Léonard Jaillet 
  
Mokhtar Gharbi 
  
Romain Iehl 
  
Yi Li 
  
Isabell Andr É 
  
Keywords: Motion Planning, Disassembly Sequencing, Protein-Ligand Interactions, Protein Complex Disassembly., 8 Planification de Mouvement, Séquenc ¸age de Désassemblage, Interactions Protéine-Ligand, Désassemblage des Complexes Protéiques

During three years of my thesis work, there were many people who were quite willing to give me a help. Without their guidance, help, and patience, I would have never been able to accomplish my thesis. I would like to gratefully acknowledge all of them who have accompanied me along this important period.

Above all, I would like to thank my two great supervisors Dr. Thierry SIM ÉON and Dr. Juan CORT ÉS, whose important guidance and continuing encouragements have allowed me to make much progress in

Introduction

This thesis deals with atomic-scale modeling of protein motions and deformations that are necessary for their interactions with other molecules. Proteins are essential biological macromolecules that participate in most of the processes within cells. For instance, some types of proteins catalyze biochemical reactions, other proteins play structural roles. They are also involved in cell signaling processes, and participate to the cell-division cycle. The function of proteins is closely related with their structure and with their ability to undergo conformational changes. A better understanding of this relationship at the atomic level will lead to major scientific advances, with important applications in medicine, pharmacology and biotechnology. However, available tools to provide structural information on how proteins interact with other molecules are very limited. Experimental methods such as X-ray crystallography or nuclear magnetic resonance (NMR) are able to obtain an atomic-resolution representation of proteins, but provide null or poor information about how proteins deform to achieve their function. The limits of experimental methods are even more evident when the interactions to be analyzed involve large-amplitude (slow-timescale) conformational changes of proteins. Computational methods are therefore necessary to complement experimentation.

Computational methods in structural biology have been developed since several decades ago. Great advances on the understanding of protein function have been achieved thanks to molecular simulations. However, these methods, that mainly rely on Molecular Dynamics (MD) simulations, require huge computational resources for accessing to the time-scales of many protein interaction processes.

In this thesis, we have studied new computational methods, which can be considered as alternative or complementary tools, to address problems in structural biology involving large-amplitude protein motions. The main goal is to simulate such motions with low computational cost. For this, a geometric model of molecules is considered, where proteins are represented as articulated mechanisms. Then the problem of simulating relative motions between interacting molecules is formulated as a (dis)assembly problem for the 2

Basics Notions in Structural Biology

Structural biology not only describes the structure at the atomic scale of living molecules, but also tries to create links between their structures and their biological functions by using physical, chemical and computational techniques such as X-ray crystallography, Nuclear Magnetic Resonance (NMR), Cryoelectron microscopy, and molecular modeling. This chapter gives some general notions for understanding molecular structures, conformational changes, and molecular interactions.

Protein Structure

Proteins are biological macromolecules consisting of chains of amino acids linked by peptide bonds. They are essential parts of organisms and participate in every process within cells such as gene expression, catalysis, storage, transport, signal transmission, etc. There are four organizational levels of protein structures:

• Primary structure: the sequence of amino acids, also called polypeptide chain.

• Secondary structure: some portions of the polypeptide chain that are arranged into regular structures called α-helices and β -sheets as a result of short distance interactions (i.e., hydrogen bond).

• Tertiary structure: the folded form of the polypeptide chain. This structure is a result of packing under a determined topology of the secondary structures.

• Quaternary structure: an association of several polypeptide chains (identical or not).

These notions are further explained next. 

Amino Acid

An amino acid is a molecule consisting of an asymmetric carbon (called α-carbon) attached to a carboxyl group (-COOH), an amine group (-NH2), a hydrogen H and a radical R also called side-chain (see Fig. 2

.1).

There are twenty natural amino acids in proteins. Each amino acid is given a name according to the nature of its radical. Each side-chain has some particular physico-chemical properties such as hydrophobicity, polarity, acidity, flexibility, steric congestion, etc.

Primary Structure

The primary structure is a sequence of amino acids starting from the N-terminal end (NH2-group) to the C-terminal end (-COOH group). This structure of a protein is determined by the gene associated with the protein. Two successive amino acids are connected by a peptide bond. This connection makes a spatial constraint: the C and the O atoms of carboxyl group of the first amino acid create a plane with the N and the Cα of the next amino acid. A protein includes between 30 and 30000 amino acids. The chain of the N, Cα, C, and O of all amino acids is called protein backbone. The amino-acid chain is also called polypeptide chain.

Secondary Structure

The secondary structure corresponds to a regular arrangement of amino acids along an axis. These structures are stabilized by the interactions of hydrogen bond network between non neighbor amino acids of the polypeptide chain. There are two main types of secondary structures: α-helices and β -sheets. These two structures minimize not only the steric hindrances and electrostatic repulsion between chains, but also maximize the number of hydrogen bond. Generally, the secondary structures contains approximately half of all amino acids while the other half is located in the loops that link secondary structure elements. The α-helix conformation is stabilized by hydrogen bonds of its amino acids. This kind of structure is stable and isolated. The hydrogen bonds guarantee the cohesion between amino acids of the sequence (see Fig. 2.2). On the contrary, the β -sheet usually contains two strands that form a sheet. The two strands can have the same direction or can be positioned in opposed directions (see Fig. 2.3). Many studies have been done to predict secondary structures [START_REF] Chiang | Using stochastic roadmap simulation to predict experimental quantities in protein folding kinetics: Folding rates and phivalues[END_REF][START_REF] Moll | Roadmap Methods for Protein Folding[END_REF]]. This prediction may give some hints about the nature of folding, helps to localize residues of the active site, and may even give a hint about the protein localization in the cell (e.g., membrane proteins).

Tertiary Structure The tertiary structure is the description of the polypeptide chain folded in its functional form (see Fig. 2.4.a). This form may involve covalent bonds (disulfide bridges), ions, or more complex co-factors (such as heme, flavin adenine dinucleotide, etc.). Tertiary structures can be complex and different. Long polypeptide chains (i.e., more than 200 amino acids) generally fold into several functional regions called domains. The protein folding is based primarily on long-range interactions taking place between two residues that are close in space but far in the sequence [START_REF] Gromiha | Importance of long-range interactions for determining the folding rate and transition state structures of two-state proteins[END_REF] Quaternary Structure The quaternary structure is a geometry of the association of several protein sub-units (see Fig. 2.4.b). These sub-units can be either identical or not. Their association is stabilized by short distance interactions like in the tertiary structure. Complexes of two or more polypeptides (i.e., multiple subunits) are called multimers.

Molecular Forces

Due to the nature and structure of a biological molecules, the type and strength of molecular forces can be very different. The main forces that maintain the stability of protein structure and that stabilize proteinligand, or protein-protein interactions are detailed next.

• Covalent bonds are a type of chemical bond, which are formed by sharing electrons between atoms. This force hold atoms together. Disulfide bridges, that occur when two Cysteines are oxidized to form covalent S-S bonds, are a particular type of covalent bond between atoms in non-consecutive residues.

• Electrostatic forces involve permanent dipoles interactions and salt bridges. Permanent dipoles occur when two atoms in a molecule have substantially different electro-negativity. One atom attracts electrons more than another, becoming more negative, while the other atom becomes more positive. Salt bridges correspond to the interactions between charged regions determined by electrostatic laws. In normal physiologic pH condition, positive charged residues are Lysines, Arginines, Histidines, and N-terminal end of the polypeptide chain, while negative charged residues are Aspartic acid, Glutamic acid.

• Van der Waals forces involve attractions between atoms, molecules, and surfaces. Differ from covalent and ionic bonding, these forces contain a long-range attractive component named London dispersion force and a very short-range repulsive component. The London forces arise from the interactive forces between temporary multipoles in molecules without permanent multipole moments due to the fluctuations of electron density. Since the energy bonding between the atoms that have 3-4 Å distance is only 1 kcal/mol, but with a huge number of atoms, these interactions play an important role in complex stabilization.

• Hydrogen bonds result from the electrostatic interaction between one hydrogen atom (H) covalenty linked with electronegative atom (O, N, S -donor) and other electronegative atom that has a pair of non-shared electrons (acceptor). This bonding energy can be estimated between 3 and 9 kcal/mol. Some polar amino acids such as Serine, Threonine, Tyrosine, Asparagine and Glutamine can also form hydrogen bonds between them or with water molecules.

Besides the aforementioned forces, the Hydrophobic interactions, that are of entropic nature , occur when non-polar molecules form aggregates of molecules in water and analogous intramolecular interactions [START_REF] Chandler | Interfaces and the driving force of hydrophobic assembly[END_REF]]. These interactions play an important role for protein folding, protein-protein interactions, formation of lipid bilayer membranes, nucleic acid structures, and protein-small molecule interactions. Some hydrophobic amino acids such as Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan and Methionine possess non-charged and non-polar side chains. Like Van der Waals interactions, hydrophobic effects are responsible for dense compression in macromolecular assembly interfaces.

Protein Motions

Protein flexibility is crucial in a majority of cellular mechanisms. Proteins can deform to adapt to their partner to avoid steric hindrances and improve surface complementary for hydrogen bonding. Proteins can also change their conformation due to enzymatic reactions. Protein motions can be characterized by their amplitude. Weak-amplitude motions reflect the equilibrium inside an ensemble of conformers around its most stable state in the energy funnel. This motion type can be modeled by molecular dynamics simulations or observed by NMR experiments. Large-amplitude motions, in which two or more parts of protein move in relation to others, usually occur during the catalytic or allosteric reactions [START_REF] Kumar | Folding funnels and conformation transitions via hinge-bending motions[END_REF]]. Largeamplitude motions can not be observed with current experimental methods, and their simulation remains very computationally expensive. Protein motions can also be classified depending on the size of the involved protein portion: side-chain motions, loop motions, domain motions, and folding motions. These four types of motions are detailed next.

Side-chain Motions

Side-chains involve only a few atoms but may play an essential role in protein functions. In particular, in ligand-protein binding problem, even small magnitudes of side-chain rotations can lead to the binding of small organic molecules in protein pockets [START_REF] Zavodszky | Side-chain flexibility in protein-ligand binding: The minimal rotation hypothesis[END_REF] 

Loop Motions

Protein surface loops containing about 6 to 20 residues and they are the most flexible regions of proteins [START_REF] Fetrow | Omega loops: nonregular secondary structures significant in protein function and stability[END_REF]]. They are often involved in protein function and molecular recognition [START_REF] Fetrow | Omega loops: nonregular secondary structures significant in protein function and stability[END_REF]]. Loops may play a key role in enzymatic catalysis, protein stability, or protein folding. Loop motions can be also observed during protein-protein or protein-DNA interactions.

Domain Motions

Domain motions are of two basic types: hinge motions and shear motions, [START_REF] Gerstein | Structural mechanisms for domain movements in proteins[END_REF][START_REF] Teague | Implications of protein flexibility for drug discovery[END_REF]]. Hinge motions occur when two domains move perpendicularly to the interface surface (see Fig. 2.5.a). Shear motions occur when two domains move parallel to the interface surface(see Fig. 2.5.b). Domain motions are usually induced by ligand binding.

Folding/Unfolding Motions

Protein folding is a process by which a sequence of amino acids folds into its characteristic and functional three-dimensional structure, known as the native state. Once the protein has its correct structure, it can play its physicochemical function. Otherwise, in case of misfolding, extracellular or intracellular aggregates that initiate profound cellular dysfunction can be formed. There are several diseases (e.g., Alzheimer and Parkinson) which are caused from these disorders of folding process [START_REF] Selkoe | Folding proteins in fatal ways[END_REF]]. Proteins can be also unfolded (or denatured) by high-temperature, acidic or basic pH or certain non-aqueous solvents [Leach 2001b]. This unfolding is often reversible and proteins can be therefore refolded to its native state [START_REF] Finkelstein | Can protein unfolding simulate protein folding?[END_REF]].

Protein Interactions

Proteins play a key role in molecular recognition at the heart of all processes of life. They interact with the other components of the cell (e.g., small molecules, nucleic acids, membranes, and other proteins) to build higher-order assemblies or to perform their functions (e.g., chemical catalysis, signaling, regulation, etc.). This thesis deals with protein-ligand and protein-protein interactions.

Protein-Ligand Interactions

A ligand can be an atom, an ion or a small molecule, that is able to bind to a protein to serve a biological functionality. Ligand can be substrate, inhibitor, activator, or neurotransmitter. A substrate that binds to the enzyme's active site, is transformed into products by an enzymatic mechanism. An inhibitor/activator binds to a protein to reduce/increase its activity.

Protein-Protein Interactions

Classes of protein-protein interactions can be defined according to their lifetime and binding affinity: obligate permanent interactions involving homo or hetero obligomers and non-obligate transient interactions involving Enzyme-inhibitor or non Enzyme-inhibitor. The permanent complexes (e.g., oligomeric complexes, virus capsids and muscular fibers) have a lifetime of about 10 6 seconds. On the contrary, the transient complexes associate and dissociate rapidly. Their lifetime is between 10 -3 s and 1 s, such as the complexes in the cellular adhesion and in the signal transduction. There are also antibodies/antigens or enzymes/inhibitors complexes that are more stable (∼ 10 3 s). The reviews of [START_REF] Nooren | Diversity of protein-protein interactions[END_REF][START_REF] Park | Prediction of proteinprotein interaction types using association rule based classification[END_REF] give a detailed description of different protein-protein interactions.

State of The Art

Computational methods are more and more important to complement experimental studies in structural biology. Although great progress has been done, the capacities of these methods are still limited. Probably the major challenge to be faced is the treatment of protein flexibility, which needs to be considered for an accurate study of molecular interactions. In the last years, new methods inspired by algorithms originally developed for robot motion planning have been proposed as alternative or complementary computational tools to treat problems involving flexibility and interactions of biological macromolecules.

This chapter provides a brief state-of-the-art on methods related with the thesis. First, Section 3.1 describes basic models and computational methods to study proteins. Section 3.2 gives an overview on motion planning algorithms, with a particular focus on sampling-based methods. Several applications of these robotic methods to probelms in structural biology are then presented in Section 3.3. Finally, the contribution of this thesis is outlined in Section 3.4.

Molecular Interaction Studies

This section gives a broad overview of models and basic methods used to simulate biological systems such as proteins, focusing on the most related techniques and problems with respect to the contribution of this thesis.

Models and Methods

This sub-section summarizes several models and methods which have been developed for decades to treat molecular simulation problems. Quantum mechanics (QM) uses mathematical tools to describe interactions between energy and matter at the atomic and subatomic scales (i.e., nuclei and electrons). This model allows a large variety of computational approaches to treat chemical structure and reactivity problems with great accuracy. However, due to its computational cost, approaches based on QM have only dealt with small upto medium-size molecules [START_REF] Bakowies | Hybrid models for combined quantum mechanical and molecular mechanical approaches[END_REF].

Molecular mechanics (MM) or Force field-based models consider atoms as spheres of different mass depending on the element, and connected together by chemical bonds. In order to describe the energy of the molecular system, different types of interactions (i.e., bond stretching, angle bending, dihedral rotation, van der Waals forces, hydrogen bonding, and electrostatic terms) are taken into account. The greatest advantage of MM over QM is a better computational speed in studying large molecular systems [Burkert and Allinger 1982]. Besides, since MM does not deal directly with electrons and orbitals, it does not allow to study chemical reactions or molecular reactivities [START_REF] Bakowies | Hybrid models for combined quantum mechanical and molecular mechanical approaches[END_REF].

Face to the limits of both quantum and molecular mechanics, a hybrid approach QM/MM has been proposed to combine their advantages. The basic idea of this model is to partition the large system into an electronically important fragment that is treated by quantum mechanics approach and a remainder that is described by a force field. This partitioning into two subsystems allows a complex system to be modeled in an accurate and affordable manner. With current improvements in computer hardware, the QM/MM approach has been applied to numerous biochemical problems [START_REF] Bakowies | Hybrid models for combined quantum mechanical and molecular mechanical approaches[END_REF][START_REF] Sherwood | Hybrid quantum mechanics/molecular mechanics approaches[END_REF][START_REF] Thiel | Qm/mm methodology: Fundamentals, scope, and limitations[END_REF]]. This model is suitable not only for simulating chemical reactions in the active site of a large system, but also for studying other localized electronic processes. Although QM/MM geometry optimization method can deal with large systems with 20000-30000 atoms, the active site size has still to limit around 1000 atoms to better investigate localized electronic event while the remainder must be fixed at the initial geometry [START_REF] Thiel | Qm/mm methodology: Fundamentals, scope, and limitations[END_REF]].

In order to investigate large systems' interactions (e.g., protein-protein docking, rearrangement upon ligand binding, folding, etc), all above models that use an all-atom representation can not be directly applied with current computational resources. Therefore, coarse-grained models have been proposed to reduce the number of particles of the system [START_REF] Tozzini | Coarse-grained models for proteins[END_REF]]. The main idea is to simplify the simulated systems by clustering several sub-components into one component in order to reduce the computational complexity by removing both degrees of freedom (DOF) and interactions inside the "coarse" component [START_REF] Zacharias | Protein-protein docking with a reduced model accounting for side chain flexibility[END_REF][START_REF] Derreumaux | Coarse-grained protein molecular dynamics simulations[END_REF][START_REF] Marrink | he martini force field: Coarse grained model for biomolecular simulations[END_REF][START_REF] Loriot | A geometric knowledge-based coarse-grained scoring potential for structure prediction evaluation[END_REF]]. Despite the simplification, physically correct properties of the biological system can be still conserved. Such a representation can speed up the computational time 1-2 orders of magnitude over the all-atom simulations [START_REF] Freddolino | Application of residue-based and shape-based coarse graining to biomolecular simulations[END_REF]].

Methods

Two main classes of methods for simulating biological macromolecular systems are Molecular Dynamics and Monte Carlo algorithms. Molecular dynamics simulations (MD) have been developed to investigate the physical basis of the structure and the function of biological macromolecules [START_REF] Karplus | Molecular dynamics simulations of biomolecules[END_REF]. These methods try to provide detailed information concerning the motion of each particle in the system as a function of time. Therefore, dynamical properties of the biological systems such as transport coefficient, time-dependent responses to perturbations, rheological properties, and spectra can be addressed [START_REF] Allen | Introduction to monte carlo methods[END_REF]]. Three types of applications of this technique can be classified in the macromolecular area [START_REF] Karplus | Molecular dynamics simulations of biomolecules[END_REF]. The first uses simulation to determine or refine data on the system's structure. The second tries to describe the system at equilibrium while considering the structural and motional properties along with thermodynamic parameters. The third aims to examine the actual dynamics to correctly represent the development of the system over time. Many tools based on MD are widely used such as CHARMM and AMBER [START_REF] Weiner | Amber: Assisted model building with energy refinement. a general program for modeling molecules and their interactions[END_REF][START_REF] Brooks | Charmm: A program for macromolecular energy, minimization, and dynamics calculations[END_REF][START_REF] Brooks | Charmm: the biomolecular simulation program[END_REF]].

Monte Carlo methods (MC), which rely on statistical mechanics, have been widely used to deal with conformational search problems. Instead of evaluating forces to determine incremental atomic motions like MD methods, Monte Carlo simulations consider only large motions of the system and determines whether or not a sampled conformation is energetically feasible at the simulated temperature. Because MC simulations sample only in the conformation space, they can not provide time-dependent quantities. However, they are more efficient than MD methods in estimating average thermodynamic properties with many sampled conformations [Leach 2001a;[START_REF] Frenkel | Introduction to monte carlo methods[END_REF]].

Such two above methods present however a major drawback for computing large-amplitude motions since the conformational exploration tends to get trapped into the many local minima of the complex molecular energy landscape. Other classes of methods such as Normal Mode Analysis and Genetic Algorithms have been developed to treat particular problems. Normal Mode Analysis (NMA), which is based on an harmonic approximation of the molecular force field, is an efficient method to determine collective, large-amplitude motions of macromolecules [START_REF] Cui | Normal mode analysis: theory and applications to biological and chemical systems[END_REF][START_REF] Ma | Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes[END_REF]]. Genetic Algorithms (GA), which are stochastic optimization methods, try to mimic natural evolutionary method of adapting to a changing environment [START_REF] Devillers | Adaptation in Natural and Artificial Systems[END_REF]]. They provide a powerful random search tools in a large problem space. A wide range of applications which gain advantage from the use of GAs have been proposed in ligand-protein docking, drug design, or the structural alignment of molecules, etc. [START_REF] Terfloth | Neural networks and genetic algorithms in drug design[END_REF][START_REF] Jones | Development and validation of a genetic algorithm for flexible docking[END_REF][START_REF] Devillers | Genetic Algorithms in Molecular Modeling (Principles of QSAR and Drug Design)[END_REF][START_REF] Morris | Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function[END_REF] 

Protein Motions

Protein motions that range from high-frequency vibration to large-scale conformational changes play an essential role in many biochemical processes. Despite the new knowledge of structural and functional information, the understanding of protein movement is still very limited. Many techniques have been presented for modeling protein flexibility and mobility. They can be classified into three classes: force field-based, graph-based, and harmonic analysis-based methods [START_REF] Ahmed | Protein flexibility and mobility in structure-based drug design[END_REF]].

In the first class, MD simulations are often used to model macromolecular movements by exploring the energy landscape of the macromolecule with an empirical force field. The trajectories of atoms are calculated by using Newton's Second Law and potential energy functions of atom-atom interactions [Leach 2001a;[START_REF] Schlick | Molecular modeling and simulation -an interdisciplinary guide[END_REF][START_REF] Hornak | Hiv-1 protease flaps spontaneously open and reclose in molecular dynamics simulations[END_REF][START_REF] Hornak | Targeting structural flexibility in hiv-1 protease inhibitor binding[END_REF]. However, due to the computational cost, MD with all-atom models prohibits routine simulations of large-amplitude motions of macromolecules. The use of coarse-grained models together with efficient MD methods permits longer simulations with modest computational resources [START_REF] Chebaro | Replica exchange molecular dynamics simulations of coarse-grained proteins in implicit solvent[END_REF]].

Monte Carlo (MC) algorithms have also been used to investigate protein flexibility. In particular, MCbased methods have been proposed for the exploring conformational energy surface of polypeptides. For example, a method called ARTIST [START_REF] Yun | Artist: An activated method in internal coordinate space for sampling protein energy landscapes[END_REF]] applies an effective activation-relaxation MC algorithm on internal-coordinates molecular models for exploring both small and large conformational changes in densely packed environments and for finding the global energy minima of medium-size proteins. A different approach to explore conformations of proteins is the building-up procedure that consists in performing MC moves on a discrete set of conformations of short polypeptides fragments that are encoded in fragment libraries computed from available data in the Protein Data Bank (PDB). This type of methods (e.g. [START_REF] Simons | Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions[END_REF][START_REF] Hegler | Restriction versus guidance in protein structure prediction[END_REF][START_REF] Zhao | Fragment-free approach to protein folding using conditional neural fields[END_REF]), initially proposed for protein structure prediction, can also be applied to represent conformational ensembles.

Alternative methods to determine protein flexibility are based on graph theory. These techniques allow to identify rigid and flexible regions of proteins from a single, static structure. Atoms and inter-atomic interactions are represented in a bond-bending network by modeling atoms as nodes and covalent bonds and non-covalent interactions as edges. A fast combinatorial algorithm then identifies the rigid, over-rigid, and flexible regions by counting bond-rotational degrees of freedom in the network [START_REF] Ahmed | Protein flexibility and mobility in structure-based drug design[END_REF]]. FIRST is a popular program that implemented this technique to capture the essential conformational flexibility of the protein main-chain and side-chains from analysis of a single, static three-dimensional structure [START_REF] Jacobs | Protein flexibility predictions using graph theory[END_REF][START_REF] Gohlke | Change in protein flexibility upon complex formation: Analysis of ras-raf using molecular dynamics and a molecular framework approach[END_REF]]. 

Large

Protein Ligand Interactions

In recent years, with the advantage of computing infrastructures, the development of in silico methods has been widely developed to better understanding protein-ligand interactions. Two types of problems are mostly analyzed: protein-ligand docking and access/exit pathways.

