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Abstract

Understanding and predicting structure-function relationships in proteins with fully in silico approaches

remain today a great challenge. Despite recent developments of computational methods for studying

molecular motions and interactions, dealing with macromolecular flexibility largely remains out of reach

of the existing molecular modeling tools. The aim of this thesis is to develop a novel approach based

on motion planning algorithms originating from robotics to better deal with macromolecular flexibility in

protein interaction studies.

We have extended a recent sampling-based algorithm, ML-RRT, for (dis)-assembly path planning of

complex articulated objects. This algorithm is based on a partition of the configuration parameters into

active and passive subsets, which are then treated in a decoupled manner. The presented extensions permit

to consider different levels of mobility for the passive parts that can be pushed or pulled by the motion of

active parts. This algorithmic tool is successfully applied to study protein conformational changes induced

by the diffusion of a ligand inside it.

Building on the extension of ML-RRT, we have developed a novel method for simultaneously

(dis)assembly sequencing and path planning. The new method, called Iterative-ML-RRT, computes not

only the paths for extracting all the parts from a complex assembled object, but also the preferred order

that the disassembly process has to follow. We have applied this general approach for studying disassembly

pathways of macromolecular complexes considering a scoring function based on the interaction energy. The

results described in this thesis prove not only the efficacy but also the generality of the proposed algorithms.

Keywords : Motion Planning, Disassembly Sequencing, Protein-Ligand Interactions, Protein Complex

Disassembly.
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Résumé

La compréhension et la prédiction des relations structure-fonction de protéines par des approches in

sillico représentent aujourd’hui un challenge. Malgré le développement récent de méthodes algorithmiques

pour l’étude du mouvement et des interactions moléculaires, la flexibilité de macromolécules reste largement

hors de portée des outils actuels de modélisation moléculaire. L’objectif de cette thèse est de développer

une nouvelle approche basée sur des algorithmes de planification de mouvement issus de la robotique pour

mieux traiter la flexibilité moléculaire dans l’étude des interactions protéiques.

Nous avons étendu un algorithme récent d’exploration par échantillonnage aléatoire, ML-RRT pour le

désassemblage d’objets articulés complexes. Cet algorithme repose sur la décomposition des paramètres

de configuration en deux sous-ensembles actifs et passifs, qui sont traités de manière découplée. Les

extensions proposées permettent de considérer plusieurs degrés de mobilité pour la partie passive, qui peut

être poussée ou attirée par la partie active. Cet outil algorithmique a été appliqué avec succès pour l’étude

des changements conformationnels de protéines induits lors de la diffusion d’un ligand.

A partir de cette extension, nous avons développé une nouvelle méthode pour la résolution simultanée

du séquençage et des mouvements de désassemblage entre plusieurs objets. La méthode, nommée Iterative-

ML-RRT, calcule non seulement les trajectoires permettant d’extraire toutes les pièces d’un objet complexe

assemblé, mais également l’ordre permettant le désassemblage. L’approche est générale et a été appliquée

pour l’étude du processus de dissociation de complexes macromoléculaires en introduisant une fonction

d’évaluation basée sur l’énergie d’interaction. Les résultats présentés dans cette thèse montrent non

seulement l’efficacité mais aussi la généralité des algorithmes proposés.

Mots-clefs : Planification de Mouvement, Séquençage de Désassemblage, Interactions Protéine-Ligand,

Désassemblage des Complexes Protéiques.
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1
Introduction

This thesis deals with atomic-scale modeling of protein motions and deformations that are necessary for

their interactions with other molecules. Proteins are essential biological macromolecules that participate

in most of the processes within cells. For instance, some types of proteins catalyze biochemical reactions,

other proteins play structural roles. They are also involved in cell signaling processes, and participate to the

cell-division cycle. The function of proteins is closely related with their structure and with their ability to

undergo conformational changes. A better understanding of this relationship at the atomic level will lead

to major scientific advances, with important applications in medicine, pharmacology and biotechnology.

However, available tools to provide structural information on how proteins interact with other molecules are

very limited. Experimental methods such as X-ray crystallography or nuclear magnetic resonance (NMR)

are able to obtain an atomic-resolution representation of proteins, but provide null or poor information about

how proteins deform to achieve their function. The limits of experimental methods are even more evident

when the interactions to be analyzed involve large-amplitude (slow-timescale) conformational changes of

proteins. Computational methods are therefore necessary to complement experimentation.

Computational methods in structural biology have been developed since several decades ago. Great

advances on the understanding of protein function have been achieved thanks to molecular simulations.

However, these methods, that mainly rely on Molecular Dynamics (MD) simulations, require huge

computational resources for accessing to the time-scales of many protein interaction processes.

In this thesis, we have studied new computational methods, which can be considered as alternative or

complementary tools, to address problems in structural biology involving large-amplitude protein motions.

The main goal is to simulate such motions with low computational cost. For this, a geometric model of

molecules is considered, where proteins are represented as articulated mechanisms. Then the problem of

simulating relative motions between interacting molecules is formulated as a (dis)assembly problem for the

1



Chapter 1 Introduction · 2

articulated objects. Inspired by recent research in robotics, we propose motion-planning-based algorithms to

efficiently solve these complex (dis)assembly problems, which may involve hundreds of degrees of freedom.

This thesis is addressed both to researchers in structural biology, who would be interesting in applying

or combining the methods we propose, and to researchers in robot motion planning, who could develop

new methods inspired from ours. Therefore, Chapter 2 introduces some basic notions in structural biology

that are straightforward for readers from the former group, but that will facilitate the reading of some

chapters to “roboticians”. Next, Chapter 3 presents a state-of-the-art on molecular modeling methods and

motion planning algorithms, mainly focusing on their application to the simulation of protein motions and

interactions. The next four chapters present the contribution of this thesis. This contribution is two-fold.

First, we propose general methods that aim to be applicable to any type of mobile system. And second,

we investigate the particular application to problems in structural biology. Chapters 4 and 6 involve the

methodological contribution, while Chapters 5 and 7 deal with the applications. More precisely, Chapter 4

deals with disassembly path planning for two objects with articulated parts. A method is proposed that

extends previous work to handle very complex systems. Chapter 5 investigates the application of this method

to compute protein motions induced (or required) by the diffusion of a ligand inside it. Results presented

in this chapter show the potential interest of the method. Based on an extension of the method described

in Chapter 4, Chapter 6 presents a novel method for simultaneously (dis)assembly sequencing and path

planning. The method is able to to solve general (dis)assembly planning problems involving objects with

arbitrary shapes, and possibly requiring non-monotonic (dis)assembly sequences. Next, the application of

this method to protein complexes involving multiple sub-units is presented in Chapter 7. Preliminary results

are provided as a proof of concept. Nevertheless, the implementation needs to be improved in order to treat

more accurately the physicochemical characteristics of protein complex dissociation. Finally, Chapter 8

concludes and discusses possible directions for future research.



2
Basics Notions in Structural Biology

Structural biology not only describes the structure at the atomic scale of living molecules, but also tries

to create links between their structures and their biological functions by using physical, chemical and

computational techniques such as X-ray crystallography, Nuclear Magnetic Resonance (NMR), Cryo-

electron microscopy, and molecular modeling. This chapter gives some general notions for understanding

molecular structures, conformational changes, and molecular interactions.

2.1 Protein Structure

Proteins are biological macromolecules consisting of chains of amino acids linked by peptide bonds. They

are essential parts of organisms and participate in every process within cells such as gene expression,

catalysis, storage, transport, signal transmission, etc. There are four organizational levels of protein

structures:

• Primary structure: the sequence of amino acids, also called polypeptide chain.

• Secondary structure: some portions of the polypeptide chain that are arranged into regular structures

called α-helices and β -sheets as a result of short distance interactions (i.e., hydrogen bond).

• Tertiary structure: the folded form of the polypeptide chain. This structure is a result of packing under

a determined topology of the secondary structures.

• Quaternary structure: an association of several polypeptide chains (identical or not).

These notions are further explained next.

3



Chapter 2 Basics Notions in Structural Biology · 4

Figure 2.1: General amino acid structure: R represents a specific side-chain to each amino acid.

Amino Acid

An amino acid is a molecule consisting of an asymmetric carbon (called α-carbon) attached to a carboxyl

group (-COOH), an amine group (-NH2), a hydrogen H and a radical R also called side-chain (see Fig. 2.1).

There are twenty natural amino acids in proteins. Each amino acid is given a name according to the nature

of its radical. Each side-chain has some particular physico-chemical properties such as hydrophobicity,

polarity, acidity, flexibility, steric congestion, etc.

Primary Structure

The primary structure is a sequence of amino acids starting from the N-terminal end (NH2-group) to the

C-terminal end (-COOH group). This structure of a protein is determined by the gene associated with the

protein. Two successive amino acids are connected by a peptide bond. This connection makes a spatial

constraint: the C and the O atoms of carboxyl group of the first amino acid create a plane with the N and

the Cα of the next amino acid. A protein includes between 30 and 30000 amino acids. The chain of the N,

Cα , C, and O of all amino acids is called protein backbone. The amino-acid chain is also called polypeptide

chain.

Secondary Structure

The secondary structure corresponds to a regular arrangement of amino acids along an axis. These structures

are stabilized by the interactions of hydrogen bond network between non neighbor amino acids of the

polypeptide chain. There are two main types of secondary structures: α-helices and β -sheets. These

two structures minimize not only the steric hindrances and electrostatic repulsion between chains, but also

maximize the number of hydrogen bond. Generally, the secondary structures contains approximately half

of all amino acids while the other half is located in the loops that link secondary structure elements. The

α-helix conformation is stabilized by hydrogen bonds of its amino acids. This kind of structure is stable and

isolated. The hydrogen bonds guarantee the cohesion between amino acids of the sequence (see Fig. 2.2).

On the contrary, the β -sheet usually contains two strands that form a sheet. The two strands can have the

same direction or can be positioned in opposed directions (see Fig. 2.3). Many studies have been done to
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(a) (b)

Figure 2.2: α-helix structure: (a) Cartoon Representation (b) Atomic Representation

(a) (b)

Figure 2.3: β -sheet structure: (a) Cartoon Representation (b) Atomic Representation

predict secondary structures [Chiang et al. 2007; Moll et al. 2007]. This prediction may give some hints

about the nature of folding, helps to localize residues of the active site, and may even give a hint about the

protein localization in the cell (e.g., membrane proteins).

Tertiary Structure

The tertiary structure is the description of the polypeptide chain folded in its functional form (see Fig. 2.4.a).

This form may involve covalent bonds (disulfide bridges), ions, or more complex co-factors (such as heme,

flavin adenine dinucleotide, etc.). Tertiary structures can be complex and different. Long polypeptide chains

(i.e., more than 200 amino acids) generally fold into several functional regions called domains. The protein

folding is based primarily on long-range interactions taking place between two residues that are close in

space but far in the sequence [Gromiha and Selvaraj 2002].
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(a) (b)

Figure 2.4: Structure of human transthyretin complex: (a) Tertiary Structure - One subunit, (b) Quaternary

Structure - Four subunits

Quaternary Structure

The quaternary structure is a geometry of the association of several protein sub-units (see Fig. 2.4.b). These

sub-units can be either identical or not. Their association is stabilized by short distance interactions like in

the tertiary structure. Complexes of two or more polypeptides (i.e., multiple subunits) are called multimers.

2.2 Molecular Forces

Due to the nature and structure of a biological molecules, the type and strength of molecular forces can be

very different. The main forces that maintain the stability of protein structure and that stabilize protein-

ligand, or protein-protein interactions are detailed next.

• Covalent bonds are a type of chemical bond, which are formed by sharing electrons between atoms.

This force hold atoms together. Disulfide bridges, that occur when two Cysteines are oxidized to

form covalent S–S bonds, are a particular type of covalent bond between atoms in non-consecutive

residues.

• Electrostatic forces involve permanent dipoles interactions and salt bridges. Permanent dipoles occur

when two atoms in a molecule have substantially different electro-negativity. One atom attracts

electrons more than another, becoming more negative, while the other atom becomes more positive.

Salt bridges correspond to the interactions between charged regions determined by electrostatic laws.

In normal physiologic pH condition, positive charged residues are Lysines, Arginines, Histidines, and

N-terminal end of the polypeptide chain, while negative charged residues are Aspartic acid, Glutamic

acid.
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• Van der Waals forces involve attractions between atoms, molecules, and surfaces. Differ from

covalent and ionic bonding, these forces contain a long-range attractive component named London

dispersion force and a very short-range repulsive component. The London forces arise from the

interactive forces between temporary multipoles in molecules without permanent multipole moments

due to the fluctuations of electron density. Since the energy bonding between the atoms that have 3-4

Å distance is only 1 kcal/mol, but with a huge number of atoms, these interactions play an important

role in complex stabilization.

• Hydrogen bonds result from the electrostatic interaction between one hydrogen atom (H) covalenty

linked with electronegative atom (O, N, S - donor) and other electronegative atom that has a pair of

non-shared electrons (acceptor). This bonding energy can be estimated between 3 and 9 kcal/mol.

Some polar amino acids such as Serine, Threonine, Tyrosine, Asparagine and Glutamine can also

form hydrogen bonds between them or with water molecules.

Besides the aforementioned forces, the Hydrophobic interactions, that are of entropic nature ,

occur when non-polar molecules form aggregates of molecules in water and analogous intramolecular

interactions [Chandler 2005]. These interactions play an important role for protein folding, protein-protein

interactions, formation of lipid bilayer membranes, nucleic acid structures, and protein-small molecule

interactions. Some hydrophobic amino acids such as Alanine, Valine, Leucine, Isoleucine, Proline,

Phenylalanine, Tryptophan and Methionine possess non-charged and non-polar side chains. Like Van der

Waals interactions, hydrophobic effects are responsible for dense compression in macromolecular assembly

interfaces.

2.3 Protein Motions

Protein flexibility is crucial in a majority of cellular mechanisms. Proteins can deform to adapt to their

partner to avoid steric hindrances and improve surface complementary for hydrogen bonding. Proteins can

also change their conformation due to enzymatic reactions. Protein motions can be characterized by their

amplitude. Weak-amplitude motions reflect the equilibrium inside an ensemble of conformers around its

most stable state in the energy funnel. This motion type can be modeled by molecular dynamics simulations

or observed by NMR experiments. Large-amplitude motions, in which two or more parts of protein move

in relation to others, usually occur during the catalytic or allosteric reactions [Kumar et al. 1999]. Large-

amplitude motions can not be observed with current experimental methods, and their simulation remains

very computationally expensive. Protein motions can also be classified depending on the size of the involved

protein portion: side-chain motions, loop motions, domain motions, and folding motions. These four types

of motions are detailed next.

Side-chain Motions

Side-chains involve only a few atoms but may play an essential role in protein functions. In particular, in

ligand-protein binding problem, even small magnitudes of side-chain rotations can lead to the binding of

small organic molecules in protein pockets [Zavodszky and Kuhn 2004].
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(a)

(b)

Figure 2.5: Common mechanisms for domain motions [Teague 2003]: (a) Hinge bending motion, (b) Shear

bending motion.

Loop Motions

Protein surface loops containing about 6 to 20 residues and they are the most flexible regions of proteins

[Fetrow 1995]. They are often involved in protein function and molecular recognition[Fetrow 1995]. Loops

may play a key role in enzymatic catalysis, protein stability, or protein folding. Loop motions can be also

observed during protein-protein or protein-DNA interactions.

Domain Motions

Domain motions are of two basic types: hinge motions and shear motions, [Gerstein et al. 1994; Teague

2003]. Hinge motions occur when two domains move perpendicularly to the interface surface (see

Fig. 2.5.a). Shear motions occur when two domains move parallel to the interface surface(see Fig. 2.5.b).

Domain motions are usually induced by ligand binding.

Folding/Unfolding Motions

Protein folding is a process by which a sequence of amino acids folds into its characteristic and functional

three-dimensional structure, known as the native state. Once the protein has its correct structure, it can play

its physicochemical function. Otherwise, in case of misfolding, extracellular or intracellular aggregates
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that initiate profound cellular dysfunction can be formed. There are several diseases (e.g., Alzheimer

and Parkinson) which are caused from these disorders of folding process [Selkoe 2003]. Proteins can

be also unfolded (or denatured) by high-temperature, acidic or basic pH or certain non-aqueous solvents

[Leach 2001b]. This unfolding is often reversible and proteins can be therefore refolded to its native state

[Finkelstein 1997].

2.4 Protein Interactions

Proteins play a key role in molecular recognition at the heart of all processes of life. They interact with the

other components of the cell (e.g., small molecules, nucleic acids, membranes, and other proteins) to build

higher-order assemblies or to perform their functions (e.g., chemical catalysis, signaling, regulation, etc.).

This thesis deals with protein-ligand and protein-protein interactions.

Protein-Ligand Interactions

A ligand can be an atom, an ion or a small molecule, that is able to bind to a protein to serve a biological

functionality. Ligand can be substrate, inhibitor, activator, or neurotransmitter. A substrate that binds to the

enzyme’s active site, is transformed into products by an enzymatic mechanism. An inhibitor/activator binds

to a protein to reduce/increase its activity.

Protein-Protein Interactions

Classes of protein-protein interactions can be defined according to their lifetime and binding affinity:

obligate permanent interactions involving homo or hetero obligomers and non-obligate transient interactions

involving Enzyme-inhibitor or non Enzyme-inhibitor. The permanent complexes (e.g., oligomeric complexes,

virus capsids and muscular fibers) have a lifetime of about 106 seconds. On the contrary, the transient

complexes associate and dissociate rapidly. Their lifetime is between 10−3 s and 1 s, such as the

complexes in the cellular adhesion and in the signal transduction. There are also antibodies/antigens or

enzymes/inhibitors complexes that are more stable (∼ 103 s). The reviews of [Nooren and Thornton 2003;

Park et al. 2009] give a detailed description of different protein-protein interactions.





3
State of The Art

Computational methods are more and more important to complement experimental studies in structural

biology. Although great progress has been done, the capacities of these methods are still limited. Probably

the major challenge to be faced is the treatment of protein flexibility, which needs to be considered for an

accurate study of molecular interactions. In the last years, new methods inspired by algorithms originally

developed for robot motion planning have been proposed as alternative or complementary computational

tools to treat problems involving flexibility and interactions of biological macromolecules.

This chapter provides a brief state-of-the-art on methods related with the thesis. First, Section 3.1

describes basic models and computational methods to study proteins. Section 3.2 gives an overview on

motion planning algorithms, with a particular focus on sampling-based methods. Several applications of

these robotic methods to probelms in structural biology are then presented in Section 3.3. Finally, the

contribution of this thesis is outlined in Section 3.4.

3.1 Molecular Interaction Studies

This section gives a broad overview of models and basic methods used to simulate biological systems such

as proteins, focusing on the most related techniques and problems with respect to the contribution of this

thesis.

3.1.1 Models and Methods

This sub-section summarizes several models and methods which have been developed for decades to treat

molecular simulation problems.

11
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3.1.1.1 Models

Quantum mechanics (QM) uses mathematical tools to describe interactions between energy and matter

at the atomic and subatomic scales (i.e., nuclei and electrons). This model allows a large variety of

computational approaches to treat chemical structure and reactivity problems with great accuracy. However,

due to its computational cost, approaches based on QM have only dealt with small upto medium-size

molecules [Bakowies and Thiel 1996].

Molecular mechanics (MM) or Force field-based models consider atoms as spheres of different mass

depending on the element, and connected together by chemical bonds. In order to describe the energy of the

molecular system, different types of interactions (i.e., bond stretching, angle bending, dihedral rotation, van

der Waals forces, hydrogen bonding, and electrostatic terms) are taken into account. The greatest advantage

of MM over QM is a better computational speed in studying large molecular systems [Burkert and Allinger

1982]. Besides, since MM does not deal directly with electrons and orbitals, it does not allow to study

chemical reactions or molecular reactivities [Bakowies and Thiel 1996].

Face to the limits of both quantum and molecular mechanics, a hybrid approach QM/MM has been

proposed to combine their advantages. The basic idea of this model is to partition the large system into an

electronically important fragment that is treated by quantum mechanics approach and a remainder that is

described by a force field. This partitioning into two subsystems allows a complex system to be modeled

in an accurate and affordable manner. With current improvements in computer hardware, the QM/MM

approach has been applied to numerous biochemical problems [Bakowies and Thiel 1996; Sherwood 2000;

Thiel 2009]. This model is suitable not only for simulating chemical reactions in the active site of a large

system, but also for studying other localized electronic processes. Although QM/MM geometry optimization

method can deal with large systems with 20000-30000 atoms, the active site size has still to limit around

1000 atoms to better investigate localized electronic event while the remainder must be fixed at the initial

geometry [Thiel 2009].

In order to investigate large systems’ interactions (e.g., protein-protein docking, rearrangement upon

ligand binding, folding, etc), all above models that use an all-atom representation can not be directly applied

with current computational resources. Therefore, coarse-grained models have been proposed to reduce the

number of particles of the system [Tozzini 2005]. The main idea is to simplify the simulated systems by

clustering several sub-components into one component in order to reduce the computational complexity

by removing both degrees of freedom (DOF) and interactions inside the “coarse” component [Zacharias

2003; Derreumaux and Mousseau 2007; Marrink et al. 2007; Loriot et al. 2009]. Despite the simplification,

physically correct properties of the biological system can be still conserved. Such a representation can speed

up the computational time 1-2 orders of magnitude over the all-atom simulations [Freddolino et al. 2009].

3.1.1.2 Methods

Two main classes of methods for simulating biological macromolecular systems are Molecular Dynamics

and Monte Carlo algorithms. Molecular dynamics simulations (MD) have been developed to investigate

the physical basis of the structure and the function of biological macromolecules [Karplus and McCammon

2002]. These methods try to provide detailed information concerning the motion of each particle in the
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system as a function of time. Therefore, dynamical properties of the biological systems such as transport

coefficient, time-dependent responses to perturbations, rheological properties, and spectra can be addressed

[Allen 2004]. Three types of applications of this technique can be classified in the macromolecular area

[Karplus and McCammon 2002]. The first uses simulation to determine or refine data on the system’s

structure. The second tries to describe the system at equilibrium while considering the structural and

motional properties along with thermodynamic parameters. The third aims to examine the actual dynamics

to correctly represent the development of the system over time. Many tools based on MD are widely used

such as CHARMM and AMBER [Weiner and Kollman 1981; Brooks et al. 1983; Brooks et al. 2009].

Monte Carlo methods (MC), which rely on statistical mechanics, have been widely used to deal with

conformational search problems. Instead of evaluating forces to determine incremental atomic motions like

MD methods, Monte Carlo simulations consider only large motions of the system and determines whether or

not a sampled conformation is energetically feasible at the simulated temperature. Because MC simulations

sample only in the conformation space, they can not provide time-dependent quantities. However, they

are more efficient than MD methods in estimating average thermodynamic properties with many sampled

conformations [Leach 2001a; Frenkel 2004].

Such two above methods present however a major drawback for computing large-amplitude motions

since the conformational exploration tends to get trapped into the many local minima of the complex

molecular energy landscape. Other classes of methods such as Normal Mode Analysis and Genetic

Algorithms have been developed to treat particular problems. Normal Mode Analysis (NMA), which

is based on an harmonic approximation of the molecular force field, is an efficient method to determine

collective, large-amplitude motions of macromolecules [Cui and Bahar 2006; Ma 2005]. Genetic

Algorithms (GA), which are stochastic optimization methods, try to mimic natural evolutionary method

of adapting to a changing environment [Devillers 1975]. They provide a powerful random search tools in

a large problem space. A wide range of applications which gain advantage from the use of GAs have been

proposed in ligand-protein docking, drug design, or the structural alignment of molecules, etc. [Terfloth and

Gasteiger 2001; Jones et al. 1997; Devillers 1996; Morris et al. 1998]

3.1.2 Protein Motions

Protein motions that range from high-frequency vibration to large-scale conformational changes play an

essential role in many biochemical processes. Despite the new knowledge of structural and functional

information, the understanding of protein movement is still very limited. Many techniques have been

presented for modeling protein flexibility and mobility. They can be classified into three classes: force

field-based, graph-based, and harmonic analysis-based methods [Ahmed et al. 2007].

In the first class, MD simulations are often used to model macromolecular movements by exploring

the energy landscape of the macromolecule with an empirical force field. The trajectories of atoms are

calculated by using Newton’s Second Law and potential energy functions of atom–atom interactions [Leach

2001a; Schlick 2002; Hornak et al. 2006; Hornak and Simmerling 2007]. However, due to the computational

cost, MD with all-atom models prohibits routine simulations of large-amplitude motions of macromolecules.

