s

p
z{ s′

)
=⇒

∑

s′

{]
p | s

p
z{ s′

[}
= 1

– and s0 ∈ S is the initial state.
P will denote the set of all IPCs over A.

For convenience, we write s1
a
−−→ s2 rather than (s1,a, s2) ∈ −−→ and s1

p
z{ s2 rather

than (s1,p, s2) ∈ z{ . In addition, s1 −−→ s2 means that there exists an action a ∈ A such

that s1
a
−−→ s2. Similarly, s1 z{ s2 means that there exists a probability p ∈ ]0,1] such that

s1
p
z{ s2.

To allow the use of IPCs in a hierarchical and modular manner, we have to discuss how to
compose IPCs. In this aim, we introduce the language IPCL, expressive enough to depict any
IPC. We use p,p1, . . . to range over probabilities (i.e., over ]0,1]), a,a1, . . . to denote actions in A,
and B,B1, . . . for behaviors denoting an expression of the language.

Definition 5.2 (Language IPCL). Behaviors of the language IPCL are described by the grammar:

B ::= δ | a ;B | •
∑
ipi :: Bi | B1 [ ]B2 | B1 |[A]|B2 | hide A in B | B̃

where A is a set of actions not including τ, A ⊂ A\ {τ}.

We write B to denote the set of all possible behaviors B. The operators of the language will
be referred to as:

– The termination symbol δ denotes a blocked behavior.
– Action-prefix “a ;B” denotes the sequential composition of the action a and the behavior B.
– The expression “ •

∑
ipi :: Bi” denotes a probabilistic choice. It verifies the constraint

∑
i pi =

1, ensuring that the probabilistic choice is well-defined.
– The expression “B1 [ ]B2” denotes a nondeterministic choice between B1 and B2.
– The expression “B1 |[A]| B2” denotes the parallel composition with synchronization set A

(in Lotos-style [BB87]).
– The expression “hide A in B” denotes abstraction and is an hidden behavior.
– Finally, B̃ denotes a call to the process B̃.
Processes B̃ can be defined as B̃ = B, requiring recursion to be guarded, as in [BFP01]. The

semantics of the language IPCL is defined in a structured operational semantics style [JAB01]
by mapping each behavior B onto an IPC.

Definition 5.3 (Semantics of IPCL behaviors). The operational semantics of a behavior B0 over the
set of actions A is defined as the IPC P = 〈B,A, −−→ , z{ ,B0〉, where −−→ and z{ are defined
by the inference rules of figure 5.1.

Because each term of IPCL can be mapped on an IPC, we define the same operators as oper-
ators of IPCL, with the same semantics for IPCs. For instance, “P1 |[A]| P2” denotes the parallel
synchronization of two IPCs P1 and P2 with synchronization on actions of the set A ∈ A.
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δ
1
z{ δ

(1)

•
∑
ipi ::Bi

pi
z{ Bi

(2)

a;B
a
−−→ B

(3.a)
a;B

1
z{ a;B

(3.b)

B1
a
−−→ B′1

B1[ ]B2
a
−−→ B′1

B2
a
−−→ B′2

B1[ ]B2
a
−−→ B′2

(4.a)
B1

p1
z{ B′1 B2

p2
z{ B′2

B1[ ]B2
p1 p2
z{ B′1[ ]B

′
2

(4.b)

B1
a
−−→ B′1 a<A

B1|[A]|B2
a
−−→ B′1|[A]|B2

B2
a
−−→ B′2 a<A

B1|[A]|B2
a
−−→ B1|[A]|B

′
2

B1
a
−−→ B′1 B2

a
−−→ B′2 a∈A

B1|[A]|B2
a
−−→ B′1|[A]|B

′
2

(5.a)
B1

p1
z{ B′1 B2

p2
z{ B′2

B1|[A]|B2
p1 p2
z{ B′1|[A]|B

′
2

(5.b)

B1
a
−−→ B′1 a<A

hide A in B1
a
−−→ hide A in B′1

B1
a
−−→ B′1 a∈A

hide A in B1
τ
−−→ hide A in B′1

(6.a)
B1

p
z{ B′1

hide A in B1
p
z{ hide A in B′1

(6.b)

B̃=B B
a
−−→ B′

B̃
a
−−→ B′

(7.a)
B̃=B B

p
z{ B′

B̃
p
z{ B′

(7.b)

Figure 5.1: Operational semantics of IPCL
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The rules presented in figure 5.1 are separated in two classes. The rules on the left (inter-
active rules) are inspired by Lotos semantics and involve interactive transitions. The rules on
the right (probabilistic rules) handle the probabilistic time extension. The intuitive meaning
of this IPCL semantics is the following:

– The blocked behavior δ cannot perform any action (including the internal τ action) and
cannot interact anymore with its environment. There are consequently no interactive
rules on the left for δ. However it does not prevent time from progressing (rule (1)).

– The action-prefix “a ;B” may perform the action a and then behaves like B (rule (3.a)), or
it can let time progress (rule (3.b)).

– The probabilistic choice behavior “ •
∑
ipi :: Bi” behaves, after one time step, like one of

the Bi ; the chosen Bi is selected according to the probabilistic distribution over the Bi
(rule (2)).

– The nondeterministic choice “B1 [ ]B2” depends on behaviors B1 and B2 (either they can
take a probabilistic transition or they can take an interactive transition). We can distin-
guish three possibilities:

– Either behavior B1 can take an interactive transition,B1
a
−−→ B′1. In this case, “B1 [ ]B2”

can take a transition
a
−−→ and behaves like B′1 (rules (4.a)).

– Or behavior B2 can take an interactive transition, B2
a′
−−→ B′2. In this case, “B1 [ ] B2”

can take a transition
a′
−−→ and behaves like B′2 (rules (4.a)).

– Or behaviorsB1 and B2 can both take a probabilistic transition,B1
p1
z{ B′1 and B2

p2
z{

B′2. In this case, the nondeterministic choice is not resolved by time progression, i.e.,
“B1 [ ] B2” can behave, after one time step, like “B′1 [ ] B

′
2” with a probability p1 p2

(rules (4.b)).
– The behavior “B1 |[A]| B2” depends also on behaviors B1 and B2, and we can distinguish

four possibilities:

– Either behavior B1 can take an interactive transition, B1
a
−−→ B′1, with a < A. In this

case, “B1 |[A]|B2” can take a transition
a
−−→ and behaves like “B′1 |[A]|B2” (rules (5.a)).

– Or behavior B2 can take an interactive transition, B2
a′
−−→ B′2, with a′ < A. In this case,

“B1 |[A]|B2” can take a transition
a′
−−→ and behaves like “B1 |[A]|B

′
2” (rules (5.a)).

– Or behaviors B1 and B2 can both take an interactive transition, B1
a
−−→ B′1 and B2

a′
−−→

B′2, with a = a′ and a ∈ A. In this case, “B1 |[A]| B2” can take a transition
a
−−→ and

behaves like “B′1 |[A]|B
′
2” (rules (5.a)).

– Or B1 and B2 can both take a probabilistic transition, B1
p1
z{ B′1 and B2

p2
z{ B′2. In

this case, “B1|[A]|B2” can behave, after one time step, like “B′1|[A]|B
′
2” with a probability

p1p2 (rule (5.b)).
– The hidden behavior “hide A in B” behaves like B for which all actions of A are replaced

by τ (rules (6.a) and (6.b)).
– Finally the behavior B̃ = B behaves like B (rules (7.a) and (7.b)).
Concerning the probabilistic rules, it is important to notice that time progresses synchron-

ously. Indeed rules concerning nondeterministic choice (4.b) and parallel composition (5.b) of
behaviors allowing to fire probabilistic transitions have their time progressing synchronously
(for these binary operators, if a behavior takes a probabilistic transition, which takes one time
step, the other behavior has to take synchronously a probabilistic transition).
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Figure 5.2: Synchronous time evolution for nondeterminism and parallel composition of prob-
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Figure 5.3: The time spent in each state of an IPC follows a geometric distribution

Example 5.1. Consider the behaviors “B0 = •
∑
1 :: a0 ; δ” and “B1 = •

∑
(
1− p :: a1 ; δ
p :: a2 ; δ

)
”. When com-

posing B0 and B1 (nondeterministic choice or parallel composition), time progresses synchronously
as illustrated in figure 5.2. We can see that for B0 and B1, a time step has to elapse first. When
composing them, we have this time step first, corresponding to the time progressing synchronously in
the two processes: it is not possible for one of the processes to evolve alone in time.

Despite time progressing synchronously, the sojourn time in each state of an IPC (i.e., the
time spent in each state) follows a geometric distribution that present thememoryless property,
as depicted in figure 5.3. If there is no probabilistic loop on a state s, the time spent in s
is always equal to one, which is a limit behavior of the geometric distribution depicted in
figure 5.3 with p = 0.

The distribution of the sojourn time in a state following a geometric distribution, each state
present the memoryless property: whatever the time already spent in the state, the remaining
sojourn time always follows the same geometric distribution.

Another important property is expressed by rules (1) and (3.b): a process can let time pro-
gress at any time. In particular, this property is important if the process is blocked (either
because it is terminated or because it waits for synchronization that are currently not enabled).
Indeed, although it is functionally blocked, it does not prevent other processes to advance in
time. This property, called the arbitrary waiting is inspired by SOS rules of Hansson calculus
[Han91, Han94]. In figures representing IPCs, we do not depict probabilistic transitions ex-
pressing the arbitrary waiting (i.e., loops with a probability one on states allowing to take only
interactive transitions), but rather consider that those loops are implicit, saying that interactive
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Figure 5.4: Illustration of the arbitrary waiting properties

transitions may be delayed.

Example 5.2. Consider the behaviors “B2 = a1 ; •
∑
1 :: a2 ; δ” and “B3 = •

∑
1 :: a1 ; δ”. The parallel

composition of B2 and B3 with synchronization on a1 (“B2|[a1]|B3”) is depicted in figure 5.4. Without
the arbitrary waiting property (rule (3.b)), “B2 |[a1]| B3” would be equivalent to δ: B2 would be
immediately blocked waiting for synchronization on a1, preventing time from progressing in B3.
In the same way, after synchronization on a1, without the arbitrary waiting property (rule (1)),
“B2 |[a1]| B3” would be equivalent to B3, - hindering B2 to go on evolving in time, because B3 is
blocked (δ).

Finally notice that rule (4.b) expresses that, when time progresses, a nondeterministic choice
between two states is not resolved but is postponed and resolved only when interactive trans-
itions are possible later in time (according to rule (4.a)).

Example 5.3. Consider the behaviors B4 = •
∑

(
p :: B4

1− p :: a ; δ

)
and B5 = •

∑
(
q :: B5

1− q :: b ; δ

)
depicted in fig-

ure 5.5. The sojourn time in initial states of B4 and B5 is geometrically distributed. Thus, whatever
the time already spent in those initial states, the nondeterministic choice is not resolved. But also
whatever the geometric distribution elapsing first, the nondeterministic choice “B4 [ ] B5” is not re-
solved. Indeed:

– either B4 leaves its initial state first: the nondeterministic choice is not resolved immediately
but only if the action a is fired by B4 before B5 leaves its initial state. Because of the arbitrary
waiting property, a may be delayed, and, during this time slot, B5 may leave its initial state.
In this case, we have a nondeterministic choice between actions a and b.

– or, symmetrically, B5 leaves its initial state first: the nondeterministic choice is not resolved
immediately but only if the action b is fired by B5 before B4 leaves its initial state. Because of
the arbitrary waiting property, b may be delayed, and, during this time slot, B4 may leave its
initial state. In this case, we have a nondeterministic choice between actions a and b.

– or B4 and B5 leave their initial states simultaneously, and the nondeterministic choice is also
not resolved and remains between the reached states.

Notice that for IMCs, we have a different behavior for nondeterministic choice: it is re-
solved on the minimum of the exponentially distributed sojourn times of the states between
which there is a nondeterministic choice. The first change of state resolves the nondetermin-
istic choice.
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Figure 5.5: Nondeterministic choice between two probabilistic choices

5.1.2 Properties of Interactive Probabilistic Chains

We introduce several properties on IPCs. The first property deals with the competition
between a τ-transition and a probabilistic choice in a state of an IPC.

Definition 5.4 (Maximal progress). An IPC P = 〈S,A, −−→ , z{ , s0〉 is said to be maximal pro-
gress cut if and only if

(
∀(s, s′) ∈ S2

)
s

τ
−−→ s′ =⇒

((
∄s′′ ∈ S

)
s z{ s′′

)

Given an IPC P , we call “maximal progress cut IPC of P”, written as P6{�τ , the largest max-
imal progress cut IPC contained in P . The maximal progress property is sometimes also called
minimal delay [Han91, Han94].

Example 5.4. Consider the IPC P depicted in figure 5.6(a). P is not maximal progress cut: in

state s6, the τ-transition s6
τ
−−→ s7 is in competition with the probabilistic transition s6

1
z{ s4.

P ′ = P6{�τ , the maximal progress cut IPC of P is depicted in figure 5.6(b).

The second property tackles the competition between arbitrary interactive transitions (in-
cluding τ), and a probabilistic choice in an IPC.

Definition 5.5 (Urgency). An IPC P = 〈S,A, −−→ , z{ , s0〉 is said to be urgency cut if and only
if

(
∀(s, s′) ∈ S2

) (
∀a ∈ A

)
s

a
−−→ s′ =⇒

((
∄s′′ ∈ S

)
s

p
z{ s′′

)

We can notice that an urgency cut IPC is by definition maximal progress cut. Given an IPC
P , we call “urgency cut IPC of P”, written as P6{�A , the largest urgency cut IPC contained in P.

Example 5.5. Consider the IPC P depicted in figure 5.6(a). P is not urgency cut: in state s8, the

interactive transition s8
a1
−−→ s3 is in competition with the probabilistic transition s8

1
z{ s2. P

′′ =
P6{�A , the urgency cut IPC of P is depicted in figure 5.6(c).

Finally, we introduce a property linked to the number of interactive transitions that can be
taken in a finite time interval.
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Figure 5.6: Illustration of maximal progress and urgency cut properties

Definition 5.6 (Non-Zeno). An IPC P = 〈S,A, −−→ , z{ , s0〉 is said to be non-Zeno if and only if
it can perform only finitely many actions in a finite time interval. We ensure this property on IPCs by
bounding the number of possible actions taken in sequence (i.e., in a time interval of one time step):

(
∀(s, s′) ∈ S2

) (
∃k ∈N

) (
∀n ∈N

) (
∀(s1, . . . , sn) ∈ S

n
)

s −−→ s1 −−→ ·· · −−→ sn −−→ s′ =⇒ (n ≤ k)

The non-Zenoness property expresses that in a finite time interval, it is not possible to take
an infinite number of interactive transitions. In particular, an IPC with loops of interactive
transitions is not non-Zeno. The non-Zeno property allows to find a value k corresponding to
the length of the longest sequence of interactive transitions in an IPC.

The definition of non-Zenoness property we gave is sometimes called implementability prop-
erty [NS91]: the existence of a bound on the number of actions is ensured for any chosen time
interval.

Example 5.6. The IPC P depicted in figure 5.6(a) is non-Zeno. The length k of the longest sequence

of interactive transition s6
τ
−−→ s7

a1
−−→ s1 is k = 2.

5.1.3 Probabilistic Strong and Branching Bisimulations

As seen for Markov chains in chapter 2, it is essential to have methods allowing to com-
pare different processes. Comparing processes requires the definition of equivalence relations
between processes. The bisimulations for labeled transition systems [vGW96, Mil90] or for
DTMCs (a generalization for DTAMC was introduced in section 2.2.3) define equivalence rela-
tions allowing to compare different LTS or different DTMCs. A bisimulation for IPCs should
cover the characteristics of both DTMCs and LTS, taking into account both probabilistic trans-
itions of DTMCs and interactive transitions of LTS. We introduce bisimulations for IPCs along
the lines of [HL98, LS92].
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To define bisimulations, we extend the predicate γP introduced for probabilistic transitions
of DTAMCs in section 2.2.3. Consider an IPC P = 〈S,A, −−→ , z{ , s0〉 ∈ P . The predicate
γP : S ×2S 7→ [0,1] computes the cumulative probability to reach a set of states S , from a state
s: (

∀s ∈ S
) (
∀S ⊆ S

)
γP(s,S ) =

∑

s′∈S

{]
p | s

p
z{ s′

[}

In addition, we introduce a new predicate γ0 for interactive transitions. The predicate
γ0 : S ×A× 2S 7→ {True,False} states if, from a given state, it is possible to reach a set of states
with a given action, i.e.,

(
∀s ∈ S

) (
∀a ∈ A

) (
∀S ⊆ S

)
γ0(s,a,S ) =


True if

(
∃s′ ∈ S

)
s

a
−−→ s′

False otherwise

Finally, we introduce some notations. s
τ
−−→� is an abbreviation for ¬γ0(s,τ,S) and means

that s is not able to fire a τ-transition. P /E denote the set of equivalence classes of P with
respect to relation E and [s]/E denote the equivalence class with respect to E containing the
state s.

Using those notations, one can define a strong probabilistic bisimulation that allows us to
compare IPCs. Intuitively, the strong probabilistic bisimulation states that if two processes are
strongly bisimilar, they have to functionally simulate each other and that the overall transition
probabilities of each process to the same equivalence class are equal.

Definition 5.7 (Probabilistic strong bisimulation of IPC). Strong probabilistic bisimulation equi-
valence (∼) is the coarsest equivalence relation on P such that s1 ∼ s2 implies for all actions a ∈ A
and all equivalence classes C of ∼ (i.e., C ∈P /∼):

(1) γ0(s1,a,C) =⇒ γ0(s2,a,C),

(2) s1
τ
−−→� =⇒

(
s2

τ
−−→� ∧ γP(s1,C) = γP(s2,C)

)
.

When comparing IPCs, one may want to abstract from internal computation, and thus
internal transitions τ. We use a weaker notion of equivalence, branching bisimulation, here
lifted to IPC [HL98, vGW96].

Definition 5.8 (probabilistic branching bisimulation of IPC). Probabilistic branching bisimula-
tion equivalence (≈) is the coarsest equivalence relation on P such that s1 ≈ s2 implies for all action
a ∈ A and all equivalence classes C of ≈ (i.e., C ∈P /≈):

(1) γ0(s1,a,C) =⇒ either (a = τ ∧ s2 ∈ C) or
(
∃s′2

) (
s2

τ∗
−−→ s′2 ∧ s1 ≈ s

′
2 ∧ γ0(s

′
2,a,C)

)

(2) s1
τ
−−→� =⇒

(
∃s′2

τ
−−→�

) (
s2

τ∗
−−→ s′2 ∧ s1 ≈ s

′
2 ∧ γP(s1,C) = γP(s

′
2,C)

)

Two IPCs P1 and P2 are said to be strongly (resp. branching) bisimilar, if their initial states
are strongly (resp. branching) bisimilar.

Lemma 5.1. If two IPCs are strongly bisimilar, they are also branching bisimilar:

(
∀(P1,P2) ∈P

2
)

P1 ∼P2 =⇒ P1 ≈P2
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Proof. Consider two states s1 and s2 strongly bisimilar, s1∼s2, and an equivalence class C ∈P /∼.
By definition, if γ0(s1,a,C) holds, then γ0(s2,a,C) holds. Taking s′2 = s2, condition (1) of the
probabilistic branching bisimulation is verified.

On the same idea, if s1
τ
−−→� , then s2

τ
−−→� and γP(s2,C) = γP(s1,C). Taking s

′
2 = s2, condi-

tion (2) of the probabilistic branching bisimulation is verified.

In addition to comparing IPCs, a bisimulation can be used to define the smallest IPC (in
terms of state space size) equivalent to another one. This smallest equivalent IPC is called
quotient. One may define a quotient according to the probabilistic strong bisimulation ∼ and a
quotient according to the probabilistic branching bisimulation ≈.

Definition 5.9 (IPC quotient). Given an IPC P = 〈S,A, −−→ , z{ , s0〉 and a bisimulation E , the
quotient of P according to E is the IPC P/E = 〈S/E ,A, −−→ /E , z{ /E , [s0]/E 〉. P/E verifies:

– P/E and P are bisimilar (P/E E P)
– for every IPC P ′, defined over the state space S ′ , and bisimilar to P (and to P/E ), P

′ E P , we
have card(S/E ) ≤ card(S ′)

We say that an IPC is minimal (with respect to a bisimulation E ) if its size is the same as
the size of its quotient. The quotient of an IPC can be computed similarly to the quotient of an
IMC, using partition refinement techniques [Her02], as implemented in the Bcg_min tool [INR].

In the previous section, we introduced maximal progress cut and urgency cut allowing to
define subclasses of IPCs.The maximal progress cut presents an interesting property according
to the bisimulations: maximal progress cut preserves the strong probabilistic bisimulation.

Lemma 5.2. An IPC P and its maximal progress cut IPC P6{�τ are strongly probabilistic bisimilar:

(
∀P ∈P

)
P ∼P6{�τ

Proof. The condition (2) of the strong probabilistic bisimulation is only defined for states that
do not allow to take a τ-transition. Because a maximal progress cut IPC P6{�τ only differs from
P on states allowing to take a τ-transition, this property is ensured.

Contrary to the maximal progress, the urgency cut does not preserve bisimulations. Indeed
by cutting probabilistic transitions that compete with interactive ones, the condition (2) of the
probabilistic strong and branching bisimulations are not ensured.

As corollary, lemma 5.2, together with lemma 5.1, implies that maximal progress cut pre-
serves the probabilistic branching equivalence:

Lemma 5.3. An IPC P and its maximal progress cut IPC P6{�τ are branching equivalent:

(
∀P ∈P

)
P ≈P6{�τ

Proof. Direct implication from lemma 5.2 and lemma 5.1.

Finally, we can deduce that the quotient of an IPC with respect to the probabilistic branch-
ing bisimulation is also maximal progress cut.
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Lemma 5.4. The quotient P/≈ of an IPC P is maximal progress cut:

(
∀P ∈P

) (
P/≈

)
6{�τ

Proof. By definition, for every IPC P , the state space of P6{�τ is smaller or equal to the state

space of P . In particular, given an IPC P , the state space of
(
P/≈

)
6{�τ

is smaller or equal to the

state space of P/≈ .

The definition of a quotient (definition 5.9) ensures that for every IPC P ′ branching bisim-
ilar to P/≈ , the state space of P/≈ is smaller or equal to the state space of P ′. Because

(
P/≈

)
6{�τ
≈P/≈

(lemma 5.3) we have that
(
P/≈

)
6{�τ

and P/≈ have the same state space: the quotient is con-

sequently maximal progress cut.

5.1.4 Congruence Property of Probabilistic Branching Bisimulation

One may be interested in the preservation of the bisimulations with respect to the compos-
ition operators of IPCL. Indeed, it is interesting to know if applying a same operator (sequence,
composition, etc.) of IPCL on two equivalent IPCs yields two equivalent IPCs. This so-called
congruence property is of importance for the parallel composition of IPCs (|[· · · ]|). Indeed, the
state space explosion may mainly occur when composing processes in parallel. In this case, it
is interesting to reduce state space of processes before composing them.

Theorem 5.1 (Congruence with respect to |[· · · ]|). The probabilistic branching bisimulation is a
congruence with respect to the parallel composition operator, i.e.,

(
∀ (P1,P2) ∈P

2
) (
∀P3 ∈P

) (
∀A ⊆ A\{τ}

)
P1 ≈P2 =⇒ P1 |[A]|P3 ≈P2 |[A]|P3

Proof. See appendix B.

The congruence property with respect to composition operators is mandatory for a compos-
itional approach, i.e., constructing large systems hierarchically. Indeed, in a compositional ap-
proach, a complex system is obtained by iteratively composing subcomponents (e.g., using the
parallel composition operator for IPCs). The congruence property ensures that the composition
of the quotients of subcomponents is bisimilar to the direct composition of subcomponents. In
practice, it is preferable to compose the quotients: the state space of the composition of the
quotients is at most equal to the state space of the direct composition of the subcomponents.
Thus, composing quotients may be possible for a system where composing subcomponents
leads to state space explosion. If a compositional approach allows to go farther and handle
larger systems, we are not prevented from the state space explosion.

5.2 From Interactive Probabilistic Chains to Discrete-Time Annot-
ated Markov Chains

In chapter 2, we introduced methodologies to extract performance measures from AMCs.
The weakness of thosemethodologies concerns the way these annotations are obtained. Indeed,
for complex Markov chains with a large state space, it is difficult, not to say impossible, to
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associate functional information to states. On the other hand, IPC models allow to depict a
complex system functionally and temporally combining characteristics of interactive processes
and DTMCs.

In this section, we present a way to adapt DTMC-oriented performance methodologies to
IPCs. In most cases, the underlying performance model of an IPC is a Markov decision pro-
cess [Put94] (MDP), i.e., a DTMC with nondeterminism, and DTMC-oriented performance
methods are inapplicable directly. To use those methods,some restrictions on IPCs are re-
quired, to ensure that their underlying model is a DTMC. The restrictions imposed on the IPC
models we are using for performance evaluation lead to the class of time deterministic inter-
active probabilistic chains (tdIPCs), which are IPCs presenting determinism in time. tdIPCs
can be used to compute performance measures for the modeled systems.

tdIPCs can be transformed into DTMCs, which permits the use of DTMC-oriented perform-
ance methodologies. This transformation is addressed by using notions of maximal progress
and urgency cut defined in the previous section. More precisely, to keep functional inform-
ation of IPCs, the proposed transformation leads to annotated Markov chains. This kind of
transformation must preserve timed and probabilistic behaviors of the system. In other words,
performance measures extracted from two bisimilar IPCs have to be the same. We show that
this is the case for our transformation.

5.2.1 Alternating Interactive Probabilistic Chain

Up to now, we considered arbitrary IPCs. When looking at SOS rules introduced in sec-
tion 5.1.1, we can notice that we do not give a meaning to competition between interactive
transitions and probabilistic choices, although it is an encountered case for every states allow-
ing to take an interactive transition. The SOS Rules are as permissive as possible, i.e., there
is no a priori choice whether interactive or probabilistic transitions should be taken first. In
a time perspective, it means that an interactive transition can be delayed as long as wanted.
This property allows to cover all possible timed behaviors, but is annoying for performance
evaluation: no measure can be computed because everything may happen.

Example 5.7. Consider the Behavior B of IPCL, “B = a ; δ”. The arbitrary waiting property ensures
that the action “a” may be delayed for an arbitrary long time (for instance, “a” may be delayed until
a synchronization on “a” is allowed). Consequently, possible performance results are not interesting.
For instance, the time before the end of the process (δ) can take any value on N.

In the aim of performance evaluation, we are thus forced to give a meaning to competi-
tion between interactive transitions and probabilistic transitions. We start with competition
between τ-transitions and a probabilistic choice: we assume that a process cannot delay an
internal transition. This assumption is justified by the fact that a τ-transition can be immedi-
ately taken (because it cannot be delayed by the environment) and has no reason to be delayed
by the process. Conversely, a probabilistic choice always incurs a one time step delay. Con-
sequently, a τ-transition has precedence over any probabilistic transition. Considering an IPC
P , the precedence of τ-transition over probabilistic transitions is ensured by taking the max-
imal progress (definition 5.4) cut IPC P6{�τ of P. We also saw that the maximal progress cut is
realized by the quotient of an IPC according to the probabilistic branching bisimulation.

Themaximal progress defined for IPCs matches with themaximal progress used in the IMC
formalism (the justification is rather similar: Markovian transitions incur a non-zero delay
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versus immediate τ-transitions). Because maximal progress cut preserves branching equival-
ence, it can be applied at any intermediate phase of the compositional approach.

Following similar ideas, we handle the competition between interactive transitions (differ-
ent from τ) and probabilistic transitions. Actually, we have no a-priori information concerning
interaction between an isolated process and its environment. Consequently, an interactive
transition may be delayed by the environment for an arbitrary long time. For instance, an
interactive transition may be delayed, waiting for a synchronization to be enabled. If the syn-
chronization is not enabled immediately, only the probabilistic choice is possible. Applying
maximal progress for arbitrary interactive transitions (different from τ) would prevent this
desirable behavior.

When analyzing a fully modeled system, we consider that it is closed, which means that
there is no more possible interaction with its environment (including synchronizations). In
other words, an interactive transition has no more reason to be delayed in time and is always
enabled. Under this assumption of a closed system model, maximal progress can be general-
ized to all actions. It corresponds to the urgency cut (definition 5.5).

Application of the urgency cut on a closed IPC partitions the state space in two classes. A
state is said to be interactive if it only allows interactive transitions to be fired. Conversely, a
state is said to be probabilistic if it only allows a unique probabilistic choice between reachable
states.

Definition 5.10 (Partitioning of the state space by urgency cut). Given an urgency cut IPC P ,
P = 〈S,A, −−→ , z{ , s〉, the state space is partitioned in to classes SI and SP , i.e., S = SI ∪ SP and
SI ∩ SP = ∅. The classes SI and SP are defined by:

– SI is the class of interactive states,
(
∀s ∈ SI

) (
∄s′ ∈ S

)
s z{ s′.

– SP is the class of probabilistic states,
(
∀s ∈ SP

) (
∄s′ ∈ S

)
s −−→ s′.

Example 5.8. The IPC P6{�A depicted in figure 5.6(c) is urgency-cut. Its state space is partitioned
in two classes. The class of interactive states is SI = {s5, s6, s7, s8}. The class of probabilistic states is
SP = {s0, s1, s2, s3, s4}.

This partitioning of the state space yields a so-called alternating model [And00, Han94,
Han91, NS91], referring to the fact that during an execution, the current state is either in-
teractive or probabilistic, but cannot be both interactive and probabilistic. The alternation
between interactive and probabilistic states is not strict as imposed in some models [Han91].

The alternation between actions and probabilities leads to a system where evolutions in
time and functional evolutions are clearly separated. Either state are interactive, and actions
are taken, but time does not progress. Or states are probabilistic, and the next state is chosen
according to the probabilistic distribution, this choice resulting in a one step progress in time.
This view is adopted by most of the existing description formalisms for timed systems [NS91].

In addition, applying urgency cut to bisimilar processes yields bisimilar urgency-cut pro-
cesses.

Lemma 5.5. The two urgency cut IPCs of two branching bisimilar IPCs are branching bisimilar:

(
∀(P1,P2) ∈P

)
(P1 ≈P2) =⇒

(
P1 6{�A ≈P2 6{�A

)

Proof. See appendix A.



80 Interactive Probabilistic Chains

5.2.2 Dealing With Nondeterminism in Interactive Probabilistic Chains

An urgency-cut IPC remains in general nondeterministic. Nondeterministic choices are
only possible in interactive states. In fact, nondeterminism is an essential aid in building inter-
acting systems from components. R. Segala distinguishes three different uses of nondetermin-
ism in system modeling [Seg95]:

– External environment. This kind of nondeterminism exploits the benefits of the com-
positional approach. It is used to simply define the behavior of components of the system.
Indeed, for each component, all interactions with the environment (the other compon-
ents) are defined without knowledge of the environment’s behavior. In a closed system
(i.e., all components are present and there is no more interaction with the environment),
the component should be constrained by its environment resulting in a deterministic
behavior.

– Implementation freedom. The nondeterminism is used to depict the specification of
a component and not its implementation. In other words, nondeterminism allows to
depict what the component has to do and not how it does it (e.g., modeling an arbitration
policy by nondeterminism depicts that there is an arbitration but not exactly how this
arbitration is implemented). This kind of nondeterminism implies that several choices
are possible.

– Scheduling freedom. Nondeterminism is classically used to depict systems evolving
in parallel. In IPC models, parallel functional behaviors are interleaved. After hiding
actions occurring in parallel, the complete system however often shows deterministic
behavior modulo branching bisimulation equivalence. In this case, transitions that are
involved in the nondeterministic choice are confluent to a single common future. From
a timed view of the system, whatever the chosen path to the common future, all actions
are taken at the same time instant. This kind of nondeterminism can be solved by the
multiset of fired actions: this multiset is the same for all possible paths to the common
future.

In the following, we present how these kinds of nondeterminism should be handled.

Dealing With Nondeterminism Due to External Environment

The compositional approach exploits frequently nondeterminism due to external environ-
ment. As soon as the model of a component of the system wants to synchronize on a given
transition, the transition is enabled. When composing on this transition with another compon-
ent (the environment), it may not remain enabled.

For performance evaluation purpose we focus in the analysis of IPCs that do not present
nondeterminism due to external environment. This is a partial solution targeting only closed
systems (for instance, we are not able to compute performance measures on a subcomponent
of the system whatever the behavior of its environment is). However computed performance
measures are much more exploitable than for non-closed systems.

Example 5.9. Consider the Behavior B of IPCL, “B = a;δ” studied in example 5.7. We saw that the
arbitrary waiting property ensures that the action a may be delayed for an arbitrary long time. For
instance, when studying the time before the end of the process (δ), the result is not really interesting:
it can take any value on N.

Now, supposing that the system is closed, actions are ensured to have no reason to be delayed
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(which allows to apply urgency cut). In this case, the time before the end of the process (δ) is exactly
equal to 0.

In closed systems, no interaction is possible with the environment and the urgency cut
can be applied. If non determinism remains on an urgency cut IPC, it is not due to external
environment.

The use of urgency cut on closed systems induces a second restriction on the class of studied
systems. We restrict our study to non-Zeno systems. Indeed, a Zeno IPC implies that there is
a possible loop of interactive transitions. After urgency-cut, this loop represents a time-lock:
when reaching the loop of interactive transitions, the process is live-locked in it, with time no
longer progressing. The non-Zeno property is an essential requirement ensuring that the IPC
depicts a realistic system.

Dealing With Nondeterminism Due to Implementation Freedom

The nondeterminism due to implementation freedom is very useful for functional model-
ing of large systems. Indeed, it is an efficient way of abstraction of complex behaviors (hav-
ing a large state space). In the field of functional verification, a nondeterministic abstraction
generally subsumes more behaviors than the real system allows, but may have no impact on
computed functional results. For instance, a functional safety property, verified on a system
allowing a large set of behaviors, is also verified on a system allowing a subset of behaviors of
the first system.

In the field of performance evaluation, the way to solve nondeterminism due to implement-
ation freedom may influence the performance measures. We consequently say that this kind
of nondeterminism is due to under-specifications (although they may have been deliberately
introduced in the functional models).

In the sequel, we limit our performance study to systems without nondeterminism due to
implementation freedom. When encountering this kind of nondeterminism, the system has to
be determinized, i.e., fully specified.

Unfortunately, the determinization of a system using standard algorithm of automata the-
ory [RS59] may increase its state space. Another approach that does not increase the state
space is to replace each nondeterministic choice by a probabilistic choice. However, this ap-
proach would yield models that cannot be easily represented as IPCs. Indeed we would have
to distinguish two kinds of probabilistic choices: the ones incurring zero time elapsing (thus
corresponding to the probabilistically determinized nondeterministic choices) and the ones in-
curring one time step. Furthermore, this approach influences the performance measures as
illustrated by the following example.

