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Water is needed in all aspects of life. The general objective is to make certain that adequate
supplies of water of good quality are maintained for the entire population of this planet, while
preserving the hydrological, biological and chemical functions of ecosystems, adapting
human activities within the capacity limits of nature and combating vectors of water-related

diseases.
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Abstract

This study is conducted in Lake Tana basin located in the Upper Blue Nile Basin in Ethiopia where
water resources issues are critical and availability of relevant data is poor. The study is divided into
three major components that include evaluation and analysis of the existing data, evaluation of the
applicability of a physically-based distributed hydrological model and water and suspended sediment
balance modeling for Lake Tana. The temporal and spatial coverage of various hydro-meteorological
variables was assessed in light of recommended practices in the literature. Analyses of the hydro-
meteorological datasets comprised data quality control, and determination of their characteristics in
space and time. The applicability of the fully distributed physically-based hydrological model was
assessed on selected catchments. The modeling exercise revealed the importance of weather data
disaggregation models in generating meteorological forcings at finer time scales. Considering the
quality and resolution of the inputs used, the performance of the distributed model could be judged
satisfactory in two of the selected mesoscale catchments. The water balance modeling of Lake Tana
was done at a monthly time step and involved estimation of the major inflow and outflow components.
A dynamic conceptual model was used to estimate the contribution of catchments for which data could
not be obtained. The results of the water balance model at monthly and annual time scales was
generally good and the observed lake levels could be reproduced satisfactorily. Estimation of the
suspended sediment balance of the lake involved development and use of rating curves and a regional
area-specific model. The results of the study are useful for planning and management of water
resources in the study area.

Keywords: hydrological modeling, DHSVM, weather data disaggregation, suspended sediment, Lake
Tana basin, Ethiopia

Résumé

Cette étude a été menée dans le bassin versant du lac Tana situé¢ dans le haut bassin du Nil Bleu en
Ethiopie, ou les enjeux liés a 1’exploitation des ressources en eau sont critiques et la disponibilité de
données pertinentes est faible. L'étude est divisée en trois parties principales qui comprennent
I'évaluation de la qualité et I'analyse des données existantes, I'évaluation de I'applicabilité d’un modéle
hydrologique a base physique et le calcul des bilans en eau et des maticres en suspension du lac Tana.
Les couvertures spatiales et temporelles des variables hydro-météorologiques ont été évaluées a partir
des méthodes recommandées dans la littérature. L’analyse des jeux de données hydro-météorologiques
comprend le controle de la qualité des données, et la détermination de leurs caractéristiques spatiales
et temporelles. L'applicabilité du modele hydrologique a base physique a été évaluée sur deux bassins
versants. Cet exercice de modélisation a montré 1'intérét des méthodes de désagrégation temporelle
pour générer des données météorologiques a des échelles de temps plus courtes. Compte tenu de la
qualité des données utilisées, la performance du modéle dans deux des bassins versants a été jugée
satisfaisante. Le bilan en eau du lac Tana a été calculé au pas temps mensuel ce qui a impliqué
l'estimation des différents termes. Un modéle dynamique et conceptuel a été utilisé pour estimer les
contributions des bassins versants pour lesquels les données hydrométriques sont manquantes. Les
résultats du calcul sont généralement bons et les niveaux observés du lac sont reproduits de maniére
satisfaisante. L'estimation du bilan des matiéres en suspension pour le lac a nécessité le
développement et l'utilisation des courbes débit-concentration et un modéele régional. Les résultats
présentés dans ce travail sont utiles pour la planification et la gestion des ressources en eau dans cette
région d’Ethiopie.

Mots-clés: modélisation hydrologique, DHSVM, désagrégation des données météorologiques,
matieres en suspension, lac Tana, Ethiopie
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Résumé étendu en francais

Introduction
Contexte

De nombreux pays dans le monde sont confrontés a des problémes en relation avec
I'utilisation des ressources en eau comme la pénurie d'eau, la pollution de l'eau et les
catastrophes liées a I'eau. Ces problemes sont plus graves dans les pays en développement
en raison de leurs importants impacts socio-économiques négatifs, des faibles capacités
financieres et de I'absence de mécanismes d'adaptation dans ces pays.

Cette étude a été conduite dans le bassin versant du lac Tana en Ethiopie, ou le potentiel
actuel des ressources en eau est peu exploité, I'érosion des sols par I'eau est un probléme
grave, la sécheresse et les inondations sont des phénomeénes récurrents. La gestion non
durable des bassins versants provoque de sérieux impacts négatifs socio-économiques et
écologiques depuis I'échelle locale jusqu’a celle de la région. Ce bassin correspond au
bassin versant amont du Nil Bleu qui est le principal contributeur au débit du Nil. Le lac Tana,
le plus grand lac d’Ethiopie, est situé au centre de la zone d'étude. Ce lac présente une
grande diversité de valeurs socio-économiques et écologiques. De nombreux projets de
développement des infrastructures pour I'utilisation des ressources en eau sont également
en cours de réalisation. Dans ce contexte les études hydrologiques et sur le transfert des
sédiments associés sont des composantes essentielles de la gestion intégrée de ces
bassins versants et constituent I'objet principal de la recherche présentée dans ce mémoire.
L'étude est organisée en trois volets principaux qui sont: I'évaluation et l'analyse des
données spatiales et hydrométéorologiques existantes, ['‘évaluation d'un modéle
hydrologique distribué a base physique, et I'estimation des bilans hydrologique et des
sédiments en suspension du lac Tana.

Les questions de recherche et les objectifs

Les recherches dans les domaines de I'hydrologie et des bilans des sédiments en
suspension sont indispensables pour proposer des scénarios de gestion durable des bassins
versants. Leur rble est particulierement important dans les régions comme celle du lac Tana
ou l'utilisation des ressources en eau est critique, la disponibilité et la qualité des données
hydrométéorologiques sont pauvres. Certaines questions de recherche prioritaires dans les
domaines biophysique, de la gestion et sur les aspects socio-économiques du bassin du Nil
ont déja été abordées dans une étude récente (Mohamed et Loulseged, 2008).

Cette thése tente d'apporter une contribution a certains des besoins de recherche évoqués
ci-dessous en répondant aux questions suivantes.

