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Introduction

Reinforced concrete is perhaps the most widely used material in construction, for all

components from the foundations until the roof in general civil structures, such as the

buildings and bridges, or in special constructions as the dams, the tunnels, the roads and

the runways for takeoff and landing in the airport. The recent development in the field

of finite element computation resulting with very fast codes, with the support of strong

computer, allows that the computation for the complex structure be considered with the

aim to optimize design for both the local, element level (such as for the slab, the beam or

the column) and the global, structural level (frame, walls, shell ...).

The standard design procedure of reinforced concrete frame structures starts with lin-

ear analysis to obtain the corresponding diagrams of stress resultants (bending moment,

shear and axial force), followed by the ultimate analysis of each cross section. The main

disadvantage of such a design procedure concerns the (highly) statically indeterminate

frames, where the failure of each beam or column would not imply the complete failure

of the structure, but would lead to a significant stress resultant redistribution with respect

to the result obtained by linear analysis (see Figure 1).

For that reason, we propose the performance based design procedure where the be-

havior until complete failure of beam-column and frames imposes to consider so-called

plastic hinges corresponding to the zones where plasticity and/ or damage localizes. En-

gineering structures are usually statically indeterminate, so that the total failure of one

member would affect the global response of the structure but it would not lead to a com-

plete loss of the structural integrity. Moreover, being capable of describing the softening

response of the members of one particular structure can provide an estimate of the resid-

ual life of a partially damaged structure. Such a procedure can also help to provide a more

detailed crack description, which is needed to make decisions about the maintenance and

repairs.

Objectives:

The aim of this work is to provide an efficient tool for the optimal design of reinforced

concrete frames under the extreme loading. A multi-scale approach has been adopted.

Three levels of refinement are considered:
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2 Introduction

Figure 1: Standard design procedure and performance based design procedure

• at the global level, a force resultant model has been implemented in a Timenshenko

beam element with strong rotation discontinuity,

• at the semi-gloal level, a uniaxial model has been impelemented in a multi-fiber

beam element with strong discontinuities in the fibers,

• at the local level, a 2D solid modeling of the reinfrced concrete is used, based on

previous works [1] [53], including cracking of concrete and bond slip behavior be-

tween steel and concrete.

Proposed approach:

The non linear response of the whole structure is computed in two steps:

• in the beginning, the moment-curvature behavior of a section of each beam or col-

umn of the frame is computed with the multifiber element (embedded on one end

and with an imposed rotation on the other end), and then the parameters of the

global Timoshenko beam element are identified. Since there is only one element

used for these computations, they are very fast to carry out.

• after that, the reponse of the frame structure can be computed fast by using the three

degree of freedom Timoshenko beam elements with a global model. Since these el-

ements are able to represent the softening of the cross sections and the rotation

discontinuites due to the cracks, it is posible to compute the force redistributions in

a statically indeterminate structure until global failure.

This basic idea needs at least two main improvements:

Stress-resultant models for optimal design of reinforced-concrete frames



Introduction 3

• the influence of the axial force on the bending curvature response must be taken into

account, especially in the columns. It has been done while introducing a parameter

depending on the rate of axial force in the global model.

• when dealing with softening, the size of the elements is of almost importance. Since

the global Timoshenko beam elements model both the spread plasticity/damage

along the element and the discontinuity due to the cracking concentrated at the

middle of the element, the length of an element is guided by the crack spacing in

the structure. This crack spacing is very much related to the bond-slip behavior.

The local 2D model is used to determine this spacing and identify the length of the

softening elements. Moreover, the 2D model is also used to identfy the descending

branch of the global model with proper value of fracture energy considerations.

Thesis outline:

The first chapter of this document presents first the implementation of the strong ro-

tation discontinuity in a Timoshenko beam element to model reinforced concrete frames.

Then it presents the implementation of strong discontinuities in fibers to model the con-

crete cracking in the multifiber beam elements, and to have a reliable and efficient tool

for the identification of the parameters of the global model. Some examples are presented

where the parameters of the global model where identified with constant axial forces.

They are compared to fit the experimental results.

The second chapter focusses on the influence or the variation of axial forces. After an

explaination of the standard code and usual methods, the modification of the yield func-

tions to introduce the axial force are presented. The parameters of the global model are

now functions of the axial force. The improvement of the response of some structures is

shown and compared to test results.

The third chapter first recalls some earlier results on the 2D modelling of reinforced

concrete structures including cracking of concrete and bond slip between seel and con-

crete modeling. It then presents an example how to take into account the crack spacing

for determining the size of the global elements and how to identify the parameters of the

global model taking into account the influence of the bond slip.

Stress-resultant models for optimal design of reinforced-concrete frames
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Chapter 1

Stress resultant and multi-fiber beam

model for bending failure

In this chapter, we present a new finite element for Timoshenko beam model for ultimate

load computation of reinforced concrete frames. The proposed model combines the de-

scriptions of the diffuse plastic failure in the beam-column followed by the creation of

plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified

multi-scale analysis is performed in order to identify the parameters for stress-resultant-

based macro model, which is used to described the behavior of the Timoshenko beam

element. The micro-scale is described by using the multi-fiber elements with embedded

strain discontinuities in mode 1, which would typically be triggered by bending failure

mode.
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6 Stress resultant and multi-fiber beam model for bending failure

1 Introduction

Many works on this point focus on the evaluation of the ultimate load but only a few

works are concerned by the evaluation of the residual life, especially for reinforced con-

crete beam. Several previous research works consider the appearance of plastic hinges

in structure works (for example see [3] [4] [5] [10] [11] [12]), but in some simpler cases

when the macro element consists of the homogenous materials, such as the steel. Some

others (see [7] [8] [9]) set to find the limit load in the plates using steel or reinforced

concrete materials. The computation after the ultimate load value is reached for one

component is still not considered, nor was the use of the embedded strain/ deformation

discontinuities method. In this chapter, we extend to being the theoretical formulation

that was developed developed for continuum elements in [1] [2] [6], where we can find

and use the research results about strain discontinuity and the incompatible modes present

development.

We would like to mention a model in the research of F. Armero and D. Ehrlich (see

[5]) about the problem, namely, Numerical modeling of softening hinges in thin Euler-

Bernoulli beams, in which all of the displacement discontinuities in the macro beam el-

ement are considered as in Figure 1.1. This model also describes the general effect of

softening hinges in the frame structure of homogenous material as well as the embedment

of the combination of moment and axial force in the yield function for ability to carry out

the complex loads in structure. However, the moment and axial force are expressed by

the simple relationships in the yield function, and they are really useful to compute the

structure used the steel material in particularly or homogenous material in generally.

Figure 1.1: Displacement discontinuities in the Euler-Bernoulli beams

In this chapter, we propose a method for the computation of Timoshenko beam in-

cluding a rotation discontinuity. Quite similar to the Strong Discontinuity Approach de-

veloped previously for 2D or 3D problems. We introduce a new interpolation function

and a related local parameter for describing the rotation discontinuity introduced at the

middle point of element implementation as discussed in Section 2.
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Embedded rotation discontinuity for Timoshenko beam 7

!

These values of rotation displacement and  flexures in one element Figure 1.2: Rotation and curvature discontinuity description in the beam element

In order to describe the softening behavior of the hinge, a relation of bending mo-

ment/rotation is introduced at the discontinuity. Moreover, in order to identify the pre-

cise form and corresponding parameters of this relation in the case reinforced concrete

members, we propose a multi-scale type analysis. The fine behavior of the member is

computed using a multi-fiber element analysis, where each concrete fiber is considered as

a bar element enriched with strain discontinuity and the compression phase different from

the tension phase. The behavior of re-bars fibers is also considered as the bar elements

with embedded strain discontinuity in two phase of compression and tension. From this

micro-scale analysis, we can identify the parameters of the bending moment/rotation re-

lationship introduced on the hinge at the macro level. We also present the combination of

all fibers in one element, this procedure is presented in details in Section 3.

In Section 4, a method for obtaining the parameters as the tangent modulus and limit

values of bending moment Mc My Mu and corresponding curvature κc κy κu is presented.

It also includes the numerical application for two specific examples, a three point bending

beam and a two-storey reinforced concrete frame. Finally, in the last section, some chapter

conclusions are given.

2 Embedded rotation discontinuity for Timoshenko beam

We present in this section the main ingredients allowing to embed a rotation discontinu-

ity in Timoshenko beam-column elements. Particular attention is paid to the kinematic

enrichment and the modification of the weak equilibrium equation. We also give some

details on the finite element implementation of such a method. At the end of this section,

some threshold functions used in computation of the stress-resultant beam macro model

are presented.

Theoretical formulation and numerical implementation

Stress-resultant models for optimal design of reinforced-concrete frames



8 Stress resultant and multi-fiber beam model for bending failure

Figure 1.3: Moment-rotation behavior at the discontinuity point of beam element

We introduce a Timoshenko beam-column with different kind of external loads and

imposed displacements: f (x), q(x), m(x) are considered as the distributed loads along the

beam-column element and F, T, C are considered as the concentrated loads, axial force,

transversal force and moment. In Figure 3.10, u v will denote the axial and transversal

displacements of the mean line of the beam-column element and θ the rotation of its cross

section. Point Γd and point Γt are considered as the imposed displacement points and

concentrated loads as the boundary conditions. With this notation in hand, the strong

form of equilibrium equations and kinematic formulations for the case 2D of Timoshenko

beam-column can be written as follows:

Figure 1.4: Timoshenko beam-column element with different kind of external loads

Equilibrium equations in stress resultants:

dM

dx
+T (x)+m(x) = 0;

dN

dx
+ f (x) = 0;

dT

dx
+q(x) = 0; (1.1)

Stress-resultant models for optimal design of reinforced-concrete frames



Embedded rotation discontinuity for Timoshenko beam 9

Kinematics of Timoshenko beam

εx =
dUx

dx
;γx =

dVx

dx
−θx;κx =

dθx

dx
; (1.2)

The constitutive equations for stress resultant, axial load, shear load and bending mo-

ment

N =EAε

V =kGAγ

M =EIκ

(1.3)

Considering further for this problem the finite element aspects, the 2D beam-column

element with two nodes is chosen, with the length le. The point xc is placed in the middle

of element to describe kinematic enhancement (see Fig. 1.5 below). The classical dis-

placement field based on the linear interpolation functions can be described

!

"#$!%&'(!&)&(&*+!,*!+-&!.//01,*'+&!232+&(!#4!
Figure 1.5: 2D bar element and shapes of the interpolation functions

U(x) = N1(x)U1 +N2(x)U2 = N(x)u

V (x) = N1(x)V1 +N2(x)V2 = N(x)v

θ(x) = N1(x)θ1 +N2(x)θ2 = N(x)θ;

where N1(x) = 1− x

le
; N2(x) =

x

le

(1.4)

With the purpose of embedding the rotation discontinuity in the rotational function,

the incompatible mode method [6] is used to enrich the classical rotational displacement

interpolation. Rotational function in (1.4) can thus be re-written as

θ(x) = N1(x)θ1 +N2(x)θ2 +N3(x)α or

θ(x) = N1(x)θ1 +N2(x)θ2 +(HΓ −N2(x))α
(1.5)

In the last expression we used the Heanside function HΓ, described as HΓ =

{

0 if x < 0

1 if x > 0
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10 Stress resultant and multi-fiber beam model for bending failure

With a new interpolation function for the rotation in hand, the regular part and the

singular part are separated. The curvature κ of the element can be also decomposed into

a regular part and a singular part and written as

κ(x) = κ(x)+αδx(x) (1.6)

In the spirit of incompatible mode method, (see [1] and [6]), the added part N3(x)α
is used only for the construction of enrichment in the curvature interpolation. Hence, the

new form of element deformations can be now written as

ε(x) = Bu

γ(x) = Bv−Nθ

κ(x) = Bθ+Grα

(1.7)

where B is {− 1
le ; 1

le} and Gr is d
dx

N3(x). The term N3(x) in (1.5) is described for the

discontinuity part, which implies that Gr in (1.7) can also be decomposed into a regular

part Gr and a singular part Gr

Gr = Gr +Gr (1.8)

with Gr =− 1
le and Gr = δx(x). We denote {ε}T = [ε γ κ] as the beam-column deformation,

with the general deformation form that can be expressed as ε = BD+Grα with

B = (B1, B2); with Bi =





dNi

dx
0 0

0 dNi

dx
−Ni

0 0 dNi

dx



 ; (1.9)

The enhanced interpolation Gr of bending strain can be expressed as the matrix form

correlated to the components of deformations:

Gr =





0

0

− 1
le



+





0

0

1



δXc

We also denote with {d}T = [U1 V1 θ1; U2 V2 θ2] the displacement vector of the beam-

column element and with d∗ its variation.

From those interpolations, the virtual displacement field of the beam-column element

is written as {d∗}T = [u∗ v∗ θ∗ ], and assumed to be kinematically admissible i.e equal to

0 at the point Γd . The virtual deformation field is denoted as η∗ = Bd∗ + Gvβ∗, where

Gv is deduced from Gr by imposing the patch test
R le

0 Gvdx = 0. Following the idea

presented in [6], we propose to choose Gv = Gr − 1
le

R le

0 Grdx. Note that Gv can be also

decomposed into regular and singular parts, Gv = Gv +GvδXc, where G
T
v =

[
0 0 − 1

le

]

and G
T

v =
[

0 0 1
]
.
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Embedded rotation discontinuity for Timoshenko beam 11

Appealing to the incompatible modes method introduced in [1] and [6], the weak form

of the equilibration equation can be written for two levels, global concerning all the nodes

∀d∗ of the chosen mesh and local concerning all the elements ∀β∗

Z le

0
d∗T BT





N

T

M



dx−
Z le

0
d∗T NT





f (x)
q(x)
m(x)



dx−
Z

Γ
d∗T NT





F

Q

C



dΓ = 0; ∀e

Z le

0
β∗G

T
v





N

T

M



dx−
Z le

0
β∗G

T

v





N

T

M



δXcdx = 0; ∀e

(1.10)

The second of equations in (1.10)- the local equation- is written only in each element

where plastic hinge occurs. The main contribution of this equation is control the amount

of the rotation jump α, decoupled from element to another. This local equation can be

interpreted as a weak form of the bending moment continuity condition across the discon-

tinuity.

Finally, we can obtain the following system with reducing the components of N and

T in the second of equations (1.10)

Anel
e=1

[

f int(e)− f ext(e)
]

= 0;

he = 0; ∀e ∈ [1,nel]
(1.11)

Where A is the finite element assembly procedure and

f int(e) =
Z le

0
BT





N

T

M



dx;

f ext(e) =
Z le

0
NT





f (x)
q(x)
m(x)



dx+
Z

Γ
NT





F

Q

C



dΓ;

he =
Z le

0
G

T
v Mdx+M(x=xc)

(1.12)

We can consider the case where the material outside the discontinuity is non-linear,

with a constitutive equation of the form

σ̇ = Dinε̇ = Din(Bḋ +Grα̇); with {σ}T = [N,T,M] (1.13)

and the moment-rotation jump relation can be written as

Ṁxc
= Kxc

α̇ (1.14)
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12 Stress resultant and multi-fiber beam model for bending failure

For such a case the equations (1.11) can be written in the incremental form

Anel
e=1

[

Ke△d +Fr△α− f ext(e)
]

= 0; and

FT
v △d +H△α+Kxc

△α = 0 ∀e ∈ [1, nel]
(1.15)

where

Ke =
Z le

0
BT DinBdx; Fr =

Z le

0
BT DinGrdx

Fv =
Z le

0
BT DinGvdx; H =

Z le

0
G

T
v DinGrdx

This set of equations is solved by using the operator split method, (see [1]). Namely,

we first solve local equation in each localized element for a fixed value of total displace-

ment d, so that we can determine the value of the rotation jump α. Then by static conden-

sation at the element level, the first equation in (1.15) turns into

Anel
e=1

[

K̂e△d − f ext(e)
]

= 0; with K̂e = Ke −Fr(H +Kxc
)−1FT

v (1.16)

The solution to (1.16) will give the corresponding displacement increment and a new

value of the displacement d.