Example 5.10. Consider a producer feeding 2 consumers through an arbiter. A simple functional
model of the arbiter would be a nondeterministic choice between the 2 consumers. It would mean
that an element produced would be either send to the first consumer, or to the second one.

If we want to evaluate the performance of the system, the arbitration policy has to be modeled.
For instance consider a round-robin policy. The functional model of this policy is larger than a single
nondeterministic choice, because we have to store which consumer was fed last. At the cost of a larger
model, the implementation freedom nondeterminism is deleted.

Because the round-robin policy is fair, another solution would be to turn the nondeterministic
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choice into an equiprobable probabilistic choice. This solution allows to keep the same state space as
with nondeterminism, but in a performance context.

However, as for nondeterminism in the functional model, this kind of probabilistic choice is an
abstraction and may impact performance results. Consider one of the two consumers: The probability
to receive two consecutive elements from the arbiter is non-null (0.25) although it is null for the real
behavior with modeled round-robin.

Thus, we do not consider the approach consisting in replacing nondeterminism by probab-
ilistic choices in the rest of this chapter.

Dealing With Nondeterminism Due to Scheduling freedom

Nondeterminism due to scheduling freedom arises from the interleaving of parallel func-
tional behaviors. In an IPC, we have asynchronous parallelism of actions that take no time
between phases of synchronous evolution in time. As said previously, for this kind of non-
determinism, the resulting system is deterministic modulo probabilistic branching bisimula-
tion equivalence after hiding all actions.

The determinism modulo branching equivalence is also exploited to generate CTMCs from
IMCs: abstracting from all functional information (i.e., renaming interactive transitions into
τ), andminimizingwith respect to IMC branching bisimulation equivalence, yields CTMCs (in
the case the nondeterminism is only due to scheduling freedom).

We could imagine to exploit the same property on IPCs abstracting from all functional
information and minimizing with respect to IPC branching bisimulation equivalence. Unfor-
tunately, this method always yields the very same deterministic system: a single state with
a probabilistic looping transition with probability 1. This single state IPC is obtained even
if nondeterminism is not only due to scheduling freedom. However, this result is predict-
able: from a timed perspective, the only observable thing in an IPC having all interactive
transitions hidden, is the time evolving discretely. This means that IPC branching bisimula-
tion equivalence can only be used to reduce the IPC state space by abstracting from meaning-
less functional information. This minimization may delete some scheduling freedom-related
nondeterminism, but in general, an IPC keeping significant functional transitions may stay
non-deterministic. We consequently allow IPCs to present nondeterminism due to scheduling
freedom in the sequel.

5.2.3 Time Deterministic and Deterministic Interactive Probabilistic Chain

To evaluate performance of a system, we introduced several restrictions on its IPC model.
First, the considered IPC has to be non-Zeno and closed, to allow the application of the urgency
cut. Then, the studied IPC has to be free of nondeterminism due to implementation freedom
(it has to be fully specified). With those restrictions, the only determinism allowed is the one
linked to scheduling freedom. However, the IPC remains time deterministic, nondeterminism
not affecting the evolution in time.

We call this kind of IPCs time deterministic IPCs (tdIPCs). To provide a formal definition
of tdIPCs, we first introduce some notations. Consider E the set of regular expressions over
a set of actions A. we define e as the empty expression, denoting that there is no action. for

a regular expression e ∈ E, let s0
e
→−→ sn denote that there exists a sequence of interactive
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Figure 5.7: a (time) deterministic IPC of a closed system

transitions s0
a1
−−→ . . .

an
−−→ sn where a1 . . . an is a word in the language over A defined by e. We

will note S(e) the multiset of actions {ai | ai , τ}1≤i≤n induced by the word a1 . . . an defined by

e. the empty expression e verifies that s1
e
→−→ s2 implies that s1 = s2 and S(e) = ∅. A tdIPC is

characterized by a property on the largest urgency cut IPC contained therein.

Definition 5.11 (Time deterministic interactive probabilistic chain). An IPC is said to be a
time deterministic IPC (tdIPC), if it is closed, non-Zeno, and the largest urgency-cut IPC contained
therein, P = 〈S = SI ∪ SP ,A, −−→ , z{ , s〉, verifies:

(
∀s1 ∈ SI

) (
∀s2 ∈ SP

) (
∀(e,e′) ∈ E2

) (
s1

e
→−→ s2 ∧ s1

e′
→−→ s2

)
=⇒ (S(e) = S(e′))

A tdIPC is a model including functional informations and time informations. Functional
nondeterminism has no influence on its evolution in time and thus on timed characteristics
that can be used to compute performance measures. In [CHLS09], we considered a stronger
restriction than time determinism to compute performancemeasures. Indeed, we imposed that
IPCs would have to be deterministic.

Definition 5.12 (Deterministic interactive probabilistic chain). An IPC P = 〈S = SI∪SP ,A, −−→
, z{ , s0〉 is called a deterministic IPC (dIPC), if it is urgency-cut and it verifies:

(
∀(s, s′ , s′′) ∈ S3

) (
∀(a,a′) ∈ A2

) (
s

a
−−→ s′ ∧ s

a′
−−→ s′′

)
=⇒ (s′ = s′′ ∧ a = a′)

A deterministic IPC guarantees that only linear sequences of interactive transitions may
appear. Compared to a time deterministic IPC, there is no nondeterminism due to implement-
ation freedom. That is why a dIPC is also a tdIPC.

Example 5.11. The IPC P depicted in figure 5.6(a) and redrawn in figure 5.7 is non-Zeno. If we
assume that it is closed, it is also a dIPC (and thus a tdIPC) because there is no nondeterminism.

Note that a time deterministic IPC can be scheduled arbitrarily to be transformed into a
deterministic IPC. By this way, we give the priority to one of the possible scheduling of parallel
functional behaviors.
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Definition 5.13 (Scheduler on a time deterministic interactive probabilistic chain). Given an
IPC P = 〈S = SI ∪ SP ,A, −−→ , z{ , s0〉, a scheduler s on P is a function that associates to each
interactive state one of the interactive transition that can be taken, i.e.,

s : SI 7→ −−→

s(s) = ” s
a
−−→ s′ ”

for some a ∈ A and s ∈ S . A scheduler associates to each interactive state one of the interactive
transition that can be taken.

Lemma 5.6 (Scheduled time deterministic interactive probabilistic chain). Given an IPC P =
〈S = SI ∪ SP ,A, −−→ , z{ , s0〉 and a scheduler s on P , we define the IPC s(P) as the IPC obtained
by scheduling of P by s. s(P) is a deterministic IPC.

Proof. For every state s ∈ SI , the scheduler s gives the priority to one of the interactive trans-
ition. There is consequently no more nondeterminism, which ensures that s(P) is determin-
istic.

We propose a translation of tdIPC (and thus dIPC) models into DTAMCs, preserving on one
side the timed and probabilistic characteristics and on the other side functional information
(actions of interactive transitions) by annotation of states.

5.2.4 Interactive Probabilistic Chain to Discrete Time Annotated Markov Chain

The transformation from a tdIPC P to DTAMC processes in two steps: first, P is turned into
the largest urgency-cut IPC contained therein, P6{�A . Then, P6{�A is transformed in a DTAMC, in
such a way that functional information (the interactive transitions) appears in the annotation
given to each state: intuitively, each probabilistic state of P6{�A is enriched with functional in-
formation corresponding to the set of actions taken since the last time step, i.e., since the last
probabilistic transition.

We define P ×(A) as the set of sub-multisets of A and P ×≤k(A) the set of sub-multisets of A
containing at most k actions, i.e.,

P ×≤k(A) =
{
S× ∈ P

×(A) | card(S×) ≤ k
}

Definition 5.14 (DTAMC associated to an IPC). Let P = 〈S = SI ∪ SP ,A, −−→ , z{ , s〉 be an
urgency cut tdIPC over A. Let k be the length of the longest sequence of interactive transitions in P
(existence of k is ensured by definition 5.6 of a non-Zeno IPC). The DTAMCM(P) = 〈C, z{ , c,A 〉
associated to P is such that:

– its set of states C =
{
s ∈ RP(P)

}
×P ×≤k(A), where RP(P) ⊆ SP , is the set of reachable probabilistic

states
– z{ ⊂ C × ]0,1]×C→N is a multiset of probabilistic transitions defined by:

(
∀S1,S2 ∈ P

×
≤k(A)

) (
∀(s1, s2) ∈ RP(P)2

)

〈s1,S1〉
p
z{ 〈s2,S2〉 ⇐⇒




(
∃p ∈ ]0,1]

) (
∃s′1 ∈ S

) (
∃e ∈ E

)

s1
p
z{ s′1

e
→−→ s2 ∧S(e) = S2




– its initial state c is equal to 〈s,∅〉



From IPCs to DTAMCs 85

s0

s2

0.7

0.6

0.6

0.4

0.2

0.2

1

1

0.3

a1

a2

a1

τ

s3

s4

s1

s5

s6

s7

s8

a2

a1

a1

s4

s0

s1

s2

s3

0.2
1

0.2
0.6

0.3

1

0.7

0.4

0.6

(a) (b)

Figure 5.8: a DTAMC obtained from a tdIPC

– the annotation function A : C 7→ P ×≤k(A) is such that
(
∀〈si ,S 〉 ∈ C

)
A (〈si ,S 〉) = S .

Example 5.12. For the urgency cut tdIPC P depicted in figure 5.6(c) an redrawn in figure 5.8(a), the
associated DTAMCM(P) = 〈S, z{ , s0,A 〉 is depicted in figure 5.8(b). To study the distribution of
the latency between action a1 and action a2 in P , we can useM(P). The distribution of this latency
was studied in example 3.2 of chapter 3, setting two sets α and ω. α is the set of states in which the
latency can be started, α = {s ∈ S | a1 ∈A (s)}. ω is the set of states in which the latency is ended,
ω = {s ∈ S | a2 ∈A (s)}.

Naturally, because a dIPC is also a tdIPC, a DTAMC can be associated to it. For any dIPC
obtained by scheduling of a tdIPC, an interesting property is ensured: whatever the chosen
scheduler s to schedule a time deterministic IPC P , the DTAMC associated to P is the same as
the DTAMC associated to the scheduled deterministic IPC s(P).

Lemma 5.7. Consider an IPC P and an arbitrary scheduler s on P. The associated DTAMC to P ,
M(P), and the associated DTAMC to s(P),M(s(P)), satisfy:

M(P) ∼
P
M(s(P))

Proof. Consider a time deterministic IPC P . By definition of a time deterministic IPC (defin-
ition 5.11), we have that whatever is the followed path between an interactive state s and a
probabilistic state s′ of P , the multiset of taken actions is the same. The associated DTAMC to
the time deterministic IPC P is just constructed over this multiset of actions, i.e., it does not
take into account the different possible paths.

By scheduling of P with an arbitrary scheduler s, we just fix one of the possible paths
between states s and s′. The associated DTAMC to this scheduled IPC is also constructed over
the multiset of taken actions between s and s′, and this multiset is the same in P and in s(P).
DTAMCs associated to P and to s(P) are consequently the same, and thus they are strongly
bisimilar.
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This property authorizes to consider dIPCs in place of tdIPCs. Although considering dIPCs
is more restrictive than considering tdIPCs we can obtain the same underlying DTAMCmodels
for performance evaluation.

5.2.5 Performance Measures Preservation

By using a compositional approach to model complex systems by IPCs, we ensured that,
from end to end, the probabilistic branching bisimulation is preserved. Finally, if the IPC
model is a tdIPC, we associate to it a DTAMC in the aim of extracting performance measures.
This approach is valid only if we are able to ensure that associated DTAMCs of two branching
probabilistic bisimilar tdIPCs allow to get the same result for a given performance result. In
other words, two probabilistic branching bisimilar tdIPCs should yield two strongly bisimilar
DTAMCs.

Lemma 5.8. Associated DTAMCs of probabilistic branching bisimilar tdIPCs are strongly bisimilar,
i.e., (

∀ (P1,P2) ∈P
2
) (

P1 ≈P2
)
=⇒

(
M(P1) ∼P M(P2)

)

Proof. See appendix C.

5.2.6 Discrete-Time Annotated Markov Chain to Semi-Markov Chain

We define a second transformation from a DTAMCM(P) associated to an IPC P to an SMC
that allows to compute the very same performance measures than obtained from M(P). In
particular, we focus on SMCs for which the distributions associated to transitions (defining the
sojourn time in states) are constant distributions, Cn :N 7→ [0,1], defined by

(
∀n ∈N

)
Cn(n) = 1∧

((
∀n′ , n

)
Cn(n

′) = 0
)

Definition 5.15 (SMC associated to a DTAMC). Consider a DTAMCM(P) = 〈C, z{ , c,A 〉 as-
sociated to an urgency cut tdIPC P = 〈S,A, −−→ , z{ , s〉. Let k be the cardinal of the largest an-
notation multiset associated to states (k is the length of the longest sequence of interactive transitions
in P). An SMCMS = 〈S,A, �z{ ,D, s0〉 associated toM(P) is such that:

For every state 〈s2,S2〉 ∈ C where S2 = {a1, . . . ,an} (n ≤ k and
(
∀i ≤ n

)
ai ∈ A), and for each

transition 〈s1,S1〉
p
z{ 〈s2,S2〉 (for some 〈s1,S1〉 ∈ C and p ∈ ]0,1]), there is a sequence of trans-

itions:

s1
τ
�

p
z{ s′1

a1
�

1
z{ s′2

a2
�

1
z{ · · ·

an−1
�

1
z{ s′n

an
�

1
z{ s2

inMS , satisfying:

– D
(
s′n

an
�

s
z{ 2

)
=C1

–
(
∀i < n

)
D

(
s′i

ai
�

s
z{

′
i+1

)
= C1

– D
(
s1

τ
�

p
z{ s′1

)
=Ck−n+1

The long run average vector of the SMC MS associated to the DTAMC M(P) is strongly
related to the steady state probability vector of theM(P).
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Lemma 5.9 (Steady state probabilities in the associated SMC). Consider a DTAMCM(P) associ-
ated to an IPC P,M(P) = 〈C, z{ , c0,A 〉, andMS (P) = 〈S,A, �z{ ,D, s0〉 the SMC associated to
M(P). Let k be the cardinal of the largest annotation multiset associated to states ofM(P). We note
πc the steady state probability of a state c ∈ C inM(P) and π̃s the steady state probability of a state
s ∈ S inMS .

Consider a state 〈s,S 〉 ∈ C where S2 = {a1, . . . ,an} (n ≤ k and
(
∀i ≤ n

)
ai ∈ A), and S{〈s,S 〉

the set of predecessors of 〈s,S 〉 inM(P). For every state 〈si ,Si〉 ∈ S{〈s,S 〉 such that 〈si ,Si〉
pi
z{

〈s,S 〉, there is a sequence of transitions:

si
τ
�

pi
z{ s′i,1

a1
�

1
z{ s′i,2

a2
�

1
z{ · · ·

an−1
�

1
z{ s′i,n

an
�

1
z{ s2

inMS . Steady state probabilities of predecessors of s2 inMS are linked to the steady state probability
of s2 inM(P): (

∀j < n
) ∑

〈si ,Si〉∈S{〈s,S 〉

(
π̃si,j

)
=
π〈s,S 〉

k

Proof. See appendix D.

5.3 Interactive Probabilistic Chains in Practice:
Application to a FIFO Queue

We are going to use the IPC framework on the system presented in example 1.1 of chapter 1,
i.e., a system composed of a producer, a FIFO queue and a consumer. We target the same per-
formance results as in section 3.4, i.e., the pop latency distribution and the end-to-end latency
distribution in the queue. Parameters of the system are set as in example 2.1 of chapter 2. As a
reminder, those parameters are:

– the queue size, QS , set to 1,
– the push operation delay, DPUSH , set to 2 time steps,
– the pop operation delay, DPOP , set to 1 time step,
– the production delay, DPROD , set either to 2 time steps with a probability 0.5 or to 3 time

steps with a probability 0.5,
– and the consumption delay, DCONS , set either to 1 time step with a probability 0.5 or to

4 time steps with a probability 0.5.
We follow a hierarchical approach, modeling the whole system by several IPC subprocesses

composed in parallel. The decomposition in subprocesses is rather natural: one process for the
FIFO queue, one process for the producer and one process for the consumer. Let PFIFO, PPROD
and PCONS be the IPC models of respectively the FIFO queue, the producer and the consumer.
To depict the behavior of the system, four actions are identified:

– The request for a push operation (pushRq): The producer initiates an insertion of element
in the queue.

– The response for a push operation (pushRsp): The push operation was processed by the
queue, the element is effectively inserted.

– The request for a pop operation (popRq): The consumer initiates the withdrawal of an
element from the queue.

– The response for a pop operation (popRsp): The pop operation was processed by the
queue, the element is effectively withdrawn and provided to the consumer.
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Figure 5.9: Producer and consumer IPC models

The whole system IPC model, P , is consequently specified by the parallel composition of
the subprocesses PFIFO, PPROD and PCONS with synchronization on actions pushRq, pushRsp,
GRQ and popRsp:

P = PPROD
|[pushRq,pushRsp]|
PFIFO
|[popRq,popRsp]|
PCONS

Producer and consumer behaviors are rather small (six states). Their IPCmodels PPROD and
PCONS are depicted in figure 5.9. On the producer side, initially, no action can be fired: the time
between two produced elements (DPROD) has to elapse. At the end of this delay, the producer
initiates a push operation (pushRq), waits for the signal of end of the operation (pushRsp),
and loops. The consumer side is similar: initially the time between two consumed elements
(DCONS ) has to elapse. At the end of this delay, the consumer initiates a pop operation (popRq),
waits for the result (popRsp) and loops. The

The behavior of the studied FIFO queue is also not too complex, mainly because of its
limited size (1 element) and because of the nature of the inserted delays. Nondeterminism is
induced in the FIFO queue by the possibility to receive asynchronously either a push operation
request or a pop operation request. Initially, the queue is empty, and it can only accept the
insertion of an element. Then, after a first element insertion, the queue is full and it can only
accept the withdrawal of the element. The IPC model, PFIFO of the FIFO queue is depicted in
figure 5.10.

The model of the whole system, P, has 49 states and 80 transitions. Because P is closed
(there is no more interaction with the environment), urgency-cut can be applied. Let P6{�A =
〈S,A, −−→ , z{ , s〉 be the IPC obtained by urgency cut of P . We haveA = {pushRq,pushRsp,popRq,popRsp}.
P6{�A is depicted in figure 5.11. P6{�A remains a large IPC (to be depicted) with 49 states and 62
transitions.

We can easily verify that P6{�A is time deterministic. To compute performance measures,
P6{�A is transformed into a DTAMC as presented in section 5.2.4. Because we are targeting
performance measures on the long run, we can limit our study to an irreducible part of the
DTAMC, defining arbitrarily the initial state. The chosen irreducible DTAMC, calledM(P6{�A ),
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Figure 5.12: Whole system irreducible DTAMC model

is depicted in figure 5.12. The set of states ofM(P6{�A ) is the same for all irreducible DTAMCwe
could have chosen. The DTAMCM(P6{�A ) can now be used to compute the latency distribution
of the pop operation and the latency distribution of the end-to-end latency in the queue.

For the pop operation latency, information concerning the pop operation (i.e., popRq and
popRsp actions) are useful. We can thus consider the DTAMCM′(P6{�A ) for which the annota-
tion function ignores actions pushRq and popRq.M′(P6{�A ) is not minimal. The computation of
the pop operation latency distribution can be processed on its quotientM′(P6{�A )/≈

, which is the
DTAMC already studied in section 3.4.1 and depicted in figure 3.4.

We could have followed another methodology to get the same DTAMC asM′(P6{�A )/≈
. Be-

cause only popRq and popRsp actions are useful for the pop operation latency distribution
computation, the IPC P6{�A can be first minimized (according to the IPC probabilistic branching
bisimulation), hiding pushRq and pushRsp actions. Then this reduced IPC can be transformed
into a DTAMC, which is the same asM′(P6{�A )/≈

.

For the end-to-end latency, the DTAMCM(P6{�A ) cannot be directly used. Indeed, the queue
size information for each state is needed. This information can be easily added to the DTAMC:
the graph is explored from the initial state for which the queue size is equal to zero. At each
pushRsp action, the queue size is incremented by one, and at each popRsp the queue size is
decremented by one. Then, the DTAMC M′′(P6{�A ) for which the annotation function is lim-
ited to pushRq, popRsp actions and the queue size can be used to compute the end-to-end
latency distribution. M′′(P6{�A ) is the DTAMC already studied in section 3.4.2 and depicted in
figure 3.6.

5.4 Relating Interactive Probabilistic Chains to Interactive Markov
Chains

From a methodology point of view, IPCs and IMCs present strong similarities:
– Both IMCs and IPCs aim at integrating labeled transitions systems and Markov chains in

a single formalism
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p
MP

1− p λ

Figure 5.13: Approximation of an IMC by an IPC

– timed systems can be modeled following a compositional approach (with intermediate
minimization according to bisimulations)

– a large set of delays can be taken into account thanks to approximations using the phase-
type distributions

– the performance analysis of IMCs and IPCs relies on the study of an underlying Markov
chain.

Nevertheless IMC and IPC semantics are very different. In IPC, because of the discrete syn-
chronous characteristic of time, time has to progress synchronously for parallel composition
or nondeterministic choices, which is expressed by the SOS semantic rules (4.b) and (5.b).

Although IPCs target the modeling of discrete-time systems, one can imagine to model
continuous time systems by discretization of the time scale, as in [ZN10]: continuous time is
divided in time slices representing the time unit in the IPC, i.e., the duration of a probabilistic
transition. The quality of the discretization can be always improved by increasing the sampling
rate, i.e., reducing the duration of a time slice. For instance, it is possible tomodel an IMC by an
IPC.We illustrate this possibility by approximating an exponential distribution, which governs
the sojourn time in states of an IMC, by a geometrical one, which governs the sojourn time in
states of an IPC. For instance consider the two processes M and P depicted in figure 5.13
(Those processes are phase-type distributions corresponding to exponential and geometrical
distributions and are also IMC and IPC processes).

Suppose that the time unit considered for the IMC model M is U . The sojourn time SJM
in the initial state ofM is λ-exponentially distributed. The expected value of SJM is E [SJM ] =
1
λU . We approximate M by the IPC P where the considered time unit (i.e., the duration of
a probabilistic transition) is u. the sojourn time SJP in the initial state of P is geometrically
distributed (with parameter p). The expected value of SJP is E [SJP ] =

1
1−pu. We adjust the

probability p such as to have
E [SJM] = E [SJP ]

i.e., the exponential and the geometrical distributions are, on average, equal. The resolution
of this equation gives us p = 1 − λ u

U , which is only correct if λ u
U ≤ 1 (p is a probability and

must satisfy 0 ≤ p ≤ 1). the case λ u
U > 1 corresponds to a discretization of the continuous time

scale ofM , using unsuitable discrete time slices for P . For instance suppose u = U and λ = 5.
We have SJM = 0.2U , which is difficult to approximate using discrete time slices of 1u = 1U .
The best approximation we can have is to consider the borderline case p = 0, which gives us
SJP = 1. The value 1 is the smallest possible sojourn time SJP = 1 we can have under the
hypothesis u

U = 1, i.e., u =U .

In figure 5.14, we compare the continuous-time distribution of SJM to the discrete-time
distribution of SJP when approximatingM by P for different values of u. In this example, λ is
set to 0.4 and the probability p is set to 1− λ u

U . One can see that the smaller the time slice is,
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the better the approximation is.

According to those observations, we can approximate, by discretization of the continuous-
time exponential distributions, an IMC by an IPC. Moreover, the approximation can be made
always better by increasing the sampling rate of the discretization, i.e., by making the time
slice duration u tend to zero.

Because IMC and IPC semantics are rather different for parallel composition and non-
deterministic choice (in the case where time is involved), it is interesting to study if the limit,
when the time duration u of a probabilistic transition tends to zero, of the behavior of an IPC
approximating an IMC is also preserved when using operators defined in the semantics. We
only study the parallel composition operator, the following being adaptable for others operat-
ors, in particular the nondeterministic choice operator.

Consider the two IMCs M1 andM2 depicted on figure 5.15. The IMC M , also depicted on
figure 5.15 is the parallel composition (with no synchronization) ofM1 andM2, “M =M1 |[∅]|
M2”. The considered time unit in those IMCs is U .

As we have seen, we approximate M1 and M2 by the two IPCs P1 and IPC2 depicted in
figure 5.16. For P1 and P2, the time unit is u (it is the time duration of a probabilistic transition).
To approximateM1 by P1 andM2 by P2, the probabilities p and q are defined as following:

p = 1−λ
u

U
and q = 1−µ

u

U

The IPC P , depicted in figure 5.16, is the parallel composition of P1 and P2, “P = P1 |[∅]|P2”.
We study the behavior of the state s0 of P when the time unit u tends to zero, and we compare
to the behavior of the state s0 ofM . We introduce some notations first: SJM (s0) and SJP (s0) are
the sojourn time of states s0 in M and P . Pr[P1] (resp. Pr[M1]) denotes the probability that the
process P1 (resp. M1) leaves its initial state before P2 (resp. M2). Symmetrically, Pr[P2] (resp.
Pr[M2]) denotes the probability that the process P2 (resp. M2) leaves its initial state before P1
(resp. M1). Finally Pr[P1 ||P2] (resp. Pr[M1 ||M2]) denotes the probability that the processes P1 and
P2 (resp. M1 andM2) leave their initial state simultaneously.

To study behaviors in states s0 in P and M when u tends to zero, we compare: SJM (s0) to
SJP(s0), Pr[M1] to Pr[P1], Pr[M2] to Pr[P2] and Pr[M1||M2] to Pr[P1 ||P2].

In the IMC M the following results hold: SJM (s0) is exponentially distributed with para-
meter (λ+µ), and

Pr[M1] =
λ

λ+µ
Pr[M2] =

µ

λ+µ
Pr[M1 ||M2] = 0

We first study the probabilities of probabilistic transitions of P (from state s0) by asymptotic
analysis. When u tends to zero (i.e., when u

U tends to zero), we have:

pq = 1− (λ+µ)
u

U
+ o

(
u

U

)
1− p = λ

u

U
1− q = µ

u

U
(1− p)(1− q) = o

(
u

U

)

One can first say that the sojourn time SJP (s0) in state s0 of P is geometrically distributed
with parameter pq = 1 − (λ + µ)r + o(r). We saw that this geometric distribution tends to the
exponential distribution with parameter λ+µ when u (and thus r) tends to zero. Consequently,
when u tends to 0, the distribution of SJP(s0) converges to the distribution of SJM (s0).

Then, one can study Pr[P1], Pr[P2], and Pr[P1 ||M2]. Those probabilities are conditional probab-

ilities. For instance, Pr[P1] corresponds to the probability that the transition s0
1−p
z{ s1 is taken
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given that we leave the state s0. Thus, we have simply

Pr[P1] =
1− p

(1− p) + (1− q) + (1− p)(1− q)

Following a similar reasoning, we have

Pr[P2] =
1− q

(1− p) + (1− q) + (1− p)(1− q)
and Pr[P1||P2] =

(1− p)(1− q)
(1− p) + (1− q) + (1− p)(1− q)

When u tends to zero, we have

Pr[P1] −→u→0

λ

λ+µ
Pr[P2] −→u→0

µ

λ+µ
Pr[P1||P2] −→u→0

0

We can conclude that the limit of the behavior of an IPC approximating an IMC is preserved
when using the parallel composition operator. On the same line, the limit of the behavior of an
IPC approximating an IMC is preserved when using the nondeterministic choice operator.

Consequently, there exists strong links between IMC and IPC semantics, despite they can
seem to be rather different at first sight. Nevertheless, there is a fundamental difference
between an IMC and its approximation by an IPC: The approximation may be as accurate as
wanted, there is always a non-zero probability that concurrent delays in IPCs may elapse sim-
ultaneously. In IMCs, concurrent delays can never elapse at the same time. On the previous
example, for the IPC P , we had Pr[P1 ||P2] that tends to zero (but is never equal to zero) when the
approximation is improved. For the IMC M , we had Pr[P1 ||P2] exactly equal to zero. The delays
represented byM1 andM2 can never elapse simultaneously.

5.5 Discussion

In this chapter, we introduced interactive probabilistic chains, a formalism dedicated to
model discrete-time systems in a compositional way. We defined both an operational semantics
and strong and branching bisimulations for IPCs, which we showed to be congruences for the
parallel composition. The congruence property ensures that intermediate minimization can be
applied during compositions, which is required to make the compositional approach effective.
The IPC language IPCL has been simplified to be presented, but could be lifted to value passing
rendez-vous (and local state variables) in Lotos-style. This is used in our tool chain.

We also defined a transformation of an IPC into a DTAMC to exploit the performance meth-
odologies we presented in chapters 2 and 3. This transformation proceeds in two steps: Firstly
the IPC is transformed into an alternating model [Han94] (there are no more states presenting
both nondeterministic and probabilistic choices). The transformation of an IPC into an al-
ternating model relies on classical notions of maximal progress and urgency defined for timed
models [NS91]. Secondly, the alternating model is transformed into a DTAMC.

This transformation of an IPC into a DTAMC imposes some restrictions concerning the use
of nondeterminism in models: only fully specified models, i.e., models with no nondetermin-
ism due to implementation freedom or external environment, can be tackled by this transform-
ation. Although these restrictions reduce the applicability of methodologies presented in the
previous chapters, we believe that the study of partially specified hardware systems does not
provide enough exploitable results, as we illustrated in example 5.7.
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We defined a second transformation of a DTAMC into an SMC. Computing latency distri-
butions for the SMC associated to a DTAMCwould require to adapt themethodology presented
in chapter 3 to deal with SMCs instead of DTAMCs. Unfortunately, the methodology cannot
be fully adapted to SMCs. For instance, we would not be able to compute the end-to-end
latency distribution in section 5.3. Indeed, to compute this distribution, we have to consider,
in addition to actions the system may fire, the size of the queue in the different states, which
is not possible with SMCs since we are not able to store information concerning states within
the SMC formalism. Although the SMC transformation may seem to be less complete (and
thus adequate) than the DTAMC one, there is no information associated to states, which is an
interesting property for implementation as we will see in the next chapter.

Although their semantics are rather different, IPCs and IMCs present strong similarities.
In particular, the limit of an IPC when the considered time step tends to zero is an IMC. Nev-
ertheless, there is a fundamental difference between IMCs and IPCs: contrary to IMCs, there is
always a non null probability in IPCs that sojourn times in concurrent states elapse simultan-
eously.



Chapter 6

Implementation

In this chapter, we present the toolchain supporting the IPC formalism in practice. This tool
chain is depicted in figure 6.1. The chain can be split in two parts: a first part dedicated to IPC
modeling in a compositional approach, and a second part concerning performance evaluation
using IPCs, mainly the computation of latency distributions. Some of the tools existed, as part
of the “Construction and Analysis of Distributed Processes” (Cadp) toolbox [GLMS07], while
others have been developed.

We present guidelines for the use of this performance tool chain. We underline some prob-
lems encountered when using the IPC formalism and how we tackled them in practice. For
developed tools, we focus on some interesting algorithmic aspects that could help to under-
stand, in practice, the IPC formalism. Firstly, we present the way to model systems by IPCs.
Secondly, we present the tools dedicated to performance evaluation, and mainly to the compu-
tation of latency distributions.

6.1 Interactive Probabilistic Chain Modeling

Originally designed for verifying the functional correctness of Lotos specifications, the
Cadp toolbox has been enriched in the last years to support the IMC formalism [GH02, HJ03].
Thus, it allows to perform both functional verification and performance evaluation of distrib-
uted systems.

We followed a similar approach as the one used to support IMCs in the Cadp toolbox: time
information is introduced in a functionally verified Lotos specification. While time is modeled
by continuous phase-type distributions in IMCs, discrete phase-type distributions are used for
IPCs.

6.1.1 Storing an IPC Using the Cadp Toolbox

The Cadp toolbox provides the Bcg format to store LTS. In the Bcg format, a label, stored
as a character string, is associated to each transition. Because labels are stored as strings, the
Bcg format can be used not only to store LTS, but also other directed graphs like IMCs, the
discrimination between different types of transitions appearing in the transition labels. Con-
sequently, there are some conventions defined in the Cadp toolbox concerning how different
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Figure 6.1: Developed tool chain
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types of transitions have to be encoded. To distinguish the different transitions of IPCs in a
Bcg graph, we reuse the following conventions:

– “ACT” is the string associated to an interactive transition labeled with the action ACT.
– “prob p” is the string associated to a probabilistic transition with a probability p, p being

a real value greater than zero and less or equal to 1.
Cadp includes an Application Programming Interface (API) dedicated to the manipulation

of Bcg graphs. The Bcg format is the input format used by all tools developed (using the Bcg

API) to deal with IPCs.

6.1.2 Using Lotos to Express Interactive Probabilistic Chains

Due to strong similarities between the semantics of Lotos and IMCs, it is possible to use
directly the Lotos language to express IMCs [GH02]. Indeed, Markovian transitions in IMCs
are simply interleaved nondeterministically with interactive transitions. Consequently, a two
step approach can be followed. Firstly, a Lotos specification including special actions Λi ,
which must not be used for synchronization, to express Markovian delays can be directly writ-
ten and then compiled [Gar89] with the Caesar.adt and Caesar compilers. Then, the Labeled
Transition System (LTS) generated by Caesar can be transformed into an IMC by renaming
transitions labeled with gates Λ into Markovian transitions of the form “rate λ”.

In order to reuse existing tools and existing functional LOTOS models, we would like to
apply the same kind of two step approach for IPCs. However, an extension of the Lotos al-
gebra with constructs supporting IPCs would imply a large effort in the modification of LTS
generation tools. Indeed, contrary to the expression of IMCs using Lotos, the time model of
IPCs does not allow to use directly the Lotos language. Thus, some restrictions in the use of
Lotos operators are mandatory to generate IPCs. To denote a probabilistic transition in the
Lotos specification, we use special actions Πi that are not allowed to be synchronized. In an
IPC context, the Lotos operators are used as following:

– Sequential composition, hiding and process instantiation operators can be used as for
Lotos specifications. Indeed, for those operators, the SOS rules of IPCs are compliant
with the rules of Lotos process algebra.

– The probabilistic choice operator can be written using the nondeterministic choice oper-
ator. The probabilistic choice is written as the nondeterministic choice between several
Π actions. When those Π actions are instantiated by probabilities in the LTS, the user
has to ensure that all those probabilistic transitions sum up to one.

– Nondeterministic choice between actions is allowed as in Lotos. In addition, we can
define a nondeterministic choice between actions and one single probabilistic choice,
the semantics rules of Lotos and IPC being, in this case, compliant. On the contrary, a
nondeterministic choice between several probabilistic choices cannot be expressed using
Lotos.

– Parallel composition is not allowed: the Lotos and IPC semantics are different.
When looking at this methodology to use Lotos to generate IPCs, we can see that there are a
lot of restrictions that prevent us to write complex IPCs. Mainly, the parallel composition is
missing, although it is mandatory for a compositional approach. Nevertheless, this methodo-
logy enables us to reuse Lotos descriptions of functional models, resulting in a significant time
gain.

