E. Ahronovitz, C. Fiorio, S. Glaizeak88, ]. Arques, and P. Koch, Topological operators on the topological graph of frontiers Algebraic topology : a first course Définition et implémentation de pavages dans l'espace, Proceedings of International Conference Discrete Geometry for Computer Imagery, volume 1568 of Lecture Notes in Computer Science, pp.207-217, 1976.

P. [. Arques and . Koch, Modélisation de solides par les pavages, Proceedings of Pixim 89, pp.47-61, 1989.

S. Alayrangues, S. Peltier, G. Damiand, and P. Lienhardt, Border Operator for Generalized Maps, Proc. of 15th International Conference on Discrete Geometry for Computer Imagery, pp.300-312, 2009.
DOI : 10.1145/347127.347138

URL : https://hal.archives-ouvertes.fr/hal-00437746

P. Bourdon, O. Alata, G. Damiand, C. Olivier, Y. Bertrandbal09 et al., Geometrical and topological informations for image segmentation with monte carlo markov chain implementation Graphe de Surface Orientée : un modèle opérationnel de segmentation d'image 3D Geometric modelling for computer vision A polyhedron representation for computer vision Image segmentation with topological maps and inter-pixel representation, Proc. of 15th IAPR International Conference on Vision Interface Thèse de doctorat Proceedings of AFIPS National Computer Conference Baldacci, A. Braquelaire, and G. Damiand. 3d topological map extraction from oriented boundary graph Proc. of 7th Workshop on, pp.413-420, 1974.

J. P. Braquelaire, P. Desbarats, and J. P. Domenger, 3d split and merge with 3-maps, Proceedings of International Workshop on Graph based representations, pp.32-43, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00308353

A. Braquelaire, G. Damiand, J. Domenger, and F. Vidil, Comparison and Convergence of Two Topological Models for 3D Image Segmentation, Proc. of 4th Workshop on Graph-Based Representations in Pattern Recognition, pp.59-70, 2003.
DOI : 10.1007/3-540-45028-9_6

URL : https://hal.archives-ouvertes.fr/hal-01513090

J. P. Braquelaire, P. Desbarats, J. P. Domenger, C. A. Wüthrich, ]. Y. Bertrand et al., A topological structuring for aggregates of 3d discrete objects Austria , may 1999 Topological encoding of 3d segmented images, Proceedings of International Workshop on Graph based representations Proc. of 9th International Conference on Discrete Geometry for Computer Imagery, pp.193-202, 1953.

G. [. Bertrand, C. Damiand, and . Fiorio, Topological map : Minimal encoding of 3d segmented images, Proc. of 3rd Workshop on Graph-Based Representation in Pattern Recognition, pp.64-73, 2001.
URL : https://hal.archives-ouvertes.fr/lirmm-01168509

L. Brun, J. P. Domenger, and M. Mokhtari, Incremental modifications of segmented image defined by discrete maps, Journal of Visual Communication and Image Representation, vol.14, issue.3, pp.251-290, 2003.
DOI : 10.1016/S1047-3203(03)00023-3

URL : https://hal.archives-ouvertes.fr/hal-00308363

M. Baba-ali, G. Damiand, X. Skapin, and D. Marcheix, Insertion and Expansion Operations for n-Dimensional Generalized Maps, Proc. of 14th International Conference on Discrete Geometry for Computer Imagery, pp.141-152, 2008.
DOI : 10.1007/978-3-540-79126-3_14

URL : https://hal.archives-ouvertes.fr/hal-00305482

P. [. Braquelaire, . Guittonbg89-]-p, M. Baudelaire, . C. Gangnetbhs80-]-i, R. C. Braid et al., A model for image structuration Planar maps : an interaction paradigm for graphic design Guitton. 2d1/2 scene update by insertion of contour, Proceedings of Computer Graphics International Proceedings of SIGCHI'89 Mathematical Methods in Computer Graphics and Design, chapter Stepwise Construction of Polyhedra in Geometric Modelling, pp.426-435, 1980.

W. [. Brun, . Kropatschbk02, W. G. Brun, . Kropatschbk03b-]-l, W. G. Brun et al., Contraction kernels and combinatorial maps Receptive fields within the combinatorial pyramid framework Discrete Geometry for Computer Imagery, number 2301 in Lecture Notes in Computer Science Receptive fields within the combinatorial pyramid framework, Proceedings of International Workshop on Graph based representations Proceedings of International Conference IEEE International Conference on Image ProcessingBK06] L. Brun and W.G Kropatsch. Contains and inside relationships within combinatorial pyramids, pp.12-21, 2001.