We assume in the following that the axial and transverse responses of the beam mate-

rial remains elastic. As regards the bending moment and as suggested previously, we use

two different stress-resultant models (see Figure 3.13):- a stress-resultant elasto-plastic

model with two linear hardening phases to deal with the bulk behavior; - and a rigid-

plastic model with linear softening to deal with the formation and development of plastic

hinges.

Four yield functions are thus introduced to process the beam material behavior :

ΦM(M,ζM
i ) : = |M|− (Mi +KiI.ζ

M
i ) 6 0

if i = 1 :hardening phase 1 ⇒ Mi = Mc; Ki = K1 and ζM
i = ζM

1

if i = 2 :hardening phase 2 ⇒ Mi = My; Ki = K2 and ζM
i = ζM

2

if i = 3 :softening phase ⇒ Mi = Mu; Ki = K3 and ζM
i = ζM

3

if i = 4 :complete rupture ⇒ Mi = 0; Ki = 0 and ζM
i = ζM

4

where Mc , My , Mu denote the cracking moment, yield moment and ultimate moment. I
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Embedded rotation discontinuity for Timoshenko beam 13

Figure 1.6: Moment-Curvature relation for stress resultant macro model

denotes the cross-section inertia and Ki denote the different hardening/softening moduli.

We can note that Kxc
introduced previously is equal to K3I. In the next section, a method

for obtaining the values Din, Ki and Kxc
will be described in more detail and the multi-fiber

beam model will also be introduced.
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14 Stress resultant and multi-fiber beam model for bending failure

3 Multi-fiber beam model with embedded strain discon-

tinuity in fibers

In this section we present shortly about the multi fibers beam model, which provides the

basis for identifying the parameters of stress resultant model. This multi-fiber model is

helpful to analyse and handle a beam-column with multi materials embedded in one cross-

section in general or for reinforced concrete in particular. In this method, we also present

the steps for embedding strain discontinuity in each fibers, including concrete fibers and

steel reinforced fibers. The constitutive laws of concrete and steel are introduced as the

corresponding Elasto-Plastic material models with softening.

3.1 Multi-fibers beam model

The beam in Fig. 1.7 is introduced as the fine micro scale beam model used to explore

the details of inelastic constitutive behavior of material such as the reinforced concrete.

The analysis of this kind is quite equivalent to nonlinear homogenization,which will pro-

vide the best possible definition of (’macro’) stress resultant beam model. The analysis is

carried out on the built-in beam with the length L, divided in a number of elements with

length le. The beam rectangular cross-section with the width b and the depth h is divided

into a number of concrete fibers and reinforced fibers. The coordinate yi denotes the dis-

tance from the neutral line to the centre of a given fiber. This beam is further submitted

to a loading program with a constant value of axial force N and an increasing value of

moment M applied at free end.

For each fiber we can obtain its axial and shear strains depending upon the element

displacements, which include the axial displacement Ux and the rotation displacement θx

corresponding to the couple N and M

εi
x =

dUx

dx
− yi

dθx

dx
; 2εi

xy =
dVx

dx
−θx (1.17)

In accordance to the material behavior, the stresses in each fibers can be written as

σi
x = Dinεx; σi

xy = 2Ginεi
xy (1.18)

The corresponding values of stress resultants in each cross section can be computed

by summing up all stresses in fibers; we thus obtain the axial force N, the shear force V

and the bending moment M defined as

N =
Z

S
σxdS; V =

Z

S
σxydS; M = −

Z

S
y2σxdS; (1.19)
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Multi-fiber beam model with embedded strain discontinuity in fibers 15

Figure 1.7: Considered beam and fibers in the element

3.2 Embedding strain discontinuity in fiber

Each fiber of this beam element can be considered as a truss-bar element, for which the

stress-strain behavior is selected as either concrete or steel material. For any fiber placed

at any point in the cross section, we will consider that the strain discontinuity can be

embedded (see [1] and [2]). The fiber axial strain can be split into the regular part and

singular part

εi
x = εi

x +αiδi
xc

(1.20)

If the fiber response is non-linear, the fiber strain depends on element displacement

and fiber strain discontinuity parameters αi, this can be written as

εi
x,t =

2

∑
a=1

Bada,t + G̃αi (1.21)

From each fiber strain, the stress can easily be computed by multiplying with tangent

modulus of material

σi
x,t = Ĉεi

x,t = Ĉ

[
2

∑
a=1

Badi
a,t + G̃αi

t

]

(1.22)
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16 Stress resultant and multi-fiber beam model for bending failure

Thanks to the standard kinematic hypothesis for Timoshenko beam, the displacement

di
a,t in each fiber is computed from the nodal displacement of beam element as well as the

fiber coordinate yi, ḋi
x = U̇x −yiθ̇x. The stress computed in each fiber is used to obtain the

corresponding contribution to the stress resultant internal force. Moreover, this stress has

to satisfy the local equivalent equation, which is solved in each localized fiber with a fixed

value of displacement di
x,t , where αi

t is the axial displacement jump of fiber level, whereas

t(α f ib) is considered as the corresponding stress value at the discontinuity point Xc. The

latter can be expressed as a function t = KXcα, where tangent modulus KXc is dependent

on the type of fiber material. The threshold function Φ(t,q) := |t|− (σy −q) 6 0 is used

to manage the stress t, with only zero value indicating further changes

f f ib,int =
Z l f ib

0
BT σ(d,α f ib)dx

he, f ib =
Z l f ib

0
G̃T σ(d,α f ib)dx+ t(α f ib) = 0

with ∀e ∈ [1,nelmt ] and ∀ f ib ∈
[
1,m f iber

]

(1.23)

3.3 Assembly of all fibers in a beam element

Assembly of all fibers in a beam element is process by which the program computes

the internal forces N, V , and M, and then proceeds to the residual computation, which

is repeated for each iteration. In the computation process, the internal energy and the

total dissipation are always assured with the equivalence between element level and multi

fibers level. The description of equivalence for the internal energy can be described as

Ψelmt =
n f ib

∑
i=1

Ψ
f ib
i (1.24)

and the equivalence of dissipation can be expressed as, where the subscripts elmt and f ib

indicates, respectively, a particular element and a particular fiber

Delmt =
n f ib

∑
i=1

D
f ib
i (1.25)

On other hand, the contribution in the internal energy or the dissipation at global level

should be matched by the energy of the external forces, such as axial force, shear force,

and bending moment, denoted with subscripts N, V , and M, respectively.

Ψelmt = ΨN
elmt +ΨV

elmt +ΨM
elmt

Delmt = DN
elmt +DV

elmt +DM
elmt
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Multi-fiber beam model with embedded strain discontinuity in fibers 17

In the presence of the dissipation at the fiber level, both internal energy and dissipation

can be split into a regular part and a singular part, (see [2]).

Ψ
f ib
i (ε,ζ,ζ) = Ψ

f ib

i (ε,ζ)+Ψ
f ib

i (ζ)δxc

D
f ib
i =

Z le

0

[

σ f ibε̇p +q f ib ˙
ζ
]

dx+

[

q
f ib ˙

ζ

]

|xc

The first part affects all the points along the fiber and the second part affects only the

discontinuity point Xc, placed in the middle of fiber. With two independent parts in fiber

level, the internal energy and dissipation of the element level can be also written with a

split between the regular and the singular part:

Ψelmt = Ψelmt +Ψelmt

Delmt = Delmt +Delmt

(1.26)

The regular parts of internal energy and dissipation at element level can be written as

Ψelmt =
n f ib

∑
i=1

Ψ
f ib

i (ε,ζ); Delmt =
n f ib

∑
i=1

Z le

0

[

σ f ibε̇p +q f ib ˙
ζ
]

dx

and the singular part of internal energy and dissipation at element level can be written

from the sum of singular parts at fiber level as

Ψelmt =
n f ib

∑
i=1

Ψ
f ib

i (ζ)δxc; Delmt =
n f ib

∑
i=1

[

q
f ib ˙

ζ

]

|xc

We can thus conclude that if the local failure appears in any element fiber, concrete or

reinforcement, this local failure phenomena will accounted for at the element level.

The element stiffness matrix form can be presented as

[Kelmt ] =
Z le

0
[B]T [Ks] [B]dx (1.27)

Where axial and bending terms are coupled, whereas the shear term remains uncou-

pled. The section stiffness Ks can be written as in the matrix form with components

corresponding to three displacement vectors U , V , and θ

[Ks] =





Ks11 0 Ks13

0 Ks22 0

Ks31 0 Ks33




Ks11 =

R

S EdS Ks22 = k
R

S GdS

Ks33 =
R

S y2EdS Ks13 = Ks31 = −R

S yEdS
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18 Stress resultant and multi-fiber beam model for bending failure

That process can start from the first step of forming the section stiffness followed

by the second step to compute the integrals along the element length to finally obtain

the stiffness matrix Kelmt . We use such method to compute two components of element

stiffness matrix K11
elmt and K22

elmt , but the component K33
elmt corresponds to the rotational

displacement and can be computed in somewhat modified way as

K33
elmt =

Z

S

[

K f ib −FT
f ib,V H−1

f ibFf ib,R

]

dS

=
Z

S

[
K f ib

]
dS−

Z

S

[

FT
f ib,V H−1

f ibFf ib,R

]

dS

(1.28)

In the second form of the beam tangent stiffness in (1.28), the first term can be ob-

tained from the classical method and the second term corresponds to the effect of rota-

tional discontinuity. All contribution of the particular fiber to the element stiffness matrix

K33
elmt can be computed as:

K f ib =
Z le

0
BT

a (Ĉ f ibA f ib)y
2
f ibBadx; Ff ib,V =

Z le

0
BT

a (Ĉ f ibA f ib)y
2
f ibGdx

Ff ib,R =
Z le

0
G

T
(Ĉ f ibA f ib)y

2
f ibBadx; H f ib =

Z le

0
G

T
(Ĉ f ibA f ib)y

2
f ibGdx− (K f ibA f ib)y

2
f ib

Two components G and Ba can be used as the same as those in (1.8) and (1.9). The

parameters Ĉ f ib and K f ib can be obtained from the material properties. The cross area

of fiber A f ib and the distance from the neutral line to the fiber centre y f ib pictured in the

Fig.3.1

3.4 Constitutive laws of the concrete and the steel

In this part we present two constitutive models for concrete and steel materials referred to

as Elasto-Plastic-Softening (EPSM). Either model is developed to include the strain dis-

continuity introduced in the previous section 3.2, ([2]). In the constitutive law of concrete,

the compression phase and the tension phase are different. For the concrete material, the

Young modulus is denoted as Eb, the ultimate stress and the plastic stress in the compres-

sion phase are denoted as f ′c and fyc, the ultimate stress in the tension phase is denoted as

ft . All these values of stress are correlated with the different strains εu, εy and εt , which

can be obtained from the simple tests of the concrete sample.

For clarity we picture the concrete model with the stress/strain relation described in

Fig.3.4. We denote with K1 the hardening tangent value of the compression phase, and

with K2 andK3 we denote for the softening phases in compression and tension. In the
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Multi-fiber beam model with embedded strain discontinuity in fibers 19

computation, they are used as the negative values ( see [2]).

All values of the Young modulus, strength, tangent modulus for both hardening and

softening phases are also compared to the other model. In the tension phase, no hardening

part is considered. Therefore, the stress reaching the ultimate value ft , will trigger the

softening response with the tangent modulus K3 < 0.

Figure 1.8: Behaviors of concrete and steel

In numerical computation, the plasticity model with combined hardening and soft-

ening [2] is applied for representation of the concrete constitutive laws. There are two

different yield functions used in the compression phase hardening and softening along

with the yield function governing the tensile failure. All these yield functions are defined

below:

Φc(σ,ζi) : = |σ|− (σc
i +K

c
i ζi) 6 0

if i = 1 :hardening ⇒ σc
i = σc

y; K
c
i = K

c
1 and ζi = ζ1

if i = 2 :softening ⇒ σc
i = σc

u; K
c
i = K

c
2 and ζi = ζ2

if i = 3 :rupture ⇒ σc
i = 0; K

c
i = 0 and ζi = ζ3

(1.29)

The compression and the tension phase of concrete response do not have the same

number of yield functions, this is not the case for reinforcement constitutive model, where

two yield functions are used for both compression and tension, with hardening and soft-

ening part.

Φt(σ,ζi) : = |σ|− (σt
i +K

t

iζi) 6 0

if i = 1 :softening ⇒ σt
i = σt

y; K
t

i = K
t

1 and ζi = ζ1

if i = 2 :rupture ⇒ σt
i = 0;K

t

i = 0 and ζi = ζ2

(1.30)
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20 Stress resultant and multi-fiber beam model for bending failure

The main applications we are targeting by this model concern the ultimate load com-

putation under a quasi-static monotonically increasing loading, so that the effect of dam-

age induced change of elastic properties of the concrete is not considered fortunate {we

refer to Ibrahimbegovic, Jehel and Davenne [2008] for the model that can combine plas-

ticity with damage model and thus represent all mechanisms}. Under flexural loading,

some fibers close to the mean line of the cross section may change the stress state from

the compression with a activated compression damage limit to tension were new damage

will get activated. In order to accommodate those mechanical phenomena, we can present

the general equation of deformation including the particular strain discontinuity in each

phase, which allows to combine damage in compression with damage in tension.

εi
x,t =

2

∑
a=1

Bada,t +G(αi,c +αi,t) (1.31)

In (1.31), the value αi,c always remains negative, but the value αi,t is positive indepen-

dent time. When the tension state in the fiber is active, αi,t changes, but the compression

state or the value of αi,c is kept constant. The reversal process is done when the compres-

sion state in the fiber is active with αi,c changing and αi,t kept constant.

The second material model is used for reinforcement steel. The constitutive laws of

steel in this paper is different from that of concrete. Each of the compression and tension

phases are described by the same threshold functions. The hardening/softening variables

ζi, the trial stress σ and hardening/softening parameters are used with the same values for

both phases leading to:

Φ(σ,ζi) : = |σ|− (σi +Kiζi) 6 0

with i = 1 : hardening phase ⇒ σi = σy and Ki = K1

with i = 2 : softening phase ⇒ σi = σu and Ki = K2

with i = 3 : rupture phase ⇒ σi = 0 and Ki = 0

(1.32)

Typical values of material parameters for both concrete and steel fibers used in com-

putations are defined in the next section, dealing with numerical examples.

4 Numerical examples

In this section, we describe the results obtained in two numerical examples: the first

considering the three point bending test of a simple beam and the second dealing with the

limit load analysis of two-storey frame. The geometric and material properties of both

concrete and steel of the simple beam and frame are taken from [3] and [4].
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4.1 Reinforced concrete simple beam

The beam used for test is of rectangular cross-section b×d = 20×50cm and the length

L = 5m. Two reinforcement longitudinal bars of diameter φ = 8mm are placed at the

top side, and two with diameter φ = 32mm are placed at the bottom side of the cross

section. The concrete material parameters used in this example are the same as those

in [3], (see Fig.3.4). Young’s modulus Eb = 37272MPa, fracture process zone thresh-

old f ′y = 30.6MPa, compressive strength f ′c = 38.3MPa, tensile strength fct = 3.727MPa,

hardening modulus in compression K1 = 9090MPa, softening modulus in compression

K2 = −18165MPa and softening modulus in tension K3 = −30000MPa.

The steel reinforcement material parameters chosen for this computation are: Young’s

modulus Es = 200000MPa, yield stress fys = 400MPa and t = Et/Es = 0.0164. The

stirrups with the diameter φ = 8mm and the distance a = 100mm are placed along the

beam. Detailed plan of the reinforcement is presented in Fig.1.9

Figure 1.9: Reinforced concrete beam in computation

In the experiment, the beam is loaded by the vertical force P applied at the middle of

the beam, with the load increasing from zero to the ultimate value. However, in actual

computations, we would also like to represent the post-peak response of the beam under

ultimate load. Therefore, we choose a model for half of the beam (see Fig.1.10) and carry

out the analysis under displacement control.