The use of coarse-grained models together with efficient MD methods permits longer simulations with

modest computational resources [Chebaro et al. 2009].
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Monte Carlo (MC) algorithms have also been used to investigate protein flexibility. In particular, MC-

based methods have been proposed for the exploring conformational energy surface of polypeptides. For

example, a method called ARTIST [Yun et al. 2006] applies an effective activation-relaxation MC algorithm

on internal-coordinates molecular models for exploring both small and large conformational changes in

densely packed environments and for finding the global energy minima of medium-size proteins. A different

approach to explore conformations of proteins is the building-up procedure that consists in performing MC

moves on a discrete set of conformations of short polypeptides fragments that are encoded in fragment

libraries computed from available data in the Protein Data Bank (PDB). This type of methods (e.g. [Simons

et al. 1997; Hegler et al. 2009; Zhao et al. 2010]), initially proposed for protein structure prediction, can

also be applied to represent conformational ensembles.

Alternative methods to determine protein flexibility are based on graph theory. These techniques allow

to identify rigid and flexible regions of proteins from a single, static structure. Atoms and inter-atomic

interactions are represented in a bond-bending network by modeling atoms as nodes and covalent bonds and

non-covalent interactions as edges. A fast combinatorial algorithm then identifies the rigid, over-rigid, and

flexible regions by counting bond-rotational degrees of freedom in the network [Ahmed et al. 2007]. FIRST

is a popular program that implemented this technique to capture the essential conformational flexibility of

the protein main-chain and side-chains from analysis of a single, static three-dimensional structure [Jacobs

et al. 2001; Gohlke et al. 2004].

Large-amplitude molecular motions have also been studied by using normal mode analysis (NMA). A

number of works used NMA to compute global macromolecular motions such as open-closed conformational

transitions in proteins or domain motions [Brooks and Karplus 1985; Mouawad and Perahia 1993; Tama and

Sanejouand 2001; Miyashita et al. 2003; Alexandrov et al. 2005; Kirillova et al. 2008]. Large-amplitude

motions in macromolecules are shown to be associated with low-frequency normal modes, therefore

demonstrating the ability of NMA-based methods to predict the direction of collective conformational

changes.

3.1.3 Protein Ligand Interactions

In recent years, with the advantage of computing infrastructures, the development of in silico methods

has been widely developed to better understanding protein-ligand interactions. Two types of problems are

mostly analyzed: protein-ligand docking and access/exit pathways.

3.1.3.1 Protein-Ligand Docking

Powerful docking algorithms have been developed in the last ten years to efficiently explore and evaluate the

huge number of possible ligand geometries for partner proteins, in terms of relative orientation and position.

The problem increases in complexity when internal DOF also need to be explored, in which case the use

of previously developed search algorithms leads to computational explosion. For detailed description of

existing protein-ligand docking methods, a number of excellent review articles have been presented [Sousa

et al. 2006; Warren et al. 2008; B-Rao et al. 2009; Henzler and Rarey 2010]. Overall, methods for protein-

ligand docking are mainly built from three ingredients [Sousa et al. 2006]: (i) an adequate representation of
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the proteins to be docked, which includes the definition of the DOF to be searched (global translations and

rotations, side-chain rotations,...); (ii) a search algorithm to explore the conformational space accessible to

the system; (iii) a scoring function to evaluate the strength of interaction and the quality of the generated

complex.

Docking algorithms are becoming more and more sophisticated. The flexibility in both ligands and

receptors is necessary to take into account. There are three main models of docking based on the flexibility

of receptor: rigid protein docking, partial protein flexibility and full protein flexibility [Sousa et al. 2006;

B-Rao et al. 2009]. Most of the existing methods assume that the conformation of the protein can not

change. In the second model, protein is assumed to be flexible only at the binding site or it can be modeled

by adding a few DOF in the protein binding site to the combined protein-ligand conformation space. These

DOF represent only a very small fraction of the total conformational space that is available but should

account for a significant difference in binding energy values. The last model takes into account all the DOF

of protein when using a conformational ensemble of slightly different protein structures coexisting in a low

energy region of the potential energy surface [Totrov and Abagyan 2008].

Three classes of search algorithm can be distinguished to deal with flexible ligand [Sousa et al. 2006]:

systematic methods, random or stochastic methods, and simulation methods. In the first class, the methods

try to explore all the DOF of the ligand. In order to reduce the combinatorial explosion, two usual ways were

proposed: fragmentation of ligand and using of conformational ensembles. The fragmentation approach

incrementally grows the ligand into the active site, either by docking several fragments into the active-

site and then linking them covalently to recreate the initial ligand, or by docking firstly a rigid fragment

of the ligand and then adding subsequently and successively other flexible fragments [Sousa et al. 2006].

Two popular programs use this approach are FlexX [Kramer et al. 1999], DOCK [Ewing and Kuntz 1997].

Another approach which used libraries of pre-generated conformations of flexible ligand was also presented

as in FLOG [Miller et al. 1994]. In the second class, the MC and the GA methods are often used to sample

randomly different conformations of the ligand. These conformations are then filtered by a predefined

probability function. Some common programs of this class are ICM [Abagyan et al. 1994] using MC-based

method, and AutoDock [Morris et al. 1998], GOLD [Jones et al. 1997] using GA-base methods. In the last

class, MD methods are often chosen with some modifications such as using very high temperatures in some

parts of the MD simulation, or using different start positions of the ligand. One example is CDOCKER

[Vieth et al. 1998] which combines MD, MC and GA for docking ligand-receptor complexes. Despite

the promising recent results, ligand-protein docking problem still holds several hidden weaknesses. In

particular, more adequate scoring functions, able to efficiently combine both accuracy and speed, remain to

be investigated.

3.1.3.2 Access/Exit Pathways

The simulation of access/exit pathways of ligand from the surface to the active-site of receptor has been

less studied than the protein-ligand docking, although the knowledge of entry/exit pathways of a receptor

should be very useful in discriminating between different ligands for computational drug design [Genest

et al. 2008].

Different methods have been proposed to investigate the conformational changes of receptor due to
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ligand exit. A MD-based variant, called Random Acceleration Molecular Dynamics (RAMD) [Ludemann

et al. 2000], uses an additional force applied to the center of mass of the ligand, in addition to the standard

MD force-field, in a randomly chosen direction in order to enhance the probability of ligand access to or

exit from the active site. After a number of time steps, if the distance traveled by the ligand can not reach

the threshold distance, then a new force direction is randomly changed. Otherwise, the force direction is

maintained. This process is iterated until the expulsion of the ligand from the buried active site. Another

MD variant, called Steered Molecular Dynamics (SMD) [Izrailev et al. 1998], also applies external forces to

a ligand to facilitate its unbinding from a protein. In SMD simulations, the force direction is usually defined

by the user through an haptic device. This direction is accepted or rejected depending on some factors such

as conservation of secondary structure of the protein, deformation of the protein, the magnitude of the force

applied, the average velocity of the ligand along the unbinding pathway. Although these methods have been

shown to provide biologically relevant information, they remain yet computationally expensive. Besides,

the artificial force introduced for accelerating the simulation may yield biased results about the induced

conformational changes, so that the interest of simulating with an accurate molecular force field is partially

lost.

Other computational techniques have been proposed in order to compute the access channel of ligands

into proteins. CAVER [Petrek et al. 2006] performs systematic exploration of the protein interior. It is based

on the construction of a vertex-weighted graph from a discrete three-dimensional grid model of the protein.

The weights are computed from the distance to the protein atoms, the lowest weights corresponding to nodes

with the highest clearance. A variant of Dijkstra’s algorithm is applied to search for the shortest low-cost

paths. Another similar method, called MOLE [Petrek et al. 2007], also applies a Dijkstra’s path search

algorithm, but it uses a Voronoi mesh of the space between protein atoms instead of computing a grid.

MolAxis [Yaffe et al. 2008] computes the medial axis of the free space inside the protein using efficient

computational geometry tools. The medial axis is represented by a collection of two-dimensional surface

patches. All these techniques treat rigid proteins. Thus, molecular flexibility can only be indirectly treated

by applying these techniques to a set of structures (e.g. samples of a molecular dynamics simulation).

Finally mention that a recent study [Burendahl et al. 2009] on the unbinding mechanism of ligands from

estrogen receptor (ERα and ERβ ) combined the strengths of RAMD, SMD, and CAVER methods. They

applied RAMD simulation to enhance the molecular dynamics sampling by the addition of external forces to

ligand, which facilitates the passing of energy barriers. SMD method and CAVER were then used to obtain

unbinding pathways and their characterization.

3.1.4 Macromolecular Interactions

The formation of biological complexes between proteins plays a key role in many biological processes (i.e.

cell signaling, gene transcription, the immune response). The affinity and the lifetime of protein complexes

vary widely from obligate and permanent to transient. Most of the computational methods focus only on

predicting bi-molecular association of transient complexes given the structure of the two sub-units. This

problem is known as the protein-protein docking problem. Other methods have been developed to study,

with more generally, protein association/dissociation processes. These two types of methods are detailed

next.
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3.1.4.1 Protein-Protein Docking

Since it is often more difficult to determine experimentally protein-protein complexes than their isolated

components, the number of experimentally solved protein-protein complexes are still small. In silico

approaches are often used to solve the protein-protein docking problem. Despite the variety of available

methods, the accuracy of their predictions is still limited [Moreira et al. 2010]. A number of excellent

reviews give an entire overview of existing protein-protein docking methods [Cherfils and Janin 1993;

Halperin et al. 2002; Andrusier et al. 2008; Ritchie 2008; Moreira et al. 2010].

As in ligand-protein docking problem, protein-protein docking has also three main ingredients: a

representation of the system, a conformational space search technique, and a ranking function of search

results. For the search technique, a same approach has been chosen by many docking methods, in which a

smaller protein is used as the probe, and the other as the receptor, which remains fixed during the docking

process. A scoring function then ranks the complementarity of computed complexes (i.e., geometric,

electrostatics, or hydrophobic, or all three).

Different search techniques have been used to successfully find out the possible binding interfaces

between two proteins in docking algorithms. MC methods that randomly sample in the 6-dimensional

space to create candidate locations are presented in [Gray et al. 2003]. Other methods, such as ATTRACT

[Zacharias 2003; Zacharias 2005], apply systematic search combined with energy minimization. The Fast

Fourier Transform (FFT) has been often used in rigid-body docking [Katchalski-Katzir et al. 1992; Gabb

et al. 1997; Li et al. 2003; Kozakov et al. 2006]. A progam called ZDOCK [Li et al. 2003] uses an FFT-

based algorithm along with an optimized scoring function, involving three major terms: pairwise shape

complementarity, electrostatics, and desolvation, to treat rigid-protein docking. To overcome the limitation

of treating unbound proteins as rigid bodies, ZDOCK softens the protein surfaces by allowing light overlaps

between two protein interfaces to take into account possible conformational changes. However, these FFT-

based methods could take CPU-days to execute, because even though the FFT is used to enumerate rapidly

the translations of the probe, the rotations are still searched systematically. Other algorithms use matching

of surface cubes or geometric hashing (i.e. the identification and matching of convex and concave protein

surface regions) [Connolly 1986; Norel et al. 1994; Norel et al. 1995]. A representative program of this

class is PatchDock [Duhovny et al. 2002] that docks unbound proteins by matching geometric patches

(concave, convex, and flat surface pieces) of almost equal areas after detecting these patches by applying a

segmentation algorithm in order to generate candidate transformations. Protein complementarity can also be

determined by a Voronoi-diagram-based model of macromolecular interfaces [Cazals et al. 2006]. However,

local shape feature matching based methods are usually not sufficient when the available structures of the

proteins are unbound [Smith and Sternberg 2002].

Multi-stage approaches have been often proposed to treat flexibility within protein-protein docking

methods. Proteins are usually treated as rigid bodies in the first stage, and the aforementioned search

methods are applied to find candidate conformations of the complex. In a latter stage, these structures

are refined and re-ranked by using more expensive exploration methods and more accurate energy function

[Li et al. 2003; Lorenzen and Zhang 2007; Pierce and Weng 2008]. Nevertheless, flexibility can also be

treated in the first stage by constructing multiple copies of the proteins [Bastard et al. 2006].
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3.1.4.2 Protein-Protein Association and Dissociation

The assembly of proteins is a multi-scale process from the interactions of their surface atoms to the

organization (i.e. the assembly order) of these proteins to form specific complexes. A deep understanding

of protein-protein association is therefore essential for accurate modeling and prediction of protein meta-

structures.

Different computational approaches have been proposed to investigate protein-protein association. The

calculation of bimolecular association rate constants can be performed by simulation of the diffusional

motion of the interacting particles using particle-based Brownian dynamics simulations [Northrup and

Erickson 1992]. In this method, one of the interacting molecules is placed at the center of a sphere, while

the other one starts Brownian moves at a given distance where there are no forces between the molecules

at this separation or the forces are centrosymmetric. The rate constant for the molecules to approach

the given distance is then computed. The association rate constant can be calculated based on thousands

of generated trajectories. Using a simpler approach, the variation in the rate constant for bimolecular

association is determined from the electrostatic interaction energy between proteins in transient intermediate

configurations [Zhou 1997].

For the inverse problem that considers protein complex dissociation, the two points to be investigated are

the interactions between proteins leading to the denaturation of complexes, and the order in which proteins

are disassembled from the complexes. Very few computational methods addressing protein dissociation have

been proposed. Pogorelov et al. [Pogorelov et al. 2007] used an all-atom steered molecular dynamics (SMD)

simulation in combination with evolutionary studies and binding free analysis to explore disassociation

pathways of one subunit from a membrane protein complex. Nesatyya et al. [Nesatyya and Laskinb 2002]

presented a MC simulation of collisionally activated dissociation of non-covalent protein complexes in the

collision cell of a triple quadrupole mass spectrometer. They used the hard-sphere and the diffuse scattering

models to simulate the evolution of the translational and internal energies of activated precursor ions along

the collision cell. Dissociation rate constants and ion survival probability were then calculated based on the

estimated internal energy content of the excited ion.

Finally note that computational methods have been proposed to complement experimental data on the

structure and the dynamics of protein assemblies. For instance, Cazals and Dreyfus [Cazals and Dreyfus

2009] introduced a novel method to build models of large assemblies of proteins from low-resolution

structural data. In their model, a toleranced protein is presented as a collection of toleranced balls, and

a toleranced assembly as a collection of toleranced proteins. Such an assembly, having a continuum

of possible geometries, is encoded in a special graph called a Hasse diagram, which is a forest of trees

representing the complex. The information extracted from this diagram can be used to investigate protein

dynamics inside the complex.

3.2 Motion Planning Approaches

Motion planning is a fundamental problem in robotics and has been extensively studied during the past

decades. In its original basic form, motion planning ignores typical concerns such as optimality and

uncertainty, but instead focus on the computationally difficult problem of generating feasible collision-free
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Figure 3.1: Illustration of the motion planning problem for a 2R manipulator [Latombe 1991]: (a) The

manipulator and the obstacles in the workspace, (b) Representation of the manipulator and the obstacles in

the configuration space.

paths that take the robot from a given start to a given goal configuration among a collection of workspace

obstacles. The vast body of works related to motion planning can hardly be given adequate coverage in this

brief review which focuses on techniques relevant with the planning needs of the thesis. Several surveys

[Latombe 1991; Choset et al. 2005; LaValle 2006] can be consulted for further reading.

Motion planning problems are normally formulated in the configuration space of the robot (see Fig. 3.1).

Obstacles in the environment translate into so-called C-obstacles in the configuration space, allowing a

unified way to represent a robot motion as a curve in the configuration space that avoids the C-obstacles.

The complexity of the C-obstacles is exponential in the dimension, meaning that an exact characterization

in computationally too costly, even for robots with a relatively small number of DOF. At a broad level,

motion planning approaches can be subdivided into three classes: cell-decomposition methods, roadmap

methods, and potential field (or local) methods. Cell-decomposition methods divide the free part of the

configuration space into a number of cells. Motion is then planned through these cells. Unfortunately,

when the dimension of the configuration space get higher or when the complexity of the scene is large,

the number of cells required becomes too large to be practical. Roadmap methods construct a network of

roads through the configuration space along which the object can move without collision. This roadmap can

be seen as a graph, and the problem is reduced to graph searching. Unfortunately, computing an effective

roadmap in a deterministic way can only been achieved for rather low-dimensional configuration spaces

with few obstacles. Finally, Potential field methods and other local methods steer the robot by determining

a direction of motion based on local properties of the scene (e.g. move in the goal direction while being

pushed away by nearby obstacles). These methods work well in relatively open area but, because only local

properties are used, the robot can get stuck in deadlock position.

In the following, we will base ourselves on more recent Sampling-based roadmap methods [Kavraki

et al. 1996; LaValle 1998] that have now emerged as a general and effective framework, successfully used

in various application domains for articulated robots with possibly complex kinematics.
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3.2.1 Sampling-based approaches

An important characteristic of sampling based planners is that they do not attempt to explicitly construct a

model of the C-space. Instead, they directly capture the connectivity of the free C-space inside a roadmap of

sampled configurations. The big advantage of this computational scheme is that its complexity tends to be

dependent on the difficulty of the path, and much less on the global complexity of the scene or the dimension

of the configuration space. The key idea is to use a collision detection algorithm as a black box, which allows

the planner to ignore all issues associated with the precise geometric models of the robot and obstacles. The

efficiency of available collision detection algorithm also contributes to the overall practical performance of

sampling-based planners that also achieve some desired forms of probabilistic completeness.

Sampling-based approaches can be grouped in two main families: PRMs [Kavraki et al. 1996] use

sampling for constructing a roadmap capturing the free-space connectivity while single-query variants (e.g.

RRTs [LaValle 1998]) combine sampling within incremental search methods for searching for a particular

path. The choice mainly depends on the application. PRM methods are more suitable when multiple motion

planning queries must be solved in a same environment. Computing time is spent to preprocess in advance

a roadmap data structure that can be used afterwards for fast query answering. In contrast, single query

variants like RRT are incremental search methods that build a new roadmap from scratch for each new

query. The roadmap needs only linking the query configurations and generally consists of two trees rooted

at these configurations. Hence, single-query methods are in general faster than the PRM preprocessing stage

since they do not require a whole roadmap reflecting the free-space connectivity. However, as they focus on

solving a particular problem, the processed data structure is less appropriate for later use. Such techniques

are particularly suited for solving constrained assembly problems [Chang and Li 1995] where one must

check whether there exists a path to remove a part from an assembly.

Note that, it can sometimes be interesting to combine both kinds of methods. For instance, when

only slight modifications are produced in the environment, a multiple-query method can be applied at a

global level and then single-query methods can rapidly solve local problem arisen from these slight changes

[Jaillet and Siméon 2004]. Also, the use of single-query planner within a multiple-query motion planning

framework can be used for the efficient parallelization of the planning process [Akinc et al. 2003]. In the

next sections, the two approaches will be detailed.

3.2.2 The PRM approach

The Probabilistic RoadMap (PRM) method is a popular approach to motion planning [Kavraki et al. 1996].

It has received a lot of attention in recent years [Amato and Wu 1996; Boor et al. 1999; Lucia K. Dale

2001; Wilmarth et al. 1999; Bohlin and Kavraki 2000; Siméon et al. 2000; Hsu et al. 2003; Burns and Brock

2005; Saha et al. 2005; Jaillet and Siméon 2006]. It is now used by many researchers considered the most

widely applicable approach to motion planning. PRM is a general planning framework. The method has

been successfully applied to many motion planning problems dealing with robot arms [Kavraki et al. 1996],

car-like robots [Svestka 1996; Sekhavat et al. 1998], manipulation tasks [Alami et al. 1994; Ahuactzin and

Gupta 1995; Nielsen and Kavraki 2000; Siméon et al. 2004], motion planning with uncertainty [Alterovitz

et al. 2008], closed-kinematic loops [Han 2004; Cortés 2004] like two mobile robot arms that together hold
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Figure 3.2: Illustration of the construction of the roadmap in PRM approach.

an object, and even flexible objects [Holleman et al. 1998; Lamiraux and Kavraki 2001]. In all these cases,

the method is very efficient but, due to the probabilistic nature, its performance remains difficult to analyze

(see e.g. [Kavraki et al. 1996]).

PRM is a roadmap technique but, rather than constructing the roadmap in a deterministic way, a

probabilistic approach is used. Most of the work lies in the construction of the roadmap, but this can

be done in a preprocessing phase. This is important for applications in which fast query answering is

required. The overall principle is to capture the connectivity of the collision-free space by a set of one-

dimensional curves stored in a pre-computed roadmap (see Fig. 3.2). The roadmap is obtained by sampling

robot configurations and subsequently connecting promising samples with valid local paths generated by a

simple and local planner. Sampled configurations and local paths are checked for collision using effective

collision detection algorithms [Otaduy and Lin 2003]. Even thought the local planner might fail, once

enough samples have been added to the graph, with high probability the roadmap will be able to solve

motion-planning queries. Once the roadmap has been constructed, multiple path planning queries can be

answered efficiently by simply connecting the query configurations and searching the augmented roadmap

for a solution path, generally smoothed in a post-processing step to improve the quality of solution. This

basic scheme has been extended in many ways to adapt the approach to different types of motions and/or to

exploit certain properties of the environment.

While PRM is successful for robots with many DOF and probabilistic complete, its performance

degrades in the presence of narrow passages that require a prohibitively high density roadmap. A number

of variants and extensions have been proposed to alleviate this problem and improve PRM performance,

e.g. biasing sampling around obstacles [Amato et al. 1998; Boor et al. 1999; Hsu et al. 2003] or towards

the medial axis [Wilmarth et al. 1999; Holleman and Kavraki 2000; Lien et al. 2003], using free-space

dilatation [Hsu et al. 2006; Saha et al. 2005], visibility-based filtering [Siméon et al. 2000] or adaptive

sampling [Kurniawati and Hsu 2006; Rodriguez et al. 2006], exploiting search space information [Burns

and Brock 2005] or delaying collision checks [Bohlin and Kavraki 2000; Sanchez and Latombe 2002].

Unfortunately, the different improvements listed above are difficult to compare . Some of them are limited

to particular (e.g. free-flying) robots while others maintain the generality of the PRM framework. Also the

effectiveness of the techniques is shown on different test cases, using a different implementation. Therefore



Chapter 3 State of The Art · 22

Figure 3.3: Illustration of the construction of the tree in RRT approach from qi to qg.

it is still rather unclear, what is the best technique under which circumstances. See [Lucia K. Dale 2001;

Geraerts and Overmars 2002] for first studies on this issue.

An originality of Visibility-PRM [Siméon et al. 2000] is to produce compact roadmaps with a small

number of nodes. The method relies on a free-space structuring into visibility domains (i.e. sets of

configurations connectable to a given guard by a valid local path). Computed guards are linked together

via connectors located in their overlapping visibility regions. Such roadmaps can be constructed using a

simple PRM variant: each free sample is added to the roadmap only if it cannot be connected to any existing

node (i.e. guard) or if it connects at least two components (i.e. connector). Visibility-PRM offers two

advantages. First, the algorithm termination is controlled by the difficulty of adding a new guard, which

relates to the quality of the roadmap in term of coverage. Secondly, the computed roadmap is a very small

tree (i.e. no cycles) capturing the free space coverage with a limited number of nodes and edges. The tree

restriction is relaxed with the Path Deformation Roadmap extension [Jaillet and Siméon 2009]. Finally,

current PRM versions still need to spend some amount of time during query answering, both to find the

correct path in the roadmap and to improve the path [Song et al. 2001]. Some work has been done in this

direction for improving the query answering performance of PRM. The solution proposed in [Geraerts and

Overmars 2005] aims at enhancing the preprocessing phase such that motions can be computed much more

efficiently and the results are much better in terms of quality (e.g. smoothness, path length), removing the

need for costly post-processing of the path.

3.2.3 Incremental Search Planners

Incremental search methods [Barraquand and Latombe 1991; Bessière et al. 1993; Hsu et al. 2000; LaValle

1998] are PRM variants introduced for single-query planning. They are more efficient for that purpose

since their exploration strategy is biased to solve a particular query and not to obtain information about

the exploration strategy about the whole configuration space. Most of the algorithms construct trees whose

nodes are configurations computed during exploration. The search can be performed in only one direction

or in the two directions: Unidirection methods develop a single tree from one of the query configurations

until the other configuration is reached, while Bidirectional methods involve two trees rooted at query
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configurations. The motivation for using one or more trees depends on the characteristics of problem to be

solved. For example, if the robot is highly constrained around the initial position and rather free to move

around the goal, it will be more efficient to build only a tree rooted at this initial configuration. In other

situations, a single tree may be trapped trying to find the exit through a narrow passage, while traveling in

both directions may be easier.

