
HAL Id: tel-00538565
https://theses.hal.science/tel-00538565

Submitted on 23 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation of reasoning engines an adaptation
mechanisms for self-adaptive systems

Freddy Munoz

To cite this version:
Freddy Munoz. Validation of reasoning engines an adaptation mechanisms for self-adaptive systems.
Software Engineering [cs.SE]. Université Rennes 1, 2010. English. �NNT : �. �tel-00538565�

https://theses.hal.science/tel-00538565
https://hal.archives-ouvertes.fr

No d’ordre : 4186 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
Ecole doctorale MATISSE

présentée par

Freddy Munoz
préparée à l’unité de recherche UMR 6074 IRISA

Institut de Recherche en Informatique et Systm̀es Alátoires
Composante Universitaire : IFSIC

Validation of
reasoning engines and
adaptation mechanisms
for self -adaptive systems

Thèse soutenue à Rennes
le 29 Septembre 2010
devant le jury composé de :
Olivier RIDOUX
Professeur à l’Université de Rennes 1 / président
Yves LE TRAON
Professeur à l’Université de Luxembourg / examina-
teur
Robert FRANCE
Professeur, Colorado State University / rapporteur
Franck BARBIER
Professeur à l’Université de Pau et des Pays de
l’Adour / rapporteur

Jean-Marc JÉZÉQUEL
Professeur à l’Université de Rennes 1 / directeur de
thèse
Benoit BAUDRY
Chargé de Recherche, INRIA Rennes Bretagne At-
lantique/Encadrant de thèse

2

3

Con fe lo imposible soñar
al mal combatir sin temor
triunfar sobre el miedo invencible
en pie soportar el dolor

Amar la pureza sin par
buscar la verdad del error
vivir con los brazos abiertos
creer en un mundo mejor

Es mi ideal
la estrella alcanzar
no importa cuan lejos
se pueda encontrar
luchar por el bien
sin dudar ni temer
y dispuesto al infierno llegar si lo dicta el deber

Y yo sé
que si logro ser fiel
a mi sueño ideal
estará mi alma en paz al llegar
de mi vida el final

Será este mundo mejor
si hubo quien despreciando el dolor
combatió hasta el último aliento

Con fé lo imposible soñar
y la estrella alcanzar

El sueño imposible – Don Quijote de la Mancha

4

5

Remerciements

First, I would like to thank the members of my examination jury. My examiners Robert
France, Frank Barbier, and Yves Le-Traon, who where generous with their comments and
feedback on my research. I value your assessment and input to its improvement. Olivier
Rideaux for agreeing to preside over this thesis jury. I was flattered by the quality of the
jury, and grateful for the insight of their feedback and questions. Jean-Marc Jézéquel, who
accepted to grant me the opportunity to work with Triskell and who directed this thesis. I
appreciate your trust on me and your leadership capabilities.

I must specially thank Benoit Baudry, who four years before accepted to advise. Thank
you for being my friend and letting me the free to drive my own ideas while advising me
where was better to go. Your thoughtful advise and friendship was and is a real guide to
me.

Je remercie les membres de l’équipe Triskell pour leur chaleureuse accueil et support
pendants mes quatre années avec eux. Je voudrais bien remercier mes collègues de bureau
Cyril Faucher, Romain De-Lamaire, Gregory Nain et Juan Jose Cadavid ; c’était un plaisir
partager un espace de travaille avec vous. Je voudrai aussi remercier Sagar Sen et Brice
Morin qui ont toujours étés disponibles pour des discussions enrichissantes sur nos études
et sur l’avenir de nos thèses. Je remercie aussi Loïc Lesage pour m’a aider quand j’avais
besoin d’une main avec les affaires administratives.

Finalmente debo agradecer a aquellos que me han apoyado durante todo estos años, se
han alegrado con mis logros y no han dejado de creer en mis ideas. Mi esposa Constanza,
quien me dio apoyo incondicional en esta aventura. Mis padres – Freddy y Cynthia – y mis
hermanas quienes me siempre me han brindado su apoyo y confianza para cumplir mis
sueños. Mi tíos quienes me brindaron el apoyo fundamental para comenzar la empresa que
culmina con esta tesis. Mis abuelos quienes como mis padres han creído en mis capacidades
y me han apoyado a seguir adelante. Finalmente, debo agradecer a mis amigos –Leo, Daniel
y Juan Pablo–, quienes me apoyaron y entendieron los días de larga ocupación, aceptaron
tener largas fatigantes reuniones y nunca criticaron mis ausencias.

This thesis no only belong to me, but to all those who supported and encouraged me
to get here. Thank you all.

Per Ardua Ad Astra – Freddy Munoz

7

Contents

Remerciements 5

Sistèmes auto-adaptatives 11
0.1 Introduction generale . 11
0.2 Sistèmes auto-adaptatives . 12
0.3 Défis por la validation des systèmes auto-adaptatives 14

0.3.1 Défis de la validation des moteurs de raisonnement 15
0.3.2 Défis de la validation de l’AOP . 16

0.4 Contributions de cette these . 17
0.4.1 Test des moteurs de raisonnement 17
0.4.2 Specification des mechanismes orientes aspects 20

0.5 D’autres contributions á la validation des systèmes auto-adaptatives 22

1 Introduction 25
1.1 Self -adaptive systems . 25
1.2 Challenges of the validation of self -adaptive systems 27
1.3 Contributions of this thesis . 28

1.3.1 Test data selection from reasoning engines 28
1.3.2 Specification of aspect-oriented adaptation mechanism 29

1.4 Organization of this thesis . 30

2 Background and Motivation 31
2.1 Self-Adaptive Systems . 31

2.1.1 Environment representation . 33
2.1.2 Autonomous reasoning . 36
2.1.3 Adaptation Mechanism . 46

2.2 Validation and Verification of self -adaptive system 54
2.2.1 Testing . 55
2.2.2 Verification . 60
2.2.3 Positioning with respect to Testing and Verification 62
2.2.4 Specifications for aspect-oriented adaptation 64

8 CONTENTS

2.2.5 Positioning with respect to the specifications for aspects 65
2.3 Contribution of this thesis . 67

3 Testing Reasoning Engines 69
3.1 Inter-variable and Intra-variable Interactions 70
3.2 Mixed Level Covering Arrays . 73
3.3 Limits of MCA for sampling the reasoning space 74
3.4 Multi-Dimensional Covering Arrays . 75
3.5 Constructing MDCAs . 77

3.5.1 Optimal value . 78
3.5.2 Genetic Algorithm . 79
3.5.3 Bacteriologic Algorithm . 80
3.5.4 Hybrid Algorithm . 82

3.6 Experimental Evaluation . 83
3.6.1 Experimental subjects . 84
3.6.2 Research questions . 84
3.6.3 Experimental SetUp . 85
3.6.4 GA v/s BA v/s Hybrid . 86
3.6.5 Comparing generation sets . 89
3.6.6 Threats to validity . 91

3.7 Discussion . 92

4 Specifying aspect-oriented adaptation mechanism 95
4.1 A brief introduction to AOP and AspectJ . 96
4.2 Motivating Case Study . 98

4.2.1 A chat application . 98
4.2.2 Initial version . 99
4.2.3 Crosscutting concerns . 99
4.2.4 Validating the initial version . 102
4.2.5 Evolving the chat application . 103
4.2.6 Validating the new version . 103
4.2.7 Reasoning about the problems . 104
4.2.8 Discussion . 106

4.3 Specifying aspects-base system interaction 107
4.3.1 Aspect specification . 107
4.3.2 Core specification . 109
4.3.3 Specification matching . 112
4.3.4 Obliviousness . 114

4.4 A specification framework for interactions 114
4.4.1 Automatic classification of aspects 114
4.4.2 Specifications in the base system . 117

CONTENTS 9

4.4.3 Displaying violations . 117
4.4.4 Contribution of the ABIS framework 118
4.4.5 Writing specifications in the base system 119

4.5 Experiments . 119
4.5.1 Revisiting the initial version . 119
4.5.2 Evolution, problems detection, and problem solving 120
4.5.3 Benefits for validation and validation effort 121

4.6 Discussion . 122

5 Conclusion and Perspectives 125
5.1 Summary and Conclusion . 125
5.2 Perspectives . 127

5.2.1 Perspectives for Reasoning Engine Validation 127
5.2.2 Perspectives for Adaptation Mechanism Validation 128

A Tuple counting procedure 131

B Authentication mechanism for the chat application using aspects 133

C Alloy Specifications 137

Glossary 145

Bibliographie 147

List of Figures 169

List of listings 171

Publications 173

10 CONTENTS

11

Sistèmes auto-adaptatives —
sommaire en français

0.1 Introduction generale

Les systèmes logiciels ont propulsé la course des humains pour l’automatisation en nous
aidant à automatiser des tâches répétitives pourtant complexes et améliorer la qualité de
vie. De nos jours, nous voyons les systèmes logiciels qui aident des ingénieurs à commander
des centrales nucléaires, des pilotes à diriger des avions de 500 passagers, des médecins
à chercher les informations de patients en un instant, des hommes d’affaires à fermer des
contrats de plusieurs millions de dollars, et ainsi de suite. Ces systèmes jouent un rôle
essentiel dans l’infrastructure des sociétés. Pourtant, on attend aujourd’hui encore plus de
ces systèmes.

Dans le futur, on attend des systèmes logiciels qu’ils s’adaptent et répondent mieux aux
besoins du monde dynamique dans lequel nous vivons [134], et fournir des bénéfices au
delà des limites actuelles. De tels systèmes constituent la prochaine étape dans l’automati-
sation et devront offrir flexibilité, fiabilité et robustesse, parmi d’autres propriétés impor-
tantes. Ces derniers systèmes sont appelés auto adaptatifs parce qu’ils peuvent changer
leur structure et comportement pour s’adapter à un monde et à ses besoins en changement
continu. Ces systèmes reproduisent, aussi bien que possible, les capacités des systèmes bio-
logiques à s’adapter aux environnements en cours d’évolution. Les domaines d’application
potentiels des systèmes auto adaptatifs sont sans fin et incluent entre autres, la gestion des
crises [114, 112], l’exploration de l’espace [72], la domotique [157, 170, 160], le contrôle
de transport, les applications d’affaires [27] et d’amusement, etc.

Un système auto adaptatif est un système logiciel capable de : (i) percevoir l’environne-
ment et les changements environnementaux. Par exemple, dans la domotique, ces systèmes
peuvent percevoir des éléments environnementaux tels que la température, l’humidité,
l’éclairage, etc. (ii) raisonner sur les changements environnementaux et de décider comment
s’auto modifier pour s’adapter aux changements. Par exemple, quand la température descend
en dessous de 10 degrés Celsius, le système décide d’allumer le chauffage. (iii) re-configurer
sa structure interne en accord avec les décisions prises pour s’adapter. Par exemple, suite a la

12 CONTENTS

décision d’activer le chauffage, le système connecte le module de contrôle des radiateurs
et les allume.

Construire et valider des systèmes auto-adaptatifs propose des défis de conception, mo-
délisation, et implantation pour chercheurs et ingénieurs [186, 124, 44]. Ces défis sont liés
à la complexité de ces systèmes dans plusieurs dimensions. La complexité de prendre des
décisions sur un grand nombre de conditions environnementales. La complexité de modi-
fier le système pendant son exécution et assurer qu’il continuera à fonctionner après les
modifications. La complexité de gérer un large nombre de configurations, et ainsi de suite.
D’autres défis sont liés à la validité et à la conformité de ces systèmes : assurer que ces
systèmes perçoivent correctement l’environnement et les modèles qui le représentent ; as-
surer que les décisions prises par ces systèmes sont toujours correctes et que l’implantation
du système est fiable et sûre ; assurer que ces systèmes ne cesseront pas de fonctionner. Ce
dernier défi est critique.

Des fautes dans des systèmes auto-adaptatifs peuvent amener des conséquences lé-
gères, comme laisser l’individu λ dans l’obscurité, ou graves, comme surchauffer la maison
et mettre en péril la vie de ses occupants. Notre société peut bénéficier énormément de ces
systèmes auto adaptatifs, cependant ça n’arrivera que si l’on peut assurer qu’ils se compor-
teront de manière sûre, que (i) ces décisions seront comme prévues, et que (ii) ces adaptations
ne produiront pas d’effet de bord non désirés ou ne détruiront pas le système.

Tel est le problème qu’on soulève dans cette thèse : l’assurance du raisonnement
et l’adaptation des systèmes auto-adaptatifs. Premièrement, on adresse l’assurance du
processus de décision en proposant une technique innovatrice pour l’échantillonnage de
l’environnement. Deuxièmement, on adresse l’assurance des mécanismes d’adaptation par
aspects en proposant un framework de spécification pour les interactions des aspects. Cette
thèse contribue à la connaissance produite par des nombreux projets européens [187,
197, 82], ainsi que plusieurs groupes de recherches autour du monde qui ont adressé les
différents défis introduits par les systèmes adaptatifs.

0.2 Sistèmes auto-adaptatives

Les systèmes auto adaptatifs répondent au besoin de contrôler la complexité et réagir
face aux changements des environnements opérationnels [43]. Ces systèmes sont censés
s’exécuter pendant des périodes très longues (parfois même éternellement), répondre aux
environnements en cours d’évolution et continuer à fonctionner et à fournir le meilleur
service possible. Ainsi, ils doivent changer leur structure interne et leurs propriétés afin de
continuer à fonctionner dans le temps.

En général, un système auto adaptatif se compose de quatre éléments, la Figure 1 les
illustre :

(1) Un ensemble de sondes, qui détectent et traduisent les fluctuations environnemen-
tales dans une représentation de l’environnement. Les chercheurs ont proposé une

CONTENTS 13

Sensor

SensorSensor

reasoning
 engine

adaptation
mechanism

Envir
onmen

t
Environment

Environment

Envir
onmen

t

running
platform

2

3 1

1

1

4

FIGURE 1 – Self -adaptive system

série de représentations [106, 230, 42, 81, 18] d’environnement qui peuvent changer
selon la nature de l’environnement physique (le cas échéant).

(2) Un moteur de raisonnement, qui commande le rapport entre les variations envi-
ronnementales et les changements internes du système. Ce moteur de raisonnement
prend des décisions basées sur une série de conditions environnementales que les
sondes lui envoient. Ces décisions décrivent les actions atomiques qui constituent les
modifications globales dans la structure ou le comportement du système. Il existe
principalement trois techniques de raisonnement : (i) le raisonnement à base de
règles [91], qui emploie une série de règles pour dériver une décision, (ii) le rai-
sonnement à base de buts [105], qui emploie des buts de haut niveau pour dériver
des décisions, et (iii) le raisonnement à base de fonction de coût [125], qui emploie
une fonction de coût pour mesurer, classer, et choisir une décision parmi d’autres.
D’autres techniques de raisonnement ont été proposées récemment, techniques qui se
servent des modèles stochastiques [35, 75, 75] ou mécanismes d’essai / erreur [107]
pour conduire la prise des décisions.

(3) Une plateforme d’exécution qui correspond à la structure exécutable du système,
qui fournit des fonctionnalités. Il existe une série de plateformes d’exécution, des
programmes codés en dur [28] jusqu’au système à base de composants [31, 60, 177,
33].

14 CONTENTS

(4) Un mécanisme de re-configuration ou adaptation qui exécute les décisions prises par
le moteur de raisonnement et qui modifie la structure et le comportement de la pla-
teforme d’exécution. Une large variété de mécanismes d’adaptation et plateformes
d’exécutions ont été proposés, des adaptations codées en dur [97], des adaptations
réflexives [7], des adaptations par aspects [220], jusqu’à des mécanismes plus abs-
traits, comme des mécanismes d’adaptation dirigés par les modèles [156] capables
de gérer la plateforme d’exécution et ses changements en utilisant des modèles.

Dans cette thèse, on s’intéresse à la validation de deux de ces composants, les mo-
teurs de raisonnement et les mécanismes d’adaptation. Plus précisément, on s’intéresse
aux moteurs de raisonnement en général, comme pilotes de la prise de décisions, et aux
mécanismes d’adaptation dirigés par aspects.

La programmation orientée aspects [126] (AOP) est une technique de programmation
que permet aux développeurs d’utiliser des parties de code appelées aspects pour modifier à
la volée les modules du système. AOP se sert des points de coupure, ou pointeurs, qui dési-
gnent des points bien définis dans le système, et des advices, qui implantent la modification
du comportement. Comme mécanisme d’adaptation, AOP permet aux développeurs et in-
génieurs d’implanter des modifications structurales et comportementales dans des aspects,
pour après, si besoin, tisser ou défiler les aspects dynamiquement au temps d’exécution
pour adapter le système.

0.3 Défis por la validation des systèmes auto-adaptatives

La validation des systèmes auto adaptatifs est un processus qui assure que ces systèmes
s’adaptent correctement à n’importe quel changement environnemental auquel il puisse
faire face. Cette thèse est concernée par la validation des moteurs de raisonnement et des
mécanismes d’adaptation par l’AOP.

La validation des moteurs de raisonnement consiste à vérifier qu’ils sont capables de
prendre la bonne décision face à n’importe quel changement environnemental, c’est-à-dire
exécuter le moteur de raisonnement contre tout environnement possible et ses variations,
et observer s’il décide correctement. S’il prend les bonnes décisions, alors le moteur de
raisonnement est valide, autrement il est défectueux.

La validation des mécanismes d’adaptation pas l’AOP consiste à vérifier si le tissage
des aspects dans le système de base produit les adaptations correctes, c’est-à-dire vérifier :
(1) que les nouveaux aspects tissés dans le système ne dégradent pas des fonctionnalités
existantes, et (2) que les fonctionnalités ou les modifications introduites par les aspects
s’exécutent comme prévu.

La validation de chacun de ces éléments impose plusieurs défis que l’on récapitule dans
le reste de cette section.

CONTENTS 15

0.3.1 Défis de la validation des moteurs de raisonnement

Les moteurs de raisonnement prennent des décisions basées sur des conditions envi-
ronnementales passées et courantes. L’environnement lui-même est représenté par un en-
semble de variables de raisonnement, dont leur valeurs décrivent les conditions possibles
(ou des instances) que l’environnement peut adopter. Ces variables de raisonnement créent
un espace qui contient toutes les conditions environnementales possibles, connu sous le
nom d’espace de raisonnement. Cet espace incarne les différentes interactions entre les
valeurs des différentes variables de raisonnement, que l’on référence en tant qu’interac-
tions inter-variables. L’espace de raisonnement comporte aussi les différentes variations
environnementales qui peuvent se produire au cours du temps (temporalité). Ces variables
produisent des interactions entre les valeurs à l’intérieur de chaque variable de raisonne-
ment, que l’on référence en tant qu’interactions intra-variables.

Les interactions intra et inter variables forment l’espace de raisonnement et le rendent
très grand. Par exemple, considérez un environnement modelé par 10 variables d’environ-
nement avec 3 valeurs chacune. Le nombre total de conditions environnementales pour
cet environnement est 310 = 59.049 intenses. Autrement dit, cet espace de raisonnement
incarne 59.049 interactions inter-variables. En fait, si nous considérons la dimension tem-
porelle de l’environnement, l’espace de raisonnement est encore plus grand. Considérez
que cet espace de raisonnement contemple seulement deux intenses sur son histoire (ou
l’interaction inter-variable entre deux valeurs de la même variable). Alors, la taille de l’es-
pace de raisonnement est 59.0492 = 3.5× 109, c’est-à-dire que cet espace de raisonnement
comporte 3.5× 109 interactions intra-variables.

Valider que le moteur de raisonnement prenne les décisions correctes implique de véri-
fier que ses décisions sont correctes pour l’espace entier de raisonnement. Or, ce n’est pas
toujours possible. Par exemple, considérez l’espace de raisonnement précédent, la valida-
tion d’un moteur de raisonnement sur cet espace implique de vérifier s’il prend les décisions
correctes sur chacune des 3.5 time109 variations environnementales, soit un processus qui
peut s’exécuter au cours de plusieurs siècles avant de finir. Par conséquent, la validation
de l’espace de raisonnement au-dessus de chaque état environnemental possible est en
général impraticable.

Les techniques d’état de l’art existantes proposent de ramener le nombre de condi-
tions environnementales au contrôle. Une technique appelée mixed level covering arrays
(MCA) [55] couvre effectivement les interactions qui se produisent entre les différentes
variables (inter-variables) de raisonnement. MCA réduit nettement le nombre de condi-
tions environnementales nécessaires pour valider le moteur de raisonnement, cependant,
il ne couvre pas la dimension temporelle du raisonnement et ne traite pas les interactions
intra-variables.

Un défi important pour valider des moteurs de raisonnement est de pouvoir gérer
les différentes conditions environnementales (interactions inter-variables) et la di-
mension temporelle des variations sur ces conditions (les interactions intra-variables).

16 CONTENTS

0.3.2 Défis de la validation de l’AOP

L’AOP a une série de problèmes qui empêchent son adoption comme mécanisme d’adap-
tation et posent des obstacles à la validation. Le premier problème, connu sous le nom de
paradoxe d’évolution [217, 132, 150], se produit quand les aspects et le système de base
évoluent séparément et provoquent le tissage des aspects dans des modules non souhai-
tés, ou que des aspects ne soient pas tissés dans les modules souhaités. Ce problème pro-
vient de l’insuffisance du langage de point de coupe actuel pour abstraire des propriétés
structurales du système de base. Le deuxième problème, connu sous le nom d’interférence
d’aspect [121], se produit quand plusieurs aspects sont tissés dans le même point de sys-
tème, ou quand un aspect décommande l’effet d’autres aspects. Le troisième problème se
fonde sur deux propriétés d’AOP : l’inconscience [80] (la capacité des aspects d’exécuter
du comportement sans être demandé) et l’envahissement [164] (ou la capacité des aspects
à casser l’encapsulation orientée objet). L’envahissement est une propriété puissante qui
permet que l’AOP soit utilisée comme mécanisme d’adaptation puisqu’il laisse remplacer
et augmenter le comportement du système. Cependant, une fois utilisé inconsciemment, il
peut également introduire du comportement et des effets de bord non désirés sans que les
développeurs s’en rendent compte.

Ces problèmes impactent négativement la validation de l’AOP, les effets secondaires peu
désirés, l’interférence entre les aspects, et l’envahissement non contrôlé rendent difficile le
fait de s’assurer que les fonctionnalités sont préservées quand de nouveaux aspects sont
tissés avec le système de base. Par conséquent, pour vérifier si les nouveaux aspects peuvent
préserver les fonctionnalités du système, il est nécessaire d’exécuter de nouveau les test
fonctionnels. Si le système montre des déviations par rapport au comportement correct,
les problèmes de l’AOP ne permettent pas facilement de savoir si les aspects introduisent
des fautes.

Les techniques d’état de l’art ont abordé ces problèmes en caractérisant le comporte-
ment d’aspect [196, 122, 49, 77], proposant des directives [150, 217, 127] et des systèmes
modulaires [5, 98, 143, 139] pour des programmes orientés aspect. La caractérisation d’as-
pect fournit un moyen de spécifier le comportement des aspects en ce qui concerne leur
interférence et l’influence des aspects sur le programme de base. Cependant, la plupart des
caractérisations fournissent seulement l’appui pour l’analyse théorique [196, 122, 77] ou
caractérisent les aspects à gros grain [49]. Ceci ne garantit pas que l’aspect ne sera pas tissé
ou qu’ils n’auront aucun effet secondaire. Les directives sont des ensembles de principes
pour guider les développeurs face aux aspects, elles proposent des règles à suivre pour
rendre les développeurs conscients des aspects et de ces effets dans leur code. Cependant,
ils ne posent pas d’attachement aux développeurs, et ne proposent pas de garanties sur
le comportement des développeurs et les aspects qu’ils écrivent. Les systèmes modulaires
permettent aux développeurs et ingénieurs de spécifier finement les points du système
qui sont ouverts pour tisser des aspects. Bien que les systèmes modulaires spécifient les
points ouverts dans le système, ils permettent aussi que n’importe quel aspect puisse être

CONTENTS 17

tissé sur ces points ouverts. Les systèmes modulaires adressent proprement les problèmes
d’envahissement et d’inconscience mais ignore la possibilité que différents aspects puissent
interférer avec le système de base.

Des défis importants pour la validation du mécanisme d’adaptation par AOP sont :
(i) le support pour l’évolution des programmes orientés par aspect, (ii) le contrôle de
l’envahissement des aspects, et (iii) la gestion des interactions d’aspect. Relever ces
défis fournira les moyens aux développeurs et ingénieurs de savoir en avance si les
aspects ont introduit un certain danger.

0.4 Contributions de cette these

Cette thèse comporte deux contributions majeures à la validation des systèmes auto-
adaptatifs, chacune de ces contributions relevant les défis précédemment énumérés. La
première contribution est une technique de sélections de données pour valider des moteurs
de raisonnement. La deuxième contribution est un framework de spécifications pour les
mécanismes d’adaptation par AOP. Dans le reste de cette section je récapitule chacune de
ces contributions.

0.4.1 Test des moteurs de raisonnement

La validation des moteurs de raisonnement pose un défi en raison du grand nombre
de conditions environnementales possibles à vérifier. Les techniques existantes ne gèrent
pas la dimension temporelle de l’espace de raisonnement. Dans cette thèse on introduit le
multi-dimensional covering array (MDCA), une technique qui peut effectivement gérer la
dimension temporelle de l’espace de raisonnement (interactions intra-variables) et aussi
gérer les interactions entre les variables. MDCA étend une technique existante, MCA, et
préserve ses avantages. L’idée derrière MDCA est de couvrir en même temps les interactions
qui se produisent entre les variables (interactions inter-variables) et les interactions entre
les valeurs de chaque variable de raisonnement (interactions intra-variables) qui peuvent
influencer la prise de décision.

MDCA échantillonne une quantité limitée de conditions environnementales pour vali-
der des moteurs de raisonnement. L’hypothèse que soutient MDCA est que les conditions
échantillonnées caractérisent les interactions de l’espace de raisonnement de telle manière
que si la prise de décisions contient des défauts ou des déviations par rapport à la décision
prévue, elles seront indiquées.

Essentiellement, un MDCA est un tableau de dimensions N × k qui satisfait les pro-
priétés suivantes : (i) les valeurs dans chaque file correspondent aux valeurs d’une variable
précise ; (ii) pour chaque file, les u-colonnes consécutives, comportent toutes les u-tuples des
valeurs de la variable correspondant pour la file ; (iii) les u-colonnes consécutives de chaque

18 CONTENTS

t × N sous tableau comportent toutes les t-tuples de u-tuples des valeurs pour les variables
correspondant aux t files.

...

...

...

V1

V2

V3

a b c

x y z

1 2 1

a b

b c

a b
1 2

x y

1 2

a b

x y

b c

y z

y z

2 1

x y

y z

1 2

2 1

V2

V3

V1

V2

V1

V3

V1 V2 V3

V1 V2 V3

c c
2 1

t = 2

u = 2

A

B 3 x 10 array

...

...

...

...

...

...

...
V1 = {a, b, c}
V2

V3

= {x, y, z}
= {1, 2}

...

FIGURE 2 – Graphical view of an MDCA for 3 variables.

Notez que chaque file du MDCA contient une série des valeurs pour une variable de rai-
sonnement, tandis que chaque colonne contient une valeur pour cette variable précise. Par
conséquent, chaque colonne représente une instance d’environnement, l’ordre d’apparition
de chaque instance est important puisque cet ordre représente les différentes transitions
entre variables.

La Figure présente graphiquement un MDCA pour 3 variables. Les valeurs de t et de
u s’appellent force, et force d’enchaînement, et représentent le nombre de variables que
le MDCA considère pour les interactions inter-variables et le nombre de valeurs pour les
interactions intra-variables. Dans la figure 2, le tableau a les valeurs t = 2 et u = 2, cela si-
gnifie que le MDCA considère les interactions entre les valeurs de deux variables différentes
(inter), et les interactions entre les valeurs de deux valeurs différentes de la même variable
(intra). La propriété (i) assure que chaque file contient les valeurs d’une variable de raison-
nement seulement. La propriété (ii) assure que toutes les interactions intra-variables entre
les valeurs de chaque variable de raisonnement sont présentes dans le tableau, la figure 2
(a) montre les interactions intra-variables entre 2 valeurs de chaque variable. La propriété
(iii) assure que toutes les interactions inter-variables entre les variables sont présentes dans
le tableau. La figure 2 (b) montre les interactions inter-variables entre les paires de diffé-

CONTENTS 19

rentes variables. Notez que le défi est de construire des MDCAs avec le plus petit nombre
de colonnes possible.

MDCA décrit les propriétés qu’un tableau doit satisfaire pour assurer la couverture des
interactions intra et inter variable. Afin de démontrer la faisabilité de MDCA, on a codé
sa construction comme problème d’optimisation fonctionnel qui cherche à optimiser la sa-
tisfaction des propriétés qui définissent un MDCA. Pour résoudre ce problème on emploie
trois méta-heuristiques – algorithme génétique [96] (GA), algorithme bactériologique [12]
(BA), et un algorithme hybride (HA) – qui utilisent différentes stratégies pour construire
des tableaux satisfaisant les propriétés du MDCA. Le GA est une technique qui simule l’évo-
lution d’une population d’individus qui évolue vers une solution optimale par mutations et
sélections naturelles génétiques. Le BA est une adaptation de GA pour simuler l’évolution
d’un groupe de bactéries. BA sélectionne les batteries qui peuvent améliorer la solution
globale, pendant que les autres qui ne l’améliorent pas sont mutés puis jetés. L’HA est une
combinaison de GA et BA qui construit une solution avec une stratégie de BA et la raffine
avec une stratégie de GA. Pour déterminer quel est le meilleur algorithme de construction
parmi ces derniers, on a conduit une série d’expériences qui comparent le temps (mesuré
en nombre d’itérations) et la qualité de la solution (mesurée par la longueur de l’ordre, plus
la longueur est grande la longueur, plus la qualité diminue). L’évidence empirique suggère
que l’HA est la méta-heuristique qui est le mieux adapté pour ce problème en terme de
qualité puisqu’elle produit des tableaux plus courts dans un temps raisonnable.

MDCA est construit sur l’hypothèse que l’assurance des interactions inter et intra va-
riable implique que les conditions nécessaires à la prise de décision seront déclenchées.
Afin de vérifier ou réfuter cette hypothèse, on a conduit une série d’expériences sur trois su-
jets d’étude, on compare la couverture sur les conditions des décisions fournies par MDCA,
MCA et la génération aléatoire des données.

Les deux premiers sujets d’expérience sont l’exécution d’un même système – système
adaptatif de rapport de client (ACRM) [73] – utilisant différentes langues et différents for-
malismes. Le premier est une implantation utilisant le langage de règles Drools et contient
40 règles. Le deuxième est une implantation utilisant le langage Java et contient 96 règles.
Notez que le premier et deuxième sujet n’ont pas un raisonnement équivalent dans tous
les cas, les limitations techniques ont mené les développeurs de ces systèmes à prendre des
décisions différentes concernant le processus de raisonnement. Le troisième sujet d’étude
est un petit serveur web adaptatif implanté avec Java et une langue ad hoc de règle avec
un petit environnement composé de trois variables de raisonnement et de 17 règles. Notez
que ce système ne prend pas en compte l’histoire de l’environnement pour prendre des
décisions.

Les données utilisées pour mener les expériences ont été générées de la manière sui-
vante : l’HA a été utilisée pour produire 50 ensembles de données satisfaisant les propriétés
du MDCA (la force et l’enchaînement de la valeur de force égale à 2), un outil tiers 1 a été

1. petit http ://www.mcdowella.demon.co.uk/allPairs.html

20 CONTENTS

employé pour produire 50 ensembles de données satisfaisant les propriétés du MCA , et 50
ensembles de données ont été aléatoirement produits.

L’évidence empirique obtenue à partir des expériences indique que : (i) MDCA peut
effectivement couvrir la plupart des conditions de décision, (ii) MDCA surpasse dans les deux
premiers sujets la couverture que proposera MCA et la génération aléatoire, et illustre les limi-
tations des MCMA pour couvrir des interactions temporelles, et (iii) MDCA et MCM fournissent
la même couverture quand le raisonnement ne considère pas l’histoire. Les MCA produisent
des tableaux plus courts avec les mêmes résultats que MDCA. Dans tous les cas, les MCA et le
MDCA proposent de meilleurs résultats que la génération de données aléatoires.

Ces observations fournissent assez d’évidences pour affirmer que MDCA assure un ni-
veau de couverture de décisions de raisonnement. Nous comptons qu’avec haut force et
force d’enchaînement, le niveau de couverture augmentera. Cependant, les évidences sug-
gèrent également que MCA et MDCA ont des résultats comparables si le raisonnement ne
considère pas l’histoire. Ceci semble raisonnable, puisque MDCA est une prolongation des
MCA pour manipuler l’explosion combinatoire produite par l’histoire et les MCA couvrent
le même nombre de conditions que MDCA avec moins de données.

0.4.2 Specification des mechanismes orientes aspects

On adresse les problèmes de l’AOP en proposant une caractérisation et un framework
de caractéristiques – Cadre de Spécifications d’Interaction Basé sur les Aspects (ABIS) [165].
L’idée fondamentale est de fournir aux développeurs et ingénieurs les moyens d’exposer
des modules particuliers du système aux aspects, et spécifier les types particuliers d’aspects
autorisés pour être tissés avec ces modules.

Le framework ABIS est basé sur une caractérisation des différents patrons d’envahis-
sement que les aspects peuvent réaliser. On identifie onze types d’envahissement selon la
façon dont les aspects peuvent modifier le système de base. Notez que cette caractérisa-
tion est basée sur la réalisation d’AspectJ de l’AOP et peut être appliqué à n’importe quel
langage similaire à AspectJ. Ces patrons d’envahissement sont :

– augmentation Le comportement du module intercepté est toujours exécuté, dans ce
cas l’aspect augmente le comportement du module.

– replacement Le comportement du module intercepté n’est jamais exécuté, dans ce cas
l’aspect remplace partiellement ou complètement le comportement du module.

– conditional replacement Le comportement du module intercepté n’est pas toujours
exécuté, l’aspect remplace le comportement du module du système seulement si une
condition est satisfaite.

– multiple Le comportement du module intercepté peut-être exécuté plusieurs fois.
– crossing L’aspect invoque le comportement de certains modules qu’il n’intercepte pas,

cette invocation introduit des dépendances entre modules.
– write L’aspect écrit la valeur d’un attribut dans un module, dans ce cas l’aspect modi-

fie les données internes du module.

CONTENTS 21

– read L’aspect lit la valeur d’un attribut dans un module, dans ce cas l’aspect accède
les données internes du module.

– argument passing L’aspect modifie les valeurs des arguments du module intercepté
puis il invoque le comportement du module, dans ce cas l’aspect modifie les para-
mètres de communication entre les modules du système.

– hierarchy L’aspect modifie la hiérarchie des modules (héritage)
– field addition L’aspect introduit un nouvel attribut dans un module.
– operation addition L’aspect introduit une nouvelle opération dans un module.
Il est important de mentionner que les patrons augmentation, remplacement remplace-

ment conditionnel et multiple sont exclusifs, un aspect peut être classifié par seulement l’un
d’entre eux.

Étant donné la caractérisation d’aspects, le framework ABIS permet aux développeurs
de spécifier les modules du système et indiquer les patrons d’envahissement que l’on auto-
rise ou interdit d’agir sur des modules spécifiques. Par exemple, un développeur peut spé-
cifier dans un module textttcommunication, que seulement le patron emph augmentation
est autorisé d’agir avec ce module. Ceci empêchera d’autres patrons d’agir sur le module
communication, et permet aux développeurs de commander les aspects qui agissent sur le
système de base.

ABIS fournit un langage pour spécifier des interactions permises ou interdites entre as-
pects dans le système de base. Du côté des aspects, ABIS classifie automatiquement chaque
aspect selon le patron d’envahissement qu’il réalise. Cette classification automatique est ef-
fectuée en analysant statiquement les éléments structuraux et le comportement de chaque
aspect dans le système (avant de les compiler). Du côté du système de base, les dévelop-
peurs peuvent spécifier les modules du système en utilisant des méta-informations sous
forme d’annotations [24]. Puis, ABIS comparera les spécifications du système de base et
d’aspect pour vérifier si les deux sont conformes. C’est-à-dire, vérifier que les aspects res-
pectent les spécifications indiquées dans les modules du système de base, et qui ne sont pas
tissés dans des modules où ils sont interdits. Dans le cas où les aspects ne respecteraient pas
les spécifications du système de base (en se tissant avec des modules erronés), ABIS rap-
portera des spécifications cassées et en informera les développeurs. Puis, les développeurs
pourront corriger le problème et décider si les aspects posent vraiment des problèmes ou
si le système de base est le coupable.

On a conduit des expériences sur deux évolutions d’un système orienté aspect. La ver-
sion originale de ce système est une application chat client-serveur qui met en application
des fonctionnalités transversales telles que le chiffrage, jogging, gestion d’erreur, et ainsi
de suite en utilisant des aspects (en plus de sa fonction de base des messages à diffusion
générale parmi des clients chat). L’évolution du système consiste à modifier le système
de base et ajouter des possibilités d’authentification, cette évolution peut être exécutée en
employant des aspects ou en modifiant simplement le code du système.

La première expérience a consisté à valider le système et son évolution en utilisant des
tests au niveau système et pas de spécifications. Pendant l’évolution, des problèmes de vali-

22 CONTENTS

dation ont été détectés et corrigés en exécutant plusieurs fois les tests et en tissant / défilant
les aspects. L’évidence empirique a indiqué que tracer la source des problèmes aux interac-
tions défectueuses d’aspect est un processus pénible, long et complexe qui exige de tisser
/ défiler des aspects et exécuter des tests plusieurs fois. La deuxième expérience a consisté
à ajouter des spécifications d’interactions au système de base et en validant l’évolution uti-
lisant des test au niveau système. Pendant l’évolution, des problèmes de spécifications ont
été détectés (des aspects tissées avec de modules trompées) et ont été corrigés sans devoir
exécuter tous les tests ou tisser/ défiler des aspects à nouveau. L’évidence empirique a in-
diqué que quand des spécifications sont présentes, moins d’efforts sont nécessaires pour
tracer et corriger des problèmes dus aux interactions défectueuses. On a mesuré les diffé-
rents efforts pour détecter et corriger les anomalies de la façon suivante : dans la première
expérience 55 essais ont été exécutés et 2 aspects ont été tissés/défilés, tandis que dans
la deuxième expérience seulement 19 essais ont été exécutés et aucun aspect n’a été tis-
sé/défilé. Ceci implique que les spécifications peuvent effectivement réduire l’effort requis
pour diagnostiquer et corriger des problèmes liés aux interactions et à l’envahissement des
aspects.

Les spécifications du système de base informent les développeurs au sujet de l’exis-
tence des aspects et les forcent à raisonner à l’avance au sujet de tels aspects. Ces spéci-
fications aident aussi les développeurs à gérer le degré d’envahissement des aspects qu’ils
permettent dans leur code. Les avantages de ces spécifications sont variés, des nouveaux
aspects se tisseront avec le système de base en conformité avec les spécifications. Ceci fait
que probablement les aspects capturent moins de modules non souhaités ou qu’ils intro-
duisent des interférences entre aspects. Puisque les intentions d’aspects sont explicites, les
développeurs peuvent savoir à l’avance si les aspects présenteront des effets de bord non
souhaités ou s’ils interféreront avec d’autres aspects. Si de nouveaux aspects sont introduits
mais si l’on peut assurer qu’ils n’ont pas d’effet de bord, alors on est sûr de ne pas exécuter
à nouveau chaque test du système.

0.5 D’autres contributions á la validation des systèmes auto-
adaptatives

Pendant le développement de cette thèse, on a également étudié les défis de l’adapta-
tion conduite par des modèles et d’autres dimensions d’AOP.

