
HAL Id: tel-00538548
https://theses.hal.science/tel-00538548v1

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modèles à la Conception et à l’Exécution pour Gérer la
Variability Dynamique

Brice Morin

To cite this version:
Brice Morin. Modèles à la Conception et à l’Exécution pour Gérer la Variability Dynamique. Software
Engineering [cs.SE]. Université Rennes 1, 2010. English. �NNT : �. �tel-00538548�

https://theses.hal.science/tel-00538548v1
https://hal.archives-ouvertes.fr

N˚d’ordre : 4152 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Informatique

École doctorale Matisse

présentée par

Brice Morin
préparée à l’IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
Composante Universitaire : IFSIC

Leveraging Models
from Design-time to
Runtime to Support
Dynamic Variability

Thèse soutenue à Rennes
Le 17 Septembre 2010

devant le jury composé de :

Thomas JENSEN
Directeur de Recherche CNRS
Président

Betty H.C. CHENG
Professeur Michigan State University
Rapporteur

Valérie ISSARNY
Directeur de Recherche INRIA Paris-Rocquencourt
Rapporteur

Jean-Bernard STEFANI
Directeur de Recherche INRIA Rhone-Alpes
Examinateur

Jean-Marc JÉZÉQUEL
Professeur à l’Université de Rennes 1
Directeur de thèse

Olivier BARAIS
Maitre de Conférence à l’Université de Rennes 1
Encadrant

2

3

Contents

1.1 Context . iii
1.2 Challenges Liés à l’Ingénierie des Systèmes Adaptifs Complexes iv

1.2.1 Vers du design continu . v
1.2.2 Gestion de la Variabilité, Dérivation de Configurations vii
1.2.3 Rendre la boucle d’adaptation explicite viii
1.2.4 Réflex et réflexion : vers des systèmes adaptatifs inspirés par l’être

humain . viii
1.2.5 Réactivité Versus Stabilité . ix

1.3 Contributions . x
1.3.1 Modélisation des Systèmes Adaptatifs xi
1.3.2 Modélisation par Aspects pour la Dérivation de Configurations . . . xi
1.3.3 (Dé)coupler le Model de Réfléction (d’)avec la Réalité xii
1.3.4 Mise en Oeuvre et Validation . xii

I Introduction & State-of-the-Art 21

1 Introduction 23

1.1 Context . 23
1.2 Challenges Related to the Engineering of Dynamically Adaptive Systems . 25

1.2.1 Raising the level of abstraction: Towards Continuous Design 26
1.2.2 Variability Management, Product Derivation 27
1.2.3 Making the Adaptation Loop Explicit 28
1.2.4 On the Importance of Handling Several Reasoning Paradigms 29
1.2.5 Reactivity Versus Stability . 30

1.3 Contributions . 31
1.3.1 Modeling Adaptive Systems . 31
1.3.2 Aspect-Oriented Modeling to Support Product Derivation 31
1.3.3 Decoupling and Synchronizing Reflection Model from/with the Re-

ality . 32

4 CONTENTS

1.3.4 A Reference Architecture to Support Model-Driven Dynamic Adap-
tation and Continuous Design . 33

1.4 Organization of this Thesis . 33

2 State of the Art on Dynamic Variability Management 35

2.1 An Overview of Some Adaptive Execution Platforms 36
2.1.1 Fractal . 36
2.1.2 OSGi . 38
2.1.3 SCA . 39
2.1.4 Discussion . 40

2.2 Model-Based Development of Dynamically Adaptive Systems 40
2.2.1 A brief overview of Model-Driven Engineering 40
2.2.2 Extensive Model-Based Development of DAS 42
2.2.3 Some multi-staged approaches to dynamic adaptation 44
2.2.4 Designing DAS as Dynamic Software Product Lines 46
2.2.5 Synchronizing Runtime and Models using MDE 47
2.2.6 Discussion . 49

2.3 Separation of Concerns to clearly separate the Adaptive Logic From the
Business Logic . 51
2.3.1 Encapsulating Reconfigurations as Separate Concerns 51
2.3.2 AspectJ-like Weaving in Component-Based Systems 54
2.3.3 Using Aspects of Assembly to Dynamically Compose Applications . . 56
2.3.4 Discussion . 57

2.4 Aspect-Oriented Modeling to Support Model-Driven Software Product Lines 58
2.5 Conclusion . 59

II Contributions & Validations 63

3 Models Manipulated and Exchanged 65

3.1 Introduction . 65
3.2 Overview . 66
3.3 Variability Metamodel . 67
3.4 Environment and Context Metamodel . 69
3.5 Reasoning Metamodel . 71

3.5.1 ECA-like rules . 71
3.5.2 Goals . 72

3.6 Architecture Metamodel . 74

CONTENTS 5

4 Aspect-Oriented Modeling to Support (Dynamic) Software Product Lines 77

4.1 Requirements for an AOM approach usable at Runtime 78
4.2 Overview . 79
4.3 Rapid Background on SmartAdapters . 80
4.4 A (not so) Simple Cache Aspect . 80

4.4.1 A Naive Cache Aspect . 80
4.4.2 On the need of Advice Sharing . 81
4.4.3 On the need of Scoped Advice Sharing 81

4.5 SmartAdapters: Concepts in details . 82
4.5.1 Leveraging model typing to design advice and pointcut model . . . 82
4.5.2 Defining Sharing Strategies for Advice Models 85
4.5.3 Extension of the SmartAdapters metamodel 88

4.6 Tool Support . 89
4.6.1 SmartAdapters V1: A Proof-of-Concept to Assess AOM to Compose

Dynamic Features . 89
4.6.2 SmartAdapters V2: A Generative Approach to More Efficient As-

pect Model Weaving . 90
4.7 Discussion . 92

5 Synchronizing the runtime with design-time models 95

5.1 Requirements for an “intelligent” Reflection Model 95
5.2 Overview . 96
5.3 Step-wise abstraction of the execution context 97

5.3.1 An Overview of Complex Event Processing and WildCAT 2.0 98
5.3.2 Complex Event Processing to Update Context Models 99
5.3.3 WildCAT/EMF to monitor models . 100

5.4 Causal Connection between the runtime and an architectural model 101
5.4.1 Maintaining a Reflection Model at Runtime: Strong Synchronization

from Runtime to Model . 102
5.4.2 Online Validation to Check Configurations when Needed 103
5.4.3 Model Comparison to Detect Changes Between to Configurations . . 104
5.4.4 On-Demand Synchronization from Model to Runtime 106

5.5 Models@Runtime to Support Offline Activities 109
5.6 Discussion . 110

6 A Model-Oriented and Configurable Architecture to Support Dynamic Variabil-

ity 111

6.1 Communication Schemes . 113
6.2 Different Configurations for the Reference Architecture 116

6.2.1 The Case of Small Adaptive Systems 116

6 CONTENTS

6.2.2 ECA, Goals and Online generation/validation of Configurations to
Tame Complex Adaptive Systems . 117

6.3 Discussion . 118

7 Validation: Application to 2 Case Studies 119

7.1 Objectives . 119
7.2 Validation on a Crisis Management System 120

7.2.1 Design of the Crisis Management System 120
7.2.2 Some Aspect Models of the Crisis Management System 122
7.2.3 Comparative Study of SmartAdapters V1 and V2 123

7.3 Validation on EnTiMid . 128
7.3.1 Scenario . 128
7.3.2 Results . 128
7.3.3 Discussion . 129

III Conclusion and Perspectives 133

8 Conclusion 135

9 Perspectives 139

9.1 Dual-View Aspects to Support Behavioral Adaptation and Validation 139
9.2 Bootstrapping the Adaptation Loop to Support Evolution 140
9.3 Advanced Model Composition to Domain-Driven Dynamic Adaptation . . 141
9.4 From Requirements to Software and Hardware Dynamic Adaptation 143

A Implementation Details 167

A.1 Mapping the SCA metamodel to the ART metamodel 167
A.2 Compilation of Aspect Models . 168
A.3 Log Aspect compiled into Drools code when logger is unique 171
A.4 Log Aspect compiled into Drools code when logger is unique with scope . . 172
A.5 Code Template to Generate Context Simulator 173

B Benchmarks 177

B.1 Comparative Study of SmartAdapters V1 and V2 177
B.2 Comparison and Reconfiguration times in EnTiMid 178

i

Acknowledgments

This thesis is the result of three years of work conducted within the Triskell group, prob-
ably one of the best team in the world both in terms of work and ambiance (especially
during the coffee breaks, the “BBQ chez Greg” and other events).

First of all, I would like to thank Jean-Marc Jézéquel. He has been a great advisor
during these 3 years: he kept my focused on my subject and also left me some degrees of
freedom to work on (not always so) related topics. This efficient advising allowed me to
progressively discover the good1, the bad2 and the ugly3 aspects of the life of a researcher.
Obviously, I want to continue in this way.

Another important person I would like to thank is Olivier Barais (a.k.a. the Jedi Master
of the Bytecode). Even if he is always very busy, he always find the time to answer some
questions or to install (hack) prototypes on my computer. I remember that the week we
spent in Oslo at SINTEF was particularly productive.

I would also like to thank the other members of the Triskell group. In particular, Gré-
gory Nain and François Fouquet for using my tools and helping me to improve them, for
all the technical advices, and also for all the good moments after work.

Of course, I would like to acknowledge the members of the jury for their encouraging
comments about my work and the interesting questions they asked. It was a real honor
for me to defend my thesis in front of such a challenging jury.

Another group that was (and is still) important for me during these three years is
DiVA, the European project in which I was involved during these three years. I would
like to thank the guys from Thales and CAS for their important feedback on the tools and
the related approach. I am grateful Awais Rashid and Gordon Blair for hosting me at
Lancaster University during 3 month and to Nelly Bencomo for all the nice discussions
we had.

As a conclusion to these acknowledgments (more precisely, as a transition) I would
like to thank the people from SINTEF involved in DiVA. Especially, I am grateful to Arnor
Solberg for hiring me as a permanent researcher at SINTEF right after my defense. I am
sure I will enjoy his group as much as I enjoyed working for Triskell. Last but not least,

1many
2not that much
3very few

ii CONTENTS

I would like to thank Franck Fleurey. His tips about Kermeta and the discussion we had
about AOM during my Master internship and at the beginning of my Ph.D. thesis (when
he was still working in the Triskell group) were really helpful. Then, when DiVA started
(when he joined SINTEF) I really enjoyed collaborating with him on the great topic of
MDE for adaptive systems.

iii

Résumé en français

1.1 Context

La société d’aujourd’hui dépend de plus en plus des systèmes logiciels [16] déployés dans
de grandes compagnies, banques, aéroports, opérateurs de télécommunication, etc. Ces
systèmes doivent être disponible 24H/24 et 7j/7 pour de très longues périodes. Ainsi, le
système doit être capable de s’adapter à différents contextes d’exécution, sans interrup-
tion (ou très localisé dans le temps et dans l’espace), et sans intervention humaine. Pour
pouvoir s’exécuter pendant une longue période, le système doit être ouvert à l’évolution.
Il est en effet impossible de prévoir ce que seront les besoins des utilisateurs dans 10 ans.

Une approche prometteuse consiste à concevoir et à implémenter ces systèmes cri-
tiques comme des systèmes adaptatifs (DAS, Dynamically Adaptive Systems), qui peu-
vent s’adapter selon leurs contextes d’exécution, et évoluer selon les exigences utilisa-
teur. Il y a plus d’une décennie, Peyman Oreizy et al. [118] ont défini l’évolution comme
“l’application cohérente de changements au cours du temps”, et l’adaptation comme “le
cycle de monitoring du context, de planification et de déploiement en réponse aux change-
ments de context”. Les DASs ont des natures très différentes :

• systèmes embarqués [75] ou systèmes de systèmes [22, 63],

• systèmes purement auto-adaptatifs ou systèmes dont l’adaptation est choisie par un
être humain

Quelque soit son type, l’exécution d’un DAS peut être abstrait comme une machine à
états [13, 165], où :

• Les états représentent les différentes configurations (ou les modes) possibles du sys-
tème adaptatif. Une configuration peut être vue comme programme “normal”, qui
fournit des services, manipule des données, exécute des algorithmes, etc.

• Les transitions représentent toutes les différentes migrations possibles d’une config-
uration vers une autre. Ces transitions sont associées à des prédicats sur le contexte
et/ou des préférences utilisateur, qui indiquent quand le système adaptatif doit mi-
grer d’une configuration à une autre.

iv CONTENTS

Fondamentalement, cette machine à états décrit le cycle d’adaptation du DAS. L’évolution
d’un DAS consiste conceptuellement à mettre à jour cette machine à états, en ajoutant
et/ou enlevant des états (configurations) et/ou des transitions (reconfigurations).

L’énumération de toutes les configurations possibles et des chemins de migration reste
possible pour de petits systèmes adaptatifs. Ce design en extension permet de simuler
et de valider toutes les configurations et reconfigurations possibles, au moment du de-
sign [165], et de générer l’intégralité du code lié à la logique d’adaptation du DAS.

Cependant, dans le cas de systèmes adaptatifs plus complexes, le nombre d’états et
de transitions à spécifier explose rapidement [105, 51] : le nombre des configurations ex-
plose d’une manière combinatoire par rapport aux nombres de features dynamiques que
le système propose, et le nombre de transitions est quadratique par rapport au nombre de
configurations. Concevoir et mettre en application la machine à états dirigeant l’exécution
d’un système adaptatif complexe (avec des millions ou même des milliards de configura-
tions possibles) est une tache difficile et particulèrement propice aux erreurs.

1.2 Challenges Liés à l’Ingénierie des Systèmes Adaptifs Com-

plexes

Betty Cheng et al. ont identifié plusieurs défis liés aux DAS [35], spécifiques à différentes
activités : modélisation des différentes dimensions d’un DAS, expression des besoins,
ingénierie (design, architecture, vérification, validation, etc) et assurance logicielle. La
plupart de ces défis peuvent se résumer à trouver le niveau juste de l’abstraction :

• assez abstrait pour pouvoir raisonner efficacement et exécuter des activités de vali-
dation, sans devoir considérer tous les détails de la réalité,

• et suffisamment détaillé pour établir le lien (dans les 2 directions) entre l’abstraction
et la réalité c.-à-d., pour établir un lien causal entre un modèle et le système en cours
d’exécution.

L’abstraction est l’une des clefs pour maitriser la complexité des logiciels. La clef
pour maitriser les systèmes dynamiquement adaptatifs [105, 104] est de réduire le nom-
bre d’artefacts qu’un concepteur doit spécifier pour décrire et exécuter un tel système, et
d’élever le niveau d’abstraction de ces artefacts. Selon Jeff Rothenberg [131],

Modéliser, au sens large, est l’utilisation rentable d’une chose au lieu d’une autre
pour un certain but cognitif. Cela permet d’employer quelque chose qui est plus simple,
plus sûre ou meilleur marché que la réalité, pour un but donné. Un modèle représente
la réalité pour un but donné ; c’est une abstraction de la réalité dans le sens qu’il ne
peut pas représenter tous les aspects de réalité. Cela permet d’envisager le monde d’une
façon simplifiée, en évitant la complexité, le danger et l’irrévocabilité de la réalité.

CONTENTS v

Dans les DAS complexes, comme ceux adressés dans le projet DiVA [147], deux aspects
importants de la réalité que nous voulons abstraire sont le DAS lui-même et son contexte
d’exécution. Ceci soulève les questions suivantes :

1. Comment abstraire le contexte d’exécution en un modèle de haut niveau pouvant
servir de base au raisonnement et à la prise de décision ?

2. Comment raisonner efficacement sur le contexte courant afin de trouver un ensem-
ble de features bien adaptées, sans devoir énumérer tous les contextes possibles ou
de nombreuses règles d’adaptation ?

3. Comment éviter que le DAS oscille continuellement quand le contexte oscille légère-
ment autour de seuils critiques ?

4. Comment établir un lien entre la configuration (architecture) correspondant à un
ensemble de features, sans devoir spécifier toutes les configurations possibles à
l’avance, tout en préservant un degré élevé de validation ?

5. Comment faire migrer un DAS de sa configuration courante vers une nouvelle con-
figuration sans devoir écrire à la main tous les scripts de bas niveau et spécifiques à
une plateforme d’exécution donnée.

Ces questions visent à élever le niveau d’abstraction, et à réduire le nombre d’artefacts
requis pour spécifier et exécuter des DAS, tout en préservant un degré élevé de valida-
tion, d’automatisation et d’indépendance par rapport à des choix technologiques (par
exemple, outils utilisés au design, plateformes d’exécution, système de règle pour diriger
l’adaptation dynamique, etc.).

1.2.1 Vers du design continu

Au 6ème siècle avant J.C., Sun Tzu a mis en évidence le rôle de la réflexion dans l’art de la
guerre [154] :

Qui connaît son ennemi et se connaît lui-même, peut livrer cent batailles sans ja-
mais être en péril.
Qui ne connaît pas son ennemi mais se connaît lui-même, pour chaque victoire, con-
naîtra une défaite.
Qui ne connaît ni son ennemi ni lui-même, perdra inéluctablement toutes les batailles.

Cette citation ne concerne évidemment pas les DAS. Cependant, la réflexion [23, 94]
est un concept bien établi dans le contexte de l’adaptation dynamique. Cette citation
peut être transposée au champ lexical des DAS. Ici, “lui-même” serait le système adap-
tatif lui-même, et “l’ennemi” serait le contexte d’exécution dans lequel le système évolue.
Finalement, les “batailles” seraient les reconfigurations dynamiques du système. Avec

vi CONTENTS

une connaissance précise du contexte et du système lui-même, il est possible de prendre
de bonnes décisions et de faire migrer le DAS de façon fiable, en fonction du contexte
courant.

Plus récemment, Daniel G. Bobrow et al. [23] ont défini la réflexion comme :

La capacité d’un programme à manipuler comme données quelque chose représen-
tant l’état du programme lui-même pendant sa propre exécution. Il y a deux as-
pects d’une telle manipulation : introspection et intercession. L’introspection est la
capacité d’un programme d’observer et donc raisonner au sujet de son propre état.
L’intercession est la capacité d’un programme à modifier son propre état d’exécution
ou de changer son interprétation.

Cela consiste fondamentalement à maintenir un lien causal entre la réalité (c.-à-d. le
system en cours d’exécution) et un modèle de la réalité. Un changement significatif du
système en cours d’exécution met à jour le modèle, et n’importe quelle modification sig-
nificative du modèle affectera le système en cours d’exécution. Cela contredit la citation
de Jeff Rothenberg puisque ce modèle de réflexion n’évite pas le danger et l’irrévocabilité,
en raison de la synchronisation forte entre la réalité et le modèle.

Nous admettons que la réflexion est un concept fondamental pour mettre en oeuvre
les systèmes adaptatifs, mais nous proposons d’aller plus loin dans cette thèse afin d’y in-
clure les arguments de Jeff Rothenberg. Le modèle doit toujours refléter ce qui arrive dans
le système courant (introspection), pareillement à un miroir, de sorte qu’il soit possible de
toujours raisonner sur un modèle à jour. Cependant, il faut offrir plus de liberté pour ma-
nipuler, transformer, valider, etc. le modèle sans modifier directement le système en cours
d’exécution. C’est le principe de base de l’intelligence humaine (et de l’intelligence arti-
ficielle [135] dans une certaine mesure). Un humain peut établir mentalement plusieurs
modèles potentiels de la réalité et évaluer mentalement ces modèles au moyen de scénar-
ios [18]4 : que se produirait-il si je faisais cette action ? Pendant ce raisonnement mental, la
manipulation du modèle n’affecte pas la réalité, tant qu’une solution acceptable n’ait été
trouvée. Enfin, cette solution est effectivement mise en oeuvre, ce qui impacte la réalité.
En d’autres termes, le modèle mental est re-synchronisé avec la réalité. Dans le cas où un
aspect de la réalité change pendant le processus de raisonnement, le modèle est mis à jour
et le processus de raisonnement reconstruit des modèles mentaux, idéalement en mettant
à jour les modèles déjà existants.

Un autre aspect de la réalité qu’on souhaite abstraire est le contexte d’exécution dans
lequel le système évolue. Cependant le fossé entre l’espace de conception (design) et
l’espace d’exécution (runtime) est assez large. En effet, les sondes intégrés au runtime
produisent des flots (quasi) continus de valeurs brutes, avec très peu d’abstraction. Au
design, les concepteurs utilisent généralement des valeurs qualitatives [33, 51], comme
haut, moyen ou bas, pour décrire l’environnement d’un DAS et sa logique d’adaptation.

4Voir l’encart par Bran Selic.

CONTENTS vii

1.2.2 Gestion de la Variabilité, Dérivation de Configurations

Comme nous l’avons déjà mentionné, spécifier et mettre en oeuvre explicitement la ma-
chine à états dirigeant l’exécution d’un DAS devient rapidement difficile en raison de
l’explosion combinatoire du nombre de configurations, et de l’explosion quadratique du
nombre de transitions.

Tandis qu’il est encore possible de définir cette machine à états pour des petits sys-
tèmes adaptatifs [14, 165], cela devient presque impossible pour des systèmes adaptatifs
complexes, avec des millions ou même des milliards de configurations [51, 105]. Même si
les états et les transitions sont spécifiés à un haut niveau d’abstraction, il devient rapide-
ment difficile pour un humain, et même pour une machine, de définir un nombre si élevé
d’artefacts [51, 105].

Récemment, Sven Hallsteinsen et al. ont conceptualisé les DAS comme des lignes de
produits dynamiques [70, 69] (DSPL, Dynamic Software Product Lines) dans lesquelles la
variabilité est fixé jusqu’au runtime. Semblables aux lignes de produits traditionnelles [38]
(SPLs), l’idée fondamentale est de capitaliser sur les parties communes et de contrôler
précisément les variations entre les différents produits. Ainsi, le nombre élevé de config-
urations possible pour un DAS est décrit en intention, plutôt qu’en extension.

Dans une SPL, les produits sont la plupart du temps dérivés selon des décisions hu-
maines, de l’expression des besoins (requirement) au déploiement [66]. En revanche, le
processus de dérivation d’une DSPL est plus complexe et plus varié. À la différence d’une
SPL “classique”, les produits d’une DSPL sont fortement dépendants : le système doit
commuter dynamiquement et sans risque de sa configuration courante vers une autre
configuration. La décision de dériver un produit (c.-à-d. s’adapter vers une autre config-
uration) dépend du type de système adaptatif :

• dans les systèmes Auto-Adaptatifs (SAS, Self-Adaptive Systems), par exemple des
systèmes adaptatifs embarqués dans des avions [118], le processus de dérivation est
entièrement automatisés et suit souvent la boucle autonomique MAPE (Monitor-
Analyze-Plan-Execute) [81].

• dans les systèmes dont l’adaptation est dirigée par un être humain, par exemple un
système domotique [116], le choix des features à intégrer est la plupart du temps
dirigé par l’utilisateur final.

La communauté SPL [11, 38, 169] propose déjà des formalismes et des notations, telles
que les feature diagrams, pour décrire une gamme de produits en intention plutôt qu’en
extension. L’idée fondamentale est décrire les points communs entre les produits et d’offrir
les constructions nécéssaires (alternatives, options, choix de n parmi p, etc.) et des con-
traintes (exclusions mutuelles, dépendances, etc.) pour décrire correctement la variabilité
parmi les produits. De cette façon, les concepteurs n’ont pas besoin d’énumérer toutes
les configurations possibles. Cependant, la décomposition d’un système en points com-

viii CONTENTS

muns et points de variation nécessite des mécanismes efficaces et expressifs de composi-
tion pour pouvoir automatiquement dériver des configurations à partir de sélections de
features.

La communauté software composition (SC) (qui inclue notamment les communautés
AOSD (Aspect-Oriented Software Development), FOSD (Feature-Oriented Software De-
velopment) et CBSD (Component-Based Software Development)) propose des mécan-
ismes de compositions différents mais complémentaires, tels que le tissage d’aspects,
les mixins, la composition de features ou de composants, etc. Récemment, beaucoup
d’approches proposent d’appliquer de tels méchanismes de composition dans le cadre des
SPL “classiques” : niveau code [80, 5, 6, 48, 97] ou niveau model [88, 77, 64, 102, 100, 120].

1.2.3 Rendre la boucle d’adaptation explicite

La séparation des préoccupations [119] est une pratique bien établie de génie logiciel.
Dans les systèmes adaptatifs, la logique d’adaptation doit être séparée de la logique métiers [12,
10, 14, 40, 52, 122, 123, 133, 134, 165, 168], pour améliorer la compréhension, la main-
tenance, la testabilité et la modularité de ces systèmes. Au delà de la séparation entre
logique d’adaptation et logique métier, il est important de séparer clairement les com-
posants réalisant la logique métier des composants responsables de l’adaptation dynamique.
Selon Betty Cheng et al. [35] :

Comprendre et raisonner sur les boucles de contrôle des systèmes auto-adaptatifs
est un pré-requis permettant de faire évoluer la technologie des systèmes auto-adaptatifs
d’une approche ad-hoc, “essai-échec” vers une approche disciplinée.

En considérant les boucles de controle comme des entités de première ordre, il possible
de raisonner sur leurs architectures, leurs propriétés (stabilité, réactivité, exécutions, etc.),
et de configurer (voir même reconfigurer dynamiquement) ces boucles de contrôle selon
les besoins.

1.2.4 Réflex et réflexion : vers des systèmes adaptatifs inspirés par l’être hu-
main

La plupart des approches d’ingénierie pour les systèmes adaptatifs proposent seulement
un paradigme pour exprimer la logique d’adaptation. Le paradigme de raisonnement le
plus commun est ECA (Event-Condition-Action) [40, 41] qui consiste fondamentalement
à mapper des fragments de contextes à des actions à éxécuter (scripts de reconfiguration).
Par exemple, si un feu est détecté, des sprinklers doivent être activés. Comme relevé
dans [51], il est facile de comprendre et mettre en application chaque règle individuelle-
ment : il s’agit simplement d’un ensemble de blocs if-then. Cependant, définir la logique
d’adaptation uniquement à l’aide de règle ECA nécéssite de définir de nombreuses règles
qu’il est parfois difficile de comprendre dans leur ensemble [51]. En effet, un contexte

CONTENTS ix

spécifique peut déclencher plusieurs règles (puisque les conditions sont définies sur des
fragments de contexte), qui peuvent être en conflit. Il faut ainsi définir des contraintes
additionnelles (priorités, exclusions, etc.) pour contrôler correctement l’ensemble de ces
règles ECA.

Une autre manière commune d’exprimer la logique d’adaptation est de définir des
buts que le système doit optimiser [51, 62, 34]. Pour chaque feature du système, le concep-
teur doit préciser comment elle affecte des propriétés de QoS. Il faut également indiquer
quelles propriétés doivent être optimiser dans quels contextes. Au runtime, la boucle de
contrôle doit trouver le meilleur choix de features, qui optimise au mieux les propriétés
qui sont importantes dans le contexte courant. Comme noté dans [51] l’utilisation de buts
est plutôt intuitive et simple. En effet, le choix des features à intégrer est laissé au système
lui-même. Cependant, les algorithmes d’optimisation multidimensionnelles nécessitent
souvent beacoup de ressources et/ou de temps.

Par analogie, le corps humain a deux méchanismes de “raisonnement” : réflex5 et
réflexion6.

Les règles ECA peuvent être vues comme des réflexes, puisqu’elles n’impliquent pas
vraiment de raisonnement. Dans le cas où le système est dans un contexte critique, ces
règles peuvent rapidement modifier le système dans une configuration acceptable. Les
techniques à base de buts matchent parfaitement la définition de “pensée”. Selon les
ressources ou le laps de temps accordé au raisonnement, le système peut évaluer dif-
férentes configurations et trouver celle qui offre le meilleur compromis.

Les règles ECA et les règles à base de buts ont des avantages et des inconvénients
complémentaires. D’une part, des règles d’ECA peuvent être traitées efficacement au
runtime. Cependant, il devient rapidement difficile de spécifier un système adaptatif en
utilisant seulement des règles ECA. D’autre part, les règles à base de buts permettent
de spécifier la totalité de la logique d’adaptation à un haut niveau d’abstraction mais
impliquent souvent un traitement plus lourd au runtime. Plutôt que de se limiter au
choix d’un paradigme, nous pensons que la combinaison de plusieurs de ces paradigme
de raisonnement permet de tirer parti de leurs avantages respectifs tout en limitant leurs
inconvénients.

1.2.5 Réactivité Versus Stabilité

Un des critères les plus évidents d’un système adaptatif est sa capacité de s’adapter selon
des stimuli externes (contexte d’exécution, préférences d’utilisateur, etc.). Cependant,

5d’après Wikipédia (FR) : Un réflexe est une réponse musculaire involontaire, stéréotypée et très rapide à
un stimulus. Une activité réflexe est induite par un arc réflexe, le mécanisme de réponse intégrée d’un centre
nerveux sans intervention du cerveau et de la volonté consciente. Les réflexes sont souvent des réactions de
défense, comme le retrait du membre en cas de brûlure, avant que le cerveau ait perçu la douleur.

6d’après Wikipédia (EN, traduit) : Penser permet à un être humain de modéliser le monde afin d’agir en
fonction de ses objectifs, plans ou désirs.

x CONTENTS

l’adaptation dynamique n’est pas immédiate et dérange inévitablement le système en
cours d’exécution, puisque quelques composants doivent parfois être arrêtés et redémar-
rés pour pouvoir commuter sans risque d’une configuration à une autre.

Le contexte dans lequel un système adaptatif évolue est très dynamique et peut poten-
tiellement changer plus rapidement que le système adaptatif lui-même. Les propriétés de
QoS telles que la bande passante, le CPU, la mémoire, etc peuvent varier très rapidement
et dépendent de beaucoup de paramètres, la plupart d’entre eux étant hors de contrôle
(du système adaptatif) : le nombre de systèmes qui utilisent le réseau, la taille et la quan-
tité de données échangées, qualité du réseau, etc. Dans le pire cas (où une variable de
contexte oscille autour d’un seuil qui déclenche une reconfiguration) le système adaptatif
peut osciller sans interruption entre deux configurations. Encore pire, si les fluctuations
du contexte sont plus rapides que l’adaptation, le système adaptatif pourrait continuelle-
ment se retrouver dans une configuration qui n’est pas adaptée au contexte courant. Dans
ce cas-ci, il serait préférable de commuter dans un mode neutre par rapport aux variables
qui oscillent.

Mettre en oeuvre un compromis entre réactivité et stabilité n’est cependant pas sim-
ple. L’amélioration de la stabilité peut être réalisée en utilisant pour des fenêtres de temps,
des cycles d’hystérésis [155], de la logique floue [87] ou du traitement d’événements com-
plexes (CEP, Complex Event Processing) [93] etc. De telles techniques peuvent cacher
des fluctuations de contexte, offrant ainsi une base plus stable pour le raisonnement.
Cependant, cela pourrait également cacher des contextes critiques où le système doit
s’adapter. Pour privilégier une réactivité acceptable, il est souvent nécessaire de travailler
à un niveau plus bas d’abstraction (seuil dur sur des valeurs directement fournies par les
sondes), avec peu d’analyse, pour pouvoir réagir rapidement selon le contexte.

1.3 Contributions

Dans cette thèse, nous proposons de tirer parti des dernières avancées en Ingénierie des
Modèles (MDE, Model-Driven Engineering [139]) aussi bien pendant la conception (de-
sign) qu’à l’exécution (runtime) [18]. Les aspects fondamentaux d’un DAS (sa variabilité
(dynamique), son contexte, sa logique d’adaptation et son architecture) à l’aide de mé-
tamodèles dédiés. En opérant à un niveau élevé de l’abstraction, il est ainsi possible de
raisonner efficacement, en cachant les détails non pertinents, et d’automatiser le proces-
sus de reconfiguration dynamique. Dans cette thèse, nous contribuerons en particulier
sur les questions suivantes :

1. Comment construire la configuration (architecture) correspondant à un ensemble de
features, sans devoir spécifier toutes les configurations possibles à l’avance, tout en
préservant un degré élevé de validation ?

2. Comment reconfigurer automatiquement le DAS de sa configuration courante à une

CONTENTS xi

configuration nouvellement produite, sans devoir écrire à la main des scripts de
reconfiguration de bas niveau et spécifiques à la plateforme d’exécution ?

1.3.1 Modélisation des Systèmes Adaptatifs

Dans le contexte du projet européen DiVA, et plus particulièrement en collaboration avec
Franck Fleurey, nous avons modelé quatre dimensions/aspects d’un système adaptatif [50] :

• sa variabilité, qui décrit les différentes features du système, et leurs natures (options,
alternatives, etc.)

• son environnement/contexte, qui décrit les points important du contexte nous voulons
surveiller (environnement), aussi bien que le contexte courant.

• sa logique d’adaptation, qui décrit quand le système doit s’adapter. Cela consiste
à définir quelles features (du modèle de variabilité) choisir en fonction du contexte
courant.

• son architecture, qui décrit la configuration du système courant en termes de con-
cepts architecturaux.

Cette contribution est présentée dans [50, 104] et détaillée dans le Chapitre 3 de ce
document.

1.3.2 Modélisation par Aspects pour la Dérivation de Configurations

La communauté SPL [11, 38, 169] propose déjà des formalismes et des notations bien
établis, tels que des feature diagrams, pour contrôler la variabilité en fond décrivant
une gamme de produits sans devoir énumérer tous les produits individuellement. La
communauté SC propose un éventail de techniques différentes mais complémentaires,
qui peuvent être utilisées pour dériver des produits depuis un modèle de ligne de pro-
duits [80, 120, 106]. Nous nous appuyons sur cette expérience pour décrire la variabilité de
DASs, ou DSPLs, et dériver des configurations depuis un modèle de variabilité. Puisque
nous utilisons intensivement des modèles, nous proposons naturellement d’utiliser la
Modélisation par Aspects (AOM, Aspect-Oriented Modeling) afin de raffiner et com-
poser les features [120, 64, 160]. L’AOM se base sur des approches formelles, telle que la
théorie des graphes [24], ce qui permet de valider tôt dans le cycle de dévelopement, sans
devoir énumérer toutes les configurations possibles (combinaisons de features). Alors
que la littérature est très prolifique au sujet des approches AOM [9, 88, 102, 78, 64], peu
d’implémentations sont réellement disponibles. Dans cette thèse, nous présentons com-
ment nous étendons l’approche SmartAdapters [88, 101], que nous avons développé au
sein de l’équipe INRIA Triskell. Cependant, notre approche n’est pas spécifique à ce tis-
seur d’aspects. Il est en effet possible d’utiliser d’autres tisseurs, voire même de simples
transformations de modèles pour produire des configurations.

xii CONTENTS

Cette contribution est présentée dans [106, 105, 104] et détaillée dans le Chapitre 4 de
ce document.

1.3.3 (Dé)coupler le Model de Réfléction (d’)avec la Réalité

Nous avons précédemment fait une analogie entre les systèmes adaptatifs et l’intelligence
humaine, et sa capacité d’établir (si nécessaire) des modèles mentaux reflétant la réalité,
mais qui ne sont pas directement couplés à la réalité. Cette thèse n’explorera pas plus loin
cette analogie. Cependant, nous pensons qu’un model de réflexion indépendant de la
réalité est une avancée importante que les systèmes adaptatifs modernes doivent intégrer.
Les DAS modernes deviennent tellement complexes qu’il devient difficile de produire,
valider, simuler, etc. toutes configurations possibles d’un DAS lors du design. Il est égale-
ment inconcevable dans beaucoup de domaines (santé, systèmes critiques, etc.) de faire
migrer un système vers une configuration qui n’a pas été précédemment validée, alors
que les vies humaines dépendent directement de ces systèmes logiciels.

Nous détaillerons comment les techniques MDE permettent de construire des config-
urations qui n’affecte pas la réalité, et comment synchroniser automatiquement ces con-
figurations (une fois validées) avec le système courant, sans devoir écrire à la main des
scripts de reconfiguration de bas niveau et spécifiques à la plateforme d’exécution. Si une
configuration n’est pas valide, elle est simplement rejetée : il n’y a pas besoin d’effectuer
un roll-back sur le système, puisqu’il n’a pas été affecté par la construction de ce modèle
invalide.