Figure 1.10: Beam diagram in computation

More precisely, we impose the increments of vertical displacement, along with the

zero value of the rotation of the middle of the beam. With the length of the beam L = 5m
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22 Stress resultant and multi-fiber beam model for bending failure

divided into 16 elements length is Le = 0.3125m for each element. The relation between

vertical force and vertical displacement is established and compared for three computa-

tional models: 1- Multi-fibers, 2- Macro element, and 3- the result from Code-Aster.
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Figure 1.11: Relation of reaction and vertical displacement

In the first computation, the multi-fibers model divides the cross-section of the beam

into 20 layers of concrete, and 4 discrete fibers of steel placed at the exact position of

steel bar. The relation for force/displacement computed by the stress resultant model is

presented as the thin solid line. The result of the Code-Aster computation with another

fiber model [4] is also re-introduced as the dash-dot line.

In order to obtain the moment-curvature relationship that will be used for the stress

resultant macro element computation, a representative beam element is chosen in terms

of a console (see Fig.1.13), such an element has the length, the cross-section and mate-

rial properties the same as all of the multi-fibers beam with the length Le = 0.3125m, the

cross-section b× d = 20× 50cm, and 2 steel bars φ8mm at the top, and 2 bars φ32mm

at the bottom side of the cross section. In this representative beam element, there is

no effect of the axial force, so it is only the imposed rotation that is used to define the

moment-curvature response. From the computed moment-curvature diagram for the rep-

resentative beam element, we can easily define the corresponding moment threshold to be
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employed for macro model computation. In this case it is easy to determinate the cracking

moment value Mc = 37.9KNm with the tangent value K1 = 29400MPa, the yield moment

value My = 268KNm with the tangent value K2 = 172MPa and the ultimate moment value

Mu = 282KNm with the tangent value of softening phase K3 = −40800MPa. Those val-

ues are further applied to the macro element, used for the computation of the vertical

force-displacement diagram for the original reinforced-concrete beam. Those computa-

tions are carried out by computer code FEAP (see [14]) and the results are presented by

thick solid line in Fig.1.11.

We note that the vertical force-displacement relationship for both multi-fiber or macro

element can be solved up to the complete rupture point, while in the Code-Aster the

computation can only reach the ultimate value. This is due to the enhanced kinematics

and embedded discontinuity for representing the post-peak response by either multi-fiber

or stress resultant macro beam element. Moreover, the macro element with embedded

rotational discontinuity permits the problem to be solved with lower cost and quite com-

parable quality of the global result, which indicates its potentially great value for design

procedure.

4.2 Two-storey frame ultimate load computation

In the second numerical example, we consider a reinforced-concrete frame with two

floors and one span. The dimensions of the frame are detailed in the fig.1.12. The cross-

section of both column and beam is b× d = 30× 40(cm), . In both beam and column,

4φ20mm of the longitudinal bar are placed at each side, and the stirrups φ10mm at the dis-

tance a = 125mm are used along to the length of span and the height of two-storey. This

example is based on the experiment presented in [3]. Two fixed vertical forces P = 700KN

are applied at two nodes on the top of the frame representing the effect of the dead load.

The lateral force is imposed on one side at the top node with the values increasing from

zero to the time of the complete collapse of the frame.

The finite element model used in the numerical computations is as follows: each col-

umn with the height h = 2m is divided into 8 elements with Le = 0.25m and each beam

with the length L = 3.5m is divided into 14 elements with Le = 0.25m. The concrete has

compressive strength f ′c = 30MPa, tensile strength fct = 1.8MPa, modulus of elasticity

Eb = 28,600MPa. All the details on material parameters and geometry for the test can be

found in [3].

For obtaining the transversal force-displacement diagram by the multi-fiber model

computation, the cross-section is divided into 20 layers of concrete. In the cross-section

are embedded 8 fibers of reinforcement steel, 4 on each side. The dimensions of cross

section can be seen in Fig.1.12. The result of this computation is obtained by FEAP pro-

gram, and the relation of lateral load versus deflection at the top storey of frame can be

described by the hidden line in the Fig.1.16 and be compared to the dash-dot line of the
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result of experiment.

In the computation using the stress resultant macro model, we also use two small

secondary computations on the console very much the same as in the first example, ex-

cept for the cross-section b×d = 30×40(cm) and the length of element Le = 0.25m for

the frame case (see Fig.1.13). The first computation is carried out to find the relation of

moment-curvature of the beam macro elements, when only moment with no axial force

is applied, M 6= 0 and N = 0. The second computation is performed to obtain the relation

of moment-curvature of the column macro element, where there are combined effects of

moment and of axial force, M 6= 0 and N 6= 0. In this particular case, the column is first

loaded by a constant axial force N = 700KN followed by imposed moment. The results

for moment-curvature relationship is given in Fig.1.14 for both cases.

Figure 1.12: RC frame diagram in computation and experiment

The values of crack moment, yield moment and ultimate moment correspond to the

values of flexions at the points of crack, yield and ultimate. We can apply all to the macro

model to compute the macro frame. There are two kinds of section applied, one for the

beam and one for the column. With the fixed value of the axial force N = 700KN in

the column computation, despite that both column and beam have the same section, we

obtain all of the limit values of moment in the column much higher than those in the beam.
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Figure 1.13: Elements to compute beam and column
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Figure 1.14: Relation of moment-curvature for representative beam and column

All the results for the frame computation for two cases obtained with multi-fiber and

macro models, are computed by FEAP program (see [14]). In Fig.1.15, relation of trans-

verse force and rotational displacement is presented. By the time steps, the plastic hinge

group appears following in order in this case that the first plastic hinges appear in the

elements number 1 and 17, where exist the axial force and the highest bending moment;

the second plastic hinge group appears at two ends of the first beam of frame, elements

number 33 and 46, where exist just only the bending moment; and the third group appears

at two ends of the top beam of frame, the elements number 47 and 60.
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Figure 1.15: Rotational displacement of frame

The relation of lateral load-displacement of the macro computation is expressed also in

Fig.1.16 with the continuous line to compare to the cases of experiment and multi-fibers.

In fact, while the lateral load is increasing, the values of axial force in each columns are

changed. The axial force of two columns on the left of frame will be decreased by the

appearance of traction forces, while the axial force of two remaining columns on the right

of frame will be increased by the appearance of compression forces. Further more, in

the multi-fiber model computation, the change of axial force in the element is counted

to affect to the change of bending moment, because of the change of stress in the fibers.

The value of bending moment in this case is computed from the integral the stress in all

fibers multiplied with the distance of fiber to neutral line. In the macro model, the axial

force in the columns is also changed following the change of lateral load, but the relation

of moment-curvature does not change, so there remain a difference in the comparison

between multi-fiber model and macro model.
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Figure 1.16: Relation of lateral load versus deflection at top storey of frame

5 Conclusions

In this work we have developed the stress-resultant (macro) beam element suitable for the

ultimate limit state computation of reinforced-concrete frames. The parameters of such a

model can be given very classical interpretation, such as the first cracking moment, the

yield moment and the ultimate moment, which all affected both by concrete and rein-

forcement. The model assumes different hardening regimes until the ultimate moment is

reached and a subsequent softening regime.

The latter leads to localization phenomena, or a plastic hinge creation that leads even-

tually to reducing the bending moment to zero once the corresponding fracture energy

is applied. The plastic hinge requires a special finite element implementation where the

standard Timoshenko beam element has to be enriched by the corresponding rotational

discontinuity. This provides the most reliable representation of the failure mechanism in-

dependent on the chosen Timoshenko beam length.

We also present a multi-fiber (micro) beam model, where the beam cross-section can

be split into a number of either concrete or steel reinforcement fibers. Each fiber is then

assigned the corresponding constitutive model, which allows to obtain the adequate value

of stress for the strain defined in accordance with the Timoshenko beam kinematics and
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the position of a particular fiber with respect to the neutral axis of the Timoshenko beam.

The concrete fibers are assigned different laws in tension and compression, characterized

by the standard concrete parameters, such as: ft− concrete tensile strength, fc− concrete

compressive strength and fcy− concrete micro-cracking and fracture process zone cre-

ation.

The steel parameters are also quite standard, such as the yield stress σy and the ul-

timate stress σu. It was shown that the present multi-fiber model can provide quite reli-

able interpretation of the corresponding parameters for stress-resultant model. These two

models can thus be used interchangeably in order to provide the most suitable and the

most efficient computational procedure for the ultimate limit state of reinforced concrete

frames, which could eventually lead to more reliable design procedures for this kind of

structures.
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Chapter 2

Stress resultant and multi-fiber beam

model for combined axial force and

moment

In this paper, we present the combined axial force and bending moment ultimate load

computation, which continues the developments in the first part dealing with beam bend-

ing failure. We first review the pertinent formulations and assumptions in Euro Code 2

(EC2) used for predicting the relation between axial force and ultimate moment in the

rectangular cross section of reinforced concrete column. As a more reliable alternative,

the more realistic properties in material constituents of concrete and reinforcement were

considered and applied in this along with the multi-fiber section mode. The modified

stress-resultant beam macro model based on Timoshenko beam theory in the first part

could also express the appearance and behavior of plastic hinges or mechanic failure in

reinforced concrete frame, in the presence of axial force. In order to obtain a better and

more flexible stress-resultant macro model, which can compute the column element with

both the changes of moment and axial force. Beside rotational discontinuity embedded

for describing the mechanical failure in frames, some functions expressing moment-axial

force relation are needed for the model. The modified multi-fiber model introduced in the

first part was used to compute and identify the new model parameters, by which we could

create the moment and axial force relation. Several numerical examples are presented in

order to illustrate the main differences between the new model compared to the previous

model for beam bending failure and also the new model capabilities for dealing with the

beam-column failure problem successfully.
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1 Introduction

The effects of plastic hinges in reinforced concrete frame structure and the results of com-

putation including the embedded rotational discontinuity (discussed in the first part) have

also been studied by many researches (see [4], [5], [10], [11]). With the beam model with

plastic hinges in design computation, we can obtain more reliable models both in design

of a structure and in the verification of integrity of an existing structure. Furthermore,

the computational work after the ultimate loading value is more concerned recently, that

will give us the clear knowledge about the frame structure, from that we can give out a

decision and method for maintaining the building.

In the first part, we already presented a macro model of stress-resultant for Timo-

shenko beam-column element. That model can be used to compute the beam-column

with rotational discontinuity embedded in the middle of beam element. The axial load on

element does not change while the threshold functions computed to find bending moment

are kept constant in each iterations. That was the first step to develop the stress-resultant

beam macro element, which was suitable for computing a single column component.

However, in the complex frame structure with many beam and column elements this ap-

proach is not much suitable for reliable computations. Otherwise, in frame structure with

the affection of the transverse load, the axial force in the column elements will be changed

that will re-affect against the change of limit values of moments in threshold functions.

Therefore, we shall consider a new modified stress-resultant macro model accounting for

combined section of bending moment and axial force. This new model has the capability

to compute the beam-column elements with the embedded rotational discontinuity and

to provide a reliable representation of the frame under and after the ultimate load. This

especially the case, when both bending moment and axial load are changed following the

change of external load.

Many recent research works are concerned by the problem of computation with plastic

hinges appearance in the reinforced-concrete frame structures. We refer to some recent

papers [4], [5], [11], [16]. Some of those papers consider the problem with the combi-

nation of fracture-mechanic, damage-mechanic and the concepts of plastic-hinge. Others

consider the plastic softening behavior under bending and axial forces using a relation

of moment and axial forces with the simple yield functions obtained for the symmetric-

homogenous material.

In this work, the modified multi-fiber model for reinforced concrete is used. With

this model, we can compute and identify all the limit values of bending moment, such as

crack-moment, yield-moment and ultimate moment (Mc, My, Mu), under different val-

ues of axial force from zero to the ultimate axial load without bending moment (Nmax =
Nu, M = 0.). In those multi-fiber computations, concrete and steel material are used as

Elastic-Plastic-Softening model, that is also presented in the first part.
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It is very important to recognize that many factors affect the behavior of moment-

curvature in the reinforced concrete columns. We can mention some of them as: shape

and dimension of cross-section, steel reinforcement ratio, material properties of both con-

crete and steel, kind of loading, position of reinforcement as well as the reinforcement

arrangement. For this work, we use some limitations in concrete and steel materials fol-

lowing EC2 (see [18] and [19]). The cross-section of column is rectangular, in which two

longitudinal steel reinforcement layers are embedded at the symmetric positions of two

sides of cross section. All external loads used to compute stress-resultant properties and

carrying out numerical applications are quasi-static loads.

In Section 2, we introduce some limitations in material properties of concrete and

steel, with the basic assumptions used for the beam-column computation. Some equilib-

rium formulations of moment and axial force for cross section design are also presented.

All of them are taken from EC2, these formulations need to predict the formulas, also

the charts for moment and axial force relations. In Section 3, we present the problem of

identifying parameters, which needs to be solved in particular for stress-resultant macro

model such as moments for threshold functions, (Mc, My, Mu) and tangent moduli for the

phases of hardening and softening (K1, K2, K3). We also present the functions expressing

the relation of both couples moment-axial force and curvature-axial force. The behaviors

of concrete and steel are also introduced in the beginning of the section. In the last sec-

tion, we introduce the new stress-resultant macro model for frame computation with new

threshold functions, in which moment functions and modulus functions are considered to

express the coupled moment and axial force action.

In Section 4, we present several illustrative examples for numerical applications. The

first example is the one with a built-in beam, which has just one element. This example

is employed for testing the behavior at local level, where both rotation and axial load are

imposed and changed at the free end for purpose to obtain the corresponding changes

of both moment and axial force. In the second example, we represent the two-storey

reinforced concrete frame, which aims to obtain a comparison between computational

results of both stress-resultant macro model in the first and this parts. Those results are

also compared with the results in multi-fiber computation or in the practical experiment.

In the last section, some concluding remarks and perspectives are given.

2 Prediction for the relations of ultimate and yield mo-

ments with axial force

In this section we first review the basic assumptions for design computation in reinforced-

concrete frame components, some limitations of concrete and steel materials proposed

EC2 as introduced in [18] and [19]. With these formulations in hand, we can easily predict

the figure of yield and ultimate moments with respect to the axial force in rectangular

cross section submitted to the axial force and bending moment.
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2.1 Material properties and basic assumptions

We can have many kinds of simplified material constitutive models for both steel rein-

forcement and concrete as suggested by EC2, and the other using codes. Hence, in this

work, it is first necessary to give some guidelines and conditions for material used herein.

Generally, we use some basic assumptions in the design computation for beam or column:

one is that plane sections remain plane once loaded, and the strain in reinforcement is the

same as the strain in the concrete at the same level (no bond slip). These assumptions

are universally accepted for the design of members containing bonded ordinary reinforce-

ment. With perfect bond, the change in strain in the steel is assumed to be the same as the

change in strain in the concrete.

In computation of the resistance for a reinforced-concrete column, many factors in ma-

terial properties of both steel and concrete affect to the load carrying capacity of elements.

However, in a simplified version for the consideration to follow, we just concentrate on

main factors, such as the yield and ultimate strengths, strain limits and moduli. At first

we introduce steel material model proposed in EC2. Absolute limit is not given for the

maximum tensile strain in the reinforcement, but there is clearly a limiting strain that de-

fines the failure of any particular type of reinforcement. In Figure.2.1 we introduce the

stress-strain diagram in steel material used for design, where the curve B is expressed for

design while the curve A is considered as the idealized curve. Strain limit εu for normal

ductility steel is equal to 0.025 and for high ductility steel it is equal to 0.05. More dis-

cussions and informations about steel material can be found in [18].