D’abord, on a étudié la composition des modèles dans l’adaptation conduite par les
modèles. Ces dernières années, les modèles au temps d’exécution et l’adaptation conduite
par les modèles ont gagné un grand nombre d’adeptes. La composition des modèles joue
un rôle important dans l’adaptation conduite par les modèles. Des modèles sont employés
pour séparer les préoccupations métiers et les préoccupations adaptatives, ces modèles
sont composés plus tard dans un modèle intégré du système qui est employé pour changer
la plate-forme d’exécution. S’assurer que les modèles résultants de la composition sont

CONTENTS 23

comme prévus est important parce que des compositions défectueuses peuvent rapporter
des adaptations défectueuses. En [162], on a identifié quelques défis pour la composition
des systèmes et modèles adaptatifs, et en [163] on a exploré la validation des moteurs de
composition des modèles en proposant un framework de test qui permet aux ingénieurs de
tester automatiquement et exhaustivement un moteur de composition des modèles.

En second lieu, on a étudié la diffusion et l’utilisation de l’AOP. Depuis que l’AOP a été
présenté en 1997 [126], un grand nombre de chercheurs ont mène leurs recherches autour
d’AspectJ [227] – la réalisation la plus populaire de l’AOP. Cependant, il est peu clair si les
développeurs emploient l’AOP et comment ils l’emploient. En [166], on conduit une étude
empirique sur 38 projets de source ouverte de petite et grand échelle utilisant AspectJ.
Cette étude a évalué l’emploi des patrons d’envahissement, la transversale des aspects, les
utilisations principales et l’emploi des caractéristiques du langage. L’évidence empirique
indique que les aspects sont peu ou pas transversaux, généralement les développeurs de
source ouverte n’emploient pas les dispositifs envahissants AOP’, et modularisent des pré-
occupations transversales en utilisant peu d’aspects. La taille du projet n’a pas d’impact sur
le nombre d’aspects, et les développeurs emploient juste quelques constructions du langage
de point de coupe pour exprimer des aspects.

Ces résultats suggèrent que malgré le grand nombre de travaux et d’avancées scien-
tifiques dans des langages d’aspect, les développeurs sont hésitants pour employer l’AOP.
Ceci peut être expliqué par plusieurs raisons : (i) les développeurs trouvent difficile de raison-
ner au sujet des unités qui semblent modulaires mais interceptent d’autres unités, en particulier
quand ils pensent à AspectJ comme prolongation à OO, qui peut améliorer la modularité mais
réduit paradoxalement le maintenance [217] ; (ii) Le langage d’AspectJ n’est pas assez flexible
pour permettre aux développeurs de modulariser le total des préoccupations transversales ; (iii)
les caractéristiques envahissantes d’AspectJ, qui devraient aider à modulariser des préoccupa-
tions transversales précises ne sont pas employées parce qu’elles peuvent présenter des effets de
bord non souhaités [165]. Cette étude empirique soutient l’intuition que les caractéristiques
invasives de l’AOP, l’interférence, et les problèmes d’évolution doivent être abordés afin de
soutenir l’adoption de l’AOP en général et en particulier comme mécanisme d’adaptation.

24 CONTENTS

25

Chapter 1

Introduction

Software systems have propelled the human’s race for automation by helping us to
automate repetitive yet complex tasks, thus improving the quality of life. Nowadays, we
see software systems that help engineers to control nuclear power plants, pilots to fly 500
passenger airplanes, doctors to fetch information of patients in the blink of an eye, and
business men to close multimillion deals. These systems play an important role in our
society’s infrastructure and do more for us today than ever before. Nevertheless, in the
future these software systems will provide benefits beyond limits by taking automation to
the next level.

The next generation of software systems should answer the needs of the dynamically
changing world in which we live [134]. Future software systems are expected to op-
erate non-stop 24/7 for long periods and offer flexibility, reliability, and robustness. To
support these characteristics, these systems need to have the ability to change their in-
ternal structure and behavior, and judge when such changes are needed. These systems
are called self -adaptive and are capable of delivering a dramatic improvement in appli-
cations domains such as crisis management [114, 112], space exploration [72], home-
automation [157, 170, 160], and business applications [27].

1.1 Self -adaptive systems

Self -adaptive systems are the future of software automation [43] and should improve
the automation offered by current software systems.

Customer relationship management systems (CRM) [3] exemplify such improvement.
Classical CRMs are business applications that automate and centralize the handling and
the development of customer relations. CMRs enable executives to do activities such as
handle appointment, share files, retrieve and modify clients’ information, and send auto-
mated messages. Today, CRMs [120, 3] propose a variety of operation modes according
the different operational environments. Each version of a CRM provides access to a variety

26 Introduction

of calendar services, encryption protocols, and user interfaces. Then, executives should
choose the version that best fits their needs, turn off the current version, and start the
new one. This renders the use of CRM systems across different operational environments
complex and tedious.

Adaptive CRM systems (ACRM) [73] are self -adaptive systems that improve the au-
tomation of classic CRMs. ACRMs provide the same functionalities provided by CRMs, but
offer dynamic and autonomous variability. These systems are capable of self-modification.
This allows them to change dynamically and autonomously components such as calendar
services, encryption protocols, messaging facilities, and user interface. Such changes oc-
cur according to the environment needs, on the fly and without needing any restart or
intervention. ACRM systems improve the automation and the benefits that classic CRMs
provide. ACRMs relieve executives from the burden of selecting the right CRM or picking
and using one that is unfitted to their needs.

The anatomy of self -adaptive systems is the following [111]: (i) Self-adaptive systems
sense a set of relevant properties from the working environment. For example, an ACRM
senses the network connection speed, network security level, and available calendar service
change. (ii) Self-adaptive systems reason and make decisions based on these environmental
property values. For example, when the connection speed is low, the security level is high,
and the Google calendar service is available, it will decide to make the Google calendar
client available. (iii) Self-adaptive systems apply the decisions that modify their underlying
structure. For example, following the decision to make available the Google calendar client,
the ACRM disconnects the previous calendar modules, and connects the Google calendar
module, the Google messaging service module, and the Google calendar user interface.

Designing and building self -adaptive systems is not simple [44] and poses several re-
search and engineering challenges. Researchers and engineers need to create several pieces
of technology such as techniques to sense the environment [42, 81, 18], technology to
make decisions based on innumerable environmental conditions [91, 105, 125], and mech-
anisms that enable adaptation (reconfiguration) on the fly [31, 220, 156]. Each piece of
these pieces embodies an overwhelming complexity [44]. Engineers building self -adaptive
systems are prone to make a series of mistakes and to introduce faults into these systems.

Faults in self -adaptive systems may have minor consequences such as rendering the
access to calendar services impossible, to more serious consequences such as disabling the
engine control modules of a flying airplane. Such faults could be found in each component
that integrates a self -adaptive system. Engineers could create a wrong representation of
the environment and environmental properties, reasoners that make wrong decisions, or
adaptation mechanisms that apply incorrectly the adaptations.

Self -adaptive systems can effectively improve automation in a large number of human
activities. Nevertheless, our society will benefit of such automation only when engineers
could guarantee that these systems will perform as expected. This implies that self -adaptive
systems must be tested and verified thoroughly to find and correct faults, and to guarantee
that each piece of these systems is valid and works correctly.

Introduction 27

1.2 Challenges of the validation of self -adaptive systems

The validation of self-adaptive systems consists in guaranteeing that each component
of these systems functions correctly [30]. To achieve such validation, each piece that
constitutes the system must be validated thoroughly. Nevertheless, the validation of each
of these pieces carries a series of challenges that need to be conquered.

The validation of sensors and environment models consists in ensuring that the envi-
ronment is well represented by the environment’s models and that probes can effectively
sense the environmental variations [44, 30]. The challenges associated with the validation
of the environment representations lie on the complexity introduced by environmental
properties, which can be continuous or discrete, by environments that may behave errat-
ically, and by sensors that may provide erroneous data making the environmental models
inconsistent [230].

The validation of reasoning engines – the pieces of software entitled with the decision
making process – consists in ensuring that they make the right decisions given any of the
possible environmental conditions to which the system is intended to adapt [44, 30]. The
challenges associated with the validation of reasoning engines relate to the large number
of possible environmental conditions that a self-adaptive system will face. The number
of environmental conditions grows exponentially with the number of properties that drive
the adaptation. Furthermore, reasoning engines may make decisions based on previous
environmental conditions that span over a time window. Since these environmental con-
ditions represent temporality, the order in which they occur is important. Therefore, the
number of possible arrangements in which environmental conditions may occurs must also
be considered. Yet, the number of possible arrangement for environmental conditions
grows exponentially with the size of the time window. Validation techniques for reason-
ing engines must be capable of handling a huge number of environmental conditions and
possible arrangements of them.

The validation of adaptation mechanisms – the pieces of software entitled with the dy-
namic adaptation – consists in ensuring that the system will reconfigure correctly and that
new reconfigurations will not break the system down [44, 30]. This requires ensuring that
every possible variant of the system is feasible, that they will not break down the system,
and that they will provide the functionalities they are meant to. Additionally, validation
should ensure that the system’s components that enable dynamic change do not interfere
with each other. The challenges associated with the validation of adaptation mechanisms
relate to the large number of components, interactions between components, and possible
system variations. Furthermore, different adaptation mechanisms may introduce different
limitations or advantages to the validation. For example, adaptation mechanisms based
on aspect-oriented programming allow engineers to master the large number of possible
system variants [220], but introduce a series of challenges related to unintended interac-
tions between modules and undesired side effects [150, 121]. Validation techniques for
adaptation mechanisms must be capable of handling a large number of components and

28 Introduction

interactions, and provide assurance that new reconfigurations will be safe.

1.3 Contributions of this thesis

In this thesis I present two major contributions that address respectively the validation
of reasoning engines through testing and the validation of adaptation mechanisms based
on aspect-oriented programming through specifications.

1.3.1 Test data selection from reasoning engines

The first contribution of this thesis addresses the validation of reasoning engines through
testing.

Software testing is an empirical validation technique, which focuses on the execution of
the system realization and the evaluation of the observable results produced by the system.
Testing reasoning engines consists in feeding the system with a set of environmental con-
ditions, and then evaluating the resulting decisions made by the reasoning engine. If the
resulting decision is as expected, then the system is valid, otherwise it contains faults that
need to be found and corrected. Ideally, engineers should test reasoning engines against
every possible environmental condition and the different combinations of them. Yet, as
mentioned earlier, the number of environmental conditions is huge, and testing all of them
is most often impossible.

In this thesis, I introduce a test data selection technique, which allows engineers to
sample relevant environmental conditions and interactions among these conditions. In
this way, engineers do not need to test every possible environmental condition, but a
limited number of them in order to validate reasoning engines. This technique, called
multi-dimensional covering arrays (MDCA) is capable of handling a very large number of
environmental conditions by sampling the ones that are more likely to uncover faults. The
idea underlying MDCA is the selection of (i) relevant combinations (combinatorial selec-
tion) of the environmental property values that constitute each environmental conditions, and
(ii) relevant interactions among environmental conditions that represent the temporality. For
example, MDCA may select all the pairs of environmental property values to construct envi-
ronmental conditions, and all the arrangements of two environmental conditions to reflect
the temporality of environments (in a time window of two environmental conditions).

MDCA aims at making a compromise between testing a large number of environmen-
tal conditions and selecting a limited amount of them without sacrificing the capability to
find faults. MDCA can effectively trigger faults in the reasoning process by selecting en-
vironmental conditions that satisfy a combinatorial criterion. It supports engineers in the
validation of reasoning engines by allowing them to select environmental conditions that
are representative of the environment and its variations. These environmental conditions
can be then to test, detect, and find faults in reasoning engines.

Introduction 29

The contributions of this thesis to the test of reasoning engine are: (i)a formal definition
of MDCA, (ii) a set of techniques to construct MDCAs, and (iii) an empirical validation of the
MDCA’s capacity to cover reasoning engine’s decision, which should lead to the discovery of
faults.

1.3.2 Specification of aspect-oriented adaptation mechanism

The second contribution of this thesis addresses the validation of aspect-oriented adap-
tation mechanisms through specifications.

Aspect-oriented programming (AOP) was introduced in 1997 [126] as a way to mod-
ularize concerns that crosscut several modules in a software system. AOP provides the
means to encapsulate into well modularized units of code – aspects – those concerns that
are spread across several parts of the system. Such concerns may modify the underlying
structure and behavior of the base system (system without aspects). Furthermore, AOP
provides the means to dynamically weave and unweave those concerns from the base sys-
tem [184]. These characteristics make AOP a good candidate to perform the adaptations
in a self-adaptive system. An aspect-oriented adaptation mechanism may use aspects to
realize the adaptive concerns (those that modify the system structure and behavior) and
dynamic weaving / unweaving mechanisms to perform the system’s adaptations [151].

Nevertheless, we recently observed that AOP has experimented a slow adoption in the
last years [166]. This slow adoption is due to three factors, (i) the evolution and mainte-
nance problems of AOP [150], (ii) the uncontrolled and unexpected interactions among as-
pects [121], and (iii) the uncontrolled invasiveness of aspects over the base system [80, 164].
These three factors represent major difficulties for the validation of aspect-oriented pro-
grams [165], and particularly impact the validation of aspect-oriented adaptation mecha-
nisms. Aspects realizing adaptive concerns may introduce unexpected interactions, unde-
sired side effects, and unforeseen dependencies with the base system. Engineers validating
adaptation mechanisms are forced to test every possible configuration (weaving) because
there is no assurance that the addition or removal of an adaptation concern (aspect) will
not introduce side effects. Nevertheless, as mentioned before, due to the large number of
adaptive concerns and possible system variants this is often impossible.

In this thesis, I introduce an interaction specification framework [165] – ABIS – to
control the interactions between aspects (adaptive concerns) and the base system. ABIS
enables engineers to specify the type of aspects (which carry adaptive concerns) that they
allow or forbid to be woven with the base system. These aspects are identified by the
invasiveness pattern they realize, thus providing a mechanism to control the invasiveness
of aspects. ABIS provides the means for engineers to ensure that aspects interacting with
the base code will not introduce undesired side effects. If new adaptations are introduced
into the system developers do not need to retest all the system functionality. Additionally,
in the case where aspects introduce faults, ABIS can provide useful information and reduce
the effort needed to find and fix those faults.

30 Introduction

Invasiveness patterns are a characterization of the invasive capabilities of aspects.
These patterns classify aspects among 11 types of invasiveness ranging from control flow
invasiveness, to data and structure invasiveness. ABIS is capable of automatically classify
aspects according to invasiveness pattern they instantiate in their code.

The contribution of this thesis to the validation and specification of aspect-oriented
adaptation mechanisms are: (i) a characterization of invasiveness patterns for AspectJ, (ii)
an automated classification technique for invasiveness patterns, (iii) tooling support for the
ABIS specification framework, and (iv) an empirical demonstration of the overall benefits of
specifying the interaction between aspects and the base system.

1.4 Organization of this thesis

This thesis is organized as follows. In chapter two I present the background (state of
the art) and motivation of this thesis. In chapter three, I introduce a test data selection
technique, MDCA that targets very large environments in which temporal variations are
meaningful. In chapter four, I introduce an interaction specification framework for AOP,
ABIS, which is intended to provide assurance about the interactions between aspects and
the base system. In chapter five, I conclude and discuss the perspectives of this thesis.

31

Chapter 2

Background and Motivation

Researches have invested major efforts in developing techniques and methodologies
for developing self -adaptive systems from top to bottom. These techniques range from en-
vironmental data acquisition, reasoning techniques, platform reconfiguration, and model
driven methodologies to adaptive validation and verification techniques for self -adaptive
systems.

In this chapter, I survey these efforts: First (Section 1), I survey the fundamental pieces
and the techniques that researchers have proposed to build and manage self -adaptive sys-
tems; Second (Section 2), I survey the software testing and verification techniques for
these systems; Third (Section 3), I position this thesis in relation to self -adaptive systems
and existing validation ‡ and verification (V&V) techniques related to self-adaptation.

2.1 Self-Adaptive Systems

– Cordelia is a high ranked executive in a big business consultant firm. Her
day-to-day duties range from presiding customer satisfaction meetings to visiting
customers in the homeland or overseas. Cordelia is constantly moving, changing
from one office to another, visiting customers, having meetings, and so on. Her
working environment is constantly changing and heterogeneous. Her daily work
relies on a particular information system, which manages customer’s information,
corporative address book, email, calendar, and Smart phone facilities.

She heard long ago that this system is called ACRM, which stands for Adaptive
Customer Relationship Management. What’s more, according to the technicians
she usually speaks to, the system is capable of changing itself to satisfy her unique
requirements. It’s like having a special version of the system for her – Cordelia’s
ACRM.

‡. See the glossary in Chapter C.

32 Background

Self -adaptive systems answer a need to manage the complexity and the requirements
of changing operational contexts and environments [43]. For example, in the previous
excerpt, Cordelia’s ACRM [73] is a self -adaptive system. It is meant to: (i) execute for very
long periods (sometimes even eternally), and (ii) continue functioning and providing the better
service as possible when its working environment changes. This kind of systems must change
their internal structure and properties to keep going over time. Through self -adaptation
these systems offer versatility†, flexibility†, resiliency†, dependability†, robustness†, recoverability†,
customizability†, and so on.

Sensor

SensorSensor

reasoning
 engine

adaptation
mechanism

Envir
onmen

t

Environment
Environment

Envir
onmen

t

running
platform

2

3 1

1

1

4

Figure 2.1: Self -adaptive system

Figure 2.1 illustrates the main self -adaptive components and their interactions. In gen-
eral, a self -adaptive system is composed of four bricks [111]. The first consists of a series of
sensors (1) or monitors that detect the environment’s fluctuations. These sensors translate
the fluctuations into a representation of the environment, which is then interpreted by a
reasoning engine. The second is a reasoning engine (2) or decision maker. It controls the re-

Background 33

lationship between environmental variations and internal changes in the system structure
and behavior. Such relationship is expressed in the form of decisions to perform atomic
actions that constitute an overall change in the system’s structure and behavior. Finally, the
third and fourth parts are an adaptation (3) or reconfiguration mechanism and a running
platform (4). The running platform is the system’s executing structure that provides func-
tionalities, whereas the adaptation mechanism is the executor of the decisions (actions)
made by the reasoning engine. The adaptation mechanism is responsible of mutating the
running platform in the right way according to the reasoning engine orders.

Each of these self -adaptive bricks can take a different shape depending on the particular
needs of the underlying application domain. The representation, measurement, and mon-
itoring of the environment may change according to the nature of the underlying physical
environment (if any). Reasoning engines may vary according to the different environment
representations and the purpose of the adaptations. Some application domains may pro-
mote using rule based systems, whereas others may promote using utility function based
adaptation. Analogously, adaptation mechanisms may vary according to the nature of the
running platform. Some mechanisms may use hardcoded and predefined adaptation ac-
tions, whereas others may use more abstract facilities such as models that represent the
system structure.

In this section, I survey these bricks and provide an overview of a wide range of options
and techniques to realize each of them. Notice that the acquisition and monitoring of
environment is outside of the scope of this thesis, and therefore I do not survey the work
in this field. Abide readers willing to know more advance about that particular field can
refer to [111].

2.1.1 Environment representation

– Cordelia is a moving executive. She is always on the road, visiting cus-
tomers, moving from one office to another, changing from smart phones to laptops
and desktop computers. Sometimes, she can only access the 3G data network, and
sometimes she has fast internet access. At work she has a secure network connec-
tion, whereas at home she has an insecure connection. Cordelia intensively uses
her calendar interface to add, modify, and view appointments. Her working en-
vironment is intensively nomadic. Cordelia’s Customer relationship management
system must adapt to these environments as best as possible.

Environments and environmental conditions can be modeled with a variety of tech-
niques [106, 230, 42, 81] that share a set of common representation elements. These
commonalities represent environmental properties as variables with well defined discrete
domains. For example, the environment described in the previous excerpt is represented
by a set of reasoning variables such as connection speed (network connection speed). Each
variable conveys a value, which is representative of the current environment state. For

34 Background

Table 2.1: Reasoning variables and their domain
Variable Name Variable Domain
exchange service available, unavailable
Googleservice available, unavailable
ical service available, unavailable
groupwise service available, unavailable
oracle service available, unavailable
memory level low, high
usetype view, reserve
platform windows, mac, palm, mobile windows
security level low, medium, high
user feedback like, dislike
connection speed slow, fast

example, connection speed is a reasoning variable whose value can be either slow or fast.
Table 2.1 summarizes the reasoning variables for the Cordelia’s ACRM system.

Reasoning variable values represent the state of a particular environmental property
at a precise instant, and a vector of reasoning variable values represent the state of the
environment at a precise instant.

Definition 1. An environment instance (instance for short) is a vector of reasoning variable
values that represent the state of the environment at a precise instant.

In the literature, some authors [106, 230, 42, 81] refer to the environment instances as
contexts or environments. Since the environment is continuously changing, the system per-
ceives it as a sequence of instances. Table 2.2 presents two instances of the environment of
Cordelia’s ACRM. Each row contains a reasoning variable value, and each column contains
an instance. The relation between context instances is described by instance transitions.

Definition 2. An instance transition (transition for short) is a pair of ordered environment
instances that represent the temporality of the system.

For example, the change from instance 1 to instance 2 in Table 2.2 is a transition. In
a sequence of instances, the reasoning variables may change their values several times. I
refer to the number of changing values as change rate.

Definition 3. A change rate n indicates number of reasoning variable values that variate in a
sequence of instances.

For example, when the reasoning variables changes from low to high, it has a change
rate 2 because it involves a change between two values. A change rate 3 means that
a reasoning variable consecutively changes its value twice between three values. Notice

Background 35

that there is a direct relation between the amount of transitions and the change rate of
a reasoning variable. For a variable with change rate 2, two instances are needed, with
change rate 3, three instances are needed, etc.

Table 2.2: Reasoning var. values for two instances
Var. Name Inst. 1 Inst. 2
exchange service available available
Googleservice available unavailable
ical service unavailable available
groupwise service unavailable unavailable
oracle service unavailable available
memory level low high
usetype view reserve
platform palm mac
security level medium low
user feedback dislike dislike
connection speed slow fast

Another environment representation consists in using software product lines [48] to
model the environment† and its variability [18]. The underlying idea is to model the envi-
ronment as a software product line, which represents the different values of environmental
properties as options or variation points. Then, a product of the product line represents
a particular environmental condition (instance). This product is the result of selecting
particular variation points for the product line. Figure 2.2 illustrates a product line fea-
ture diagram for Cordelia’s ACRM. On the top of the hierarchy we find the environment,
which contains the different environmental properties (reasoning variables, gray nodes in
the figure). The leaves in the hierarchy represent the possible environmental properties’
values.

Notice that the each representation models the available service property in a different
way (cf. Table 2.1 and Figure 2.2). In one representation, reasoning variables can have
only one value, whereas in the second a reasoning variable can have multiple values with
a defined cardinality. For example, in Figure 2.2 the available services are exchange and
google, and the reasoning variable service available contains these values. In contrast, in
Table 2.1 the same services are represented by the value available of the reasoning variables
exchange service and Googleservice.

Both representations are similar and equivalent, however, the first supersedes the sec-
ond. A software product line can be represented as properties and values with some con-
straints attached to them. Yet, the second aims at giving a clear view of the environment
through a hierarchical representation of the environment concepts. Contrarily, the first is
flat and provides a simpler vision of the environment, which can result being cluttered on

36 Background

environments with many reasoning variables.
The number of possible environmental instances can be huge according to the selected

environment representation. For example, consider the environment as modeled in Ta-
ble 2.1. The number of possible environment instances is equivalent to the number of
ways in which it is possible to select a particular value for each reasoning variable. Then,
there are 29 × 3 × 4 = 6.144 instances, and 6.1442 = 37 × 106 transitions containing
variables with change rate 2.

These numbers are relevant because the system must reason on that number of environ-
ment conditions and define a mapping between the possible environmental conditions and
the different reconfigurations it can perform. In general, the bigger is the environment,
the more complex is the reasoning. In the next section I survey a number of reasoning
strategies and I show how environment instances and transitions related to the reasoning
process.

2.1.2 Autonomous reasoning

– Cordelia opens her smart-phone and checks the next meeting with customers.
She notices that her device is running out of memory and that her preferred calen-
dar is not available in the mobile platform. She turns off her phone and as soon
as she opens her laptop, the calendar client pops-up announcing that the next
meeting is about to start.

Domain experts know how the system should respond given a change in the execu-
tion environment. For example, a domain expert knows which calendar to select given
a particular set of services, connection speed, and other values for environmental prop-
erties. In adaptive systems, the reasoning process encodes the domain knowledge into
mapping between the different environmental conditions and the system reconfigurations
(actions) [69, 161, 205].

Ical
Exchange

Oracle Groupwise

Google

highlow
reserveviewfastslow

windows

mac

palm
windows m

highlow med

services
available

Memory
level Use TypePlatform Security

level
User

feedback
Connection

speed

dislikelike

Environment

Mandatori Optional XOROR AND

Figure 2.2: Product line variability model for Cordelia’s ACRM environment.

Background 37

The reasoning process is typically entitled to a piece of software known as reasoning
engine. Typically, a reasoning engine link particular reasoning variable values with prede-
fined actions that lead to reconfigurations of the underlying running system. Reasoning
engines operate in two steps [69] 1: (i) they process a sequence of environment instances;
and, (ii) they make decisions about the action to perform given an environment instance.

For example, in the previous excerpt when Cordelia switched from her mobile device
to her laptop computer an environmental change happened. The reasoning engine of
Cordelia’s ACRM processed this change, and based on the environmental information it
decided to engage another calendar client and activate the pop-up notification module.

– The system pops-up a calendar that Cordelia really doesn’t like, it is some-
thing about the single-touch interface that really disturbs her. After a few times of
receiving her feedback, the system learns that Cordelia doesn’t like that particular
calendar, then the calendar doesn’t pop-up any more.

Reasoning engines are not limited to make decision on punctual variable values, they
can also reason over streams or sequences of environment instances. Past environmental
conditions may be used to reason about new environmental conditions [146]. For example,
in the previous excerpt, Cordelia’s ACRM system learns that she does not like a particular
calendar client interface. This is possible because the reasoning engine receives and pro-
cesses Cordelia’s feedback (in the form of environmental data), and after a pre-defined
number of times that she indicates her reluctance to a calendar client, the system creates
new knowledge that forbid the selection of that calendar. In this case, the reasoning engine
is using historical environmental data to refine its reasoning.

Other form of history-based reasoning consists in taking into account just the one (or
more) environment instance back in history [61, 219]. For example, when the platform
changes from palm (past environment instance) to mobile windows (current environment
instance), only two out of ten calendar clients can be used. Notice that the state (config-
uration) of the system can also influence the reasoning process and may in most cases be
considered by the reasoning engine.

There exist a variety of techniques to build reasoning engines and capture domain
knowledge. Three of these techniques Rule based reasoning [91], Goal based reasoning [74],
and Utility function reasoning [83] are mature enough to be used by most self -adaptive
systems, whereas other techniques [128, 35, 75, 107] are still in early research stage.

In this section I survey rule, goal, and function based reasoning, and I present an
overview of other reasoning techniques. Notice that in this thesis I focus particularly on
systems using rule based reasoning, however, I aim at covering as many reasoning tech-
niques as possible.

1. Dobson et al. [69] define four steps for reasoning collect, analyze, decide, and act. In this thesis,
the collect step is embodied in the environment representation, the act step is embodied in the adaptation
mechanism, and the the analyze and decide steps are performed by the reasoning engine.

38 Background

Rule Based Reasoning

Rule based reasoning is founded in expert and knowledge based systems [84, 85],
which emerged in the early 60’s as a way to emulate the expert human thinking. Nowa-
days we see rule based system in several areas of knowledge such as assisted legal sys-
tems [235], business process [189], and adaptive systems [91].

Rule based reasoning consists in making decisions given a set of events (such as values
for reasoning variables). Typically, rules are expressed in the form of if (condition)-then
(action) statements [91, 123, 81]. When a set of events satisfies the condition, then the
action is triggered. Some variants of rule based reasoning, usually named event-condition-
action (ECA), consider that event may trigger rules containing conditions, that if satisfied
activate a set of actions [156, 40, 149, 92]. In general, the conditions are punctual rea-
soning variable values. However, some approaches prefer to use qualitative descriptions
instead of punctual values [40, 41], this is particularly useful when dealing with discrete
reasoning variable values. In this kind of rules, variable values qualifications such as good
or bad may vary according to other variable values. Such rules handle imprecision and
variation using fuzzy logic [234].

Several languages have been proposed to realize rule based reasoning. Functional
programming, particularly LISP has been a source for rule languages such as CLIPS and
Jess [108]. Declarative languages such as Ponder [61] and Ponder II [219] allow develop-
ers to write ECA rules using a textual syntax. Commercial initiatives such as the Microsoft
BizTalk [130] product allow developer to write rules in a graphical way. The Drools lan-
guage [116], a rule language produced by JBoss (a division of Redhat Inc.), provides both
graphical support and text syntax to write declarative rules. JRules [113] is another rule
language similar to Drools produced by the IBM Corporation. Notice that Jess, Ponder I &
II, and Drools are well integrated with the object-oriented language JavaTM. Notice that
these rule languages (with the exception of Drools) can only reason about punctual events
at each time (they can however, aggregate several facts using logic operators such as and
and or).

1 rule "R1: platform windows−reserve"
2 when
3 Platform(id == Platform.WINDOWS or
4 id == Platform.MAC)
5 UseType(type == UseType.RESERVE)
6 then
7 ORACLEClient.setActive(true);
8 end

Listing 2.1: Reasoning rule for the exchange service availability

Background 39

Listing 2.1, illustrates how the first excerpt of the previous chapter would be expressed
in Drools expert language. The rule platform windows-reserve is composed of two parts,
conditions and actions. The construct on lines 3 and 4 declare the conditions that will
trigger the rule. The expressions Platform and UseType correspond to reasoning variable
types. The expressions inside parenthesis are conditions on type attributes. The condition
in lines 3 to 5 requires the attribute id of a variable of type Platform to have a value
equivalent to the constant Platform.WINDOWS or Platform.MAC. The construct on line 7 is
the actions to perform when the conditions are satisfied. In this case, the action consists
in setting the attribute active of the constant ORACLEClient, which represent actions that
the reasoning engine can use to make a final decision. Therefore, this rule triggers only
when the current platform is windows or mac and the use type is reserve, and activates the
calendar client oracle to be used.

A particular kind of rule based reasoning natively considers the notion of temporal
reasoning (or reasoning about historic facts) [146]. That is, the rules declare conditions
over past facts (or sequences of them), and define an explicit representation of temporality
(before, after, while, etc.). Most rule languages do not natively support the expression
of this kind of rules. Those languages that support the interpretation of past facts are
called complex event processors [146]. Among such languages we find WildCat [63, 1], an
extensible Java framework that provides a query language to process complex events; and,
the Drools language [116] that provides both complex event processing engine 2 and rules
on punctual events. Other languages [108, 61, 219, 130] need ad hoc hacks and tricky
rule manipulation in order to include past facts in their decisions.

1 rule "R2: security−protocol transition"
2 when
3 $currentServices :
4 Services(available contains Services.Google)
5 Services(this before $currentServices,
6 selected contains Services.EXCHANGE)
7 $currentSecurity :
8 Security(level == Security.LOW)
9 Security(this before $currentSecurity, level == Security.HIGH)

10 then
11 TLSProtocol.setActive(true);
12 end

Listing 2.2: Reasoning rule considering history

2. The drools language comprises two main functionalities, rule processing (Drools expert) and complex
event processing (Drools fusion). Both functionalities can interoperate and trigger decisions /actions.

40 Background

Listing 2.2, illustrates a rule handling temporal conditions. The rule security-protocol
transition detects when the environment changes from service available exchange to google,
and from security level high to low. The particularities of temporal conditions are noted in
lines 3 to 9. The keyword this indicates the current variable which satisfied the conditions
after the comma separator. The keyword before (as well as after) refers explicitly to a
temporal occurrence of the variable. In lines 3 and 4, the local variable $currentService
(line 3) holds the value of a reasoning variable representing the Googleservice (line 4). In
line 5, the keywords this and before are used to establish that a condition exchange service
is available before the Googleservice.

Rule based reasoning engines can make use of historical data to create or modify exist-
ing rules. This is particularly useful when new reasoning knowledge is derived from past
facts [58, 67]. There are certain rules that can create, modify, or delete other rules, these
are called meta-rules. In general, there is no particular rule language that supports this
kind of rules. However, the only difference between meta-rules and regular rules are the
actions that modify and create new rules. Some languages, such as Drools and Ponder,
provide the support to create ad hoc hardcoded infrastructure to support the expression of
meta-rules.

1 rule "R3: user feedback"
2 when
3 $feed : UserFeedback(feedback == UserFeedback.DISLIKE)
4 $client : CalendarClient(state == CalendarClient.ACTIVE)
5 Number(intValue > 10) from accumulate (
6 CalendarClientFeed(client == $client, feed == $feed)
7 over window:length(infinite), sum(1))
8 then
9 SystemManager.createNewRule(INACTIVE,$client);

10 end

Listing 2.3: Reasoning rule considering a chain of events

Listing 2.3, illustrates a meta-rule that realizes the behavior described in the second ex-
cerpt of the previous section. The meta-rule user feedback detects when the user feedbacks
the system more than ten times about his dislike with respect to a particular calendar client
interface. Then, the system creates a new rule that whenever possible avoids the selection
of the disliked calendar interface. The condition in lines 5 to 7 contains a temporal con-
dition, which counts the negative user feedback associated with each available calendar
over an infinite time window. The action of this meta-rule is encoded as a support func-
tion written in Java and creates new rules dynamically and feeds them into the reasoning
engine.

Background 41

Writing reasoning rules appeals to a situational thinking and therefore it appears to be
very intuitive. Nevertheless, when writing reasoning rules it is hard to foresee when rules
interaction may introduce errors in the reasoning [149, 205]. Furthermore, it is difficult to
reason about history and previous events using rules because the occurrence of such events
must be explicitly stated in each rule.

Goal Based Reasoning

Goal based reasoning is a technique inspired by multi-agent planning systems and par-
ticularly belief-desire-intention (BDI) reasoning [190]. In BDI a set of software / robotic
agents perform a set of tasks that drives them to reach a pre-defined goal, for example
getting from a point A to a point B while skipping obstacles.

Goal based reasoning works in the following way. High-level goals drive the adaptation
process. Many goals can be expressed and these can interfere with each other [124].
Examples of goals are there is always an active calendar client or ensure that the user is
satisfied with the calendar client selected by the system. These goals are expressed using a
declarative language such as GOAL [110], GOLOG [141, 88], PROLOG [29], etc. Particular
actions such as changing the calendar client, changing encryption protocol and so on must
also be defined in a declarative way. When the environment changes, a set of rules decides
if the system is still accomplishing its goals. If not, the reasoning engine selects among a
set of reconfiguration (sequences of actions, or reconfiguration plan) intended to lead to
the goal. Typically these plans are known as reactive plans [169].

Several researchers have explored goal based reasoning in self -adaptive systems [74,
105, 154, 213, 214, 124, 195]. Usually, they define the actions to include in the adaptation
plans in terms of atomic actions such as removing software components, changing software
parameters, or adding new components. High-level goals are then expressed in terms of
particular properties the system should have. For example, always selecting a calendar
client given an environmental change. Processes are important pieces that connect the set
of atomic actions and goals. Processes define, for example, the order in which two or more
actions must be applied given a particular decision, or environmental change.

1 primitive_action(disable_calendarClient(C)).
2 primitive_action(activate_calendarClient(C)).
3 primitive_action(keep_calendarClient(C)).
4 ...
5
6 proc(env_cal_service(E,L), google_service(E,L);
7 exchange_service(E,L); ...)
8 proc(swap(C1,C2), ? current_cal(C1)
9 # disable_calendarClient(C1)

42 Background

10 # enable_calendarClient(C2))
11 ...
12 /∗ goal ’always keeping a calendar client active’∗/
13
14 holds(active_calendar(C),E) :− current_cal(C).
15
16 /∗ E environment, L list of calendar clients, A action, S ∗/
17
18 holds(on(E),do(A,[C|L])) :−
19 A = activate_calendar(C);
20 A = disable_calendar(C);
21 A = keep_calendarClient(C);
22 not A = activate_calendar(C),
23 not A = disable_calendar(C),
24 not A = keep_calendarClient(C)
25 , holds(active_calendar(C),E);
26 do(A,L).

Listing 2.4: Goal based reasoning in GOLOG

Listing 2.4, illustrates a partial excerpt of a goal based reasoning for Cordelia’s ACRM
in the GOLOG language. The reasoning is intended to lead to the accomplishment of the
goal there is always an active calendar client. To do so, a set of actions is declared using the
primitive_actions keyword (lines 1 to 4). These actions are meant to reconfigure or modify
the system. A set of action controls defined with the proc (lines 6 to 11) keyword rule the
link between actions, environmental conditions, and goals. High-level goals are codified
in the form of logical assertions stating properties that the reasoning must hold. When the
environment changes the reasoning engine computes a reconfiguration plan (sequence of
primitive actions) that will lead the system to achieve the goal.

Writing high level goals in a declarative way appears to be counter intuitive because
even simple goals may span to several lines of code. This motivated researchers to propose
expressing high level goals using linear temporal logic [213, 214] to then automatically
generate reactive plans that follow these goals. However, primitive actions and the pro-
cesses linking goals and actions still need to be written manually in a declarative language.
Regarding temporal reasoning, goal based systems can easily incorporate temporal asser-
tions using logic statements (constructs such as before and after can easily be expressed in
this way).

Goal based reasoning appeals to a goal directed reasoning, where the goal primes over
the means to achieve that goal [84]. This is also the main benefit of goals based reasoning,
through the establishment of high-level goals, it avoids the need of complex situational
reasoning. On the other hand, the main difficulty with this kind of reasoning is that writing

Background 43

goals, actions, and the logical statements that allow deriving a reactive plan requires a
particular thinking and mental plasticity. Besides, it is notably difficult to predict when
multiple goals will prevent the system to reach a goal at all or if all the goals can be
attained.

Utility Function Reasoning

Utility function based reasoning is a reasoning technique rooted in the concepts of
functional optimization [232]. Functional optimization consists in given a continuous or
discrete function (expressed in mathematical terms), find its optimal value with respect to
a set of parameters.

In self -adaptive system, utility function based reasoning uses functional optimization
in order to select the best-fitted system configuration to answer to the environment needs.
The function to optimize is called utility function, and is defined in terms of the utility
or service that each configuration can provide given particular environmental conditions.
More precisely, a utility function defines a quantitative level of desirability to each reconfig-
uration. This desirability is a mapping between each configuration and its worthiness with
respect to environmental conditions. Then, when the environment changes, the reconfig-
uration to apply (decision to make) is the one that maximizes (or minimizes) the utility.
Several methods can be applied to search the optimal value of these functions varying from
linear programming to meta-heuristic search [232].

Several researchers have investigated the application of this technique to decision mak-
ing in self -adaptive systems [83, 125, 168, 199, 178, 45]. Usually researchers define the
utility function as the sum of the utility value of each moving part of the system (reconfig-
urable elements of the platform) in relation to the environment. This relation is predefined
as a normalized mapping (function) between each reasoning variable value and the sys-
tem configuration. Additionally, the utility function may consider penalties for undesirable
configurations. This requires foreseeing the possible system configurations and environ-
ments to encode their relation in a mathematical function that expresses the best possible
reconfiguration (change).

For example, Cordelia’s ACRM system is composed of three reconfigurable parts. A
calendar client (CC), which can vary according to the available calendar server; an en-
cryption protocol (EC), which can change according to the available connections speed,
security level, etc; and a messaging system (MS), which may vary according to the under-
lying platform, security level, etc. These three elements constitute the system configuration
conf = {CC, EC, MS}. The utility value of this configuration is defined by a function that
maps its values (for example, conf = {outlook, ssl, sms}) to quantitative values. In this case,
the utility function U(conf) is defined as the sum of the contribution that the configuration

44 Background

can make per reasoning variable. The Utility function for Cordelia’s ACRM is:

U(conf) =
reasoning vars�

i

Ui(conf) (2.1)

U(conf) = Uservice(conf) + Umemory(conf) + Uusetype(conf)
+ Uplatform(conf) + Usecurity(conf) + Ufeedback(conf)
+ Uconnection(conf)

(2.2)

This function cumulates the worthiness of each configuration in relation to the reason-
ing variables. Typically, the utility is a discrete function since it is not always possible to
translate the configuration contributions to a continuous domain. The different reasoning
variable values are encoded inside each variable function. For example, the function for
the reasoning variable memory, encodes the variable values low and high in the following
way: Umemory(conf) = Ahigh × Umem high(conf) + Alow × Umem low(conf), where Ahigh

and Alow are integer values, and Ahigh + Alow = 1. That is, when the reasoning variable
has the value low, Alow = 1 and Ahigh = 0. This cancels the possible contribution of the
configuration when the variable value is high and leaves the contribution only when the
variable value is low.