La premiére question abordée est liée a la disponibilité des données et a leur qualité. Un
inventaire critique des types, de la qualité et des caractéristiques spatiales et temporelles
des données existantes est fondamental avant de réaliser les études hydrologiques. Il met
en évidence les lacunes et les erreurs dans les jeux de données existants et permet
d'identifier les stratégies pertinentes pour résoudre ces problémes. Selon les objectifs de
l'analyse, la nature des données et la disponibilité de moyens financiers, différentes
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stratégies peuvent étre utilisées. Ces stratégies peuvent comprendre I'utilisation directe des
données existantes, l'estimation des données manquantes a partir de méthodologies
appropriées (modeles de désagrégation temporelle pour les séries de données
météorologiques, les fonctions de pédotransfert pour les propriétés du sol, l'interpolation
spatiale, etc.), ou la réalisation de nouvelles campagnes de collecte de données. Cette étude
a évalué les caractéristiqgues des jeux de données existants pour le bassin du lac Tana en
soulevant quelques questions clés liées a la nature, la couverture spatiale, la qualité et la
cohérence des seéries de données hydrométéorologiques. Les données géographiques
décrivant les bassins versants ont également été étudiées.

Dans la région étudiée il y a de nhombreux bassins versants non jaugés (environ 40% de la
superficie). Les probléemes d'érosion et de transfert de sédiments sont critiques a cause de
leurs impacts négatifs localement (pertes en terre) mais également en aval du site d'étude
(envasement des retenues). L'importance de ces impacts, dans la zone d'étude, pourrait étre
élevée du fait des projets de développement des infrastructures hydrauliques et de la
présence de systémes naturels ayant de grandes valeurs socio-économiques et
écologiques. Les projets de développement de lirrigation, en cours de réalisation ou prévus
(plus de 100 000 hectares) ainsi que les centrales hydroélectriques d'une puissance
supérieure a 500 MW pourraient étre directement affectés.

Dans cette perspective, les recherches qui visent a améliorer les estimations des
écoulements de surface provenant des bassins versants non jaugés et des apports de
sédiments sont nécessaires pour assurer la durabilité de 'usage des ressources en eau. A
cet égard, l'utilisation de modéles hydrologiques distribués a base physique peut se révéler
tres utile. La deuxieme question abordée dans cette étude concerne donc I'évaluation d'un
modeéle hydrologique distribué en utilisant les données hydrométéorologiques et
géographigues existantes.

La disponibilité de données météorologiques a un pas de temps horaire est généralement
médiocre. Les données météorologiques a des échelles de temps plus fines que la journée
sont nécessaires pour de nombreuses applications comme les études sur I'érosion des sols
et le transport des sédiments et I'analyse des crues. Dans le cadre de l'application du
modéle distribué a base physique des méthodes pertinentes et originales de désagrégation
des séries de données météorologiques journalieres ont été appliquées pour produire des
séries horaires.

Le bilan hydrologique du lac Tana a été étudié par difféerents auteurs dans le passé qui ont
abouti a des estimations différentes des principaux termes du bilan. Les causes de ces
différences sont dues a la prise en compte de périodes de référence et a l'utilisation de
méthodes d’estimation des écoulements de surface des bassins non jaugés différentes. Par
exemple, Kebede et al. (2006) estiment la précipitation directe sur le lac en utilisant les
données d'une seule station. De plus, ils font I'hnypothése que la contribution des bassins
versants non jaugés est négligeable. Dans une région ou la variabilité spatiale des
précipitations est élevée, le calcul du terme précipitation a partir d’'une seule station est
critiquable et l'incertitude associée importante. Les composantes du bilan hydrologique du
lac doivent étre estimées aussi précisément que possible a partir de données
représentatives. C'est un élément important dans le choix des options retenues pour la
gestion durable du lac. Dans cette these un effort important a été consenti pour calculer le
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bilan hydrologique du lac en utilisant un jeux de données issu d'un contréle de qualité et
représentatif des conditions hydrométéorologiques de la période 1992 a 2005.

Comme I'érosion des sols est un probléme critique dans le bassin du lac Tana son impact
sur le lac ne doit pas étre sous-estimé. Les études existantes sont limitées a la bathymétrie
du lac et a I'estimation de la production de sédiments sur quelques bassins. Aucune étude
globale du bilan hydro-sédimentaire n’existe dans la littérature. Une étude conduite dans le
cadre de cette thése propose une premiére estimation du bilan hydro-sédimentaire du lac.

Les objectifs spécifiques de cette thése sont les suivants :

* Inventaire, collecte, critique et analyse des données hydrométéorologiques et
géographiques disponibles dans le bassin du lac Tana

o Evaluation et application de modeéeles désagrégation des données
météorologiques

o Evaluation d'un modéle hydrologique distribué a base physique « Distributed
Hydrology Soil Vegetation Model » (DHSVM)

e Calcul du bilan hydrologique du lac Tana

e Calcul du bilan sédimentaire du lac Tana

En abordant les questions de recherche présentées ci-dessus, cette thése apporte une
contribution notable a la gestion durable des ressources en eau dans la région du lac Tana.
Les outils et méthodes utilisés ou développés pour ce travail de recherche peuvent étre
utilisés pour réaliser des études similaires sur d’autres bassins versants.

Chapitre 1 Questions relatives aux ressources en eau

Ce chapitre présente le cadre général de cette thése. Un inventaire des principaux
problémes liés a I'utilisation des ressources en eau dans les pays en développement et dans
la zone d'étude est présenté dans la premiere partie. Elle est suivie par une bréve note sur le
réle des études de bilan hydrologique et des sédiments pour résoudre les questions relatives
a la gestion des bassins versants. Comme ['utilisation de modéles hydrologiques est un point
important de cette étude, la derniere partie du chapitre est consacrée a une présentation des
différents types de modeéles et de leur application.