Figure 2.1: Stress-strain curve of steel for design

About concrete material in design for reinforced-concrete, we usually use two main

kinds of concrete for construction, the normal and high resistance concrete. In this work
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we concentrate on the kind of normal resistance described with the curve in Fig.2.2. The

maximum stress in compression is denoted as fcm, as the stress corresponding to one value

of strain εc, while another ultimate strain εcu1 is considered as the nominal value.

 

 

   Figure 3.2Représentation schématique de la relation contrainte
Figure 2.2: Stress-strain curve of concrete in compression of experiment

The ultimate strain in concrete is different in different codes. Following EC2 (see

[18]), we use ultimate strain εu equal to 0.0035, for the case of coupled bending mo-

ment and axial force and under the condition that the neutral axis remains within the

cross-section. For an alternative case, with the complete cross-section under compressive

stress, the ultimate strain εu is changed form 0.002 to 0.0035 (see Fig.2.3).

There are several hypotheses for stress-strain diagram of concrete in compression

zone, which are used in design computation, such as the hypotheses parabolic-rectangular,

bilinear or rectangular curves. We consider the first of these diagram with the parabolic-

rectangular shape (see Fig.2.4), in which the stress curve in compression zone of cross

section in pure-bending or under combined action of the bending moment and axial force.

2.2 Formulas for doubly reinforced-concrete rectangular section

The formulas considering the ultimate bending moment and axial force of the rectangular

cross section in the reinforced concrete column, used for the situations where the neutral

axis remains within sections, are given as follows.
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Figure 2.3: Ultimate strains in members under compression

 

 

Figure 2.4: Parabolic-rectangular curve in compressive zone of bending beam
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NRd = favbx+∑ fsAs (2.1)

MRd = favbx(
h

2
−βx)+∑ fsAs(

h

2
−di) (2.2)

where NRd and MRd denote, respectively, axial force and ultimate bending moment ca-

pacities of the rectangular cross section. The dimensions b×h denote the width and the

height of the cross section, whereas x is the depth of compression zone and β is consid-

ered as the ratio of distance from the position of the sum of force in compressive zone

of concrete to the most compressive edge of rectangular section with respect to the depth

of compressive zone x. Normally, in design computation, the value β is chosen as 0.416.

The tensile strength of concrete in these formulas is ignored, while compressive strength

fav is used as the average stress in the compressive zone. Comparing to the value of max-

imum compressive strength fck, fav is equal to 0.459 of fck. Yield strength value used in

design of steel, denoted as fyd , is equal to fyk/1.15, where fyk is the yield tensile strength

for steel. Distances from each layers of reinforcement to the centre of the cross-section is

denoted as di.

With these design formulas on hand, we can obtain the result for reinforcement area

As, which will be placed at the design positions in the cross-section in order to carry

moment and axial force. In cross section design, for each couple of (M, N) we can find

the corresponding reinforcement area As.

2.3 Prediction for ultimate moment and axial force relation

From two formulas in (2.1) and (2.2), we can readily obtain the corresponding relationship

between the ultimate moment and axial force (see Fig.2.5). There are two cases related

to load compression for a particular rectangular cross-section. The first case is called the

large-eccentricity load, where in the couple of (M, N), the value of M is very big com-

pared to the value of N, so that we obtain a large value e = M/N. In this case, in com-

parison to the limit-eccentricity elimit of the section, we shall have e > elimit . This limit-

eccentricity is considered as the frontier between large-eccentricity and small-eccentricity

(see [18]). In case of the large-eccentricity, cross-section is divided clearly into two parts

with compression and traction zone, with the neutral axis that always remains within the

section. The failure process in the cross-section will derive from the yielding process of

steel in the traction zone. We use an increasing relation of ultimate moment and axial

force in the case of large-eccentricity, which means when axial force increases we shall

also obtain a increasing ultimate moment.

In the second case, we consider the small-eccentricity, where the eccentric value

e = M/N is smaller than the limit-eccentricity elimit . The failure process will derive mostly

from the failure process of concrete in compressive zone. We shall obtain a descending
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relation of ultimate moment and axial force. This further implies that in case of small-

eccentricity, the axial force increase will also be accompanied by a descending values of

ultimate moment.

We propose these relations as shown in Fig.2.5, as the functions of yield and ultimate

moments with respect to the axial force. For either of those relations, we note three par-

ticular points: the first point is when axial force is equal to zero; the second point is when

the value of ultimate moment of the section reaches maximum value Mmax, corresponding

to axial force N∗; the third point is when axial force reaches the ultimate value, that cor-

responds to the moment be equal to zero M = 0. For each rectangular cross-sections of

reinforced concrete column, and each value of axial force N, we can thus easily determine

the correspondence of yield and ultimate moment (My and Mu).

Figure 2.5: Prediction for ultimate moment-axial force relation

In order to define the proper relationship each couple (Mu, N) or (My, N), we first

compute three points (N = 0., M 6= 0.), (N = N∗, M = Mmax), and (N = Nu, M = 0.).
These are three points separating the curve into two separative functions: one for large-

eccentricity and the other for small-eccentricity case. These points can easily be de-

termined not only by numerical but also by analytic computations. In the next section

we present the identification procedure for identifying these parameters and defining the

complete functioned relationship.
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3 Parameter identifications and macro model for stress-

resultant failure criteria in frame

In this section, we elaborate upon the tasks of identifying the limit values of moment

(Mc, My, Mu) and hardening/softening moduli (K1, K2, K3) for stress-resultant macro

model. We also deal with the tasks of creating the functions of moment-axial force and/or

curvature-axial force relations. The relations identified in this manner are embedded into

threshold functions for combined action of bending moments and axial force, which can

be used for computing the complete failure of a reinforced concrete beam-column ele-

ment with the rectangular cross-section. We present in Fig.2.6 the multi-fiber beam used

for such an identification procedure. The computation is carried out under free-end rota-

tion and axial load, which is also indicated in Fig.2.6.

Figure 2.6: Imposed axial load and rotation in multi-fiber and stress-resultant beam-

column element

3.1 Stress-resultant macro model for reinforced concrete frames and

chosen material behavior of concrete and reinforcement

We present the macro model of stress-resultant for reinforced-concrete beam computed

in accordance with the chosen constitutive behavior of the main ingredients, concrete and

steel. In this model three prominent values of moments included the first cracking, the

yield and the ultimate moment (Mc, My, Mu).
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Figure 2.7: Stress-resultant macro model for frames

Three threshold functions are defined for this model featuring these prominent values

of moments, which can be written as:

ΦM(M,ζM
i ) : = |M|− (Mi +KiI.ζ

M
i ) 6 0

if i = 1 :hardening phase 1 ⇒ Mi = Mc; Ki = K1 and ζM
i = ζM

1

if i = 2 :hardening phase 2 ⇒ Mi = My; Ki = K2 and ζM
i = ζM

2

if i = 3 :softening phase ⇒ Mi = Mu; Ki = K3 and ζM
i = ζM

3

if i = 4 :complete rupture ⇒ Mi = 0; Ki = 0 and ζM
i = ζM

4

where K1, K2 and K3 are the corresponding values of hardening/softening moduli.

These threshold function are used to describe two different regimes for stress-resultant

models: a stress-resultant elasto-plastic model with two linear hardening phases, dealing

with different mechanisms of inelastic bulk behavior; and a rigid-plastic model with lin-

ear softening to deal with the formation and development of a plastic hinge.

We must introduce the Elasto-Plastic hardening-Softening models for concrete and

steel, which is defined in detail subsequently, that will be used for identifying the needed

parameters for macro model and will provide the basis of the micro-scale model based

upon multi-fiber concept.
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Figure 2.8: Material behaviors of concrete and reinforcement

The concrete material is characterized by constitutive model with two different phases,

one for compressive case and another for tension case. The response for each phase is de-

fined with different variables, as well as with the independent yield functions (see Fig.2.8).

The parameters needed for this model are tensile fracture stress ft , compressive stress fyc

starting development of fracture process zone and the compressive fracture stress f ′c, as

well as the elastic Young’s modulus Eb and hardening/softening moduli K1, K2 and K3. In

the compression phase we account for elastic response followed by the distributed crack-

ing (fracture process zone) softening phase, whereas in tension phase elastic response is

immediately followed by softening.

The steel reinforcement is also expressed as combined elasto-plastic hardening and

softening. Both compression and tension phase for steel are expressed by the same two

yield functions, one for hardening and another for softening regime. The parameters

needed for this kind of model concern the yield stress fy, the ultimate stress fu, the Young

modulus for steel Eb as well as the hardening and softening moduli, K1 and K2.

Yield functions for concrete constitutive model in the compression case can be intro-

duced for both hardening and softening cases:

Φc(σ,ζi) : = |σ|− (σc
i +K

c
i ζi) 6 0

if i = 1 :hardening ⇒ σc
i = σc

y; K
c
i = K

c
1 and ζi = ζ1

if i = 2 :softening ⇒ σc
i = σc

u; K
c
i = K

c
2 and ζi = ζ2

if i = 3 :rupture ⇒ σc
i = 0; K

c
i = 0 and ζi = ζ3

(2.3)

The yield function for the tension case can be defined as:
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Φt(σ,ζi) : = |σ|− (σt
i +K

t

iζi) 6 0

if i = 1 :softening ⇒ σt
i = σt

y; K
t

i = K
t

1 and ζi = ζ1

if i = 2 :rupture ⇒ σt
i = 0;K

t

i = 0 and ζi = ζ2

(2.4)

The yield function for steel constitutive model can be also defined in the same way for

both hardening and softening, and we can write as:

Φ(σ,ζi) : = |σ|− (σi +Kiζi) 6 0

with i = 1 : hardening phase ⇒ σi = σy and Ki = K1

with i = 2 : softening phase ⇒ σi = σu and Ki = K2

with i = 3 : rupture phase ⇒ σi = 0 and Ki = 0

(2.5)

Yield functions for both concrete and steel are written unified notation. However, it is

clear that, the value of σi is equal to the value of ultimate stress f ′c or the plastic stress fyc

in the compression regime for concrete, whereas it is equal to ultimate tensile stress ft in

the tension regime for concrete. Similarly, σi is equal to the yield stress σy or ultimate

stress σu in both compressive and tension regimes for steel. The values of hardening and

softening moduli Ki should also be defined for both concrete and steel materials, and both

in compression and tension regime.

3.2 Parameter identification for doubly reinforced concrete rectan-

gular section

Here we will consider the case of rectangular cross-section for reinforced concrete beam-

column element. The section dimensions are denoted as (b×h), with two layers of rein-

forcements with the areas (A′
s, As) that are embedded symmetrically in both compressive

and tension zone of section. The identification procedure is carried out on the built-in

beam. The length of the beam L is equal to the length of single element Le, that is used

for this computation. At free end of the console, we impose an axial load and rotational

displacement.

We present a representative for the built-in beam-column, which is used to describe for

all needed steps in the process of parameter identification. The dimensions of rectangular

cross-section of the beam are b×h equal to 30×40(cm). The length of the beam is as the

same as the length of element, for this built-in beam-column we choose L = Le equal to

0.25m. Inside the cross-section, 4φ20mm of the longitudinal bar are placed at each side,

and the stirrups φ10mm at the distance a = 125mm are used along to the length of con-

sole. The concrete has compressive strength f ′c = 30MPa, tensile strength fct = 1.8MPa,

modulus of elasticity Eb = 28,600MPa. By using the multi-fiber model for parameter
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Figure 2.9: Multi-fiber beam-column diagram for parameter identification

identification, we use the divided rectangular cross-section of the beam with 20 concrete

layers and 8 discrete fibers for describing the steel reinforcements. The geometry and

detail of the beam-column can be seen in Fig.2.10.

In the first step, we compute the limit values of axial force for this beam without

the effort of the imposed rotation displacement, which purposes to obtain the third point,

Nu, in the relationship of ultimate moment and axial force. By imposing only the axial

displacement we can obtain the yield and ultimate axial force (Ny, Nu) as presented in

Fig.2.11. Two of these values are the important values, which will be used for the next

steps of parameter identification.

By using this built-in beam computation for the case of fixed axial load, with the

chosen value of axial load N specified by the ratio n = N/Ny we can consider the steps

n := 0 : 0.1 : 1.05, and thus obtain the corresponding diagram for moment-curvature for

12 different cases presented in Fig.2.12. We can separate these diagrams into two main

groups: the first one for axial force N changes of n from zero to 0.4 of yield axial force Ny

and the second for axial force with changes of n from 0.4 to 1.05. The first group corre-

sponds to the large-eccentricity cases, where the failure in the reinforced-concrete beam

is induced by the yielding of reinforcement in tension zone. With the increasing values of

axial force we can obtain the corresponding increase in values of cracking, yielding and

ultimate moment (Mc, My, Mu), where the values of My and Mu will differ clearly. We

also have fairly long part with hardening response diffuse of plastic phase. The second

group corresponds to the small-eccentricity case, where the failure process is governed

by the compressive failure of concrete in compression zone. With the increase of axial

force, we obtain a small difference between the values of yield and ultimate moments, and

the value of ultimate moment can even become smaller than the yield moment (Mu 6 My).
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Figure 2.10: Geometry of reinforced concrete built-in beam-column for parameter

identification
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Figure 2.11: Axial force identification for rectangular cross-section
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Figure 2.12: Moment-curvature relations obtained by multi-fiber beam-column

model based computations

In order to determine the dependence of the prominent values of moments in the

reinforced-concrete beam-column element namely, the cracking, yielding, and ultimate

moments (Mc, My, Mu) and the corresponding curvature values, upon the chosen stress-

strain diagrams we present the stress-time curves for several fibers in the cross-section. In

this case, four particular fibers are chosen in the cross-section. Two of them are chosen for

reinforcements, one in tension zone and the other in compression zone. Two remaining

fibers are chosen for concrete, where one is tension fiber and the last one is compressive

concrete fiber. Both of concrete fibers are chosen at the top and the bottom edges of cross-

section, where the strain values are the largest. For those selected fibers, we can identify

easily all limitations for moment following the limit stresses of concrete and steel fibers.

The crack-moment Mc in the beam-column element implies that the rupture will ap-

pear in the concrete fibers at the tensile edge of cross-section. Because the tension strength

ft in concrete is very small compared to compressive strength f ′c, the rupture in tensile

concrete can appear even under a small external load. We also obtain a very small value

of cracking moment compared with the yield-moment or ultimate-moment value.

In order to determine the value of the yield-moment My, we consider to the stress-

time curve in tensile steel fiber. When stress in this steel fiber reaches the yield-strength

fy, we project it to the shape of moment-time curve for determining the value of yield-

moment My. We note that, when the cross-section is designed following the limitations
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in the code, we can always obtain the yield-moment when the steel tension reaches the

yield-stress (see Fig.2.13).
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Figure 2.13: Stress-time fiber curve and moment-time curve

The last parameter we ought to obtain for defining constitutive behavior of stress-

resultant beam-column element is the ultimate-moment Mu. We have to deal with two

separate cases of compression in reinforced-concrete column: the large-eccentricity and

the small-eccentricity. For the large-eccentricity in compression case, we always have

the value of ultimate moment Mu equal to the maximum value of moment Mmax for each

types of cross-section. However, for the small-eccentricity compression case, we can

choose this value of moment only by following the change of tangent modulus, namely,

the point where the tangent modulus changes suddenly from the plastic phase to the soft-

ening phase can be considered as the one defining the corresponding value of the ultimate

moment.

Beside the task of determination prominent values of moment-curvature couples, we

need to determine the tangent modulus for the softening phase in order to fully define

the moment-curvature curve for ultimate load computation. We assume that the point of

time in the moment-time curve, where the compressive concrete fiber at the same position

of the compressive steel fiber is damaged completely, is the point of time that the beam-
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column element is not able to carry the load. From this point at the end of loading process

after ultimate load in reinforced concrete beam or column can be determined, we may call

this point in moment-curvature curve is the name as the terminal point (Mt , κt).