La faculté d’un DAS à établir des modèles qui ne sont pas directement liés à la réalité
permet de valider chaque configuration seulement lorsque c’est nécessaire. Cette valida-
tion en ligne fournit un haut-degré de confiance dans le système adaptatif : le proces-
sus d’adaptation ne fera jamais migrer le système vers une configuration qui n’a pas été
validée. Il est important de noter que cette thèse ne vise pas à contribuer sur le processus
de validation lui-même. Au lieu de cela, le fait de pouvoir découpler et en synchroniser
le modèle de réflexion/avec la réalité permet d’appliquer des techniques de validations
existantes et même d’intégrer les futures avancées dans le domaine de la validation.

Cette contribution est présentée dans [106, 105, 104, 103, 107, 111] et détaillée dans le
Chapitre 5 de ce document.

1.3.4 Mise en Oeuvre et Validation

Les différentes contributions de cette thèse ont été effectivement implémentées et inté-
grées dans une architecture de référence. Les différentes tâches liées à la configuration
et à la reconfiguration d’un DAS ont été encapsulées dans des composants. Ces com-
posants échangent principalement des modèles, qui décrivent les différentes features du
système ainsi que son contexte d’exécution. Nous tirons parti de ces modèles pour au-
tomatiser entièrement le déploiement initial et la reconfiguration des systèmes adaptat-

CONTENTS xiii

ifs [105, 106, 104]. À tout moment, il est possible de modifier les modèles définissant le
DAS (design continu). Cette architecture de référence a été utilisée et démontrée avec
succès dans plusieurs contextes :

• Plusieurs (vraies) démonstrations ont été présentées au workshop Models@Run.Time [114,
111, 103] et à la conférence AOSD [107].

• Elle a été intégrée comme moteur de configuration et de reconfiguration de la plate-
forme domotique EnTiMid développé par l’équipe Triskell, principalement par Gré-
gory Nain.

• Elle est actuellement utilisée par les partenaires industriels du projet européen DiVA
pour réaliser leurs études de cas : Un système de gestion de crise dans un aéroport
(Thales), et un système de gestion de relations client (CAS Software AG).

• Puisque l’architecture de référence est elle-même un système à base de composants,
il est possible de bootstrapper c.-à-d., utiliser cette architecture de référence pour
déployer (et même pour adapter dynamiquement) une autre instance de cette archi-
tecture. En d’autres termes, il devient possible d’adapter dynamiquement le pro-
cessus d’adaptation. Cette idée sera discutée comme l’une des perspectives de cette
thèse (Section 9.2).

L’architecture de référence est présentée dans [104] et détaillée dans le Chapitre 6 de
ce document. Le Chapitre 7 (dédié à la validation) applique notre approche sur 2 études
de cas réalistes.

xiv CONTENTS

21

Part I

Introduction & State-of-the-Art

23

Chapter 1

Introduction

Contents

1.1 Context . 23

1.2 Challenges Related to the Engineering of Dynamically Adaptive Sys-
tems . 25

1.2.1 Raising the level of abstraction: Towards Continuous Design . . 26

1.2.2 Variability Management, Product Derivation 27

1.2.3 Making the Adaptation Loop Explicit 28

1.2.4 On the Importance of Handling Several Reasoning Paradigms . . 29

1.2.5 Reactivity Versus Stability . 30

1.3 Contributions . 31

1.3.1 Modeling Adaptive Systems . 31

1.3.2 Aspect-Oriented Modeling to Support Product Derivation 31

1.3.3 Decoupling and Synchronizing Reflection Model from/with the
Reality . 32

1.3.4 A Reference Architecture to Support Model-Driven Dynamic Adap-
tation and Continuous Design . 33

1.4 Organization of this Thesis . 33

1.1 Context

Today’s society increasingly depends on software systems deployed in large companies,
banks, airports, telecommunication operators, and so on. These systems must be available
24/7 for very long period [16]. To sustain the availability, the system should be able to
adapt to different execution contexts, with no (or very localized in time and in space)
interruption, and with no human intervention. To be able to run for a long period, the

24 CHAPTER 1. INTRODUCTION

system should be open to evolution, because it is impossible to predict what the user
requirements will be in 10 years.

A promising approach is to implement such critical systems as Dynamically Adaptive
Systems (DASs), which are able to adapt according to their execution context, and even
evolve according to changing user requirements. More than a decade ago1 Peyman Oreizy
and colleagues [118] defined evolution as “the consistent application of change over time”,
and adaptation as “the cycle of detecting changing circumstances and planning and deploying
responsive modifications”. DASs have very different natures, and can range from:

• small embedded systems [75] to large systems of systems [22, 63], or from

• human-driven [116] to purely self-adaptive systems [81, 82, 8]

Whatever its type, the execution of a DAS can be abstracted as a state machine [13,
165], where:

• States represent the different configurations (or modes) of the adaptive system. A
configuration can be seen as a “normal” program, which provides services, manip-
ulates data, executes algorithms, etc.

• Transitions represent all the different possible migration paths from one configu-
ration to another. Transitions are associated with conditions on the context and/or
user preferences, which specify when the adaptive system should migrate from one
configuration to another.

Basically, this state machine drives the adaptation cycle of the DAS. Evolving the DAS
means evolving this state machine, by adding and/or removing states (configurations)
and/or transitions (migration paths).

The enumeration of all the possible configurations and migration paths of a small
adaptive system is still feasible. It allows performing extensive simulation and validation
at design-time [165] and generating the code related to the adaptation logic of the DAS.
However, when the adaptive system becomes more complex, the number of states and
transitions to specify and to implement rapidly explodes [105, 51]. Indeed, the number
of configurations explodes in a combinatorial way w.r.t. the number of variable features
the system propose, and the number of transitions is quadratic w.r.t. the number of con-
figurations. Fully specifying and implementing the state machine driving the execution
of an adaptive system rapidly becomes a daunting and error-prone task in the context of
complex DAS, with million or even billion possible configurations.

1In 1999.

CHAPTER 1. INTRODUCTION 25

1.2 Challenges Related to the Engineering of Dynamically Adap-

tive Systems

Betty Cheng and colleagues identified several challenges of engineering DAS [35], related
to different activities: modeling dimensions, requirements, engineering (modeling, archi-
tecture & design, middleware support, verification & validation) and assurance. Most
of the identified challenges can be summarized as: finding the right level of abstraction,
which

• is abstract enough to be able to efficiently reason, perform validation, with no need
to consider all the details of the reality

• is detailed enough to bridge the gap (in both directions) between abstraction and
reality i.e., to establish a causal connection between a model and a running system.

Abstraction is one of the keys to deal with complexity. The key to tame dynamically
adaptive systems [105, 104] is to reduce the number of artifacts a designer has to specify
to describe and execute an adaptive system, and to raise the level of abstraction of these
artifacts. According to Jeff Rothenberg [131],

Modeling, in the broadest sense, is the cost-effective use of something in place of
something else for some cognitive purpose. It allows us to use something that is sim-

pler, safer or cheaper than reality instead of reality for some purpose. A model
represents reality for the given purpose; the model is an abstraction of reality in
the sense that it cannot represent all aspects of reality. This allows us to deal with the
world in a simplified manner, avoiding the complexity, danger and irreversibil-

ity of reality.

In complex dynamically adaptive systems, such as the ones addressed in the DiVA
project [147], two important aspects of the reality we want to abstract are the dynamically
adaptive system itself and the execution context in which the system evolves. This raises
the following questions:

1. How to abstract the actual execution context into a high-level model, which offers a
solid basis for reasoning and decision making, and hides irrelevant details?

2. How to efficiently reason on the current context in order to find a well-suited set
of features, with no need to enumerate all the possible contexts or to enumerate
numerous rules?

3. How to avoid the adaptive system to continuously oscillates when the context slightly
oscillates around critical thresholds?

26 CHAPTER 1. INTRODUCTION

4. How to actually build the configuration (architecture) corresponding to a set of fea-
tures, with no need to fully specify all the possible configuration beforehand, while
preserving a high degree of validation?

5. How to plan and executes the changes from the current configuration to a newly
produced configuration, with no need to write by hand low-level platform-specific
reconfiguration scripts?

These questions aim at raising the level of abstraction, and reducing the number of the
artifacts needed to specify and execute dynamically adaptive systems, while preserving
a high degree of validation, automation and independence w.r.t. specific technological
choices (e.g., design-time tools, runtime execution platforms, rule system to drive the dy-
namic adaptation, etc).

1.2.1 Raising the level of abstraction: Towards Continuous Design

In the 6th century BC, Sun Tzu emphasized the role of reflection in the Art of War [154]:

If you know your enemies and know yourself, you can win a hundred battles without
a single loss.

If you only know yourself, but not your opponent, you may win or may lose.
If you know neither yourself nor your enemy, you will always endanger yourself.

This citation is obviously not about software engineering. However, reflection [23, 94]
is a well-admitted concept to support dynamic adaptation. This citation can be transposed
to the modern field of software engineering for adaptive systems. Here, “yourself” would
be the adaptive system itself, and the “opponent” or “enemy” would be the execution context
in which the system evolves. Finally, the “battles” would be the dynamic reconfigurations
of the system. With an accurate knowledge about the context and the system itself, it is
possible to take good decisions and make the system to safely migrate from its current
configuration to a target configuration, to better cope with the changing context.

More recently, Daniel G. Bobrow and colleagues [23] defined reflection as:

The ability of a program to manipulate as data something representing the state of
the program during its own execution. There are two aspects of such manipulation:
introspection and intercession. Introspection is the ability of a program to observe
and therefore reason about its own state. Intercession is the ability of a program
to modify its own execution state or alter its own interpretation or meaning.

It consists in maintaining a causal connection between reality (i.e. the running system2)
and a model of the reality3. Any relevant change in the running system will update the

2“Base-level” in the reflective terminology.
3“Meta-level” in the reflective terminology.

CHAPTER 1. INTRODUCTION 27

model, and any modification of the model will affect the running system. This contradicts
Jeff Rothenberg’s definition of what is a model since this reflective model does not avoid
the danger and irreversibility, because of the strong synchronization between reality and
model.

We acknowledge reflection is a fundamental concept to engineer adaptive systems,
but we propose to go one step further in this thesis in order to include Jeff Rothenberg’s
arguments. The model should always reflect what happens in the running system (intro-
spection), similarly to a mirror, so that it is possible to always reason on an up-to-date
model. However, we should be free to manipulate, transform, validate, etc the model
without directly modifying the running system. This is basically how human intelligence
(and artificial intelligence [135] to some extent) works. It mentally builds several poten-
tial models of the reality and mentally evaluates these models by means of what-if sce-
narios [18]4: what would happen if I would do this action? During this mental reasoning,
the manipulation of the model does not impact the reality, until an acceptable solution
has been found. Then, this solution is actually realized, which has an impact on the real
world. In other words, the mental model is re-synchronized with the reality. In the case
where a relevant aspect of the reality changes during the reasoning process, the model is
updated and the reasoning process should re-build mental models, ideally by updating
already existing models.

Keeping design models at runtime makes it possible to abstract the reality, by hiding
irrelevant details, but also makes it possible to keep some design information that are
usually lost at runtime. This way, models can enrich the reality with meta-information
that would ease the decision making process.

Another aspect of the reality that should be abstracted is the execution context in
which the running system evolves. The gap to bridge between the runtime and the model
space is rather large. Indeed, sensors integrated in the runtime generate (quasi-) continu-
ous flows of raw values, with very little abstraction. At design-time, designers often use
qualitative values [33, 51], such as high, medium or low, to specify the environment of a
DAS and its adaptation logic.

1.2.2 Variability Management, Product Derivation

As we already mentioned, fully specifying and implementing the state machine driving
the execution of an adaptive system rapidly becomes a daunting and error-prone task
because of the combinatorial explosion of the number of configurations, and the quadratic
explosion of the number of transitions5.

While it is still possible to specify this state machine for a small embedded system [14,
165], it is almost impossible for complex adaptive system, with millions or even billions

4See the sidebar by Bran Selic.
5There exist N(N-1) potential transitions among N configurations, if we do not count self transitions,

which should normally produce no dynamic adaptation.

28 CHAPTER 1. INTRODUCTION

of configurations [51, 105]. Even in the case where states and transitions are specified at a
high-level of abstraction, it rapidly becomes difficult for a human, and even for a machine,
to specify such a huge number of artifacts [51, 105].

Recently, Sven Hallsteinsen and colleagues conceptualized DAS as Dynamic Software
Product Line [70, 69] (DSPL) in which variabilities are bound at runtime. Similar to tradi-
tional Software Product Lines [38] (SPLs), the idea is to capitalize on commonalities and
properly manage variabilities among the different products. This way, the huge number
of configurations a DAS should deal with is described in intention, rather than in exten-
sion.

In a SPL, products are mostly derived by human decisions, from requirement to deploy-
ment-time [66], to fit a particular need; however, the derivation process of a DSPL is more
complex and more diverse. Unlike a “classic” SPL, the products of a DSPL are highly
dependent: the system should dynamically and safely switch from its current configura-
tion to another one. The decision of producing a new product (i.e. to adapt to another
configuration) depends on the type of adaptive system: in Self-Adaptive Systems (SASs),
e.g. adaptive systems embedded in planes [118], the derivation process is fully automated
and often follows the autonomic MAPE (Monitor-Analyze-Plan-Execute) loop [81]. In
user-driven adaptive systems (UDASs), e.g. a house-automation system [116], the choice
of the dynamic feature to integrate is mostly done by the end-user.

The Software Product Line (SPL) community [11, 38, 169] already proposes formalisms
and notations, such as feature diagrams, to describe a wide range of products in inten-
tion rather than in extension. The fundamental idea is to describe the commonalities
between products and to offer constructs (alternatives, options, n-among-p choices, etc)
and constraints (mutual exclusions, requires, etc) to properly describe the variabilities
among products. This way, designers do not need to enumerate all the possible products.
However, decomposing a system in terms of commonalities and variabilities requires ef-
ficient, consistent and expressive composition mechanisms to be able to actually compose
a selection of variable features into the common features, to obtain the final product.

The Software Composition (SC) community (which encompass Aspect-Oriented Soft-
ware Development (AOSD), Feature-Oriented Software Development (FOSD), Component-
Based Software Development (CBSD), etc) proposes different but complementary com-
position mechanisms, such as aspect weaving, mixins, feature composition, component
composition, etc to compose software artifacts. Recently, many approaches propose to
implement [80, 5, 6, 48, 97] (code level) or design [88, 77, 64, 102, 100, 120] (model level)
SPLs using composition techniques.

1.2.3 Making the Adaptation Loop Explicit

Separation of concerns [119] is a well-admitted best practice in software engineering. In
adaptive systems, the adaptation logic should be separated from the business logic [12,
10, 14, 40, 52, 122, 123, 133, 134, 165, 168], to improve the comprehension, the maintain-

CHAPTER 1. INTRODUCTION 29

ability, the testability and the modularity of such systems. Beyond the separation of the
adaptation and business logic, it is important to clearly separate the components realizing
the business logic from the components realizing the dynamic adaptation. According to
Betty Cheng and colleagues [35]:

Understanding and reasoning about the control loops of a self-adaptive system is
integral to advancing the engineering of self-adaptive systems’ maturation from an
ad-hoc, trial-and-error endeavor to a disciplined approach.

Considering control loops as first class entities, makes it possible to reason about the
architecture of control loops, their properties (stability, reactivity, performances, etc), and
configure (and even dynamically reconfigure) control loops according to the needs.

1.2.4 On the Importance of Handling Several Reasoning Paradigms

Most approaches for engineering adaptive systems only propose one paradigm to express
the adaptation logic. The most common reasoning paradigm is ECA (Event-Condition-
Action) [40, 41]. It basically consists in specifying for well defined context fragments,
which actions to execute. For example, if a fire is detected, sprinklers must be activated.
As noticed in [51], each individual rule is quite easy to specify, understand and imple-
ment: it can be seen as a set of if-then constructs. However, fully specifying an adaptive
system using ECA rules often requires to define numerous rules [51]. Moreover, one spe-
cific context can trigger several rules (since conditions are defined on context fragments),
which can be conflicting. It thus requires to specify additional constraints (priorities, ex-
clusions, etc) to properly manage the set of ECA rules defining the adaptation logic of an
adaptive system.

Another common way to express the adaptation logic is to define goals that the sys-
tem should (tend to) reach [51, 62, 34]. For each feature of the system, the designer should
precise how it impacts QoS properties. He should also specify which properties to opti-
mize in which contexts. At runtime, the system should find the best selection of features,
which best optimize the properties that are important in the current context. As noticed
in [51] specifying a system using goals is rather intuitive and simple. Indeed, the choice of
the features to integrate is left to the system itself. However, multi-dimensional reasoning
algorithms are often resource and/or time-consuming.

By analogy, the human body has two main “reasoning” capabilities: reflex6 and think-
ing7.

ECA rules can be seen as a kind of reflex, since they do not really involve any reason-
ing. In the case where the system is in a critical context, they can quickly reconfigure the

6From Wikipedia: A reflex is an involuntary and nearly instantaneous movement in response to a stimulus,
mediated via the reflex arc, which do not pass directly into the brain, but synapse in the spinal cord.

7From Wikipedia: Thinking allows beings to model the world and to deal with it according to their objectives,
plans, ends and desires.

30 CHAPTER 1. INTRODUCTION

system into an acceptable configuration. Goal-based decision techniques perfectly match
the definition of “thinking”. Depending on the resource and the time allowed to reason-
ing, the system can evaluate different configurations and find the one which offers the
best trade-off.

ECA-rules and goal-based rules have complementary benefits and drawbacks. On
the one hand, ECA rules can efficiently be processed at runtime. However, it rapidly
becomes difficult to fully specify an adaptive system using ECA rules. On the other hand,
goal-based rules allows specifying the adaptation logic at a higher level of abstraction.
However, processing these rules at runtime is often more costly. Ideally, it should be
possible to combine several reasoning algorithms in order to leverage their respective
advantages, while limiting their respective drawbacks.

1.2.5 Reactivity Versus Stability

One important and obvious criteria of an adaptive system is its ability to adapt according
to external stimulus (execution context, user preferences, etc). However, dynamic adapta-
tion is not immediate and inevitably disturb the running system, since some components
should sometimes be stopped and restarted to be able to safely migrate from one config-
uration to another.

The context in which an adaptive system evolves is very dynamic and can potentially
change more rapidly than the adaptive system. QoS properties such as the bandwidth
can be very fluctuating and depends on many parameters, most of them being out of
control: number of systems that use the network, size and quantity of data exchanged,
quality of the network, etc. In the worst case where the bandwidth, or any other context
variable, fluctuates around a threshold which triggers a reconfiguration, this could make
the adaptive system to continuously oscillates between two configurations. Even worst, if
the fluctuations of the bandwidth are quicker than the adaptation process, this could make
the adaptive system always in a configuration that is not adapted to the current context.
In this case, this would be preferable to switch to a safe mode w.r.t the bandwidth, and
let the other variation points open. Here, the safe mode would be to consider that the
bandwidth is low, even if it is sometimes high, for short periods.

Specifying and implementing an adequate trade-off between reactivity and stability
is not simple. Improving the stability can be achieved by abstracting the context, using
for examples time windows, hysteresis cycles [155], complex event processing [93], fuzzy
logic [87] etc. Such an abstraction can hide context fluctuations, thus offering a more stable
basis for reasoning. However, it could also hide critical contexts where the system must
adapt. To achieve an acceptable reactivity, it is often necessary to operate at a lower level
of abstraction, with little analysis, to be able to quickly react according to the context.

CHAPTER 1. INTRODUCTION 31

1.3 Contributions

In this thesis, we propose to leverage models and Model-Driven Engineering [139] (MDE)
techniques, not only at design-time but also at runtime [18], in order to consider and
abstract relevant aspects of a DAS: its (dynamic) variability, its context, its adaptation
logic and its architecture. By operating at this high level of abstraction, we argue that
it is possible to reason efficiently (on a reduced space), by hiding irrelevant details, and
automate the reconfiguration process using MDE techniques.

In this thesis, we will particularly focus and contribute on the following questions:

1. How to actually build the configuration (architecture) corresponding to a set of fea-
tures, with no need to fully specify all the possible configuration beforehand, while
preserving a high degree of validation?

2. How to plan and executes the changes from the current configuration to a newly
produced configuration, with no need to write low-level platform-specific reconfig-
uration scripts by hand?

1.3.1 Modeling Adaptive Systems

In the context of the DiVA European project, we have modeled four dimensions/aspects
of an adaptive system [50]:

• its variability: describing the various features of the system, and their natures (op-
tions, alternatives, etc)

• its environment/context: describing the relevant aspects of the context we want to
monitor (environment), as well as the current context.

• its adaptation logic: describing when the system should adapt. It consists in defin-
ing which features (from the variability model) to select, depending on the current
context using adapted formalisms (rules, goals, etc).

• its architecture: describing the configuration of the running system in terms of ar-
chitectural concepts.

1.3.2 Aspect-Oriented Modeling to Support Product Derivation

The SPL community [11, 38, 169] already proposes well established formalisms and no-
tations, such as feature diagrams, to manage variability by describing a range of product
without enumerating all the products. The SC community proposes a wide range of dif-
ferent but complementary techniques, which can be leveraged to derive products from a
product line model [80, 120, 106]. We propose to rely on this background to design the
variability of DASs, or DSPLs, and derive configurations from a variability model.

32 CHAPTER 1. INTRODUCTION

Since we intensively rely on models, we naturally propose to use Aspect-Oriented
Modeling (AOM) techniques in order to refine and compose features [120, 64, 160], as
we proposed in [106, 105, 104]. AOM relies on a strong theoretical background, such as
the graph theory [24], which make it possible to perform early validation at design-time,
without enumerating all the possible configurations. It is for example possible to detect
dependencies or interactions [78] between features.

While the literature is quite prolific about AOM approaches [9, 88, 102, 78, 64], few
implementations are actually publicly available. In this thesis, we present how we lever-
age the SmartAdapters approach [88, 101] we developed in the INRIA Triskell group.
However, our approach is not tied up to a particular model weaver, making it possible to
use different weavers with different composition capabilities, or to seamlessly make the
approach evolve to integrate new weavers.

1.3.3 Decoupling and Synchronizing Reflection Model from/with the Reality

We previously made an analogy between adaptive systems and human intelligence, and
its ability to build (when needed) mental models reflecting the reality, not directly coupled
with the reality. This thesis will not deeply explore this analogy. However, we argue
this is an important capability modern dynamically adaptive systems should integrate.
Modern DAS are too complex so that it is difficult to generate, validate, simulate, etc all
the possible configurations of a DAS at design-time. But it is also unconceivable in many
domains (health-care, critical systems, etc) to reconfigure a system into a configuration
that has not been previously validated, when human lives directly depend on software
systems for example.

We will detail how MDE techniques allow building configurations which do not af-
fect the reality, and how to automatically synchronize suitable models with the running
system, with no need to write low-level platform-specific reconfiguration scripts. If a con-
figuration is invalid, it is simply discarded, with no need to perform a roll-back on the
running system.

The ability of a DAS to build models not directly connected with the reality makes it
possible to validate all the configurations where the system will transit, when needed,
with no need to specify and pre-validate all the possible configurations of a DAS a priori.
This online validation provides a high-degree of confidence in the adaptive system: the
adaptation process will never make the system transit through a configuration that has
not been validated. Online validation is a first step towards high assurance liable com-
plex adaptive systems, where all the configurations cannot be validated at design-time.
Note that this thesis does not aim at contributing on the validation process itself. Instead,
by decoupling and synchronizing the reflection model from/with the reality, it makes
it possible to apply existing techniques and integrate future advances in the validation
domain.

CHAPTER 1. INTRODUCTION 33

1.3.4 A Reference Architecture to Support Model-Driven Dynamic Adaptation
and Continuous Design

The ideas presented in this thesis are actually implemented and integrated into a refer-
ence architecture, which supports Dynamic Adaptation and Continuous Design (to some
extent). The main tasks driving the initial configuration and subsequent reconfigurations
of an adaptive system are encapsulated as components. These components mainly ex-
change models, which describe the different dimensions/aspects of the running system
itself as well as of its execution context. We leverage these models to fully automate the
deployment and reconfiguration of adaptive systems [105, 106, 104]. At any time, it is
possible to modify the models specifying the DAS.

This reference architecture has been successfully employed and demonstrated in sev-
eral contexts:

• Several live demonstrations have been performed at the Models@Run.Time work-
shop [114, 111, 103] and at the AOSD conference [107].

• It has been integrated as the configuration and reconfiguration engine of the home-
automation middleware developed by the Triskell team, mainly by Grégory Nain.

• It is currently used by the industrial partners of the DiVA European project8 to im-
plement their case studies: An airport crisis management system (Thales9), and a
next-generation customer relationship management system (CAS Software AG10).

• Since the reference architecture is itself a component-based system, it is easy to boot-
strap i.e., to use an instance of the reference architecture to deploy and dynamically
adapt another instance of the reference architecture. In other words, it makes it pos-
sible to dynamically adapt the adaptation process. This idea will be discussed as
one of the main perspectives of this thesis.

1.4 Organization of this Thesis

This thesis is organized as follows. Chapter 2 presents a State-of-the-Art of approaches for
managing the dynamic variability of adaptive systems, with a particular focus on Model-
Driven and Aspect-Oriented approaches. Part II presents the different contributions of
this thesis and validate these contributions. Chapter 3 presents the different models we
leverage to design an adaptive system. Chapter 4 explains how we use Aspect-Oriented
Modeling techniques to refine and compose the dynamic features of the system. Chapter 5
details how we bridge the gap between the runtime and the model space by abstracting

8http://www.ict-diva.eu
9http://www.thalesgroup.com

10http://www.cas.de/english

http://www.ict-diva.eu
http://www.thalesgroup.com
http://www.cas.de/english

34 CHAPTER 1. INTRODUCTION

the execution context and realizing a causal connection that totally prevents architects
from writing low-level reconfiguration scripts. Chapter 6 shows how the different contri-
butions are integrated into a reference architecture and Chapter 7 validates our contribu-
tions on two case studies. Part III concludes this thesis and presents some perspectives.

35

Chapter 2

State of the Art on Dynamic
Variability Management

Contents

2.1 An Overview of Some Adaptive Execution Platforms 36

2.1.1 Fractal . 36

2.1.2 OSGi . 38

2.1.3 SCA . 39

2.1.4 Discussion . 40

2.2 Model-Based Development of Dynamically Adaptive Systems 40

2.2.1 A brief overview of Model-Driven Engineering 40

2.2.2 Extensive Model-Based Development of DAS 42

2.2.3 Some multi-staged approaches to dynamic adaptation 44

2.2.4 Designing DAS as Dynamic Software Product Lines 46

2.2.5 Synchronizing Runtime and Models using MDE 47

2.2.6 Discussion . 49

2.3 Separation of Concerns to clearly separate the Adaptive Logic From
the Business Logic . 51

2.3.1 Encapsulating Reconfigurations as Separate Concerns 51

2.3.2 AspectJ-like Weaving in Component-Based Systems 54

2.3.3 Using Aspects of Assembly to Dynamically Compose Applications 56

2.3.4 Discussion . 57

2.4 Aspect-Oriented Modeling to Support Model-Driven Software Prod-
uct Lines . 58

2.5 Conclusion . 59

36 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

This chapter presents representative approaches for dynamic variability management.
We first present a brief overview of some adaptive execution platforms, which support
the last step of the dynamic variability management process: the dynamic adaptation
itself. After introducing the main ideas behind Model-Driven Engineering (MDE), we
then present relevant model-based approaches for developing adaptive systems, which
provide a higher level of abstraction than the adaptive platforms. Finally, we present ap-
proaches that propose a clear separation of concerns between the adaptation logic and the
business logic, which allow designers to encapsulate dynamic reconfigurations into self-
contained units. We also present approaches that port AspectJ-like aspects to component-
based platforms to encapsulate cross-cutting concerns not easily captured by components.

2.1 An Overview of Some Adaptive Execution Platforms

This section presents three representative execution platforms, for executing component-
based applications (Fractal), or service-oriented applications (OSGi) or applications that
leverage both paradigms (SCA).

2.1.1 Fractal

Fractal [29, 21, 2, 90] is a modular and extensible component model part of the OW2 con-
sortium, to design, implement, deploy and reconfigure various systems and applications,
from operating systems to middleware platforms and to graphical user interfaces. The
most famous implementations of Fractal are Julia and AOKell (Java), Cecilia (C), FractNet
(.NET) and FracTalk (SmallTalk). Other component models in that category encompass
for example OpenCOM [19, 20].

The Fractal Component Model

The Fractal component model supports the definition of primitive and composite com-
ponents, bindings between the interfaces provided or required by these components, and
hierarchic composition (including sharing). Primitive components contain the actual code
(standard classes), and composite components are only used as a mechanism to deal with
a group of components as a whole, while potentially hiding some of the features of the
subcomponents. Components of the same level can be linked by bindings on compati-
ble interfaces. A composite component can export the provided or required interfaces of
some of its internal component.

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 37

Fractal Controllers

Each Fractal component consists of two parts: a controller which exposes the interfaces of
the component, and a content. In the case of a primitive component the content is a class.
In the case of a composite component the content is an assembly of components. All
interactions between components pass through their controller. The model thus provides
two mechanisms to define the architecture of an application: bindings between interfaces
of components, and encapsulation of a group of components into a composite. Fractal
supports two kinds of dynamic adaptation: parameterization and reconfiguration, which
are realized by 6 controllers that may be present in components:

• Attribute controller and Name controller: it allows getting and setting the internal
attributes of a component and allows getting and setting the name of a component.

• Binding controller: it allows accessing to bindings (owned by client components)
and bind/unbind client interfaces to/from server interfaces.

• Content controller: it allows accessing the content of a composite and add/remove
sub-components into/from the composite.

• Lifecycle controller: it allows accessing the state of a component and starting or
stopping it.

• Super controller: it allows accessing the super components containing the compo-
nent. Note that Fractal allows shared components and a components can thus have
several super components.

Additional controllers can easily be defined in Fractal. In Julia, controllers are defined
using Mixins whereas AOKell propose to use AspectJ or Spoon to implement them.

A Transactional Framework for Fractal Reconfigurations

In [91, 92, 42], Léger et al. propose a transactional framework for reliable dynamic re-
configurations for Fractal. They propose to equip reconfiguration scripts with ACID1

properties, inspired by the work performed a few decades ago in the database commu-
nity [67]. The atomicity is achieved by a roll-back mechanism, which consists in undoing
all the reconfiguration actions in the reverse order. Most reconfiguration actions indeed
have a reverse action, for example bind and unbind. However, some actions cannot be so
easily reversed. Typically, the start action executes some initialization treatment. Let us
imagine a simple reconfiguration that deploys two components and bind them to already
deployed component. In this simple scenario, the first component is correctly deployed
and sends an SMS to a user, to notify him that new features are available. However, if the

1Atomicity, Consistency, Isolation and Durability

38 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

second component is not correctly deployed, a roll-back is performed: the first component
is removed. In this simple example, it is not trivial to correctly undo the start action.

The consistency is realized by means of integrity constraints, defined at three levels
using the FPath language [41]:

• Model Level: A generic set of constraints specific to the Fractal component model
e.g., a component must be unbound before it is removed. It is important to note
that such constraints are defined as pre-condition on the operations defined in the
Fractal intercession API. In other words, these constraints are checked at runtime,
while executing the reconfiguration script (before executing each reconfiguration
action).

• Profile Level: A generic set of constraints, which restrict the Fractal component
model. For example, a profile can forbid the use of shared components.

• Application Level: A set of constraints specific to the a given application. For ex-
ample, all the composite component must contain a logger component.

The isolation is realized using a standard lock mechanism, and the durability is achieved
by the use of a journal, which keeps track of all the transactions, both in memory and on
disk.

2.1.2 OSGi

The OSGi2 (Open Services Gateway initiative) consortium is composed of famous compa-
nies from different domains: automotive industry (BMW, Volvo), mobile industry (Nokia),
e-Health (Siemens), SmartHome (Philips), etc. It provides a service-oriented, component-
based environment for developers and offers standardized ways to manage the software
lifecycle.

Typically, an OSGi bundle (component) is responsible for managing its dependencies
by itself. It can try to set its dependencies when it is starting, by searching required ser-
vices from the OSGi service registry, or by registering to the OSGi event mechanism to
be notified when required services appear or disappear. For example, the following code
fragment sets the helloworld reference when the client component starts.

1 /∗
2 ∗ Client Component, in OSGi
3 ∗/
4 public class Client implements BundleActivator, IClient {

5
6 private BundleContext context;

7 private IHelloWorld helloworld;

8

2http://www.osgi.org

http://www.osgi.org

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 39

9 public void start(BundleContext context) {

10 this.context = context;

11
12 //registering the component as IClient
13 context.registerService(IClient.class.getName(), this, null);

14
15 //setting the helloworld reference
16 ServiceReference[] refs = context.getAllServiceReferences(null,

17 "(objectClass="+IHelloWorld.class.getName()+")");

18 helloworld = (IHelloWorld)context.getService(refs[0]);

19 }

20 }

OSGi provides very flexible and powerful mechanisms for managing the lifecycle of
components. However, since the dependencies should be handled inside the components
themselves, it is very difficult to separate the business logic from the adaptive logic and
implement complex adaptation policies involving several collaborating components.

2.1.3 SCA

The Service Component Architecture is a standard proposed by OSOA3 (Open Service
Oriented Architecture) to develop and deploy distributed service-oriented applications.
This technology agnostic standard leverages concepts from the SOA and the CBSE com-
munities. It is supported by famous companies such as IBM, Oracle or SAP. Well-known
implementations of this standard are Apache Tuscany4, Newton5 (built upon OSGi) and
FraSCAti6 (built upon Fractal).

SCA supports many programming languages for component and service implemen-
tation, and provides various communication modes (asynchronous, MOM, RPC). It also
provides different types of binding to easily interact with legacy components or services:
Web Services, EJB, JMS, JCA, RMI, RPC, CORBA, etc. The added value of SCA is to clearly
separate the implementation of services from the wiring logic of a service based applica-
tion.

The SCA standard focuses on the development and deployment steps. It provides al-
most no specification for the dynamic adaptation of applications at runtime, nor for the
dynamic adaptation of the platform itself. This important lack (in the context of adap-
tive systems) it filled by the FraSCAti implementation [140]. Another important point
addressed by FraSCAti is the architecture of the platform itself, which is not specified in
the standard.

FraSCAti relies on the Fractal component model (hence its name) to introduce intro-
spection and reconfiguration capabilities that the application or the platform itself can
benefit.

3http://www.osoa.org/display/Main/Service+Component+Architecture+Home
4http://tuscany.apache.org
5http://newton.codecauldron.org
6https://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://tuscany.apache.org
http://newton.codecauldron.org
https://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti

40 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

2.1.4 Discussion

Modern execution platforms like Fractal [29, 21, 2] OSGi or SCA provide clear API for
introspection and reconfiguration of software systems, which are the two main concepts
of reflection [94, 23]. However, there is no clear distinction between the reflection model
and the reality. Modifying the model implies modifying the reality: there is no mean to
preview the effect of a reconfiguration before actually executing it, or to execute what-if
scenarios to evaluate different possible configurations, etc. This lack of an explicit and in-
dependent reflection model makes it difficult to perform validation a priori (before actual
reconfiguration). Verification is thus performed at runtime (e.g. pre-condition on reconfig-
uration actions, as proposed by Léger [91, 42]) during the reconfiguration process itself,
which rolls back if it encounters a problem. We claim that an explicit and independent
model, which can be re-synchronized later on, would make it possible to perform most of
these verifications before the actual reconfiguration, thus preventing the system to try to
adapt to an erroneous configuration, and finally rollback to its initial state. However, the
ability to roll-back a reconfiguration (being actually executed) is still needed, because of
unanticipated problems, such as hardware failures. These conclusions are summarized in
Table 2.1.

Support

of Reflec-

tion

Explicit

Model

Level of Abstraction Validation

a priori

Validation

during

Reconf.