Les principaux probléemes de ressources en eau auxquels sont confrontés les pays en
développement et la zone d'étude sont présentées en quatre catégories principales : quantité
d'eau disponible, qualité de l'eau, phénomenes hydrologiques extrémes et érosion et
sédimentation. La pénurie d'eau dans la zone d'étude est un probléme crucial en raison de la
pression démographique croissante, la forte variabilité hydrologique dans l'espace et le
temps, et de la nature transfrontaliére de la plupart des cours d’eau. La dégradation de la
gualité de l'eau a partir de sources ponctuelles ou non de polluants est également un sujet
de préoccupation en raison du niveau médiocre des infrastructures de gestion des déchets.
Ces dernieres années, les inondations sont devenues un probléme sérieux avec ses effets
néfastes sur les terres agricoles, les zones habitées et les infrastructures. Pendant des
années, I'Ethiopie a été frappée par des sécheresses dévastatrices qui affectent des millions
de personnes. L'érosion des sols par l'eau et ses effets néfastes sur place et les
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conséguences hors site ont des impacts environnementaux et économiques importants et
depuis longtemps.

L'analyse et la solution des problémes relatifs a I'eau sont encore plus difficiles du fait de la
faiblesse des mécanismes institutionnels et de linsuffisance des capacités humaines,
financiéres et techniques. Le manque de données hydrométéorologiques et géographiques
représentatives et fiables constitue un autre enjeu scientifique majeur qui participe a la
formulation inadéquate des questions et I'évaluation biaisée des options de gestion. Dans la
région étudiée, il y a de nombreux bassins versants non jaugés ou mal mesurés. Les
principaux problemes spécifiques aux données sont la présence de lacunes et des erreurs
dans les observations existantes, le manque de données hydrométéorologiques a des pas
de temps courts, la représentation des éléments naturellement hétérogénes de la surface
comme les sols et les types de végétation par des informations ayant une faible résolution
spatiale. Ces problemes rendent I'analyse hydrologique difficile alors qu’elle constitue un
élément fondamental pour la gestion durable des bassins versants. Une combinaison de
stratégies pertinentes doit étre utilisée pour résoudre les problémes liés aux données et
rendre I'analyse hydrologique possible.

Chapitre 2 Description de la zone d'étude

Ce chapitre décrit la zone d'étude en présentant le milieu physique et les ressources en eau.
La localisation géographique du bassin versant du lac Tana ainsi que ses principales
caracteéristiques, qui comprennent le relief, la géologie, les types de sol, 'usage du sol et le
couvert végétal, sont décrites. La climatologie de la zone d'étude, les principaux systémes
hydrologiques et I'état des ressources en eau sont également présentés.

Le bassin du lac Tana correspond a un plateau situé au nord-ouest de I'Ethiopie. Il
représente la source du Nil Bleu, qui est le principal contributeur en débit du Nil. Le Nil est
partagé par dix pays riverains qui sont confrontés aux mémes problémes pour l'utilisation
des ressources en eu.

La superficie du bassin du lac Tana est de 15 120 km? avec une altitude moyenne de 2025
m. Le relief est constitué de zones plates autours du lac, de collines ondulées dans la partie
médiane et des zones de montagne dans la partie amont. La géologie du bassin est
dominée par des séries de roches volcaniques du Quaternaire dans la partie sud et du
Tertiaire dans les autres régions. Le lac Tana est situé dans un fossé d’effondrement qui
contrdle la circulation des eaux souterraines. Environ 70% de la superficie du bassin est
couverte par quatre types de sols principaux qui sont les luvisols, les leptosols, les vertisols
et les fluvisols (suivant la classification FAO/Unesco). Le bassin est majoritairement cultivé
avec deux grands centres urbains, ayant chacun plus de 200 000 habitants. Le climat de
cette région est contrélé par la position et les mouvements de la Zone de convergence
intertropicale (ZCIT). Les précipitations moyennes annuelles et la température moyennes
sont respectivement de 1345 mm et 19 °C. La pluviométrie est trés concentrée avec plus de
70% de la pluie annuelle qui tombe en quatre mois, entre les mois de juin et de septembre.

Le lac Tana, avec une superficie moyenne de 3012 km?, représente un important systeme
hydrologique dans le bassin du Nil. Il est alimenté par plusieurs cours d’'eau et posséde un
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seul exutoire naturel, le Nil Bleu. L’écoulement des eaux souterraines a l'intérieur et autour
du bassin du lac Tana est drainé par les cours d’eau de surface. L'état de développement
des ressources en eau dans le bassin du lac Tana est faible. Mais, il se développe avec la
réalisation d'importants projets d’infrastructures hydrauliques.

Chapitre 3 Inventaire des données disponibles et analyse

La disponibilité, la qualité et les caractéristiques des jeux de données hydrométéorologiques
et géographiques existants dans le bassin du lac Tana ont été évaluées. Les données
disponibles sont constituées de série de données journaliéres. Les autres données sont des
chroniques de débits journaliers, des mesures de la concentration des sédiments en
suspension et des propriétés physiques des différents types de sol ou de végétation.

L'analyse des données hydrométéorologiques a été effectuée sur la période 1992-2005 car
la couverture spatiale et temporelle sur cette période a été jugée satisfaisante. Les analyses
des données hydrométéorologiques ont consisté a vérifier la qualité des données, combler
les lacunes et caractériser leurs distributions spatiales et temporelles. Des séries continues
de précipitations journalieres ont été construites suivant les méthodes présentées dans
Romero et al. (1998) et Federico et al. (2009). L’estimation des données de température
manquantes a été obtenue en utilisant une méthode d’interpolation basée sur l'inverse de la
distance entre les stations avec des observations. Les données journaliéres de vitesse du
vent ont été complétées par une méthode stochastique basée sur une distribution de
Weibull. Le contrdle de la qualité des données s’est appuyé sur des procédures de détection
d’erreurs, de valeurs « horsains », et de recherche d’incohérences spatiales et temporelles.
Les caractéristiques des distributions spatiales et temporelles des différentes variables
hydrométéorologiques ont ensuite été déterminées a partir des jeux de données dont la
gualité avait été contrblée.