The utility function I propose here for Cordelia’s ARCM is rather simplistic, but clearly
illustrates the intention behind utility function based reasoning. Real utility functions may
involve several parameters interacting at the same time, and a combination of continuous
and discrete functions. Reasoning over historic events is possible using utility functions,
however, the account of memory requires defining complicated schemes on how to dynam-
ically change the utility mapping.

Sometimes, the utility function cannot be expressed as a single function but as many
functions [45]. In this case, the best configuration is the one that maximizes the value
of each function. However, the optimization of one function can imply the minimization
of other, thus it is necessary to make a compromise. This problem has been studied by
multi-objective optimization [202], whose goal is to reach the best compromise among the
different function values.

Utility function based reasoning is based on a predefined mapping between the pos-
sible configurations and the possible environment variations. This mapping is manifested
as a utility or optimization function that is capable to discriminate between several con-
figurations, which one is the best. The main benefit from utility function reasoning comes
from the fact that it evaluates existing configurations without constructing them. There-
fore it can be used to quickly pick one out of many pre-made system configurations. This
is also the main drawback of this reasoning technique. In order to construct the utility
function it is necessary to explicit a quantitative value for each configuration element and
combination of element for each possible (or given) set of environmental conditions.

Background 45

Other approaches

Researchers have explored a variety of techniques to reason in self -adaptive system.
Recent work centers on using test at runtime [107], machine learning [128], and stochastic
statistic [35, 75] approach to drive the system configuration change.

In [107], researchers explore the use of online testing technique to harness what they
call proactive self-adaptation. Online testing means executing test during the execution of
a self -adaptive application. Whenever a test fails, it points to a potential problem and then
the system can proactively trigger a series of reconfiguration meant to prevent the system
to fails in real execution. The underlying idea is to detect changes and deviations before
they can lead to undesired consequences.

Recently, researchers have explored the use of stochastic approaches to drive the adap-
tation process [35, 75]. More precisely, one approach [35] uses Discrete Markov Chains [148]
(DMC), a discrete random process with the following property. The probability distribution
for the system at the next step (and in fact at all future steps) only depends on the current
state of the system, and not additionally on the state of the system at previous steps. DMC
may predict the probable future state of the system (statistical properties). The underlying
idea is to construct a model (DMC) of the system, dynamically adjust the system parame-
ters of this model to align it with its state, environment and objectives, and use it to make
decisions that consider the probable future.

Similarly, other approach uses mathematical models that deal with non-functional
properties, such as reliability and performance [75]. It consists in keeping models (Discrete
Time Markov Chain – DTMC) alive at runtime and feeding a Bayesian estimator with data
collected from the running system, which update the DTMC parameters. Updated models
(at runtime) provide an increasingly better representation of the system that allow to de-
tect or predict if a desired property is, or will be, violated by the running system. Property
violations may trigger automatic reconfigurations (recovery actions aimed at guaranteeing
the desired goals).

Discussion

Rule based, goal based, and utility function based reasoning are three wide spread
reasoning techniques for self -adaptive systems. Each of these has their benefits and draw-
backs. Rule based reasoning uses a situational strategy, in which predefined responses
are triggered by predefined events. Yet, rule based reasoning can also consider historic
events and through meta-rules evolve according to the past. Unfortunately, it is hard to
foresee how rules are going to interact, especially when hundreds of rules are responsi-
ble for making a decision. In contrast, goal based and utility based reasoning use very
different strategies. The first one pushes forward the concept of goals that drive the rea-
soning process, and uses these goals to derive each particular decision. It leaves situations
thinking for the sake of accomplishing a set of goals. The second one defines an a priori

46 Background

mapping between reasoning variables and configurations. It seems similar to situational
reasoning, however, it is different because it does not derive but evaluates a decision (it
picks one out of many options). Furthermore, it can select the best configuration given
the encoding in utility function, rule based and goal based reasoning cannot ensure that.
Finally, new reasoning techniques appear in the horizon. These techniques use stochastic
models and online-testing to drive the system adaptations and produce promising results.
Nevertheless, they are still immature and subject of current ongoing research.

In this thesis, I set rule based reasoning as the default reasoning techniques. The ra-
tionale that motivates this decision is that rule based reasoning properly illustrates the
relationship between particular environmental conditions, historic events, and decision
making in the reasoning process.

2.1.3 Adaptation Mechanism

– Cordelia is working at a customer’s office, she uses her laptop computer to
process requirement and schedule upcoming meetings. Suddenly the computer
losses the wifi connection and engages the 3G network. The outlook calendar
client closes and the Googlecalendar client opens up displaying the same displayed
by outlook. A pop-up displays the following message “You are now connected to
an insecure network, the ssl encryption protocol is now active”.

The previous excerpt illustrates how Cordelia’s ACRM system adapts itself to a varying
environment. When the wifi connection went off, the system engaged the 3G network. The
system’s reasoning engine then decided based on the service availability, security level,
connection speed, etc. that the outlook client was not fitted for the new environmental
conditions and the Googleclient should be opened instead. I have explained and surveyed
the operation and techniques of reasoning in self -adaptive systems to that point. Now I
address the final part, the adaptation mechanism.

A self -adaptive system’s adaptation mechanism is the part that controls how the re-
configurations (or modifications, adaptations) are actually performed. In the case of the
previous excerpt, the adaptation mechanism is responsible of: closing the outlook client, re-
placing the outlook connector with the Googleconnector, opening the Googleclient, activate
the ssl encryption protocol, loading the previous data, and displaying the pop-up message.
Notice that the reasoning engine makes a decision and the adaptation mechanism executes
that decision.

In general, the adaptation mechanism manipulates the reconfigurable or adaptable
parts of the system. In the case of Cordelia’s ACRM system, the adaptable parts are the
calendar client, the encryption protocol, and the messaging system. Each of these vari-
able parts can be replaced with several options, some options can be incompatible with
other options, or imply that a particular option should be adopted. Table 2.3 illustrates the
different options for each variable part of the system. Notice that the mapping between

Background 47

actions (decisions) and actual reconfigurations is not a one to one mapping. For exam-
ple, the adaptation mechanism reflects the decision to change a particular calendar client
by changing not only the client interface, but also the interface that allows the client to
communicate with a particular server. The decision to use the outlook client will imply the
use of the exchange server connector. One decision may imply plugging and unplugging
several pieces of software.

Whenever the environment changes, the reasoning engines decides to adopt particular
system options (cf. Table 2.3), and then the adaptation mechanism effectively puts in place
these options. In this section, I survey the various mechanisms that have been proposed
to realize the adaptation mechanism. Particularly I focus on two mechanisms: adaptation
through aspect-oriented programming and model driven adaptation.

Reflection and Software components

In the early days of self -adaptive systems, reconfiguration and change was played using
hard coded ad hoc adaptation mechanisms. These mechanisms worked by selecting a pre-
defined and fixed number of configurations or systems modes, and switching from one
mode to another by changing some parameters [27, 28, 97].

When computational reflection was introduced as a way to describe the overall archi-
tecture, state, and operations of the system [89, 147], researchers started to replace the
old hardcoded adaptation mechanisms. A recent study shows that nowadays reflections
conform the foundations of self -adaptive systems [7]. The main benefit of computational
reflection is that it allows querying, and dynamically loading and unloading the different
elements in software architecture.

Another improvement came from the introduction of component technology [215],
which proposed the idea of configurable software systems by adding, removing or replac-
ing their constituent components (sometimes using reflection). There exist several compo-
nent models that support reflective capabilities, dynamic loading and unloading of various
components. Among these component models we find FRACTAL [31], OpenCOM [60],
OSGI [177], EJB [33], and so on. Basically a component is composed of ports, which
require and propose services via particular interfaces. A component functions as a unit

Table 2.3: Cordelia’s ACRM variable parts and their options.
Variable Part Options
Calendar Client ical, oracle, entourage, google, palm, outlook
(and connector) a4desk, groupwise full, groupwise lite, sunbird
Encryption Protocol ssl, tls, kerberos, ike2
Messaging System sms, voice, pop-up
Server Connection exchange, google, ical, oracle, groupwise

48 Background

responsible of a particular computation. Then, a system can be described as a collection of
connected components that deliver a service.

Reflection and component-based architectures widely improved the construction of
adaptation mechanisms to achieve dynamic reconfiguration [6, 140, 59, 57, 66, 9]. These
mechanisms use component models to control and visualize the overall architecture. The
components in the component model and the actually executing system are causally con-
nected, and changes in one affect the other.

Despite the introduction of components and reflection, the constructing of software ca-
pable of changing at runtime continued to be challenging. Performing adaptations required
writing complex program that made use of the reflective operations needed to reconfigure
the system. Therefore, reconfiguration becomes rapidly an ad hoc program that used the
means of a reflective reconfigurable platform. Researchers addressed this challenge by
proposing several languages that allowed manipulating high-level architectural elements
instead of reflective operations. Among these languages we find the Plastik language [11]
build on top of OpenCOM, and the FScript language [65] built on top of Fractal.

messaging
system

component

client
connector
component

calendar logic
component

se
rv

er

co
nn

ec
to

r
co

m
po

ne
nt

en
cr

yp
tio

n
co

m
po

ne
nt notification

sub system
component

service
required

service
provided

changeable
component

permanent
component

optional
component

outlookical
outlook
connect

outlookgoogle
exhcange
connector

outlookoutlookssl
encrypt

outlookoutlooksms
messagnetwork

component
change

Figure 2.3: Component diagram of Cordelia’s ACRM system.

Figure 2.3 illustrates the components of Cordelia’s ACRM system. In the diagram,
six components compose Cordelia’s ACRM system. Out of them, four (gray boxes) can
be replaced by other components offering and requiring the same services (in the figure
connected with dotted lines), but with small differences. For example, the encryption com-
ponent can be replaced by a component realizing the ssl or ike2 encryption protocol. This

Background 49

implies that multiple versions of a component can be used according to the needed func-
tionalities. The component client connector is available in ten different flavors correspond-
ing to the ten calendar client options (cf. Table 2.3). The component server connector is
available in five versions corresponding to the different calendar services that can be avail-
able. In summary, when the reasoning engine decides to change the outlook client will the
google client the adaptation mechanism swaps the outlook client connector component by
the Googleconnector component. Besides it changes the server connector accordingly. One
decision implies many changes.

Aspect-oriented Programming

Aspect-oriented programming [126] (AOP) was raised in the late 90’s as a solution to
improve the modularization of crosscutting concerns. Several languages and solutions have
been proposed to implement AOP, each of these provides different constructs [109, 8, 25].
In general, two constructs are common among the different languages: point-cuts and
advices. Point-cuts are predicates that designate the places where the crosscutting concerns
are located, whereas advices are the realization of the crosscutting concerns.

AOP arises as an option, or even a complement to component platforms and reflection.
A survey of adaptation of middleware platform using different compositional approaches
such as aspects is presented in [151].

The composition mechanisms that allow aspects to be woven into the program to in-
troduce crosscutting concerns have been used as a reconfiguration mechanism for adapta-
tion [182, 64, 211, 220, 180, 191]. AOP has even been ultimately used to weave and un-
weave adaptation concerns leaving components implement the business concern [64, 198].
The underlying idea is that each aspect corresponds to a changeable dimension of the sys-
tem, then these aspects can be woven / unwoven at runtime when required [184, 76, 210].

SSL
Aspect

SMS
Aspect

calendar client
controller

component

messaging
system

component

calendar logic
component

server
connector
component

notification
sub system
component

service
required

service
provided

permanent
component

SSL
Aspect

Outlook
Aspect

Outlook
Aspect

SMS
Aspect

network

Figure 2.4: aspect-oriented adaptation of Cordelia’s ACRM system.

50 Background

Figure 2.4 illustrates how aspects can be used to adapt Cordelia’s ACRM system. The
figure presents a component diagram similar to Figure 2.3, however, this time there are no
changeable components. Instead, several aspects (gray translucent boxes) may be woven
/ unwoven in order to reconfigure the system. This is possible because aspects’ advices can
replace or augment the behavior of a particular component (base program). These base
components are indicated by point-cuts (semi-transparent gray boxes), which state the
precise place and moment where to weave the advice. For example, one aspect’s advice
realizes the outlook connector behavior, whereas others may realize the google, ical, etc.
connector behavior. When woven, these aspects insert their behavior into the calendar
client connector (and server connector) component (as pointed by the point-cut), fitting the
component with the intended behavior. A particular case happens with encryption protocol
component, which has disappeared. Instead, an aspect’s advice realizes the encryption
protocol and when it is woven, it captures the data flow from the server connector to
the network and encrypts the data. Then, when the reasoning engine decides to change
the outlook client for google client, the adaptation mechanism unweaves the outlook client
aspect and weaves the Googleconnector aspect.

AOP is well suited to realize the self -adaptive system’s adaptation mechanism. Never-
theless, three major problems prevent the adoption of AOP as an adaptation mechanism.
The first problem, known as the AOSD evolution paradox [217, 132, 150], occurs when
aspects and the base system evolve separately. It consists in aspects advising undesired
system’s modules or not advising the desired system’s modules. This problem originates in
the insufficiency of current point-cut languages to abstract over structural properties of the
base program. For example, if Cordelia’s ACRM evolves by changing structural specifica-
tions of its calendar client connector component, the outlook connector aspect will miss the
component and will not adapt the system properly. The second, known as aspect interfer-
ence [121], happens when several advices are woven into same system point, or when an
advice cancels the effect of other advices. For example, an advice that decrypts the com-
munications can be woven after the SSL advice in the service connector port. Finally, the
third relies on two properties of AOP: obliviousness [80] (the ability of aspects to interject
behavior without being asked for) and invasiveness [164] (or the ability of aspects to break
the object-oriented encapsulation). Invasiveness is a powerful property that enables AOP
as an adaptation mechanism because it allows replacing and augmenting the components’
behavior. However, when used obliviously it can also introduce undesired behavior without
developer knowing about it.

Later works proposed another view of aspects, which reduces the previous problems.
Instead of implementing reconfiguration as aspects, aspect’s advice are a set of reflective
operation that need to be performed to change the system [19].

Background 51

Model Driven Adaptation

Model driven approaches to adaptation mechanisms focus on using models, or abstrac-
tions closer to a particular domain than computing (or hardcoded). These adaptation
mechanisms are founded in Model Driven Engineering (MDE) [203] and use a variety
of modeling facilities to describe the self -adaptive system’s elements, adaptation, and re-
lations between elements. The underlying idea is to abstract the adaptation mechanism
from ad hoc reconfiguration scripts, reflective component management, and reconfigura-
tion modes selection.

Early work in model driven adaptation mechanisms proposed using architectural mod-
els to monitor and control the system evolution [176, 175, 70]. Rainbow [90], an ar-
chitecture driven approach provides reusable infrastructure together with mechanisms for
specializing that infrastructure to the needs of specific systems. Adaptation is hardcoded
using adaptation operators (set of specific actions that control the architecture), and adap-
tation strategies (constrained by operators and properties). This initial work applied at
design time, whereas the code facilities to manage the system at runtime where semi-
automatically generated.

More recent work keeps the design models alive at runtime [16] and uses them to drive
the adaptation. In this way, models used at design time can also be used at runtime (the
running system and models coexist) as artifacts to perform and control architecture-based
adaptations [92, 222]. Besides, models can be used to verify and simulate reconfigurations
at runtime.

A model particularly used to model self -adaptive system’s variable parts comes from
software product lines (SPL) [48]. As we mentioned in Section 2.1.1, SPLs are typically
used to model (in a variability model) the various varying part of a software product [48].
These varying parts are called variation points, and represent the different system modules,
components, or elements that may change from one product to another in the same family.
Selecting specific options among the different variation points then derives products. Using
software product lines to model the self -adaptive systems’ underlying structure is appro-
priate since self -adaptive systems are also composed of changeable parts [15, 181, 81, 36].

The principal use of SPLs in adaptive systems is to represent the system variability at
design and runtime [15, 17, 21]. At design time, variability models can be used to foresee
conflicts, desirable, and undesirable configurations [18, 102, 83]. However, the real utility
of variability models comes at runtime, where dynamic software product lines are used
to derive a new product on the fly [101]. A dynamic software product line is basically a
design time SPL that is kept during runtime, and then when the system needs to change
(and a set of variants are selected), reconfigurations are computed automatically from the
variability model resulting in a new system configuration (product) [37]. The changes
in this new product are then translated into an architectural model (variability models
assist the execution strategy to determine the step that are necessary to reconfigure the
software system), and then reconfiguration scripts are automatically generated and the

52 Background

system reconfigures [39, 38].

KERBEROSSSL

Google

Ical
Oracle

Outlook

pop-upsms voice

Encryption
protocol

Calendar
Client Messaging

service

SAS

Mandatori Optional XOROR AND
a4desk

sunbird

Palm

Entourage
groupwise

GW Full GW Lite

TLS IKE2

Figure 2.5: Product line variability model for Cordelia’s ACRM.

Figure 2.5, illustrates Cordelia’s ACRM system software product line. Notice that the
variation points and options correspond to the ones introduced in Table 2.3. When the
environment changes, the reasoning engine decides how to adapt the system. This is, it
selects particular options on each variation point. This selection is then used to derive a
product and reconfigure the system accordingly. For example, when the reasoning engine
decides to change the outlook client for the google client, it selects the options google,
ssl, and pop-up in the variation points calendar client, encryption protocol, and messaging
system. The system derives a new system configuration that contains these options. Then,
the system automatically generates the reconfiguration scripts needed to reconfigure the
running platform.

Using SPLs at runtime and generating reconfiguration scripts allows producing unan-
ticipated variability and interdependency relationship between variable artifacts. It poses
certain problems at the moment of generating the reconfiguration scripts, since there is
not necessarily a one to one mapping from the system architecture and the software prod-
uct line that represent the system. This translation is not always straightforward and can
impose some limitations on the derived products.

A more recent proposition consists in using models at runtime, model composition
(similar to aspect-oriented mechanism), and causal links as adaptation mechanism [158,
155, 157, 156]. Before describing this novel model driven adaptation mechanism, I will
describe its bricks models at runtime, model composition, and causal link.

Models at runtime, as we mentioned previously, consists in keeping any model alive at
runtime (while the system is running) [16]. For example, architectural component models
and software product lines are kept alive while the system is running. Other models, such
as behavioral or stochastic descriptions of the system can also be used at runtime.

Model composition is an approach conceptually similar to aspect-oriented program-
ming. It is intended to reinforce the separation of concerns by encapsulating different

Background 53

views of the system in different models [117]. These views correspond for example to
crosscutting concerns such as security and persistence, to other more precise views such as
encryption. The fundamental idea is to separate the main business concerns among them-
selves, and from other non-business concerns. In particular we may see that this adaptation
mechanism uses aspects models as sets of architectural modifications that realize a variant
concern (or view) [19]. So far, many approaches have been proposed to compose models
of different nature, language, and size [87, 171, 47, 193, 194, 159]. Composition can
be symmetric or asymmetric depending the nature of the models to be composed. When
the composed models conform to the same meta-model†, then I refer to a symmetric model
composition, otherwise, the composition is asymmetric and one model introduces elements
into the other.

Causal link is a concept that consists in keeping the runtime models and the running
system connected by a causality network (or series of events). The underlying goal is to
keep the runtime model up to date and synchronized with the running system. In the verti-
cal downside, causal link generates the necessary reconfiguration scripts or actions needed
to update the running system. In the upside, causal link refreshes the model elements
whenever is necessary. Several works offer solutions to keep a consistent model repre-
sentation of the system, and propagating changes when needed using causally-connected
models [185, 221, 207, 174, 157, 156].

In a general overview, this adaptation mechanism uses models at runtime to describe
the system and the different varying concerns. Model composition transfers a product de-
rived at runtime to the actual component model that reflects the running system. Notice
that for this particular model composition, the models to be woven in are called aspect
models. Aspect models here are similar to the ones described in [19], that is, they are sets
of architectural-level reconfigurations. Causal link is used to keep the model at runtime up
to date and synchronized with the running platform. This kind of adaptation mechanism
helps developers and engineers to better coping with the complexity involved in construct-
ing adaptive systems. They allow engineers to separate the different concerns in abstract
units (models) and handle the problem of the combinatorial explosion produced by the
large number of configurations that the system can adopt.

Figure 2.6, illustrates the aspect-oriented model driven adaptation mechanism. Ini-
tially, a component model of the system is kept alive at runtime (A). This component model
reflects the running system state and configuration, as well as some platform specificities.
A variability model at runtime describes the different system’s variation points (B). This
model is later used at runtime to derive a new product on the fly. Each variation point op-
tion is associated with one or more aspect models (C). When variation points’ options are
selected, the system derives a new product, which drives the weaving of the aspect models
related to the new configuration (D). This results in a new component model, which is out
of date with the running system (E). Finally, the initial and final component models are
compared and their differentials calculated [144, 131, 228] to generate a set of reconfig-
uration scripts. These scripts are used to reconfigure the running platform and harmonize

54 Background

(A) (B)

(C)(D)

(E) (F)

remove add

Figure 2.6: aspect-oriented Model Driven adaptation mechanism

the running system with its model (F).

2.2 Validation and Verification of self -adaptive system

In the previous section, I have illustrated the different parts and techniques to construct
self -adaptive system. Each of these parts is critical for the well functioning of self -adaptive
systems; hence, ensuring that they work correctly is extremely important. Reasoning en-
gines must make the right decision in all environmental conditions, and adaptation mech-

Background 55

anisms must correctly apply the adaptations that the reasoning engine dictates. Faulty
adaptations would yield an unadapted system that is unsuited for its purpose, whereas
faulty decisions will leak into faulty adaptations. Notice that I assume that the environ-
mental data is pristine and contains no fault at all. This is a strong assumption that allows
me to focus and analyze the reasoning and adaptation processes.

Reasoning engines and adaptation mechanisms can be validated and verified in order
to ensure their correct function. Yet, validation and verification are different concepts that
serve the same purpose. According to the IEEE [93], verification is the confirmation by
examination and provision of objective evidence that specified requirements have been
fulfilled. That is, verification addresses the correct functioning of a software system with
respect to a requirement specification, stated in several properties. Validation on the other
hand is the confirmation by examination and provisions of objective evidence that the par-
ticular requirements for a specific intended use are fulfilled. That is, validation addresses
the correct functioning of a software system with respect with a particular use require-
ment. Validation is typically conducted through the execution of test cases that reflect the
requirements for particular system uses. In this thesis, I focus on the validation through
testing of reasoning engines and the validation through specifications of aspect-oriented
adaptation mechanisms.

In this section, I present the state of the art on testing and verification techniques for
adaptive system. The different techniques that I present here apply to the validation and
verification of self -adaptive system directly or indirectly. Most of these techniques address
the subjects of validating or verifying autonomous reasoning and adaptation mechanisms. I
also present the state of the art solutions to solve the problems that affect aspect-oriented
programming and that hamper its adoption as an adaptation mechanism.

2.2.1 Testing

The testing activity is one of many ways to validate a piece of software [23]. It consists
in empirically assessing that the realization of a software system works as it is expected
to [183]. Such expected behavior as well as the stimuli that trigger that behavior must be
known a priori by testers. Figure 2.7, illustrates the testing activity. It goes as follows: the
tester (A) feeds the system (test subject, or the subject of the test inquiry) with testing data
(or input data) such as integer number, string data, models, etc. He/She (B) waits until the
subject execution is completed, and then (C) evaluates the resulting observable behavior
(it can be the computation result). The sum of these three steps is referred as a test cases,
a triple composed of test data, execution conditions, and expected behavior (or result). Since
execution conditions are typically the same for all test cases, they are omitted in the test
case definition.

Some steps in the testing chain can be automated. For example, data can be generated
automatically [133], complex execution schemas can help to feed input data and collect-
ing results, and finally, an automated oracle can help testers to evaluate the results. Yet,

56 Background

expected

yes

no fault
uncovered

goodtesting data system
(test subject)

observable
behavior
(result)

(A) (B) (C)

Figure 2.7: Testing practice parts.

automating all these steps results being challenging [22].
There exist two kinds of testing techniques, those that consider the testing subject as

a black-box, and those that consider the testing subject as a white-box. The first kind is
applicable to almost any system without particular interest in its implementation details
(the system is a black-box). The second kind considers the implementation and structural
details for constructing the test cases (the system is a white-box 3). Most approaches on
testing self -adaptive system deal with the automatic generation or synthesis of data by
using either black-box or white-box criteria. In the following I present and survey the state
of the art on testing self -adaptive system.

Testing on decisions and paths

Automatically generating test input data for testing self -adaptive system is possible
because there exist coverage criteria [23]. A coverage criterion is a set of properties that a
data set must satisfy in order to ensure some degree of coverage with respect to structure
or domain.

Structural coverage criteria are based on the program’s specific structure to determine
whether a data set is good 4 or not. Several criteria are based on the different path data
or execution can follow in the program, one of these criteria is the All Path criterion [14].
It requires that data trigger every possible execution path in the program. In imperative
programming it implies covering decisions, statements, and entry/exit operations. In rule
based reasoning, it implies covering the possible decision outcomes and reasoning paths
(chains of reasoning rules).

For example, consider rules R1 and R2 (listing 2.1 and 2.3) from Cordelia’s ACRM
system reasoning engine. The number of paths these rules can follow is small. Either R1 is
executed and not R2 (P1), R2 is executed and not R1 (P2), or both are executed R1 first

3. White means that the system structure is transparent and visible
4. Good in this terms refer to the ability of the data set to ensure that fault will be revealed, in this case

dictated by coverage of a particular criterion.

Background 57

then R2 (P3), or R2 first and then R1 (P4). Since there are no shared variables it is possible
to execute both rules consecutively, otherwise the execution would have two variables. A
data set satisfying the All Path criterion should contain data that may trigger the reasoning
paths P1, P2, P3, and P4. Notice that R2 is a rule with conditions over temporal events and
requires to be satisfied by at least two environment instances.

Researchers have extended the traditional path coverage criteria to formulate construc-
tions adapted to rule based systems [99, 4, 129, 10, 100].

Early approaches on path coverage proposed selecting sets of test data that exercise the
structural components of the rule-base as exhaustively as possible. This involves firing all
rules, and also firing every causal sequence of rules. Path hunter uses structural path anal-
ysis to detect potential interactions between rules in a rule-base and to identify problems
within the rule-base, essentially using path enumeration [99, 4].

The logical path graph model [129] is a rule’s execution path model based on control
flow analysis. It attempts to determine a set of paths through the rules such that when
executed, they would adequately test the rules and their interactions. These paths are then
used to generate testing data that cover the rule execution and interactions.

Path coverage also spans to the causal relation and interference between rules. Such
extension defines five coverage measures that deal with the rule conditions and actions. It
evaluates the coverage of rule execution paths, of rules causal relation, and rules interfer-
ence. These coverage measures are used to assist rule pruning and identification of class
dependencies in addition to guide the automatic generation of testing data [10]. Such
testing data should cover all rule’s execution paths, their relations, and possible interfer-
ences (and resolutions). A tool chain for generating, executing, and evaluating test cases
for rule-based systems is proposed in [100].

The continuous evolution of self -adaptive systems imposes some difficulties to existing
software system test. Existing test suites may not be appropriate for the new system evolu-
tion; they can contain superfluous or missing test cases that may render the testing hard. A
possible solution is defining a coverage criterion by identifying the paths of change propa-
gation [201]. This will allow tester to handle multiple and complex changes to identifying
new or modified behaviors, which are not exercised by existing test.

Other researchers have studied the synthesis of test data for context-aware software
systems as a whole. This synthesis uses a model of how the program handles contexts that
are continually checked and resolved by context inconsistency resolution (context-aware
application may be affected by buggy context data). Based on this model, a context-aware
data flow analysis proposes a set of equations to analyze the potential impact of context
changes and serve as test adequacy criteria for testing data [106, 145].

Test suites in a context-aware application can be improved by identifying the points
in the system that are affected by context aware data by systematically manipulating the
context data fed into the system. The application of these manipulations increases the
system exposure to potential valuable context variations, which may lead to better test
cases [223].

58 Background

Testing by search

Search-based software testing (SBT) is the application of search-based software engi-
neering (SBSE) [103] to address testing issues. Basically, SBSE consists in mapping an
optimization function to a particular software engineering problem. Then, use search-
based meta-heuristics such as genetic algorithms [96], simulated annealing, etc. to find
the better value for that function, which corresponds to the best solution for the problem
in question.

SBT has been applied to a wide variety of issues, including testing of structural [206,
179, 152, 79, 118, 153, 179], functional [224, 152] and non-functional properties [225,
152]; interaction [51, 55, 119], mutation [12], and regression testing [142]; and recently
agent systems [172]. Of particular interest for self -adaptive system are structural, func-
tional, and interaction testing using search techniques.

Using search-based techniques to solve testing problems provides several benefits such
as fast solving time, better coverage for functional and non-functional testing, etc. Yet,
SBT has a few drawbacks: it is necessary to encode testing problems into an optimization
function and adapt meta-heuristic search technique to the particular problem slang†. The
different flavors SBT can adopt are equivalent to the different ways to map a problem into
an optimization function.

For example, search-based structural testing consists is generating testing data by opti-
mizing a function based on the program structure. Such function builds upon a quantifi-
cation of program structural elements, such as if statements, loops, assignments, etc. in
relation with data. Therefore, meta-heuristics search the space (that contain all the pos-
sible program inputs) looking for the best set of data that provides the best value for the
function quantification.

A particular case, which is suited for testing rule-based reasoning uses data flow graphs
to quantify the program structure [152]. More precisely, the flow graph is used to derive a
set of constraints about the program variable values, which describe the different parts of
the system that are triggered by a simple data value. The resulting optimization function
counts the number of satisfied constraints and provides a quantitative measure of how
good or bad a data set is. To illustrate this idea, consider rules R1 and R2. I skip the
creation of a flow graph immediately to derive the constraints:

C1: platform = windows & use type = reserve || platform = mac & use type = reserve
C2: exchange service = available & sec level = low � google service = available & security

level = high .

Notice that these constraints are defined in a temporal context. The symbol � indicates
that one value must follow the other in a temporal line. This implies that the resulting data
set must contain at least two environment instances. The sum of the satisfaction of C1 and
C2 constitutes the optimization function. Then, the search consists in finding a sequence of
reasoning variable values that satisfy these constraints. The optimization function’s value

Background 59

directs the search by discriminating the worthiness of the between data sets. A data set
that satisfies two constraints is better than one that satisfies only one.

SBT for black-box testing and functional testing focus on different aspects of the pro-
gram. Black-box SBT searches to satisfy and optimize a particular coverage criterion, which
is based on a description of program’s input domain.

Reasoning is not only present in self -adaptive systems, autonomous agents are also
capable of reasoning and making decisions. SBT has been used to test whether autonomous
agents make the right decisions through test case optimization [172]. This consists in
modeling the agent autonomic requirements (for example, the tasks the agent will perform
in a given context) into a quality function. Then, a set of initial test cases is evolved
using the quality function as a minimization function. The lower the values of the quality
function, the stronger test cases are. The optimal search value is a set of test cases that test
the system in a large variety of environments.

Testing combinatorial interactions

Structural testing techniques do well in handling test data generation when the pro-
gram structure is known. When the program structure is unknown, or when the test sub-
ject underlying implementation can change, it is more convenient to use a black-box testing
technique. Black-box testing relies on descriptions of the problem domain, input variables,
constraints, and so on to generate data.

Combinatorial interaction testing (CIT) [136, 55, 119] is a series of back-box testing
techniques used to sample testing data from large spaces. For example, Cordelia’s ACRM
system environment has 6.144 instances, which with just a few variables raises fairly sized
space (notice that a system with 20 reasoning variables, with 5 possible values each will
raise a space of 520 = 95.367.431.640.625 instances, which is very large). CIT consists in
selecting combinations of variable values (interactions between variables) in such a way
that all the combinations (interactions) are covered at some degree. For example, covering
the two-combinations of variable values (degree of coverage is two) will require testing
data to contain all the pair of variable values – this is often called pairwise. Since the
interactions cited by most work on CIT occur between different variable values, I call them
inter-variable interactions.

The underlying premise of CIT is that variable value conventions can uncover faults in
software systems (this is, many faults are caused by combinations of variable values). A
study shows that all the failures in a system could be triggered by a maximum of four to
six-way interactions [136]. CIT has been used for testing several software systems [136],
finding and characterizing faults in configurable software [233], testing applications with
elaborate configuration options, such as web browsers and office tools [56], and testing
GUI interfaces [231] among others.

There exist two prominent CIT techniques: Covering Arrays (CA) [50], and its extension
Mixed Level Covering Arrays (MCA) [55], which embodies CA. The main characteristic of

60 Background

MCA is that it supports the definition of variables with different domain size. CA only
supports variables having the same domain size. This puts MCA in good way to sample a
large data space such as Cordelia’s ACRM system environment.

Adaptation mechanisms can also benefit of CIT. That is by testing that adaptation mech-
anisms are capable of producing configurations and that those configurations work. MCA
can be used to sample data from a SPL, and select different sets of configurations. Still,
this is not as simple as it appears. SPL may include several constraints that will make some
combinations of option illegal. Additionally, variation point’s options may contain depen-
dencies and historical restrictions. Some of these inconveniences have been addressed by
researches, particularly the modeling [52] and generation of covering arrays in presence
of such constraints [53, 54, 94]. CIT has been applied successfully to test systems whose
configuration evolves (changes) in time. More precisely, covering arrays have been used to
select regression test for each new version of the system [188].

CIT has proven effectiveness and value on several applications, particularly pairwise.
Several approaches have been proposed to generate CAs and MCAs [50, 34, 51, 55, 32,
119]; some of them are based on mathematical foundations and complex algorithmic,
whereas others are based on heuristic search [51, 55, 119]. Nowadays there exist profi-
cient tools to generate and use pairwise [34], but in order to obtain more confidence it
is necessary to go beyond the pairwise [137] and cover the interaction of three or more
variables. One of the main problems of increasing the degree of coverage is the amount
of resources needed to efficiently generate covering arrays. A recent approach proposes to
increment the degree of interaction coverage according to available resources [86].

2.2.2 Verification

Verification [93] is the confirmation by examination and provision of objective evidence
that specified requirements have been fulfilled. Verification techniques for self -adaptive
systems are deeply rooted in formal mathematical foundations and consist in checking
that system conforms a set of properties or specifications [62, 138, 13, 68, 237, 238, 200,
212, 173, 95, 26, 229, 230]. Such foundations emphasize in representing a system as
abstract and sound mathematical models, and performing exhaustive checking over such
model.

With a mathematical model of the system in hand, engineers can check the system
realization against the model properties (for example, temporal logic properties) [71, 2].
If the system realization satisfies these properties, then it is said to conform to its model
and hence it is valid. Verification for self -adaptive system has two main axes: (1) verifi-
cation of dynamic change, or whether the system conforms after changing, and (2) ver-
ification of reasoning, or whether the reasoning satisfies some soundness, completeness,
and coherence properties. In the following I present the state of the art on verification for
self -adaptive system.

Background 61

Verifying dynamic change

Initial approximations in verification of change started with the verification of dynamic
software architectures. The formal model of the system consists on a behavior specifica-
tion associated with the description of components in a software architecture. Labeled
transition systems specify behaviors and composition reachability analysis to check struc-
tural changes (before, during, and after the change). Then, an automated analysis verifies
that changes in the system component do not violate the integrity of the model proper-
ties [135]. Another way to look at the problem consists in modeling the systems and its
adaptations using lattices (partial order sets in which properties are specified) [62]. This
lattice model is then used to verify whether the system satisfies lattice-invariant proper-
ties after adaptation [138]. Another possible model of the system consists in a graph of
elements. Changes in the architecture are then represented as graph transformation that
should preserve the safety structural properties and inductive variants [13].

Components are fundamental parts of self -adaptive systems. Changing one compo-
nent by another or composing two or more components can produce several unforeseen
behavioral variations. Researchers have proposed a verification theory for component com-
position. This theory aims at predicting that complex assemblies of component will hold
their intended behavior [68].

Researchers have explored the modeling of change in self -adaptive system by using
Petri nets for behavioral specification [236]. Such model contains specifications of adap-
tive and non-adaptive behavior. In these models, engineers use linear temporal logic (LTL)
to describe non-adaptive behavior, and an extension adaptive-LTL [237] to specify the
adaptive part of adaptive systems. Then a self -adaptive system is represented by a network
of interconnected state machines, which represents the system and its changes. Whenever
the actual system changes, it should be model checked against the properties defined in
the model. Yet, such model can be very large and model checking can take a long time.
One way to address this issue is by exploring the use of different data structure representa-
tion to improve the performance of the verification (which is degraded by the explosion of
states) [216]. A recent proposition to address this kind of verification consists in modular-
izing the model-checking activity. Modular model-checking techniques identify the parts of
the system that have changed and only verify those parts, and assume previous verification
as still valid for the new system [238].

Self -adaptive system can also be represented as a network of states (finite state model),
in which each transition between states corresponds to an adaptation and each state a
system configuration [200]. This enables typical finite state properties such as termination,
aliveness, etc. to be verified. Additionally, a series of fault adaptation patterns, interference
between adaptation, and inconsistencies can be detected by navigating every transition.

62 Background

Verifying reasoning

Early work on verification proposes verifying that rules in a rule-base do not conflict,
are redundant, or subsumpt other rules. The underlying goal is checking whether a rule
base is complete and consistent by enumerating decision and circumstances [212, 173].
This work is limited to the identification of static problems for atomic rules and cannot
identify problems that result along longer reasoning chain.

Another approach, KB-Reducer, proposes to use an implied network of rules to repre-
sent the rule-base. In this network, the rules relations are represented explicitly in the
form of a reduced directed graph. The process of reduction involves calculating all pos-
sible logically independent and minimal sets of inputs under which the knowledge base
will conclude each assertion. This approach has the advantage of checking a rule-base for
inconsistency and redundancy over inference chains, not just pairs of rules [95].

A more recent approach proposes to verify multi-agent programs whose behavior is
specified in a rule-base. Agent behavioral models are expressed in a temporal language
shallow, which extends LTL with agent related modalities. Then, the effective behavior of
agents is verified against its shallow specifications [26].

Another line of reasoning verification focuses on assessing whether the environmen-
tal data is consistent. The underlying motivation is that environmental changes that the
system acquires could be obsolete, corrupted, or inaccurate. To address this problem, re-
searchers have proposed a formal model and algorithms for incremental consistency check-
ing of the environmental properties [229]. These are later implemented in a framework
for performing dynamic context consistency management [230].

2.2.3 Positioning with respect to Testing and Verification

In the previous sections I have presented the state of the art on validation and verifica-
tion of reasoning and dynamic change in self -adaptive systems. These techniques have a
series of limitations that leave room for improvement.

Autonomous reasoning

I have identified a series of limitation in the state of the art techniques to test and verify
the autonomous reasoning of self-adaptive systems. In order to illustrate the gaps left by
these techniques, I compare their limitations and capabilities in five dimensions: (i) struc-
ture coverage, or the property of the techniques to fully cover the structure of reasoning
engines; (ii) reasoning space coverage, or the property of the techniques to cover the rea-
soning space in spite of the reasoning engine structure; (iii) generality, or the applicability
of the techniques to a variety of reasoning techniques such as rule based reasoning, goal
based reasoning, etc; (iv) non-enumeration, or the capability of the techniques to avoid
enumerating every possible decision and decision path; and, (v) coverage of the temporal

Background 63

dimension of reasoning, or the capability of the techniques to address the temporality in-
volved in self-adaptive systems. Table 2.4 summarizes the comparison of the different state
of the art techniques.

Table 2.4: Capabilities and limitations comparison of test and verification techniques for
autonomous reasoning.