The Rapidly-exploring Random Tree (RRT) approach, introduced in [LaValle 1998], has become

now the most popular single-query motion planner. RRT-based algorithms were first developed for non-

holonomic and kinodynamic planning problems [LaValle and Kuffner 2001a] where the space to be explored

is the state-space. However, the RRT framework is general and can also be applied for problems without

differential constraints [LaValle and Kuffner 2001b]. The key idea of the RRT expansion is to bias the

exploration toward unexplored regions of the space. Hence, the probability that a node is selected for

expansion is proportional to the area of its Voronoi region (i.e. set of points closer to this node than to the

others). Therefore, RRTs are biased by large Voronoi regions to rapidly explore, before uniformly covering,

the space.

RRTs combine a construction and a connection phase (see Fig. 3.3). For building a tree, a configuration

is randomly sampled and the nearest node in the tree (given a distance metric in C-space) is expanded toward

the sample. In the basic RRT algorithm (referred to as RRT-Extend), a single expansion step of fixed distance

is performed. In a greedier variant, RRT-Connect, the expansion step is iterated while keeping feasibility

constraints (e.g. collision-freeness) are satisfied. RRT-Connect has been shown to be more efficient than the

single step version for systems without differential constraints [LaValle and Kuffner 2001b].

One weakness of the RRT algorithm comes from its high sensitivity to the distance metric used to select

the tree node to be expanded. Several approaches [Cheng and LaValle 2001; Urmson and Simmons 2003;

Cortés et al. 2007] have been proposed to address this issue and design more sophisticated metrics than the

Euclidian metric used in basic RRT, e.g. by applying weights to balance the influence of the DOF. However,

in high dimensional spaces, it is difficult to find the adequate metric-showing a good trade-off computational

complexity and accuracy.

Other recent improvements concern configuration sampling, normally made using a uniform random

distribution in the configuration-space. More sophisticated sampling strategies, e.g. iterative RRTs [Ferré

and Laumond 2004] or sampling in dynamic domains that envelope the search tree [Yershova et al. 2005;

Jaillet et al. 2005] have been shown to improve the RRT performance for constrained disassembly problems

(see Figure 2.3). While these methods address (dis)assembly problems involving rigid objects, the extension

presented in [Cortés et al. 2009] is particularly devised for the disassembly of complex objects with

articulated parts. In this type of problem, configuration parameters generally play two different roles. Some

of them are essential for the disassembly task, while others only need to move if they hinder the progress of

the disassembly process. The proposed method is based on such a partition of the configuration parameters.

Results show a remarkable performance improvement compared to standard RRT method.

Another interesting variant called Transition-based RRT (T-RRT) [Jaillet et al. 2010] has been recently

proposed in order to compute good-quality paths with respect to a cost function defined over the

configuration space. Basically, T-RRT introduces a state-transition test based on the Metropolis criterion,

similarly to MC methods, in order to reject new states that will decrease the quality of the path. This
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filtering, which relies on the steepness of the local motion to connect a given state to the RRT, makes

the tree expansion tends to follow the valleys and the saddle points of the configuration-space costmap.

This technique shows a good capacity to find good-quality paths in reasonably high-dimensional spaces

constrained by obstacles.

3.3 Motion Planning Approaches to Problems in Structural Biology

Motion planning algorithms, originally developed in the field of robotics, are efficient tools for exploring

constrained high-dimensional spaces. When applied to structural biology, they yield high-performance

conformational search methods that are able to consider a wide range of DOF. This section gives a brief

overview on the application of motion-planning-based methods to different problems in structural biology.

3.3.1 Protein Motions

3.3.1.1 Protein Loop Motions

In order to study large-amplitude motions of flexible molecules, an approach with two stages has been

proposed [Cortés et al. 2005]. The driving idea is to separate the conformational search in two stages

aiming to highly speed up the computation. The first stage consists in a geometric filtering operated by

motion planning techniques applied on articulated hard sphere models. The second stage accounts for the

energy-based accuracy only for selected solutions found at the previous stage. The interest of this geometric

filtering is that high-dimensional conformational spaces can be globally explored in a continuous way.

Another work to model flexible protein loops has been carried out by Yao et al. [Yao et al. 2008]. The

authors proposed two algorithms called seed and de f ormation sampling. The seed algorithm tries to sample

conformations broadly distributed over the space of closed collision-free conformations of a flexible protein

loop. The deformation sampling operation then starts from a given conformation sampled by the previous

algorithm and deforms this conformation without breaking closure constraint or making auto-collision while

modifying the DOF of loops. This method shows its promising results on handling 5 to 25 residue long

loops. They have also applied this method to interpret fuzzy regions in electron-density maps obtained from

X-ray crystallography.

Shehu et al. have developed Fragment Ensemble Method (FEM) addressing equilibrium mobility in the

loop modeling problem [Shehu et al. 2006]. The method combines a statistical mechanics formulation

and a robotic-based exploration of the conformational space to model a loop fragment. Starting from

an incomplete protein structure and the amino acid sequence of the missing loop, the proposed method

generates an ensemble of low-energy loop conformations that completes the given protein structure.

3.3.1.2 Helix and Domain Motions

Del Carpio et al. [Carpio et al. 2005; Carpio et al. 2006] presented a novel algorithm that resolves the

intra-molecular loop and domain motions during the interaction of proteins. This hybrid approach firstly

maps regions or domains (including loops) with high flexibility in the interacting units by using a graph
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theoretical method to account for protein flexibility reduction. The PRM algorithm is then used to generate

different configurations pathways that provide information about the protein complex energy.

Enosh et al. have developed an automated method to predict and simulate motion in the transmembrane

(TM) proteins of the α-helix bundle type by using an RRT-based motion planning algorithm [Enosh et al.

2006]. The resulting paths are ranked according to the quality of the van der Waals interactions between

the TM helices (i.e. Lennard-Jones potential). They have focused on simple systems comprising pairs of

α-helices, thus circumventing the complexities of modeling loops that connect pairs of helices.

Kirillova et al. have proposed an approach for computing large-amplitude domain motions by combining

an path-planning method and normal mode analysis [Kirillova et al. 2008]. The main idea is to guide the

conformational exploration, performed with a path planning algorithm on a purely geometric molecular

model, using the directions of collective atomic motions given by the low-frequency normal modes. Indeed,

the algorithm explores the space of the collective DOF provided by the low-frequency modes, which is

a lower-dimensional sub-manifold of the conformational space. This combination allows the method to

overcome the limitations of each individual method for computing large-amplitude conformational changes

in proteins.

3.3.2 Protein-Ligand Docking and Access/Exit Pathways

Singh et al. [Singh et al. 1999] developed a novel technique for studying the dynamics of protein-ligand

interactions based on motion planning algorithms. This algorithm uses electrostatic and van der Waals

potentials to compute the most energetically favorable path between any given initial and goal ligand

configurations. The PRM algorithm is used to sample the distribution of possible paths to a given goal

configuration and to compute an energy-based “difficulty weight” for each path. By statistically averaging

this weight over several randomly generated starting configurations, they computed the relative difficulty

of entering and leaving a given binding configuration. This approach yields details of the energy contours

around the binding site and can be used to characterize and predict good binding sites. They used two

attributes to distinguish between true and predicted binding configurations: the absolute energy of the ligand

and the average weights of all paths entering and leaving the configuration. They found that these average

weights of the true binding configuration were significantly higher than the ones of all other low-energy

configurations.

Based on the main idea of the previous method, Apaydin et al. proposed a novel approach for studying

of computational mutagenesis and on binding sites [Apaydin et al. 2002]. They introduced the Stochastic

Roadmap Simulation (SRS) to compute the escape time from a putative binding site which is the number of

MC simulation steps starting from the binding site to reach a conformation outside its funnel of attraction

[Camacho and Vajda 2001]. SRS allows to analyze all the paths in the roadmap simultaneously. In their first

study, they measured the effects of mutations on the catalytic site of a protein. For 6 mutations, the escape

times of the ligand in the bound conformation are computed and then compared with the wide-type’s ones.

These results obtained with SRS agreed with the biological interpretation of the mutation. In the second

study, the escape time in 5 of 7 complexes from the funnel around the catalytic site is larger than any other

putative binding sites’ one by at least an order of magnitude.

Cortés et al. have presented a novel variant of RRT algorithm to treat the problem of ligand exit from



Chapter 3 State of The Art · 26

the active site of a protein by using a purely geometric approach in which the energetic terms are replaced

by constraints: non-bonded atoms are separated by a minimum distance to account for van der Waals

repulsion terms, privileged orientations and distances account for the possible formation of hydrogen bonds

or hydrophobic interactions [Cortés et al. 2005; Cortés et al. 2007]. The proposed method, called Manhattan-

like RRT (ML-RRT), addresses disassembly path planning of articulated objects. The particularity of this

algorithm is that the motions of the different parts are decoupled. Indeed, for the present application, ligand

and protein degrees of freedom (only protein side-chain flexibility is considered) are treated at different

levels. The ligand motion is privileged, while flexible parts of the protein only move if they hinder the

ligand progression. This new algorithm presents two advantages with respect to the basic RRT. First, the

computing time and its variance are notably reduced. And second, but not less important, the flexible parts

that have to move for finding a solution path are automatically identified. Thus, the planner is able to handle

models involving hundreds of potential DOF, avoiding user intervention to select the important ones.

3.3.3 Protein folding/unfolding

For studying protein unfolding pathways, Song et al. have proposed a framework based on PRM motion

planning algorithm [Song and Amato 2001; Song and Amato 2004]. The objective is to compute the most

energetically favorable paths between the folded state and denatured states. A high-quality roadmap is

constructed by using Gaussian sampling around the folded state with various standard deviations to create

new conformations. The analysis of the computed unfolding pathway may provide information about the

order of formation of secondary structure elements.

Stochastic Roadmap Simulation (SRS), developed by Apaydin et al. [Apaydin et al. 2002], is a general

technique to study molecular motion. This technique is also applied to the protein folding problem [Apaydin

et al. 2003]. A number of conformations is sampled randomly from the conformation space. These

conformations of a protein are represented as nodes in a compact graph with the edges representing the

probability of moving between neighboring states. Once the roadmap construction is finished, techniques

from Markov-chain theory are used to calculate the probability of each node to tend toward a folded or an

unfolded state. The overall calculation of such folding probabilities allows to determine which structures

constitute the transition state of the folding process, and to estimate the folding time for the protein.

3.4 Contribution of this Thesis

Computational methods have been developed to complement the experimental studies and to better face

the quantity of data issued from genomics and proteomics. In this context, understanding and predicting

structure-function relationships in proteins with fully in silico approaches remain today a great challenge.

Proteins are able to undergo possibly large conformational changes that affect their ability to interact

with other molecules, and despite great advances achieved in the last years, dealing with macromolecular

flexibility largely remains out of reach of the existing molecular modeling tools.

Our approach to deal with the molecular flexibility in studying molecular interactions is based on

path planning algorithms proposed. Such algorithms are efficient tools for exploring constrained high-

dimensional spaces. Applied to problems in structural biology, they yield high-performance conformational
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search methods, able to consider a wide range of degrees of freedom. We present a new RRT variant

for disassembly path planning of articulated objects (see Chapter 4). The new method was developed to

circumvent the limitations of the basic RRT algorithm for dealing with disassembly problems involving

complex articulated objects. The main idea is to facilitate the tree expansion by considering separately

two types of conformational parameters, called active and passive. Active parameters are essential for the

disassembly problem, and they are directly treated at each iteration of the algorithm. Passive parameters,

however, only need to be treated when they hinder the expansion of active parameters. The advantage of

this decoupled treatment, that favors the expansion of the active parameters, is to maintain the exploratory

strength of the RRT algorithm while dealing with high-dimensional problems. Two extensions have also

introduced to deal with more complex systems involving several levels of passive parameters, or requiring

pushing and pulling motions of passive parts.

The technique presented in Chapter 4 is then applied for simulating ligand diffusion motions, together

with the possibly induced conformational changes of the protein. Given an initial structure with the ligand

docked inside the protein, the proposed method computes a path (i.e. continuous sequence of conformations)

simulating the ligand exit. Such a path search problem is formulated as a mechanical disassembly problem,

where the protein and the ligand are modeled as articulated mechanisms (see Chapter 5).

Generally, disassembly sequencing and path planning are parts of a whole problem, and ideally, they

have to be treated simultaneously. Therefore, we propose a new method for simultaneously disassembly

sequencing and path planning in a general framework (see Chapter 6). It extends the above disassembly

path planning algorithm for two objects with articulated parts. The idea developed in this chapter consists

in iterating the disassembly algorithm for extracting all the parts of a general assembly. This method can

extract not only path motion for each part to be disassembled from the complex but also the preferred order

that the disassembly process has to follow. A deep analysis of its performance is also carried out.

The disassembly sequencing method is then used to study the protein complex dissociation processes.

The method presented in Chapter 6 requires to be extended, since it is necessary to take into account the

interaction energy along the dissociation pathways between molecules. Therefore, a coarse-grained model

has been used to facilitate the energy computation. This approach has been applied for several protein

complex models, and it shows some promising preliminary results (see Chapter 7).





4
Disassembly Path Planning

for Complex Articulated Objects

This chapter addresses the problem of automatically computing motions to disassemble objects. Assembly

and disassembly planning are important problems in manufacturing engineering. Many techniques have

been developed in this field for automatically generating (dis)assembly plans that optimize time, cost,

etc. [Bourjault ; Homem de Mello and Lee 1991]. Most of these techniques are based on relation graph

models of the assembly or precedence graphs and use graph theory and AI algorithms for computing

disassembly sequences. The (dis)assembly problem can be formulated as a general path planning problem

[Latombe 1991; LaValle 2006]. Indeed, path planning concepts and algorithms have been applied to

solve different instances of the (dis)assembly planning problem. Sampling-based tree planners [Kavraki

and Latombe 1998; LaValle 1998] have been shown to be efficient techniques for solving constrained

disassembly problems between rigid objects. In this chapter, we present an algorithm that extends prior

works to disassembly problem between complex articulated objects. This algorithm will be applied in

Chapter 5 to simulate ligand pathways in flexible (articulated) protein receptors. We first provide a short

state of the art in Section 4.1 and the problem formulation in Section 4.2. The general RRT-based algorithm

will be next described in Section 4.3. Section 4.4 gives a detailed presentation of our variant along with

its performance analysis (Sec. 4.5). Two extensions of the ML-RRT algorithm, permitting to tackle more

complex problems, are described in Sections 4.6 and 4.7. The last section contributes to some discussions

of our method (Sec. 4.8).

29
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Figure 4.1: Disassembly path planning problem for two objects with articulated parts. The problem consists

in finding a path to extract the small (red/dark) object from the big one.

4.1 Related Works and Overview of the Proposed Method

A number of approaches were presented to deal with assembly and disassembly planning problems.

Geometric reasoning approaches have been proposed for reducing the combinatorial complexity of the

problem, as well as the amount of information that has to be provided by the user. Wilson’s pioneering

work on geometric reasoning about mechanical assembly [Wilson 1992] introduces the directional blocking

graph (DBG), which identifies which parts collide given an instantaneous displacement in a given direction,

and the non-directed blocking graph (NDBG), which represents how parts are constraining each other, based

on a partition of the space of allowed motions and on the associated DBGs. Many subsequent (dis)assembly

sequencing methods have used these two concepts. The approach presented in [Lozano-Pérez and Wilson

1993] generalizes the solutions in [Wilson 1992] to arbitrary motions between parts. The method involves

constructing configuration space diagrams that explicitly represent interferences between pairs of parts for

every relative motion. A similar approach is developed in [Halperin et al. 2000], based on the concept of

motion space, which is an extension of the notion of configuration space, and represents possible motions

of sub-assemblies.

The assembly maintainability study [Chang and Li 1995] is a variant of the (dis)assembly problem.

Given an assembled system, maintainability studies are conducted to determine if it is possible to remove

a particular part, and if so, to obtain the disassembly path. Normally, such studies involve only one mobile

part, and therefore, “standard” path planning algorithms could be applied. However, the workspace is

usually extremely constrained in this context, and problem-specific algorithms are required for efficiently

computing disassembly paths. A fast and effective algorithm for this kind of problems is presented in [Ferré

and Laumond 2004]. The method is based on an iterative RRT-like algorithm that reconstructs some parts

of the search tree while progressively increasing the size of the objects.

All the methods above address (dis)assembly problems involving rigid objects. The method we present

in this chapter is well suited for assembly maintainability studies in which the disassembled objects have

articulated parts. Figure 4.1 illustrates a simple two-dimensional example. Our algorithm is a variant of

the RRT algorithm [LaValle 1998]. The particularity of the proposed variant is to introduce two types of
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configuration parameters, labeled as active and passive, and to generate their motion in a decoupled manner.

We call this variant Manhattan-like RRT (ML-RRT) because the computed paths look like Manhattan paths

over these two sets of parameters that change alternatively. The partition of the configuration parameters

into active and passive corresponds to their role in the disassembly problem. Active parameters are essential

for the disassembly task, while passive parameters only need to move if they hinder the progress of the

disassembly process. The ML-RRT algorithm presents two main advantages with respect to the basic RRT:

(1) The computing time is notably reduced. (2) The passive parts that have to move for finding a solution

path are automatically identified. Thus, the planner is able to handle models involving hundreds of potential

degrees of freedom, avoiding user intervention to select the important ones.

4.2 Problem formulation

The disassembly path planning problem treated in this chapter can be formulated as a general path planning

problem for a system with multiple mobile objects, using the notion of configuration space C [Lozano-

Pérez 1983; Latombe 1991; LaValle 2006]. A configuration q is a minimal set of parameters defining the

location of the mobile system in the world, and C is the set of all the configurations. Given the assembled

configuration qinit and a goal configuration qgoal (any disassembled configuration) the problem consists in

finding a feasible collision-free path in C that connects both configurations. Note that contact between parts

is considered as a collision by our method. Therefore, contact motions can not be computed. The instance

studied in this chapter considers two objects with possibly multiple articulated parts. Considering that the

spatial location of one of the objects is fixed, then, the configuration parameters are those defining the pose

of the reference frame attached to other (mobile) object plus the degrees of freedom associated with the

articulated parts in both objects. Thus, the configuration vector is given by: q = {qM,qJm,qJs}, where qM

contains parameters defining the position and the orientation of the mobile reference frame, and qJm and qJs

represent the joint variables of the articulated parts in the mobile object and the static object respectively.

In the example illustrated by Fig. 4.1, the configuration vector is given by: q = {qM,qrm,qrs1,qrs2,qrs3},

where qM contains three parameters defining the position and the orientation of the mobile reference frame,

and qrm, qrs1, qrs2, qrs3 represent the joint angles of the articulated parts in the mobile object and the fixed

object. Thus, considering joint limits, the configuration space is: C = SE(2)×R
4.

In general, the most significant parameters for the disassembly of articulated objects are those

concerning the pose of the mobile object, qM. The parameters associated with the articulated parts are

relatively less important, since they only need to move if they hinder the progress of the mobile object

toward the disassembled configuration. Such different role of the configuration parameters is generally

true for the disassembly of two objects with articulated parts. Therefore, configuration parameters can

be separated into two sets: q = {qact ,qpas}, with qact = qM representing the active parameters, and

qpas = {qJm,qJs} the passive parameters. The terms active and passive have been chosen in relation to how

the algorithm described in Section 4.4 acts on them. This partition induces the corresponding sub-manifolds

in the configuration space: C = Cact ×Cpas. Although the above described partition can be generally

adopted, any other partition can be defined by the user. The mobile parts are separated into two lists Lact

and Lpas containing the active and the passive parts respectively. For a given partition, qact is the set of

configuration parameters associated with the parts in Lact and qpas is is the set associated with Lpas.
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Figure 4.2: Illustration of one expansion step of an RRT search tree. The tree tends to cover C f eas: the

feasible subset of the configuration space C.

4.3 Basic RRT Algorithm

The basic principle of the RRT algorithm [LaValle 1998] is to incrementally grow a random tree τ rooted

at the initial configuration qinit in order to explore the reachable configuration space and to find a feasible

path connecting qinit to a goal configuration qgoal . Fig. 4.2 illustrates the process and Algorithm 1 gives

the pseudo-code for the RRT construction. At each iteration, the tree is expanded toward a randomly

sampled configuration qrand ∈ C. This random sample is used to simultaneously determine the tree node

to be expanded and the direction in which it is expanded. Given a distance metric in the configuration space,

the nearest node qnear in the tree to the sample qrand is selected and an attempt is made to expand qnear

in the direction of qrand . For kinematically unconstrained systems, the expansion procedure can be simply

performed by moving on the straight-line segment between qnear and qrand . If the expansion succeeds, a

new node qnew and a feasible local path from qnear are generated. The key idea of this expansion strategy

is to bias the exploration toward unexplored regions of the space. Hence, the probability that a node will

be chosen for an expansion is proportional to the volume of its Voronoi region (i.e. the set of points closer

to this node than to any other node). Therefore, RRT expansion is biased toward large Voronoi regions

enabling rapid exploration before uniformly covering the space.

Different strategies can be adopted for the design of RRT-based path planners [LaValle and Kuffner

2001b]. Configuration sampling (function SampleConf) is normally made using a uniform random

distribution in the configuration space C. However, more sophisticated sampling strategies (e.g. sampling

in dynamic domains that envelope the search tree [Yershova et al. 2005; Burns and Brock 2007])

may improve the performance of the RRT algorithm. Another technical point concerns the function

NearestNeighbor. The basic RRT algorithm selects qnear as the nearest node to qrand using an Euclidean

metric1 in C. Such a metric distance is very simple and easy to compute. However, since it does not consider

motion constraints (e.g., obstacles, kinematic constraints), it may lead to a poor performance of the planner,

1We use a weighted metric for translation and rotation components, with 3D rotations represented by Euler angles. Note however

that the use of unit quaternions will be more appropriate [Kuffner 2004].
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Algorithm 1: Construct RRT

input : the configuration space C;

the root qinit and the goal qgoal ;

output : the tree τ;

begin

τ ← InitTree(qinit );

while not StopCondition(τ , qgoal) do

qrand ← SampleConf(C);

qnear ← NearestNeighbor(τ , qrand);

qnew ← Expand(qnear, qrand);

if not TooSimilar(qnear, qnew) then

AddNewNode(τ , qnew);

AddNewEdge(τ , qnear, qnew);

end

by repeatedly selecting “exhausted” nodes for futile expansion. To avoid this problem, two modifications

can be introduced in NearestNeighbor: (1) A node is no longer selected after its expansion fails a

given number of consecutive times l. (2) qnear is selected at random among the k nearest neighbors2. The

efficiency of these two modifications has been shown in related works [Cheng and LaValle 2001; Urmson

and Simmons 2003; Cortés et al. 2007]. One can also choose a more or less greedy strategy for the expansion

procedure (function Expand in Algorithm 1). In the basic RRT algorithm, a single expansion step of fixed

distance is performed. Here we use the RRT-Connect variant [LaValle and Kuffner 2001b], which iterates

the expansion step while feasibility constraints are satisfied. This variant is in general more efficient than

the single-step version for systems without differential constraints, which are the type of systems considered

in this chapter. The function TooSimilar rejects the new generated configuration if the distance between

qnear and qnear in C can not exceed a predefined threshold.

4.4 Manhattan-like RRT Algorithm

This section presents a variant of the RRT algorithm that considers the active/passive partition of the

configuration parameters introduced in Section 4.2. The algorithm, called Manhattan-like RRT (ML-RRT),

computes the motion of the parts associated with both parameter types in a decoupled manner. We have

called this variant Manhattan-like RRT (ML-RRT) because the paths computed by the algorithm look like

Manhattan paths over these two sets of parameters that change alternatively. The ML-RRT algorithm

considers two types of configuration parameters: active and passive. Active parameters are directly handled

by the planner, while passive parameters are treated only when required to expand the tree. Indeed, passive

parts only move if they hinder the motion of other mobile parts (active parts or other passive parts involved

in the expansion).