Protein-Ligand Docking

Powerful docking algorithms have been developed in the last ten years to efficiently explore and evaluate the huge number of possible ligand geometries for partner proteins, in terms of relative orientation and position. The problem increases in complexity when internal DOF also need to be explored, in which case the use of previously developed search algorithms leads to computational explosion. For detailed description of existing protein-ligand docking methods, a number of excellent review articles have been presented [START_REF] Sousa | Protein-ligand docking: Current status and future challenges[END_REF][START_REF] Warren | Docking algorithms and scoring functions: State-ofthe-art and current limitations[END_REF][START_REF] Subramanian | Managing protein flexibility in docking and its applications[END_REF][START_REF] Henzler | In pursuit of fully flexible protien-ligand docking: Modeling the bilateral mechanism of binding[END_REF]. Overall, methods for proteinligand docking are mainly built from three ingredients [START_REF] Sousa | Protein-ligand docking: Current status and future challenges[END_REF]]: (i) an adequate representation of the proteins to be docked, which includes the definition of the DOF to be searched (global translations and rotations, side-chain rotations,...); (ii) a search algorithm to explore the conformational space accessible to the system; (iii) a scoring function to evaluate the strength of interaction and the quality of the generated complex.

Docking algorithms are becoming more and more sophisticated. The flexibility in both ligands and receptors is necessary to take into account. There are three main models of docking based on the flexibility of receptor: rigid protein docking, partial protein flexibility and full protein flexibility [START_REF] Sousa | Protein-ligand docking: Current status and future challenges[END_REF][START_REF] Subramanian | Managing protein flexibility in docking and its applications[END_REF]]. Most of the existing methods assume that the conformation of the protein can not change. In the second model, protein is assumed to be flexible only at the binding site or it can be modeled by adding a few DOF in the protein binding site to the combined protein-ligand conformation space. These DOF represent only a very small fraction of the total conformational space that is available but should account for a significant difference in binding energy values. The last model takes into account all the DOF of protein when using a conformational ensemble of slightly different protein structures coexisting in a low energy region of the potential energy surface [START_REF] Totrov | Flexible ligand docking to multiple receptor conformations: a practical alternative[END_REF].

Three classes of search algorithm can be distinguished to deal with flexible ligand [START_REF] Sousa | Protein-ligand docking: Current status and future challenges[END_REF]]: systematic methods, random or stochastic methods, and simulation methods. In the first class, the methods try to explore all the DOF of the ligand. In order to reduce the combinatorial explosion, two usual ways were proposed: fragmentation of ligand and using of conformational ensembles. The fragmentation approach incrementally grows the ligand into the active site, either by docking several fragments into the activesite and then linking them covalently to recreate the initial ligand, or by docking firstly a rigid fragment of the ligand and then adding subsequently and successively other flexible fragments [START_REF] Sousa | Protein-ligand docking: Current status and future challenges[END_REF]]. Two popular programs use this approach are FlexX [START_REF] Kramer | Ligand docking and screening with flexx[END_REF], DOCK [START_REF] Ewing | Critical evaluation of search algorithms for automated molecular docking and database screening[END_REF]. Another approach which used libraries of pre-generated conformations of flexible ligand was also presented as in FLOG [START_REF] Miller | Flog: a system to select 'quasi-flexible' ligands complementary to a receptor of known three-dimensional structure[END_REF]]. In the second class, the MC and the GA methods are often used to sample randomly different conformations of the ligand. These conformations are then filtered by a predefined probability function. Some common programs of this class are ICM [START_REF] Abagyan | Icm -a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation[END_REF]] using MC-based method, and AutoDock [START_REF] Morris | Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function[END_REF]], GOLD [START_REF] Jones | Development and validation of a genetic algorithm for flexible docking[END_REF]] using GA-base methods. In the last class, MD methods are often chosen with some modifications such as using very high temperatures in some parts of the MD simulation, or using different start positions of the ligand. One example is CDOCKER [START_REF] Vieth | Assessing search strategies for flexible docking[END_REF]] which combines MD, MC and GA for docking ligand-receptor complexes. Despite the promising recent results, ligand-protein docking problem still holds several hidden weaknesses. In particular, more adequate scoring functions, able to efficiently combine both accuracy and speed, remain to be investigated.

Access/Exit Pathways

The simulation of access/exit pathways of ligand from the surface to the active-site of receptor has been less studied than the protein-ligand docking, although the knowledge of entry/exit pathways of a receptor should be very useful in discriminating between different ligands for computational drug design [START_REF] Genest | Ligand escape pathways from the ligand-binding domain of pparγ receptor as probed by molecular dynamics simulations[END_REF]].

Different methods have been proposed to investigate the conformational changes of receptor due to ligand exit. A MD-based variant, called Random Acceleration Molecular Dynamics (RAMD) [START_REF] Ludemann | How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. random expulsion molecular dynamics investigation of ligand access channels and mechanisms[END_REF], uses an additional force applied to the center of mass of the ligand, in addition to the standard MD force-field, in a randomly chosen direction in order to enhance the probability of ligand access to or exit from the active site. After a number of time steps, if the distance traveled by the ligand can not reach the threshold distance, then a new force direction is randomly changed. Otherwise, the force direction is maintained. This process is iterated until the expulsion of the ligand from the buried active site. Another MD variant, called Steered Molecular Dynamics (SMD) [START_REF] Izrailev | Steered molecular dynamics[END_REF]], also applies external forces to a ligand to facilitate its unbinding from a protein. In SMD simulations, the force direction is usually defined by the user through an haptic device. This direction is accepted or rejected depending on some factors such as conservation of secondary structure of the protein, deformation of the protein, the magnitude of the force applied, the average velocity of the ligand along the unbinding pathway. Although these methods have been shown to provide biologically relevant information, they remain yet computationally expensive. Besides, the artificial force introduced for accelerating the simulation may yield biased results about the induced conformational changes, so that the interest of simulating with an accurate molecular force field is partially lost.

Other computational techniques have been proposed in order to compute the access channel of ligands into proteins. CAVER [START_REF] Petrek | Caver: a new tool to explore routes from protein clefts, pockets and cavities[END_REF]] performs systematic exploration of the protein interior. It is based on the construction of a vertex-weighted graph from a discrete three-dimensional grid model of the protein.

The weights are computed from the distance to the protein atoms, the lowest weights corresponding to nodes with the highest clearance. A variant of Dijkstra's algorithm is applied to search for the shortest low-cost paths. Another similar method, called MOLE [START_REF] Petrek | Mole: A voronoi diagram-based explorer of molecular channels, pores, and tunnels[END_REF]], also applies a Dijkstra's path search algorithm, but it uses a Voronoi mesh of the space between protein atoms instead of computing a grid. MolAxis [START_REF] Yaffe | Molaxis: a server for identification of channels in macromolecules[END_REF]] computes the medial axis of the free space inside the protein using efficient computational geometry tools. The medial axis is represented by a collection of two-dimensional surface patches. All these techniques treat rigid proteins. Thus, molecular flexibility can only be indirectly treated by applying these techniques to a set of structures (e.g. samples of a molecular dynamics simulation).

Finally mention that a recent study [START_REF] Burendahl | Ligand unbinding from the estrogen receptor: A computational study of pathways and ligand specificity[END_REF]] on the unbinding mechanism of ligands from estrogen receptor (ERα and ERβ ) combined the strengths of RAMD, SMD, and CAVER methods. They applied RAMD simulation to enhance the molecular dynamics sampling by the addition of external forces to ligand, which facilitates the passing of energy barriers. SMD method and CAVER were then used to obtain unbinding pathways and their characterization.

Macromolecular Interactions

The formation of biological complexes between proteins plays a key role in many biological processes (i.e. cell signaling, gene transcription, the immune response). The affinity and the lifetime of protein complexes vary widely from obligate and permanent to transient. Most of the computational methods focus only on predicting bi-molecular association of transient complexes given the structure of the two sub-units. This problem is known as the protein-protein docking problem. Other methods have been developed to study, with more generally, protein association/dissociation processes. These two types of methods are detailed next.

Protein-Protein Docking

Since it is often more difficult to determine experimentally protein-protein complexes than their isolated components, the number of experimentally solved protein-protein complexes are still small. In silico approaches are often used to solve the protein-protein docking problem. Despite the variety of available methods, the accuracy of their predictions is still limited [START_REF] Moreira | Protein-protein docking dealing with the unknown[END_REF]. A number of excellent reviews give an entire overview of existing protein-protein docking methods [START_REF] Cherfils | Protein docking algorithms: simulating molecular recognition[END_REF] As in ligand-protein docking problem, protein-protein docking has also three main ingredients: a representation of the system, a conformational space search technique, and a ranking function of search results. For the search technique, a same approach has been chosen by many docking methods, in which a smaller protein is used as the probe, and the other as the receptor, which remains fixed during the docking process. A scoring function then ranks the complementarity of computed complexes (i.e., geometric, electrostatics, or hydrophobic, or all three). Different search techniques have been used to successfully find out the possible binding interfaces between two proteins in docking algorithms. MC methods that randomly sample in the 6-dimensional space to create candidate locations are presented in [START_REF] Gray | Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations[END_REF] [START_REF] Li | Rdock: refinement of rigid-body protein docking predictions[END_REF]] uses an FFTbased algorithm along with an optimized scoring function, involving three major terms: pairwise shape complementarity, electrostatics, and desolvation, to treat rigid-protein docking. To overcome the limitation of treating unbound proteins as rigid bodies, ZDOCK softens the protein surfaces by allowing light overlaps between two protein interfaces to take into account possible conformational changes. However, these FFTbased methods could take CPU-days to execute, because even though the FFT is used to enumerate rapidly the translations of the probe, the rotations are still searched systematically. Other algorithms use matching of surface cubes or geometric hashing (i.e. the identification and matching of convex and concave protein surface regions) [START_REF] Connolly | Shape complementarity at the hemoglobin α 1 β 1 subunit interface[END_REF][START_REF] Norel | Shape complementarity at proteinprotein interfaces[END_REF][START_REF] Norel | Molecular surface complementarity at protein-protein interfaces: the critical role played by surface normals at well placed, sparse, points in docking[END_REF]. A representative program of this class is PatchDock [START_REF] Duhovny | Efficient unbound docking of rigid molecules[END_REF]] that docks unbound proteins by matching geometric patches (concave, convex, and flat surface pieces) of almost equal areas after detecting these patches by applying a segmentation algorithm in order to generate candidate transformations. Protein complementarity can also be determined by a Voronoi-diagram-based model of macromolecular interfaces [START_REF] Cazals | Revisiting the voronoi description of protein-protein interfaces[END_REF]]. However, local shape feature matching based methods are usually not sufficient when the available structures of the proteins are unbound [START_REF] Smith | Prediction of protein-protein interactions by docking methods[END_REF].

Multi-stage approaches have been often proposed to treat flexibility within protein-protein docking methods. Proteins are usually treated as rigid bodies in the first stage, and the aforementioned search methods are applied to find candidate conformations of the complex. In a latter stage, these structures are refined and re-ranked by using more expensive exploration methods and more accurate energy function [START_REF] Li | Rdock: refinement of rigid-body protein docking predictions[END_REF][START_REF] Lorenzen | Monte carlo refinement of rigid-body protein docking structures with backbone displacement and side-chain optimization[END_REF][START_REF] Pierce | A combination of rescoring and refinement significantly improves protein docking performance[END_REF]. Nevertheless, flexibility can also be treated in the first stage by constructing multiple copies of the proteins [START_REF] Bastard | Accounting for loop flexibility during protein-protein docking[END_REF]].

Protein-Protein Association and Dissociation

The assembly of proteins is a multi-scale process from the interactions of their surface atoms to the organization (i.e. the assembly order) of these proteins to form specific complexes. A deep understanding of protein-protein association is therefore essential for accurate modeling and prediction of protein metastructures. Different computational approaches have been proposed to investigate protein-protein association. The calculation of bimolecular association rate constants can be performed by simulation of the diffusional motion of the interacting particles using particle-based Brownian dynamics simulations [START_REF] Northrup | Kinetics of proteinprotein association explained by brownian dynamics computer simulation[END_REF]. In this method, one of the interacting molecules is placed at the center of a sphere, while the other one starts Brownian moves at a given distance where there are no forces between the molecules at this separation or the forces are centrosymmetric. The rate constant for the molecules to approach the given distance is then computed. The association rate constant can be calculated based on thousands of generated trajectories. Using a simpler approach, the variation in the rate constant for bimolecular association is determined from the electrostatic interaction energy between proteins in transient intermediate configurations [START_REF] Zhou | Enhancement of proteinprotein association rate by interaction potential: Accuracy of prediction based on local boltzmann factor[END_REF]].

For the inverse problem that considers protein complex dissociation, the two points to be investigated are the interactions between proteins leading to the denaturation of complexes, and the order in which proteins are disassembled from the complexes. Very few computational methods addressing protein dissociation have been proposed. Pogorelov et al. [START_REF] Pogorelov | Cytochrome c 2 exit strategy : Disassociation studies and evolutionary implications[END_REF]] used an all-atom steered molecular dynamics (SMD) simulation in combination with evolutionary studies and binding free analysis to explore disassociation pathways of one subunit from a membrane protein complex. Nesatyya et al. [START_REF] Nesatyya | Dissociation of non-covalent protein complexes by triple quadrupole tandem mass spectrometry: comparison of monte carlo simulation and experiment[END_REF] presented a MC simulation of collisionally activated dissociation of non-covalent protein complexes in the collision cell of a triple quadrupole mass spectrometer. They used the hard-sphere and the diffuse scattering models to simulate the evolution of the translational and internal energies of activated precursor ions along the collision cell. Dissociation rate constants and ion survival probability were then calculated based on the estimated internal energy content of the excited ion.

Finally note that computational methods have been proposed to complement experimental data on the structure and the dynamics of protein assemblies. For instance, Cazals and Dreyfus [START_REF] Cazals | Assessing the stability of protein complexes within large assemblies[END_REF] introduced a novel method to build models of large assemblies of proteins from low-resolution structural data. In their model, a toleranced protein is presented as a collection of toleranced balls, and a toleranced assembly as a collection of toleranced proteins. Such an assembly, having a continuum of possible geometries, is encoded in a special graph called a Hasse diagram, which is a forest of trees representing the complex. The information extracted from this diagram can be used to investigate protein dynamics inside the complex.

Motion Planning Approaches

Motion planning is a fundamental problem in robotics and has been extensively studied during the past decades. In its original basic form, motion planning ignores typical concerns such as optimality and uncertainty, but instead focus on the computationally difficult problem of generating feasible collision-free paths that take the robot from a given start to a given goal configuration among a collection of workspace obstacles. The vast body of works related to motion planning can hardly be given adequate coverage in this brief review which focuses on techniques relevant with the planning needs of the thesis. Several surveys [START_REF] Latombe | Robot Motion Planning[END_REF][START_REF] Choset | Principles of Robot Motion[END_REF][START_REF] Lavalle | Planning Algorithms[END_REF]] can be consulted for further reading.

Motion planning problems are normally formulated in the configuration space of the robot (see Fig. 3.1). Obstacles in the environment translate into so-called C-obstacles in the configuration space, allowing a unified way to represent a robot motion as a curve in the configuration space that avoids the C-obstacles. The complexity of the C-obstacles is exponential in the dimension, meaning that an exact characterization in computationally too costly, even for robots with a relatively small number of DOF. At a broad level, motion planning approaches can be subdivided into three classes: cell-decomposition methods, roadmap methods, and potential field (or local) methods. Cell-decomposition methods divide the free part of the configuration space into a number of cells. Motion is then planned through these cells. Unfortunately, when the dimension of the configuration space get higher or when the complexity of the scene is large, the number of cells required becomes too large to be practical. Roadmap methods construct a network of roads through the configuration space along which the object can move without collision. This roadmap can be seen as a graph, and the problem is reduced to graph searching. Unfortunately, computing an effective roadmap in a deterministic way can only been achieved for rather low-dimensional configuration spaces with few obstacles. Finally, Potential field methods and other local methods steer the robot by determining a direction of motion based on local properties of the scene (e.g. move in the goal direction while being pushed away by nearby obstacles). These methods work well in relatively open area but, because only local properties are used, the robot can get stuck in deadlock position.

In the following, we will base ourselves on more recent Sampling-based roadmap methods [Kavraki et al. 1996;[START_REF] Lavalle | Rapidly-exploring random trees: A new tool for path planning[END_REF]] that have now emerged as a general and effective framework, successfully used in various application domains for articulated robots with possibly complex kinematics.

Sampling-based approaches

An important characteristic of sampling based planners is that they do not attempt to explicitly construct a model of the C-space. Instead, they directly capture the connectivity of the free C-space inside a roadmap of sampled configurations. The big advantage of this computational scheme is that its complexity tends to be dependent on the difficulty of the path, and much less on the global complexity of the scene or the dimension of the configuration space. The key idea is to use a collision detection algorithm as a black box, which allows the planner to ignore all issues associated with the precise geometric models of the robot and obstacles. The efficiency of available collision detection algorithm also contributes to the overall practical performance of sampling-based planners that also achieve some desired forms of probabilistic completeness.

Sampling-based approaches can be grouped in two main families: PRMs [Kavraki et al. 1996] use sampling for constructing a roadmap capturing the free-space connectivity while single-query variants (e.g. RRTs [LaValle 1998]) combine sampling within incremental search methods for searching for a particular path. The choice mainly depends on the application. PRM methods are more suitable when multiple motion planning queries must be solved in a same environment. Computing time is spent to preprocess in advance a roadmap data structure that can be used afterwards for fast query answering. In contrast, single query variants like RRT are incremental search methods that build a new roadmap from scratch for each new query. The roadmap needs only linking the query configurations and generally consists of two trees rooted at these configurations. Hence, single-query methods are in general faster than the PRM preprocessing stage since they do not require a whole roadmap reflecting the free-space connectivity. However, as they focus on solving a particular problem, the processed data structure is less appropriate for later use. Such techniques are particularly suited for solving constrained assembly problems [START_REF] Chang | Assembly maintainability study with motion planning[END_REF] where one must check whether there exists a path to remove a part from an assembly.

Note that, it can sometimes be interesting to combine both kinds of methods. For instance, when only slight modifications are produced in the environment, a multiple-query method can be applied at a global level and then single-query methods can rapidly solve local problem arisen from these slight changes [Jaillet and Siméon 2004]. Also, the use of single-query planner within a multiple-query motion planning framework can be used for the efficient parallelization of the planning process [START_REF] Akinc | Probabilistic roadmaps of trees for parallel computation of multiple query roadmaps[END_REF]]. In the next sections, the two approaches will be detailed.

The PRM approach

The Probabilistic RoadMap (PRM) method is a popular approach to motion planning [Kavraki et al. 1996]. It has received a lot of attention in recent years [START_REF] Amato | A randomized roadmap method for path and manipulation planning[END_REF][START_REF] Boor | The gaussian sampling strategy for probabilistic roadmap planners[END_REF] It is now used by many researchers considered the most widely applicable approach to motion planning. PRM is a general planning framework. The method has been successfully applied to many motion planning problems dealing with robot arms [Kavraki et al. 1996], car-like robots [START_REF] Svestka | On probabilistic completeness and expected complexity for probabilistic path planning[END_REF][START_REF] Sekhavat | Multilevel path planning for nonholonomic robots using semi-holonomic subsystems[END_REF]], manipulation tasks [START_REF] Alami | Two manipulation planning algorithms[END_REF] an object, and even flexible objects [START_REF] Holleman | Planning paths for a flexible surface patch[END_REF][START_REF] Lamiraux | Planning paths for elastic objects under manipulation constraints[END_REF]]. In all these cases, the method is very efficient but, due to the probabilistic nature, its performance remains difficult to analyze (see e.g. [Kavraki et al. 1996]).

PRM is a roadmap technique but, rather than constructing the roadmap in a deterministic way, a probabilistic approach is used. Most of the work lies in the construction of the roadmap, but this can be done in a preprocessing phase. This is important for applications in which fast query answering is required. The overall principle is to capture the connectivity of the collision-free space by a set of onedimensional curves stored in a pre-computed roadmap (see Fig. 3.2). The roadmap is obtained by sampling robot configurations and subsequently connecting promising samples with valid local paths generated by a simple and local planner. Sampled configurations and local paths are checked for collision using effective collision detection algorithms [START_REF] Otaduy | Clods: Dual hierarchies for multiresolution collision detection[END_REF]. Even thought the local planner might fail, once enough samples have been added to the graph, with high probability the roadmap will be able to solve motion-planning queries. Once the roadmap has been constructed, multiple path planning queries can be answered efficiently by simply connecting the query configurations and searching the augmented roadmap for a solution path, generally smoothed in a post-processing step to improve the quality of solution. This basic scheme has been extended in many ways to adapt the approach to different types of motions and/or to exploit certain properties of the environment.

While PRM is successful for robots with many DOF and probabilistic complete, its performance degrades in the presence of narrow passages that require a prohibitively high density roadmap. A number of variants and extensions have been proposed to alleviate this problem and improve PRM performance, e.g. biasing sampling around obstacles [START_REF] Amato | Obprm: An obstaclebased prm for 3d workspaces[END_REF][START_REF] Boor | The gaussian sampling strategy for probabilistic roadmap planners[END_REF][START_REF] Hsu | The bridge test for sampling narrow passages with probabilistic roadmap planners[END_REF]] or towards the medial axis [START_REF] Wilmarth | Maprm: A probabilistic roadmap planner with sampling on the medial axis of the free space[END_REF] Unfortunately, the different improvements listed above are difficult to compare . Some of them are limited to particular (e.g. free-flying) robots while others maintain the generality of the PRM framework. Also the effectiveness of the techniques is shown on different test cases, using a different implementation. Therefore An originality of Visibility-PRM [Siméon et al. 2000] is to produce compact roadmaps with a small number of nodes. The method relies on a free-space structuring into visibility domains (i.e. sets of configurations connectable to a given guard by a valid local path). Computed guards are linked together via connectors located in their overlapping visibility regions. Such roadmaps can be constructed using a simple PRM variant: each free sample is added to the roadmap only if it cannot be connected to any existing node (i.e. guard) or if it connects at least two components (i.e. connector). Visibility-PRM offers two advantages. First, the algorithm termination is controlled by the difficulty of adding a new guard, which relates to the quality of the roadmap in term of coverage. Secondly, the computed roadmap is a very small tree (i.e. no cycles) capturing the free space coverage with a limited number of nodes and edges. The tree restriction is relaxed with the Path Deformation Roadmap extension [Jaillet and Siméon 2009]. Finally, current PRM versions still need to spend some amount of time during query answering, both to find the correct path in the roadmap and to improve the path [Song et al. 2001]. Some work has been done in this direction for improving the query answering performance of PRM. The solution proposed in [START_REF] Geraerts | On improving the clearance for robots in highdimensional configuration spaces[END_REF] aims at enhancing the preprocessing phase such that motions can be computed much more efficiently and the results are much better in terms of quality (e.g. smoothness, path length), removing the need for costly post-processing of the path.

Incremental Search Planners

Incremental search methods [START_REF] Barraquand | Robot motion planning: A distributed representation approach[END_REF]Bessière et al. 1993;[START_REF] Hsu | Randomized kinodynamic motion planning with moving obstacles[END_REF][START_REF] Lavalle | Rapidly-exploring random trees: A new tool for path planning[END_REF]] are PRM variants introduced for single-query planning. They are more efficient for that purpose since their exploration strategy is biased to solve a particular query and not to obtain information about the exploration strategy about the whole configuration space. Most of the algorithms construct trees whose nodes are configurations computed during exploration. The search can be performed in only one direction or in the two directions: Unidirection methods develop a single tree from one of the query configurations until the other configuration is reached, while Bidirectional methods involve two trees rooted at query configurations. The motivation for using one or more trees depends on the characteristics of problem to be solved. For example, if the robot is highly constrained around the initial position and rather free to move around the goal, it will be more efficient to build only a tree rooted at this initial configuration. In other situations, a single tree may be trapped trying to find the exit through a narrow passage, while traveling in both directions may be easier.

The Rapidly-exploring Random Tree (RRT) approach, introduced in [LaValle 1998], has become now the most popular single-query motion planner. RRT-based algorithms were first developed for nonholonomic and kinodynamic planning problems [LaValle and Kuffner 2001a] where the space to be explored is the state-space. However, the RRT framework is general and can also be applied for problems without differential constraints [LaValle and Kuffner 2001b]. The key idea of the RRT expansion is to bias the exploration toward unexplored regions of the space. Hence, the probability that a node is selected for expansion is proportional to the area of its Voronoi region (i.e. set of points closer to this node than to the others). Therefore, RRTs are biased by large Voronoi regions to rapidly explore, before uniformly covering, the space.