M. De-berg, M. Van-kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry : Algorithms and Applications, 2000.

M. Baba-ali, D. Marcheix, X. Skapin, Y. Bertrand, H. R. Brahanabri89 et al., Generic computation of bulletin boards into geometric kernels Systems of circuits on two-dimensional manifolds Representing geometric structures in d dimensions : topology and order Representing geometric structures in d dimensions : topology and order, Proceedings of the 5th international conference on Computer graphics Proceedings of 5 th Annual ACM Symposium on Computational Geometry, pp.85-93, 1922.

S. Brandel, M. Schneider, N. Perrin, J. Guiard, P. Rainaud et al., Automatic building of structured geological models Eurographics Association Un code pour les graphes planaires et ses applications Un code pour les graphes planaires et ses applications, Proceedings of the ninth ACM symposium on Solid modeling and applications Astérisque, pp.59-69, 1973.

D. [. Damiand, . Arrivaultda08-]-g, S. Damiand, G. Alayrangues, O. Damiand et al., A New Contour Filling Algorithm Based on 2D Topological Map, Proc. of 6th Workshop on Graph-Based Representations in Pattern Recognition Proc. of International Conference on Topological & Geometric Graph Theory, volume 31 of Electronic Notes in Discrete Mathematics Proc. of 11th International Conference on Discrete Geometry for Computer Imagery, volume 2886 of Lecture Notes in Computer Science, pp.319-329, 2003.
DOI : 10.1007/978-3-540-72903-7_29

URL : https://hal.archives-ouvertes.fr/hal-00348857

]. G. Dam01 and . Damiand, Définition etétudeetétude d'un modèle topologique minimal de représentation d'images 2d et 3d, Thèse de doctorat, pp.74-91, 2001.

]. G. Dam08 and . Damiand, Topological model for 3d image representation : Definition and incremental extraction algorithm, Damiand and L. Brun. Géométrie discrète et images numériques, pp.260-289, 2008.

I. Traité, S. Et-image, C. Bertrand, and . Fiorio, Topological model for twodimensional image representation : Definition and optimal extraction algorithm Damiand and D. Coeurjolly. A generic and parallel algorithm for 2d image discrete contour reconstruction, Proc. of 4th International Symposium on Visual Computing, pp.111-154, 2004.

]. A. Dd08a, G. Dupas, ]. Damianddd08b, G. Dupas, ]. Damianddd09 et al., First results for 3d image segmentation with topological map Region merging with topological control Multi-label simple points definition for 3d images digital deformable model, Proc. of 12th International Workshop on Combinatorial Image Analysis Proc. of 14th International Conference on Discrete Geometry for Computer Imagery Proc. of 15th International Conference on Discrete Geometry for Computer Imagery, pp.420-431, 2008.

A. [. Damiand, J. Dupas, and . Lachaud, Fully deformable 3D digital partition model with topological control, Pattern Recognition Letters, vol.32, issue.9, 2010.
DOI : 10.1016/j.patrec.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00591065

G. Damiand, M. Dexet-guiard, P. Lienhardt, and E. Andres, Removal and contraction operations to define combinatorial pyramids: application to the design of a spatial modeler, Image and Vision Computing, vol.23, issue.2, pp.259-269, 2005.
DOI : 10.1016/j.imavis.2004.06.016

URL : https://hal.archives-ouvertes.fr/hal-00211776

. Dhj-+-09a-]-g, C. Damiand, J. De-la-higuera, E. Janodet, C. Samuel et al., A polynomial algorithm for subisomorphism of holey plane graphs, Proc. of 7th International Workshop on Mining and Learning with Graphs, p.185, 2009.

. Dhj-+-09b-]-g, C. Damiand, J. De-la-higuera, E. Janodet, C. Samuel et al., Polynomial algorithm for submap isomorphism : Application to searching patterns in images Computing homology groups of simplicial complexes in R 3 Damiand and P. Lienhardt. Removal and contraction for n-dimensional generalized maps, Proc. of 7th Workshop on Graph-Based Representation in Pattern Recognition Proc. of 11th International Conference on Discrete Geometry for Computer Imagery, pp.102-112266, 1992.

S. [. Damiand, L. Peltier, . Fuchsdpf08-]-g, S. Damiand, L. Peltier et al., Computing Homology for Surfaces with Generalized Maps: Application to 3D Images, Proc. of 2nd International Symposium on Visual Computing Proc. of 12th International Workshop on Combinatorial Image Analysis, pp.235-244, 2006.
DOI : 10.1007/11919629_25

URL : https://hal.archives-ouvertes.fr/hal-00366105

G. Damiand, P. Peltier, L. Fuchs, and P. Lienhardt, Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images, Proc. of 11th International Workshop on Combinatorial Image Analysis, pp.1-15, 2006.
DOI : 10.1007/11774938_1

URL : https://hal.archives-ouvertes.fr/hal-00366101

P. [. Damiand and . Resch, Topological Map Based Algorithms for 3D Image Segmentation, Proc. of 10th International Conference on Discrete Geometry for Computer Imagery, pp.220-2311, 0106.
DOI : 10.1007/3-540-45986-3_20

URL : https://hal.archives-ouvertes.fr/hal-01513099

]. A. Dup09 and . Dupas, Opérations et Algorithmes pour la Segmentation Topologique d'Images 3D, Thèse de doctorat, p.142, 2009.