Structural Testing CIT Rule Verification
[99, 4, 129, 10, 100, 201] [136, 55, 119] [212, 173, 95]

structure coverage Yes No Yes
reasoning space coverage No Yes No
generality No Yes No
non-enumeration No Yes No
temporal dimension of reasoning Yes No Yes

Table 2.4 evidences the following limitations: (1) since structural testing techniques
use precise structural information to generate testing data, they are incapable of cover-
ing the reasoning space. If engineers writing reasoning rules were oblivious about some
reasoning space’s regions, then structural testing would not be capable of generating data
covering these regions. (2) Furthermore, consequence of such dependency on structural
information, structural testing techniques are tightly coupled with a particular reasoning
strategy (in this case, rule based reasoning). (3) Verification techniques suffer a similar
limitation because they rely either on the reasoning engine structure or on a formal spec-
ification of the reasoning engine. (4) Some structural testing techniques and verification
techniques require enumerating all the reasoning paths and possible decisions. This is not
always possible because the number of decisions and paths to those decisions can be huge.
For example, meta-rules that modify, add, and remove dynamically reasoning rules may
produce a huge number of reasoning paths. (5) CIT covers the reasoning space, provides
generality, and does not require enumerating all possible decisions. Yet, it cannot handle
the temporal dimension of reasoning. Since reasoning engines make decisions based on
the history, CIT provides no guarantee to uncover errors due to faulty reasoning on historic
events.

In this thesis, I propose a testing technique that addresses the limitations of the current
state of the art techniques. More precisely, I extend CIT with a set of properties that enables
the coverage of the temporal dimension of reasoning.

Dynamic change

I have identified the following limitations in the state of the art techniques to test and
verify dynamic change in self-adaptive systems:

– CIT does not handle the changes of system states and fails to cover the tran-
sitions between system configurations. Since self-adaptive systems continuously

64 Background

mutate themselves, it is important to ensure that the changes between the different
configurations will not break down the system.

– Component composition verification [68] requires knowledge of the behavior
of all the components in order to assemble all the feasible compositions. Such
behavioral description is not always available, and there can be a huge number of
feasible component compositions.

– Verification techniques [236, 237, 200, 68] require enumerating all possible sys-
tem states, and the transitions between these states. This is not always possible
since the number of system states and transitions between these states can be huge.

In this thesis, I do not address these limitations since I’m not interesting in the valida-
tion and verifications of dynamic change. Instead I focus on identifying and addressing the
limitations for aspect-oriented based adaptation mechanism.

2.2.4 Specifications for aspect-oriented adaptation

AOP and its composition mechanism provide flexibility and versatility† for realizing
adaptation mechanism. Engineers can use advices and point-cuts to change, add, or re-
move the system’s structure and behavior on the fly. Nevertheless, three major problems –
AOSD evolution paradox, aspect interference, and the combination obliviousness - invasive-
ness – prevent the successful adoption of AOP as adaptation mechanism.

Furthermore, these problems negatively impact the adaptation mechanism validation
process. Undesired side effects, interference between aspects, and uncontrolled invasive-
ness make it difficult to ensure that when the system changes, the functionalities are pre-
served. Therefore, in order to verify whether new advices may preserve the functionalities
it is necessary to re-execute functional tests. Additionally, if the system exhibits deviations
from the correct behavior, AOP’s problems make it difficult to trace the source of these
problems to particular aspects.

Researchers have explored different options to solve these problems. These options can
be summarized in three groups: guidelines, aspect characterization, and modular systems.

The first, guidelines consists in advises for developers stating how to write base sys-
tems and aspects [150, 217, 127]. These guidelines aim at helping developers to reduce
the coupling of aspects with the base system and at encouraging them to carefully select
advised system points. Such guidelines are meant to tackle interaction and obliviousness
problems.

Aspect characterization consists in classifying the aspects according to their interac-
tions with the base system and with other aspects. Direct and indirect interactions occur
between aspects and methods [196]. Direct interaction is when an advice interferes with
the execution of a method, whereas indirect is when advices and methods read/write the
same fields. A characterization of aspects classifies them among Spectative, Regulatory and
Invasive aspects according to their invasiveness degree [122]. Spectative aspects observes

Background 65

and do not interfere with the base system, Regulatory aspects modify the program behavior
in particular cases, and Invasive add or replace behavior in the base system. Another clas-
sification, Spectators and Assistants [49], proposes to control interactions by specifying the
aspects that can advise the base system. It classifies aspects among Spectators (non invasive
advices) and Assistants (invasive advices). Then, the base system explicitly demands the
assistance of assistant aspects (identified by their names). Spectative and Spectators aspects
are less likely to interfere with each other. On the other hand, invasive aspects, particularly
those interacting at the same system points are more likely to interfere with each other. A
fully automated approach can discover conflicts among classes and aspects directly from
Java bytecode. Such technique uses a rule engine for identifying possible conflicts among
advices, methods, and fields. The possible conflicts are represented by means of rules
that operate over a knowledge base obtained through static analysis of classes and aspects
bytecode [77].

Modular systems propose to establish interfaces exposing parts of the system to aspects.
Open Modules [5] is a system that focuses on the exposure of specific join-points. This ap-
proach hides all the system points visible to aspect, and then each module must declare the
system points it will expose to be advised. Open Modules exposes system points without dis-
tinguishing the aspects advising them, this makes developers aware about aspects advising
the system. A similar approach, XPI [98], proposes using interfaces that mediate between
aspects and the base program. Such interfaces establish a set of design rules to implement
aspects and the base system in such a way that the evolution is coordinated through the
XPI. Aspectual collaborations [143], also proposes to establish an explicit bridge between
aspects and modules. Then, aspects are forced to collaborate with the base system if they
are going to advice its points. The approach proposed by integration contracts functions
on the same bases as collaborations, explicit definition of interaction [139].

Additionally to these attempts to solve AOP’s problems, researches have proposed to
assist developers when using aspects in different versions of a system [208]. Through
an analysis that compares the changes in the set of matched join-points for two different
versions of a system, this approach reveals unexpected changes in the matching behavior of
system points. This analysis serves to assist developers finding bugs introduced by broken
point-cuts.

2.2.5 Positioning with respect to the specifications for aspects

I have identified a series of limitation in the state of the art techniques to specify aspect-
oriented adaptation mechanisms. In order to illustrate the gaps left by these techniques,
I compare their limitations and capabilities in five dimensions: (i) obligation binding, or
the capability of the techniques to bind obligations that developers must follow; (ii) anal-
ysis support, or the capability of the techniques to provide information that can be useful
for analysis; (iii) invasiveness control, or the capability of the techniques to provide the
means to control the aspects’ invasiveness; (iv) interaction control, or the capability of the

66 Background

techniques to provide the means to control the interactions between aspects and the base
system; and, (v) evolution support, or the capability of the techniques to provide support
to developers in case of evolution. Table 2.5 summarizes the comparison of the different
state of the art techniques.

Table 2.5: Capabilities and limitations comparison of specifications techniques for aspect-
oriented adaptation mechanisms.

guidelines Characterization Modular systems
[150, 217, 127] [196, 122, 49, 77] [5, 98, 143, 139]

obligation binding No No Yes
analysis support No Yes No

invasiveness control Yes No Yes
interaction control No Yes Yes
evolution support Yes No Yes

Table 2.5 evidences the following limitations: (1) Guidelines bind no obligations to
developers, and therefore, cannot provide guarantees about the developers’ behavior. De-
velopers can still write invasive and interfering aspects that introduce side effects. Yet, if
developers follow these guidelines, they should be able to support the evolution and con-
trol the aspects interactions. (2) Aspects characterizations provide support for analysis and
study of aspects interactions, but do not provide tooling support or bind any responsibility
to developers. These characterizations do not guarantee that aspects will not interfere or
that they will have no undesired side effects. (3) Modular systems allow developers to
specify open points in the system and control the invasiveness, the interactions, and sup-
port evolution. Nevertheless, this control of invasiveness and interactions is coarse grained.
Either developers open system’s points to all aspects, or the close them to all aspects. Mod-
ular systems do not allow the developers to specify the kind of aspect to which the system
points are opened.

Obligation binding, analysis support, invasiveness and interactions control, and evolu-
tion support are properties that are desirables in order to control the interactions between
aspects and the base program, overcome the AOSD evolution paradox, and make aspects
perform as expected. The limitations of the current state of the art techniques not only
hamper the adoption of AOP as an adaptation mechanism, but also negatively impact the
validation of aspect-oriented programs. In this thesis I address these limitations and pro-
pose a specification framework that combines the best features of the aspects characteriza-
tions and modular system.

Background 67

2.3 Contribution of this thesis

In the previous section I have presented the state of the art techniques for constructing,
validating (through testing), and verifying self -adaptive systems. I have also show that test-
ing and verification techniques have many limitations. Validation techniques for reasoning
engines are either too specific to a reasoning engine and do not ensure coverage of the
reasoning space, or do not address the temporal dimension of reasoning and are rapidly
surpassed by the possible number of environments. Specifications techniques for aspect-
oriented adaptation mechanism address one AOP limitation and make no compromise to
address the others.

In this thesis I address the previously announced points. First, I propose multi-dimensional
covering arrays for testing reasoning engines. To formulate this technique I reuse the con-
cepts from combinatorial interaction testing. Second, I propose a specification framework to
address the problems of invasiveness and interactions of aspects. This framework is based
on a fine grained characterization of aspects and tooling support integrated with state of
the practice technology.

68 Background

69

Chapter 3

Testing Reasoning Engines

Reasoning engines realize the core reasoning process in self -adaptive systems. These
pieces of software make decisions that affect how the system interacts with its environment
and how it satisfies its requirements. They make decisions over a reasoning space, which
represents a changing environment. Such decisions are supported by domain knowledge
and influenced by the own history of the system. Reasoning engines perceive and use
history as a mean to support the decision making process.

Since reasoning engines drive the self -adaptive system’s behavior given a changing en-
vironment, their decisions must be carefully reviewed. Therefore, assessing the correctness
of the decisions made by these engines is critical. A faulty (incorrect) decision may lead
to erroneous behavior, unfeasible adaptations, or system degradation. The testing activ-
ity helps engineers to achieve such assessment. It consists in simulating environmental
conditions and changes. Then, for each possible environmental condition and variation,
engineers review the reasoning engine’s decisions to determine whether they are correct
or not. If they find the decisions to be incorrect, then, they would find the problem, solve
it and re-review the reasoning engine’s decisions. This is repeated until covering the whole
reasoning space.

Nevertheless, simulating every possible environmental condition and interactions among
conditions is most often impossible because their number grows exponentially with the
number of properties that model the environment. Additionally, time needed for the rea-
soning engine to make a decision and for the engineer to review that decision put another
barrier to exhaustive simulation. Instead of simulating every possible environmental condi-
tion, engineers may select some of them that represent the environment [167]. Structural
testing techniques allow engineers to select environmental conditions according to the rea-
soning engine’s structure; however, they are specific to a single reasoning technique (cf.
Section 2.2.3). Black-box strategies based on environmental criteria seems more appro-
priate to select representative environmental data. Mixed level covering array [55] (MCA)
is a black-box strategy that can be used to sample large spaces and that can be used for

70 Testing Reasoning Engines

environment sampling.
I argue that the reasoning space comprises two types of interactions capable of in-

ducing faults. These interactions are inter-variable interactions and intra-variable inter-
actions. MCA effectively addresses inter-variable interactions [136], however, it fails to
handle intra-variable interactions – temporal dimension of reasoning (cf. Section 2.2.3).

In this chapter I address the MCA’s limitations and propose an extension to handle
intra-variable interactions. First, I characterize these interactions. Next, I show the limits
of MCA for sampling the reasoning space, and why a new technique is required. Then,
I present multi-dimensional covering arrays (MDCA), an extension of MCA that handles
temporal aspects of reasoning. Finally, I introduce three techniques to constructs MDCAs
and an experimental assessment of MDCA’s effectiveness.

3.1 Inter-variable and Intra-variable Interactions

The environment representation comprises several reasoning variables whose values
can change over time. An environment instance – a snapshot of the environment at a pre-
cise moment – comprises a precise value for each reasoning variable. Since the combina-
tions of these values can change a decision outcome, I argue that they interact. Therefore, I
refer to the collection of interacting values of different reasoning variables as inter-variable
interactions. In general, there are as many interactions as reasoning variable values. The
reasoning variables in Table 2.1 produce 6.144 interactions (equivalent to the number of
possible environment instances) between 11 variables. Nonetheless, a few of them can ac-
tually trigger decisions in the reasoning process. For example, consider the values windows
and reserve for the reasoning variables platform and usetype in Table 2.1. The interaction
of these variables triggers a decision in rule R1 (cf. Listing 2.1); however, the interaction
between the values palm and view triggers no decision.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

mac windows palm mac windows ...

platform

i1 i2 i3 i4 i5 i6

Figure 3.1: Intra-variable interactions for the reasoning variable platform (cf. Table 2.1)
among six environment instances.

Testing Reasoning Engines 71

Environment instances and value interactions reflect the environment state at a single
moment. Temporality on the other hand, is considered through a sequence of environ-
ment instances. The occurrence of the environment instances over time (change from one
instance to another) corresponds to a transition. Among transitions, the value of each sin-
gle reasoning variable fluctuates and produces interactions that I refer to as intra-variable
interactions because they consider the values of a single reasoning variable. Figure 3.1,
illustrates the intra-variable interactions of the reasoning variable platform among six in-
stances. In the case of intra-variable interactions, the number of interacting values is in-
finite. It depends on the number of environment instances considered in these interac-
tions (equivalent to the reasoning variable change rate). For example, if we consider two
instances (interaction between two values of the same variable), the reasoning variable
platform may produce 24 = 16 intra-variable interactions, if we consider three instances, it
may produce 34 = 81 interactions and so on.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i1 i2 i3 i4
.
.
.
.

.

.

.

.

i1
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i1 i2 i3 i4 i5
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

i1 i2
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i1 i2 i3 i4 i5 i6
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i1 i2 i3

t0 t1 t2 t3 t4 t5

mac windows windows palm palm mac mac windows windows ...

Figure 3.2: Intra-variable interactions considering only two environment instances.

The reason of this variable number of interactions is that, on the one hand, interac-
tions within the same value of a variable (the variable value does not change) are possible
and may affect the reasoning. On the other hand, the number of interactions is not fixed
because it depends on the time window over which the system reasons. For example, rea-
soning just about the immediate past implies considering two instances – the current and
the immediately past instance. Figure 3.2, illustrates this situation. The time t0, t1, ..., t5
indicates the order of occurrence of each instance in the sequence. The reasoning starts
considering history after the first instance arrives and continues considering only one in-
stance into the past. The reasoning considers the interactions in Figure 3.1, but only those
that happen between the last two values

Interactions may consider the temporality (intra-variable interactions) over several rea-
soning variables at the same time, they occur between intra-variable interactions in envi-
ronment transitions. These are inter-variable interactions between intra-variable inter-
actions. For example, Figure 3.3 illustrates the interactions between three intra-variable
interactions. Notice that the interaction of these three reasoning variables changing their
values in the same period trigger the decision in rule R2 (cf. Listing 2.2).

Self-adaptive systems that make decisions based only on the present environmental
condition are fundamentally different from those making decision based o past conditions.

72 Testing Reasoning Engines

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

low high

available available

security level

exchange service

i1 i2 i3

unavailable available
google service

Figure 3.3: Inter-variable interactions between three inter-variable interactions.

The main difference between these two styles of reasoning is the following. On the
one hand, when decisions rely only on the present environmental condition, the environ-
mental variations are observed as separate and independent events. Previous environmen-
tal conditions do not affect the current decision (because it depends only on the present
environmental condition), therefore, the order in which such conditions occur has no im-
portance. Since this reasoning style satisfies the Markov property [78], which states that
the next state of a system depends only on the current state, it could be modeled using a
Discrete Markov Chain [148] (DMC). The decision making process could be described as a
Markov stochastic process, and a DMC could predict the possible (probability distribution)
decisions of the system.

On the other hand, when decisions rely on historical and present environmental condi-
tions, the order in which these conditions occur becomes important. The reasoning process
considers both inter and intra variable interactions.

These two types of reasoning shape how we model and consider the environment for
testing reasoning engines. The first reasoning style requires from testers to consider envi-
ronmental conditions separately, and to sample only inter-variable interactions. Addition-
ally, since it is possible to model the reasoning process with a DMC, testers have a way to
predict the system decisions. The second reasoning style requires from testers to consider
the environmental conditions and their occurrence over a time window, and to sample
inter and intra variable interactions.

Inter-variable and intra-variable interactions are the core of the reasoning space for
reasoning engines that consider history in the decision-making. They are the consequence
of the accounting of precise values representing precise environmental states, and streams
of values representing change over time. Techniques willing to select portions of the rea-
soning space must consider these two dimensions of interactions in order to exhibit envi-
ronment conditions that are likely to trigger all kinds of decisions (right and wrong).

Testing Reasoning Engines 73

3.2 Mixed Level Covering Arrays

Mixed Level Covering Arrays (MCA) [55] is an extension of (CA) [50], which can handle
inter-variable interactions and reduce the size of the reasoning space. The main charac-
teristic of MCA is that it supports the definition of variables with different domain size.
CA only supports variables having the same domain size. This puts MCA in good way to
sample a large data space such as Cordelia’s ACRM system environment. In the following
I will introduce MCA, but before introducing it, I present the notion of combination upon
which MCA is built on.

Definition 4. A k-combination of a finite set S is a subset of k elements of S.

The k-combinations specify how to build sets of k elements from an initial set. For
example, the 2-combinations (k = 2) or pairs of the reasoning variable security level =
{low, medium, high} (cf. see Table 2.1) are the following:

{ {low, medium}, {low, high}, {medium, high} }

The underlying aim of MCA is constructing an array that contains all the t-tuples
of inter-variable interactions (interactions between different variables). This will evi-
dence those faults that are produced by interactions between the values of different vari-
ables [136]. A MCA is an N×k array that contains k different variables, where v1, v2, ..., vk

are the size of the domain of each variable (number of possible values) and S1, S2, ..., Sk

are the sets of values of each variable. More precisely, MCA is defined as follows.

Definition 5. A mixed level covering array

MCA(N ; t, k, (v1, v2, ..., vk))

is an N × k array on v symbols, where v =
�k

i=1 vi, with the following properties:

1. Each column i (1 ≤ i ≤ k) contains only elements from a set Si of size vi.

2. The row of each N × t sub-array covers all t-tuples of values from the t-combination of
columns at least one time.

The strength of a MCA, denoted by t indicates to which extent the covering arrays will
cover the inter-variable interactions. A high value of t suggests a better coverage, however,
it also implies a larger array. Each column in the MCA represents a particular variable,
and each row in a column represents a particular value for that variable. Property (1)
ensures that each column contains only values of a particular variable, whereas property
(2) ensures the presence of all the t-combinations of inter-variable interactions. Typically,
the number of rows N needed to construct a MCA is unknown. Finding the optimal value
of N (the smaller number of rows to satisfy the MCA properties) is a challenging problem

74 Testing Reasoning Engines

Table 3.1: MCA(18; 2, 11, (2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2)).
Exch. Goog. Ical Group. Oracle Mem. Use. Plat. Sec. Feed. Conn.
avail. avail. avail. avail. avail. low view win. low like slow
unav. unav. avail. unav. unav. high view mac med dislike slow
– – avail. – – – view palm high – slow
unav. – unav. avail. unav. – reserve win. med – slow
– avail. unav. unav. – low reserve mac high like –
avail. unav. unav. – avail. high reserve palm low dislike –
– unav. – avail. – high – win. high dislike slow
avail. – – unav. avail. – – mac low – –
unav. avail. – – unav. low – palm med like –
avail. avail. unav. unav. unav. high – palm high – fast
unav. unav. – – – – view win. low like fast
– – avail. avail. avail. low reserve mac med dislike fast
avail. avail. – – – – reserve mac med dislike –
unav. unav. avail. avail. avail. low – palm high – –
– – unav. unav. unav. high view win. low like –
avail. avail. avail. avail. avail. low view mwin. low like slow
unav. unav. unav. unav. unav. high reserve mwin. med dislike fast
– – – – – – – mwin. high – –

because it may change according to the disposition of the variable values in the array [50,
34, 104].

We can easily apply CIT techniques to generate testing data for reasoning engines.
In this particular case, MCA’s columns represent reasoning variables, and rows represent
environment instances. Since the covering array is constructed without specifying a partic-
ular order, variable transitions are ignored. For example, Table 3.1 presents the MCA for
Cordelia’s ACRM system environment (cf. Table 2.1) MCA (18;2,11,(2, 2, 2, 2, 2, 2, 2, 4,
3, 2, 2)). In this case, the covering array seeks to optimize the interactions between pairs
of reasoning variables (t = 2). It contains 18 environment instances that arrange all the
inter-variable interactions of pairs of variables. If we compare this with the 6.144 instances
needed to exhaustively test the reasoning engine, MCA represents an extensive reduction
in the amount of data needed to test Cordelia’s ACRM reasoning engine.

3.3 Limits of MCA for sampling the reasoning space

Mixed level covering array (MCA) is effective at reducing the number of inter-variable
interactions to test and at finding faults due to these interactions [136]. In the previous sec-
tion I showed that inter-variable interactions are important in the reasoning process since
they trigger decisions over particular values for reasoning variables. Yet, MCA does not
address all the dimensions of sampling the reasoning space. MCA fails to handle the tem-

Testing Reasoning Engines 75

poral dimension of reasoning – intra-variable interactions. Since it produces environment
instances without specifying a particular order, it disregards the importance of environment
transitions.

Although MCA does not ensure an admissible sampling of the reasoning space, its un-
derlying theory merits to be extended. Such extension must consider the interactions that
come with temporality – intra-variable interactions. In the next section I present an ex-
tension to MCA, which consider inter-variable and intra-variable interactions to generate
covering arrays.

3.4 Multi-Dimensional Covering Arrays

I introduce multi-dimensional covering arrays (MDCA) as an extension to MCA meant
to handle inter-variable and intra-variable interactions at the same time. This technique
is multi-dimensional because it is capable of handling several dimensions of interactions
and integrates them into a single data selection process. Before introducing MDCA, I intro-
duce the concept of u-transition upon which I build MDCA. The u-transitions represent the
different ways that intra-variable interactions can occur for a given reasoning variable.

Definition 6. A u-transition of a finite set S is the set of all ordered u-tuples that can be
generated with u elements from S.

Notice that the u-transition is not a permutation of a set in the usual sense of the term.
It specifies how to build sets of u elements from an initial set, and not the ways to swap u
elements in a set. For example, the 2-transitions (u = 2) of the reasoning variable security
level consists of the following elements:

{ <low, medium>, <low, high>, <medium, high>, <high, medium>, <high, low>, <medium,
low>, <low, low>, <medium, medium>, <high, high> }

The u-transitions contain all the possible intra-variable interactions for a particular
reasoning variable. Contrarily to the u-combinations (cf. Definition 4 in Section 3.2), the
u-transitions consider the order in which elements are selected and can contain repeated
elements. For example, the pair <low, medium> is different from the pair <medium, low>
and the pair <medium, medium> is a valid element of the 2-transition.

The aim of MDCA is covering all the inter-variable and intra-variable interactions. This
should reveal those faults in the reasoning that are caused not only by interactions between
different variable values, but also by the different transitions of each variable.

Similarly to a MCA, a MDCA is a k×N array that contains k different variables, where
v1, v2, ..., vk are the cardinalities (number of possible values) and S1, S2, ..., Sk are the val-
ues of each variable. The strength of a MDCA, denoted by t, indicates the coverage of
transition interactions (notice that the coverage of transition interactions implies the cov-
erage of inter-variable interactions), whereas the chaining strength, denoted by u indicates

76 Testing Reasoning Engines

the coverage of the intra-variable interactions. Each row in the MDCA represents a partic-
ular variable, and each column represent a particular value for that variable.

Definition 7. A multi-dimensional covering array

MDCA(N ;u, t, k, (v1, v2, ..., vk))

is an k ×N array on v symbols, where v =
�k

i=1 vi, with the following properties:

1. Each row i (1 ≤ i ≤ k) contains only elements from a set Si of size vi.

2. Each u-tuple of u-consecutive columns in a row i (1 ≤ i ≤ k) contains only elements
from the u-transitions of Si.

3. The u-consecutive columns of each t × N sub-array cover all t-tuples of values from t-
combinations of Pi sets (i are the indexes of the selected t-rows) at least once, where Pi

are the u-transitions of Si.

Property (1), ensures that each row contains elements of the variable it represents.
Property (2), ensures that the u-consecutive columns contain the intra-variable transitions
of that variable. Property (3), ensures that all the array covers all the t-tuples of variable
transitions. Notice that MDCA constructs u-tuples of values, which represent the intra-
variable interactions out of consecutive columns. This is because MDCA specifies an order
of appearance for columns.

1 2 3 4 5 6 7 8 9 10 11 12 13
Conn. Speed slow fast slow slow fast slow slow slow slow slow fast fast fast
Sec. level high low high high med high med high low high high low med
Use type view resv view view view view resv view view view resv resv view

14 15 16 17 18 19 20 21 22 23 24 25 26
Conn. Speed fast fast slow fast slow slow fast slow slow fast slow slow fast
Sec. level low high med med med med low med low low low low med
Use type view resv resv view resv resv resv resv view resv resv view view

27 28 29 30 31 32 33 34 35 36 37 38 39
Conn. Speed fast fast slow fast fast slow slow fast slow fast fast fast fast
Sec. level high med low high high low med high high low low med med
Use type resv view resv resv resv view resv resv view view view view view

Figure 3.4: MDCA(39; 2, 2, 3, (2, 3, 2))

Notice that each row in the MDCA represents a flow of values for a particular reasoning
variable, and each column represents an environment instance. The order of appearance
of each instance is important, since this order represents the different variable transitions.

Testing Reasoning Engines 77

For example, Figure 3.4 presents the MDCA for three reasoning variables (k = 3): use type
(v1 = 2), security level (v2 = 3), and connection speed (v3 = 2). It contains 39 environment
instances, each pair of instances (u = 2) contains a variable transition, and each pair of
rows (t = 2) contains all the pairs of reasoning variables with change rate 2. Notice that I
present this example over 3 reasoning variables because the MDCA for all the 11 reasoning
variables of Table 2.1 would not fit into the page.

Comparing the size of MCA and MDCA sets, MCA produces 18 environment instances
that cover all the inter-variable interactions. On the other hand, MDCA produces 141
environment instances that cover all the inter-variable and intra-variable interactions. Even
if we consider that MDCA produces sets 8 times larger than MCA (in this particular case),
the set size is well rewarded by the degree of coverage it provides. Besides, it is a significant
reduction compared to the total number of instances needed to exhaustively exploring the
whole reasoning space of reasoning variables with change rate 2. That is, 142 against
about 37× 106 instances.

MDCA is good at exploring large reasoning spaces because: (1) It proposes at least
the same coverage of inter-variable interactions as MCA; and, (2) it answers the re-
quirements of the reasoning space by covering the intra-variable interactions. MDCA
covers the different transitions of each reasoning variable and the different interactions
between these transitions.

Covering transitions and their combinations increases the probability of triggering
decision-making that relies on transitions and combinations of transitions. Notice
that, the covering array’s strength describes the level of coverage of transition interactions
(which supersedes the inter-variable interactions), whereas the chaining strength describes
the level of coverage of intra-variable interactions. In section 3.6, I demonstrate through a
series of experiments the validity of this claim.

3.5 Constructing MDCAs

The problem of constructing MDCAs consists in ordering the array elements in the most
convenient way. That is, arranging the elements inside an array in such a way that it sat-
isfies all the properties in Definition 7. This problem is similar to constructing covering
arrays, which is a NP-complete problem [226, 204]. Basically, it consists in finding the
smallest array that satisfies all the MDCA’s properties. In other words, given a k × n array,
(1) arrange its elements in such a way that the array contains all the t-tuples of transitions
with change rate u (Property 3 of Definition 7); and (2) find n close to N , the minimum
number of columns. Constructing MDCAs is complex because the arrangement of a partic-
ular cell (element) in the array may affect the disposition of other cells in the whole array;
therefore, the number of combinations for the cells disposition in the array is huge.

This problem can be solved using different techniques such as backtracking, meta-
heuristics, etc. In this particular case I use functional optimization and two meta-heuristic

78 Testing Reasoning Engines

techniques to address the problem: genetic algorithm [96] and bacteriologic algorithm [12].
Additionally, I introduce a third meta-heuristic that combines elements from genetic and
bacteriologic algorithms.

Functional optimization [232] uses a mathematical function that quantifies how good
or bad a solution is (or in this case an array). In meta-heuristic search, such function has
the underlying goal of guiding the search for the best possible solution to a problem. It
this case, the optimization function indicates how far is the arrangement of elements in the
current solution with respect to the expected optimal solution. This will guide the search to
solutions whose arrangement better satisfies the MDCA’s properties. Notice that I use the
optimization function to guide the search for the arrangement of elements that contains
the greater number of tuples, whereas I let the meta-heuristics to search for the optimal
length. I define the optimization function for constructing MDCAs as follows.

Definition 8. The maximization function for X, a k × n, u the chaining strength, and t the
strength is:

f(X,u, t) = # of different t-tuples of transitions with change rate u in X.

The maximization function f(X,u, t) will guide the meta-heuristic search towards so-
lutions that contain a large number of tuple. The greater the number of tuples, the closer
the solution is to satisfy the properties in Definition 7.

Notice that in the following, I use f(X) and f(X,u, t) indistinctly. It is possible to cal-
culate f(X,u, t) in several ways, I calculate it by counting for each k×u sub-array (formed
by u-consecutive columns) the number of different t-tuples in the array. In Annex A, I
provide the pseudo code for counting the number of tuple in a k × n array X.

3.5.1 Optimal value

The objective of the meta-heuristic search is to increase f(X,u, t)’s value. Since the
covering arrays must hold a fixed number of t-tuples, it is possible to calculate the expected
value e for f(X,u, t). I define the expected value e as follows.

Definition 9. The expected number e of t-tuples of u-transitions for an MDCA over k variables,
with v0, v1, v2, ..., vk elements each, a strength t, and chaining strength u:

e =
�m

i=1

�t
j=1 pc(i,j) , where

pi = vu
i

m = k!
t!(k−t)!

cm×k = u-combinations of {1, 2, ..., k}

Testing Reasoning Engines 79

Notice that the expected value e only indicates the number of t-tuples and not the size
of the array. For example, the value of e for the MDCA in figure 3.4 is 88, whereas the size
of the array N is 39.

Since we know e, when e − f(X,u, t) = 0, X is an MDCA with strength t and chaining
strength u. Therefore, this is the stopping criterion that will rule the meta-heuristic search
I propose to construct MDCAs.

3.5.2 Genetic Algorithm

A genetic algorithm [96] (GA) is a search technique to find an exact or approximate
solution to optimization and search problems. It is inspired by the evolution of the species
and the survival of the fittest individual.

2

3

4

5

f(x)

initial generation n

fitness evaluation

selection

mutation

recombination

(n+1)th generation

stop

1

Yes

no

6 solution

Figure 3.5: Flowchart of a genetic algorithm.

GAs are implemented in a computer simulation in which a population of abstract repre-
sentations (called chromosomes or the genotype of the genome) of candidate solutions (in-
dividuals) to an optimization problem evolves toward better solutions. Figure 3.5, presents
the flow of a genetic algorithm. Initially, the evolution usually starts from an initial pop-
ulation (1) of randomly generated individuals and happens in generations. In each gen-
eration, the fitness of every individual in the population is evaluated (2) and multiple
individuals are stochastically selected from the current population (based on their fitness),
and modified by recombination and mutation (4) to form a new population. The new pop-
ulation (5) is then used in the next iteration of the algorithm. Commonly, the algorithm

80 Testing Reasoning Engines

terminates (3) when either a maximum number of generations has been produced, or a
satisfactory fitness level has been reached for the population. The result of the evolution
corresponds to the best solution of the problem that the GA could find (6).

Adaptation to MDCA

In order to use a GA to construct MDCAs, I have encoded each individual as a k × n
array on V =

�k
i=1 vi symbols. Therefore, a population is a collection of k × N arrays.

The fitness of each individual is determined using the optimization function f(X,u, t), and
the stopping criterion e − f(X,u, t) = 0 is applied in addition to a maximum number of
generation. I define the operations that are applied in each generation as follows.

Definition 10. The mutation and recombination of a k ×N array on V =
�k

i=1 vi symbols
are:

1. Mutation of an individual X, consists in changing the particular value of a randomly
selected row i and column j by a random value v (1 ≤ v ≤ vi), X(i,j) = v.

2. Recombination of two individuals X �, X �� consists in selecting a random column j and
replace in X � all the columns j + 1, ..., n by the same columns of X ��.

Notice that mutation and recombination are applied at a predefined rate. These, and
several other parameters such as the population size, initial population size, and maximum
number of generations can affect the performance of the GA. For example, a mutation rate
of 0.5 means that out of 10 individuals, 5 stochastically selected are going to be mutated.
The population size indicates how many individual are going to be selected out of the total
population. The initial population size indicates how many individuals may conform the
population initially fed into the algorithm. Finally, the maximum number of generations
indicates how many times the population can evolve.

The benefit proposed by GA to the construction of MDCAs is the fast convergence to-
wards an optimal solution when the number of columns (size of n) is close to the optimal.
Yet, the major drawback comes from the fact the n is fixed. When the value of n is under
the minimum, the solution fitness f(X) will never reach its optimal value e. When the
value of n is over the minimum, f(X) will reach e faster, but the solution will be of lower
quality.

3.5.3 Bacteriologic Algorithm

A bacteriologic algorithm [12] (BA) is an original adaptation of GA as described in [96].
The general idea is that a population of bacteria is able to adapt itself to a given envi-
ronment. If they spread in a new stable environment they will reproduce themselves so
that they fit better and better to the environment. At each generation, the bacteria are
slightly altered and, when a new bacterium fits well a particular part of the environment

Testing Reasoning Engines 81

it is memorized. The process ends when the set of bacteria has completely colonized the
environment.

2

7

4

5

initial bacteriologic medium

fitness evaluation

mutation

stop

1

Yes

no

6

solution

f(x)

mem(x)

memorization

filtering

filtered medium

3

A
A

A

B

B

Figure 3.6: Flowchart of a bacteriologic algorithm.

Figure 3.6, presents the flowchart of a BA. Along the execution there are two sets, the
solution set (B) that is being built, and the bacteriologic medium (A) or a set of potential
bacteria. It starts with an initial set of bacteria (1), and its evolution consists in series
of mutations on bacteria to explore the whole scope of solutions. The final set is built
incrementally by adding bacteria that can improve the quality of the set. First, the fitness of
each bacterium in the bacteriologic medium is computed (2). Second, the bacteria capable
of improving the solution set are then memorized into the solution set (3). Third, in order
to explore new solution elements, each bacterium in the bacteriologic medium is modified
through mutation (5). Fourth, the bacteriologic medium is filtered out of bad and useless
bacteria (6), this keeps the medium size under control. Finally, after each memorization
the solution set is evaluated (4) to check whether the algorithm should stop. Commonly,
the algorithm terminates after a number of generations, when a minimum fitness value is
reached by the solution set, or the fitness has not changed for a number of generations.
The resulting solution corresponds to the best solution the BA could find (7).

Adaptation to MDCA

The representation of the problem in this case is slightly different from the one used by
the GA. A Bacterium is a vector of k elements, each one containing a variable value. The

82 Testing Reasoning Engines

final solution set is a k×n array, composed of n vectors of k elements. The fitness function
of the solution set is determined by the optimization function f(X,u, t). Furthermore,
BA uses two fitness functions. One, f(X,u, t) is used to verify whether the solution has
reached the optimal. The other, fr(X,u, t) is used to evaluate the contribution of each
particular bacterium and determine whether it should be memorized. In this case, the
relative fitness corresponds to the contribution of each bacterium to the solution set. We
define the relative fitness function as follows.

Definition 11. The relative fitness function fr of a bacterium y, and a solution set Xk×n is:

fr(X, y, u, t) = f(X ∪ y, u, t)− f(X,u, t)

Each bacterium that makes a contribution to the solution set is memorized, and each
bacterium that does not, is removed from the medium. We define the mutation of a bac-
terium as follows.

Definition 12. The Mutation of a vector of length k on V =
�k

i=1 vi symbols (bacterium
y) consists in selecting at random a value i from k, and changing it by a random value v
(1 ≤ v ≤ vi).

Notice that several parameters can influence the performance of BA. Such parameters
are the mutation rate, the memorization threshold, the maximum number of generations,
the bacterium’ maximum age (number of turns in the medium), and the medium size.

The main benefit of BA is that the number of columns (size of n) can vary. Since the
final solution set is constructed incrementally, the number of bacteria (columns) in the
solution may vary according to their fitness contribution. Yet, this is also a drawback.
Depending on the initial set of bacteria, it is possible that the final solution set actually
reaches e with too many bacteria (many more than the minimal). Furthermore, it can get
stuck in a local solution if no bacteria can increase the overall value of f(X), or if more
than a single bacterium is need to increase the value of f(X).

3.5.4 Hybrid Algorithm

The Hybrid Algorithm (HA), is a modification of the BA to include a local optimization
through a GA. Such optimization is performed after adding new bacteria to the solution
set. This algorithm also performs a solution fixing when a solution set gets stuck into local
optima. This fixing consists in adding a new t-tuple of bacteria to the solution set, which
contains one or more t-tuple of transitions missing in the solution set. These t-tuples are
generated by enumerating all the t-tuples and picking one or more of them that are not in
the solution set. This automatically increases the value of f(X) and allows the algorithm
to explore other solutions.

Figure 3.7, presents the flowchart of an HA. It is essentially a BA, however, just after
memorization a GA optimizes the solution set. The solution set is used to generate the

Testing Reasoning Engines 83

2

7
4

5

initial bacteriologic medium

fitness evaluation

mutation

stop

1

Yes

no

6

solution

f(x)

mem(x)

memorization

filtering

filtered medium

3
f(x)

stop

3.A

3.C

3.B

Figure 3.7: Flowchart of an hybrid algorithm.

GA’s initial population (3.A), and the evolution takes place. If a better solution is found, it
replaces the old solution set (3.B). Additionally, new bacteria are inserted into the bacteri-
ologic medium: those that optimize the solution set and were not present in the medium
(3.C). Everything then continues analogously to a BA.

HA possesses the benefits of GA and BA. It is capable of incrementally constructing a
solution and exploring local solutions at the same time. This ensures that the solution
will never be suboptimal and reduces the chances of having a solution set whose length is
larger that the optimal. The main drawback of HA is the large number of iterations it may
use to find a solution, though it may find a solution with smaller value of n.

3.6 Experimental Evaluation

In this section I present the empirical evaluation of the feasibility and efficiency of
MDCA. First, I evaluate the feasibility of MDCA by comparing the three algorithms I pre-
viously presented GA, BA, and HA. My findings show that HA is the best-suited technique
to construct MDCAs with minimal length and satisfying the MDCA properties. Second, I
evaluate the efficiency of MDCA by studying the coverage of reasoning conditions it pro-
vides over three experimental subjects. I compare the MDCA performance against two
well-known sampling techniques: MCA with strength 2 (known as pairwise), and random
sampling of environment instances.

84 Testing Reasoning Engines

3.6.1 Experimental subjects

I evaluate the effectiveness of MDCA over three experimental subjects. These range in
size from large to small, and implementation from Drools to Java. Notice that each of these
subjects uses rule based reasoning as basis for reasoning, however, MDCA and the other
data generation techniques are applicable to any reasoning technology.