The ML-RRT algorithm is schematized in Algorithm 2. At each iteration, the motion of active parts

is computed first. The function SampleConf receives as argument the list of active parts Pact and it only

samples the associated parameters qact . Thus, this function generates a configuration qact
rand in a sub-manifold

2In our implementation, l is a constant with default value equal to 10, and k is computed as nnode/100 rounded to the nearest

upper integer, where nnode is the current number of nodes in the tree. These values have been empirically determined.
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Algorithm 2: Construct ML-RRT

input : the conformational space C;

the initial conformation qinit ;

the partition {Pact,Ppas};

output : the tree τ;

begin

τ ← InitTree(qinit );

while not StopCondition(τ) do

qact
rand ← SampleConf(C, Pact);

qnear ← NearestNeighbor(τ , qact
rand , Pact);

(qnew,Pcol
pas)← Expand(qnear,q

act
rand);

while Pcol
pas 6= /0 do

Pmov
pas ← PartsToMove(Pcol

pas);

q
pas
rand←PerturbConf(C, qnew, Pmov

pas , qnear.nfail);

(q’new, P’col
pas)← Expand(qnew, q

pas
rand);

Pcol
pas ← P’col

pas \Pcol
pas ;

qnew ← q’new;

if not TooSimilar(qnear, qnew) then

AddNewNode(τ , qnew);

AddNewEdge(τ , qnear, qnew);

qnear.nfail ← 0;

else qnear.nfail ← qnear.nfail +1;

end

of the configuration space involving the active parameters, Cact . The function NearestNeighbor selects

the node to be expanded qnear using a distance metric in Cact . Note that the function NearestNeighbor

also integrates the basic improvements mentioned in Section 4.3. Then, Expand performs the expansion

of the selected configuration by only changing the active parameters. A greedy strategy is used. The

returned configuration qnew corresponds to the last valid point computed along the straight-line segment

from qnear toward {qact
rand ,q

pas
near}. The function Expand also analyzes the collision pairs yielding the stop

of the expansion process. If active parts in Lact collide with potentially mobile passive parts in Ppas, the list

of the involved passive parts Pcol
pas is returned. This information is used in the second stage of the algorithm,

which generates the motion of passive parts.

The function PartsToMove determines the list Pmov
pas of passive parts to be moved at one iteration.

This function receives as argument the list of colliding passive parts Pcol
pas , and constructs a list with all the

parts indirectly involved in the collision. The function PerturbConf generates a configuration q
pas
rand

by randomly sampling the value of the passive parameters associated with Pmov
pas in a ball around their

configuration in qnew. An attempt is then made to further expand qnew toward {qact
new,qpas

rand}. Only the parts

in Pcol
pas move during this tree expansion. The function Expand returns a list Pcol’

pas if the expansion is stopped

by a collision involving passive parts. If this list contains new passive parts (in relation to Pcol
pas), the process

generating passive part motions is iterated. Such a possible cascade of passive part motions may be useful to

solve problems where passive parts indirectly hinder the motion of the active ones because they block other

passive parts. At the end of the iteration, if the expansion is not negligible, a new node and a new edge are

added to the tree.
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(a) (b) (c)

Figure 4.3: 2D examples: (a) Simple, (b) Double, (c) Triple.

Finally, note that although the active and passive parts move alternately in the path obtained by the ML-

RRT algorithm, a randomized path smoothing post-processing3 is performed in the composite configuration

space of all the parameters, so that simultaneous motions are obtained in the final path.

4.5 Empirical Performance Analysis

This section focuses on the performance comparison between the basic RRT algorithm and the ML-RRT

variant which have both been implemented within the motion planning software Move3D [Siméon et al.

2001], and tested with a set of benchmark examples. The results reported in this section aim to illustrate

both the generality and the good overall performance of the method. We start with the description of the

models divided into two classes: two-dimensional and three-dimensional academic examples. Then, we

analyze the intrinsic performance of the ML-RRT algorithm and we compare it with related methods. All

reported results correspond to averaged values based on 10 runs of both methods. All the experiments of

this chapter were performed on a AMD Opteron Processor 2222 3Ghz equipped with 8Gb of memory. The

search process returned a failure if the tree size excessed 10000 nodes.

4.5.1 Benchmark Models

Two sets of two-dimensional and three-dimensional have been used. The two-dimensional benchmarks (see

Fig. 4.3) involve a mobile H-like object with four d.o.f (i.e. two for translation, one for orientation, one

for deformation) and several fixed sticks. The length of the static obstacle and the number of the fixed

sticks are gradually multiplied to create more difficult problems (e.g., 3, 6 and 9 sticks along with more

complex obstacles). The three-dimensional examples involve a freeflying object (6 d.o.f) constrained by a

number of rotational sticks (see Fig. 4.4). The length of the mobile object is also extended along with the

3We use the probabilistic path shortening method [Sekhavat et al. 1998] for path smoothing.
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(a) (b) (c)

Figure 4.4: 3D examples: (a) Simple, (b) Double, (c) Triple.

Table 4.1: NUMERICAL RESULTS.
2DSimple 2DDouble 2DTriple 3DSimple 3DDouble 3DTriple

NDOF 7 10 13 8 10 12

RRT T(s) 48.64±17.28 → ∞ → ∞ 0.35±0.36 29.36±25.82 → ∞

Nnode 1266 → ∞ → ∞ 94 465 → ∞

Nsamp 22139 → ∞ → ∞ 1390 42120 → ∞

Ncoll 38882 → ∞ → ∞ 6901 73768 → ∞

MLRRT T(s) 0.22±0.19 0.79±0.93 3.02±2.56 0.15±0.34 0.54±0.21 5.85±3.07

Nnode 262 444 1013 109 255 1365

Nact
samp 883 1556 4537 179 1144 13077

Ncoll 3189 17110 22755 4552 11797 73145

static obstacle. In all the examples, the active parameters involve the translations and the orientations of the

mobile object. The passive ones contain all rotational sticks and mobile object deformation joint (in the 2D

models).

4.5.2 Performance Comparison

Table 4.1 displays the computing time (with standard deviation) and the number of nodes in the search trees,

samples and collision tests required for solving all benchmark problems with both algorithms (i.e. RRT and

ML-RRT). Note that, for ML-RRT, only the number of samples for active parameters Nact
samp is shown. These

results show that ML-RRT clearly outperforms the basic RRT, and that the performance gain increases with

the complexity of the problems. Note that the basic RRT is unable to solve the difficult versions of the

problems (i.e. 2D-Double, 2D-Triple, 3D-Triple) in reasonable computing time, while the performance of

ML-RRT is only slightly affected by the problem difficulty.

Figure 4.5 shows a projection of the search trees on the coordinates of the center of mass of the mobile
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(a) (b)

Figure 4.5: Search tree development for 2D-Double problem obtained with: (a) the basic RRT algorithm,

(b) the ML-RRT variant.

H-like object for example 2D-Double. The tree computed with the basic RRT algorithm contains 10000

nodes but all are concentrated in a small region of the search-space around the initial configuration. On the

contrary, the tree obtained with the ML-RRT algorithm contains about 1000 nodes and yet better covers the

search-space.

The main idea of the ML-RRT algorithm is to divide the configuration parameters into active and passive

ones. The planner has to treat only the active parameters and a few passive ones if needed. When the

number of passive parameters gradually increases along with more complex obstacles, this slightly affects

the algorithm’s performance. Results in Table 4.1 show that the performance of the basic RRT drastically

degrades due to the complexity of problems. On the contrary, the ML-RRT method still maintains its

performance with a relatively small increase of computing time.

Besides the computational efficiency, the solution paths obtained with both algorithms are also

qualitatively different (see Fig. 4.6). The two traces of the solution paths obtained with the basic RRT

and ML-RRT show this difference. In the path displayed by Fig. 4.6.a, computed by the basic RRT, the

mobile H-like object circumvents the mobile parts of the fixed object by generating many small motions

in the very constrained space. In the other path, obtained with ML-RRT (see Fig. 4.6.b), it is easy for the

H-like robot to progressively “push” the passive rotational parts to exit. This type of solution path seems

more natural for this kind of problem.

4.6 Multi-level passiveness

One extension of the ML-RRT algorithm is to take into account different mobility levels for the motion

of different parts. Therefore, passive parameters will be moved according to their mobility. For example,

Figure 4.7 illustrates the basic articulated disassembly problem (Fig. 4.7.a) and its extension (Fig. 4.7.b).
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(a) (b)

Figure 4.6: Trace of solution paths for 2D-Simple problem obtained with: (a) the basic RRT algorithm, (b)

the ML-RRT variant.

Instead of fixed obstacles in the basic example, the new extension involves two articulated walls with several

associated sticks which are concatenated in a kinematic chain and attached to a fixed base. We suppose that

the small sticks are easier to move than the walls.

The ML-RRT algorithm (see Algorithm 2) is general enough to permit such an extension. Only slight

modifications of some functions are necessary. The function PartsToMove determines the list Pmov
pas of

passive parts to be moved at one iteration from the list of colliding passive parts Pcol
pas . The extended version

of this function determines the list of parts to move based on the kinematic diagram of the articulated

mechanism. Figure 4.8 illustrates two typical situations. If the H-like object motion is hindered by a small

sticks (Case 1 in the Figure 4.8), then, the list involves this stick and the articulated parts of the corresponding

wall computed from the part containing the stick to the part attached to the base. When the H-like object is

hindered by a part of the wall (Case 2 in the Figure 4.8), only the list of parts in the kinematic chain between

this part and the base are returned.

A mobility coefficient δ ∈ (0,1] is assigned to each passive parameter. This coefficient is used to

differentiate passive parts that are allowed to move easily (i.e. the sticks) from those that should be moved

only if the solution path cannot be found otherwise (i.e. the walls). Then, the function PerturbConf

modifies or not the configuration parameters of a passive part in Pmov
pas depending on a probability distribution

that considers its mobility coefficient δ and the difficulty for expanding qnear, which is estimated by the

number of previous expansion failures n f ail . Therefore, a parameter is sampled if the following condition is

satisfied:

NormalRand(µ,σ2) > 1−δ

Where NormalRand returns a random positive real number sampled from a normal distribution with mean

µ = 0 and variance σ2 = 0.1× n f ail , and δ=(0,1] is the mobility coefficient of the part. Such a selection

strategy maintains a low probability of moving parts with small mobility coefficient (e.g. big sticks) when



39 · (Dis)assembly path planning for complex objects and applications to structural biology

Figure 4.7: Illustration of two passive level problem in comparison with the basic problem.

The bounding walls of the static object are now articulated. However, a lower probability to

move with respect to the small sticks is assigned to them.

(a) (b)

Figure 4.8: Determination of the list of passive parts to be moved Pmov
pas based on the contacts with active

parts and on the kinematic diagram of the protein model. Two typical cases are illustrated: (a) Case 1: Pmov
pas

= (Stick 1, Part 1, Part 2), (b) Case 2: Pmov
pas = (Part 1, Part 2).
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Table 4.2: Influence of passive priorities.

Mob.Coef(δ ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ave.Time(s) 4.39 3.42 4.55 5.0 6.1 8.67 10.05 12.13 11.94 13.72

Std.Dev. 4.67 2.57 4.36 4.83 8.2 13.3 10.89 10.1 13.58 12.77

Nnode 470 438 502 544 552 763 860 964 896 1058

Nact
samp 1926 1774 2250 2301 2350 3152 3398 3840 3677 4203

Ncoll 38148 34599 40238 42277 43017 55881 61475 66372 62817 70165

the diffusion tree easily grows, while the probability is increased when required to unblock the exploration.

4.6.1 Influence of passive parameter priorities

In order to analyze the influence of passive parameter priorities, we have performed 10 tests with the example

TwoPass in Fig.4.7 in which the mobility coefficient of small sticks is always set at 1.0 (called the first level

of passivity) while for the walls, it varies from 0.1 to 1.0 (called the second level of passivity). The highest

mobility coefficient of the walls corresponds to the basic ML-RRT algorithm’s treatment. Table 4.2 shows

the computing times (in seconds) with their standard deviations, and the number of nodes, samples for active

parameters, collision tests required by the planner. All values are averaged over 10 successful runs for each

test. Note that, a distance constant was considered between the ends of the two articulated walls in order to

increase the difficulty of the problem. The results show that when the mobility of the walls (i.e. the second

level of passivity) increases, the planner gradually spends more time for solving the problem. The best

result involves the second passive level mobility set at 0.2 while the worst result corresponds to the basic

ML-RRT algorithm’s performance (i.e 1.0). Because the limits in the movement of articulated walls allow

the extended algorithm to treat less passive parameters at one iteration than the basic ML-RRT, therefore the

problem can be solved more quickly.

4.6.2 Influence of number of passive levels

The analysis in this sub-section focuses on the influence of number of passive levels. The example illustrated

in Figure 4.9 called LongPass displays a more difficult problem involving two five-joint walls which contain

five rotational small sticks. Hence, this problem totally involves 24 d.o.f. Two bounded distance constraints

(i.e. one between two extremities and the other between the middle points of the articulated walls) are also

added to increase the problem’s difficulty. The mobility coefficient for the small sticks is always set at 1.0,

and 0.2 for the walls. Another example T hreePass illustrated in the Fig. 4.10 treats a problem with three

levels of passiveness. 22 d.o.f are considered in this model. The smallest yellow sticks have the highest

mobility coefficient (i.e. 1.0) and the mobilities for the cyan sticks and the pink walls are set at 0.5 and 1.0,

respectively. The bounded distance constraint is again applied in this three-passive-level model.

Table 4.3 shows the performance comparison between basic and multi-passive ML-RRT algorithms.

The results are also based on 10 successful runs for each examples. In the LongPass model, the computing

time of the extended variant can be reduced by 2 in comparison to basic ML-RRT. In the other model (i.e

T hreePass), the gain can be upto 7. We can conclude that the different priorities for passive parameter
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Figure 4.9: Illustration of larger number of passive parameters. Two different passiveness

levels are considered for the small sticks and the walls.

Figure 4.10: Illustration of three passive levels. Three different passiveness levels are

considered for the yellow and cyan sticks, and the big walls.
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(a) (b)

Figure 4.11: Development of search trees for ThreePass problem obtained with: (a) Basic ML-RRT, (b)

Multi-Passive Variant.

Table 4.3: Influence of number of passive levels.

Example Performance Basic ML-RRT Multi-passive ML-RRT

LongPass

Ave. Time(s) 1047.34±275.31 535.42±335.78

Nnode 9372 6769

Nact
samp 55355 35271

Ncol 729434 481254

ThreePass

Ave. Time(s) 200.14±282.15 29.63±44.41

Nnode 3023 1141

Nact
samp 25484 8149

Ncol 235148 84975

movement facilitates the exploration process of the planner, which allows finding the solution faster. Figure

4.11 shows a projection of the search trees on the coordinates of the center of mass of the mobile H-like

object for T hreePass model. The tree computed with the basic ML-RRT algorithm contains about 3000

nodes but all are concentrated in a small region of the search-space around the initial configuration. On the

contrary, the tree obtained with the Multi-Passive Level variant contains about 1000 nodes and yet better

covers the search-space.

4.7 Pushing and Pulling Motions

The basic ML-RRT algorithm performs well when treating problems needed only “pushing” motion of

passive parts by the mobile object. Another possible extension is to consider “pulling” motions which may

be important in some classes of disassembly problems. Therefore, we introduce a new notion called Passive
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Figure 4.12: Illustration of Passive Zone of the bodies associated with passive parameters.

Zone (see Fig. 4.12). For each body associated with a passive parameter of the static object, a passive zone

with predefined radius R is computed. Hence, in the diffusion process, if the mobile H-like object enters in

a passive zone, the planner will recognize the corresponding passive part and then “push” it or “pull” it.

In order to detect “collision” between the mobile object and a passive zone for a given configuration,

we compute all distances between the mobile object’s bodies (i.e. the H-like object has two parts) and the

other bodies associated with passive parameters (i.e. the small rotational sticks). If the difference between

these distances and their corresponding radius are negative or zero (meaning that there is “collision”), a list

of passive parameters is then returned (i.e. P
pas
col ).

Algorithm 3 shows the pseudo-code of the “Pushing-Pulling” ML-RRT variant,

Construct PushPull-ML-RRT. Overall, this algorithm is an inversed ML-RRT (see Algorithm 2). It tries

to expand several passive parameters before active parameters. For a given qnear, the function PassZoneCol

looks for the passive parameters close to the mobile object and adds them to the list P
pas
col . A loop is therefore

iterated to update the pose of several passive parameters involved in the “passive zone contact” list with

the help of the function PerturbConf which generates a configuration q
pas
rand by randomly sampling the

value of the passive parameters associated with P
pas
col in a ball around their configuration in qnear with a hope

that these nearest passive parameters will not hinder the expansion of the active ones. Once a collision-free

pose of passive parameters have been successfully sampled, it is ready for the planner to expand from the

new qnear (q’near in Algorithm 3) toward {qact
rand ,q

pas
near}. The rest of the pseudo-code is similar to the basic

ML-RRT.

4.7.1 Influence of passive zone size

In order to analyze the influence of the passive zone size, 10 tests in which the passive zone radius is varied

were performed with the model illustrated in the Fig. 4.12. This radius can be defined by the formula:
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Algorithm 3: Construct PushPull-ML-RRT

input : the conformational space C;

the initial conformation qinit ;

the partition {Pact,Ppas};

output : the tree τ;

begin

τ ← InitTree(qinit );

while not StopCondition(τ) do

qact
rand ← SampleConf(C, Pact);

qnear ← NearestNeighbor(τ , qact
rand , Pact);

Pcol
pas ← PassZoneCol(qnear);

q’near ← qnear;

while Pcol
pas 6= /0 do

Pmov
pas ← PartsToMove(Pcol

pas);

q
pas
rand←PerturbConf(C, q’near, Pmov

pas , q’near.nfail);

(qnew, P’col
pas)← Expand(q’near, q

pas
rand);

Pcol
pas ← P’col

pas \Pcol
pas ;

q’near ← qnew;

(qnew,Pcol
pas)← Expand(q’near,q

act
rand);

if not TooSimilar(qnear, qnew) then

AddNewNode(τ , qnew);

AddNewEdge(τ , qnear, qnew);

qnear.nfail ← 0;

else qnear.nfail ← qnear.nfail +1;

end

Table 4.4: Influence of passive zone radius.

K 10 20 30 40 50 60 70 80 90 100 MLRRT

Ave. Time(s) 0.41 0.49 0.53 0.62 0.58 0.69 0.67 0.70 0.71 0.83 0.61

Std. Deviation 0.28 0.41 0.42 0.54 0.35 0.57 0.52 0.53 0.51 0.92 0.56

Nnode 336 366 383 454 415 464 467 473 485 495 296

Nact
samp 469 500 631 648 644 662 653 675 739 796 930

Ncoll 5049 5619 5655 6315 6629 6652 6643 7515 7812 8089 5668

R = K× ε (4.1)

where K is a parameter (e.g., 10, 20, 30, etc) and ε is the smallest interpolation step used by the planner.

Table 4.4 shows the computing times (in seconds) with their standard deviations and the number of

nodes, samples and collision tests required by the planner calculated from 20 successful runs. The value of

K parameter varies from 10 to 100. The results shows that this parameter slightly affects the performance of

the algorithm. The bigger the passive zone radius is, the more passive parameters are considered in “pulling”

phase. Therefore, the planner has to treat more passive parts than in the basic ML-RRT algorithm while a

big radius is set . Results show that, although the basic ML-RRT works with “pulling” problems, the new

variant performs better with a reasonable value of passive-zone radius R (i.e. small K) (see column K=10
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(a) (b) (c)

Figure 4.13: Illustration of “pushing and pulling” models with different number of passive parameters: (a)

Pulling2, (b) Pulling3, (c) Pulling4.

and the last column corresponding to the basic ML-RRT).

4.7.2 Influence of passive parameter number

The goal of this section is to compare the performance difference between the basic ML-RRT and the

“Pushing-Pulling” variant when the number of passive parameters is increased as well as the complexity

of obstacles. Three new examples were designed from the one in the Fig. 4.12 where the number of

passive parameters is gradually increased along with more complex static obstacles (see Fig. 4.13). Twenty

successful runs are performed for each model where the K parameter is set at 10.

Table 4.5 shows that the performance of the basic ML-RRT is very similar to that of the “Pushing-

Pulling” variant for the easier five-passive-joint model (i.e. Pulling2 model). However, the performance of

the basic ML-RRT algorithm significantly degrades when the complexity of the problem increases. On the

other hand, the new extended variant is able to solve the more difficult problems in reasonable computing

time. Figure 4.14 shows the graphs constructed by the two methods for the example Pulling3. The basic

ML-RRT’s one is much more dense than the new variant’s one. Therefore, both “pushing” and “pulling”

motions are highly required to treat the most constrained problems. This combination of both motions

allows the new extended planner to discover faster the key states of the configuration-space that lead to the

exit of the mobile object.

4.8 Discussion

The basic ML-RRT algorithm described in this chapter is an efficient method for disassembly path planning

of two objects with articulated parts. An interesting feature of the algorithm is its ability to treat problems

with a high number of potentially mobile parts and to automatically identify the degrees of freedom that are
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Table 4.5: Influence of number of passive parameters.

Example Performance Basic ML-RRT Pushing-Pulling ML-RRT Variant

Pulling2

Ave. Time(s) 5.71±7.61 4.24±7.16

Nnode 911 1078

Nact
samp 3179 2910

Ncol 20995 22299

Pulling3

Ave. Time(s) 51.97±83.2 22.11±43.68

Nnode 3390 2275

Nact
samp 7907 5962

Ncol 119071 92286

Pulling4

Ave. Time(s) → ∞ 454.6±343.13

Nnode → ∞ 11856

Nact
samp → ∞ 36105

Ncol → ∞ 273081

(a) (b)

Figure 4.14: Development of search trees for Pulling3 problem obtained with: (a) Basic ML-RRT, (b)

“Pushing-Pulling” Variant.

important for the disassembly task. In this thesis, we show the interest of ML-RRT for solving problems in

structural biology. Nevertheless, other application domains, such as CAD/PLM, could also benefit from the

proposed method.

Two extensions of the ML-RRT algorithm have been also presented. The first extension addresses

disassembly planning problems for articulated objects involving parts with different mobilities. Different

mobility coefficients are assigned to passive parts, which allows the planner to better explore the



47 · (Dis)assembly path planning for complex objects and applications to structural biology

configuration-space. Therefore, the computational efficiency is significantly improved. This extension is

applied for studying the conformational changes induced by the ligand exit when taking into account the

different levels of flexibility of different protein’s parts such as side chains, loops or domains, etc. This

application will be detailed in the Chapter 5.

The second extended version of ML-RRT is devised for solving problems in which passive articulated

parts are “pushed” and also “pulled” by the mobile object, which is important in some classes of disassembly

problems. This extension will also help to solve more efficiently the problems addressed in next chapters.





5
Ligand-Protein Interaction Studies

Proteins are flexible macromolecules that fluctuate between nearly isoenergetic folded states [Frauenfelder

et al. 1991]. In many cases, conformational changes are associated with their function, and they occur

through the interaction with other molecules. For instance, conformational changes are of major importance

for protein-ligand and protein-protein recognition [Carlson 2002; Lensink and Méndez 2008]. This

chapter addresses protein conformational changes induced (or required) by the diffusion of a ligand (or

substrate/product) molecule inside the protein. An illustrative example is the permeation of lactose through

a membrane transport protein (LacY) [Kaback et al. 2001]. LacY fluctuates between a conformation where

lactose is accessible from the cytoplasm, but the channel toward the periplasmic side is closed (Figure 5.1.a),

and the opposite conformation where the channel is open toward the periplasm and closed in the cytoplasmic

side (Figure 5.1.b). The transition between these two conformational states occurs during lactose diffusion

inside the protein.

Despite impressive recent advances on the structural determination of protein motions [Katona et al.

2007; Schanda et al. 2007], currently available experimental methods are unable to provide an atomic-

resolution structural description of protein conformational changes associated with ligand diffusion.

Computational methods are therefore necessary to better understand such processes. However, the time-

scale of the ligand diffusion process from a deep active site to the protein surface is out of range for standard

molecular dynamics (MD) simulations. Variants of MD methods such as steered molecular dynamics

(SMD) [Izrailev et al. 1998] and random acceleration molecular dynamics (RAMD) [Ludemann et al. 2000]

have been proposed for accelerating the simulation of the ligand exit. Both methods introduce an artificial

force in the molecular force field to enhance the ligand motion in a given direction. In SMD simulations,

this direction is usually defined by the user through a haptic device. In RAMD simulations, the direction

is randomly chosen and iteratively modified after a given number of simulation steps if the ligand gets

49
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(a) (b)

Figure 5.1: Lactose permease (LacY) conformational transition. a) The crystal structure [Abramson 2003]

(PDB ID 1PV7), where the substrate is accessible from the cytoplasm. b) Model of LacY after the

conformational changes induced by the substrate diffusion toward the periplasm.

stuck. Although these methods have been shown to provide biologically relevant information, they remain

computationally expensive. Besides, the artificial force introduced for accelerating the simulation may yield

biased results about the induced conformational changes, so that the interest of simulating with an accurate

molecular force field is partially lost.