RRTs combine a construction and a connection phase (see Fig. 3.3). For building a tree, a configuration is randomly sampled and the nearest node in the tree (given a distance metric in C-space) is expanded toward the sample. In the basic RRT algorithm (referred to as RRT-Extend), a single expansion step of fixed distance is performed. In a greedier variant, RRT-Connect, the expansion step is iterated while keeping feasibility constraints (e.g. collision-freeness) are satisfied. RRT-Connect has been shown to be more efficient than the single step version for systems without differential constraints [LaValle and Kuffner 2001b].

One weakness of the RRT algorithm comes from its high sensitivity to the distance metric used to select the tree node to be expanded. Several approaches [START_REF] Cheng | Reducing metric sensitivity in randomized trajectory design[END_REF][START_REF] Urmson | Approaches for heuristically biasing RRT growth[END_REF]Cortés et al. 2007] have been proposed to address this issue and design more sophisticated metrics than the Euclidian metric used in basic RRT, e.g. by applying weights to balance the influence of the DOF. However, in high dimensional spaces, it is difficult to find the adequate metric-showing a good trade-off computational complexity and accuracy.

Other recent improvements concern configuration sampling, normally made using a uniform random distribution in the configuration-space. More sophisticated sampling strategies, e.g. iterative RRTs [Ferré and Laumond 2004] or sampling in dynamic domains that envelope the search tree [START_REF] Yershova | Dynamic-domain rrts: Efficient exploration by controlling the sampling domain[END_REF][START_REF] Jaillet | Adaptive tuning of the sampling domain for dynamic-domain rrts[END_REF]] have been shown to improve the RRT performance for constrained disassembly problems (see Figure 2.3). While these methods address (dis)assembly problems involving rigid objects, the extension presented in [Cortés et al. 2009] is particularly devised for the disassembly of complex objects with articulated parts. In this type of problem, configuration parameters generally play two different roles. Some of them are essential for the disassembly task, while others only need to move if they hinder the progress of the disassembly process. The proposed method is based on such a partition of the configuration parameters. Results show a remarkable performance improvement compared to standard RRT method.

Another interesting variant called Transition-based RRT (T-RRT) [Jaillet et al. 2010] has been recently

proposed in order to compute good-quality paths with respect to a cost function defined over the configuration space. Basically, T-RRT introduces a state-transition test based on the Metropolis criterion, similarly to MC methods, in order to reject new states that will decrease the quality of the path. This filtering, which relies on the steepness of the local motion to connect a given state to the RRT, makes the tree expansion tends to follow the valleys and the saddle points of the configuration-space costmap. This technique shows a good capacity to find good-quality paths in reasonably high-dimensional spaces constrained by obstacles.

Motion Planning Approaches to Problems in Structural Biology

Motion planning algorithms, originally developed in the field of robotics, are efficient tools for exploring constrained high-dimensional spaces. When applied to structural biology, they yield high-performance conformational search methods that are able to consider a wide range of DOF. This section gives a brief overview on the application of motion-planning-based methods to different problems in structural biology.

Protein Motions

Protein Loop Motions

In order to study large-amplitude motions of flexible molecules, an approach with two stages has been proposed [Cortés et al. 2005]. The driving idea is to separate the conformational search in two stages aiming to highly speed up the computation. The first stage consists in a geometric filtering operated by motion planning techniques applied on articulated hard sphere models. The second stage accounts for the energy-based accuracy only for selected solutions found at the previous stage. The interest of this geometric filtering is that high-dimensional conformational spaces can be globally explored in a continuous way.

Another work to model flexible protein loops has been carried out by Yao et al. [START_REF] Yao | Efficient algorithms to explore conformation spaces of flexible protein loops[END_REF]]. The authors proposed two algorithms called seed and de f ormation sampling. The seed algorithm tries to sample conformations broadly distributed over the space of closed collision-free conformations of a flexible protein loop. The deformation sampling operation then starts from a given conformation sampled by the previous algorithm and deforms this conformation without breaking closure constraint or making auto-collision while modifying the DOF of loops. This method shows its promising results on handling 5 to 25 residue long loops. They have also applied this method to interpret fuzzy regions in electron-density maps obtained from X-ray crystallography. [START_REF] Shehu | Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations[END_REF]]. The method combines a statistical mechanics formulation and a robotic-based exploration of the conformational space to model a loop fragment. Starting from an incomplete protein structure and the amino acid sequence of the missing loop, the proposed method generates an ensemble of low-energy loop conformations that completes the given protein structure.

Shehu et al. have developed Fragment Ensemble Method (FEM) addressing equilibrium mobility in the loop modeling problem

Helix and Domain Motions

Del Carpio et al. [START_REF] Carpio | A graph theoretical approach for analysis of protein flexibility change at protein complex formation[END_REF][START_REF] Carpio | Robotic path planning and protein complex modeling considering low frequency intra-molecular loop and domain motions[END_REF]] presented a novel algorithm that resolves the intra-molecular loop and domain motions during the interaction of proteins. This hybrid approach firstly maps regions or domains (including loops) with high flexibility in the interacting units by using a graph theoretical method to account for protein flexibility reduction. The PRM algorithm is then used to generate different configurations pathways that provide information about the protein complex energy. Enosh et al. have developed an automated method to predict and simulate motion in the transmembrane (TM) proteins of the α-helix bundle type by using an RRT-based motion planning algorithm [START_REF] Enosh | Prediction and simulation of motion in pairs of transmembrane alpha-helices[END_REF]]. The resulting paths are ranked according to the quality of the van der Waals interactions between the TM helices (i.e. Lennard-Jones potential). They have focused on simple systems comprising pairs of α-helices, thus circumventing the complexities of modeling loops that connect pairs of helices.

Kirillova et al. have proposed an approach for computing large-amplitude domain motions by combining an path-planning method and normal mode analysis [START_REF] Kirillova | An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins[END_REF]]. The main idea is to guide the conformational exploration, performed with a path planning algorithm on a purely geometric molecular model, using the directions of collective atomic motions given by the low-frequency normal modes. Indeed, the algorithm explores the space of the collective DOF provided by the low-frequency modes, which is a lower-dimensional sub-manifold of the conformational space. This combination allows the method to overcome the limitations of each individual method for computing large-amplitude conformational changes in proteins.

Protein-Ligand Docking and Access/Exit Pathways

Singh et al. [START_REF] Singh | A motion planning approach to flexible ligand binding[END_REF]] developed a novel technique for studying the dynamics of protein-ligand interactions based on motion planning algorithms. This algorithm uses electrostatic and van der Waals potentials to compute the most energetically favorable path between any given initial and goal ligand configurations. The PRM algorithm is used to sample the distribution of possible paths to a given goal configuration and to compute an energy-based "difficulty weight" for each path. By statistically averaging this weight over several randomly generated starting configurations, they computed the relative difficulty of entering and leaving a given binding configuration. This approach yields details of the energy contours around the binding site and can be used to characterize and predict good binding sites. They used two attributes to distinguish between true and predicted binding configurations: the absolute energy of the ligand and the average weights of all paths entering and leaving the configuration. They found that these average weights of the true binding configuration were significantly higher than the ones of all other low-energy configurations.

Based on the main idea of the previous method, Apaydin et al. proposed a novel approach for studying of computational mutagenesis and on binding sites [START_REF] Apaydin | Stochastic roadmap simulation for the study of ligand-protein interactions[END_REF]. They introduced the Stochastic Roadmap Simulation (SRS) to compute the escape time from a putative binding site which is the number of MC simulation steps starting from the binding site to reach a conformation outside its funnel of attraction [START_REF] Camacho | Protein docking along smooth association pathways[END_REF]]. SRS allows to analyze all the paths in the roadmap simultaneously. In their first study, they measured the effects of mutations on the catalytic site of a protein. For 6 mutations, the escape times of the ligand in the bound conformation are computed and then compared with the wide-type's ones. These results obtained with SRS agreed with the biological interpretation of the mutation. In the second study, the escape time in 5 of 7 complexes from the funnel around the catalytic site is larger than any other putative binding sites' one by at least an order of magnitude.

Cortés et al. have presented a novel variant of RRT algorithm to treat the problem of ligand exit from the active site of a protein by using a purely geometric approach in which the energetic terms are replaced by constraints: non-bonded atoms are separated by a minimum distance to account for van der Waals repulsion terms, privileged orientations and distances account for the possible formation of hydrogen bonds or hydrophobic interactions [Cortés et al. 2005;Cortés et al. 2007]. The proposed method, called Manhattanlike RRT (ML-RRT), addresses disassembly path planning of articulated objects. The particularity of this algorithm is that the motions of the different parts are decoupled. Indeed, for the present application, ligand and protein degrees of freedom (only protein side-chain flexibility is considered) are treated at different levels. The ligand motion is privileged, while flexible parts of the protein only move if they hinder the ligand progression. This new algorithm presents two advantages with respect to the basic RRT. First, the computing time and its variance are notably reduced. And second, but not less important, the flexible parts that have to move for finding a solution path are automatically identified. Thus, the planner is able to handle models involving hundreds of potential DOF, avoiding user intervention to select the important ones.

Protein folding/unfolding

For studying protein unfolding pathways, Song et al. have proposed a framework based on PRM motion planning algorithm [Song and Amato 2001;[START_REF] Song | A motion planning approach to folding: From paper craft to protein folding[END_REF]]. The objective is to compute the most energetically favorable paths between the folded state and denatured states. A high-quality roadmap is constructed by using Gaussian sampling around the folded state with various standard deviations to create new conformations. The analysis of the computed unfolding pathway may provide information about the order of formation of secondary structure elements.

Stochastic Roadmap Simulation (SRS), developed by Apaydin et al. [START_REF] Apaydin | Stochastic roadmap simulation for the study of ligand-protein interactions[END_REF], is a general technique to study molecular motion. This technique is also applied to the protein folding problem [START_REF] Apaydin | Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion[END_REF]]. A number of conformations is sampled randomly from the conformation space. These conformations of a protein are represented as nodes in a compact graph with the edges representing the probability of moving between neighboring states. Once the roadmap construction is finished, techniques from Markov-chain theory are used to calculate the probability of each node to tend toward a folded or an unfolded state. The overall calculation of such folding probabilities allows to determine which structures constitute the transition state of the folding process, and to estimate the folding time for the protein.

Contribution of this Thesis

Computational methods have been developed to complement the experimental studies and to better face the quantity of data issued from genomics and proteomics. In this context, understanding and predicting structure-function relationships in proteins with fully in silico approaches remain today a great challenge. Proteins are able to undergo possibly large conformational changes that affect their ability to interact with other molecules, and despite great advances achieved in the last years, dealing with macromolecular flexibility largely remains out of reach of the existing molecular modeling tools.

Our approach to deal with the molecular flexibility in studying molecular interactions is based on path planning algorithms proposed. Such algorithms are efficient tools for exploring constrained highdimensional spaces. Applied to problems in structural biology, they yield high-performance conformational search methods, able to consider a wide range of degrees of freedom. We present a new RRT variant for disassembly path planning of articulated objects (see Chapter 4). The new method was developed to circumvent the limitations of the basic RRT algorithm for dealing with disassembly problems involving complex articulated objects. The main idea is to facilitate the tree expansion by considering separately two types of conformational parameters, called active and passive. Active parameters are essential for the disassembly problem, and they are directly treated at each iteration of the algorithm. Passive parameters, however, only need to be treated when they hinder the expansion of active parameters. The advantage of this decoupled treatment, that favors the expansion of the active parameters, is to maintain the exploratory strength of the RRT algorithm while dealing with high-dimensional problems. Two extensions have also introduced to deal with more complex systems involving several levels of passive parameters, or requiring pushing and pulling motions of passive parts.

The technique presented in Chapter 4 is then applied for simulating ligand diffusion motions, together with the possibly induced conformational changes of the protein. Given an initial structure with the ligand docked inside the protein, the proposed method computes a path (i.e. continuous sequence of conformations) simulating the ligand exit. Such a path search problem is formulated as a mechanical disassembly problem, where the protein and the ligand are modeled as articulated mechanisms (see Chapter 5).

Generally, disassembly sequencing and path planning are parts of a whole problem, and ideally, they have to be treated simultaneously. Therefore, we propose a new method for simultaneously disassembly sequencing and path planning in a general framework (see Chapter 6). It extends the above disassembly path planning algorithm for two objects with articulated parts. The idea developed in this chapter consists in iterating the disassembly algorithm for extracting all the parts of a general assembly. This method can extract not only path motion for each part to be disassembled from the complex but also the preferred order that the disassembly process has to follow. A deep analysis of its performance is also carried out.

The disassembly sequencing method is then used to study the protein complex dissociation processes. The method presented in Chapter 6 requires to be extended, since it is necessary to take into account the interaction energy along the dissociation pathways between molecules. Therefore, a coarse-grained model has been used to facilitate the energy computation. This approach has been applied for several protein complex models, and it shows some promising preliminary results (see Chapter 7).

Disassembly Path Planning for Complex Articulated Objects

This chapter addresses the problem of automatically computing motions to disassemble objects. Assembly and disassembly planning are important problems in manufacturing engineering. Many techniques have been developed in this field for automatically generating (dis)assembly plans that optimize time, cost, etc. [Bourjault ; Homem de [START_REF] Mello | Computer-Aided Mechanical Assembly Planning[END_REF]. Most of these techniques are based on relation graph models of the assembly or precedence graphs and use graph theory and AI algorithms for computing disassembly sequences. The (dis)assembly problem can be formulated as a general path planning problem [START_REF] Latombe | Robot Motion Planning[END_REF][START_REF] Lavalle | Planning Algorithms[END_REF]]. Indeed, path planning concepts and algorithms have been applied to solve different instances of the (dis)assembly planning problem. Sampling-based tree planners [START_REF] Kavraki | Probabilistic roadmaps for robot path planning[END_REF][START_REF] Lavalle | Rapidly-exploring random trees: A new tool for path planning[END_REF]] have been shown to be efficient techniques for solving constrained disassembly problems between rigid objects. In this chapter, we present an algorithm that extends prior works to disassembly problem between complex articulated objects. This algorithm will be applied in Chapter 5 to simulate ligand pathways in flexible (articulated) protein receptors. We first provide a short state of the art in Section 4.1 and the problem formulation in Section 4.2. The general RRT-based algorithm will be next described in Section 4.3. Section 4.4 gives a detailed presentation of our variant along with its performance analysis (Sec. 4.5). Two extensions of the ML-RRT algorithm, permitting to tackle more complex problems, are described in Sections 4.6 and 4.7. The last section contributes to some discussions of our method (Sec. 4.8). 

Related Works and Overview of the Proposed Method

A number of approaches were presented to deal with assembly and disassembly planning problems. Geometric reasoning approaches have been proposed for reducing the combinatorial complexity of the problem, as well as the amount of information that has to be provided by the user. Wilson's pioneering work on geometric reasoning about mechanical assembly [START_REF] Wilson | On geometric assembly planning[END_REF]] introduces the directional blocking graph (DBG), which identifies which parts collide given an instantaneous displacement in a given direction, and the non-directed blocking graph (NDBG), which represents how parts are constraining each other, based on a partition of the space of allowed motions and on the associated DBGs. Many subsequent (dis)assembly sequencing methods have used these two concepts. The approach presented in [Lozano-Pérez and [START_REF] Lozano-P Érez | Assembly sequencing for arbitrary motions[END_REF] generalizes the solutions in [START_REF] Wilson | On geometric assembly planning[END_REF]] to arbitrary motions between parts. The method involves constructing configuration space diagrams that explicitly represent interferences between pairs of parts for every relative motion. A similar approach is developed in [START_REF] Halperin | A general framework for assembly planning: The motion space approach[END_REF]], based on the concept of motion space, which is an extension of the notion of configuration space, and represents possible motions of sub-assemblies.

The assembly maintainability study [START_REF] Chang | Assembly maintainability study with motion planning[END_REF]] is a variant of the (dis)assembly problem. Given an assembled system, maintainability studies are conducted to determine if it is possible to remove a particular part, and if so, to obtain the disassembly path. Normally, such studies involve only one mobile part, and therefore, "standard" path planning algorithms could be applied. However, the workspace is usually extremely constrained in this context, and problem-specific algorithms are required for efficiently computing disassembly paths. A fast and effective algorithm for this kind of problems is presented in [Ferré and Laumond 2004]. The method is based on an iterative RRT-like algorithm that reconstructs some parts of the search tree while progressively increasing the size of the objects. All the methods above address (dis)assembly problems involving rigid objects. The method we present in this chapter is well suited for assembly maintainability studies in which the disassembled objects have articulated parts. Figure 4.1 illustrates a simple two-dimensional example. Our algorithm is a variant of the RRT algorithm [START_REF] Lavalle | Rapidly-exploring random trees: A new tool for path planning[END_REF]]. The particularity of the proposed variant is to introduce two types of configuration parameters, labeled as active and passive, and to generate their motion in a decoupled manner. We call this variant Manhattan-like RRT (ML-RRT) because the computed paths look like Manhattan paths over these two sets of parameters that change alternatively. The partition of the configuration parameters into active and passive corresponds to their role in the disassembly problem. Active parameters are essential for the disassembly task, while passive parameters only need to move if they hinder the progress of the disassembly process. The ML-RRT algorithm presents two main advantages with respect to the basic RRT: (1) The computing time is notably reduced. (2) The passive parts that have to move for finding a solution path are automatically identified. Thus, the planner is able to handle models involving hundreds of potential degrees of freedom, avoiding user intervention to select the important ones.

Problem formulation

The disassembly path planning problem treated in this chapter can be formulated as a general path planning problem for a system with multiple mobile objects, using the notion of configuration space C [Lozano-Pérez 1983; Latombe 1991; LaValle 2006]. A configuration q is a minimal set of parameters defining the location of the mobile system in the world, and C is the set of all the configurations. Given the assembled configuration q init and a goal configuration q goal (any disassembled configuration) the problem consists in finding a feasible collision-free path in C that connects both configurations. Note that contact between parts is considered as a collision by our method. Therefore, contact motions can not be computed. The instance studied in this chapter considers two objects with possibly multiple articulated parts. Considering that the spatial location of one of the objects is fixed, then, the configuration parameters are those defining the pose of the reference frame attached to other (mobile) object plus the degrees of freedom associated with the articulated parts in both objects. Thus, the configuration vector is given by: q = {q M , q Jm , q Js }, where q M contains parameters defining the position and the orientation of the mobile reference frame, and q Jm and q Js represent the joint variables of the articulated parts in the mobile object and the static object respectively.

In the example illustrated by Fig. 4.1, the configuration vector is given by: q = {q M , q rm , q rs1 , q rs2 , q rs3 }, where q M contains three parameters defining the position and the orientation of the mobile reference frame, and q rm , q rs1 , q rs2 , q rs3 represent the joint angles of the articulated parts in the mobile object and the fixed object. Thus, considering joint limits, the configuration space is:

C = SE(2) × R 4 .
In general, the most significant parameters for the disassembly of articulated objects are those concerning the pose of the mobile object, q M . The parameters associated with the articulated parts are relatively less important, since they only need to move if they hinder the progress of the mobile object toward the disassembled configuration. Such different role of the configuration parameters is generally true for the disassembly of two objects with articulated parts. Therefore, configuration parameters can be separated into two sets: q = {q act , q pas }, with q act = q M representing the active parameters, and q pas = {q Jm , q Js } the passive parameters. The terms active and passive have been chosen in relation to how the algorithm described in Section 4.4 acts on them. This partition induces the corresponding sub-manifolds in the configuration space: C = C act × C pas . Although the above described partition can be generally adopted, any other partition can be defined by the user. The mobile parts are separated into two lists L act and L pas containing the active and the passive parts respectively. For a given partition, q act is the set of configuration parameters associated with the parts in L act and q pas is is the set associated with L pas . 

Basic RRT Algorithm

The basic principle of the RRT algorithm [START_REF] Lavalle | Rapidly-exploring random trees: A new tool for path planning[END_REF]] is to incrementally grow a random tree τ rooted at the initial configuration q init in order to explore the reachable configuration space and to find a feasible path connecting q init to a goal configuration q goal . Fig. 4.2 illustrates the process and Algorithm 1 gives the pseudo-code for the RRT construction. At each iteration, the tree is expanded toward a randomly sampled configuration q rand ∈ C. This random sample is used to simultaneously determine the tree node to be expanded and the direction in which it is expanded. Given a distance metric in the configuration space, the nearest node q near in the tree to the sample q rand is selected and an attempt is made to expand q near in the direction of q rand . For kinematically unconstrained systems, the expansion procedure can be simply performed by moving on the straight-line segment between q near and q rand . If the expansion succeeds, a new node q new and a feasible local path from q near are generated. The key idea of this expansion strategy is to bias the exploration toward unexplored regions of the space. Hence, the probability that a node will be chosen for an expansion is proportional to the volume of its Voronoi region (i.e. the set of points closer to this node than to any other node). Therefore, RRT expansion is biased toward large Voronoi regions enabling rapid exploration before uniformly covering the space.

Different strategies can be adopted for the design of RRT-based path planners [LaValle and Kuffner 2001b]. Configuration sampling (function SampleConf) is normally made using a uniform random distribution in the configuration space C. However, more sophisticated sampling strategies (e.g. sampling in dynamic domains that envelope the search tree [START_REF] Yershova | Dynamic-domain rrts: Efficient exploration by controlling the sampling domain[END_REF]; Burns and Brock 2007]) may improve the performance of the RRT algorithm. Another technical point concerns the function NearestNeighbor. The basic RRT algorithm selects q near as the nearest node to q rand using an Euclidean metric 1 in C. Such a metric distance is very simple and easy to compute. However, since it does not consider motion constraints (e.g., obstacles, kinematic constraints), it may lead to a poor performance of the planner, Algorithm 1: Construct RRT input : the configuration space C; the root q init and the goal q goal ; output : the tree τ; begin τ ← InitTree(q init ); while not StopCondition(τ, q goal ) do q rand ← SampleConf(C); q near ← NearestNeighbor(τ, q rand ); q new ← Expand(q near , q rand ); if not TooSimilar(q near , q new ) then AddNewNode(τ, q new ); AddNewEdge(τ, q near , q new ); end by repeatedly selecting "exhausted" nodes for futile expansion. To avoid this problem, two modifications can be introduced in NearestNeighbor: (1) A node is no longer selected after its expansion fails a given number of consecutive times l.

(2) q near is selected at random among the k nearest neighbors q near and q near in C can not exceed a predefined threshold.

Manhattan-like RRT Algorithm

This section presents a variant of the RRT algorithm that considers the active/passive partition of the configuration parameters introduced in Section 4.2. The algorithm, called Manhattan-like RRT (ML-RRT), computes the motion of the parts associated with both parameter types in a decoupled manner. We have called this variant Manhattan-like RRT (ML-RRT) because the paths computed by the algorithm look like Manhattan paths over these two sets of parameters that change alternatively. The ML-RRT algorithm considers two types of configuration parameters: active and passive. Active parameters are directly handled by the planner, while passive parameters are treated only when required to expand the tree. Indeed, passive parts only move if they hinder the motion of other mobile parts (active parts or other passive parts involved in the expansion).

The ML-RRT algorithm is schematized in Algorithm 2. At each iteration, the motion of active parts is computed first. The function SampleConf receives as argument the list of active parts P act and it only samples the associated parameters q act . Thus, this function generates a configuration q act rand in a sub-manifold Algorithm 2: Construct ML-RRT input : the conformational space C; the initial conformation q init ; the partition {P act , P pas }; output : the tree τ; begin τ ← InitTree(q init ); while not StopCondition(τ) do q act rand ← SampleConf(C, P act ); q near ← NearestNeighbor(τ, q act rand , P act ); (q new , P col pas ) ← Expand(q near ,q act rand ); while P col pas = / 0 do P mov pas ← PartsToMove(P col pas ); q pas rand ← PerturbConf(C, q new , P mov pas , q near .n fail ); (q' new , P' col pas ) ← Expand(q new , q pas rand ); P col pas ← P' col pas \ P col pas ; q new ← q' new ; if not TooSimilar(q near , q new ) then AddNewNode(τ, q new ); AddNewEdge(τ, q near , q new ); q near .n fail ← 0; else q near .n fail ← q near .n fail + 1; end of the configuration space involving the active parameters, C act . The function NearestNeighbor selects the node to be expanded q near using a distance metric in C act . Note that the function NearestNeighbor also integrates the basic improvements mentioned in Section 4.3. Then, Expand performs the expansion of the selected configuration by only changing the active parameters. A greedy strategy is used. The returned configuration q new corresponds to the last valid point computed along the straight-line segment from q near toward {q act rand , q pas near }. The function Expand also analyzes the collision pairs yielding the stop of the expansion process. If active parts in L act collide with potentially mobile passive parts in P pas , the list of the involved passive parts P col pas is returned. This information is used in the second stage of the algorithm, which generates the motion of passive parts.