The first (I) experimental subject is the Drools implementation of Cordelia’s ACRM sys-
tem. This implementation contains 40 reasoning rules, out of which 21 have conditions
over transitions and tuples of transitions. Notice that some conditions aggregate several
variable values to make decision. The second (II) experimental subject is the Java im-
plementation of Cordelia’s ACRM system. This implementation uses a custom reasoning
engine and contains 96 reasoning rules (expressed as if-then-else Java statements equiva-
lent to about 860 LOC†), out of which 22 have conditions over transitions and tuples of
transitions. Notice that the first and the second subject do not have equivalent reasoning in
every case. Technical limitations led the developers of these systems to make different de-
cision regarding the reasoning process. The complex event-processing feature of Drools are
not available in Java, therefore developers implemented custom solutions. For instance,
for the first subject, developers use the Drools capabilities to state temporal rules, whereas
for the second subject, temporality is represented by a data structure (array) and temporal
rules refer directly to that data structure. Another difference is that in the first subject,
the Drools engine uses a Java base backend, but defines its own rule language, whereas
the second subject is implemented in Java only. The consequence of these differences is
that given a sequence of environmental conditions, the first and second subjects will make
different decisions. Nonetheless, despite that these two implementations have different
behavior, they share the same representation of the environment.

The third (III) experimental subject is an adaptive web server [41], which changes its
internal properties such as cache size according to its load. Its environment is composed
of three variables request density (number of requests), request dispersion (distribution of
request over time), and file diversity (number of different files). Each of these variables can
have three values low, medium, and high. Notice that the server’s reasoning engine uses
rules that quantify the variable using fuzzy logic. It comprises 17 reasoning rules, none of
these with conditions over transitions.

3.6.2 Research questions

In this experimental evaluation, I seek to answer two research questions. These ques-
tions and their answers are intended to provide helpful insight about the construction of
MDCA and their efficiency to cover the different reasoning possibilities.

Q1 Is it possible to construct MDCAs? Which is the best way to construct MDCAs? The
answer to this question will reveal whether it is possible or not to construct an N × k

Testing Reasoning Engines 85

array that satisfies the conditions in definition 7. Furthermore, the best procedure to
construct MDCA will generate arrays as small as possible.

Q2 Are MDCAs efficient at covering reasoning conditions? Are they capable of providing
better coverage compared to other techniques? The answer to this question is essential
to ratify the contribution of MDCA. If MDCA is capable of covering a major portion of
the conditions used by reasoning engines to make decisions, then it will prove being
suitable for assessing the correctness of reasoning engines’ decisions. Furthermore,
if it performs better than other techniques at covering reasoning conditions, then it
will prove its worthiness with respect to those techniques.

3.6.3 Experimental SetUp

The experimental setup corresponds to the data, configuration, and parameters I use
to perform the experiments. This information defines the context upon which the exper-
imental results are valid, and conclusions can be drawn. In the following I introduce the
experimental setup.

Experimental data

Regarding the construction of MDCAs, with each algorithm (GA, BA, and HA) I con-
structed 2 sets of 50 MDCAs (sets of instances). Notice that, there are 2 sets instead of
3 (3 subjects). The rationale for this is that the experimental subjects I and II use the
environment representation.

Regarding the construction of pairwise and random sets of instances, I constructed 2
groups of 50 sets of instances satisfying the MCA properties (cf. Section 3.2). To generate
such data I use a third party tool 1. In order to perform a fair comparison, I randomly
mixed the instances produced by the pairwise to equate the size and variance of the best
MDCA construction algorithm. Furthermore, I also randomly generate 2 groups of 50 sets
of instances (each variable value is selected randomly) that equate in size and variance the
best MDCA construction algorithm.

Experimental parameters

Since most reasoning rules in the case studies reason over at most reasoning variables
with change rate 2 (a minor number have change rate 3), I deliberately fixed the MDCA’s
chaining strength to 2. Furthermore, conditions are declared on at most three different vari-
ables, being more than 80% of the conditions declared over two or less variables. Thus,
again, I deliberately fixed the MDCA and MCA strength to 2. Regarding the meta-heuristic

1. http://www.mcdowella.demon.co.uk/allPairs.html

86 Testing Reasoning Engines

construction of MDCA, I parameterized each construction algorithm as follows:

GA I set the mutation and combination rate to 0.5, the number of maximum gener-
ations to 500, the population to 100 individuals, and the initial population to 30
individuals (randomly generated).

BA I set the mutation rate to 0.5, the number of maximum generations to 500, the
initial bacteria population to 10 (randomly generated), the medium size to 100 bac-
teria, and the bacterium maximum age to 10.

HA I use the same parameterizations described for BA and GA.

Evaluation criteria

To answer the first question, I compare the MDCAs constructed by each algorithm BA,
GA, and HA. This comparison is based on three criteria: (1) number of generations that
the algorithms take to reach the expected fitness value; and (2), the average size and dis-
persion of the constructed MDCA. To answer the second question, I compare the coverage
of MDCAs, MCA, and RAND over the three experimental subjects. For the first and third
experimental subject, I use the coverage of rule’s conditions as a metric to evaluate the ef-
fectiveness of the data to cover the different reasoning paths. For the second experimental
subject, I use the coverage of executable LOC as a metric to evaluate the effectiveness of
the data to execute the different parts of the program (reasoning paths).

It is important to notice that the use of rule conditions coverage is a metric applicable
only to rule based reasoning. With this metric I aim at comparing the likeliness of each
criteria to ultimately find faults. On this purpose, I make the hypothesis that the more rules
decisions can be covered, the better are the chances to find faults, especially those due to
the interactions described in Section 3.1. Additionally, I make the hypothesis that since
MDCA is an exploration technique, which is independent from the reasoning technique, it
may provide similar results with other reasoning techniques.

3.6.4 GA v/s BA v/s Hybrid

Figure 3.8 shows 2 different plots comparing the performance of GA (dashed black
line), BA (dotted red line), and HA (solid blue line). The curves were constructed using the
average value of 50 algorithm executions in each case. Table 3.2, summarizes statistically
relevant data for these results.

The first plot (a), shows a comparison of performances in terms of number of gener-
ations versus fitness. From the plot we observe that the three algorithms are capable of
constructing MDCAs, however, we need to consider that since GA cannot compute the so-
lution length dynamically, we need to fix it manually. This greatly affects the algorithm’s
performance because the more elements an individual contains (solution length), the faster

Testing Reasoning Engines 87

0 50 100 150

50
0

10
00

15
00

Array length

f(X
)

Fitness vs Generations

Fitness vs Solution length

(a)

(b)

0 200 400 600 800

50
0

10
00

15
00

Generation

f(X
)

0 50 100 150

5
0
0

1
0
0
0

1
5
0
0

Array length

f(
X

)

0 200 400 600 800

50
0

10
00

15
00

Generation

f(X
)

Figure 3.8: Two plots comparing the performance of GA, BA, and HA. The length of GA, BA,
and HA are represented respectively by the dashed black line, the dotted red line, the solid blue
line.

88 Testing Reasoning Engines

Min Q1 Median Mean Q3 Max

GA Iterations 250 252 258 260 270 300
Length 145 145 145 145 145 145

BA Iterations 170 175 187 189 230 260
Length 142 151 153 152 157 160

HA Iterations 900 910 920 921 930 950
Length 139 140 141 141 143 145

Table 3.2: Statistical data from iterations and length of GA, BA, and HA.

the algorithm converges to a solution. Nevertheless, when the solution length is fixed to
the minimal, the algorithm takes more generations to converge. From this observation,
we deduce that GA is not the best-fitted algorithm to solve this problem. Also, We notice
that HA takes considerably more generations than BA to converge (HA: 921 versus BA:
189 cf. Table 3.2). This is because BA only adds elements to the solution set, whereas HA
optimizes the solution set each time (trying to get the most of if). Since the generations
of HA consider the generations of the underlying BA and the underlying GA, its overall
generation number is larger. This represents an advantage point for BA.

Since BA and HA can handle variable solution length, this is the next comparison point.
The second plot (b), shows a comparison based on the solution length versus fitness. From
the plot, we observe that HA has small punctual improvements in particular points (solu-
tion lengths), that make the overall HA’s solution length shorter than BA’s solution length
(HA: 141 versus BA: 152 cf. Table 3.2)). This is because of the HA local search (through
a GA, cf. see Section 3.5.4), which allows it to converge towards solutions with shorter
solution length. Since shorter solution sets may imply fewer scenarios to play, we prefer
them. This represents an advantage point for HA.

The decisive point to judge which algorithm is better, is comparing each algorithm’
solution length variation. The box-plot in Figure 3.9 graphically illustrates the variation
of the solution length. A box-plot [218] is a type of graph used to display patterns of
quantitative data. It is composed of a box, which goes from the first quartile (Q1) to the
third quartile (Q3). Within the box, the horizontal line at the center corresponds to the
median of the data set. Two vertical lines, called whiskers, extend from the front and back
of the box. The front whisker goes from Q1 to the smallest (min) non-outlier in the data
set, and the back whisker goes from Q3 to the largest (max) non-outlier.

From the plot, we observe that the solutions produced by HA tend not only to be
shorter, but also to be more stable. BA produces longer solutions with much variation.
This is because the initial solution set and the evolution of bacteria strongly affected the
BA’s final solution set. Contrarily, the initial solution has less influence in the HA’s final
solution set. Since HA locally optimizes the solution set, it is capable of escaping local
optima, and avoid adding more element to the solution set.

Testing Reasoning Engines 89

BA HA

14
0

14
5

15
0

15
5

16
0

Ar
ra

y
le

ng
th

Figure 3.9: Two plots comparing the performance of BA and HA.

Given the empirical evidence, the best MCDA construction algorithm is HA.

3.6.5 Comparing generation sets

We have measured the coverage of each of the three data sets (50 sequences of in-
stances) MDCA, MCA, and RAND over our three experimental subjects. Notice that Sub-
jects I and II are the realizations of the same system but with different formalisms, which
implies a different number of rules.

Figure 3.10 shows three box-plots graphically displaying the coverage results for each
experimental subject. The coverage results serve to compare the performance of the differ-
ent data sets. From the box-plots, we can observe:

(1) MDCA provides a better coverage than MCA and RAND in subjects I and II (average
coverage in subject I: 33 rules, and in subject II: 751 LOC). We explain this by the fact
that these subjects define a major part of their reasoning conditions over reasoning
variables with change rate 2. Since MDCA ensures the coverage of all transitions with
change rate 2 (and their pairs), the only reasoning variables left to cover are those
with change rate 3 or more. The reasoning conditions over reasoning variables with
change rate 3 or more are few, 9 in subject I, and 12 in subject II (equivalent to about
109 LOC). The MDCA covers some of these transitions, but in general they prevent
MDCA to cover all the reasoning conditions. A MDCA set with higher strength and
chaining strength may cover all the reasoning conditions.

(2) MDCA not only provides better coverage, but also provides more stable coverage.
Since MDCA ensures the coverage of all the reasoning variables with change rate 2
(and their pairs), the only variation occurs in the coverage of reasoning conditions

90 Testing Reasoning Engines

Subject I Subject II

Subject III

C
o
v
e
r
e
d

r
e
a
s
o
n
i
n
g

c
o
n
d
i
t
i
o
n
s

MDCA MCA RAND

20
25

30
35

Experimental data

C
ov

er
ed

 re
as

on
in

g
co

nd
iti

on
s

MDCA MCA RAND

15
.0

15
.5

16
.0

16
.5

17
.0

Experimental data

C
ov

er
ed

 re
as

on
in

g
co

nd
iti

on
s

C
o
v
e
r
e
d

r
e
a
s
o
n
i
n
g

c
o
n
d
i
t
i
o
n
s

C
o
v
e
r
e
d

L
i
n
e
s

o
f

C
o
d
e

MDCA MCA RAND

60
0

65
0

70
0

75
0

Experimental data

C
ov

er
ed

 re
as

on
in

g
co

nd
iti

on
s

Figure 3.10: Three plots comparing the coverage of reasoning conditions by MDCA, MCA,
and RAND over the three experimental subjects

Testing Reasoning Engines 91

over reasoning variables with change rate 3 or more. The coverage of these condi-
tions is erratic because MDCA cannot always ensure their coverage.

(3) The MCA provides a poor but more stable coverage than RAND. The reason of this
is that MCA ensures the coverage of inter-variable interactions (it does not specify
any order, and do not care about transitions). Thus, this ensures the coverage of all
the reasoning conditions declared over single variable values (and their pairs). The
variation in the coverage comes from reasoning conditions over reasoning variables
with change rate 2 or more. Ergo, MCA provides a poor coverage in subjects I and II.

(4) RAND provides an overall better coverage than MCA, but with more variation.

(5) The coverage of MDCA and MCA in subject III is 100%. The underlying reason for
this is that the experimental subject contains very few variables, and the reasoning
conditions are declared only over particular variable values. These values are easily
covered by both MCA and MDCA. Regarding RAND, in some cases (out of 50) a vari-
able value is missing, causing the reasoning conditions coverage to vary.

These 5 observations provide enough evidence to answer question 2. MDCA provides at
least a coverage of 82% of the rules in subject I, of 98% of the LOC in subject II, and 100%
of the rules in subject III. This suggests that MDCA ensures a coverage level of reasoning
conditions. We expect that with higher strength and chaining strength, the coverage level
will increase. For example, with a chaining strength 3, MDCA should ensure the coverage
of 100% of the reasoning conditions in subject I. The evidence also suggests that MDCA
also provides better coverage than MCA and RAND. Nevertheless, the evidence provided
by subject III suggest that MCA and MDCA have comparable performance if the reasoning
does not consider history. This seems reasonable, since MDCA is an extension of MCA to
handle the combinatorial explosion produced by history. Furthermore, MCA would cover
the same number of conditions that MDCA with less data.

3.6.6 Threats to validity

There exists no perfect data, or perfectly trustable analysis results, and this study is not
an exception. For this reason we identify the construction, internal and external threats to
validity for this study.

Internal threats lie on the source of the empirical data. I have constructed MDCAs with
the tools we think are the best fitted. Nevertheless, if the MDCA sets are not optimal, they
may contain more data that will increase the coverage rate in the case studies without really
reflecting the MDCA’s aim. I also selected our experimental subject considering that the rule
they contain cover as best as possible the reasoning spectrum. We cannot ensure that the
subjects’ conditions are diverse enough to represent the entire reasoning spectrum. If the
reasoning rules and variables of each experimental subject are more likely to be covered
by MDCA and no other technique, then the good result we obtained will not represent the

92 Testing Reasoning Engines

reality.
Construction threats lie in the way we define our metrics and their measurement. One

threat comes from the generation of MCAs. Since we use a third party algorithm, we cannot
ensure that the solution it produces is always optimal. Non-optimal MCA can affect neg-
atively the reasoning conditions coverage. Furthermore, the shuffle of MCA elements can
bias the results increasing the coverage it provides. I have compared MDCA construction
using several criteria, including the different empirical subjects. I think that the algorithm
is the best for constructing MDCAs, however, I cannot ensure that it will not perform poorly
in presence of a very larger number of environmental variables.

External threats lie on the statistical significance of our study. I evaluated the cover-
age of MDCA over three experimental subjects that I considered proper given the source
and nature of the system. They come from the industrial partner of a European research
project [187]. Nevertheless, it is possible that they only reflect the trends on a very particu-
lar application field. I cannot ensure that these subjects reflect the trends of all application
fields.

3.7 Discussion

Ensuring that reasoning engines make the correct decision is challenging because it in-
volves selecting complex testing data over a very large data space. Mixed level covering ar-
ray, a state of the art black-box testing technique helps engineers to deal with the large size
of the reasoning space. It consists in sampling a limited number of interactions between the
variables that constitute the reasoning space. This ensures that at least, the interactions be-
tween combinations of variables are covered, and that if there exist faults related to these
interactions they will be found. Nonetheless, MCA does not cover all the interactions that
occur in the reasoning space. It focuses only on the interaction between different variables
and ignores the interaction between the values of the same variable. Such interactions are
the consequence of temporality. As the time passes, the values of variables change, and
these changes affect the reasoning process. I proposed multi-dimensional covering arrays
to address this dimension. MDCA extends MCA by including intra-variables interactions
into consideration. Therefore, MDCA handles interactions between variables values and
between values of the same variable.

MDCA and MCA noticeably reduce the number of data needed to test the system. Fur-
thermore, since MDCA covers both intra and inter-variable interactions, it comprises data
sets that are longer than MCA. Empirical evidence reveals that the length of data sets is
well rewarded in terms of conditions coverage. MDCA covers more conditions than MCA.
Still, such coverage can be biased by the length of the data set and be the result of a ran-
dom process. The empirical evidence disproves this hypothesis. The results obtained using
randomly generated data perform poorly in comparison to MDCA, therefore, it is not the
length but the properties it withhold that makes it cover more conditions. An important

Testing Reasoning Engines 93

lesson learned from the empirical evidence, is that MCA performs better in systems that
ignore history. In such cases, MCA provides shorter data sets with the same results that
MCA.

Constructing MDCA is not trivial. I provide algorithms and implementations that are a
proof of the concept and show the feasibility of constructing MDCAs. They leave room for
many optimizations in terms of performance. The optimization problem itself leaves room
for optimization. One possible optimization could be including the length of the array,
however, this will introduce new problems such as defining a new expected value (the
expected value now may vary according to the sequence length) and termination criterion.

Finally, the experimental assessment I conducted is far from being perfect. Like any
other experiment it is exposed to bias introduced by the algorithm implementation, the
experimental subjects, and the evaluation criteria. Despite these threats, I think that it
provides valuable insight information about how MDCA would perform at finding faults
because: (i) the construction algorithms produce data sets that satisfy all the MDCA proper-
ties; (ii) my hypothesis is that the more the conditions covered, the higher the probability of
finding faults; and (ii) the experimental subjects contain fairly complex decision making.

94 Testing Reasoning Engines

95

Chapter 4

Specifying aspect-oriented
adaptation mechanism

Aspect-oriented programming (AOP) enables developers to introduce structural and
behavioral modifications into a system without requiring them to modify the system’s code.
Developers can then introduce, augment, or replace existing behavior and structure by
weaving aspects into the system.

Aspects are the base elements of AOP, they consist of point-cut descriptors, advices, and
inter-types. Point-cuts designate well-defined points in the system code, where advices are
woven. Advices are modules that encapsulate the behavior that is injected into the system,
whereas inter-type are elements and modifications that apply over the system structure.
When woven, aspects (1) inject the advices in the points designated by point-cuts, and (2)
perform the structural modifications described by inter-types.

AOP has good characteristics to make an adaptation mechanism. It can introduce /
remove behavior, modify / rollback structure at compile and run time. Adaptations can be
achieved by weaving or unweaving aspects, which will introduce the structural and behav-
ioral modification that will adapt the system. Then, developers can implement adaptation
concerns such as encryption in Cordelia’s ACRM system using aspects (cf. Section 2.1.3).

Nevertheless, the same mechanisms that make AOP a good adaptation mechanism also
introduce interference, invasiveness, and evolution problems. These problems threat the
validation of aspect-oriented programs, and hamper the adoption of AOP [166]. Conse-
quence of these problems developers need to commit much effort and time finding faults
accidentally / obliviously introduced by aspects. In adaptation, these problems may cause
the system to break down when new aspects are woven into the system.

In this chapter I propose a specification framework based on a characterization of AOP
invasiveness [165]. First, I briefly introduce AOP and AspectJ (the de facto standard for
AOP) to later present a motivating case study that describes AOP’s problems and their im-
pact on validation. Next, I present the ABIS specification framework and the ABIS tooling

96 Specifying aspect-oriented adaptive programs

support to later show how it help developers reducing the validation overhead and increase
AOP’s confidence.

4.1 A brief introduction to AOP and AspectJ

In aspect-oriented programming (AOP), aspects are defined in terms of two units: ad-
vices, and point-cut descriptors (PCD). Advices are units that realize the crosscutting behav-
ior, and point-cuts are pointing elements that designate well-defined points in the program
execution or structure (join-points) where the crosscutting behavior is executed. I illus-
trate these elements through two code fragments belonging to a banking aspect-oriented
application. The first (listing 1) presents the PCD declaration for logging (lines 2-5) and
transaction (lines 7-10) concern, whereas the second (listing 2) presents an advice (lines
3-14) realizing a transaction concern.

1 public aspect BankAspect {
2 pointcut logTrans(int amount):
3 (call(boolean Account.withdraw(int)) ||
4 call(boolean Account.deposit(int))
5) && args(amount);
6
7 pointcut transaction(): execution(boolean Account.∗(int))
8 && cflow(execution(void Bank.operation(..))
9 }

Listing 4.1: Aspect with two pointcuts

In AspectJ, a PCD is defined as a combination of names and terms. Names are used to
match specific places in the base system and typically correspond to a method’s qualified
signature. For instance, the name boolean Account.withdraw(int) in listing 4.1 (line 3)
matches a method named withdraw that returns a type boolean, receives a single argu-
ment of type int, and is declared in the class Account.

Terms are used to complete names and define in which conditions the places matched
by names should be intercepted. AspectJ defines three types of terms: wildcards, logic
operators, and keywords. The combination of names and terms is referred as expression.

Wildcards serve to enlarge the number of matches produced by a name. The AspectJ
PCD language defines two wildcards: “*” and “..”. Logic operators serve to compose two
expressions into a single expression, or to change the logic value of an expression. The As-
pectJ PCD language provides three logic operators, “&&” (conjunction), “||” (disjunction),
and “!” (negation).

Specifying aspect-oriented adaptive programs 97

Keywords define when and in which conditions the places matched by names should
be intercepted. The AspectJ PCD language defines 17 keywords for that purpose. For
instances, the keyword call in the logTrans PCD (lines 3, 4) indicates the interception of
all the calls to the enclosed names, whereas the keyword args (line 5) indicates that the
PCD argument amount should be the argument of those invocations.

Some keywords point to joint-points that can be computed only at runtime. The As-
pectJ PCD language defines 6 keywords for that purpose: cflow, cflowbelow, if, arg,
this, and target. The transaction PCD (lines 7-10) incorporates this kind of keywords.
It contains two expressions: (1) a static expression that intercepts the execution of any
method returning a boolean in the class Account (line 8); (2) a dynamic expression that
constrains the interception of the static expression to the execution occurring inside the
control flow of the execution of the method operation in the class Bank. This is a dynamic
expression since determining whether the execution of a method occurs during the execu-
tion of another can be done only at runtime. I refer to join-points occurring only at runtime
as dynamic join-points and PCDs pointing these points as dynamic-PCDs.

AspectJ extends the Java syntax to allow developers to implement advices as natural
as possible. Advices can be seen as routines that are executed at some point. Typically
AspectJ advices are bounded to a PCD designating the points where they will be executed.
For instance, the advice in listing 2 (lines 3-14) is bounded to the PCD transaction (line
3). AspectJ provides three different kinds of advices before, after, and around indicating
the moment when they are executed. Before and after indicate that the advice instructions
are executed respectively before and after the intercepted method. Around indicates that
the advice can perform computations before, after, or instead the intercepted method (the
advice embodies the call to the intercepted method).

1 public aspect ModifyAccount {
2 public interface GeneralAccount{
3 public void CalculateDebt();
4 };
5
6 declare parents : Account implements GeneralAccount;
7
8 public Double Account.debt = new Double();
9

10 public void Account.calculateDebt(){
11 ...
12 }
13 }

Listing 4.2: Aspect modifying the structure of the base system

98 Specifying aspect-oriented adaptive programs

AspectJ aspect can also introduce structural classes’ attributes, interfaces, and methods,
and modify the class hierarchy of the base system. Listing 4.2, present an aspect that in-
troduces a new interface GeneralAccount (line 2), modifies the class Account by changing
its hierarchy (line 6), and introduces a new method calculateDebt (line 8) and field debt

(line 10) into the class Account.

4.2 Motivating Case Study

In this section, I illustrate AOP’s problems when multiple aspects are introduced into
the existing system (base system + aspects). My goal is to show that aspects offer efficient
mechanisms to implement crosscutting (and adaptive) concerns, but that they can also
introduce complex faults that are difficult to detect and trace back to their source.

To illustrate these issues, I present an example implemented in Java and AspectJ. The
example is a chat application implemented with 5 aspects. I run system-level test cases
on the application to validate the initial version. Then, maintainers evolve the application
adding authentication capabilities. While testing the new version, faults are detected.

I precisely discuss the analysis performed to trace the source of the error back to a
wrong interaction between aspects and the base system. Based on these observations, I
motivate an approach to assist the validation of aspect-oriented programs.

Notice that though the case study is not a self -adaptive system, it reflects the possible
faults that can occur when new aspects are introduced to reconfigure the system. The chat
application comprises different aspects that can be woven / unwoven when needed. These
aspects realize concerns that can be removed from the system if needed. That is, the system
can be adapted by unweaving selected aspects.

4.2.1 A chat application

A chat application is a system that allows users to communicate with each other in
real time. This chat is composed of two parts: a client and a server. The server handles
client, manages the communication between them, and ensures their uniqueness. The
client transmits messages that are dispatched to other clients through the server. The
global behavior of this chat application can be described as follows. Initially, the server
is waiting for clients. The establishment of communications is called association. The
cease of communication is called disassociation. Before associating a client, the server
checks the uniqueness of the client’s nickname. Clients using existing nicknames are not
associated. Once associated, the clients can send messages. Such messages are encrypted
and decrypted by the clients. Each client’s chat session is recorded in a log file. The server
also stores each session into a log file. A graphical user interface (GUI) controls the client
and server behavior.

Specifying aspect-oriented adaptive programs 99

4.2.2 Initial version

Developers have implemented the chat application in Java TM. From the requirements
documents, developers have separated the core concerns form the crosscutting (and adap-
tive) concerns. Figure 4.1 shows the class diagram for the core concerns of the chat appli-
cation.

+transmit(message:Message)
+initialize(server:String,nickname:String)
+attach()
+detach()
+send(message:String)
+abort()

StandardClient

+getId(): int
+getName(): String
+getHost(): String

Client

+attach(client:Client):int
+detach(client:Client)
+send(message:Message)
+initialize(maxusr:int)
+run()
+shutdown()

StandardServer

+getSourceName():String
+getContent():String

Message

ClientUI ServerUI

IServerIMIClientIM

IClientUI
IServerUI

message

m_client

callBack
callBack

1 *

1

1

remote

serverclient

1

1

1

1

1

1

1

1

1

1

Figure 4.1: Chat application class diagram

IClientIM and IServerIM are the remote interfaces for the client and the server. The
StandardClient class realizes the client interface. The methods attach() and detach()

associate and dissociate the client to a server. The method transmit(Message) notifies the
GUI about the arrival of a new message. Finally the method abort() aborts the execution
of the client. The StandardServer class realizes the server interface. As in the client,
the methods attach(Client) and detach(Client) associate and dissociate a client. The
send(Message) method dispatches the messages to other clients associated to the server.
The class Client is a container for the client’s information. The class Message supports the
messaging mechanism between client and server. Client and Server communicate using the
Java RMI distribution mechanism [209]. The client and the server GUI are implemented
with the Standard Widget Toolkit (SWT).

4.2.3 Crosscutting concerns

Developers have identified and implemented with AspectJ the following crosscutting
concerns. Notice that these concerns are independent from each other and can be woven

100 Specifying aspect-oriented adaptive programs

/ unwoven from the chat application at will.

– Message encryption encrypts and decrypts the incoming / outgoing messages. En-
cryption / decryption occurs just before the execution of the methods send and
transmit. It replaces the method arguments with the encrypted / decrypted ver-
sion of the message.

– Message logging logs the incoming / outgoing messages for each user. It executes
before transmitting a message and after receiving a message (before the encryption
and after the decryption).

– Error handling captures the communication exceptions and raises an alert indicating
communication problems. It executes after an exception of type remote is thrown.

– Server logging logs the server activity in a file. It executes before and after all
the methods of the IServerIM interface. It observes the execution of each server’s
method.

– Nickname uniqueness checks the existence of only one nickname in the server. It
executes just before the server’s association methods (attach and detach). In the
case of association, it checks the existence of the client’s nickname on the server. If
the nickname exists, it throws an exception. Otherwise, it adds the name to a list and
executes the association normally. In the case of dissociation, it removes the client’s
nickname from a list.

1 public aspect EncryptionAspect{
2 pointcut encryptMessage(String string):
3 execution(void IClientIM.send(String)) && args(string);
4
5 pointcut reencryptMessage(Message messg):
6 execution(void ∗.retransmit(Message)) && args(messg);
7
8 pointcut decryptMessage(Message messg):
9 execution(void IClientIM.transmit(Message)) && args(messg);

10
11 void around(String arg) : encryptMessage(arg){
12 arg = encrypt(arg);
13 proceed(arg);
14 }
15
16 void around(Message message) : reencryptMessage(message){
17 message.sContents=encrypt(message.sContents);
18 proceed(message);
19 }
20

Specifying aspect-oriented adaptive programs 101

21 void around(Message message) : decryptMessage(message){
22 message.sContents=decrypt(message.sContents);
23 proceed(message);
24 }
25 }

Listing 4.3: "Implementation of the encryption concern"

Listing 4.3 shows the implementation of the Message encryption concern. It is clear
from the code that the three advices of this aspect are changing the argument values of the
intercepted methods (lines 11-14, 16-19, 21-24). The original message is replaced by the
encrypted / decrypted version and then it is re-injected to the original method (proceed
call). This concern can only be implemented by using invasive aspects, otherwise it must
be hard-coded in the base system. It also a typical example of an adaptive concern, which
can be be used to adapt the system. Different network requirements may require or not
encryption. In unprotected networks the encryption aspect will be woven, whereas in se-
cure networks in will be unwoven. Furthermore, there exist different flavors of encryption
that can be used. Each of these flavors (or encryption algorithms) can be encoded into an
aspect.

1 public aspect UniqueNameAspect issingleton() {
2 public pointcut ensureUniqueness(IServerIM serv,Client client):
3 execution(∗ IServerIM.attach(Client)) && target(serv) && args(client);
4
5 public pointcut removeFromList(IServerIM serv,Client client):
6 execution(∗ IServerIM.detach(Client)) && target(serv) && args(client);
7
8 private static ArrayList nameList=new ArrayList();
9

10 int around(IServerIM serv,Client client)
11 throws UsedNameException:ensureUniqueness(serv,client){
12 int retValue=−1;
13 if(!nameList.contains(client.getSName())){
14 nameList.add(client.getSName());
15 retValue=proceed(serv,client);
16 }
17 else{
18 throw new UsedNameException();
19 }
20 return retValue;

102 Specifying aspect-oriented adaptive programs

21 }
22
23 after(IServerIM serv,Client client): removeFromList(serv,client) {
24 nameList.remove(client.getSName());
25 }
26 }

Listing 4.4: Implementation of the unique nickname concern

Listing 4.4 shows the implementation of the Nickname uniqueness concern. This aspect
manages a list of the currently associated clients nicknames (nameList line 8). If the
actual client nickname does not exist in the list (line 13) then it is added to the list (line
14) and the intercepted method is executed. Otherwise, the method is never executed and
an exception is raised. This aspect conditionally replaces the execution of the methods it
intercepts. Analogously to the Message encryption concern, it can only be implemented by
using invasive aspects. This concern also exemplifies an adaptive concern. Particular users
may want their server to be able to accept clients with existing nicknames. In this case, the
nickname uniqueness aspects can be unwoven from the base system.

These examples illustrate how aspects help implementing the crosscutting and adaptive
concerns that modify the flow and / or data in the base system.

4.2.4 Validating the initial version

I test the initial version with 7 system-level test scenarios. Each scenario validates a
different dimension of the system. These dimensions are summarized as follows:

1. The association mechanism between client and server.
2. The association mechanism supports multiple clients.
3. Clients can send/receive messages.
4. The server distributes the messages among clients.
5. *The server detects clients named with an existing nickname.
6. *The server association mechanism removes a used nickname when disassociating a

client.
7. *The error handling mechanism handles the exceptions.

All these test scenarios pass on the initial version composed of the core concern and 5
aspects. Test scenarios marked with “*” were explicitly designed to test the functionalities
introduced by the aspects. The other test scenarios were designed to test general system
functionalities.

Specifying aspect-oriented adaptive programs 103

4.2.5 Evolving the chat application

The initial version of the chat application allows any user to associate with a server.
Here, I add an authentication mechanism to ensure that only registered users are able
to associate with a server. We also want to ensure that the clients of this new version
are compatible with the old version. As a consequence, a server without authentication
must be able to associate an authenticated client. Authenticated servers must refuse the
association of unauthenticated clients. The chosen authentication protocol proceeds as
follows: the client provides the nickname and password data to the server. The server
checks the nickname, password pair internally. If the pair is authentic, then the server will
associate the client, otherwise the client is not associated.

The maintainers have implemented this evolution by adding two classes to the origi-
nal design: AuthenticatedSever that extends StandardServer and overrides the method
attach(Client); AuthenticatedClient that extends StandardClient and overrides the
methods transmit(Message) and receive(Message). Additionally, they have performed
minor changes in the class Client and the client GUI adding support for password in-
put. Since the evolution augments the old behavior, the crosscutting concerns remain
unchanged. Notice that these modifications can also be introduced using aspects. This will
allow to adapt the chat server / client to support authentication concerns. Appendix B,
presents the code for aspects introducing the structural modifications I previously de-
scribed.

Although maintainers were aware of the presence of aspects, they were not able to
predict the potential side effects of aspects. To do so, maintainers must be capable of
performing global reasoning. That is, reason about each part of the system in such a
way that all the interactions are known. Sadly, it is no always possible to globally reason
about the system. As the system grows in size and complexity, global reasoning becomes
more difficult. Therefore, maintainers tend to make the assumption that if the evolved
system does not change its old behavior, aspects will behave as expected. Moreover, the
obliviousness property of AOP [80] claims that maintainers should be unaware of aspects
implementing crosscutting concerns. That is, maintainers do not have to take care about
the aspects.

In self -adaptive systems, where aspects realize adaptive concerns, it is even more dif-
ficult to perform global reasoning and foresee all the interactions between aspects and
aspect with the base system. Self -adaptive systems are constantly mutating and produc-
ing new interactions between aspects. As new aspects are woven / unwoven, unforeseen
interactions occur.

4.2.6 Validating the new version

I use the previous test scenarios for regression testing. To do so, I replace the standard
client/server with the authenticated one. I also add 5 scenarios to validate the authenti-

104 Specifying aspect-oriented adaptive programs

cation mechanism as well as the compatibility between the two versions. The dimensions
addressed by these scenarios are summarized as follows:

8. The authentication mechanism detects invalid nicknames and passwords.
9. The server detects void nicknames or password (or both).

10. The client association mechanism is compatible with the standard server.
11. The authenticated server is incompatible with the standard client.
12. The authenticated client messaging mechanism is able to send messages to standard

clients.

The results of the executing tests 1 to 12 are summarized in table 4.1.

Table 4.1: Test results after evolution. �indicates that a test passes, X indicates that a test
fails.

Test 1 2 3 4 5 6 7 8 9 10 11 12
x x x x x x x � � � � x

4.2.7 Reasoning about the problems

Looking at the results of the test scenario execution it is not easy to see where the prob-
lems are located. However, a rigorous manual analysis will help detecting the problems.
We will deal with the authenticated association issues and later the compatibility issues.

The failure of the two first test cases tells that the client cannot associate with the server
or the server cannot authenticate / associate the clients. The failure of tests 3, 4, 5, 6 and
7 are consequence of the failure of the test case 1 and 2. This is because the preconditions
cannot be fulfilled: there is no connected client. The success of tests 8 and 9 provides no
information about the association mechanism. The success of the first test is fundamental
to obtain more information about tests 3 to 7. This guides our analysis to examine the
association and the authentication mechanism.

After rigorously inspecting the base system we found no errors, however, we need to
take into account that the chat runs with aspects. Before examining the aspects code
searching for errors, we try to run the server without aspects that could interfere with the
association/authentication mechanism.

We remove only the invasive aspect Nickname uniqueness because it is the only one
capable of interfering with the association/authentication mechanism. Moreover, the test
scenarios reporting errors evaluate only the base concerns implemented in the base system
(except for the test case 5, which test a functionality introduced by aspects, and is expected
to fail). Therefore, if the test cases pass without the aspect, then the problems are due to
wrong interactions between the aspect and the base system.

Table 4.2 summarizes the test results after removing the Nickname uniqueness aspect.
Now test cases 1 to 4 pass, however, the test case 5 fails because it depends on the aspect.

Specifying aspect-oriented adaptive programs 105

Table 4.2: Test results after removing the Nickname uniqueness aspect
Test 1 2 3 4 5 6 7 8 9 10 11 12

� � � � x � � � � � � x

Removing the aspect helped to localize the problem to a bad interaction (the Nickname
uniqueness aspect is interfering with the association mechanism). Nevertheless, we still
ignore the specific localization of the failure and its cause.

After rigorously inspecting the aspect code and the places it affects, we finally localize
the specific cause of the problem. The problem occurs because the advice (listing 4.4 lines
10-21) declared on the aspect captures a wrong join point, the execution of the attach

method in the StandardServer class. The point-cut descriptor (listing 4.4 lines 2-3) used
by the advice captures all the executions of the attach method in the server. This, while
the body of the advice realizing the crosscutting concern is designed to be executed just
once at each join point. This means, once from the beginning to the end of the method
execution.

AuthenticatedSever.attach(client)

exist(client.name)

false

add(client.name) StandardServer.attach(client) exist(client.name)

throw userException

true

AuthenticatedSever.attach(client) StandardServer.attach(client)

AuthenticatedSever.attach(client) StandardServer.attach(client)
(a)

(b)

AuthenticatedSever.attach(client)

method call advice execution advice conditionmethod execution
Legend

Figure 4.2: Schematic view of the association flow. (a) association without the Nickname
uniqueness aspect. (b) association with the Nickname uniqueness aspect.

Figure 4.2 depicts schematically the association flow without (a) and with (b) the Nick-
name uniqueness aspect. When woven (b), the aspect captures the first call performing the
authentication (AuthenticationServer.attach(client)). Then, the aspect finds that the
client nickname is not in the registry (exist(client.name)=false) and adds it into the
registry (add(client.name)). The aspect also captures the second call that performs the
association (StandardServer.attach(client)). It is here where the aspect finds that the
name exists in the registry and throws an exception. This problem is hard to detect because
it can be a combination of a failure in the point-cut descriptor and a limited implementa-
tion of the advice (the advice is designed to advise only once the join-point). To solve this

106 Specifying aspect-oriented adaptive programs

problem we could modify the advice implementation or the point-cut descriptor. However,
I think that the advice implementation realizes in a proper manner the crosscutting con-
cern. Therefore, I modify the point-cut description. I also modify the point-cut descriptor
used by the disassociation advice (listing 4.4 line 19-21) to be executed just once after
disassociating a client.

1 public pointcut ensureUniqueness(IServerIM remote,Client client):
2 execution(∗ AuthenticatedServer.attach(Client)) &&
3 target(remote)&&args(client);
4 public pointcut removeFromList(IServerIM serv,Client client):
5 execution(∗ AuthenticatedServer.detach(Client)) &&
6 target(serv) && args(client);

Listing 4.5: Modified point-cut descriptor of theNickname uniqueness aspect

Listing 4.5 presents the code of the modified point-cuts of the Nickname uniqueness as-
pect. The new descriptor targets the AuthenticatedServer class instead of the IServerIM

interface. This ensures that only one call to the attach method will be captured.
Once I have detected and fixed the association problem, I explore the compatibility

problems. The failure of test 12 is due to a compatibility problem when sending / receiv-
ing messages. Following the procedure we used to localize cause of the association issue
we localize the case of the compatibility issue. The problem is localized in the Encryption
aspect and is analogous to the association problem. The advice captures the execution of
the messaging methods twice, therefore, it encrypts / decrypts the messages twice. On the
other hand, the standard client encrypts / decrypts the messages only once. Analogously
to the previous problem, we solved this problem by changing the point-cut descriptor to
match only one execution each time. That is, the new descriptor targets the Authenticat-

edClient class instead of the IClientIM interface.

4.2.8 Discussion

Through this experiment I have shown that despite the features provided by aspects,
they can hamper the software evolution and variability through aspects. The main issue is
that it is very hard to reason about the aspects impact on the final system, and it is very
hard to trace the source of the problems to aspects.

The successive execution of a set of test scenarios and the manual inspection of code
helped us tracing the problems to aspects. Nevertheless, this process is tedious, time con-
suming and error prone. Besides, there is no generic formula to trace this kind of problems.
In the chat application, the removal of aspects helped the developers to localize the prob-
lems. This was possible because the test scenarios we used were testing the base system’s

Specifying aspect-oriented adaptive programs 107

functionalities. Nevertheless, it is not always possible to simply remove the aspects. In the
case of self -adaptive systems, aspects are meant to be woven / unwoven, however, there
may be so many aspects, that trying the combinations of aspects that may be interfering /
interacting may not always be possible.