This chapter presents an alternative method for simulating ligand diffusion motions, together with

the possibly induced conformational changes of the protein. The method applies the ML-RRT algorithm

presented in Chapter 4. Given an initial structure with the ligand docked inside the protein, the proposed

method computes a path (i.e. continuous sequence of conformations) simulating the ligand exit. Such a

path search problem is formulated as a mechanical disassembly problem (Sec. 5.1), where the protein and

the ligand are modeled as articulated mechanisms. The main feature of this method is its computational

efficiency, enabling to compute large-amplitude conformation transition paths, such as the one illustrated in

Figure 5.1, in the range of less than one hour of CPU time. Results illustrating the capacities of the method

are presented on three biologically interesting systems involving ligand-induced conformational changes:

amylosucarse, lactose permease (LacY), and the β2-adrenergic receptor (Sec. 5.2). The last section 5.3

discusses on results and point out possible extensions of the method.

5.1 Methodology

5.1.1 Model and Parameters

Mechanistic molecular model:

A molecule contains a set of atoms Ai connected by bonds. Generally, the atom’s position can be represented

by a point and the bond connecting two atoms by a straight-line segment. Therefore, a sequence of bonded
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Figure 5.2: Molecular chain and the internal coordinates.

Figure 5.3: Model of two-peptide-unit segment.

atoms is called a molecular chain. In order to describe the relative position of consecutive atoms in this

molecular chain, three parameters, called internal coordinates, are used: bond lengths di, bond angles αi and

dihedral angles θi. The internal coordinates are illustrated in Figure 5.2. According to the rigidity of bond

lengths and bond angles, their values (di,αi) are normally fixed. We have applied the modified-Denavit-

Hartenberg (mDH) convention [Craig 1989] to model a molecular chain from the internal coordinates.

Therefore, a molecular chain between atoms (Ai) can be then modeled as a kinematic chain in which joint

variables correspond to dihedral angles. The conformation of the chain is represented by the array q of the

θi.

This thesis, mainly deals with proteins, which involve one or several polypeptide chains. A polypeptide

chain is a sequence of amino-acids (also called residues) which have a common backbone of an organic

carboxylic acid group and an amino group attached to a saturated carbon atom Cα and a side-chain (marked

as R in Fig. 5.3) specific to each particular amino-acid. Consecutive amino-acids in the polypeptide chain

are held together by chemical bonds between the carboxy group of the one and the amino group of the

other. The resulting C-N bond, called a peptide bond, has a double-bond character making it particularly

rigid. Under the rigid geometry assumption, the whole arrangement of the four C,O,N,H atoms as well as

the two attached carbons Cα in a peptide unit is considered planar (i.e. the peptide bond is fixed with ω = 0

or π). Thus, the protein backbone, formed by the enchainment of amino-acid’s backbones, only rotates

around N-Cα bounds (angle φ ) and Cα -C bounds (angle ψ). Generally, in the fully flexible representation,

the considered articulations are the rotations between rigid atom groups are all the φ , ψ , and ω for the
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Figure 5.4: Mechanical model of an amino acid residue (phenylalanine) with all-atom fully flexible

representation.

backbones and χi for the side-chains. Therefore, the conformation can be determined by an array:

q = {qbkb,qsch1
, ...,qschn

} (5.1)

where qbkb is the backbone conformation and qschi
is the conformation of each side-chain. The atom groups

that correspond with the rigid bodies of the articulated molecular model are represented by spheres with a

percentage of Val der Waal (VdW) radii. Figure 5.4 shows the mechanical model of phenylalanine residue

which is composed of five rigid bodies divided into two classes:

• backbone rigids: Rb1 = {N}, Rb2 = {Cα ,Cβ}, Rb3 = {C,0}

• side-chain rigids: Rs1 = {Cγ}, Rs2 = {Cδ1,Cδ2,Cε1,Cε2,Cζ}

Note that, although in the biochemical description of proteins Cβ is a side-chain atom, it belongs to a

backbone rigid in our mechanistic model, since its position is determined by the values of the backbone joint

torsions, but it does not depend on the side-chain conformation.

Definition of rigid and flexible segments:

The method described in this chapter deals with partially-flexible protein models to treat protein-ligand

disassembly problems. Therefore, the size of the atom groups depends on the level of flexibility allowed to

different parts of the molecule. Flexible and rigid regions can be assigned based on structural knowledge. In

the present work, flexibility is defined by the user. Note however that the identification of rigid and flexible

regions may be automated using computational methods such as FIRST [Wells et al. 2005].

Figure 5.5 illustrates the mechanistic model of a protein. The following notation is used:

• Gi group: set of rigid secondary structure elements (with flexible side-chains), possibly connected by

flexible loops.

• iLk
i intra-group loop: kth flexible segment between two secondary structure elements of group Gi.

• eLi,i+1 inter-group loop/linker: flexible segment between secondary structure elements in consecutive

groups Gi and Gi+1.
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(a) (b)

Figure 5.5: Schematic representation of a flexible protein model: (a) The three secondary structure elements

grouped in G1 are modeled as a rigid solid. The group G2 involves only one secondary structure element.

The loop/linker eL1,2, between G1 and G2, is flexible. Loops connecting elements in a group can be flexible

or not. Only the intra-domain loop iL1
1 is flexible in this example. (b) Illustration of the mapping between

the mechanistic model and hierarchical model. Two helices are considered as big rigid groups, while the

flexible loop and all side-chains are composed of small atom-groups connected by rotatable bonds.

Each group Gi holds free rigid body mobility, independently from the other groups. Therefore,

loop-closure constraints have to be imposed on flexible segments eLi,i+1 and eLi−1,i connecting Gi to its

neighboring groups, in order to maintain the molecular chain integrity. As indicated in Figure 5.5, several

parts are differentiated inside inter- or intra-group loops: the N-terminal and C-terminal segments, and the

middle part (M), which is composed by a tripeptide. Such a decomposition is required for the treatment of

loop motions that will be explained below. Additionally, geometric (distance and orientation) constraints

can be introduced between any pair of elements (rigid groups or loops) in order to model interactions such

as hydrogen bonds or disulfide bonds. All these constraints must be satisfied during the conformational

exploration. Side-chains (not represented in the figure) are generally modeled as flexible elements with

freely rotatable bond torsions (i.e., [-π , π]) but they can also be defined as rigid parts together with the

secondary structure elements. By default, the ligand is also fully flexible. Nevertheless, the user can

arbitrarily define the flexibility of the ligand and the side-chains.

Conformational parameters:

The protein conformation is defined by the parameters determining the pose (position and orientation) of all

the groups Gi, the values of the bond torsions in intra- and inter-group loops, and the bond torsions of the

side-chains. If some flexibility is allowed to secondary structure elements, the associated variables are also

part of the conformational parameters. The conformational parameters of the ligand have the six parameters

defining the pose of its reference frame (associated with its center of mass) as well as the values of the

allowed bond torsions.

Let q denote the array containing the values of all the conformational parameters of the protein and



Chapter 5 Ligand-Protein Interaction Studies · 54

Figure 5.6: Illustration of the decoupled exploration of active and passive parameters within ML-RRT. a) Expansion

of active parameters corresponding to the motion of the ligand. b) Identification of the passive parts hindering the

ligand motion. c) The expansion of passive parameters yielding the opening motion of the protein. d) New iteration

of the active parameters expansion.

the ligand. The ML-RRT algorithm explores the composite conformational space C, which is the set of

all conformations q involving the parameters of the mechanistic models of the two molecules described in

the previous subsection. As mentioned in Chapter 4, ML-RRT considers the conformational parameters at

different levels of priority. Indeed, the parameters are partitioned into active and passive on the basis of

their role in the disassembly problem. Active parameters are essential for carrying out the disassembly task,

while passive parameters only need to move if they hinder the progress of the process.

Thus, the mobile parts of the molecular model are separated into two lists Pact and Ppas containing the

active and the passive parts respectively. For a given partition, the conformational parameters are separated

into two sets: q = {qact ,qpas}, where qact is the set of conformational parameters associated with the parts

in Pact and qpas is the set associated with Ppas. For the protein-ligand disassembly problems addressed in this

chapter, qact involves the ligand parameters, while qpas concerns the protein flexibility.

Additionally, a mobility coefficient δ ∈ (0,1] is assigned to each passive parameter. This coefficient is

used to differentiate passive parts that are allowed to move easily from those that should be moved only if

the solution path cannot be found otherwise. By default, the mobility coefficient of all side-chains is set to

1, meaning that they will systematically move if they are identified during the exploration. Lower mobility

coefficient is allowed to loops and secondary structure groups, with δ = 0.5 and δ = 0.2 respectively in the

current implementation. This distribution of mobility coefficient is coherent with the fact that side-chains,

small groups of atoms, are more flexible than loops and secondary structure groups.

5.1.2 Conformational exploration algorithm

The problem of computing the exit path of a ligand from a protein active site can be formulated as a

mechanical disassembly problem in which molecules are represented as articulated mechanisms. The

degrees of freedom (DOF) of the molecular models correspond to bond torsion (backbone or side-chains)
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Figure 5.7: Determination of the the list of passive parts to be moved Pmov
pas based on the contacts with active parts

and on the kinematic diagram of the protein model. Three typical cases are illustrated.

and to rigid-body motion of atoms groups (rigid secondary structure elements). Starting from a given

“assembled” (docked) position of the ligand inside the protein, the disassembly problem consists in finding

the path (i.e. continuous sequence of conformations) leading to a ”disassembled” state, where the ligand

is located outside the protein. The disassembly path has to be searched in a composite conformational

space involving the degrees of freedom of the protein and the ligand. The difficulty for solving such path

search problem is due to the very high dimension of this search-space (e.g. more than a thousand of DOF).

The ML-RRT algorithm, which is detailed in Chapter 4, computes motions of the ligand and the protein

(associated with active and passive parameters, respectively) in a decoupled manner. Figure 5.6 provides a

simple illustration of the process, which alternates expansion attempts of these parameter subsets. Active

parameters are directly handled by the planner, while passive ones are treated only when required to further

expand the tree. Indeed, passive parts only move if they hinder the motion of other mobile parts (active

parts or other passive parts involved in the expansion). Figure 5.7 illustrates three typical situations. If the

ligand motion is hindered by a side-chain in a secondary structure element (Case 1), then the list of passive

parts to move involves this side-chain and the corresponding group Gi. When the colliding side-chain is on

a flexible loop, then the list involves the side-chain, the loop backbone, and the group Gi for an intra-group

loop iLi (Case 2), or the groups Gi and Gi+1 for an inter-group loop eLi,i+1 (Case 3). In all the cases, when

a group Gi is considered for subsequent motion, then the backbone of inter-group loops eLi−1,i and eLi,i+1

(if any) is also considered into the list, since the conformation of these loops needs to be sampled together

with the group pose in order to maintain the chain integrity.
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5.1.3 Geometric constraints verification

During the conformational exploration, a set of geometric constraints has to be checked (e.g., collision

avoidance, hydrogen/disulfide bond integrity) or reinforced (e.g., loop closure). These constraints are

explained below.

Collision avoidance:

The main geometric constraint to be verified during the conformational exploration is the avoidance of

atom overlaps. The atoms are represented by rigid spheres with a percentage of van der Waals radii.

Considering a percentage of the van der Waals equilibrium distance ensures that only energetically infeasible

conformations are rejected by the collision checker. The value of 80% is often used in techniques that

geometrically check atom overlaps [DePristo et al. 2003]. Collisions are checked between the ligand and

the protein, as well as internal collisions between mobile parts of each molecule. The collision test is

done inside the function Expand (see Algorithm 1 and 2 in Chapter 4), which performs the local expansion

motion. Our implementation builds on the efficient BioCD algorithm [Ruiz de Angulo et al. 2005], specially

designed for articulated molecular models. BioCD uses hierarchical data structures to approximate the shape

of the molecules at successive levels of detail, making the number of atom pairs tested for collision to be

significantly reduced. BioCD is inspired by the dual kd− tree traversal algorithms initially developed for

n-point correlation problems in statistical learning. The algorithm maintains two levels of bounding volume

hierarchies grouped according to spatial proximity. The first level organizes the rigid parts of the articulated

model according to the selected while the second level organizes the atoms inside each rigid part of the

first level. Such a data structure can be efficiently tested for collision and also updated at a moderate cost.

Experimental tests performed with BioCD show its efficacy in processing thousands of collision tests per

second on articulated protein chains with hundreds of DOF [Ruiz de Angulo et al. 2005].

Loop closure:

The functions SampleConf and PerturbConf (see Algorithm 1 and 2 in Chapter 4) perform a specific

sampling procedure of loop conformations, taking into account loop closure constraints. Once the pose

parameters of all groups Gi have been sampled, the Random Loop Generator (RLG) algorithm [Cortés et al.

2004] is applied to sample the backbone torsions of the N-terminal and C-terminal segments of each loop.

This iterative algorithm, based on simple geometric operations, biases the sampling of these chain segments

toward conformations with a high probability of satisfying the loop closure constraint. The constraint is

reinforced within the function Expand, which applies an inverse kinematics method [Renaud 2000] to

compute the bond torsions of the tripeptide in the middle loop part (M) for the conformations along the

local expansion motion.

Hydrogen bonds and disulfide bonds:

These structural constraints can be considered within the mechanistic molecular model. Indeed, they are

modeled as distance and angle constraints between the bonded atoms. For hydrogen bonds, the distance d

between the donor and the acceptor atoms, and the bond angle θ , must remain within a given range. For

instance, for O-H· · ·N bonds: dO-N ∈ [2.5 Å, 3.8 Å] and θO-H-N ∈ [110◦,180◦]. Disulfide bonds also imply

bond length and bond angle constraints between the involved S and C atoms. Additionally, the S-S bond

torsion γ is restricted around 90◦. The ranges by default are dS-S ∈ [1.8 Å, 2.2 Å], θC-S-S ∈ [100◦,130◦], and

γS-S ∈ [60◦,120◦]. All these constrains are checked within the function Expand.
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Figure 5.8: Illustration of five domains of the Amylosucrase structure (PDB ID 1G5A): N dark blue, A green, B

yellow, B’ magenta, C red.

5.2 Results

This section presents results obtained with the proposed method on three biologically interesting systems

involving ligand-induced conformational changes while computing geometric-based exit pathways of the

ligand from the active site. In the first system, the exit of the product from the binding site of amylosucrase,

which requires the movements of several loops, is analyzed. In the second one, the mechanism of sugar

permeation through LacY involves a large-amplitude relative motion of transmembrane domains. In the third

system, the access/exit of a ligand to the active site of the β2-adrenergic receptor is related with side-chain

motions, loop motions and transmembrane domain rearrangements. The presented results are not aimed

to provide new insights into these biological systems, but to serve as a proof of concept and to show the

interest of the proposed approach. The method was implemented within our software prototype BioMove3D.

PyMOL [DeLano 2002] was used for viewing molecular models. The computing times reported below

correspond to tests run on a single AMD Opteron 148 processor at 2.6 GHz.

5.2.1 Multi-Loop Motions: Amylosucrase

5.2.1.1 Structural Description

Amylosucrase (AS) from Neisseria polysaccharea, which catalyzes the synthesis of an amylose-like

polymer from sucrose, belongs to the glycoside hydrolase family 13 (also called α-amylase family)

[Sarcabal et al. 2000]. Since two decades ago, many studies have been performed to analyze the specificity

of its binding sites for synthesis of glucan, oligosaccharea or glucoconjugates [Skov et al. 2001; Skov et al.

2002].

The AS structure contains five domains (Fig. 5.8) named N, A, B, B’ and C. Three domains, A, B and C,

are common to all α-amylases. Domain A (residues 98-184, 261-395, 461-550) made up by eight β -sheets

and the same number of α-helices forms the catalytic core. Interestingly, the loop region that connects
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(a) (b)

Figure 5.9: Models of AS with different loops (Loop 3: Blue, Loop 7: Magenta, Loop 8: Orange), and a

product molecule in the active site: (a) Two-loop model, (b) Three-loop model.

Table 5.1: Flexibility of three considered models.

Model
Number of DOF

Domain/Helix Side-chain Loop’s backbone Product/Substrate/Ligand Total

AS 2 Loops 0 1474 30 22 1526

AS 3 Loops 0 1474 76 22 1572

LacY 12 678 75 10 775

β2-AR 42 490 159 12 703

strands to helices (loop1 and loop8) are much longer on average than those connecting helices to strands

[Skov et al. 2002]. Domain B (residues 185-260) containing two short anti-parallel β -sheets can be found

in many α-amylases. This domain has a very long loop 3 (Thr224-Gly236). Eight-stranded β -sandwich

(residues 555-628) creates the last domain C. Domains N, which is specific to AS, containing only α-helical

form comprises from 1 to 90 first residues. The interesting domain B’ (residues 395-460) is also specific

to this enzyme. It starts with two α-helices followed by short β -sheets and terminates with another short

α-helix, and it contains a flexible loop 7 (Gly433-Gly449) [Albenne et al. 2007].

The active site of AS, which is often referred to as OB1, has a 15 Å deep and narrow pocket like

architecture with seven well-defined subsites spanning from -1 to +6 according to the glycoside-hydrolase

nomenclature [Champion et al. 2009]. Due to this type of active site topology, the analysis of the interactions

between substrate/product molecules and AS along the access/exit pathway, as well as the deformations

induced by these interactions, are very important for a better understanding of the specificity and the

enzymatic mechanism of AS.

In this work, we have used a model of AS with a product molecule (Allyl-α-D-Glcp-(1→4)-α-D-

GlcNac) in the active site1 in order to analyze the interactions and the protein deformations induced by

the product exit. Two instances of the problem were considered. In the first one, two loops 3 and 7 were

considered to be flexible, whereas in the second one the loop 8 was also involved. These two instances are

1The model of AS with the product molecule in the active site was generated using molecular modeling tools by our colleagues

at the LISBP-INSA.
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(a)

(b)

Figure 5.10: List of residues encountered by the product during its diffusion toward the exit of OB1 binding

site of the AS. For facilitating interpretation, the pathway is divided into three segments. The grey-scale

represents the percentage of times that the contact appears over the set of 20 paths. a) 2-Loop Model b) 3-

Loop Model.

illustrated in Figure 5.9. Note that all the side chains in the protein were also considered to be flexible.

The product molecule was modeled with full flexibility, and it could freely rotate and translate by 50 Å

in any direction. Table 5.1 shows the number of degrees of freedom (DOF) for each model. Overall, the

mechanistic models of enzyme-product complex contain 1526 DOF and 1572 DOF for the 2-loop and the

3-loop models respectively, in which 30 and 76 correspond to the backbone torsions of the two and three

loops respectively, 1474 to the protein side chains, and 22 to the product molecule mobility and flexibility.

5.2.1.2 Access/Exit Pathway Analysis

The ML-RRT algorithm was applied to compute the exit pathway of the product from the binding site OB1

of AS, surrounded by two or three flexible loops. Table 5.2 shows the performance of the algorithm based

on 20 successful runs for each model. An analysis of the contacts between the product and protein residues

based on the 20 exit pathways was performed in order to identify key residues for product release. Note that

residues involved in product release would also be important for the substrate entry.

The diagrams in the Figure 5.10 represent the residues encountered by the product molecule along its

escape trajectory for the 2-loop and 3-loop models. A contact between the product and a protein’s residue

was recorded if the distance between the surface of van der Waals spheres modeling their atom was below

0.8 Å. This value which is determined by experimentation permit to obtain most significant residue contacts.
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(a) (b)

Figure 5.11: Superposition of the initial structure of Amylosucrase with considered loops (Loop 3: Blue,

Loop 7: Magenta, Loop 8: Orange) and conformations induced by the product exit (corresponding light

colors) following the 2-loop model (a), and the 3-loop model (b).

Table 5.2: Algorithm Performance.

Performance Two-Loop Model Three-Loop Model

Ave. Time(s) 2357.05±1024.97 3648.74±1174.12

Nnode 7011 8297

Nact
samp 8301 10410

Ncoll 58843 66757

These diagrams show the percentage of times that a contact appeared over the set of 20 paths. Recorded

contacts were registered into three segments of the path: the beginning (0-7 Å), the middle part (7-15 Å), and

the final part (above 15 Å) where the product is close to the exit of the narrow pocket. Only residues with

contact percentage greater than 10 % are displayed. Overall, the residues that are encountered with higher

probability are the the same in both diagrams.

Remarkably, most of the residues highlighted by our results have been shown to be important residues.

Asp286, Glu328 and Asp393, located at the bottom of the pocket, form the catalytic triad [Albenne et al.

2002; Champion et al. 2009]. Other identified residues such as His187, Phe250 and His392 are know to

be important for substrate stabilization [Albenne et al. 2002; Albenne et al. 2004]. Residues Asp144 and

Arg509, which form a salt-bridge highly conserved in α-amylases [Albenne et al. 2002], are also identified.

Note the the product exit, as well as the substrate entry, require the breakage of this bridge. Residues Asp394

and Arg446, located in the first shell of subsite +1, are know to be important in the catalytic mechanism of

AS [Albenne et al. 2002]. More importantly, site-directed mutagenesis experiments [Champion et al. 2009]

have shown that mutation of residues Ile228 and Phe290, which are systematically found in the computed

exit paths, lead to a significant catalytic efficiency improvement. Finally mention that residues Arg226 and

Asp444, pointed out by our method since they highly hinder the diffusion of the product in the middle part

of the pathway, will be the object of future site-directed experiments carried out by our colleagues at the

LISBP-INSA. Figure 5.11 shows the conformational changes of the two models induced by the product exit.
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Table 5.3: Distance variation between residue pairs in LacY.

Residue pair Inward-open Outward-open Outward-open

(experimental [Smirnova07]) (simulation)

73-401 41 Å 27 Å 36.9(±1.0) Å

73-340 36 Å 21 Å 31.0(±1.3) Å

136-340 34 Å 17 Å 28.7(±1.4) Å

137-340 32 Å 16 Å 26.7(±1.4) Å

136-401 40 Å 24 Å 35.6(±1.3) Å

137-401 38 Å 22 Å 33.5(±1.4) Å

105-310 34 Å 41 Å 38.0(±1.6) Å

164-310 27 Å 43 Å 32.8(±1.4) Å

164-375 33 Å 49 Å 35.8(±1.2) Å

5.2.2 Domain Motions: Lactose Permease

5.2.2.1 Structural Description

Lactose permease (LacY) is a transport protein that transduces electrochemical proton gradients into sugar

concentration gradients across the cell inner membrane [Kaback et al. 2001]. LacY is composed of two main

domains [Abramson et al. 2003]: the N-domain involving helices I-VI, and the C-domain involving helices

VII-XII. The two domains are connected by a long loop containing more than 20 residues. For carrying out

its function, LacY is supposed to alternate between two conformational states: the inward-open state, where

the substrate is accessible from the cytoplasm, and the outward-open state, where the access is possible from

the periplasmic side. However, only the structure of the inward-open conformational state of LacY has been

solved by X-ray crystallography.

Different approaches have been used to analyze the conformational transition pathway toward the

outward-open state. In particular, experimental studies using double electron-electron resonance (DEER)

[Smirnova et al. 2007] suggest that the conformational transition can be mainly described as a rigid-body

rotation of the C-domain and the N-domain. Based on such structural knowledge, the mechanistic model of

LacY was simplified by considering a rigid backbone for the C- and N- domains. Flexibility was allocated

to the loop between helices VI and VII, and to all the protein side-chains. Thus, the mechanical model

contains two main groups G1 and G2 associated with the C-domain and the N-domain respectively, and an

inter-domain loop eL1,2. Groups G1 and G2 were permitted to rotate ±60◦ around any axis.

The X-ray structure of LacY of Escherichia coli [Abramson et al. 2003] (PDB ID 1PV7), corresponding

to the inward-open conformation, and used as starting point in this work, contains a bound substrate

homologue TDG (see Figure 5.1.a). The substrate molecule was modeled with full flexibility, and it could

freely rotate and translate by 50 Å in any direction except the direction to the cytoplasm (only 5 Å were

permitted in this direction in order to force the exit toward the periplasmic side). Overall, the mechanistic

model of LacY-TDG contains 775 degrees of freedom: 12 correspond to the rigid-body motion of the C-

and N- domains, 678 to the protein side-chains, 75 to the backbone torsions of the inter-domain loop, and 10

to the substrate mobility and flexibility (see Table 5.1). The initial “assembled” conformation is represented

in Figure 5.1.a.
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Figure 5.12: Superposition of the initial structure of LacY with two domains (Domain N: blue, Domain C: cyan) and

a loop (red), and conformations induced by the ligand exit (corresponding light colors).

5.2.2.2 Analysis of Conformational Changes

The ML-RRT algorithm was applied to compute the exit pathway of TDG toward the periplasmic side, which

involves the conformational transition of LacY. The computing time of a run was about 1 hour on a single

processor AMD Opteron 148 processor at 2.0 GHz equipped with 2 Gb of memory. Such high computational

performance is worth to be noted since it represents an important feature of the proposed approach compared

to the very long computing times required by other simulation methods such as molecular dynamics.