Les résultats de ce contrble de qualité montrent que la majorité des stations ont des données
de bonne qualité. Bien que de nombreuses stations météorologiques ne présentent pas de
séries continues d’observations des précipitations sur de longues périodes, la distribution
temporelle peut étre considérée comme adéquate étant donné I'absence de tendance forte
dans I'évolution des cumuls de pluies dans la région étudiée. Environ 34% de la superficie
du bassin du lac Tana n’est pas mesurée par les stations pluviométriques conformément aux
recommandations de I'Organisation Météorologique Mondiale (OMM, 1994). La disponibilité
de données pluviographiques (pas de temps inférieur a la journée) est tres limitée, les séries
sont trés fragmentées et de mauvaise qualité. L'utilisation de techniques de désagrégation
temporelle des observations de pluies journalieres est considérée comme une bonne
stratégie dans les applications qui nécessitent le recours a des données a pas de temps
court. La distributions des observations de la température est considérée comme suffisante
compte tenu des faibles variabilités interannuelle et saisonniére. En outre, compte tenu de la
relation linéaire entre la température et l'altitude, la distribution spatiale est suffisante. Bien
gue les données d'humidité relative soient disponibles uniquement dans un nombre limité de
stations, sa distribution spatiale peut étre amélioré en raison de sa forte relation avec la
température dont la mesure présente une meilleure distribution spatiale.
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Considérant la longueur et la continuité des séries de débits journaliers sur les principaux
cours d’'eau, la distribution temporelle de ces observations peut étre considérée comme
suffisante. En ce qui concerne les observations sur les sédiments en suspension les
données disponibles sont tres insuffisantes. Il est préférable de limiter l'utilisation des
relations débits-concentrations obtenues a partir de ces observations en nombre limité a des
applications dans la phase de planification. Acquérir des données fiables sur les
concentrations de sédiments en suspension est indispensable pour la conception et la
gestion des infrastructures hydrauliques dans la région. Les données sur les propriétés
physigues du sol ne sont pas suffisantes pour caractériser la grande hétérogénéité des
propriétés hydrodynamiques des sols.

Chapitre 4 Analyse de sensibilité des paramétres du modele DHSVM

Le modéle « Distributed Hydrology-Soil-Vegetation Model » (DHSVM) est un modele a base
physique complétement distribué qui a déja été appligué dans de nombreux bassins
versants. La sensibilité des principaux processus hydrologiques représentés par ce modéle
aux valeurs des quarante-six parametres représentant les propriétés des sols et de la
végétation a été évaluée. Les effets de la profondeur du sol et des changements de la valeur
de la pente des versants ont également été inclus dans cette évaluation. Les processus
étudiés sur une période de simulation d’'une année sont la dynamique de I'hnumidité du sol,
I'évapotranspiration, le ruissellement et les débits a I'exutoire. Les simulations ont été
réalisées sur un petit bassin versant virtuel caractérisé par des combinaisons de différentes
textures de sol (argileuse, limoneuse, sableuse), de couverture végétale (sol nu, arbustes,
forét) et deux pentes des versants. Les simulations ont été réalisées avec un pas de temps
de 1 heure pour une période d'un an représentative d'un climat tempéré. L’analyse de
sensibilité a été réalisée en appliquant la méthode de « changement d’'un paramétre a la
fois ». Deux critéres ont été utilisés pour évaluer la sensibilité relative de chaque parameétre.
Pour le bilan de masse on a utilisé un pourcentage pondéré de déviation part rapport a la
simulation de référence. Le coefficient d'efficacité adimensionnel de Nash-Sutcliffe a été
utilisé pour juger des différences entre les hydrogrammes a I'exutoire.

Les résultats sont en accord avec ceux rapportés dans la littérature pour les études a
I'échelle du versant. Cette étude a permis d'identifier l'influence relative des paramétres du
modeéle sur les principaux processus. Elle a mis en évidence les parametres les plus
sensibles pour la calibration du modéle. Ce dernier résultat sera trés utile pour guider la
calibration des parameétres de bassins versants réels. Enfin, cette analyse constitue la
premiére étape d'une analyse plus approfondie utilisant une méthode globale d’'analyse de
sensibilité.

Les conclusions de cette étude sont particulierement utiles pour limiter la calibration aux
paramétres les plus influents. La profondeur du sol est un parametre important pour la
calibration des faibles débits. La porosité et la conductivité hydraulique latérale saturée
peuvent étre utilisés comme paramétres de calibration des sols a texture moyenne et
grossiére et a texture fine sous couvert forestier. Les paramétres de végétation ne sont
influents que dans le cas de bassins couverts de foréts. Le pourcentage de couverture,
'atténuation du rayonnement et l'indice de surface foliaire sont ceux qui ont le plus
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d’'influence quelque soit le type de sol. L'ajustement de paramétres supplémentaires de sol
et de végétation peut étre nécessaires pour les sols a texture grossiére.

Chapitre 5 Création des fichiers de données pour le modéle DHSVM : application au
bassin du lac Tana

Ce chapitre présente les méthodologies utilisées pour la création des jeux de données
d'entrée et le paramétrage du modele hydrologique distribué appliqué a des bassins versants
du lac Tana. Les données de forcages météorologiques a une résolution temporelle d'une
heure ont été créées par désagrégation des séries de données journaliéres. Les jeux de
données spatiales et les fichiers des conditions initiales ont été créés dans le format requis a
l'aide d'outils SIG et des programmes exécutables fournis avec le code source DHSVM. Les
fichiers décrivant le réseau hydrographique ont été créés a partir du modéle numérique de
terrain en utilisant un programme développé par la société Hydrowide. Des valeurs des
paramétres de sol et de la végétation ont été définies a priori a partir d'informations trouvées
dans la littérature du fait du nombre limité d’observations disponibles pour cette région.

Les observations de pluie journaliéres ont été désagrégées en données horaires en utilisant
une version modifiée du modéle a impulsion rectangulaire de Bartlett-Lewis (MBLRPM).
L'application directe de ce modéle n'a pas donné de résultats satisfaisants pour la
distribution horaire des pluies. Pour tenir compte de la nature a dominante convective des
pluies dans cette région, le modele a été amélioré en utilisant une distribution statistique de
type loi Béta. Les chroniques horaires de température ont été calculées en utilisant un
modéle sinusoidal et les observations de température minimale et maximale journaliére. La
température minimale journaliére a aussi été utilisée pour représenter la valeur du point de
rosée dans l'estimation des valeurs horaires d'humidité relative. La désagrégation de la
vitesse du vent en données horaires a été effectuée a l'aide d'un simple modele de
distribution aléatoire. Les données horaires de rayonnement solaire et atmosphérique ont été
estimées a partir de relations empiriques basées sur les données de température. Enfin, la
profondeur du sol a été obtenue a I'aide d’'une régression linéaire multi variables dérivées du
modeéle numérique d’altitude (pente, altitude et surface drainée).