H. Edelsbrunner, L. J. Guibas, M. Sharirel93-]-h, P. Elter, and . Lienhardt, The complexity and construction of many faces in arrangements of lines and of segments Different combinatorial models based on the map concept for the representation of different types of cellular complexes Elter and P. Lienhardt. Cellular complexes as structured semi-simplicial sets, Proceedings of IFIP TC 5/WG II Working Conference on Geometric Modeling in Computer Graphics, pp.16161-196, 1960.

L. [. Eckhardt, K. Latecki-eastman, and . Weiler, Topologies for the digital spaces and, Proceedings of the First Annual Conference on Computer Graphics in CAD/CAM Systems, pp.295-312, 1967.
DOI : 10.1016/S1077-3142(03)00062-6

]. Fav09 and . Favreau, Outils pour le pavage de surfaces, Thèse de doctorat, 2009.

]. S. Fb09a, L. Fourey, and . Brun, Connecting walks and connecting dart sequences for n-d combinatorial pyramids RPS, Singapore. 130 [FB09b] S. Fourey and L. Brun. A first step toward combinatorial pyramids in n-d spaces Image segmentation using local variation, Proc. of 13th International Workshop on Combinatorial Image Analysis Proc. of 7th Workshop on Graph-Based Representation in Pattern Recognition Proc. of Computer Vision and Pattern Recognition, pp.109-122, 1998.

D. [. Felzenszwalb and . Huttenlocher, Efficient Graph-Based Image Segmentation, Thèse de doctorat, pp.167-181, 1995.
DOI : 10.1023/B:VISI.0000022288.19776.77

]. C. Fio96, . T. Fioriofk97-]-a, T. L. Fomenko, ]. D. Kuniifml06, D. Fradin et al., A topologically consistent representation for image analysis : the frontiers topological graph Topological Modeling for Visualization A hierarchical topology-based model for handling complex indoor scenes Cellular Structures in Topology, Proceedings of International Conference Discrete Geometry for Computer Imagery, pp.151-162, 1990.

L. De-floriani, E. Puppo, and P. Magillo, A formal approach to multiresolution hypersurface modeling Modélisation et simulation d'´ eclairagè a base topologique : application aux environnements architecturaux complexes, Geometric Modeling : Theory and Pratice Thèse de doctorat, pp.302-323, 1997.

R. Goffe, L. Brun, and G. Damiand, A top-down construction scheme for irregular pyramids, Proc. of 4th International Conference On Computer Vision Theory And Applications, pp.163-170, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362234

R. Goffe, L. Brun, and G. Damiand, Tiled top-down combinatorial pyramids for large images representation, International Journal of Imaging Systems and Technology, vol.13, issue.1, 2010.
DOI : 10.1002/ima.20270

URL : https://hal.archives-ouvertes.fr/hal-00567701

R. Goffe, G. Damiand, and L. Brun, Extraction of tiled top-down irregular pyramids from large images, Proc. of 13th International Workshop on Combinatorial Image Analysis, pp.123-137, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00441252

R. Goffe, G. Damiand, and L. Brun, A causal extraction scheme in topdown pyramids for large images segmentation, Proc. of 13th International Workshop on Structural and Syntactic Pattern Recognition, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00567656

M. Gangnet, J. C. Herve, T. Pudet, and J. M. Van-thong, Incremental computation of planar maps, Gib81] P.J. Giblin. Graphs, Surfaces, and Homology : An Introduction to Algebraic Topology. Mathematics Series. Chapman and Hall, pp.345-354, 1981.
DOI : 10.1145/74334.74369

J. [. Guibas and . Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, Proceedings of the fifteenth annual ACM symposium on Theory of computing , STOC '83, pp.74-123, 1985.
DOI : 10.1145/800061.808751

]. O. Gui00, ]. A. Guilberthat02, and . Hatcher, Un modèle hiérarchique pour la modélisation géométriquè a base toplogique Algebraic Topology, Thèse de doctorat, pp.134-69, 2000.