Yes No Imperative style using the
reconfiguration API i.e., a hand-
written reconfiguration script
that contains all the atomic
reconfiguration actions, that
should be carefully ordered to
ensure constraints (life-cycle
exceptions, dangling bindings,
etc).

No Possible

Table 2.1: Summary of features of adaptive execution platforms

2.2 Model-Based Development of Dynamically Adaptive Systems

2.2.1 A brief overview of Model-Driven Engineering

The fundamental idea of MDE [139] is to consider models as first-class entities, which
abstract some aspects of the reality for a given purpose (see Rothenberg’s definition in
the Introduction chapter). Following the MOF pyramid-shaped structure illustrated in

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 41

Figure 2.1, each model conforms to a well-defined metamodel that describes the concepts
and relationships of a given domain. Each metamodel conforms to MOF, which is self-
described (bootstrapped). A metamodel is the central part of a Domain-Specific Modeling
Language (DSML). It defines the abstract syntax of the DSML.

M3 Level (bootstrapped)

MOF, E-MOF, ECore

M2 Level (Metamodels)

UML, any domain metamodel

M1 Level (Models)

Class diagrams,

state machines, etc

conforms to

conforms to

conforms to conforms to

Figure 2.1: The MOF hierarchy

The de-facto standard to design metamodels is the Eclipse Modeling Framework (EMF)7.
EMF generates an API associated with the metamodel to programmatically (in Java) build
and modify models. It also generates the code of a default reflexive editor to visualize
and edit models using a tree-editor. It is possible to use tools like EMFText8 to describe
the textual syntax of a DSML, or the Graphical Modeling Framework (GMF)9 to describe
the graphical syntax.

In addition to the syntax of a DSML, two important aspects of a DSML are its static and
its dynamic semantic. Kermeta [112]10 provides a Model-Oriented and Aspect-Oriented

7http://www.eclipse.org/modeling/emf/
8http://www.emftext.org/
9http://www.eclipse.org/modeling/gmf/

10http://www.kermeta.org/

http://www.eclipse.org/modeling/emf/
http://www.emftext.org/
http://www.eclipse.org/modeling/gmf/
http://www.kermeta.org/

42 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

meta-programming environment to specify the static and the dynamic semantic of models
using an OCL-like syntax. The static semantic consists in defining constraints that are not
directly captured in the metamodel that models must ensure. Similarly to OCL, Kermeta
allows defining invariants and pre/post-conditions. The dynamic semantic consists in
defining the behavior of operations defined in a metamodel. This for example allows
simulating models at early stages of the development life-cycle.

Another key point of MDE is the ability to manipulate and transform models using:

• Model to Model transformations (M2M): A M2M transformation is a program that
transforms an input model into an output model. The input and output models can
have the same metamodel, or different metamodels. There exist several model trans-
formation languages, such as Kermeta (imperative style), or QVT or ATL (declara-
tive style).

• Model to Text transformations (M2T): A M2T transformation is a program that trans-
forms an input model into text (usually, source code). It is possible to use any model
transformation language to generate text. Tools dedicated to M2T include for exam-
ple MOFScript or KET (Kermeta Emitter Template).

A more detailed background on MDE is presented in the background chapter of Steel’s
PhD Thesis [144].

2.2.2 Extensive Model-Based Development of DAS

In [165, 167], Zhang and Cheng present a model-based approach for the development of
dynamically adaptive software systems. They mainly focus on the behavior of such sys-
tems by clearly separating the design of adaptive and non-adaptive behavior, using state-
based modeling languages like Petri nets. They introduce the notion of Simple Adaptive
(SA) program/model, illustrated in Figure 2.2, and define it as a triplet (S, M, T) where S
is the source program/model (before adaptation), M is a set of adaptations and T is the
target program/model (after adaptation). Consequently, they define a general adaptive
program/model as the union of all the SAs needed to describe the whole system.

T
(target)

S
(source)

M

Figure 2.2: A Simple Adaptive System, as defined by Zhang and Cheng [165]

The conditions (e.g., a predefined change in the environment, a user action, etc) under
which a system should adapt are specified in the transitions. In [165], the authors give

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 43

an example of a pointcut-like condition that triggers an adaptation, in the context of a
GSM application: “after encoding a packet and before sending the packet, and after the data in
the compressed data buffer have been shifted to the next location”.

Adaptations can be triggered when the system (its state-based model) has reached a
quiescent state i.e., a state s in S such that there exists a state t in T, s = f(t), and any exe-
cution path including the adaptive transition s to t does not violate any global invariant.
More intuitively, adaptations can be triggered if the system is in a stable state and the path
from the initial configuration S to the target configuration T does not cause any trouble.
The runtime adaption mechanism depends on the code generation. If the source code is a
strict refinement of the model, then the executing system will behave like its state-based
model. Zhang and Cheng distinguish three type of adaptations [166] that are formalized
using temporal logic [44]:

• One-point adaptation: after receiving an adaptation request, the source system
adapts to the target mode when it reaches a safe state.

• Guided adaptation: after receiving an adaptation request, the source system re-
strains its source program and triggers the adaptation when it reaches a safe state.

• Overlap adaptation: the target behavior starts when the source behavior is still ac-
tive in a restrained environment aiming at ensuring the safety of the transitions.

Bencomo et al. propose the Genie approach [15, 12, 13, 14, 17] for managing the dy-
namic variability of DAS. It leverages two types of diagrams, illustrated in Figure 2.3:

• A Transition Diagram, specifying the whole state machine defining the adaptive
system, similarly to Zhang’s approach. A State is a possible configuration of the
adaptive system, and a transition is a possible migration path between two config-
urations, which is associated with a first order logic predicate on the context. This
state machine explicitly reifies the Event-Condition-Action (ECA) rule system driv-
ing the evolution of the DAS. This corresponds to the notion of general adaptive
system defined by Zhang and Cheng [165].

• A Variability Diagram, specifying the functional variability of the DAS. This is a sim-
plified feature diagram describing the different variation points of the system. For
each variation point, the designer specifies a list of variants (which realize the varia-
tion point) as well as an operator controlling these variants: alternative, n-among-p
choices, etc. Unlike the transition diagram, the variability diagram describes the
whole system in intention, rather than in extension. Each variant is linked to all the
states of the transition diagram corresponding to configurations that integrate this
variant.

Both the approaches of Zhang et al. [165] and Bencomo et al. [15, 12, 13] require the
explicit enumeration of all possible configurations and relevant transitions between these

44 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

VP

1
VP

2

V1.1 V1.2 V1.3 V2.1 V2.2

V1.1 ; V2.1 V1.1 ; V2.2

V1.2 ; V2.1 V1.2 ; V2.2

V1.3 ; V2.2

C1

C2

C4

C3

Variability Diagram

Transition Diagram

Architecture of a Configuration

Figure 2.3: Variability and Transition Diagram in the Genie approach

configurations. This has the main advantages of making automation possible (such as
code generation) and provides the means to reason about behavioral correctness and con-
sistency of the DAS, before, during, and after adaptation [168, 95]. However, the scala-
bility is the main drawback of such approaches. The number of configurations to specify
grows in a combinatorial way with the number of variable features of the system. In
the worst case, card(configurations) = 2card(features). Moreover, the number of transitions
among these configurations evolves in a quadratic way: for N configurations, it may exists
up to N(N-1) transitions.

2.2.3 Some multi-staged approaches to dynamic adaptation

In [71], Heaven et al.present an approach for goal-driven architectural adaptation. In-
spired by the robotics community [58], they propose a 3-layered approach to dynamic
reconfiguration:

• Goal management: This layer handles high-level goals and sophisticated reasoning
mechanisms to synthesize tasks from these high-level goals. This layer is realized
by the mean of an extension to the Labeled Transition System Analyzer (LTSA) [95].

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 45

• Change management: This layer deals with adaptations within the current task. It
interprets the plans of the goal management layer to actually execute these plans by
selecting a suitable configuration of components.

• Control: This layer is where the components are executed. Components are imple-
mented in Java, following the Backbone component model [96].

The system embedded in an environment is modeled by a domain model, which is
a state machine describing all the sequences of actions that the system has to execute
according to the context11. This state machine is generated by LTSA from a set of actions,
a set of fluent propositions (describing properties of the environment, and the actions that
trigger these properties to true or false), and a set of constraints (expressed in LTL, which
impose constraints on the order of system actions depending on the context properties).
This state machine is pruned according to the goals of the system, which are defined as
a predicate on the states and the transitions of the state machine e.g., all the states where
a given fluent is true and all the transitions that allows reaching these states with the
shortest path (from the initial state). From this pruned state machine, it is possible to
determine several paths that reach the goals i.e., several sequences of actions.

From a set of actions, the component configuration is built in three steps:

1. Dependency Analysis: this step consists in choosing the components that can real-
ize the needed actions and to connect these components on relevant and compatible
ports [149]. This step constructs a set of candidate configurations.

2. Structural Constraints: this steps checks that the candidate configurations all the
constraints provided by the user. This typically consists in checking architectural
style e.g., ComponentA ∈ arch ⇒ ComponentB ∈ arch. These constraints cannot
always be ensured by construction by the dependency analysis. Configurations that
do not ensure the constraints are completed, if possible, so that they finally ensure
the constraints.

3. Utility Check: all the valid configurations are finally evaluated with respect to their
impact on QoS properties (power drain, reliability , etc). Each component can be
annotated with property (e.g. power-drain = 500 mA) and the user has to define a
utility function for each property along with a weight. A utility function is a function
u : property range → [0..1], which defines the utility of a component according to its
associated property. For example, the utility (w.r.t. power) of a component with no
power drain is 1, whereas the utility of a component with a power-drain of 1A is
5%. The utility of a component is thus the weighted sum of all its “atomic” utilities.
Finally, the utility of the configuration is defined as the average utility among all its
components.

11This state machine is thus different from the state machine describing the dynamic adaptation of the
adaptive system

46 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

The most useful configuration is finally leveraged to drive the dynamic reconfigura-
tion process and adapt the running system to make it switch to this new configuration.

In [99, 98] Ben Mokhtar et al.propose an approach to QoS-based service composition.
Each client describes a service orchestration with a state machine automaton, where an
edge corresponds to the invocation of an operation provided by a service provider, and
is associated with a set of QoS property. Each QoS property (availability, latency and
cost) is associated with an evaluation rules, which depend on the different constructs we
can find in an automaton: sequence, choice, simple loop and dual loop. For example, the
availability of a sequence of operations op1, op2 is availability(op1) * availability(op2); the
latency of the same sequence is latency(op1) + latency(op2), etc. These evaluation rules
of very similar to utility functions. The dynamic adaptations correspond to a dynamic
selection of service providers, which is realized in three steps:

1. a list of matching services is build, using a subsumption relationship between re-
quired and provided services

2. a service selection identifies the most suitable services among the list of matching ser-
vices. This step allows filtering servers that provide too much services, not required
by the client, with potential dependencies with other services not requested by the
client

3. the different configurations are computed by composing the provided services (and
associated QoS) with the client orchestration. This gives an estimated QoS for each
configuration, which allows selecting the best one.

2.2.4 Designing DAS as Dynamic Software Product Lines

The work by Bencomo et al.was a first step towards designing DAS as DSPLs [69, 70] since
they are using notations and formalisms from the SPL community. However, they still
require the designer to describe all the possible configurations of the DAS in extension.

In [30, 31, 32], Cetina et al. propose an approach to autonomic computing through
the reuse of variability models at runtime. They propose to use feature diagrams to de-
scribe the functional variability of a smart-home e.g., volumetric detector, visual alarm,
lightning by occupancy, etc. Each feature is refined in terms of components and commu-
nication channel using the superimposition operator. For each feature, the superimposition
operator returns the architectural elements realizing this feature. This operator is a simple
explicit 1-to-n mapping where the source is a feature and the targets are all the architec-
tural elements realizing the feature. This requires all the architectural elements to be de-
fined beforehand. In practice, Cetina et al. need to define all the architectural elements in
one single model, corresponding to the union of all the possible configurations of a DAS.
Indeed, since an architectural element can contribute to different features it is difficult

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 47

to clearly separate the feature refinements (expressed in terms of architectural models)
into distinct models, using the superimposition operator. The limited expressiveness of
the superimposition operator makes it difficult to express features that depend on others
and/or that crosscut others in a modular way. For example, a simple log feature is typi-
cally composed of a central log component and all the other components, which require
logging facilities must be connected to this log component. The manually specified super-
imposition operator associated to the log feature should return the log component as well
as all the bindings. In the case where a new feature, which requires the log, is introduced
after a refactoring of the feature diagram, this also requires the designer to modify the log
feature to connect the newly introduced components to the log component.

The selection of features is based on the ECA paradigm. Each feature is directly tagged
with context conditions, which determine when the feature must be active or not. They
define the notion of architecture increments and decrements using the superimposition
operator to determine the architectural elements that should be added or removed in or-
der to switch from a source configuration to a target configuration. These increments and
decrements are then transformed into a reconfiguration plan, which is executed in order
to actually reconfigure the running system.

2.2.5 Synchronizing Runtime and Models using MDE

Very recently, several approaches from the “models@runtime” community [114] propose
ways to synchronize high-level models with the runtime. Some approaches mainly focus
on monitoring (runtime → model), while some other approaches focus on the Model-
Driven dynamic adaptation of software systems, with a bi-directional connection. These
approaches do not propose to manage the dynamic variability as such, but propose ways
to reason at a higher level of abstractions and/or to automate the dynamic adaptation
process once a configuration has been derived.

In [156], Vogel et al. propose an approach for incremental model synchronization for
efficient runtime monitoring. The running system is observed by a set of sensors, which
allows building a first model of the running system, with little abstraction. Using model
transformations, based on Triple Graph Grammars (TGG) [61], they propose to map this
low-level source model to different target models, which are more abstract and more fo-
cused. Target models for example include the architecture, the performance or the fail-
ures. TGG uses 3 graph grammars to achieve the transformation from the source model
to a given target model:

1. a graph grammar describing the source model

2. a graph grammar describing the target model

3. a graph grammar describing the mapping from the source model to the target model

48 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

The source model is updated, either in a push or pull model, depending on the API
provided by the runtime sensors. Each model transformation listens the modifications of
the source model, using the EMF notification mechanism, to determine if and how the
target model should be updated. This way, both the source model and the various tar-
get models are not re-built from scratch each time a change affects the runtime system.
However, Vogel et al. do not provide ways to synchronize some of the target models with
the source model (in the other direction), nor to synchronize the source model with the
running system.

In [143], Song et al. present an approach for generating bi-directional synchronization
engines between running systems and their model-based views. The developers have to
specify which elements have to be managed (monitored and/or dynamically adapted),
and how to manipulate these elements using the API provided by the execution platform.
Using these two inputs, they automatically generate a synchronization engine able to dy-
namically maintain a model representing the running system. This makes it possible to
use MDE tools usually employed at design-time, to manage applications at runtime. To
automate the code generation of the synchronization engine, they require the execution
platform to provide a clear monitoring and management API, which is the case for most
modern platforms like J2EE, Fractal, Android, etc, and a one-to-one mapping between
runtime concepts and model elements. This means that each model is platform-specific
i.e., there exist one metamodel for each execution platform. While this makes the causal
connection more straightforward, and probably more efficient, it significantly hinders the
reuse of tools for checking, simulating, visualizing, etc across different execution plat-
forms. In other words, specific checkers, simulators, editors, etc should be created for
each specific platform.

Waignier et al. present an approach for bridging the gap between design (architec-
ture) and runtime [126, 158, 157, 159], with a particular emphasis on the use of mod-
els@runtime for debugging and validation purposes. They use different metamodels to
describe the structure and behavior of component-based applications, as well as contracts
on the structure and the behavior that the applications must ensure. Using the struc-
tural metamodel, they can describe the architecture of a component-based application
and leverage this model to automatically deploy and reconfigure an application. This is
achieved by a model comparison, which determines the components, connectors and val-
idation points (for debugging/validation) that are added or removed.

Fractal systems can be managed by the Jade framework [27, 25] where management
operations are effected both on a (Fractal) model of a running system (model@runtime),
and on the running system itself (a Fractal system, native or wrapped). It thus makes
it possible to reason on and manipulate a “fake” version of the running system before
executing a reconfiguration script. Jade thus makes it possible to preview the impact of

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 49

a reconfiguration by actually executing it the “fake” system. However, Jade does not
provide high level languages for the designers to actually implement the reconfiguration.
Designers still need to directly use the Fractal API or a low level language like FScript.

In [60], Georgas et al. propose to use architectural models to manage and visualize
dynamic adaptation. Similarly to other approaches presented earlier in this chapter, they
use ECA rules to define the adaptation logic of a DAS. Using their Architectural Runtime
Configuration Management (ARCM) approach, they propose to trace and visualize the
dynamic adaptation of a software system, at runtime. Similarly to the work of Bencomo
et al., ARCM uses a state machine to represent how the system dynamically adapt. How-
ever, unlike the work of Bencomo et al., this state machine is not specified at design-time.
Instead, this state machine is automatically built and maintained at runtime. ARCM first
associates an initial state to the configuration initially deployed. When a dynamic recon-
figuration occurs, ARCM create a new state corresponding to the new configuration and
an edge linking the target and source states. If a configuration (resp. a reconfiguration)
has already been constructed (resp. triggered) the corresponding state (resp. edge) is
reused, to avoid the duplication of similar states and edges in the state machine. The
states and the edges are associated with meta-data such as counters or time-stamps. The
initial and current states are high-lighted, so that it is easy to see in which configuration
the system was started and what is its current configuration. The edges holds the recon-
figuration script that makes it possible to actually switch from the source configuration to
the target configuration. It consists in collecting all the actions of all the ECA rules that
were triggered, since a context change can potentially trigger several ECA rules.

To overcome the limitation of OSGi, Spring DM (Dynamic Modules)12 and BluePrint
propose to manage the configuration of OSGi applications using a declarative XML-based
mechanism to dynamically add, remove, and update modules in a running system. More-
over, it has the ability to deploy multiple versions of a module simultaneously. Typically,
a Spring bean (component) is a POJO (Plain Old Java Object) with getters and setters for
the reference that can be accessed and set. Unlike OSGi, components are not responsible
for setting their dependencies by themselves. On the contrary, these references are set
from the outside by SpringDM, by calling the appropriate getters/setters.

2.2.6 Discussion

There is a growing interest around the development of dynamically adaptive systems.
Several communities have recently joined efforts to bring new ideas in order to tame the
complexity of DAS. In particular, the Model-Driven Engineering and the Variability Man-
agement communities have put significant efforts in applying their techniques to the de-
velopment of DAS. This has lead to the creation of two workshops, associated with the

12http://www.springsource.org/osgi

http://www.springsource.org/osgi

50 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

reference conferences of these 2 domains: Models@Run.Time workshop [114] (at MOD-
ELS, since 2007) and Dynamic Software Product Line workshop (DSPL) [68] (at SPLC, since
2007). These 2 workshops are complementary to the Software Engineering of Adaptive and
Self-Managing Systems (SEAMS) workshop [45] (at ICSE, since 2005-06).

Some Model-Driven approaches for the development of DAS require the enumera-
tion of all the possible configurations and transitions of a DAS. MDE allows reducing the
complexity by providing a high degree of abstraction, validation and automation e.g. code
generation or automatic synchronization of the models with the reality. However, in the
case of complex adaptive systems, the huge number of configurations and transitions to
specify rapidly causes scalability issues. It soon becomes necessary to describe this dy-
namic variability in intention rather than in extension, in order to reduce the number of
artifacts to specify. This is the idea of DSPL, which uses well known notations and for-
malisms, such as feature models, to describe the variability of DAS. To actually realize the
dynamic variability of DAS, the variability model describing the DAS must be derived, in
order to obtain one configuration. Cetina et al. [30, 31, 32] for example propose to use a
rather simple composition operator to derive the variability model.

Different from the previous approaches, the “multi-staged” approaches of Heaven et
al. [71] and Ben Mokhtar et al. [99, 98] mainly focus on service orchestration rather than
directly focusing on dynamic reconfiguration. From a given orchestration (directly spec-
ified by a client or inferred from high-level goals by a predicate on a state machine) they
propose to determine the corresponding architecture, or selection of services, in several
steps. In [71], the global state machine the possible sequences of actions is generated from
other artifacts. In [99, 98], a “template” state machine describing the service orchestration
needed by each client has to be specified, which is later on substituted with actual pro-
vided services. While the number of artifacts to specify at design-time does not explode,
the techniques used at runtime explore the whole space of configurations to find the best
one, which can rapidly causes scalability issues.

Table 2.2 summarizes these conclusions. We claim that emerging “models@runtime”
approaches offer a good basis for using more advanced composition techniques during
the derivation process. Moreover, with an independent reflection model, it should be
possible to ensure a level of validation close to the extensive model-based approaches,
with no need to specify all the configurations a priori.

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 51

Approach Variability Management Validation Trigger

Extensive
Model-
Based

Explosion of the number of arti-
facts to specify

Extensive
validation
at design-
time

ECA, “hard-
wired” in the
model

Multi-
staged

Good management of the arti-
facts to specify. At runtime,
exploration of the configuration
space to find the most adapted
one.

During the
different
steps of the
process

A change in high-
level goals (a pred-
icate on the state
machine) and util-
ity functions.

Cetina et
al.

Good management, hindered by
a rather limited superimposition
operator

At design-
time, on
the feature
model

ECA

Models ↔
Runtime

Explosion of the artifacts to
specify (if not used in combina-
tion with an approach dedicated
to variability management)

Possible to
apply usual
MDE tech-
niques

None (if not used
in combination
with an approach
dedicated to self-
adaptation).

Table 2.2: Summary of features of model-based approaches

2.3 Separation of Concerns to clearly separate the Adaptive Logic

From the Business Logic

In [136], Sadjadi et al. propose the notion of transparent shaping to migrate legacy system
into DAS. Transparent shaping makes heavy use of reflection, aspect-oriented program-
ming and also involves code generation at run time to achieve this migration.

The remainder of this section presents approaches which leverage reflection and en-
capsulate reconfigurations into separate concerns, and approaches which propose to dy-
namically weave AspectJ-like aspects.

2.3.1 Encapsulating Reconfigurations as Separate Concerns

David et al. propose SAFRAN [40], an open-source extension of the Fractal component
model to support the development of self-adaptive components, i.e. autonomous software
components which adapt themselves to the evolutions of their execution context.

SAFRAN is composed of three sub-systems on top of Fractal:

• FScript [41] is a domain-specific language used to program the component recon-
figurations which will adapt the application. It provides a custom notation which

52 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

makes it possible to navigate in a Fractal architecture and offers certain guarantees
on the changes applied to the target application, for example the atomicity of the
reconfigurations.

• WildCAT [39, 26] is a generic toolkit to build context-aware applications. It is used
by SAFRAN policies to detect the changes in the application’s execution context,
which should trigger adaptations. WildCAT (v2) is based on the Esper [1] event
monitoring framework that allows designers to query, aggregate and sort events
using a SQL-like syntax. Note that SAFRAN is based on a previous version of Wild-
CAT, which does not integrate Esper.

• a Fractal controller that binds FScript and WildCAT through the reactive rules of
adaptation policies. These rules follow the Event-Condition-Action pattern, where
the events are detected by WildCAT and the actions are FScript reconfigurations.
The adaptation controller allows the dynamic attachment of SAFRAN policies to
individual Fractal components and is responsible for their execution.

SAFRAN proposes to clearly separate the adaptation logic from the application logic.
The adaptive behavior is seen as a particular aspect of the system. Such a separation of
concern eases the evolution and maintenance of the adaptive behavior. Using an aspect-
oriented approach, the possible configurations of the system are not explicitly described.
The whole possible set of configurations is defined in intention by ECA rules. However,
as noticed in [51], fully specifying an adaptive system by means of ECA rules can rapidly
becomes difficult, because of the interactions between rules. SAFRAN proposes no mech-
anism to detect or resolve conflicts and interactions between rules.

Similarly to Fractal, SAFRAN does not propose to maintain a higher-level representa-
tion of the running system. Consequently, it is difficult to determine the impact of a re-
configuration before actually performing this reconfiguration. Even if FPath and FScript
propose to abstract the API provided by Fractal, developers still have to write verbose
reconfiguration scripts. These scripts manipulate low level primitives that have to be or-
dered in order to produce consistent scripts.

In [57], Garlan et al. present Rainbow, an architecture-based framework to support
self-adaptation of software systems. It allows designers to define adaptation policies that
are triggered when the associated invariant is not respected. Similarly to SAFRAN or
Plastik, adaptation rules are based on the ECA paradigm. In a later work [37], they admit
that ECA alone is not able to properly deal with multiple goals that a DAS needs to cope
with, because the number of cases to consider grows intractable and because of the diffi-
culty to define and maintain meaningful trade-offs between potentially conflicting rules.
To better reason about the adaptation logic, they make a clear distinction between observ-
able and actionable states of a DAS. The observable state space is the infinite set of states we
can observe using probes integrated in the runtime. Typically, a bandwidth sensor will

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 53

provide the instant value of the bandwidth every seconds, in kbits/s. Even if this value is
bounded by the physical medium of the network, there exist (in theory) an infinite num-
ber of real numbers in this interval. The actionable state space is a finite set of states,
relevant for decision making. Typically, the bandwidth is discretized as {high, medium or
low}. This drastically reduces the set of states to consider.

To reduce the effort needed to implement trade-offs between conflicting goals, they
propose to extend their ECA rule system with goals. They also define goals as enumera-
tion e.g., response time = {low, medium or high}. Each goal is associated with a relative
importance (a real in [0..1]). Finally, each ECA rule additionally describes its impact on
the objectives. Depending on the context, the most useful ECA rule is triggered. This
simply consists in computing a weighted sum for each rule.

The MADAM European project13 and its follow-up MUSIC14 focus on providing tech-
niques and tools to reduce the time and effort to develop self-adaptive mobile applica-
tions [132, 133]. They rely on the notion of component framework to describe their appli-
cations [53]. A component framework is an assembly of component types i.e. a template of
architecture where component types will be substituted by actual implementations. Quite
similarly to Rainbow, the choice of the actual implementations of the component types is
realized via goal policies, expressed as utility functions. Each component implementation
is associated with some predictors, which precisely specify the impact of a particular im-
plementation on (QoS) properties. For example, the response time of a given component
implementation could be defined as follows: response = if context.bandwidth > 80 then 10
else 10 + 100 * (80 - context.bandwidth)/80). Finally, a global utility function (which can
aggregate intermediate utility functions) computes the overall utility of the application.
This way, the system can evaluate different configurations and choose the most useful
one, using brute force (i.e., by exploring the space of possible configurations). In [134],
the MUSIC approach is used to weave AspectJ-like aspects, similar to aspects in FAC (see
next subsection).

In [59, 164] Georgantas et al.present their work carried out in the AMIGO European
project15. They are particularly interested in uncontrolled distributed reconfiguration in
pervasive computing systems, based on the SOA paradigm. They rely on WSAMI [76], a
lightweight Web Services middleware suitable for mobile devices with limited resources,
as the underlying platform. They define the notion of pervasive configuration to deal with
the dynamic reconfigurations of pervasive applications, which is supported by various
entities (mobile or stationary) available in the environment:

• a set PS of provided application services, defined in WSDL and BPEL

13http://www.ist-music.eu/MUSIC/madam-project
14http://www.ist-music.eu/MUSIC
15http://www.hitech-projects.com/euprojects/amigo/

http://www.ist-music.eu/MUSIC/madam-project
http://www.ist-music.eu/MUSIC
http://www.hitech-projects.com/euprojects/amigo/

54 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

• a set PR of orchestration processes, defined in BPEL

• a service discovery service SD, which periodically checks the environment for other
instances of SD, and maintains a registry

• a process execution engine PEE, which constitutes the reconfiguration manager (RM)
that is completely distributed across the pervasive configuration,

• a changes detection service D, which is a simple push-based notification service,

• a checkpointing service CH, which requires the web-service to describe their con-
versations in a set of atomic sub-conversations that can easily be roll-backed.

• a recovery service RE responsible for managing the roll-back mechanism, and pos-
sibly

• a state transfer service ST to ensure the consistency of stateful services before and
after an adaptation.

These entities realize a distributed reasoning in the context of service-oriented perva-
sive computing systems that drive the dynamic adaptation of such application.

2.3.2 AspectJ-like Weaving in Component-Based Systems

A Brief Overview of AspectJ

The idea of AspectJ is to propose a new modularization unit (called aspect) to encapsulate
cross-cutting concerns that cannot properly be captured in the OO paradigm. The goal of
the aspects is to reduce the tangled and scattered code due to cross-cutting concerns, in
order to ease the comprehension and maintenance of applications.

AspectJ is a popular Aspect-Oriented Programming language, which extends Java
with AO concepts:

• Join Point: point of interest where an aspect can be woven. For example: a call to a
method, get/set on an attribute.

• Pointcut: defines a set of join points. For example: all the call to the method m of the
class C. It describes (possibly with quantification) where the aspect will be woven.

• Advice: extra-behavior that extends (or replaces) the former behavior, at all the
places (join points) that match the pointcut. It describes what the aspect brings and
how it modifies the base behavior.

An aspect is thus a pair <Pointcut, Advice> that will impact all the join points inter-
cepted by the the pointcut, at compile-time or load-time.

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 55

Some Approaches Mixing AOP and CBSE

Pessemier et al. propose FAC (Fractal Aspect Component) [121, 122, 123, 124, 125], an
open-source aspect-oriented extension to the Fractal Component Model. It combines
Component-Based Software Development (CBSD) and Aspect-Oriented Programming (AOP)
by integrating CBSD notions into AOP, and vice-versa.

FAC introduces new aspect-oriented structures into the Fractal platform: Aspect Com-
ponent (AC), Aspect Domain (AD) and Aspect Binding (AB). An Aspect Component is a
regular component that encapsulates a cross-cutting concern providing advice pieces of
code as services. Advice interface is a server interface to which an aspect can bind. A
weaving interface provides a control interface for the setting and ordering of aspect bind-
ings. Aspect components are Fractal components supporting the weaving interface. An
Aspect Binding is a binding that links an AC to other components. Finally, an AC and all
the aspectized components bound via ABs constitute an Aspect Domain. Note that FAC
leverages the notion of shared components provided by Fractal to allow component to be
contained into several ADs.

An aspect component, like a regular component can provide or require services via
interfaces. Additionally, an aspect component can declare advice interfaces for declaring
cross-cutting concerns.

An aspect domain is associated to each aspect component and encapsulates all the
components aspectized by a given aspect component. In fact, aspect domains are Fractal
composite components. Note that components can be shared by several composite com-
ponents, and consequently a component can be aspectized by several aspect components.

FAC aspect components are woven at all the join points that match the associated
pointcut i.e., weaving or not weaving an aspect only depends on the topology of the run-
ning system. There are no other conditions, such as environment or QoS, which can trig-
ger the weaving of the aspect. In that sense, FAC proposes mechanisms to encapsulate
and weave cross-cutting adaptations at runtime, but no language to express adaptations
policies.

Pessemier et al. define a pointcut language for matching method calls, as follows: JP

Type ; Component ; Interface ; Method, where:

• JP Type (join point type) indicates the type of the calls we want to match i.e., outgo-
ing (CLIENT keyword), incoming (SERVER keyword) or both (no keyword).

• Component, Interface and Method are regular expressions for referring to compo-
nents via their names, interfaces via their names and methods via their signatures.

For example, the pointcut <CLIENT C* ; * ; add*> refers to all outgoing calls of any
method whose name starts with add, encapsulated in any interface of any component
whose name starts with C. Then, all the components that match this pointcut will auto-
matically be aspectized by the Aspect Component associated to this pointcut, using an
Aspect Binding. An AC and all its aspectized components form an Aspect Domain.

56 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

In FAC, an advice is a piece of code with the following structure: <before statements>
<proceed> <after statements>, where:

• proceed is a call to the former service, before interception

• before/after statements represent the additional code that is introduced before/after
the former code. All these statements are optional.

If proceed does not appear in the code, it means that the former service is totally re-
placed. So, it is possible to modify the behavior of services by adding pre/post-treatment,
or replacing the service by a new one. This definition of pointcut and advice is inspired
by AspectJ [84, 83].

Note that the pointcut language does not allow to describe pointcuts like: “find all the
components A, B, such as A and B are connected on a given interface I, and component
A requires interface J.” In other words, each join point is limited to one given method
of one given interface of one given component. It is not possible to describe additional
constraints (e.g., A should be connected to B).

The advice interfaces of an aspect components implemented in FAC should imple-
ment the Advice interface that extends the Interceptor interface. The Interceptor interface
is defined in the AOP Alliance API (http://aopalliance.sourceforge.net/), an open source
initiative to define a common API for AOP frameworks.

Surajbali et al. propose AOpenCOM [148], which offers very similar mechanisms for
the OpenCOM platform.

2.3.3 Using Aspects of Assembly to Dynamically Compose Applications

In the context of ubiquitous computing, Riveill et al. propose to use the notion of Aspect
of Assembly (AoA) to dynamically compose applications [46, 47, 153, 152], based on the
SLCA (Service Lightweight Component Architecture) [73] component model. The dy-
namic adaptation is mainly driven by the appearance and disappearance of devices in the
environment of the user or by events (such as changes in the user preferences).

Similarly to FAC [122] or to AspectJ [84, 83], an aspect of assembly is composed of:

• A pointcut describing where (which components) the advice will be woven. More
precisely, it is an error-prone string-based filter on ports of the assembly, describing
predicate over ports and components where the components of the advice will be
attached. The pointcut language used in the Aspects of Assembly uses AWK [3], a
programming language dedicated to the processing of text-based data. Using this
pointcut language, it is possible to select ports belonging to different components,
based on their IDs and names (strings). However, similarly to FAC, it does not seem
possible to express more complex patterns on an architecture. Indeed, during the
join point identification step, each component is actually considered as a separate

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 57

Pointcut join point 1 JP2 JP3 JP4

PCC1 BC1 BC3 BC6 BC15
PCC2 BC12 BC7 ∅ ∅
PCC3 BC17 BC9 BC13 ∅

Table 2.3: An example of Join points in AoA. Columns containing an empty sign (JP3 and
JP4) are not join points.

pointcut. The (object) matching process is thus individually applied for each com-
ponent, leading to a table like 2.3, where a line indicate all the base components
(BC*) that match a pointcut component (PCC*). Using this approach, it is impos-
sible that the choice of a join point for a given pointcut component can restrict the
choice of a joint point for another pointcut component. In other words, it makes
it impossible to describe constraints among different components of the pointcut.
However, this simple object matching can be efficiently implemented, with no need
to rely on unification techniques [146], which require back-tracking facilities.

• An advice describing an error-prone string-based list of components16 and actions
for connecting these components to the ones defined in the pointcut. For each iden-
tified join points (JP1 and JP2 in 2.3), the advice is duplicated according to a de-
fault rule that cannot be overridden. It is for example not possible to specify that a
given component should be global (reused for all the join points), while some others
should be duplicated per join points. Finally, all the instances of advice are merged
into the base assembly.

The context-awareness needed in ubiquitous systems is achieved by an horizontal ap-
proach, similarly to SAFRAN or Plastik. Rather than using a global control loop, which
monitors the whole system and takes global decisions for adapting or not the system, they
equip each AoA with monitoring and decision capabilities, thus achieving a decentralized
adaptation. When several AoA are selected, they are all merged into the base assembly in
order to obtain the whole assembly adapted to the current context. This merging allows
the detection and resolving of conflicts before actually adapting the running system.

2.3.4 Discussion

There are two main trends when using Aspect-Oriented techniques to dynamically re-
configure component-based systems. Some approaches like FAC or AOpenCOM propose
to apply AspectJ-like aspects to components. It consists in intercepting the invocation of
operations on the provided/required ports of components, and wrapping the associated

16Components are defined as Strings in the AoA metamodel, and not as a first class concept relating to the
notion of component in the SLCA metamodel

58 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

code with before and/or after treatments. These approaches offer mechanisms to dynam-
ically deploy and undeploy AspectJ-like aspects, but do not propose languages to spec-
ify when (which context) to deploy these aspects, which is important in the case of self-
adaptive systems. However, since FAC and AOpenCOM consider aspects as components,
it should be possible to reuse existing approaches for the reconfiguration of self-adaptive
systems.