La création de fichiers d'entrée de bonne qualité est une étape importante de la modélisation
hydrologique. Dans cette optique les techniques de désagrégation ont été largement
utilisées. L'utilisation de méthodes de désagrégation des données météorologiques peut étre
considérée comme une stratégie efficace pour obtenir des jeux de données a haute
résolution. Cela est particuliéerement vrai dans les pays en développement ou la plupart des
données existantes se trouvent a faible résolution et le potentiel pour faire des observations
a des échelles plus fines est limitée en raison de contraintes financieres fortes. Il est souvent
difficile d'obtenir des jeux de données spatiales, comme les types de sol et leurs propriétés
hydriques a la résolution des grilles des modéles hydrologiques distribués. Les données
provenant de différentes sources, y compris les mesures de terrain, I'utilisation des données
de télédétection et de fonctions de pédotransfert constituent de bonnes alternatives pour
combler ce déficit. Dans cette étude un effort important a été consenti pour produire les
données spatiales nécessaires a la modélisation hydrologique distribuée a partir
d’observations limitées et d’informations pertinentes issues de la littérature. Au final les
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données nécessaires pour I'application de DHSVM a 4 bassins versants du lac Tana ont été
mises en forme.

Chapitre 6 Application de DHSVM a quatre bassins versants du bassin du lac Tana

Il'y a eu au cours de ces dernieres années un important développement de l'utilisation de
modeéles hydrologiques distribués a base physique en dépit des difficultés dans leur
paramétrage et leur calibration (Beven, 2001). Les raisons scientifiques et pratiques de cet
accroissement sont la nécessité de mieux prédire I'érosion et le transport des sédiments
dans un bassin versant, et I'évaluation des impacts hydrologiques des changements dans
l'utilisation des terres et des caractéristiques des bassins versants.

Ce chapitre évalue les performances du modéle distribué DHSVM pour la simulation des
deébits sur les 4 bassins versants sélectionnés dans la zone d'étude. Une bréve revue de la
littérature sur la calibration et la validation des modeles hydrologiques distribués est
présentée en premiére partie. Elle est suivie par une présentation détaillée de la calibration
et de la validation du modéle sur les bassins versants sélectionnés. Les jeux de données
hydrométéorologiques, géographiques et dérivés ont été traités pour créer les fichiers
d'entrée du modéle (cf. chapitre 5).

Les criteres qui ont été retenus pour choisir les bassins versants tests incluaient la
disponibilité en données météorologiques, la pertinence des données de débit journalier et
leur représentativité spatiale. Les bassins sélectionnés sont ceux de Rib (1 448 km?), de
Megech (514 km?), de Gumara (1 279 km?) et de Gilgel Abay (1 641 km?). Les simulations
ont été réalisées sur la période 1992-2005 avec une résolution temporelle de 1 heure pour
les petits bassins et 3 heures pour les bassins plus grands. La résolution spatiale est de 90
m. Les deux premiéres années ont été utilisées comme une période d'initialisation du modéle
pour minimiser les effets du choix de mauvaises conditions initiales. Le modéle a été calibré
sur chaque bassin sur la période 1994-2000 en utilisant une procédure de calibration
manuelle. Les principaux parametres de calibration (cf. chapitre 5) sont la porosité, la
conductivité hydraulique latérale a saturation et son taux de décroissance exponentielle, et
les profondeurs du sol et d'enracinement de la végétation. Une seconde période a été
utilisée pour valider le modele (2001-2005). La qualité de la calibration du modéle a été
évaluée aux pas de temps journalier et mensuel, en utilisant les tracés graphiques et des
critéres numériques.

Les performances du modele sont trés mauvaises pour les bassins versants de Gumara et
Gilgel Abay avec une sous-estimation systématique des débits. La cause de ces mauvais
résultats n'a pas été identifiée. Les résultats pour les bassins de Megech et Rib sont
relativement meilleurs. Pour le bassin de Megech, la valeur du coefficient d’efficacité de
Nash-Sutcliffe au pas de temps journalier au cours de la calibration est de 0.46 et de 0.35
pour la période de validation. Pour Rib on obtient 0.59 et 0.69 respectivement. Au pas de
temps mensuel les valeurs du coefficient sont meilleures.
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Chapitre 7 Bilans hydrologique et sédimentaire du lac Tana

Les bilans hydrologique et sédimentaire des lacs fournissent des informations de base qui
contribuent a la gestion durable de ces importantes ressources. Des études antérieures sur
le bilan hydrologique du lac Tana présentent des résultats contradictoires qui pourraient étre
attribuables a des différences dans les périodes de référence et les méthodes utilisées pour
estimer les différentes composantes. Aucune étude antérieure sur le bilan sédimentaire du
lac n’a été trouvée dans la littérature.

Les objectifs de cette étude sont de deux ordres: (i) affiner et actualiser le bilan hydrologique
du lac Tana en s’appuyant sur des jeux de données hydrométéorologiques représentatives
et fiables et (ii) fournir une estimation du bilan des sédiments en suspension qui sera utile
pour la planification de la gestion du lac. La modélisation du bilan hydrologique au pas de
temps mensuel du lac nécessite l'estimation des différentes composantes du bilan. Cette
derniére a été réalisée a partir de données existantes de bonne qualité et par I'application
d’'un modéle conceptuel dynamique dérivé du modéle de Budyko. Le calcul du bilan des
sédiments en suspension est basé sur l'utilisation de courbes débits-concentrations et
I'application d’'un modéle régional empirique de production de sédiments.