The algorithm was run 10 times in order to analyze a possible variability of results associated with the

randomized exploration procedure. All the experiments yielded very similar results with regard to the

protein conformational change. The obtained “disassembled” conformation, with the ligand outside the

protein and LacY in outward-open state, is represented in Figure 5.1.b. As it has been pointed out by

prior studies [Smirnova et al. 2007], the substrate exit requires the rotation of the two domains. In our

results, the observed rotation between the domains is around 20◦. Although this is smaller than the 60◦

suggested by DEER experiments, the overall motion is alike. The comparison of the variation of distances

between some residue pairs in the inward- and outward- faces of LacY (see Table 5.3) shows an approximate

overall ratio of 1/3 between the values measured by DEER and our results. The explanation to this

quantitative difference is that our approach tends to produce the minimal conformational change required

for the molecular disassembly, while larger motions may occur in reality. Interestingly, the distance between

residues Ile40 and Asn245 in the outward-open conformation computed by ML-RRT is of approximately

15Å, which has been shown by cross-linking experiments [Zhou et al. 2008] to be the minimal distance

between these residue positions for guaranteeing the activity of LacY. Figure 5.12 shows the conformational

changes of LacY induced by the ligand exit.

In other recent studies [Jensen et al. 2007], steered molecular dynamics (SMD) simulations have

been carried out to better understand the physical mechanisms of lactose permeation at the atomic level.

SMD results provide detailed information about the interactions between lactose and LacY residues during
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Figure 5.13: List of residues whose side-chain was encountered by the substrate during its diffusion toward the

periplasm. For facilitating interpretation, the pathway is divided into three segments. The grey-scale represents the

percentage of times that the contact appears over the set of 10 runs.

permeation. Such kind of information cannot be directly provided by our method, since it does not consider

accurate energy functions. However, a straightforward geometric analysis of the paths obtained by ML-

RRT can provide the list of residues that the ligand has encountered during its diffusion. The diagram in

Figure 5.13 represents the residues encountered by the ligand along the path toward the periplasm.

A contact between the ligand and a residue side-chain was recorded if the distance between the surface

of van der Waals spheres modeling their atoms was below 1 Å. The diagram shows the percentage of times

that a contact appeared over the set of 10 paths. Contacts were recorded for three segments of the path:

the beginning (0-10 Å), where the ligand is close to its location in the crystal structure, the middle part

(10-20 Å), and the final part (above 20 Å), where TDG is near the periplasm. Remarkably, all the residues

identified by SMD simulations [Jensen et al. 2007] as interacting residues (throught side-chain hydrogen

bonds or hydrophobic interactions) appear in the diagram, with the exception of Asp36. Note however that

this residue is on the periplasmic surface of the protein. On the other side, only one potentially interacting

residue (Thr265) that is appearing in the contact diagram with a significant percentage is not reported in the

referred work. Such an impressive consistency with results of SMD simulations confirms the validity and

the potential interest of our approach.

5.2.3 Helix Motion: β2-Adrenergic Receptor

5.2.3.1 Structural Description

The β2-Adrenergic Receptor (β2-AR) is a membrane protein belonging to the superfamily of the G-protein-

coupled receptors (GPCRs) [Vauquelin and von Mentzer 2007], which activate signal transduction inside the

cell in response to the binding of hormones and neurotransmitters in the extracellular region. GPCRs are

important therapeutic targets for a large class of diseases. Therefore, numerous studies have been devoted

to this family of proteins, aiming to better understand their activation/deactivation mechanism. However,

many questions remain. In particular, little is known about the functional role of extracellular loops, and

about their possible conformational coupling to ligand binding [Bokoch et al. 2010]. One major difficulty

comes from the lack of structural information inherent to membrane proteins.

A high-resolution crystal structure of β2-AR has been recently obtained [Cherezov et al. 2007]. The

crystal structure also contains a molecule of carazolol, a partial inverse agonist, in the protein active site.
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Figure 5.14: Structure of β2-AR with carazolol bound in the protein active site viewed from the extracellular side.

The secondary structure elements and important residues are displayed on the image.

This receptor-ligand structure is the starting point of the conformational analysis presented below. The

structure is represented in Figure 5.14, using standard notation for the structural elements. Like all GPCRs,

β2-AR contains seven transmembrane helices, which were modeled as rigid groups Gi. The intracellular

and extracellular loops were modeled as flexible elements eLi,i+1. Note that, in the crystal structure, the

third intracellular loop was replaced by T4 lysozyme (T4L) to facilitate the growth of diffraction-quality

crystals [Cherezov et al. 2007]. Since T4L is a priori not important for the exit/access of the ligand, it

was removed for constructing the mechanistic model considered in this study. All the side-chains are fully

flexible. Groups Gi can move±2 Å in any direction and can rotate±30◦ around any axis. The ligand is also

modeled with a fully flexibility, and it can freely translate and rotate in a cube of edge length 50 Å centered

at the initial docking position. The number of degrees of freedom of the whole model is 703: 42 of them

correspond to the rigid-body motion of the seven transmembrane helices, 490 to the protein side-chains, 159

to the backbone torsions of the five loops, and 12 to the ligand mobility and flexibility (see Table 5.1).

5.2.3.2 Analysis of Conformational Changes

The exit pathway of carazolol from the active site of β2-AR was computed by using the ML-RRT. A first

set of 10 runs revealed some variability on the trajectories followed by the ligand. Thus, the algorithm was

run 60 times in order to do a more accurate statistical analysis of results while comparing with prior works

[Wang and Duan 2009]. 60 paths were obtained in 2 hours of computing time (each run takes an average

of only 2 minutes on a single processor AMD Opteron 148 processor at 2.0 GHz equipped with 2 Gb of

memory). These exit paths can be divided into two main clusters. In one class of paths, which we refer to as

“left-hand” paths, carazolol exits between transmembrane helices H5, H6 and H7. In the other class, called

“right-hand” paths, the ligand exits between H2, H3 and H7. The two clusters can be separated by an axis

traced between residues Asp192 and Lys305, which form a salt bridge in the crystal structure. Figure 5.15

shows snapshots of the ligand exit path for each path class.
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(a) (b)

Figure 5.15: Snapshots of the ligand exit from β2-AR following the left-hand pathway (a), and the right-hand

pathway (b).

Interestingly, these two classes of exit paths have also been observed in prior studies [Wang and Duan

2009] based on random acceleration molecular dynamics (RAMD) simulations. A quantitative comparison

can be done between results obtained with ML-RRT and RAMD. The most significant comparable result

is that both approaches suggest that left-hand and right-hand exit paths are approximately equiprobable.

Indeed, 31/60 of the ML-RRT solutions correspond to left-hand, and 29/60 to right-hand paths. Another

result from RAMD simulations described by [Wang and Duan 2009] concerns the recurrent breakage of the

salt bridge Asp192-Lys305 during ligand exit. Paths computed with ML-RRT show a significant motion

of the side-chains of these two residues, which lead to the salt bridge breakage for most of the 60 paths.

However, in some of the left-hand paths, the ligand exits with only a slight perturbation in the conformation

of Asp192 and Lys305. The interpretation is that it is geometrically possible for the ligand to exit between

helices H5, H6 and H7 without breaking the salt bridge.

A further comparison between left-hand and right-hand paths obtained with ML-RRT displays other

interesting differences. The first one concerns the orientation of the ligand. In most of the left-hand paths,

the ring head of carazolol reaches first the protein surface (see Figure 5.15.a). Contrarily, the ring and

the alkylamine-alcohol tail exit almost simultaneously in most of the right-hand paths (Figure 5.15.b). A

possible interpretation may be that one of the pathways could be preferred for the exit of the ligand, while

the other could be more suited to the access. A more accurate analysis of the paths computed by ML-RRT

would be required to reinforce such a suggestion. Note however that RAMD simulations from a putative

ligand-free model of β2-AR [Wang and Duan 2009] suggest that carazolol enters the receptor between

helices H2, H3 and H7, with its ring head diving first.

Another interesting difference between the two classes of exit paths concerns the conformational

changes of the extracellular loop ECL2 induced by the ligand exit. As shown in Figure 5.16, right-hand

paths imply, in average, a more significant motion of ECL2 than left-hand paths. Note that although the
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Figure 5.16: Superposition of the initial structure of β2-AR (black) and conformations induced by the ligand exit

(grey) following the left-hand pathway (a), and the right-hand pathway (b).

loop ECL2 of β2-AR is very long, its conformation is constrained by two disulfide bonds, one between

residues in the loop (Cys184-Cys190), and one between the loop and H3 (Cys106-Cys191). Thus, in any

case, this loop cannot undergo large conformational changes. The observed relationship between right-hand

paths and ECL2 flexibility has been confirmed by tests performed on a model of β2-AR only considering

side-chain flexibility. Using this rigid-backbone model, the ligand exited through the left-hand pathway in

90% of the ML-RRT runs. These results suggest that right-hand access/exit paths, between transmembrane

helices H2, H3 and H7, involve a more important interaction between the ligand and ECL2 than left-hand

paths. Note that recent studies on GPCRs show important roles of ECL2. Indeed, it can be required for

ligand binding [Avlani et al. 2007], and its motion can be involved in the activation mechanism [Ahuja et al.

2009]. In the crystal structure, the access/exit channel to the active site is partially covered by the second

extracellular loop (ECL2). The ligand exit requires the opening of this loop.

The analysis of contacts between carazolol and β2-AR residues along the set of 60 exit pathways

computed with ML-RRT was performed using the technique described above for the study of LacY.

Figure 5.18 shows the list of residues whose side-chain was encountered by the ligand. For clarity reasons,

the figure only reports contacts that appeared in more than 30% of the paths. Four residues are clearly

highlighted in the diagram: Asp192, Phe193, Lys305, and Asn312. The positions of these residues are

indicated in Figure 5.14. Two of them, Asp192 and Lys305, form the aforementioned salt bridge, which

is broken during the ligand diffusion. Phe193, which is located on ECL2, has also been identified as an

important residue in related works. As shown in Figure 5.17, right-hand paths imply, in average, a more

significant motion of this key residue than left-hand paths do. Results of RAMD simulations [Wang and

Duan 2009] suggest that this aromatic residue may participate in the ligand entry and stabilization in the

active site of β2-AR. Recent NMR experiments [Bokoch et al. 2010] have shown that inverse agonists

induce a conformational change of this residue. Finally, Asn312 is an important residue for the stabilization

of carazolol in the active site through a polar interaction with its alkylamine-alcohol tail. Overall, the

presented results show that structural information on the access/exit of carazolol to the active site of β2-AR
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(a) (b)

Figure 5.17: Superposition of the initial structure of the residue Phe193 (black) and conformations induced

by the ligand exit (grey) following the left-hand pathway (a), and the right-hand pathway (b).
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Figure 5.18: List of residues whose side-chain was encountered by the ligand along the exit pathway. For facilitating

interpretation, the pathway is divided into three segments. The grey-scale represents the percentage of times that the

contact appears over the set of 60 runs. Only contacts that appeared in more than 30% of the paths are displayed.

provided by Pushing-Pulling-ML-RRT is in agreement with results of other experimental and computational

studies.

5.3 Discussion

The results in this chapter show that a mechanistic approach to molecular simulations may lead to the

development of efficient computational methods, able to provide relevant information on the interaction

of biological molecules. The proposed algorithm, ML-RRT, is a novel and fast conformational search

method for simulating ligand diffusion inside flexible models of proteins including more than thousands

of degrees of freedom. Indeed, this algorithm generates long (20-30 Å) diffusion paths within tens of

minutes of computing time on a single processor, which is remarkably short compared to the time required

by MD-based methods. Such a high computational performance is achieved thanks to the efficiency of

the conformational search method that operates on geometric models of molecules. Geometrically feasible

paths are a reasonably good approximation that provides itself very useful information. Furthermore, as
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shown in prior work [Cortés et al. 2005], the approximate solution path can also be efficiently refined with

standard molecular modeling tools (e.g. energy minimization) in order to perform a more accurate energetic

analysis.

As future work, we intend to further improve the method to better deal with full molecular flexibility

during protein-ligand interactions. We also expect to extend the method for its application to the modeling

of protein-protein interactions. One way to do it could be to combine ideas of ML-RRT and T-RRT

algorithms [Jaillet et al. 2008]. Basically, T-RRT method extends RRT-like algorithm to bias the tree

exploration toward low-energy region of the conformational-energy landscape. Therefore, the integration

of T-RRT inside the “Pushing-Pulling” variant of ML-RRT should be useful to generate energy-minimized

pathways in ligand-protein or protein-protein interaction studies. An implementation of this combination is

introduced in Chapter 7.



6
Path Planning Approach to

Disassembly Sequencing

Disassembly planning is a very active research field with a number of direct applications such as end-of-

life product processing, maintenance operations, and product repair [Lambert and Gupta 2005]. Moreover,

integrated within CAD/CAM systems [Arai and Iwata 1993], disassembly planning helps to design products

that are easier to manufacture, to maintain and to recycle. Since a bijection between assembly and

disassembly sequences usually exists [Halperin et al. 2000], the assembly-by-disassembly strategy has been

a common approach to assembly planning. Thus, although a distinction between both problems can be

made [Lambert 2003], it is usual to talk indistinctly about assembly and disassembly planning. This chapter

directly addresses the latter problem. Nevertheless, like most of related works, the proposed method can

be used to infer the assembly sequence from the model of the assembled object. Figure 6.1 illustrates the

problem of disassembly sequencing: what is the order for sequentially disassembling an engine into its

elementary parts?

In this chapter, we present an algorithm that extends prior works to disassembly sequencing problem

of complex assemblies. This algorithm will be applied in Chapter 7 to simulate sequential dissociation

pathways of protein complexes. We first provide a short state of the art on disassembly planning in

Section 6.1. Then, we propose a general formulation for simultaneously disassembly sequencing and path

planning (Section 6.2). Based on this formulation, the method builds on sampling-based path planning

algorithms, which are able to solve problems in high dimensions (Section 6.3). Results and an empirical

performance analysis (Section 6.4) show the good performance and the generality of the method. One of the

reasons for such a generality is that the method only requires simple computational geometry tools such as

collision detection. However, in some cases, further geometric operations will be integrated in the algorithm

in order to enhance its performance (Section 6.5).

69



Chapter 6 Path Planning Approach toDisassembly Sequencing · 70

(a) (b)

Figure 6.1: Illustration of 15-component encoder assembly [Duggan et al. 2000] : (a) Assembled State, (b)

Disassembled State.

6.1 Related Works and Overview of the Proposed Method

Disassembly planning can be tackled at different levels of detail [Lambert 2003]. The highest level

concerns disassembly sequencing, which is the problem of listing subsequent disassembly actions that

can separate individual parts of an assembly. This problem is usually formulated as a discrete search and

optimization problem, and is solved using AI methods such as AND/OR graphs [Lambert 2000] or genetic

algorithm [Kongar and Gupta 2001]. Geometric reasoning approaches (e.g. [Wilson et al. 1995; Halperin

et al. 2000; Fogel and Halperin 2008]) can be applied at this level in order to reduce the combinatorial

complexity of the disassembly sequencing problem. Disassembly path planning, which addresses the parts

motion considering physical and manipulability constraints, rises at a more detailed level of the disassembly

planning problem. Due to the high computational complexity of treating all part motions simultaneously,

the disassembly path planning problem has usually been formulated for a single part. This simpler instance

is also called the assembly maintainability study [Chang and Li 1995]. Efficient path planning methods

(e.g. [Ferré and Laumond 2004; Aguinaga et al. 2008]), based on the popular RRT algorithm [LaValle

and Kuffner 2001b], have been proposed to solve very constrained single-part disassembly problems on

complex CAD models. Based on this type of method, the ML-RRT algorithm, presented in Chapter 4,

addresses disassembly path planning for objects with articulated parts.

However, disassembly sequencing and path planning are parts of a whole problem, and ideally, they

have to be treated simultaneously. The relationship between both sub-problems is more obvious for non-

monotonic disassembling (see Figure 6.5 for an example), in which parts have to be moved to intermediate

locations for permitting the disassembly of other parts. Despite their potential interest, few methods have

been proposed for simultaneously disassembly sequencing and path planning in a general framework, like

the one presented in this chapter. Probably the most closely related method was proposed by Sundaram et

al. [Sundaram et al. 2001]. Based on randomized path planning algorithms, this technique was able to

compute disassembly sequences considering all the parts disassembly paths. The method samples motion
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(a) (b)

Figure 6.2: Similarity between articulated disassembly and disassembly sequencing with the same idea

of [Active–Passive] degrees of freedom decomposition: (a) Articulated Disassembly, (b) Disassembly

Sequencing.

directions of one or several parts using geometric information (i.e. the normal direction to faces in contact).

Although general, this method strongly depends on geometric operations, and thus, its performance for

solving problems involving parts with complex shapes is questionable. Besides, its ability to treat non-

monotonic disassembly problems was neither experimentally proved nor discussed.

This chapter introduces a general formulation for simultaneously disassembly sequencing and path

planning, and proposes an algorithmic solution based upon it. The proposed method extends the ML-

RRT algorithm, described in Chapter 4, which was originally proposed for disassembly path planning of

two objects with articulated parts (see example in Figure 6.2.a). The idea developed in this chapter consists

in iterating the ML-RRT algorithm for extracting all the parts of a general assembly. A simple example

of disassembly sequencing and path planning problem is illustrated in Figure 6.2.b. At each iteration, a

different active-passive partition of the system configuration parameters will be considered. This partition

can be based on information about assembly structure. Nevertheless, if such information is difficult to

obtain, the algorithm still provides good results when using a random selection. At the end of the iterative

process, the algorithm has computed a sequence of elementary part motions yielding the system disassembly.

Although optimality criteria are not explicitly considered, the method tends to minimize the number of

elementary motions.

6.2 Problem Formulation

This section presents a unified formulation for disassembly path planning and disassembly sequencing. The

formulation is a generalization of the one presented in Chapter 4 for the disassembly path planning problem.

A configuration q is a minimal set of parameters defining the location of the mobile system in the world, and

the configuration-space C is the set of all the configurations. Given the initial assembled configuration qinit ,

the problem consists in finding a feasible path in C form qinit to a disassembled configuration qdis. Note that

qdis may not be specified by a precise goal configuration, like in the standard path planning problem, but it

can be implicitly defined by a condition based on distances between parts. Path feasibility in this context
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Algorithm 4: Iterative-ML-RRT

input : the model M; the search-space C; the root qinit ;

output : the disassembly pathway sequence S;

begin

niter ← 0;

repeat

niter ← niter +1;

mi ← SelectPart(M);

(Pact ,Ppas)← SetPartition(M,C,mi);

τ ← InitTree(qinit );

while not StopCondition(τ , MaxTreeSize) do

if Construct ML-RRT(M,C,τ,Pact ,Ppas) then

if PartDisassembled(Pact ,qnew) then

break;

qend ← SelectEndConf(τ);

if not TooSimilar(qinit ,qend) then

si ← ExtractSubPath(τ,qinit ,qend);

S← MergeSubPaths(si);

qinit ← qend ;

until AllDisassembled(qend) or niter ≥MaxIter;

if AllDisassembled(qend) then return S;

else return FAILURE;

end

mainly involves collision avoidance. Nevertheless, constraints on the the number of hands, the possible

motion directions, and optimality criteria can also be considered.

In the case of a system M involving n mobile objects mi (i.e. the assembled parts), C is the Cartesian

product of the configuration-spaces of all the objects: C = ∏Cmi
, i = 1 . . .n. Motions of a single object

ma, which we will call active part, take place in a sub-manifold Ca
j = Cma

× q
p
j , where q

p
j is a point in a

lower-dimensional manifold Cma
= ∏Cmi

, ∀i 6= a. This point q
p
j represents a fixed location of all the other

objects, referred to as passive parts. Note that for each value of q
p
j , Ca

j corresponds to a foliation leaf of C.

Such a foliation Fa of C can be made for each object ma ∈M being selected as an active part.

Starting from a configuration of the whole system q j (initially, q j is the assembled configuration qinit),

one part ma can be disassembled without moving other parts if it exists a feasible path in Ca
j between

q j = (qa
j ,q

p
j ) and a configuration qsub,a = (qa

dis,q
p
j ), which represents a subassembly with ma extracted from

the assembly. Otherwise, disassembling ma will require motions of other parts that can be find by exploring

a continuous sequence of adjacent foliation leaves in Fa starting from Ca
j .

Considering that parts are moved and disassembled one by one (what is called a two-handed

(dis)assembly sequence in related literature), an assembly admits a monotonic disassembly sequence if the

path for disassembling each part ma can be found in only one leaf Ca
j of its corresponding foliation (i.e. Fa)

being q j = qinit for the first part or q j = qsub,a−1 for the others parts. Here, qsub,a−1 represents a subassembly

where all the previous parts in the sequence have been already extracted. Therefore, the minimal number

of leaves Ca
j needed to be explored is equal to the number of parts minus one (the last part does not need

to move). For non-monotonic disassembly problems, motions of parts to intermediate configurations that

do not correspond with a subassembly are required. Thus, the number of leaves to be explored increases,
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and it is necessary to find paths in C connecting these different leaves. Disassembly sequencing within this

formulation can be expressed as the problem of finding the order to select active parts ma that minimizes the

number of leaves Ca
j to be explored for finding all the disassembly sub-paths.

6.3 Disassembly Sequencing Algorithm

The basic ML-RRT is able to rapidly compute the path for extracting a part from an assembly, also producing

motions of other parts if necessary. The idea developed in this chapter consists in iterating the ML-RRT

algorithm a number of times for extracting all the parts. The Iterative-ML-RRT (I-ML-RRT) algorithm is

sketched in Algorithm 4. At each iteration, one part is tried to be disassembled. The part is selected by the

function SelectPart. Part selection may follow a predefined disassembly order to be tested, or maybe

determined by a heuristic based on the assembly structure. If such information is not available, the part

is simply selected at random. The function SetPartition sets the pose parameters of the selected part

as active parameters Pact , while those of all the other parts are passive Ppas. The variance of the Gaussian

distribution associated with the mobility coefficient of passive parts is initialized with a high value, making

these parts have low tendency to move in the first iterations. This coefficient is used by the function

PerturbConf in the Algorithm 3 (Construct ML-RRT) in Chapter 4. Once the parameter partition

is set, the basic ML-RRT is applied to compute the disassembly path. The ML-RRT expansion process

is stopped in two cases: if the currently treated part reaches a disassembled configuration (detected by the

function PartDisassembled when the distance to all the other parts is greater than a given threshold), or if

a StopCondition determines that the part extraction is not possible. In our implementation, the latter stop

condition acts when the number of nodes in the search tree reaches a maximum user-set value MaxTreeSize.

The information encoded in the constructed search tree is then treated. If the current active part has

been disassembled, the function SelectEndConf returns the last computed configuration. Otherwise, it

returns the configuration that maximizes the distance to the other parts. Except if this end configuration is

too similar to the initial one (i.e. parts have only slightly moved), the path connecting both configurations

is computed from the search tree, and it is merged to the sub-paths obtained in previous iterations. In order

to avoid including unnecessary part motions in the solution disassembly path, the threshold used in function

TooSimilar is initialized with a high value. This value is then correlatively decreased if parts cannot be

disassembled after a consecutive number of I-ML-RRT iterations. Finally, the initial configuration for the

next iteration is updated to the end configuration of the current one. The whole process is iterated until all

parts are disassembled, or the number of iterations reaches a maximum value, MaxIter. In the latter case,

the algorithm returns failure.

The output of the I-ML-RRT algorithm is a path S consisting of a sequence of elementary part motions

yielding the system disassembly. This path results from the concatenation of the sub-paths si obtained at

each iteration. Each sub-path si involves motions of one part (the active part in the corresponding iteration),

and, in some cases, slight motions of other parts that hinder its disassembly. In easy disassembly problems,

most of the computed sub-paths yield the entire disassembly of one part. Nevertheless, in more difficult

problems, some of the computed sub-paths may only produce partial disassembly motions that increase the

clearance of the active part. The number of such intermediate sub-paths tends to increase with difficulty of

the problem.
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(a) (b) (c)

Figure 6.3: Planar Puzzles: (a) Simple, (b) Double, (c) Triple.

(a) (b)

Figure 6.4: The Pentomino Puzzles: (a) without box, (b) with box.

Note that, although optimality criteria are not directly considered in this work (this is a possible

extension mentioned in Section 6.5), the I-ML-RRT algorithm tends to minimize the the number of

elementary motions (i.e. the number of explored leaves Ca
j defined in Section 6.2) required for the

disassembly. Furthermore, in general, the obtained sequence is sub-optimal in the number of necessary

elementary motions required for the disassembly. However, experimental results presented in next section

show that even in the worst case, the “brute” solution contains a limited number of motions. Some

unnecessary motions can be removed by simple post-processing of the brute path sequence.