Nowadays there is a missing element in the AOP support. The tedious process I have
performed tells us that there is a need to abstract from code to reason about the interactions
between aspects and the base system. To tackle this issue, I propose a framework for
specifying (i) the invasiveness patterns that aspects realize, and (ii) the invasiveness patterns
expected on the base system. This means specifying the interaction between aspects and
base system. This framework also checks whether the pattern realized by aspects do not
violate the set of expected patterns declared on the base system. These specifications will
explicitly state the intentions of the aspects with the base program and with other aspect.
This will assist developers to localize and solve problems due to faulty invasive aspects.

4.3 Specifying aspects-base system interaction

The specification of interactions between aspects and base system consists of two parts.
In the first, developers characterize aspects with specific invasiveness patterns (Aspect spec-
ifications). In the second, developers specify the invasiveness patterns that the base system
allows from aspects.

For the first, I propose to characterize the different invasiveness patterns that aspects
can realize [164]. For the second, I propose to specify assertions that allow or forbid
invasiveness patterns to interact with the base system’s elements.

The goal of these specifications is to obtain information about the potential unexpected
interactions that invasive aspects can produce. Such information will help developers to
reason about the harmfulness of aspects. Therefore, it assists developers to track potential
faults (introduced by invasive aspects).

4.3.1 Aspect specification

In [164] I present a classification of invasive aspects. Such classification is the result
of an analysis of the invasive mechanisms that AspectJ [227] provides. It allows me to
identify specific invasiveness patterns and therefore abstract from code. Such abstraction
helps developers to reason about the interaction of aspects and the base system. I use this
classification to characterize aspects with invasiveness patterns.

AspectJ [227] is the most prominent realization of invasive aspects. It realizes the
crosscutting behavior on advices and designating the places where this behavior must be
woven with point-cut expressions. Point-cuts are regular expressions that match well-
defined points in the structure (static) and execution (dynamic) of a JavaTMprogram. In
AspectJ, aspects are composed of advices, point-cuts, and inter-type declarations. Advices

108 Specifying aspect-oriented adaptive programs

are used to modify the program flow and write or read fields. Advices can be declared
inside a privileged aspect, which means that they are enabled to ignore the object-oriented
access policy. Inter-type declarations are used to introduce methods and fields into a target
class. Inter-type parent declarations are used to modify the class hierarchy.

Developers can modify the program structure at the aspects level (using an aspect),
whereas behavior is modified at the advice level (through an advice). In the following, I
list the classification elements with a brief description. Aspects invasiveness patterns are
marked with �, and advice invasiveness patterns are marked with ♦.

♦ Augmentation: After crosscutting, the body of the intercepted method is always exe-
cuted. The advice augments the behavior of the method it crosscuts with new behav-
ior that does not interfere with the original behavior. Examples of this kind of advices
are those realizing logging, monitoring, traceability, etc.

♦ Replacement: After crosscutting, the body of the intercepted method is never executed.
The advice completely replaces the behavior of the method it crosscuts with new
behavior. This kind of advices eliminate a part of the base system.

♦ Conditional replacement: After crosscutting, the body of the intercepted method is not
always executed. The advice conditionally invokes the body of the method and po-
tentially replaces its behavior with new behavior. Examples of this kind of advices
are advices realizing transaction, access control, etc.

♦ Multiple: After crosscutting, the body of the intercepted method could be executed more
than once. The advice invokes two or more time the body of the method it crosscuts
generating potentially new behavior.

♦ Crossing: After crosscutting, the advice invokes the body of a method (or several meth-
ods) that it does not intercepts. The advice have a dependency to the class owning
the invoked method(s).

♦ Write: After crosscutting, the advice writes an object field. This access can break the
protection declared for the field and can modify the behavior of the underlying com-
putation.

♦ Read: After crosscutting, the advice reads an object field. This access can break the
protection declared for the field and can potentially expose sensitive data.

♦ Argument passing: After crosscutting, the advice modifies the argument values of the
method it crosscuts and then invokes the body of the method. The body of the
method always executes at least once.

� Hierarchy: The aspect modifies the declared class hierarchy. For example, the aspect
adds a new parent interface to an existing one.

� Field addition: The aspect adds new fields to an existing class declaration. These fields
depending on their protection can be acceded by referencing an object instance of
the affected class.

� Operation addition: The aspect adds new methods to an exiting class declaration. These
methods depending on their protection can be acceded by referencing an object in-

Specifying aspect-oriented adaptive programs 109

stance of the affected class.

All the advices of the Encryption aspect (Listing 4.3) are classified Argument passing
and two of them Read and Write. That is because they modify the argument values of the
methods they intercept and two of them read and write the value of the field sContents

(lines 18,22). The advices of the Nickname uniqueness aspect (Listing 4.4) are classified
Conditional Replacement (lines 10-21) and Augmentation (lines 23-25). The first condition-
ally replaces the execution of the intercepted methods and the second is orthogonal to the
intercepted methods.

It is worth mentioning that the patterns Augmentation, Replacement, Conditional re-
placement and Multiple are exclusive. An advice can be classified with only one of them.

4.3.2 Core specification

Developers may specify the base system (core) by asserting the invasiveness patterns
allowed or forbidden to interact with it. Such specification comes from the base system
designers and declares an expected interaction.

Aspects crosscut the base system at the level of classes (modifying the class structure),
methods (modifying the declared behavior) and fields (accessing the data contained in
object fields). Therefore, specifications are attached to each one of these elements. By
default (implicit specification) only the patterns Augmentation, Crossing, Read and Field
addition are allowed to advise the base system. This is because a priori these classes do not
alter the program flow, data or structure; hence, they are less harmful than the others.

...
+attach(client:Client):int
....

...
- clients:Set(Client)
...

StandardServer

c

a

b

Figure 4.3: base system specification covering

Specification for classes: Specify the invasiveness patterns allowed at two levels. The
first is related to the class structure modifications such as the addition of a field. The
second is related with methods and fields declared in the class. A class is specified with an
allowed invasiveness patterns that applies to its fields and methods. This specification can
allow or forbid any invasiveness pattern forbidden or allowed by default. It corresponds to
(a) in figure 4.3 covering all the class definition.

Specification for fields: Specify the invasiveness patterns that a field allows in terms
of how advices access it. This specification can allow Write and forbid Read. It corresponds
to (b) in figure 4.3 covering only a field definition.

110 Specifying aspect-oriented adaptive programs

Specification for methods: Specify the invasiveness patterns allowed on a specific
method. This specification can allow Replacement, Conditional replacement, Multiple, Write,
Argument passing and forbid Augmentation, Crossing, Read. It corresponds to (c) in fig-
ure 4.3 covering only a method definition.

m1()

B

A

Advice Y

advise

C1

(a)

allow Replacement,

Conditional Replacement

Conditional Replacement

m1()

B
C2

A

Advice Y

advise

C1

(b)

allow Replacement,

Conditional Replacement

forbid

Conditional Replacement

Conditional Replacement

m1()

B
C2

A

Advice Y

advise

C1

(c)

allow Replacement,

Conditional Replacement

allow Multiple

Conditional Replacement

Figure 4.4: Example of specification reuse

A class specification can be reused in the case of the inheritance when top-level specifi-
cations are inherited by leaf classes. Let the class B extends class A. If C1 is the specification
of A, and B is not explicitly specified, then C is the specification of B. Furthermore, if C1 al-
lows a set of patterns S, then a new specification of B can only forbid a pattern in S but not
allow other patterns. Figure 4.4 depicts an example of specification reuse. In the figure, a
class B with a method m1() extends a class A. The specification C1 of A allows the patterns
Replacement and Conditional Replacement to advise the class and its methods, fields. The
advice Y realizes the invasive pattern Conditional Replacement and advises the m1(). In (a),
B reuses the specification of A, and therefore, the advise Y is allowed advise m1(). In (b),
B adds its own specification forbidding the pattern Conditional Replacement, and since the
specification is valid, the advise Y is forbidden to advise m1(). Finally, in (c), B adds its own
specification allowing the pattern Multiple, however, the specification is invalid because B

cannot allow patterns forbidden in A.
In the case of conflicts between the specifications of fields, methods and classes I pro-

pose the following mechanism: specifications of fields are always used if they exist. If a
method is specified (explicitly), its specifications are used instead of the global ones. Fig-
ure 4.5, depicts an example of the conflict resolution. In the figure, a class A with a field f1

and a class D with a method m2(). The specifications C1 of A and C2 of D allow respectively
the patterns Write and Multiple. The advice Y realizes the invasive pattern Replacement

Specifying aspect-oriented adaptive programs 111

(a)

f1

A

m2()

D

Advice Y

write

advise

C1

C2

Replacement

Write
allow Multiple

allow Write

f1

A

m2()

D

Advice Y

write

advise

C1

C2

Cm

Cf

Replacement

Write
allow Multiple

allow Write

allow

Replacement

forbid Write

(b)

allow

Replacement

forbid Write

Figure 4.5: Example of conflict resolution

and Write, advises the methodm2() and writes the field f1. In (a), the specification C1 is
applied on f1, and therefore Y is allowed to write it. The specification C2 is applied on
m2(), and therefore, Y is forbidden to advise it . In (b), f1 and m2() add their own spec-
ification forbidding the pattern Write and allowing the pattern Replacement respectively.
These specification override C1 and C2, therefore, Y is allowed to write f1 but is forbidden
to advise m2().

Core specification formal interpretation

To define precisely how we interpret the base specification defined by a programmer on
a base program, we use Alloy [115]. In this specification, we define the essential concepts
of our base program: (Class, Operation, Property) that inherit from SpecElement (see
Listing 4.6). A Class can have some properties, some operations and some super-classes.
A SpecElement has some specifications that define the allowed and the forbidden types of
advice declared by the programmer (forbiddenAdviceType, allowedAdviceType) on this
base element and some specifications that define the allowed and the forbidden advice type
really applied on this base element (allForbiddenAdviceType, allAllowedAdviceType).
The alloy specification defines precisely how we compute the allowed and forbidden types
of advice that can be applied on a base element depending of the programmer specification.
The list of available types of advice is based on the classification presented in the previous
sub-section. The formal interpretation of the specification propagation is defined by a set of
alloy facts. Six assertions check that the propagation of specification keeps the consistency
of the base program specification. The whole specification is provided in appendix C.

112 Specifying aspect-oriented adaptive programs

1 abstract sig SpecElement extends NameElement {
2 forbiddenAdviceType,allowedAdviceType : set AdviceType,
3 allForbiddenAdviceType,allAllowedAdviceType : set AdviceType,
4 }
5
6 sig Class extends SpecElement{
7 superclass : set Class,
8 properties : set Property,
9 operations : set Operation

10 }
11
12 sig Property,Operation extends SpecElement{}
13
14 abstract sig AdviceType {}
15
16 one sig Augmentation, Replacement,
17 ConditionalReplacement, Multiple,
18 Crossing,Write, Read,ArgumentPassing,
19 Hierarchy, FieldAddition,OperationAddition
20 extends AdviceType {}
21
22 fun getAllAdviceType() : set AdviceType{
23 Augmentation + Replacement + ConditionalReplacement
24 + Multiple + Crossing + Write + Read +
25 ArgumentPassing + Hierarchy + FieldAddition + OperationAddition
26 }

Listing 4.6: Core specification formal interpretation using Alloy

4.3.3 Specification matching

In order to detect when aspects or advices violate the core specifications it is necessary
to check whether they match (agree) each other. An aspect or an advice violates a core
specification when it realizes invasiveness patterns that the core specification forbid. This
gives developers information about the invasive aspects harmfulness and assists them to
reason about the impact of aspects on the composed system.

Violations of specifications are detected in the following way: st the aspect level, for
each aspect we obtain the classes it targets adding fields, methods or modifying the hier-
archy. Then, we compare the specification of forbidden patterns on each class with the

Specifying aspect-oriented adaptive programs 113

specification of the aspect. At the advice level, for each advice we obtain the methods it
advises. Then, we compare the specification of forbidden patterns on each method with
the specification of the advice. For the advices accessing fields, the matching is analogous
to the previous.

Matching formal interpretation

The formal interpretation of the comparison between the core and the aspect specifica-
tion is also specified using alloy. It defines the concept of Aspect, the concept of Advice
that has a type and a set of Joinpoints. A fact defines that for all advice’s joint-points,
the type of advice is allowed by the base specification and not forbidden (see Listing 4.7).

1 sig Aspect extends NameElement{
2 advices : set Advice
3 }
4
5 sig Advice extends NameElement{
6 joinpointop : set SpecElement,
7 type : one AdviceType
8 }
9

10 fact adviceRight{
11 all a : Advice | all c : SpecElement |
12 a.type not in c.allForbiddenAdviceType and a.type in c.allAllowedAdviceType
13 }
14
15 assert AspectCanNotBe{
16 all a : Aspect | all c : SpecElement | all adv : Advice |
17 adv in a.advices
18 and #(c.allAllowedAdviceType)
19 − #(c.allAllowedAdviceType− adv.type) = 1
20 }
21
22 check AspectCanNotBe for 20

Listing 4.7: Aspect/Base formal interpretation using Alloy

114 Specifying aspect-oriented adaptive programs

4.3.4 Obliviousness

The obliviousness property of AOSD requires aspects to be transparent to the base
code [80]. This means that the base code must be ignorant about aspects advising it.
The placement of specifications between the aspect and the base system partially breaks
the obliviousness property. Specifications make the base code aware about the existence
of aspects that can potentially advise it. The obliviousness property can deteriorate a
good design, and as exposed by Rashid and Moreira [192], abstraction, modularity, and
composability are more fundamental properties.

Developers following the obliviousness property may ignore the existence of aspects
or only take into account them when they know that they are modifying the points they
attack. This may lead to an uncoordinated evolution of the aspect and the base system.
Therefore, as the base system evolves and developers are oblivious, aspects can introduce
side effects as we shown in section 4.2.7.

4.4 A specification framework for interactions

I have implemented a tool for matching specification as well a language to express the
base system specifications called ABIS (Aspect-Base Interaction Specification) 1. ABIS is
built on top of the AJDT eclipse plug-in and is completely integrated with the eclipse IDE.
After a short presentation of the global structure of ABIS I detail how each aspect and
advice is automatically classified. Then, I will describe how to specify the base system with
the expected invasiveness patterns.

Figure 4.6 presents the ABIS’ organization. I have extended the AspectJ AST Visitor

(1) in order to create a simplified (SAST) version of the Abstract Syntax Tree (AST). ABIS
obtains information about the structure of the program (aspects and base system) from
AJDT and builds a model of the program structure (2). This model contains the relations
between aspects and the base system (advised and introduced element relations). An
automatic classification process inspects the SAST and classifies each aspect and advice
according to its invasiveness pattern (3). Then the model and the classified advices are
checked following the previously presented matching process (4). If specification violations
are found, then they are reported to the eclipse GUI (5).

4.4.1 Automatic classification of aspects

ABIS is able to automatically identify the invasiveness patterns I presented in sec-
tion 4.3.1. It automatically inspects aspects and advices structure and classifies them ac-
cording to their de-facto properties.

1. Publicly available at http://contract4aj.gforge.inria.fr

Specifying aspect-oriented adaptive programs 115

AJDT

Base code

Model

Factory

Aspect

Model

Factory

Spec

Matcher

eclipse GUI

process

execution

/result

source code

AST Visitor

Analyzer/

classification

process

SAST

java source with

specifications
aspectJ source

Model

2

1

4
3

5

Legend

Figure 4.6: ABIS structure diagram

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

compare

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

advice

argument arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
argument arg

compare

(a) (b) (c)

(d) (e) (f)

(g)

classification: Argument Passing

Figure 4.7: SAST and classification process of Encryption aspect, Listing 4.3, lines 9-12

116 Specifying aspect-oriented adaptive programs

Figure 4.7 (a), shows the SAST of the first advice of the Encryption aspect (Listing 4.3,
lines 11-14). The root node of the SAST corresponds to the advice declaration. From the
root node, we find the parameter declaration and the advice body node. The children of the
body node are the statements declared on the advice. The node assignment corresponds
to the assignment in line 12 of Listing 4.3. The node proceed call represents the call
to the proceed(arg) method (line 13 of Listing 4.3) (it executes the intercepted method)
and its children are the arguments it receives.

The classification algorithm applied to find the argument passing pattern in the Encryp-
tion aspect is the following (Figure 4.7 (b), (c), (d), (e), (f), (g)):

1. Initially, select all the advice argument nodes (Figure 4.7 (b)).
2. Traverse the SAST selecting all the nodes representing a call to the proceed method

(proceed call node, Figure 4.7 (c)). Then, for each proceed call node:

(a) Select all the proceed argument nodes (Figure 4.7 (d)).

(b) If the selected argument nodes have different names than the advice argument
nodes, then classify the advice as Parameter passing and stop this classification
process. Otherwise continue (Figure 4.7 (e)).

(c) Select all the assignment nodes on top of the current proceed call node (Fig-
ure 4.7 (f)). Then, for each assignment node:

i. If the left hand side node (lhs) of an assignment has the same name as than
one of the advice argument nodes, then classify the advice as Parameter
passing. Stop this classification process (Figure 4.7 (g)).

This algorithm represents the set of rules used to identify the Parameter passing inva-
siveness pattern. In general, ABIS identifies invasiveness patterns by checking a set of rules
to the advice SAST.

foreach root.childs as node do

 select into argument node.type="argument" end select

 select into proceed node.type="proceed" then

 foreach proceed as proc do

 if NOT argument.contains (proc.childs) then

 classification:=classification + "argument passing"

 end if

 end foreach

 end select

...

SAST Classification rules

Match

Figure 4.8: Automatic advice classification

Figure 4.8 illustrates the automatic classification process on advices. This process pro-
ceeds as follows: once obtained the advices SASTs a set of identification rules is applied

Specifying aspect-oriented adaptive programs 117

to them. The results of applying the rules are the invasiveness patterns realized by the
inspected SAST. For instance, the steps presented in figure 4.7 (a)-(g) are the application
of successive rules to detect the invasiveness patterns Parameter passing. Other rules can
for example, check whether the left hand side of an assignment node is a reference to an
object field, and then detected the invasiveness pattern Write.

Aspects invasive patterns are detected according to the aspect structural declarations.
For example, if an aspect declares Inter-Type fields, then the detected invasive pattern is
Field Addition.

4.4.2 Specifications in the base system

Base system specifications are expressed as meta-information over the code structure.
Specifications take the form of Java 5 annotations [24]. The parameterized annotation
@Spec([allow=.. | forbid=..]) specifies the expected invasiveness pattern in the base
system. It can be attached to classes, fields, and methods, and the possible values for its
parameters vary as described in section 4.3.2.

The parameters allow and forbid are exclusive, i.e. only one can be used in each spec-
ification. The parameter allow indicates the invasiveness patterns allowed to interact with
the base system. The default policy is to allow the non-invasiveness patterns Augmentation,
Crossing and Read. Analogously the parameter forbid indicates the invasiveness patterns
forbidden to interact with the base system.

1 @Spec(allow={"ConditionalReplacement"})
2 public synchronized int attach(Client client) throws RemoteException {
3 ...
4 }

Listing 4.8: attach method specified with an annotation

Listing 4.8 shows the attach method of the standard server specified with an anno-
tation (line 2). This method allows advices realizing the following patterns to advise it:
Augmentation, Crossing, Conditional replacement and Read. All the other patterns are for-
bidden.

4.4.3 Displaying violations

ABIS detects the aspects or advices violating the base system specification using the
matching process presented in section 4.3.3. For each invasive pattern violating the core
specification, ABIS raises a warning. Such warnings are displayed by using the Eclipse TMplatform
GUI. Figure 4.9, shows the warning messages displayed by ABIS when violations are de-

118 Specifying aspect-oriented adaptive programs

tected. The warning message contains references to the violator (aspect or advice) and to
the element (class, field or method) to which is attached the violated specification.

Figure 4.9: Warning raised by ABIS

These warnings enable developers to know the precise aspects that violate their spec-
ifications, and the precise base system’s elements whose specifications are violated. The
classification and matching process are executed at compile time, therefore, warning are
displayed right after the code is compiled.

4.4.4 Contribution of the ABIS framework

ABIS statically computes and gives information, at compile-time about aspects violating
base system’s elements specifications. This information is useful and valuable:

1. Feedback for developers in the process of writing advices a specifying the base system.
2. For verifying an aspect-oriented program when aspects and the base system are de-

veloped separately.
3. For verifying an aspect-oriented program when aspects or the base system evolve.

The compile-time feature of the tool is also a drawback. The current implementation is
unable to detect and check dynamic join points (for example using the if keyword in
AspectJ).

Specifying aspect-oriented adaptive programs 119

4.4.5 Writing specifications in the base system

Developers can specify the base system by using their preferred method. Nevertheless,
at the beginning they may find this task difficult. In order to alleviate the charge of writing
the specification, I propose the following reference process:

1. Review the places in the base system where ABIS raises warnings.

2. For each warning:

(a) If the aspect or advice violating the specs is meant to advise the program, then
allow it. To do so, add an @Spect annotation allowing the violating pattern.
If an @Spect annotation already exists, then add the pattern to the annotation
arguments.

(b) Otherwise, review the aspect or advice code.

3. If a class contains several occurrences of an (allowed) invasiveness pattern, then
allow the pattern at class level. To do so add an @Spect annotation allowing the
pattern. Forbid the allowed pattern in all the places inside the class where it was
forbidden.

4. If required, close the classes, fields or methods to the (by default) allowed invasive-
ness pattern.

5. Repeat this process each time the base system or the aspects evolve.

How to determine whether an advice must be allowed or forbidden is left to the devel-
oper’s criterion.

4.5 Experiments

In this section I present the experiment I conduct in order to show the usefulness of the
specification framework proposed here. My aim with this experiment is to emphasize the
benefits in terms of confidence increment and reduction of the time needed to validate an
aspect-oriented program.

The experiment consists in revisiting the case study presented in section 4.2 by speci-
fying the interaction between aspects and base system. Then, I use these specifications to
spot and solve the problems that arise after the base system evolution.

4.5.1 Revisiting the initial version

I have specified the initial version of the chat application by following the process
presented in section 4.4.5. The annotations I have added allow the invasiveness patterns
that interact safely with the base system. Therefore, only the advices realizing the specified
patterns can advise the base system.

120 Specifying aspect-oriented adaptive programs

1 public class StandardClientImpl implements IClientIM{
2
3 @Spec(allow={"ArgumentPassing"})
4 public synchronized void transmit(Message message){
5 ...
6 }
7
8 @Spec(allow={"ArgumentPassing"})
9 public void send(String sContents){

10 ...
11 }
12
13 @Spec(allow={"ArgumentPassing"})
14 private void retransmit(Message message){
15 ...
16 }
17 ...
18 }

Listing 4.9: StandarClient with annotations

Listing 4.8 and 4.9 present the fragment of the specified methods. The methods send,
transmit and retransmit were specified to allow the invasiveness pattern Argument pass-
ing. Aspect and advices were automatically specified by ABIS. Thanks to these specifica-
tions, ABIS reports that no aspect is violating the base system specifications. Furthermore,
the addition of annotations is transparent for the tests we execute; hence, the test results
are not affected.

4.5.2 Evolution, problems detection, and problem solving

After specifying the initial version of the chat application, it is evolved as explained
in section 4.2.5. As a result of this evolution, ABIS reports that some aspects are violat-
ing the base system specifications. The reports (4.9) indicate that the aspects Encryp-

tionAspect and UniqueName are violating the specifications on AuthenticatedClient

(attach method) and AuthenticatedServer (send and transmit methods) respectively.
This means that potentially unexpected behavior can emerge from the weaving of these
invasive aspects advising these new join points.

Using this information we trace unexpected interactions to the violator advices (prob-
lems presented in section 4.2.7). Knowing the violating pattern helps us reasoning about
the causes of the unexpected interaction, hence, reasoning about the source of the prob-

Specifying aspect-oriented adaptive programs 121

lem. For example, the violating pattern Conditional Replacement tells us that something is
wrong because it is possible that a method, which must always execute, sometimes will not
be executed.

The further correction of the problems is a developer decision, however, the violated
specification may help her finding the solution. In this case, we have applied the same
procedure used in section 4.2.7, i.e. change the point-cut descriptors. Once applied the
corrections, ABIS reports that no specification is violated and aspects are valid in relation
with the base system specifications. Test case where once again executed to verify that the
newly modified version was working correct, all test passed.

4.5.3 Benefits for validation and validation effort

Table 4.3: Comparison of the test execution, test time, specifications, and aspect weaving
between the specified and non specified chat correction process.

Not Specified Specified
Tests executed 55 19
Times tested 5 2
Annotations added 0 4
Un-weaved aspects 2 0

Adding interaction specifications reduces the effort and time required to locate faulty
aspects because there is no need to successively execute a set of tests. Table 4.3 presents
a comparison of different factors involved in the process of correcting the problems due to
evolution. The column Not Specified shows the values for the correction process through
manual inspection and testing of the code. The column Specified shows the values when
correcting the problem using the specifications as a guide. Tests executed corresponds to the
total amount of test executed from the initial version to the evolved (corrected) version.
Times tested corresponds the total amount of times that tests were executed to correcting
the problem (all test passes). The difference between the specified and non-specified pro-
cess is explained by the fact that using specification there is no need to successively execute
the tests. Violations on specifications are resolved statically providing information about
interaction problems without need to execute. Nevertheless, it is still necessary to execute
some tests to validate the initial and the evolved (corrected) version. Tests executed and
Times tested indicate that using specifications reduces the effort involved in testing and
tracing an interaction problem. Annotations added corresponds to the amount of specifi-
cations added to the base system. In the non-specified version there are no specifications,
and therefore, no cost associated with specifying the program. The cost involved in adding
specifications corresponds to the join points where the invasive aspects or advices advise
the base system. We think that the cost of adding specification elements in the program is
well rewarded by saving the execution of 36 tests. Finally, Un-weaved aspects corresponds

122 Specifying aspect-oriented adaptive programs

to the amount of aspects that were removed from the application through the correction
process. On one hand, the non specified process required to remove 2 aspects to determine
whether they were faulty. On the other, no aspect was removed in the specified process
because the specifications assisted developers to identify faulty interactions and their pos-
sible reasons. The unspecified process adds an additional overhead to the developer that is
removing suspect aspects and re-executing the tests. We think that all these reasons justify
the effort and time involved in specifying (annotating) the base system.

4.6 Discussion

AOP’s problems can hamper software evolution, introduce faulty interactions, and neg-
atively impact the validation of aspect-oriented programs. Through the evolution of an
aspect-oriented chat application, I have shown that tracing problem to unexpected inter-
actions is a long and tedious process. Such a process involves rigorous manual inspection
of code and the execution of several test scenarios.

In this thesis I tackle AOP’s problems by proposing a specification framework for aspect-
oriented programs. This framework enables developers to: (1) control the effect of aspects
in evolution, (2) control the invasiveness of aspects over the base system, (3) establish
an interface that protects critical portions of the base system, (4) reduce the overhead of
validating the overall system when new aspects or modifications are introduced, and finally
(5) being aware about the existence of aspects and interactions.

Specifying interactions give developers feedback about the harmfulness of aspects. This
information assists them in the process of creating an aspect-oriented program, and ensures
that aspects perform as expected. The violation of specifications indicates that the violator
(aspect or advice) is not meant to advise the code. Therefore, the violator and the affected
part of the base system should be reviewed. In this way, developers can be conscious about
the aspects they write by enforcing its reasoning of the interactions between aspects and
base system.

By specifying and evolving the chat application I have shown that specifications reduce
the time and effort needed to locate faults introduced by unexpected interactions. Speci-
fications improve the evolvability, maintainability, and reduce the time and effort needed
to validate aspect-oriented program. Since developers can use specifications to ensure that
critical parts of the base system will not be modified unexpectedly by future addition of
aspects, specifications increase the confidence that developers have on aspects.

For self -adaptive systems, these specifications bring multiple benefits. Self -adaptation
is a general case for evolution, in which the system evolves in order to keep its synchro-
nization with the environment. Every new aspect woven into the system introduces new
interactions. Since foreseeing every possible interaction is not always possible (mainly due
to the large number of possible weavings, for example the chat application, a small aspect-
oriented program, produces 5! = 120 possible aspect weaving), specifications fit developers

Specifying aspect-oriented adaptive programs 123

with the capacity to specify locally the intended interactions (with respect to invasiveness)
and be notified when something goes wrong. Furthermore, since it is unpractical to ex-
ecute test in every possible system configuration because of the large number of possible
configurations, developers can use specifications to determine whether it is necessary to
re-test the system when new aspects are introduced. If invasive aspects (potentially harm-
ful) are introduced, then it may be advisable to test the system and check whether aspects
may break it. If developers detect faults, they can use the specifications to locate the faults
without re-executing every single test hopping to find the fault’s culprit.

Nevertheless, this specification framework and the experiment I conducted are far from
being complete. Using this specification framework does not ensure that invasive aspects
will perform harmless. It rather ensures that whenever an invasive aspect advises a non-
authorized part of the base code, developers will be aware of it. Regarding non-invasive
aspects, this specifications framework cannot guarantee that they will not introduce un-
desired side effect. Yet, since they are non-invasive, I make the hypothesis that if they
introduce side effects they will not disturb the underlying core computations performed by
the base system.

The experiment I performed was carried out with only one subject, which can be non-
representative of existing AspectJ programs. Nonetheless, I believe the techniques used to
implement the chat application, and the concerns implemented represent the concerns that
are typically encapsulated using aspects. The problems and evolution introduced by the
aspects can be perceived as artificial. I think they are not. Developers must write complex
PCDs in order to capture the desired join-points. The language proposed by AspectJ is very
powerful and complex, and it is easy to write wrong PCDs.

Finally, this specification framework applies to adaptive and non-adaptive software de-
veloped with aspects. The concepts and examples I presented in this chapter are in the
AspectJ language, however, I believe that they may apply to other AspectJ like languages
such as CaesarJ [8].

In this thesis I make the claim that AOP’s problems hamper its adoption as an adapta-
tion mechanism. They also hamper AOP’s adoption in general. In a recent study [166] I
have shown that AOP’s invasive features and PCD constructs are scarcely used. Most open-
source projects including AOP use similar kind of aspects, which are very precise and not
very crosscutting. This gives us a measure of the low adoption of AOP in the open-source
developers.

124 Specifying aspect-oriented adaptive programs

125

Chapter 5

Conclusion and Perspectives

In this chapter, I draw a series of conclusions from the problems and the solutions
introduced in this thesis. I also present the perspectives for future research in validation
and verifications of self -adaptive systems.

5.1 Summary and Conclusion

Creating, maintaining, and validating self -adaptive systems is complex and challenging.
In this thesis, I have addressed two of the challenges to validate these complex systems.

In the first part of this thesis I have presented the state of the art of self -adaptive
systems. I have presented each of the bricks that constitute a self-adaptive system, the
techniques and methodologies to construct these bricks, and the current techniques to
validate and verify them. I have also pointed out the limitations of existing techniques to
validate and verify self -adaptive systems in order to motivate my research and to position
this thesis relative to the state of the art. In this thesis I focus on the validation of two
bricks of self -adaptive systems: (i) reasoning engines, the decision makers and drivers of
the system self -adaptation, and (ii) aspect-oriented programming (AOP) based adaptation
mechanism, a promising technology to realize adaptation mechanisms.

In the second part of this thesis, I have addressed the validation of reasoning engines.
First, I have shown that testing whether reasoning engines make the right decision over
all the reasoning space is typically unfeasible due to its large size. The reasoning space
is characterized by the interactions among reasoning variables. These interactions occur
among the values of different reasoning variables (inter-variable interactions, which reflect
the different environmental conditions), and between the different values of each reason-
ing variable (intra-variable interactions, which reflect the environmental variations over
time). Next, I have demonstrated that current state of the art technique for sampling large
spaces – MCA – can only address one kind of interactions. Nevertheless, to characterize
the reasoning space, both inter and intra variable interactions must be covered. Follow-

126 Conclusion and Perspectives

ing, I have introduced the first contribution of this thesis, a technique – multi-dimensional
covering arrays (MDCA) – to sample both inter and intra variable interactions at the same
time. MDCA defines a set of properties that when satisfied ensure the coverage of inter and
intra variable interactions. In order to illustrate the feasibility of MDCA, I have proposed
three functional optimization algorithms to construct arrays satisfying the MDCA proper-
ties. Finally, I have conducted an empirical study to evaluate the effectiveness of MDCA
to cover decisions. In this study I have compared three sampling techniques, MDCA, MCA
and random generation. The empirical evidence shows that MDCA effectively covers inter
and intra variable interactions, and that a good coverage of such interactions implies good
coverage of the reasoning engine’s decisions.

In the third part of this thesis, I have addressed AOP’s invasiveness, evolution, and in-
teraction problems. AOP has good characteristics to make an adaptation mechanism. It
enables developers to augment and modify system’s structure and behavior. With AOP, the
system’s adaptations are encoded into aspects that should modify or reconfigure the system
according to the reasoning engine decisions. Nevertheless, AOP has major problems that
hamper its adoption as an adaptation mechanism and negatively impacts its validation.
Through the evolution of an aspect-oriented chat application I have shown that tracing
problems to unexpected aspect interactions is a long and tedious process. Such a process
involves rigorous manual inspection of code and the execution of several test scenarios.
These evolution problems are due to uncontrolled interactions, invasiveness, oblivious-
ness, and unsupported evolution. In order to address these problems, I introduced the
second contribution of this these, a specification framework for interaction between as-
pects and the base system (ABIS). ABIS automatically specifies the invasiveness patterns
that characterize aspects, and enables developers to specify the base system with allowed
or forbidden invasiveness patterns. Specifications enable developers to state, in terms of
invasiveness patterns, the interactions they want between aspects and the base system.
Finally, I have revisited the aspect-oriented chat application by adding interaction speci-
fications and evolving it. This shows how specifications can reduce the cost overhead of
validating and finding faults in aspect-oriented programs.

From these contributions I draw the following conclusions:
◦ It is feasible to construct data sets that satisfy the MDCA properties. Yet, it is a

complex optimization problem.
◦ MDCA effectively covers inter and intra variable interactions, which results in

coverage of decisions.
◦ MDCA renders feasible for engineers testing reasoning engines without trying

every possible environment condition.
• ABIS enables developers to specify what they expect from aspects to do with the

base code.
• ABIS enables developers to control the invasiveness of aspects and establish an

interface that protect critical base system’s elements.
• ABIS reduces the overhead of validating the system when new aspects or modi-

Conclusion and Perspectives 127

fications are introduced.
These contributions sum to the body of knowledge in validating decision-making, self-

adaptive systems, and aspect-oriented programs.

5.2 Perspectives

All the pieces of self -adaptive systems must be valid from top to bottom. The environ-
ment representation and the environmental conditions monitored by sensors must be valid
and consistent, otherwise the decisions made by reasoning engines would be based on
faulty data. The decisions made by reasoning engines must be correct given any environ-
mental condition, otherwise wrong decisions may leak into the adaptation mechanism and
may eventually break the system down. Finally, adaptation mechanisms and the underly-
ing executing platform must be valid, functional, and robust. The adaptation mechanism
must be capable of applying the reasoning engine’s decisions correctly. The reconfigura-
tions introduced by the adaptation mechanism into the running platform must not break
down the system or prevent it from providing its functionalities.

In this thesis, I have contributed to the validation of two dimensions of self -adaptive
systems. Nevertheless, these contributions are only a small part of the big picture and
leave room for improvement and future research. In this section, I present some of the
perspectives in future research for the validation of self -adaptive systems. More precisely, I
discuss the perspective for the validation of reasoning engines and adaptation mechanisms.

5.2.1 Perspectives for Reasoning Engine Validation

Reasoning engines occupy an important place in self -adaptive system. I present three
perspectives for future work on the validation of reasoning engines.

Definition of automated oracles: How to know when the decisions made by the rea-
soning engine are right without requiring engineers to check the decisions? This question
poses a big challenge to researchers, engineers, and testers. Currently, I make the hypoth-
esis that engineers judge the reasoning engine’s decisions. This is a tedious, long, and
complex process. The automation of the oracle should enable a faster and more reliable
validation of reasoning engines. Initial ideas on how to define these oracles consist in eval-
uating whether the system continues working after an environmental change, or whether
it continues to provide a certain number of functionalities. Assertion languages may allow
defining patterns that decisions must contain in order to be valid.

Reasoning engine validation at runtime: Due to the huge size of the reasoning space,
it is impossible to validate reasoning engines against all possible environmental conditions.
An option to explore the environmental conditions not covered by MDCA (and that could
still trigger faults) consists in testing the system as it runs. Validation at runtime refers to
online or in vivo testing [46], whose underlying idea is to select environmental conditions

128 Conclusion and Perspectives

that are likely to occur soon. These conditions are then fed to a sand-boxed version of the
reasoning engine, which makes a decision. Then, an automated oracle evaluates if the de-
cision is right. If a wrong decision is made, the executing reasoning engine is patched with
fault corrections on the fly. Notice that such testing techniques require the development
of oracles with the capability of automatically evaluating the correctness of the reasoning
engine’s decision at runtime. Validation at runtime may also refer to a combination of
online verification and testing. Several sand-boxed copies of a reasoning engine may ex-
plore through online test different portions of the reasoning space, whereas a verification
procedure may check whether online corrections do not break down the reasoning engine.
Furthermore, the validation at runtime could benefit from the emerging cloud services.
Testing and verification could be performed remotely by a farm of services in the cloud,
error detection and corresponding patches distributed to different instances of reasoning
engines.

Validation for stochastic non-deterministic reasoning engines: In recent years, sev-
eral researchers have proposed reasoning engines and reasoning mechanisms based on
stochastic models [35, 75]. The main difference between these reasoning engines and
traditional rule-based and goal-based engines is that they are non-deterministic. Fairly
small variation on their parameters may induce completely different decisions. Validating
whether these reasoning engines make the right decision is challenging because there is
not one, but many possible right decisions for a given environmental condition.

5.2.2 Perspectives for Adaptation Mechanism Validation

Model validation for model driven adaptation: In the last years, researchers have
explored the usage of models to leverage the potential of a higher abstraction level. Model
composition plays an important role in model driven adaptation, and since it is analogous
to AOP based adaptation mechanism, it allows defining the adaptive concerns as architec-
tural changes encapsulated inside aspect models. These models are then woven into the
base model to produce the adapted architecture. Yet, aspects and base models must be
faultless in order to allow the system to adapt. If aspects or base models contain faults,
their composition will result in unexpected and undesired consequences that may prevent
the system to adapt (or even break it down). Furthermore, the model composition engines
used to compose aspects and base models can also introduce faults and produce faulty
models. Model composition engines must be tested in order to ensure that the models
resulting from the composition are as expected. Nevertheless, testing such programs is
challenging because of the complexity of the models they manipulate. I have addressed
the first steps in testing model composition engines [163], however, there are still many
issues to address.

System validation at runtime: Over recent years, the use of models at runtime has
gained a large number of followers [20]. The use of models at runtime represents an im-
portant part of the effort to drive the adaptation process using models [158, 155, 157, 156].

Conclusion and Perspectives 129

These models at runtime can be leveraged to perform validation and verification activities
at runtime. Similar to the sand-boxing of reasoning engines, models at runtime provide a
platform to simulate, verify, and test configurations and adaptations before applying them
to the running platform. Models describing the functioning of the running system could
be used to verify whether the selected adaptation procedure is optimal, or whether the
adaptation will preserve the system functionalities. Models and simulation could even be
used to explore future reconfigurations and give feedback information to the reasoning
engine.

130 Conclusion and Perspectives

131

Appendix A

Tuple counting procedure

The procedure on Listing A.1 counts the number of different t-tuples of u-consecutive
columns contained by an array X with k rows. Basically, the procedure assembles the t-
tuples of u-consecutive columns and stores them inside a data structure. Notice that the
procedure stores only the t-tuples that have not being stored before.