All of the necessary parameters (Mc, My, Mu, Mt) require separate computations of

the resulting stress states for each prominent values of moment, we can also obtain the

corresponding curvature values (κc, κy, κu, κt), as a part of the complete computation.
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Figure 2.14: Moment-curvature diagrams in the refined curves

Having computed all necessary prominent values for the moment-curvature diagram,

we can complete the description of moment-curvature for stress-resultant beam-column

element for all computed cases. Following the main assumptions of the stress-resultant

macro model for beam-column element, we choose to connect all the prominent points

in moment-curvature diagram by the straight lines. This will further simply all of tan-

gent moduli for that model (elastic, plastic hardening and softening) are represented as

constant. In other words, knowing four sets of values of moment and curvature including

(Mc, κc), (My, κy), (Mu, κu) and (Mt , κt), we can draw the new curves for each pre-

sented moment-curvature diagram to replace those obtained earlier multi-fiber model (see

Fig.2.14). Since it is quite easy to determine the value of tangent modulus in the softening

phase (the value of K3 in the presented stress-resultant macro model), we draw the line

of softening phase from the point of (Mt , κt) crossing the line with curvature and thus

obtain the new point at the intersection with the couple (Mp = 0. and κp). It is therefore

not difficult to determine this point and the value of κp, which further allows to replace

the point of (Mt , κt) by the new point of (Mp, κp).
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Collecting and arranging all prominent values of moments and of curvatures, for dif-

ferent ratio of external axial load value and yield axial force of the section (n = N/Ny),

we can also define three corresponding relations between limit moment and the ratio n as

presented in Fig.2.15.
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Figure 2.15: Cracking, yielding and ultimate moments with respect to N/Ny ratio

From this kind of relationship between the limit moment and loading ratio, we can

recognize clearly the previously defined expression distinguishing two eccentricity com-

pression cases. With the value of n = N/Ny from zero to 0.4 or the external axial load

increase we have the large-eccentricity compression case, where the values of yield and

ultimate moments are increased following the non-linear behaviors. In the opposite, for

further increase of n increase from 0.4 to 1.05, which is equivalent to increasing the ex-

ternal axial load, the values of yield and ultimate moments are descending following the

non-linear behavior. Yield and ultimate moment have the same evolution with respect to

n, and for that reason we chose the value of ultimate moment the same as the value of

yield moment. Somewhat different behavior is defined by the curve of cracking moment

versus the ratio of axial load and yield axial force n that reaches the maximum value of

cracking moment Mc for value of n equal to 0.6.

We also compute the prominent values of curvature (κc, κy, κu, κp) with respect to the

ratio of axial load and yield axial force (n = N/Ny), as presented in Fig.2.16. In trying to

provide the best possible description of curvature variation, we have done some additional
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Figure 2.16: Prominent curvature values (κc, κy, κu, κp) with respect to n= N/Ny

ratio

computations with the effect of changing axial load with n between 0.0 and 0.1. In the

figure presented above, we note that the curve shapes of curvature κu and κp are different

from those of curvature κc and κy. For values of n between 0.0 and 0.1, the curves of

κu and κp are increasing with linear behavior, but from 0.1 to 1.05 they are descending

with non-linear behavior. The curve of κc increases with linear behavior following the

increase of ratio, while the curve of κy increases with non-linear behavior and reaches the

maximum value when the ratio of axial load is equal to 0.4.

In the next subsections, we shall present the curve fitting to compute the functions for

limit-moments and limit-curvatures with respect to Ny, which are needed for developing

the stress-resultant macro model.

3.3 Function identification for moment-axial force relation

In this section we discuss how to create a reliable representation of the limit value of mo-

ments and their dependence upon the applied axial force. This can be accomplished thank

to the tool in MAT HLAB program that is called ”cftool”, which means Create-Function-

Tool. With this tool, for a group of points in 2D coordinate system plane (x, y) we can

provide the best fit for a function, either in terms of polynomial, exponential or power law

depending upon the point positions within the group.

We first consider the point group of values for cracking moment, which is identified

and presented in Fig. 2.15. Given different point positions, we could use two functions
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for describing the best-fit relationship, namely, we could divide the curve at the point of

n = 0.6, and thus then create two different functions for describing the non-linear behavior

one for decreasing and another for increasing values of N/Ny. However, since the values

of cracking moment are very small comparing to the values of yield or ultimate moments,

we decided to use one function for this case. The comparison of function curve and point

group of cracking moment is still quite acceptable, as shown in Fig.2.17.
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Figure 2.17: Best-fit function for cracking moment Mc variation with respect to n=

N/Ny

This particular choice is a cubic polynomial function, that function can be expressed

as f (x) = p1 ∗ x3 + p2 ∗ x2 + p3 ∗ x + p4, where f (x) denotes as the cracking moment

limit value and x denotes as the corresponding argument of the function. Recall again

that in this case, the argument x is equal, to n, the ratio of axial force and yield axial force

(n = N/Ny), while the coefficients of function (p1, p2, p3, p4) are equal to −2.245e+05,
−1.452e+05, 4.161e+05 and 3.168e+04 respectively. We can thus write the limit value

of cracking moment as:

Mc = (−2.245∗n3 −1.452∗n2 +4.161∗n+0.3168)∗105 (2.6)

We can carry on with the best-fit function for point group of limit values for yielding

moment. We note that the My at the point of n = 0.4 reaches the maximum value, thus we

decide to divide the curve into two phases. The first phase covers the values of n from 0.0

to 0.4, with the curve that has the non-linear increasing behavior. The second phase that
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covers the values of n from 0.4 to 1.05 is defined by a curve has the non-linear decreasing

behavior. We can use different kinds of functions, such as a single cubic function as we

have already done for describing the cracking moment or a couple of quadratic functions

for describing the variation of yielding moment.
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Figure 2.18: Best-fit function for yielding moment My variation with respect to n=

N/Ny

After trying both options, we finally chose a couple of quadratic functions. The first

function is used for describing the yielding moment variation for values of n ∈ [0.0, 0.4]
and the second one is used for remaining values of n ∈ [0.4, 1.05]. The chosen couple of

function is presented in Fig.2.18, and each of two functions can be written as f (x) = p1∗
x2 + p2∗ x + p3. For the first function, the coefficients p1, p2, p3 are respectively equal

to −4.449e+05, 5.506e+05, 1.566e+05, while for the second function, the coefficients

are p1 = −3.865e+05, p2 = 1.639e+05, p3 = 3.035e+05. Changing My for f (x) and

the ratio of axial load and yield axial force (n = N/Ny) for variable x in these functions,

we can then re-write two quadratic functions expressing the corresponding limit value of

yielding moment as:

M
(1)
y = (−4.449∗n2 +5.506∗n+1.566)∗105; for n ∈ [0.0, 0.4]

M
(2)
y = (−3.865∗n2 +1.639∗n+3.035)∗105; for n ∈ [0.4, 1.05]

(2.7)

The last functions that ought to be created are those for the ultimate moment Mu. For

the collected point group of ultimate moment limit values for different n, we can see that
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the shape of the curve is very much the same as the one used for the yielding moment

case, and hence we can also use two quadratic functions for describing the curves. The

coefficients for the first function are respectively p1 = −7.061e + 05, p2 = 6.282e + 05,

p3 = 1.675e + 05, whereas those for the second function are p1 = −3.583e + 05, p2 =
1.28e+05, p3 = 3.141e+05.
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Figure 2.19: Best-fit function for ultimate-moment Mu variation with respect to n=

N/Ny

After replacing f (x) by Mu and x by n, we can write the functions describing the

relationships between ultimate moment and ratio n as:

M
(1)
u = (−7.061∗n2 +6.282∗n+1.675)∗105; with n ∈ [0.0, 0.4]

M
(2)
u = (−3.865∗n2 +1.280∗n+3.141)∗105; with n ∈ [0.4, 1.05]

(2.8)

Comparing the expressions for functions chosen for M
(2)
y and M

(2)
u , we recognize that

values of My and Mu in the domain n ∈ [0.4, 1.05] are very much the same. In other word,

in the case of small-eccentricity of compression load in the reinforced-concrete column,

the value of yield moment in cross section remains equal to the value of ultimate moment.

3.4 Function identification for curvature-axial force relations

The changes of limit values of moment under varying axial load should be accompa-

nied by the corresponding values of limit curvature, which will also be changing. For
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identification of the complete list of stress-resultant beam-column model parameters, it

is also necessary to obtain the curvature dependence upon the change of axial load. We

first consider the problem of how to define the function for limit value of curvature cor-

responding to the cracking moment. The arrangement of point group of values κc with

respect to change of axial force, indicates the linear dependence on, so that we can use a

linear polynomial for describing function as f (x) = p1∗ x+ p2. The computed values of

coefficients are p1 = 0.006882 and p2 = 0.001225. Changing f (x) by κc and x by n, we

write a linear function for the relation between curvature at cracking moment and ratio of

axial load and yield axial force as:

κc = (6.882∗n+1.225)∗10−3w (2.9)

The excellent best-fit between the linear function and point group of κc is shown in

Fig.2.20
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Figure 2.20: Function of curvature κc with n= N/Ny

The second best-fit function for curvature is obtained for the point group of limit val-

ues of curvature at yielding moment. The arrangement of points in this group indicates

that the best-fit curve for κy should have non-linear behavior, with the maximum value

n = 0.4. We have tested two kinds of function including a couple of cubic polynomial

functions with the same value at n = 0.4 or a polynomial function with the degree higher

than cubic polynomial. We finally decided to choose the polynomial function with 8th

degree for describing the dependence of curvature at yielding moment upon the applied

axial force. With such a choice we accepted less than perfect fit for the value of n = N/Ny
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close to 1, since no reinforced concrete beam-column element submitted to both bending

moment and axial force is likely to reach this kind of values for axial force; therefore, the

use of 8th degree polynomial function for this case can be acceptable.
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Figure 2.21: Best-fit function for curvature at yield moment variation with respect

to N/Ny

The particular function can be expressed as f (x) = p1 ∗ x8 + p2 ∗ x7 + p3 ∗ x6 + p4 ∗
x5 + ...+ p9, where the values of coefficients of polynomial are defined as p1 = 6.683,

p2 = −24.14, p3 = 33.58, p4 = −22.22, p5 = 6.989, p6 = −0.9648, p7 = 0.06642,

p8 = 0.009835 and p9 = 0.0136. Replacing f (x) by κy and x by n, we can thus write

8th degree polynomial function for describing the behavior of limit value of curvature for

yielding moment with respect to ratio n as

κy =6.683∗n8 −24.14∗n7 +33.58∗n6 −22.22∗n5 +6.989∗n4

−0.9648∗n3 +0.06642∗n2 +0.009835∗n+0.0136
(2.10)

The chosen function and point group are shown in Fig.2.21.

The next best-fit function that should be created concerns the point group of ultimate

curvature κu corresponding to the ultimate moment Mu. There are two kinds of best-fit

functions expressing the arrangement of point group: the first is linear for the values of

n ∈ [0.0,0.1] and the second curve is non-linear for the remaining values of n. We use two

best-fit functions for this case. The first function is a linear polynomial f (x) = p1∗x+ p2

with coefficients p1 = 0.084 and p2 = 0.15. The second function is the exponential
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function f (x) = a∗exp(b∗x)+c∗exp(d ∗x) with the coefficients a = 0.191, b = −2.07,

c = −0.0009861 and d = 2.943.
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Figure 2.22: Best-fit function for curvature at ultimate moment variation with re-

spect to N/Ny

Replacing f (x) by κu and x by n, we can obtain two functions for describing the

relationship between ultimate curvature and ratio of axial load and yield axial force n =
N/Ny as

κ
(1)
u =0.084∗n+0.15; with n ∈ [0.0, 0.1]

κ
(2)
u =0.191∗ exp(−2.07∗n)−0.0009861∗ exp(2.943∗n); with n ∈ [0.1, 1.05]

(2.11)

The final choice of two functions and the point group are presented in Fig.2.22.

The last best-fit function that should be created concerns the point group of the curva-

ture κp in reinforced concrete column, corresponding to a complete collapse with value

of moment Mp equal to zero. Considering this point group, we note that it is very much

the same as that of ultimate curvature case. Namely, there are two functions that ought to

be created: the first one for linear behavior for the values of n ∈ [0.0, 0.1] and the second

one for non-linear behavior for the remaining values of n ∈ [0.1, 1.05].

The best fit will thus provide: the first linear function f (x) = p1 ∗ x + p2, with co-

efficients p1 = 0.644 and p2 = 0.2926, along with the second exponential function is

f (x) = a∗ exp(b∗ x)+ c∗ exp(d ∗ x) with coefficients a = 6473, b = −115.9, c = 0.3715
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Figure 2.23: Best-fit function for curvature at rupture point κp variation with respect

to n=N/Ny

and d = −2.237. By replacing κp for f (x) and n for x, we can obtain two functions

describing the behavior of κp with respect the ratio n as

κ
(1)
p =0.644∗n+0.2926; with n ∈ [0.0, 0.1]

κ
(2)
p =6473∗ exp(−115.9∗n)+0.3715∗ exp(−2.237∗n); with n ∈ [0.1, 1.05]

(2.12)

The illustration of two functions and point group for κp is given in Fig.2.23.

With all the functions in hand, we can fully define the dependences of both limit

moment (Mc,My,Mu) and limit values of curvature (κc,κy,κu,κp) upon ratio of axial

load and yield axial force n. By exploiting those results, we can provide the method

for computing the tangent moduli of the stress-resultant macro model for beam-column

element of both plastic hardening and softening. This is presented next.

3.5 Moment and curvature yield functions for stress-resultant macro

model at the time t

In each time step of numerical computation, we can obtain the current value of the axial

force, further denoted as Nt for each element at the time t. Introducing this value of Nt into

the yield functions ΦM(M,N), as already defined in Subsection 3.1, we can find out the

corresponding value of moment at the time t Mt in both plastic hardening and softening

phases. Therefore, in the present stress-resultant macro model, the parameters of tangent
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modulus and the value of limit moment for yield functions are as not remain fixed during

the whole computation nor they are known in advance. In fact, for each value of axial

force Nt at the time t we have the new value for both limit moment (Mt
i ) and tangent

modulus (Kt
i ). Putting these two new values into a particular yield function at time step

t, we shall find out the more exact value of moment for element in stress-resultant macro

model. The limit values of moment and curvature at each time step can be obtained from

the corresponding best-fit functions with the axial force as a variable, so that the value of

tangent modulus can be formed as the combined function.

Kt
1 =(Mt

y −Mt
c)/(κt

y −κt
c)

Kt
2 =(Mt

u −Mt
y)/(κt

u −κt
y)

Kt
3 =(Mt

p −Mt
u)/(κt

p −κt
u)

(2.13)

The group of yield function introducing in Subsection 3.1 can now be rewritten as the

yield function dependent on a particular time step

ΦM(Mt ,ζM
i ) : = |M|− (Mt

i +Kt
i I.ζM

i ) 6 0

if i = 1 :hardening phase 1 ⇒ Mt
i = Mt

c; Kt
i = Kt

1 and ζM
i = ζM

1

if i = 2 :hardening phase 2 ⇒ Mt
i = Mt

y; Kt
i = Kt

2 and ζM
i = ζM

2

if i = 3 :softening phase ⇒ Mt
i = Mt

u; Kt
i = Kt

3 and ζM
i = ζM

3

if i = 4 :complete rupture ⇒ Mt
i = 0; Kt

i = 0 and ζM
i = ζM

4

(2.14)

We also can rewrite yield function under the other type, in which we embed the mo-

ment functions and the modulus function as

ΦM(M,N,ζM
i ) := |M|− (Mi(N)+Ki(N)I.ζM

i ) 6 0 (2.15)

It is important to note that the axial force is considered as a local variable in the yield

function.

With this new value of the yield function for the stress-resultant macro model, we

shall compare the results against those computed by the multi-fiber beam-column model.

Several numerical examples are solved and presented in the next section.