6.4 Results

The I-ML-RRT algorithm has been also implemented within the motion planning software Move3D [Siméon

et al. 2001], and tested with a set of benchmark examples. The results reported in the next section aim to

illustrate both the generality and the good overall performance of the method. We start with the description

of the puzzle models used as examples of both monotonic and non-monotonic disassembly problems.
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(a) (b) (c) (d) (e)

Figure 6.5: 2D Narrow Puzzles: (a) Assembled configuration, (b)(c)(d)(e) Four disassembly sub-paths.

(a)

(b) (c)

(d) (e)

Figure 6.6: 3D Narrow Puzzles: (a) Assembled configuration, (b)(c)(d)(e) Four disassembly sub-paths (the

box is not displayed for clarity reasons).

The intrinsic performance of the algorithm is then analyzed and compared with other existing techniques

[Sundaram et al. 2001] and [Fogel and Halperin 2008]. All reported results correspond to averaged values

based on 50 runs. Note that, this algorithm was run with the MaxIter parameter set to a sufficiently large

value (10.000), so that each run ended up when a solution was found. All experiments were performed on a

computer equipped with an AMD Opteron 148 2.0 GHz processor and 2 Gb of memory.

6.4.1 Benchmark Models

Monotonic Cases:

The two first models, Planar and Pentomino (see Fig. 6.3 and Fig. 6.4), correspond to the simpler class of
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Table 6.1: Algorithm Performance.

Example 2D Simple 2D Simple Pentomino Pentomino 2D Narrow 3D Narrow

Transaltion Rotation Transaltion Rotation

Nb.Parts 6 6 12 12 3 3

Nb.DOF 12 18 36 72 9 18

Ave.Time(s) 0.1 0.16 3.79 6.55 1.65 13.83

Std.Dev. 0.05 0.14 1.05 1.14 1.29 9.94

monotonic disassemblies in which each part can be extracted using a single continuous path (i.e. the length

of the optimal disassembly sequence is equal to the number of parts, minus -the static- one). Both models

are inspired from Sundaram’s benchmarks [Sundaram et al. 2001] (Fig. 6.3-a and Fig. 6.4-a) from which we

created more complicate variants for the aim of our tests. First, the number of parts of the Planar benchmark

was increased by duplicating the original Simple model into the Double and Triple variants (Fig. 6.3-b,c),

respectively involving 12 and 18 parts. We also considered a more difficult version or the three-dimensional

Pentomino puzzle in which the disassembly motions of the twelve parts are constrained by the presence of

a bounding box (Fig. 6.4-b).

Non-Monotonic Cases:

The two other examples, 2D Narrow and the three-dimensional variant 3D Narrow (respectively shown

in Fig. 6.5 and 6.6), correspond to more complex problems, although less parts are involved. First, the

disassembly sequence of both problems is non-monotonic, since one part has to be moved first to some

intermediate position for “unlocking” the disassembly (see Fig. 6.5-b and 6.6-b). Moreover, due to spatial

constraints, both disassembly sequences require rotational motions for extracting the second part from the

narrow corridor (see Figure 6.5-d) or from the assembly box (see Figure 6.6-d).

6.4.2 Performance Analysis

Algorithm performance:

Table 6.1 shows the computing times required by I-ML-RRT to solve the test examples. The results show

the good performance of the method that is able to solve all disassembly problems in times ranging from 0.1

sec. to 13 sec. Note that even if the Planar and Pentomino puzzles can be both solved with only translational

motions, the table also reports computing times obtained when rotations are allowed. These results indicate

that the overhead of considering rotational motions is rather limited (factor less than two). Further results

reported in Table 6.2 for the three Planar puzzle variants also indicate that the computational efficiency is

linearly influenced by the number of parts.

Effect of the disassembly order strategy:

As explained in Section 6.3, the current implementation of the SelectPart function relies on a simple

random strategy for selecting at each iteration the active part tried to be disassembled. Table 6.2 further

investigates the efficiency of this random choice in comparison to best and worst case selections. The
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Table 6.2: Effect of the Sequence Initialization.

Model Nb. Elemental Aver. Nb. Aver. Nb. Average Standard

Motions Iterations Subpaths Time(s) Deviation

2D Simp Tran
Good-Bad 6 6-180.95 6-6.95 0.08-0.14 0.04-0.12

Random 6 70.6 6.59 0.1 0.05

2D Doub Tran
Good-Bad 12 12-212.55 12-12.56 0.66-0.88 0.06-0.37

Random 12 180.1 12.51 0.72 0.2

2D Trip Tran
Good-Bad 18 18-318.89 18-21.61 3.45-4.52 0.38-0.34

Random 18 217.26 18.72 3.84 0.71

3D Pentomino
Good-Bad 12 12-68.7 12-15.96 4.52-7.73 0.92-1.36

Random 12 58.7 15.73 6.55 1.14

2D Narrow
Good-Bad 4 4-370.67 4-158.61 0.71-1.84 0.29-1.29

Random 4 36.62 10.95 1.65 1.29

3D Narrows
Good-Bad 4 4-455.54 4-90.47 10.1-21.96 4.51-4.56

Random 4 177.19 19.16 13.83 9.94

best case corresponds to the correct sequence order given as input to the algorithm, while the worst case

corresponds to the inverse sequence. The reported results indicate that the best/worst case selections only

influence the computational efficiency by a factor less than 2.5 and that the random selection strategy stands

in the middle of the time range. The table also reports the averaged number of iterations together with the

number of extracted sub-paths (i.e. the length of the computed disassembly sequence). As one can see

from the results, the computed solutions are close to the optimal ones for the monotonic disassemblies, but

remain suboptimal for the two last non-monotonic examples. While some post-processing of the solution

paths could certainly filter unnecessary motions in such cases, improving the optimality of the disassembly

sequence clearly remains an issue to be further investigated.

Influence of Parameters:

In the I-ML-RRT algorithm, the MaxTreeSize parameter (see Section 6.3) is used to control the maximal

RRT’s size allowed when searching for a given part disassembly motion. When this limit is exceeded, a new

part is selected and tried in turn for extraction. The maximal size of the search trees may therefore be seen

as an important parameter, possibly influencing the overall efficiency of the method. The analysis on the

influence of this parameter, whose results are summarized in Figure 6.7, indicates that it actually has a very

limited impact, and thus, it can be easily tuned. The curves of Figure 6.7 display for each test example the

evolution of the computing time as a function of MaxTreeSize for values ranging from 10 to 1000. As one

can see, the performance is only affected for very small values (in the range [10,100]) resulting in search

trees that are insufficiently rich for finding the whole feasible motion of a given part in a single iteration.

The performance rapidly increases once the size becomes sufficient (more than 100 nodes), and then remains

constant within most of the range. Thus, the MaxTreeSize parameter has to be preferably set with a large

value and does not need any specific tuning since it does not really impact the overall performance. All

experiments reported in the next section were performed with MaxTreeSize set to 200.
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Figure 6.7: Impact of MaxTreeSize in the global performance of I-ML-RRT.

Table 6.3: Performance Comparison with Sundaram’s Approach.

Model
Average Time(s)

Iterative-MLRRT Sundaram et al.

2D Simple Tran 0.1
474

2D Simple Rot 0.16

Pentomino Tran 3.79
21794

Pentomino Rot 6.55

Performance Comparison:

In this section, we compare the performance of our algorithm with two other techniques [Sundaram et al.

2001],[Fogel and Halperin 2008] previously proposed for disassembly planning. The method of Sundaram et

al. [Sundaram et al. 2001] is the most closely related to ours, since it also builds on a sampling-based

path planning approach. Table 6.3 relates computing times reported in [Sundaram et al. 2001] for the

Planar(Simple) and Pentomino benchmarks (see Fig. 6.3-a and 6.4) to the averaged times obtained with

the I-ML-RRT algorithm. The reported times indicate a huge gain factor (more than 4000) in favor to I-

ML-RRT. Such direct time comparison is of course biased by the higher speed of our AMD Opteron 2 Ghz

processor compared to the older processor used in [Sundaram et al. 2001]. Considering a CPU speed factor

of about 10, the algorithmic performance of I-ML-RRT remains superior by at least two orders of magnitude.

We also ran the algorithm on the difficult puzzle benchmark used in a recent publication by Fogel et

al. [Fogel and Halperin 2008]. This DiagonalStar puzzle (see Fig. 6.8) consists of six identical parts

that create together a highly constrained assembly. The difficulty of this benchmark is that it requires

coordinated motions between groups of parts that need to gradually move together for disassembling the
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(a) (b)

Figure 6.8: The Diagonal Star Puzzle: (a) Assembled configuration, (b) Coupled disassembly motions.

Table 6.4: Performance Comparison with Fogel’s Approach.

Model Iterative ML-RRT Fogel et al.

Diagonal Star (6 parts)
Clearance (size reduction) Nb convex sub-parts per part

2% 5% 10% 3 5 8

Aver.Time(s) 49.25 36.83 13.03 4.89 13.62 41.59

puzzle. Table 6.4 provides some comparative results between I-ML-RRT and the exact algorithm proposed

in [Fogel and Halperin 2008] for the specific class of disassemblies solvable with infinite translational

motions. As explained in Fogel’s paper, the algorithm requires each part to be decomposed into convex

sub-parts and the computing time strongly increases with the total number of sub-parts. On the other hand,

the I-ML-RRT algorithm does not rely on exact computations of contact motions and thus requires some

“clearance” between the parts. The clearance corresponds to the reduced object size percentages which

allows a collision-free assembled complex. Table 6.4 compares the “clearance dependent” computing

times of I-ML-RRT with the “part complexity dependent” times reported in [Fogel and Halperin 2008].

Interestingly, although I-ML-RRT was not specifically developed for problems in which subassemblies of

several parts have to slide together to disassemble each other, it is able to solve the DiagonalStar puzzle

almost as efficiently as the exact algorithm designed for this class of problems. A group of three parts must

be sliced together as a unit for disassembling this 6-part puzzle. Furthermore, this result is totally consistent

with the demonstration of Natarajan [Natarajan 1988] that any sets of three-dimensional disjoint convex

objects where no single convex object could move without disturbing other objects, but half of the objects

could be moved together as a unit.

Another example created by Snoeyink et al. [Snoeyink and Stolfi 1994] contains 6 identical convex

sticks that can not be taken apart with two hands using only translational motions (see Fig. 6.9). We also

applied our method on this difficult puzzle benchmark with a little reduction of the sticks’ size (0.9 %)

in order to avoid the contact (remind that contact motions are not allowed in our implemented method).

Although this modification changes the nature of the problem, this example shows that our method is able
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: The Twisted Tetrahedron [Snoeyink and Stolfi 1994] with three different views. In this 6

identical part model, no single convex part could move without disturbing other parts. (a)(c)(e) Three views

of the initial configuration, (b)(d)(f) Three corresponding views of the configuration before the disassembly

of the complex. Coordinated motions of 6 sticks extended the volume of the tetrahedron in order to attempt

the disassembled configuration.

Table 6.5: Performance on the Twisted Tetrahedron.

Example Nb. Parts Nb. DOF Ave. Nb. Sub-paths Ave. Time(s) Std. Dev.

Twisted Tetrahedron 6 18 47.7 10.42 13.71

to solve such a very constrained disassembly benchmark. Table 6.5 shows the efficiency of the algorithm

that requires a few seconds of computing time. Interestingly, the obtained paths show that the 6 sticks must

be moved together to extend the volume of the tetrahedron, and then can be taken apart one by one.



81 · (Dis)assembly path planning for complex objects and applications to structural biology

(a) (b)

Figure 6.10: Illustration of 7-part engine assembly: (a) Assembled State, (b) Disassembled State.

(a)

(b) (c)

(d) (e)

Figure 6.11: Disassembly Sequence of the 7-part Simplified Engine: (a) Assembled configuration,

(b)(c)(d)(e) Four disassembly sub-paths. Sub-path (c) makes the disassembly sequence be non-monotonic.

6.4.3 Realistic Examples

This section presents results on the application of the I-ML-RRT to compute the disassembly sequence and

paths for two engine models: 7-part engine and 15-part engine with two different initial configurations that

lead to monotonic and non-monotonic disassembly sequences.

Model Description:

The first simplified engine model contains 7 parts. Figure 6.10 shows the assembled and disassembled

states of this model. Both translation and rotation motions are required. Figure 6.11 shows the disassembly

sequence of the engine, which consists of 7 elementary motions: the translations of four screws and

rectangular part, the rotation of the cylinder. Note that the necessary rotation of the cylinder before the

extraction of the rectangular part makes this sequence be non-monotonic. The second model contains 15
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(a) (b)

(c) (d)

Figure 6.12: Illustration of 15-part engine assembly with two 4-inside-part configurations: (a) Assembled

State, (b) Disassembled State, (c) The first configuration of the monotonic sequence, (d) The first

configuration of the non-monotonic sequence.

parts. Figure 6.12 shows the assembled and disassembled states of this model with two different initial

configurations of 4 internal parts. The initial configuration represented in Figure 6.12.c permits a monotonic

disassembly sequence of the engine. Therefore, the disassembly sequence from this configuration contains

optimally 14 elementary motions illustrated by the sequence of images a-b-d-e-f-g in Figure 6.13. However,

the initial configuration in Figure 6.12.d leads to a non-monotonic sequence. Indeed, the disassembly of the

4 internal parts, which from a kinematic chain, requires a coordinated motion (illustrated in Figure 6.13.c)

that enables the extraction of the wrist pin that links the piston and the rod.

Algorithm Performance:

Table 6.6 summarizes the computational performance of the algorithm averaged over 10 runs. The results

show a good performance of the method that is able to solve all these difficult problems requiring both

translation and rotation motions in a reasonable computing time (23.67, 170.06, and 391.7 seconds).

The average number of generated sub-paths for the 7-part engine, whose disassembly sequence is non-
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(a) (b) (c)

(d) (e) (f) (g)

Figure 6.13: Disassembly Sequences of the 15-part Simplified Engine. Monotonic sequence: The

disassembly of each part does not requires any intermediate motion of other parts. The monotonic sequence

is composed of the motions in (a)(b)-(d)(e)(f)(g). Non-monotonic sequence: In order to disassemble the

four internal parts, some coordinated motions are required to transform the first configuration of the non-

monotonic sequence to the first configuration of the monotonic sequence, where the wrist pin (the pink part)

can be extracted (c). The non-monotonic sequence is composed of the motions in (a)(b)(c)(d)(e)(f)(g).

Table 6.6: Performance Analysis for Simplified Engine Problems.

Example Nb. Parts Nb. DOF Ave. Time(s) Ave. Nb. Sub-paths

7-part Engine 7 7 23.67 7.83

15-part Mono Engine 15 22 170.06 15.2

15-part Non-Mono Engine 15 22 391.68 290.7

monotonic, is very close to the optimum. This is also the case for the monotonic disassembly sequence of

the 15-part engine. However, the number of computed sub-paths for the non-monotonic sequence of the

15-part engine is far from the optimum (15). This degradation can be explained by the need of a coordinated

motion of the 4 internal parts that is decomposed by our method in a long sequence of small motions.
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6.5 Discussion

We have presented a general approach to disassembly planning, which treats sequencing and path planning

problems simultaneously. The algorithmic solution we have developed is based on an extension of RRT,

which is a simple and efficient path planning algorithm. Nevertheless, the proposed formulation can be seen

as a general framework that should enable the development of other classes of algorithms. The method

has been presented considering that parts move one by one. However, active and passive parameter subsets

in I-ML-RRT may involve an arbitrary number of parts. Thus, the algorithm could be directly applied

for treating problems involving any number of parts simultaneously moving in different directions (i.e.

disassembly problems with any number of hands).Furthermore, it will be easy to modify the method for

treating more efficiently problems requiring ensemble motions of groups of parts.

The presented algorithm does not need geometric operations such as computing normals to faces for

determining blocking directions. It only requires a collision checker. Consequently, I-ML-RRT can solve

problems involving complex part models with any shape (convex or concave), which may be the bottleneck

for other methods. However, in particular cases (e.g. polyhedral objects), there is place for improvement

by integrating some geometric operations that will provide good heuristics for selecting parts to move

and suitable motion directions. Indeed, a possible trend for future work would be to combine I-ML-

RRT with automated geometric reasoning methods for assembly partitioning and disassembly sequencing

(e.g. [Wilson et al. 1995; Halperin et al. 2000; Fogel and Halperin 2008]).

Another future extension would be to consider optimality criteria, in particular, for minimizing the

number of elementary motions. Although this criterion is already indirectly considered by the algorithmic

design of I-ML-RRT (which does not keep part motions below a given distance threshold), it reminds an

important issue that merits a more direct treatment. Besides, some costs associated with the disassembly

could be considered within the path planning process. One way to do it could be to combine ideas of I-

ML-RRT and T-RRT [Jaillet et al. 2008]. One particular instance of this combination of both algorithms is

implemented in the next chapter to treat protein complex dissociation.



7
Protein Complex Disassembly

Specific interactions between macromolecules, that self-assemble into complex structures, play an important

role within cells or organisms. However, little is known about how the subunits are temporally and spatially

coordinated to form functional complexes [Stenberg et al. 2007]. This chapter addresses the inverse problem,

that is, the study of protein complex dissociation. Given a protein complex, the problem consists in

investigating the disassembling process into the elementary monomers (see Figure 7.1). Determining the

disassembly order and identifying the most important events in the mechanism of denaturation are the two

main questions to be solved. Also, following the assembly-by-disassembly paradigm like in manufacturing

engineering, we can expect to gain some insights into protein assembly from the analysis of the disassembly

process.

As we mentioned in Chapter 3, very few computational approaches have been proposed to analyze the

dissociation of protein complexes. This chapter presents a method to compute the sequential disassembly

pathways of protein complexes. The proposed algorithm, called Iterative-ML-Transition-RRT (I-ML-T-

RRT), introduces ideas from T-RRT [Jaillet et al. 2010] (see the short description of this algorithm in

Section 3.2.3) within the I-ML-RRT algorithm described in Chapter 6. The I-ML-RRT algorithm has been

shown to be a general method to disassembly planning, which treats sequencing and path planning problems

simultaneously, and the T-RRT algorithm, which is inspired by Monte Carlo search techniques, was

introduced to compute low-cost paths in high-dimensional search-spaces. Combining these two algorithms,

I-ML-T-RRT computes the sequence of paths leading to the complex disassembly while trying to minimize

the variation of the interaction energy between subunits of the considered complex.

Next section presents the proposed methodology for computing protein complex disassembly sequences

and paths. Then preliminary results described in Section 7.2 illustrate the capacities of the method on three

systems for which experimental results on the association or dissociation process are available: Cytochrome

85
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Figure 7.1: Illustration of Cytochrome bo3 Oxidase structure (PDB ID 1FFT) and its four sub-units. What

is the disassembly process ?

cbb3 Oxidase, Cytochrome bo3 Ubiquinol Oxidase, and Homotetrameric Protein Transthyretin Finally, the

last section 7.3 will discuss the current limitations and some possible improvements of the method.

7.1 Methodology

The methodological contribution of this chapter is an extension of the I-ML-RRT algorithm (Chapter 6)

for treating protein complex disassembly problems. Like in the methodology for computing protein-ligand

access/exit paths presented in Chapter 5, a mechanistic model of proteins is considered. However, interaction

energies are also considered within the exploration algorithm. The description of the model and the proposed

method are detailed next.

7.1.1 Model and Parameters

Mechanistic molecular model:

The combined method called I-ML-T-RRT also deals with partially-flexible protein models represented as

articulated mechanisms detailed in Chapter 5. Figure 7.2 illustrates the mechanistic model of a protein

complex. Each sub-unit is modeled as a rigid group Gi which holds free rigid body mobility, independently

from the other groups. Side-chains (not represented in the figure) are generally modeled as flexible elements

with rotatable bond torsions, but they can also be defined as rigid parts by the user. Therefore, this model

does not allow to treat folding or unfolding problems during the (dis)assembly process.

Conformational parameters:

The protein complex conformation is defined by the parameters determining the pose (position and
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Figure 7.2: Schematic representation of a protein complex model. Four rigid proteins with their

corresponding Cartesian coordinate frames are denoted from G1 to G4. Flexible side chains are not shown.

orientation) of all the groups Gi and the bond torsions of all flexible side-chains. Following the formulation

detailed in Chapter 6, a different active/passive partition of the conformational parameters is considered

at each iteration of the disassembly sequencing algorithm. At each iteration, the pose parameters of some

groups Gi (ensemble motion of several sub-units can be considered) are active, while those of the others are

passive, together with the parameters associated with all the side-chains. In addition, the present extension

also needs to deal with different mobility coefficients for passive parameters (see explanations on passive

part mobility in Chapter 4). By default, the mobility coefficient of all side-chain torsions is set to 1.0,

meaning that they will systematically move if they are identified during the exploration. Lower mobility

coefficient is allowed to sub-unit poses, with δ = 0.2 in the current implementation.

Energy Evaluation:

For energy evaluation within our method, we propose to use a coarse-grained force field in order to overcome

the computational expensive cost of the all-atom representation when applied for studying interactions of

large systems such as protein complexes. In particular, we have adopted the model proposed by Zacharias

[Zacharias 2003; Zacharias 2005], which has proved good results in protein-protein docking studies. This

model was first applied for treating rigid protein-protein docking problem, and then the approach was

extended to deal with some flexible portions of proteins [Bastard et al. 2006]. Another work also adopted

this coarse-grained representation to investigate mechanical properties of proteins [Lavery and Sacquin-

Mora 2007].

Each residue is represented by up to four pseudo atoms (i.e. two for the backbone and up to 2 for the side

chain). For a realistic description of the polar character of the protein backbone, two pseudo atoms located

at the position of the N and O atoms of the backbone’s carbonyl group are also used. Small amino acid side

chains such as Ala, Ser, Thr, Val, Leu, Ile, Asn, Asp, and Pro are represented by one pseudo atom located at

the geometrical center of all side chain heavy atoms. In case of longer amino acids such as Arg, Lys, Glu,
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Figure 7.3: Illustration of the decoupled exploration of active and passive parameters within the I-ML-

T-RRT algorithm. (a) Identification of the passive parts hindering the active subunit motion or “near-

collision” passive parameters. (b) Expansion of the involved passive parts. c) Expansion of active parameters

corresponding to the motion of active subunit.

Gln, His, Met, Phe, Tyr, Trp, it is necessary to use two pseudo atoms in order to maintain good agreement

between energy-minimized complexes and geometrical constraints. The first pseudo atom is located in the

middle between Cβ and Cγ of each side chain, and the other one can be then calculated as the geometrical

center of all other side chain atoms.

The total energy of the system is the sum of all pseudo-atom pair energies:

Esys = ∑
i j

(ELJ(ri j)+Eelec(ri j)) (7.1)

The energy function between pseudo-atom pair i and j, belonging to different proteins, at the distance ri j

consists of the pairwise soft Lennard-Jones type potential (ELJ) and an electrostatic interaction term (Eelec)

with a distance dependent dielectric constant (ε(r) = 15r) for the interaction between charged residues.
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These formulas below are used to calculate the two energy terms:

ELJ(ri j) =
Bi j

(ri j)8
−

Ci j

(ri j)6
and Eelec(ri j) =

qiq j

εri j
(7.2)

where Bi j and Ci j correspond respectively to repulsive and attractive terms of Lennard-Jones potential

which are computed as follow:

Bi j = AiA j(Ri +R j)
8

Ci j = AiA j(Ri +R j)
6

(7.3)

where R and A represent the approximated size and the physio-chemical of side chains respectively.

The values of R and A are detailed in [Zacharias 2003]. qi and q j are charged values of pseudo atom i, j

respectively.

7.1.2 I-ML-T-RRT algorithm

The I-ML-T-RRT extends the algorithm I-ML-RRT by integrating a state-transition test that rejects

new conformation based on the energy variation. For this, the construction algorithm is basically the

same than the one detailed in Chapter 6 (Algorithm 4). The only modification concerns the main

function Construct ML-RRT, which is called at each iteration to compute the disassembly path of one

part (a sub-unit in the present case). Within I-ML-T-RRT, this function is replaced by the function

Construct ML-T-RRT, which integrates the state-transition test inspired by T-RRT [Jaillet et al. 2010].

Algorithm 5 shows the pseudo-code of this new function. The overall of this function is based on the

basic ML-RRT algorithm (see Algorithm 3) in Chapter 4. Figure 7.3 provides a simple illustration of the

expansion process performed by this function, which alternates expansion attempts of the active and passive

parameter subsets. The movement of the chosen active subunit is facilitated by the conformational changes

of the side-chains and the poses of other passive subunits. The main difference with the basic ML-RRT

algorithm concerns the introduction of two functions, TransitionTest and MinExpandControl,

that control the evolution of the search-tree.