The function PartsToMove determines the list P mov pas of passive parts to be moved at one iteration. This function receives as argument the list of colliding passive parts P col pas , and constructs a list with all the parts indirectly involved in the collision. The function PerturbConf generates a configuration q pas rand by randomly sampling the value of the passive parameters associated with P mov pas in a ball around their configuration in q new . An attempt is then made to further expand q new toward {q act new , q pas rand }. Only the parts in P col pas move during this tree expansion. The function Expand returns a list P col' pas if the expansion is stopped by a collision involving passive parts. If this list contains new passive parts (in relation to P col pas ), the process generating passive part motions is iterated. Such a possible cascade of passive part motions may be useful to solve problems where passive parts indirectly hinder the motion of the active ones because they block other passive parts. At the end of the iteration, if the expansion is not negligible, a new node and a new edge are added to the tree. Finally, note that although the active and passive parts move alternately in the path obtained by the ML-RRT algorithm, a randomized path smoothing post-processing3 is performed in the composite configuration space of all the parameters, so that simultaneous motions are obtained in the final path.

Empirical Performance Analysis

This section focuses on the performance comparison between the basic RRT algorithm and the ML-RRT variant which have both been implemented within the motion planning software Move3D [Siméon et al. 2001], and tested with a set of benchmark examples. The results reported in this section aim to illustrate both the generality and the good overall performance of the method. We start with the description of the models divided into two classes: two-dimensional and three-dimensional academic examples. Then, we analyze the intrinsic performance of the ML-RRT algorithm and we compare it with related methods. All reported results correspond to averaged values based on 10 runs of both methods. All the experiments of this chapter were performed on a AMD Opteron Processor 2222 3Ghz equipped with 8Gb of memory. The search process returned a failure if the tree size excessed 10000 nodes.

Benchmark Models

Two sets of two-dimensional and three-dimensional have been used. The two-dimensional benchmarks (see Fig. 4.3) involve a mobile H-like object with four d.o.f (i.e. two for translation, one for orientation, one for deformation) and several fixed sticks. The length of the static obstacle and the number of the fixed sticks are gradually multiplied to create more difficult problems (e.g., 3, 6 and 9 sticks along with more complex obstacles). The three-dimensional examples involve a freeflying object (6 d.o.f) constrained by a number of rotational sticks (see Fig. 4.4). The length of the mobile object is also extended along with the 
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Performance Comparison

Table 4.1 displays the computing time (with standard deviation) and the number of nodes in the search trees, samples and collision tests required for solving all benchmark problems with both algorithms (i.e. RRT and ML-RRT). Note that, for ML-RRT, only the number of samples for active parameters N act samp is shown. These results show that ML-RRT clearly outperforms the basic RRT, and that the performance gain increases with the complexity of the problems. Note that the basic RRT is unable to solve the difficult versions of the problems (i.e. 2D-Double, 2D-Triple, 3D-Triple) in reasonable computing time, while the performance of ML-RRT is only slightly affected by the problem difficulty. H-like object for example 2D-Double. The tree computed with the basic RRT algorithm contains 10000 nodes but all are concentrated in a small region of the search-space around the initial configuration. On the contrary, the tree obtained with the ML-RRT algorithm contains about 1000 nodes and yet better covers the search-space.

The main idea of the ML-RRT algorithm is to divide the configuration parameters into active and passive ones. The planner has to treat only the active parameters and a few passive ones if needed. When the number of passive parameters gradually increases along with more complex obstacles, this slightly affects the algorithm's performance. Results in Table 4.1 show that the performance of the basic RRT drastically degrades due to the complexity of problems. On the contrary, the ML-RRT method still maintains its performance with a relatively small increase of computing time.

Besides the computational efficiency, the solution paths obtained with both algorithms are also qualitatively different (see Fig. 4.6). The two traces of the solution paths obtained with the basic RRT and ML-RRT show this difference. In the path displayed by Fig. 4.6.a, computed by the basic RRT, the mobile H-like object circumvents the mobile parts of the fixed object by generating many small motions in the very constrained space. In the other path, obtained with ML-RRT (see Fig. 4.6.b), it is easy for the H-like robot to progressively "push" the passive rotational parts to exit. This type of solution path seems more natural for this kind of problem.

Multi-level passiveness

One extension of the ML-RRT algorithm is to take into account different mobility levels for the motion of different parts. Therefore, passive parameters will be moved according to their mobility. For example, A mobility coefficient δ ∈ (0, 1] is assigned to each passive parameter. This coefficient is used to differentiate passive parts that are allowed to move easily (i.e. the sticks) from those that should be moved only if the solution path cannot be found otherwise (i.e. the walls). Then, the function PerturbConf modifies or not the configuration parameters of a passive part in P mov pas depending on a probability distribution that considers its mobility coefficient δ and the difficulty for expanding q near , which is estimated by the number of previous expansion failures n f ail . Therefore, a parameter is sampled if the following condition is satisfied:

NormalRand(µ, σ 2 ) 1 -δ
Where NormalRand returns a random positive real number sampled from a normal distribution with mean µ = 0 and variance σ 2 = 0.1 × n f ail , and δ =(0,1] is the mobility coefficient of the part. Such a selection strategy maintains a low probability of moving parts with small mobility coefficient (e.g. big sticks) when The bounding walls of the static object are now articulated. However, a lower probability to move with respect to the small sticks is assigned to them. the diffusion tree easily grows, while the probability is increased when required to unblock the exploration.

Influence of passive parameter priorities

In order to analyze the influence of passive parameter priorities, we have performed 10 tests with the example TwoPass in Fig. 4.7 in which the mobility coefficient of small sticks is always set at 1.0 (called the first level of passivity) while for the walls, it varies from 0.1 to 1.0 (called the second level of passivity). The highest mobility coefficient of the walls corresponds to the basic ML-RRT algorithm's treatment. Table 4.2 shows the computing times (in seconds) with their standard deviations, and the number of nodes, samples for active parameters, collision tests required by the planner. All values are averaged over 10 successful runs for each test. Note that, a distance constant was considered between the ends of the two articulated walls in order to increase the difficulty of the problem. The results show that when the mobility of the walls (i.e. the second level of passivity) increases, the planner gradually spends more time for solving the problem. The best result involves the second passive level mobility set at 0.2 while the worst result corresponds to the basic ML-RRT algorithm's performance (i.e 1.0). Because the limits in the movement of articulated walls allow the extended algorithm to treat less passive parameters at one iteration than the basic ML-RRT, therefore the problem can be solved more quickly.

Influence of number of passive levels

The analysis in this sub-section focuses on the influence of number of passive levels. The example illustrated in Figure 4.9 called LongPass displays a more difficult problem involving two five-joint walls which contain five rotational small sticks. Hence, this problem totally involves 24 d.o.f. Two bounded distance constraints (i.e. one between two extremities and the other between the middle points of the articulated walls) are also added to increase the problem's difficulty. The mobility coefficient for the small sticks is always set at 1.0, and 0.2 for the walls. Another example T hreePass illustrated in the Fig. 4.10 treats a problem with three levels of passiveness. 22 d.o.f are considered in this model. The smallest yellow sticks have the highest mobility coefficient (i.e. 1.0) and the mobilities for the cyan sticks and the pink walls are set at 0.5 and 1.0, respectively. The bounded distance constraint is again applied in this three-passive-level model. Table 4.3 shows the performance comparison between basic and multi-passive ML-RRT algorithms. The results are also based on 10 successful runs for each examples. In the LongPass model, the computing time of the extended variant can be reduced by 2 in comparison to basic ML-RRT. In the other model (i.e T hreePass), the gain can be upto 7. We can conclude that the different priorities for passive parameter movement facilitates the exploration process of the planner, which allows finding the solution faster. Figure 4.11 shows a projection of the search trees on the coordinates of the center of mass of the mobile H-like object for T hreePass model. The tree computed with the basic ML-RRT algorithm contains about 3000 nodes but all are concentrated in a small region of the search-space around the initial configuration. On the contrary, the tree obtained with the Multi-Passive Level variant contains about 1000 nodes and yet better covers the search-space.

Pushing and Pulling Motions

The basic ML-RRT algorithm performs well when treating problems needed only "pushing" motion of passive parts by the mobile object. Another possible extension is to consider "pulling" motions which may be important in some classes of disassembly problems. Therefore, we introduce a new notion called Passive Zone (see Fig. 4.12). For each body associated with a passive parameter of the static object, a passive zone with predefined radius R is computed. Hence, in the diffusion process, if the mobile H-like object enters in a passive zone, the planner will recognize the corresponding passive part and then "push" it or "pull" it.

In order to detect "collision" between the mobile object and a passive zone for a given configuration, we compute all distances between the mobile object's bodies (i.e. the H-like object has two parts) and the other bodies associated with passive parameters (i.e. the small rotational sticks). If the difference between these distances and their corresponding radius are negative or zero (meaning that there is "collision"), a list of passive parameters is then returned (i.e. P pas col ). Algorithm 3 shows the pseudo-code of the "Pushing-Pulling" ML-RRT variant, Construct PushPull-ML-RRT. Overall, this algorithm is an inversed ML-RRT (see Algorithm 2). It tries to expand several passive parameters before active parameters. For a given q near , the function PassZoneCol looks for the passive parameters close to the mobile object and adds them to the list P pas col . A loop is therefore iterated to update the pose of several passive parameters involved in the "passive zone contact" list with the help of the function PerturbConf which generates a configuration q pas rand by randomly sampling the value of the passive parameters associated with P pas col in a ball around their configuration in q near with a hope that these nearest passive parameters will not hinder the expansion of the active ones. Once a collision-free pose of passive parameters have been successfully sampled, it is ready for the planner to expand from the new q near (q' near in Algorithm 3) toward {q act rand , q pas near }. The rest of the pseudo-code is similar to the basic ML-RRT.

Influence of passive zone size

In order to analyze the influence of the passive zone size, 10 tests in which the passive zone radius is varied were performed with the model illustrated in the Fig. 4.12. This radius can be defined by the formula: Algorithm 3: Construct PushPull-ML-RRT input : the conformational space C; the initial conformation q init ; the partition {P act , P pas }; output : the tree τ; begin τ ← InitTree(q init ); while not StopCondition(τ) do q act rand ← SampleConf(C, P act ); q near ← NearestNeighbor(τ, q act rand , P act ); P col pas ← PassZoneCol(q near ); q' near ← q near ; while P col pas = / 0 do P mov pas ← PartsToMove(P col pas ); q pas rand ← PerturbConf(C, q' near , P mov pas , q' near .n fail ); (q new , P' col pas ) ← Expand(q' near , q pas rand ); P col pas ← P' col pas \ P col pas ; q' near ← q new ; (q new , P col pas ) ← Expand(q' near ,q act rand ); if not TooSimilar(q near , q new ) then AddNewNode(τ, q new ); AddNewEdge(τ, q near , q new ); q near .n fail ← 0; else q near .n fail ← q near .n fail + 1; end 

R = K × ε (4.1)
where K is a parameter (e.g., 10, 20, 30, etc) and ε is the smallest interpolation step used by the planner.

Table 4.4 shows the computing times (in seconds) with their standard deviations and the number of nodes, samples and collision tests required by the planner calculated from 20 successful runs. The value of K parameter varies from 10 to 100. The results shows that this parameter slightly affects the performance of the algorithm. The bigger the passive zone radius is, the more passive parameters are considered in "pulling" phase. Therefore, the planner has to treat more passive parts than in the basic ML-RRT algorithm while a big radius is set . Results show that, although the basic ML-RRT works with "pulling" problems, the new variant performs better with a reasonable value of passive-zone radius R (i.e. small K) (see column K=10 

Influence of passive parameter number

The goal of this section is to compare the performance difference between the basic ML-RRT and the "Pushing-Pulling" variant when the number of passive parameters is increased as well as the complexity of obstacles. Three new examples were designed from the one in the Fig. 4.12 where the number of passive parameters is gradually increased along with more complex static obstacles (see Fig. 4.13). Twenty successful runs are performed for each model where the K parameter is set at 10. Table 4.5 shows that the performance of the basic ML-RRT is very similar to that of the "Pushing-Pulling" variant for the easier five-passive-joint model (i.e. Pulling2 model). However, the performance of the basic ML-RRT algorithm significantly degrades when the complexity of the problem increases. On the other hand, the new extended variant is able to solve the more difficult problems in reasonable computing time. Figure 4.14 shows the graphs constructed by the two methods for the example Pulling3. The basic ML-RRT's one is much more dense than the new variant's one. Therefore, both "pushing" and "pulling" motions are highly required to treat the most constrained problems. This combination of both motions allows the new extended planner to discover faster the key states of the configuration-space that lead to the exit of the mobile object.

Discussion

The basic ML-RRT algorithm described in this chapter is an efficient method for disassembly path planning of two objects with articulated parts. An interesting feature of the algorithm is its ability to treat problems with a high number of potentially mobile parts and to automatically identify the degrees of freedom that are important for the disassembly task. In this thesis, we show the interest of ML-RRT for solving problems in structural biology. Nevertheless, other application domains, such as CAD/PLM, could also benefit from the proposed method.

Two extensions of the ML-RRT algorithm have been also presented. The first extension addresses disassembly planning problems for articulated objects involving parts with different mobilities. Different mobility coefficients are assigned to passive parts, which allows the planner to better explore the configuration-space. Therefore, the computational efficiency is significantly improved. This extension is applied for studying the conformational changes induced by the ligand exit when taking into account the different levels of flexibility of different protein's parts such as side chains, loops or domains, etc. This application will be detailed in the Chapter 5.

The second extended version of ML-RRT is devised for solving problems in which passive articulated parts are "pushed" and also "pulled" by the mobile object, which is important in some classes of disassembly problems. This extension will also help to solve more efficiently the problems addressed in next chapters.

Ligand-Protein Interaction Studies

Proteins are flexible macromolecules that fluctuate between nearly isoenergetic folded states [START_REF] Frauenfelder | The energy landscapes and motions of proteins[END_REF]]. In many cases, conformational changes are associated with their function, and they occur through the interaction with other molecules. For instance, conformational changes are of major importance for protein-ligand and protein-protein recognition [START_REF] Carlson | Protein flexibility is an important component of structure-based drug discovery[END_REF]Lensink and Méndez 2008]. This chapter addresses protein conformational changes induced (or required) by the diffusion of a ligand (or substrate/product) molecule inside the protein. An illustrative example is the permeation of lactose through a membrane transport protein (LacY) [START_REF] Kaback | The kamikaze approach to membrane transport[END_REF]]. LacY fluctuates between a conformation where lactose is accessible from the cytoplasm, but the channel toward the periplasmic side is closed (Figure 5.1.a), and the opposite conformation where the channel is open toward the periplasm and closed in the cytoplasmic side (Figure 5.1.b). The transition between these two conformational states occurs during lactose diffusion inside the protein.

Despite impressive recent advances on the structural determination of protein motions [START_REF] Katona | Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme[END_REF][START_REF] Schanda | Protein folding and unfolding studied at atomic resolution by fast two-dimensional nmr spectroscopy[END_REF]], currently available experimental methods are unable to provide an atomicresolution structural description of protein conformational changes associated with ligand diffusion. Computational methods are therefore necessary to better understand such processes. However, the timescale of the ligand diffusion process from a deep active site to the protein surface is out of range for standard molecular dynamics (MD) simulations. Variants of MD methods such as steered molecular dynamics (SMD) [START_REF] Izrailev | Steered molecular dynamics[END_REF]] and random acceleration molecular dynamics (RAMD) [START_REF] Ludemann | How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. random expulsion molecular dynamics investigation of ligand access channels and mechanisms[END_REF]] have been proposed for accelerating the simulation of the ligand exit. Both methods introduce an artificial force in the molecular force field to enhance the ligand motion in a given direction. In SMD simulations, this direction is usually defined by the user through a haptic device. In RAMD simulations, the direction is randomly chosen and iteratively modified after a given number of simulation steps if the ligand gets stuck. Although these methods have been shown to provide biologically relevant information, they remain computationally expensive. Besides, the artificial force introduced for accelerating the simulation may yield biased results about the induced conformational changes, so that the interest of simulating with an accurate molecular force field is partially lost.

This chapter presents an alternative method for simulating ligand diffusion motions, together with the possibly induced conformational changes of the protein. The method applies the ML-RRT algorithm presented in Chapter 4. Given an initial structure with the ligand docked inside the protein, the proposed method computes a path (i.e. continuous sequence of conformations) simulating the ligand exit. Such a path search problem is formulated as a mechanical disassembly problem (Sec. 5.1), where the protein and the ligand are modeled as articulated mechanisms. The main feature of this method is its computational efficiency, enabling to compute large-amplitude conformation transition paths, such as the one illustrated in Figure 5.1, in the range of less than one hour of CPU time. Results illustrating the capacities of the method are presented on three biologically interesting systems involving ligand-induced conformational changes: amylosucarse, lactose permease (LacY), and the β 2 -adrenergic receptor (Sec. 5.2). The last section 5.3 discusses on results and point out possible extensions of the method.

Methodology

Model and Parameters

Mechanistic molecular model:

A molecule contains a set of atoms A i connected by bonds. Generally, the atom's position can be represented by a point and the bond connecting two atoms by a straight-line segment. Therefore, a sequence of bonded atoms is called a molecular chain. In order to describe the relative position of consecutive atoms in this molecular chain, three parameters, called internal coordinates, are used: bond lengths d i , bond angles α i and dihedral angles θ i . The internal coordinates are illustrated in Figure 5.2. According to the rigidity of bond lengths and bond angles, their values (d i ,α i ) are normally fixed. We have applied the modified-Denavit-Hartenberg (mDH) convention [START_REF] Craig | Introduction to Robotics: Mechanics and Control[END_REF]] to model a molecular chain from the internal coordinates. Therefore, a molecular chain between atoms (A i ) can be then modeled as a kinematic chain in which joint variables correspond to dihedral angles. The conformation of the chain is represented by the array q of the θ i . This thesis, mainly deals with proteins, which involve one or several polypeptide chains. A polypeptide chain is a sequence of amino-acids (also called residues) which have a common backbone of an organic carboxylic acid group and an amino group attached to a saturated carbon atom C α and a side-chain (marked as R in Fig. 5.3) specific to each particular amino-acid. Consecutive amino-acids in the polypeptide chain are held together by chemical bonds between the carboxy group of the one and the amino group of the other. The resulting C-N bond, called a peptide bond, has a double-bond character making it particularly rigid. Under the rigid geometry assumption, the whole arrangement of the four C,O,N,H atoms as well as the two attached carbons C α in a peptide unit is considered planar (i.e. the peptide bond is fixed with ω = 0 or π). Thus, the protein backbone, formed by the enchainment of amino-acid's backbones, only rotates around N-C α bounds (angle φ ) and C α -C bounds (angle ψ). Generally, in the fully flexible representation, the considered articulations are the rotations between rigid atom groups are all the φ , ψ, and ω for the backbones and χ i for the side-chains. Therefore, the conformation can be determined by an array: q = {q bkb , q sch 1 , ..., q sch n }

(5.1)

where q bkb is the backbone conformation and q sch i is the conformation of each side-chain. The atom groups that correspond with the rigid bodies of the articulated molecular model are represented by spheres with a percentage of Val der Waal (VdW) radii. Figure 5.4 shows the mechanical model of phenylalanine residue which is composed of five rigid bodies divided into two classes:

• backbone rigids: R b1 = {N}, R b2 = {C α ,C β }, R b3 = {C, 0}

• side-chain rigids:

R s1 = {C γ }, R s2 = {C δ 1 ,C δ 2 ,C ε1 ,C ε2 ,C ζ }
Note that, although in the biochemical description of proteins C β is a side-chain atom, it belongs to a backbone rigid in our mechanistic model, since its position is determined by the values of the backbone joint torsions, but it does not depend on the side-chain conformation.

Definition of rigid and flexible segments:

The method described in this chapter deals with partially-flexible protein models to treat protein-ligand disassembly problems. Therefore, the size of the atom groups depends on the level of flexibility allowed to different parts of the molecule. Flexible and rigid regions can be assigned based on structural knowledge. In the present work, flexibility is defined by the user. Note however that the identification of rigid and flexible regions may be automated using computational methods such as FIRST [START_REF] Wells | Constrained geometric simulation of diffusive motion in proteins[END_REF]].

Figure 5.5 illustrates the mechanistic model of a protein. The following notation is used:

• G i group: set of rigid secondary structure elements (with flexible side-chains), possibly connected by flexible loops.

• iL k i intra-group loop: k th flexible segment between two secondary structure elements of group G i . • eL i,i+1 inter-group loop/linker: flexible segment between secondary structure elements in consecutive groups G i and G i+1 . Each group G i holds free rigid body mobility, independently from the other groups. Therefore, loop-closure constraints have to be imposed on flexible segments eL i,i+1 and eL i-1,i connecting G i to its neighboring groups, in order to maintain the molecular chain integrity. As indicated in Figure 5.5, several parts are differentiated inside inter-or intra-group loops: the N-terminal and C-terminal segments, and the middle part (M), which is composed by a tripeptide. Such a decomposition is required for the treatment of loop motions that will be explained below. Additionally, geometric (distance and orientation) constraints can be introduced between any pair of elements (rigid groups or loops) in order to model interactions such as hydrogen bonds or disulfide bonds. All these constraints must be satisfied during the conformational exploration. Side-chains (not represented in the figure) are generally modeled as flexible elements with freely rotatable bond torsions (i.e., [-π, π]) but they can also be defined as rigid parts together with the secondary structure elements. By default, the ligand is also fully flexible. Nevertheless, the user can arbitrarily define the flexibility of the ligand and the side-chains.

Conformational parameters:

The protein conformation is defined by the parameters determining the pose (position and orientation) of all the groups G i , the values of the bond torsions in intra-and inter-group loops, and the bond torsions of the side-chains. If some flexibility is allowed to secondary structure elements, the associated variables are also part of the conformational parameters. The conformational parameters of the ligand have the six parameters defining the pose of its reference frame (associated with its center of mass) as well as the values of the allowed bond torsions.

Let q denote the array containing the values of all the conformational parameters of the protein and the ligand. The ML-RRT algorithm explores the composite conformational space C, which is the set of all conformations q involving the parameters of the mechanistic models of the two molecules described in the previous subsection. As mentioned in Chapter 4, ML-RRT considers the conformational parameters at different levels of priority. Indeed, the parameters are partitioned into active and passive on the basis of their role in the disassembly problem. Active parameters are essential for carrying out the disassembly task, while passive parameters only need to move if they hinder the progress of the process.

Thus, the mobile parts of the molecular model are separated into two lists P act and P pas containing the active and the passive parts respectively. For a given partition, the conformational parameters are separated into two sets: q = {q act , q pas }, where q act is the set of conformational parameters associated with the parts in P act and q pas is the set associated with P pas . For the protein-ligand disassembly problems addressed in this chapter, q act involves the ligand parameters, while q pas concerns the protein flexibility.

Additionally, a mobility coefficient δ ∈ (0, 1] is assigned to each passive parameter. This coefficient is used to differentiate passive parts that are allowed to move easily from those that should be moved only if the solution path cannot be found otherwise. By default, the mobility coefficient of all side-chains is set to 1, meaning that they will systematically move if they are identified during the exploration. Lower mobility coefficient is allowed to loops and secondary structure groups, with δ = 0.5 and δ = 0.2 respectively in the current implementation. This distribution of mobility coefficient is coherent with the fact that side-chains, small groups of atoms, are more flexible than loops and secondary structure groups.

Conformational exploration algorithm

The problem of computing the exit path of a ligand from a protein active site can be formulated as a mechanical disassembly problem in which molecules are represented as articulated mechanisms. The degrees of freedom (DOF) of the molecular models correspond to bond torsion (backbone or side-chains) and to rigid-body motion of atoms groups (rigid secondary structure elements). Starting from a given "assembled" (docked) position of the ligand inside the protein, the disassembly problem consists in finding the path (i.e. continuous sequence of conformations) leading to a "disassembled" state, where the ligand is located outside the protein. The disassembly path has to be searched in a composite conformational space involving the degrees of freedom of the protein and the ligand. The difficulty for solving such path search problem is due to the very high dimension of this search-space (e.g. more than a thousand of DOF). The ML-RRT algorithm, which is detailed in Chapter 4, computes motions of the ligand and the protein (associated with active and passive parameters, respectively) in a decoupled manner. Figure 5.6 provides a simple illustration of the process, which alternates expansion attempts of these parameter subsets. Active parameters are directly handled by the planner, while passive ones are treated only when required to further expand the tree. Indeed, passive parts only move if they hinder the motion of other mobile parts (active parts or other passive parts involved in the expansion). Figure 5.7 illustrates three typical situations. If the ligand motion is hindered by a side-chain in a secondary structure element (Case 1), then the list of passive parts to move involves this side-chain and the corresponding group G i . When the colliding side-chain is on a flexible loop, then the list involves the side-chain, the loop backbone, and the group G i for an intra-group loop iL i (Case 2), or the groups G i and G i+1 for an inter-group loop eL i,i+1 (Case 3). In all the cases, when a group G i is considered for subsequent motion, then the backbone of inter-group loops eL i-1,i and eL i,i+1 (if any) is also considered into the list, since the conformation of these loops needs to be sampled together with the group pose in order to maintain the chain integrity.