Les principales composantes du bilan hydrologique du lac Tana sont les précipitations
directes sur le lac, les débits liquides en provenance de bassins jaugés et non jaugés,
I'évaporation de l'eau du lac, I'évaporation de I'eau des plaines inondables, les débits a
I'exutoire du lac et les variation de volume du lac. Des études antérieures ont montré que la
contribution des eaux souterraines au bilan est faible. Les précipitations directes sur le lac
ont été estimées a partir des relevés journaliers des stations situées autours du lac et en
utilisant une technique d'interpolation spatiale. Elles correspondent a une contribution
moyenne annuelle de 1225 mm. Les apports des bassins jaugés ont été calculés a partir des
chroniques historiques de débit. Le modéle conceptuel dynamique a été utilisé pour estimer
les débits provenant des bassins versants non jaugés et pour combler les périodes de
lacunes sur les bassins jaugés. Le lac Tana est entouré de plaines inondables, ou une
guantité importante des écoulements de surface en provenance des bassins amont est
perdue par évaporation. L'évaporation des plaines inondables a été estimée a partir de
données satellites sur I'étendue des zones inondées et le taux d'évaporation. Le flux net en
provenance des bassins versants a été calculé en soustrayant |'évaporation des plaine
d'inondation de I'écoulement total apporté par les bassins jaugés et non jaugés. La moyenne
annuelle de ce flux est de 2344 mm. L'évaporation du lac a été déterminée par la méthode
de Penman avec une estimation moyenne annuelle de 1687 mm. Le débit sortant du lac a
été estimé a partir des chroniques de débits journaliers a I'exutoire, soit un débit moyen
annuel de 1403 mm. La variation du stockage de I'eau dans le lac a été estimée a partir des
données observées du niveau du lac. La variation du stock est d’environ 30 mm par an. La
fermeture du bilan se traduit par un écart relatif de 12,6% qui s'est avéré étre inférieure a
I'écart admissible théorique. La validité et la précision du bilan hydrologique ont été évaluées
en comparant les niveaux d'eau simulés et observés sur le lac.

Les apports liquides en provenance des bassins versants représentent 66% de I'apport total
moyen annuel. En outre, la contribution des parties non jaugés a été jugée significative ce
qui est en contradiction avec les résultats de certaines études antérieures. Il est donc
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important de veiller a limiter les perturbations sur les régimes hydrologiques des quelques
bassins versants qui contribuent le plus aux apports d’eau de surface.

Les apports en sédiments de quatre bassins jaugés ont été estimés sur la base de relations
débits-concentrations établies a partir d’'un nombre limité d’'observations. On a fait
'hypothese que 30% des apports en sédiments en provenance des hauts bassins se
déposent dans les plaines inondables qui entourent le lac Tana. Un modéle empirique
régional d’estimation de la production de sédiments développé par Nyssen et al. (2004) a été
utilisé pour évaluer les flux de sédiments en suspension provenant des bassins versants non
mesurés. L'apport moyen annuel de sédiments en suspension au lac est de 6,6 x 10° tonnes.
Les exportations a partir du lac ont été estimées a 'aide d’une relation débits-concentrations,
elles correspondent & une charge annuelle moyenne de 1,3 x 10° tonnes. La sédimentation
annuelle dans le lac représente donc 5,3 x 10° tonnes ce qui correspond & un piégeage de
80% des sédiments en provenance des bassins versants. Ces résultats doivent étre
considéré comme une premiére estimation grossiére mais utile pour les études préliminaires
de la phase de planification.

Conclusions générales et perspectives

Les bassins versants du bassin du lac Tana sont confrontés a un certain nombre de
guestions essentielles pour leur développement telles que I'érosion des sols et la
sédimentation, la disponibilité en eau, les inondations et la pollution diffuse. La recherche
d'options de gestion durable et efficaces pour répondre a ces questions nécessite des bases
de données hydrométéorologiques et géographiques de qualité, avec une bonne résolution
temporelle et spatiale ainsi que des outils d'analyse adaptés.

Au cours de cette thése, un important travail de collecte, de critique et d'analyse a été réalisé
pour évaluer les données hydrométéorologiques existantes et construire un jeu de données
de base continu au pas de temps journalier et de bonne qualité. Suivant les critéres de
I'Organisation Météorologique Mondiale, 34% de la superficie du bassin du lac Tana a été
jugée insuffisamment couverte par les stations pluviométriques existantes. Comme les
données sur les précipitations sont des données essentielles pour les études hydrologiques,
il est important de renforcer la densité du réseau existant.

Cette these a aussi été I'occasion de développer une méthodologie pour palier le faible
nombre de données disponibles qui pourra étre appliquée dans d’autres régions ou le faible
nombre d’observations est un frein a I'analyse hydrologique des ressources en eau. Cette
approche a permis de créer un jeu de données continu au pas de temps journalier critiqué et
homogénéisé sur la période 1992-2005.

La disponibilité et la qualité des données horaires de précipitations sont trés faibles. Ainsi,
une amélioration de la collecte et de la qualité de ces données est recommandée. Des
données de précipitations fiables, pour des pas de temps courts, sont indispensables pour
mener les études scientifiques sur certaines des questions clés qui se posent sur ce bassin.
L'utilisation de techniques de désagrégation temporelle doit étre considérée comme une
stratégie alternative pour générer des données meétéorologiques a des pas de temps
inférieur a la journée. Dans le cadre de cette thése un modéle classique de désagrégation
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des pluies (MBLRPM) a été adapté de maniére originale pour tenir compte du caractere
convectif dominant de la distribution des averses sur la journée. Ce modele est applicable
dans d’autres régions tropicales présentant les mémes caractéristiques de pluie.

Les données disponibles sur les concentrations des sédiments en suspension sont limitées
et discontinues. Compte tenu de la sévérité de I'érosion des sols et des problemes de
sédimentation dans les retenues et de la construction d'infrastructures hydrauliques, un effort
important doit étre consenti pour l'acquisition, I'analyse et I'archivage des données sur les
sédiments en suspension.

L'analyse de sensibilité des paramétres des sols et de la végétation du modéle hydrologique
distribué (DHSVM) a permis d'identifier quelques paramétres influents comme la porosité, la
conductivité hydraulique latérale a saturation et son taux de décroissance, les profondeurs
du sol et d'enracinement. Les résultats de l'analyse de sensibilité peuvent étre utilisés
comme un guide pour appliquer et calibrer le modéle sur d’autres bassins versants y compris
dans des contextes climatiques et géographiques différents.