To generate large IPCs, in spite of those limitations, Lotos descriptions are used to gen-
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erate quickly and efficiently small sequential subcomponents of the system. Thanks to the
implementation of the parallel composition at the IPC level, complex IPCs are obtained by
composition of the simple subcomponents.

6.1.3 Compositional Approach to Generate Interactive Probabilistic Chains

Lotos allows to write sequential IPCs simply. But this implies that delays, modeled as
discrete phase-type distributions, are directly incorporated in Lotosmodels.

Firstly, this task prevents us from a modular approach: we cannot have a clear distinction
between the functional part and the timed part of the specification. In particular, one may
be interested in having a functional specification of the whole system, which is enriched, in a
second step, with time information.

Secondly, it prevents us from following a compositional approach, because we cannot use
the parallel composition operator in Lotosmodels. It implies that it will be difficult, not to say
infeasible, to model complex systems by IPCs using Lotos.

As a consequence, we do not use Lotos to model a whole complex system, but rather apply
the following approach:

– functional subcomponents (i.e., without time information) are modeled in Lotos

– functional LTS models of the subcomponents are generated using the Caesar compiler.
– functional LTS models of the subcomponents are enriched with time information, using

the tool Ipc_insert to get IPC models of subcomponents
– IPC models of the subcomponents are composed in parallel (according to the parallel

composition semantics of IPC) using a dedicated tool, Ipc_compose
One can see that this approach does not prevent us from performing functional verification

since functional models of subcomponents can be composed (according to the LTS semantics)
to get a functional model of the whole system.

In the rest of this section, we first discuss the enrichment of functional models with time
information and we motivate why the insertion of time information into functional models re-
quired the development of a dedicated tool Ipc_insert. Then, we present the tool Ipc_compose
that implements the parallel composition (with synchronizations) for IPCs.

6.1.4 Constraint-Oriented Specification of Interactive Probabilistic Chains

In this section, we discuss the issues related to the constraint-oriented specification of IPCs
as proposed for IMCs [HK00]. We would like to clearly separate time information from func-
tional specification, inserting time information by composition. Delays, modeled by discrete
phase-type distributions in separated processes, are seen as time constraints and composed in
parallel with the functional specification. This methodology implies that actions denoting the
beginning and the end of the delay associated to a temporized operation appear explicitly in
functional models. We call those actions begin-action and end-action, and we note them ab and
ae. The new functional model, compliant with a constraint-oriented insertion of delays, should
remain branching equivalent to the initial one, after hiding begin and end actions.

For the constraint-oriented specification of IPCs, we distinguish two approaches, one using
the standard parallel composition operator of IPCs, and one using a modified composition op-
erator. Whilst the former approachmay lead to wrong results, we show that the latter approach
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always gives us the expected results.

Inserting Delays Using the Standard Parallel Composition Operator

To specify IPCs in a constraint-oriented way, a first idea would be to use the standard par-
allel composition operator (as for IMCs). We illustrate this approach in the following example.

Example 6.1. Consider a system that executes a temporized operation. In a functional view, the
operation is usually considered as non atomic and is modeled by two atomic actions: the beginning
of the operation and the end of the operation. By using notations ab and ae for the beginning and the
end of the temporized operation, the functional behavior of this system is simply

Bf = ab ; ae ; δ

which means that action ae is taken after action ab. Suppose that the operation takes one time unit
to be processed, i.e., the action ae follows action ab after exactly one time unit. Time can be directly
taken into account by modeling the system by the behavior,

Bt = ab ; •
∑

1 :: (ae ; δ)

Bt can also be obtained by insertion of a delay of one time unit in a constraint-oriented way.
Actions ab and ae identify the beginning and the end of the delay and can be used to insert the delay
compositionally. The delay can be modeled by the IPC behavior

Bd = ab ; •
∑

1 :: (ae ;Bd)

which means that, between the beginning and the end of the delay, one time unit elapses.

The timed behavior B′t of the system is finally obtained by parallel composition of Bf and Bd ,

B′t = Bf |[ab,ae]|Bd

The process B′t, obtained in a compositional way, is strongly bisimilar to the targeted process Bt .

The parallel composition seems to be an efficient means to insert delays in functional mod-
els. Unfortunately for IPCs, in some cases, the use of the parallel composition for delays inser-
tion may lead to unexpected results. This problem is not encountered when modeling systems
with IMCs. We illustrate this problem in the two following examples where a same system is
modeled both using IMCs and IPCs. In the first example, the insertion of delay using the IPC
parallel composition does not induce nondeterminism whilst it does in the second example.

Example 6.2. Consider a system where an action a1 may be taken if and only if a delay ∆ has not
yet elapsed, and where an action a2 may be taken if and only if the delay ∆ has elapsed.

We model this system both as an IMC and as an IPC, inserting the delay ∆ by using the parallel
composition operators of IMCs and IPCs. The functional model is the same for IMC and IPC and is
depicted in figure 6.2, where actions ab and ae denote the begin and end actions used for the insertion
of delay ∆.

In the case of the IMC model, we suppose that the delay ∆ is modeled by an exponential distribu-
tion with rate λ. In the case of the IPC model, the delay ∆ is modeled by a constant distribution of
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Figure 6.2: Functional model of the system. Actions ab and ae denote the begin and end of
delay ∆

two time steps. Those delays are modeled by an IMC model,Md , and an IPC model, Pd , depicted in
figures 6.3(a) and (b).

The expected IMC model,Mt, and IPC model, Pt, of the timed system are depicted in figure 6.3(c)
and in figure 6.3(d), respectively.

We try to construct models Mt and Pt, by constraint-oriented insertion of the delays, using IMC
and IPC parallel composition operators. After hiding ab and ae actions, and minimization (with
respect to the branching bisimulations of IMCs and IPCs), the models obtained are:

– IMC model: Mt′ =
(
hide (ab,ae) in Pf |[ab,ae]|Md

)
/≈

– IPC model: Pt′ =
(
hide (ab,ae) in Pf |[ab,ae]|Pd

)
/≈

Mt′ and Pt′ are depicted in figure 6.3(e) and (f).

We can see that in both cases, the models obtained by constraint-oriented insertion of delays are
not branching bisimilar to the expected one, i.e.,Mt′ 0Mt and Pt′ 0Pt . However, we can note that:

– the expected IMCmodelMt is Markovian branching bisimilar to the modelMt′ modulo urgency
cut, i.e.,Mt 6{�A

≈Mt′ 6{�A
– the expected IPC model IPCt is probabilistic branching bisimilar to the model IPCt′ modulo

urgency cut, i.e., Pt 6{�A ≈Pt′ 6{�A
The urgency cut IMCMt 6{�A

and the urgency cut IPC Pt 6{�A are depicted in figure 6.3(g) and (h).

For both IMC and IPC, the constraint-oriented insertion of delays introduces nondetermin-
ism in the models. However, when the constraint-oriented insertion is processed on the func-
tional model of a closed system, urgency-cut can be applied, leading to the expected IMC or
IPC model.

We are also interested in the constraint-oriented insertion of delays in non-closed models,
i.e., in subcomponents of a closed system we want to compose. In other words, in IMC and IPC
modeling, one may want to use a subcomponent obtained by constraint-oriented insertion of
delays using the parallel composition, in place of the model directly written with delays.

In subcomponentmodels, the constraint-oriented insertion of delays introduces nondetermin-
ism we cannot avoid (urgency cut cannot be applied because models are not closed). Con-
sequently, one has to study the impact of the introduced nondeterminism on the composition
of non-closed models.

We illustrate the construction of a closed system, by using timed subcomponent models
obtained in a constraint-oriented way in the following example.

Example 6.3. Consider the same system as in example 6.2, modeled using both IMCs and IPCs.
Suppose that this system is not closed, i.e, it is a subcomponent C1 of a closed system S . On may
want to use the IMC modelMt′ of the subcomponent C1 in place of the IMC modelMt, and the IPC
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Figure 6.3: Insertion of delays in IMCs and in IPCs using parallel composition
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model Pt′ of the subcomponent C1 in place of the IPC model Pt to construct the model of the targeted
closed system S . As we noticed previously, the construction of Mt′ and Pt′ introduces unexpected
nondeterminism.

For instance, consider that the closed system S is the parallel composition of the subcomponent C1
synchronized with a second subcomponent C2 on actions a1 and a2. The subcomponent C2 behaves
as following: it can choose nondeterministically between actions a1 and a2 after a delay ∆

′ is elapsed.
If the action a1 is taken, then action a3 may be taken. Otherwise, action a2 is taken, possibly followed
by a′3.

In the case of the IMC model, we suppose that the delay ∆′ is modeled by an exponential distri-
bution with rate µ. In the case of the IPC model, the delay ∆′ is modeled by a constant distribution
of two time steps. The IMC modelMt′′ (cf. figure 6.4(a)) and the IPC model Pt′′ (cf. figure 6.4(b)) of
the subcomponent C2 are written with direct insertion of the delay ∆′.

The expected closed system is consequently modeled by:
– the IMCM =Mt′′ |[a1,a2]|Mt

– the IPC P = Pt′′ |[a1,a2]|Pt
BecauseM and P model a closed system, urgency cut can be applied. The urgency cut IMCM 6{�A

ofM and the urgency cut IPC P6{�A of P are depicted in figure 6.4(c) and (d).

Consider the models M ′ and P ′ respectively obtained by replacing Mt and Pt by Mt′ and Pt′ .
Because M ′ and P ′ model a closed system, urgency cut can be applied. The urgency cut IMC M ′ 6{�A
ofM ′ and the urgency cut IPC P ′ 6{�A of P ′ are depicted in figure 6.4(e) and (f).

We can see that whilstM 6{�A andM ′ 6{�A are Markovian branching equivalent, P6{�A and P ′ 6{�A are
not...

As the example shows, in closed systems, when using constraint-oriented insertion of delays
(with the parallel composition), the branching equivalence modulo urgency cut may be always
preserved for IMCs, but may be not for IPCs. One may try to provide an explanation to this
difference. In both cases, constraint-oriented insertion of a delay in functional models may
lead to unexpected timed models, containing nondeterminism. However, this nondeterminism
disappears by parallel composition and urgency cut for IMCs, whilst it may not for IPCs.

This difference is mainly due to the way time progresses in IPCs and IMCs. In IPCs, time
progresses synchronously, because probabilistic transitions are taken synchronously. Con-
sequently, two subcomponents may have their delays finishing exactly at the same time. Con-
versely, Markovian transitions are taken asynchronously in IMCs, and the probability that two
delays elapse at the same time is zero.

In both IPC and IMC cases, the process in which a delay is inserted in a constraint-oriented
way, is not “immediately” aware of the end of the delay. The process is informed of the end of
the delay by synchronizing on the end action denoting the end of the delay. In a timed view,
the delay elapses, and the synchronization on the end action is taken instantaneously. But the
interleaving of interactive transitions in zero-time allows to have actions interleaved before the
synchronization on the end action. In this case, those actions may imply non-determinism if
their ability to be taken depends whether the delay has elapsed or not.

Inserting Delays Using the Parallel Composition and Hybrid Transitions

We illustrated that the constraint-oriented insertion of delays with the parallel composition
operator of IPCs may lead to wrong results. To avoid this problem, we suggest a new method
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allowing to insert delays by composition, using a composition operator (the hybrid composi-
tion operator) different from the parallel composition operator, and that uses a special kind of
transition that is both probabilistic and interactive. We call this kind of transition an hybrid
transition. Because hybrid transitions are only used in replacement of interactive transitions
labeled with end action in the delay process:

– In the delay process an hybrid transition merges the end action with the last stage of
the discrete phase type distribution of the delay. In other words, the hybrid transition
represents both the last probabilistic time step of the delay and the end action.

– in the functional process, an hybrid transition replaces the interactive transition labeled
with the end action. For this hybrid transition, the probability is left unspecified.

The two hybrid transitions are then synchronized (on the end action). This synchronization
results in a probabilistic transition for which the probability is given by the probability of the
hybrid transition of the delay.

Although a model presenting hybrid transitions is, strictly speaking, no longer an IPC, the
hybrid composition used for delay insertion removes all hybrid transitions.

This solution can be seen as an adaptation to IPCs of the definition of active and passive
transitions in stochastic process algebras [Hil96]: the hybrid transition in the delay, which has
its probability specified, is an active transition, because it forces the probability of the resulting
probabilistic transition after synchronization. The hybrid transition in the functional process,
which has its probability unspecified, can be seen as a passive transition, because it has an
unspecified probability that is forced during synchronization.

This kind of solution generally requires that each synchronization involves at most one
active transition. In our case, this requirement is fulfilled: the synchronization involves only
two processes (the process and its delay), the process providing a passive hybrid transition and
the delay the corresponding active hybrid transition.

Actually, for functional models that should include hybrid transitions with unspecified
probabilities, we do not introduce a special transition but let the interactive end transition
unchanged. Our functional models need consequently no modification and can be used to
get IPC models in a constraint-oriented way. In the following we do not differentiate passive
hybrid transitions from interactive transitions.

Example 6.4. Consider the same system as in example 6.4. The system may take an action a1 if and
only if a delay ∆ is not yet elapsed, and an action a2 may be taken if and only if the delay ∆ has
elapsed. The delay ∆ is modeled by a constant distribution of two time steps.

The expected IPC model Pt and the functional model Pf used to process delay insertion are re-
drawn in figures 6.5(a) and 6.5(b)

The delay Pd ′ to be inserted in a constraint-oriented way is depicted in figure 6.5(c), where ab and
ae denote the beginning and end actions of the delay, used for composition. Notice that the transition
labeled with ae in the delay is an hybrid one (it is also a probabilistic transition with probability one).

The timed behavior obtained by composition on hybrid transitions is the IPC Pt̃ depicted in fig-

ure 6.5(d) and equal to Pf |[ab,ae]|Pd ′ , where |[]| denote the hybrid composition.

After hiding actions ab (ae disappears during the synchronization of the hybrid transitions), the
resulting IPC hide (ab) in Pt̃ is branching equivalent to the expected IPC Pt .

Wedeveloped a tool, Ipc_insert, implementing the composition on hybrid transitions. Ipc_insert
takes as input a process and the delay to insert, both encoded in the Bcg format. In the storage
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Figure 6.5: Constraint-oriented insertion of delays using hybrid transitions

of the different transitions of an IPC, we added a convention to deal with hybrid transitions:
– a passive hybrid transition is stored as an interactive transition (only the action is stored).
– an active hybrid transition has a label of the form “ACT; prob p”, where ACT is the end

action to synchronize on, and p the associated probability, p being a real value greater
than zero and less or equal to 1.

In addition, Ipc_insert takes as input the names of begin and end actions used for composing
the delay and the process.

Ipc_insert returns an IPC encoded in the Bcg format and corresponding to the process with
its delay inserted. In the case there are not other delays to insert, the resulting LTS is an IPC
with no more hybrid transitions.

We do not detail algorithmic aspects of Ipc_insert, this tool being similar to the one imple-
menting the parallel composition of IPCs and presented in the next section.

6.1.5 Parallel Composition of Interactive Probabilistic Chains

We developed a tool, called Ipc_compose, which allows to process the parallel composition
of IPCs according to the rules of chapter 5. Ipc_compose is thus similar to the Exp.open tool
of Cadp. However, Exp.open cannot be used directly to compose IPCs, because the implemen-
ted semantics of the parallel composition is different from the semantics of the IPC parallel
composition.

This tool takes in input an IPC behavior corresponding to the parallel composition with
synchronization of several IPCs. This behavior has to be entered either on the standard input
(stdin) or is provided in a text file using the –rules option 1. The behavior in input is described

1. The possibility to read from stdin the behavior corresponding to the composition to process is justified by the
possibility to call Ipc_compose in scripts. It allows to redirect a behavior directly as input of Ipc_compose without
creating a (temporary) file
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Table 6.1: Example input file for Ipc_compose

(

"PRODUCER_1.bcg"

|[PUSH_RQ_1,PUSH_RSP_1]|

"FIFO_1.bcg"

|[POP_RQ_1,POP_RSP_1]|

"CONSUMER_1.bcg"

)

|[ ]|

(

"PRODUCER_2.bcg"

|[PUSH_RQ_2,PUSH_RSP_2]|

"FIFO_2.bcg"

|[POP_RQ_2,POP_RSP_2]|

"CONSUMER_2.bcg"

)

by the grammar, which is a subset of the .exp language:

B ::= (B0) | B1 |[A]|B2 | B3

where A is a set of actions (not including τ) on which synchronizing. Behaviors Bi must be
filenames (between double quotes) of Bcg files storing IPCs. The parentheses allow to explicitly
express priorities between different synchronizations.

Example 6.5. An example of an input file for Ipc_compose, to generate the graph of two FIFO
queues in parallel is given in table 6.1.5. Each queue is connected to a producer and a consumer.
PRODUCER_1.bcg, FIFO_1.bcg, CONSUMER_1.bcg, PRODUCER_2.bcg, FIFO_2.bcg, CONSUMER_2.bcg
are IPCs encoded in the Bcg format. The actions used for synchronizations are actions of the inter-
active transitions of the IPCs.

The output of Ipc_compose is the IPC corresponding to the behavior in input. Its state
space is a subset of the Cartesian product of the state spaces of IPCs in input. Suppose that
the behavior in input involves n IPCs {Pi}0<i≤n, such that Pi = 〈Si ,Ai , z{ , −−→ , si0〉. Then, the
output IPC P = 〈S,A, z{ , −−→ , s0〉 is such that S ⊆ S1 × · · · × Sn. In other words, a state of the
output IPC corresponds to a combination of states of the input IPCs. In particular, the initial
state s0 of the output IPC is the combination of initial states of the input IPCs, s0 = (s1, . . . , sn).

In the output IPC P, for every pair of states c and c′, we define a valid transition as a tuple
〈c, l, c′〉 such that:

– either l ∈ ]0,1] or l ∈
⋃n
i=1Ai

– 〈c, l, c′〉 is allowed by the behavior in input, respecting IPC semantic rules of the parallel
composition.

We illustrate this notion of valid transition by the following example.

Example 6.6. Let P = 〈S,A, z{ , −−→ , s0〉, P
′ = 〈S ′ ,A′ , z{ , −−→ , s′0〉 and P

′′ = 〈S ′′ ,A′′ , z{
, −−→ , s′′0 〉 be three IPCs such that P = P ′ |[a]| P ′′. The initial state s of P is s0 =

(
s′0, s

′′
0

)
. Suppose

that:
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Table 6.2: Algorithm for the parallel composition of IPCs

Input: An IPC behavior involving n IPCs {Pi}0<i≤n
such that Pi = 〈Si ,Ai , z{ , −−→ , si0〉.

Output: One IPC P = 〈S,A, z{ , −−→ , s0〉
corresponding to the behavior in input.

Algorithm: Sexp := ∅
Sto_exp := {s0}
while Sto_exp , ∅ do

choose c = (s1, . . . , sn) ∈Sto_exp

Sexp := Sexp ∪ {c}
Sto_exp :=Sto_exp\c

Strans :=
{
(c, l, c′) | c

l
z{ c′ or c

l
−−→ c′ is valid

}

while Strans , ∅ do
choose (c, l, c′) ∈Strans

Strans := Strans\ (c, l, c′)
add transition (c, l, c′) in P
if c′ <

(
Sexp ∪Sto_exp

)
then

Sto_exp := Sto_exp∪ {c
′}

fi
od

od

– from its initial state, P ′ can take two interactive transitions s′0
a′
−−→ s′1 and s′0

a
−−→ s′2, and

two probabilistic transition s′0
p
z{ s′3 and s

′
0

1−p
z{ s′4

– from its initial state, P ′′ can take one interactive transition s′′0
a
−−→ s′′1 and the single probab-

ilistic transition s′′0
1
z{ s′′0

According to IPC semantics for parallel composition, from its initial state s0 =
(
s′0, s

′′
0

)
, P can take

one of the following transitions:

– s0
a′
−−→ s1, where s1 is the state s1 =

(
s′1, s

′′
0

)

– s0
a
−−→ s2, where s2 is the state s2 =

(
s′2, s

′′
1

)

– s0
p
z{ s3, where s3 is the state s3 =

(
s′3, s

′′
0

)

– s0
1−p
z{ s4, where s4 is the state s4 =

(
s′4, s

′′
0

)

A state s is in the state space S of the output IPC P, if, from the initial state s0 ∈ S , there is
a sequence of valid transitions allowing to reach it.

Ipc_compose constructs the output IPC by iteratively exploring all sequences of valid trans-
itions from the initial state s, which corresponds to a classical approach for constructing graphs.
The main lines of the algorithm used in Ipc_compose are presented in table 6.1.5.

In addition to the generation of the parallel composition of IPCs, we integrated the follow-
ing options in Ipc_compose:
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– option -m allows graphical monitoring of the generation
– option -p applies on-the-fly maximal progress cut to the generated IPC, and should be

used only when we are targeting an IPC probabilistic branching bisimilar to the one
obtained without this option

– option -u applies on-the-fly urgency cut to the generated IPC, and should by used only if
the generated IPC is closed

6.1.6 Compositional Interactive Probabilistic Chain Modeling

In practice, we are modeling systems following a compositional approach. The idea is to
use the bisimulations to reduce the intermediate state space of compositions. Efficient min-
imization algorithms, with respect to bisimulations, exist [GH02, HS99, BdS92, GV90]. The
reduction according to probabilistic strong bisimulation is already implemented in the tool
Bcg_min of the Cadp toolbox, with option -prob. Adding the -branching option to Bcg_min

allows a reduction according to the probabilistic branching bisimulation.

The compositional approach for generating IPCs is summarized in figure 6.6. Functional
models stored in the Bcg format are enriched with delays modeled as phase-type distribution
and also stored in the Bcg format. Functional models and delay models may be obtained by
compilation of Lotos specifications using Caesar.adt and Caesar compilers. The insertion
of delays is processed in a constraint-oriented way, using Ipc_insert, to avoid to introduce
nondeterminism. Then, the system studied is generated by alternating phases of composition
of subcomponents using Ipc_compose, and of minimization using Bcg_min with option -prob.
When we want to preserve only the branching minimization along all compositions, maximal
progress cut option -p can be used with Ipc_compose, and the option -branching can be used
with Bcg_min. Using these options may reduce the generated IPCs significantly.

6.2 Computation of the Latency Distribution

In chapter 5 we presented a transformation allowing to associate a DTAMC to an IPC. As
illustrated in chapter 2, a DTAMC can be used to compute performance measures, such as a
latency distribution (cf. chapter 3).

In an IPC, the latency is defined as the time elapsed between two actions (called begin
action and end action), i.e., between two interactive transitions. We developed a tool, called
Ipc_distribution, allowing to return the distribution of a latency in an IPC. Ipc_distribution
implements the computation of the distribution of the latency corresponding to the time between
an action ab (begin action) and the first occurrence of an action ae (end action). It corresponds
to the definition of the latency as given in [CHLS09] (i.e., it is a particular case of the generaliz-
ation given in chapter 3); hence it does not allow to compute end-to-end latencies. According
to chapter 3, the basic software architecture (shown in figure 6.7) of the Ipc_distribution tool
is structured into five separated steps:

(1) Transformation of the input IPC into a DTAMC
(2) Computation of the normalized steady state probabilities
(3) Extraction of absorbingMarkov chains between states allowing to take the begin action

and states allowing to take the end action
(4) Computation of the distribution of the time before absorption in extracted Markov
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chains
(5) Computation of the latency distribution as sum of computed distributions weighted by

normalized probabilities
Steps (2) to (5) are those presented in chapter 3 to compute a latency distribution in a DTAMC.

The Bcg format of the Cadp toolbox is efficient and well-adapted to store arbitrary directed
graphs (for instance LTS, IMCs, or IPCs), with annotations on transitions. Unfortunately, the
Bcg format does not allow the association of information to states as would be required for
state annotations in a DTAMC, on which our performance methodology is based on. To avoid
to define a new graph format for DTAMCs, we use the transformation of DTAMCs into SMCs
as presented in section 5.2.6. Because there is no information associated to states in a SMC,
it can be stored in the Bcg format. To store a SMC in the Bcg format, we use the convention
“ACT; prob p [C]” for the string associated to a labeled probabilistic transition, where ACT is the
action associated to the transition, p its probability, and C the value of the constant distribution
associated to the transition (if the distribution is Cn, we have C = n).

For step (2), we recall that we are able to get the same results concerning steady state prob-
abilities, with the associated DTAMC or its associated SMC (cf. lemma 5.9). Our implementa-
tion merges steps (3) to (5) to directly obtain an absorbing DTMCM representing the targeted
latency distribution (as a phase-type distribution). To this aim, the SMC is transformed as
following:

– Two additional states are added: a state s0, corresponding to the initial state ofM, and a
state sa corresponding to the absorbing state ofM

– We identify the set α of states allowing to take the begin action, which correspond to
initial states of absorbing chains that would be extracted

– We also identify the set ω of states allowing to take the end action, which correspond to
absorbing states of the chains that would be extracted

– For each state s ∈ α, we add a transition s0
p
z{ s, with p the normalized steady state

probability associated to s

– For each state s ∈ ω, each transition s′
p
z{ s (for some s′ and some p > 0) is replaced by

a transition s′
p
z{ sa

– States unreachable from s0 (i.e., states that are not in a path between a state of α and a
state of ω) are removed.

– Finally, the graph is transformed into an absorbing DTMC by removing interactive trans-
itions (for instance by hiding them and using minimization according to the branching
bisimulation)

The absorbing DTMCM is a discrete phase-type distribution corresponding to the targeted
latency distribution. The distribution of the latency, i.e., the distribution of the time before
absorption inM is finally computed by transient analysis of the absorbing state sa. The distri-
bution of the latency is the distribution computed onM (shifted by one because we added an
additional transition from s0 to each state of α). The implemented software architecture of the
Ipc_distribution tool is depicted in figure 6.8.

In our implementation, Ipc_distribution takes as input an urgency cut deterministic IPC,
and the names of begin and end actions identifying the latency. As output, Ipc_distribution
returns the latency distribution in a text format, easily understandable by graph plotting tools
such as Gnuplot. The range of the distribution computation is given by the option -n (by de-
fault the distribution is computed between 0 and 30). Moreover, the minimum, average and
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maximal values of the distribution are returned. The minimum value is the simplest measure
to compute: it corresponds to the shortest path to reach an absorbing state in the absorbing
DTMC. Conversely, the maximum value corresponds to the longest path and may be infinite if
there are loops of probabilistic transitions. The returned average value is only an approxima-
tion since it is the average of the values of the computed range of the distribution.

6.3 Discussion

In this chapter, we presented the toolchain supporting the IPC formalism in practice. In a
first section, we presented how we generate IPC models by reusing existing tools of the Cadp

toolbox. In a second section, we presented the tool Ipc_distribution that implements the com-
putation of the distribution of a latency, as defined in chapter 3.

To get IPC models, we authorize to use Lotos processes instead of IPC processes for the
part of the Lotos semantics that is shared by the IPC semantics. By this way, we can re-
use Caesar and Caesar.adt compilers of the Cadp toolbox to generate IPCs stored in the Bcg

format. Unfortunately, some IPC operators cannot be taken into account by writing Lotos

processes. In particular, the nondeterministic choice operator can only be used partially (we
cannot write a nondeterministic choice between several probabilistic choices), and the parallel
composition operator is forbidden. We implemented the parallel composition in a separated
tool, Ipc_compose, which directly proceeds the parallel composition of IPC models (stored in
the Bcg format).

We also underlined a problem in the modeling phase, encountered when inserting time in
functional models, following a constraint-oriented methodology, i.e., using the parallel com-
position of IPCs. This problem is inherent to the constraint-oriented insertion of delays: a
process in which a delay is inserted is not aware of the end of the delay after the last time step
of the delay, but after synchronizing on the end action of the delay. Consequently, due to the
interleaving semantics of parallel composition, some interactive transitionsmay be interleaved
before taking the end action. Results may be rendered false (nondeterminism is introduced)
when those interleaved interactive transitions depend on the end of the delay. We provided
a solution to this problem by inserting delays in a constraint-oriented way but using hybrid
transitions, i.e., both probabilistic and interactive transitions, which are used to denote the last
time step of a delay and the end action on which the process synchronizes with its delay. This
solution is similar to the active and passive transitions mechanism, introduced in [Hil96]. We
implemented it in the tool Ipc_insert. Another solution to this problem could be the use of a
scheduler. Indeed, we could force the end action to be taken atomically with the last time step
of the delay, i.e., no other interactive transition is allowed to be interleaved between the last
time step of a delay and the end action on which the process synchronizes.
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Chapter 7

Industrial Case-Study: The xSTream
Architecture

In this chapter, we apply the IPC formalism to investigate the xSTream architecture. The
xSTream architecture, designed at STMicroelectronics, is a multiprocessor data-flow architec-
ture for high performance embedded multimedia streaming applications. The study of the
xSTream architecture takes place in the context of the Multival project [CGH+08], whose aim is
to apply formal methods for functional verification and performance evaluation of multipro-
cessor multithreaded architectures.

In a first section, we present the xSTream architecture. We detail its targeted programming
model and its implication on design choices. In a second section, we present two functional
models of the architecture, at different levels of abstraction, detailing the modeling choices to
circumvent the state space explosion problem. In a third section, we present the enrichment
of those functional models to allow performance evaluation, and we use the performance flow
presented in chapter 6 to study some latencies in those models.

7.1 Presentation of the xSTream Architecture

For many multimedia applications, efficiency and programmability are required. Those
two requirements are opposed in the sense that, in general, the quest of efficiency worsens
programmability. Parallelism is mandatory to increase efficiency, in particular for systems
presenting strong limitations concerning power consumption (and thus frequency). Unfortu-
nately, parallelism generally leads to more difficulties to exploit resources in the most efficient
way. However, for the particular case of data-flow applications, the stream-oriented program-
ming model is known to be well-adapted to parallel architectures, because parallelism and
locality of data are explicitly exposed by the programmer.

7.1.1 Stream-Oriented Programming Model

The stream-oriented programming model is closely related to data-flow programming, and
consists in performing several computation steps, called filters on a stream of data. The set of
all filters can be seen as a network of pipelines through which the stream of data is processed.
Filters communicate through (unbounded) FIFO queues: a filter reads data from one or several

117



118 Industrial Case-Study: The xSTream Architecture

FIFO queueFIFO queue

filterfilter filter

Figure 7.1: The stream-oriented programming model

input queues, processes it, and write its result into one or several output queues. There is
consequently no need to manage data coherency: a filter is only authorized to read and write
data in its input and output queues. During its processing phase, the filter may use local
variables. In addition, there is no synchronization needed for filters to communicate with each
others, since they are implicitly realized by the FIFO queues.

By dividing an application into filters, one can exploit parallel architectures more easily.
An example of processing of a data-flow using the stream-oriented programming model is
depicted in figure 7.1.

An efficient execution of a stream-oriented application requires:
– an optimized slicing of the application into filters ensuring maximal parallelism
– an efficient management of the FIFO queues used for the communication between filters

7.1.2 Design of the xSTream architecture

The xSTream architecture provides an adequate support for stream-oriented programming.
It consists of a bunch of multi-threaded processing elements (xPE) (i.e., processors with some
local memory (LM)), communicating over a network-on-chip or NoC (xSTNoc). The parallelism
proposed by the set of processing elements can be exploited by the stream-oriented program-
ming model: filters are mapped on different processing elements. In addition, according to
the workload of each processing element, several filters can be mapped on the same processing
element. The xSTream architecture also provides a hardware support for the communications
in the stream-oriented programming language, i.e., for the FIFO queues used to communic-
ate between filters. Each processing element is linked to the NoC through buffering hardware
queues for input streams (called pop queues) and for output streams (called push queues). Push
and pop queues of a processing element are grouped inside a flow controller (xFC) that manages
their access to the NoC. The xSTream architecture is depicted in figure 7.2.

Between two processing elements on which communicating filters are mapped, the tuple
(push queue, path in the NoC, pop queue) is supposed to behave like a FIFO queue. We call
this tuple a virtual queue.

Because it is obviously not possible to provide infinite FIFO queues between filters mapped
over processing elements, the size of a virtual queue is physically limited by the size of the
push queue plus the size of the pop queue plus the length of the path in the NoC. Neverthe-
less, push and pop queues can be extended into the local memory (LM) of their respective flow
controllers, to provide a larger virtual queue. Thus, a queue stores its elements either in its
dedicated hardware or in the local memory — the latter being much less efficient. This exten-
sion, called backlog mechanism, provide a trade-off between the size of the virtual queue and
its cost in terms of hardware implementation. The transfer of elements from backlog memory
to the hardware queue is automatically managed by the flow controller. Although the backlog
mechanism authorizes larger queues, they remain bounded size. To avoid their overflow, in-
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Figure 7.3: Illustration of the behavior of the peek operation in a pop queue where {vi}i∈N are
values (which are either data or signals) carried by the queue

sertion operations on xSTream queues are blocking. A push operation (insertion of an element)
on the queue is blocked until there is a free place. Similarly, a pop operation (removal of an
element) on a pop queue is blocked until an element is available.

The push and pop queues and the NoC are the central point of the communication infra-
structure of the xSTream architecture. On their efficiency relies the performance of the system.

7.1.3 Pop queues

Pop queues of the xSTream architecture are not simple FIFO queues as we could have sup-
posed according to the stream-oriented programming model. Indeed, in many streaming ap-
plications, data is not necessarily accessed in the order they are stored in the input FIFO queue.
If a filter wants to access an element that is not at the head of its pop queue, one solution could
be to pop all the elements from the queue until the desired one is accessed, and, during this
time, to store the others in local memory. For efficiency reasons (to avoid to have to remove
elements from the queue and to store them in the local memory), a pop queue bypasses the
FIFO mechanism, and provides the peek operation, allowing to read an element at any place of
the pop queue. Contrary to the pop operation, the element returned by a peek operation is
only read, and not removed from the queue.

In a streaming application, it is usual to distinguish data significant information, processed
by the application, from control information used by the application algorithm. For instance,
control information can be used to differentiate different frames in a stream. The xSTream

architecture supports the distinction between these two kinds of information. Control inform-
ation is called signal, contrary to data information, simply called data. This distinction impacts
also the behavior of a peek operation.

The peek operation allows to access an arbitrary element in the pop queue. Consider the
operation “peek(n-1)” to read the n-th element of the pop queue (elements are numbered from
0). If all elements before the n-th place in the queue are data, the peek operation returns the
n-th element. If there are signal elements available before the n-th place in the pop queue, the
peek operation returns the first available signal element before the n-th place of the pop queue.
The behavior of the peek operation is depicted in figure 7.3.
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Figure 7.4: The spidergon topology of the xSTream NoC

7.1.4 Network-on-Chip

The NoC of the xSTream architecture is a set of routers interconnected in the aim of routing
data-flows between the different processing elements (actually between the different flow con-
trollers). The topology of the xSTream NoC is a spidergon [CLM+04]: all routers are disposed
along a ring, each router presenting four communication ports: one port connected to a pro-
cessing element, and three ports for the communication with other routers. In this spidergon
topology, a router can communicate over a point-to-point link:

– with the preceding router on the ring over its left link
– with its succeeding router on the ring over its right link
– and with the router that is diametrically opposed over its across link

The spidergon topology of the xSTreamNoC limits the number of communication ports of each
router, but also limits the number of communication links needed to pass from a router to an
other one. The spidergon topology is depicted in figure 7.4.