1 procedure count_tuple(X, u, t, k): returns integer
2 L: list of list containing tuples
3 T: list containing tuples
4 count, i, h, s, j, n: integer
5 n = length of N
6 Y: array
7 for i = 1 until i = n − u
8 // Y: array of size k x u
9 Y = X [] [i to i + u]

10 for h = 1 until h = k − t
11 // Y [h] array of length 1 x u
12 add Y [h] to T
13 for s = h + 1 until s = k
14 for j = 1 until j = t
15 add Y [s + j] to T
16 end
17 // if the list L contains the tuple T
18 if T not contained in L then
19 count = count + 1
20 // add the tuple T to the list L
21 add T to L
22 end

132 APPENDIX A. TUPLE COUNTING PROCEDURE

23 // remove all the elements of T
24 clear T
25 end
26 end
27 end
28 return count
29 end

Listing A.1: Tuple counting procedure

133

Appendix B

Authentication mechanism for the
chat application using aspects

The evolution or adaptation of the aspect-oriented chat application described in Sec-
tion 4.2.5 can be implemented either using plain Java (static at compile time), or using
AspectJ aspects (which can eventually be dynamically woven / unwoven). This appendix
presents the AspectJ code that realizes using AOP the evolution of the aspect-oriented chat
application introduced in Section 4.2.1.

The new concern to introduce is authentication, which allows the chat application to
accept connections from users identified with a username and a password. Listing B.1
and B.2 present the AspectJ code for the authentication adaptation for client and server.
The code in Listing B.1 illustrates the AuthenticatedServerAspect, which introduced the
authentication concern by adding new operations to the StandardServerImpl class (cf.
Section 4.2.1). Additionally, an around advice intercept the attach method and verifies
whether the client username and password are accepted in the server. Analogously, the code
in Listing B.1 adds a new initialize method that accepts a new argument (password).
This method stores the client password and then continues the original computation.

1 package chat.aspect;
2 import java.io.BufferedReader;
3 import java.io.File;
4 import java.io.FileNotFoundException;
5 import java.io.FileReader;
6 import java.io.IOException;
7 import java.rmi.RemoteException;
8 import java.util.Hashtable;
9 import chat.impl.StandardServerImpl;

10 import chat.support.Client;

134
APPENDIX B. AUTHENTICATION MECHANISM FOR THE CHAT APPLICATION USING

ASPECTS

11
12 public aspect AuthenticatedServerAspect {
13
14 private Hashtable<String,String> StandardServerImpl.registeredUser
15 = new Hashtable<String, String>();
16
17 private void StandardServerImpl.loadUsers(){
18 try {
19 File file=new File("pwd.txt");
20 BufferedReader input
21 = new BufferedReader(new FileReader(file));
22
23 String line = null;
24 while ((line = input.readLine()) != null){
25 String[] ps=line.split("::");
26 registeredUser.put(ps[0], ps[1]);
27 }
28 input.close();
29 } catch (FileNotFoundException e) {
30 e.printStackTrace();
31 } catch (IOException e) {
32 e.printStackTrace();
33 }
34 }
35
36 private boolean StandardServerImpl.authenticate(Client client){
37 if(this.registeredUser.get(client.getSName()).equals(client.getPwd())){
38 return true;
39 }
40 return false;
41 }
42
43 after(StandardServerImpl impl):
44 execution(∗ StandardServerImpl(..)) && target(impl){
45 impl.loadUsers();
46 }
47
48 int around(Client client,StandardServerImpl impl)
49 throws RemoteException :
50 execution(int StandardServerImpl.attach(Client))
51 && args(client) && this(impl){

APPENDIX B. AUTHENTICATION MECHANISM FOR THE CHAT APPLICATION USING
ASPECTS 135

52 if(!impl.authenticate(client)){
53 return −1;
54 }
55 return impl.attach(client);
56 }
57 }

Listing B.1: Server authentication mechanism implemented using aspects

1 package chat.aspect;
2 import java.text.SimpleDateFormat;
3 import chat.impl.StandardClientImpl;
4 import chat.support.Message;
5
6 public privileged aspect AuthenticatedClientAspect {
7
8 public boolean StandardClientImpl.initialize(String server,
9 String name, String pwd) {

10 this.m_client.setPwd(pwd);
11 return this.initialize(server, name);
12 }
13
14 before(Message message):
15 execution(void StandardClientImpl.transmit(Message))
16 && args(message){
17 message.
18 setMeta(new SimpleDateFormat("yyyy/MM/dd HH:mm:ss").
19 format(new java.util.Date()));
20 }
21 }

Listing B.2: Client authentication mechanism implemented using aspects

136
APPENDIX B. AUTHENTICATION MECHANISM FOR THE CHAT APPLICATION USING

ASPECTS

137

Appendix C

Alloy Specifications

Listing C.1, presents the formalization in Alloy [115] of the ABIS specification propa-
gation and specification matching strategy. Notice that this specification is meant to check
whether the specification propagation strategies are consistent and well formed.

1 module abis
2
3 /∗
4 ∗ Model of ABIS.
5 ∗/
6
7 abstract sig NameElement {
8 name : one Name
9 }

10 sig Name{}
11
12 abstract sig SpecElement extends NameElement {
13 forbiddenAdviceType,allowedAdviceType : set AdviceType,
14 allForbiddenAdviceType,allAllowedAdviceType : set AdviceType,
15 }
16
17 sig Class extends SpecElement{
18 superclass : set Class,
19 properties : set Property,
20 operations : set Operation
21 }
22
23 sig Property,Operation extends SpecElement{}

138 APPENDIX C. ALLOY SPECIFICATIONS

24
25 abstract sig AdviceType {}
26
27 one sig Augmentation, Replacement,
28 ConditionalReplacement, Multiple,
29 Crossing,Write, Read,ArgumentPassing,
30 Hierarchy, FieldAddition,OperationAddition
31 extends AdviceType {}
32
33 fun getAllAdviceType() : set AdviceType{
34 Augmentation + Replacement + ConditionalReplacement
35 + Multiple + Crossing + Write + Read +
36 ArgumentPassing + Hierarchy + FieldAddition + OperationAddition
37 }
38
39 fact ForbiddenTypeClassDerived{
40 all c: Class | all x : c.^superclass | x in Temp.allSuperClasses
41
42 /∗ No spec ∗/
43 and ((#(Temp.allSuperClasses.forbiddenAdviceType) = 0)
44 and (#(c.forbiddenAdviceType) = 0)
45 and (#(Temp.allSuperClasses.allowedAdviceType) = 0)
46 and (#(c.allowedAdviceType) = 0))
47 implies c.allForbiddenAdviceType = getAllAdviceType
48
49 /∗ Only allowed spec ∗/
50 and (((#(Temp.allSuperClasses.forbiddenAdviceType) = 0)
51 and (#(c.forbiddenAdviceType) = 0))
52 and ((#(Temp.allSuperClasses.allowedAdviceType) != 0)
53 or (#(c.allowedAdviceType) != 0)))
54 implies c.allForbiddenAdviceType =
55 (getAllAdviceType
56 − (Temp.allSuperClasses.allowedAdviceType + c.allowedAdviceType)
57)
58
59 /∗ Only forbidden spec ∗/
60 and (((#(Temp.allSuperClasses.forbiddenAdviceType) != 0)
61 or (#(c.forbiddenAdviceType) != 0))
62 and ((#(Temp.allSuperClasses.allowedAdviceType) = 0)
63 and (#(c.allowedAdviceType) = 0)))
64 implies c.allForbiddenAdviceType =

APPENDIX C. ALLOY SPECIFICATIONS 139

65 Temp.allSuperClasses.forbiddenAdviceType + c.forbiddenAdviceType
66
67 /∗ Mix ∗/
68 and (((#(Temp.allSuperClasses.forbiddenAdviceType) != 0)
69 or (#(c.forbiddenAdviceType) != 0))
70 and ((#(Temp.allSuperClasses.allowedAdviceType) != 0)
71 or (#(c.allowedAdviceType) != 0)))
72 implies c.allForbiddenAdviceType =
73 (getAllAdviceType −
74 (Temp.allSuperClasses.allowedAdviceType + c.allowedAdviceType)\
75)
76 + Temp.allSuperClasses.forbiddenAdviceType + c.forbiddenAdviceType
77 all c: Class | c.allAllowedAdviceType = getAllAdviceType − c.allForbiddenAdviceType
78 }
79
80
81
82 fact ForbiddenTypePropertyDerived{
83 all p: Property | all x : p.~properties.^superclass| x in Temp.allSuperClassesProperty
84 and all cps : Temp.allSuperClassesProperty.properties | cps in Temp.allSuperProperties
85
86 /∗ No spec ∗/
87 and ((#(Temp.allSuperProperties.forbiddenAdviceType) = 0)
88 and (#(p.~properties.allForbiddenAdviceType) = 0)
89 and (#(p.forbiddenAdviceType) = 0)
90 and (#(Temp.allSuperProperties.allowedAdviceType) = 0)
91 and (#(p.~properties.allAllowedAdviceType) = 0)
92 and (#(p.allowedAdviceType) = 0))
93 implies p.allForbiddenAdviceType = getAllAdviceType
94
95 /∗ Only allowed spec ∗/
96 and (((#(Temp.allSuperProperties.forbiddenAdviceType) = 0)
97 and (#(Temp.allSuperClassesProperty.allForbiddenAdviceType) = 0)
98 and (#(p.forbiddenAdviceType) = 0))
99 and ((#(Temp.allSuperProperties.allowedAdviceType) != 0)

100 or (#(Temp.allSuperClassesProperty.allAllowedAdviceType) != 0)
101 or (#(p.allowedAdviceType) != 0)))
102 implies p.allForbiddenAdviceType =
103 (getAllAdviceType −
104 (Temp.allSuperProperties.allowedAdviceType
105 + p.allowedAdviceType+ p.~properties.allAllowedAdviceType

140 APPENDIX C. ALLOY SPECIFICATIONS

106)
107)
108
109 /∗ Only forbidden spec ∗/
110 and (((#(Temp.allSuperProperties.forbiddenAdviceType) != 0)
111 or (#(p.~properties.allForbiddenAdviceType) != 0)
112 or (#(p.forbiddenAdviceType) != 0))
113 and ((#(Temp.allSuperProperties.allowedAdviceType) = 0)
114 and (#(p.~properties.allAllowedAdviceType) = 0)
115 and (#(p.allowedAdviceType) = 0)))
116 implies p.allForbiddenAdviceType =
117 Temp.allSuperProperties.forbiddenAdviceType
118 + p.forbiddenAdviceType+ p.~properties.allForbiddenAdviceType
119
120 /∗ Mix ∗/
121 and (((#(Temp.allSuperProperties.forbiddenAdviceType) != 0)
122 or (#(p.~properties.allForbiddenAdviceType) != 0)
123 or (#(p.forbiddenAdviceType) != 0))
124 and ((#(Temp.allSuperProperties.allowedAdviceType) != 0)
125 or (#(p.~properties.allAllowedAdviceType) != 0)
126 or (#(p.allowedAdviceType) != 0)))
127 implies p.allForbiddenAdviceType =
128 (getAllAdviceType −
129 (Temp.allSuperProperties.allowedAdviceType
130 + p.allowedAdviceType + p.~properties.allAllowedAdviceType)
131)
132 + Temp.allSuperProperties.forbiddenAdviceType
133 + p.forbiddenAdviceType
134 + p.~properties.allForbiddenAdviceType
135 all p: Property | p.allAllowedAdviceType = getAllAdviceType − p.allForbiddenAdviceType
136 }
137
138
139
140 fact ForbiddenTypeOperationDerived{
141 all o: Operation | all x : o.~operations.^superclass | x in Temp.allSuperClassesOperation and
142 all cps : Temp.allSuperClassesOperation.operations | cps in Temp.allSuperOperations
143
144 /∗ No spec ∗/
145 and ((#(Temp.allSuperProperties.forbiddenAdviceType) = 0)
146 and (#(o.~operations.allForbiddenAdviceType) = 0)

APPENDIX C. ALLOY SPECIFICATIONS 141

147 and (#(o.forbiddenAdviceType) = 0)
148 and (#(Temp.allSuperProperties.allowedAdviceType) = 0)
149 and (#(o.~operations.allAllowedAdviceType) = 0)
150 and (#(o.allowedAdviceType) = 0))
151 implies o.allForbiddenAdviceType = getAllAdviceType
152
153 /∗ Only allowed spec ∗/
154 and (((#(Temp.allSuperProperties.forbiddenAdviceType) = 0)
155 and (#(o.~operations.allForbiddenAdviceType) = 0)
156 and (#(o.forbiddenAdviceType) = 0))
157 and ((#(Temp.allSuperProperties.allowedAdviceType) != 0)
158 or (#(o.~operations.allAllowedAdviceType) != 0)
159 or (#(o.allowedAdviceType) != 0)))
160 implies o.allForbiddenAdviceType =
161 (getAllAdviceType −
162 (Temp.allSuperProperties.allowedAdviceType
163 + o.allowedAdviceType+o.~operations.allAllowedAdviceType)
164)
165 /∗ Only forbidden spec ∗/
166 and (((#(Temp.allSuperProperties.forbiddenAdviceType) !=0)
167 or (#(o.~operations.allForbiddenAdviceType) !=0)
168 or (#(o.forbiddenAdviceType) !=0))
169 and ((#(Temp.allSuperProperties.allowedAdviceType) =0)
170 and (#(o.~operations.allAllowedAdviceType) =0)
171 and (#(o.allowedAdviceType) =0)))
172 implies o.allForbiddenAdviceType =
173 Temp.allSuperProperties.forbiddenAdviceType
174 + o.forbiddenAdviceType
175 + o.~operations.allForbiddenAdviceType
176 /∗ Mix ∗/
177 and (((#(Temp.allSuperProperties.forbiddenAdviceType) != 0)
178 or (#(o.~operations.allForbiddenAdviceType) !=0)
179 or (#(o.forbiddenAdviceType) !=0))
180 and ((#(Temp.allSuperProperties.allowedAdviceType) !=0)
181 or (#(o.~operations.allAllowedAdviceType) !=0)
182 or (#(o.allowedAdviceType) !=0)))
183 implies o.allForbiddenAdviceType =
184 (getAllAdviceType −
185 (Temp.allSuperProperties.allowedAdviceType
186 + o.allowedAdviceType
187 + o.~operations.allAllowedAdviceType)

142 APPENDIX C. ALLOY SPECIFICATIONS

188)
189 + Temp.allSuperProperties.forbiddenAdviceType
190 + o.forbiddenAdviceType
191 + o.~operations.allForbiddenAdviceType
192 all o: Operation | o.allAllowedAdviceType = getAllAdviceType − o.allForbiddenAdviceType
193 }
194
195
196 sig Aspect extends NameElement{
197 advices : set Advice
198 }
199
200 sig Advice extends NameElement{
201 joinpointop : set SpecElement,
202 type : one AdviceType
203 }
204
205 fact adviceRight{
206 all a : Advice | all c : SpecElement | a.type not in c.allForbiddenAdviceType
207 and a.type in c.allAllowedAdviceType
208 }
209
210 assert ConjunctionClasses{
211 all C : Class | C.allForbiddenAdviceType + C.allAllowedAdviceType = getAllAdviceType
212 }
213 assert DisjunctionClasses{
214 all C : Class | #(C.allForbiddenAdviceType − C.allAllowedAdviceType) = 0
215 }
216
217 assert ConjunctionOperations{
218 all o : Operation | o.allForbiddenAdviceType
219 + o.allAllowedAdviceType = getAllAdviceType
220 }
221
222 assert DisjunctionOperations{
223 all o : Operation | #(o.allForbiddenAdviceType − o.allAllowedAdviceType) = 0
224 }
225
226 assert ConjunctionProperties{
227 all p : Property | p.allForbiddenAdviceType
228 + p.allAllowedAdviceType = getAllAdviceType

APPENDIX C. ALLOY SPECIFICATIONS 143

229 }
230
231 assert DisjunctionProperties{
232 all p: Property | #(p.allForbiddenAdviceType − p.allAllowedAdviceType) = 0
233 }
234
235 sig Temp
236 {
237 allSuperClasses : set Class,
238 allSuperClassesProperty : set Class,
239 allSuperProperties : set Property,
240 allSuperClassesOperation : set Class,
241 allSuperOperations : set Operation
242 }
243
244 assert AspectCanNotBe{
245 all a : Aspect | all c : SpecElement | all adv : Advice | adv in a.advices and
246 #(c.allAllowedAdviceType) − #(c.allAllowedAdviceType− adv.type)=1
247 }
248
249 check ConjunctionClasses for 30
250 check DisjunctionClasses for 30
251
252 check ConjunctionOperations for 20
253 check ConjunctionProperties for 20
254 check DisjunctionOperations for 20
255 check DisjunctionProperties for 20
256
257 check AspectCanNotBe for 20

Listing C.1: Alloy specification of the ABIS framework

144 APPENDIX C. ALLOY SPECIFICATIONS

145

Glossary ‡

Customizability The ability for software to be changed by the user or programmer.

Environment In self -adaptive system, the environment refers to the surroundings of the
system. These can be composed of a mixture of physical and virtual properties.
Sometimes the environment is also referred as working environment or working con-
text.

Flexibility The ease with which a system or component can be modified for use in appli-
cations or environments other than those for which it was specifically designed.

Human-like reasoning The capacity to spark creative and working solution to complex
problems. In self-adaptive systems is the capacity of reasoning engines to

LOC Acronym for lines of code.

Oracle A mechanism used by software testers and software engineers for determining
whether a test has passed or failed. It is used by comparing the output(s) of the sys-
tem under test, for a given test case input, to the outputs that the oracle determines
that product should have. Oracles are always separate from the system under test.

Problem slang Is the vocabulary use to communicate terms, actions, elements, etc of a
particular problem’s domain.

Resiliency The ability for software to recover from a failure or malfunction and continue
to work. Sometimes it is referred as fault tolerance or self-healing.

Robustness Is the ability of a computer system to cope with errors during execution or
the ability of an algorithm to continue to operate despite abnormalities in input,
calculations, etc.

Recoverability Attributes of software that bear on the capability to re-establish its level
of performance and recover the data directly affected in case of a failure and on the
time and effort needed for it.

Validation Is the certification that an information system has been implemented correctly
and that it conforms to the functional specifications derived from the original require-
ments.

146 Glossary

Verification Is the act of proving or disproving the correctness of intended algorithms
underlying a system with respect to a certain formal specification or property, using
formal methods of mathematics.

Versatility The ability for software to be applicable and customizable to do many things
competently.

147

Bibliography

[1] Event Stream Intelligence with Esper and NEsper. Codehaus. Website:
http://esper.codehaus.org/.

[2] Systems and software verification: model-checking techniques and tools. Springer-
Verlag New York, Inc., New York, NY, USA, 1999.

[3] The CRM handbook: a business guide to customer relationship management. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[4] A.D.Precce, C.Grossner, P.G.Chander, and T.Radhakrishnan. Structural validation of
expert systems using a formal model. In Working Notes: Workshop on VV of KBS at
AAAI 93, Washington D.C., 1993.

[5] Jonathan Aldrich. Open modules: Modular reasoning about advice. In Andrew P.
Black, editor, ECOOP’05: Proceedings 19th European Conference on Object-Oriented
Programming, volume 3586 of Lecture Notes in Computer Science, pages 144–168.
Springer, July 2005.

[6] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing dynamic
software architectures. In Fundamental Approaches to Software Engineering, page 21.
1998.

[7] Jesper Andersson, Rogerio de Lemos, Sam Malek, and Danny Weyns. Reflecting on
self-adaptive software systems. In SEAMS ’09: Proceedings of the International work-
shop on Software Engineering for Adaptive and Self-Managing Systems in conjunction
with ICSE’09, pages 38–47, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[8] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Overview of cae-
sarj. Transactions on Aspect-Oriented Software Development, 3880:135–173, 2006.

[9] Cyril Ballagny, Nabil Hameurlain, and Franck Barbier. MOCAS: A State-Based Com-
ponent Model for Self-Adaptation. SASO’09: 3rd IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, pages 206–215, 2009.

[10] Valerie Barr. Applications of rule-base coverage measures to expert system evalu-
ation. In Journal of Knowledge-Based Systems, volume 12, pages 27–35. Elsevier,
1998.

148 BIBLIOGRAPHY

[11] Thaìs V. Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic reconfigura-
tion in component-based systems. In EWSA’05: 2nd European Workshop on Software
Architecture, pages 1–17. Springer, 2005.

[12] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le-Traon. Automatic
test cases optimization: a bacteriologic algorithm. IEEE Software, 22(2):76–82,
2005.

[13] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling. Sym-
bolic invariant verification for systems with dynamic structural adaptation. In ICSE
’06: Proceedings of the 28th international conference on Software engineering, pages
72–81, New York, NY, USA, 2006. ACM.

[14] Boris Beizer. Software testing techniques. International Thomson Computer Press,
New York, NY, USA, 2nd edition edition, 1990.

[15] N. Bencomo, G. Blair, G. Coulson, and T.V. Batista. Towards a Meta-Modelling
Approach to Configurable Middleware. In RAM-SE’05: Workshop on Reflection, AOP,
and Meta-Data for Software Evolution in conjuction with ECOOP’05, Lecture Notes in
Computer Science, pages 73–82. Springer, July 2005.

[16] Nelly Bencomo. Supporting the Modelling and Generation of Reflective Middleware
Families and Applications using Dynamic Variability. PhD thesis, Lancaster University,
March 2008.

[17] Nelly Bencomo. On the use of software models during software execution. In
MISE’09: Proceedings of the Workshop on Modeling in Software Engineering in conjuc-
tion with ICSE’09, New York, NY, USA, May 2009. ACM.

[18] Nelly Bencomo and Gordon Blair. Using architecture models to support the genera-
tion and operation of component-based adaptive systems. Software Engineering for
Self-Adaptive Systems, 5525:183–200, June 2009.

[19] Nelly Bencomo, Gordon Blair, Geoff Coulson, Paul Grace, and Awais Rashid. Reflec-
tion and aspects meet again: Runtime reflective mechanisms for dynamic aspects.
In First Middleware Workshop on Aspect Oriented Middleware, New York, NY, USA,
2005. ACM.

[20] Nelly Bencomo, Gordon Blair, Robert France, Freddy Munoz, and Cedric Jeanneret.
Proceedings of the models@run.time workshops 2007, 2008, 2009. In International
conference on Model Driven Engineering Languages and Systems. Springer, 2007 -
2009. www.comp.lancs.ac.uk/ bencomo/MRT/.

[21] Nelly Bencomo, Paul Grace, Carlos Flores, Danny Hughes, and Gordon Blair. Genie:
Supporting the model driven development of reflective, component-based adaptive
systems. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, Formal Research Demonstrations Track, pages 811–814, New York, NY,
USA, May 2008. ACM.

BIBLIOGRAPHY 149

[22] Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In FOSE ’07: 2007 Future of Software Engineering, pages 85–103, Washington, DC,
USA, 2007. IEEE Computer Society.

[23] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 1999.

[24] J. Bloch. A metadata facility for the java programming language. Technical report
jsr 175, Sun Microsystems, www.jcp.org, 2002.

[25] Jonas Bonér and Alexandre Vasseur. Aspectwerkz.
http://aspectwerkz.codehaus.org/index.html, February 2004.

[26] Rafael H. Bordini, Louise A.Dennis, Berndt Farwer, and Michael Fisher. Automated
verification of multi-agent programs. In ASE ’08: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, pages 69–
78, Washington, DC, USA, 2008. IEEE Computer Society.

[27] S. Bouchenak, N. De Palma, D. Hagimont, and C. Taton. Autonomic management
of clustered applications. In Cluster’06: Proceedings of the 2006 IEEE International
Conference on Cluster Computing, pages 25–28, Washington, DC, USA, September
2006. IEEE Computer Society.

[28] Sara Bouchenak, Fabienne Boyer, Daniel Hagimont, Sacha Krakowiak, Adrian Mos,
Noel de Palma, Vivien Quema, and Jean-Bernard Stefani. Architecture-based au-
tonomous repair management: Application to j2ee clusters. In ICAC ’05: Proceed-
ings of the Second International Conference on Automatic Computing, pages 369–370,
Washington, DC, USA, 2005. IEEE Computer Society.

[29] Ivan Bratko. PROLOG Programming for Artificial Intelligence. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1990.

[30] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-
adaptive systems through feedback loops. pages 48–70, 2009.

[31] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java: Experiences
with auto-adaptive and reconfigurable systems. Software Practice Experts, 36(11-
12):1257–1284, 2006.

[32] Renée C. Bryce and Charles J. Colbourn. Constructing interaction test suites with
greedy algorithms. In ASE ’05: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 440–443, New York, NY, USA,
2005. ACM. 1101994 440-443.

[33] Bill Burke and Richard Monson-Haefel. Enterprise JavaBeans 3.0. O’Reilly, 2006.
[34] Kevin Burr and William Young. Combinatorial test techniques: Table-based automa-

tion, test generation, and code coverage. In Proceedings of the Intl. Conf. on Software
Testing Analysis and Review, pages 503–513. West, 1998.

150 BIBLIOGRAPHY

[35] Radu Calinescu and Marta Kwiatkowska. Using quantitative analysis to implement
autonomic it systems. In ICSE ’09: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, pages 100–110, Washington, DC, USA, 2009.
IEEE Computer Society.

[36] Cetina Carlos, Haugen Øystein, Zhang Xiaorui, and Fleurey Franck. Strategies for
variability transformation at runtime. In SPLC’09: 13th International Software Prod-
uct Line Conference, pages 61–70, New York, NY, USA, 2009. ACM.

[37] Carlos Cetina, Joan Fons, and Vicente Pelechano. Applying Software Product Lines
to Build Autonomic Pervasive Systems. In SPLC’08: Proceedings of the 2008 12th
International Software Product Line Conference, pages 117–126, Limerick, Ireland,
2008. IEEE Computer Society.

[38] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic computing
through reuse of variability models at runtime: The case of smart homes. IEEE
Computer, 42:37–43, 2009.

[39] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Using feature models
for developing self-configuring smart homes. In ICAS’09: Proceedings of the 2009
Fifth International Conference on Autonomic and Autonomous Systems, pages 179–
188, Washington, DC, USA, April 2009. IEEE Computer Society.

[40] F. Chauvel, O. Barais, J.M. Jézéquel, and I. Borne. A model-driven process for
self-adaptive software. In ERTS’08: 4th European Congress on Embedded Real Time
Software, Toulouse, France, 2008.

[41] Frank Chauvel, Olivier Barais, Isabelle Borne, and Jean-Marc Jézéquel. Composi-
tion of qualitative adaptation policies. In ASE ’08: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, pages 455–
458, Washington, DC, USA, 2008. IEEE Computer Society.

[42] Guanling Chen and David Kotz. A survey of context-aware mobile computing re-
search. Technical report, Hanover, NH, USA, 2000.

[43] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, and Jeff Magee,
editors. Software Engineering for Self-Adaptive Systems. Springer-Verlag, Berlin, Hei-
delberg, 2009.

[44] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software engi-
neering for self-adaptive systems: A research roadmap. Software Engineering for
Self-Adaptive Systems, 5525:1–26, 2009.

BIBLIOGRAPHY 151

[45] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-based self-
adaptation in the presence of multiple objectives. In SEAMS ’06: Proceedings of the
2006 international workshop on Self-adaptation and self-managing systems in con-
junction with ICSE’06, pages 2–8, New York, NY, USA, 2006. ACM.

[46] Matt Chu, Christian Murphy, and Gail Kaiser. Distributed in vivo testing of soft-
ware applications. Software Testing, Verification, and Validation, 2008 International
Conference on, 0:509–512, 2008.

[47] Siobhàn Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design: The Theme
Approach. Addison-Wesley Professional, April 2005.

[48] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 3rd edition edition, August 2001. 501065.

[49] Curtis Clifton and Gary T. Leavens. Observers and assistants: A proposal for modu-
lar aspect-oriented reasoning. In Ron Cytron and Gary T. Leavens, editors, FOAL’02:
Foundations of Aspect-Oriented Languages in conjunction with AOSD-2002, pages 33–
44, March 2002.

[50] David M. Cohen, R. Dalal Siddhartha, Michael L. Fredman, and Gardner C. Patton.
The AETG system: An approach to testing based on combinatorial design. IEEE
Transactions on Software Engineering, vol.23(7):437–444, 1997. 264150.

[51] Myra B. Cohen, Charles J. Colbourn, and Alan C. H. Ling. Augmenting simulated
annealing to build interaction test suites. In ISSRE ’03: Proceedings of the 14th
International Symposium on Software Reliability Engineering, pages 394–405, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[52] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and adequacy in
software product line testing. In ROSATEA ’06: Proceedings of the ISSTA 2006 work-
shop on Role of software architecture for testing and analysis, pages 53–63, New York,
NY, USA, 2006. ACM.

[53] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of highly-
configurable systems in the presence of constraints. In ISSTA ’07: Proceedings of the
2007 international symposium on Software testing and analysis, pages 129–139, New
York, NY, USA, 2007. ACM. 1273482.

[54] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing interaction
test suites for highly-configurable systems in the presence of constraints: A greedy
approach. IEEE Transactions on Software Engineering, 34(5):633–650, 2008.

[55] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.
Constructing test suites for interaction testing. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 38–48, Washington, DC,
USA, 2003. IEEE Computer Society.

152 BIBLIOGRAPHY

[56] Myra B. Cohen, Joshua Snyder, and Gregg Rothermel. Testing across configurations:
implications for combinatorial testing. ACM SIGSOFT Software Engineering Notes,
31(0163-5948):1–9, 2006.

[57] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis. The runes middle-
ware: A reconfigurable the runes middleware for networked embedded systems and
its application in a disaster management scenario. In PERCOM ’07: Proceedings of
the Fifth IEEE International Conference on Pervasive Computing and Communications,
pages 69–78, Washington, DC, USA, 2007. IEEE Computer Society.

[58] Stefania Costantini. Meta-reasoning: A survey. In Computational Logic: Logic Pro-
gramming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 253–
288, London, UK, 2002. Springer-Verlag.

[59] Geoff Coulson, Gordon S. Blair, Mike Clark, and N. Parlavantzas. The design of
a highly configurable and reconfigurable middleware platform. ACM Distributed
Computing Journal, 15(2):109–126, 2002.

[60] Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos Parlavantzas. The design
of a configurable and reconfigurable middleware platform. Distributed Computing,
15(2):109–126, 2002.

[61] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The pon-
der policy specification language. In POLICY ’01: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, pages 18–38, London,
UK, 2001. Springer-Verlag.

[62] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

[63] Pierre-Charles David and Thomas Ledoux. Wildcat: a generic framework for
context-aware applications. In MPAC’05: 3rd Int. Workshop on Middleware for Per-
vasive and Ad-hoc Computing, pages 1–7, New York, NY, USA, 2005. ACM.

[64] Pierre-Charles David and Thomas Ledoux. An Aspect-Oriented Approach for De-
veloping Self-Adaptive Fractal Components. In SC’06: 5th International Symposium
on Software Composition, volume 4089 of Lecture Notes in Computer Science, pages
82–97, London, UK, 2006. Springer-Verlag.

[65] Pierre-Charles David and Thomas Ledoux. Safe Dynamic Reconfigurations of Fractal
Architectures with FScript. In Proceeding of Fractal CBSE Workshop in conjuction with
ECOOP’06, London, UK, 2006. Springer-Verlag.

[66] Pierre-Charles David, Marc Léger, Hervé Grall, Thomas Ledoux, and Thierry Cou-
paye. A multi-stage approach for reliable dynamic reconfigurations of component-
based systems. In DAIS’08: 8th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems, pages 106–111, London, UK, 2008. Springer-
Verlag.

BIBLIOGRAPHY 153

[67] Randall Davis. Meta-rules: Reasoning about control. Artificial Intelligence,
15(3):179 – 222, 1980.

[68] Hamlet Dick. Software component composition: a subdomain-based testing-theory
foundation. Software Testing Verification and Reliability, 17(0960-0833):243–269,
2007.

[69] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol Gelenbe,
Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco Zam-
bonelli. A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst.,
1(2):223–259, 2006.

[70] Jim Dowling and Vinny Cahill. The K-Component Architecture Meta-model for Self-
Adaptive Software. In REFLECTION ’01: Proceedings of the Third International Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns, pages 81–
88, London, UK, 2001. Springer-Verlag.

[71] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 27(7):1165–1178, June 2008.

[72] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software architecture themes in
jpl’s mission data system. In IEEE Aerospace Conference Proceedings, volume 7, pages
259–268, Washington, DC, USA, 2000. IEEE Press.

[73] Adaptive Systems (DiVA) Work Package 6 Dynamic Variability in Ccomplex. Deliv-
arable 6.1: Case study specification and requirements, 2009.

[74] Frank Eliassen, Gjrven Eli, Viktor S. Wold Eide, and Michaelsen Jorgen Andreas.
Evolving self-adaptive services using planning-based reflective middleware. In ARM
’06: Proceedings of the 5th workshop on Adaptive and reflective middleware, page 1,
New York, NY, USA, 2006. ACM. 1175856 1.

[75] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Model
evolution by run-time parameter adaptation. In ICSE’09: 31th International Confer-
ence on Software Engineering, Los Alamitos, CA, USA, pages 111–121, Washington,
DC, USA, May 2009. IEEE Computer Society.

[76] Paolo Falcarin and Gustavo Alonso. Software architecture evolution through dy-
namic aop. In EWSA’ 04: First European Workshop on Software Architecture, pages
57–73, London, UK, 2004. Springer-Verlag.

[77] Paolo Falcarin and Marco Torchiano. Automated reasoning on aspects interactions.
In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference on Automated
Software Engineering, pages 313–316, Washington, DC, USA, 2006. IEEE Computer
Society.

[78] William Feller. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd
Edition. Wiley, 3 edition, January 1968.

154 BIBLIOGRAPHY

[79] Roger Ferguson and Bogdan Korel. The chaining approach for software test data
generation. ACM Transactions on Software Engineering Methodologies, 5(1):63–86,
1996.

[80] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quan-
tification and obliviousness. In Robert E. Filman, Tzilla Elrad, Siobhán Clarke,
and Mehmet Akşit, editors, Aspect-Oriented Software Development, pages 21–35.
Addison-Wesley, Boston, 2005.

[81] Franck Fleurey and Arnor Solberg. A domain specific modeling language supporting
specification, simulation and execution of dynamic adaptive systems. In MoDELS’09:
Model Driven Engineering Languages and Systems, 12th International Conference. Pro-
ceedings, pages 606–621, London, UK, 2009. Springer-Verlag.

[82] Jacqueline Floch. Theory of adaptation – deliverable d2.2 MUSIC EU project.
http://www.ist-music.eu/MUSIC/docs/MADAMdf/view, 2006.

[83] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and
Eli Gjorven. Using architecture models for runtime adaptability. IEEE Software,
23(2):62–70, 2006.

[84] Kenneth D. Forbus and Johan de Kleer. Building problem solvers. MIT Press, Cam-
bridge, MA, USA, 1993.

[85] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artificial Intelligence, 19(1):17–37, 1982.

[86] Sandro Fouché, Myra B. Cohen, and Adam Porter. Incremental covering array failure
characterization in large configuration spaces. In ISSTA ’09: Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis, pages 177–188,
New York, NY, USA, July 2009. ACM.

[87] Robert France, Franck Fleurey, Raghu Reddy, Benoit Baudry, and Sudipto Ghosh.
Providing support for model composition in metamodels. In EDOC ’07: Proceedings
of the 11th IEEE International Enterprise Distributed Object Computing Conference,
page 253, Washington, DC, USA, 2007. IEEE Computer Society.

[88] Christian Fritz and Sheila A. McIlraith. Decision-theoretic golog with qualitative
preferences. In Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR06), pages 153–163, Lake District, UK,
June 2006.

[89] Bridging The Gap, W. Cazzola, A. Savigni, A. Sosio, and F. Tisato. Architectural
reflection : Bridging the gap between a running system and its architectural spec-
ification. In Proceedings of the 2 nd Euromicro Conference on Software Maintenance
and Reengineering and 6 th Reengineering Forum, pages 8–11, Washington, DC, USA,
March 1998. IEEE Computer Society.

BIBLIOGRAPHY 155

[90] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. IEEE Computer, 37(10):46–54, 2004.

[91] John C. Georgas and Richard N. Taylor. Policy-based self-adaptive architectures: a
feasibility study in the robotics domain. In SEAMS ’08: Proceedings of the 2008 in-
ternational workshop on Software engineering for adaptive and self-managing systems
in conjunction with ICSE’08, pages 105–112, New York, NY, USA, 2008. ACM.

[92] John C. Georgas, Andre van der Hoek, and Richard N. Taylor. Using architectural
models to manage and visualize runtime adaptation. IEEE Computer, 42(9):52–60,
2009.

[93] Anne Geraci. IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. IEEE Press, Piscataway, NJ, USA, 1991.

[94] Jacques Klein Benoit Baudry Gilles Perrouin, Sagar Sen and Yves Le Traon. Auto-
mated and scalable t-wise test case generation strategies for software product lines.
In ICST’10: Third International Conference on Software Testing, Verification and Vali-
dation, Washington, DC, USA, 2010. IEEE Computer Society.

[95] Allen Ginsberg, editor. Automatic refinement of expert system knowledge bases. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[96] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[97] Patrick Goldsack, Julio Guijarro, Antonio Lain, Guillaume Mecheneau, Paul Mur-
ray, and Peter Toft. Smartfrog: Configuration and automatic ignition of distributed
applications. Technical report, HP Labs, Bristol, UK, 2003.

[98] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit Tewari,
Yuanfang Cai, and Hridesh Rajan. Modular software design with crosscutting inter-
faces. IEEE Software, 23(1):51–60, February 2006.

[99] Clifford Grossner, Alun D. Preece, P. Gokul Chander, Thiruvengadam Radhakrish-
nan, and Ching Y. Suen. Exploring the structure of rule based systems. In AAAI’93:
Proc. 11th. National Conference on Artificial Intelligence, pages 704–709, Washing-
ton, DC, 1993. AAAI.

[100] Uma G. Gupta. Automatic tools for testing expert systems. Communications of the
ACM, pages 179–184, 1998.

[101] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product
Lines. IEEE Computer, 41(4), April 2008.

[102] Svein Hallsteinsen, Erlend Stav, Arnor Solberg, and Jacqueline Floch. Using product
line techniques to build adaptive systems. In SPLC’06: 10th Internationa Software
Product Line Conference, pages 141–150, Washington, DC, USA, 2006. IEEE Com-
puter Society.

156 BIBLIOGRAPHY

[103] Mark Harman and Bryan F. Jones. Search-based software engineering. Information
Software Technology, 43(14):833–839, 2001.

[104] Alan Hartman and Leonid Raskin. Problems and algorithms for covering arrays.
Discrete Mathematics, 284(1-3):149–156, 2004.

[105] William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. A case study in goal-
driven architectural adaptation. Software Engineering for Self-Adaptive Systems,
5525:109–127, 2009.

[106] Lu Heng, W. K. Chan, and T. H Tse. Testing context-aware middleware-centric
programs: a data flow approach and an rfid-based experimentation. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 61–70, New York, NY, USA, 2006. ACM.

[107] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A frame-
work for proactive self-adaptation of service-based applications based on online test-
ing. In ServiceWave ’08: Proceedings of the 1st European Conference on Towards a
Service-Based Internet, pages 122–133, Berlin, Heidelberg, 2008. Springer-Verlag.

[108] Ernest Friedman Hill. Jess in Action: Java Rule-Based Systems. Manning Publications
Co., Greenwich, CT, USA, 2003.

[109] Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In AOSD ’04: Proceedings
of the 3rd international conference on Aspect-oriented software development, pages
26–35, New York, NY, USA, 2004. ACM. "976276 26-35".

[110] Koen Hindriks, Mark d’Inverno, and Michael Luck. Architecture for agent program-
ming languages. In In ECAI’00: Proceedings of the Fourteenth European Conference
on Artificial Intelligence, pages 363–367. Springer-Verlag, 2000.

[111] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing—
degrees, models, and applications. ACM Computing Surveys, 40(3):1–28, 2008.