S. Horna, G. Damiand, D. Meneveaux, and Y. Bertrand, Building 3d indoor scenes topology from 2d architectural plans, Proc. of 2nd International Conference on Computer Graphics Theory and Applications Geometry of Digital Spaces, pp.37-44, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00337793

D. [. Horna, G. Meneveaux, Y. Damiand, . Bertrandhor08-]-s, . T. Hornahw83-]-g et al., Consistency constraints and 3D building reconstruction, Thèse de doctorat Computer Vision, Graphics, and Image ProcessingJac70] A. Jacques. Constellations et graphes topologiques Proceedings of Combinatorial Theory and Applications Computer Vision, Graphics, and Image Processing : Image Understanding, pp.13-27, 1970.
DOI : 10.1016/j.cad.2008.11.006

URL : https://hal.archives-ouvertes.fr/hal-00440844

]. J. Jol03, P. Jolion, D. Kraemer, D. Cazier, and . Bechmann, Stochastic pyramid revisited Extension of half-edges for the representation of multiresolution subdivision surfaces. The Visual Computer, Pattern Recognition Letter, vol.24, issue.252, pp.1035-1042, 2003.

E. Khalimsky, R. Kopperman, and P. R. Meyer, Boundaries in digital planes, Journal of Applied Mathematics and Stochastic Analysis, vol.3, issue.1, pp.27-55, 1990.
DOI : 10.1155/S1048953390000041

E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and its Applications, vol.36, issue.1, pp.1-17, 1990.
DOI : 10.1016/0166-8641(90)90031-V

T. Y. Kong, R. Kopperman, P. R. Meyerkle00, and . Klette, A Topological Approach to Digital Topology, Proc. Vision Geometry IX, pp.901-917, 1991.
DOI : 10.2307/2324147

H. [. Kropatsch and . Macho, Finding the structure of connected components using dual irregular pyramids, Proceedings of International Conference Discrete Geometry for Computer Imagery, pp.147-158, 1995.

T. Kaczynski, M. Mrozek, and M. Slusarek, Homology computation by reduction of chain complexes, Computers & Mathematics with Applications, vol.35, issue.4, pp.59-70, 1998.
DOI : 10.1016/S0898-1221(97)00289-7

]. T. Kon02, . Kongköt02-]-u, and . Köthe, Topological adjacency relations on z n Xpmaps and topological segmentation -a unified approach to finite topologies in the plane, Proceedings of International Conference Discrete Geometry for Computer Imagery Kovalevsky. Discrete topology and contour definition. Pattern Recognition Letters, pp.3-68, 1984.

]. V. Kov89, V. A. Kovalevsky, and . Kovalevsky, Finite topology as applied to image analysis Computer Vision, Graphics, and Image Processing Geometry of Locally Finite Spaces, pp.141-161, 1989.

A. [. Kong and . Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

A. [. Klette, . G. Rosenfeldkro95-]-w, and . Kropatsch, Digital Geometry : Geometric Methods for Digital Picture Analysis Building irregular pyramids by dual-graph contraction. Vision A justification of a fast surface tracking algorithm, Computer Vision, Graphics, and Image Processing : Graphical Models and Image Processing, pp.80366-374, 1992.

]. Lac03 and . Lachaud, Coding cells of digital spaces : a framework to write generic digital topology algorithms, Electronic Notes in Discrete Mathematics, vol.12, pp.337-348, 2003.

]. V. Lan95 and . Lang, Uné etude de l'utilisation des ensembles simpliciaux en modélisation géométrique interactive, Thèse de doctorat, p.15, 1995.

]. J. Lee00, ]. Leelev99, L. Lienhardt, Y. Fuchs, and . Bertrand, Introduction to Topological Manifolds Graduate Texts in Mathematics Topologie algorithmique : combinatoire et plongement Thèse de doctorat, Institut National Polytechnique de Lorraine, Octobre 1999 Informatique graphique, modélisation géométrique et animation, chapter Modèles topologiques, pp.49-93, 2000.

]. P. Lie88 and . Lienhardt, Extension of the notion of map and subdivisions of a threedimensional space, Proceedings of 5 th Symposium on the Theoretical Aspects of Computer Science, pp.301-311, 1988.

]. P. Lie89 and . Lienhardt, Subdivision of n-dimensional spaces and n-dimensional generalized maps Topological models for boundary representation : a comparison with n-dimensional generalized maps, Proceedings of 5 th Annual ACM Symposium on Computational GeometryLie91] P. Lienhardt, pp.228-236, 1989.

]. P. Lie93, . Lienhardtll95-]-v, P. Lang, ]. Lienhardtlsm08, X. Léon et al., N-dimensional generalized combinatorial maps and cellular quasi-manifolds Geometric modeling with simplicial sets A topology-based animation model for the description of 2d models with a dynamic structure Modèle générateur d'´ evolutions géologiques par animation basée sur la topologie. Revué Electronique Francophone d'Informatique Graphique, Proceedings of Pacific Graphics'95 Virtual Reality Interactions and Physical Simulations VRIPHYS. EG, Novembre 2008. 166 [LSM09] P.-F. Léon, X. Skapin, and P. MeseureMän84] M. Mäntylä. A note on the modeling space of euler operators. Computer Vision, Graphics, and Image ProcessingMän88] M. Mäntylä. An Introduction to Solid Modeling. Principles Computer ScienceMay67] J. P. May. Simplicial Objects in Algebraic Topology. Van NostrandMee89] P. Meer. Stochastic image pyramids. Computer Vision, Graphics, and Image Processing, pp.93-04275, 1967.