Some other approaches like SAFRAN, Plastik, Aspect of Assembly or Rainbow propose
to consider reconfigurations as separate concerns, clearly separated from the business
logic. These approaches propose different formalisms to determine when a given recon-
figuration should occur. Most approaches use ECA rules, which basically consist in defin-
ing thresholds on context variables. Some other approaches use more elaborated goal-
based rules, which let the system reason about the context to determine the best possible
configuration. We acknowledge ECA and goals as two fundamental paradigms for de-
scribing and implementing the adaptation logic of DAS. Rather than opposing these two
paradigms, we claim that the control loop [28, 81] governing a DAS should be able to
seamlessly combine different reasoning paradigms.

Different from the approaches focusing on the reconfiguration of component-based
applications (e.g. the work by Bencomo et al., Garlan et al., MADAM/MUSIC), the ap-
proach by Georgantas et al. addresses a different kind of adaptation: it mainly consists
in adapting the service-based application depending on the apparition/disappearing of
services in the environment.

Whatever the reasoning paradigm, the adaptation is often realized by means of low-
level hand-written reconfiguration scripts. Aspect of Assembly is a first step toward a
higher-level way of describing reconfiguration. However, in practice, it also require to
define a list of components and actions (bind/unbind) between them. We claim that
the latest advances in the domain of models@runtime (see 2.2.5) make it possible to use
advanced model composition languages, usually employed at design-time. This way, it
would prevent architects from writing error-prone reconfiguration scripts.

These conclusions are summarized in Table 2.4.

2.4 Aspect-Oriented Modeling to Support Model-Driven Soft-

ware Product Lines

At the code level, Aspect-Oriented Programming (AOP) [84, 83, 7], and related program-
ming paradigms such as Feature-Oriented Programming (FOP) [127] or Mixins [142], pro-
vide flexible ways to implement Software Product Lines [80, 5, 6, 48, 97]. The idea is to
encapsulate each feature into a well-defined composition unit [151] (aspect, feature, mixin
layer) that can easily extend an existing program. All these paradigms proposes different
but complementary composition mechanisms in order to extend/refine Object-Oriented

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 59

programs.
Recently, Aspect-Oriented Modeling (AOM) has been applied in the context of Model-

Driven Software Product Lines [88, 77, 64, 102, 100, 120]. In the context of the DiVA project,
we pioneered the use of AOM in order to manage the dynamic variability of complex
adaptive systems [105, 106, 104], or Dynamic Software Product Lines. AOM approaches
tend to unify the composition concepts of AOP, FOP, Mixins, etc of the programming
level in order to propose advanced composition mechanisms at design-time, based on
model composition and model transformation. We can distinguish two main types of
AOM approaches:

• Merge-based approaches, such as Kompose [49, 55, 56] or the Composition Direc-
tives [130], which propose systematic ways to merge models. Elements with the
name signature, previously defined by the designer (in the case a default name
matching is not sufficient), are merged into a single one, while elements that do
not match are introduced into the resulting model. In the case where the two in-
put models are not aligned, it is possible to apply directives (mainly renaming) to
modify some elements and force the match. The superimposition operator used by
Cetina et al. [30, 31, 32] can be seen as a simple merge operator. While the merge-
based approaches are well adapted to weave non cross-cutting features, it seems
very difficult (even impossible) to weave cross-cutting features that impact several
places.

• Pointcut-based approaches, such as MATA [160, 77], SmartAdapters [88, 101] or
GeKo [102], which allow to weave the same aspect in several places (join points)
of the same base model. The aspect is totally defined according to the pointcut. At
weaving time, a first pass will determine all the join points. Next, the aspect is con-
textualized for all the identified join points, and actually woven into the base model.
Pointcut-based approaches are supposed to fill the lack of quantification of merge-
based approach, so that they can weave cross-cutting aspects. However, it appears
that these approaches do not offer the right mechanisms to properly weave aspects,
as we further discuss in Chapter 4.

2.5 Conclusion

Figure 2.4 illustrates a map of the approaches we have presented in this state-of-the-art.
These approaches are positioned according to their abilities with respect to validation
and variability management. One of the ultimate goals of the development of adaptive
system would be to achieve a degree of validation close to the extensive model-based
approaches, with variability management capabilities close to the DSPL approaches and
aspect-oriented approaches.

60 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

Validation

Variability

Management

Extensive Model-

Based approaches

Adaptive Execution

Platforms

Models@runtime

approaches
DSPL approach

Separation of Concerns

and Aspect-Oriented

Approaches

Multi-staged

approaches

Figure 2.4: A Map of the presented approaches

In this thesis, we combine Model-Driven Engineering and Aspect-Oriented Modeling
techniques to go one step further towards this goal.

CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT 61

Approach Variability Management Validation Trigger

SAFRAN,
Rainbow,
MADAM &
MUSIC

Dynamic variability
clearly encapsulated into
adaptation rules. No
need to explicitly specify
all the possible config-
urations. The template
architecture in MADAM/-
MUSIC rather restrict the
possibility of adaptation.

No mechanisms to
manage possible in-
teractions between
adaptation rules.

Either ECA or
goals (utility
functions).

Georgantas
et al.

Distributed reasoning on
the set of available ser-
vices.

Recovery mecha-
nism if the reconfig-
uration encouters a
problem.

apparition-
/disappearing
of services in the
environment.

AspectJ-like
aspects for
CBSE

Aspects clearly encapsu-
late (cross-cutting) vari-
ability units.

FAC and AOpen-
COM are direclty
based on Fractal and
OpenCOM, with
no explicit model
allowing validation
before adaptation.

Possible to use
an existing rea-
soning paradigm
to trigger aspect
weaving/un-
weaving.

Aspect of As-
sembly

Reconfiguration clearly
encapsulated into aspects
of assembly. Limited ex-
pressivity of the pointcut
and advice languages.

An explicit architec-
tural model is built
before the actual
adaptation, making
it possible to detect
and resolve errors.

ECA

Table 2.4: Summary of features of SoC approach

62 CHAPTER 2. STATE OF THE ART ON DYNAMIC VARIABILITY MANAGEMENT

63

Part II

Contributions & Validations

65

Chapter 3

Models Manipulated and Exchanged

Contents

3.1 Introduction . 65

3.2 Overview . 66

3.3 Variability Metamodel . 67

3.4 Environment and Context Metamodel 69

3.5 Reasoning Metamodel . 71

3.5.1 ECA-like rules . 71

3.5.2 Goals . 72

3.6 Architecture Metamodel . 74

3.1 Introduction

This part details the contributions of this thesis, briefly introduced in the Introduction
chapter. The key objective of the approach is to reduce the number of artifacts a designer
has to specify to describe and execute an adaptive system, and to raise the level of abstrac-
tion of these artifacts. It is important to note that this thesis is not about self-adaptation
mechanisms themselves. Instead, we propose to rely on the well established component
composition as the underlying technique for dynamic adaptation.

We use a dynamic customer relationship management system (D-CRM) as a running
example in this part. This system is inspired by one of the case studies of the DiVA Euro-
pean project, provided by CAS AG. The objective of the D-CRM is to provided accurate
client-related information depending on the context. For example, when the user is work-
ing in his office, he can be notified by e-mail, via a rich web-based client. He can also
access critical resources since he is connected to a trusted network. When he is driving
his car to visit a client, he should be notified by a mobile or smart phone, and only with

66 CHAPTER 3. MODELS MANIPULATED AND EXCHANGED

information which is either critical or related to the client. If he is using a mobile phone,
he can be notified via SMS or audio/voice, and phone calls are forwarded from his office.
If he is using a smart-phone, he can additionally use a light-weight web client.

3.2 Overview

This section presents the different metamodels we leverage at design-time and at runtime
to design and dynamically reconfigure adaptive systems (Figure 3.1) [50, 51].

Variability Metamodel
Env. Metamodel

Context Metamodel

Architecture

Metamodel

(SCA, UML2, etc)

Reasoning

Metamodels

(ECA, Goal-based, etc)

EditorChecker

EditorChecker
Editors

SimulatorsCheckers

Editor

f(DSPL, context)

featureRefinement

Environment

- Mode: [Off, Busy, Drive, On, Free]

- LowBandwidth: Boolean

- etc…

Context
- Mode: Drive

- LowBandwidth: true

- etc…Notification

D-CRM

Channel

SMSN

POPN EMAILN

Text Voice

anyNotifier

SMS

Sender

Notification

Manager

Advice model

Pointcut model

ECA-like

- Mode=Drive Notification.PHONE

- Notification.PHONE not(Mode=Busy)

- etc…

Goal-based
Impacts:

-Not.POPN hurts Usability

- etc…

Optimizations:

-When Mode=Drive, optimize Usability

- etc…

Camera.Multiple refined into:

PHONE

1 1

Figure 3.1: An overview of the Metamodels and Models

At design-time and runtime, we leverage 4 types of models described by 4 metamod-
els, which represent 4 fundamental aspects of a DAS:

• Variability: describes the different features of the system, and their natures (options,
alternatives, etc)

• Environment/Context: describes the relevant aspects of the context we want to
monitor (environment), as well as the current context.

CHAPTER 3. MODELS MANIPULATED AND EXCHANGED 67

• Reasoning: describes when the system should adapt. It consists in defining which
features (from the variability model) to select, depending on the current context,
using the appropriate formalisms.

• Architecture: describes the configuration of the running system in terms of archi-
tectural concepts.

The following sub-sections present a pragmatic solution for the different metamodels.
These metamodels are designed with EMF. It makes it simple to develop graphical and/or
textual editors (with GMF, EMFText, etc) and operate with other EMF-compliant tools,
such as Kermeta [112] to specify the static semantic (OCL) and the dynamic semantic of
these models, for validation and simulation purposes.

3.3 Variability Metamodel

The variability metamodel is illustrated in Figure 3.2. A Dimension corresponds to a varia-
tion point in the application and is associated with one or more alternative variants, which
can realize this variation point. A variant is a fragment of functionality (feature) that can
be included or not in the system. Each dimension declares a lower and a upper bound,
specifying the number of variants that can be selected at a time.

This way, we can express the operators we usually found in feature diagrams:

• option: A dimension containing exactly one variant, with a [0..1] cardinality.

• OR: A dimension containing several variants, with a [1..n] cardinality. Optional OR
can be obtained with a [0..n] cardinality.

• XOR: A dimension containing several variants, with a [1..1] cardinality. Optional
XOR can be obtained with a [0..1] cardinality.

• n-among-p: A dimension containing p variants, with a [i..n] cardinality and n ≤ p.
In the case we want to choose exactly n features among p, i should be equal to n.

In addition to the cardinalities, which impose constraints within dimensions, we can
also define constraints across dimensions. A variant can require or exclude another vari-
ant, defined in another dimension.

Any combination of variants, which respect the cardinalities and the constraints, is a
valid configuration that can be used at a particular point in time.

The variability model of the D-CRM is illustrated in Figure 3.3. In this system, we are
particularly interested in notifying the user from relevant information, using adequate
mechanisms and channels. For example, the Notification dimension contains 4 alternative
mechanisms: Pop-Up, E-Mail, Text and Phone Call. A valid configuration must exactly con-
tain one ([1..1] cardinality) of these variants. Note that some variants define constraints.

68 CHAPTER 3. MODELS MANIPULATED AND EXCHANGED

Figure 3.2: Variability Metamodel

For example, the Text variant requires the Text CC variant defined in the Communication
Channel dimension. In other word, a configuration containing the textual notification
mechanism must also contain the textual communication channel.

The number of possible configurations (without considering constraints and adapta-
tion rules) can be computed as:

∏
Di, where Di is a number associated to a dimension.

Let Di be a dimension with v variants and a [n..p] cardinality, with n ≤ p ≤ v. Then, Di =∑

n≤i≤p

Cv
i

In particular:

• For an option, Di = C1
0 + C1

1 = 2

• For an optional OR dimension [0..v]: Di =
∑

0≤i≤v

Cv
i = 2n. Indeed, each variant of

the dimension can be seen as an individual option, which doubles the number of
configurations.

• For a OR dimension [1..v]: Di =
∑

1≤i≤v

Cv
i =

∑

0≤i≤v

Cv
i - Cv

0 = 2n-1

CHAPTER 3. MODELS MANIPULATED AND EXCHANGED 69

Figure 3.3: Variability model of the D-CRM

• For an optional XOR dimension [0..1] with v variants: Di = Cv
0 + Cv

1 = 1 + v

• For a XOR dimension [1..1] with v variants: Di = Cv
1 = v

In the D-CRM, this leads to 34,560 possible configurations if we do not consider the
constraints.

3.4 Environment and Context Metamodel

The environment metamodel, illustrated in the top part of Figure 3.4, allows designers
to specify the relevant aspects of the execution context that should be monitored. Each
environment variable is either a boolean or an enumeration of pre-defined values, such as
high, medium or low.

The context metamodel (bottom part) allows specifying values for the variables de-
fined in the environment model. At runtime, the values of the variables are provided by
context sensors and these may trigger a reconfiguration of the system. Note that a vari-
able of the environment model is not necessarily associated with one sensor deployed at

70 CHAPTER 3. MODELS MANIPULATED AND EXCHANGED

Figure 3.4: Environment and Context Metamodel

runtime. It rather gives a high-level view of the environment. The bridge between the
actual sensors and the high-level variables can be filled by a monitoring framework like
WildCAT (see Section 5.3).

The environment model of the D-CRM is illustrated in Figure 3.5. In the D-CRM,
designers are interested in monitoring the power-level, the bandwidth, and need to be
aware of the type of device (laptop, PDA, mobile phone) the user is actually using, as well
as the presence of some external services (Google maps, Skype, etc).

Figure 3.5: Environment Model of the D-CRM

CHAPTER 3. MODELS MANIPULATED AND EXCHANGED 71

3.5 Reasoning Metamodel

As we have seen in the State-of-the-Art chapter, there exist several formalisms such as
Event-Condition-Action (ECA) rules [40], or Goal-Based Optimization rules [51]. An ECA
rule system typically describes, for particular contexts, which features to select: when

context choose features. A Goal-Based model typically describes how features impact QoS
properties, using for example help and hurt relationships [62], and specify when QoS
properties should be optimized (e.g., when a property is too low).

We propose to define one reasoning metamodel for each paradigm. These metamodels
typically reuse or extend the variability and the context/environment metamodels. We
use two reasoning metamodels, as described in [51, 43].

3.5.1 ECA-like rules

ECA-like rules (Figure 3.6) link features with context fragments, expressed as logic predi-
cate on context variables. We distinguish two types of relationships between features and
context variables:

• Require: This type of constraints means that a given variant must be chosen in the
specified context. Note that the variant could also be chosen in other contexts.

• Available: This type of constraints means that a given variant may be chosen (or
not) only in the specified context. Note that the variant cannot be chosen in other
contexts.

Figure 3.6: Metamodel for expressing ECA-like rules

72 CHAPTER 3. MODELS MANIPULATED AND EXCHANGED

More formally:

• a require rule is an implication: context ⇒ variant

• an available rule is an implication: variant ⇒ context

• the strict equivalence context ⇔ variant can be obtained by using a require rule in
combination with an available rule.

Figure 3.7 illustrates the ECA-like rules of the D-CRM. For example, the Phone Call
variant defined in the Notification Mechanism dimension is available in all the context ex-
cept when the user is busy (not(MODE = BUSY)). Moreover, this variant is required when
the user is driving. In other words, this variant must be present when the user is driving
and must not be present when the user is busy.

Figure 3.7: ECA-like rules of the D-CRM

3.5.2 Goals

Goals (Figure 3.8) allows reasoning about the context and choose the most adapted vari-
ants, which optimize the goals.

CHAPTER 3. MODELS MANIPULATED AND EXCHANGED 73

Figure 3.8: Metamodel for expressing Goal-based rules

To express goals, we define three pieces of information:

• Properties: The QoS properties relevant for the system, as well as a direction spec-
ifying if a given property must be maximized or minimized. Each dimension can
specify if it has an impact or not on each property.

• Impacts: In the case where a dimension has an impact on a property, each variant
can optionally specify how it impacts this property.

• Optimization Rules: These rules specify which properties should be optimized in
which context. In the case several properties should be optimized, it is possible to
specify a preference order. Unlike a classic ECA rule, it does not directly link the
features to context fragment. Instead, it links high level goals (the QoS properties to
optimize) to context fragment, letting the system to select the feature.

Figure 3.9 shows the impact of the variants on the QoS properties. We can for example
see that the designer of the D-CRM estimates that the Phone Call variant has a medium
cost, a low impact on the usability and is highly disturbing.

Figure 3.10 illustrates how the properties should be optimized depending on the con-
text. For example, when the user is mobile, we want to optimize the power consumption
(since the devices are probably running on batteries), and we also want to optimize (with
a lower importance) the usability of the system.

74 CHAPTER 3. MODELS MANIPULATED AND EXCHANGED

Figure 3.9: Impacts of variants on QoS properties

3.6 Architecture Metamodel

This metamodel (Figure 3.11) allows the designer to describe component-based architec-
tures. At design-time, we can use any metamodel, such as the UML 2 component dia-
grams or SCA1 (Software Component Architecture) to describe architectures. In this thesis
we focus the scope of dynamic adaptations on reconfigurations i.e., dynamic manipula-
tion of components and bindings. These concepts are present in the above mentioned
metamodels.

At runtime, we use our own core metamodel for describing architectures, called ART
for (models) At RunTime. This core metamodel only contains the concepts and relation-
ships we need to describe the architecture of a running system. This way, we can re-
duce the memory overhead caused by maintaining a model at runtime. We defined this
metamodel by analyzing different existing metamodels (UML, SCA, etc) and platforms
(Fractal, OpenCOM, OSGi, etc) and by focusing on our need of dynamic adaptation (re-
configuration). Since the concepts of UML or SCA and those defined in ART are very

1http://www.eclipse.org/stp/sca/

http://www.eclipse.org/stp/sca/

CHAPTER 3. MODELS MANIPULATED AND EXCHANGED 75

Figure 3.10: Context-dependent Optimization Rules

often in a one-to-one mapping, it is rather straightforward to implement a bi-directional
model transformation.

Our generic metamodel is illustrated in Figure 3.11. A component type contains some
ports. Each port has a UML-like cardinality (upper and lower bounds) indicating if the
port is optional (lowerBound = 0) or mandatory (lowerBound > 0). It also indicates if the
port only allows single bindings (upperBound = 1) or multiple bindings (upperBound >
1). A port also declares a role (client or server) and is associated to a service. A service
encapsulates some operations, defined by a name, a return type and some parameters,
similarly to a Java interface. A component has a type and a state (ON/OFF), specifying
whether the component is started or stopped. It can be bound to other instances by a
transmission binding, linking a provided service (server port) to a required service (client
port). A composite instance can additionally declare sub-instances and delegation bind-
ings. A delegation binding specifies that a service from a sub-component is exported by
the composite instance.

Appendix A.1 shows how we can map the SCA metamodel to the ART metamodel in
order to transform SCA models to ART models.

The architecture metamodel allows architects to specify their system at a rather low
level of abstraction, making it possible to fully automate the reconfiguration process (see
Section 5). However, in the context of large adaptive systems, it is not realistic to fully
specify the architecture of all the possible configurations. Rather, we propose to rely on
Aspect-Oriented Modeling techniques to automatically derive these configuration, when
needed, by weaving fragments of architecture (aspects) that refine the variant of the vari-
ability model.

76 CHAPTER 3. MODELS MANIPULATED AND EXCHANGED

Figure 3.11: Architecture Metamodel (main concepts)

77

Chapter 4

Aspect-Oriented Modeling to
Support (Dynamic) Software Product
Lines

Contents

4.1 Requirements for an AOM approach usable at Runtime 78

4.2 Overview . 79

4.3 Rapid Background on SmartAdapters . 80

4.4 A (not so) Simple Cache Aspect . 80

4.4.1 A Naive Cache Aspect . 80

4.4.2 On the need of Advice Sharing . 81

4.4.3 On the need of Scoped Advice Sharing 81

4.5 SmartAdapters: Concepts in details . 82

4.5.1 Leveraging model typing to design advice and pointcut model . 82

4.5.2 Defining Sharing Strategies for Advice Models 85

4.5.3 Extension of the SmartAdapters metamodel 88

4.6 Tool Support . 89

4.6.1 SmartAdapters V1: A Proof-of-Concept to Assess AOM to Com-
pose Dynamic Features . 89

4.6.2 SmartAdapters V2: A Generative Approach to More Efficient As-
pect Model Weaving . 90

4.7 Discussion . 92

This Chapter presents how we leverage Aspect-Oriented Modeling (AOM) to derive
configurations (architectural models) from the variability model, as illustrated in Fig-
ure 4.1. It first presents the requirements that an AOM approach should provide so that

78
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

it could actually be used at runtime. We then present in details our SmartAdapters AOM
approach we integrate at runtime (and also at design-time) to automatically derive con-
figurations.

4.1 Requirements for an AOM approach usable at Runtime

This section presents the requirements for an AOM approach to be integrated at runtime
(and also at design-time) to derive configurations.

• Adoption: The AOM language should be close to the domain-specific modeling
language. The pointcut, advice and composition languages provided by the AOM
approach should directly manipulate domain concepts. In our case, the DSML is the
architectural metamodel presented in Chapter 3.

• Expressiveness: It should allow designers to define aspects that produce a result
they expect. In particular, it should be able to compose cross-cutting and non cross-
cutting features.

• Performances: It should be able to weave aspects within reasonable time and mem-
ory constraints.

• Agility: It should be able to adapt to the changes of the domain metamodel.

• Tool-support: It should be implemented, available and compatible with EMF, which
is a very common modeling framework to manipulate models within the Eclipse
world.

AOM weavers have proved their utility in the context of “classic” SPL to refine fea-
tures [88, 77, 64, 102, 100, 120]. We claim that AOM is also a good candidate in the con-
text of DSPL to derive configurations. However, AOM weavers are usually employed
at design-time, where performances (time, memory) are not critical. This requirement
is much more critical at runtime. But a more fundamental problem is the lack of avail-
able implementations. While the literature is quite prolific about AOM approaches [9, 88,
102, 78, 64], few implementations are actually publicly available and maintained. Notice-
able exceptions are the weavers developed in Kermeta [112] by the Triskell team1. The
expressiveness of state-of-the-art AOM weavers can also be discussed. Merge-based ap-
proaches [49, 130, 55] are well suited to weave non cross-cutting features but cannot really
be used to weave cross-cutting features because of the lack of quantification (wildcards)
mechanisms. Pointcut-based approaches are supposed to fill this lack. However, it ap-
pears that these approaches do not offer the right mechanisms to properly weave aspects,

1http://www.irisa.fr/triskell/home_html-en

http://www.irisa.fr/triskell/home_html-en

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 79

as discussed in this Chapter. The agility requirement is important in the context of a re-
search project when the metamodel often evolves. This is also important in production to
support the future evolution of the metamodel to keep it aligned with the evolution of the
execution platforms.

4.2 Overview

This section gives and overview on how we leverage Aspect-Oriented Modeling (AOM)
to derive configurations (architectural models) from the variability model, as illustrated
in Figure 4.1. AOM allows designers to refine features in a declarative way, and most
of the complexity of the actual weaving/composition is managed by the weavers. This
prevents designers from writing low-level and error-prone reconfiguration scripts. More-
over, AOM relies on a strong theoretical background, such as the graph theory [24, 150],
and offer a good basis for early validation.

D-CRM

Notification
Comm.

Channel
…

POPN

MAILN

SMSN

PHON

Text Voice

[1..1]
[0..n]

Aspect Model Composer

Woven Configuration

Variability Model

Figure 4.1: Refining features into Aspect Models and Derivation Process

It is important to note that we do not impose any particular AOM weaver. Indeed,
the next step of the approach (see Section 5) makes no assumption on the way models
are build. In other words, it would be possible to use any AOM weaver (or any model
transformation language such as Kermeta [112] or ATL [79], or any graphical editors) to

80
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

produce these models. In the remainder of this section, we present how we leverage the
SmartAdapters approach we developed in the INRIA Triskell group.

4.3 Rapid Background on SmartAdapters

SmartAdapters has been applied to Java programs [89] and UML class diagrams [88]. In
these versions, the join points (the places where the aspect is woven) were manually spec-
ified. More recently, we have generalized this approach to any domain specific modeling
language [101, 100] and extended the approach with a pattern matching engine to auto-
matically detect join points [128]. This allows us to leverage the notion of aspect for any
DSML [129], and especially for runtime models representing at a high level of abstrac-
tion the architecture of a system at runtime. SmartAdapters automatically generates an
extensible Aspect-Oriented Modeling framework specific to our meta-model.

In SmartAdapters, an aspect is composed of three parts:

1. an advice model, representing what we want to weave,

2. a pointcut model, representing where we want to weave the aspect and

3. weaving directives specifying how to weave the advice model at the join points
matching the pointcut model.

These concepts are integrated in a metamodel, which allows designers to instantiate
aspect models. The metamodel of SmartAdapters is illustrated in Figure 4.2. Both the
advice and the pointcut models allow the designer to define the aspect in a declarative
way (what), whereas the weaving directives allow the designer to specify the composition
using a simple statically-typed imperative (how) language.

4.4 A (not so) Simple Cache Aspect

We propose to illustrate SmartAdapters on several versions of the cache aspect of the D-
CRM, to emphasize the lacks of current approaches.

4.4.1 A Naive Cache Aspect

Figure 4.3 illustrates the first version of the cache aspect, which basically consists in link-
ing any component (in dashed line in the figure) that requires the cache service to a cache
component actually providing this service.

If we apply this aspect on a simple flat architecture, the cache component is duplicated
for each join point i.e., each component that requires the cache service is now connected
to its own cache component, as illustrated in Figure 4.4.

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 81

Aspect

PCModel

AdModel

PCElement

AdElement

content *

content *

pointcut 1

advice 1

adapt *

Adaptation

+ compile()

+ compile()

+ compile()

+ compile()

+ compile()

+ compile()

Figure 4.2: SmartAdapters Core Metamodel

CacheAny

Figure 4.3: A Simple Cache Aspect

4.4.2 On the need of Advice Sharing

The previous result (Figure 4.4) is probably not the one we would expect. Rather, we
would like to obtain the result illustrated in Figure 4.5. In this case, all the components
that require the cache service are connected to the same cache component. In other word,
the binding defined in the aspect is duplicated per join point, whereas the cache compo-
nent is unique. We introduced the original notion of uniqueness in AOM in 2007, for the
SmartAdapters approach [101]. In 2009, Grønmo et al. [65] introduce a collection opera-
tor for graph transformation, which is different from the notion of uniqueness, but which
could be useful to realize uniqueness.

4.4.3 On the need of Scoped Advice Sharing

Let us now consider an architecture composed of a hierarchy of components, such as the
one illustrated in Figure 4.6.

In this case, we would like each composite component to contain a cache component,
which would be used by all the internal components of the composite. If we do not de-
clare the cache component as unique, we end up we a similar problem as Figure 4.4: this
component is duplicated for each join point. If we declare the cache component as unique,

82
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

CacheCache

A B C

Figure 4.4: Weaving the Simple Cache Aspect

Cache

A B C

Figure 4.5: Weaving the Simple Cache Aspect: Expected result.

we end up with another problem: since a single model element cannot be contained by
multiple containers (the sub-component relationship is a composite reference in the ART
metamodel), it is not possible to add the same cache component into different composite
components. More precisely, the cache component will be added into the first composite
component and bound to all the internal components. Next, it will be moved inside the
second composite component, etc. At the end, this would lead to an erroneous configu-
ration, with bindings that “cut across” the boundaries of their composite components, as
illustrated in Figure 4.7.

There is a real need for a more customizable notion of uniqueness. Note that these
problems are common to all the pointcut-based AOM weavers, such as MATA [162, 77].
We thus propose the notion of scoped uniqueness to cope with this issue that we describe
further in this section. Using this novel notion, it would be possible to obtain the result
illustrated in Figure 4.8.

4.5 SmartAdapters: Concepts in details

4.5.1 Leveraging model typing to design advice and pointcut model

In Aspect-Oriented Programming (AOP) languages such as AspectJ [83, 84], an advice is
defined as a piece of code woven at some well identified places (joint points) matching
the pointcut of the aspect. The pointcut is a predicate (possibly with wildcards) over a
program that may not be fully specified in order to allow quantification e.g., intercept all
the calls to any method of a given class.

Unlike AspectJ, which is dedicated to the Java programming language, SmartAdapters
is a generic AOM approach that can be used to weave aspects into different Domain-

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 83

A B C

D E

Figure 4.6: A composite Architecture

A B C

D E

Cache

Figure 4.7: A composite Architecture, with the logging aspect badly woven.

Specific Modeling Languages (DSML). For each DSML, described by a domain meta-
model (MM), SmartAdapters automatically generates two super model types, using a
model transformation written in Kermeta, which allow users to design advice and point-
cut models in a more flexible way. These metamodels define a hierarchy of model types [145,
144], as illustrated in Figure 4.9:

• MM is the domain metamodel. It describes the concepts of the domain, their rela-
tionships (references, inheritance, etc.) and several constraints (cardinalities, OCL
constraints, etc). Designers use MM to design base models. By analogy with As-
pectJ, MM would represent the Java programming language. In our case, MM is the
architecture metamodel presented in Section 3.

• MM’ is a super type of MM. It contains all the concepts and all the relationships

84
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

A B C

D E

Cache

Cache

Figure 4.8: A composite Architecture, with the logging aspect correctly woven.

defined in MM, with no constraints. The invariants defined in MM are no more
considered in MM’. Especially, all the lower bounds of the cardinalities are set to
zero. Designers use MM’ to design advice models, which are model fragments that
may not ensure all the constraints defined in the former metamodel.

• MM’polymorphic is a super type of MM’. It is similar to MM’ but has no abstract meta-
class. Designers use MM’polymorphic to design pointcut models, which are polymor-
phic model fragments. This way, a pointcut can for example instantiate a Compo-
nentInstance (which is abstract in MM), to specify that we want to match either a
PrimitiveInstance or a CompositeInstance.

In the case of an evolution of MM, we can distinguish two cases:

• Pure Extension: MM is extended with new meta-classes and new relationships. In
MM’, this extension is optional (since all the lower bounds are set to zero). This
makes it possible to load existing aspect models (conforming to the initial meta-
model MM) with the extended metamodel MM.

• Other Evolutions may break the conformance relationship between existing aspect
models and the evolved metamodel MM’. However, it is still possible to (manually)
implement a model transformation that ensures the conversion between the former
and the new metamodels.

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 85

MM

MM’

MM’

polymorphic

Domain Metamodel

Domain Metamodel,

with no constraint

Domain Metamodel,

with no constraint and

no abstract meta-class

Figure 4.9: Hierarchy of model types handled by SmartAdapters

4.5.2 Defining Sharing Strategies for Advice Models

In [101] we introduced the original notion of advice sharing in SmartAdapters. This al-
lows the designer to specify which elements from the advice are kept for all the join points
and which element are instantiated for each join point match. The notion of advice shar-
ing allows reusing some elements of an advice for each composition of an aspect in the
same base model. However, specifying that a model element is shared or not is not al-
ways fine grained enough, especially in hierarchical models: state charts with composite
states, component diagrams with composite components, class diagrams with packages
and sub-packages, etc.

We propose the notion of scoped sharing to tackle this issue [108]. Advice models
conform to the relaxed metamodel MM’. Additionally, we propose to associate a strategy
to advice model elements, as illustrated in Figure 4.10. In the case there exist several join
points in the base model that match the pointcut, the designer can adopt several strategies,
for each individual model element of the advice:

• Global. A single instance (clone) of the element is introduced into the base model.
In the case where there are several join points, global elements will be reused. See
for example the log component in Figure 4.5.

• Per Join Point. A new instance of the element is introduced for each join point. See
for example the bindings in Figure 4.4.

• Unique with scope. A single instance of the element is introduced for each zone
of the base model identified by the scope. See for example the log component in
Figure 4.8.

86
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

Aspect

PCModel

AdModel

PCElement

AdElement

content *

content *

pointcut 1

advice 1

strategies *

+ compile()

WithScope

+ compile()

+ compile()

+ compile()

+ compile()

+ compile()

elements *

* scope

SharingStrategy

+ compile()

Global

+ compile()

OnDemand

+ compile()

Figure 4.10: Extension of the SmartAdapters to Handle Advice Sharing Strategies

We define the scope of an advice as a set of (references to) pointcut model elements,
as illustrated in Figure 4.11. In this new version of the cache aspect, we have also con-
sidered in the pointcut the composite component containing the component that requires
the cache service. This composite allows us to define the scope of the cache component.
Two join point points have the same scope if the pointcut model elements defined in the
scope are bound to the same base model elements. In the base model illustrated in Fig-
ure 4.6, there is 4 join points: one per component that requires the cache service, as shown
in Table 4.1. These 4 join points can be split into 2 scopes (defined by the 2 composite
components).

LoggerAny

scope

Figure 4.11: Logging Aspect revisited with a scoping strategy

The only scope we set by default in the context of architectural models is that bindings
(defined in the advice) are local to the components (defined in the pointcut) they are con-

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 87

Pointcut JP1 JP2 JP3 JP4
Any A B D E
Composite Composite1 Composite1 Composite2 Composite2

Table 4.1: 4 Join points defining two scopes.

nected to. This default scope is particularly useful in the case of overlapping join points,
as illustrated by Figure 4.12. Let us consider an aspect that binds the unique cpt com-
ponent to any pair of already connected component (any et another), as shows in the top
part of the Figure. In the simple base model illustrated in the left part of the Figure, the
pointcut can match 2 times: A → B and A → C. In the case the bindings were per join point,
this would lead to the first woven model illustrated in right part of the Figure, where A
is connected twice to cpt. Obviously, the expected result is the one illustrated in the bot-
tom right part of the Figure, where cpt is connected once to all the base components. This
result can be achieved thanks to the default scope of the binding.

any another cpt

A CB

1

JP2: Any A ; Another B

JP1: Any A ; Another C

A CB cpt

A CB cpt

Aspect

Base Model

Weaving 1 : Bindings are per join point

Weaving 2 : Bindings are unique in the scope

of the pointcut components

2 bindings

Figure 4.12: Overlapping join points: How advice sharing and set matching can help

88
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

4.5.3 Extension of the SmartAdapters metamodel

The SmartAdapters metamodel (Figure 4.13) is automatically extended via well-identified
extension points (PCElement, AdElement and Adaptation) to provide an operational AOM
framework for a given domain metamodel. We have specialized SmartAdapters for the
architecture metamodel, previously described in this thesis (Section 3).

1. PCElement: represents an abstraction of any model element conforming to MM’polymorphic.
PCElement is automatically introduced as the root meta-class of all the element of
MM’polymorphic, when we specialize the framework for a given domain. The code
of the compile method (see next sub-section) is also fully generated for all the meta-
classes of MM’polymorphic.

2. AdElement: represents an abstraction of any model element conforming to MM’.
AdElement is automatically introduced as the root meta-class of all the element of
MM’, when we specialize the framework for a given domain. The code of the compile
method (see Section 4.6.2) is also fully generated for all the meta-classes of MM’.

3. Adaptation: represents an abstraction of any domain specific weaving operation.
All the domain-specific adaptations must extend this meta-class, declare some at-
tributes (the parameters of the adaptations), and implement the compile method (see
Section 4.6.2). We automatically generate some basic adaptations, but designers
can create some additional adaptations that extends Adaptation, or modify exist-
ing ones.

For each meta-class X of a metamodel MM, we generate four adaptations:

1. SetX: this adaptation allows user to set or update (addition) any property of X. For
example, SetComponentInstance allows designers to add bindings into a (client)
component instance.

2. UnsetX: this adaptation allows user to unset or update (removal) any property of X.
Similarly, UnsetComponentInstance allows designers to remove bindings from
a (client) component.