4 Numerical applications

In this section we present several numerical examples in order to provide the illustration

of a very satisfying performance of the progressed methodology. The first example has the

purpose to present the local behavior of moment-curvature of the stress-resultant macro

model for beam-column element. For that reason the analysis can be performed by a one
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element mesh. The different loading programs are used: increasing, decreasing axial load

and keeping load constant. In this manner we want to present the effect of axial loading

change in beam-column element will have redefining the constitutive relationship for the

new stress-resultant macro model for beam and column.

4.1 Single-element console computation

In this example, we use the built-in beam introduced in Section 3 see Fig. 2.10. This

example is also used for computing and formulating the general behavior of moment-

curvature. The computations are carried out for both multi-fiber and macro beam-column

model. In each case, four types of loading program for axial load are applied to this

element, while always keeping the same type of imposed rotation at the free end of the

beam: the first case of loading is N = 0, the second is N = 705KN that is also be kept

constant, the third is N increasing from 705KN to 1029KN and the last one is N decreasing

from 705KN to 211.5KN (see Fig.2.24).
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inc!load (705!>1029KN)
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Figure 2.24: Axial loading program and its time evolution

In Fig.2.25 and Fig.2.26, we compare the local behavior of moment-curvature diagram

in both cases with multi-fiber and stress-resultant macro model. We can see that the results

for the corresponding diagrams to be used in the computation of macro model are in fact

very close to those of the multi-fiber model. On the other hand, when comparing the

time computation for both cases, the cost used for computation of macro model is much

smaller than that for computation of multi-fiber model.
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Figure 2.25: Multi-fiber computation for reinforced concrete single-element console
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Figure 2.26: Stress-resultant beam macro computation for reinforced concrete

single-element console
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In next figures (2.27), (2.28) and (2.29), we present the operations of embedded mo-

ment functions in the new stress-resultant macro model. Although the change of axial

load in this example is in a short distance comparing with n = N/Ny, but the presenting

curves for Mc, My or Mu are correct to what is also presented in their functions. Following

the time steps of changing the axial load, program can solve and give out many values of

limit moments, but from what is presented in the curve of moment-curvature behavior of

macro model, we recognize that by each couple of moment and axial load (counting with

the fixed load function following the time P(t)), the limit-moment group be used in the

yield-function (ΦM) for each element is only one group.

We also present the curves of curvatures-loading time (κc, κy, κu, κp with t) (see

Fig.2.30, 2.31, 2.32 and 2.33), which is given out by the computation of macro model.

Following the change of axial load and the computed results of tangent moduli (see 2.13),

we can also figure out the relation between K1,K2,K3 in the macro model with the loading

time t (see Fig.2.34, 2.35 and 2.36).
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Figure 2.27: Change of cracking moment Mc

4.2 Two-storey reinforced concrete frame computation

We represent the example for computing a reinforced concrete frame with two-storey,

which is also presented in the first part. In the first computation for this frame, we also

obtained the results of both multi-fiber and stress-resultant macro models without change
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Figure 2.28: Change of yield moment My
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Figure 2.29: Change of ultimate moment Mu
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Figure 2.30: Change of crack-curvature κc
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Figure 2.31: Change of yield-curvature κy
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Figure 2.32: Change of ultimate-curvature κu
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Figure 2.33: Change of curvature κp
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Figure 2.34: Change of hardening tangent K1
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Figure 2.35: Change of hardening tangent K2
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Figure 2.36: Change of softening tangent K3

of limit moments in the yield function of macro model. With the moment functions em-

bedded in the yield function of the stress-resultan macro model, we can obtain the better

results comparing to the previous results.

Details of this reinforced concrete frame including the cross-section, the height of

store and the span of frame can be seen in Fig.2.37. We also present the figure of the

rotation displacement in frame computation in Fig.2.38. In this figure, the positions of

plastic-hinge described as rotational discontinuity can be obtained. The orders of the ap-

pearances of plastic hinge are the same as those of presented in the first part.

In the relation of transverse load versus the deflection of the frame (see Fig.2.39), we

present three curves: one for the experimental result, two remains for the stress-resultant

macro model with and without the effects of embedded moment functions in yield func-

tions. The continuous curve is expressed for the computation with the embedded moment

function in the yield function, this curve is much more flexural comparing to the hidden

curve of the case without embedded moment function in yield function of the previous

stress-resultant macro model. When comparing the time for computation in both of multi-

fiber and macro models, we always have the used time of the macro computation is always

much smaller than that of multi-fiber model.
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Figure 2.37: Detail of two-storey reinforced concrete frame

Figure 2.38: Rotation displacement of frame in computation
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Figure 2.39: Transversal load and deflection in frame

5 Conclusion

In this work, we also present the main limitations in concrete and steel materials referred

from Euro code 2, which is needed to give out the bases of the limit strains and stresses

using for those computations in this paper. Some fundamental formulations and hypothe-

ses for standard design and for computation are also given, those are basic for predicting

the curves of limit moment in the yield function with the changes of the axial load.

In the multi-fiber model, where each fiber in the cross-section of element is considered

as a bar with embedded strain discontinuity, it is used for computing a reinforced concrete

built-in beam. This beam would be used as the fundamental element for identifying all

necessary parameters used to create the best fit functions for limit values of moments and

curvatures. Those best-fit functions are necessary for describing the change of limit mo-

ments in the yield functions of the stress-resultant macro model.

Several problems in the first part of the stress-resultant macro model is now solved.

Those problems are when the axial force changed in the element of column, the corre-

sponding limit moments in the yield function ought to be changed. With this new macro

model, we still can compute the reinforced-concrete frame with the small time comparing

to other models.

Two numerical examples are presented, one for purpose to describe the work of el-
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ement at the local level, while the other for testing the new macro model at the global

level. With the motivation to obtain the better stress-resultant macro model has capability

to compute the frame with the appearances of plastic-hinges by effects of ultimate mo-

ment and/or ultimate shear force, we consider to continue developing this stress-resultant

macro model. In addition, we shall a X-FEM model, which is fully detailed for all of

main components, such as bond-slip of reinforcement, non-linear behavior of concrete,

embedded strain discontinuities in 2D plate element with the aim to obtain useful model.

Stress-resultant models for optimal design of reinforced-concrete frames



68 Stress resultant and multi-fiber beam model for combined axial force and moment

Stress-resultant models for optimal design of reinforced-concrete frames



Chapter 3

Stress resultant and multi-fiber beam

model with shear failure and crack

spacing

In this work, a new version of the stress-resultant macro model for reinforced-concrete

beam-column is developed with the new appearance of transverse displacement disconti-

nuity beside the rotational discontinuity and combined bending moment and axial force,

which are presented in previous macro model. Its ability to compute in the macro level is

the more improved and the more relied, without changing the efficiency of computational

cost. The idea for choosing the length of beam element is also considered by observing

the contours of stress or displacement diagram of one X-FEM model for the reinforced

concrete structure, in which full details of the behavior of each component such as the

concrete with non-linear behavior,the steel and bond-slip problem are assigned to the

2D plate element, where the strain discontinuity is embedded. Several numerical com-

putations using the new stress-resultant macro model and multi-fiber model are executed

and compared with the result of X-FEM model for the purpose to recognize some main

differences in the global behavior of three models.
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1 Introduction

The computation of the behavior of reinforced concrete structures requires in limited sit-

uations a fine description of the fracture mechanisms involved in the collapse of the struc-

ture namely, the concrete fracture, bond-slip fracture and finally eventually steel fracture.

Nevertheless, in a great majority of the cases and for design applications, a coarser de-

scription of the behavior provided is takes into account all the localized phenomena such

as plastic hinges could be sufficient to understand and predict the fracture mechanisms.

In that context, we present here a so-called Timoshenko beam macro-model capable

of taking into account the phenomena involved during the rupture of reinforced concrete

structures. In order to build the beam macro-model we use a detailed micro-model incor-

porating a 2D description of the fracture of reinforced concrete structures.

In the first part, the problem about bending failure in Timoshenko beam for reinforced-

concrete material can be also solved by the stress-resultant macro model, where the ro-

tational discontinuity is consider and embedded inside the beam element for describing

the failure mechanism in the frame structure as the appearance of plastic-hinges. In the

next step of the second step, the problem about combined bending moment and axial

force is considered for developing the stress-resultant macro model become the new ver-

sion. This model now can solve the frame structure with the change of both moment and

axial load affecting in the cross-section of each reinforced-concrete element. The com-

putational result of particular beam-column element at local level or of the whole frame

structure at the global level now is more effective. However, this macro model still con-

tents several limitations, for example when the shear load or transverse load is very big,

while the shear-load capacity of the cross-section is not enough under external transverse

load action, the frame structure may be collapsed by the shear load before reaching at the

limitation of ultimate moment.

The other important problem when using finite element computational method is the

dimension of element. Many papers, recently, consider this problem, especially when

involving in reinforced-concrete material and the appearance of the strain discontinuity.

We use a X-FEM model for observing and recognizing the appearance, positions as well

as distances between macro cracks in the tension zone of the flexion beam. This model

is modeled by the full consideration of the main factors including the non-linear behavior

problem of the concrete and the steel reinforcement materials as well as the embedded

strain discontinuity in the 2D-plate element, also including the appeared bond-slip inside

model (see [53]). With knowing the distances of macro crack, a suitable choice for the

beam element length is considered to apply into the stress-resultant macro model for

optimizing the mesh in the frame structure.

For those necessary problems discussed above, we consider to embed transverse dis-

placement discontinuity inside beam element at the middle point, where the rotational

discontinuity is also embedded and presented in two previous parts, beside considering

the suitable beam element length for stress-resultant macro model for beam-column. This

new macro model capacities to compute frame structure with ultimate load, that concerns

two couples of main failure cases: one for combined bending moment and axial force and
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the other for combined shear force and axial force.

In this work, we present the main ingredients of both micro and macro model used for

the description of the behavior until total failure of reinforced concrete beams. In order

to present, the material models of concrete and steel as well as the bond-slip problem are

introduced in Section 2. In Section 3, namely Stress-resultant macro model: embedded

displacement discontinuities, we present some theoretical formulations and finite-element

representation as well as the stress-resultant constitutive laws. Several numerical exam-

ples using both multi-fiber and macro models are presented in Section 4 and compare

the global response with X-FEM model. Several main conclusions and perspectives are

presented in the las section.

2 Reinforced concrete model and its finite element imple-

mentation

In this section, we present the main ingredients of the model used for the detailed descrip-

tion of reinforced concrete behavior. The proposed model takes into account the failure

of concrete, the bond-slip behavior as well as the plastic yielding of the steel rebars. The

main goal of this model is to provide standard global quantities used for optimal design

(ultimate load, dissipated energy, ...) but also more specific quantities such as crack spac-

ing, crack opening or bond-slip.

2.1 Concrete, bond-slip and steel models

2.1.1 Concrete model

The model used herein for the concrete behavior takes into account three phases: a first

elastic phase followed by the development of ramdomly distributed micro-cracks leading

to so-called fracture process zone and caracterized by a bulk dissipation and finally the

coalescence of micro-cracks and creation of a macro-crack responsible for the complete

failure of the structure. The fracture process zone is represented, in the proposed model,

by an isotropic continuum damage model whereas the macro-crack effect is taken into

account considering a displacement discontinuity and related interface damage model

producing localized dissipation.

All the details of the formulation of the concrete model used in this work are pre-

sented in [29], we give here only the key points of such a model.We give some words on

the kinematic enrichment, the bulk and discontinuity behaviors and finally on the finite

element implementation of such a model.

Kinematics

The model presented here lies in the framework of the strong discontinuity approach.

The main originality of the present work is to combine bulk and localized dissipation

in order to take into account both the effects of fracture process zone and localization
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zones. For that purpose, the total strain field is enriched with a singular contribution

corresponding to the displacement discontinuity contribution of the macro-crack so that

we have for the concrete :

εc(x, t) =

ε̃c(x,t)
︷ ︸︸ ︷

ε̄c(x, t)
︸ ︷︷ ︸

∇su

+Grα
c(t)+δΓ(x)( ¯̄u(t)⊗n)s

(3.1)

where n denotes the unit normal vector to the discontinuity surface Γ, u denotes the

regular part of the displacement and ¯̄u refers to the displacement jump on the surface

of discontinuity Γ. Finally, Gr is the function allowing to manage the influence of the

macro-crack on the fracture process zone.

Material behaviors

Two models have to be implemented in order to describe the whole behavior of con-

crete from its sound state to its complete failure : one manages the bulk dissipation (re-

ferred to as the continuum model) and the other one is related to the localized dissipation

produced by the development of a macro-crack (referred to as the discrete model). Those

two models are written in the framework of the thermodynamics of continuum media and

interfaces in two very similar ways considering damage phenomena both for the bulk and

for the interface. Table 3.1 gives the main ingredients for the construction of the two con-

stitutive laws.

Continuum model Discrete model

Helmholtz free energy ψ̄(ε̄,D, ξ̄) = 1
2
ε̄ : D

−1
: ε̄+ Ξ̄(ξ̄) ¯̄ψ( ¯̄u, ¯̄Q, ¯̄ξ) = 1

2
¯̄u · ¯̄Q−1 · ¯̄u+ ¯̄Ξ( ¯̄ξ)

Yield function(s) φ̄(σ, q̄) =
√

σ : De : σ
︸ ︷︷ ︸

||σ||De

− 1√
E
(σ f − q̄) ¯̄φ1(tΓs , ¯̄q) = tΓs ·n− ( ¯̄σ f − ¯̄q)

¯̄φ2(tΓs , ¯̄q) = |tΓs ·m|− ( ¯̄σs − ¯̄σs
¯̄σ f

¯̄q)

State equations σ = D
−1

: ε̄ and q̄ = − d

dξ̄
Ξ̄(ξ̄) tΓs = ¯̄Q−1 · ¯̄u and ¯̄q = − ∂ ¯̄Ξ

∂ ¯̄ξ

Evolution

equations

Ḋ = ˙̄γ ∂φ̄
∂σ

⊗ ∂φ̄
∂σ

1
||σ||De

˙̄̄
Q = ˙̄̄γ1

1
tΓs ·n

+ ˙̄̄γ2
1

|tΓs ·m|

ξ̄ = ˙̄γ ∂φ̄
∂q̄

˙̄̄
ξ = ˙̄̄γ1 +

¯̄σs
¯̄σ f

˙̄̄γ2

Dissipation 0 ≤ D̄ = 1
2

˙̄ξ(σ̄ f − K̄ξ̄) 0 ≤ ¯̄
D = 1

2

˙̄̄
ξ( ¯̄σ f − ¯̄K

¯̄ξ)

Table 3.1: Main ingredients of the construction of the two damage models

In table 3.1, the variables ˙̄γ, ˙̄̄γ1 and ˙̄̄γ2 denote Lagrange multipliers induced by the use

of the maximum dissipation principle. D and ¯̄Q correspond to the damaged compliance of

the continuum and discrete model,respectively. In the following, the isotropic hardening

law associated to the discrete models chosen as :
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¯̄q = ¯̄σ f

[

1− exp

(

−
¯̄β
¯̄σ f

¯̄ξ

)]

(3.2)

In a finite element context, those two models are integrated using a Return Mapping

algorithm.

Finite element implementation

The main deal for the finite element implementation is to choose the influence function

Gr and to take it into account in the weak form of the equilibrium equation. We’ve chosen

here to work with a Constant Strain Triangle (CST), in [22], for which the influence

function Gr is chosen as:

Gr = − ∑
i∈Ω+

∇
sNi (3.3)

where Ni denotes the standard finite element shape function associated to node i.