In the xSTream NoC, different flows may be multiplexed on the same hardware link. In
addition, the routing algorithm of the xSTream NoC is a static source routing. Through the
NoC, the path between two processing elements is static but it minimizes the number of links
occupied. A path on the NoC is composed of, at most, one across link, which, if present, has
to be the first link or the last link used in the path. In addition, to ensure that the NoC is
deadlock free [CLM+04], a path in the NoC is not allowed to pass through the node 0. For a
given application, between two filters, a single path is followed by all the elements of the flow.
On the point of view of an application, the NoC behaves like a FIFO queue: elements follow
the same path and go out of the NoC in the order they entered it.



122 Industrial Case-Study: The xSTream Architecture

Since processing elements are multithreaded, one can imagine to have several different
streams between the same pairs of processing elements, i.e., to have several streams sharing
the same path on the NoC. This functionality is enabled in xSTream by the virtual channel
concept.

7.1.5 Credit Protocol

A protocol between push and pop queues of the same virtual queue is dedicated to flow
control. This protocol, called the credit protocol, aims at ensuring that there is no more element
sent by the push queue than the pop queue can store. In other words, an element entering
the NoC is ensured to be able to go out of the NoC as soon as possible (i.e., the element is not
blocked in the NoC waiting for a free place in the pop queue).

The credit protocol relies on counters and thresholds managed by the push and the pop
queue, and credit messages sent from the pop queue to the push queue. We call the path on the
NoC from the push queue to the pop queue the data path, and the path in the revert way from
the pop queue to the push queue is called the credit path.

The behavior of the credit protocol can be briefly given by the separated behaviors of the
push queue and of the pop queue. On one side, the push queue manages a counter, the push
counter, representing the number of available places in the pop queue. Initially, the push
counter is set to the size of the pop queue. At any time, the push queue can receive a credit
message from the pop queue containing a number of additional elements the push queue is
authorized to send. When receiving this message, the push counter is increased by the value
received in the credit message. Each time an element goes out of the push queue, the push
counter is decremented by one. On the pop queue side, a counter of consumed elements, the
pop counter is managed. Initially, the pop counter is set to zero, and each time an element is
consumed (i.e., withdrawn from the pop queue), the pop counter is incremented by one. The
pop queue further depends on a (constant) credit threshold that is less or equal to its size. Two
situations may lead to the emission of a credit message:

– When the pop counter is greater or equal to the credit threshold, a credit message can
be sent by the pop queue. This credit message contains the value of the credit threshold.
As soon as the credit message is sent, the pop counter is decremented by the value of the
credit threshold.

– If there is a peek operation concerning an element not available in the queue, a credit
message can be sent (for instance there are two elements available in the queue and there
is a peek operation for the third element of the queue). This credit message contains the
value of the pop counter. As soon as the credit message is sent, the pop counter is reseted
to zero.

With respect to the credit threshold of the pop queue, one can distinguish two extreme
behaviors:

– credit threshold set to one. Each time an element is consumed, a credit message is
sent from the pop queue to the push queue. This behavior induces that a lot of control
messages are sent to the NoC, reducing its performance.

– credit threshold set to the size of the pop queue. This configuration minimizes the
number of credit messages sent from the pop queue. Nevertheless, it has an impact
on the performance of the virtual queue: each time the push credit runs out, the push
queue is blocked until receiving a credit message. This message is send only when all the
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elements sent by the push queue are consumed in the pop queue.
According to those remarks concerning the value of the credit threshold, one has to find a
trade-off allowing to minimize communication over the NoC, but preserving the performances
of the virtual queue.

In the initial specification of the xSTream architecture, the credit protocol was optional.
At the cost of an overhead, this protocol enables a flow control and reduces contentions in
the NoC (there are no elements of a data-flow blocked in the NoC). However, the functional
verification, performed at STMicroelectronics, of the models we present in the next section
showed that the credit protocol is actually mandatory to avoid deadlocks provoked by badly
written applications. Consequently, all models we study in the following sections, in particular
performance models, take the credit protocol into account.

7.2 Functional Models of the xSTream Architecture

In this section, we present the formal model used to study the xSTream architecture in a
hierarchical and compositional way. Our aim is to study the interaction between two virtual
queues between the same pair of processing elements, i.e., two parallel streams between two
pairs of filters mapped on the same processing elements. According to the characteristics of
the NoC, the two streams share the same data path and the same credit path on the NoC.
We abstract data path and credit path on the NoC by standard FIFO queues. We construct
this model by successive refinements of a simple virtual queue, i.e., a push queue directly
connected to a pop queue. For each refinement, we compare the result to the model of the
simple virtual queue, according to the branching bisimulation for LTS, using Bisimulator of
the Cadp toolbox.

7.2.1 Modeling choices

To model large systems such as the xSTream architecture, abstraction is needed. Firstly, we
target only the communication architecture. In other words, we do not focus on the behavior
of processing elements but only on virtual queues used for communication. Consequently,
we are not interested in the data values transported between filters, but in the way data are
transported.

Luckily, the behavior of a virtual queue is, in term of possible communication, independ-
ent from the value that is carried in the communication itself. The global behavior of a virtual
queue consists in carrying the values in the right order (FIFO scheme). However, because the
behavior of a pop queue relies on the distinction between data and signal for the peek oper-
ation, we cannot consider that all transported elements are equal, but we have to distinguish
data from signals. In our models, the elements carried over the communication architecture
of xSTream can take two values: data or signal. This first abstraction allows to circumvent the
state space explosion problem by limiting the state space of values carried by the architecture.

In a purely functional model of the xSTream architecture, we do not model applications
(i.e., filters). For a virtual queue, all possible interactionswith its environment (i.e., with filters)
may happen. However, we chose not to model the peek operation behavior on the pop queue.
This choice has not a great impact on the state-space of the model of a pop queue. Because peek
operations do not modify the pop queue, peek operations correspond to loops on the states of
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the model. But this choice has an impact on the complexity of the credit protocol: a credit
message is only sent when the pop counter exceeds the credit threshold. Nevertheless, we keep
the distinction between data and signals.

In our models, all operations follow an handshake scheme: the operation is initiated by a
request and when it is processed, a response is sent back. In addition, several requests cannot
be pipelined: a new request is sent only if the response of the last operation has been received.
Additionally, operations are used for communications, i.e., to exchange information. When the
initiating process wants to send information, the information is associated to the request, and
the response is an acknowledgment ensuring that the information has been received. When the
initiating process wants to receive information, the request is sent to ask for the information,
and the information is returned on the response.

To permit different virtual queues sharing the same path on the NoC, we have to model
virtual channels of the NoC. We associate a pop queue identifier to each element withdrawn
from a push queue. A pop queue only accepts elements presenting its own identifier in input.
Similarly, a push queue identifier is associated to each credit message sent by a pop queue, and
a push queue only accepts credit messages presenting its own push queue identifier.

7.2.2 Push Queue Model

The push queue model, depicted in figure 7.5, has three interfaces: an input, or push, inter-
face (I , with gates PUSH_RQ and PUSH_RSP), an output interface (O, with gates OUT_RQ and
OUT_RSP), and a credit interface (C, with gates CREDIT_RQ and CREDIT_RSP). The Lotos

model of a push queue is given in section E.2 of appendix E. A push queue is characterized by
four parameters:

– Size: the queue size, corresponding to the number of elements the push queue can store
– Credit: the initial value of the push counter for the credit protocol (usually corresponding

to the size of the associated pop queue)
– Idpush: the identifier of the push queue
– Idpop: the identifier of the pop queue, associated to the push queue
The three interfaces are used with some offers on the Lotos gates:
– on I : 〈E〉. An element E is waited (either a data or a signal).
– onO: 〈E, Idpop〉. An element E is sent with the identifier Idpop of the associated pop queue.
– on C: 〈N, Idpush〉. A credit message is waited, with N the credit value and Idpush the

identifier of the addressee push queue.

I

O

C

Push queue 〈Size,Credit, Idsrc, Iddst〉

Input interface 〈E〉
〈N, Idpush〉 Credit interface

〈E, Idpop〉 Output interface

Figure 7.5: The interfaces of a push queue

The behaviors of the different interfaces of a push queue are the following:
– The push interface is used to process a push operation on the queue. The push queue is

always able to receive an element (data or signal) from its environment on the PUSH_RQ
gate. After synchronizing on PUSH_RQ, if there is a free place in the queue, the ele-
ment is inserted and a PUSH_RSP is sent back. in the case the push queue is full, the
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Figure 7.6: Illustration of the blocking behavior of the push operation

queue is blocked, waiting for a free place before inserting the element and returning
the PUSH_RSP. The blocking behavior of a push operation is illustrated by the sequence
diagrams of figure 7.6.

– The output interface is used to withdraw an element from the queue. The push queue
initiates the withdrawal of its elements by providing its first element to its environment
on the OUT_RQ gates. In addition, on the same OUT_RQ gate, the push queue also
provides the identifier of the pop queue that would receive the element. When the en-
vironment accepts the element, it acknowledges on the OUT_RSP gate, which induces
the effective removal of the first element in the push queue and the update of its credit
counter (it is decreased by one).

– The credit interface is used to receive credit messages from the associated pop queue. The
reception is effective on the CREDIT_RQ gate, only if the push queue identifier associated
to the credit message is the own identifier of the push queue. In this case, the push queue
acknowledges on the CREDIT_RSP gate and updates its push counter.

7.2.3 Pop Queue Model

The pop queuemodel, depicted in figure 7.7, has three interfaces: an input interface (I , with
gates IN_RQ and IN_RSP), an output, or pop, interface (O, with gates POP_RQ and POP_RSP),
and a credit interface (C, with gates CREDIT_RQ andCREDIT_RSP). The Lotosmodel of a pop
queue is given in section E.3 of appendix E. A pop queue is characterized by four parameters:

– Size: the queue size, corresponding to the number of elements the pop queue can store
– Threshold: the credit threshold of the pop queue
– Idpop: the identifier of the pop queue
– Idpush : the identifier of the push queue, associated to the pop queue
The three interfaces are used with some offers on the Lotos gates:
– on I : 〈E, Idpop〉. An element E is waited, with the identifier Idpop of the addressee pop

queue.
– on C: 〈N, Idpush〉. A credit message is sent by the pop queue, with N the credit value and

Idpush the identifier of the addressee push queue.
– on O: 〈E〉. An element E is withdrawn.
The behaviors of the different interfaces of a pop queue are the following:
– The pop interface is used to process a pop operation on the queue, i.e., to withdraw an

element from the queue. The pop queue is always able to receive, from its environment,
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Figure 7.7: The interfaces of a pop queue
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a request to remove an element, POP_RQ. When the queue can grant the pop operation
(i.e., there is at least one element available in the queue), it sends the element on the
POP_RSP gate, the element is effectively removed from the queue, and the pop counter
is updated (it is increased by one). The blocking behavior of a pop operation is illustrated
in figure 7.8.

– The input interface is used to insert elements in the pop queue. The pop queue is always
able to receive an element on the IN_RQ gate. This synchronization is enabled only if the
pop queue identifier associated to the sent element is the identifier of the queue. After
synchronizing on IN_RQ, if there is a free place in the queue, the element is inserted and
a IN_RSP is sent back. In the case the pop queue is full, the queue waits for a free place
before inserting the element and returning the acknowledgment IN_RSP.

– The credit interface is used to sent credit messages to the associated push queue. A
credit message is emitted on the CREDIT_RQ gate, associated to the push queue iden-
tifier of the queue that would receive the message. Then, the pop queue waits for an
acknowledgment CREDIT_RSP from its environment. Its pop counter is updated at the
synchronization on CREDIT_RSP.

7.2.4 Simple Virtual Queue

The coarsest abstraction of a virtual queue in the xSTream architecture is obtained by dir-
ectly connecting a push queue to a pop queue. It corresponds to what we called a simple virtual
queue. The output interface (O) of the push queue is linked to the input interface (I ) of the pop
queue, and credit interfaces (C) of the two queues are connected together. A simple virtual
queue is depicted in figure 7.9.

The simple virtual queue behaves almost like a FIFO queue, but its behavior depends on
the credit threshold. For a credit threshold set to one, when hiding all internal transitions
(credit interfaces of push and pop queues and push queue output/pop queue input interfaces),
the simple virtual queue is branching equivalent to a FIFO queue. For instance, consider a
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Figure 7.10: LTS of a 3-places FIFO queue with push and pop interfaces

virtual queue composed of a one-place push queue and a two-places pop queue, and with
credit threshold set to one. This virtual queue is branching equivalent to a three-places FIFO
queue. We depict the LTS of a three-places FIFO queue that does not distinguish data elements
from signal elements in figure 7.10.

Increasing the credit threshold modifies the behavior of the virtual queue. When hiding
all internal transitions, one can observe that elements are always managed following a FIFO
scheme, but, for an external observer, the size of the virtual queue seems to vary.

For instance consider a virtual queue composed of a one-place push queue, a two-places
pop queue and with credit threshold set to two. If the virtual queue would behave like a
FIFO queue, it would be always able to contain three elements, which is actually not the case.
Consider the following execution:

– initially, the virtual queue is empty
– three elements are inserted in the virtual queue and the fourth insertion is blocked (to

accept the three insertions, the push queue forwards the elements to the pop queue and
decreases its credit counter until it is equal to zero)

– an element is withdrawn from the pop queue
At this point a standard FIFO queue is able to grant the push operation, but the virtual queue
does not. Indeed, the pop queue has a free place, but does not authorize the push queue to
insert new elements, by sending a credit message. For an external observer, the virtual queue
has now a maximum size of two elements.

When a second element is withdrawn from the pop queue, a credit message is send from
the pop queue authorizing the push queue to send two additional elements. For an external
observer, the virtual queue has anew a maximum size of three elements.

We call abstracted virtual queue the quotient, according to the branching bisimulation, of a
virtual queue after hiding of internal transitions. The behavior of an abstracted virtual queue
only depends on the total size of the virtual queue (cumulative size of the push queue and the
pop queue) and on the credit threshold. As a consequence, one can say that there exist virtual
queues with different size of push queues and different size of pop queues that are branching
equivalent after hiding of internal transitions. For instance, a virtual queue composed of a
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Figure 7.11: LTS of a 3-places abstracted virtual queue with credit threshold set to two

one-place push queue, a three-places pop queue and with threshold set to two is branching
equivalent, after hiding of internal transitions, to a virtual queue composed of a two-places
push queue, a two-places pop queue and with threshold set to two.

We depict the LTS of a three-places abstracted virtual queue that does not distinguish data
elements from signal elements, with credit threshold set to two in figure 7.11.

We can study the model size of an abstracted virtual queue according to the number of
elements it can contain and to the credit threshold. We depict the state space of the abstracted
virtual queue according to the credit threshold for different size of the abstracted virtual queue
in figure 7.12. One can first remark that, for a given size of the abstracted virtual queue, the
state space of its model increases with the credit threshold. Between the two extremal config-
urations of the credit threshold (credit set to one and credit set to the size of the abstracted
virtual queue minus one), the state space of the model almost doubles. The second remark
concerns the state space of the model according to the size of the abstracted virtual queue. The
state space of the models in figure 7.12 is depicted with a logarithmic scale (base 2). One can
see that the state space of the model of the virtual queue almost doubles each time the size
of the queue is increased by one. This is the consequence of the distinction between data and
signals in the queue. The state space of the model of an abstracted virtual queue follows an
exponential growth with respect to the size of the queue.

7.2.5 Complex Virtual Queue

We construct a detailed abstraction of a virtual queue in the xSTream architecture by suc-
cessive refinement of a simple virtual queue, as depicted in figure 7.13. At each refinement
step, we compare the new model to an abstracted virtual queue model.

1st Refinement : Addition of a Multiplexer on the Data Path

The first refinement of the virtual queue consists in the addition of a multiplexer between
the push queue and the pop queue on the data path, as depicted in figure 7.13(1). The credit
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Figure 7.12: State space of an abstracted virtual queue with respect to the credit threshold

interfaces of push and pop queues remain directly connected.

A multiplexer presents two input interfaces (I1 and I2) and one output interface (O). The
input interface I1 of the multiplexer is connected to the output interface O of the push queue.
The output interface O of the multiplexer is directly connected to the input interface I of the
pop queue. The input interface I2 of the multiplexer is left unconnected (for generation of the
model, this means that the multiplexer is never able to interact on this interface).

When only the interface I1 is connected, the functional behavior of the multiplexer is the
following: it receives a request on I1 with a pop queue identifier and an element (data or signal),
then it forwards it on its output interface O (with the pop queue identifier and the element)
and waits for an acknowledgment on O; finally it acknowledges on I1.

When the two input interfaces I1 and I2 are connected, the multiplexer is able to receive
request on I1 and I2 at any time but can forward them through its output O only if the last
request on O has been acknowledged. Notice that a multiplexer does not buffer elements: it
just forwards them.

When abstracting from internal transitions, the model of a virtual queue with a multiplexer
on data path is branching equivalent to an abstracted virtual queue (configured with a size
equal to the cumulative size of push and pop queues and a credit threshold equal to the one of
the pop queue).

2nd Refinement : Addition of a Demultiplexer on the Data Path

The second refinement is the addition, on the data path, of a demultiplexer between the
multiplexer and the pop queue, as depicted in figure 7.13(2).

A demultiplexer present one input interface (I ) and two output interfaces (O1 andO2). The
output interfaceO of the multiplexer is connected to the input interface I of the demultiplexer.
The output interface O1 of the demultiplexer is connected to the input interface I of the pop
queue. The second output interfaceO2 of the demultiplexer is let unconnected (for generation
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of the model, this means that the demultiplexer is never able to interact on this interface).

The functional behavior of the demultiplexer is the following: the demultiplexer receives a
request on its input I with a pop queue identifier and an element (data or signal) ; it forwards
the element on the correct output interface according to the pop queue identifier ; it waits
for an acknowledgment on the same output interface ; finally, it acknowledges on its input
interface I . As for a multiplexer, a demultiplexer does not buffer elements.

When abstracting from internal transitions, the model of virtual queue with multiplexer
and demultiplexer on data path also remains branching equivalent to an abstracted virtual
queue (configured with a size equal to the cumulative size of push and pop queues and a credit
threshold equals to the one of the pop queue).

3rd Refinement : Addition of a NoC Abstraction on the Data Path

The third refinement consists in modeling the data path in the NoC. We insert a standard
FIFO queue between the multiplexer and the demultiplexer of the data path, as depicted in
figure 7.13(3). This FIFO queue presents one input interface (I ) and one output interface (O).
The output interface O of the multiplexer is connected to the input interface I of the FIFO
queue. The output interface O of the FIFO queue is connected to the input interface I of the
demultiplexer. The elements stored by this FIFO queue are pairs composed of a pop queue
identifier and a data or a signal. Its behavior is a simple first-in first-out behavior.

When abstracting from internal transitions, the model of virtual queue with multiplexer
and demultiplexer on data path is also branching equivalent to an abstracted virtual queue
(configured with a size equal to the cumulative size of push and pop queues and a credit
threshold equals to the one of the pop queue).

This equivalence may be surprising: the FIFO queue used as abstraction of the NoC does
not modify the size of the virtual queue. This is the consequence of the credit protocol. The
number of elements the push queue can send (the push counter) is only linked to the size of the
pop queue. Consequently, the push queue cannot send more elements than the pop queue can
store and places on the FIFO queue abstracting the NoC are not considered as storage places.

4th Refinement : Modeling of the Credit Path

Finally the fourth refinement consists in refining the credit path between the pop queue
and the push queue, similarly to the refinement of the data path. Consequently, a multiplexer,
a standard FIFO queue and a demultiplexer are added on the credit path as depicted in fig-
ure 7.13(4). The interfaces of those added components are the same as the ones of the compon-
ents added on the data path. Only the information exchanged on the interfaces differ. Instead
of a data or signal, a credit message is sent. In addition, it is associated to a push identifier in
place of the pop identifier.

Anew, when abstracting from internal transitions, the model of virtual queue with both
data path and credit path refined is branching equivalent to an abstracted virtual queue (con-
figured with a size equal to the cumulative size of push and pop queues and a credit threshold
equals to the one of the pop queue).

This 4th model leads to the architecture model we use in the following. Intermediate refine-
ments has been presented to illustrate our modelingmethodology. According to this 4th model,
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Figure 7.14: Two parallel virtual queues sharing resources on the NoC

we can conclude that an isolated virtual queue (i.e., there is a single virtual queue on the archi-
tecture) should behave like an abstracted virtual queue. In other words, the architecture does
not impact the functional behavior of a virtual queue, if it is isolated.

7.2.6 Two Parallel Virtual Queues Sharing Resources on the NoC

One can now study the same virtual queue, but with interaction with other virtual queues.
We use the same model as in the previous section (i.e., the 4th refinement depicted in fig-
ure 7.13(4)), and a second virtual queue, connecting its push queue to the unused interfaces
of the data path multiplexer and the credit path demultiplexer and its pop queue to the un-
used interfaces of the data path demultiplexer and the credit path demultiplexer, as depicted
in figure 7.14.

We focus on four experiments, presenting different configurations:
– experiment 7.2(a): the first virtual queue is composed of a one-place push queue, a one-

place pop queue, and has its credit threshold set to one. The second virtual queue is
identical to the first one. The NoC is abstracted by a one-place queue on the data path
and a one-place queue on the credit path.

– experiment 7.2(b): Virtual queues are identical to the ones of experiment 7.2(a). The
NoC is abstracted by a two-places queue on the data path and a two-places queue on the
credit path.

– experiment 7.2(c): the first virtual queue is composed of a two-places push queue, a two-
places pop queue, and has its credit threshold set to one. The second virtual queue is
composed of a one-place push queue, a one-place pop queue, and has its credit threshold
set to one. The NoC is abstracted by a one-place queue on the data path and a one-place
queue on the credit path.

– experiment 7.2(d): the first virtual queue is composed of a two-places push queue, a two-
places pop queue, and has its credit threshold set to one. The second virtual queue is
identical to the first one. The NoC is abstracted by a two-places queue on the data path
and a two-places queue on the credit path.

We want to compare those four experiments to abstracted virtual queues. To that purpose,
in each model, we hide all actions but the interfaces of push and pop operations. Results are
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Figure 7.15: Results of the construction of two parallel virtual queues sharing resources on the
NoC

depicted in figure 7.15. In the construction of the models for the four experiments, we present
the size of the largest intermediatemodel used during composition and the size of the resulting
minimized model.

One can firstly analyze size of the different models. For experiment 7.2(d), we can see that
the largest intermediate model used in compositions has more than sixty millions of states and
four hundred fifty millions of transitions. However, after minimization, all our experiments
result in a rather small model of up to thousands of states. For each experiment, we compare
the minimized model obtained to a model obtained with parallel abstracted virtual queues.
More precisely, we compared:

– minimized model of experiment 7.2(a) to the parallel composition of two abstracted vir-
tual queues of total length two and credit threshold set to one

– minimized model of experiment 7.2(b) to the parallel composition of two abstracted
virtual queues of total length two and credit threshold set to one (i.e., as for experi-
ment 7.2(a))

– minimized model of experiment 7.2(c) to the parallel composition of an abstracted vir-
tual queue of total length four and credit threshold set to one and an abstracted virtual
queue of total length two and credit threshold set to one

– minimized model of experiment 7.2(d) to the parallel composition of two abstracted vir-
tual queues of total length four and credit threshold set to one

For all our experiments, we obtained the branching equivalence between the constructed
minimizedmodel and the model obtained by parallel composition of abstracted virtual queues.
Consequently, virtual queues sharing resources on the NoC should behave like abstracted vir-
tual queues in parallel, i.e., although virtual queues share resources, their functional behavior
remains the one of an isolated queue.
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7.3 Performance Measures for the xSTream architecture

Contrary to functional verification, one needs models of application (i.e., models of fil-
ters) to investigate the performance of a system. Indeed, only closed models can be tackled
by our performance methodology (cf section 5.2.3). To that purpose, we call producer the ab-
straction of an application inserting elements in the communication architecture and consumer
the abstraction of an application consuming elements from the communication architecture.
Naturally, a producer is linked to a push queue and a consumer is linked to a pop queue.

The computation of all the results presented in this section took only few hours, the most
time consuming part of the performance evaluation being the modeling of systems.

7.3.1 Study of a Simple Virtual Queue

We focus on the performance evaluation of a simple virtual queue, for which the functional
model was presented in section 7.2.4. Our goal is to study the influence of the length of a
virtual queue on its performance, disregarding the influence of the credit threshold of the pop
queue composing the simple virtual queue. Thus, the credit threshold is arbitrarily fixed to
one. In particular, we want to underline the gain provided by the modeling of delays consider-
ing their probabilistic distribution instead of just considering their average value: for a given
delay in the model, using different probabilistic distributions with the same average value may
lead to different performance results.

For performance evaluation, delays are inserted in functionalmodels in a constraint-oriented
way, as presented in chapter 6. Additionally, the push interface of the push queue is connected
to a producer that performs push operations and the pop interface of the pop queue is con-
nected to a consumer that performs pop operations. To study the impact of the length of the
virtual queue on performance, we consider that elements are produced by bursts:

– the producer emits 20 elements, one element every two time units (i.e., the time between
the PUSH_RSP of an element and the PUSH_RQ of the next one is equal to two time
units). Then, the producer waits for 102 time units before looping.

– the consumer tries to withdraw an element every eight time units, i.e., the time between
the POP_RSP of an element and the POP_RQ of the next one is equal to eight.

In a first section, we illustrate the influence of the respective sizes of the push and the pop
queues of a virtual queue on performance results. By adjusting correctly the different delays,
we can consider a model where the respective sizes of the push and pop queues have no impact
on the performance results. In this case, only the total size of the virtual queue (sum of the
push queue size and the pop queue size) has an impact on the performance results. We use
such a model in a second section to underline the advantages of considering time distribution
for delays instead of average values.

Influence of Push and Pop Queue Sizes

Functionally, we verified that the behavior of a virtual queue only depends on its size (i.e.,
size of the push queue plus size of the pop queue) and the credit threshold. Whatever the in-
dividual size of push and pop queues, only their cumulated size has an impact on the behavior
of the queue. For the performance, this property is not always satisfied. For instance, if the
throughput at the interface between the push and pop queues is lower than the throughput of
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Experiments Size of the push queue
7.3.1(a) 1
7.3.1(b) 2
7.3.1(c) 3

Table 7.1: Configuration for experiments 7.3.1(a), 7.3.1(b) and 7.3.1(c)

the producer, the push queue may be full, blocking push operations, although there are free
places in the pop queue. Using different size for the push queue, we illustrate this problem
with three experiments summarized in table 7.1.

Delays inserted in the models of experiments 7.3.1(a), 7.3.1(b) and 7.3.1(c), are presented
in table 7.3.1. Notice that the interface delay Dif, corresponding to the time needed to insert
an element from the push queue into the pop queue, is not fixed but follows a probabilistic
distribution, modeling the time needed to pass through the NoC.

According to the parameters used in the model, we can compute the theoretical average
throughput of the producer, Thrprod, and of the consumer, Thrcons, i.e., the throughput reached
when there are never blocked push or pop operations. Thrprod (resp. Thrcons) is equal to the
average time between two produced (resp. consumed) elements, plus the average time needed
to perform a push operation (resp. a pop operation). Additionally, we can compute the theor-
etical average throughput at the interface between the push queue and the pop queue, Thrif,
which corresponds to the inverse of the average of the delay Dif. Consequently, we have:

– Thrprod is equal to one element every eight time units
– Thrcons is equal to one element every 9.5 time units
– Thrif is equal to one element every seven time units
Theoretically, because Thrprod is higher than Thrcons, the queue should, on average, be full.

Moreover, the average production throughput should not exceed the average consumption
throughput: the maximum reachable production throughput is equal to Thrcons. Concern-
ing Thrif, because it is higher than Thrprod, the performance of the virtual queue should not
be impacted by the interface delay: on average, the push queue forwards elements to the pop
queue faster than they are produced.

Actually, however, the performance of the virtual queue is affected by the interface delay
because elements are produced by bursts, as illustrated in figure 7.16. For experiments 7.3.1(a),
7.3.1(b) and 7.3.1(c), we study the push operation latency, i.e., the time effectively elapsed
between a PUSH_RQ and a PUSH_RSP. The push operation latency corresponds to the time
physically needed to process the push operation (i.e., the push operation delay), plus the time
the producer was blocked before the operation is processed (i.e., the time before a place is
available in the push queue). When the push operation latency is close to the push operation
delay, push operations are seldom blocked because the push queue is full. Conversely, when
the push operation latency is much higher than the push operation delay, push operations are
often blocked.

In figure 7.16, the average latency of the push operation is depicted for experiments 7.3.1(a),
7.3.1(b) and 7.3.1(c), as a function of the size of the virtual queue. Notice that experiment 7.3.1(b)
is not depicted for a virtual queue size of two and experiment 7.3.1(c) is not depicted for a vir-
tual queue size of two and three. Indeed, the size of the virtual queue is at least equal to the
size of the push queue plus one.
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Figure 7.16: Push operation latency. The performance of a virtual queue may depend on re-
spective sizes of the push and pop queue, and not only on their cumulated size

One can first remark that the three experiments do not provide the same results, which
could be surprising since the three virtual queues are functionally equivalent and inserted
delays are the same. It is directly linked to the size of the push queue: the larger the push
queue, the smaller the probability for a push operation to be blocked.

In addition, we can note that aminimumvalue is reached, which does not decrease anymore
when the pop queue size is increased. For all three experiments, the minimum value for the
push operation latency is far from the push operation delay (equal to one time unit on average)
that is a lower bound for the push operation latency. This implies that the push queue is often
blocked in all three experiments, which confirms that, on average, the virtual queue is full.

We can also see that the virtual queue of experiment 7.3.1(a) is more efficient than the
virtual queue of experiment 7.3.1(b) for a size of three. Similarly, the virtual queue of experi-
ment 7.3.1(a) is more efficient than the virtual queue of experiment 7.3.1(c) for a size of four.
Although push queues in experiments 7.3.1(b) and 7.3.1(c) are larger than the push queue in
experiment 7.3.1(a), the virtual queues of experiments 7.3.1(b) and 7.3.1(c)with a size of three
and four are handicapped by their limited pop queues (they have only one place).

As a consequence, we can conclude that the size of the push queue and the size of the pop
queue composing a virtual queue may influence its performance. The performance of a virtual
queue is thus not only linked to the total size of its push queue and its pop queue.

Advantages of Probabilistic Distributions of Time in Models

Considering the conclusion of the previous section, we could guess that the influence of
the size of the push queue and the pop queue on the performance of the virtual queue is the
consequence of an insufficient throughput Thrif at their interface: a push operation can be
blocked because the push queue is full, although there are free places in the pop queue. For a
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Symbol
Distribution

Name and description
Value Prob.

Dpush 1 t.u. 1
push operation delay: time physically needed to insert an
element in the push queue

Dcdt 2 t.u. 1
credit delay: time needed in the push queue to take into
account an incoming credit message

Dif

6 t.u.
7 t.u.
8 t.u.

0.3
0.4
0.3

interface delay: time needed to insert an element from
the push queue into the pop queue

Dpop
1 t.u.
2 t.u.

0.5
0.5

pop operation delay: time physically needed to withdraw
an element from the pop queue the push queue into the
pop queue

t.u. = time unit

Table 7.2: Delays inserted in the virtual queue model for experiments 7.3.1(a), 7.3.1(b) and
7.3.1(c)

Experiments
Distribution of Dpush

Value Prob.

7.3.1(d)
2 t.u.
3 t.u.

0.5
0.5

7.3.1(e)

1 t.u.
2 t.u.
3 t.u.
4 t.u.
5 t.u.
6 t.u.

0.5
0.1
0.1
0.1
0.1
0.1

7.3.1(f)
1 t.u.
16 t.u.

0.9
0.1

t.u. = time unit

Table 7.3: Configuration for experiments 7.3.1(d), 7.3.1(e) and 7.3.1(f)

high value of the throughput Thrif, i.e., when there are never blocked push operations whilst
the pop queue has free places, the performance of the virtual queue should only depend on
the cumulative size of the push queue and of the pop queue. This claim can be verified: the
throughput Thrif has no influence if two equally sized virtual queues, with identical delays,
but with different sizes for their respective push and pop queues, should leads to the same
performance result.

In this section, we parameterize virtual queues such as to minimize the influence of the
throughput Thrif of the interface between the push queue and the pop queue on the perform-
ance results. We configure the throughput Thrif with the highest possible value, i.e., with a
delay Dif equal to one time unit (with probability one).

We study three different virtual queues that have the same push operation delay (Dpush) on
average. The distribution of Dpush for each experiment is given in table 7.3.

The considered distribution for the push operation delay can be seen as the timed behavior
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of the push interface of a push queue, abstracting its backlog mechanism (i.e., when elements
are stored in memory and not in the hardware queue): insertion of an element takes either
a small time value, which corresponds to a physical insertion in the queue, or a larger time
values, which corresponds to an insertion into the backlog memory.

The three virtual queues of experiments 7.3.1(d), 7.3.1(e), and 7.3.1(f), are composed of a
one-place pop queue with a credit threshold set to one. They are also connected to identical
producers and identical consumers that are the ones presented at the beginning of the section.
The delays inserted (excepted Dpush) are the same for all the experiments and are presented in
table 7.3.1.

With those parameters, the time between two produced elements is equal to the push oper-
ation delay plus the time the producer waits before producing the next element. The maximum
throughput for the producer is reached when the queue is never full, i.e., a push operation is
never blocked. On average, the throughput of the producer is equal to one element every 9.5
time units. Similarly, the time between two consumed elements is equal to the pop operation
delay plus the time the consumer waits before consuming the next element. The maximum
theoretical throughput of the consumer is reached when the queue is never empty, i.e., a pop
operation is never blocked. On average, the throughput of the consumer is equal to one element
every nine time units. Because the throughput of the consumer is greater than the throughput
of the producer, the effective maximum throughput the consumer can reach, on average, is the
throughput of the producer, i.e., one element every 9.5 time units.

For the three experiments, we study two performance measures for different sizes of the
virtual queue:

– the latency of a push operation, i.e., the time elapsed between a PUSH_RQ and the cor-
responding PUSH_RSP

– the throughput of the virtual queue, i.e., the throughput at the pop interface of the pop
queue.

Those two measures can be studied using latencies, as defined in chapter 3. The through-
put measure corresponds to the study of the latency defined by the time elapsed between two
POP_RQ. We depict those two measures as functions of the size of the virtual queues of exper-
iments 7.3.1(d), 7.3.1(e) and 7.3.1(f) in figure 7.17.

A first observation is that, whatever the distribution of the push operation delay and the
size of the virtual queue, the latency associated to the throughput of the virtual queue is cor-
related to the push operation latency. When the size of the virtual queue increases, the latency
associated to the throughput of the virtual queue decreases simultaneously with the push op-
eration latency.