A. Montanvert, P. Meer, and A. Rosenfeld, Hierarchical image analysis using irregular tessellations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.4, pp.307-316, 1991.
DOI : 10.1109/34.88566

F. [. Muller and . Preparata, Finding the intersection of two convex polyhedra, Nov55] P.S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Proceedings of Steklov Mathematical Institute, pp.217-236, 1955.
DOI : 10.1016/0304-3975(78)90051-8

F. [. Paoluzzi, C. Bernardini, V. Cattani, and . Ferruci, Dimension-independent modeling with simplicial complexes, ACM Transactions on Graphics, vol.12, issue.1, pp.56-102, 1993.
DOI : 10.1145/169728.169719

]. S. Pel06 and . Peltier, Calcul de groupes d'homologie sur des structures simpliciales, simplo¨?dalesplo¨?dales et cellulaires, Thèse de doctorat, 2006.

P. S. Peltier, A. Ion, Y. Haxhimusa, W. G. Kropatsch, and G. Damiand, Computing Homology Group Generators of Images Using Irregular Graph Pyramids
DOI : 10.1007/978-3-540-72903-7_26

URL : https://hal.archives-ouvertes.fr/hal-00348864

]. S. Pik-+-09, A. Peltier, W. G. Ion, G. Kropatsch, Y. Damiand et al., Directly computing the generators of image homology using graph pyramids Adjacency in digital pictures, Image and Vision Computing Information and Control, vol.27, issue.261, pp.846-853, 1974.

G. [. Simon and . Damiand, Generalized Map Pyramid for Multi-level 3D Image Segmentation, Proc. of 13th International Conference on Discrete Geometry for Computer Imagery, pp.530-541, 2006.
DOI : 10.1007/11907350_45

URL : https://hal.archives-ouvertes.fr/hal-01511731

C. Simon, G. Damiand, and P. Lienhardt, Pyramids of n-Dimensional Generalized Maps, Proc. of 5th Workshop on Graph-Based Representations in Pattern Recognition, pp.142-152, 2005.
DOI : 10.1007/978-3-540-31988-7_13

URL : https://hal.archives-ouvertes.fr/hal-01511770

C. Simon, G. Damiand, and P. Lienhardt, Receptive Fields for Generalized Map Pyramids: The Notion of Generalized Orbit, Proc. of 12th International Conference on Discrete Geometry for Computer Imagery, pp.56-67527, 2005.
DOI : 10.1007/978-3-540-31965-8_6

URL : https://hal.archives-ouvertes.fr/hal-01511756

C. Simon, Définition etétudeetétude des pyramides généralisées nD : application pour la segmentation multi-´ echelle d'images 3D, Thèse de doctorat, pp.131-140, 1966.

]. J. Spe91, ]. D. Spehnerssg89, . Salesin, L. Stolfi, and . Guibas, Merging in maps and in pavings Epsilon geometry : building robust algorithms from imprecise computations, SCG '89 : Proceedings of the fifth annual symposium on Computational geometry, pp.205-232, 1989.

]. J. Sti80, . A. Stillwellstr06-]-i, and . Stroud, Classical topology and combinatorial group theory. Graduate Texts in Mathematics Boundary Representation Modelling Techniques, pp.153-68, 1980.

]. T. Tak91, . Takalatar75-]-r, and . Tarjan, A taxonomy on geometric and topological models Efficiency of a good but not linear set union algorithm, Proceedings of Computer Graphics and Mathematics, pp.147-171, 1975.

]. W. Tut63, . Tuttevy90-]-g, C. K. Vegter, and . Yap, Computational complexity of combinatorial surfaces Edge-based data structures for solid modeling in curved-surface environments The radial edge structure : a topological representation for nonmanifold geometric boundary modeling, Proceedings of SCG '90 : the sixth annual symposium on Computational geometry Geometric Modeling for CAD Applications, pp.249-271, 1963.

]. J. Whi49 and . Whitehead, Combinatorial homotopy ii, Bull. Amer. Math. Soc, vol.55, issue.5 10, pp.453-496, 1949.

W. [. Willersinn and . Kropatsch, Dual graph contraction for irregular pyramids, Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No.94CH3440-5), pp.251-256, 1994.
DOI : 10.1109/ICPR.1994.577171

K. Chee and . Yap, Robust geometric computation, Handbook of Discrete and Computational Geometry, chapter 41, pp.927-952, 2004.