3. CreateX: this adaptation allows user to create a new instance of X. It is generated
only if X is concrete. For example, CreateTransmissionBinding allows design-
ers to create a new binding, that can be manipulated in the remainder of the compo-
sition protocol.

4. CloneX: this adaptation allows user to clone an existing instance of X. It is generated
only if X is concrete. Similarly, CloneTransmissionBinding allows designers to
clone an existing binding, and manipulate it.

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 89

Aspect

PCModel

AdModel

PCElement

AdElement

content *

content *

pointcut 1

advice 1
adapt *

Adaptation

+ compile()

+ compile()

+ compile()

+ compile()

+ compile()

+ compile()

MM’

MM’polymorphic

SetX

+ compile()

UnsetX

+ compile()

CreateX

+ compile()

CloneX

+ compile()

Figure 4.13: The metamodel of SmartAdapters

All the Kermeta code corresponding to the compile methods is fully generated. This hi-
erarchy of adaptations is totally customizable: designers can add, remove, modify or cre-
ate adaptations. The Adapter and Adaptationmeta-class follow the Command design-
pattern. This way, the weaver can handle any sub-class of the Adaptation meta-class in
a seamless way.

4.6 Tool Support

4.6.1 SmartAdapters V1: A Proof-of-Concept to Assess AOM to Compose Dy-
namic Features

The first version of SmartAdapters was developed using the Kermeta interpreter. The join
point identification engine [128] was totally delegated to a Prolog engine [146], via a Java
layer. While the bridge between the Kermeta interpreter and Java is seamless, the bridge
between Java and Prolog is more difficult to achieve. To bridge this gap we needed to
generate text files in Kermeta, that can be loaded by Prolog to:

• Initialize its knowledge base, using a textual representation of all the facts describing
a base model and its metamodel (ART in our case).

90
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

• Execute a query over over the knowledge base, using a textual representation of all
the variables and constraints defining the query (i.e. the pointcut).

The results of a query were directly pushed into the Kermeta interpreter stack so that
an interpreted Kermeta program could directly use these results. However, this architec-
ture is not realistic in the context of models@runtime. Indeed, this architecture has a signif-
icant memory overhead, with performance penalties due to the generation/load of text
files, as illustrated by Figure 4.14. Note that MATA [78] also bi-directionally maps aspect
models to another formalisms (graphs, using AGG [150]), with performance/memory
penalties.

Running System

(Java objects)

Java/EMF

objects

Kermeta

objects

Prolog objects

Kermeta interpreter

Prolog memory

Java memory

Figure 4.14: Conceptual Architecture of SmartAdapters V1

4.6.2 SmartAdapters V2: A Generative Approach to More Efficient Aspect Model
Weaving

Based on these requirements, we develop a new version of SmartAdapters that can be em-
ployed both at runtime and at design-time. We rely on Drools Expert2 (a.k.a JBoss Rules)
to realize the join point identification step. Drools implements the Rete algorithm [54]
with specific optimizations that leverage Object-Oriented concepts. In particular, Drools

2http://www.jboss.org/drools/drools-expert.html

http://www.jboss.org/drools/drools-expert.html

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 91

can seamlessly apply rules on any Java program whose classes respect standard POJO
conventions (private attributes with getters and setters respecting a naming conventions),
which is the case of EMF. To meet the agility requirement, we rely on generative tech-
niques. The overall approach can be decomposed into two steps:

• At design-time (Figure 4.15): A Meta-code generator, written in Kermeta and KET
(Kermeta Emitter Template) using MOF concepts (M3 level), takes a metamodel as
input and generate a metamodel-specific code generator. In our case, the metamodel
is the architecture metamodel presented in Section 3 (Figure 3.11). This generated
code generator uses the concepts of the domain metamodel (M2 level). It takes an
aspect model as input and compiles it into Drools and Java/EMF code. Some im-
plementation details are presented in Appendix A.2.

• At runtime (Figure 4.16): The runtime weaver simply takes the Drools files gener-
ated at design-time and directly process them in memory, on a base model. More
precisely, the Drools scripts manipulate the base model to obtain the woven.

Meta-code

generator

code

generator

Metamodel
(conforms to MOF)

Aspect Model
(conforms to

Metamodel)

MOF
(M3 Level)

Metamodel
(M2 Level)

require require

Java EMF +

Drools*

codeproduces produces

*Drools (JBoss Rules)

(meta-)

metamodels

input

(meta-)models

Figure 4.15: SmartAdapters V2, at design-time

The meta-code generator takes a metamodel as input (M2 level) and weaves a 4-pass
visitor (and its Kermeta implementation) into this metamodel. The first pass is in charge
of appending a sequence of Drools statements corresponding to the pointcut model (see
the when clause in the script below). The second pass is in charge of appending create*
statements corresponding to the creation of the advice model using the EMF API of the
metamodel. In particular, it takes care of the uniqueness of the advice elements. The third
pass in responsible for appending set* statements which link together advice model ele-
ments. Finally, the forth pass is in charge of appending the code related to the composition
protocol of the aspect to link the advice to the pointcut (i.e. to the places of the base model
that match the pointcut model).

92
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

Java EMF

+Drools

code

Runtime AOM

Weaver

In memory

base model

In memory

woven model

Figure 4.16: SmartAdapters V2, at runtime

The Java/Drools code associated with a simple logging aspect (similar to the cache
aspect presented in this Chapter) is presented and discussed in Appendix A.3 (logger is
unique) and Appendix A.4 (logger is unique within the scope of a composite).

This section showed how we use the SmartAdapters approach to refine and compose
the dynamic features of a DAS. It is important to note that the remainder of our approach
is not specific to SmartAdapters. In other words, it is possible to use any weaver to pro-
duce configurations. The next chapter explains how we leverage woven configurations to
automatically drive the reconfiguration process.

4.7 Discussion

The first version of SmartAdapters was developed at the very beginning of this thesis. The
goal of this proof-of-concept prototype was to assess the utility and the usability of AOM
in the context of adaptive systems. The focus was thus on the adoption, expressiveness,
tool-support and agility requirements:

• Adoption: SmartAdapters directly manipulates the concepts of the ART metamodel
(but it is possible to specialize SmartAdapters for any other domain metamodel),
which is inspired by UML component models and well known platforms like Fractal
or OpenCOM. These concepts are easily understood by designers and architects. Es-
pecially, the pointcut language is directly derived from the ART metamodel. There
is no need to learn a new language for describing pointcuts. Instead, a pointcut is
any fragment of architecture. Similarly, the advice is also a fragment of architec-
ture. In addition, SmartAdapters requires designers to implement a composition
protocol, describing how the advice is woven into the pointcut, quite similarly to
MATA. This language is a dedicated imperative and statically-typed language that
can easily be manipulated by people with a programming experience, e.g. in Java.
However, the very bad performances were making the iterative process of the aspect
design longer.

CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES 93

• Expressiveness: The pointcut language allows defining cross-cutting and non-cross-
cutting aspects. If the pointcut is very precise, it will match a very reduced set of
join points. If the fragment of architecture describing the pointcut is more “vague”,
it will possibly match a wide set of join points. The notion of advice sharing is
particularly useful to properly manage the advice in the case there are several join
points.

• Tool-support: The first version of SmartAdapters was implemented in Kermeta and
used a Prolog back-end for the joint point detection. It was able to weave all the as-
pects defined by the different users of SmartAdapters. The second version of Smar-
tAdapters is also implemented as a Kermeta program, which generates code. This
generated code contains all the information for detecting join points (Drools) and
for weaving the aspect (Java/EMF).

• Agility: SmartAdapters is based on generative techniques. If the metamodel evolves,
designers simply have to regenerate the weaver. If the metamodel is evolved by a
pure extension, it is possible to ensure the retro-compatibility of aspect models, since
this evolution would not break the conformance relationship. In the case of other
modifications of the metamodel, it is not possible to automatically ensure the retro-
compatibility. This problem is off course not specific to SmartAdapters, and all the
tools based on a metamodel suffer from this problem.

SmartAdapters V2 has the same characteristics than the initial version. However,
the performances have significantly been improved, as detailed in the validation chap-
ter (Chapter 7).

94
CHAPTER 4. ASPECT-ORIENTED MODELING TO SUPPORT (DYNAMIC)

SOFTWARE PRODUCT LINES

95

Chapter 5

Synchronizing the runtime with
design-time models

Contents

5.1 Requirements for an “intelligent” Reflection Model 95

5.2 Overview . 96

5.3 Step-wise abstraction of the execution context 97

5.3.1 An Overview of Complex Event Processing and WildCAT 2.0 . . 98
5.3.2 Complex Event Processing to Update Context Models 99
5.3.3 WildCAT/EMF to monitor models 100

5.4 Causal Connection between the runtime and an architectural model . 101

5.4.1 Maintaining a Reflection Model at Runtime: Strong Synchroniza-
tion from Runtime to Model . 102

5.4.2 Online Validation to Check Configurations when Needed 103
5.4.3 Model Comparison to Detect Changes Between to Configurations 104
5.4.4 On-Demand Synchronization from Model to Runtime 106

5.5 Models@Runtime to Support Offline Activities 109

5.6 Discussion . 110

This Chapter presents how we maintain an architectural model in a causal connection
with the running system, as well as a context model, in a one-way direction (from the
runtime to the model).

5.1 Requirements for an “intelligent” Reflection Model

This section gives some requirements for a more “intelligent” reflection model, as we
discussed in the Introduction chapter of this thesis (Sections 1.2.1 and 1.2.4).

96 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

• The reflection model should be more independent from the reality, in the sense that
it should avoid “the complexity, danger and irreversibility of reality”.

• However, it should be totally seamless to re-synchronize the reflection model with
the reality i.e., to actually adapt the running system.

• The link between the reflection model and the running system should not be platform-
specific.

We claim that an explicit and more independent reflection model is one of the keys to
tame complex dynamic systems. It would allow reflection to evolve from a powerful but
hazardous “what happens when I do...” process to a powerful and controlled “what would
happen if I would do...” process. Indeed, the idea of the “models@runtime” community
is to leverage MDE techniques and tools at runtime to raise the level of abstraction. At
the model level, it does not make sense to restrict the expressiveness of a transformation
language to force designers to respect the constraints at all the steps of a transforma-
tion, or to improve the complexity of the composition tools to respect these constraints,
since a model “allows us to deal with the world in a simplified manner, avoiding the complex-
ity, danger and irreversibility of reality” (See Rothenbers’s citation in the Introduction of this
thesis). This would make the modeling space much more closer to the real world, mini-
mizing the impact and the benefits of Models@Run.Time [114, 18]. The ultimate goal of
models@runtime is to raise the level of abstraction of running (adaptive) systems, not to
restrict existing MDE tools, techniques and methodologies to fit the constraints of such
system. We argue that a more independent reflection model would allows us to raise the
level of abstraction of models@runtime and to keep modeling tools expressive. Indeed, if
the running system is adapted while the model manipulated, this could make the system
inconsistent because the model is temporarily inconsistent.

5.2 Overview

In this section, we give a rapid overview on how we synchronize the runtime with design-
time models, as illustrated in Figure 5.1.

To safely adapt a running system and take suitable decisions, it is important to have
a well-fitted view of the context, which should be sufficiently detailed to reflect the real-
ity, and sufficiently abstract to enable efficient reasoning. The context model is really an
abstraction of the context, and cannot be employed to directly act on the reality. Instead,
changes in the context can trigger a reasoning process (adaptation rules) that can finally
act on the system.

To realize the causal connection between the architectural model and the runtime, the
basic idea is to generate reconfiguration scripts on the fly, which allow to make the system
to switch from its current configuration to a newly produced and independent one. This

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 97

Architecture

Metamodel

Reflection model

(source)

Woven model

(target)

Conforms to

Analyzer The running system
adapts

Validation

Reasoning

Context info.

Context

model

design

models

Intermediate

Context

models

Online

Online + Offline

Figure 5.1: Design models at runtime: Online and Offline Activities

way, we prevent architects from writing numerous low-level, platform-specific and error-
prone scripts.

5.3 Step-wise abstraction of the execution context

In this section, we present a flexible way to progressively fill the gap between low-level
probes integrated into the runtime and a high-level context model defined at design-time.
This high-level model serves as a basis for reasoning about the context and driving the
dynamic adaptation process. By abstracting the context and reducing the number of vari-
ables and values, it is possible to reason more efficiently [51, 37]. However, the gap be-
tween the real execution context and design-model specify the context is wide. On the one
hand, probes integrated into the runtime generate a (quasi-) continuous flow of quantita-
tive raw data. On the other hand, designers usually employs qualitative value to describe
the context at a high level of abstraction. Several techniques already exists to bridge this
gap: Complex-Event-Processing (CEP) [93], fuzzy-logic [33], etc. Instead of defining com-
plex transformations or queries that directly link low-level events to high-level concepts
defined in the context model, we propose to abstract the context in a step-wise manner, à

98 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

la MDE.
A classic MDE process generally consists in refining step-by-step high-level models

into lower level abstractions. When the gap between to levels of abstractions is large, e.g.
between requirement and architecture, it is often difficult to fully automate the transfor-
mation. When this gap is limited, e.g. between a fully specified UML model and Object-
Oriented code, it is possible to fully automate the transformation. We basically propose
to adopt a MDE approach, in the opposite way: from runtime to model.

5.3.1 An Overview of Complex Event Processing and WildCAT 2.0

Complex Event Processing (CEP) components, such as Esper1, offer expressive mecha-
nisms to handle large amount of runtime events such as pattern matching on events, time
windows, aggregation functions (min, max, average, etc). Unlike hard thresholds, these
queries make it very simple to deal with permanent context oscillations e.g., by defining
thresholds on average values computed on a time slot. As previously described, the basic
idea is to define queries over runtime events in order to update the context model.

We use WildCAT [26, 39]2, a generic open-source monitoring framework built upon
Esper, for developing context-aware applications. WildCAT has formerly been imple-
mented by the AsCoLa team and improved in the context of the GALAXY INRIA cross-
project3. It allows monitoring large scale applications by easily organizing and accessing
sensors through a hierarchical organization. This section first presents the meta-model of
WildCAT to organize sensors. It then details how we use WildCAT to create and update
a model of the context, in a step-wise manner.

The root concept of WildCAT is the context. A context is an oriented tree structure,
similar to the Unix file system, which contains two types of nodes:

• Attribute, which holds some values. Attributes are the leaves of the sensors tree
(like files in a file system). WildCAT proposes three kinds of attribute:

– Basic attribute holds static values. Their values do not evolve unless program-
matically modified.

– Active attribute or POJOAttribute represents WildCAT sensors. In general,
these attributes are associated to probes linked to the environment or the exe-
cution context (CPU, Memory, Thermometer, Camera, etc).

– Synthetic attribute or Query Attribute holds the results of expressions on other
attributes. It can for example aggregate and transforms the values provided by
other attributes e.g., compute mean values during 10 seconds.

1http://esper.codehaus.org/
2http://wildcat.ow2.org/
3http://galaxy.gforge.inria.fr/

http://esper.codehaus.org/
http://wildcat.ow2.org/
http://galaxy.gforge.inria.fr/

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 99

• Resource, which contains sub-resources and attributes (like folders in a file system).

– Basic resources allow the designer to structure the monitoring model. For ex-
ample, each node of a distributed system could be a basic resource, containing
sub-resources related to the memory, the CPU, etc.

– Symbolic links are special resources that refer to another resource. Symbolic
links are used to create “short cuts” in the monitoring model in order to access
more rapidly to the important resources or attributes, without navigating the
whole tree. An OCL constraint specifies that cycles are not allowed (constraint
similar to inheritance cycle in UML or Java programs).

5.3.2 Complex Event Processing to Update Context Models

Context variables defined at design-time describe the environment at a high level of ab-
stractions. In practice, it is more likely that several (possibly heterogeneous) runtime
probes are needed to compute and update a context variable. For example, to determine
whether there is a fire at an airport, we would probably combine the values provided by
different heat and smoke sensors.

The CEP engine (Esper) integrated in WildCAT allows expressing EQL (Event Query
Language) queries to compute attributes. The EQL language has an SQL-like syntax and
provide powerful aggregators and functions. It is for example very simple to compute
min, max or average on time or event windows e.g., the average CPU load during the last
20 seconds.

Figure 5.2 illustrates two possible ways of abstracting the actual execution context:

• Priority to Reactivity: When the monitored value is above a given threshold, it is
abstracted as high in the context model. When the monitored value is below the
same threshold, it is abstracted as low in the context model. This monitoring is very
simple to implement (even without CEP) since the abstraction (high or low) is di-
rectly related to the current value of the monitored value. While this approach is
very reactive and can trigger a reconfiguration with almost no delay, it is particu-
larly unstable in the case where the real value oscillates around the threshold. This
could result in many successive dynamic reconfigurations, which could potentially
be enacted slower than the context changes. In the best case (reconfiguration is
much more faster than the context change) the system will always be in an adapted
state. In the worse case, the system will always be in a state that is not adapted to
the current context. In Figure 5.2, this monitoring leads to 6 changes in the context
model.

• Priority to Stability: There exists several ways to improve the stability of the mon-
itoring e.g., to implement an hysteresis cycle or to use CEP. In the example, we de-
fined 2 CEP queries. The first one simply specifies that the value is considered to be

100 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

low as soon as the real value is below a given threshold. The second one specifies
that the value is considered to be high if there exists no value below a given thresh-
old during a given time slot. In Figure 5.2, this monitoring leads to 2 changes in the
context model.

0

20

40

60

80

100

120

Monitored values

Threshold

Monitoring 2

Monitoring 1

Figure 5.2: 2 Different ways of Monitoring

Complex Event Processing in just one possible way to update the context model. It
is important to note that the only information we need to reason about the context is the
context model itself. It is thus possible to use different techniques to update this context
model, depending on the case studies.

5.3.3 WildCAT/EMF to monitor models

It is possible to use the notifications mechanism provided by EMF to be notified when a
model is updated (creation, deletion or update of model elements). We leverage and ex-
tend this mechanism so that WildCAT is now able to consider the EMF notifications [109].
This way, it is possible to create intermediate context models that can be observed by
WildCAT to create more abstract context models.

An interesting feature of EMF is the notification framework. EMF automatically pro-
vides notification functionality in case of changes in the model. It is possible to register
observers/listeners that are notified when the model is modified. There are six types of
event: ADD, REMOVE, ADDMANY, REMOVEMANY, SET, UNSET, which are respec-
tively raised when an element is added or removed into/from the model, when a collec-

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 101

tion of elements is added or removed in/from the model or when an object property is set
or unset (set to null).

Using WildCAT/EMF, it is thus possible to:

• monitor probes integrated into the runtime to build and update context models

• monitor context models to build and update other (more abstract) context models

5.4 Causal Connection between the runtime and an architectural

model

Depending on the context, suitable aspect models are woven to obtain a target configu-
ration. This section describes how we automatically generate reconfiguration scripts to
adapt the running system. This automatic generation of reconfiguration scripts can be
seen as a higher-order transformation, which would transform a model transformation (a
sequence of aspect model weaving) into a transformation of the running system (dynamic
reconfiguration), as illustrated in Figure 5.3.

Source System Target System

Source Model Target Model

Model Transformation

(Aspect Compositions)

Migration Path

(Reconfiguration Script)

Reality

Model Higher-Order Transformation

Figure 5.3: Higher-Order Transformation: From the Model to the Reality

A model transformation (see top part of Figure 5.3) usually transforms a valid model
into a valid model. However, it provides few guarantees for all the intermediate steps
needed to transform the model. This allows designers to implement model transforma-
tions in a more flexible way, and tools to execute these transformations in a more efficient
way, without considering all the implicit and explicit constraints defined in the meta-
model at all the steps of the transformation. In the case of a model composition, the

102 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

designers usually provides a set of model, and the tool is responsible for implementing
and executing the model transformation making it possible to realize the composition.

A reconfiguration script (see bottom part of Figure 5.3) also transforms a valid config-
uration (of a running system) into a valid configuration. However, all the intermediate
steps are very important, especially to correctly deal with the life-cycle of components. A
reconfiguration script directly manipulates the reality (the running system), and cannot
avoid the complexity, danger and irreversibility of reality: it should deal with. Writing a
reconfiguration is thus intrinsically more complex than writing a model transformation,
or designing an aspect model. All the actions (e.g., remove component) have to be care-
fully ordered to realize a safe migration path [167]. Otherwise, this could lead the system
into an inconsistent state. The basic idea of the higher-order transformation depicted in
Figure 5.3 is to alleviate designers from writing such low-level and error-prone scripts.

Implementing this higher-order transformation as such would make this implementa-
tion very specific to the model transformation tools, aspect weavers or model composers,
and how these tools actually manipulate the model. Indeed, each particular tool has its
own representation of what a model transformation is. If we consider a model transfor-
mation as a black box, it can be conceptualized as:

MT: {model} → model

In the case of a model transformation, MT usually transforms a single model into
another model. In the case of a model composition, MT composes a set of input models
into a single one. Note that the metamodel of the input models and the output model may
be different. In the previous section, we use AOM techniques to compose homogeneous
models, to obtain a whole configuration. However, it would be possible to use any tool
able to produce architectural models. In the remainder of this section, we will explain how
we can realize a technological independent higher-order transformation, by leveraging
the reflection model (representing the running system) and a target model e.g., which is
the result of MT.

5.4.1 Maintaining a Reflection Model at Runtime: Strong Synchronization
from Runtime to Model

The first step consists in maintaining an explicit reflection model representing the run-
ning system. This is basically the idea of computational reflection [94]. However, current
adaptive platforms such as Fractal or OSGi only propose an implicit reflection model,
strongly synchronized in both directions (runtime ↔ model).

In all the cases, the synchronization between the runtime and the model should be
strong, so that the model is not biased and it is possible to reason on an always up-to-date
reflection model. We can distinguish two main ways to realize this synchronization from
the runtime to the model:

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 103

• Pull mode: It consists in using the reflection API provided by the platform to know
the current state of the system. This API mainly gives information about the compo-
nents and bindings (connection between components) composing the system, their
states (started, stopped, etc), etc. This way, it is possible to build an explicit reflection
model from scratch, every time we need to reason on the running system. Modern
adaptive execution platforms, such as OSGi, OpenCOM or Fractal, propose this kind
of API. However, this pull mode has a major drawback: the reflection model is build
from scratch, whereas the running system evolves “continuously”. Every time we
need to reason, the reflection model should be entirely rebuilt even if the running
has not significantly changed.

• Push mode: It consists in using probes integrated in the execution platform, which
notify from any significant change that appears in the running system. For example,
the probes should be able to notify observers that components and/or bindings have
been introduced and/or removed, etc. This way, it is possible to incrementally build
and update the reflection model. However, modern platforms only offer a limited
support for monitoring the evolution of a running system. Fractal offers no probe
for monitoring a running system, while OSGi offers some primitives to be notified
from some events related to the running system.

5.4.2 Online Validation to Check Configurations when Needed

Online validation is important in the context of complex adaptive systems. Indeed, it
is not always possible to validate the huge set of possible configurations at design-time,
because of time and resource issues. However, it is not conceivable to make the system
to migrate to a configuration that is not valid. This is why we validate all the produced
configurations (by aspect weaving) before actually performing the reconfiguration.

The online validation of woven configuration relies on invariant checking [105]: for
all the produced configurations, we check that all the invariants are ensured. We use the
open-source Kermeta metamodeling language [112] to manage different checking strate-
gies.

The Kermeta seamless weaving engine allows a designer to re-open meta-classes de-
fined in a metamodel in order to extend them by weaving contracts (invariants, pre/post-
conditions), references, attributes, super types and behavior. Here, we leverage the ability
of Kermeta to extend meta-classes with OCL invariants. Each strategy is defined in a
separate Kermeta aspect (represented as a layer with dashed border lines), typically:

• Generic strategy: Defines invariants that any architecture should ensure. For exam-
ple, we check that every binding links a client port to a compatible server port.

• Platform-specific strategy: Defines invariants specific to a given execution platform.
For example, the OSGi execution platform does not allow composite components,

104 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

whereas our metamodel allows components to be contained by composite compo-
nents (not shown in the simplified version illustrated in).

• Application-specific strategy: Defines invariants specific to a given application. It
can, for example, check the presence of some precise components in the architecture.

Finally, we can define a global checking strategy by automatically merging relevant
strategies (aspects) with Kermeta. Any produced configuration will be checked against
this global strategy to ensure its consistency.

5.4.3 Model Comparison to Detect Changes Between to Configurations

As explained in the previous section, we refine features using different AOM approaches,
depending on their cross-cutting natures. These approaches offer high-level composition
mechanisms, which were not implemented to consider runtime issues. AOM weavers do
not ensure any specific order when executing atomic weaving actions. If these sequences
of actions were directly reflected to the running system, this could make the running sys-
tem inconsistent. It could be possible to modify the internal code of these weavers, to
ensure a specific order among the atomic weaving actions. However, some of these tools
are implemented with generic reflexive algorithms (e.g., Kompose [49]), not easily open to
modifications, while some other tools use graph transformation engine (e.g., MATA [160]),
with a bi-directional transformation to another formalism. Instead, and rather similarly to
some other very recent models@runtime approaches [114], we propose to rely on a model
comparison between the reflection model and a newly produced model. This model
comparison removes all the conceptual and technical dependencies with any particular
weaver, which is able to produce an ART model by weaving ART fragments.

The model comparison between two architectural models (reflection and target) is
rather simple and can be expressed using the set theory, as illustrated in Figure 5.4:

• all the elements of the reflection model that have a matching counter part in the
target model are kept,

• all the elements of the reflection model that have no matching counter part in the
target model will be removed,

• all the elements of the target model that have no matching counter part in the reflec-
tion model will be added.

In this example, the user was previously driving and he is now in a meeting. Some
components (and bindings) of the D-CRM, such as the Calendar or the Address DataBase
are common to both configurations, and are consequently kept. The components and
bindings specific to the driving context are removed and the components specific to the
meeting context are added.

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 105

Reflection

Model (source)

Target

Model

Calendar

Address

DB

Driving

Notifier

Meeting

Notifier

Removed Kept /

Updated

Added

Migration

Figure 5.4: Model Comparison between the Reflection Model and a Target Model

Precise Definition of Model Comparison We formalize the model comparison of two
models conforming to the ART metamodel as a binary relationship, defined on the ele-
ments of the ART metamodel: ART × ART denoted by ≡.

1. ComponentInstance c1 ≡ ComponentInstance c2 ⇔ c1.container ≡ c2.container ∧
c1.name = c2.name ∧ c1.type ≡ c2.type

2. ComponentType t1 ≡ ComponentType t2 ⇔ t1.name = t2.name ∧ |t1.ports| = |t2.ports|
∧ ∀ p1 ∈ t1.ports, ∃ p2 ∈ t2.ports | p1 ≡ p2

3. Port p1 ≡ Port p2 ⇔ p1.role = p2.role ∧ p1.service ≡ p2.service

4. Service s1 ≡ Service s2 ⇔ s1.name = s2.name

5. Binding b1 ≡ Binding b2 ⇔ b1.clientInstance ≡ b2.clientInstance ∧ b1.serverInstance
≡ b2.serverInstance ∧ b1.client ≡ b2.client ∧ b1.server ≡ b2.server

An element elt should be removed iff:
elt ∈ reflection model ∧¬∃ elt′ ∈ target model | elt ≡ elt′

An element elt should be added iff:
elt ∈ target model ∧¬∃ elt′ ∈ reflection model | elt ≡ elt′

This definition is implemented in Kermeta [112], which offers built-in OCL-like oper-
ators, such as forAll or exists, and automatically compiled into Java. The ART metamodel
and the associated constraints ensure that each element can be matched at most once,
because of name-space conventions. In addition, the containment relationships (in bold)
plays an important role for the matching of components and bindings: two components

106 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

(resp. two bindings) match only if the component containing them also match. We thus
browse the 2 models according to the containment relationships4.

5.4.4 On-Demand Synchronization from Model to Runtime

During the model comparison, the comparator uses an abstract factory to instantiate
atomic reconfiguration commands. However, these commands are not directly executed.
In other words, the running system is not adapted during the model comparison. In-
stead, these commands are temporarily stored and sorted, before the whole sequence of
commands is actually executed. This makes it possible to use planning algorithms to sort
the commands. We currently use a simple heuristic to sort the reconfiguration commands:

1. Components (that should be stopped) are stopped

2. Bindings are removed

3. Components are removed

4. Attributes (of already present components) are updated

5. Components are added (and their attributes are set)

6. Bindings are added

7. Components are (re-)started

Figure 5.5: Hierarchy of Reconfiguration Commands

In practice, each type of command is associated with a real value defining its priority.
By default, the priority is a natural integer following the above enumeration. However,

4Moreover, since each model element is contained by exactly one container (except the root element) the
browsing the containment graph ensures that we visit each element exactly once.

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 107

it is possible to modify this priority by adding a real value in [0..1[to the default value.
This way, it is possible to finely order the commands within a given category without
modifying the overall ordering.

This topological sorting ensures that the life-cycle of the components is correctly han-
dled. The order inside a given type of commands is arbitrary, except for start and stop
commands. These commands are ordered according to the client/server dependencies of
components in the case where no dependency cycle exists, as illustrated in Figure 5.6. All
the cases where a dependency cycle exist are forbidden (by invariant) except if there exists
a weak link in the cycle and if the client components with a [0..N] cardinality (optional
port) allow hot plugging their optional dependencies i.e. without stopping and restarting
the components. If components do not allow hot plugging their optional dependencies,
all the configurations with a dependency cycle should be forbidden by a invariant. Fig-
ure 5.7 illustrates a case with a dependency cycle with an optional dependency (dashed
line). To reason about the start/stop order of components, we simply ignore the weak
link and we thus virtually break the dependency cycle, making it possible to order the
start/stop order of these components similarly to Figure 5.6.

ABC
1..N1..N

Start order

Stop order

Default + 0/3

= default

Default + 1/3 Default + 2/3

Default + (1 - 1/3)

= default + 2/3

Default + (1 - 2/3)

= default + 1/3

Default + (1 - 3/3)

= default

i=0 i=1 i=2

Figure 5.6: Start/Stop Order if there is no cycle

For each chain of n dependent components, the start (resp. stop) order of the ith com-
ponent is computed as follows: Default + i/n (resp. Default + 1 - (i/n)).

When all the commands have be instantiated, after the model comparison finishes, the
whole sequence of commands is executed. A command is only executed if the previous
one correctly terminates. In the case a command encounters a problem, the reconfigura-
tion process stops and a report is properly logged. This way, we avoid cascades or errors
e.g., bindings that cannot be connected because a component could not be added. Follow-
ing the ideas of Léger et al. [91, 42], we have implemented a roll-back mechanism, which
basically consists in undoing the command that crashes, as well as all the previous ones.

108 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

A

B

C
0..N

1..N

1..N

Figure 5.7: Cycle with a weak link

Each command as the following structure:

1 public interface ReconfigurationCommand {

2
3 //Returns the priority of the command, which determine its order of execution
4 public int getPriority();

5
6 //Changes (augment) the default priority
7 //0 <= i < 1
8 public void changePriority(int i);

9
10 //Checks the consistency of the command
11 public boolean check();

12
13 //Executes the command i.e., an atomic runtime adaptation
14 //Returns the status of the reconfiguration
15 public ReconfStatus execute();

16
17 //Acknowledge the command i.e., update the reflection model
18 //when the command successfully executes.
19 public void doAck();

20
21 //Undo the command.
22 public void undo();

23 }

We define the parameter of each concrete command as public attributes, which can be
set after instantiating a command. For example, a RemoveComponent command has a
ComponentInstance as parameter. The lifecycle of a command is defined as follows, in the
case it successfully executes:

1. Initialization step

(a) the command is instantiated

CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS 109

(b) its parameters are set

2. Execution Step

(a) The check method verifies that all the parameters are correctly set

(b) The execute method realize an atomic reconfiguration and returns a status,
basically fail or success

(c) The doAck method updates the reflection model, in the case of a successful
reconfiguration, by adding (Add* command), removing (Remove* command)
or updating (Start, Stop and Update* commands) model elements.

5.5 Models@Runtime to Support Offline Activities

Leveraging design models at runtime alleviates designers from performing low-level and
error prone tasks (e.g., writing reconfiguration scripts) and allows reasoning more easily
by abstracting irrelevant details of the running system and it execution environment. In
addition, models@runtime [114, 18] enable performing offline activities:

Definition 5.1 Offline activities include design-time activities as well as all the activities that
could be performed while the adaptive system is running, independently of the adaptive system
and without affecting the current state of the adaptive system.

By opposition:

Definition 5.2 Online activities include all the activities that must be performed at runtime to
adapt to the current context and/or current user need.

In Figure 5.1, a dashed line separates the online activities from the activities that can
be performed both online and offline. At runtime (online), when the context model is up-
dated, this triggers reasoning, which in turn can produce a new configuration (by aspect
weaving) and dynamically reconfigure the running system.

Offline activities include all the activities prior to the initial deployment of the adap-
tive system (requirement engineering, design, modeling, architecture, etc). They also in-
clude activities performed after the initial deployment: continuous design (redesigning
the system after initial deployment), prediction (what would be the configuration of the
system if the context evolves in this direction), etc that could be performed by the adap-
tive system itself (e.g. when the context is stable and if there are enough resources) or
by a tiers system that has some knowledge (models) about the adaptive system. Indeed,
models can easily be serialized (in XMI5 using EMF and transmitted to tiers systems.

5XML Metadata Interchange

110 CHAPTER 5. SYNCHRONIZING THE RUNTIME WITH DESIGN-TIME MODELS

It thus become possible to re-work the design of the system while it is running, by
modifying the variability model (by adding/removing or updating dimensions/variants
or constraints) or by modifying the adaptation logic (by adding/removing or updating
ECA-like rules, impacts or goals). After modifications, and after offline validation, these
updated models can then be transmitted to the reasoner component deployed at runtime,
so that they can reason on new inputs. In the case where new variants are added into
the variability model, the component types (needed to instantiate components) that are
not currently present on the platform are automatically downloaded from a repository
specified in the model.

Another activity that could be performed offline is prediction. This can be achieved
on the platform where the adaptive system executes, or on a tiers platform. This can
be achieved by analyzing the current context model, as well as the past context models,
to determine possible future contexts. For each possible future context, it is possible to
determine the most adapted configuration and actually produce and validate this config-
uration. These possible future configurations populate a cache of configuration so that it
is possible to directly use woven configuration (if the current context has changed to an
anticipated context) at runtime (online) instead of performing aspect weaving and online
validation. Otherwise weaving and validation can be performed online.

5.6 Discussion

In this chapter, we explained how we decouple the reflection model from the reality, and
how we resynchronize the model with the reality using a model comparison. This model
comparison allows us to fully generate the reconfiguration script that can make the adap-
tive system to switch from its current configuration to a target configuration. This way, it
prevents architects from writing low-level reconfiguration scripts. It also makes the adap-
tation step totally independent from the way we produce the target model: it is possible
to use aspect model weaving, model transformation or even to produce models by hand
in a graphical editor. However, this model comparison has a cost at runtime, as discussed
in Chapter 7. It would be rather straightforward to directly make SmartAdapters to in-
stantiate (not execute, to allow online validation) the reconfiguration commands when the
aspects are woven. This would make the causal faster (since no model comparison would
be needed), but it would make it specific to the SmartAdapters weaver.

111

Chapter 6

A Model-Oriented and Configurable
Architecture to Support Dynamic
Variability

Contents

6.1 Communication Schemes . 113

6.2 Different Configurations for the Reference Architecture 116

6.2.1 The Case of Small Adaptive Systems 116

6.2.2 ECA, Goals and Online generation/validation of Configurations
to Tame Complex Adaptive Systems 117

6.3 Discussion . 118

In this Chapter, we introduce the reference architecture we have developed in the con-
text of the DiVA project, to support the dynamic adaptation of complex adaptive systems.
Figure 6.1 illustrates a typical (data-oriented) configuration of this architecture, composed
of 3 layers:

• Platform-independent, Model-based layer: The components defined in this level
consume and produce models conforming to the metamodels presented in Section 3.
It is totally independent from any execution platform. This layer is composed of the
following components:

– Reasoner: When the context model is updated, the reasoning component com-
putes a derived variability model that only contains the mandatory features
and a selection of variable features, adapted to the current context. This com-
ponent is initialized with a variability model and a reasoning model.