For small sizes, the virtual queues of experiments 7.3.1(d) and experiment 7.3.1(e) have
almost the same performance, but performs better than the one of experiment 7.3.1(f), al-
though the distributions of Dpush have the same average value in all three experiments. This
is explained by the way elements are inserted. In experiment 7.3.1(d), elements are inser-
ted at a quite stable rate. The throughput of insertion is also quite stable and lesser than the
throughput at the interface between the push queue and the pop queue. Consequently the push
queue has time to forward elements to the pop queue and should not be often full. For experi-
ment 7.3.1(e), elements are inserted at a high rate with a high probability (the time to insert an
element is equal to one time unit with a probability 0.5) and at lower rates with lower probab-
ilities. The push queue has consequently a higher probability to be full, and thus to block push
operations. The experiment 7.3.1(f) emphasizes the behavior of experiment 7.3.1(e): elements
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Figure 7.17: Push operation latency and latency associated to the virtual queue throughput

are inserted at a high rate with a very high probability (the time to insert an element is equal
to one time unit with a probability 0.9) and at a very low rate with a very small probability.

Nevertheless, when their sizes are increased, virtual queues of the three experiments provide
similar performance: in all three experiments the push operation latency and the latency asso-
ciated to the throughput of the virtual queue converge to their lower bounds.

As a conclusion we can say that it is important to consider distributions instead of only
average values for delays inserted in our models. As we have seen, for the same delay on
average, and for small sizes, a virtual queue may be more or less efficient. The influence of the
considered distributions, comparing to their average value, diminishes as the size of the virtual
queue is increased.

This conclusion is interesting replacing the model in the industrial context of the xSTream
architecture. We saw that according to the delays induced by the architecture, virtual queues
are more or less efficient. The study of the architecture with accurate delays is an interesting
information for programmers. Indeed, a programmer can know whether optimizations on its
applications (to improve their performance) will be supported by the architecture.

7.3.2 Study of Two Parallel Virtual Queues Sharing Resources on the NoC

In this section, we address the performance evaluation of two parallel virtual queues, shar-
ing resources on the NoC. We enrich the functional model presented in section 7.2.6 with time
information. We focus on the impact of the credit protocol in terms of performance of the
system.
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Symbol
Distribution

Name and description
Value Prob.

Dcdt
1 t.u.
2 t.u.

0.5
0.5

credit delay: time needed in the push queue to take into
account an incoming credit message

Dif 1 t.u. 1
interface delay: time needed to insert an element from
the push queue into the pop queue

Dpop 1 t.u. 1
pop operation delay: time physically needed to withdraw
an element from the pop queue the push queue into the
pop queue

t.u. = time unit

Table 7.4: Delays inserted in the virtual queue model for experiments 7.3.1(d), 7.3.1(e) and
7.3.1(f)

Experiments
Credit protocol Length of the pipeline of one-place
implemented ? FIFO queues on the data path

7.3.2(a) YES 1
7.3.2(b) NO 1
7.3.2(c) YES 3
7.3.2(d) NO 3

Table 7.5: Configuration for experiments 7.3.2(a), 7.3.2(b), 7.3.2(c), and 7.3.2(d)

To model the time needed to pass through the NoC on data path, we do not use a simple
FIFO queue, but a pipeline of one-place FIFO queues. Functionally, a pipeline of n one-place
FIFO queues is branching bisimilar to the n-places FIFO queue depicted in section 7.2.5. The
functional model of a pipeline of three one-place FIFO queues is given in section E.4 of ap-
pendix E. A pipeline of one-place FIFO queues to abstract the timed behavior of the NoC is
suited, because we can insert a delay for each one-place FIFO queue in the pipeline.

We focus in the study of two different models, the former implementing the credit protocol,
and the latter not implementing it:

– the model depicted in figure 7.18 corresponds to the model of section 7.2.6 enriched with
time information (the FIFO queue on the data path is replaced by a pipeline of one-place
FIFO queues).

– the model depicted in figure 7.19 is similar to the first one, but the credit protocol is
not modeled. In this second model, push and pop queues do not implement the credit
protocol, and there is consequently no credit path. However, there is still the data path,
with a multiplexer, a NoC abstraction (i.e., a pipeline of one-place FIFO queues), and a
demultiplexer.

The two virtual queues are composed of a two-places push queue and a two-places pop
queue. Let virtual queue 1 be the first virtual queue and virtual queue 2 be the second virtual
queue. push queue 1 (resp. push queue 2) and pop queue 1 (resp. pop queue 2) denote the push
queue and the pop queue composing virtual queue 1 (resp. virtual queue 2).

The abstraction of the NoC on the credit path is a one-place FIFO queue. We consider
two different lengths for the pipeline of FIFO queues abstracting the NoC on the data path.
Consequently, we have four different experiments that are summarized in table 7.5.
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Figure 7.18: Timed model implementing the credit protocol
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Symbol
Distribution

Name and description
Value Prob.

ex
p
er
im

en
ts

7.
3.
2(
a
)

an
d

7.
3.
2(
b
)

Dnoc_1 1 t.u. 1

Data NoC delay 1: insertion delay of an
element in the first one-place FIFO queue
of the pipeline abstracting the NoC on
the data path

Dnoc_2 1 t.u. 1

Data NoC delay 2: insertion delay of an
element in the second one-place FIFO
queue of the pipeline abstracting the NoC
on the data path

Dnoc_3

1 t.u.
2 t.u.
3 t.u.

0.4
0.3
0.3

Data NoC delay 3: insertion delay of
an element in the third one-place FIFO
queue of the pipeline abstracting the NoC
on the data path

ex
p
.

7.
3.
2(
c
)

an
d

7.
3.
2(
d
)

Dnoc_1

3 t.u.
4 t.u.
5 t.u.

0.4
0.3
0.3

Data NoC delay 1: insertion delay of an
element in the one-place FIFO queue ab-
stracting the NoC on the data path

t.u. = time unit

Table 7.6: Delays inserted in the NoC

To compare performances of models where the length of the pipeline of one-place FIFO
queues on the data path is one, to models where the length of the pipeline of one-place FIFO
queues on the data path is three, we set delays such as to have the same probabilistic distri-
bution for the time to pass through the NoC, i.e., three time units with a probability 0.4, four
time units with a probability 0.3 and five time units with a probability 0.3. The delays inserted
in the abstraction of the NoC are presented in table 7.6.

Other delays inserted in the models are presented in the upper part of table 7.7. Notice
that all those delays, inserted in the models, are deterministic.

To investigate the influence of the credit protocol with respect to the sharing of the NoC,
we consider that virtual queue 1 (resp. virtual queue 2) is connected to a producer, called
producer 1 (resp. producer 2), and to a consumer, called consumer 1 (resp. consumer 2). We
study the throughput of virtual queue 1 when the average consumption rate of consumer 2
decreases.

In producers and consumers, delays are inserted, corresponding to the time elapsed between
the response of an operation (PUSH_RSP or POP_RSP) and the request of the next one (PUSH_RQ
or POP_RQ). The delays inserted in producer 1, producer 2 and consumer 1 are presented in
the lower part of table 7.7.

For consumer 2, the delay Dcons_2 between a POP_RSP of an element withdrawal and the
POP_RQ of the next one will vary in our experiments: it will be set to i time units with a
probability one, i varying from one to 40 time units. We study the average latency between two
POP_RQ in pop queue 1, which is the inverse of the throughput of virtual queue 1. Results for
experiments 7.3.2(a), 7.3.2(b), 7.3.2(c) and 7.3.2(d) are depicted in figure 7.20.

Independently from the length of the pipeline of one-place FIFO queues abstracting the
NoC, we can see that, for small values of Dcons_2, the implementation of the credit protocol
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Figure 7.20: average latency between two POP_RQ in push queue 1

has no impact on the latency between two POP_RQ in push queue 1. This observation is the
consequence of the configuration of the credit protocol: the credit threshold is set to one in
both pop queues, and the time for a credit message from a pop queue to a push queue is small
(comparing to the time for an element to pass through the NoC on data path).

With the credit protocol (experiments 7.3.2(a) and 7.3.2(c)), notice that when Dcons_2 in-
creases, i.e., the throughput of consumer 2 decreases, the average latency between two POP_RQ
in pop queue 1 decreases, i.e., the throughput of virtual queue 1 increases. Indeed, when the
throughput of consumer 2 decreases, push queue 2 less often inserts elements in the shared
FIFO queue on the data path. There is consequently less contention between the two virtual
queues. The throughput of virtual queue 1 increases, as Dcons_2 increases, and seems to con-
verge to a lower bound that should correspond to the throughput of virtual queue 1 when
virtual queue 2 is not used.

Finally, without the credit protocol (experiments 7.3.2(b) and 7.3.2(d)), we can see that the
average latency between two POP_RQ in pop queue 1 increases linearly with Dcons_2, i.e., the
throughput of virtual queue 1 decreases as the consumption rate on virtual queue 2 decreases.
As Dcons_2 is increased, the production rate of producer 2 becomes greater than the consump-
tion rate of consumer 2. On average, pop queue 2 is consequently often full, and elements of
virtual queue 2 may block the NoC for elements of virtual queue 1. Indeed, elements of virtual
queue 2, at the head of the shared FIFO queue on the data path, may be waiting for a free place
in pop queue 2.

As a conclusion, models depicted in figure 7.18 and 7.19 allow to estimate the penalty
induced by the use of the credit protocol, and underline its utility to avoid interactions between
virtual queues that would impact their performances. In addition to the assurance that there
will not be deadlocks (as shown by functional verification), the credit protocol ensures that the
performance of an application is not deeply impacted from the performance of others running
in parallel.



144 Industrial Case-Study: The xSTream Architecture

Symbol
Distribution

Name and description
Value Prob.

Dpush_1 2 t.u. 1
push operation delay 1: time physically needed to insert
an element in push queue 1

Dpush_2 2 t.u. 1
push operation delay 2: time physically needed to insert
an element in push queue 2

Dcdt_1 1 t.u. 1
credit delay 1: time needed in push queue 1 to take into
account an incoming credit message

Dcdt_2 1 t.u. 1
credit delay 2: time needed in push queue 2 to take into
account an incoming credit message

Dins_1 1 t.u. 1
insertion delay in pop queue 1: time physically needed to
insert an element in pop queue 1

Dins_2 1 t.u. 1
insertion delay in pop queue 2: time physically needed to
insert an element in pop queue 2

Dpop_1 1 t.u. 1
pop operation delay 1: time physically needed to with-
draw an element from pop queue 1

Dpop_2 1 t.u. 1
pop operation delay 2: time physically needed to with-
draw an element from pop queue 2

Dmux_data 1 t.u. 1
multiplexer delay on data path: time needed for the mul-
tiplexer on data path to forward an element from one of
its inputs to its output

Ddemux_data 1 t.u. 1
demultiplexer delay on data path: time needed for the de-
multiplexer on data path to forward an element from its
input to one of its outputs

Dmux_cdt 1 t.u. 1
multiplexer delay on credit path: time needed for the mul-
tiplexer on credit path to forward an element from one
of its inputs to its output

Dnoc_cdt 1 t.u. 1
insertion delay in FIFO queue of credit path: time physic-
ally needed to insert an element in the standard FIFO
queue abstracting NoC on credit path

Ddemux_cdt 1 t.u. 1
demultiplexer delay on credit path: time needed for the de-
multiplexer on credit path to forward an element from
its input to one of its outputs

Dprod_1

1 t.u.
2 t.u.
3 t.u.

0.5
0.3
0.2

producer 1 delay: time elapsed between a PUSH_RSP of
an element insertion in push queue 1 and the PUSH_RQ
of the next insertion

Dprod_2

1 t.u.
2 t.u.
3 t.u.

0.5
0.3
0.2

producer 2 delay: time elapsed between a PUSH_RSP of
an element insertion in push queue 2 and the PUSH_RQ
of the next insertion

Dcons_1

1 t.u.
2 t.u.
3 t.u.

0.5
0.3
0.2

consumer 1 delay: time elapsed between a POP_RSP of
an element withdrawal in pop queue 1 and the POP_RQ
of the next withdrawal

t.u. = time unit

Table 7.7: Delays inserted in the models of two virtual queues sharing resources on the NoC,
i.e., for experiments 7.3.2(a), 7.3.2(b), 7.3.2(c), and 7.3.2(d)



Chapter 8

Related Work

In this chapter we overview published work related to formal modeling of timed and prob-
abilistic systems and to analysis methods. We first present work on process algebras and
their timed and probabilistic extensions related to Interactive Probabilistic Chains (IPC, see
chapter 5). Then, we present various definitions of bisimulations for those models and discuss
their properties. Finally, we present some existing techniques for performance evaluation on
models obtained from those process algebras.

8.1 Process Algebras Dealing With Time and/or Probabilities

Process Algebras were introduced thirty years ago [Hoa78, Mil80] as adequate formalisms
to describe parallelism and to reason about functional aspects of complex systems. They have
been significantly extended over the years to express more than functional aspects according
to the logical order of events. One can cite extensions leading to:

– Timed process algebras, such as [OS06, LL98, BB96, Sch95, HR95, NS94, ACD93, Yi91,
RR86], extend process algebras by integrating real-time concepts (i.e., constant delays,
timers, urgency, etc.) to express time properties.

– Probabilistic process algebras, such as [JLY01, DHK99, vGSS95, JS90, GcJS90, Sub87],
are an extension providing probabilistic branching in addition to the nondeterministic
branching of process algebras.

– Probabilistic and timed process algebras, such as [BA03, And00, Seg95, Han94, Han91,
HJ90], combine both properties of timed process algebra and probabilistic process algeb-
ras.

– Stochastic process algebras, such as [Her02, HHK02, HHK+00, Hil96, BDG+95], ex-
tend process algebras with time delays whose durations follow exponential distributions.
Because stochastic process algebras express both time and probabilities, they could be
classed into the probabilistic and timed process algebras. However, they differ with re-
spect to the parallelism of delays. In timed process algebras, time has to progress syn-
chronously, whereas in stochastic process algebras, delays can be interleaved due to the
memoryless property of exponential distributions.

Among stochastic process algebras, the recent Interactive Markov Chain (IMC) formalism
[Her02] stands out by clearly separating Markovian transitions (representing a delay whose
duration is exponentially distributed) from interactive transitions (based on atomic actions).
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This approach has the advantage of avoiding any explicit synchronization of distributions. IPC
formalism, presented in this thesis (cf. chapter 5), follows this way, clearly separating prob-
abilistic transitions (representing a one time-step delay) from interactive transitions (based
on atomic actions). Consequently, IPC formalism can be seen as a transposition of the IMC
formalism in a discrete time context.

Nevertheless, due to the discrete nature of time that has to progress synchronously, IPCs
are closer to timed process algebras than to stochastic process algebras. The integration of
probabilistic branching classes IPCs in the category of probabilistic and timed process algebras.

Bymerging time and probabilities in IPCs, our aimwas to base performance analysis on the
study of Discrete Time Markov Chains (DTMC) by transforming IPCs into DTMCs. Thus, the
IPC formalism provides a compositional way to generate DTMCs, similar to the use of IMCs
to generate CTMCs compositionally. Theoretically, the continuous-time case in IMCs allows
to cover the discrete time case provided by IPCs. However, we illustrated in chapter 4 prob-
lems encountered when using IMCs for performance evaluation of hardware systems, mainly
the uncertainty about the error introduced by approximations into the obtained performance
results.

In the remainder of this section, we first compare in more detail time characteristics and
probabilistic characteristics of IPCs with existing process algebras. Time and probabilities
being deeply intertwined in IPCs, it is difficult to abstract from the timed aspects of IPC to
only study probabilistic aspects, and vice-versa. Consequently, our comparison finally focuses
on models with both time and probabilistic aspects.

8.1.1 Time Models

To compare the time aspect of IPCs to existing formalisms, we consider the terminology
employed in [NS91] to define a general model of timed system.

The first time characteristic of IPCs is their time domain. While several timed process
algebras are defined on a dense time domain, such as [OS06, LL98, Seg95, Sch95, JG89, GB87,
RR86], IPCs are defined over a discrete time domain as [BM01, BMU98, HR95, Han94, NS94,
Han91, HJ90]. The term discrete time indicates that the advance of time is considered as a
sequence of time steps (ticks). In those models, actions are also atomic and take no time. Time
only progresses “between” sequences of actions. In timed process algebra, sequences of actions
alternate with sequences of time progression.

The second time charecteristic of IPCs is their determinism in time. Timed process algebras
require, in general, the time determinism property, which, informally, means that time pro-
gression does not influence the functional behavior of the system. In other words, after letting
time progress, the first actions enabled will be always the same. Most process algebras dealing
with both time and probabilities [BA03, And00, Seg95, Han94, Han91] satisfy the time determ-
inism property, because time and probabilities are separated (a probabilistic choice cannot be
processed during time progression). Because probabilistic branching is enabled when time
progresses in IPCs, time determinism is not verified by IPCs. However, we could talk about
time probabilistic determinism since the future in time is always defined by a probabilistic
distribution. In this thesis, time determinism refers to a different property (cf. section 5.2.3
of chapter 5): we use time determinism to denote that, from any arbitrary state, all possible
sequences of actions are confluent to the same state before the next time step. In other words,
time determinism characterizes IPCs for which the unique cause of non-determinism is the
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interleaving semantics of parallelism.

A third time characteristic of IPCs is that they may be theoretically Zeno, i.e., an infin-
ite sequence of actions may occur within a finite time. The non-Zeno property is prohibited
in several timed process algebras [Han94, BB91, MT90]. In the discrete-time and generative-
reactive process algebra presented in [BA03], processes are obviously non-Zeno because time
(and probabilities) and actions are not separated (actions are consequently not atomic). How-
ever, non-Zenoness property is required to give a meaning to models of realistic systems and
is thus needed to analyze IPCs. The definition we gave to the non-Zenoness property (cf.
definition 5.6) corresponds to the implementable property or bounded variability introduced
in [NS91]: the number of actions performed in a given time interval is bounded. The initial
definition of an implementable behavior is that it can be executed by a processor in which the
measure of time is provided by a discrete clock. According to this definition, the model of
hardware systems we target should be obviously implementable.

Finally, the timingmodel considered in IPCs is characterized by arbitrary waiting andmax-
imal progress properties. On one hand, the arbitrary waiting property states that a process
may be blocked waiting for a synchronization that is arbitrarily long (even infinitely), while
still letting time advance. The arbitrary waiting ensures that no time-locks are possible. On
the other hand, the maximal progress gives priority to internal action over time elapsing: an
internal action cannot be delayed. Maximal progress is present in several timed process al-
gebras [HR95, Han94, RR86] and is also used in stochastic process algebras to resolve com-
petition between internal actions and exponentially distributed delays [Her02]. The maximal
progress assumption is justified by the fact an internal action is immediately enabled and has
no reason to be delayed. Note that the maximal progress is only applied to resolve concurrency
between time elapsing and internal actions. Indeed, external transitions may be delayed due
to the arbitrary waiting property: we have no a priori knowledge about the moment an ex-
ternal transition will be enabled by its environment. As for IMCs, maximal progress in IPCs
is not integrated into the semantics, but is taken into account by the definition of bisimulation
equivalences. For IPCs modeling a closed system, i.e., a system that does not interact with
its environment anymore, we generalize maximal progress to all actions, leading to the action
urgency property [NS91]. In a closed system, actions have no reason to be delayed and have
always precedence over time (probabilistic) transitions of IPCs.

To summarize, compared to existing time and probabilistic process algebras in a discrete
time setting, the IPC time model is mainly inspired from the time and probabilistic alternat-
ing model of Hansson [Han94], which introduces the maximal progress (called minimal delay
in [Han94]) and arbitrary waiting properties. The discrete time and probabilistic process al-
gebra defined in [And00] differs from IPCs by differentiating undelayable from delayable ac-
tions, which is a rather different explicit view of arbitrarywaiting, maximal progress and action
urgency properties. However, the same distinction between delayable and undelayable actions
could be applied in IPCs, allowing to apply action urgency to undelayable actions during com-
positions. Finally, the time model of the time and probabilistic process algebra defined in
[BA03] differs, because actions are not atomic but associated to a (probabilistic) delay.

8.1.2 Probabilistic Models

Two principal classes of probabilistic process algebras are distinguished: Fully probabilistic
models and alternating models. In fully probabilistic models, [vGSS95] distinguishes generat-
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ive, reactive or stratifiedmodels but the common property of those models is that a probability
is associated to each action. Conversely, the alternating models, as in [Han94], strictly separate
action-based transitions from probabilistic transitions.

The fully probabilistic models are rather different from IPCs: action and probabilities are
not separated. In generative models, the next action is internally chosen according to a prob-
abilistic distribution on the state space. This means that the sum of probabilities of outgoing
transitions of each state is equal to one. If not all actions are possible, a normalization function
is applied to the probabilistic distributions. In reactive models, the choice of the next action is
provided by the environment, the successor state is then chosen according to a probabilistic dis-
tribution over the state space depending on the taken action. Finally, stratified models extend
generative models by defining a hierarchy of probabilistic choices. Several variants of gener-
ative, reactive and stratified models exist [JLY01, DHK99, Seg95, JS90, GcJS90]. A difficulty
of fully probabilistic models is the definition of parallel composition. Indeed, the interleaving
semantics used in process algebra cannot be extended to probabilistic process algebra. A clas-
sical solution is the introduction of synchrony, where all processes take actions synchronously
(or idle if no action is available) [GcJS90, vGSS95]. Another solution is provided by the time
and probabilistic model of [BA03], which defines an asymmetric parallel composition between
a generative and a reactive model.

The alternating models of [And00, Han94] are closer to IPCs: in those models probabil-
istic transitions are strictly separated from action-based transitions. However, there is also a
strict alternation between probabilistic states, i.e., states allowing a probabilistic choice, and
nondeterministic states, i.e., states allowing a nondeterministic choice. Moreover, every prob-
abilistic transitions is followed by action transitions. In IPCs, a state can both propose a prob-
abilistic choice (incurring also a one time step) and a nondeterministic choice. This possibility
is offered by considering that probabilistic transitions are also time steps, and has the advant-
age to reason about the time at which an action may occur.

8.1.3 Alternating Discrete-Time and Probabilistic Models

By merging time and probabilities, IPCs combine some properties of timed process algebra
and some properties of probabilistic process algebra. However, it is difficult to compare IPCs
and timed process algebra abstracting from probabilistic properties. Similarly, comparing IPCs
and probabilistic process algebras abstracting from time properties is difficult, as stated above.

In an alternating context, this compararison is more justified between IPCs and discrete-
time and probabilistic process algebras. This limits the comparison to ACP+

π,drt [And00] and
TPCCS [Han94], which also present some similarities between them. To a lesser extent, one
can compare the parallel composition operator of IPCs to the one presented in [TG08] for
alternating models, which, although it does not include time constructs, is mainly inspired
from models obtained with TPCCS and ACP+

π,drt and presents a parallel composition operator
similar to the one of IPCs.

In both ACP+
π,drt and TPCCS, time aspects and probabilistic aspects are separated, leading

to three kind of transitions: probabilistic transitions, time-step transitions, and action-based
transitions (time-step transitions and action-based transitions are summarized under the same
name of reactive transitions). In IPCs, time and probabilistic transitions are merged limiting
IPCmodels to two kinds of transitions: probabilistic transitions (incurring a one time-step) and
action-based transitions (called interactive transitions). This difference means that IPCs are
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less expressive than ACP+
π,drt and TPCCS, because IPCs cannot express a purely probabilistic

functional behavior, but only probabilistic time variations (time variations can be expressed
in ACP+

π,drt and TPCCS by first a probabilistic choice and then different delays). Although
this functionality is important (for instance as an abstraction means of a complex arbitration
policy), it is, in many cases, not essential when modeling hardware systems. Indeed, behaviors
in hardware systems cannot be purely probabilistic but are deterministic.

In addition, a state of an IPC can both take interactive transitions or probabilistic trans-
itions, which is not possible in ACP+

π,drt and TPCCS: models are alternating. We justify the
possibility of taking both interactive transitions or probabilistic transitions according to the
time characteristics of probabilistic transitions: either one of the interactive transitions can
be taken immediately and it is taken, or no interactive transition can be taken, and time pro-
gresses with a probabilistic transition. Because it is, a priori, not possible to know if an action
may be differed (due to interaction with the environment) or may do not, the two possibilities,
of a nondeterministic choice between interactive transitions, or a probabilistic choice between
probabilistic transitions, are kept. The situation of a state allowing to take is considered as a
nondeterministic choice between a probabilistic choice and a nondeterministic choice.

ACP+
π,drt and TPCCS differ from IPC concerning nondeterministic choice between a prob-

abilistic choice and a nondeterministic choice. In this case, the probabilistic choice is always
solved first. This is justified by the fact that models in ACP+

π,drt and TPCCS has to remain al-
ternating: a state has to be either probabilistic or reactive, but not both. For IPCs, we do not
force to have an alternating model. However, for performance analysis purpose, we have to
know which transition can be taken first, between an interactive one and a probabilistic one,
i.e., to consider an alternating model. From IPCs, to get an alternating model as in ACP+

π,drt
and TPCCS, the choice is to give priority to an interactive transition, which can be immedi-
ately taken, over a probabilistic (and timed) transition. This prioritization is called maximal
progress if the interactive transition is a τ-transition, or urgency for others transitions. Max-
imal progress can always be applied because a τ-transition can always be taken immediately:
there is no reason to delay an internal transition because it cannot interact with the environ-
ment. Urgency is postponed to closed IPCs (i.e., there are no more possible interactionwith the
environment) because, it is not possible, a priori, to know if an action can be taken immediately
or may be delayed due to an interaction with the environment.

Concerning a nondeterministic choice between two probabilistic choices, ACP+
π,drt differs

from TPCCS. In ACP+
π,drt, the two probabilistic choice may be solved asynchronously, and the

nondeterministic one is solved after those choices. In TPCCS, the two probabilistic choices are
solved synchronously, the probabilities for this resolution being obtained by multiplying the
original probabilities. IPCs follow the approach of TPCCS, because time has to pass synchron-
ously.

ACP+
π,drt and TPCCS differ in the treatment of time progression on a probabilistic choice.

In ACP+
π,drt, time progression does not solve a probabilistic choice, whereas it does in TPCCS.

Anew, IPCs follow clearly the view of TPCCS: since time-step transitions are also probabilistic
transitions, taking a time-step transition implies that a probabilistic choice has been solved.

Concerning parallel composition, the same differences as for nondeterministic choice are
encountered. In ACP+

π,drt and TPCCS, if a nondeterministic behavior is composed in paral-
lel with a probabilistic behavior, the probabilistic choice is solved first. For IPCs, we use the
classical interleaving semantics for parallelism: a probabilistic choice and a nondeterministic
choice may be interleaved. In [TG08], a parallel composition is defined for general alternating
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models with no time constructs (i.e., several sequential probabilistic transitions and several
sequential action-based transitions are allowed). The operational semantics of the parallel
composition defined in [TG08] is the same as the one for IPCs. They justify not to solve a
probabilistic choice first for their parallel composition, by their capability to define a branch-
ing bisimulation equivalence that is a congruence with respect to their parallel composition
operator. Actually, In [TG08], priority is given to probabilistic choices over nondeterministic
choices only when considering a closed system. It is a pragmatic approach: for a closed sys-
tem, they can obtain the same model as with ACP+

π,drt or TPCCS. This approach is less efficient
than the one proposed for ACP+

π,drt or TPCCS because it authorizes more interleaving and con-
sequently leads to a larger state space after composition. However, this approach as a strong
justification when talking about bisimulations as we will see in the next section. Although
the parallel composition operators of IPCs and of [TG08] have the same semantics, closed sys-
tems are studied with opposite methods: whilst priority is given to probabilistic choices over
nondeterministic choices in [TG08], urgency gives priority to nondeterministic choices over
probabilistic choices for IPCs.

A last comparison point between IPCs, ACP+
π,drt, and TPCCS concerns the way probabilistic

behaviors are composed in parallel. When two probabilistic behaviors are composed in parallel
in ACP+

π,drt, they are resolved asynchronously (using the “merge with memory” operator). In
TPCCS, parallel composition between two probabilistic behaviors is defined by synchronous
resolution of the probabilistic choices (as for nondeterministic choice between probabilistic
behaviors). Once again, IPCs take the same point of view, justified by the time characterist-
ics of IPC probabilistic transitions: parallel composition of probabilistic behaviors cannot be
asynchronous (interleaving semantics), because time has to progress synchronously.

To summarize: we can observe that IPC formalism is closer to TPCCS formalism than to
ACP+

π,drt. The main difference between IPC and TPCCS concerns the forced resolution of prob-
abilistic choices before nondeterministic ones in TPCCS, when composing different behaviors
(nondeterministic choice or parallel composition). This difference is justified by the necessity
of preserving an alternating model in TPCCS, while it is not needed in IPCs, thanks to the
time characteristics of probabilistic transitions. The model of parallel composition of ACP+

π,drt,
which is claimed to be less deterministic than the one of TPCCS, cannot be applied on IPCs be-
cause probabilistic transitions of IPCs, representing also a time-step, have to be synchronous.

8.2 Bisimulations

To compare IPCs, we adapt equivalence relations called bisimulation, originally introduced
for LTS. The strong bisimulation [Mil90] equates states having exactly the same functional
behavior, i.e., two states s1 and s2 of an LTS are strongly bisimilar (s1 ∼ s2) if and only if for
every action a, we have:

(1) s1
a
−−→ s′1 =⇒

((
∃s′2

)
s2

a
−−→ s′2 ∧ s′2 ∼ s

′
1

)

(2) s2
a
−−→ s′2 =⇒

((
∃s′1

)
s1

a
−−→ s′1 ∧ s′1 ∼ s

′
2

)

i.e., if one state can take an action, the second one can also take the same action, and the two
reached states are also strongly bisimilar. When dealing with processes with internal trans-
ition, i.e., unobservable, the strong bisimulation does not abstract from those internal steps.
Among the existing weaker bisimulations in the literature, abstracting from internal trans-
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itions, and thus equating more states than the strong bisimulation, the branching bisimulation
is the finest equivalence [vGW96, Bas96] (i.e., it equates less states than others), but has the
advantage of preserving the branching structure of processes [vGW96]. Two states s1 and s2 of
an LTS are branching bisimilar (s1 ≈ s2) if and only if for every action a, we have:

(1) s1
a
−−→ s′1 =⇒

(
a = τ ∧ s′1 ≈ s2

)
∨

((
∃s′2, s

′′
2

)
s2

τ∗
−−→ s′2

a
−−→ s′′2 ∧ s1 ≈ s

′
2∧ s

′′
2 ≈ s

′
1

)

(2) s2
a
−−→ s′2 =⇒

(
a = τ ∧ s′2 ≈ s1

)
∨

((
∃s′1, s

′′
1

)
s1

τ∗
−−→ s′1

a
−−→ s′′1 ∧ s2 ≈ s

′
1∧ s

′′
1 ≈ s

′
2

)

i.e., if one state can take an action, either it is a τ-transition reaching an equivalent state, or the
second state can also take the same action after a (possibly empty) sequence of unobservable
τ-transitions, and the two reached states remain branching bisimilar.

When constructing processes in a process algebra context, compositionally, the congruence
property is required for at least the operators used for compositions. For instance, if parallel
composition is congruent, the parallel composition of two bisimilar processes, with a third one,
leads to two bisimilar processes.

To deal with IPC models, our goal was to define a branching bisimulation, having the abil-
ity to abstract from internal transitions, and to ensure that this bisimulation presents the con-
gruence property, i.e., is compatible with the compositional approach we target. Because of the
timed and probabilistic aspects of IPCs, related bisimulations are consequently those for timed
and/or probabilistic processes.

Concerning timed processes, the branching bisimulation has been extended, for instance
in [FPW05, BM02, vdZ01]. In this timed context, this bisimulation ensures that, in addition to
the classical requirements for LTS, bisimilar states can take an action at the same time. The con-
gruence property has also been taken into account [FPW08]. Nevertheless, those bisimulations
are incompatible with IPCs because of the probabilistic branching of their timed transitions.
However, the property of the branching bisimulation for timed processes must be preserved in
the branching bisimulation for IPCs: if two states are bisimilar in an IPC, and one state can
take a timed transition, the second state has to let time progress too.

Concerning probabilistic processes, the branching bisimulation has been first defined for
fully probabilistic models [BH97, SL95]. The large differences between fully probabilistic
models and IPCs make those bisimulations incompatible. For alternating models, which are
closer to IPCs, the branching bisimulation was defined in [AW06] (only for the strictly al-
ternating model of Hansson [Han91]). Because this branching bisimulation is not a congru-
ence [ABDW06], a strengthened version, satisfying the congruence property, has been pro-
posed [TG08] for general alternating models (i.e., several sequential probabilistic transitions
and several sequential action-based transitions are allowed). This bisimulation is closely re-
lated to the one for IPCs, since the parallel composition operator considered in [TG08] is the
same as the one of IPCs: in particular, nondeterministic choices and probabilistic choices are
interleaved. Nevertheless, the bisimulation proposed in [TG08] is also incompatible with IPCs
because it may equate states related by probabilistic transitions (which is justified because
probabilistic transitions do not represent time progress). Thus, sequences of probabilistic steps
may be amalgamated, and the requirement of bisimulation for timed processes, needed for
IPCs, is broken.

Branching bisimulations defined for timed processes and probabilistic processes are con-
sequently not applicable for IPCs. Either the conditions imposed by the time aspects are re-
spected but probabilistic branching is not taken into account, or conditions imposed by the
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probabilistic aspects are respected, but time conditions imposed by time aspects are not re-
spected.

Actually, like IMCs aim at merging CTMCs and LTS, IPCs aim at merging DTMCs and LTS.
The strong and branching bisimulations for IMCs [Her02] being based on bisimulations of LTS
and of CTMCs, they inspired those for IPCs. Following the same concepts, strong and branch-
ing bisimulations of IPCs are based on bisimulations of LTS and of DTMCs (cf. section 2.2.3
of chapter 2). The possibility of equating states in a Markov chain is initially known as lump-
ability [KS76] and has been translated into bisimulation terms in [Her02, Buc94]. Informally,
the bisimulation of probabilistic chains equates states in such a way that Markovian properties
are preserved, i.e., the resulting graph is still a probabilistic chain. Bisimulations for IPCs are
consequently the discrete-time analogon of the bisimulations for IMCs.

8.3 Analysis of Interactive Probabilistic Chains

A lot of toolboxes have been developped all along the years to support analysis of models
obtained from process algebras. Among them, one can cite Auto/Autograph [RdS90], CWB

[CPS93], Fc2Tools [BRRdS96] and Cadp [GLMS07] on which our developments are based on.
System described in a process algebra are usually analyzed through an underlying model (gen-
erally a directed graph) on which analysis is processed. Depending on the process algebras
(presence of time, probabilities), several underlying models exist: labeled transition systems,
timed automata, Markov decision process, Semi-Markov chains, Markov chains, ...