J. S. Gosselin, G. Damiand, and C. Solnon, Efficient search of combinatorial maps using signatures, Theoretical Computer Science, vol.412, issue.15, 2010.
DOI : 10.1016/j.tcs.2010.10.029

URL : https://hal.archives-ouvertes.fr/hal-00567332

A. [. Damiand, J. Dupas, and . Lachaud, Fully deformable 3D digital partition model with topological control, Pattern Recognition Letters, vol.32, issue.9, 2010.
DOI : 10.1016/j.patrec.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00591065

R. Goffe, L. Brun, and G. Damiand, Tiled top-down combinatorial pyramids for large images representation, International Journal of Imaging Systems and Technology, vol.13, issue.1, 2010.
DOI : 10.1002/ima.20270

URL : https://hal.archives-ouvertes.fr/hal-00567701

A. Dupas and G. Damiand, Region merging with topological control, Discrete Applied Mathematics, vol.157, issue.16, pp.3435-3446, 2009.
DOI : 10.1016/j.dam.2009.04.005

URL : https://hal.archives-ouvertes.fr/hal-00422688

A. [. Peltier, W. G. Ion, G. Kropatsch, Y. Damiand, and . Haxhimusa, Directly computing the generators of image homology using graph pyramids, Image and Vision Computing, vol.27, issue.7, pp.846-853, 2009.
DOI : 10.1016/j.imavis.2008.06.009

URL : https://hal.archives-ouvertes.fr/hal-00366086

D. [. Horna, G. Meneveaux, Y. Damiand, and . Bertrand, Consistency constraints and 3D building reconstruction, Computer-Aided Design, vol.41, issue.1, pp.13-27, 2009.
DOI : 10.1016/j.cad.2008.11.006

URL : https://hal.archives-ouvertes.fr/hal-00440844

G. Damiand, Topological model for 3D image representation: Definition and incremental extraction algorithm, Computer Vision and Image Understanding, vol.109, issue.3, pp.260-289, 2008.
DOI : 10.1016/j.cviu.2007.09.007

URL : https://hal.archives-ouvertes.fr/hal-00257372

G. [. Simon, P. Damiand, and . Lienhardt, D generalized map pyramids: Definition, representations and basic operations, Pattern Recognition, vol.39, issue.4, pp.527-538, 2006.
DOI : 10.1016/j.patcog.2005.10.004

G. Damiand, M. Dexet-guiard, P. Lienhardt, and E. Andres, Removal and contraction operations to define combinatorial pyramids: application to the design of a spatial modeler, Image and Vision Computing, vol.23, issue.2, pp.259-269, 2005.
DOI : 10.1016/j.imavis.2004.06.016

URL : https://hal.archives-ouvertes.fr/hal-00211776

G. Damiand, Y. Bertrand, and C. Fiorio, Topological model for two-dimensional image representation: definition and optimal extraction algorithm, Computer Vision and Image Understanding, vol.93, issue.2, pp.111-154, 2004.
DOI : 10.1016/j.cviu.2003.09.001

URL : https://hal.archives-ouvertes.fr/lirmm-00137917

G. Damiand and P. Resch, Split-and-merge algorithms defined on topological maps for 3D image segmentation, Graphical Models, vol.65, issue.1-3, pp.149-167, 2003.
DOI : 10.1016/S1524-0703(03)00009-2

URL : https://hal.archives-ouvertes.fr/hal-00211741

M. [. Damiand, C. Habib, and . Paul, A simple paradigm for graph recognition: application to cographs and distance hereditary graphs, Theoretical Computer Science, vol.263, issue.1-2, pp.99-111, 2001.
DOI : 10.1016/S0304-3975(00)00234-6

URL : https://hal.archives-ouvertes.fr/lirmm-00090372

C. R. Goffe, G. Damiand, and L. Brun, A Causal Extraction Scheme in Top-Down Pyramids for Large Images Segmentation, Articles dans des Conférences Internationales Proc. of 13th International Workshop on Structural and Syntactic Pattern Recognition, 2010.
DOI : 10.1007/978-3-642-14980-1_25

URL : https://hal.archives-ouvertes.fr/hal-00567656

G. [. Gosselin, C. Damiand, and . Solnon, Signatures of Combinatorial Maps, Proc. of 13th International Workshop on Combinatorial Image Analysis, pp.370-382, 2009.
DOI : 10.1007/978-3-642-10210-3_29

URL : https://hal.archives-ouvertes.fr/hal-00457234

G. [. Goffe, L. Damiand, and . Brun, Extraction of tiled top-down irregular pyramids from large images, Proc. of 13th International Workshop on Combinatorial Image Analysis, pp.123-137, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00441252