The TransitionTest function rejects some of the generated states if they do not correspond to

energetically acceptable moves. Similarly to MC methods, the acceptance rule of a local move is defined by

comparing the energy E j of the new state with the energy Ei of the previous state (i.e. the parent node in the

tree). This test is based on the Metropolis criterion, with a transition probability pi j defined as follows:

pi j =

{

exp(−
∆Ei j

kT
), if ∆Ei j > 0

1, otherwise
(7.4)

where ∆Ei j = E j −Ei is the energy variation between the two states (computed with the coarse-garined

model), k is the Boltzmann constant, and T is the temperature. Note that the term temperature is employed

in analogy with methods in statistical physics, but in our case it does not have any physical meaning. Indeed

T is a parameter of the algorithm used to control the difficulty level of transition tests. The value of T

is automatically tuned according to the information acquired during the exploration. When a maximum

number of consecutive rejections is reached, T increases by a factor λ . Contrarily, each time an uphill
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Algorithm 5: Construct ML-T-RRT

input : the conformational space C;

the initial conformation qinit ;

the partition {Pact,Ppas};

output : the tree τ;

begin

τ ← InitTree(qinit );

while not StopCondition(τ) do

qact
rand ← SampleConf(C, Pact);

qnear ← NearestNeighbor(τ , qact
rand , Pact);

if MinExpandControl(qnear, qrand) then

Pcol
pas ← PassZoneCol(qnear);

q’near ← qnear;

while Pcol
pas 6= /0 do

Pmov
pas ← PartsToMove(Pcol

pas);

q
pas
rand←PerturbConf(C, q’near, Pmov

pas , q’near.nfail);

(qnew, P’col
pas)← Expand(q’near, q

pas
rand);

Pcol
pas ← P’col

pas \Pcol
pas ;

q’near ← qnew;

(qnew,Pcol
pas)← Expand(q’near,q

act
rand);

if qnew 6= NULL

and TransitionTest(c(qnear),c(qnew),dnear−new)

and not TooSimilar(qnear,qnew) then

AddNewNode(τ , qnew);

AddNewEdge(τ , qnear, qnew);

qnear.nfail ← 0;

else qnear.nfail ← qnear.nfail +1;

end

transition test succeeds, T decreases by the same factor λ (see [Jaillet et al. 2010] for details).

The adaptive temperature tuning may however lead to bottleneck situations. The temperature T may be

stabilized by the insertion of new states very similar to the ones already contained in the tree, whereas the

expansion toward new regions of the space would require an increment of T . The insertion of such states

only contributes to the refinement of the exploration in regions already reached by the tree. To overcome this

drawback, the function MinExpandControl discards node expansion if the distance between the selected

state qnear and the random state qrand is smaller than the expansion step-size δ . Such a simple filtering avoids

an excessive refinement of low-energy regions, therefore facilitating the tree expansion toward new regions

of the space.

7.2 Preliminary Results

This section presents preliminary results obtained with the proposed method on three biologically interesting

systems. The first one is a four-subunit complex called Cytochrome cbb3 Oxidase, which is the second most

abundant oxidases of heme oxidase family is analyzed. The second one is a very similar system: Cytochrome

bo3 Ubiquinol Oxidase. The third complex, Homotetrameric Protein Transthyretin, contains four identical

subunits. The method was implemented within our software prototype named BioMove3D. The program
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Figure 7.4: Structure of Cytochrome cbb3 Oxidase: (PDB ID 1QLE): Subunit CcoN - Green, Subunit CcoO

- Cyan, Subunit CcoP - Magenta, Subunit CcoQ - Yellow.

PyMOL [DeLano 2002] was used for viewing molecular models. The computing times reported below

correspond to tests run on a computer equipped with an single AMD Opteron 2222 processor at 3.0 GHz

and 8Gb of memory.

7.2.1 Cytochrome cbb3-type Oxidase

7.2.1.1 Structural Description

The cbb3-type cytochrome oxidases (cbb3-Cox), which are the second most abundant oxidases of the

heme-copper oxidase superfamily, can be found in various proteobacteria under microaerobic conditions

[Sharma et al. 2006; Peters et al. 2008]. This enzyme contains four subunits whose assembly information

and interactions are still limited (see Fig. 7.4 extracted from PDB ID 1QLE [Sharma et al. 2010]). The

biggest catalytic 61 kDa subunit CcoN has up to 14 putative transmembrane helices and binds heme B,

where oxygen reduction takes place. Thus, the oxygen affinity of cbb3-Cox is about five times higher than

that of the other member of its family called aa3-type cytochrome oxidase [Pitcher et al. 2002]. The two

other membrane-bound c-type cytochromes (cyt c) (i.e., CcoO and CcoP) whose masses are 28 and 32 kDa

respectively have been suggested to be part of the electron transfer chain from the donor cyt c to the catalytic

binuclear center located inside the CcoN [Sharma et al. 2006]. The forth subunit CcoQ is comprised of a

single transmembrane helix. This subunit is suggested to be necessary for protecting cbb3-Cox against high

oxygen concentrations under aerobic conditions in Rhodobacter sphaeroides [Oh and Kaplan 2002]. Two

subunit CcoN and CcoO are common for all heme-cooper oxidases, but the two other ones (i.e., CcoP and

CcoQ) are unique for cbb3-type cytochrome [Sharma et al. 2006].
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Table 7.1: I-ML-T-RRT’s Performance on Cytochrome cbb3 Oxidase.

Model Av.Time(s) Std Dev Nnode Nact
samp

Cytochrome cbb3 46804 19901.47 218 14786

7.2.1.2 Related Works

Several experimental methods have been used to investigate the assembly process of this system. In the

work of Zufferey et al. [Zufferey et al. 1996], using Western blot analysis, CcoN and CcoO were shown to

be inserted firstly into the membrane to form an apparently stable CcoNO core complex in Bradyrhizobium

japonicum. The next step involved the assembly of the CcoNO core with the CcoP protein. The smallest

subunit CcoQ was not required for the complex formation and therefore, did not play a key role for the

complex association [Zufferey et al. 1996]. Another method has been presented to analyze the assembly

process of cbb3-Cox in Rhodobacter capsulatus by using blue-native polyacrylamide gel electrophoresis

(BN-PAGE) along with activity staining of wild-type and mutant membranes [Kulajta et al. 2006]. Their

results revealed an intermediate 210 kDa subcomplex (i.e., CcoNOQ) before recruiting subunit CcoP to form

the final 230kDa active complex (CcoNOQP). The work of Peters et al. [Peters et al. 2008] has recently

revealed the important role of subunit CcoQ in the stabilization of the interaction between subunit CcoP

and the preassembled CcoNO core complex by combining activity measurements, BN-PAGE, and chemical

cross-linking. Their results suggested that CcoQ can obviously bind to CcoP befere CcoP associates with

CcoNO core complex to create the stable form. Therefore, a possible assembly order of cbb3-Cox is the

formation of the core complex CcoNO containing two subunits CcoN and CcoO and the formation of the

subassembly CcoP-CcoQ, following by the association of these two subassemblies.

7.2.1.3 Sequential Disassembly Pathways

In order to elucidate the disassembly process of cbb3-Cox, 20 tests were performed with I-ML-T-RRT.

These results show that the subassembly CcoPQ containing two subunits CcoP and CcoQ is preferred

to be the first disassembled part from the whole complex with a high percentage of 80% (16/20 runs),

following by the dissociation of two subassemblies (i.e., CcoPQ and CcoNO). Four other pathways display

the first dissociation of the groups CcoQ-CcoO, CcoN-CcoP from the complex. We also computed the

average interaction energy (using the aforementioned coarse-grained force-field model) for extracting the

first subassembly from the complex: 197.91 kJ/mol for CcoPQ dissociation and 224.2 kJ/mol for the other

cases (i.e., CcoQ-CcoO, CcoN-CcoP), respectively. Note that the work of Peters et al. [Peters et al. 2008]

indicates that the two subunits CcoP and CcoQ are in close contact, and due to the lack of CcoQ, the CcoP’s

ability to assemble with the core complex CcoNO is drastically reduced. The preferred disassembly order of

cbb3-Cox calculated by our method is thus the reverse of the assembly order proposed by Peters et al. [Peters

et al. 2008]. Note that the work of Sedlak et al [Sedlak and Robinson 2009] also suggests that the order of

denaturant-induced subunit dissociation mimics the reverse of Cytochrome c Oxidase assembly sequence

[Nijtmans et al. 1998; Taanman and Williams 2001]. Table 7.1 shows the computational performance of

our method. The computational time for generating the sequencing pathways is about 13 hours on a single



93 · (Dis)assembly path planning for complex objects and applications to structural biology

Figure 7.5: Illustration of Cytochrome bo3 ubiquinol oxidase (PDB ID 1FFT): Subunit I - Green, Subunit II

- Cyan, Subunit III - Magenta, Subunit IV - Yellow.

Table 7.2: Subunit Masses of the Cytochrome bo3 Ubiquinol Oxidase [Stenberg et al. 2007].

Subunit I II III IV

Mass (kDa) 75 33 22 12

processor.

7.2.2 Cytochrome bo3 Ubiquinol Oxidase

7.2.2.1 Structural Description

Cytochrome bo3 Ubiquinol Oxidase (CUO), which is the terminal oxidase in the aerobic respiratory chain

of the Escherichia coli, belongs to the heme-copper oxidase superfamily. Consisting of four subunits (I,

II, III and IV), this enzyme catalyzes the two-electron oxidation of ubiquinol-8 (Q8H2) at the periplasmic

side and the four-electron reduction of oxygen to water at the other side of the membrane (i.e. cytoplasmic

side) (see Fig. 7.5). In addition, CUO also plays a functional role as a proton pump by translocating protons

across the cytoplasmic membrane in order to establish an electrochemical proton gradient. The generated

transmembrane proton and voltage gradient is then converted to more useful energy forms through energy

conserving systems such as the ATP synthase [Abramson et al. 2000].

7.2.2.2 Related Works

For investigating the complex formation of the CUO complex, Stenberg and Daley [Stenberg et al. 2007;

Daley 2008] have recently proposed a novel pulse-labelling method using the rifampicin blocking technique

and blue native (BN)-/SDS-PAGE. Figure 7.6 shows the sequential assembly order of the four-subunit
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Figure 7.6: Assembly process of Cytochrome bo3 Ubiquinol Oxidase: Subunit III and IV assemble first,

followed by subunit I and finally subunit II [Stenberg et al. 2007; Daley 2008].

Table 7.3: I-ML-T-RRT’s Performance on Cytochrome bo3 Ubiquinol Oxidase Model.

Model Av.Time(s) Std Dev Nnode Nact
samp

Cytochrome bo3 27800.6 11261.2 321 9619

membrane complex obtained with this method, where the subunits III and IV firstly assemble to form an

temporary subassembly, followed by subunit I and finally subunit II.

7.2.2.3 Sequential Disassembly Pathways

In order to investigate the disassembly pathway of this complex, 20 runs were performed with the I-ML-T-

RRT algorithm starting from the assembled structure (PDB ID 1FFT). The results show that the two subunits

III and IV are alternatively preferred to firstly disassembled from the CUO complex with high percentage

90% (18/20 runs), followed by the dissociation of the left subassembly I-II. Only two runs in which the

subunit I or subunit II were firstly extracted have been observed. The average interactions energies for

extracting the two first subunits in the two cases are also computed: 160.98 kJ/mol for the dissociation of

two subunits III and IV, and 192.46 kJ/mol for the dissociation of two subunits I and II. In terms of energy,

this difference proved that the two small sub-units (III and IV) can be disassembled more easily than the

two bigger sub-units (I and II). Thus, the preferred disassembly order calculated by our method is not the

reverse of the assembly order proposed by [Stenberg et al. 2007]. This phenomena can be answered by the

structural topology of the considered complex where the two subunits III and IV are situated around the big
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Figure 7.7: Structure of Dimer of the Transthyretin: (PDB ID 2PAB): Subunit A - Green, Subunit B - Cyan.

subassembly I-II that forms a stable core. Moreover, due to the mass of CUO subunits (see Tab. 7.2), subunits

III and IV are significantly smaller than the other ones. Therefore, the two small subunits have more chance

to be disassembled first with lower energy interactions. Table 7.3 shows the computational performance of

our method. Overall, it took about 8 hours to compute all the sequential disassembly pathways of the CUO

complex.

7.2.3 Homotetrameric Protein Transthyretin

7.2.3.1 Structural Description

Transthyretin (TTR), which belongs to the homotetrameric human plasma protein family, is composed of

four 127 amino-acid monomers (14 kDa) [Foss et al. 2005]. Each monomer contains eight anti-parallel

β -sheets, denoted from A to H, and a small α-helix. There are two sheets in the monomer that are organized

in the β -barrel topology. The dimerization of two monomers is performed through an intermolecular main-

chain interaction between H-strands from each monomer in order to form an eight-stranded β -sandwich

[Hornberg et al. 2000]. Due to hydrophobic contacts between residues situated in the AB and GH-loops,

two dimers are associated to form the tetramer that contains thyroxine binding sites in the large hydrophobic

channel formed between the two dimers [Hornberg et al. 2000]. Figure 7.8 shows the structure of TTR in

which the the two dimer AB and CD is symmetric over the crystallography axis C2 represented by a dotted

line.

7.2.3.2 Related Works

Foss et al. [Foss et al. 2005] proposed a study on the disassociation pathways of the homotetrameric protein

transthyretin (TTR) which must undergo rate-limiting dissociation to its constituent monomers in order to

enable partial denaturation that allows the process of amyloidogenesis associated with human pathology
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(a) (b)

Figure 7.8: Structure of Tetramer Transthyretin (PDB ID 1QAB): Subunit A - Green, Subunit B - Cyan,

Subunit C - Yellow, Subunit D - Magenta. (a) Front view, (b) Side view.

Table 7.4: I-ML-T-RRT’s Performance on Transthyretin Model.

Model Av.Time(s) Std Dev Nnode Nact
samp

Transthyretin 20701.4 12794.41 393 14568

to ensue. They suggested that three possible pathways can be performed. Two mechanisms will split the

tetramer along the dimer interface to create two different intermediate dimer types (AB/CD or AC/BD)

which can disassociate latter to monomers. The last mechanism can be performed in which one monomer is

left from the complex to yield a trimer that will disassociate into three other monomers (see Fig. 7.9). Their

results show that the mechanism 2, initial dimer scission into AB/CD dimers, is more consistent than the

two others.

7.2.3.3 Sequential Disassembly Pathways

20 runs were performed with I-ML-T-RRT for the TTR model. The obtained results show that the

mechanism 2, where the TTR is split along its horizontal dimer interface (AB/CD), is observed with the

highest percentage 70% (i.e., 14/20 runs). Only 6 other pathways (30%) followed the mechanism 1 (i.e.,

vertical dimer interface split - AC/BD) and there is not any pathway which illustrates the third mechanism.

The average differences of interaction energy between the assembled complex and the state where the dimers

are split were computed over the two dimer-dimer dissociations : 80.1 kJ/mol for mechanism 1 and 77.7

kJ/mol for mechanism 2. This difference proved that the mechanism 2 is preferred in term of energy.

Moreover, in term of structure, the stabilization of the AB/CD dimer interface mediated by hydrophobic
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Figure 7.9: Three mechanisms of dissociation of the Transthyretin [Foss et al. 2005]: In mechanism 1 and 2,

the tetramer split along vertical and horizontal dimer interfaces, respectively. The dimers then dissociate to

monomers. In mechanism 3, a monomer is dissociated from the TTR to yield a trimer which then degrades

to monomers.

interactions between AB and GH loops has little effect on quaternary structural stability [Foss et al. 2005;

Hornberg et al. 2000]. On the contrary, the monomers of AB and CD dimers are held together by an

intermolecular main-chain interaction involving the H-strands (residues Ser115-Thr123) which forms an

eight-stranded β -sandwich between two monomers, and hydrogen bonding between two F-strands (residues

His90-Val94) (see Fig. 7.7) [Hornberg et al. 2000]. These significant interactions inside a dimer do not

facilitate the mechanisms 1 and 3. Furthermore, other works [Foss et al. 2005; Wiseman et al. 2005]

also proved the stabilization of the quaternary structure of TTR can be maintained by ligand binding in

on of the two binding-sites between A-C and B-D sub-units. Generally, our results are coherent with the

experimented results [Foss et al. 2005]. Table 7.4 shows the computational performance of our method based

on 20 experiments. The computational time for computing the sequencing pathways is still reasonable in

the range of 6 hours.
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7.3 Discussion

We have presented a mechanistic approach to molecular simulations which may lead to the development of

efficient computational methods, able to provide relevant information on the protein complex dissociation.

The proposed algorithm, I-ML-T-RRT, is a novel and fast method for simulating protein complex

dissociation. Indeed, this algorithm generates the sequence of disassembly paths within a few hours of

computing time on a single processor. Such a high computational performance is achieved thanks to the

efficiency of the conformational search method combined with a simplified coarse-grained model to evaluate

protein interaction forces. Preliminary results show the potential interest of the method. Nevertheless, the

method requires improvements in order to deal with more complex meta-structures with higher accuracy.

First, the conformational exploration method requires improvements to better deal with protein flexibility

(i.e. loops and domain motions). Besides, a more accurate energy evaluation, taking into account the solvent

and an entropic term, will probably be required in order to better model the effects of protein dissociation.



8
Conclusions

In this thesis we have investigated new computational methods for simulating large-amplitude molecular

motions that represent important and challenging problems for structural biology, in particular for the

understanding of the structure-function relationship in proteins. Our algorithms build on sampling-based

planning methods recently developed in robotics. They exploit the efficiency of the Manhattan-like RRT

method which was developed to circumvent the limitation of the basic RRT algorithm for dealing with

disassembly problems involving complex articulated objects and high-dimensional search-spaces. The

algorithmic contribution of the thesis is twofold.

First, in order to handle the high complexity of molecular models, we have presented promising

extensions of the algorithm by introducing the notion of multi-level passiveness and of pushing-pulling

motions. The first extension addresses disassembly planning problems for articulated objects involving

parts with different mobilities. Different mobility coefficients are assigned to passive parts, which allows

the planner to better explore the configuration-space. Therefore, the computational efficiency is significantly

improved. The second extension is devised for solving problems in which passive articulated parts are

“pushed” and also “pulled” by the mobile object, which is important in some classes of disassembly

problems. The resulting algorithm was applied for studying the conformational changes induced by the

ligand exit when taking into account the different levels of flexibility of different protein’s parts such as

side chains, loops or domains. Our results show the efficiency of our mechanistic approach to simulate

large-amplitude diffusion paths within flexible protein models including more than one thousand degrees

of freedom. Indeed, this algorithm generates long (20-30 Å ) diffusion paths within tens of minutes

of computing time on a single processor, which is remarkably short compared to the time required by

MD-based methods. Such a high computational performance is achieved thanks to the efficiency of the

conformational search method that operates on geometric models of molecules. Geometrically feasible

99
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paths are a reasonably good approximation that provides itself very useful information. Furthermore, as

shown in our prior work, the approximate solution path can also be efficiently refined if needed with standard

molecular modeling tools (e.g. energy minimization) in order to perform a more accurate energetic analysis.

Our second contribution is a novel method for simultaneously (dis)assembly sequencing and path

planning. The proposed Iterative ML-RRT algorithm is able to solve general disassembly planning problems

involving objects with arbitrary shapes and possibly requiring non-monotonic disassembly sequences, which

may be a bottleneck for other methods. The method was applied to several CAD models, in particular to a

complex 15-part engine model for which the disassembly sequence and motions were generated after only

few minutes of computation. The method was also extended for investigating protein complex disassembly

problems. The extension concerns the integration of energy computations to guide the conformational

search. The new algorithm called I-ML-T-RRT was promisingly applied to disassemble several protein

complexes. The sequential dissociation orders obtained within a few hours of computing time on a single

processor are consistent with experimented results.

Future Research

The obtained results of this thesis open several directions for possible extensions. As future work, we intend

to further improve the computational approach to better deal with full molecular flexibility during protein-

ligand interactions while considering a simplified energy minimization during diffusion process. These

energies could allow to consider important constraints that can not be treated by a geometric method when

studying conformational changes.

We also expect to extend the method for its application to the modeling of protein-protein interactions

or DNA-protein binding. Simulating the docking between flexible macromolecules yet remains a

computational challenge and the efficiency of our conformational search techniques may help to further

introduce molecular flexibility in docking methods.

Another interesting extension would be to consider optimal criteria, in particular, for minimizing the

number of elementary motions generated by the Iterative-ML-RRT algorithm. Moreover, the current version

which only treats one-by-one part disassembly can not properly afford other classes of problems (e.g.

the Twisted Tetrahedron problem show in Chapter 6) where the grouped-part motion as a unit are highly

required.

The latter extension may also be needed for the application to protein complex disassembly problems,

in which groups of several subunits usually undergo ensemble motions. Also note that for this application,

the preliminary results presented in the last chapter serve as a proof of concept but the method certainly

has to be further improved to treat more accurately the physicochemical characteristics of protein complex

dissociation.
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BROOKS, B., BROOKS, C., MACKERELL, A. J., NILSSON, L., PETRELLA, R., ROUX, B., WON, Y.,

ARCHONTIS, G., BARTELS, C., BORESCH, S., CAFLISCH, A., CAVES, L., CUI, Q., DINNER, A.,

FEIG, M., FISCHER, S., GAO, J., HODOSCEK, M., IM, W., KUCZERA, K., LAZARIDIS, T., MA, J.,

OVCHINNIKOV, V., PACI, E., PASTOR, R., POST, C., PU, J., SCHAEFER, M., TIDOR, B., RM, V., HL,

W., X, W., W, Y., DM, Y., AND KARPLUS, M. 2009. Charmm: the biomolecular simulation program.

J. Comput. Chem. 30(10), 1545–1614. 13

BROOKS, B. AND KARPLUS, M. 1985. Normal modes for specific motions of macromolecules:

application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci USA 82, 4995–4999. 14

BROOKS, B. R., BRUCCOLERI, R. E., OLAFSON, B. D., STATES, D. J., SWAMINATHAN, S., AND

KARPLUS, M. 1983. Charmm: A program for macromolecular energy, minimization, and dynamics

calculations. J. Comput. Chem. 4(2), 187–217. 13

BURENDAHL, S., DANCIULESCU, C., AND NILSSON, L. 2009. Ligand unbinding from the estrogen

receptor: A computational study of pathways and ligand specificity. Proteins, Vol 77, pp 842-856. 16

BURKERT, U. AND ALLINGER, N. 1982. Molecular Mechanics. American Chemical Society

Publication. 12

BURNS, B. AND BROCK, O. 2005. Sampling-based motion planning using predictive models. ICRA,

3120–3125. 20, 21

BURNS, B. AND BROCK, O. 2007. Single-query motion planning with utility-guided random trees.

Proc. IEEE Int. Conf. Robot. Automat., 3307–3312. 32

CAMACHO, C. J. AND VAJDA, S. 2001. Protein docking along smooth association pathways.

Proceeding of the National Academy of Sciences of the United States of America. 25

CARLSON, H. A. 2002. Protein flexibility is an important component of structure-based drug discovery.

Curr. Pharm. Des. 8, 1571–1578. 49

CARPIO, C. A. D., QIANG, P., JCHIISHI, E., TSUBOI, H., KOYAMA, M., HATAKEYAMA, N., ENDOU,

A., TAKABA, H., KUBO, M., AND MIYAMOTO, A. 2006. Robotic path planning and protein complex

modeling considering low frequency intra-molecular loop and domain motions. Genome Informatics

17(2): 270-278. 24

CARPIO, C. A. D., SHAIKH, A. R., JCHIISHI, E., KOYAMA, M., KUBO, M., NISHIJIMA, K., AND

MIYAMOTO, A. 2005. A graph theoretical approach for analysis of protein flexibility change at protein

complex formation. Genome Informatics 16(2): 148-160. 24

CAZALS, F. AND DREYFUS, T. 2009. Assessing the stability of protein complexes within large

assemblies. ISMB Satellite Meeting on Structural Bioinformatics and Computational Biophysics. 18

CAZALS, F., PROUST, F., BAHADUR, R. P., AND JANIN, J. 2006. Revisiting the voronoi description of

protein-protein interfaces. Protein Science 15, 9, 2082–2092. 17
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JAILLET, L. AND SIMÉON, T. 2009. Path deformation roadmaps : compact graphs with useful cycles

for motion planning. The International Journal of Robotics Research, Vol 27(11-12). 22

JAILLET, L., YERSHOVA, A., LAVALLE, S. M., AND SIMÉON, T. 2005. Adaptive tuning of the
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