L'évaluation du modeéle hydrologique a base physique a été conduite sur une sélection de
bassins versants de méso échelle. Cette tadche a exigé la préparation de jeux de données
d'entrée, de calage et de validation des paramétres du modéle. Comme le modéle a été
utilisé avec un pas de temps inférieur & la journée, les données météorologiques ont été
désagrégées en utilisant des techniques adaptées. La calibration du modéle a été conduite
suivant une procédure manuelle en suivant une exploration systématique qui s’est appuyée
sur une analyse de sensibilité pour déterminer les paramétres les plus influents. Le modele a
été validé en comparant les valeurs des écoulements simulés aux valeurs observées d'un
échantillon indépendant. Au vue de la résolution grossiere des jeux de données
hydrométéorologiques et géographiques, le modéle hydrologigue DHSVM a montré une
performance prometteuse pour les bassins versants de Megech et de Rib. Du fait de
l'importance de I'utilisation de ce type de modéle pour répondre aux questions scientifiques
posées par I'étude de I'érosion des sols et des impacts hydrologiques des changements de
l'utilisation des terres et climatiques, il serait utile de poursuivre cette évaluation dans le
contexte éthiopien.

La préservation des valeurs socio-économiques et écologiques du lac Tana, par une gestion
raisonnée de ses ressources, nécessite de connaitre le bilan hydrologique. Celui-ci a été
calculé en utilisant les observations disponibles et un modéle conceptuel. La majorité du flux
d’eau vers le lac provient des principaux bassins versants jaugés. Les bassins non jaugés
contribuent également pour une part non négligeable. Ces derniéres années la réalisation de
barrages, dont certains sont déja construits, s'est développée sur le bassin du lac. Ces
ouvrages auront pour effet de modifier les entrées en provenance des principaux bassins
versants. De plus une prise d’'eau dérive une partie des eaux du lac vers un bassin situé en
aval (Beles). Compte tenu de ces évolutions majeures il sera important d’actualiser le bilan
hydrologique du lac.

Le lac Tana est un important puits de sédiments fins avec un taux de piégeage de 80%. Ces
premiers résultats sont utiles pour la phase de planification des aménagements.

Il est souhaitable de développer un réseau de mesure des flux de sédiments en suspension
sur plusieurs sites représentatifs a la fois des zones de production dans la partie amont et
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des zones de dépbt en aval. Cela contribuerait a mieux comprendre les processus
d'exportation des sédiments et le réle des plaines d'inondation dans le transfert des
sédiments fins.

L'établissement de bilans a été I'occasion de produire des connaissances sur les variabilités
spatiales et temporelles des processus hydrologiques et des variables de forcage
météorologique et de permettre de mieux comprendre le fonctionnement de cet
hydrosysteme tropical d'altitude. Les outils et méthodes utilisés ou développés pour ce
travail de recherche peuvent étre utilisés pour réaliser des études similaires sur d’autres
bassins versants. Enfin, cette thése apporte une contribution notable pour 'aide a la gestion
durable des ressources en eau dans la région du lac Tana.
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Introduction

Many countries in the world are faced with diverse water and water-related issues that include
water scarcity, water pollution and water-related disasters. The problems are more serious in
the developing world due to their huge adverse socioeconomic impacts and the countries’
weak capacity and coping-up mechanisms to deal with the issues.

This study is conducted in the Lake Tana basin in Ethiopia where the current level of water
resources development is low, soil erosion by water is a serious problem, flooding is a
recurrent phenomenon, and unsustainable watershed management could have major adverse
socioeconomic and ecological impacts at local and regional scales. The basin represents the
headwater catchment of the Blue Nile River that makes the largest contribution to the main
Nile flow. Lake Tana, the largest lake in Ethiopia with diverse socioeconomic and ecological
values, is located in the middle of the study basin. Major water resource development projects
are also going on in the basin. Hydrological and sediment-related studies are essential
components of watershed management and are the focus of this research. The study has three
major components that include evaluation and analysis of the existing hydro-meteorological
and spatial datasets, evaluation of the applicability of a physically-based distributed
hydrological model, and determination of the water and suspended sediment balances of Lake
Tana. The specific issues addressed, the overall methodological framework followed and the

outline of the thesis are presented below.

Research questions and objectives

Researches in the areas of hydrology and sediment budget are indispensable for sustainable
watershed management. Their role is particularly crucial in regions like Lake Tana Basin
where water resources issues are critical, and availability and quality of hydro-meteorological
data is poor. Some priority research areas that address biophysical, management and socio-
economic aspects of the Nile Basin have already been outlined in a recent study (Mohamed
and Loulseged, 2008). This study tried to make a contribution to some of the research needs

by addressing the following issues:

= The first issue addressed in this research is related to data availability and quality.
Knowledge of the type, quality and spatial and temporal characteristics of existing data is

fundamental for hydrological studies. It illuminates gaps and problems in the existing
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datasets and helps to identify relevant strategies to address the problem. Depending on the
objectives of the analysis, nature of the data and availability of resources, different
strategies may be used to resolve the problem. The strategies may include direct use of
existing data, generation of the required type of data from existing datasets using
appropriate  methodologies (e.g. disaggregation models for weather data series,
pedotransfer functions for soil properties, spatial interpolation, etc.), or conducting a new
data collection campaign. This study tried to assess the characteristics of the existing
datasets for Lake Tana basin by raising some key questions related to the type, coverage,
quality and consistency of the hydro-meteorological data series. The type and coverage of
datasets that pertain to watershed characteristics were also investigated.

In Ethiopia in general, and the study region in particular, there are several ungauged
catchments. For instance, about 40 % of Lake Tana basin is ungauged. Moreover, the
problems of erosion and sediment transfer are critical due to their onsite and offsite
adverse consequences. The significance of this problem in the study area could be high as
water resource development schemes and natural systems with great socioeconomic and
ecological values are found. Ongoing and planned irrigation schemes to develop more
than 100 000 hectares of land, and operating hydropower systems having a capacity in
excess of 500 MW could be directly affected. Researches that aim at improving estimates
of runoff contributions from ungauged catchments and sediment yields would be
important to ensure the sustainability of water resource systems. In this regard, use of
physically-based hydrological models may prove to be valuable. The second issue
addressed in this study is, therefore, evaluation of the applicability of a distributed
hydrological model using existing/derived hydro-meteorological and spatial data.
Availability of meteorological data at hourly time scales is generally poor.
Meteorological data at finer time scales are, however, required for several applications
like erosion and sediment transport studies, flood analysis, etc. In connection with the
application of the physically-based distributed hydrological model, this study would
explore and apply relevant weather data disaggregation methods for generating hourly
meteorological time series from existing daily data.