The weak form of the equilibrium equation is then obtained by considering the In-

compatible Modes Method (see in [6]) and introducing a virtual strain field γc(x, t) con-

structed from a slightly modified version of the influence function in order to pass the

patch test in [22]:

γc(x, t) = γ̄c(x, t)+Gvβ
c(t)+δΓ(x)(βc(t)⊗n)s

(3.4)

with

Gv = Gr −
1

Ωe

Z

Ωe
Gr dΩe (3.5)

By appealing to the incompatible Modes Method, the problem solution (nodal dis-

placements and displacement jumps) is obtained by the resolution of a system of two

equations the classical discrete global equilibrium equation modified by the effect of the

discontinuity and a local equation which written on each localized element and which can

be interpreted as the weak form of the traction continuity along the surface of discontinu-

ity:






Nelem

A
e=1

[
fe,int(t)− fe,ext(t)

]
= 0

Z

Ωe
GT

v σ dΩe −
Z

Γ
tΓ
︸︷︷︸

(σ·n)|Γ

dΓ = 0
(3.6)

This set of equations is solved by an operator split method, the local equilibrium

equation is solved locally on each localized element and then by static condentation at the
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element level, the nodal displacements are obtained iteratively as solution of an equation

of the form:
Nelem

A
e=1

[

K̂e∆d
(i)
n+1 = f

e,ext
n+1 − f

e,int(i)
n+1

]

(3.7)

where K̂e is the tangent stiffness of element e modified to take into account the effect of

the discontinuity.

2.1.2 Bond-slip model

The bond-slip model is introduced to describe the behavior of the concrete-steel interface.

The bond-slip behavior is represented through the shear strain at the interface and its shear

resistance should be dependent on the normal pressure. In order to implement such a

model, a Drucker-Prager non associative plasticity model has been chosen leading to a

yield function of the form:

φbs(σ) =

√

3

2
‖ dev[σ] ‖ −κ(p) 6 0 ; κ(p) = σc − p f ; p =

1

3
tr[σ] (3.8)

where dev[σ] and tr[σ] denote respectively the deviatoric and spherical part of the stress

tensor, and σc is the sliding resistance at zero pressure, with no confinement.

In addition, the slip or plastic deformation evolution is governed by a von-Mises plas-

tic potential so that we have:

ε̇p = γ̇
∂φvm(σ)

∂σ
with φvm(σ) =

√

3

2
‖ dev[σ] ‖ −σy (3.9)

The integration of the constitutive equations is carried out using a return-mapping

algorithm.

The finite element implementation of the bond-slip is performed through the use of

a 4-node qualidrateral element of geometrically zero thickness (the nodes are coincident

by pairs). The key point to deal with the zero thickness of the element is to introduce a

penalty-like parameter s which allows to compute the derivatives of the shape functions

as if the element was of thickness hpen.

If we consider an element alined with the global coordinates (x,y) of the problem,

then we have for the derivatives of the shape functions the following results (x1 = x4,

x2 = x3 and y4 = y1 +hpen, y3 = y2 +hpen):

x,ξ =
ℓe

2
, x,η = 0 , y,ξ = 0 , y,η =

hpen

2

Na,x =
Na,ξy,η −Na,ηy,ξ

j
=

ξa(1+ηaη)

2ℓe
, Na,y = −

Na,ξx,η −Na,ηx,ξ

j
=

ηa(1+ξaξ)

2hpen

(3.10)

where j denotes the element jacobian equal to j = x,ξy,η − x,ηy,ξ =
ℓehpen

4
.
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2.1.3 Steel model

The final ingredient to be defined is the choice for the modelling of the behavior of the

steel rebars. Steel rebars are, in this work, described by using 2-node bar elements and a

standard elasto-plastic model with isotropic hardening.

The yield function for the rebars is then given by:

φs(σ) = |σ|− (σy +Kζ) 6 0 (3.11)

with the classical stress state equation in plasticity:

σ = E(ε− εp) (3.12)

where the evolution for εp is given by:

ε̇p = γ̇
∂φs

∂σ
(3.13)

The tangent stiffness matrix of the steel rebars related to the nodal steel displacement

is then of the form (in the local coordinate frame associated to the steel rebars):

Ks
n+1 =

C
ep
n+1A

ℓ

[
1 −1

−1 1

]

(3.14)

where C
ep
n+1 is the consistent tangent operator (see [36]), A denotes the rebars cross-section

and ℓ their length.

2.2 Numerical formulation of the reinforced concrete element

The originality of the proposed strategy is to embed in a single finite element all the

components of reinforced concrete described previously that is concrete, bond-slip and

steel. This is achieved by enriching the kinematics of the element in order to take into

account the specific kinematic relations between the three components of reinforced con-

crete. More precisely, incompatible modes enhancements are used to handle the concrete

failure (see [29]), whereas XFEM-type enrichments are used for representing bond-slip

along steel rebars. A macro-element including all the components is thus designed.

Figure 3.1 presents the proposed macro-element and its degrees of freedom. The

macro-element is divided into 3 parts : the concrete part, the steel rebar and the bond-slip

represented by a degenerated four node quadrangular element. With such a representation,

we can either consider the absolute displacements of steel and concrete, the bond-slip dis-

placement is then deduced form the two previous or consider the displacement of concrete

and displacement of bond-slip relative to concrete and deduce the displacement of steel.

In the following, we describe how to deal with such a macro-element considering the

absolute displacement of concrete and steel. A detailed description of the computational
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Figure 3.1: Kinematics of the macro element and enriched finite element

strategy for both cases is given in [53]. For simplicity, we asume that the steel rebar

coincides with an element edge (see Figure 3.1).

The relative bond-slip displacement being defined as :

α(x) =
2

∑
j=1

M j(x)α j (3.15)

the displacement field for the macro-element is given, considering XFEM-type interpola-

tion to ensure continuity of the bond-slip, by:

d(x) =
3

∑
i=1

Ni(x)

(

dc
i +

2

∑
j=1

M j(x)α j

)

(3.16)

where dc denotes the nodal displacement for concrete and α the relative bond-slip.

From the interpolations given in equation (3.16), we can compute the stress state in

each reinforced concrete components by using the algorithms and models presented in

section 2.1.

For the concrete part, we have:

dc(x) =
3

∑
i=1

Ni(x)dc
i

εc(x) =
3

∑
i=1

Bc
i (x)dc

i +Gr(x) ¯̄u with Bc
i =






∂Ni

∂x
0

0 ∂Ni

∂y
∂Ni

∂y
∂Ni

∂x






(3.17)

where Ni are the standard shape functions for Constant Strain Triangle.
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For the steel part, we have:

ds(x) =
2′

∑
i=1′

M j(x)(d
c
j +α j)

εs(x) =
2′

∑
i=1′

Bs
j(x)(d

c
j +α j)

(3.18)

where M j are the standard shape functions for 2-node bar element. We can note that

only the displacement of concrete for nodes 1 and 2 (see Figure ??) contribute to the

computation of the steel displacement.

The stiffness matrix and internal loads for the macro-element are computed by assem-

bly of the stiffness and internal loads obtained for each component.

The resolution of the weak form of the equilibrium equations is then performed by

an operator-split method. At time tn+1, the system of equations is partitioned into a set

of global equations providing the new value of the displacement dc
n+1 and a set of local

equations related to the distribution of the bond-slip and providing the new value of the

slip αn+1: For given dn and αn, find dn+1 such that

rcs(dc
n+1,αn) =

[
Nel

A
e=1

fc,int,e(dc
n+1)+

Ns

A
e=1

fs,int,e(dc
n+1,αn)− fext,e

]

= 0 (3.19)

and

rbss(αn+1) =
Ns

A
e=1

[

fs,int,e(dc
n+1,αn+1)+ fbs,int,e(αn+1)

]

= 0 (3.20)

where

fc,int,e =
Z

Ωe
BcT σc(dc,α)dΩ

fs,int,e =
Z

Γe
BsT σs(dc,α)dΓ

fbs,int,e =
Z

Γe
BbsT

σbs(α)dΓ

(3.21)

2.3 Numerical examples

We present here the kinds of result of two examples, which could be obtained from the

previous model presented in Section 2.1. In these examples, we study the capabilities of

the proposed model to provide the predictive results for four-point bending test. The se-

lected specimen for the first example is presented in Figure 3.2 with dimensions L×h×b

equal to 2250× 300× 300(mm). For this RC specimen, only one steel layer is modeled

with 2×φ16 located at the position 30mm from the bottom line. The material properties

used in this example include for concrete: the Young’s modulus Eb equal to 38000MPa,

the poisson coefficient νb equal to 0.2, the fracture energy G f equal to 100N/m and σ f

equal to 2.3MPa. For steel reinforcement, we use the property values: Es = 210000MPa,

νs = 0.3, Kb = 19600MPa, Gb = 15000MPa and τy = 10MPa (see [53]).

Stress-resultant models for optimal design of reinforced-concrete frames



Reinforced concrete model and its finite element implementation 79

We can observe the different mechanism at different stages in the loading process.

First macro-cracks appear in the between two sections, where the loading is applied as in

Figure 3.3. The crack patterns keep growing along the rebar, while some macro-cracks

developing into the neutral line of the beam. In Figure 3.4, we can see the crack pattern

at an advanced post critical scenario. The displacement contour following the y-axis is

represented in Figure 3.5. We clearly notice that the discontinuities correspond with the

curving cracks.

Finally, the global response in Figure 3.6 shows clearly the loss of rigidity due to the

damage of concrete in the structure. After the elastic part of loading, the subsequent load-

ing/unloading sessions can be observed when cracks appear and keep growing. As the

structure has the heavy reinforcement, we do not observe the large discontinuity in the

response and the reinforcement plays the dominant role in the structural capacity.

Figure 3.2: Four point bending test on RC specimen: geometry, loading and finite

element mesh

Figure 3.3: Bond-slip along the bar and crack pattern for the first macro-cracks

The second example was computed in order to observe differences in the crack pattern

and the global response when the ratio of steel/concrete is changed. In this case, the steel

reinforcement ratio is only equal to half the one of the ratio in the previous example, while

all of other material properties are still not changed.
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Figure 3.4: Cracks pattern at an advance loading stage

Figure 3.5: Displacement field along axis Y

Figure 3.6: Global response for the heavy reinforcement

The crack pattern represented in Figure 3.7 shows us the cracks, which are developed
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more regularly than those in the previous case of the higher reinforcement percentage.

This phenomenon is due to the weaker role that steel governs in the structural process.

We also observe in Figure 3.8 the role governed by the bond slip. On both parts of a

crack, positive and negative bond-slip sliding is observed. On the left side, the concrete

part moves sharply to the left due to the discontinuity, whereas the steel remains at the

same place. As the consequence, positive relative bond-slip sliding is observed. The op-

posite signs and the same scenario apply to the right side.

In comparison of the global response for the heavy and weak reinforcement, in the

weaker one we can observe (see Figure 3.9) the strong discontinuities in the loading and

displacement curve due to the fact that concrete is predominant in the structural response.

When concrete is totally damage, we will observe an elastic part corresponding to the

steel behavior.

Beside the purpose to introduce the bond slip and crack pattern in two examples,

we concentrate on the distance between two macro cracks that will be a basis for de-

termining the length of element in stress-resultant macro model for reinforced concrete

beam-column. We can discuss more about this problem on the numerical example section.

Figure 3.7: Cracks opening in the RC specimen

3 Stress-resultant macro model: embedded displacement

discontinuities

We present in this section the main ingredients to design a macro-model for reinforced

concrete beam integrating, through embedded discontinuities, all local fracture phenom-

ena responsible for the failure of reinforced concrete namely concrete fracture, bond-slip

fracture or eventually, steel rebars fracture. We present briefly the kinematic enrichment
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Figure 3.8: Cracks pattern and bond slip sliding

Figure 3.9: Global response for weak reinforcement

and the modification of the weak form of the equilibrium equation and we pay partic-

ular attention to give a detailed description of the stress-resultant macro model used to

incorporate fracture processes of the different reinforced concrete components.
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3.1 Theoretical formulation and finite element representation

We consider here a Timoshenko beam of length L and cross-section A submitted to

f (x), q(x), m(x) as well as F, Q, C being respectively the set of distributed loads and of

concentrated loads (see Figure 3.10). We denote as (u,v) the components of the displace-

ment of the beam mean-line and θ will denote the rotation of its cross-section.

Figure 3.10: General beam diagram for stress-resultant model

The stress-resultant equilibrium equations can be written in a strong form as:

dM(x)

dx
+T (x)+m(x) = 0;

dN(x)

dx
+ f (x) = 0 and

dT (x)

dx
+q(x) = 0 (3.22)

Moreover, assuming Timoshenko standard kinematics we have:

ε(x) =
du(x)

dx
, γ(x) =

dv(x)

dx
−θ(x) and κ(x) =

dθ(x)

dx
(3.23)

In order to incorporate in the macro-model the effect of the development of fracture

process in the different reinforced concrete components we introduce discontinuities both

in the vertical displacement v and the rotation θ for a particular point on the beam mean-

line.

In addition to standard degrees of freedom u,v,θ, we consider a discontinuity both in

mean-line rotation and vertical displacement located at point xc. The vertical displace-

ment and rotation field are then written as:

v(x) = v̄(x)+αvHxc
and θ(x) = θ̄(x)+αθHxc

(3.24)

where αv and αθ denote respectively the vertical displacement and rotation jumps. Hxc
is
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the Heaviside function being 1 if x > xc, O otherwise. By introducing a regular function

ϕ(x) being 0 for x = 0 and 1 for x = L, we can rewrite the previous expressions as:







v(x) = (v̄(x)+αvϕ(x))
︸ ︷︷ ︸

ṽ(x)

+αv(Hxc
−ϕ(x))

θ(x) = (θ̄(x)+αθϕ(x))
︸ ︷︷ ︸

θ̃(x)

+αθ(Hxc
−ϕ(x))

(3.25)

We can note that the regular variables ṽ(x) and θ̃(x) have, due to the form of the

function ϕ(x), exactly the same essential boundary values then the total transverse and

rotational displacements v(x) and θ(x). Such a choice allows to cancel the contribution of

the discontinuities αv and αθ on the boundary of the domain leading to local contribution

of the discontinuities.

With such interpolations, the beam shear strain and curvature can be decomposed into

a regular and a singular part as:

γ(x) = γ̄(x)+αvδxc
and κ(x) = κ̄(x)+αθδxc

(3.26)

where γ̄ and κ̄ denotes the regular part respectively of the shear strain and curvature. δxc

denotes the Dirac delta function on point xc.

From the expression of the beam strain in equation (3.23), one can build the finite el-

ement for such quantities. We consider for that purpose a 2-node beam element of length

ℓe (see Figure 3.11), where xc denotes the mid-point of the element.

!

"#$!%&'(!&)&(&*+!,*!+-&!.//01,*'+&!232+&(!#4!

Figure 3.11: Beam element and shapes of interpolation function

A classical interpolation for such an element gives for the axial displacement, trans-

verse displacement and rotation the following discretisation:
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Figure 3.12: Description of transverse displacement and rotation discontinuities in

beam element







u(x) = N1(x)u1 +N2(x)u2 = Nu

v(x) = N1(x)v1 +N2(x)v2 = Nv

θ(x) = N1(x)θ1 +N2(x)θ2 = Nθ

(3.27)

where N = {N1(x) = 1− x
ℓe , N2(x) = x

ℓe} and u, v and θ denote the nodal axial, transverse

and rotational displacement vector (u = {u1,u2}T ).

The rotation and transverse displacement discontinuities are taken into account in the

strain interpolation, so that we deal with a kinematic incompatible formulation (see [6]).

The strain interpolation are then given by :







ε(x) = Beu

γ(x) = Bev−Nθ +Gαv

κ(x) = Beθ +Gαθ

(3.28)

where Be = {− 1
ℓe , 1

ℓe}. In order to ensure the compatibility of the enhanced strain with the

standard ones, the function ϕ(x) introduced in equation (3.25) is chosen equal to −N2(x)
so that, the function G is decomposed into a regular and a singular part as:

G = Ḡ+δxc
= − 1

ℓe
+δxc

(3.29)

Denoting as ε the beam strain, we have :

ε =





ε
γ
κ



= Bd+Gα (3.30)
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where we have:

d =











u1

v1

θ1

u2

v2

θ2











, α =

[
αv

αθ

]

, B = [B1 , B2] with Bi =





dNi

dx
0 0

0 dNi

dx
−Ni

0 0 dNi

dx





and G = (− 1

ℓe
+δxc

)





0 0

1 0

0 1



.