Geometric constraints verification

During the conformational exploration, a set of geometric constraints has to be checked (e.g., collision avoidance, hydrogen/disulfide bond integrity) or reinforced (e.g., loop closure). These constraints are explained below.

Collision avoidance:

The main geometric constraint to be verified during the conformational exploration is the avoidance of atom overlaps. The atoms are represented by rigid spheres with a percentage of van der Waals radii. Considering a percentage of the van der Waals equilibrium distance ensures that only energetically infeasible conformations are rejected by the collision checker. The value of 80% is often used in techniques that geometrically check atom overlaps [START_REF] Depristo | Ab initio construction of polypeptide fragments: Efficient generation of accurate, representative ensembles[END_REF]]. Collisions are checked between the ligand and the protein, as well as internal collisions between mobile parts of each molecule. The collision test is done inside the function Expand (see Algorithm 1 and 2 in Chapter 4), which performs the local expansion motion. Our implementation builds on the efficient BioCD algorithm [Ruiz de Angulo et al. 2005], specially designed for articulated molecular models. BioCD uses hierarchical data structures to approximate the shape of the molecules at successive levels of detail, making the number of atom pairs tested for collision to be significantly reduced. BioCD is inspired by the dual kdtree traversal algorithms initially developed for n-point correlation problems in statistical learning. The algorithm maintains two levels of bounding volume hierarchies grouped according to spatial proximity. The first level organizes the rigid parts of the articulated model according to the selected while the second level organizes the atoms inside each rigid part of the first level. Such a data structure can be efficiently tested for collision and also updated at a moderate cost. Experimental tests performed with BioCD show its efficacy in processing thousands of collision tests per second on articulated protein chains with hundreds of DOF [Ruiz de Angulo et al. 2005].

Loop closure:

The functions SampleConf and PerturbConf (see Algorithm 1 and 2 in Chapter 4) perform a specific sampling procedure of loop conformations, taking into account loop closure constraints. Once the pose parameters of all groups G i have been sampled, the Random Loop Generator (RLG) algorithm [Cortés et al. 2004] is applied to sample the backbone torsions of the N-terminal and C-terminal segments of each loop. This iterative algorithm, based on simple geometric operations, biases the sampling of these chain segments toward conformations with a high probability of satisfying the loop closure constraint. The constraint is reinforced within the function Expand, which applies an inverse kinematics method [START_REF] Renaud | A simplified inverse kinematic model calculation method for all 6R type manipulators[END_REF]] to compute the bond torsions of the tripeptide in the middle loop part (M) for the conformations along the local expansion motion.

Hydrogen bonds and disulfide bonds:

These structural constraints can be considered within the mechanistic molecular model. Indeed, they are modeled as distance and angle constraints between the bonded atoms. For hydrogen bonds, the distance d between the donor and the acceptor atoms, and the bond angle θ , must remain within a given range. 

Results

This section presents results obtained with the proposed method on three biologically interesting systems involving ligand-induced conformational changes while computing geometric-based exit pathways of the ligand from the active site. In the first system, the exit of the product from the binding site of amylosucrase, which requires the movements of several loops, is analyzed. In the second one, the mechanism of sugar permeation through LacY involves a large-amplitude relative motion of transmembrane domains. In the third system, the access/exit of a ligand to the active site of the β 2-adrenergic receptor is related with side-chain motions, loop motions and transmembrane domain rearrangements. The presented results are not aimed to provide new insights into these biological systems, but to serve as a proof of concept and to show the interest of the proposed approach. The method was implemented within our software prototype BioMove3D. PyMOL [DeLano 2002] was used for viewing molecular models. The computing times reported below correspond to tests run on a single AMD Opteron 148 processor at 2.6 GHz.

Multi-Loop Motions: Amylosucrase

Structural Description

Amylosucrase (AS) from Neisseria polysaccharea, which catalyzes the synthesis of an amylose-like polymer from sucrose, belongs to the glycoside hydrolase family 13 (also called α-amylase family) [START_REF] Sarcabal | Identification of key amino acid residues in neisseria polysaccharea amylosucrase[END_REF]]. Since two decades ago, many studies have been performed to analyze the specificity of its binding sites for synthesis of glucan, oligosaccharea or glucoconjugates [START_REF] Skov | Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family[END_REF][START_REF] Skov | Oligosaccharide and sucrose complexes of amylosucrase. structural implications for the polymerase activity[END_REF].

The AS structure contains five domains (Fig. 5.8) named N, A, B, B' and C. Three domains, A, B and C, are common to all α-amylases. Domain A (residues 98-184, 261-395, 461-550) made up by eight β -sheets and the same number of α-helices forms the catalytic core. Interestingly, the loop region that connects strands to helices (loop1 and loop8) are much longer on average than those connecting helices to strands [START_REF] Skov | Oligosaccharide and sucrose complexes of amylosucrase. structural implications for the polymerase activity[END_REF]. Domain B (residues 185-260) containing two short anti-parallel β -sheets can be found in many α-amylases. This domain has a very long loop 3 (Thr224-Gly236). Eight-stranded β -sandwich (residues 555-628) creates the last domain C. Domains N, which is specific to AS, containing only α-helical form comprises from 1 to 90 first residues. The interesting domain B' (residues 395-460) is also specific to this enzyme. It starts with two α-helices followed by short β -sheets and terminates with another short α-helix, and it contains a flexible loop 7 (Gly433-Gly449) [START_REF] Albenne | Towards the molecular understanding of glycogen elongation by amylosucrase[END_REF]].

The active site of AS, which is often referred to as OB1, has a 15 Å deep and narrow pocket like architecture with seven well-defined subsites spanning from -1 to +6 according to the glycoside-hydrolase nomenclature [START_REF] Champion | Towards the molecular understanding of glycogen elongation by amylosucrase[END_REF]]. Due to this type of active site topology, the analysis of the interactions between substrate/product molecules and AS along the access/exit pathway, as well as the deformations induced by these interactions, are very important for a better understanding of the specificity and the enzymatic mechanism of AS.

In this work, we have used a model of AS with a product molecule (Allyl-α-D -Glcp-(1→4)-α-D -GlcNac) in the active site1 in order to analyze the interactions and the protein deformations induced by the product exit. Two instances of the problem were considered. In the first one, two loops 3 and 7 were considered to be flexible, whereas in the second one the loop 8 was also involved. These two instances are illustrated in Figure 5.9. Note that all the side chains in the protein were also considered to be flexible. The product molecule was modeled with full flexibility, and it could freely rotate and translate by 50 Å in any direction. Table 5.1 shows the number of degrees of freedom (DOF) for each model. Overall, the mechanistic models of enzyme-product complex contain 1526 DOF and 1572 DOF for the 2-loop and the 3-loop models respectively, in which 30 and 76 correspond to the backbone torsions of the two and three loops respectively, 1474 to the protein side chains, and 22 to the product molecule mobility and flexibility.

Access/Exit Pathway Analysis

The ML-RRT algorithm was applied to compute the exit pathway of the product from the binding site OB1 of AS, surrounded by two or three flexible loops. Table 5.2 shows the performance of the algorithm based on 20 successful runs for each model. An analysis of the contacts between the product and protein residues based on the 20 exit pathways was performed in order to identify key residues for product release. Note that residues involved in product release would also be important for the substrate entry.

The diagrams in the Figure 5.10 represent the residues encountered by the product molecule along its escape trajectory for the 2-loop and 3-loop models. A contact between the product and a protein's residue was recorded if the distance between the surface of van der Waals spheres modeling their atom was below 0.8 Å. This value which is determined by experimentation permit to obtain most significant residue contacts. These diagrams show the percentage of times that a contact appeared over the set of 20 paths. Recorded contacts were registered into three segments of the path: the beginning (0-7 Å), the middle part (7-15 Å), and the final part (above 15 Å) where the product is close to the exit of the narrow pocket. Only residues with contact percentage greater than 10 % are displayed. Overall, the residues that are encountered with higher probability are the the same in both diagrams.

Remarkably, most of the residues highlighted by our results have been shown to be important residues. Asp286, Glu328 and Asp393, located at the bottom of the pocket, form the catalytic triad [START_REF] Albenne | Site-directed mutagenesis of key amino acids in the active site of amylosucrase from neisseria polysaccharea[END_REF][START_REF] Champion | Towards the molecular understanding of glycogen elongation by amylosucrase[END_REF]]. Other identified residues such as His187, Phe250 and His392 are know to be important for substrate stabilization [START_REF] Albenne | Site-directed mutagenesis of key amino acids in the active site of amylosucrase from neisseria polysaccharea[END_REF][START_REF] Albenne | Molecular basis of the amylose-like polymer formation catalyzed by neisseria polysaccharea amylosucrase[END_REF]]. Residues Asp144 and Arg509, which form a salt-bridge highly conserved in α-amylases [START_REF] Albenne | Site-directed mutagenesis of key amino acids in the active site of amylosucrase from neisseria polysaccharea[END_REF], are also identified. Note the the product exit, as well as the substrate entry, require the breakage of this bridge. Residues Asp394 and Arg446, located in the first shell of subsite +1, are know to be important in the catalytic mechanism of AS [START_REF] Albenne | Site-directed mutagenesis of key amino acids in the active site of amylosucrase from neisseria polysaccharea[END_REF]. More importantly, site-directed mutagenesis experiments [START_REF] Champion | Towards the molecular understanding of glycogen elongation by amylosucrase[END_REF]] have shown that mutation of residues Ile228 and Phe290, which are systematically found in the computed exit paths, lead to a significant catalytic efficiency improvement. Finally mention that residues Arg226 and Asp444, pointed out by our method since they highly hinder the diffusion of the product in the middle part of the pathway, will be the object of future site-directed experiments carried out by our colleagues at the LISBP-INSA. Figure 5.11 shows the conformational changes of the two models induced by the product exit. Different approaches have been used to analyze the conformational transition pathway toward the outward-open state. In particular, experimental studies using double electron-electron resonance (DEER) [START_REF] Smirnova | Sugar binding induces an outward facing conformation of lacy[END_REF]] suggest that the conformational transition can be mainly described as a rigid-body rotation of the C-domain and the N-domain. Based on such structural knowledge, the mechanistic model of LacY was simplified by considering a rigid backbone for the C-and N-domains. Flexibility was allocated to the loop between helices VI and VII, and to all the protein side-chains. Thus, the mechanical model contains two main groups G 1 and G 2 associated with the C-domain and the N-domain respectively, and an inter-domain loop eL 1,2 . Groups G 1 and G 2 were permitted to rotate ±60 • around any axis.

The X-ray structure of LacY of Escherichia coli [START_REF] Abramson | Structure and mechanism of the lactose permease of Escherichia coli[END_REF]] (PDB ID 1PV7), corresponding to the inward-open conformation, and used as starting point in this work, contains a bound substrate homologue TDG (see Figure 5.1.a). The substrate molecule was modeled with full flexibility, and it could freely rotate and translate by 50 Å in any direction except the direction to the cytoplasm (only 5 Å were permitted in this direction in order to force the exit toward the periplasmic side). Overall, the mechanistic model of LacY-TDG contains 775 degrees of freedom: 12 correspond to the rigid-body motion of the Cand N-domains, 678 to the protein side-chains, 75 to the backbone torsions of the inter-domain loop, and 10 to the substrate mobility and flexibility (see Table 5.1). The initial "assembled" conformation is represented in Figure 5.1.a. 

Analysis of Conformational Changes

The ML-RRT algorithm was applied to compute the exit pathway of TDG toward the periplasmic side, which involves the conformational transition of LacY. The computing time of a run was about 1 hour on a single processor AMD Opteron 148 processor at 2.0 GHz equipped with 2 Gb of memory. Such high computational performance is worth to be noted since it represents an important feature of the proposed approach compared to the very long computing times required by other simulation methods such as molecular dynamics. The algorithm was run 10 times in order to analyze a possible variability of results associated with the randomized exploration procedure. All the experiments yielded very similar results with regard to the protein conformational change. The obtained "disassembled" conformation, with the ligand outside the protein and LacY in outward-open state, is represented in Figure 5.1.b. As it has been pointed out by prior studies [START_REF] Smirnova | Sugar binding induces an outward facing conformation of lacy[END_REF]], the substrate exit requires the rotation of the two domains. In our results, the observed rotation between the domains is around 20 • . Although this is smaller than the 60 • suggested by DEER experiments, the overall motion is alike. The comparison of the variation of distances between some residue pairs in the inward-and outward-faces of LacY (see Table 5.3) shows an approximate overall ratio of 1/3 between the values measured by DEER and our results. The explanation to this quantitative difference is that our approach tends to produce the minimal conformational change required for the molecular disassembly, while larger motions may occur in reality. Interestingly, the distance between residues Ile40 and Asn245 in the outward-open conformation computed by ML-RRT is of approximately 15 Å, which has been shown by cross-linking experiments [START_REF] Zhou | Opening and closing of the periplasmic gate in lactose permease[END_REF]] to be the minimal distance between these residue positions for guaranteeing the activity of LacY. Figure 5.12 shows the conformational changes of LacY induced by the ligand exit.

In other recent studies [START_REF] Jensen | Sugar transport across lactose permease probed by steered molecular dynamics[END_REF]], steered molecular dynamics (SMD) simulations have been carried out to better understand the physical mechanisms of lactose permeation at the atomic level. SMD results provide detailed information about the interactions between lactose and LacY residues during Figure 5.13: List of residues whose side-chain was encountered by the substrate during its diffusion toward the periplasm. For facilitating interpretation, the pathway is divided into three segments. The grey-scale represents the percentage of times that the contact appears over the set of 10 runs.

permeation. Such kind of information cannot be directly provided by our method, since it does not consider accurate energy functions. However, a straightforward geometric analysis of the paths obtained by ML-RRT can provide the list of residues that the ligand has encountered during its diffusion. The diagram in Figure 5.13 represents the residues encountered by the ligand along the path toward the periplasm.

A contact between the ligand and a residue side-chain was recorded if the distance between the surface of van der Waals spheres modeling their atoms was below 1 Å. The diagram shows the percentage of times that a contact appeared over the set of 10 paths. Contacts were recorded for three segments of the path: the beginning (0-10 Å), where the ligand is close to its location in the crystal structure, the middle part (10-20 Å), and the final part (above 20 Å), where TDG is near the periplasm. Remarkably, all the residues identified by SMD simulations [START_REF] Jensen | Sugar transport across lactose permease probed by steered molecular dynamics[END_REF]] as interacting residues (throught side-chain hydrogen bonds or hydrophobic interactions) appear in the diagram, with the exception of Asp36. Note however that this residue is on the periplasmic surface of the protein. On the other side, only one potentially interacting residue (Thr265) that is appearing in the contact diagram with a significant percentage is not reported in the referred work. Such an impressive consistency with results of SMD simulations confirms the validity and the potential interest of our approach.

Helix Motion: β 2-Adrenergic Receptor

Structural Description

The β 2 -Adrenergic Receptor (β 2 -AR) is a membrane protein belonging to the superfamily of the G-proteincoupled receptors (GPCRs) [START_REF] Vauquelin | G Protein-Coupled Receptors: Molecular Pharmacology from Academic Concept to Pharmaceutical Research[END_REF], which activate signal transduction inside the cell in response to the binding of hormones and neurotransmitters in the extracellular region. GPCRs are important therapeutic targets for a large class of diseases. Therefore, numerous studies have been devoted to this family of proteins, aiming to better understand their activation/deactivation mechanism. However, many questions remain. In particular, little is known about the functional role of extracellular loops, and about their possible conformational coupling to ligand binding [START_REF] Bokoch | Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor[END_REF]]. One major difficulty comes from the lack of structural information inherent to membrane proteins.

A high-resolution crystal structure of β 2 -AR has been recently obtained [START_REF] Cherezov | High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor[END_REF]]. The crystal structure also contains a molecule of carazolol, a partial inverse agonist, in the protein active site. This receptor-ligand structure is the starting point of the conformational analysis presented below. The structure is represented in Figure 5.14, using standard notation for the structural elements. Like all GPCRs, β 2 -AR contains seven transmembrane helices, which were modeled as rigid groups G i . The intracellular and extracellular loops were modeled as flexible elements eL i,i+1 . Note that, in the crystal structure, the third intracellular loop was replaced by T4 lysozyme (T4L) to facilitate the growth of diffraction-quality crystals [START_REF] Cherezov | High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor[END_REF]]. Since T4L is a priori not important for the exit/access of the ligand, it was removed for constructing the mechanistic model considered in this study. All the side-chains are fully flexible. Groups G i can move ±2 Å in any direction and can rotate ±30 • around any axis. The ligand is also modeled with a fully flexibility, and it can freely translate and rotate in a cube of edge length 50 Å centered at the initial docking position. The number of degrees of freedom of the whole model is 703: 42 of them correspond to the rigid-body motion of the seven transmembrane helices, 490 to the protein side-chains, 159 to the backbone torsions of the five loops, and 12 to the ligand mobility and flexibility (see Table 5.1).

Analysis of Conformational Changes

The exit pathway of carazolol from the active site of β 2 -AR was computed by using the ML-RRT. A first set of 10 runs revealed some variability on the trajectories followed by the ligand. Thus, the algorithm was run 60 times in order to do a more accurate statistical analysis of results while comparing with prior works [START_REF] Wang | Ligand entry and exit pathways in the β 2 -adrenergic receptor[END_REF]. 60 paths were obtained in 2 hours of computing time (each run takes an average of only 2 minutes on a single processor AMD Opteron 148 processor at 2.0 GHz equipped with 2 Gb of memory). These exit paths can be divided into two main clusters. In one class of paths, which we refer to as "left-hand" paths, carazolol exits between transmembrane helices H5, H6 and H7. In the other class, called "right-hand" paths, the ligand exits between H2, H3 and H7. The two clusters can be separated by an axis traced between residues Asp192 and Lys305, which form a salt bridge in the crystal structure. Figure 5.15 shows snapshots of the ligand exit path for each path class. Interestingly, these two classes of exit paths have also been observed in prior studies [Wang and Duan 2009] based on random acceleration molecular dynamics (RAMD) simulations. A quantitative comparison can be done between results obtained with ML-RRT and RAMD. The most significant comparable result is that both approaches suggest that left-hand and right-hand exit paths are approximately equiprobable. Indeed, 31/60 of the ML-RRT solutions correspond to left-hand, and 29/60 to right-hand paths. Another result from RAMD simulations described by [START_REF] Wang | Ligand entry and exit pathways in the β 2 -adrenergic receptor[END_REF] concerns the recurrent breakage of the salt bridge Asp192-Lys305 during ligand exit. Paths computed with ML-RRT show a significant motion of the side-chains of these two residues, which lead to the salt bridge breakage for most of the 60 paths. However, in some of the left-hand paths, the ligand exits with only a slight perturbation in the conformation of Asp192 and Lys305. The interpretation is that it is geometrically possible for the ligand to exit between helices H5, H6 and H7 without breaking the salt bridge.

A further comparison between left-hand and right-hand paths obtained with ML-RRT displays other interesting differences. The first one concerns the orientation of the ligand. In most of the left-hand paths, the ring head of carazolol reaches first the protein surface (see Figure 5.15.a). Contrarily, the ring and the alkylamine-alcohol tail exit almost simultaneously in most of the right-hand paths (Figure 5.15.b). A possible interpretation may be that one of the pathways could be preferred for the exit of the ligand, while the other could be more suited to the access. A more accurate analysis of the paths computed by ML-RRT would be required to reinforce such a suggestion. Note however that RAMD simulations from a putative ligand-free model of β 2 -AR [START_REF] Wang | Ligand entry and exit pathways in the β 2 -adrenergic receptor[END_REF] suggest that carazolol enters the receptor between helices H2, H3 and H7, with its ring head diving first.

Another interesting difference between the two classes of exit paths concerns the conformational changes of the extracellular loop ECL2 induced by the ligand exit. As shown in Figure 5.16, right-hand paths imply, in average, a more significant motion of ECL2 than left-hand paths. Note that although the loop ECL2 of β 2 -AR is very long, its conformation is constrained by two disulfide bonds, one between residues in the loop (Cys184-Cys190), and one between the loop and H3 (Cys106-Cys191). Thus, in any case, this loop cannot undergo large conformational changes. The observed relationship between right-hand paths and ECL2 flexibility has been confirmed by tests performed on a model of β 2 -AR only considering side-chain flexibility. Using this rigid-backbone model, the ligand exited through the left-hand pathway in 90% of the ML-RRT runs. These results suggest that right-hand access/exit paths, between transmembrane helices H2, H3 and H7, involve a more important interaction between the ligand and ECL2 than left-hand paths. Note that recent studies on GPCRs show important roles of ECL2. Indeed, it can be required for ligand binding [START_REF] Avlani | Critical role for the second extracellular loop in the binding of both orthosteric and allosteric g protein-coupled receptor ligands[END_REF]], and its motion can be involved in the activation mechanism [START_REF] Ahuja | Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation[END_REF]]. In the crystal structure, the access/exit channel to the active site is partially covered by the second extracellular loop (ECL2). The ligand exit requires the opening of this loop.

The analysis of contacts between carazolol and β 2 -AR residues along the set of 60 exit pathways computed with ML-RRT was performed using the technique described above for the study of LacY. Figure 5.18 shows the list of residues whose side-chain was encountered by the ligand. For clarity reasons, the figure only reports contacts that appeared in more than 30% of the paths. Four residues are clearly highlighted in the diagram: Asp192, Phe193, Lys305, and Asn312. The positions of these residues are indicated in Figure 5.14. Two of them, Asp192 and Lys305, form the aforementioned salt bridge, which is broken during the ligand diffusion. Phe193, which is located on ECL2, has also been identified as an important residue in related works. As shown in Figure 5.17, right-hand paths imply, in average, a more significant motion of this key residue than left-hand paths do. Results of RAMD simulations [START_REF] Wang | Ligand entry and exit pathways in the β 2 -adrenergic receptor[END_REF] suggest that this aromatic residue may participate in the ligand entry and stabilization in the active site of β 2 -AR. Recent NMR experiments [START_REF] Bokoch | Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor[END_REF]] have shown that inverse agonists induce a conformational change of this residue. Finally, Asn312 is an important residue for the stabilization of carazolol in the active site through a polar interaction with its alkylamine-alcohol tail. Overall, the presented results show that structural information on the access/exit of carazolol to the active site of β 2 -AR Figure 5.18: List of residues whose side-chain was encountered by the ligand along the exit pathway. For facilitating interpretation, the pathway is divided into three segments. The grey-scale represents the percentage of times that the contact appears over the set of 60 runs. Only contacts that appeared in more than 30% of the paths are displayed.

provided by Pushing-Pulling-ML-RRT is in agreement with results of other experimental and computational studies.

Discussion

The results in this chapter show that a mechanistic approach to molecular simulations may lead to the development of efficient computational methods, able to provide relevant information on the interaction of biological molecules. The proposed algorithm, ML-RRT, is a novel and fast conformational search method for simulating ligand diffusion inside flexible models of proteins including more than thousands of degrees of freedom. Indeed, this algorithm generates long (20-30 Å) diffusion paths within tens of minutes of computing time on a single processor, which is remarkably short compared to the time required by MD-based methods. Such a high computational performance is achieved thanks to the efficiency of the conformational search method that operates on geometric models of molecules. Geometrically feasible paths are a reasonably good approximation that provides itself very useful information. Furthermore, as shown in prior work [Cortés et al. 2005], the approximate solution path can also be efficiently refined with standard molecular modeling tools (e.g. energy minimization) in order to perform a more accurate energetic analysis.