112
CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY

– Weaver: This component receives a pruned variability model from the reason-
ing component. For all the features of the variability model, the weaver com-
poses the corresponding aspect models to produce a target configuration. This
configuration is then checked before it is submitted (if valid) to the causal link
(proxy layer).

– Checker: This component checks that the produced configuration is consis-
tent [105]. It checks all the invariants that should be enforced by the business
system.

• Proxy layer: This layer is responsible for bridging the gap between design-time
models and the runtime. It is composed of:

– Monitoring: This component observes runtime events generated by probes in-
tegrated into the runtime in order to create and update a context model. We do
not impose any particular monitoring technique. For example, in Section 5.3,
we propose to use a multi-staged monitoring approach combined with Com-
plex Event Processing techniques.

– Causal Link: This component receives an architectural model to configure and
reconfigure the business architecture using the services offered by the execu-
tion platform, as described in Section 5.4.

• Business layer: This layer basically contains all the business components that are
managed by the reference architecture.

The interactions between these components are specified by the sequence diagrams
shown in Figure 6.2

The context model is updated when relevant changes appears in the execution context
of the running system (e.g., CPU load, free memory or bandwidth). This context model
is really an interface between the reference architecture and the execution context. This
model is kept in a shared memory. Indeed, since it is frequently updated, it does not
make sense to make this model persistent. Components that require this model (e.g. the
Reasoner) simply register to the notification mechanism provided by EMF.

The architectural model is updated when the running system evolves i.e., when com-
ponents and bindings are added or removed. It is important to note that this architectural
model is not directly manipulated in order to adapt the running system. On the con-
trary, we produce another architectural model (configuration) when the system should
adapt [105]. This makes it possible to validate the new configuration before the actual
adaptation, and fully automate the reconfiguration process by reasoning of the former
configuration and the new configuration [105]. This prevents the architect from writing
low level and error-prone reconfiguration scripts. In the case the new configuration is
not valid, we simply discard this configuration. Indeed, since the running system has not
been adapted yet, it is not necessary to perform a rollback.

CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY 113

Reasoner Weaver Checker

Monitoring Causal Link

variability

context

reasoning

variability architecture

architecture

Business System

Platform-independent,

Model-Based layer

Proxy-Layer

Business Layer

Config.

Cache

architecture

Figure 6.1: Runtime Architecture to Support DSPLs

The platform-independent, model-based layer, which is used at runtime, can also be
employed at design-time, since it only consumes and produces design models. This way,
it is possible to perform early simulations [50] or tests before actually deploying the adap-
tive system, using the same infrastructure than the one that will be actually used at run-
time. The basic idea is to mock the whole layer (or individual components) with stub
components that produce and consume models. These models are either provided by the
designer (e.g., context models corresponding to critical situations) or can be automatically
generated [113, 141]. We also automatically generate a simple graphical user interface (see
Figure 6.3 and Appendix A.5 for the code generator) so that it is possible to dynamically
simulate the context instead of creating context models by hand.

6.1 Communication Schemes

The reference architecture is aligned with the Monitor-Analysis-Plan-Execute (MAPE)
loop [81]. The main tasks associated with the MAPE loop are encapsulated as compo-
nents. These components mainly exchange models, which conform to the metamodels
we have presented in Section 3, according to different schemes:

• by URI: The producer component serializes the model and pass the URI to the con-

114
CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY

s:Offline DiVA

Studio

r:Goal Based

Reasoning

loadDSPL(dsplModel)

loadReasoning(reasoningModel)

m:Configuration

Manager

loadConfiguration(architectureModel)

cep:Complex Event

Processing

r:Goal Based

Reasoning

cl:Context

Listener

notify(value)

bWidthCE:Context

Element

notify()

setValue(Bandwidth.HIGH)

[bandwidth=43]

[bandwidth=48]

[bandwidth=46]

[bandwidth=51]

r:Goal Based

Reasoning

c:Configuration

Checker

w:Aspect Model

Weaver

m:Configuration

Manager

loadDSPL(derivedDSPLmodel)

notify

reason

check(architectureModel)

buildProduct

loadConfiguration(architectureModel)

isInvalid(derivedDSPLmodel)

opt

alt

Init Monitoring

Reasoning, Derivation and Dynamic Adaptation

Figure 6.2: Interactions between the components

sumer component, so that it will be able to load this model. We use the serialization
capabilities provided by EMF to easily load and save models from/to an URI. Serial-
ized models can efficiently be zipped (because XMI files contains recurrent patterns)
and quickly transmitted via network links. This is similar to a call by value.

• by Resource: The producer component directly pass the Resource (graph of objects
in memory) containing the model to the consumer component, which can directly
manipulate the model. This is similar to a call by reference.

• by Notification: The producer manipulates the model (in memory), and the con-
sumer is notified from the changes by the EMF notification mechanism. In this case,
there is no direct exchange between the producer and the consumer: the producer
works on a resource (model) that is observed by the consumer. This is a shared
memory between the consumer and the producer.

CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY 115

Figure 6.3: Generated GUI to simulate the context

The URI and Resource schemes are very similar in practice. Indeed, to actually ma-
nipulate a serialized model, a component has to load it into a resource. Typically, if a
component offers a service that manipulates a model using a resource or (xor) an URI, it
can easily be refactored so that it can leverage both the URI and the resource, as illustrated
in the script below:

1 //Causally connected models
2 private art.System system; //the reflection model
3 private art.System updateModel;//a target model
4
5 public void reconfigureByModelURI(String modelURI) {

6 loadUpdateModel(modelURI);

7 reconfigure();

8 }

9
10 public void reconfigureInMemory(art.System targetSystem){

11 updateModel = targetSystem;

12 reconfigure();

13 }

14
15 /∗∗

116
CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY

16 ∗ Actually reconfigure the running system using updateModel
17 ∗/
18 private void reconfigure(){

19 ...

20 }

6.2 Different Configurations for the Reference Architecture

This section presents different possible configurations for the reference architecture sup-
porting the approach presented in this thesis. Following the idea of the FraSCAti imple-
mentation [140] of the SCA standard, this reference architecture is itself developed as a
component-based application. It thus makes it possible to finely configure (and even to
dynamically reconfigure, as discussed in Section 9.2) the adaptation loop according to the
need.

6.2.1 The Case of Small Adaptive Systems

In the case of small adaptive systems, where the total number of configurations remains
manageable by hand, it is possible to generate and validate all the possible configurations
at design-time and define the adaptation logic using simple ECA rules. At runtime, the
adaptation loop is thus configured as illustrated in Figure 6.4. In particular the Weaver
component simply chooses already woven configuration from a cache and does not per-
form weaving at runtime.

ECA

Reasoner
Weaver

variability

reasoning

variability

Config.

Cache

architecture

context architecture

Figure 6.4: Runtime Architecture for Small Adaptive Systems

This particular configuration of the adaptation loop is rather efficient, since most of the
tasks (weaving, validation) are performed at design-time. This is rather similar to what

CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY 117

Bencomo et al. [15, 12, 13, 14, 17] or Zhang et al. [165] propose. However, this kind of con-
figuration of the adaptation loop is not adapted to complex adaptive systems that cannot
be fully validated at design-time due to the explosion of the number of configurations.

6.2.2 ECA, Goals and Online generation/validation of Configurations to Tame
Complex Adaptive Systems

In the case of complex adaptive systems, such as the ones addressed in the DiVA project,
it is not possible to enumerate and validate all the possible configurations of a DAS at
design-time. At runtime, the adaptation loop is thus configured as illustrated in Fig-
ure 6.5. This loop use an ECA-like reasoner and a goal optimizer in combination. Since all
the reasoner components consume and produce variability model, it is possible to chain
several reasoners in order to derive the variability model in several steps. Depending on
the context, the two reasoners compute a derived variability model that is transformed
into an architectural model by the weaver. If a corresponding configuration already ex-
ists in cache, then it is directly reused. Otherwise, all the aspect models corresponding
to the derived variability model are actually woven. Since all the configurations cannot
be validated at design-time, all the woven configuration are checked at runtime. In a
configuration is valid, it is submitted to the causal link component, to drive the dynamic
reconfiguration. Otherwise, the weaver informs the reasoner that this particular config-
uration is invalid, which updates the constraints of the variability model in order not to
derive this configuration anymore.

ECA

Reasoner
Weaver Checker

variability

context

reasoning

variability architecture

architecture

Config.

Cache

architecture

Goal

Reasoner

variability

context reasoning

Figure 6.5: Runtime Architecture for Complex Adaptive Systems

This configuration of the adaptation loop combines several reasoning paradigms and
is able to weave and validate configurations at runtime. This configuration is thus well-
adapted to complex adaptive systems that cannot be designed in extension and that can-

118
CHAPTER 6. A MODEL-ORIENTED AND CONFIGURABLE ARCHITECTURE TO

SUPPORT DYNAMIC VARIABILITY

not be fully validated at design-time.

6.3 Discussion

This reference architecture supports the different contributions presented in the previous
chapters of this part. It can be used at design-time (for simulation purpose) or at runtime
to support the dynamic adaptation process. Indeed, it mainly manipulates design models,
even at runtime. This architecture is very modular and it can be configured into different
ways depending on the complexity of the DAS it has to manage. This architecture has
been employed by different users to realize various case studies, as described in the next
chapter.

119

Chapter 7

Validation: Application to 2 Case
Studies

Contents

7.1 Objectives . 119

7.2 Validation on a Crisis Management System 120

7.2.1 Design of the Crisis Management System 120

7.2.2 Some Aspect Models of the Crisis Management System 122

7.2.3 Comparative Study of SmartAdapters V1 and V2 123

7.3 Validation on EnTiMid . 128

7.3.1 Scenario . 128

7.3.2 Results . 128

7.3.3 Discussion . 129

7.1 Objectives

In this Chapter, we apply our approach to two different case studies (in addition to the
running example (D-CRM) that was presented in the previous chapter). The first case
study is conducted by an industrial partner of the DiVA European project. The second
one is currently incubated in the academic world and may be industrialized in a near
future. It is important to note that these 2 case studies (+ the D-CRM presented along the
previous chapters) are not conducted by people involved in the development of the tools
supporting the work described in this thesis. This is an important remark: this means that
the tools developed in the context of this thesis (and more largely, the tools developed
within the DiVA project) are actually usable by industrial and academic people with no
insight of these tools.

120 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

We illustrate the design and aspect weaving steps on the first case study, since we
only have access to the design artifacts of this case study i.e., we cannot run the system
ourself to perform experiments. The model-driven dynamic reconfiguration will thus be
validated on the second case study developed within the INRIA Triskell Team.

The objectives of this validation are to evaluate:

• The modeling step (variability, context, reasoning). In particular, we will evaluate if
this modeling step is able to tame the explosion of the number of artifacts a designer
has to specify to describe and engineer a DAS.

• The weaving of aspect models. In particular, we will evaluate the expressiveness of
SmartAdapters (is it able to automatically produce woven models that make sense
for a designer), its performances and its scalability (is it able to weave a sequence of
aspects in a reasonable time).

• The model-driven dynamic adaptation process. In particular, we will evaluate its
performances.

7.2 Validation on a Crisis Management System

The Crisis Management system is a critical system currently developed by Thales1 in the
context of the DiVA project. The objectives of the Crisis Management system is to handle
crisis situations in an airport (e.g., crash of an airplane on a runway). This application runs
on ServiceMix2 an open-source ESB (Enterprise Service Bus) by the Apache foundation,
based on the Felix/Karaf OSGi runtime3.

7.2.1 Design of the Crisis Management System

This sub-section describes the different design models of the crisis management system.

Variability

Figure 7.1 shows the variability of the crisis management system. This system should
for example be able to connect to several external organizations, such as Hospitals, Fire
department, etc using different notification and planning strategies.

This variability model (5 Dimensions, 20 variants) leads to 30720 possible configura-
tions4, and 943,687,680 possible transitions5 among these configurations.

1http://www.thalesgroup.com
2http://servicemix.apache.org
3http://felix.apache.org/site/apache-felix-karaf.html
425*3*3*25*5 = 30,720
530,720*30,719 = 943,687,680

http://www.thalesgroup.com
http://servicemix.apache.org
http://felix.apache.org/site/apache-felix-karaf.html

CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES 121

Figure 7.1: Variability of the Crisis Management System

Environment

Figure 7.2 shows the specification of the environment for the crisis management system.
The important aspects of the context are the alert level, the type of crisis (fire, weather,
etc), if there are damages or victims, etc.

Reasoning

Figure 7.3 illustrates some basic rules that filters the variability depending on the context.
The connection to external organizations is very specific to the context: each variant of the
organization dimension is associated with an available and a require rule. In other words,
there is an equivalence between some context fragments and the choice of the organiza-
tions. Since the crisis management system is a critical system, the designers intensively
rely on ECA-like rules, so that they can have control on the choice of the variants of the
system. 20 ECA-like rules6 are sufficient to describe obvious adaptation rules.

However, the designers also use higher level goals to fully design the adaptation logic
of their system, by defining impacts and priority rules. Figure 7.4 illustrates the impact of

6if we consider that an available rule and a require rule with the same parameters define a single equivalent
rule.

122 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

Figure 7.2: Environment of the Crisis Management System

the variants on QoS properties.
Figure 7.5 shows the different priority rules responsible for defining the goals of the

system according to the context. 8 rules are sufficient to describe the goals of the system.

7.2.2 Some Aspect Models of the Crisis Management System

In this sub-section, we illustrate some of the aspect models that refine the variants of the
variability model. The log aspects are very similar to the aspect presented in Section 4.4.
The fire planner aspect, illustrated in Figure 7.6, is also quite similar to the log aspect. It
basically consists in linking the 3 ports provided by the fire planner component to any
component that require these 3 ports. The fire planner component is unique i.e., it will
be introduced only once, even in the case of multiple join points. In the pointcut, all the
required ports are associated to a single component. This means that a component of the
base model can match this component only if it requires (at least) all these 3 ports.

A more interesting aspect is the fire department aspect, which is responsible for con-
necting the system with an external organization (fire department) using a SOAP channel
and a SMTP channel. The advice model is composed of 3 components, with some bind-
ings among them. The two channel components are connected to any component that
can push information the channel can manipulate. They are also connected to another
component that can receive feedback from the two channel components.

Figure 7.8 illustrates one possible configuration of the crisis management system. The
base model is initially composed of 2 components: ThinkingTool and ContextManager.
Then, two planners (FirePlanner and TacticalPicturePlanner) are woven. Finally, the as-
pect associated with the fire department is woven. As illustrated in Figure 7.7, the advice
is composed of three unique components: FireDeptFilter, FireSOAPChannel and FireSMT-
PChannel, as well as some bindings that connect these components. The pointcut is com-

CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES 123

Figure 7.3: ECA-like rules of the Crisis Management System

posed of two components, leading to two overlapping join points:

1. Any → TacticalPicturePlanner; Another → ThinkingTool

2. Any → FirePlanner; Another → ThinkingTool

These two overlapping join points are seamlessly handled by the default scoping strat-
egy associated with the bindings. Without this strategy, the bindings between the *Channel
components and the ThinkingTool component would be duplicated, leading to an erro-
neous configuration.

7.2.3 Comparative Study of SmartAdapters V1 and V2

In this subsection we compare the initial version of SmartAdapters, with the newly de-
veloped one, on a real-life scenario consisting of 5 configurations (see Appendix B.1). The
new version of SmartAdapters totally outperforms the old one and is able to weave all
the configurations in less than one second. The simplest configuration (Before Crisis: 3
aspects and 4 join points in total) is woven in less than 300 ms (163.9 times faster than V1),
while the most complex configuration (Fire Spreads: 9 aspects and 32 join points in total)
is woven in less than 900 ms (649.6 times faster than V1).

An important result illustrated by Figure 7.9 is that the time needed to weave an aspect
is almost constant (100 ms), whatever the number of aspects. In other words, the size
of the base model seems to have a very limited impact on the time needed to weave
an aspect. This new version of SmartAdapters is faster and much more scalable than

124 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

Figure 7.4: Impacts of the variants of the Crisis Management System on QoS properties

Figure 7.5: Goals of the Crisis Management System

the previous one in which the average time to weave an aspect is well correlated to the
number of aspects to weave and the number of join point to detect.

CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES 125

Figure 7.6: The Fire Planner aspect

Figure 7.7: The Fire Department Aspect

126 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

Figure 7.8: A typical configuration of the Crisis Management System

CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES 127

0

20

40

60

80

100

120

1

3; 4
2

6; 16
3

8; 26
4

9; 32
5

6; 16 #Aspects; #Join points

#Aspects

#Join points

V1/#Aspects (s)

V2/#Aspects (ms)

Figure 7.9: Performances of SmartAdapters V1 and V2 for the Crisis Management system

128 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

7.3 Validation on EnTiMid

EnTiMid [105, 116, 115]7 is a middleware for Home-Automation systems incubated by the
INRIA research center. The goal of EnTiMid is to assist elderly and/or disabled people in
their everyday life by automating some tasks in their homes (Ambient Assisted Living or
AAL). This application runs on Felix/Karaf on a MSI Wind8 with a touch screen.

7.3.1 Scenario

The scenario we propose to illustrate is the following (see Figure 7.10):

1. Initial Deployment: the system is deployed during the day, and configured to meet
the requirement of the elderly person living in the intelligent house. In this configu-
ration, the elderly person can send emergency messages via SMS to a control center
by using a simple device with only one button. While the SMS is sent, the person is
notified via a device equipped with text-to-speech capabilities. In this configuration,
the system is composed of 18 components (OSGi bundles or simple components in
memory) and 9 bindings among these components.

2. Next two days:

(a) Night: when the night falls, or more precisely when the light detector sends
values lower than a given threshold, the application is reconfigured. The emer-
gency feature is still active. In addition, some lights of the flat are switched on
in the case of an emergency, so that the flat will be sufficiently lit when the med-
ical staff arrives. In the case of a false positive emergency message (e.g. when
the elderly person can answer the phone), the lights can be remotely switched
off using the XMPP protocol. In this configuration, the system is composed of
20 components and 18 bindings among these components.

(b) Day: when the day arises, the system is reconfigured into the initial configura-
tion (step 1). Then, step 2 iterates one more time.

(c) Day + nurse visiting: a nurse arrives to check the status of the patient

(d) Day (after the nurse has left)

This scenario has been publicly demonstrated at AOSD’10 [107].

7.3.2 Results

The results of this experiments are illustrated in Figure 7.11 (see Appendix B.2 for the
precise times). During the initial configuration, all the components needs to be deployed.

7“en ti” means “at home” in brezhoneg, the language (not so) spoken in Britanny.
8CPU: Intel Atom 230@1.6GHz, RAM: 1Gb and OS: Ubuntu 9.10 (Linux kernel: 2.6.31-17-generic)

CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES 129

1 2-a) 2-b) 2-c) 2-d) 2-a) 2-b) 2-c) 2-d)

Figure 7.10: A typical AAL scenario

In particular, all the components that need to be wrapped into OSGi bundles have to be
compiled and packaged at runtime. This explains the rather long reconfiguration time of
step 1: 5.75 seconds (not shown in the graphic). During the first reconfiguration (day →
night, step 2-a)) all the already deployed components are reused. In addition, the compo-
nent responsible for the lights has to be compiled, packaged and properly deployed and
connected to other components. This is realized in less than 400 ms. The next 3 recon-
figurations (steps 2-b), 2-c) and 2-d)) are much more fast. Indeed, we maintain a cache of
pre-generated components (jar files) that are directly reused, with no need to compile and
package them. The next 4 reconfigurations (corresponding to the second iteration of step
2) are also reasonably fast.

When the cache of components is initialized (after the first iteration of step 2-a)) the
average reconfiguration time is about 60 ms.

For each reconfiguration, we first perform a model comparison. This model com-
parison takes an almost constant time of 430 ms to compare models with about 20 com-
ponents. This comparison step is executed before the actual reconfiguration to plan the
reconfiguration (i.e. instantiate the reconfiguration commands). It thus delays the actual
reconfiguration of the system but does not impact the (un)availability of some compo-
nents during dynamic reconfiguration.

7.3.3 Discussion

Our Model-Driven dynamic adaptation process is obviously less efficient (w.r.t. to the time
needed to actually reconfigure an application) than hard-coded reconfiguration scripts,
for several reasons:

1. We systematically perform a global model comparison between the source and the

130 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

0

50

100

150

200

250

300

350

400

450

500

1 2-a) 2-b) 2-c) 2-d) 2-a) 2-b) 2-c) 2-d)

Comparison

Reconfiguration

Avg. Comp.

Avg. Reconf.

Figure 7.11: Time (in ms) spent in Configuration Comparison and Actual Reconfiguration
after the initial deployment

target configuration to determine all the actions we need to reconfigure the system.

2. Some components (embedded into OSGi bundles) are compiled, packaged and de-
ployed at runtime.

However, these two drawbacks have significant advantages, and can easily be mini-
mized:

1. The model comparison prevents architect from writing low-level and error-prone
reconfiguration scripts. Instead, the system automatically computes a safe recon-
figuration script that takes care of the life-cycle of components. It is important to
note that this model comparison does not increase the actual dynamic reconfigura-
tion time, it simply delays the reconfiguration. In other words, it does not impact
the availability of services. Moreover, this model comparison can be performed by
a third-party system (more powerful than a MSI Wind), which would return a list
of reconfiguration actions. Indeed, each configuration of EnTiMid is serialized in
about 30 Kb (only a few Kb if zipped) so that it can be quickly transmitted on a

CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES 131

network. Finally, as we discussed in Section 4.7, it could be possible to avoid this
comparison, by making the causal link specific to a given aspect model weaver (e.g.
SmartAdapters), which would instantiate the reconfiguration commands during the
weaving.

2. As we have seen in our experiment, the fact that an OSGi component is already
available in cache significantly improves the performances of the reconfiguration
process. The cache of OSGi components can easily be initialized by a component
that iterates on a set of configurations and periodically (e.g. every 5 or 10 seconds)
reconfigures the application with the next configuration. This way, it is possible to
initialize the cache in a few minutes after the installation of EnTiMid. Moreover, the
compiling and packaging of a component that would not be present in cache can
also be externalized to a third system that would simply return the jar file of the
required component.

132 CHAPTER 7. VALIDATION: APPLICATION TO 2 CASE STUDIES

133

Part III

Conclusion and Perspectives

135

Chapter 8

Conclusion

This thesis presented a Model-Driven and Aspect-Oriented approach to tame the com-
plexity of adaptive systems [105, 147]. Following the recent trend of models@runtime [114,
18], this approach leverages models both at design-time and at runtime to support the
dynamic variability of complex adaptive systems. We use various Domain-Specific Mod-
eling Languages to capture the different facets of an adaptive system:

1. Variability: describes the different features of the system, and their natures (options,
alternatives, etc)

2. Environment/Context: describes the relevant aspects of the context we want to
monitor (environment), as well as the current context.

3. Reasoning: describes when the system should adapt. It basically consists in defin-
ing which features (from the variability model) to select, depending on the current
context.

4. Architecture: describes the configuration of the running system in terms of archi-
tectural concepts.

The two keys of this thesis to tame dynamically adaptive systems are abstraction and
modularization. Models conforming to these metamodels are available both at design-time
(prior to the initial deployment) and runtime; offline and online (see Definitions in Sec-
tion 5.5). This totally blurs the traditional boundary between design-time and runtime.
An important point is that models embedded at runtime are really mirrors of what really
happens in the running system. We have shown that it is possible to work on copies of
these models (which are independent of the running system) and to re-synchronize these
copies with the reality to actually adapt the running system. In other words, our approach
makes it possible to perform offline activities such as continuous design or prediction,

136 CHAPTER 8. CONCLUSION

while the system is running, but independently from it. The results of these offline activi-
ties can then feed online activities, which can reuse already computed results to improve
the performances of the dynamic adaptation.

To prevent the designers from specifying all the possible configurations of an adap-
tive system, we leverage Aspect-Oriented Modeling techniques and especially the Smar-
tAdapters [18] approach. We refine each feature of the adaptive system into an aspect
model (a fragment of architecture). This way, it is possible to automatically derive a huge
set of architectures by combining a relatively small set of aspects. Current AOM weavers
are supposed to be used at design-time, where performance issues are not critical. How-
ever, this becomes an important issue at runtime, especially when the weaving should
be performed online. Moreover, current AOM weavers do not provide enough expres-
siveness to be able to weave cross-cutting aspect models in a consistent and meaningful
way. We thus extend the SmartAdapters weavers we developed with the original idea
of advice sharing that let designers specify how the advice should be managed when the
pointcut matches several join points. We also significantly improved the performances
of this weaver, especially the performance of the join point identification. In our imple-
mentation, aspect models are now compiled into scripts that can directly be applied at
runtime, with no need to run an interpreter or to map aspects to another formalism.

Let us conclude by positioning our contributions w.r.t. the questions asked in the
introduction Chapter (Section 1.2):

1. How to abstract the actual execution context into a high-level model, which offers a solid
basis for reasoning and decision making, and hides irrelevant details?
We adopt a step-wise approach to progressively abstract the real execution context
(a flow of data provided by probes) into a model of the context. In particular, we
extend WildCAT so that it is able to monitor models. This way, we can build inter-
mediate context models instead of bridging the gap in one step with very complex
queries. We do not impose any specific techniques to produce these intermediate
context models. The most abstract context model is a qualitative context model,
which allows designers to define the adaptation logic in a simplified manner be-
cause it totally hides technical details (how the monitoring is actually performed).

2. How to efficiently reason on the current context in order to find a well-suited set of features,
with no need to enumerate all the possible contexts or to enumerate numerous rules?
The actual adaptation logic is fully defined on the most abstract context model, mod-
eled at design-time. We propose two kinds of formalisms to define the adaptation
logic: (i) simple rules that directly relate context fragments to the activation/deac-
tivation of features (rather similar to human reflex), and (ii) high level goals that
the system should optimize based on the impact of the features on QoS properties
(rather similar to human thinking). Each reasoning component has well defined in-
terfaces. It takes as input a variability model, the current model of the context and
a model describing the adaptation logic (simple rules, goals, etc). It produces a

CHAPTER 8. CONCLUSION 137

pruned variability model where some variation points have been fixed. It is thus
possible to chain several reasoning components to progressively derive a variability
model that corresponds to a single product. The simple rules are rather intuitive to
define and easy to understand in isolation and they can efficiently prune the vari-
ability model. However, it rapidly becomes difficult to specify the whole adaptation
logic using these simple rules because it would lead to a large set of rules they can
possibly interact. Goals are particularly well suited to describe QoS-based adapta-
tion logic with a small set of optimization rules. However, the runtime optimization
of goals could be rather costly. The combination of several reasoning formalisms
offers a good trade-off between performances, comprehension and maintainability.

3. How to avoid the adaptive system to continuously oscillates when the context slightly oscil-
lates around critical thresholds?
The trade-off between stability and reactivity is very difficult to achieve and really
depends on the type of adaptive system. This is why we do not impose one par-
ticular technique. It is for example possible to use Complex-Event-Processing tech-
niques or hysteresis cycles (to improve the stability), simple thresholds (to improve
the reactivity), or a combination of different techniques.

4. How to actually build the configuration (architecture) corresponding to a set of features,
with no need to fully specify all the possible configuration beforehand, while preserving a
high degree of validation?
Each feature of the system is refined by an aspect model, which is a modulariza-
tion unit that embeds all the information needed so that it can easily be composed
with a base model (which contains all the mandatory elements). Since we are in-
terested in component-based reconfiguration, an aspect model is a fragment of ar-
chitecture. In particular, we rely on the SmartAdapters weaver we developed at
the very beginning of this thesis. We extend this weaver with the original notion
of advice sharing, which allows designer to describe expressive architectural as-
pects that yield to meaningful woven models. SmartAdapters combines declarative
and imperative techniques to model the aspect models. This prevents designers
from writing low-level scripts needed to integrate their aspects. Our latest imple-
mentation of SmartAdapters leverages model-driven and generative techniques to
significantly improve the performances of the aspect model weaving. The valida-
tion chapter shows that each aspect model can be woven in an almost constant time
of 100 ms in realistic case studies. Designers never specify the whole possible set
of configurations. Instead, this huge set is described in intention by the variabil-
ity model and each configuration is automatically built when needed. When a new
woven model is produced, the running system is not directly adapted. The reflec-
tion model (which abstracts the running system) is never directly manipulated by
the adaptation chain. Instead, the dynamic adaptation chain produces independent
woven models that represent the configuration that the running system should mi-

138 CHAPTER 8. CONCLUSION

grate to. Before actually reconfiguring the running system, this produced model is
first validated to ensure its consistency. This way, the running system will never
switch towards an erroneous configuration.

5. How to plan and executes the changes from the current configuration to a newly produced
configuration, with no need to write by hand low-level platform-specific reconfiguration
scripts?
We rely on existing reflection mechanisms to improve them by providing a higher
degree of validation and confidence during the dynamic adaptation process. The
running system is abstracted as a model, which currently captures the structure of
the system. If a model produced (by aspect weaving) by the adaptation chain is
valid, the migration process is then fully automated. We compare the current reflec-
tion model to the new model to determine a sequence of atomic actions needed to
actually reconfigure the system, thus preventing architects from writing low level
scripts using the reflection API of the platform.

The approach presented in this thesis is effectively supported by tools developed in
the context of the DiVA project. These tools are currently used by industrial partners
to implement their case studies. Preliminary feedback from our industrial partners are
promising and indicate that the approach and associated tools are actually usable in an
industrial context.

139

Chapter 9

Perspectives

Contents

9.1 Dual-View Aspects to Support Behavioral Adaptation and Validation 139

9.2 Bootstrapping the Adaptation Loop to Support Evolution 140

9.3 Advanced Model Composition to Domain-Driven Dynamic Adaptation 141

9.4 From Requirements to Software and Hardware Dynamic Adaptation . 143

9.1 Dual-View Aspects to Support Behavioral Adaptation and

Validation

The recent emergence of Aspect-Oriented Multi-View Modeling [85] would allows us to
seamlessly extend our approach with more advanced validation and adaptation capabil-
ities. The basic idea would be to refine the variants of the variability model using dual-
view aspects. Each aspects would have:

• A Structural view, describing the components and bindings of the aspects, which is
currently the view we have.

• A Behavioral view, describing the behavior of the aspects, probably using a state-
based model.

This would allows us to build the whole structure and the whole behavior of each
configuration in an incremental. In addition to the structural checking, we could per-
form behavioral validation: detection of live-locks and dead-locks, verification of tempo-
ral properties [166], etc. In addition, this would make it possible to dynamically modify
the behavior of components [8], in a controlled way. However, we should probably use
a dedicated aspect model weaver in order to fully consider the semantics of behavioral
models [86, 161].

140 CHAPTER 9. PERSPECTIVES

9.2 Bootstrapping the Adaptation Loop to Support Evolution

As we have seen in Chapter 6, the reference architecture supporting our different con-
tributions is implemented as a component-based system. We actually use a causal link
component to deploy our adaptation loop, which is responsible for dynamically adapting
the business system. It would be technically straightforward to use a whole adaptation
loop (and not just the causal link component) to deploy, and even dynamically adapt,
another adaptation loop. This would lead to a 3-layered architecture, as illustrated in
Figure 9.1:

• Business Layer (right): This layer describes the architecture of the business ap-
plication. This layer is managed by the adaptation layer, which can dynamically
reconfigure the business architecture (addition/removal of components/bindings)
depending on the monitored context.

• Adaptation Layer (middle): This layer is responsible for managing the business
layer. It basically consists of a MAPE loop we usually found in most adaptive sys-
tems [81, 82]. This MAPE loop is fed with knowledge (mainly variability and rea-
soning models) to determine when and how to adapt the business architecture. The
novelty is that this loop is dynamically adaptive and managed by the evolution
layer.

• Evolution (Meta-Adaptation) Layer (left): This layer is responsible for managing
the adaptation layer i.e., to reconfigure the MAPE loop that manages the business
system. This layer is also a MAPE loop, but it does not evolve at runtime1. It mon-
itors the requirements of the business architecture. More precisely, it observes the
knowledge of the adaptation layer and can decide to dynamically reconfigure the
adaptation layer to take full advantage of this new knowledge.

We envision that the ability to dynamically adapt an adaptation loop would ease the
evolution of a DAS. For example, let us consider that the D-CRM system has been de-
signed only with goal optimizations (because the adaptation is mainly driven by QoS
properties). In this initial version, it does not make sense to use an ECA reasoner in the
adaptation loop, since this component would be totally useless. We thus only deploy a
goal- based reasoner in the adaptation loop.

After a few weeks, many users of the D-CRM complain because they cannot always
access the resources of the server when they are using the external WiFi access points, the
guest WiFi when they visit clients, or public WiFi access points. This is due to the use of a
VPN over IPSec, whose packets are sometimes black-listed by firewalls.

The communication with the server is an important requirement of the D-CRM. The
engineers developing and maintaining the D-CRM thus install a VPN over SSL (Secure

1Even if it could of course be possible to define a meta-meta-adaptation layer.

CHAPTER 9. PERSPECTIVES 141

c1

c3 c4

c2

Business System

A

P E

M

Adaptation Layer

A

P E

M

Evolution Layer
(Meta-Adaptation Layer)

monitor

modify

monitor

modify

Requirements

KnowledgeKnowledge

Figure 9.1: An Adaptation Loop managing Another Adaptation Loop, which itself man-
ages a business system

Sockets Layer) server. The security feature related to the communication is now an alter-
native: IPSec or (exclusive) SSL. However, the choice of one or the other variant is not
driven by QoS properties. By default, the engineers prefer the IPSec solution, since it is
more customizable. This naturally leads to the following rules:

• if connection requested then use VPN over IPSec

• if VPN over IPSec fails then use VPN over SSL

The rules can be very easily expressed with the ECA paradigm. However, no ECA rea-
soner is available in the current adaptation rule. Since the adaptation layer is managed by
the evolution layer, the introduction of ECA rules automatically triggers the introduction
of an ECA reasoner in the adaptation layer. The additional rules (expressed in another
paradigm) can thus be seamlessly integrated.

9.3 Advanced Model Composition to Domain-Driven Dynamic

Adaptation

One of the main contributions of this thesis is to adopt a DSPL approach [69, 105, 104] and
to refine and compose the dynamic features of the system using Aspect-Oriented Model-
ing techniques [88, 77]. However, aspect models are defined in terms of components and
bindings, which is still a rather low level of abstraction.

142 CHAPTER 9. PERSPECTIVES

We have investigated more advanced composition mechanisms to raise the level of
abstraction in the context of dynamic adaptation [110].

For example Figure 9.2 shows how we can map access control concepts to architectural
concepts. The composition of the access control concepts with the architectural concepts
can be implemented in Kermeta.

RoleYUserX
Resource

Z

(any user of) RoleY can access the actionW of the ResourceZ

actionWactionW

UserX (of RoleY) can access the actionW of the ResourceZ

Resource

X

Business

Component

1

Business

Component

2

op1(…)

op2(…)

op3(…)

op1(…)

op2(…)

op3(…)

ResourceX

action1 op1(…)

action2 op2(…)

action3 op3(…)

businessComponents = {BusinessComponent1 ; BusinessComponent2}

Business

Component

3

Delegator

Delegatee

RoleX

RoleY

Delegator delegates his role to Delegatee

Permission Mapping Delegation Mapping

Resource Mapping

Figure 9.2: Mapping Permissions, Delegations and Resources (Access Control concepts)
to Architectural Concepts

The basic idea is to generate several layers of components, whose implementation is
straightforward and fully generated, between the users and the resources depending on
an access control policy. These components and bindings makes is possible to adminis-
trate very finely and dynamically the access control policy.

At the end, we still rely on reconfiguration of components and bindings. However,
the architecture and the reconfigurations are totally inferred from higher-level specifica-
tion (access control policies). Other domains such as GUI or workflows could probably
be mapped to architecture, making it possible to apply the same kind of approaches to
develop more flexible GUIs and workflows.