The model underlying an IPC is a labeled transition system for functional verification, and,
in general, a Markov decision process for performance evaluation. Under some conditions
detailed in chapter 5 (non-Zenoness, non-determinism only due to interleaving semantics),
the underlying model for performance evaluation of IPCs is a discrete-time Markov chain. In
this thesis, we only tackled the performance aspects of IPCs considering discrete-time Markov
chains (and not Markov decision processes).

The analysis technique of IPCs that we proposed in this thesis, relies on a performance
measure, the latency, defined both on an IPC and on its underlying DTMC. Following an ana-
lytical approach based on steady state and transient state analysis of a DTMC, the latency
measure may be classified in the field of DTMC performance measures based on a reward
function. The latency measure is, according to us, enough generic to express a large set of
performance measures on discrete-time Markov chains and thus on IPC models. The power of
such an approach relies on our ability to compute the distribution of a latency, which gives a
good insight of timed characteristics of a system.

Excepted from performance measures based on reward functions, We do not relate latency
measure to known performancemeasures on DTMCs, because we are not aware of similar work
concerning such a performance measure. Nevertheless, latency definition and the computation
of its distribution relies on the same theoretical basis than probabilistic model-checking, i.e.,
measure theory [Bog07, Bil95, Coh80, KSK76]. We compute measures on different paths start-
ing from the initial state of the discrete-time Markov chain, as in [KNP07, Seg95], and the
distribution of the latency is defined on the long run, following the lines of [LHK01].

ProbabilisticModel-checking could be also an interesting direction to analyze IPCs. Model-
checking has emerged as a powerful tool for the automatic verification ofmodels like LTS [QS82,
CE81]. It consists in expressing a property of the specification into a temporal logic and veri-
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fying automatically the model’s behavior against the property. Temporal logics, initially in-
troduced in computer science by Pnueli [Pnu77], allows to reason about behaviors of models.
Model checking is recognized as a technique that allows to check “corner-cases”, which are dif-
ficult to test through simulation [Kur97]. To deal with IPCs, one has to look at model checking
for models including time and probabilistic extensions.

The model-checking approach has been extended to real-time systems [HNSY94, ACD93,
AFH91]. In general, for real-time model checking, temporal logic formulas, dealing with time
quantification (for instance the TCTL logic [ACD93]), are evaluated on timed automata [Yov96,
AD94, AD91]. Several tools implement the real-time model checking approach like Uppaal

[BDL+06] or Kronos [BDM+98]. Because IPCs present also probabilistic branching for timed
transitions, timed temporal logics cannot be used, in general, to express properties over IPCs.
However, IPCs presenting no time branching could be studied using this kind of approach.

The model-checking approach has also been extended to deal with probabilistic systems.
The underlyingmodels are, generally,Markov decision processes, discrete-timeMarkov chains,
or continuous-time Markov chains (the latter two being a particular case of the former). Prop-
erties on these models can be expressed in logics allowing to deal with probabilities and time,
for instance [BHHK03, dA97, ASB95, HJ94], and efficient tools implement the probabilistic
model-checking approach, for instance Prism [KNP04].These logics could be thus applied to
analyze IPCs.



154 Related Work



Chapter 9

Conclusion

The approach proposed in this thesis tries to fulfill the wish of obtaining performance fig-
ures at a very early stage of the development of hardware systems. This wish is nowadays more
and more economically justified because, for current complex architectures with their high
level of parallelism, functional verification is not sufficient: compliance with the specification
in terms of performance has to be ensured as well. Early performance study is economically
justified, because the later an architecture is modified (regardless of whether this is the con-
sequence of a functional bug or an unsatisfied performance target), the greater the cost: from
few man-hours for a modification at an early stage of development, the cost may rise prohib-
itively (several million dollars) as the development progresses. In particular, it is currently
unthinkable that, as a consequence of a design problem, several mask sets are produced for the
fabrication of the same SoC. In addition to the cost of a mask set that may exceed one million
dollars for the current technology (32nm), the correction of a design problem at this stage may
postpone the launch of a new product by several months, which is barely acceptable in the
highly competitive semiconductor market. As time to market for a new product gets shorter,
one cannot afford deep modifications of a design at an advanced stage of its development.

Up to now, no industrial methodology is available for precise performance studies of pre-
liminary hardware specifications. Widespread methods rely on simulations, for which per-
formance results are highly dependent on both the simulation engine and on the modeling
formalism. Furthermore, models used for simulation often rely on informal assumptions that,
despite their obvious correctness, may turn out to be inaccurate. Finally, due to increasing com-
plexity of current designs, simulation is less and less capable of producing, in an acceptably
short time interval, performance figures with a reasonable confidence interval.

This thesis proposes a methodology for performance studies of hardware models, which is
a step towards providing designers with measures guiding them in their architectural choices.
The industrial context of this thesis imposed several initial requirements on the design of the
method.

A first requirement was the use of formal methods to ensure a certain confidence in the
resulting performance measures. A second requirement was the scalability of the approach,
because the complexity of the targeted systems is due to their high level of parallelism. Fur-
thermore, the approach had to support any kind of hardware systems. In particular, the per-
formance analysis had to be generic, in the sense that performance measures give, whatever
the particular studied system, a significant insight of its behavior. Finally, the methodology
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had to remain accessible to non-experts if to be spread in industry.

Initially, the formalism of IMCs seemed a very elegant and adapted answer to all those re-
quirements. Firstly, IMCs enable the generation of CTMCs in a hierarchical and compositional
way, which circumvents the usual state space explosion problem and provides the researched
scalability. Secondly, the underlying model for IMCs, CTMCs, is simple and adequate and can
be used to estimate a wide range of performance characteristics. In addition, IMCs remain
compatible with purely functional models, on which functional verification can be performed.
Using the very same model for functional verification and performance evaluation reduces the
overall cost and improves the confidence in the results. Finally, by using continuous phase-type
distributions, IMCs allow to model any kind of systems.

Unfortunately, using a continuous-time setting, such as IMCs, to model a predominantly
discrete-time system, such as hardware architectures, requires approximation of discrete delays
by continuous phase-type distributions. As illustrated in chapter 4, we were not able to evalu-
ate the impact of these approximations in terms of error on the computed performance results.
Consequently, we could not convince the architects of STMicroelectronics to trust results given
by the IMC approach.

The approach introduced in this thesis solves this issue by transposing IMCs in a discrete
time setting, leading to the concept of IPCs. Like IMCs, IPCs enable the generation of Markov
chains in a hierarchical and compositional way. By using discrete phase-type distributions, one
can model any kind of discrete-time system.

The contributions of this thesis actually consist of two separated, but complementary res-
ults: the IPCmodeling approach and the definition of the latency performance measure. Those
two parts are linked by a transformation from an IPC to a DTMC on which one can compute
latencies.

Concerning the IPC modeling, the transposition from the continuous-time context of IMCs
to the discrete-time context of IPCs is not immediate, mainly because it implies a different
model of elapsing time: whilst the memoryless exponential distributions used in IMCs allow
to interleave delays in parallel, discrete-time delays elapsing in parallel in IPCs have to pro-
gress synchronously. However, our definition of IPCs keeps the strong points of IMCs. Firstly,
we separate delays from actions which simplifies the definition of synchronization. The con-
struction of IPCs relies on the definition of a language, IPCL, with a semantics authorizing a
hierarchical and compositional approach. Additionally, we define bisimulations operating on
IPCs, as useful means to aggregate IPCs and to circumvent the state space explosion problem.
IPC models also support maximal progress cut without preventing the use of bisimulations: in-
ternal actions are taken without letting time elapse. For the characterization of time in IPCs,
we use the so-called arbitrary waiting property, which states that a functionally blocked process
cannot prevent other processes to evolve in time (which avoids time locks). This first part of
the work enables to model hardware systems accurately.

To transform an IPC into a DTMC, we apply the urgency assumption, which imposes that
no action can let time elapse. This assumption is only authorized if the system is closed, i.e.,
if it cannot interact with its environment anymore. In other words, the system must not be
under-specified. The proposed transformation turns a closed IPC into a DTMC annotated with
functional information.

On this DTMC, we can compute a generic performance measure, the latency. Besides de-
fining latency formally, we provide an algorithmic definition of their long-run average distri-
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bution, which only depends on state-probabilities of the DTMC and extracted sub-DTMCs. In
our opinion, the latency is a generic measure that covers a wide range of specific measures
(covering both latency and throughput).

Both parts of this work (modeling hardware systems and performance study based on
latency) resulted in the development of software tools based on the efficient APIs available
in the Cadp toolbox. Those tools have been applied to an industrial case-study: the xSTream

architecture. This confirmed that our proposed approach scales up to large systems and, in
practice, the use of the latency measure enables to evaluate hardware design choices.

Future Work

Although this work led to interesting results, we are still far from a complete industrial
methodology, answering the problem of performance evaluation of hardware designs. We
identified several directions for further research, covering both the modeling approach and
the performance studies.

Modeling approach

A first research direction can focus on the practical limitation of the use of a process algebra
(in Lotos-style for IPCs) to model hardware systems, especially in an industrial context: en-
gineers are not used to this kind of language, which is an obstacle to a fast assimilation of the
modeling methodology. This problem can be tackled by the use of more recent languages such
as Lotos nt [GS98], which propose programming paradigms closer to the ones of well-known
languages (like loops, etc.). Nevertheless, using a new modeling language different from those
used in the established design flows of companies, results in a redundant effort. A transla-
tion from the models of the existing design flows to process algebra would certainly accelerate
the spread of formal methods in the industry. Some promising results in this direction have
been already obtained, for instance the approach consisting to translate SystemC/TLM models
(transaction-level modeling) to Lotos models [GHPS09].

A second research direction concerns the improvement of the expressiveness of IPCs, by
allowing to take into account purely probabilistic behaviors. Indeed, at the present time,
a probabilistic decision is only possible when time progresses, as delays are modelled using
probabilistic distributions. One could also want to model probabilistic systems where a prob-
abilistic choice is processed instantaneously. Moreover, an instantaneous probabilistic choice
could be an elegant solution to model complex arbitration policies in an abstract and concise
way. This possibility could be enabled by taking into account the work presented for (untimed)
alternating models in [TG08]. Their parallel composition operator being similar to the one of
this thesis, the two approaches could be merged to deal with both purely probabilistic behavi-
ors and time probabilistic behaviors. Consequently, we would have to distinguish two types of
probabilistic transitions, the ones taking one time step, i.e., the timed probabilistic transitions,
and the others that are fired instantaneously, i.e., the untimed probabilistic transitions. At first
sight, we should treat separately parallel composition of untimed probabilistic transitions and
parallel composition of timed probabilistic transitions. On the composed model, we would
give priority to interactive transitions over timed probabilistic transitions (urgency cut) and
we would give priority to instantaneous probabilistic transitions over interactive transitions,
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as in [TG08] (and thus, untimed probabilistic transitions have priority on timed probabilistic
transitions in our case). This merge would certainly lead to a new branching bisimulation
relation covering both the one of [TG08] and ours.

A third research direction can be to study how discrete-time and continuous-time ap-
proaches could be simultaneously taken into account. So far, they are strictly separated in
the Cadp toolbox but, for instance, it would be interesting to focus on how IPC and IMC ap-
proaches could be merged in a common formalism. In chapter 4, we only briefly investigated
the relation between the semantics of IPC and IMC. A comparative study of both IPC and IMC
formalism could also provide some answers concerning errors due to delay approximations
in the models. One could for instance study the error on the steady-state probabilities when
approximating an IPC by an IMC and vice-versa. Simulation is also one of the possible ana-
lysis technique when considering a system presenting both probabilistic (timed) transitions
and Markovian transitions.

Performance Evaluation

Concerning performance evaluation, a first research direction concerns the possibility to
use existing performance methodologies with IPCs. The latency distribution we defined is, we
believe, an easily computable performance measure that provides interesting insights of the
timed behaviors of studied systems. However, other interesting performance measures could
be obtained, for instance by adapting model-checking techniques to IPCs.

A second research direction regards the possibility of adapting the latency definition to
continuous time Markov chains, which would allow to get similar performance results using
IMCs instead of IPCs. This implies to study the adaptability of the latency measure to CTMCs,
and the possible transformation of IMCs into annotated CTMCs.

Finally, a third research direction can be to limit, as much as possible, the size of the gener-
ated DTMCs. To do so, the approach developed throughout this thesis (complete exploration
of the model state space) does not seem to be the most adequate. Indeed, generated DTMCs
may be huge, even if minimization has been applied at intermediate steps of the compositional
construction. Another solution would be to not generate the DTMC exhaustively, but to keep
the system as a set of communicating components and try to obtain the same performance
measures by local study of components. In this aim, we could explore relations between our
approach and the stochastic automata networks [Pla85], which enable to describe multidimen-
sional Markov chains, avoiding to store their complete state space.



Appendix A

Proof of Branching Equivalence
Between Urgency-Cut IPCs of
Branching Equivalent IPCs

In this appendix, we prove the lemma 5.5, i.e., if two IPCs are branching bisimilar, the two
corresponding urgency-cut IPCs remain branching bisimilar.

Lemma A.1. The two urgency cut IPCs of two branching bisimilar IPCs are branching bisimilar:

(
∀(P1,P2) ∈P

)
(P1 ≈P2) =⇒

(
P1 6{�A ≈P2 6{�A

)

Proof. Consider two IPCs P1 = 〈S1,A, −−→ , z{ , s1〉 and P2 = 〈S2,A, −−→ , z{ , s2〉 such that
P ≈ P1. We want to prove that the two urgency cut IPCs P1 6{�A = 〈S ′1,A, −−→ , z{ , s1〉 and
P2 6{�A = 〈S ′2,A, −−→ , z{ , s2〉 are also branching bisimilar.

By definition, we have S ′1 ⊆ S1 and S ′2 ⊆ S2. We consider the branching bisimulation ≈ over
the states of S1 ∪ S2, i.e., si ≈ sj means that si and sj are branching bisimilar in P1 and P2, and
we define the relation R over the states of S ′1 ∪ S

′
2, i.e., R is defined only for states of the

urgency-cut IPCs:
R =

{(
si , sj

)
| si , sj ∈ S

′
1 ∪ S

′
2 and si ≈ sj

}

We show that R is a branching bisimulation. Clearly, R is an equivalence relation because
≈ is an equivalence relation.

Suppose s1 R s2 and consider an equivalence class CR induced by R in P1 6{�A . Because
s1 R s2, we have also s1 ≈ s2.

Firstly, suppose that there is an action a and a state s′1 ∈ CR , such that s1
a
−−→ s′1. This

implies that γ0(s1,a,
[
s′1

]
/R

) = True and γ0(s1,a,
[
s′1

]
/≈
) = True. From s1 ≈ s2 we have:

– either a = τ and s2 ∈
[
s′1

]
/≈
and we can deduce that s2 ∈

[
s′1

]
/R

.

– or there is a state s′′2
τ
−−→� such that s2

τ∗
−−→ s′′2 and s′′2 ≈s2 satisfying γ0(s

′′
2 ,a,

[
s′1

]
/≈
) = True.

Thus there is a state s′2 ∈
[
s′1

]
/≈

such that s′′2
a
−−→ s′2. From s′2 ≈ s

′
1, and because s′2 is

reachable from s2 by taking interactive transitions (which are never cut by urgency), we
deduce s′2 R s′1.

159
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We have found a state s′′2
τ
−−→� , such that s2

τ∗
−−→ s′′2 and s′′2 R s2 (because s′′2 ≈ s2), that

satisfies γ0(s1,a,
[
s′1

]
/R

) = γ0(s
′′
2 ,a,

[
s′1

]
/R

) = True.

Secondly, suppose that there is a probability p ∈ ]0,1] and a state s′1 ∈ CR , such that s1
p
z{

s′1. Because s
′
1 ∈ CR , we have s′1 ∈ S

′
1 and we can deduce that

(
∄a ∈ A

)
s1

a
−−→ (otherwise, the

transition s1
p
z{ s′1 would have been cut by urgency).

From s1 ≈ s2, and s1
τ
−−→� , we can deduce that there is a state s′′2

τ
−−→� , such that s′′2 ≈ s2,

s2
τ∗
−−→ s′′2 and satisfying γP(s1,

[
s′1

]
/≈
) = γP(s

′′
2 ,

[
s′1

]
/≈
).

We can commpute γP from s1 to the class CR :

γP (s1,C R ) = γP
(
s1,

[
s′1

]
/R

)

By definition of R , we have γP
(
s1,

[
s′1

]
/R

)
≤ γP

(
s1,

[
s′1

]
/≈

)
. Actually, we want to prove that

γP
(
s1,

[
s′1

]
/R

)
= γP

(
s1,

[
s′1

]
/≈

)

To that purpose, suppose that γP
(
s1,

[
s′1

]
/R

)
< γP

(
s1,

[
s′1

]
/≈

)
. This means that there is a state

s̃1 ∈ S\S1 such that s̃1 ∈
[
s′1

]
/≈

and s1 z{ s̃1 in P1. In other words s̃1 is a state of P1 and not

of P1 6{�A in the equivalence class of s′1 for ≈. The transition s1 z{ s̃1 has consequently been

cut by the urgency. Thus,
(
∃a ∈ A

)
, such that s1

a
−−→ in P1, that is in contradiction with

(
∄a ∈ A

)
s1

a
−−→ . We can conclude that

γP
(
s1,

[
s′1

]
/R

)
= γP

(
s1,

[
s′1

]
/≈

)

As a consequence, we have:

γP (s1,CR ) = γP
(
s1,

[
s′1
]
/R

)
= γP

(
s1,

[
s′1

]
/≈

)
= γP

(
s′′2 ,

[
s′1

]
/≈

)

Because s′′2 ≈ s1 and there are no interactive transitions from s1, we can deduce that there
are no interactive transitions from s′′2 . Consequently, there is no probabilistic transition from

s′′2 cut by urgency. Thus, γP
(
s′′2 ,

[
s′1

]
/≈

)
= γP

(
s′′2 ,

[
s′1

]
/R

)
, and we can conclude that:

γP (s1,CR ) = γP
(
s′′2 ,

[
s′1

]
/≈

)
= γP

(
s′′2 ,

[
s′1

]
/R

)
= γP (s

′′
2 ,CR ) =

We have found a state s′′2
τ
−−→� , such that s2

τ∗
−−→ s′′2 and s′′2 R s2 (because s′′2 ≈ s2), that

satisfies γP(s1,
[
s′1

]
/R

= γP(s
′′
2 ,

[
s′1

]
/R

) = True.

We can conclude that R is a branching probabilistic bisimulation.
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Proof of the Congruence Theorem

In this appendix, we prove theorem 5.1, i.e., we prove that IPC probabilistic branching
bisimulation is a congruence with respect to the parallel composition operator.

For convenience, B denotes both the behavior B ∈ B and the initial state of the IPC on which
B can be mapped on; this convention allows to use both notations defined for behaviors of IPCL

and notations defined for states of an IPC,

First of all, we introduce several preliminary lemmas.

Lemma B.1. For all B1,B2,B
′
1,B
′
2 ∈ B and A ⊆ A\{τ}, we have:

B1
τ∗
−−→ B′1 ∧B2

τ∗
−−→ B′2 =⇒ B1 |[A]|B2

τ∗
−−→ B′1 |[A]|B

′
2

Proof. If B1
τ
−−→ B̃1, we have that B1 |[A]|B2

τ
−−→ B̃1 |[A]|B2. Using this property that is directly

deduced from semantic rules, the lemma can be proved by induction on the lengths of the paths

defined by B1
τ∗
−−→ B′1 and B2

τ∗
−−→ B′2.

Lemma B.2. For all B1,B2,B
′
1,B
′
2 ∈ B and A ⊆ A\{τ}, we have:

γP (B1 |[A]|B2,
{
B′1 |[A]|B

′
2
}
) = γP (B1,

{
B′1

}
)×γP (B2,

{
B′2

}
)

Proof. Suppose that γP
(
B1,

{
B′1

})
= 0 or γP

(
B2,

{
B′2

})
= 0, i.e., there are no probabilistic trans-

itions between B1 and B′1 or between B2 and B′2. According to semantic rules, we can deduce

that there are no probabilistic transitions between B1|[A]|B2 and B
′
1|[A]|B

′
2, thus γP

(
B1 |[A]|B2,

{
B′1 |[A]|B

′
2

})
=

0.

Now, suppose that γP
(
B1,

{
B′1

})
> 0 and γP

(
B2,

{
B′2

})
> 0. We can deduce that

(
∃p1, . . . ,pi ,q1, . . . ,qj ∈

]0,1]
)
such that B1

pk
z{ B′1 for all k ≤ i, B2

pl
z{ B′2 for all l ≤ j, γP

(
B1,

{
B′1

})
=

∑
k≤i pk , and

γP
(
B2,

{
B′2

})
=

∑
l≤j pl .

According to semantic rules, we can say that B1 |[A]|B2
pk pl
z{ B′1 |[A]|B

′
2 for all k ≤ i and l ≤ j.
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It follows that:

γP (B1 |[A]|B2,
{
B′1 |[A]|B

′
2
}
) =

∑

k≤i∧l≤j

pk pl =
∑

k≤i

∑

l≤j

pk pl

=



∑

k≤i

pk






∑

l≤j

pl


 = γP (B1,

{
B′1

}
)×γP (B2,

{
B′2

}
)

We can now prove the congruence property of the probabilistic branching bisimulation
defined in section 5.8

Theorem B.1. Probabilistic branching bisimulation is a congruence with respect to the parallel com-
position operator.

Proof. Let R = {(B1 |[A]|B3,B2 |[A]|B4) | B1,B2,B3,B4 ∈ B, B1 ≈B2, B3 ≈B4}.

In the following, when we write “B′i |[A]|B
′
j R Bi |[A]|Bj”, we assume implicitly that B′i ≈Bi

and B′j ≈Bj .

We show that R is a branching bisimulation relation. First of all, we can say that it is an
equivalence:

– Reflexivity: B1 |[A]|B2 R B1 |[A]|B2 (because ≈ is also reflexive: B1 ≈B1 and B2 ≈B2)
– Symmetry: if B1 |[A]| B2 R B3 |[A]| B4, then B3 |[A]| B4 R B1 |[A]| B2 (because ≈ is also

symmetric: B1 ≈B3⇐⇒ B3 ≈B1 and B2 ≈B4⇐⇒ B4 ≈B2)
– Transitivity : if B1|[A]|B2 R B3|[A]|B4 and B3|[A]|B4 R B5|[A]|B6, then B1|[A]|B2 R B5|[A]|B6

(because ≈ is also transitive: B1≈B3∧B3≈B5 =⇒ B1≈B5 and B2≈B4∧B4≈B6 =⇒ B2≈B6)
Let B1,B2,B3,B4 ∈ B be four states such that B1 |[A]|B3 R B2 |[A]|B4 for some A ⊆ A\{τ}.

(i) Suppose that B1 |[A]|B3
a
−−→ .

– If a < A, we distinguish two cases:
(
∃B′1

)
B1

a
−−→ B′1 or

(
∃B′3

)
B3

a
−−→ B′3. Because a

similar reasoning can be followed for the two cases, without loss of generality, we only

treat the case
(
∃B′1

)
B1

a
−−→ B′1.

From B1 ≈B2, we can deduce that
– Either a = τ and B2 ∈

[
B′1

]
/≈
, i.e., B2 ≈B

′
1. Then B2 |[A]|B3 R B′1 |[A]|B3.

Under the hypothesis γ0
(
B1 |[A]|B3,τ,

[
B′1 |[A]|B3

]
/R

)
= True, the state B2 |[A]|B3 sat-

isfies B2 |[A]|B3 ∈
[
B′1 |[A]|B3

]
/R

.

– Or γ0
(
B1,a,

[
B′1

]
/≈

)
= γ0

(
B′2,a,

[
B′1

]
/≈

)
for some B′2 such that B2

τ∗
−−→ B′2 and B

′
2 ≈B1.

Consequently, there existsB′′2 ∈
[
B′1

]
/≈
such that B′2

a
−−→ B′′2 . If B

′
2 can reach B′′2 with a,

we deduce that B′2 |[A]|B3
a
−−→ B′′2 |[A]|B3, i.e., γ0

(
B′2 |[A]|B3,a,

[
B′1 |[A]|B3

]
/R

)
= True.

Under the hypothesis γ0
(
B1 |[A]|B3,a,

[
B′1 |[A]|B3

]
/R

)
= True, we have found the state

B′2 |[A]|B3 that satisfies γ0
(
B′2 |[A]|B3,a,

[
B′1 |[A]|B3

]
/R

)
= True, B2 |[A]|B3

τ∗
−−→ B′2 |[A]|

B3 (c.f. lemma B.1), and B′2 |[A]|B3 R B1 |[A]|B3.
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– If a ∈ A (a , τ), we know that B1 and B3 have to take a synchronously, i.e., there exists

B′1 and B′3 such that B1
a
−−→ B′1 and B3

a
−−→ B′3. Because B1 ≈ B2 and B3 ≈ B4, we can

deduce that
– γ0

(
B1,a,

[
B′1

]
/≈

)
= γ0

(
B′2,a,

[
B′1

]
/≈

)
for some B′2 such that B2

τ∗
−−→ B′2 and B

′
2 ≈B1.

– γ0

(
B3,a,

[
B′3

]
/≈

)
= γ0

(
B′4,a,

[
B′3

]
/≈

)
for some B′4 such that B4

τ∗
−−→ B′4 and B

′
4 ≈B3.

Consequently, there are B′′2 ∈
[
B′1

]
/≈

such that B′2
a
−−→ B′′2 and B′′4 ∈

[
B′3

]
/≈

such that

B′4
a
−−→ B′′4 . This implies that B′2|[A]|B

′
4

a
−−→ B′′2 |[A]|B

′′
4 , i.e γ0

(
B′2 |[A]|B

′
4,a,

[
B′1 |[A]|B

′
3

]
/R

)
=

True.
Under the hypothesis γ0

(
B1 |[A]|B3,a,

[
B′1 |[A]|B

′
3

]
/R

)
= True, we have the state B′2 |[A]|

B′4 that satisfies γ0
(
B′2 |[A]|B

′
4,a,

[
B′1 |[A]|B

′
3

]
/R

)
= True, B2 |[A]| B4

τ∗
−−→ B′2 |[A]| B

′
4 (c.f.

lemma B.1), and B′2 |[A]|B
′
4 R B1 |[A]|B3.

(ii) Suppose that B1 |[A]| B3
τ
−−→� and consider an equivalence class C =

[
Bi |[A]|Bj

]
/R

for

some states Bi ,Bj ∈ B.
We can directly compute γP (B1 |[A]|B3,C):

γP (B1 |[A]|B3,C) =
∑

B′i |[A]|B
′
j∈C

γP
(
B1 |[A]|B3,

{
B′i |[A]|B

′
j

})

=
∑

B′i |[A]|B
′
j∈C

γP
(
B1,

{
B′i

})
×γP

(
B3,

{
B′j

})
(cf. lemma B.2)

=
∑

B′i∈[Bi ]/≈∧B
′
j∈[Bj]/≈

γP
(
B1,

{
B′i

})
×γP

(
B3,

{
B′j

})

=
∑

B′i∈[Bi ]/≈

∑

B′j∈[Bj]/≈

γP
(
B1,

{
B′i

})
×γP

(
B3,

{
B′j

})

=




∑

B′i∈[Bi ]/≈

γP
(
B1,

{
B′i

})


×




∑

B′j∈[Bj]/≈

γP
(
B3,

{
B′j

})



= γP
(
B1, [Bi]/≈

)
×γP

(
B3,

[
Bj

]
/≈

)

Because B1 |[A]| B3
τ
−−→� , we can deduce that B1

τ
−−→� and B3

τ
−−→� . From B2 ≈ B1 and

B4 ≈B3, we can also find B′2
τ
−−→� and B′4

τ
−−→� satisfying:

– γP
(
B1, [Bi]/≈

)
= γP

(
B′2, [Bi]/≈

)
, with B2

τ∗
−−→ B′2 and B

′
2 ≈B1.

– γP

(
B3,

[
Bj

]
/≈

)
= γP

(
B′4,

[
Bj

]
/≈

)
, with B4

τ∗
−−→ B′4 and B

′
4 ≈B3.
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And we can write:

γP (B1 |[A]|B3,C) = γP
(
B1, [Bi]/≈

)
×γP

(
B3,

[
Bj

]
/≈

)
= γP

(
B′2, [Bi]/≈

)
×γP

(
B′4,

[
Bj

]
/≈

)

=




∑

B′i∈[Bi ]/≈

γP
(
B′2,

{
B′i

})


×




∑

B′j∈[Bj]/≈

γP
(
B′4,

{
B′j

})



=
∑

B′i∈[Bi ]/≈

∑

B′j∈[Bj]/≈

γP
(
B′2,

{
B′i

})
×γP

(
B′4,

{
B′j

})

=
∑

B′i∈[Bi ]/≈∧B
′
j∈[Bj]/≈

γP
(
B′2,

{
B′i

})
×γP

(
B′4,

{
B′j

})

=
∑

B′i |[A]|B
′
j∈C

γP
(
B′2,

{
B′i

})
×γP

(
B′4,

{
B′j

})

=
∑

B′i |[A]|B
′
j∈C

γP
(
B′2 |[A]|B

′
4,
{
B′i |[A]|B

′
j

})
(cf. lemma B.2)

= γP
(
B′2 |[A]|B

′
4,C

)

Under the hypothesis B1 |[A]|B3
τ
−−→� , we have found a state B′2 |[A]|B

′
4

τ
−−→� that satisfies

γM (B1 |[A]|B3,C) = γM
(
B′2 |[A]|B

′
4,C

)
, B2 |[A]| B4

τ∗
−−→ B′2 |[A]| B

′
4 (cf. lemma B.1), and

B′2 |[A]|B
′
4 R B1 |[A]|B3.



Appendix C

Proof of Strong Equivalence Between
DTAMCs Associated to Branching
Bisimilar Time Deterministic IPCs

In this appendix, we prove the lemma 5.8, i.e., that the DTAMCs associated to two branch-
ing bisimilar urgency-cut tdIPCs are strongly bisimilar. In a first section, we show that two
branching bisimilar urgency-cut tdIPCs can be scheduled to get two branching bisimilar dIPCs.
In a second section, we prove that the DTAMCs associated to branching bisimilar dIPCs are
strongly bisimilar. Finally, we summarize to conclude on the strong bisimulation equivalence
of DTAMCs associated to branching bisimilar urgency-cut tdIPCs.

C.1 Scheduling of Bisimilar Urgency-Cut Time Deterministic Inter-
active Probabilistic Chains

In this section, we want to prove that two branching bisimilar urgency-cut tdIPCs can be
scheduled in such a way that two branching bisimilar dIPCs are obtained. To that purpose,
we first define the notions of path in an IPC, trace and scheduler. Because there is no possible
misunderstanding, we overload notations concerning paths in a DTMC (cf. chapter 3), for
paths in an IPC. In addition, we need a definition of scheduler on IPCs that is more general
than the one presented in chapter 5. Consequently, we redefine the notion of scheduler that
will be used throughout this appendix.

Definition C.1 (Finite path in an IPC). Given an IPC P = 〈S,A, −−→ , z{ , s0〉, a finite path σ is
an alternating sequence σ = s1 l1 s2 l2 s2 . . . ln−1 sn, where for every i ≤ n, si ∈ S , li ∈ A ∪ ]0,1] and

si
li
−−→ si+1 or si

li
z{ si+1.

Let last(σ) denotes the last state sn of the finite path “σ = s1 l1 s2 l2 s2 . . . ln−1 sn”. Given
a state s ∈ S , Paths(s) denotes the set of finite paths starting in s. We define the concatenation
operator ◦ over paths: ∀σ,σ ′, σ ◦ σ ′ is defined only if σ ′ ∈ Paths(last(c)).

For convenience, we authorize writing paths using the transition notations, for instance

σ = s0
τ
−−→ s1

p
z{ s2

a
−−→

τ∗
−−→ s3

165
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where intermediate states may be omitted, if not needed.

Using definition C.1, we can define the notion of trace. Informally, the trace of a path
represents the moves done in the path. Probabilistic moves are represented by the symbol P,
but concrete probabilities are not mentioned.

Definition C.2 (Concrete trace). Given an IPC P = 〈S,A, −−→ , z{ , s0〉, the concrete trace of a
path σ is a sequence tr(σ) = t1 t2 . . . tm where for every i ≤m, ti ∈ A ∪ {P}.

A concrete trace is constructed recursively on a given path. If σ is a single state, tr(σ) is empty.
Now, consider the path σ = σ ′ ◦ last(σ) lk sk where tr(σ ′) is known. The concrete trace of the path σ
is constructed as following:

⋄ tr(σ) = tr(σ ′) P if lk ∈ ]0,1]
⋄ tr(σ) = tr(σ ′) lk if lk ∈ A

Definition C.3 (Abstract trace). Given an IPC P = 〈S,A, −−→ , z{ , s0〉, the abstract trace of a
path σ is a sequence trτ(σ) = t1 t2 . . . tm where for every i ≤m, ti ∈ A ∪ {P}.

An abstract trace is constructed recursively on a given path. If σ is a single state, tr(σ) is empty.
Now, consider the path σ = σ ′ ◦ last(σ) lk sk where tr(σ ′) is known. The abstract trace of the path σ
is constructed as its concrete trace, but silent τ-transitions are not represented:

⋄ trτ(σ) = trτ(σ ′) if lk = τ and last(σ ′)≈ sk
⋄ trτ(σ) = trτ(σ ′) P if lk ∈ ]0,1]
⋄ trτ(σ) = tr(σ ′) lk otherwise

In a given state, a scheduler deterministically chooses one of the interactive transitions that
can be fired. The following definition is a generalization of definition 5.13.

DefinitionC.4 (Scheduler). Given an urgency-cut time deterministic IPC P = 〈S = SI∪SP ,A, −−→
, z{ , s0〉, a scheduler s on P is the function:

Paths(s0) 7→ −−→ ∪ {⋔}

σ →

{
last(σ)

a
−−→ sa if last(σ) ∈ SI , for some a ∈ A and sa ∈ S
⋔ if last(σ) ∈ SP

When the last state of the considered path is interactive, the scheduler chooses the next
interactive transition among those interactive transitions that can be fired. When the last state
of the considered path is probabilistic, the scheduler lets the next state be determined by the
probabilistic distribution given by probabilistic transitions that can be taken (which is denoted
by ⋔).

Given an IPC P = 〈S,A, −−→ , z{ , s0〉, and a scheduler s defined over Paths(s0), we define
the IPC s(P) as the IPC obtained by scheduling of P by s.

In proof of lemma 5.8, we need to consider extensions of paths by schedulers. Therefore,
we define path expanders and silent path expanders.

Definition C.5 (Path expander). Given an IPC P = 〈S,A, −−→ , z{ , s0〉 and a scheduler s on P,
the s-path expander ξ

s
is the function :

ξ
s
: Paths(s0) 7→ Paths(s0)

σ → σ ◦ s(σ)
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For every integer value k and every path σ ∈ Paths(s0), we define ξk
s
(σ) the function

k times
︷  ︸︸  ︷
ξ
s
(ξ
s
(...(σ))).