As future work, we intend to further improve the method to better deal with full molecular flexibility during protein-ligand interactions. We also expect to extend the method for its application to the modeling of protein-protein interactions. One way to do it could be to combine ideas of ML-RRT and T-RRT algorithms [START_REF] Jaillet | Transition-based RRT for path planning in continuous cost spaces[END_REF]]. Basically, T-RRT method extends RRT-like algorithm to bias the tree exploration toward low-energy region of the conformational-energy landscape. Therefore, the integration of T-RRT inside the "Pushing-Pulling" variant of ML-RRT should be useful to generate energy-minimized pathways in ligand-protein or protein-protein interaction studies. An implementation of this combination is introduced in Chapter 7.

Path Planning Approach to Disassembly Sequencing

Disassembly planning is a very active research field with a number of direct applications such as end-oflife product processing, maintenance operations, and product repair [START_REF] Lambert | Disassembly modeling for Assembly, Maintenance, Reuse and Recycling[END_REF]. Moreover, integrated within CAD/CAM systems [START_REF] Arai | CAD system with product assembly/disassembly planning function[END_REF], disassembly planning helps to design products that are easier to manufacture, to maintain and to recycle. Since a bijection between assembly and disassembly sequences usually exists [START_REF] Halperin | A general framework for assembly planning: The motion space approach[END_REF]], the assembly-by-disassembly strategy has been a common approach to assembly planning. Thus, although a distinction between both problems can be made [START_REF] Lambert | Disassembly sequencing: A survey[END_REF]], it is usual to talk indistinctly about assembly and disassembly planning. This chapter directly addresses the latter problem. Nevertheless, like most of related works, the proposed method can be used to infer the assembly sequence from the model of the assembled object. Figure 6.1 illustrates the problem of disassembly sequencing: what is the order for sequentially disassembling an engine into its elementary parts?

In this chapter, we present an algorithm that extends prior works to disassembly sequencing problem of complex assemblies. This algorithm will be applied in Chapter 7 to simulate sequential dissociation pathways of protein complexes. We first provide a short state of the art on disassembly planning in Section 6.1. Then, we propose a general formulation for simultaneously disassembly sequencing and path planning (Section 6.2). Based on this formulation, the method builds on sampling-based path planning algorithms, which are able to solve problems in high dimensions (Section 6.3). Results and an empirical performance analysis (Section 6.4) show the good performance and the generality of the method. One of the reasons for such a generality is that the method only requires simple computational geometry tools such as collision detection. However, in some cases, further geometric operations will be integrated in the algorithm in order to enhance its performance (Section 6.5). 

Related Works and Overview of the Proposed Method

Disassembly planning can be tackled at different levels of detail [START_REF] Lambert | Disassembly sequencing: A survey[END_REF]]. The highest level concerns disassembly sequencing, which is the problem of listing subsequent disassembly actions that can separate individual parts of an assembly. This problem is usually formulated as a discrete search and optimization problem, and is solved using AI methods such as AND/OR graphs [START_REF] Lambert | Optimum disassembly sequence generation[END_REF]] or genetic algorithm [START_REF] Kongar | Genetic algorithm for disassembly process planning[END_REF]. Geometric reasoning approaches (e.g. [START_REF] Wilson | Two-handed assembly sequencing[END_REF][START_REF] Halperin | A general framework for assembly planning: The motion space approach[END_REF][START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF]) can be applied at this level in order to reduce the combinatorial complexity of the disassembly sequencing problem. Disassembly path planning, which addresses the parts motion considering physical and manipulability constraints, rises at a more detailed level of the disassembly planning problem. Due to the high computational complexity of treating all part motions simultaneously, the disassembly path planning problem has usually been formulated for a single part. This simpler instance is also called the assembly maintainability study [START_REF] Chang | Assembly maintainability study with motion planning[END_REF] 2001b], have been proposed to solve very constrained single-part disassembly problems on complex CAD models. Based on this type of method, the ML-RRT algorithm, presented in Chapter 4, addresses disassembly path planning for objects with articulated parts.

However, disassembly sequencing and path planning are parts of a whole problem, and ideally, they have to be treated simultaneously. The relationship between both sub-problems is more obvious for nonmonotonic disassembling (see Figure 6.5 for an example), in which parts have to be moved to intermediate locations for permitting the disassembly of other parts. Despite their potential interest, few methods have been proposed for simultaneously disassembly sequencing and path planning in a general framework, like the one presented in this chapter. Probably the most closely related method was proposed by Sundaram et al. [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF]]. Based on randomized path planning algorithms, this technique was able to compute disassembly sequences considering all the parts disassembly paths. The method samples motion directions of one or several parts using geometric information (i.e. the normal direction to faces in contact). Although general, this method strongly depends on geometric operations, and thus, its performance for solving problems involving parts with complex shapes is questionable. Besides, its ability to treat nonmonotonic disassembly problems was neither experimentally proved nor discussed. This chapter introduces a general formulation for simultaneously disassembly sequencing and path planning, and proposes an algorithmic solution based upon it. The proposed method extends the ML-RRT algorithm, described in Chapter 4, which was originally proposed for disassembly path planning of two objects with articulated parts (see example in Figure 6.2.a). The idea developed in this chapter consists in iterating the ML-RRT algorithm for extracting all the parts of a general assembly. A simple example of disassembly sequencing and path planning problem is illustrated in Figure 6.2.b. At each iteration, a different active-passive partition of the system configuration parameters will be considered. This partition can be based on information about assembly structure. Nevertheless, if such information is difficult to obtain, the algorithm still provides good results when using a random selection. At the end of the iterative process, the algorithm has computed a sequence of elementary part motions yielding the system disassembly. Although optimality criteria are not explicitly considered, the method tends to minimize the number of elementary motions.

Problem Formulation

This section presents a unified formulation for disassembly path planning and disassembly sequencing. The formulation is a generalization of the one presented in Chapter 4 for the disassembly path planning problem. A configuration q is a minimal set of parameters defining the location of the mobile system in the world, and the configuration-space C is the set of all the configurations. Given the initial assembled configuration q init , the problem consists in finding a feasible path in C form q init to a disassembled configuration q dis . Note that q dis may not be specified by a precise goal configuration, like in the standard path planning problem, but it can be implicitly defined by a condition based on distances between parts. Path feasibility in this context and it is necessary to find paths in C connecting these different leaves. Disassembly sequencing within this formulation can be expressed as the problem of finding the order to select active parts m a that minimizes the number of leaves C a j to be explored for finding all the disassembly sub-paths.

Disassembly Sequencing Algorithm

The basic ML-RRT is able to rapidly compute the path for extracting a part from an assembly, also producing motions of other parts if necessary. The idea developed in this chapter consists in iterating the ML-RRT algorithm a number of times for extracting all the parts. The Iterative-ML-RRT (I-ML-RRT) algorithm is sketched in Algorithm 4. At each iteration, one part is tried to be disassembled. The part is selected by the function SelectPart. Part selection may follow a predefined disassembly order to be tested, or maybe determined by a heuristic based on the assembly structure. If such information is not available, the part is simply selected at random. The function SetPartition sets the pose parameters of the selected part as active parameters P act , while those of all the other parts are passive P pas . The variance of the Gaussian distribution associated with the mobility coefficient of passive parts is initialized with a high value, making these parts have low tendency to move in the first iterations. This coefficient is used by the function PerturbConf in the Algorithm 3 (Construct ML-RRT) in Chapter 4. Once the parameter partition is set, the basic ML-RRT is applied to compute the disassembly path. The ML-RRT expansion process is stopped in two cases: if the currently treated part reaches a disassembled configuration (detected by the function PartDisassembled when the distance to all the other parts is greater than a given threshold), or if a StopCondition determines that the part extraction is not possible. In our implementation, the latter stop condition acts when the number of nodes in the search tree reaches a maximum user-set value MaxTreeSize.

The information encoded in the constructed search tree is then treated. If the current active part has been disassembled, the function SelectEndConf returns the last computed configuration. Otherwise, it returns the configuration that maximizes the distance to the other parts. Except if this end configuration is too similar to the initial one (i.e. parts have only slightly moved), the path connecting both configurations is computed from the search tree, and it is merged to the sub-paths obtained in previous iterations. In order to avoid including unnecessary part motions in the solution disassembly path, the threshold used in function TooSimilar is initialized with a high value. This value is then correlatively decreased if parts cannot be disassembled after a consecutive number of I-ML-RRT iterations. Finally, the initial configuration for the next iteration is updated to the end configuration of the current one. The whole process is iterated until all parts are disassembled, or the number of iterations reaches a maximum value, MaxIter. In the latter case, the algorithm returns failure.

The output of the I-ML-RRT algorithm is a path S consisting of a sequence of elementary part motions yielding the system disassembly. This path results from the concatenation of the sub-paths s i obtained at each iteration. Each sub-path s i involves motions of one part (the active part in the corresponding iteration), and, in some cases, slight motions of other parts that hinder its disassembly. In easy disassembly problems, most of the computed sub-paths yield the entire disassembly of one part. Nevertheless, in more difficult problems, some of the computed sub-paths may only produce partial disassembly motions that increase the clearance of the active part. The number of such intermediate sub-paths tends to increase with difficulty of the problem. Note that, although optimality criteria are not directly considered in this work (this is a possible extension mentioned in Section 6.5), the I-ML-RRT algorithm tends to minimize the the number of elementary motions (i.e. the number of explored leaves C a j defined in Section 6.2) required for the disassembly. Furthermore, in general, the obtained sequence is sub-optimal in the number of necessary elementary motions required for the disassembly. However, experimental results presented in next section show that even in the worst case, the "brute" solution contains a limited number of motions. Some unnecessary motions can be removed by simple post-processing of the brute path sequence.

Results

The I-ML-RRT algorithm has been also implemented within the motion planning software Move3D [Siméon et al. 2001], and tested with a set of benchmark examples. The results reported in the next section aim to illustrate both the generality and the good overall performance of the method. We start with the description of the puzzle models used as examples of both monotonic and non-monotonic disassembly problems. The intrinsic performance of the algorithm is then analyzed and compared with other existing techniques [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF]] and [START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF]. All reported results correspond to averaged values based on 50 runs. Note that, this algorithm was run with the MaxIter parameter set to a sufficiently large value (10.000), so that each run ended up when a solution was found. All experiments were performed on a computer equipped with an AMD Opteron 148 2.0 GHz processor and 2 Gb of memory.

Benchmark Models

Monotonic Cases:

The two first models, Planar and Pentomino (see Fig. 6.3 and Fig. 6.4), correspond to the simpler class of monotonic disassemblies in which each part can be extracted using a single continuous path (i.e. the length of the optimal disassembly sequence is equal to the number of parts, minus -the static-one). Both models are inspired from Sundaram's benchmarks [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF]] (Fig. 6.3-a and Fig. 6.4-a) from which we created more complicate variants for the aim of our tests. First, the number of parts of the Planar benchmark was increased by duplicating the original Simple model into the Double and Triple variants (Fig. 6.3-b,c), respectively involving 12 and 18 parts. We also considered a more difficult version or the three-dimensional

Pentomino puzzle in which the disassembly motions of the twelve parts are constrained by the presence of a bounding box (Fig. 6.4-b).

Non-Monotonic Cases: The two other examples, 2D Narrow and the three-dimensional variant 3D Narrow (respectively shown in Fig. 6.5 and 6.6), correspond to more complex problems, although less parts are involved. First, the disassembly sequence of both problems is non-monotonic, since one part has to be moved first to some intermediate position for "unlocking" the disassembly (see Fig. 6.5-b and 6.6-b). Moreover, due to spatial constraints, both disassembly sequences require rotational motions for extracting the second part from the narrow corridor (see Figure 6. 5-d) or from the assembly box (see Figure 6.6-d).

Performance Analysis

Algorithm performance: Table 6.1 shows the computing times required by I-ML-RRT to solve the test examples. The results show the good performance of the method that is able to solve all disassembly problems in times ranging from 0.1 sec. to 13 sec. Note that even if the Planar and Pentomino puzzles can be both solved with only translational motions, the table also reports computing times obtained when rotations are allowed. These results indicate that the overhead of considering rotational motions is rather limited (factor less than two). Further results reported in Table 6.2 for the three Planar puzzle variants also indicate that the computational efficiency is linearly influenced by the number of parts.

Effect of the disassembly order strategy:

As explained in Section 6.3, the current implementation of the SelectPart function relies on a simple random strategy for selecting at each iteration the active part tried to be disassembled. best case corresponds to the correct sequence order given as input to the algorithm, while the worst case corresponds to the inverse sequence. The reported results indicate that the best/worst case selections only influence the computational efficiency by a factor less than 2.5 and that the random selection strategy stands in the middle of the time range. The table also reports the averaged number of iterations together with the number of extracted sub-paths (i.e. the length of the computed disassembly sequence). As one can see from the results, the computed solutions are close to the optimal ones for the monotonic disassemblies, but remain suboptimal for the two last non-monotonic examples. While some post-processing of the solution paths could certainly filter unnecessary motions in such cases, improving the optimality of the disassembly sequence clearly remains an issue to be further investigated.

Influence of Parameters: In the I-ML-RRT algorithm, the MaxTreeSize parameter (see Section 6.3) is used to control the maximal RRT's size allowed when searching for a given part disassembly motion. When this limit is exceeded, a new part is selected and tried in turn for extraction. The maximal size of the search trees may therefore be seen as an important parameter, possibly influencing the overall efficiency of the method. The analysis on the influence of this parameter, whose results are summarized in Figure 6.7, indicates that it actually has a very limited impact, and thus, it can be easily tuned. The curves of Figure 6.7 display for each test example the evolution of the computing time as a function of MaxTreeSize for values ranging from 10 to 1000. As one can see, the performance is only affected for very small values (in the range [10,100]) resulting in search trees that are insufficiently rich for finding the whole feasible motion of a given part in a single iteration. The performance rapidly increases once the size becomes sufficient (more than 100 nodes), and then remains constant within most of the range. Thus, the MaxTreeSize parameter has to be preferably set with a large value and does not need any specific tuning since it does not really impact the overall performance. All experiments reported in the next section were performed with MaxTreeSize set to 200. Performance Comparison: In this section, we compare the performance of our algorithm with two other techniques [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF]], [START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF] previously proposed for disassembly planning. The method of Sundaram et al. [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF] is the most closely related to ours, since it also builds on a sampling-based path planning approach. Table 6.3 relates computing times reported in [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF]] for the Planar(Simple) and Pentomino benchmarks (see Fig. 6.3-a and 6.4) to the averaged times obtained with the I-ML-RRT algorithm. The reported times indicate a huge gain factor (more than 4000) in favor to I-ML-RRT. Such direct time comparison is of course biased by the higher speed of our AMD Opteron 2 Ghz processor compared to the older processor used in [START_REF] Sundaram | Disassembly sequencing using a motion planning approach[END_REF]]. Considering a CPU speed factor of about 10, the algorithmic performance of I-ML-RRT remains superior by at least two orders of magnitude.

We also ran the algorithm on the difficult puzzle benchmark used in a recent publication by Fogel et al. [START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF]]. This DiagonalStar puzzle (see Fig. 6.8) consists of six identical parts that create together a highly constrained assembly. The difficulty of this benchmark is that it requires coordinated motions between groups of parts that need to gradually move together for disassembling the 6.4 provides some comparative results between I-ML-RRT and the exact algorithm proposed in [START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF] for the specific class of disassemblies solvable with infinite translational motions. As explained in Fogel's paper, the algorithm requires each part to be decomposed into convex sub-parts and the computing time strongly increases with the total number of sub-parts. On the other hand, the I-ML-RRT algorithm does not rely on exact computations of contact motions and thus requires some "clearance" between the parts. The clearance corresponds to the reduced object size percentages which allows a collision-free assembled complex. Table 6.4 compares the "clearance dependent" computing times of I-ML-RRT with the "part complexity dependent" times reported in [START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF]]. Interestingly, although I-ML-RRT was not specifically developed for problems in which subassemblies of several parts have to slide together to disassemble each other, it is able to solve the DiagonalStar puzzle almost as efficiently as the exact algorithm designed for this class of problems. A group of three parts must be sliced together as a unit for disassembling this 6-part puzzle. Furthermore, this result is totally consistent with the demonstration of Natarajan [START_REF] Natarajan | On planning assemblies[END_REF]] that any sets of three-dimensional disjoint convex objects where no single convex object could move without disturbing other objects, but half of the objects could be moved together as a unit.

Another example created by Snoeyink et al. [START_REF] Snoeyink | Objects that can not be taken apart with two hands[END_REF]] contains 6 identical convex sticks that can not be taken apart with two hands using only translational motions (see Fig. 6.9). We also applied our method on this difficult puzzle benchmark with a little reduction of the sticks' size (0.9 %) in order to avoid the contact (remind that contact motions are not allowed in our implemented method). Although this modification changes the nature of the problem, this example shows that our method is able to solve such a very constrained disassembly benchmark. Table 6.5 shows the efficiency of the algorithm that requires a few seconds of computing time. Interestingly, the obtained paths show that the 6 sticks must be moved together to extend the volume of the tetrahedron, and then can be taken apart one by one. 

Realistic Examples

This section presents results on the application of the I-ML-RRT to compute the disassembly sequence and paths for two engine models: 7-part engine and 15-part engine with two different initial configurations that lead to monotonic and non-monotonic disassembly sequences.

Model Description:

The first simplified engine model contains 7 parts. Figure 6.10 shows the assembled and disassembled states of this model. Both translation and rotation motions are required. Figure 6.11 shows the disassembly sequence of the engine, which consists of 7 elementary motions: the translations of four screws and rectangular part, the rotation of the cylinder. Note that the necessary rotation of the cylinder before the extraction of the rectangular part makes this sequence be non-monotonic. The second model contains 15 parts. Figure 6.12 shows the assembled and disassembled states of this model with two different initial configurations of 4 internal parts. The initial configuration represented in Figure 6.12.c permits a monotonic disassembly sequence of the engine. Therefore, the disassembly sequence from this configuration contains optimally 14 elementary motions illustrated by the sequence of images a-b-d-e-f-g in Figure 6.13. However, the initial configuration in Figure 6.12.d leads to a non-monotonic sequence. Indeed, the disassembly of the 4 internal parts, which from a kinematic chain, requires a coordinated motion (illustrated in Figure 6.13.c) that enables the extraction of the wrist pin that links the piston and the rod.

Algorithm Performance: Table 6.6 summarizes the computational performance of the algorithm averaged over 10 runs. The results show a good performance of the method that is able to solve all these difficult problems requiring both translation and rotation motions in a reasonable computing time (23.67, 170.06, and 391.7 seconds). The average number of generated sub-paths for the 7-part engine, whose disassembly sequence is non- monotonic, is very close to the optimum. This is also the case for the monotonic disassembly sequence of the 15-part engine. However, the number of computed sub-paths for the non-monotonic sequence of the 15-part engine is far from the optimum (15). This degradation can be explained by the need of a coordinated motion of the 4 internal parts that is decomposed by our method in a long sequence of small motions.

Discussion

We have presented a general approach to disassembly planning, which treats sequencing and path planning problems simultaneously. The algorithmic solution we have developed is based on an extension of RRT, which is a simple and efficient path planning algorithm. Nevertheless, the proposed formulation can be seen as a general framework that should enable the development of other classes of algorithms. The method has been presented considering that parts move one by one. However, active and passive parameter subsets in I-ML-RRT may involve an arbitrary number of parts. Thus, the algorithm could be directly applied for treating problems involving any number of parts simultaneously moving in different directions (i.e. disassembly problems with any number of hands).Furthermore, it will be easy to modify the method for treating more efficiently problems requiring ensemble motions of groups of parts. The presented algorithm does not need geometric operations such as computing normals to faces for determining blocking directions. It only requires a collision checker. Consequently, I-ML-RRT can solve problems involving complex part models with any shape (convex or concave), which may be the bottleneck for other methods. However, in particular cases (e.g. polyhedral objects), there is place for improvement by integrating some geometric operations that will provide good heuristics for selecting parts to move and suitable motion directions. Indeed, a possible trend for future work would be to combine I-ML-RRT with automated geometric reasoning methods for assembly partitioning and disassembly sequencing (e.g. [START_REF] Wilson | Two-handed assembly sequencing[END_REF][START_REF] Halperin | A general framework for assembly planning: The motion space approach[END_REF][START_REF] Fogel | Polyhedral assembly partitioning with infinite translations or the importance of being exact[END_REF]).

Another future extension would be to consider optimality criteria, in particular, for minimizing the number of elementary motions. Although this criterion is already indirectly considered by the algorithmic design of I-ML-RRT (which does not keep part motions below a given distance threshold), it reminds an important issue that merits a more direct treatment. Besides, some costs associated with the disassembly could be considered within the path planning process. One way to do it could be to combine ideas of I-ML-RRT and T-RRT [START_REF] Jaillet | Transition-based RRT for path planning in continuous cost spaces[END_REF]]. One particular instance of this combination of both algorithms is implemented in the next chapter to treat protein complex dissociation.

Protein Complex Disassembly

Specific interactions between macromolecules, that self-assemble into complex structures, play an important role within cells or organisms. However, little is known about how the subunits are temporally and spatially coordinated to form functional complexes [START_REF] Stenberg | Assembly fo the cytochrome bo 3 complex[END_REF]]. This chapter addresses the inverse problem, that is, the study of protein complex dissociation. Given a protein complex, the problem consists in investigating the disassembling process into the elementary monomers (see Figure 7.1). Determining the disassembly order and identifying the most important events in the mechanism of denaturation are the two main questions to be solved. Also, following the assembly-by-disassembly paradigm like in manufacturing engineering, we can expect to gain some insights into protein assembly from the analysis of the disassembly process.

As we mentioned in Chapter 3, very few computational approaches have been proposed to analyze the dissociation of protein complexes. This chapter presents a method to compute the sequential disassembly pathways of protein complexes. The proposed algorithm, called Iterative-ML-Transition-RRT (I-ML-T-RRT), introduces ideas from T-RRT [START_REF] Jaillet | Sampling-based path planning on configuration-space costmaps[END_REF]] (see the short description of this algorithm in Section 3.2.3) within the I-ML-RRT algorithm described in Chapter 6. The I-ML-RRT algorithm has been shown to be a general method to disassembly planning, which treats sequencing and path planning problems simultaneously, and the T-RRT algorithm, which is inspired by Monte Carlo search techniques, was introduced to compute low-cost paths in high-dimensional search-spaces. Combining these two algorithms, I-ML-T-RRT computes the sequence of paths leading to the complex disassembly while trying to minimize the variation of the interaction energy between subunits of the considered complex.

Next section presents the proposed methodology for computing protein complex disassembly sequences and paths. Then preliminary results described in Section 7.2 illustrate the capacities of the method on three systems for which experimental results on the association or dissociation process are available: Cytochrome cbb 3 Oxidase, Cytochrome bo 3 Ubiquinol Oxidase, and Homotetrameric Protein Transthyretin Finally, the last section 7.3 will discuss the current limitations and some possible improvements of the method.

Methodology

The methodological contribution of this chapter is an extension of the I-ML-RRT algorithm (Chapter 6) for treating protein complex disassembly problems. Like in the methodology for computing protein-ligand access/exit paths presented in Chapter 5, a mechanistic model of proteins is considered. However, interaction energies are also considered within the exploration algorithm. The description of the model and the proposed method are detailed next.

Model and Parameters

Mechanistic molecular model:

The combined method called I-ML-T-RRT also deals with partially-flexible protein models represented as articulated mechanisms detailed in Chapter 5. Figure 7.2 illustrates the mechanistic model of a protein complex. Each sub-unit is modeled as a rigid group G i which holds free rigid body mobility, independently from the other groups. Side-chains (not represented in the figure) are generally modeled as flexible elements with rotatable bond torsions, but they can also be defined as rigid parts by the user. Therefore, this model does not allow to treat folding or unfolding problems during the (dis)assembly process.

Conformational parameters:

The protein complex conformation is defined by the parameters determining the pose (position and orientation) of all the groups G i and the bond torsions of all flexible side-chains. Following the formulation detailed in Chapter 6, a different active/passive partition of the conformational parameters is considered at each iteration of the disassembly sequencing algorithm. At each iteration, the pose parameters of some groups G i (ensemble motion of several sub-units can be considered) are active, while those of the others are passive, together with the parameters associated with all the side-chains. In addition, the present extension also needs to deal with different mobility coefficients for passive parameters (see explanations on passive part mobility in Chapter 4). By default, the mobility coefficient of all side-chain torsions is set to 1.0, meaning that they will systematically move if they are identified during the exploration. Lower mobility coefficient is allowed to sub-unit poses, with δ = 0.2 in the current implementation.