CHAPTER 9. PERSPECTIVES 143

9.4 From Requirements to Software and Hardware Dynamic Adap-

tation

In the context of the DiVA project, we are currently developing a tool supported method-
ology, which integrates the work carried out in this thesis, for engineering adaptive sys-
tems. This methodology starts from the requirements, expressed in natural language
(plain English). Lancaster University has developed some tools (EA-Miner [137, 138] and
ArborCraft [4, 117]) that process natural language to identify variability concerns and
early aspects2. From this analysis, it is possible to populate initial design-models that
should then be completed by designers. The use of other requirement engineering tech-
niques, such as goal models [62, 163, 36] could probably allows populating initial design
models more thoroughly by identifying adaptation rules and goals the system should
optimize.

In addition to bridging the gap between requirement and design, we also want to
bridge the gap between software adaptation and hardware adaptation. Indeed, mod-
ern hardware system also provide techniques for reconfiguration. For example, FPGA
(Field-programmable gate array) [72]3 can be configured and reconfigured via an HDL
(Hardware Description Language), at a very fine grain (i.e. wiring of AND/OR logic
gates). Having a an approach that leverage both software and hardware reconfiguration
could be really useful in the context of sensor networks e.g., to predict flood [74, 75] or to
prospect offshore resources, etc.

2See Early Aspects workshops: http://www.early-aspects.net/
3see also the FPGA conferences since 2001, and the websites of the two main manufacturers of FPGA:

Xilinx http://www.xilinx.com/ and Altera http://www.altera.com/

144 CHAPTER 9. PERSPECTIVES

145

List of Figures

2.1 The MOF hierarchy . 41
2.2 A Simple Adaptive System, as defined by Zhang and Cheng [165] 42
2.3 Variability and Transition Diagram in the Genie approach 44
2.4 A Map of the presented approaches . 60

3.1 An overview of the Metamodels and Models 66
3.2 Variability Metamodel . 68
3.3 Variability model of the D-CRM . 69
3.4 Environment and Context Metamodel . 70
3.5 Environment Model of the D-CRM . 70
3.6 Metamodel for expressing ECA-like rules . 71
3.7 ECA-like rules of the D-CRM . 72
3.8 Metamodel for expressing Goal-based rules 73
3.9 Impacts of variants on QoS properties . 74
3.10 Context-dependent Optimization Rules . 75
3.11 Architecture Metamodel (main concepts) . 76

4.1 Refining features into Aspect Models and Derivation Process 79
4.2 SmartAdapters Core Metamodel . 81
4.3 A Simple Cache Aspect . 81
4.4 Weaving the Simple Cache Aspect . 82
4.5 Weaving the Simple Cache Aspect: Expected result. 82
4.6 A composite Architecture . 83
4.7 A composite Architecture, with the logging aspect badly woven. 83
4.8 A composite Architecture, with the logging aspect correctly woven. 84
4.9 Hierarchy of model types handled by SmartAdapters 85
4.10 Extension of the SmartAdapters to Handle Advice Sharing Strategies 86
4.11 Logging Aspect revisited with a scoping strategy 86
4.12 Overlapping join points: How advice sharing and set matching can help . . 87
4.13 The metamodel of SmartAdapters . 89

146 LIST OF FIGURES

4.14 Conceptual Architecture of SmartAdapters V1 90
4.15 SmartAdapters V2, at design-time . 91
4.16 SmartAdapters V2, at runtime . 92

5.1 Design models at runtime: Online and Offline Activities 97
5.2 2 Different ways of Monitoring . 100
5.3 Higher-Order Transformation: From the Model to the Reality 101
5.4 Model Comparison between the Reflection Model and a Target Model . . . 105
5.5 Hierarchy of Reconfiguration Commands . 106
5.6 Start/Stop Order if there is no cycle . 107
5.7 Cycle with a weak link . 108

6.1 Runtime Architecture to Support DSPLs . 113
6.2 Interactions between the components . 114
6.3 Generated GUI to simulate the context . 115
6.4 Runtime Architecture for Small Adaptive Systems 116
6.5 Runtime Architecture for Complex Adaptive Systems 117

7.1 Variability of the Crisis Management System 121
7.2 Environment of the Crisis Management System 122
7.3 ECA-like rules of the Crisis Management System 123
7.4 Impacts of the variants of the Crisis Management System on QoS properties 124
7.5 Goals of the Crisis Management System . 124
7.6 The Fire Planner aspect . 125
7.7 The Fire Department Aspect . 125
7.8 A typical configuration of the Crisis Management System 126
7.9 Performances of SmartAdapters V1 and V2 for the Crisis Management system127
7.10 A typical AAL scenario . 129
7.11 Time (in ms) spent in Configuration Comparison and Actual Reconfigura-

tion after the initial deployment . 130

9.1 An Adaptation Loop managing Another Adaptation Loop, which itself man-
ages a business system . 141

9.2 Mapping Permissions, Delegations and Resources (Access Control concepts)
to Architectural Concepts . 142

147

List of Tables

2.1 Summary of features of adaptive execution platforms 40
2.2 Summary of features of model-based approaches 51
2.3 An example of Join points in AoA. Columns containing an empty sign (JP3

and JP4) are not join points. 57
2.4 Summary of features of SoC approach . 61

4.1 4 Join points defining two scopes. 87

B.1 Performances of SmartAdapters V1 and V2 177
B.2 Comparison and Reconfiguration Times . 178

148 LIST OF TABLES

149

Bibliography

[1] Event Stream Intelligence with Esper and NEsper. Codehaus. Website:
http://esper.codehaus.org/.

[2] The Fractal Project. OW2 Consortium. Website: http://fractal.ow2.org/.

[3] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK programming
language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[4] Vander Alves, Christa Schwanninger, Luciano Barbosa, Awais Rashid, Peter
Sawyer, Paul Rayson, Christoph Pohl, and Andreas Rummler. An Exploratory
Study of Information Retrieval Techniques in Domain Analysis. In SPLC’08: 12th
Software Product Line Conference, pages 67–76, Washington, DC, USA, 2008. IEEE
Computer Society.

[5] M. Anastasopoulos and D. Muthig. An evaluation of aspect-oriented programming
as a product line implementation technology. In ICSR’04: 8th International Conference
on Software Reuse: Methods, Techniques and Tools, pages 141–156, Madrid, Spain, 2004.

[6] Sven Apel, Thomas Leich, and Gunter Saake. Aspectual mixin layers: aspects and
features in concert. In ICSE ’06: Proceedings of the 28th international conference on
Software engineering, pages 122–131, New York, NY, USA, 2006. ACM.

[7] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An Overview of CaesarJ. In
Transactions on Aspect-Oriented Software Development I, volume 3880 of Lecture Notes
in Computer Science, pages 135–173. Springer, 2006.

[8] Cyril Ballagny, Nabil Hameurlain, and Franck Barbier. MOCAS: A State-Based
Component Model for Self-Adaptation. SASO’09: 3rd IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, pages 206–215, 2009.

[9] E. Baniassad and S. Clarke. Theme: An Approach for Aspect-Oriented Analysis
and Design. In ICSE’04: 26th International Conference on Software Engineering, pages
158–167, Washington, DC, USA, 2004. IEEE Computer Society.

150 BIBLIOGRAPHY

[10] Thaís Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic
reconfiguration in component-based systems. In EWSA’05: 2nd European Workshop
on Software Architecture, Pisa, Italy, volume 3527 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2005.

[11] J. Bayer, S. Grard, O. Haugen, J. Mansell, B. Moller-Pedersen, J. Oldevik, P. Tessier, J.-
P. Thibault, and T. Widen. Software Product Lines, chapter Consolidated Product Line
Variability Modeling, pages 195–242. Number ISBN: 978-3-540-33252-7. Springer
Verlag, 2006.

[12] N. Bencomo, G. Blair, G. Coulson, and T.V. Batista. Towards a Meta-Modelling
Approach to Configurable Middleware. In RAM-SE’05: Workshop on Reflection, AOP,
and Meta-Data for Software Evolution at ECOOP’05, Glasgow, UK, July 15, 2005, pages
73–82.

[13] N. Bencomo, G. Blair, C. Flores, and P. Sawyer. Reflective Component-based Tech-
nologies to Support Dynamic Variability. In VaMoS’08: 2nd Int. Workshop on Vari-
ability Modeling of Software-intensive Systems, Essen, Germany, January 2008.

[14] N. Bencomo, P. Grace, C. Flores, and D. Hughesand G. Blair. Genie: Supporting the
Model Driven Development of Reflective, Component-based Adaptive Systems. In
ICSE 2008 - Formal Research Demonstrations Track, 2008.

[15] Nelly Bencomo. Supporting the Modelling and Generation of Reflective Middleware Fam-
ilies and Applications using Dynamic Variability. PhD thesis, Lancaster University,
2008.

[16] Nelly Bencomo. On the Use of Software Models during Software Execution. In
MISE’09: Proceedings of the Workshop on Modeling in Software Engineering, at ICSE’09,
2009.

[17] Nelly Bencomo and Gordon Blair. Using Architecture Models to Support the Gen-
eration and Operation of Component-Based Adaptive Systems. 5525:183–200, 2009.

[18] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@run.time. Computer,
42(10):22–27, 2009.

[19] Gordon Blair, Geoff Coulson, P. Robin, and M. Papathomas. An architecture for
next generation middleware. In Seitz J. Davies N.A.J., Raymond K., editor, IFIP In-
ternational Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware’98), pages 91–206, The Lake District, UK, 1998.

[20] Gordon Blair, Geoff Coulson, Jo Ueyama, Kevin Lee, and Ackbar Joolia. Opencom
v2: A component model for building systems software. In IASTED Software Engi-
neering and Applications, USA, 2004.

BIBLIOGRAPHY 151

[21] Gordon S. Blair, Thierry Coupaye, and Jean-Bernard Stefani. Component-based
architecture: the fractal initiative. Annales des Télécommunications, 64(1-2):1–4, 2009.

[22] J. Boardman and B. Sauser. System of systems - the meaning of of. System of Systems
Engineering, 0:6 pp.–, 2006.

[23] Daniel G. Bobrow, Richard P. Gabriel, and Jon L. White. CLOS in context: the shape
of the design space. pages 29–61, 1993.

[24] J.A. Bondy and U.S.R. Murty. Graph theory with applications. MacMillan London,
1976.

[25] Sara Bouchenak, Nol De Palma, Daniel Hagimont, and Christophe Taton. Auto-
nomic Management of Clustered Applications. In IEEE International Conference on
Cluster Computing (Cluster 2006), Barcelona, Spain, September 2006.

[26] L. Bouzonnet, P.C. David, T. Ledoux, and N. Loriant. WildCAT A Generic Frame-
work for Context-Aware Applications. http://wildcat.ow2.org/.

[27] Fabienne Boyer, Noel Palma, Olivier Gruber, Sylvain Sicard, and Jean-Bernard Ste-
fani. A self-repair architecture for cluster systems. pages 124–147, 2009.

[28] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering
self-adaptive systems through feedback loops. pages 48–70, 2009.

[29] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B. Stefani. The FRACTAL
Component Model and its Support in Java. Software Practice and Experience, Spe-
cial Issue on Experiences with Auto-adaptive and Reconfigurable Systems, 36(11-12):1257–
1284, 2006.

[30] Carlos Cetina, Joan Fons, and Vicente Pelechano. Applying Software Product Lines
to Build Autonomic Pervasive Systems. In SPLC’08: Proceedings of the 2008 12th
International Software Product Line Conference, pages 117–126, Limerick, Ireland, 2008.
IEEE Computer Society.

[31] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic Comput-
ing through Reuse of Variability Models at Runtime: The Case of Smart Homes.
Computer, 42:37–43, 2009.

[32] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Using Feature Models
for Developing Self-Configuring Smart Homes. In ICAS’09: Proceedings of the 2009
Fifth International Conference on Autonomic and Autonomous Systems, pages 179–188,
Valencia, Spain, 2009. IEEE Computer Society.

152 BIBLIOGRAPHY

[33] F. Chauvel, O. Barais, I. Borne, and J-M. Jézéquel. Composition of Qualitative Adap-
tation Policies. In ASE’08: 23rd IEEE/ACM International Conference on Automated
Software Engineering, L’Aquila, Italy, sep 2008.

[34] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A Goal-Based Modeling Approach
to Develop Requirements of an Adaptive System with Environmental Uncertainty .
In MODELS’09: ACM/IEEE 12th International Conference on Model-Driven Engineering
Languages and Systems, Denver, Colorado, USA, oct 2009.

[35] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software engi-
neering for self-adaptive systems: A research roadmap. 5525:1–26, 2009.

[36] Betty H. C. Cheng, Peter Sawyer, Nelly Bencomo, and Jon Whittle. A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive System with
Environmental Uncertainty. In Andy Schrr and Bran Selic, editors, MoDELS’09:
ACM/IEEE 12th International Conference of Model-Driven Engineering Languages and
Systems, volume 5795 of Lecture Notes in Computer Science, pages 468–483, Denver,
Colorado, USA, 2009. Springer.

[37] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-based self-
adaptation in the presence of multiple objectives. In SEAMS ’06: Proceedings of the
2006 international workshop on Self-adaptation and self-managing systems, pages 2–8,
New York, NY, USA, 2006. ACM.

[38] P. Clements and L. Northrop. Software product lines: practices and patterns, volume
0201703327. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[39] P.C. David and T. Ledoux. WildCAT: a generic framework for context-aware ap-
plications. In MPAC’05: 3rd Int. Workshop on Middleware for Pervasive and Ad-hoc
Computing, pages 1–7, New York, NY, USA, 2005. ACM.

[40] P.C. David and T. Ledoux. An Aspect-Oriented Approach for Developing Self-
Adaptive Fractal Components. In SC’06: 5th Int. Symposium on Software Composi-
tion, volume 4089 of Lecture Notes in Computer Science, pages 82–97, Vienna, Austria,
2006.

BIBLIOGRAPHY 153

[41] P.C. David and T. Ledoux. Safe Dynamic Reconfigurations of Fractal Architectures
with FScript. In Proceeding of Fractal CBSE Workshop, ECOOP’06, Nantes, France,
2006.

[42] Pierre-Charles David, Marc Léger, Hervé Grall, Thomas Ledoux, and Thierry Cou-
paye. A multi-stage approach for reliable dynamic reconfigurations of component-
based systems. In DAIS’08: 8th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems, pages 106–111, Oslo, Norway, 2008.

[43] Vegard Delhen and Franck Fleurey, editors. DiVA Deliverable D2.1: Transformation
Framework. 2009.

[44] E.A. Emerson. Temporal and modal logic. Handbook of theoretical computer science,
8:995–1072, 1990.

[45] Betty Cheng et al. Proceedings of the international workshops on software engi-
neering for adaptive and self-managing systems(2005-2009) at icse, 2005-2009.

[46] N. Ferry, S. Lavirotte, J-Y. Tigli, and G. Rey et M. Riveill. Context Adaptative Sys-
tems based on Horizontal Architecture for Ubiquitous Computing . Mobility’09: 6th
International Conference on Mobile Technology, Applications and Systems, Nice, France,
September 2009.

[47] Nicolas Ferry, Vincent Hourdin, Stéphane Lavirotte, Gaëtan Rey, Jean-Yves Tigli,
and Michel Riveill. Models at Runtime: Service for Device Composition and
Adaptation. In 4th International Workshop Models@run.time at Models 2009(MRT’09)
AR=31%, October 2009.

[48] Eduardo Figueiredo, Nélio Cacho, Claudio SantAnna, Mario Monteiro, Uira
Kulesza, Alessandro Garcia, Sergio Soares, Fabiano Ferrari, Safoora Khan, Fernando
Filho, and Francisco Dantas. Evolving software product lines with aspects: an em-
pirical study on design stability. In ICSE’08: 30th International Conference on Software
Engineering, pages 261–270, Leipzig, Germany, may 2008. ACM.

[49] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A Generic Approach For Automatic
Model Composition. In AOM@MoDELS’07: 11th Int. Workshop on Aspect-Oriented
Modeling, Nashville TN USA, Oct 2007.

[50] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and J-M. Jézéquel. Modeling and
Validating Dynamic Adaptation. In 3rd International Workshop on Models@Runtime,
at MODELS’08, Toulouse, France, oct 2008.

[51] F. Fleurey and A. Solberg. A Domain Specific Modeling Language supporting Spec-
ification, Simulation and Execution of Dynamic Adaptive Systems. In MODELS’09:

154 BIBLIOGRAPHY

ACM/IEEE 12th International Conference on Model-Driven Engineering Languages and
Systems, Denver, Colorado, USA, oct 2009.

[52] J. Floch. Theory of Adaptation. Deliverable D2.2, MADAM project, 2006.

[53] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven. Using archi-
tecture models for runtime adaptability. Software IEEE, 23(2):62–70, 2006.

[54] Charles Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

[55] R. France, F. Fleurey, R. Reddy, B. Baudry, and S. Ghosh. Providing Support for
Model Composition in Metamodels. In EDOC’07: 11th Int. Enterprise Computing
Conf., 2007.

[56] Robert France, Franck Fleurey, Raghu Reddy, Benoit Baudry, and Sudipto Ghosh.
Providing support for model composition in metamodels. In EDOC’07 (Entreprise
Distributed Object Computing Conference), Annapolis, MD, USA, 2007.

[57] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste. Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

[58] Erann Gat. Three-layer architectures. pages 195–210, 1998.

[59] Nikolaos Georgantas, Sonia Ben Mokhtar, Yerom-David Bromberg, Valerie Issarny,
Jarmo Kalaoja, Julia Kantarovitch, Anne Gerodolle, and Ron Mevissen. The Amigo
Service Architecture for the Open Networked Home Environment. In WICSA’05:
5th Working IEEE/IFIP Conference on Software Architecture, pages 295–296, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[60] J. Georgas, A. van der Hoek, and R. Taylor. Using Architectural Models to Manage
and Visualize Runtime Adaptation. Computer, 42(9):52–60, 2009.

[61] Holger Giese and Robert Wagner. From model transformation to incremental bidi-
rectional model synchronization . Software and Systems Modeling (SoSyM), 8(1), 3
2009.

[62] H. Goldsby, P. Sawyer, N. Bencomo, B.H.C. Cheng, and D. Hughes. Goal-Based
Modeling of Dynamically Adaptive System Requirements. In ECBS’08: 15th IEEE
International Conference on the Engineering of Computer Based Systems, pages 36–45,
Belfast, Northern Ireland, 2008. IEEE Computer Society.

[63] Greg Goth. Ultralarge systems: Redefining software engineering? IEEE Software,
25:91–94, 2008.

BIBLIOGRAPHY 155

[64] I. Groher and M. Voelter. Using Aspects to Model Product Line Variability. In
EA@SPLC’08: 13th International Workshop on Early Aspects at SPLC, Limerick, Ireland,
2008.

[65] Roy Grønmo, Stein Krogdahl, and Birger Møller-Pedersen. A Collection Operator
for Graph Transformation. In ICMT’09: 2nd International Conference on Theory and
Practice of Model Transformations, pages 67–82, Berlin, Heidelberg, 2009. Springer-
Verlag.

[66] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability in
Software Product Lines. In WICSA ’01: Proceedings of the Working IEEE/IFIP Confer-
ence on Software Architecture, page 45, Washington, DC, USA, 2001. IEEE Computer
Society.

[67] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database re-
covery. ACM Comput. Surv., 15(4):287–317, 1983.

[68] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Proceedings of the interna-
tional workshops on dynamic software product lines (2007-2009) at splc, 2007-2009.

[69] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product
Lines. IEEE Computer, 41(4), April 2008.

[70] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using product line techniques
to build adaptive systems. In SPLC’06: 10th Int. Software Product Line Conf., pages
141–150, Washington, DC, USA, 2006. IEEE Computer Society.

[71] William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. A Case Study in Goal-
Driven Architectural Adaptation. 5525:109–127, 2009.

[72] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour. Dynamic
hardware plugins in an fpga with partial run-time reconfiguration. In DAC ’02: Pro-
ceedings of the 39th annual Design Automation Conference, pages 343–348, New York,
NY, USA, 2002. ACM.

[73] Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, and Michel
Riveill. SLCA, composite services for ubiquitous computing. In Mobility ’08: 5th
International Conference on Mobile Technology, Applications, and Systems, pages 1–8,
Yilan, Taiwan, 2008. ACM.

[74] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappenberger, P. Smith, and
K. Beven. An experiment with reflective middleware to support grid-based flood-
monitoring. Concurr. Comput. : Pract. Exper., 20(11):1303–1316, 2008.

156 BIBLIOGRAPHY

[75] Danny Hughes, Phil Greenwood, Geoff Coulson, Gordon Blair, Florian Pappen-
berger, Paul Smith, and Keith Beven. Gridstix:: Supporting flood prediction us-
ing embedded hardware and next generation grid middleware. In 4th International
Workshop on Mobile Distributed Computing (MDC’06), Niagara Falls, USA, 2006.

[76] Valérie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Françoise Sailhan, Rafik Chi-
bout, Nicole Levy, and Angel Talamona. Developing Ambient Intelligence Systems:
A Solution based on Web Services. Automated Software Engineering, 12(1):101–137,
2005.

[77] P.K. Jayaraman, J. Whittle, A.M. Elkhodary, and H. Gomaa. Model Composition
in Product Lines and Feature Interaction Detection Using Critical Pair Analysis.
In MoDELS’07: 10th Int. Conf. on Model Driven Engineering Languages and Systems,
Nashville USA, Oct 2007.

[78] P.K. Jayaraman, J. Whittle, A.M. Elkhodary, and H. Gomaa. Model Composition
in Product Lines and Feature Interaction Detection Using Critical Pair Analysis.
In MoDELS’07: 10th Int. Conf. on Model Driven Engineering Languages and Systems,
Nashville USA, Oct 2007.

[79] F. Jouault and I. Kurtev. Transforming models with atl. In Satellite Events at the
MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer Science, pages
128–138, Berlin, 2006. Springer Verlag.

[80] Christian Kastner, Sven Apel, and Don Batory. A case study implementing features
using aspectj. In SPLC ’07: 11th International Software Product Line Conference, pages
223–232, Washington, DC, USA, 2007. IEEE Computer Society.

[81] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[82] Jeffrey O. Kephart and Rajarshi Das. Achieving self-management via utility func-
tions. IEEE Internet Computing, 11(1):40–48, 2007.

[83] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G. Griswold. An
Overview of AspectJ. In ECOOP’01: Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 327–353, London, UK, 2001. Springer-Verlag.

[84] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In ECOOP’97: Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programming, volume 1241, pages 220–242, Berlin,
Heidelberg, and New York, 1997. Springer-Verlag.

BIBLIOGRAPHY 157

[85] Jörg Kienzle, Wisam Al Abed, and Klein Jacques. Aspect-Oriented Multi-View
Modeling. In AOSD ’09: 8th ACM international conference on Aspect-oriented software
development, pages 87–98, New York, NY, USA, 2009. ACM.

[86] J. Klein, L. Hélouet, and J-M. Jézéquel. Semantic-based weaving of scenarios. In
AOSD’06: 5th International Conference on Aspect-OrientedSoftware Development, Bonn,
Germany, 2006. ACM.

[87] George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, May 1995.

[88] Ph. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard, O. Barais, and J. M. Jézéquel.
Introducing Variability into Aspect-Oriented Modeling Approaches. In MoDELS’07:
10th Int. Conf. on Model Driven Engineering Languages and Systems, Nashville USA,
October 2007.

[89] Ph. Lahire and L. Quintian. New Perspective To Improve Reusability in Object-
Oriented Languages. Journal Of Object Technology (JOT), 5(1):117–138, 2006.

[90] M. Leclercq, A. Erdem Ozcan, V. Quéma, and J.B. Stefani. Supporting Heteroge-
neous Architecture Descriptions in an Extensible Toolset. In ICSE’07: 29th Int. Conf.
on SoftwareEngineering, pages 209–219, Washington, DC, USA, 2007.

[91] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable dynamic reconfigu-
rations in the fractal component model. In ARM’07: 6th international workshop on
Adaptive and reflective middleware, pages 1–6, Newport Beach, CA, 2007. ACM.

[92] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable Dynamic Reconfigu-
rations in a Reflective Component Model. In CBSE’10: 13th International Symposium
on Component Based Software Engineering, Prague, Czech Republic, 23-25 June 2010,
2010.

[93] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[94] Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit, 1987.

[95] Jeff Magee and Jeff Kramer. Concurrency: state models & Java programs. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

[96] Andrew McVeigh, Jeff Kramer, and Jeff Magee. Using resemblance to support com-
ponent reuse and evolution. In SAVCBS’06: Conference on Specification and verification
of component-based systems, pages 49–56, New York, NY, USA, 2006. ACM.

158 BIBLIOGRAPHY

[97] Mira Mezini and Klaus Ostermann. Variability management with feature-oriented
programming and aspects. In SIGSOFT’04/FSE-12: 12th ACM SIGSOFT international
symposium on Foundations of Software Engineering, pages 127–136, Newport Beach,
CA, USA, 2004. ACM.

[98] Sonia Ben Mokhtar. Semantic Middleware for Service-Oriented Pervasive Computing.
PhD thesis, Universit Pierre et Marie Curie - Paris 6, 2007.

[99] Sonia Ben Mokhtar, Nikolaos Georgantas, and Valérie Issarny. COCOA:
COnversation-based service COmposition in pervAsive computing environments
with QoS support. Journal of Systems and Software, 80(12):1941–1955, 2007.

[100] B. Morin, O. Barais, and J. M. Jézéquel. Weaving Aspect Configurations for Man-
aging System Variability. In VaMoS’08: 2nd Int. Workshop on Variability Modelling of
Software-intensive Systems, Essen, Germany, January 2008.

[101] B. Morin, O. Barais, J. M. Jézéquel, and R. Ramos. Towards a Generic Aspect-
Oriented Modeling Framework. In 3rd Int. ECOOP’07 Workshop on Models and As-
pects, Handling Crosscutting Concerns in MDSD, Berlin, Germany, August 2007.

[102] B. Morin, J.Klein, O. Barais, and J. M. Jézéquel. A Generic Weaver for Supporting
Product Lines. In EA@ICSE’08: Int. Workshop on Early Aspects, Leipzig, Germany,
May 2008.

[103] Brice Morin, Olivier Barais, and Jean-Marc Jézéquel. K@rt: An aspect-oriented and
model-oriented framework for dynamic software product lines. In Proceedings of the
3rd International Workshop on Models@Runtime, at MoDELS’08, Toulouse, France, oct
2008.

[104] Brice Morin, Olivier Barais, Jean-Marc Jzquel, Franck Fleurey, and Arnor Solberg.
Models@ run.time to support dynamic adaptation. Computer, 42(10):44–51, 2009.

[105] Brice Morin, Olivier Barais, Grégory Nain, and Jean-Marc Jézéquel. Taming Dynam-
ically Adaptive Systems with Models and Aspects. In 31st International Conference
on Software Engineering (ICSE’09), Vancouver, Canada, May 2009.

[106] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jzquel, Arnor Solberg, Veg-
ard Dehlen, and Gordon Blair. An aspect-oriented and model-driven approach for
managing dynamic variability. In Proceedings of ACM/IEEE 11th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS 08), Toulouse,
France, October 2008.

[107] Brice Morin, Franck Fleurey, Grgory Nain, Olivier Barais, and Jean-Marc Jzquel.
Aspect-Oriented Modeling to Support Dynamic Adaptation (Forum Demo). In

BIBLIOGRAPHY 159

AOSD’10: 9th International Conference on Aspect-Oriented Software Development, St
Malo, France, Mar 2010.

[108] Brice Morin, Jacques Klein, Jorg Kienzle, and Jean-Marc Jzquel. Flexible model
element introduction policies for aspect-oriented modeling. In Proceedings of
ACM/IEEE 13th International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2010), Oslo, Norway, October 2010.

[109] Brice Morin, Thomas Ledoux, Mahmoud Ben Hassine, Franck Chauvel, Olivier
Barais, and Jean-Marc Jzquel. Unifying Runtime Adaptation and Design Evolution.
In IEEE 9th International Conference on Computer and Information Technology (CIT’09),
Xiamen, China, Oct 2009.

[110] Brice Morin, Tejeddine Mouelhi, Franck Fleurey, Yves Le Traon, Olivier Barais, and
Jean-Marc Jézéquel. Security-Driven Model-Based Dynamic Adaptation. In 25nd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2010),
Antwerp, Belgium, September 2010.

[111] Brice Morin, Grgory Nain, Olivier Barais, and Jean-Marc Jzquel. Leveraging Mod-
els From Design-time to Runtime. A Live Demo. In 4th International Workshop on
Models@Run.Time (at MODELS’09), Denver, Colorado, USA, Oct 2009.

[112] P.A. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Executability into Object-
Oriented Meta-languages. In MoDELS’05: 8th Int. Conf. on Model Driven Engineering
Languages and Systems, Montego Bay, Jamaica, Oct 2005. Springer.

[113] Freddy Munoz and Benoit Baudry. Artificial Table Testing Dynamically Adap-
tive Systems. Research report inria-00365874, INRIA Bretagne Atlantique,
http://hal.inria.fr/inria-00365874/en/, 2009.

[114] R. France N. Bencomo, G. Blair. Proceedings of the international workshops on
models@run.time (2006-2009) at models, 2006-2009.

[115] G. Nain, F. Fouquet, B. Morin, O. Barais, and J-M. Jézéquel. Integrating IoT and IoS
with a Component-Based approach. In SEAA 2010: 36th EUROMICRO Conference
on Software Engineering and Advanced Applications, Lille, France, 2010.

[116] Grgory Nain, Erwan Daubert, Olivier Barais, and Jean-Marc Jézéquel. Using MDE
to Build a Schizofrenic Middleware for Home/Building Automation. In In Ser-
viceWave’08: Networked European Software & Services Initiative (NESSI) Conference,
Madrid, Spain, December 2008.

[117] Joost Noppen, Pim van den Broek, Nathan Weston, and Awais Rashid. Mod-
elling Imperfect Product Line Requirements with Fuzzy Feature Diagrams. In Va-

160 BIBLIOGRAPHY

MoS’09: 3rd International Workshop on Variability Modelling of Software-Intensive Sys-
tems, Seville, Spain, January 28-30, pages 93–102, 2009.

[118] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gre-
gory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexan-
der L. Wolf. An architecture-based approach to self-adaptive software. IEEE Intelli-
gent Systems, 14(3):54–62, 1999.

[119] D. Parnas. On the criteria for decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, 1972.

[120] Gilles Perrouin, Jacques Klein, Nicolas Guelfi, and Jean-Marc Jézéquel. Reconciling
Automation and Flexibility in Product Derivation. In SPLC’08: 12th International
Software Product Line Conference, pages 339–348, Limerick, Ireland, September 2008.
IEEE Computer Society.

[121] Nicolas Pessemier, Olivier Barais, Lionel Seinturier, Thierry Coupaye, and Laurence
Duchien. A Three Level Framework for Adapting Component Based Architectures.
In WCAT’05@ECOOP: 2nd Workshop on Coordination and Adaptation Techniques for
Software Entities, jul 2005.

[122] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A
Component-Based and Aspect-Oriented Model for Software Evolution. In IJCAT’07:
International Journal of Computer Applications in Technology, Special Issue on Concern-
Oriented Software Evolution, volume 4089 of Lecture Notes in Computer Science, page
259273, Vienna, Austria, mar 2006. Springer-Verlag.

[123] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A
Model for Developing Component-based and Aspect-oriented Systems. In SC’06:
5th International Symposium on Software Composition, volume 4089 of Lecture Notes in
Computer Science, page 259273, Vienna, Austria, mar 2006. Springer-Verlag.

[124] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A
Safe Aspect-Oriented Programming Support for Component-Oriented Program-
ming. In WCOP’06@ECOOP: 11th International Workshop on Component-Oriented Pro-
gramming, volume 200611 of Technical Report, Nantes, France, jul 2006. Karlsruhe
University.

[125] Nicolas Pessemier, Lionel Seinturier, and Laurence Duchien. Components ADL
and AOP: Towards a Common Approach. In RAM-SE’04@ECOOP: Workshop on
Reflection, AOP and Meta-Data for Software Evolution, Oslo, Norway, jun 2004.

[126] Sriplakich Prawee, Guillaume Waignier, and Anne-Françoise Le Meur. Enabling
Dynamic Co-evolution of Models and Runtime Applications. In 32nd Annual IEEE
International COMPSAC ’08, pages 1116 – 1121, Turku, Finlande, 2008.

BIBLIOGRAPHY 161

[127] Christian Prehofer. Feature-oriented programming: A fresh look at objects. In Pro-
ceedings of ECOOP’97. Springer-LNCS, 1997.

[128] R. Ramos, O. Barais, and J. M. Jézéquel. Matching Model Snippets. In MoDELS’07:
10th Int. Conf. on Model Driven Engineering Languages and Systems, page 15, Nashville
USA, October 2007.

[129] Awais Rashid and Ana Moreira. Domain Models Are NOT Aspect Free. In MoD-
ELS’06: 9th International Conference on Model Driven Engineering Languages and Sys-
tems, pages 155–169, Genova, Italy, 2006.

[130] Y. R. Reddy, Sudipto Ghosh, Robert B. France, Greg Straw, James M. Bieman,
N. McEachen, Eunjee Song, and Geri Georg. Directives for Composing Aspect-
Oriented Design Class Models. In Awais Rashid and Mehmet Aksit, editors, Trans-
action on Aspect-Oriented Software Development, volume vol 3880 of Lecture Notes in
Computer Science, pages 75–105. Springer, 2006.

[131] Jeff Rothenberg, Lawrence E. Widman, Kenneth A. Loparo, and Norman R. Nielsen.
The Nature of Modeling. In in Artificial Intelligence, Simulation and Modeling, pages
75–92. John Wiley & Sons, 1989.

[132] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge
Lorenzo, Alessandro Mamelli, and Ulrich Scholz. MUSIC: Middleware Support for
Self-Adaptation in Ubiquitous and Service-Oriented Environments. 5525:164–182,
2009.

[133] Romain Rouvoy, Mikael Beauvois, and Frank Eliassen. Dynamic aspect weaving
using a planning-based adaptation middleware. In Rüdiger Kapitza and Hans P.
Reiser, editors, Proceedings of the 2nd Workshop on Middleware-Application Interaction
(MAI’08), page 1–6, Oslo, Norway, 2008. ACM.

[134] Romain Rouvoy, Frank Eliassen, Jacqueline Floch, Svein O. Hallsteinsen, and Er-
lend Stav. Composing components and services using a planning-based adaptation
middleware. In SC’08: 7th International Symposium on Software Composition, volume
4954 of Lecture Notes in Computer Science, pages 52–67, Budapest, Hungary, 2008.
Springer.

[135] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Artificial intelligence:
a modern approach. Prentice hall Englewood Cliffs, NJ, 1995.

[136] S. Masoud Sadjadi, Philip K. McKinley, and Betty H. C. Cheng. Transparent shap-
ing of existing software to support pervasive and autonomic computing. In DEAS
’05: Proceedings of the 2005 workshop on Design and evolution of autonomic application
software, pages 1–7, New York, NY, USA, 2005. ACM.

162 BIBLIOGRAPHY

[137] Américo Sampaio, Ruzanna Chitchyan, Awais Rashid, and Paul Rayson. EA-Miner:
a tool for automating aspect-oriented requirements identification. In ASE’05: 20th
IEEE/ACM international Conference on Automated software engineering, pages 352–355,
New York, NY, USA, 2005. ACM.

[138] Américo Sampaio, Awais Rashid, Ruzanna Chitchyan, and Paul Rayson. EA-Miner:
Towards Automation in Aspect-Oriented Requirements Engineering. T. Aspect-
Oriented Software Development, 3:4–39, 2007.

[139] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2), February
2006.

[140] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schi-
avoni, and Jean-Bernard Stefani. Reconfigurable sca applications with the frascati
platform. In SCC’09: IEEE International Conference on Services Computing, pages 268–
275, Washington, DC, USA, 2009. IEEE Computer Society.