G. [. Dupas, J. Damiand, and . Lachaud, Multi-Label Simple Points Definition for 3D??Images Digital Deformable Model, Proc. of 15th International Conference on Discrete Geometry for Computer Imagery, pp.156-167, 2009.
DOI : 10.1023/A:1020874308076

URL : https://hal.archives-ouvertes.fr/hal-00413691

S. [. Alayrangues, G. Peltier, P. Damiand, and . Lienhardt, Border Operator for Generalized Maps, Proc. of 15th International Conference on Discrete Geometry for Computer Imagery, pp.300-312, 2009.
DOI : 10.1145/347127.347138

URL : https://hal.archives-ouvertes.fr/hal-00437746

G. Damiand, C. De-la-higuera, J. Janodet, E. Samuel, and C. Solnon, A polynomial algorithm for subisomorphism of holey plane graphs, Proc. of 7th International Workshop on Mining and Learning with Graphs, 2009.

G. Damiand, C. De-la-higuera, J. Janodet, E. Samuel, and C. Solnon, A Polynomial Algorithm for Submap Isomorphism, Proc. of 7th Workshop on Graph-Based Representation in Pattern Recognition, pp.102-112, 2009.
DOI : 10.1007/978-3-540-74970-7_51

A. [. Baldacci, G. Braquelaire, and . Damiand, 3D Topological Map Extraction from Oriented Boundary Graph, Proc. of 7th Workshop on Graph-Based Representations in Pattern Recognition, pp.283-292, 2009.
DOI : 10.1155/S1048953390000041

URL : https://hal.archives-ouvertes.fr/hal-00400856

L. [. Goffe, G. Brun, and . Damiand, A top-down construction scheme for irregular pyramids, Proc. of 4th International Conference On Computer Vision Theory And Applications, pp.163-170, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362234

G. Damiand and D. Coeurjolly, A Generic and Parallel Algorithm for 2D Image Discrete Contour Reconstruction, Proc. of 4th International Symposium on Visual Computing, pp.792-801, 2008.
DOI : 10.1016/j.cviu.2007.09.007

URL : https://hal.archives-ouvertes.fr/hal-00345297

G. Damiand and S. Alayrangues, Computing Canonical Polygonal Schemata with Generalized Maps, Proc. of International Conference on Topological & Geometric Graph Theory, pp.287-292, 2008.
DOI : 10.1016/j.endm.2008.06.058

URL : https://hal.archives-ouvertes.fr/hal-00315869

G. [. Dupas and . Damiand, First Results for 3D Image Segmentation with??Topological??Map, Proc. of 14th International Conference on Discrete Geometry for Computer Imagery, pp.507-518, 2008.
DOI : 10.1007/978-3-540-79126-3_45

URL : https://hal.archives-ouvertes.fr/hal-00305485

M. Baba-ali, G. Damiand, X. Skapin, and D. Marcheix, Insertion and Expansion Operations for n-Dimensional Generalized Maps, Proc. of 14th International Conference on Discrete Geometry for Computer Imagery, pp.141-152, 2008.
DOI : 10.1007/978-3-540-79126-3_14

URL : https://hal.archives-ouvertes.fr/hal-00305482

G. Damiand, S. Peltier, and L. Fuchs, Computing Homology Generators for Volumes Using Minimal Generalized Maps, Proc. of 12th International Workshop on Combinatorial Image Analysis, pp.63-74, 2008.
DOI : 10.1007/978-3-540-78275-9_6

URL : https://hal.archives-ouvertes.fr/hal-00305471

A. Dupas and G. Damiand, Comparison of Local and Global Region Merging in the Topological Map, Proc. of 12th International Workshop on Combinatorial Image Analysis, pp.420-431, 2008.
DOI : 10.1007/978-3-540-78275-9_37

URL : https://hal.archives-ouvertes.fr/hal-00305446

A. [. Peltier, Y. Ion, W. G. Haxhimusa, G. Kropatsch, and . Damiand, Computing Homology Group Generators of Images Using Irregular Graph Pyramids, Proc. of 6th Workshop on Graph-Based Representations in Pattern Recognition, pp.283-294, 2007.
DOI : 10.1007/978-3-540-72903-7_26

URL : https://hal.archives-ouvertes.fr/hal-00348864

D. [. Damiand and . Arrivault, A New Contour Filling Algorithm Based on 2D Topological Map, Proc. of 6th Workshop on Graph-Based Representations in Pattern Recognition, pp.319-329, 2007.
DOI : 10.1007/978-3-540-72903-7_29

URL : https://hal.archives-ouvertes.fr/hal-00348857

G. [. Horna, D. Damiand, Y. Meneveaux, and . Bertrand, Building 3d indoor scenes topology from 2d architectural plans, Proc. of 2nd International Conference on Computer Graphics Theory and Applications, pp.37-44, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00337793