Energy Evaluation:

For energy evaluation within our method, we propose to use a coarse-grained force field in order to overcome the computational expensive cost of the all-atom representation when applied for studying interactions of large systems such as protein complexes. In particular, we have adopted the model proposed by Zacharias [START_REF] Zacharias | Protein-protein docking with a reduced model accounting for side chain flexibility[END_REF][START_REF] Zacharias | Attract: Protein-protein docking in capri using a reduced protein model[END_REF]], which has proved good results in protein-protein docking studies. This model was first applied for treating rigid protein-protein docking problem, and then the approach was extended to deal with some flexible portions of proteins [START_REF] Bastard | Accounting for loop flexibility during protein-protein docking[END_REF]]. Another work also adopted this coarse-grained representation to investigate mechanical properties of proteins [START_REF] Lavery | Protein mechanics: a route from structure to function[END_REF].

Each residue is represented by up to four pseudo atoms (i.e. two for the backbone and up to 2 for the side chain). For a realistic description of the polar character of the protein backbone, two pseudo atoms located at the position of the N and O atoms of the backbone's carbonyl group are also used. Small amino acid side chains such as Ala, Ser, Thr, Val, Leu, Ile, Asn, Asp, and Pro are represented by one pseudo atom located at the geometrical center of all side chain heavy atoms. In case of longer amino acids such as Arg, Lys, Glu, Gln, His, Met, Phe, Tyr, Trp, it is necessary to use two pseudo atoms in order to maintain good agreement between energy-minimized complexes and geometrical constraints. The first pseudo atom is located in the middle between C β and C γ of each side chain, and the other one can be then calculated as the geometrical center of all other side chain atoms.

The total energy of the system is the sum of all pseudo-atom pair energies:

E sys = ∑ i j (E LJ (r i j ) + E elec (r i j )) (7.1)
The energy function between pseudo-atom pair i and j, belonging to different proteins, at the distance r i j consists of the pairwise soft Lennard-Jones type potential (E LJ ) and an electrostatic interaction term (E elec ) with a distance dependent dielectric constant (ε(r) = 15r) for the interaction between charged residues. These formulas below are used to calculate the two energy terms: E LJ (r i j ) = B i j (r i j ) 8 -C i j (r i j ) 6 and E elec (r i j ) = q i q j εr i j (7.2) where B i j and C i j correspond respectively to repulsive and attractive terms of Lennard-Jones potential which are computed as follow:

B i j = A i A j(R i + R j ) 8 C i j = A i A j(R i + R j ) 6 (7.3)
where R and A represent the approximated size and the physio-chemical of side chains respectively. The values of R and A are detailed in [START_REF] Zacharias | Protein-protein docking with a reduced model accounting for side chain flexibility[END_REF]]. q i and q j are charged values of pseudo atom i, j respectively.

I-ML-T-RRT algorithm

The I-ML-T-RRT extends the algorithm I-ML-RRT by integrating a state-transition test that rejects new conformation based on the energy variation. For this, the construction algorithm is basically the same than the one detailed in Chapter 6 (Algorithm 4). The only modification concerns the main function Construct ML-RRT, which is called at each iteration to compute the disassembly path of one part (a sub-unit in the present case). Within I-ML-T-RRT, this function is replaced by the function 7.3 provides a simple illustration of the expansion process performed by this function, which alternates expansion attempts of the active and passive parameter subsets. The movement of the chosen active subunit is facilitated by the conformational changes of the side-chains and the poses of other passive subunits. The main difference with the basic ML-RRT algorithm concerns the introduction of two functions, TransitionTest and MinExpandControl, that control the evolution of the search-tree.

The TransitionTest function rejects some of the generated states if they do not correspond to energetically acceptable moves. Similarly to MC methods, the acceptance rule of a local move is defined by comparing the energy E j of the new state with the energy E i of the previous state (i.e. the parent node in the tree). This test is based on the Metropolis criterion, with a transition probability p i j defined as follows:

p i j = exp(- ∆E i j kT ), if ∆E i j > 0 1, otherwise (7.4) 
where ∆E i j = E j -E i is the energy variation between the two states (computed with the coarse-garined model), k is the Boltzmann constant, and T is the temperature. Note that the term temperature is employed in analogy with methods in statistical physics, but in our case it does not have any physical meaning. Indeed

T is a parameter of the algorithm used to control the difficulty level of transition tests. The value of T is automatically tuned according to the information acquired during the exploration. When a maximum number of consecutive rejections is reached, T increases by a factor λ . Contrarily, each time an uphill Several experimental methods have been used to investigate the assembly process of this system. In the work of Zufferey et al. [START_REF] Zufferey | Assembly and function of the cytochrome cbb3 oxidase subunits in bradyrhizobium japonicum[END_REF]], using Western blot analysis, CcoN and CcoO were shown to be inserted firstly into the membrane to form an apparently stable CcoNO core complex in Bradyrhizobium japonicum. The next step involved the assembly of the CcoNO core with the CcoP protein. The smallest subunit CcoQ was not required for the complex formation and therefore, did not play a key role for the complex association [START_REF] Zufferey | Assembly and function of the cytochrome cbb3 oxidase subunits in bradyrhizobium japonicum[END_REF]]. Another method has been presented to analyze the assembly process of cbb 3 -Cox in Rhodobacter capsulatus by using blue-native polyacrylamide gel electrophoresis (BN-PAGE) along with activity staining of wild-type and mutant membranes [START_REF] Kulajta | Multi-step assembly pathway of the cbb 3 -type cytochrome c oxidase complex[END_REF]]. Their results revealed an intermediate 210 kDa subcomplex (i.e., CcoNOQ) before recruiting subunit CcoP to form the final 230kDa active complex (CcoNOQP). The work of Peters et al. [START_REF] Peters | Stability of the cbb3-type cytochrome oxidase requires specific ccoq-ccop interactions[END_REF]] has recently revealed the important role of subunit CcoQ in the stabilization of the interaction between subunit CcoP and the preassembled CcoNO core complex by combining activity measurements, BN-PAGE, and chemical cross-linking. Their results suggested that CcoQ can obviously bind to CcoP befere CcoP associates with CcoNO core complex to create the stable form. Therefore, a possible assembly order of cbb 3 -Cox is the formation of the core complex CcoNO containing two subunits CcoN and CcoO and the formation of the subassembly CcoP-CcoQ, following by the association of these two subassemblies.

Sequential Disassembly Pathways

In order to elucidate the disassembly process of cbb 3 -Cox, 20 tests were performed with I-ML-T-RRT. These results show that the subassembly CcoPQ containing two subunits CcoP and CcoQ is preferred to be the first disassembled part from the whole complex with a high percentage of 80% (16/20 runs), following by the dissociation of two subassemblies (i.e., CcoPQ and CcoNO). Four other pathways display the first dissociation of the groups CcoQ-CcoO, CcoN-CcoP from the complex. We also computed the average interaction energy (using the aforementioned coarse-grained force-field model) for extracting the first subassembly from the complex: 197.91 kJ/mol for CcoPQ dissociation and 224.2 kJ/mol for the other cases (i.e., CcoQ-CcoO, CcoN-CcoP), respectively. Note that the work of Peters et al. [START_REF] Peters | Stability of the cbb3-type cytochrome oxidase requires specific ccoq-ccop interactions[END_REF] indicates that the two subunits CcoP and CcoQ are in close contact, and due to the lack of CcoQ, the CcoP's ability to assemble with the core complex CcoNO is drastically reduced. The preferred disassembly order of cbb 3 -Cox calculated by our method is thus the reverse of the assembly order proposed by Peters et al. [START_REF] Peters | Stability of the cbb3-type cytochrome oxidase requires specific ccoq-ccop interactions[END_REF]]. Note that the work of Sedlak et al [START_REF] Sedlak | Sequential disassociation of subunits from bovine heart cytochrome c oxidase by urea[END_REF]] also suggests that the order of denaturant-induced subunit dissociation mimics the reverse of Cytochrome c Oxidase assembly sequence [START_REF] Nijtmans | Assembly of cytochrome-c oxidase in cultured human cells[END_REF][START_REF] Taanman | Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency?[END_REF]]. Table 7.1 shows the computational performance of our method. The computational time for generating the sequencing pathways is about 13 hours on a single Cytochrome bo 3 Ubiquinol Oxidase (CUO), which is the terminal oxidase in the aerobic respiratory chain of the Escherichia coli, belongs to the heme-copper oxidase superfamily. Consisting of four subunits (I, II, III and IV), this enzyme catalyzes the two-electron oxidation of ubiquinol-8 (Q 8 H 2 ) at the periplasmic side and the four-electron reduction of oxygen to water at the other side of the membrane (i.e. cytoplasmic side) (see Fig. 7.5). In addition, CUO also plays a functional role as a proton pump by translocating protons across the cytoplasmic membrane in order to establish an electrochemical proton gradient. The generated transmembrane proton and voltage gradient is then converted to more useful energy forms through energy conserving systems such as the ATP synthase [START_REF] Abramson | The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site[END_REF]].

Related Works

For investigating the complex formation of the CUO complex, Stenberg and Daley [START_REF] Stenberg | Assembly fo the cytochrome bo 3 complex[END_REF][START_REF] Daley | The assembly of membrane proteins into complexes[END_REF]] have recently proposed a novel pulse-labelling method using the rifampicin blocking technique and blue native (BN)-/SDS-PAGE. Figure 7.6 shows the sequential assembly order of the four-subunit membrane complex obtained with this method, where the subunits III and IV firstly assemble to form an temporary subassembly, followed by subunit I and finally subunit II.

Sequential Disassembly Pathways

In order to investigate the disassembly pathway of this complex, 20 runs were performed with the I-ML-T-RRT algorithm starting from the assembled structure (PDB ID 1FFT). The results show that the two subunits III and IV are alternatively preferred to firstly disassembled from the CUO complex with high percentage 90% (18/20 runs), followed by the dissociation of the left subassembly I-II. Only two runs in which the subunit I or subunit II were firstly extracted have been observed. The average interactions energies for extracting the two first subunits in the two cases are also computed: 160.98 kJ/mol for the dissociation of two subunits III and IV, and 192.46 kJ/mol for the dissociation of two subunits I and II. In terms of energy, this difference proved that the two small sub-units (III and IV) can be disassembled more easily than the two bigger sub-units (I and II). Thus, the preferred disassembly order calculated by our method is not the reverse of the assembly order proposed by [START_REF] Stenberg | Assembly fo the cytochrome bo 3 complex[END_REF]]. This phenomena can be answered by the structural topology of the considered complex where the two subunits III and IV are situated around the big subassembly I-II that forms a stable core. Moreover, due to the mass of CUO subunits (see Tab. 7.2), subunits III and IV are significantly smaller than the other ones. Therefore, the two small subunits have more chance to be disassembled first with lower energy interactions. Table 7.3 shows the computational performance of our method. Overall, it took about 8 hours to compute all the sequential disassembly pathways of the CUO complex.

Homotetrameric Protein Transthyretin

Structural Description

Transthyretin (TTR), which belongs to the homotetrameric human plasma protein family, is composed of four 127 amino-acid monomers (14 kDa) [Foss et al. 2005]. Each monomer contains eight anti-parallel β -sheets, denoted from A to H, and a small α-helix. There are two sheets in the monomer that are organized in the β -barrel topology. The dimerization of two monomers is performed through an intermolecular mainchain interaction between H-strands from each monomer in order to form an eight-stranded β -sandwich [START_REF] Hornberg | A comparative analysis of 23 structures of the amyloidogenic protein transthyretin[END_REF]]. Due to hydrophobic contacts between residues situated in the AB and GH-loops, two dimers are associated to form the tetramer that contains thyroxine binding sites in the large hydrophobic channel formed between the two dimers [START_REF] Hornberg | A comparative analysis of 23 structures of the amyloidogenic protein transthyretin[END_REF]]. Figure 7.8 shows the structure of TTR in which the the two dimer AB and CD is symmetric over the crystallography axis C 2 represented by a dotted line.

Related Works

Foss et al. [Foss et al. 2005] proposed a study on the disassociation pathways of the homotetrameric protein transthyretin (TTR) which must undergo rate-limiting dissociation to its constituent monomers in order to enable partial denaturation that allows the process of amyloidogenesis associated with human pathology to ensue. They suggested that three possible pathways can be performed. Two mechanisms will split the tetramer along the dimer interface to create two different intermediate dimer types (AB/CD or AC/BD) which can disassociate latter to monomers. The last mechanism can be performed in which one monomer is left from the complex to yield a trimer that will disassociate into three other monomers (see Fig. 7.9). Their results show that the mechanism 2, initial dimer scission into AB/CD dimers, is more consistent than the two others.

Sequential Disassembly Pathways

20 runs were performed with I-ML-T-RRT for the TTR model. The obtained results show that the mechanism 2, where the TTR is split along its horizontal dimer interface (AB/CD), is observed with the highest percentage 70% (i.e., 14/20 runs). Only 6 other pathways (30%) followed the mechanism 1 (i.e., vertical dimer interface split -AC/BD) and there is not any pathway which illustrates the third mechanism. The average differences of interaction energy between the assembled complex and the state where the dimers are split were computed over the two dimer-dimer dissociations : 80.1 kJ/mol for mechanism 1 and 77.7 kJ/mol for mechanism 2. This difference proved that the mechanism 2 is preferred in term of energy. Moreover, in term of structure, the stabilization of the AB/CD dimer interface mediated by hydrophobic interactions between AB and GH loops has little effect on quaternary structural stability [Foss et al. 2005;[START_REF] Hornberg | A comparative analysis of 23 structures of the amyloidogenic protein transthyretin[END_REF]]. On the contrary, the monomers of AB and CD dimers are held together by an intermolecular main-chain interaction involving the H-strands (residues Ser115-Thr123) which forms an eight-stranded β -sandwich between two monomers, and hydrogen bonding between two F-strands (residues His90-Val94) (see Fig. 7.7) [START_REF] Hornberg | A comparative analysis of 23 structures of the amyloidogenic protein transthyretin[END_REF]]. These significant interactions inside a dimer do not facilitate the mechanisms 1 and 3. Furthermore, other works [Foss et al. 2005;[START_REF] Wiseman | Kinetic stabilization of an oligomeric protein by a single ligand binding event[END_REF]] also proved the stabilization of the quaternary structure of TTR can be maintained by ligand binding in on of the two binding-sites between A-C and B-D sub-units. Generally, our results are coherent with the experimented results [Foss et al. 2005]. Table 7.4 shows the computational performance of our method based on 20 experiments. The computational time for computing the sequencing pathways is still reasonable in the range of 6 hours.

Discussion

We have presented a mechanistic approach to molecular simulations which may lead to the development of efficient computational methods, able to provide relevant information on the protein complex dissociation. The proposed algorithm, I-ML-T-RRT, is a novel and fast method for simulating protein complex dissociation. Indeed, this algorithm generates the sequence of disassembly paths within a few hours of computing time on a single processor. Such a high computational performance is achieved thanks to the efficiency of the conformational search method combined with a simplified coarse-grained model to evaluate protein interaction forces. Preliminary results show the potential interest of the method. Nevertheless, the method requires improvements in order to deal with more complex meta-structures with higher accuracy. First, the conformational exploration method requires improvements to better deal with protein flexibility (i.e. loops and domain motions). Besides, a more accurate energy evaluation, taking into account the solvent and an entropic term, will probably be required in order to better model the effects of protein dissociation.

Conclusions

In this thesis we have investigated new computational methods for simulating large-amplitude molecular motions that represent important and challenging problems for structural biology, in particular for the understanding of the structure-function relationship in proteins. Our algorithms build on sampling-based planning methods recently developed in robotics. They exploit the efficiency of the Manhattan-like RRT method which was developed to circumvent the limitation of the basic RRT algorithm for dealing with disassembly problems involving complex articulated objects and high-dimensional search-spaces. The algorithmic contribution of the thesis is twofold.

First, in order to handle the high complexity of molecular models, we have presented promising extensions of the algorithm by introducing the notion of multi-level passiveness and of pushing-pulling motions. The first extension addresses disassembly planning problems for articulated objects involving parts with different mobilities. Different mobility coefficients are assigned to passive parts, which allows the planner to better explore the configuration-space. Therefore, the computational efficiency is significantly improved. The second extension is devised for solving problems in which passive articulated parts are "pushed" and also "pulled" by the mobile object, which is important in some classes of disassembly problems. The resulting algorithm was applied for studying the conformational changes induced by the ligand exit when taking into account the different levels of flexibility of different protein's parts such as side chains, loops or domains. Our results show the efficiency of our mechanistic approach to simulate large-amplitude diffusion paths within flexible protein models including more than one thousand degrees of freedom. Indeed, this algorithm generates long (20-30 Å ) diffusion paths within tens of minutes of computing time on a single processor, which is remarkably short compared to the time required by MD-based methods. Such a high computational performance is achieved thanks to the efficiency of the conformational search method that operates on geometric models of molecules. Geometrically feasible Chapter 8 Conclusions • 100 paths are a reasonably good approximation that provides itself very useful information. Furthermore, as shown in our prior work, the approximate solution path can also be efficiently refined if needed with standard molecular modeling tools (e.g. energy minimization) in order to perform a more accurate energetic analysis.

Our second contribution is a novel method for simultaneously (dis)assembly sequencing and path planning. The proposed Iterative ML-RRT algorithm is able to solve general disassembly planning problems involving objects with arbitrary shapes and possibly requiring non-monotonic disassembly sequences, which may be a bottleneck for other methods. The method was applied to several CAD models, in particular to a complex 15-part engine model for which the disassembly sequence and motions were generated after only few minutes of computation. The method was also extended for investigating protein complex disassembly problems. The extension concerns the integration of energy computations to guide the conformational search. The new algorithm called I-ML-T-RRT was promisingly applied to disassemble several protein complexes. The sequential dissociation orders obtained within a few hours of computing time on a single processor are consistent with experimented results.

Future Research

The obtained results of this thesis open several directions for possible extensions. As future work, we intend to further improve the computational approach to better deal with full molecular flexibility during proteinligand interactions while considering a simplified energy minimization during diffusion process. These energies could allow to consider important constraints that can not be treated by a geometric method when studying conformational changes.

We also expect to extend the method for its application to the modeling of protein-protein interactions or DNA-protein binding. Simulating the docking between flexible macromolecules yet remains a computational challenge and the efficiency of our conformational search techniques may help to further introduce molecular flexibility in docking methods.

Another interesting extension would be to consider optimal criteria, in particular, for minimizing the number of elementary motions generated by the Iterative-ML-RRT algorithm. Moreover, the current version which only treats one-by-one part disassembly can not properly afford other classes of problems (e.g. the Twisted Tetrahedron problem show in Chapter 6) where the grouped-part motion as a unit are highly required.

The latter extension may also be needed for the application to protein complex disassembly problems, in which groups of several subunits usually undergo ensemble motions. Also note that for this application, the preliminary results presented in the last chapter serve as a proof of concept but the method certainly has to be further improved to treat more accurately the physicochemical characteristics of protein complex dissociation.
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 21 Figure 2.1: General amino acid structure: R represents a specific side-chain to each amino acid.
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 2 Figure 2.2: α-helix structure: (a) Cartoon Representation (b) Atomic Representation
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 2 Figure 2.4: Structure of human transthyretin complex: (a) Tertiary Structure -One subunit, (b) Quaternary Structure -Four subunits
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 25 Figure 2.5: Common mechanisms for domain motions [Teague 2003]: (a) Hinge bending motion, (b) Shear bending motion.
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  -amplitude molecular motions have also been studied by using normal mode analysis (NMA). A number of works used NMA to compute global macromolecular motions such as open-closed conformational transitions in proteins or domain motions [Brooks and Karplus 1985; Mouawad and Perahia 1993; Tama and Sanejouand 2001; Miyashita et al. 2003; Alexandrov et al. 2005; Kirillova et al. 2008]. Large-amplitude motions in macromolecules are shown to be associated with low-frequency normal modes, therefore demonstrating the ability of NMA-based methods to predict the direction of collective conformational changes.
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 3 Figure 3.1: Illustration of the motion planning problem for a 2R manipulator [Latombe 1991]: (a) The manipulator and the obstacles in the workspace, (b) Representation of the manipulator and the obstacles in the configuration space.

Figure 3

 3 Figure 3.2: Illustration of the construction of the roadmap in PRM approach.

  ; Holleman and Kavraki 2000; Lien et al. 2003], using free-space dilatation [Hsu et al. 2006; Saha et al. 2005], visibility-based filtering [Siméon et al. 2000] or adaptive sampling [Kurniawati and Hsu 2006; Rodriguez et al. 2006], exploiting search space information [Burns and Brock 2005] or delaying collision checks [Bohlin and Kavraki 2000; Sanchez and Latombe 2002].
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 3 Figure3.3: Illustration of the construction of the tree in RRT approach from q i to q g .
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 4 Figure 4.1: Disassembly path planning problem for two objects with articulated parts. The problem consists in finding a path to extract the small (red/dark) object from the big one.
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 4 Figure 4.2: Illustration of one expansion step of an RRT search tree. The tree tends to cover C f eas : the feasible subset of the configuration space C.

  2 . The efficiency of these two modifications has been shown in related works [Cheng and LaValle 2001; Urmson and Simmons 2003; Cortés et al. 2007]. One can also choose a more or less greedy strategy for the expansion procedure (function Expand in Algorithm 1). In the basic RRT algorithm, a single expansion step of fixed distance is performed. Here we use the RRT-Connect variant [LaValle and Kuffner 2001b], which iterates the expansion step while feasibility constraints are satisfied. This variant is in general more efficient than the single-step version for systems without differential constraints, which are the type of systems considered in this chapter. The function TooSimilar rejects the new generated configuration if the distance between
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 4 Figure 4.3: 2D examples: (a) Simple, (b) Double, (c) Triple.
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 4 Figure 4.4: 3D examples: (a) Simple, (b) Double, (c) Triple.
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 4 Figure 4.5 shows a projection of the search trees on the coordinates of the center of mass of the mobile

  Figure 4.7 illustrates the basic articulated disassembly problem (Fig. 4.7.a) and its extension (Fig. 4.7.b).

Figure 4

 4 Figure 4.6: Trace of solution paths for 2D-Simple problem obtained with: (a) the basic RRT algorithm, (b) the ML-RRT variant.

Figure 4 . 7 :

 47 Figure 4.7: Illustration of two passive level problem in comparison with the basic problem.
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 48 Figure 4.8: Determination of the list of passive parts to be moved P mov pas based on the contacts with active parts and on the kinematic diagram of the protein model. Two typical cases are illustrated: (a) Case 1: P mov pas
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 49 Figure 4.9: Illustration of larger number of passive parameters. Two different passiveness levels are considered for the small sticks and the walls.
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 4 Figure 4.10: Illustration of three passive levels. Three different passiveness levels are considered for the yellow and cyan sticks, and the big walls.
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 4 Figure 4.11: Development of search trees for ThreePass problem obtained with: (a) Basic ML-RRT, (b) Multi-Passive Variant.
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 412 Figure 4.12: Illustration of Passive Zone of the bodies associated with passive parameters.

Figure 4 . 13 :

 413 Figure 4.13: Illustration of "pushing and pulling" models with different number of passive parameters: (a) Pulling2, (b) Pulling3, (c) Pulling4.
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 414 Figure 4.14: Development of search trees for Pulling3 problem obtained with: (a) Basic ML-RRT, (b) "Pushing-Pulling" Variant.
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 51 Figure 5.1: Lactose permease (LacY) conformational transition. a) The crystal structure [Abramson 2003] (PDB ID 1PV7), where the substrate is accessible from the cytoplasm. b) Model of LacY after the conformational changes induced by the substrate diffusion toward the periplasm.
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 52 Figure 5.2: Molecular chain and the internal coordinates.
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 53 Figure 5.3: Model of two-peptide-unit segment.
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 5 Figure 5.4: Mechanical model of an amino acid residue (phenylalanine) with all-atom fully flexible representation.
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 55 Figure 5.5: Schematic representation of a flexible protein model: (a) The three secondary structure elements grouped in G 1 are modeled as a rigid solid. The group G 2 involves only one secondary structure element. The loop/linker eL 1,2 , between G 1 and G 2 , is flexible. Loops connecting elements in a group can be flexible or not. Only the intra-domain loop iL 1 1 is flexible in this example. (b) Illustration of the mapping between the mechanistic model and hierarchical model. Two helices are considered as big rigid groups, while the flexible loop and all side-chains are composed of small atom-groups connected by rotatable bonds.
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 5 Figure 5.6: Illustration of the decoupled exploration of active and passive parameters within ML-RRT. a) Expansion of active parameters corresponding to the motion of the ligand. b) Identification of the passive parts hindering the ligand motion. c) The expansion of passive parameters yielding the opening motion of the protein. d) New iteration of the active parameters expansion.
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 57 Figure 5.7: Determination of the the list of passive parts to be moved P mov pas based on the contacts with active parts and on the kinematic diagram of the protein model. Three typical cases are illustrated.