[112] Danny Hughes, Phil Greenwood, Geoff Coulson, Gordon Blair, Florian Pappen-
berger, Paul Smith, and Keith Beven. Gridstix: Supporting flood prediction using
embedded hardware and next generation grid middleware. In MDC’06: 4th Inter-
national Workshop on Mobile Distributed Computing in conjunction with the 7th IEEE
International Symposium on A World of Wireless, Mobile and Multimedia Networks,
Washington, DC, USA, 2006. IEEE Computer Society.

[113] ILog and IBM Corporation. Jrules. http://www-
01.ibm.com/software/integration/business-rule-management/jrules/, 2009.

[114] An intelligent, adaptable grid-based flood monitoring, and warning system. Danny
hughes and phil greenwood and gordon blair and geoff coulson and paul smith and
keith beven. In Proceedings of the 5th UK eScience All Hands Meeting, 2006.

[115] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

BIBLIOGRAPHY 157

[116] JBoss and RedHat Corporation. Drools. http://www.jboss.org/drools/, 2009.
[117] Jean-Marc Jézéquel. Model driven design and aspect weaving. Journal of Software

and Systems Modeling (SoSyM), 7(2):209–218, may 2008.
[118] Bryan F. Jones, Harmen-H. Sthamer, and David E. Eyres. Automatic structural

testing using genetic algorithms. Software Engineering Journal, 11(5):299–306,
September 1996.

[119] Yan Jun and Zhang Jian. Backtracking algorithms and search heuristics to generate
test suites for combinatorial testing. In COMPSAC ’06: Proceedings of the 30th An-
nual International Computer Software and Applications Conference (COMPSAC’06),
Washington, DC, USA, 2006. IEEE Computer Society.

[120] Edward Kachinske and Timothy Kachinske. Maximizing Your Sales with Microsoft
Dynamics CRM. Course Technology Press, Boston, MA, United States, 2008.

[121] Emilia Katz and KKatz. Incremental analysis of interference among aspects. In FOAL
’08: Proceedings of the 7th workshop on Foundations of aspect-oriented languages,
pages 29–38, New York, NY, USA, 2008. ACM.

[122] Shmuel Katz. Diagnosis of harmful aspects using regression verification. In Curtis
Clifton, Ralf Lämmel, and Gary T. Leavens, editors, FOAL: Foundations Of Aspect-
Oriented Languages workshop in conjunction with AOSD’04, pages 1–6, March 2004.

[123] John Keeney and Vinny Cahill. Chisel: A policy-driven, context-aware, dynamic
adaptation framework. In IEEE International Workshop on Policies for Distributed
Systems and Networks, pages 3–14, Washington, DC, USA, 2003. IEEE Computer
Society. 826854 3.

[124] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

[125] Jeffrey O. Kephart and Rajarshi Das. Achieving self-management via utility func-
tions. IEEE Internet Computing, 11(1):40–48, 2007.

[126] Gregor Kiczales. Aspect oriented programming. ACM Computing Surveys, 28(154),
1997.

[127] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modular rea-
soning. In ICSE’05: Proceedings of the 27th International Conference on Software
Engineering, pages 49–58, New York, NY, USA, 2005. ACM, ACM.

[128] Dongsun Kim and Sooyong Park. Reinforcement learning-based dynamic adapta-
tion planning method for architecture-based self-managed software. In SEAMS ’09:
Proceedings of the International workshop on Software Engineering for Adaptive and
Self-Managing Systems in conjunction with ICSE’09, pages 76–85, Washington, DC,
USA, 2009. IEEE Computer Society.

[129] James D. Kiper. Structural testing of rule-based expert systems. ACM Transactions
Software Engineering Methodologies, 1(2):168–187, 1992.

158 BIBLIOGRAPHY

[130] James G. Kobielus. BizTalk: Implementing Business-to-Business E-Commerce. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2000.

[131] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model comparison:
a foundation for model composition and model transformation testing. In GaMMa
’06: Proceedings of the 2006 international workshop on Global integrated model man-
agement, pages 13–20, New York, NY, USA, 2006. ACM.

[132] Christian Koppen and Maximilian Störzer. PCDiff: Attacking the fragile pointcut
problem. In Kris Gybels, Stefan Hanenberg, Stephan Herrmann, and Jan Wloka,
editors, European Interactive Workshop on Aspects in Software (EIWAS), 2004.

[133] B. Korel. Automated software test data generation. IEEE Transactions on Software
Engineering, 16(8):870–879, 1990. 101755.

[134] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change
management. IEEE Transactions on Software Engineering, 16(11):1293–1306, 1990.

[135] Jeff Kramer and Jeff Magee. Analysing dynamic change in software architectures:
A case study. In CDS ’98: Proceedings of the International Conference on Configurable
Distributed Systems, page 91, Washington, DC, USA, 1998. IEEE Computer Society.
792776 91.

[136] D. R. Kuhn, D. R. Wallace, and Jr. Gallo, A. M. Software fault interactions and impli-
cations for software testing. IEEE Transactions on Software Engineering, 30(6):418–
421, 2004.

[137] Rick Kuhn, Yu Lei, and Raghu Kacker. Practical combinatorial testing: Beyond pair-
wise. IEEE IT Professional, 10(3):19 – 23, 2008.

[138] Sandeep S. Kulkarni and Karun N. Biyani. Correctness of component-based adap-
tation. In CBSE’04: Proceedings of International Symposium on Component-based
Software Engineering, pages 48–58, London, UK. Springer-Verlag.

[139] Bert Lagaisse, Wouter Joosen, and Bart De Win. Managing semantic interference
with aspect integration contracts. In Lodewijk Bergmans, Kris Gybels, Peri Tarr, and
Erik Ernst, editors, SPLAT: Software Engineering Properties of Languages for Aspect in
conjuction with AOSD’04, 2004.

[140] Gordon S. lair, Geoff Coulson, Lynne Blair, Mike Clarke, Fabio Costa, Hector Duran,
Nikos Parlavantzas, Katia Saikoski, and Anders Andersen. A principled approach to
supporting adaptation in distributed mobile environments. In PDSE ’00: Proceedings
of the International Symposium on Software Engineering for Parallel and Distributed
Systems, pages 3–12, Washington, DC, USA, 2000. IEEE Computer Society.

[141] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and Richard B.
Scherl. Golog: A logic programming language for dynamic domains. Journal of Logic
Programming, 31(1-3):59–83, 1997.

BIBLIOGRAPHY 159

[142] Zheng Li, Mark Harman, and Robert M. Hierons. Search algorithms for regression
test case prioritization. IEEE Transactions on Software Engineering, 33(4):225–237,
2007.

[143] Karl Lieberherr, David H. Lorenz, and Johan Ovlinger. Aspectual collaborations:
Combining modules and aspects. Computer Journal of the British Computer Society,
46(5):542–565, September 2003.

[144] Denivaldo Lopes, Slimane Hammoudi, Jose de Souza, and Alan Bontempo. Meta-
model matching: Experiments and comparison. In ICSEA ’06: Proceedings of the
International Conference on Software Engineering Advances, page 2, Washington, DC,
USA, 2006. IEEE Computer Society.

[145] Heng Lu, W.K. Chan, and T.H. Tse. Testing pervasive software in the presence
of context inconsistency resolution services. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 61–70, New York, NY, USA,
2008. ACM.

[146] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[147] Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit, 1987.
[148] A. Markov. Extension of the limit theorems of probability theory to a sum of vari-

ables connected in a chain. In R. Howard, editor, Dynamic Probabilistic Systems
(Volume I: Markov Models), chapter Appendix B, pages 552–577. John Wiley & Sons,
Inc., New York City, 1971.

[149] Nelson Matthys, Sam Michiels, Wouter Joosen, and Pierre Verbaeten. Policy-based
management of middleware for distributed sensor applications. In MiNEMA ’08:
Proceedings of the 6th workshop on Middleware for network eccentric and mobile ap-
plications, pages 15–17, New York, NY, USA, 2008. ACM.

[150] Nathan McEachen and Roger Alexander. Distributing classes with woven concerns—
an exploration of potential fault scenarios. In Peri Tarr, editor, AOSD’05: Proceedings
of the 4th International Conference on Aspect-Oriented Software Development, pages
192–200, New York, NY, USA, March 2005. ACM Press.

[151] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng.
Composing adaptive software. IEEE Computer, 37(7):56–64, 2004.

[152] Phil McMinn. Search-based software test data generation: a survey: Research arti-
cles. Software Testing Verification Reliability, vol.14(2):105–156, 2004. 1077279.

[153] C. C. Michael, G. McGraw, and M. A. Schatz. Generating software test data by
evolution. IEEE Transactions on Software Engineering, 27(12):1085–1110, 2001.

[154] Mirko Morandini, Loris Penserini, and Anna Perini. Towards goal-oriented develop-
ment of self-adaptive systems. In SEAMS ’08: Proceedings of the 2008 international

160 BIBLIOGRAPHY

workshop on Software engineering for adaptive and self-managing systems in conjuc-
tion with ICSE’08, pages 9–16, New York, NY, USA, 2008. ACM.

[155] Brice Morin, Olivier Barais, and Jean-Marc Jézéquel. K@rt: An aspect-oriented
and model-oriented framework for dynamic software product lines. In MRT’08:
Proceedings of the 3rd International Workshop on Models@Runtime in cojunction with
MoDELS’08, Berlin, Heidelberg, October 2008. Springer-Verlag.

[156] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg.
Models@ run.time to support dynamic adaptation. IEEE Computer, 42(10):44–51,
2009.

[157] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jézéquel. Taming dynam-
ically adaptive systems using models and aspects. In ICSE ’09: Proceedings of the
2009 IEEE 31st International Conference on Software Engineering, pages 122–132,
Washington, DC, USA, 2009. IEEE Computer Society.

[158] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg,
Vegard Dehlen, and Gordon Blair. An aspect-oriented and model-driven approach
for managing dynamic variability. In MoDELS ’08: Proceedings of the 11th interna-
tional conference on Model Driven Engineering Languages and Systems, pages 782–
796, Berlin, Heidelberg, 2008. Springer-Verlag.

[159] Brice Morin, Gilles Vanwormhoudt, Philippe Lahire, Alban Gaignard, Olivier Barais,
and Jean-Marc Jézéquel. Managing variability complexity in aspect-oriented mod-
eling. In MoDELS ’08: Proceedings of the 11th international conference on Model
Driven Engineering Languages and Systems, pages 797–812, Berlin, Heidelberg,
2008. Springer-Verlag.

[160] Michael C. Mozer. Lessons from an adaptive home. In Smart Environments, pages
271–294, Department of Computer Science and Engineering, The University of
Texas at Arlington, Box 19015, Arlington, TX 76019, USA, 2004. Copyright c� 2005
John Wiley Sons, Inc.

[161] Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility of control in adaptive systems.
In ULSSIS ’08: Proceedings of the 2nd international workshop on Ultra-large-scale
software-intensive systems, pages 23–26, New York, NY, USA, 2008. ACM.

[162] Freddy Munoz and Benoit Baudry. Validation challenges in model composition:
The case of adaptive systems. In ChaMDE 2008: Workshop on Challenges in Model
Driven Engineering in conjounction with MODELS’08, London, UK, September 2008.
Springer-Verlag.

[163] Freddy Munoz and Benoit Baudry. A framework for testing model composition en-
gines. In SC ’09: Proceedings of the 8th International Conference on Software Compo-
sition, pages 125–141, Berlin, Heidelberg, 2009. Springer-Verlag.

BIBLIOGRAPHY 161

[164] Freddy Munoz, Benoit Baudry, and Olivier Barais. A classification of invasive
patterns in aop. Research report inria-00266555, INRIA, http://hal.inria.fr/inria-
00266555/en/, March 2008.

[165] Freddy Munoz, Benoit Baudry, and Olivier Barais. Improving maintenance in aop
through an interaction specification framework. In ICSM’08: 24th International
Conference on Software Maintenance, 2008, pages 77–86, Washington, DC, USA,
October 2008. IEEE Computer Society.

[166] Freddy Munoz, Benoit Baudry, Romain Delamare, and Yves Le-Traon. Inquiring the
usage of aspect-oriented programming: an empirical study. In ICSM’09: 25th IEEE
International Conference on Software Maintenance, pages 137–146, Washington, DC,
USA, Sep-Oct 2009. IEEE Computer Society.

[167] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY,
USA, 1979.

[168] Mohamed N. Bennani and Daniel A. Menasce. Resource allocation for autonomic
data centers using analytic performance models. In ICAC ’05: Proceedings of the Sec-
ond International Conference on Automatic Computing, pages 229–240, Washington,
DC, USA, 2005. IEEE Computer Society.

[169] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Prac-
tice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[170] Jürgen Nehmer, Martin Becker, Arthur Karshmer, and Rosemarie Lamm. Living
assistance systems: An ambient intelligence approach. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering, pages 43–50, New York,
NY, USA, May 2006. ACM.

[171] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and Pamela
Zave. Matching and merging of statecharts specifications. In ICSE ’07: Proceedings of
the 29th international conference on Software Engineering, pages 54–64, Washington,
DC, USA, 2007. IEEE Computer Society.

[172] Cu D. Nguyen, Anna Perini, Paolo Tonella, Simon Miles, Mark Harman, and Michael
Luck. Evolutionary testing of autonomous software agents. In AAMAS ’09: Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent Sys-
tems, pages 521–528, Richland, SC, 2009. International Foundation for Autonomous
Agents and Multiagent Systems.

[173] Tin A. Nguyen, Walton Perkin, Thomas J. Laffey, and Deanne Pecora. Knowledge
base verification. AI Magazine, 8(2):69–75, 1987.

[174] Oscar Nierstrasz, Marcus Denker, and Lukas Renggli. Model-centric, context-aware
software adaptation. Software Engineering for Self-Adaptive Systems, 5525:128–145,
2009.

162 BIBLIOGRAPHY

[175] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. Rosenblum, and A. Wolf. An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems, 14(3):54–62, 1999.

[176] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based run-
time software evolution. In ICSE ’98: Proceedings of the 20th international conference
on Software engineering, pages 177–186, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[177] OSGi Alliance. Osgi service platform release 4. [Online]. Available:
http://www.osgi.org/Main/HomePage. [Accessed: Jun. 17, 2009], 2007.

[178] George A. Papadopoulos, Wita Wojtkowski, Gregory Wojtkowski, Stanislaw Wrycza,
and Jose Zupancic. Applying utility functions to adaptation planning for home au-
tomation applications. In ISD’08: 17th International Conference on Information Sys-
tems Development, Lecture Notes in Computer Science, pages 529–537. Springer-
Verlag, August 2008.

[179] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-data generation us-
ing genetic algorithms. Software Testing, Verification, and Reliability, 9(4):263–282,
1999. 10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y.

[180] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Gerard Florin, Fabrice Legond-
Aubry, and Laurent Martelli. Jac: an aspect-based distributed dynamic framework.
Software Practice Experts, 34(12):1119–1148, 2004.

[181] Gilles Perrouin, Julien Deantoni, Jean marc Jézéquel, and Franck Chauvel. Mod-
eling the variability space of self-adaptive applications. In DSPL’08: 2nd Dynamic
Software Product Lines Workshop in conjunction with SPLC 2008, 8 September 2008.

[182] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A
component-based and aspect-oriented model for software evolution. International
Journal of Computer Applications in Technology (IJCAT), 2008.

[183] Mauro Pezze and Michal Young. Software Testing and Analysis: Process, Principles
and Techniques. Number 1. Wiley, John Sons, Incorporated, 2007.

[184] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In AOSD ’02: Proceedings of the 1st international conference
on Aspect-oriented software development, pages 141–147, New York, NY, USA, 2002.
ACM.

[185] Sriplakich Prawee, Guillaume Waignier, and Anne-Françoise Le Meur. Enabling Dy-
namic Co-evolution of Models and Runtime Applications. In COMPSAC ’08: Proceed-
ings of the 2008 32nd Annual IEEE International Computer Software and Applications
Conference, pages 1116 – 1121, Washington, DC, USA, 2008. IEEE Computer Soci-
ety.

BIBLIOGRAPHY 163

[186] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Soft-
ware engineering for automotive systems: A roadmap. In FOSE ’07: 2007 Future
of Software Engineering, pages 55–71, Washington, DC, USA, 2007. IEEE Computer
Society.

[187] European Union Seventh Framework Programme. Dynamic variability in ccomplex,
adaptive systems (diva). http://www.ict-diva.eu/, 2008.

[188] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware regression
testing: an empirical study of sampling and prioritization. In ISSTA ’08: Proceedings
of the 2008 international symposium on Software testing and analysis, pages 75–86,
New York, NY, USA, 2008. ACM.

[189] Syed Saif ur Rahman, Nasreddine Aoumeur, and Gunter Saake. An adaptive eca-
centric architecture for agile service-based business processes with compliant aspec-
tual .net environment. In iiWAS ’08: Proceedings of the 10th International Conference
on Information Integration and Web-based Applications & Services, pages 240–247,
New York, NY, USA, 2008. ACM.

[190] Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to practice. In
ICMAS-95: Proceedings of the first international conference on Multi-Agent Systems,
pages 312–319, New York, NY, USA, 1995. ACM.

[191] Andreas Rasche and Andreas Polze. Configuration and dynamic reconfiguration
of component-based applications with microsoft .net. In ISORC ’03: Proceedings
of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, page 164, Washington, DC, USA, 2003. IEEE Computer Society.

[192] Awais Rashid and Ana Moreira. Domain models are NOT aspect free. In Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors, MoDELS’06: Pro-
ceedings of the 9th International Conference on Model Driven Engineering Languages
and Systems,, volume 4199 of Lecture Notes in Computer Science, pages 155–169,
Washington, DC, USA, 2006. Springer.

[193] Y. Raghu Reddy. An approach to composing aspect-oriented design models. PhD thesis,
Fort Collins, CO, USA, 2006. Adviser-Robert France.

[194] Y. Raghu Reddy, Sudipto Ghosh, Robert B. France, Greg Straw, James M. Bieman,
N. McEachen, Eunjee Song, and Geri Georg. Directives for composing aspect-
oriented design class models. Transactions on Aspect-Oriented Software Development,
3880:75–105, 2006.

[195] Giovanni Rimassa, Dominic Greenwood, and Martin E. Kernland. The living sys-
tems technology suite: An autonomous middleware for autonomic computing. In
ICAS ’06: Proceedings of the International Conference on Autonomic and Autonomous
Systems, page 33, Washington, DC, USA, 2006. IEEE Computer Society.

[196] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification system
and analysis for interactions in aspect-oriented programs. In FSE-12: International

164 BIBLIOGRAPHY

Symposium On Foundations Of Software Engineering, pages 147–158. ACM, October
2004.

[197] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge
Lorenzo, Alessandro Mamelli, and Ulrich Scholz. Music: Middleware support for
self-adaptation in ubiquitous and service-oriented environments. Software Engineer-
ing for Self-Adaptive Systems, 5525:164–182, 2009.

[198] Romain Rouvoy, Mikael Beauvois, and Frank Eliassen. Dynamic aspect weaving
using a planning-based adaptation middleware. In Rüdiger Kapitza and Hans P.
Reiser, editors, Proceedings of the 2nd Workshop on Middleware-Application Interac-
tion (MAI’08), page 1–6, Oslo, Norway, 2008. ACM.

[199] Romain Rouvoy, Frank Eliassen, Jacqueline Floch, Svein O. Hallsteinsen, and Erlend
Stav. Composing components and services using a planning-based adaptation mid-
dleware. In SC’08: 7th International Symposium on Software Composition, volume
4954 of Lecture Notes in Computer Science, pages 52–67, Budapest, Hungary, march
2008. Springer.

[200] Michele Sama, David S. Rosenblum, Zhimin Wang, and Sebastian Elbaum. Model-
based fault detection in context-aware adaptive applications. In FSE-16: Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 261–271, New York, NY, USA, 2008. ACM.

[201] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Harrold.
Test-suite augmentation for evolving software. In ASE ’08: Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering, pages
218–227, Washington, DC, USA, 2008. IEEE Computer Society.

[202] Yoshikazu Sawaragi, Hirotaka Nakayama, and Tetsuzo Tanino. Theory of multiobjec-
tive optimization. Academic Press, Orlando, 1985.

[203] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2), February
2006.

[204] G. Seroussi and N.H. Bshouty. Vector sets for exhaustive testing of logic circuits.
Information Theory, IEEE Transactions on, 34(3):513 –522, may 1988.

[205] Giovanna Di Marzo Serugendo, John Fitzgerald, Alexander Romanovsky, and Nico-
las Guelfi. A generic framework for the engineering of self-adaptive and self-
organising systems. In Kirstie Bellman, Michael G. Hinchey, Christian Müller-
Schloer, Hartmut Schmeck, and Rolf Würtz, editors, Organic Computing - Controlled
Self-organization, number 08141 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[206] Yoo Shin and Harman Mark. Pareto efficient multi-objective test case selection,
2007. 1273483 140-150.

BIBLIOGRAPHY 165

[207] Hui Song, Yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang Hu, and Hong
Mei. Generating Synchronization Engines between Running Systems and Their
Model-Based Views . In Nelly Bencomo, Gordon Blair, Robert France, Cedric
Jeanneret, and Freddy Munoz, editors, MRT’09: 4th International Workshop Mod-
els@run.time in jounction with Models 2009, volume 509 of CEUR Workshop Proceed-
ings, pages 1–10, Berlin, Heidelberg, 10 2009. Springer-Verlag.

[208] Maximilian Störzer and Jürgen Graf. Using pointcut delta analysis to support evolu-
tion of aspect-oriented software. In ICSM’05: 21st International Conference on Soft-
ware Maintenance, pages 653–656, Washington, DC, USA, September 2005. IEEE
Computer Society.

[209] Sun Microsystems. Java Remote Method Invocation Specification, November 1996.
[210] Bholonath Surajbali, Geoff Coulson, Phil Greenwood, and Paul Grace. Augment-

ing reflective middleware with an aspect orientation support layer. In ARM ’07:
Proceedings of the 6th international workshop on Adaptive and reflective middleware,
2007.

[211] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an aspect-oriented
approach tailored for component based software development. In AOSD ’03: Pro-
ceedings of the 2nd international conference on Aspect-oriented software development,
pages 21–29, New York, NY, USA, 2003. ACM.

[212] Motoi Suwa, A. C Scott, and Edward H. Shortliffe. An approach to verifying com-
pleteness and consistency in a rule-based expert system. AI Magazine., 3(4), 1982.

[213] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Plan-directed archi-
tectural change for autonomous systems. In SAVCBS’07: conference on Specification
and verification of component-based systems, pages 15–21, New York, NY, USA, 2007.
ACM.

[214] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. From Goals to Compo-
nents: A Combined Approach to Self-Management. In SEAMS ’06: Proceedings of the
2006 international workshop on Self-adaptation and self-managing systems’08: Inter-
national workshop on Software engineering for adaptive and self-managing systems in
conjunction with ICSE’08, New York, NY, USA, 2008. ACM.

[215] Clemens A. Szyperski. Emerging component software technologies - a strategic
comparison. Software - Concepts and Tools, 19(1):2–10, 1998.

[216] Jianbin Tan, George S. Avrunin, and Lori A. Clarke. Managing space for finite-sate
verification. In ICSE ’06: Proceedings of the 28th international conference on Software
engineering, pages 152–161, New York, NY, USA, 2006. ACM.

[217] Tom Tourwé, Johan Brichau, and Kris Gybels. On the existence of the AOSD-
evolution paradox. In Lodewijk Bergmans, Johan Brichau, Peri Tarr, and Erik Ernst,
editors, SPLAT ’03: Software engineering Properties of Languages for Aspect Technolo-
gies in conjunction with AOSD’03, March 2003.

166 BIBLIOGRAPHY

[218] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.
[219] Kevin Twidle, Emil Lupu, Naranker Dulay, and Morris Sloman. Ponder2 - a policy

environment for autonomous pervasive systems. In POLICY ’08: Proceedings of the
2008 IEEE Workshop on Policies for Distributed Systems and Networks, pages 245–
246, Washington, DC, USA, 2008. IEEE Computer Society.

[220] Wim Vanderperren, Davy Suvée, Bart Verheecke, María Agustina Cibrán, and Vi-
viane Jonckers. Adaptive programming in jasco. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software development, pages 75–86, New
York, NY, USA, 2005. ACM.

[221] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese, and Basil
Becker. Incremental Model Synchronization for Efficient Run-time Monitoring
. In Nelly Bencomo, Gordon Blair, Robert France, Cedric Jeanneret, and Freddy
Munoz, editors, MRT’09: 4th International Workshop Models@run.time in jounction
with Models 2009, volume 509 of CEUR Workshop Proceedings, pages 1–10, Berlin,
Heidelberg, 10 2009. Springer-Verlag.

[222] Guillaume Waignier, Anne-Françoise Le Meur, and Laurence Duchien. A Model-
Based Framework to Design and Debug Safe Component-Based Autonomic Systems.
In Raffaela Mirandola, Ian Gortona, and Christine Hofmeiste, editors, International
Conference on the Quality of Software-Architectures Architectures for Adaptive Soft-
ware Systems, volume 5581 of Lecture Notes in Computer Science, pages 1–17, Penn-
sylvania États-Unis d’Amérique, 2009. Springer-Verlag.

[223] Zhimin Wang, Sebastian Elbaum, and David S. Rosenblum. Automated generation
of context-aware tests. In ICSE ’07: Proceedings of the 29th international confer-
ence on Software Engineering, pages 406–415, Washington, DC, USA, 2007. IEEE
Computer Society.

[224] Joachim Wegener and Oliver Bühler. Evaluation of different fitness functions for the
evolutionary testing of an autonomous parking system. In In Proceedings of GECCO,
pages 1400–1412. Springer-Verlag, 2004.

[225] Joachim Wegener and Matthias Grochtmann. Verifying timing constraints of real-
time systems by means of evolutionary testing. Real-Time Systems, 15(3):275–298,
1998.

[226] Alan W. Williams and Robert L. Probert. Formulation of the interaction test coverage
problem as an integer problem. In In Proceedings of the 14th International Conference
on the Testing of Communicating Systems (TestCom 2002, pages 283–298, 2002.

[227] Eclipse foundation Xerox Park, IBM Corporation. Aspectj. http://www.aspectj.org,
2009.

[228] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design
differencing. In ASE ’05: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pages 54–65, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 167

[229] Chang Xu and S. C. Cheung. Inconsistency detection and resolution for context-
aware middleware support. In ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 336–345, New York, NY,
USA, 2005. ACM.

[230] Chang Xu, S. C. Cheung, and W. K. Chan. Incremental consistency checking for
pervasive context. In ICSE ’06: Proceedings of the 28th international conference on
Software engineering, pages 292–301, New York, NY, USA, May 2006. ACM.

[231] Myra B. Cohen Xun Yuan and Atif M. Memon. Gui interaction testing: Incorporating
event context. IEEE Transactions on Software Engineering, 36:81–95, 2009.

[232] Xin-She Yang. Introduction to Mathematical Optimization: From Linear Programming
to Metaheuristics. Cambridge International Science Publishing, 2008.

[233] Cemal Yilmaz, Myra B. Cohen, and Adam A. Porter. Covering arrays for efficient fault
characterization in complex configuration spaces. IEEE Transactions on Software
Engineering, vol.32(0098-5589):45–54, 2006.

[234] L. A. Zadeh. Fuzzy logic and approximate reasoning. In Fuzzy sets, fuzzy logic,
and fuzzy systems: selected papers by Lotfi A. Zadeh, pages 238–259. World Scientific
Publishing Co., Inc., 1996. 234395.

[235] John Zeleznikow and Dan Hunter. Building Intelligent Legal Information Systems
(Computer Law, No 13). Springer, first edition, December 1994.

[236] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive
software. In ICSE ’06: Proceedings of the 28th international conference on Software
engineering, pages 371–380, New York, NY, USA, May 2006. ACM.

[237] Ji Zhang and Betty H.C. Cheng. Using temporal logic to specify adaptive program
semantics. Journal of Systems and Software, 79(10):1361 – 1369, 2006. Architecting
Dependable Systems.

[238] Ji Zhang, Heather J. Goldsby, and Betty H.C. Cheng. Modular verification of dy-
namically adaptive systems. In AOSD ’09: Proceedings of the 8th ACM international
conference on Aspect-oriented software development, pages 161–172, New York, NY,
USA, March 2009. 2009. ACM.

168 BIBLIOGRAPHY

169

List of Figures

1 Self -adaptive system . 13
2 Graphical view of an MDCA for 3 variables. 18

2.1 Self -adaptive system . 32
2.2 Product line variability model for Cordelia’s ACRM environment. 36
2.3 Component diagram of Cordelia’s ACRM system. 48
2.4 aspect-oriented adaptation of Cordelia’s ACRM system. 49
2.5 Product line variability model for Cordelia’s ACRM. 52
2.6 aspect-oriented Model Driven adaptation mechanism 54
2.7 Testing practice parts. 56

3.1 Intra-variable interactions for the reasoning variable platform (cf. Table 2.1)
among six environment instances. 70

3.2 Intra-variable interactions considering only two environment instances. . . . 71
3.3 Inter-variable interactions between three inter-variable interactions. 72
3.4 MDCA(39; 2, 2, 3, (2, 3, 2)) . 76
3.5 Flowchart of a genetic algorithm. 79
3.6 Flowchart of a bacteriologic algorithm. 81
3.7 Flowchart of an hybrid algorithm. 83
3.8 Two plots comparing the performance of GA, BA, and HA. The length of GA,

BA, and HA are represented respectively by the dashed black line, the dotted red
line, the solid blue line. 87

3.9 Two plots comparing the performance of BA and HA. 89
3.10 Three plots comparing the coverage of reasoning conditions by MDCA, MCA,

and RAND over the three experimental subjects 90

4.1 Chat application class diagram . 99
4.2 Schematic view of the association flow. (a) association without the Nick-

name uniqueness aspect. (b) association with the Nickname uniqueness aspect.105
4.3 base system specification covering . 109
4.4 Example of specification reuse . 110
4.5 Example of conflict resolution . 111

170 LIST OF FIGURES

4.6 ABIS structure diagram . 115
4.7 SAST and classification process of Encryption aspect, Listing 4.3, lines 9-12 . 115
4.8 Automatic advice classification . 116
4.9 Warning raised by ABIS . 118

171

Listings

2.1 Reasoning rule for the exchange service availability 38
2.2 Reasoning rule considering history . 39
2.3 Reasoning rule considering a chain of events 40
2.4 Goal based reasoning in GOLOG . 41
4.1 Aspect with two pointcuts . 96
4.2 Aspect modifying the structure of the base system 97
4.3 "Implementation of the encryption concern" 100
4.4 Implementation of the unique nickname concern 101
4.5 Modified point-cut descriptor of theNickname uniqueness aspect 106
4.6 Core specification formal interpretation using Alloy 112
4.7 Aspect/Base formal interpretation using Alloy 113
4.8 attach method specified with an annotation 117
4.9 StandarClient with annotations . 120
A.1 Tuple counting procedure . 131
B.1 Server authentication mechanism implemented using aspects 133
B.2 Client authentication mechanism implemented using aspects 135
C.1 Alloy specification of the ABIS framework 137

172 LISTINGS

173

Publications

International Conferences

1. Freddy Munoz, Benoit Baudry, Romain Delamare, and Yves Le Traon. Inquiring the
usage of aspect-oriented programming: an empirical study. In ICSM09, 25th
International conference on Software Maintentance. September 2009, Edmonton,
Alberta, Canada.

2. Freddy Munoz and Benoit Baudry. A framework for testing model composition
engines. In SC 2009, 8th international conference on Software Composition. July
2009, Zurich, Switzerland.

3. Freddy Munoz, Benoit Baudry, and Olivier Barais. Improving Maintenance in AOP
Through an Interaction Specification Framework. In ICSM08, 24th International
conference on Software Maintentance. September 2008, Beijing, China.

International Workshops

1. Freddy Munoz, Benoit Baudry, and Olivier Barais. Vigilant usage of Aspects. In
Proceedings of ADI 2007 - Workshop on Aspects, Dependencies, and Interactions at
ECOOP 2007. July 2007, Berlin, Germany.

2. Freddy Munoz and Benoit Baudry. Validation challenges in model composition:
The case of adaptive systems. In Proceedings of ChaMDE 2000 - Workshop on
Challenges in Model Driven Engineering in conjounction with MODELS’08. Septem-
ber 2008, Toulouse, France.

Other Publications

1. Freddy Munoz, Benoit Baudry, and Olivier Barais. A classification of invasive pat-
terns in AOP. In INRIA Research report 00266555 http://hal.inria.fr/inria-00266555/en/
- (IRISA/INRIA) Institut National de Recherche en Informatique et Automatique, IN-
RIA Bretagne Atlantique. March 2008, Rennes, France.

2. Freddy Munoz and Benoit Baudry. Artificial table testing dynamically adaptive
systems. In INRIA Research report 00365874, http://hal.inria.fr/inria-00365874/en/

174 Publications

- (IRISA/INRIA) Institut National de Recherche en Informatique et Automatique, IN-
RIA Bretagne Atlantique. March 2009, Rennes, France.

Résumé

Les systèmes auto adaptatifs sont des systèmes logiciels capables d’observer leur envi-
ronnement de travail (par des sondes), raisonner et prendre des décisions sur la façon de
s’adapter aux changements environnementaux (par un moteur de raisonnement), et modi-
fier leur structure interne pour prendre les adaptations en compte. Ces systèmes peuvent
fournir une aide précieuse dans un grand nombre d’activités humaines. Cependant, ils ne
fourniront entièrement leurs promesses que si les ingénieurs peuvent s’assurer que les dé-
cisions et les adaptations sont correctes sur toutes les situations. Ceci exige des techniques
robustes pour valider que les mécanismes de raisonnement et d’adaptation dans de tels sys-
tèmes sont corrects. Dans cette thèse j’adresse la validation des moteurs de raisonnement
et des mécanismes d’adaptation par programmation orientée aspect.

Les moteurs de raisonnement sont des éléments logiciels responsables de raisonner sur
un grand nombre de facteurs afin de décider comment adapter un système face à des va-
riations dans l’environnement. Il est primordial d’assurer que les décisions prises par ces
moteurs sont correctes pour chaque changement d’environnement possible. Une décision
erronée peut mener vers une adaptation défectueuse qui peut empêcher le système de
fonctionner correctement. Cependant, valider que les moteurs de raisonnement prennent
la bonne décision entraine des défis dus au grand nombre de changements environnemen-
taux possibles. Dans cette thèse je présente multi dimesional covering arrays (MDCA) pour
échantillonner les conditions environnementales qui peuvent affecter la prise des déci-
sions. MDCA vise spécifiquement les environnements qui peuvent déclencher des décisions
complexes en intégrant explicitement la notion de l’histoire dans l’échantillon d’environne-
ment.

La programmation orientée aspect (AOP) fourni les moyens aux ingénieurs d’augmen-
ter ou remplacer la structure ou le comportement du système, ces propriétés font d’AOP un
bon mécanisme d’adaptation. Cependant, en utilisant l’AOP il est difficile de (i) prévoir des
interactions entre différents aspects et le système de base, (ii) contrôler les endroits où les
aspects se tisseront, (iii) assurer que les aspects s’exécuteront sans risque pour l’évolution
(des aspects ou du système de base). Ces difficultés entravent la validation et l’adoption de
l’AOP en général. Dans cette thèse je présente un framework pour la spécification d’interac-
tions dans des programmes orientée aspects (ABIS), qui permet aux ingénieurs de contrôler
les interactions entre les aspects et le système de base en spécifiant les endroits où aspects
sont autorisés à se tisser. ABIS permet aux ingénieurs de réduire le temps nécessaire pour
diagnostiquer et corriger des problèmes dus aux aspects défectueux.

Abstract

Self-adaptive system are software systems capable of sensing their working environ-
ment (through sensors), reason and make decisions on how to adapt facing environmental

changes (through a reasoning engine), and reconfigure their internal structure in order
apply adaptations (through an adaptation mechanism). These systems can provide effec-
tive assistance in a large number of human activities. Yet, they will fully deliver their
promises only if system engineers can ensure that decisions and adaptations are correct on
all situations. This requires robust techniques for validating that the reasoning process and
adaptation mechanisms implemented in such systems are correct. In this thesis I address
the validation of reasoning engines and adaptation mechanism base on aspect-oriented
programming.

Reasoning engines are pieces of software entitled of reasoning on a large number of
factors in order to decide how to adapt given an environmental change. It is critical to en-
sure that the decisions of these engines are correct for every possible environment change.
Wrong decision may lead to faulty adaptations that may prevent the system to work prop-
erly. Yet, validating that reasoning engines make the right decision is challenging because
of the large number of possible environmental changes. In this thesis I introduce multi-
dimensional covering arrays (MDCA) for sampling the environmental conditions that may
influence the decision making process. MDCA specifically targets environments that can
trigger complex decision by explicitly integrating the notion of history in the environment
sample.

Aspect oriented programming (AOP) provide the means to developers to augment or
replace the system structure or behavior, properties that make AOP a good adaptation
mechanism. Yet, when using AOP it is difficult to (i) foresee interactions between different
aspects and the base system, (ii) control the places that aspects will advise and invade, (iii)
ensure that aspects will perform safely on evolution (aspects or the base system). These
difficulties hamper the validation and adoption of AOP in general. In this thesis I introduce
an interactions specification framework (ABIS), which allows developers to control the
aspects interactions with the base system by specifying the places that aspects are allowed
to advice. ABIS enables developers to reduce the time needed to diagnose and correct
problems due to faulty aspects.

 VU : VU :

 Le Directeur de Thèse Le Responsable de l'École Doctorale
 Jean-Marc Jézéquel

VU pour autorisation de soutenance

Rennes, le

Le Président de l'Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication :

Le Président de Jury,
Olivier Ridoux

	Remerciements
	Sistèmes auto-adaptatives
	Introduction generale
	Sistèmes auto-adaptatives
	Défis por la validation des systèmes auto-adaptatives
	Défis de la validation des moteurs de raisonnement
	Défis de la validation de l'AOP

	Contributions de cette these
	Test des moteurs de raisonnement
	Specification des mechanismes orientes aspects

	D'autres contributions á la validation des systèmes auto-adaptatives

	Introduction
	Self-adaptive systems
	Challenges of the validation of self-adaptive systems
	Contributions of this thesis
	Test data selection from reasoning engines
	Specification of aspect-oriented adaptation mechanism

	Organization of this thesis

	Background and Motivation
	Self-Adaptive Systems
	Environment representation
	Autonomous reasoning
	Adaptation Mechanism

	Validation and Verification of self-adaptive system
	Testing
	Verification
	Positioning with respect to Testing and Verification
	Specifications for aspect-oriented adaptation
	Positioning with respect to the specifications for aspects

	Contribution of this thesis

	Testing Reasoning Engines
	Inter-variable and Intra-variable Interactions
	Mixed Level Covering Arrays
	Limits of MCA for sampling the reasoning space
	Multi-Dimensional Covering Arrays
	Constructing MDCAs
	Optimal value
	Genetic Algorithm
	Bacteriologic Algorithm
	Hybrid Algorithm

	Experimental Evaluation
	Experimental subjects
	Research questions
	Experimental SetUp
	GA v/s BA v/s Hybrid
	Comparing generation sets
	Threats to validity

	Discussion

	Specifying aspect-oriented adaptation mechanism
	A brief introduction to AOP and AspectJ
	Motivating Case Study
	A chat application
	Initial version
	Crosscutting concerns
	Validating the initial version
	Evolving the chat application
	Validating the new version
	Reasoning about the problems
	Discussion

	Specifying aspects-base system interaction
	Aspect specification
	Core specification
	Specification matching
	Obliviousness

	A specification framework for interactions
	Automatic classification of aspects
	Specifications in the base system
	Displaying violations
	Contribution of the ABIS framework
	Writing specifications in the base system

	Experiments
	Revisiting the initial version
	Evolution, problems detection, and problem solving
	Benefits for validation and validation effort

	Discussion

	Conclusion and Perspectives
	Summary and Conclusion
	Perspectives
	Perspectives for Reasoning Engine Validation
	Perspectives for Adaptation Mechanism Validation

	Tuple counting procedure
	Authentication mechanism for the chat application using aspects
	Alloy Specifications
	Glossary
	Bibliographie
	List of Figures
	List of listings
	Publications