[141] Sagar Sen, Benoit Baudry, and Doina Precup. Partial Model Completion in Model-
Driven Engineering using Constraint Logic Programming. In INAP’07: 16th Inter-
national Conference on Applications of Declarative Programming and Knowledge Manage-
ment, 2007.

[142] Yannis Smaragdakis and Don S. Batory. Implementing layered designs with mixin
layers. In ECCOP ’98: Proceedings of the 12th European Conference on Object-Oriented
Programming, pages 550–570, London, UK, 1998. Springer-Verlag.

[143] Hui Song, Yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang Hu, and Hong
Mei. Generating Synchronization Engines between Running Systems and Their
Model-Based Views . In Nelly Bencomo, Gordon Blair, Robert France, Cedric Jean-
neret, and Freddy Munoz, editors, 4th International Workshop on Models@run.time at
MODELS 2009, Denver, Colorado, USA, volume 509 of CEUR Workshop Proceedings,
pages 1–10, 10 2009.

[144] Jim Steel. Typage de modles. PhD thesis, Universit de Rennes 1, April 2007. In English.

[145] Jim Steel and Jean-Marc Jzquel. On model typing. Journal of Software and Systems
Modeling (SoSyM), 6(4):401–414, December 2007.

[146] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, Cambridge (MA),
1986.

[147] DiVA Consortium (FP7 STREP). Diva: Dynamic variability in complex adaptive
systems, 2008-2011.

BIBLIOGRAPHY 163

[148] Bholanathsingh Surajbali, Geoff Coulson, Phil Greenwood, and Paul Grace. Aug-
menting reflective middleware with an aspect orientation support layer. In ARM
’07: Proceedings of the 6th international workshop on Adaptive and reflective middleware,
pages 1–6, New York, NY, USA, 2007. ACM.

[149] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. From Goals to Compo-
nents: A Combined Approach to Self-Management. In SEAMS’08: International
workshop on Software engineering for adaptive and self-managing systems at ICSE’08,
Leipzig, Germany, 2008.

[150] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling and
Validation of Software. In Applications of Graph Transformations with Industrial Rele-
vance, pages 446–453, 2004.

[151] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of
separation: multi-dimensional separation of concerns. In ICSE’99: 21st international
conference on Software engineering, pages 107–119, New York, NY, USA, 1999. ACM.

[152] Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Vincent Hourdin, Daniel Cheung-
Foo-Wo, Eric Callegari, and Michel Riveill. WComp Middleware for Ubiquitous
Computing: Aspects and Composite Event-based Web Services. Annals of Telecom-
munications (AoT), 64(3-4):197–214, April 2009.

[153] Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Vincent Hourdin, and Michel
Riveill. Context-aware Authorisation in Highly Dynamic Environments. Interna-
tional Journal of Computer Science Issues (IJCSI), 4, September 2009.

[154] Sun Tzu (translated by Samuel B. Griffith). The Art of War. Oxford University, 1963.

[155] Augusto Visintin. Differential models of hysteresis. Springer, 2004.

[156] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese, and Basil
Becker. Incremental Model Synchronization for Efficient Run-time Monitoring . In
Nelly Bencomo, Gordon Blair, Robert France, Cedric Jeanneret, and Freddy Munoz,
editors, 4th International Workshop on Models@run.time at MODELS 2009, Denver, Col-
orado, USA, volume 509 of CEUR Workshop Proceedings, pages 1–10, 10 2009.

[157] Guillaume Waignier, Anne-Françoise Le Meur, and Laurence Duchien. A Model-
Based Framework to Design and Debug Safe Component-Based Autonomic Sys-
tems. In Raffaela Mirandola, Ian Gortona, and Christine Hofmeiste, editors, In-
ternational Conference on the Quality of Software-Architectures Architectures for Adaptive
Software Systems, volume 5581 of Lecture Notes in Computer Science, pages 1–17, Penn-
sylvania États-Unis d’Amérique, 2009. Springer-Verlag.

164 BIBLIOGRAPHY

[158] Guillaume Waignier, Sriplakich Prawee, Anne-Françoise Le Meur, and Laurence
Duchien. A Framework for Bridging the Gap Between Design and Runtime De-
bugging of Component-Based Applications. In 3rd International Workshop on Mod-
els@runtime, Toulouse France, 2008.

[159] Guillaume Waignier, Sriplakich Prawee, Anne-Françoise Le Meur, and Laurence
Duchien. A Model-Based Framework for Statically and Dynamically Checking
Component Interactions. In ACM/IEEE 11th International Conference on Model-Driven
Engineering Languages and Systems (MODELS 2008) Model Driven Engineering Lan-
guages and Systems, volume 5301 of Lecture Notes in Computer Science, pages 371–385,
Toulouse France, 2008.

[160] J. Whittle and P. Jayaraman. MATA: A Tool for Aspect-Oriented Modeling based on
Graph Transformation. In AOM@MoDELS’07: 11th Int. Workshop on Aspect-Oriented
Modeling, Nashville USA, Oct 2007.

[161] J. Whittle, A. Moreira, J. Araujo, P. Jayaraman, A. Elkhodary, and R. Rabbi. An
Expressive Aspect Composition Language for UML State Diagrams. In MoDELS’07,
ACM/IEEE 10th International Conference on Model Driven Engineering Languages and
Systems, LNCS, Nashville, USA, 2007. Springer.

[162] Jon Whittle, Praveen K. Jayaraman, Ahmed M. Elkhodary, Ana Moreira, and João
Araújo. Mata: A unified approach for composing uml aspect models based on graph
transformation. T. Aspect-Oriented Software Development VI, 6:191–237, 2009.

[163] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel
Bruel. RELAX: Incorporating Uncertainty into the Specification of Self-Adaptive
Systems. In RE’09: 17th IEEE International Requirements Engineering Conference, At-
lanta, Georgia, USA, August 31 - September 4, 2009, pages 79–88, 2009.

[164] Apostolos Zarras, Manel Fredj, Nikolaos Georgantas, and Valérie Issarny. Engi-
neering Reconfigurable Distributed Software Systems: Issues Arising for Pervasive
Computing. In Michael J. Butler, Cliff B. Jones, Alexander Romanovsky, and Elena
Troubitsyna, editors, Rigorous Development of Complex Fault-Tolerant Systems [FP6
IST-511599 RODIN project], volume 4157 of Lecture Notes in Computer Science, pages
364–386. Springer, 2006.

[165] Ji Zhang and Betty H. C. Cheng. Model-based Development of Dynamically Adap-
tive Software. In ICSE ’06: Proceedings of the 28th International Conference on Software
Engineering, pages 371–380, New York, NY, USA, 2006. ACM Press.

[166] Ji Zhang and Betty H. C. Cheng. Using temporal logic to specify adaptive program
semantics. volume 79, pages 1361–1369, 2006.

BIBLIOGRAPHY 165

[167] Ji Zhang, Betty H. C. Cheng, Zhenxiao Yang, and Philip K. McKinley. Enabling
safe dynamic component-based software adaptation. In Rogério de Lemos, Cristina
Gacek, and Alexander B. Romanovsky, editors, WADS, volume 3549 of Lecture Notes
in Computer Science, pages 194–211. Springer, 2004.

[168] Ji Zhang, Heather J. Goldsby, and Betty H.C. Cheng. Modular verification of dy-
namically adaptive systems. In AOSD ’09: Proceedings of the 8th ACM international
conference on Aspect-oriented software development, pages 161–172, New York, NY,
USA, 2009. ACM.

[169] Tewfik Ziadi and Jean-Marc Jézéquel. Software Product Lines, chapter Product Line
Engineering with the UML: Deriving Products, pages 557–586. Number ISBN: 978-
3-540-33252-7. Springer Verlag, 2006.

166 BIBLIOGRAPHY

167

Appendix A

Implementation Details

Contents

A.1 Mapping the SCA metamodel to the ART metamodel 167

A.2 Compilation of Aspect Models . 168

A.3 Log Aspect compiled into Drools code when logger is unique 171

A.4 Log Aspect compiled into Drools code when logger is unique with scope172

A.5 Code Template to Generate Context Simulator 173

A.1 Mapping the SCA metamodel to the ART metamodel

The following script written in Kermeta [112] shows how we map the SCA metamodel to
the ART core architecture metamodel. We first require both metamodels. Note that we
are working in the package sca. Kermeta offers a seamless weaving engine that allows
designers to extend a metamodel with additional elements: attributes, references, con-
tracts (invariants and pre/post conditions), operations (or implement an already existing
abstract operation). Here, we re-open the Wire meta-class (from the SCA metamodel) in
order to:

• Add a new reference to a transmission binding (from the ART core architectural
metamodel)

• Add a visit operation to instantiate this newly introduced reference and set its prop-
erties, using the woven references of already visited elements.

1 package sca;

2
3 require kermeta

168 APPENDIX A. IMPLEMENTATION DETAILS

4 require "http://www.osoa.org/xmlns/sca/1.0" //SCA metamodel
5 require "http://art" //ART metamodel
6 /∗∗
7 ∗ Opens the SCA::Wire metaclass to map it
8 ∗ to art :: TransmissionBinding
9 ∗/

10 aspect class Wire {

11
12 reference artBinding : TransmissionBinding [1..1]

13
14 operation visit() is

15 do

16 artBinding := TransmissionBinding.new

17 artBinding.server := self.target2.artPort
18 artBinding.client := self.source2.artPort
19 artBinding.serverInstance := self.target2.container
20 .asType(Component).artComponent

21 self.source2.container.asType(Component).artComponent
22 .binding.add(artBinding)

23 end

24 }

The part of the SCA metamodel relevant to ART is mapped to the ART (architecture)
metamodel in the same way. Then, it is possible to transform an architectural model
conforming to the SCA metamodel to an architectural metamodel conforming to the ART
Core metamodel.

A.2 Compilation of Aspect Models

This Appendix gives some implementation details related to the compilation of aspect
models in Java + Drools. As explained in Section 4.6.2, the compilation process is per-
formed in two steps:

1. A meta-code generator takes a domain metamodel as input in order to generate a
domain-specific compiler (Java + Drools code generator) for SmartAdapters. This
meta-code generator mainly consists of a code template written in KET (Kermeta
Emitter Template). For each meta-class of the domain metamodel, the KET tem-
plate generates a Kermeta aspect that re-opens this meta-class in order to weave
two methods.

2. A domain-specific compiler takes an aspect model as input an generates the Java
+ Drools code corresponding to this aspect. This domain-specific code generator is
fully generated and corresponds to all the Kermeta aspects.

For example, the following (generated) script re-opens the PrimitiveInstancemeta-
class defined in our architectural metamodel in order to weave to methods, responsible

APPENDIX A. IMPLEMENTATION DETAILS 169

for generating the Drools and Java code associated to an aspect model. Basically, these
two methods define a visitor in 2 pass: the first one creates all the elements of the advice
model and the second one sets all the references among these elements. The scope of the
advice model elements is handled in the first pass. All the generated Kermeta aspects
(M2 level) make it possible to compile SmartAdapters aspects (M1 level), such as the one
described in Appendix A.3 and Appendix A.4. These two Appendices further discuss the
way we handle the notion of uniqueness and scoped uniqueness.

Note that the KET template used to generate this script is almost similar to this script.
This KET template simply takes an EClass as input (i.e., a meta-class). Indeed, the only
information we need in the template are the name of the meta-class (e.g., Primitive-
Instance), its qualified name (e.g., art.instance.PrimitiveInstance) and other
strings that can be inferred (e.g., art.instance.InstanceFactory.eINSTANCE.create-
PrimitiveInstance()) from these pieces of information, as well as the references of
the meta-class (to visit all the contained elements in pass1 and pass2, and to set these
references in pass2).

1 /∗∗
2 ∗ The PrimitiveInstance meta−class is re−opened to weave
3 ∗ the methods needed to generate the Drools+Java code ie,
4 ∗ needed to compile aspect models.
5 ∗/
6 aspect class PrimitiveInstance {

7 /∗∗
8 ∗ pass1create is responsible for creating the elements of the advice model.
9 ∗ In particular , it manages the (scoped) uniqueness of these elements

10 ∗/
11 method pass1create(ctx:Context):Void is do

12 //Associates a unique string to this (self) element
13 var na : String init ctx.getGenerateName

14 ctx.cache.put(self,na)

15
16 //if this element is unique
17 if self.ownedTags.exists{tag | "unique".equals(tag.name)} then

18 ctx.res.append("art.instance.PrimitiveInstance" +" "+ na + " = (art.

instance.PrimitiveInstance) uniqueobjects.get(\""+na+"\");")

19 ctx.res.append("if ("+" "+ na + " " + "== null){")

20 ctx.res.append(" "+na + " = art.instance.InstanceFactory.eINSTANCE.

createPrimitiveInstance();")

21 ctx.res.append(" uniqueobjects.put(\""+na+"\","+ na+");")

22 ctx.res.append("}")

23 else

24 //else if this element is unique with scope
25 if self.ownedTags.exists{tag | "uniqueWithScope".equals(tag.name)} then

26 var scopeName : String init "scope_"+ctx.getGenerateName

27 ctx.res.append("Set<EObject> "+scopeName+" = new HashSet<EObject>();")

28 self.ownedTags.detect{tag | "uniqueWithScope".equals(tag.name)}

29 .~value.split(" ").each{elt |

170 APPENDIX A. IMPLEMENTATION DETAILS

30 ctx.res.append(scopeName+".add("+elt+");")

31 }

32
33 ctx.res.append("if (uniqueObjectsWithScope.get("+scopeName+") == null){")

34 ctx.res.append(" uniqueObjectsWithScope.put("+scopeName+", new Hashtable<

String, EObject>());")

35 ctx.res.append("}")

36
37 ctx.res.append("art.instance.PrimitiveInstance" +" "+ na + " = (art.

instance.PrimitiveInstance) uniqueObjectsWithScope.get("+scopeName+"

).get(\""+na+"\");")

38 ctx.res.append("if ("+" "+ na + " " + "== null){")

39 ctx.res.append(" "+na + " = art.instance.InstanceFactory.eINSTANCE.

createPrimitiveInstance();")

40 ctx.res.append(" uniqueobjectsWithScope.get("+scopeName+").put(\""+na+"

\","+ na+");")

41 ctx.res.append("}")

42 else //if this element is per join point
43 ctx.res.append("art.instance.PrimitiveInstance" +" "+ na + " = art.

instance.InstanceFactory.eINSTANCE.createPrimitiveInstance();")

44 end

45 end

46
47 //visiting all the contained elements
48 if self.~attribute.size >0 then

49 self.~attribute.each{c|c.pass1create(ctx)}

50 end

51 //...
52 end

53
54 /∗∗
55 ∗ pass2set is responsible for linking together the (already created) elements of the advice model
56 ∗/
57 method pass2set(ctx:Context):Void is do

58 if (not self.name.isVoid()) then

59 ctx.res.append(ctx.cache.getValue(self) + ".set"+"Name"+"(\""+self.name.

toString+"\");")

60 end

61 //...
62
63 //visiting all the contained elements
64 if self.~attribute.size >0 then

65 self.~attribute.each{c|c.pass2set(ctx)}

66 end

67 //...
68 end

69 }

APPENDIX A. IMPLEMENTATION DETAILS 171

A.3 Log Aspect compiled into Drools code when logger is unique

This script presents the log aspect compiled into Java/Drools code, in the case where the
logger component is unique. The only modifications made to the raw generated script to
improve readability are: the renaming of some variables, the introduction of comments,
the removal of casts and the removal of the lines not relevant for the discussion.

Each application of the advice (then clause, Line 14-44) is independent from the previ-
ous ones. For example, if the pointcut (when clause, Line 6-12) matches several times in a
base model, it is not possible to directly know if an element from the advice has already
been created in a previous application of the aspect. This is an issue for the implementa-
tion of the notion of uniqueness.

However, it is possible to declare global variables (initialized in the Java code calling
the Drools engine with the script), which allows to share data between different applica-
tion of the advice. We thus use the uniqueObjects map as the structure to manage the
uniqueness of advice elements. Basically, each advice element is identified by a unique
string. Before creating a unique element, we check if this element already exists in the
uniqueObjects global map. It this element already exists, it is reused. Otherwise, it is
created and stored in the global map.

1 global Map<String, EObject> uniqueObjects;

2 global Map<Set<EObject>,Map<String, EObject>> uniqueObjectsWithScope;

3
4 rule "LoggingAspect"

5
6 when //Pointcut
7 $logService: art.type.Service(name == "org.slf4j.Logger")

8 $requiredLogPort: art.type.Port(role == "client",service == $logService)

9 $anyType: art.type.PrimitiveType(port contains $requiredLogPort)

10 $anyComponent: art.instance.PrimitiveInstance(type == $anyType)

11 $anyComposite: art.instance.CompositeInstance(subComponent contains

$anyComponent)

12 $anySystem: art.System(root == $anyComposite)

13
14 then

15 /∗
16 ∗ Creation of Advice model elements
17 ∗/
18 //DefaultLogger component (unique)
19 art.instance.PrimitiveInstance logComponent = uniqueObjects.get("logComponent

");

20 if (logComponent == null){

21 logComponent = InstanceFactory.eINSTANCE.createPrimitiveInstance();

22 uniqueObjects.put("logComponent",logComponent);

23 }

24 //Binding to the DefaultLogger component (per join point)

172 APPENDIX A. IMPLEMENTATION DETAILS

25 art.instance.TransmissionBinding binding = InstanceFactory.eINSTANCE.

createTransmissionBinding();

26 ...

27
28 /∗
29 ∗ Setting the references of Advice model elements
30 ∗/
31 logComponent.setName("DefaultLogger");

32 logComponent.setType(s7);

33 logComponent.setImplem(s3);

34 ...

35
36 /∗
37 ∗ Actual Weaving
38 ∗/
39 $anySystem.getServices().add(uniqueObjects.get("s6"));

40 $anySystem.getTypes().add(uniqueObjects.get("s7"));

41 $anyComposite.getSubComponent().add(uniqueObjects.get("logComponent"));

42 binding.setClient($requiredLogPort);

43 $anyComponent.getBinding().add(binding);

44 end

A.4 Log Aspect compiled into Drools code when logger is unique

with scope

This script presents the log aspect compiled into Java/Drools code, in the case where
the logger component is unique within the scope of a composite component. The only
modifications made to the raw generated script to improve readability are: the renaming
of some variables, the introduction of comments, the removal of casts and the removal of
the lines not relevant for the discussion.

In order to deal with the notion of scoped uniqueness, we also use a global map:
uniqueObjectsWithScope. The key of this map is a set of EObject (model elements)
from the base model. The basic idea is to instantiate some advice elements only once for a
given zone of the base model. In Java, the hash code of a set is computed as the sum of all
the hash code of the elements contained in this set. It thus can be possible that two differ-
ent sets (containing different elements) have the same hash code. While this is not recom-
mended (for performance issues), a Map can handle this case and retrieve the right values
even if two (different) keys have the same hash code. Indeed, the containsKey(Object
key) method “returns true if and only if this map contains a mapping for a key k such
that (key==null ? k==null : key.equals(k))”. Finally two sets are equals if
“the two sets have the same size, and every member of the specified set is contained in
this set (or equivalently, every member of this set is contained in the specified set).” This
is exactly what we need to implement the scoped uniqueness.

APPENDIX A. IMPLEMENTATION DETAILS 173

1 global Map<String, EObject> uniqueObjects;

2 global Map<Set<EObject>,Map<String, EObject>> uniqueObjectsWithScope;

3
4 rule "LoggingAspect"

5
6 when //Pointcut
7 //Same as previous
8
9 then

10 /∗
11 ∗ Init of the structure managing the scopes
12 ∗/
13 Set<EObject> compositeScope = new HashSet<EObject>();

14 compositeScope.add($anyComposite);

15 if (uniqueObjectsWithScope.get(compositeScope) == null){

16 uniqueObjectsWithScope.put(compositeScope, new Hashtable<String, EObject>())

;

17 }

18
19 /∗
20 ∗ Creation of Advice model elements
21 ∗/
22 //DefaultLogger component (unique with scope)
23 art.instance.PrimitiveInstance logComponent = uniqueObjectsWithScope.get(

compositeScope).get("logComponent");

24 if (logComponent == null){

25 logComponent = InstanceFactory.eINSTANCE.createPrimitiveInstance();

26 uniqueObjectsWithScope.get(compositeScope).put("logComponent",logComponent);

27 }

28 ...

29
30 /∗
31 ∗ Actual Weaving
32 ∗/
33 $anyComposite.getSubComponent().add(uniqueObjectsWithScope.get(compositeScope

).get("logComponent"));

34 ...

35 end

A.5 Code Template to Generate Context Simulator

1 <%@ket

2 package="diva::monitoring"

3 require="platform:/lookup/diva.model/model/DiVA.ecore"

4 using="diva"

5 isAspectClass="false"

6 class="InteractiveContextSimulatorGenerator"

7 ismethod="false"operation="generate"

174 APPENDIX A. IMPLEMENTATION DETAILS

8 parameters="vm:VariabilityModel"

9 %>

10 package diva.runtime.monitoring.stub;

11
12 import java.awt.Component;

13 import ...

14
15 import javax.swing.JCheckBox;

16 import ...

17
18 import diva_context.Context;

19 import diva_context.ContextElement;

20 import diva_context.Diva_contextFactory;

21
22 /∗∗
23 ∗ This class allows simulating the context via a simple GUI.
24 ∗ @author bmorin (Brice.Morin@inria.fr)
25 ∗ This file was generated by KET: Kermeta Emitter Template in the
26 ∗ context of the DiVA project
27 ∗ see www.kermeta.org and www.ict−diva.eu
28 ∗/
29 public class InteractiveContextSimulator implements ActionListener,

ItemListener{

30
31 private JFrame frame;

32 private Context context;

33
34 public void initContext(){

35 context = Diva_contextFactory.eINSTANCE.createContext();

36 }

37
38 public void init(){

39 frame = new JFrame("Interactive Context Simulator");

40 frame.setLayout(new GridBagLayout());

41
42 GridBagConstraints c = new GridBagConstraints();

43 c.gridwidth = 1;

44 <%var y : Integer init 0%>

45 <%vm.context.each{cv | %>

46 <%if cv.isKindOf(EnumVariable) then%>

47 <%var cvEnum : EnumVariable

48 cvEnum ?= cv%>

49
50 /∗
51 ∗ Enumeration variable <%=cvEnum.name%>
52 ∗/
53 JLabel label<%=y.toString%> = new JLabel();

54 label<%=y.toString%>.setText("<%=cvEnum.name%>");

55 c.gridx = 0;

56 c.gridy = <%=y.toString%>;

APPENDIX A. IMPLEMENTATION DETAILS 175

57 c.anchor = GridBagConstraints.WEST;

58 frame.add(label<%=y.toString%>, c);

59
60 JComboBox combo<%=y.toString%> = new JComboBox();

61 combo<%=y.toString%>.setName("<%=cvEnum.name%>");

62 <%cvEnum.literal.each{l | %>

63 combo<%=y.toString%>.addItem("<%=l.name%>");

64 <%}%>

65 c.gridx = 1;

66 c.gridy = <%=y.toString%>;

67 c.anchor = GridBagConstraints.EAST;

68 frame.add(combo<%=y.toString%>, c);

69 combo<%=y.toString%>.addActionListener(this);

70 combo<%=y.toString%>.addItemListener(this);

71 <%else%>

72 <%var cvBool : BooleanVariable

73 cvBool ?= cv%>

74
75 /∗
76 ∗ Boolean variable <%=cvEnum.name%>
77 ∗/
78 JLabel label<%=y.toString%> = new JLabel();

79 label<%=y.toString%>.setText("<%=cvBool.name%>");

80 c.gridx = 0;

81 c.gridy = <%=y.toString%>;

82 c.anchor = GridBagConstraints.WEST;

83 frame.add(label<%=y.toString%>,c);

84
85 JCheckBox box<%=y.toString%> = new JCheckBox();

86 box<%=y.toString%>.setName("<%=cvBool.name%>");

87 c.gridx = 1;

88 c.gridy = <%=y.toString%>;

89 c.anchor = GridBagConstraints.EAST;

90 frame.add(box<%=y.toString%>,c);

91 box<%=y.toString%>.addActionListener(this);

92 <%end%>

93 <%y := y+1%>

94 <%}%>

95 }

96
97 /∗∗
98 ∗ Updates the boolean variables
99 ∗/

100 public void actionPerformed(ActionEvent e) {

101 <%vm.context.select{cv | cv.isKindOf(BooleanVariable)}.each{cv | %>

102 if("<%=cv.name%>".equals(((Component)e.getSource()).getName())){

103 getContextElement("<%=cv.name%>").setCurrentValue("true");

104 }

105 <%}%>

106 }

176 APPENDIX A. IMPLEMENTATION DETAILS

107
108 /∗∗
109 ∗ Updates the enumeration variables
110 ∗/
111 public void itemStateChanged(ItemEvent e) {

112 if(e.getStateChange() == ItemEvent.SELECTED){

113 <%vm.context.select{cv | cv.isKindOf(EnumVariable)}.each{cv | %>

114 <% var cvEnum : EnumVariable

115 cvEnum ?= cv%>

116 <%cvEnum.literal.each{l | %>

117 if("<%=l.name%>".equals(((String)e.getItem()))){

118 getContextElement("<%=cv.name%>").setCurrentValue("<%=l.name%>");

119 }

120 <%}%>

121 <%}%>

122 }

123 }

124
125 /∗∗
126 ∗

127 ∗ @param name
128 ∗ @return gets the context element whose name is name
129 ∗ if this element does not exist , it is created and
130 ∗ added in the context model.
131 ∗/
132 private ContextElement getContextElement(String name) {

133 ContextElement ctxElt = null;

134
135 for(ContextElement ce : context.getElement()){

136 if(name.equals(ce.getName())){

137 ctxElt = ce;

138 break;

139 }

140 }

141
142 if(ctxElt == null){

143 ctxElt = Diva_contextFactory.eINSTANCE.createContextElement();

144 ctxElt.setName(name);

145 context.getElement().add(ctxElt);

146 }

147
148 return ctxElt;

149 }

150 }

177

Appendix B

Benchmarks

Contents

B.1 Comparative Study of SmartAdapters V1 and V2 177

B.2 Comparison and Reconfiguration times in EnTiMid 178

B.1 Comparative Study of SmartAdapters V1 and V2

Config. #Aspects #Join

points

Aspect names V1

(s)

V2

(ms)

Before
Crisis

3 4 Normal, DefaultNotificationStrategy, Ener-
gySaving

48.5 296

Alarm is
raised

6 16 FireDepartment, EmergencyNotificationStrat-
egy, FireStrategy, FirePlanner, TacticalPicture-
Planner, Critical

194.2 594

Crisis
con-
firmed

8 26 Hospital, FireDepartment, EmergencyNotifi-
cationStrategy, FireStrategy, FirePlanner, Tac-
ticalPicturePlanner, MedicalPlanner, Critical

418.9 797

Fire
spreads

9 32 Hospital, Minestry, FireDepartment, Emer-
gencyNotificationStrategy, FireStrategy, Fire-
Planner, TacticalPicturePlanner, MedicalPlan-
ner, PushBroadcast

568.4 875

Victims
evacu-
ated

6 16 FireDepartment, EmergencyNotificationStrat-
egy, FireStrategy, FirePlanner, TacticalPicture-
Planner, Critical

182.4 609

Table B.1: Performances of SmartAdapters V1 and V2

178 APPENDIX B. BENCHMARKS

B.2 Comparison and Reconfiguration times in EnTiMid

- Init Night Day Day +
Nurse

Day Night Day Day +
Nurse

Day

Comparison (ms) 385 420 418 463 432 419 431 473 425
Reconfiguration
(ms)

5749 378 75 81 14 124 43 51 13

Table B.2: Comparison and Reconfiguration Times

Abstract
Society’s increasing dependence on software-intensive systems is driving the need for dependable,

robust, continuously available adaptive systems. Such systems often propose many variability

dimensions with many possible variants, leading to an explosion of the number of configurations that

is impossible to fully specify and validate at design-time because of time and resource constraints.

This thesis presents a Model-Driven and Aspect-Oriented approach to tame the complexity of

Dynamically Adaptive Systems (DAS). At design-time, we capture the different facets of a DAS

(variability, environment/context, reasoning and architecture) using dedicated metamodels. Each

feature of the variability model describing a DAS is refined into an aspect model. We leverage these

design models at runtime to drive the dynamic adaptation process. Both the running system and its

execution context are abstracted as models. Depending on the current context (model) a reasoner

interprets the reasoning model to determine a well fitted selection of features. We then use Aspect-

Oriented Modeling techniques to automatically compose the aspect models (associated to the selected

features) together in order to automatically derive the corresponding architecture. This way, there is no

need to specify the whole set of possible configurations at design-time: each configuration is

automatically built when needed. We finally rely on model comparison to fully automate the

reconfiguration process in order to actually adapt the running system, with no need to write low-level

reconfiguration scripts. An important point is that models embedded at runtime are really mirrors of

what really happens in the running system. It is however possible to work on copies of these models,

independently of the running system and resynchronize these copies with the reality to actually adapt

the running system. In other words, our approach makes it possible to perform offline activities such

as continuous design or prediction, while the system is running, but independently from it.

Résumé
La dépendance croissante de la société à l'égard des systèmes logiciels nécessite de concevoir des

logiciels robustes, adaptatifs et disponibles sans interruption. De tels systèmes proposent souvent de

nombreux points de variation avec de nombreuses variantes, conduisant à une explosion combinatoire

du nombre des configurations. Il devient rapidement impossible de spécifier et de valider toutes ces

configurations lors de la conception d’un système adaptatif complexe.

Cette thèse présente une approche dirigée par les modèles et basée sur la modélisation par aspects pour

contenir la complexité de systèmes logiciels adaptatifs (Dynamically Adaptive Systems, DAS). Lors

de la conception, les différentes facettes d’un DAS (variabilité, environnement/contexte, raisonnement

et architecture) sont capturées à l’aide de différents méta-modèles dédiés. En particuliers, les variants

de chaque point de variation sont raffinés à l’aide d’aspect (niveau model). Ces modèles sont

embarqués à l’exécution pour contrôler et automatiser le mécanisme de reconfiguration dynamique. Le

système courant et son contexte d'exécution sont abstraits par des modèles. Selon le contexte courant

(modèle) un composant de raisonnement interprète le modèle de raisonnement et détermine un

ensemble de variantes bien adaptées au contexte. Nous utilisons un tisseur d’aspects (niveau model)

pour dériver automatiquement l’architecture correspondante à cette sélection de variantes. Ainsi, les

concepteurs du DAS n’ont pas besoin de spécifier toutes les configurations : au contraire, chaque

configuration est automatiquement construite lorsqu’il y en a besoin. Nous utilisons finalement une

comparaison de modèle pour automatiser entièrement le processus de reconfiguration dynamique, sans

avoir besoin d'écrire des scripts de reconfiguration de bas niveau. Les modèles embarqués à

l'exécution sont des miroirs reflétant ce qui se produit vraiment dans le système courant. Il est

cependant possible de travailler sur des copies de ces modèles, indépendamment du système courant et

de re-synchronizer ces copies avec la réalité pour adapter réellement le système courant. En d'autres

termes, notre approche permet d’exécuter des activités offline (pendant que le système fonctionne,

mais indépendamment de lui) telles que la conception continue (continuous design) ou la prévision.

	Context
	Challenges Liés à l'Ingénierie des Systèmes Adaptifs Complexes
	Vers du design continu
	Gestion de la Variabilité, Dérivation de Configurations
	Rendre la boucle d'adaptation explicite
	Réflex et réflexion : vers des systèmes adaptatifs inspirés par l'être humain
	Réactivité Versus Stabilité
	Contributions
	Modélisation des Systèmes Adaptatifs
	Modélisation par Aspects pour la Dérivation de Configurations
	(Dé)coupler le Model de Réfléction (d')avec la Réalité
	Mise en Oeuvre et Validation
	I Introduction & State-of-the-Art
	Introduction
	Context
	Challenges Related to the Engineering of Dynamically Adaptive Systems
	Raising the level of abstraction: Towards Continuous Design
	Variability Management, Product Derivation
	Making the Adaptation Loop Explicit
	On the Importance of Handling Several Reasoning Paradigms
	Reactivity Versus Stability
	Contributions
	Modeling Adaptive Systems
	Aspect-Oriented Modeling to Support Product Derivation
	Decoupling and Synchronizing Reflection Model from/with the Reality
	A Reference Architecture to Support Model-Driven Dynamic Adaptation and Continuous Design
	Organization of this Thesis
	State of the Art on Dynamic Variability Management
	An Overview of Some Adaptive Execution Platforms
	Fractal
	OSGi
	SCA
	Discussion

	Model-Based Development of Dynamically Adaptive Systems
	A brief overview of Model-Driven Engineering
	Extensive Model-Based Development of DAS
	Some multi-staged approaches to dynamic adaptation
	Designing DAS as Dynamic Software Product Lines
	Synchronizing Runtime and Models using MDE
	Discussion

	Separation of Concerns to clearly separate the Adaptive Logic From the Business Logic
	Encapsulating Reconfigurations as Separate Concerns
	AspectJ-like Weaving in Component-Based Systems
	Using Aspects of Assembly to Dynamically Compose Applications
	Discussion

	Aspect-Oriented Modeling to Support Model-Driven Software Product Lines
	Conclusion

	II Contributions & Validations
	Models Manipulated and Exchanged
	Introduction
	Overview
	Variability Metamodel
	Environment and Context Metamodel
	Reasoning Metamodel
	ECA-like rules
	Goals

	Architecture Metamodel

	Aspect-Oriented Modeling to Support (Dynamic) Software Product Lines
	Requirements for an AOM approach usable at Runtime
	Overview
	Rapid Background on SmartAdapters
	A (not so) Simple Cache Aspect
	A Naive Cache Aspect
	On the need of Advice Sharing
	On the need of Scoped Advice Sharing

	SmartAdapters: Concepts in details
	Leveraging model typing to design advice and pointcut model
	Defining Sharing Strategies for Advice Models
	Extension of the SmartAdapters metamodel

	Tool Support
	SmartAdapters V1: A Proof-of-Concept to Assess AOM to Compose Dynamic Features
	SmartAdapters V2: A Generative Approach to More Efficient Aspect Model Weaving

	Discussion

	Synchronizing the runtime with design-time models
	Requirements for an ``intelligent'' Reflection Model
	Overview
	Step-wise abstraction of the execution context
	An Overview of Complex Event Processing and WildCAT 2.0
	Complex Event Processing to Update Context Models
	WildCAT/EMF to monitor models

	Causal Connection between the runtime and an architectural model
	Maintaining a Reflection Model at Runtime: Strong Synchronization from Runtime to Model
	Online Validation to Check Configurations when Needed
	Model Comparison to Detect Changes Between to Configurations
	On-Demand Synchronization from Model to Runtime

	Models@Runtime to Support Offline Activities
	Discussion

	A Model-Oriented and Configurable Architecture to Support Dynamic Variability
	Communication Schemes
	Different Configurations for the Reference Architecture
	The Case of Small Adaptive Systems
	ECA, Goals and Online generation/validation of Configurations to Tame Complex Adaptive Systems

	Discussion

	Validation: Application to 2 Case Studies
	Objectives
	Validation on a Crisis Management System
	Design of the Crisis Management System
	Some Aspect Models of the Crisis Management System
	Comparative Study of SmartAdapters V1 and V2

	Validation on EnTiMid
	Scenario
	Results
	Discussion

	III Conclusion and Perspectives
	Conclusion
	Perspectives
	Dual-View Aspects to Support Behavioral Adaptation and Validation
	Bootstrapping the Adaptation Loop to Support Evolution
	Advanced Model Composition to Domain-Driven Dynamic Adaptation
	From Requirements to Software and Hardware Dynamic Adaptation

	Implementation Details
	Mapping the SCA metamodel to the ART metamodel
	Compilation of Aspect Models
	Log Aspect compiled into Drools code when logger is unique
	Log Aspect compiled into Drools code when logger is unique with scope
	Code Template to Generate Context Simulator

	Benchmarks
	Comparative Study of SmartAdapters V1 and V2
	Comparison and Reconfiguration times in EnTiMid