  For instance, for O-H• • • N bonds: d O-N ∈ [2.5 Å, 3.8 Å] and θ O-H-N ∈ [110 • , 180 • ]. Disulfide bonds also imply bond length and bond angle constraints between the involved S and C atoms. Additionally, the S-S bond torsion γ is restricted around 90 • . The ranges by default are d S-S ∈ [1.8 Å, 2.2 Å], θ C-S-S ∈ [100 • , 130 • ], and γ S-S ∈ [60 • , 120 • ]. All these constrains are checked within the function Expand.
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 58 Figure 5.8: Illustration of five domains of the Amylosucrase structure (PDB ID 1G5A): N dark blue, A green, B yellow, B' magenta, C red.
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 59 Figure 5.9: Models of AS with different loops (Loop 3: Blue, Loop 7: Magenta, Loop 8: Orange), and a product molecule in the active site: (a) Two-loop model, (b) Three-loop model.
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 5 Figure 5.10: List of residues encountered by the product during its diffusion toward the exit of OB1 binding site of the AS. For facilitating interpretation, the pathway is divided into three segments. The grey-scale represents the percentage of times that the contact appears over the set of 20 paths. a) 2-Loop Model b) 3-Loop Model.
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 5 Figure 5.11: Superposition of the initial structure of Amylosucrase with considered loops (Loop 3: Blue, Loop 7: Magenta, Loop 8: Orange) and conformations induced by the product exit (corresponding light colors) following the 2-loop model (a), and the 3-loop model (b).
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 512 Figure 5.12: Superposition of the initial structure of LacY with two domains (Domain N: blue, Domain C: cyan) and a loop (red), and conformations induced by the ligand exit (corresponding light colors).
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 514 Figure 5.14: Structure of β 2 -AR with carazolol bound in the protein active site viewed from the extracellular side.The secondary structure elements and important residues are displayed on the image.
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 515 Figure 5.15: Snapshots of the ligand exit from β 2 -AR following the left-hand pathway (a), and the right-hand pathway (b).
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 516 Figure 5.16: Superposition of the initial structure of β 2 -AR (black) and conformations induced by the ligand exit (grey) following the left-hand pathway (a), and the right-hand pathway (b).
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 517 Figure 5.17: Superposition of the initial structure of the residue Phe193 (black) and conformations induced by the ligand exit (grey) following the left-hand pathway (a), and the right-hand pathway (b).
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 6 Figure 6.1: Illustration of 15-component encoder assembly [Duggan et al. 2000] : (a) Assembled State, (b) Disassembled State.
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 62 Figure 6.2: Similarity between articulated disassembly and disassembly sequencing with the same idea of [Active-Passive] degrees of freedom decomposition: (a) Articulated Disassembly, (b) Disassembly Sequencing.
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 66 Figure 6.3: Planar Puzzles: (a) Simple, (b) Double, (c) Triple.
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 656 Figure 6.5: 2D Narrow Puzzles: (a) Assembled configuration, (b)(c)(d)(e) Four disassembly sub-paths.
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 67 Figure 6.7: Impact of MaxTreeSize in the global performance of I-ML-RRT.
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 68 Figure 6.8: The Diagonal Star Puzzle: (a) Assembled configuration, (b) Coupled disassembly motions.
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 69 Figure 6.9: The Twisted Tetrahedron [Snoeyink and Stolfi 1994] with three different views. In this 6 identical part model, no single convex part could move without disturbing other parts. (a)(c)(e) Three views of the initial configuration, (b)(d)(f) Three corresponding views of the configuration before the disassembly of the complex. Coordinated motions of 6 sticks extended the volume of the tetrahedron in order to attempt the disassembled configuration.
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 66 Figure 6.10: Illustration of 7-part engine assembly: (a) Assembled State, (b) Disassembled State.
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 612 Figure 6.12: Illustration of 15-part engine assembly with two 4-inside-part configurations: (a) Assembled State, (b) Disassembled State, (c) The first configuration of the monotonic sequence, (d) The first configuration of the non-monotonic sequence.
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 613 Figure 6.13: Disassembly Sequences of the 15-part Simplified Engine. Monotonic sequence: The disassembly of each part does not requires any intermediate motion of other parts. The monotonic sequence is composed of the motions in (a)(b)-(d)(e)(f)(g). Non-monotonic sequence: In order to disassemble the four internal parts, some coordinated motions are required to transform the first configuration of the nonmonotonic sequence to the first configuration of the monotonic sequence, where the wrist pin (the pink part) can be extracted (c). The non-monotonic sequence is composed of the motions in (a)(b)(c)(d)(e)(f)(g).
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 7 Figure 7.1: Illustration of Cytochrome bo 3 Oxidase structure (PDB ID 1FFT) and its four sub-units. What is the disassembly process ?

Figure 7 .

 7 Figure 7.2: Schematic representation of a protein complex model. Four rigid proteins with their corresponding Cartesian coordinate frames are denoted from G 1 to G 4 . Flexible side chains are not shown.
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 73 Figure 7.3: Illustration of the decoupled exploration of active and passive parameters within the I-ML-T-RRT algorithm. (a) Identification of the passive parts hindering the active subunit motion or "nearcollision" passive parameters. (b) Expansion of the involved passive parts. c) Expansion of active parameters corresponding to the motion of active subunit.

  Construct ML-T-RRT, which integrates the state-transition test inspired by T-RRT [Jaillet et al. 2010]. Algorithm 5 shows the pseudo-code of this new function. The overall of this function is based on the basic ML-RRT algorithm (see Algorithm 3) in Chapter 4.
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 7 Figure 7.4: Structure of Cytochrome cbb 3 Oxidase: (PDB ID 1QLE): Subunit CcoN -Green, Subunit CcoO -Cyan, Subunit CcoP -Magenta, Subunit CcoQ -Yellow.

Figure 7 . 5 :

 75 Figure 7.5: Illustration of Cytochrome bo3 ubiquinol oxidase (PDB ID 1FFT): Subunit I -Green, Subunit II -Cyan, Subunit III -Magenta, Subunit IV -Yellow.
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 76 Figure 7.6: Assembly process of Cytochrome bo 3 Ubiquinol Oxidase: Subunit III and IV assemble first, followed by subunit I and finally subunit II [Stenberg et al. 2007; Daley 2008].
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 77 Figure 7.7: Structure of Dimer of the Transthyretin: (PDB ID 2PAB): Subunit A -Green, Subunit B -Cyan.

Figure 7 . 8 :

 78 Figure 7.8: Structure of Tetramer Transthyretin (PDB ID 1QAB): Subunit A -Green, Subunit B -Cyan, Subunit C -Yellow, Subunit D -Magenta. (a) Front view, (b) Side view.

Figure 7 . 9 :

 79 Figure 7.9: Three mechanisms of dissociation of the Transthyretin [Foss et al. 2005]:In mechanism 1 and 2, the tetramer split along vertical and horizontal dimer interfaces, respectively. The dimers then dissociate to monomers. In mechanism 3, a monomer is dissociated from the TTR to yield a trimer which then degrades to monomers.

  ; Halperin et al. 2002; Andrusier et al. 2008; Ritchie 2008; Moreira et al. 2010].

  ]. Other methods, such as ATTRACT [Zacharias 2003; Zacharias 2005], apply systematic search combined with energy minimization. The Fast Fourier Transform (FFT) has been often used in rigid-body docking [Katchalski-Katzir et al. 1992; Gabb et al. 1997; Li et al. 2003; Kozakov et al. 2006]. A progam called ZDOCK

  ; Ahuactzin and Gupta 1995; Nielsen and Kavraki 2000; Siméon et al. 2004], motion planning with uncertainty [Alterovitz et al. 2008], closed-kinematic loops [Han 2004; Cortés 2004] like two mobile robot arms that together hold

Table 4

 4 

				.1: NUMERICAL RESULTS.		
			2DSimple 2DDouble	2DTriple 3DSimple	3DDouble	3DTriple
		N DOF	7	10	13	8	10	12
	RRT	T(s)	48.64±17.28				

→ ∞ → ∞ 0.35±0.36 29.36±25.82

  In all the examples, the active parameters involve the translations and the orientations of the mobile object. The passive ones contain all rotational sticks and mobile object deformation joint (in the 2D models).

							07
	N node	262	444	1013	109	255	1365
	N act samp	883	1556	4537	179	1144	13077
	N coll	3189	17110	22755	4552	11797	73145
	static obstacle.						

s) 0.22±0.19 0.79±0.93 3.02±2.56 0.15±0.34 0.54±0.21 5.85±3.

Table 4 .

 4 2: Influence of passive priorities.

	Mob.Coef(δ )	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	Ave.Time(s)	4.39	3.42	4.55	5.0	6.1	8.67 10.05 12.13 11.94 13.72
	Std.Dev.	4.67	2.57	4.36	4.83	8.2	13.3 10.89	10.1 13.58 12.77
	N node	470	438	502	544	552	763	860	964	896	1058
	N act samp	1926	1774	2250	2301	2350	3152	3398	3840	3677	4203
	N coll	38148 34599 40238 42277 43017 55881 61475 66372 62817 70165

Table 4

 4 

	Example	Performance	Basic ML-RRT	Multi-passive ML-RRT
		Ave. Time(s)	1047.34±275.31	535.42±335.78
	LongPass	N node N act samp	9372 55355	6769 35271
		N col	729434	481254
		Ave. Time(s)	200.14±282.15	29.63±44.41
	ThreePass	N node N act samp	3023 25484	1141 8149
		N col	235148	84975

.3: Influence of number of passive levels.

Table 4

 4 

					.4: Influence of passive zone radius.			
	K	10	20	30	40	50	60	70	80	90	100 MLRRT
	Ave. Time(s)	0.41 0.49 0.53 0.62 0.58 0.69 0.67 0.70 0.71 0.83	0.61
	Std. Deviation 0.28 0.41 0.42 0.54 0.35 0.57 0.52 0.53 0.51 0.92	0.56
	N node	336	366	383	454	415	464	467	473	485	495	296
	N act samp	469	500	631	648	644	662	653	675	739	796	930
	N coll	5049 5619 5655 6315 6629 6652 6643 7515 7812 8089	5668

Table 4 .

 4 5: Influence of number of passive parameters.

	Example	Performance	Basic ML-RRT	Pushing-Pulling ML-RRT Variant
		Ave. Time(s)	5.71±7.61	4.24±7.16
	Pulling2	N node N act samp	911 3179	1078 2910
		N col	20995	22299
		Ave. Time(s)	51.97±83.2	22.11±43.68
	Pulling3	N node N act samp	3390 7907	2275 5962
		N col	119071	92286
		Ave. Time(s)	→ ∞	454.6±343.13
	Pulling4	N node N act samp	→ ∞ → ∞	11856 36105
		N col	→ ∞	273081

Table 5 .

 5 

	AS 2 Loops	0	1474	30	22	1526
	AS 3 Loops	0	1474	76	22	1572
	LacY	12	678	75	10	775
	β 2 -AR	42	490	159	12	703

1: Flexibility of three considered models. Model Number of DOF Domain/Helix Side-chain Loop's backbone Product/Substrate/Ligand Total

Table 5 .

 5 2: Algorithm Performance.

	Performance Two-Loop Model Three-Loop Model
	Ave. Time(s) 2357.05±1024.97	3648.74±1174.12
	N node	7011	8297
	N act samp	8301	10410
	N coll	58843	66757

Table 5 .

 5 3: Distance variation between residue pairs in LacY.

	Residue pair Inward-open	Outward-open Outward-open
		(experimental [Smirnova07])	(simulation)
	73-401	41 Å	27 Å	36.9(±1.0)	Å
	73-340	36 Å	21 Å	31.0(±1.3)	Å
	136-340	34 Å	17 Å	28.7(±1.4)	Å
	137-340	32 Å	16 Å	26.7(±1.4)	Å
	136-401	40 Å	24 Å	35.6(±1.3)	Å
	137-401	38 Å	22 Å	33.5(±1.4)	Å
	105-310	34 Å	41 Å	38.0(±1.6)	Å
	164-310	27 Å	43 Å	32.8(±1.4)	Å
	164-375	33 Å	49 Å	35.8(±1.2)	Å
	5.2.2 Domain Motions: Lactose Permease			

5.2.2.1 Structural Description

Lactose permease (LacY) is a transport protein that transduces electrochemical proton gradients into sugar concentration gradients across the cell inner membrane

[START_REF] Kaback | The kamikaze approach to membrane transport[END_REF]

]. LacY is composed of two main domains

[START_REF] Abramson | Structure and mechanism of the lactose permease of Escherichia coli[END_REF]

]: the N-domain involving helices I-VI, and the C-domain involving helices VII-XII. The two domains are connected by a long loop containing more than 20 residues. For carrying out its function, LacY is supposed to alternate between two conformational states: the inward-open state, where the substrate is accessible from the cytoplasm, and the outward-open state, where the access is possible from the periplasmic side. However, only the structure of the inward-open conformational state of LacY has been solved by X-ray crystallography.

  ]. Efficient path planning methods (e.g. [Ferré and Laumond 2004; Aguinaga et al. 2008]), based on the popular RRT algorithm [LaValle and Kuffner

Table 6

 6 

			.1: Algorithm Performance.		
	Example	2D Simple 2D Simple Pentomino Pentomino 2D Narrow 3D Narrow
		Transaltion	Rotation Transaltion	Rotation		
	Nb.Parts	6	6	12	12	3	3
	Nb.DOF	12	18	36	72	9	18
	Ave.Time(s)	0.1	0.16	3.79	6.55	1.65	13.83
	Std.Dev.	0.05	0.14	1.05	1.14	1.29	9.94

  Table 6.2 further investigates the efficiency of this random choice in comparison to best and worst case selections. The Table 6.2: Effect of the Sequence Initialization.

	Model		Nb. Elemental Aver. Nb. Aver. Nb.	Average	Standard
			Motions	Iterations Subpaths	Time(s)	Deviation
	2D Simp Tran	Good-Bad Random	6 6	6-180.95 70.6	6-6.95 6.59	0.08-0.14 0.04-0.12 0.1 0.05
	2D Doub Tran	Good-Bad Random	12 12	12-212.55 12-12.56 180.1 12.51	0.66-0.88 0.06-0.37 0.72 0.2
	2D Trip Tran	Good-Bad Random	18 18	18-318.89 18-21.61 217.26 18.72	3.45-4.52 0.38-0.34 3.84 0.71
	3D Pentomino	Good-Bad Random	12 12	12-68.7 58.7	12-15.96 15.73	4.52-7.73 0.92-1.36 6.55 1.14
	2D Narrow	Good-Bad Random	4 4	4-370.67 36.62	4-158.61 10.95	0.71-1.84 0.29-1.29 1.65 1.29
	3D Narrows	Good-Bad Random	4 4	4-455.54 177.19	4-90.47 19.16	10.1-21.96 4.51-4.56 13.83 9.94

Table 6 .

 6 3: Performance Comparison with Sundaram's Approach.

	Model	Average Time(s) Iterative-MLRRT Sundaram et al.
	2D Simple Tran 2D Simple Rot	0.1 0.16	474
	Pentomino Tran Pentomino Rot	3.79 6.55	21794

Table 6 .

 6 4: Performance Comparison with Fogel's Approach.

	Model	Iterative ML-RRT	Fogel et al.
	Diagonal Star (6 parts)	Clearance (size reduction) Nb convex sub-parts per part 2% 5% 10% 3 5 8
	Aver.Time(s)	49.25 36.83	13.03	4.89 13.62	41.59
	puzzle. Table				

Table 6 .

 6 5: Performance on the Twisted Tetrahedron.

	Example	Nb. Parts Nb. DOF Ave. Nb. Sub-paths Ave. Time(s) Std. Dev.
	Twisted Tetrahedron	6	18	47.7	10.42	13.71

Table 6 .

 6 6: Performance Analysis for Simplified Engine Problems.

	Example	Nb. Parts Nb. DOF Ave. Time(s) Ave. Nb. Sub-paths
	7-part Engine	7	7	23.67	7.83
	15-part Mono Engine	15	22	170.06	15.2
	15-part Non-Mono Engine	15	22	391.68	290.7

  The cbb3-type cytochrome oxidases (cbb 3 -Cox), which are the second most abundant oxidases of the heme-copper oxidase superfamily, can be found in various proteobacteria under microaerobic conditions[START_REF] Sharma | Sequence analysis of the cbb3 oxidases and an atomic model for the rhodobacter sphaeroides enzyme[END_REF][START_REF] Peters | Stability of the cbb3-type cytochrome oxidase requires specific ccoq-ccop interactions[END_REF]]. This enzyme contains four subunits whose assembly information and interactions are still limited (see Fig.7.4 extracted from PDB ID 1QLE[START_REF] Sharma | Redox-coupled proton transfer in the active site of cytochrome cbb3[END_REF]). The biggest catalytic 61 kDa subunit CcoN has up to 14 putative transmembrane helices and binds heme B, where oxygen reduction takes place. Thus, the oxygen affinity of cbb 3 -Cox is about five times higher than that of the other member of its family called aa 3 -type cytochrome oxidase[START_REF] Pitcher | Cytochrome cbb3 oxidase and bacterial microaerobic metabolism[END_REF]. The two other membrane-bound c-type cytochromes (cyt c) (i.e., CcoO and CcoP) whose masses are 28 and 32 kDa respectively have been suggested to be part of the electron transfer chain from the donor cyt c to the catalytic binuclear center located inside the CcoN[START_REF] Sharma | Sequence analysis of the cbb3 oxidases and an atomic model for the rhodobacter sphaeroides enzyme[END_REF]]. The forth subunit CcoQ is comprised of a single transmembrane helix. This subunit is suggested to be necessary for protecting cbb 3 -Cox against high oxygen concentrations under aerobic conditions in Rhodobacter sphaeroides[START_REF] Oh | Oxygen adaptation: The role of the ccoq subunit of the cbb3 cytochrome c oxidase of rhodobacter sphaeroides 2.4.1[END_REF]. Two subunit CcoN and CcoO are common for all heme-cooper oxidases, but the two other ones (i.e., CcoP and CcoQ) are unique for cbb 3 -type cytochrome[START_REF] Sharma | Sequence analysis of the cbb3 oxidases and an atomic model for the rhodobacter sphaeroides enzyme[END_REF]]. Table 7.1: I-ML-T-RRT's Performance on Cytochrome cbb 3 Oxidase.

	Model	Av.Time(s) Std Dev N node N act samp
	Cytochrome cbb 3	46804	19901.47 218 14786
	7.2.1.2 Related Works		
	7.2.1 Cytochrome cbb 3 -type Oxidase	
	7.2.1.1 Structural Description		

Table 7 .

 7 2: Subunit Masses of the Cytochrome bo 3 Ubiquinol Oxidase [Stenberg et al. 2007].

	Subunit	I	II III IV
	Mass (kDa) 75 33 22 12
	processor.		
	7.2.2 Cytochrome bo 3 Ubiquinol Oxidase		
	7.2.2.1 Structural Description		

We use a weighted metric for translation and rotation components, with 3D rotations represented by Euler angles. Note however that the use of unit quaternions will be more appropriate[Kuffner 

2004].

In our implementation, l is a constant with default value equal to 10, and k is computed as n node /100 rounded to the nearest upper integer, where n node is the current number of nodes in the tree. These values have been empirically determined.

We use the probabilistic path shortening method[START_REF] Sekhavat | Multilevel path planning for nonholonomic robots using semi-holonomic subsystems[END_REF]] for path smoothing.

The model of AS with the product molecule in the active site was generated using molecular modeling tools by our colleagues at the LISBP-INSA.
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Algorithm 4: Iterative-ML-RRT input : the model M; the search-space C; the root q init ; output : the disassembly pathway sequence S; begin n iter ← 0; repeat n iter ← n iter + 1; m i ← SelectPart(M);

(P act , P pas ) ← SetPartition(M,C, m i ); τ ← InitTree(q init ); while not StopCondition(τ, MaxTreeSize) do if Construct ML-RRT(M,C, τ, P act , P pas ) then if PartDisassembled(P act , q new ) then break;

q end ← SelectEndConf(τ); if not TooSimilar(q init ,q end ) then s i ← ExtractSubPath(τ, q init , q end ); S ← MergeSubPaths(s i );

until AllDisassembled(q end ) or n iter ≥ MaxIter; if AllDisassembled(q end ) then return S; else return FAILURE; end mainly involves collision avoidance. Nevertheless, constraints on the the number of hands, the possible motion directions, and optimality criteria can also be considered.

In the case of a system M involving n mobile objects m i (i.e. the assembled parts), C is the Cartesian product of the configuration-spaces of all the objects: C = ∏Cm i , i = 1 . . . n. Motions of a single object m a , which we will call active part, take place in a sub-manifold C a j = C m a × q p j , where q p j is a point in a lower-dimensional manifold C m a = ∏Cm i , ∀i = a. This point q p j represents a fixed location of all the other objects, referred to as passive parts. Note that for each value of q p j , C a j corresponds to a foliation leaf of C. Such a foliation F a of C can be made for each object m a ∈ M being selected as an active part.

Starting from a configuration of the whole system q j (initially, q j is the assembled configuration q init ), one part m a can be disassembled without moving other parts if it exists a feasible path in C a j between q j = (q a j , q p j ) and a configuration q sub,a = (q a dis , q p j ), which represents a subassembly with m a extracted from the assembly. Otherwise, disassembling m a will require motions of other parts that can be find by exploring a continuous sequence of adjacent foliation leaves in F a starting from C a j . Considering that parts are moved and disassembled one by one (what is called a two-handed (dis)assembly sequence in related literature), an assembly admits a monotonic disassembly sequence if the path for disassembling each part m a can be found in only one leaf C a j of its corresponding foliation (i.e. F a ) being q j = q init for the first part or q j = q sub,a-1 for the others parts. Here, q sub,a-1 represents a subassembly where all the previous parts in the sequence have been already extracted. Therefore, the minimal number of leaves C a j needed to be explored is equal to the number of parts minus one (the last part does not need to move). For non-monotonic disassembly problems, motions of parts to intermediate configurations that do not correspond with a subassembly are required. Thus, the number of leaves to be explored increases,

Algorithm 5: Construct ML-T-RRT input

: the conformational space C; the initial conformation q init ; the partition {P act , P pas }; output : the tree τ; begin τ ← InitTree(q init ); while not StopCondition(τ) do q act rand ← SampleConf(C, P act ); q near ← NearestNeighbor(τ, q act rand , P act ); if MinExpandControl(q near , q rand ) then P col pas ← PassZoneCol(q near ); q' near ← q near ; while P col pas = / 0 do P mov pas ← PartsToMove(P col pas ); q pas rand ← PerturbConf(C, q' near , P mov pas , q' near .n fail ); (q new , P' col pas ) ← Expand(q' near , q pas rand ); P col pas ← P' col pas \ P col pas ; q' near ← q new ; (q new , P col pas ) ← Expand(q' near ,q act rand ); if q new = NULL and TransitionTest(c(q near ),c(q new ),d near-new ) and not TooSimilar(q near ,q new ) then AddNewNode(τ, q new ); AddNewEdge(τ, q near , q new ); q near .n fail ← 0; else q near .n fail ← q near .n fail + 1; end transition test succeeds, T decreases by the same factor λ (see [START_REF] Jaillet | Sampling-based path planning on configuration-space costmaps[END_REF]] for details).

The adaptive temperature tuning may however lead to bottleneck situations. The temperature T may be stabilized by the insertion of new states very similar to the ones already contained in the tree, whereas the expansion toward new regions of the space would require an increment of T . The insertion of such states only contributes to the refinement of the exploration in regions already reached by the tree. To overcome this drawback, the function MinExpandControl discards node expansion if the distance between the selected state q near and the random state q rand is smaller than the expansion step-size δ . Such a simple filtering avoids an excessive refinement of low-energy regions, therefore facilitating the tree expansion toward new regions of the space.

Preliminary Results

This section presents preliminary results obtained with the proposed method on three biologically interesting systems. The first one is a four-subunit complex called Cytochrome cbb 3 Oxidase, which is the second most abundant oxidases of heme oxidase family is analyzed. The second one is a very similar system: Cytochrome bo3 Ubiquinol Oxidase. The third complex, Homotetrameric Protein Transthyretin, contains four identical subunits. The method was implemented within our software prototype named BioMove3D. The program