S. [. Damiand, L. Peltier, and . Fuchs, Computing Homology for Surfaces with Generalized Maps: Application to 3D Images, Proc. of 2nd International Symposium on Visual Computing, pp.235-244, 2006.
DOI : 10.1007/11919629_25

URL : https://hal.archives-ouvertes.fr/hal-00366105

C. Simon and G. Damiand, Generalized Map Pyramid for Multi-level 3D Image Segmentation, Proc. of 13th International Conference on Discrete Geometry for Computer Imagery, pp.530-541, 2006.
DOI : 10.1007/11907350_45

URL : https://hal.archives-ouvertes.fr/hal-01511731

P. [. Damiand, L. Peltier, P. Fuchs, and . Lienhardt, Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images, Proc. of 11th International Workshop on Combinatorial Image Analysis, pp.1-15, 2006.
DOI : 10.1007/11774938_1

URL : https://hal.archives-ouvertes.fr/hal-00366101

G. [. Simon, P. Damiand, and . Lienhardt, Receptive Fields for Generalized Map Pyramids: The Notion of Generalized Orbit, Proc. of 12th International Conference on Discrete Geometry for Computer Imagery, pp.56-67, 2005.
DOI : 10.1007/978-3-540-31965-8_6

URL : https://hal.archives-ouvertes.fr/hal-01511756

G. [. Simon, P. Damiand, and . Lienhardt, Pyramids of n-Dimensional Generalized Maps, Proc. of 5th Workshop on Graph-Based Representations in Pattern Recognition, pp.142-152, 2005.
DOI : 10.1007/978-3-540-31988-7_13

URL : https://hal.archives-ouvertes.fr/hal-01511770

G. Damiand and P. Lienhardt, Removal and Contraction for n-Dimensional Generalized Maps, Proc. of 11th International Conference on Discrete Geometry for Computer Imagery, pp.408-419, 2003.
DOI : 10.1007/978-3-540-39966-7_39

O. [. Damiand, C. Alata, and . Bihoreau, Using 2D Topological Map Information in a Markovian Image Segmentation, Proc. of 11th International Conference on Discrete Geometry for Computer Imagery, pp.288-297, 2003.
DOI : 10.1007/978-3-540-39966-7_27

URL : https://hal.archives-ouvertes.fr/hal-01513073

G. [. Braquelaire, J. Damiand, F. Domenger, and . Vidil, Comparison and Convergence of Two Topological Models for 3D Image Segmentation, Proc. of 4th Workshop on Graph-Based Representations in Pattern Recognition, pp.59-70, 2003.
DOI : 10.1007/3-540-45028-9_6

URL : https://hal.archives-ouvertes.fr/hal-01513090

O. [. Bourdon, G. Alata, C. Damiand, Y. Olivier, and . Bertrand, Geometrical and topological informations for image segmentation with monte carlo markov chain implementation, Proc. of 15th IAPR International Conference on Vision Interface, pp.413-420, 2002.

G. Damiand and P. Resch, Topological Map Based Algorithms for 3D Image Segmentation, Proc. of 10th International Conference on Discrete Geometry for Computer Imagery, pp.220-231, 2002.
DOI : 10.1007/3-540-45986-3_20

URL : https://hal.archives-ouvertes.fr/hal-01513099

Y. Bertrand, G. Damiand, and C. Fiorio, Topological map : Minimal encoding of 3d segmented images, Proc. of 3rd Workshop on Graph-Based Representation in Pattern Recognition, pp.64-73, 2001.
URL : https://hal.archives-ouvertes.fr/lirmm-01168509

Y. Bertrand, G. Damiand, and C. Fiorio, Topological Encoding of 3D Segmented Images, Proc. of 9th International Conference on Discrete Geometry for Computer Imagery, pp.311-324, 2000.
DOI : 10.1007/3-540-44438-6_26

URL : https://hal.archives-ouvertes.fr/lirmm-01168508

J. Gourlot, M. Giner, E. Ahronovitz, M. Hugon, and G. Damiand, Latest developments and results in automatic scf counting. part ii : Improved image acquisition and results obtained, Proc. of Beltwide Cotton Conferences, pp.1522-1524, 1998.

J. P. Gourlot, M. Giner, E. Ahronovitz, G. Damiand, and M. Hugon, Latest developments and results in automatic scf counting, Proc. of Beltwide Cotton Conferences, pp.1633-1637, 1997.

A. Damiand and L. Brun, Géométrie discrète et images numériques, chapitre 4. Cartes combinatoires pour l'analyse d'images, chapter 4, Traité IC2, Signal et Image, pp.103-120, 2007.

G. Damiand, Définition etétudeetétude d'un modèle topologique minimal de représentation d'images 2d et 3d, Thèse de doctorat, 2001.