By convention, ξ0
s
(σ) = σ .

Definition C.6 (Silent path expander). Given an IPC P = 〈S,A, −−→ , z{ , s0〉, a scheduler s on
P , and the s-path expander ξ

s
, we define the silent s-path expander Ξ

s
as the function:

Ξσ : Paths(s0) 7→ Paths(s0)
σ → ξn

s
(σ) for some n such that:(
∀k < n

)
s(ξk
s
(σ)) = last(ξk

s
(σ))

τ
−−→ sk with sk ∈ [last(c)]/≈

s(ξn
s
(σ)) =



last(ξn
s
(σ))

a
−−→ sa for some a ∈ A and sa ∈ S

with sa < [last(c)]/≈ if a = τ
or

last(ξn
s
(σ))

pa
z{ sa for some pa ∈ ]0,1] and sa ∈ S

For a given path σ and a given scheduler s, the silent s-path expanderΞ
s
gives the extension

σ ′ of σ such that last(σ)≈ last(σ ′) and last(σ ′)0 last(ξ
s
(σ ′)). The silent-path expansion of a path

always exists in non-Zeno time deterministic IPCs because τ-loops are prohibited by the non-
Zeno property.

Using these definitions, we can link paths in branching bisimilar tdIPCs. More precisely,
given a path in a tdIPC P, we can find a path in a branching equivalent IPC P ′ such that the
first states and last states of those two paths are branching equivalent and the two paths are
similar (in terms of trace).

Lemma C.1. For every urgency-cut time deterministic IPCs P = 〈S,A, −−→ , z{ , s0〉 and P
′ =

〈S ′ ,A′ , −−→ , z{ , s′0〉, P≈P
′ implies that for every path σ in Paths(s0), there is a path σ ′ in Paths(s′0)

such that last(σ)≈ last(σ ′) and trτ(σ) = trτ(σ ′).

Proof. Let n be the length of the path σ . The proof is done by induction on n.
– if n = 0, σ = s0. Choosing σ ′ = s

′
0, we have s0 ≈ s

′
0 and trτ(σ) = trτ(σ ′) = ∅. Consequently,

lemma C.1 is verified.
– Suppose that we have σ = σ̃ ◦ last(σ̃) l sn+1 with σ̃ a path of length n satisfying lemmaC.1.

We have to show that lemma C.1 is verified for σ .
The induction assumption gives a path σ̃ ′ ∈ Paths(s′0) having the same trace as σ̃ and such
that last(σ̃ ′) and last(σ̃) are branching equivalent, i.e., last(σ̃ ′) ≈ last(σ̃). Call sn = last(σ̃)
and s′n = last(σ̃ ′).

(i) either l ∈ A. Thus we have an interactive transition sn
l
−−→ sn+1 from sn to sn+1. From

sn ≈ s
′
n, we deduce:

⋄ either l = τ and s′n ≈ sn+1. We can take σ ′ = σ̃ ′ and lemma C.1 is satisfied.

⋄ or s′n
τ∗
−−→ s̃′n for some s̃′n such that s̃′n ≈ s

′
n and γ0(s̃′n, l, [sn+1]/≈) = γ0(sn, l, [sn+1]/≈).

Thus, there is an interactive transition labeled l from s̃′n to a state, say s′n+1, in the
class of sn+1. Consequently, we found a state s′n+1 that is equivalent to sn+1 and

reachable from s′n with s′n
τ∗
−−→ s̃′n

l
−−→ s′n+1. Considering the path σ = σ̃ ′ ◦ s′n

τ∗
−−→

s̃′n
l
−−→ s′n+1, lemma C.1 is satisfied.
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(ii) or l ∈ ]0,1]. Thus we have a probabilistic transition sn
l
z{ sn+1. Consider the

equivalence class C = [sn+1]/≈ . This class satisfies γP(sn,C) > 0. Because P is urgency-

cut, we have that sn
τ
−−→� . sn ≈ s′n implies that s′n

τ∗
−−→ s̃′n for some s̃′n such that s̃′n ≈ s

′
n

and for every equivalence class C, γP(s̃′n,C) = γP(sn,C) > 0. Thus, there is at least one
probabilistic transition from s̃′n to a state of C. Call s′n+1 this state and l

′ the probability
from s̃′n to s′n+1. We found a state s′n+1 that is equivalent to sn+1 and reachable from

s′n, i.e., s
′
n

τ∗
−−→ s̃′n

l
z{ s′n+1. Considering the path σ = σ̃ ′ ◦ s′n

τ∗
−−→ s̃′n

l
z{ s′n+1,

lemma C.1 is verified.

Finally, we prove that two branching bisimilar urgency-cut tdIPCs can be scheduled to
obtain two branching bisimilar dIPCs.

Lemma C.2. Given two urgency-cut tdIPCs P = 〈S,A, −−→ , z{ , s0〉 and P
′ = 〈S ′ ,A′ , −−→ , z{

, s′0〉 such that P and P ′ are branching equivalent, for every scheduler s over Paths(s0) in P , there exists
a scheduler s′ over Paths(s′0) in P

′ such that s(P) and s′(P ′) are branching equivalent, s(P)≈ s′(P ′).

Proof. Given P , consider a scheduler s over Paths(s0). We are going to construct a scheduler s′

over Paths(s′0) in P
′ such that the branching equivalence between s(P) and s′(P ′) is preserved.

We construct s′ considering every path σ ′ ∈ Paths(s′0) as follows :

For every path σ ′ ∈ Paths(s′0), lemma C.1 gives us a path σ ∈ Paths(s0) such that last(σ ′) ≈
last(σ). Consider the silent s-path expansion Ξ

s
(σ) of σ .

– either s(Ξ
s
(σ)) = last(Ξ

s
(σ))

a
−−→ sa for some a ∈ A and sa ∈ S . We have by definition C.6

of Ξ
s
that last(Ξ

s
(σ))≈ last(σ). Call s̃ the state last(Ξ

s
(σ)).

To preserve the branching equivalence between s(P) and s′(P ′), we have to find a state

s̃′ such that last(σ ′)
τ∗
−−→ s̃′, s̃′ ≈ s̃ and γ0(s̃′ ,a, [sa]/≈) is true. Because γ0(s̃, a, [sa]/≈) is true,

the branching equivalence between last(σ ′) and s̃ in P ′ and P implies that γ0(s̃′ ,a, [sa]/≈) is

true for some s̃′ ∈ S ′ such that last(σ ′)
τ∗
−−→ s̃′ and s̃′ ≈ s̃.

γ0(s̃′ ,a, [sa]/≈) ensures the existence of a state s′a branching equivalent to sa and such that

s̃′
a
−−→ s′a. In this case, the branching equivalence between s(P) and s(P ′) is preserved

taking s′(σ ′) = s̃′
a
−−→ s′a.

– or s(Ξ
s
(σ)) = last(Ξ

s
(σ))

p
z{ sp for some p ∈ ]0,1] and sp ∈ S . We have by definition C.6

of Ξ
s
that last(Ξ

s
(σ))≈ last(σ). Call s̃ the state last(Ξ

s
(σ)).

To preserve the branching equivalence between s(P) and s′(P ′), and because P is urgency

cut (we have last(Ξ
s
(σ))

τ
−−→� ), we have to find state s̃′ such that last(σ ′)

τ∗
−−→ s̃′, s̃′≈ s̃ and

γP(s′ ,
[
sp

]
/≈
) = γP(s̃,

[
sp

]
/≈
). The branching equivalence between last(σ ′) and s̃ in P ′ and P

implies that γP(s̃′ ,
[
sp

]
/≈
) = γP(s̃,

[
sp

]
/≈
) for some s̃′ ∈ S ′ such that last(σ ′)

τ∗
−−→ s̃′ and s̃′ ≈ s̃.

Thus, the branching equivalence between s(P) and s′(P ′) is preserved taking s′(σ ′) = ⋔.
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C.2 DTAMCs Associated to Branching Bisimilar Deterministic In-
teractive Probabilistic Chains

In this section, we prove that the DTAMCs associated to branching bisimilar dIPCs are
strongly bisimilar. Let D be the set of all DTAMCs. We first introduce several lemmas.

Lemma C.3. Let P = 〈S = SI ∪ SP ,A, −−→ , z{ , s0〉 be an urgency cut dIPC over A, and k be the
length of the longest sequence of interactive transitions in P. For all states s′1, s1, s2 in S and every

e1 ∈ E such that s1 ≈ s2 and s
′
1

e1
→−→ s1, we have:

(
∀s′2 ∈ S

) (
∀e2 ∈ E

)
s′2

e2
→−→ s2 ∧S(e2) = S(e1) =⇒ s′2 ≈ s

′
1

Proof. By induction on the length n of the word defined by the regular expression e1.

If n = 0, i.e., s′1
e
→−→ s1 (i.e., s

′
1 = s1), the lemma is clearly verified.

Suppose that s′1
en+1
→−→ s1 with en+1 the regular expression defining a word an+1 an . . . a1 (of

length n + 1). In other words, there is a state s′′1 ∈ S such that s′1
an+1
−−→ s′′1

en
→−→ s1 with en the

regular expression defining the word an an−1 . . . a1 (of length n).

Suppose also that s′2
e′n+1
→−→ s2, with S(e′n+1) = S(en+1), e

′
n+1 being a regular expression. The

word defined by e′n+1 has the form τ∗ an+1 am am−1 . . . a1 with am am−1 . . . a1 a word defined by
a regular expression e′n that satisfies S(e′n) = S(en). There is consequently a state s′′2 such that

s′2
τ∗
−−→

an+1
−−→ s′′2

e′n
→−→ s2.

The induction assumption gives us

s′′2
e′n
→−→ s2 ∧S(e

′
n) = S(en) =⇒ s′′2 ≈ s

′′
1

Because the IPC P is deterministic, we can finally conclude that s′2 ≈ s
′
1. Indeed, s

′
1 and s′2

can only fire the same action an+1 after a potentially empty sequence of τ transitions, to reach
bisimilar states s′′1 and s′′2 .

Lemma C.4. Let P = 〈S = SI ∪ SP ,A, −−→ , z{ , s0〉 be an urgency cut dIPC over A, and k be the
length of the longest sequence of interactive transitions in P. For every pair of states s1 and s2 in S
satisfying s1 ≈ s2, we have:

(
∀s′1 ∈ SP

) (
∀e1 ∈ E

)
s1

e1
→−→ s′1 =⇒

((
∃s′2 ∈ SP

) (
∃e2 ∈ E

)
s2

e2
→−→ s′2∧S(e1) = S(e2)∧ s

′
1 ≈ s

′
2

)

Proof. By induction on the length of the word defined by the regular expression e1, it is a direct
application of the IPC branching bisimulation (definition 5.8).

Finally, we can prove that the DTAMCs associated to branching bisimilar urgency cut dIPCs
are strongly bisimilar.

Lemma C.5. Let P = 〈S = SI ∪SP ,A, −−→ , z{ , s0〉 be an urgency cut dIPC over A, k be the length
of the longest sequence of interactive transitions in P , andM(P) = 〈C, z{ , c0,A 〉 be the DTAMC
associated to P. Consider two states s1, s2 ∈ SP . For every multiset S ∈ P ×≤k(A), we have:

s1 ≈ s2 =⇒ 〈s1,S 〉 ∼P 〈s2,S 〉
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Proof. Consider two states s1 and s2 in SP such that s1≈s2 and a multisetS ∈ P ×≤k(A). The states
〈s1,S 〉 and 〈s2,S 〉 in C are strongly bisimilar, 〈s1,S 〉 ∼P 〈s2,S 〉, if there exists a relation R
that is a strong bisimulation and such that 〈s1,S 〉 R 〈s2,S 〉. We are going to construct such a
relation R.

Let R =
{
(〈s1,S 〉,〈s2,S 〉) | S ∈ P

×
≤k(A) , s1, s2,∈ SP , s1 ≈ s2

}
. R is clearly an equivalence

relation, because ≈ is an equivalence relation.

Consider an equivalence class C
M
∈D /R . We can distinguish two cases with respect to the

multiset inducing the class C
M
:

– Either there is no state 〈s,S 〉 ∈ C
M
, such that a path s1

p1
z{ s′1

e1
→−→ s exists in P , for some

p1 > 0, s′1 ∈ S , and e1 satisfying S(e1) = S . According to lemma C.4, we can prove by

contraposition that there is thus no state 〈s′,S 〉 ∈ C
M
, such that a path s2

p2
z{ s′2

e2
→−→ s′

exists in P , for som p2 > 0, s′2 ∈ S , and e2 satisfying S(e1) = S . Consequently, we have:

γP
(
〈s1,S 〉,CM

)
= γP

(
〈s2,S 〉,CM

)
= 0

– Or there is at least one state 〈s,S 〉 ∈ C
M
, such that a path s1

p1
z{ s′1

e1
→−→ s exists in P , for

some p1 > 0, s′1 ∈ S and e1 satisfying S(e1) = S .
Consider the set of states

S1 =
{
s′i ∈ S |

(
∃si ∈ SP

) (
∃ei ∈ E

) (
∃pi > 0

)
s1

pi
z{ s′i

ei
→−→ si ∧ 〈si ,S(ei )〉 ∈ CM

}

By definition of R, Forall all s′i ∈ S1 such that s1
pi
z{ s′i

ei
→−→ si (for some pi , ei and

si), we have that si ≈ s ∧S(ei ) = S . According to lemma C.3, we have that, for all states
si , sj ∈ S1, si ≈ sj , that implies that S1 is a subset of an equivalence class C

P
of P /≈.

In addition, S1 is the smallest subset of C
P
such that γP

(
s1,S1

)
= γP

(
s1,CP

)
. Indeed,

suppose that s1
p′

z{ s′′1 for some s′′1 ∈ CP \S1. We have s′′1 ≈ s
′
1 (because s′′1 ∈ CP\S1) and

s′1
e1
→−→ s. According to lemma C.4,

(
∃s′ ∈ SP

) (
∃e′1 ∈ E

)
such that s′′1

e′1
→−→ s′ with s′ ≈ s

and S(e′1) = S(e1). Thus, s
′′
1 ∈S1, which is in contradiction with s′′1 ∈ CP \S1.

Now, Consider the set of states

S2 =
{
s′j ∈ S |

(
∃sj ∈ SP

) (
∃ej ∈ E

) (
∃pj > 0

)
s2

pj
z{ s′j

ej
→−→ sj ∧ 〈sj ,S(ej )〉 ∈ CM

}

By definition of R, we have that
(
∀j

)
sj ≈ s ∧S(ej ) = S . According to lemma C.3, one

can say that S2 is also a subset of C
P
, and following the same reasonning than for S1, S2

is the smallest subset of C
P
such that γP

(
s2,S2

)
= γP

(
s2,CP

)
.

Because s1 and s2 are branching bisimilar (s1 ≈ s2), we have γP
(
s1CP

)
= γP

(
s2,CP

)
, which

induces γP
(
s1,S1

)
= γP

(
s2,S2

)
, and finally

γp
(
〈s1,S 〉,CM

)
= γP

(
〈s2,S 〉,CM

)
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C.3 Associated DTAMCs of Probabilistic Branching Bisimilar
Time Deterministic Interactive Probabilistic Chains

Theorem C.1. Associated DTAMCs of probabilistic branching bisimilar tdIPCs are strongly bisim-
ilar, i.e., (

∀ (P1,P2) ∈P
2
) (

P1 ≈P2
)
=⇒

(
M(P1) ∼P M(P2)

)

Proof. Consider two time deterministic IPCs P1 and P2, such that P1 ≈ P2, and a scheduler s1
such that s1(P1) is the deterministic IPC obtained by scheduling of P1.

According to lemma C.2, we can find a scheduler s2 such that s1(P1)≈ s2(P2).

According to lemma 5.7, the DTAMC associated to P1 is strongly bisimilar to the DTAMC
associated to s(P1), i.e.,M(P1) ∼P M(s(P1)). Similarly,M(P2) ∼P M(s(P2)).

Finally, according to lemma C.5, the DTAMC associated to two bisimilar urgency-cut dIPCs
are strongly bisimilar. Thus, we haveM(s(P1)) ∼P M(s(P2)).

By transitivity of the branching bisimulation equivalence, we can conclude thatM(P1) ∼P
M(P2).
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Appendix D

Relationship between SMCs and
DTAMCs

In this appendix, we prove lemma 5.9, i.e., we prove that the steady state probabilities of a
DTAMC associated to an IPC are related to the steady state probabilities of the SMC associated
to the DTAMC.

Definition D.1 (k-scaled DTMC). Consider an ergodic DTMC MP = 〈S, z{ , s〉. The k-scaled
DTMCMk

P ofMP is the DTMCMk
P = 〈S ′ , z{ , s〉 satisfying:

– the state space S is a subset of the state space S ′ , i.e., S ⊆ S ′

– For every transition s1
p
z{ s2 (for some s1, s2 ∈ S and p ∈ ]0,1]) inMP , there is a sequence

of k probabilistic transitions inMk
P : s1

p
z{ s1,1,2

1
z{ s1,2,2

1
z{ · · ·

1
z{ s1,k−1,2

1
z{ s2,

with
{
s1,i,2

}
i<k ⊂ S

k\S .

Informally, the k-scaled DTMC ofMP is obtained by splitting each transition ofMP in k
successive transitions. We introduce some notations concerning the state space S ′ of a k-scaled
DTMC. Consider a DTMCMP = 〈S, z{ , s〉 and the k-scaled DTMCMk

P = 〈S ′ , z{ , s〉 ofMP .
For every state si ∈ S , S{si is the set of predecessors of si inMP . For every state si ∈ S ⊂ S ′, and
every k′ < k we note Ssi ,k−k′ ⊂ S

′ the set of states:

Ssi ,k−k′ =


s′ ∈ S ′\S

∣∣∣∣∣∣∣∣∣
s′

1
z{ · · ·

1
z{︸           ︷︷           ︸

k−k′ transitions

si



Consequently, the state space S ′ satisfies:

S ′ = S ∪



⋃

si∈S



⋃

k′<k

Ssi ,k−k′







We illustrate the subdivision of the state space S ′ of a k-scaled DTMC in figure D.1. We intro-
duce the notation PathsMP

(s) to denote the set of paths starting in state s in the DTMCMP .

We first consider a lemma introducing a link between the steady state probability of a state
si and the steady state probabilities of states in a set Ssi ,l ofM

k
P .
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si

S{si

pn 1

p1

Ssi ,k−1 Ssi ,k−2 Ssi ,2 Ssi ,1
1

1

1

1

1

Figure D.1: Particular sets of states of a k-scaled DTMC

Lemma D.1. Consider an ergodic DTMC MP = 〈S, z{ , s〉 and the k-scaled DTMC Mk
P ofMP ,

Mk
P = 〈S ′ , z{ , s〉. Let π′ be the steady-state probability vector ofMk

P . For every state si ∈ S ⊆ S
′

and every k′ < k, we have:

π′si =
∑

s∈Ssi ,k−k′

π′s

Proof. The lemma is clearly satisfied for the the set of state Ssi ,1 (i.e., for k
′ = k−1). By induction,

it is also satisfied for other values k′ < k, because
∑
s∈Ssi ,k−k′

π′s =
∑
s∈Ssi ,k−k′+1

π′s

For every value k, the steady state probabilities of a DTMCMP and of the k-scaled DTMC
Mk

P ofMP are related.

Lemma D.2 (steady state probabilities of a k-scaled DTMC). Consider a DTMCMP = 〈S, z{
, s〉 and the k-scaled DTMCMk

P = 〈S ′ , z{ , s〉 ofMP . Let π be the steady-state probability vector of

MP , and π
′ be the steady-state probability vector ofMk

P . For all state si ∈ S , and all k′ < k, we have:

πsi = k ×
∑

sj∈Ssi ,k−k′

π′sj

Proof. According to lemma D.1, we can write that:
(
∀si ∈ S

)
,

∑

s∈{si } ∪
⋃
k′<k Ssi ,k−k′

π′s = π
′
si
+
∑

k′<k

∑

s∈Ssi ,k−k′

π′s = k π
′
si

(1)

Because the steady state probability vector is a probabilistic distribution, we have that
∑

s∈S

πs = 1 (2)

and ∑

s∈S ′

π′s = 1 (3)

From equation 1 and 3, we can deduce that

k
∑

s∈S

π′s = 1 (4)
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For every pair of state (s1, s2) ∈ S2, let ps1s2 be the transition probability from s1 to s2 in
MP (ps1s2 is equal to zero if there is no probabilistic transition from s1 to s2). In addition to
equation 2, the steady state probabilities inMP satisfy:

(
∀s ∈ S

)
πs =

∑

s′∈S

ps′s π
′
s (5)

By construction, and in addition to equation 3, the steady state probabilities of states in S
inMk

P satisfy: (
∀s ∈ S

)
π′s =

∑

s′∈S

ps′s π
′
s (6)

In an ergodic DTMC, the system of equations given by the set of equations 5 (resp. equa-
tions 6) is linearly dependent and has an infinity of linearly dependent solutions; a unique
solution is ensured by additionally considering equation 2 (resp. equation 3), because we are
interested in the single probabilistic distribution solution.

However, because systems of equations given by the set of equations 5 and 6 are identical
(regardless of the variable names),we can write that for each state si ∈ S and for every states
sj ∈ S , there exists ψsi{sj such that:

πsj = ψsi{sj πsi and π′sj = ψsi{sj π
′
si

From equations 2 and 3, we can thus write:

∑

s∈S

πs =
∑

s∈S ′

π′s

⇐⇒
∑

s∈S

πs =
∑

s∈S

π′s +
∑

s∈S

k−1∑

k′=1

∑

sj∈Ss,k−k′

π′sj

︸      ︷︷      ︸
π′s according to lemma D.1

⇐⇒
∑

s∈S

πs =
∑

s∈S

π′s +
∑

s∈S

(
(k − 1) π′s

)

⇐⇒
∑

s∈S

πs =
∑

s∈S

π′s + (k − 1)
∑

s∈S

π′s

⇐⇒
∑

s∈S

πs = k
∑

s∈S

π′s

Now consider a state si ∈ S . We can write:

∑

s∈S

πs = k
∑

s∈S

π′s

⇐⇒
∑

s∈S

ψsi{s πsi = k
∑

s∈S

ψsi{s π
′
si

⇐⇒ πsi



∑

s∈S

ψsi{s


 = k π′si



∑

s∈S

ψsi{s




⇐⇒ πsi = k π′si
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Finally the lemma is satisfied because of lemma D.1.

Lemma D.3 (Steady-state probabilities of an SMC and its embedded DTMC). Consider an SMC
MS = 〈S,A, �z{ ,D, s〉 such that there exists k ∈N such that:

(
∀s1, s

′
1 ∈ S

) (
∀a ∈ A

) (
∀p ∈ ]0,1]

) (
s1

a
�

p
z{ s′1

)
=⇒

(
D

(
s1

a
�

p
z{ s′1

)
= Ck

)

LetMP = 〈S, z{ , s〉 be the embedded DTMC ofMS . Let π be the steady-state probability vector of
MP , and π

′ the steady-state probability vector ofMS . Then, π and π′ satisfy π = π′.

Proof. Consider a state si ∈ S . According to definition 2.39, the steady state probability π′si of
the state si inMS is:

π′si =
πsi E

[
DSJ(si , .)

]

∑
sj∈S

(
πsj E

[
DSJ(sj , .)

])

Because the distribution associated to all transitions is Ck , the distribution of the sojourn time
in each state is also Ck . Consequently, for every state s ∈ S , the expected value E

[
DSJ(s, .)

]

of the distribution of the sojourn time in s is equal to k. We can thus directly conclude that
π′si = πsi .

Lemma D.4 (Aggregation of transitions in an SMC). Consider an SMCM
(1)
S = 〈S ∪ {s} ,A, �z{

,D(1), s〉 such that the state s satisfies:

– there is a single incoming transition in state s, s0
τ
�

p
z{ s (s0 ∈ S , and p ∈ ]0,1])

– there is a single outgoing transition from state s, s
τ
�

1
z{ s1 (s1 ∈ S)

–
(
∃n ∈N+

)
D(1)

(
s0

τ
�

p
z{ s

)
= Cn

– D(1)
(
s
τ
�

1
z{ s1

)
= C1

Consider also a second SMCM
(2)
S = 〈S,A, �z{ ,D(2), s〉 constructed fromM

(1)
S , and satisfying:

– for all transition si
a
�

p′

z{ sj (a ∈ A and p′ ∈ ]0,1]) inM(1)
S such that si , sj ∈ S , si , s, and sj , s,

there is the same transition si
a
�

p′

z{ sj inM
(2)
S , and D(1)

(
si

a
�

p′

z{ sj

)
=D(2)

(
si

a
�

p′

z{ sj

)

– there is a transition s0
τ
�

p
z{ s1 inM

(2)
S that satisfies D(2)

(
s0

τ
�

p
z{ s1

)
= Cn+1.

Let π(1)′ be the steady state probability vector of M
(1)
S and π(2)′ be the steady state probability

vector ofM
(2)
S . Then, π(1)′ and π(2)′ satisfy:

(
∀s ∈ S\{s0}

)
π
(2)′
s = π

(1)′
s

and π
(2)′
s0 = π

(1)′
s0 +π

(1)′
s

Proof. CallM(1) the embedded DTMC ofM(1)
S andM(2) the embedded DTMC ofM(2)

S . M(2)
S

has a transition that aggregates two transitions ofM(1)
S .

Let π(1) be the steady state probability vector ofM(1) and π(2) be the steady state probability
vector ofM(2).
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Following the same reasoning as in the proof of lemma D.2, by construction, we can say

that for every state sj ∈ S , there exists ψs0{sj such that π(1)
sj = ψs0{sj π

(1)
s0 and π(2)

sj = ψs0{sj π
(2)
s0 .

Because
∑
s′∈S∪{s}π

(1)
s′ = 1 and

∑
s′∈S π

(2)
s′ = 1, we have that:

π
(1)
s0




∑

sj∈S

ψs0{sj



+π

(1)
s = π

(2)
s0




∑

sj∈S

ψs0{sj




By construction, the distributions of the sojourn time in states of S\{s0} are the same inM(1)
S

and inM(2)
S . For every state sj ∈ S\{s0}, let Esj be the expected value of the distribution of the

sojourn time in sj (in the SMCsM
(1)
S orM

(2)
S ).

However, the distributions of the sojourn time in s0 differ inM(1)
S and inM(2)

S . Let E(1)
s0 be

the expected value of the sojourn time in s0 in the SMCM
(1)
S , and E

(2)
s0 be the expected value of

the sojourn time in s0 in the SMCM
(2)
S . Consider the expected value Es0 6{s in the SMCM

(1)
S ,

defined by:

Es0 6{s = E




∑

a ∈ A,
p′ ∈ ]0,1]
sj , s

{]
p′ D(1)

(
s0

a
�

p′

z{ sj

)
| s0

a
�

p′

z{ sj

[}




Es0 6{s is the expected value of the distribution induced by transitions from s0 but the transition

s0
τ
�

p
z{ s (with D

(
s0

τ
�

p
z{ s

)
= Cn).

By construction, For all transitions from s0 different from s0
τ
�

p
z{ s inM(1)

S , there is the
same transition with the same distribution in s2. We can thus write that:

E
(1)
s0 = Es0 6{s + p E [Cn] = Es0 6{s + p n

E
(2)
s0 = Es0 6{s + p E [Cn+1] = Es0 6{s + p (n+1)

In other words, we have E
(2)
s0 = E

(1)
s0 + p.
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Finally, we can compute the steady state probability in the state s0 ofM
(2)
S :

π
(2)′
s0 =

π
(2)
s0 E

(2)
s0

∑
sj∈S\{s0}

(
π
(2)
sj Esj

)
+π(2)

s0 E
(2)
s0

=
π
(2)
s0 E

(2)
s0

π
(2)
s0

(∑
sj∈S\{s0}

(
ψs0{sj Esj

))
+π

(2)
s0 E

(2)
s0

=
E
(2)
s0

∑
sj∈S\{s0}

(
ψs0{sj Esj

)
+E

(2)
s0

=
π
(1)
s0 E

(2)
s0

π
(1)
s0

(∑
sj∈S\{s0}

(
ψs0{sj Esj

))
+π

(1)
s0 E

(2)
s0

=
π
(1)
s0 E

(1)
s0 + p π(1)

s0
∑
sj∈S\{s0}

(
ψs0{sj π

(1)
s0 Esj

)
+π

(1)
s0 E

(1)
s0 + p π

(1)
s0

=
π
(1)
s0 E

(1)
s0 +π(1)

s

∑
sj∈S\{s0}

(
π
(1)
sj Esj

)
+π

(1)
s0 E

(1)
s0 +π

(1)
s

= π
(1)′
s0 +π(1)′

s

Similarly, we prove that for a state sj , s0, we have π(2)′
sj = π(1)′

sj

Finally, we can prove the following theorem, corresponding lemma 5.9.

Theorem D.1 (Steady state probabilities in the associated SMC). Consider a DTAMCM(P) as-
sociated to an IPC P ,M(P) = 〈C, z{ , c0,A 〉, andMS (P) = 〈S,A, �z{ ,D, s0〉 the SMC associated
toM(P). Let k be the cardinal of the largest annotation multiset associated to states ofM(P). We
note πc the steady state probability of a state c ∈ C inM(P) and π̃s the steady state probability of a
state s ∈ S inMS .

Consider a state 〈s,S 〉 ∈ C where S2 = {a1, . . . ,an} (n ≤ k and
(
∀i ≤ n

)
ai ∈ A), and S{〈s,S 〉

the set of predecessors of 〈s,S 〉 inM(P). For every state 〈si ,Si〉 ∈ S{〈s,S 〉 such that 〈si ,Si〉
pi
z{

〈s,S 〉, there is a sequence of transitions:

si
τ
�

pi
z{ s′i,1

a1
�

1
z{ s′i,2

a2
�

1
z{ · · ·

an−1
�

1
z{ s′i,n

an
�

1
z{ s2

inMS . Steady state probabilities of predecessors of s2 inMS are linked to the steady state probability
of s2 inM(P): (

∀j < n
) ∑

〈si ,Si〉∈S{〈s,S 〉

(
π̃si,j

)
=
π〈s,S 〉

k

Proof. This is a direct application of lemmas D.2, D.3, and D.4. The transformation from
a DTAMC to an SMC can be seen as three successive transformations keeping strong links
between the steady state probabilities of each transformation:
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– firstly, the DTAMC is transformed in a k-scaled DTMC.
– secondly, to preserve the annotations, the k-scaled DTMC is transformed into an SMC

such that the distribution associated to each transition is C1. The sequences of interme-
diate transitions added in the k-scaled DTMC are labeled with actions stored in states of
the DTAMC or with τ.

– finally, transitions labeled with τ and probability one are aggregated (cf. lemma D.4)
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Appendix E

Lotosmodels

In this appendix we present the Lotos models of push and pop queues, used in chapter 7.
In those models, the peek operation is not implemented.

E.1 Data Type Libraries

E.1.1 Queue Size

type F i f o S i z e i s Boolean
sor t s F i f o S i z e ( * ! implementedby ST_FIFOSIZE

comparedby ST_FIFOSIZE_CMP
i tera tedby ST_FIFOSIZE_ENUM_FIRST

and ST_FIFOSIZE_ENUM_NEXT
printedby ST_FIFOSIZE_PRINT ex terna l * )

opns
0 ( * ! implementedby ST_FIFOSIZE_0 cons t ruc to r ex te rna l * ) ,
1 ( * ! implementedby ST_FIFOSIZE_1 cons t ruc to r ex te rna l * ) ,
2 ( * ! implementedby ST_FIFOSIZE_2 cons t ruc to r ex te rna l * ) ,
4 ( * ! implementedby ST_FIFOSIZE_4 cons t ruc to r ex te rna l * ) ,
8 ( * ! implementedby ST_FIFOSIZE_8 cons t ruc to r ex te rna l * ) ,
16 ( * ! implementedby ST_FIFOSIZE_16 cons t ruc to r ex te rna l * ) ,
32 ( * ! implementedby ST_FIFOSIZE_32 cons t ruc to r ex te rna l * ) ,
64 ( * ! implementedby ST_FIFOSIZE_64 cons t ruc to r ex te rna l * ) ,
128 ( * ! implementedby ST_FIFOSIZE_128 cons t ruc to r ex te rna l * ) ,
256 ( * ! implementedby ST_FIFOSIZE_256 cons t ruc to r ex te rna l * )

: −> Fi f oS i z e

_+_ ( * ! implementedby ST_FIFOSIZE_PLUS ex terna l * ) ,
_−_ ( * ! implementedby ST_FIFOSIZE_MINUS ex terna l * )

: F i f oS ize , F i f o S i z e −> Fi f oS i z e

_==_ ( * ! implementedby ST_FIFOSIZE_EQ externa l * ) ,
_<>_ ( * ! implementedby ST_FIFOSIZE_NE ex terna l * ) ,
_<_ ( * ! implementedby ST_FIFOSIZE_LT ex terna l * ) ,
_<=_ ( * ! implementedby ST_FIFOSIZE_LE ex terna l * ) ,
_>_ ( * ! implementedby ST_FIFOSIZE_GT externa l * ) ,
_>=_ ( * ! implementedby ST_FIFOSIZE_GE ex terna l * )

181
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: F i f oS ize , F i f o S i z e −> Bool
endtype

E.1.2 Queue Elements

type DataType i s Boolean
sor t s DataType
opns

DATA ( * ! c ons t ruc to r * ) : −> DataType
SIGNAL ( * ! c ons t ruc to r * ) : −> DataType
_==_ ,
_<>_ : DataType , DataType −> Bool

eqns
f o ra l l X, Y:DataType
ofsort Bool

DATA == DATA = t r u e ;
SIGNAL == SIGNAL = t r u e ;
DATA == SIGNAL = f a l s e ;
X == Y = Y == X;

ofsort Bool
X <> Y = not (X == Y) ;

endtype

E.1.3 Queue

type FIFO_TYPE i s Fi foS ize , DataType
sor t s

Fi fo

opns
Empty ( * ! c ons t ruc to r * ) : −> Fi fo
TPUSH ( * ! c ons t ruc to r * ) : Fifo , DataType −> Fi fo
TPOP : F i fo −> Fi fo
HEAD : F i fo −> DataType
SIZE : F i fo −> Fi f oS i z e

eqns
f o ra l l D:DataType , M:FifoSize , F : F i f o

ofsort Fi fo
TPOP( TPUSH( Empty , D) ) = Empty;
TPOP( TPUSH( F , D) ) = TPUSH( TPOP(F ) , D) ;

ofsort DataType
HEAD( TPUSH( Empty , D) ) = D;
HEAD( TPUSH( F , D) ) = HEAD(F ) ;

ofsort F i f o S i z e
S ize (Empty) = 0 ;
S ize ( TPUSH( F , D) ) = S ize ( F ) + 1 ;

endtype
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E.1.4 Push Queue Identifiers

type PUSHQ_ID i s BOOLEAN
sor t s PUSHQ_ID

opns
PUSHQ_ID_1 ( * ! c ons t ruc to r * ) : −> PUSHQ_ID
PUSHQ_ID_2 ( * ! c ons t ruc to r * ) : −> PUSHQ_ID
_<>_ : PUSHQ_ID, PUSHQ_ID −> Bool
_==_ : PUSHQ_ID, PUSHQ_ID −> Bool

eqns
f o ra l l q1 , q2: PUSHQ_ID

ofsort Bool
q1 <> q1 = f a l s e ;
q1 <> q2 = t r u e ;
q1 == q1 = t r u e ;
q1 == q2 = f a l s e ;

endtype

E.1.5 Pop Queue Identifiers

type POPQ_ID i s BOOLEAN
sor t s POPQ_ID

opns
POPQ_ID_1 ( * ! c ons t ruc to r * ) : −> POPQ_ID
POPQ_ID_2 ( * ! c ons t ruc to r * ) : −> POPQ_ID
_<>_ : POPQ_ID, POPQ_ID −> Bool
_==_ : POPQ_ID, POPQ_ID −> Bool

eqns
f o ra l l q1 , q2: POPQ_ID

ofsort Bool
q1 <> q1 = f a l s e ;
q1 <> q2 = t r u e ;
q1 == q1 = t r u e ;
q1 == q2 = f a l s e ;

endtype

E.2 Push Queue

( * l i s t of used gates :
PUSH_RQ : request fo r a push operation
PUSH_RSP : response fo r a pop operation
PUSH_DL_B : beginning of the delay assoc ia ted to the push operation
PUSH_DL_E : end of the delay assoc ia ted to the push operation
OUT_RQ : request fo r the witdrawal operation
OUT_RSP : response fo r the witdrawal operation
CDT_RQ : request fo r the operation to rece ive a c r ed i t message
CDT_RSP : response fo r the operation to rece ive a c r ed i t message
CDT_DL_B : beginning of the delay assoc ia ted to the c r ed i t operation
CDT_DL_E : end of the delay assoc ia ted to the c r ed i t operation
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PUSHQ_ERROR : a gate of e r ro r to l im i t the s i z e of the push queue model

The implementation of the c r ed i t protoco l implies that the model of the
push queue i s i n f i n i t e . Only the a s so c i a t i on of a push queue model to a
pop queue model leads to a f i n i t e model . Consequently , we use the
PUSHQ_ERROR gate not to l im i t the s i z e of the model .