From those interpolations, the weak form of the equilibrium equations are written

considering the incompatible modes method (see [6]) based on the Hu-Washizu three

field principle. For that purpose, we consider a kinematically admissible virtual displace-

ment d∗ and the related virtual strain ε∗ = Bd∗ +Gvβ
∗ where Gv is obtained from G by

imposing the patch-test.

Gv = G−
Z ℓe

0
Gdx = Ḡv +





0

1

1



δxc
(3.31)

The weak form of the equilibrium equations results then in a system of two equations:

∀d∗ , ∀β∗







Z L

0
d∗T

Bσ dx−
Z L

0
d∗T

NT fdx−
Z

ΓT

d∗T
NT FdΓ = 0

Z ℓe

0
β∗T

Gv
T σ dx = 0 ∀e ∈ [1,Nelem]

(3.32)

where: σ =





N

T

M



 is the stress-resultant vector, f =





f

q

m



 is the distributed load vector,

F =





F

Q

C



 is the concentrated load vector and ΓT collects all the points where concen-

trated loads are prescribed.
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We finally obtain a set of two equations:







Nelem

A
e=1

[
fe,int − fe,ext

]
=

Nelem

A
e=1

[
Z ℓe

0
BT σ dx−

Z ℓe

0
NT fdx−

Z

ΓT

NT FdΓ

]

= 0

Z ℓe

0
ḠT

v σ dx+

[
T

M

]

x=xc

= 0 ∀e ∈ [1,Nelem]
(3.33)

The second equation is a local equation written on each element enriched by disconti-

nuity. This local equation can be interpreted as the weak form of the traction (being there

the transverse load and bending moment) continuity condition across the discontinuity. If

we assume that the material outside the discontinuity is non linear with an incremental

law of the form:

σ̇ = Dinε̇ (3.34)

and that the dissipation on the discontinuity is also managed by a non-linear law given in

an incremental form as:

[
Ṫ

Ṁ

]

= Dxc
α̇ (3.35)

the system (3.33) can be written in an incremental form as:







Nelem

A
e=1

[
Ke∆d+Fr∆α− fe,ext

]
= 0

FT
v ∆d+(H+Dxc

)∆α = 0

(3.36)

where

Ke =
Z ℓe

0
BT DinBdx , Fr/v =

Z ℓe

0
BT DinḠr/v dx and H =

Z ℓe

0
GT

v DinḠr dx

This set of equations is solved taking advantage of the fact that the second equation is

a local one. An operator split method is then used to compute first the value of the local

parameter that is α and then by static condensation at the element level, the displacement

d is obtained as the solution of:

Nelem

A
e=1

[
K̂e∆d− fe,ext

]
= 0 (3.37)

with K̂e = Ke −Fr (H+Dxc
)−1

FT
v .
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3.2 Stress-resultant constitutive laws

The numerical strategy used to enrich Timoshenko beam kinematics has been detailed

previously. To complete the description of the macro-model, it remains to present the

two constitutive models used to describe the behavior outside the discontinuity and on

the discontinuity. Those two models are built in the framework of the thermodynamics

of continuum media in a stress-resultant manner. We consider here a beam submitted to

bending. The axial beahvior of the beam is supposed to remain elastic, all the material

non-linearities and dissipation are supposed to be related to the transverse and bending

behavior. In the following, we detail how to build the shear and bending constitutive

models both for the material outside the discontinuity and for the discontinuity.

We present here the type of models used in a generic form. In the following, σ should

be either the transverse load T or the bending moment M. For the bulk behavior, we con-

sider a classical elasto-plastic model with:

• the additive decomposition of strain:

ε = εe + εp (3.38)

where ε designates the curvature κ when dealing with bending and the shear strain

γ when dealing with transverse load.

• an Helmholtz free energy:

ψ(εe,ξ) =
1

2
εeCεe +Ξ(ξ) (3.39)

where C is the elastic modulus (EI when considering bending and GA when con-

sidering shear with E the Young modulus, G the shear modulus, I the cross-section

inertia and A the cross-section area) of the material and Ξ is related to hardening.

• a yield function:

φ(σ,q) = |σ|− (σy −q) 6 0 (3.40)

where q is the stress-like variable associated to hardening internal variable ξ and σy

is the limit stress value.

Finally, the plastic dissipation for such a model is given by:

0 6 D
p = σε̇− d

dt
ψ(εe,ξ) (3.41)
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The state equations are then given by:

σ = C(ε− εp) and q = −K(ξ)ξ (3.42)

In the present work, we have chosen linear hardening law, so that the parameters K are

constants. By appealing to the principle of maximum plastic dissipation, one can obtain

the internal variables evolution equations:

ε̇p = λ̇
∂φ

∂σ
= λ̇sign(σ) and ξ̇ = λ̇

∂φ

∂q
= λ̇ (3.43)

and the constitutive equations:

σ̇ =







E ε̇ λ̇ = 0


E −
E

∂φ
∂σE

∂φ
∂σ

∂φ
∂σE

∂φ
∂σ + ∂φ

∂q̄
K

∂φ
∂q̄



 ε̇ =
EK

E +K
ε̇ λ̇ > 0

(3.44)

with the loading/unloading conditions λ̇φ = 0 , λ̇ > 0 , φ 6 0, λ being the Lagrange mul-

tiplier. All of those equations give finally for the plastic dissipation the following expres-

sion:

0 6 D
p = σε̇p +qξ̇ = σyξ̇ (3.45)

In order to consider the different stages of the behavior, if the beam is in the hardening

phase, several yield functions are subsequently introduced. For instance, for bending

hardening behavior, two different yield functions are considered and consequently two

hardening phases characterized by two limit values:

• Mc corresponds to the cracking limit value that is the elastic limit for bending mo-

ment.

• My corresponds to the yield moment at which steel rebars start yielding.

Figure 3.13 gives the moment/curvature relation ans defined the limit values used in

this work for the bending behavior of the beam.

As regards the discontinuity behavior, we consider a rigid-plastic model with a yield

function of the form:

¯̄φ(σΓ, ¯̄q) = |σΓ|− (σu − ¯̄q) 6 0 (3.46)
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Figure 3.13: Moment-Curvature relation for stress resultant macro model

where σΓ denotes the value of either the bending moment or the transverse load at the sur-

face of discontinuity Γ and σu is the ultimate generalized stress value. ¯̄q is the stress-like

variable associated to softening. We have, when considering linear softening, : ¯̄q = − ¯̄K
¯̄ξ

with ¯̄K < 0. Similar construction of the model as the one presented previously can be

pushed further (the only difference lies in the fact that we deal here with a rigid-plastic

behavior). We obtain then for the constitutive law:

σ̇Γ = ¯̄Kα̇ (3.47)

where the jump α is either αv or αθ depending on wether we consider shear or bending

constitutive model.

For such a model, the dissipation related to the softening part of the behavior is given

by:

¯̄
D

p = σΓα̇+ ¯̄q
˙̄̄
ξ = σu

˙̄̄
λ (3.48)

where
˙̄̄
λ is the plastic multiplier associted to the discontinuity. We can note that the dis-

placement jump α is no more than a localized plastic deformation accounting for the

irreversible phenomena occuring when plastic hinges develop.
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Finally, we can compute the total ”fracture energy” G f related to the considered rup-

ture mode as:

G f =
Z t f

t0

Z

Ae
σΓα̇dSdt (3.49)

where Ae is the area of the beam cross-section, t0 is the time corresponding to initiation

of the localized mode and t f corresponds to complete failure of the beam. Considering

constitutive laws and evolution equations for the discontinuity, we obtain for the fracture

energy the following expression in terms of the limit stress and the softening parameter:

G f = −Ae σ2
u

2 ¯̄K
(3.50)

such a fracture energy can be computed for both fracture modes : bending or shear.

4 Numerical examples

In this section, we present the numerical examples using both the new stress-resultant

macro model for reinforced concrete beam-column presented clearly in previous section

and multi-fiber model presented in previous parts. The four-point bending test of the

beam, where the geometry, dimension of rectangular cross-section, as well as the number

of steel reinforcement and the material properties are the same as those presented in the

previous section, is considered as in Figure 3.14.

Figure 3.14: Geometry and details of beam in the four-point bending test

We apply both stress-resultant macro and multi-fiber models in this example, with the

purpose to find out the differences among the computational results obtained from all of

presented models. In the first step, we consider to choose the length of element Le. This

factor, in the local element level, affects not only the equivalence of internal strain energy
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and dissipated energy, but also the time in computation. Observing the crack positions and

distance between two macro cracks as well as the numbers of crack in the span between

two external load positions in Figure 3.7 and Figure 3.8, in the beam divided into 3 spans

with the length of each span Ls equal to 2.250/3 = 0.75(m), we choose 5 elements for

each span. The length of each element Le is equal to 0.75/5 = 0.15(m) as the choice for

meshing the beam.

The general computational diagram for both multi-fiber and macro models as well as

the post transverse displacement of the beam in this example can be seen in Figure 3.15.

For control the transverse displacement of the beam, we impose two displacements at two

external load positions in the computation for obtaining the behavior of beam expressed

by the relation between support reaction and imposed displacement (see Figure 3.16).

               Time = 7.50E+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-8.31E-03

-7.55E-03

-6.80E-03

-6.04E-03

-5.29E-03

-4.53E-03

-3.78E-03
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 0.00E+00

 DISPLACEMENT 2  

Min  = -9.06E-03

Max =  0.00E+00

               Time = 7.50E+00

Figure 3.15: Computational diagram and post transverse displacement of tested

beam

In the multi-fiber computation, we use the cross-section with the dimension b× h =
30×30(cm). This cross-section is divided by 20 fibers of concrete and inserted 2 discrete

fibers of steel reinforcement describing for 2φ16 inside. The concrete and steel material

models applied into each fiber for this case are kinds of strain discontinuity model, which

can be seen more details from two previous parts. In this multi-fiber computation, we

especially consider the softening modulus of the tension phase in concrete. Three values

are used for three particular cases: the first value of Ksb = 40.e9(Pa), the second value of

Ksb = 50.e9(Pa), and the third value of Ksb = 53.3e9(Pa). When we change the softening

modulus, the behavior of reaction/deflection are expressed by different curves, especially

those differences are presented clearly in the plastic hardening phase of global behavior.

The smaller value of softening modulus we use, the more smooth curve we obtain. On

other words, this multi-fiber model can also express the appearance of macro cracks com-

paring with the presented global response of X-FEM model in the Figure 3.6 of Section

2.3 and if increasing the fracture energy G f in concrete, we shall obtain the more smooth
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curve of the global behavior.

In the computational example of stress-resultant macro model, we obtain the global

response closed to that one computed by the multi-fiber model (see Figure 3.16). Com-

paring global response of both macro and multi-fiber model with that of X-FEM model,

we recognize that the values of prominent moment My and Mu close to those of X-FEM

model. However, the values of curvature corresponding prominent moments are not much

different from those of X-FEM model, we can compare two points of couple (My, κy) and

(Mu, κu) of each global response for recognizing what affect to those differences. In this

example, the small difference of curvature is derived from the bond-slip effect and diago-

nal crack of coupled shear force and bending moment (T, M) in two spans at two ends of

the beam.
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Figure 3.16: Global behavior of support reaction and deflection of tested beam

5 Conclusions

In this work, we also present briefly the problems for the concrete and steel material model

as well as the bond-slip problem applied into the 2D plate finite element model, where the

strain discontinuities in plate element are embedded.

The new version for stress-resultant macro model for reinforced concrete beam-column

is built and presented, in which beside the appearance of combined moment and axial

force in the previous version for computing the behavior of frame structure with the ulti-

mate load and until the complete collapse, the problem of shear failure is also considered
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with the adding new yield function of shear load. By this model, we can solve the general

problem for frame structure at the macro level with saving time in computation.

With presenting a X-FEM model, it is not only the basis for determining the length

of element, but also basic results for comparing the result obtained from both multi-fiber

and macro model. In the next study, it is necessary to indicate the effects of the rein-

forcement bond-slip and the shear failure included the stirrup effect. As the same creating

relationship between prominent moments and axial force in the second part, for knowing

clearly the effect of the shear force and axial load couple, we shall consider to create that

relationship with both shear and axial force changes based on the X-FEM model.

One more important problem that we need to consider the ratio of reinforcement in

the cross-section. This ratio affects to both crack distance and the crack opening, so that

this ratio will be considered as a factor for determining the length of element.
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The main goal of this work was pertinent to the performance-based design of the rein-

forced concrete frame structures. Based upon such an approach, we can seek to optimize

a number of factors that are involved in the computed nonlinear response, such as material

properties of concrete and steel, the dimensions of the cross-section, the steel reinforce-

ment ratio. This is made possible for any particular loading program by the approach

presented herein, which relies on material level information (with the realistic properties

of concrete and steel, including the localized failure) in order to build the stress resultant

model for a particular reinforced concrete cross-section. In this manner we end up with

what is most likely the most reliable basis for parameter identification which possesses

the predictive capabilities. Moreover, the idea to build the stress-resultant constitutive

model for a RC beam from the corresponding properties of the constituents is the main

advantage with respect to classical and more recent works on ultimate limit load failure of

frame structure, where the stress-resultant models are proposed in a fairly ad-hoc manner.

The stress-resultant constitutive model we initially developed for beam-bending fail-

ure mode, was easy enough to modify in order to account for a beam-column failure in the

presence of axial force. The strategy used herein, where the prominent values of moment,

such as cracking moment, yielding-moment, and ultimate moment are recomputed for the

corresponding (non-zero) value of axial force, and further connected by curve fitting (by

using the computer code MATLAB), proved to be sufficiently accurate for the prediction

of the ultimate limit load of the reinforced concrete frame structure. Such a strategy, in

addition, resulted with a very robust approach, which is quite likely the consequence of

the bending-dominated failure despite the presence of the axial force.

The final development with this reinforced concrete stress-resultant model carried out

herein concerns the examination of the model capabilities to represent the results obtained

by a more refined 2D model (see [53]) of reinforced concrete that can take into account

the bond-slip and any crack orientation (not necessarily orthogonal with respect to the

steel reinforcement, such as for the case of cracks under the shear force). In fact, the

comparison with this refined model allowed us to obtain the proper length of the beam

element to be positioned against the crack, as well as the proper amount of fracture en-

ergy. We could thus imagine using this stress-resultant beam model as the replacement of

the refined model (see [53]) once the cracks have stabilized, (with no further significant

development in cracking), which should improve the computational efficiency for subse-
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quent computations. The only information that the present stress-resultant beam model

can not match coming from the refined model concerns the cracks under the shear force,

which do not fit within the framework of beam theory.

A very important part of the developments of the beam model presented herein con-

cerns the proper strain field representation for different phases of the beam failure. In

particular, we have used an embedded discontinuity of the rotation (placed in the middle

of the Timoshenko beam, at the single Gauss point used for computations of all matrices).

This results in the appropriate representation of the localized failure mechanism, where

a plastic hinge is created (with the total resistance characterized by the corresponding

amount of fracture energy). The rotation discontinuity is handled within the framework

of incompatible mode method (see [1]), which results with the Timoshenko beam element

that can be introduced within any computer code.

In fact, there are still many other problems affecting to the local and global responses

of reinforced concrete frames that we ought to study in future. For example, in the future

work we would try embedding not only the relationship of moment, but also axial force as

well as shear force into the macro model for beam-column and compute the optimization

for reinforced concrete frame by using combination of macro and X-FEM models. We

would ideally seek as the final development the adaptive structural model of this kind

where the most adequate representation (between the present stress-resultant beam, multi-

fiber beam or refined 2D beam model) would be used for the current computational phase

in the process of computing the ultimate limit load of a reinforced-concrete frame under

a given loading program.
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