* )

spec i f i ca t ion TOP [ PUSH_RQ, PUSH_RSP , PUSH_DL_B, PUSH_DL_E,
OUT_RQ , OUT_RSP ,
CDT_RQ , CDT_RSP , CDT_DL_B , CDT_DL_E,
PUSHQ_ERROR ] : noexit

l ibrary
FIFO_SIZE , X_BOOLEAN, POPQ_ID, PUSHQ_ID , DATA_TYPE, FIFO_TYPE

endlib

behaviour

PUSHQ [PUSH_RQ , PUSH_RSP , PUSH_DL_B, PUSH_DL_E,
OUT_RQ, OUT_RSP ,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
(PUSHQ_ID_1 of PUSHQ_ID,
POPQ_ID_1 of POPQ_ID,
1 of FIFOSIZE ,
8+4+2 of FIFOSIZE )

| [ CDT_RQ, CDT_RSP, OUT_RSP]|

dummyEnv [CDT_RQ, CDT_RSP, OUT_RSP, PUSHQ_ERROR]
(PUSHQ_ID_1 of PUSHQ_ID ,
8+4+2 of F i f o S i z e )

where

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

type DUMMY_STATUS i s BOOLEAN
sor t s

DUMMY_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> DUMMY_STATUS
Pending ( * ! c ons t ruc to r * ) : −> DUMMY_STATUS

i s Id l e , isPending : DUMMY_STATUS −> Bool

eqns
f o ra l l S:DUMMY_STATUS

ofsort Bool
i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;



Push Queue 185

isPending ( Pending ) = t r u e ;
isPending ( S ) = f a l s e ;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

process dummyEnv [CDT_RQ, CDT_RSP, OUT_RSP , ERROR]
( id : pushq_id ,
popqsize : F i f o S i z e ) : noexit :=

dummy_ctl [CDT_RQ, CDT_RSP, OUT_RSP , ERROR]
( id , popqsize , popqsize+popqsize , 0 of Fi foS ize , popqsize ,
Id le of DUMMY_STATUS)

endproc

( * This process l im i t s the value of the c r ed i t message that can be
rece ived by the push queue .

* )
process dummy_ctl [CDT_RQ, CDT_RSP, OUT_RSP, ERROR]

( id : pushq_id , ( * ID of the push queue * )
popqsize : F i f oS ize , ( * s i z e of the pop queue * )
cdt_max : F i foS ize , ( * max . value of c r ed i t in

the push queue * )
l a s t _ rq : F i f oS ize , ( * l a s t c r ed i t value sent * )
cur_c red i t : F i f oS ize , ( * current c r ed i t of the

push queue * )
s t a tu s : DUMMY_STATUS ( * s t a tu s fo r the c r ed i t * )

) : noexit :=
OUT_RSP;

dummy_ctl [CDT_RQ, CDT_RSP, OUT_RSP , ERROR]
( id , popqsize , cdt_max , l a s t_ rq , cur_credit−1 , s t a tu s )

[]
[ i s I d l e ( s t a tu s ) ] −>
CDT_RQ ! id ?N :F i foS ize [ (N>0) and (N<=popqsize ) ] ;

dummy_ctl [CDT_RQ, CDT_RSP, OUT_RSP , ERROR]
( id , popqsize , cdt_max , N, cur_credi t ,
Pending of DUMMY_STATUS)

[]
[ i sPending ( s t a tu s ) ]−>
CDT_RSP;
(

l e t c:FIFOSIZE = cur_c red i t+ l a s t _ rq in
(

[ c > cdt_max] −>
ERROR;

stop
[]
[ c <= cdt_max] −>

dummy_ctl [CDT_RQ, CDT_RSP, OUT_RSP , ERROR]
( id , popqsize , cdt_max , 0 of Fi foS ize , c ,
Id le of DUMMY_STATUS)
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)
)

endproc

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

type PUSHQ_IN_STATUS i s BOOLEAN, DATATYPE, FIFOSIZE
sor t s

PUSHQ_IN_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> PUSHQ_IN_STATUS
Pending ( * ! c ons t ruc to r * ) : DATATYPE −> PUSHQ_IN_STATUS
DlStarted ( * ! c ons t ruc to r * ) : DATATYPE −> PUSHQ_IN_STATUS
DlStopped ( * ! c ons t ruc to r * ) : DATATYPE −> PUSHQ_IN_STATUS

i s Id l e , isPending : PUSHQ_IN_STATUS −> Bool
i sDlStar ted , isDlStopped : PUSHQ_IN_STATUS −> Bool
getElm : PUSHQ_IN_STATUS −> DATATYPE

eqns
f o ra l l S:PUSHQ_IN_STATUS, X:DATATYPE, N:FIFOSIZE
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending (X ) ) = t r u e ;
isPending ( S ) = f a l s e ;

i sDlS ta r ted ( DlStarted (X ) ) = t r u e ;
i sDlS ta r ted ( S ) = f a l s e ;

isDlStopped ( DlStopped (X ) ) = t r u e ;
isDlStopped ( S ) = f a l s e ;

ofsort DATATYPE
getElm ( Pending (X ) ) = X;
getElm ( DlStarted (X ) ) = X;
getElm (DlStopped (X ) ) = X;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

type PUSHQ_OUT_STATUS i s BOOLEAN, DATATYPE, FIFOSIZE
sor t s

PUSHQ_OUT_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> PUSHQ_OUT_STATUS
Pending ( * ! c ons t ruc to r * ) : −> PUSHQ_OUT_STATUS
DlStarted ( * ! c ons t ruc to r * ) : −> PUSHQ_OUT_STATUS
DlStopped ( * ! c ons t ruc to r * ) : −> PUSHQ_OUT_STATUS
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i s I d l e , isPending : PUSHQ_OUT_STATUS −> Bool
i sDlStar ted , isDlStopped : PUSHQ_OUT_STATUS −> Bool

eqns
f o ra l l S:PUSHQ_OUT_STATUS
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending ) = t r u e ;
isPending ( S ) = f a l s e ;

i sDlS ta r ted ( DlStarted ) = t r u e ;
i sDlS ta r ted ( S ) = f a l s e ;

isDlStopped ( DlStopped ) = t r u e ;
isDlStopped ( S ) = f a l s e ;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

type PUSHQ_CDT_STATUS i s BOOLEAN, DATATYPE, FIFOSIZE
sor t s

PUSHQ_CDT_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> PUSHQ_CDT_STATUS
Pending ( * ! c ons t ruc to r * ) : FIFOSIZE −> PUSHQ_CDT_STATUS
DlStarted ( * ! c ons t ruc to r * ) : FIFOSIZE −> PUSHQ_CDT_STATUS
DlStopped ( * ! c ons t ruc to r * ) : FIFOSIZE −> PUSHQ_CDT_STATUS

i s Id l e , isPending : PUSHQ_CDT_STATUS −> Bool
i sDlStar ted , isDlStopped : PUSHQ_CDT_STATUS −> Bool
getCdt : PUSHQ_CDT_STATUS −> FIFOSIZE

eqns
f o ra l l S:PUSHQ_CDT_STATUS , D:DATATYPE, N:FIFOSIZE
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending (N) ) = t r u e ;
isPending ( S ) = f a l s e ;

i sDlS ta r ted ( DlStarted (N) ) = t r u e ;
i sDlS ta r ted ( S ) = f a l s e ;

isDlStopped ( DlStopped (N) ) = t r u e ;
isDlStopped ( S ) = f a l s e ;

ofsort FIFOSIZE
getCdt ( Pending (N) ) = N;
getCdt ( DlStarted (N) ) = N;
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getCdt ( DlStopped (N) ) = N;
endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

process PUSHQ [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( source : pushq_id , ( * ID of the push queue * )

t a r g e t : popq_id , ( * ID of the targeted pop queue * )
SMax : F i foS ize , ( * s i z e of the push queue * )
SMaxPopQ: F i f o S i z e ( * s i z e of the targeted pop queue * )

) : noexit :=

PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ , OUT_RSP ,
CDT_RQ , CDT_RSP , CDT_DL_B , CDT_DL_E]
( source , target , SMax , Empty of Fifo , 0 of Fi foS ize ,
Id le of PUSHQ_IN_STATUS,
Id le of PUSHQ_CDT_STATUS,
Id le of PUSHQ_OUT_STATUS, SMaxPopQ )

where

process PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP ,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id : pushq_id , ( * ID of the push queue * )

dst_ id : popq_id , ( * ID of the t a r g e t pop queue * )
SMax : F i foS ize , ( * s i z e of the push queue * )
F : FIFO , ( * queue s to r ing elements * )
SCur : F i f oS ize , ( * current number of elements * )
inS ta tus : PUSHQ_IN_STATUS, ( * s t a tu s fo r input * )
cd tS ta tus : PUSHQ_CDT_STATUS, ( * s t a tu s fo r c r ed i t * )
outS ta tus : PUSHQ_OUT_STATUS, ( * s t a tu s fo r output * )
c r ed i t : F i f o S i z e ( * current c r ed i t * )

) : noexit :=

( * management of the PUSH part of the behavior * )
[ i s I d l e ( inS ta tus ) ] −>

IN_RQ ?X:DATATYPE;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur ,

Pending (X) of PUSHQ_IN_STATUS,
cdtS ta tus , outStatus , c r ed i t )

[]
[ i sPending ( inS ta tus ) and ( SCur<SMax) ] −>

IN_DL_B;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
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( my_id , dst_id , SMax , F , SCur ,
DlStarted ( getElm ( inS ta tus ) ) of PUSHQ_IN_STATUS,
cdtS ta tus , outStatus , c r ed i t )

[]
[ i sD lS t a r t ed ( inS ta tus ) ] −>

IN_DL_E;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur ,

DlStopped ( getElm ( inS ta tus ) ) of PUSHQ_IN_STATUS,
cdtS ta tus , outStatus , c r ed i t )

[]
[ isDlStopped ( inS ta tus ) ] −>

IN_RSP;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , TPUSH(F , getElm ( inS ta tus ) ) ,

SCur+1 , Id le of PUSHQ_IN_STATUS,
cdtS ta tus , outStatus , c r ed i t )

[]

( * management of the " send to NOC" part of the behavior * )
[ i s I d l e ( outS ta tus ) and ( SCur > 0) and ( c r ed i t > 0) ] −>

OUT_RQ ! dst_ id !Head( F ) ;
( * To keep equivalence with simple queue ,

POP cannot be done here * )
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur ,

inStatus , cdtS ta tus , Pending of PUSHQ_OUT_STATUS,
c r ed i t )

[]
[ i sPending ( outSta tus ) ] −>

OUT_RSP;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , TPOP(F ) , SCur−1 ,

inStatus , cdtS ta tus ,
Id le of PUSHQ_OUT_STATUS, credi t−1 )

[]

( * management of the " response to c r ed i t " of the behavior * )
[ i s I d l e ( cdtS ta tus ) ] −>

CDT_RQ !my_id ? c : F i f o S i z e ;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur ,

inStatus , Pending ( c ) of PUSHQ_CDT_STATUS,
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outStatus , c r ed i t )
[]
[ i sPending ( cdtS ta tus ) ] −>

CDT_DL_B;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur , inStatus ,

DlStarted ( getCdt ( cdtS ta tus ) ) of PUSHQ_CDT_STATUS,
outStatus , c r ed i t )

[]
[ i sD lS t a r t ed ( cdtS ta tus ) ] −>

CDT_DL_E;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur , inStatus ,

DlStopped ( getCdt ( cdtS ta tus ) ) of PUSHQ_CDT_STATUS,
outStatus , c r ed i t )

[]
[ isDlStopped ( cdtS ta tus ) ] −>

CDT_RSP;
PUSHQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP,
CDT_RQ, CDT_RSP, CDT_DL_B, CDT_DL_E]
( my_id , dst_id , SMax , F , SCur , inStatus ,

Id le of PUSHQ_CDT_STATUS,
outStatus , c r ed i t+getCdt ( cdtS ta tus ) )

endproc

endproc

endspec

E.3 Pop Queue

( * l i s t of used gates :
IN_RQ : request fo r an in s e r t i on operation
IN_RSP : response fo r an in s e r t i on operation
IN_DL_B : beginning of the delay assoc ia ted to the in s e r t i on operation
IN_DL_E : end of the delay assoc ia ted to the in s e r t i on operation
POP_RQ : request fo r a pop operation
POP_RSP : response fo r a pop operation
POP_DL_B : beginning of the delay assoc ia ted to the pop operation
POP_DL_E : end of the delay assoc ia ted to the pop operation
CDT_RQ : request fo r the operation to send a c r ed i t message
CDT_RSP : response fo r the operation to send a c r ed i t message

The implementation of the c r ed i t protoco l implies that the model of the
push queue i s i n f i n i t e . Only the a s so c i a t i on of a push queue model to a
pop queue model leads to a f i n i t e model . Consequently , we use the
PUSHQ_ERROR gate not to l im i t the s i z e of the model .

* )
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spec i f i ca t ion TOP_POPQ [ IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
POP_RQ, POP_RSP , POP_DL_B , POP_DL_E ,
CDT_RQ, CDT_RSP] : noexit

l ibrary
FIFO_SIZE , X_BOOLEAN, PUSHQ_ID, POPQ_ID, DATA_TYPE, FIFO_TYPE

endlib

behaviour

POPQ [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
POP_RQ, POP_RSP , POP_DL_B , POP_DL_E ,
CDT_RQ, CDT_RSP]

(PUSHQ_ID_1 of PUSHQ_ID,
POPQ_ID_1 of POPQ_ID,
8+4+2 of FIFOSIZE ,
1 of FIFOSIZE )

|[IN_RQ , CDT_RQ]|

dummyEnv [IN_RQ , CDT_RQ]
(PUSHQ_ID_1 of PUSHQ_ID ,
POPQ_ID_1 of POPQ_ID,
8+4+2 of FIFOSIZE )

where

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

process dummyEnv [IN_RQ , CDT_RQ]
( id_sr c : pushq_id ,

id : popq_id ,
popqsize : F i f o S i z e ) : noexit :=

dummy_ctl [IN_RQ , CDT_RQ] ( id_src , id , popqsize + popqsize )

endproc

process dummy_ctl [IN_RQ , CDT_RQ]
( id_sr c : pushq_id ,

id : popq_id ,
c r ed i t : F i f o S i z e ) : noexit :=

[ c r ed i t > 0 ] −>
IN_RQ ! id ?X:DataType;

dummy_ctl [IN_RQ , CDT_RQ] ( id_src , id , c r ed i t − 1)
[]
CDT_RQ ! id_sr c ?C : F i f o S i z e ;

dummy_ctl [IN_RQ , CDT_RQ] ( id_src , id , c r ed i t + C)
endproc

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
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type POPQ_IN_STATUS i s BOOLEAN, FIFOSIZE , DATATYPE
sor t s

POPQ_IN_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> POPQ_IN_STATUS
Pending ( * ! c ons t ruc to r * ) : DATATYPE −> POPQ_IN_STATUS
DlStarted ( * ! c ons t ruc to r * ) : DATATYPE −> POPQ_IN_STATUS
DlStopped ( * ! c ons t ruc to r * ) : DATATYPE −> POPQ_IN_STATUS

i s Id l e , isPending : POPQ_IN_STATUS −> Bool
i sDlStar ted , isDlStopped : POPQ_IN_STATUS −> Bool
getElm : POPQ_IN_STATUS −> DATATYPE

eqns
f o ra l l S:POPQ_IN_STATUS , X:DATATYPE
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending (X ) ) = t r u e ;
isPending ( S ) = f a l s e ;

i sDlS ta r ted ( DlStarted (X ) ) = t r u e ;
i sDlS ta r ted ( S ) = f a l s e ;

isDlStopped ( DlStopped (X ) ) = t r u e ;
isDlStopped ( S ) = f a l s e ;

ofsort DATATYPE
getElm ( Pending (X ) ) = X;
getElm ( DlStarted (X ) ) = X;
getElm (DlStopped (X ) ) = X;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

type POPQ_OUT_STATUS i s BOOLEAN, FIFOSIZE , DATATYPE
sor t s

POPQ_OUT_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> POPQ_OUT_STATUS
Pending ( * ! c ons t ruc to r * ) : −> POPQ_OUT_STATUS
DlStarted ( * ! c ons t ruc to r * ) : −> POPQ_OUT_STATUS
DlStopped ( * ! c ons t ruc to r * ) : −> POPQ_OUT_STATUS

i s Id l e , isPending : POPQ_OUT_STATUS −> Bool
i sDlStar ted , isDlStopped : POPQ_OUT_STATUS −> Bool

eqns
f o ra l l S:POPQ_OUT_STATUS
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ofsort Bool
i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending ) = t r u e ;
isPending ( S ) = f a l s e ;

i sDlS ta r ted ( DlStarted ) = t r u e ;
i sDlS ta r ted ( S ) = f a l s e ;

isDlStopped ( DlStopped ) = t r u e ;
isDlStopped ( S ) = f a l s e ;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

type POPQ_CDT_STATUS i s BOOLEAN, FIFOSIZE
sor t s

POPQ_CDT_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> POPQ_CDT_STATUS
Pending ( * ! c ons t ruc to r * ) : FIFOSIZE −> POPQ_CDT_STATUS

i s Id l e , isPending : POPQ_CDT_STATUS −> Bool
getCdt : POPQ_CDT_STATUS −> Fi f oS i z e

eqns
f o ra l l S:POPQ_CDT_STATUS, N:FIFOSIZE
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending (N) ) = t r u e ;
isPending ( S ) = f a l s e ;

ofsort FIFOSIZE
getCdt ( Pending (N) ) = N;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

process POPQ [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP , OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( source : pushq_id , ( * ID of the source push queue * )

t a r g e t : popq_id , ( * ID of the pop queue * )
SMax : F i foS ize , ( * s i z e of the pop queue * )
Threshold : F i f o S i z e ( * threshold fo r c r ed i t * )

) : noexit :=

POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
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CDT_RQ, CDT_RSP]
( source , target , SMax , Threshold , Empty of Fifo ,
0 of FIFOSIZE , 0 of FIFOSIZE ,
Id le of POPQ_IN_STATUS, Id le of POPQ_OUT_STATUS,
Id le of POPQ_CDT_STATUS)

where

process POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP , OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( s r c_ id : pushq_id ,

my_id : popq_id ,
SMax : F i foS ize ,
Threshold : F i foS ize ,
F : Fifo ,
SCur : F i f oS ize ,
Credit : F i f oS ize ,
inS ta tus : POPQ_IN_STATUS ,
outSta tus : POPQ_OUT_STATUS,
cdtS ta tus : POPQ_CDT_STATUS) : noexit :=

( * management of the out of queue (pop ) part of the behavior * )
( * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * )

( * we can accept a POP_RQ * )
[ i s I d l e ( outS ta tus ) ] −>

OUT_RQ;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP , OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

inSta tus , Pending , cdtS ta tus )
[]
( * the POP delay can be s t a r t ed i f f the queue i s not empty * )
[ i sPending ( outSta tus ) and ( SCur>0) ] −>

OUT_DL_B;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP , OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

inSta tus , DlStarted , cdtS ta tus )
[]
( * the pop delay i s over a f t e r having been s t a r t ed * )
[ i sD lS t a r t ed ( outSta tus ) ] −>

OUT_DL_E;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP , OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

inSta tus , DlStopped , cdtS ta tus )
[]
( * the pop delay i s over , we grant the pop * )
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[ isDlStopped ( outSta tus ) ] −>
OUT_RSP !HEAD(F ) ;

POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , TPOP(F ) ,

SCur−1 , Credit +1 , inStatus ,
Id le of POPQ_OUT_STATUS, cdtS ta tus )

[]

( * management of the in of queue ( push from noc ) part of the behavior * )
( * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * )

[ i s I d l e ( inS ta tus ) ] −>
IN_RQ !my_id ?X:DataType;

POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,
OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

Pending (X) , outStatus , cd tS ta tus )
[]
[ i sPending ( inS ta tus ) and ( SCur<SMax) ] −>

IN_DL_B;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

DlStarted ( getElm ( inS ta tus ) ) , outStatus , cd tS ta tus )
[]
[ i sD lS t a r t ed ( inS ta tus ) ] −>

IN_DL_E;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

DlStopped ( getElm ( inS ta tus ) ) , outStatus , cd tS ta tus )
[]
[ isDlStopped ( inS ta tus ) ] −>

IN_RSP;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold ,

TPUSH(F , getElm ( inS ta tus ) ) , SCur+1 , Credit ,
Id le of POPQ_IN_STATUS , outStatus , cd tS ta tus )

[]

( * management of the c r ed i t part of the behavior * )
( * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * )

( * c r ed i t i s g r ea te r than the threshold * )
[ ( c r ed i t >= threshold ) and i s I d l e ( cdtS ta tus ) ] −>

CDT_RQ ! sr c_ id ! thresho ld ;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP, OUT_DL_B, OUT_DL_E,
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CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur , Credit ,

inSta tus , outStatus , Pending ( threshold ) )
[]
[ i sPending ( cdtS ta tus ) ] −>

CDT_RSP;
POPQ_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E ,

OUT_RQ, OUT_RSP , OUT_DL_B, OUT_DL_E,
CDT_RQ, CDT_RSP]
( src_id , my_id , SMax , Threshold , F , SCur ,

Credit−getCdt ( CdtStatus ) ,
in s ta tus , outStatus , Id le of POPQ_CDT_STATUS)

endproc

endproc

endspec

E.4 Network-on-Chip abstraction

( * l i s t of used gates :
IN_RQ : request fo r an in s e r t i on operation
IN_RSP : response fo r an in s e r t i on operation
IN_DL1_B : beginning of the delay of the 1 s t one−place queue
IN_DL1_E : end of the delay of the 1 s t one−place queue
IN_DL1_B : beginning of the delay of the 2nd one−place queue
IN_DL1_E : end of the delay of the 2nd one−place queue
IN_DL1_B : beginning of the delay of the 3rd one−place queue
IN_DL1_E : end of the delay of the 3rd one−place queue
OUT_RQ : request fo r a pop operation
OUT_RSP : response fo r a pop operation

we use a simple model of a FIFO queue ( with blocking request / response
operat ions ) to ab s t r a c t from the NoC.

* )

spec i f i ca t ion TOP [ IN_RQ , IN_RSP ,
IN_DL1_B , IN_DL1_E ,
IN_DL2_B , IN_DL2_E ,
IN_DL3_B , IN_DL3_E ,
OUT_RQ, OUT_RSP ] : noexit

l ibrary
FIFO_SIZE , X_BOOLEAN, PUSHQ_ID , POPQ_ID, DATA_TYPE

endlib

behaviour

NOC [IN_RQ , IN_RSP ,
IN_DL1_B , IN_DL1_E ,
IN_DL2_B , IN_DL2_E ,
IN_DL3_B , IN_DL3_E ,
OUT_RQ, OUT_RSP]
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where

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
type NOC_ITEM i s DataType , POPQ_ID

sor t s NOC_ITEM

opns
MAKE_ITEM ( * ! c ons t ruc to r * ) : POPQ_ID, DATATYPE −> NOC_ITEM
GET_DATA : NOC_ITEM −> DATATYPE
GET_TARGET : NOC_ITEM −> POPQ_ID

eqns
f o ra l l D:DATATYPE, T:POPQ_ID

ofsort DATATYPE
GET_DATA( MAKE_ITEM( T , D) ) = D;

ofsort POPQ_ID
GET_TARGET( MAKE_ITEM( T , D) ) = T;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
type NOC_IN_STATUS i s BOOLEAN, NOC_ITEM

sor t s NOC_IN_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> NOC_IN_STATUS
Pending ( * ! c ons t ruc to r * ) : NOC_ITEM −> NOC_IN_STATUS
DlStarted ( * ! c ons t ruc to r * ) : NOC_ITEM −> NOC_IN_STATUS
DlStopped ( * ! c ons t ruc to r * ) : NOC_ITEM −> NOC_IN_STATUS

i s Id l e , isPending : NOC_IN_STATUS −> Bool
i sDlStar ted , isDlStopped : NOC_IN_STATUS −> Bool
get_Item : NOC_IN_STATUS −> NOC_ITEM

eqns
f o ra l l S:NOC_IN_STATUS, N:NOC_ITEM
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;

isPending ( Pending (N) ) = t r u e ;
isPending ( S ) = f a l s e ;

i sDlS ta r ted ( DlStarted (N) ) = t r u e ;
i sDlS ta r ted ( S ) = f a l s e ;

isDlStopped ( DlStopped (N) ) = t r u e ;
isDlStopped ( S ) = f a l s e ;

ofsort NOC_ITEM
get_Item ( Pending (N) ) = N;
get_Item ( DlStarted (N) ) = N;
get_Item (DlStopped (N) ) = N;
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endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
type NOC_OUT_STATUS i s BOOLEAN, DATATYPE, FIFOSIZE

sor t s
NOC_OUT_STATUS

opns
Id le ( * ! c ons t ruc to r * ) : −> NOC_OUT_STATUS
Pending ( * ! c ons t ruc to r * ) : −> NOC_OUT_STATUS

i s Id l e , isPending : NOC_OUT_STATUS −> Bool
eqns

f o ra l l S:NOC_OUT_STATUS
ofsort Bool

i s I d l e ( Id le ) = t r u e ;
i s I d l e ( S ) = f a l s e ;
isPending ( Pending ) = t r u e ;
isPending ( S ) = f a l s e ;

endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
type NOC_FIFO i s NOC_ITEM

sor t s NOC_FIFO

opns
Empty ( * ! c ons t ruc to r * ) : −> NOC_FIFO
TPUSH ( * ! c ons t ruc to r * ) : NOC_FIFO, NOC_ITEM −> NOC_FIFO
TPOP : NOC_FIFO −> NOC_FIFO
HEAD : NOC_FIFO −> NOC_ITEM

eqns
f o ra l l N:NOC_ITEM, F:NOC_FIFO

ofsort NOC_FIFO
TPOP( TPUSH( Empty , N) ) = Empty;
TPOP( TPUSH( F , N) ) = TPUSH( TPOP(F ) , N) ;
( * Due to p r i o r i t y in expressions ,

w i l l not cover TPUSH( Empty , N) * )

ofsort NOC_ITEM
HEAD( TPUSH( Empty , N) ) = N;
HEAD( TPUSH( F , N) ) = HEAD(F ) ;
( * Due to p r i o r i t y in expressions ,

w i l l not cover TPUSH( Empty , N) * )
endtype

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
process NOC [IN_RQ , IN_RSP ,

IN_DL1_B , IN_DL1_E ,
IN_DL2_B , IN_DL2_E ,
IN_DL3_B , IN_DL3_E ,
OUT_RQ, OUT_RSP]

hide OUT_B1_RQ, OUT_B1_RSP, OUT_B2_RQ, OUT_B2_RSP in
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(
NOC_ctl [IN_RQ , IN_RSP ,

IN_DL1_B , IN_DL1_E ,
OUT_B1_RQ, OUT_B1_RSP]
( 1 of Fi foS ize , Empty of NOC_FIFO, 0 of Fi foS ize ,

Id le of NOC_IN_STATUS,
Id le of NOC_OUT_STATUS)

|[OUT_B1_RQ, OUT_B1_RSP]|
NOC_ctl [OUT_B1_RQ , OUT_B1_RSP,

IN_DL2_B , IN_DL2_E ,
OUT_B2_RQ, OUT_B2_RSP]
( 1 of Fi foS ize , Empty of NOC_FIFO, 0 of Fi foS ize ,

Id le of NOC_IN_STATUS,
Id le of NOC_OUT_STATUS)

|[OUT_B2_RQ, OUT_B2_RSP]|
NOC_ctl [OUT_B2_RQ , OUT_B2_RSP,

IN_DL3_B , IN_DL3_E ,
OUT_RQ, OUT_RSP ]
( 1 of Fi foS ize , Empty of NOC_FIFO, 0 of Fi foS ize ,

Id le of NOC_IN_STATUS,
Id le of NOC_OUT_STATUS)

)

where

process NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]
( SMax : F i foS ize , ( * s i z e of the noc queue * )

F : NOC_FIFO, ( * queue s to r ing elements * )
SCur : F i f oS ize , ( * current number of elements * )
inS ta tus : NOC_IN_STATUS, ( * s t a tu s fo r input * )
outS ta tus : NOC_OUT_STATUS ( * s t a tu s fo r output * )

) : noexit :=

( * management of the PUSH part of the behavior * )
[ i s I d l e ( inS ta tus ) ] −>

IN_RQ ?Q:Popq_Id ?D:DataType;
NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]

( SMax , F , Scur ,
Pending (MAKE_ITEM(Q,D) ) of NOC_IN_STATUS,
outSta tus )

[]
[ i sPending ( inS ta tus ) and ( SCur<SMax) ] −>

IN_DL_B;
NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]

( SMax , F , SCur ,
DlStarted ( get_Item ( inS ta tus ) ) of NOC_IN_STATUS,
outSta tus )

[]
[ i sD lS t a r t ed ( inS ta tus ) ] −>

IN_DL_E;
NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]

( SMax , F , SCur ,
DlStopped ( get_Item ( inS ta tus ) ) of NOC_IN_STATUS,
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outStatus )
[]
[ isDlStopped ( inS ta tus ) ] −>

IN_RSP;
NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]

( SMax , TPUSH(F , get_Item ( inS ta tus ) ) , SCur+1 ,
Id le of NOC_IN_STATUS,
outSta tus )

[]
( * management of the POP part of the behavior * )
[ i s I d l e ( outS ta tus ) and ( SCur > 0) ] −>

OUT_RQ !GET_TARGET(Head( F ) ) !GET_DATA(Head (F ) ) ;
NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]

( SMax , F , SCur , inStatus ,
Pending of NOC_OUT_STATUS)

[]
[ i sPending ( outSta tus ) ] −>

OUT_RSP;
NOC_ctl [IN_RQ , IN_RSP , IN_DL_B , IN_DL_E , OUT_RQ, OUT_RSP]

( SMax , TPOP(F ) , SCur−1 , inStatus ,
Id le of NOC_OUT_STATUS)

endproc
endproc

endspec
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Notations

List of Abbreviations

MC Markov Chain

DTMC Discrete-Time Markov
Chain

CTMC Continuous-TimeMarkov
Chain

AMC Annotated Markov Chain

DTAMC Discrete-Time AMC

CTAMC Continuous-Time AMC

SMC Semi-Markov Chain

MDP Markov Decision Process

IMC Interactive Markov Chain

IPC Interactive Probabilistic
Chain

Graphs

M a Markov chain

MP a probabilistic chain

MM a Markovian chain

A an annotation function

MAP an annotated probabilistic
chain

D the set of all DTAMCs

MS an SMC

P an IPC

M an IMC

P the set of all IPCs

M the set of all IMCs

P6{�τ a maximal progress-cut IPC

P6{�A an urgency-cut IPC

M 6d�τ a maximal progress-cut
IMC

M 6d�A an urgency-cut IMC

s a state

S a set of states
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Transitions

A a set of action including the
silent action τ

e a regular expression over A

E the set of regular
expressions over A

e the null regular expression

S(e) the set of actions composing
the regular expression e

a
−−→ an interactive transition

with a ∈ A
e
→−→ a sequence of interactive

transitions identified by the
regular expression e

p
z{ a probabilistic transition

(p ∈ ]0,1])
λ
d a Markovian transition

(λ ∈ ]0,+∞])
a
�

p
z{ a labeled probabilistic

transition (a ∈ A and
p ∈ ]0,1])

τ∗
−−→ a transitive closure of

τ-transitions

D a time probabilistic
distribution over a labeled
probabilistic transition

Cn a constant distribution
(equal to n) over a labeled
probabilistic transition

Sets and Multisets

S an arbitrary set

S× an arbitrary multiset

P (S ) the power set of S

P ×(S ) the power multiset of S
∑
{] | [} the sum over a multiset

card(S ) the cardinal of the set S

gcd
{
S

}
The greater common
divider of numbers in the
set S

Equivalence Relations

R an arbitrary relation

E an equivalence relation

∼
P

a strong bisimulation over
D

∼
M

a strong bisimulation over
the set of all CTAMCs

∼ a strong bisimulation over
M or P

≈ a branching bisimulation
overM or P

C an equivalence class

P /E the set of equivalence
classes induced by E on P

[s]/E the equivalence class of s
w.r.t. E

P/≈ the quotient of P w.r.t. ≈
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Measure Theory

F a field

σ an infinite path in a
DTAMC or an IPC

σq a finite path in a DTAMC or
an IPC

Paths(s) the set of all paths starting
in state s

Pathsq(s) the set of all finite path
starting in s

last(σq) the last state of the finite
path σq

|σq| the length of the finite path
σq

◦ concatenation operator for
paths

tr(σq) the trace of the path σ

trτ(σq) the abstract trace of the
path σ

s a scheduler

ξ
s

a path expander w.r.t. s

Ξ
s

a silent path expander w.r.t.
s