The water balance of Lake Tana has been studied by different authors in the past with
noticeable variations in estimates. Reasons for these variations include differences in the
meteorological datasets and simulation periods used, and methods used to estimate
contributions of ungauged catchments. For instance, Kebede et al. (2006) estimated direct

precipitation on the lake by taking data of a single station and assumed the contribution of
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ungauged catchments to be insignificant. In a region where the spatial variability of
rainfall is high, the accuracy of the water balance estimates obtained from a single station
is questionable. The water balance components of the lake should be estimated as
accurately as possible based on representative datasets. This is an important element in
identifying options for sustainable management of the lake. In this study effort has been
exerted to model the water balance of the lake using quality-controlled and representative
hydro-meteorological datasets from 1992-2005.

= As erosion is a critical problem in the Lake Tana Basin its impact on the lake and its
various socio-economic and ecological values could not be underestimated. Limited
studies on the bathymetry of the lake and sediment yields of some of its contributing
catchments could be found. It was not possible to find a full-fledged study on the
suspended sediment balance of the lake. This study tried to indicate the longterm mean

annual suspended sediment balance of Lake Tana based on comprehensive analysis.

By addressing the research issues presented above, the study will make a contribution to
sustainable management of the lake and its watershed. The various tools and techniques used
would be useful for making similar studies on other catchments. The specific objectives of

this study are the following:

= Evaluation and analysis of existing hydro-meteorological and spatial data in the Lake
Tana Basin

= Application and/or evaluation of weather data disaggregation models

= Evaluation of the applicability of a physically-based distributed hydrology-soil-vegetation
model (DHSVM)

= Refinement and updating of Lake Tana’s water balance

= Estimation of the suspended sediment balance of Lake Tana

Methodological framework

The study employed diverse methodologies to fulfill the stated objectives. Analyses of hydro-
meteorological data involved checking of data quality, gap filling and their characterization in
space and time. The specific techniques for each of these activities are presented in the

relevant sections.
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Evaluation of the applicability of the physically-based distributed hydrological model was
conducted on selected mesoscale catchments. The task required preparation of input datasets,
and calibration and validation of the model parameters. As the model was run at subdaily time
steps, disaggregation of observed daily weather data series was carried out. Depending on the
type of meteorological variable, different disaggregation techniques were used. A calibration
period of seven years (1994-2000) was used to obtain good parameter values for runoff
simulation. The calibration was done manually following a systematic approach that involved
identification of few influential parameters based on sensitivity analysis. The model was
further validated by comparing the simulated runoff against observed discharges using the
standard split approach.

Water balance study of Lake Tana considered direct rainfall, inflow from gauged and
ungauged basins, evaporation and outflow from the lake as major components of the model.
Direct rainfall on the lake was estimated from observed daily records of stations using a
spatial interpolation technique that is considered to be good. The Penman approach was used
to estimate evaporation from the free water surface. Inflow contributions of gauged basins
were estimated from historical runoff records. A dynamic conceptual model developed based
on Boudyko framework was used to estimate runoff from ungauged catchments and to fill
missing records of gauged basins. The accuracy of the water balance model was evaluated by
comparing the simulated and observed water levels of the lake. The study on suspended
sediment balance involved estimation of sediment influxes from contributing catchments,
sediment outflows and deposition in the lake and surrounding floodplains. Suspended

sediment rating curves and area-specific regional sediment yield model were employed.

Outline of the thesis

Chapter 1: The whole purpose of this chapter is to provide a wider context for the research by
highlighting some of the critical water resources issues of developing countries and Ethiopia.
Existing and anticipated water resource concerns of the study basin are also briefly stated. The
importance of scientific researches in the areas of hydrology, soil erosion and sediment
transfer in addressing the various water resources issues is presented. In line with the
objectives of this study, an overall presentation on the types of hydrological models and their

applications in water resources management is made.
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Chapter 2: This chapter describes the environmental settings of the study area and region. It
begins with the presentation of the whereabouts of the study area in terms of its geographic,
local and regional settings. This is followed by sections on geology, soil and land cover types
of Lake Tana basin. An overview of the climate and hydrological systems of the study area is
also included. The status of water resources development in Ethiopia in general, and Lake
Tana basin in particular, is briefly presented in the last part of the chapter.

Chapter 3: This is an important part of the research which addresses the first objective on data
availability and analysis. Availabilities of relevant hydro-meteorological and spatial datasets
are explored and assessment of their temporal and spatial coverage is made. Analysis of the
hydro-meteorological data involved checks on data quality and consistency, gap filling, and
temporal and spatial characterizations. The annual and seasonal characteristics of the hydro-
meteorological variables are given in terms of relevant statistical descriptors. Spatial patterns
of annual rainfall and temperature and their relation with altitude/latitude is also indicated. In
the analysis of the hydrological data, efforts were exerted to estimate annual areal rainfall and
baseflow contributions of the major catchments. Suspended sediment rating curve equations
of streams are also presented. Both historical records and the limited data collected during the
field campaign of this study were used in the development of the suspended sediment rating
curve equations. The spatial datasets covered in the analysis include distribution of soil and
land cover types and soil hydraulic properties.

Chapter 4: This chapter is dedicated to the physically-based distributed hydrological model
(DHSVM) used in the study. The different hydrological processes, input requirements and
outputs of the model are described. Moreover, some examples of the model application from
around the world are included. As the model comprises several parameters, identification of
few influential parameters is important to facilitate the calibration task. To this end sensitivity
analysis of the model parameters using virtual catchments was made and the results are
presented.

Chapter 5: Creation of the different hydro-meteorological and spatial datasets for the
physically-based distributed hydrological model is presented in this chapter. A section on
weather data disaggregation, from daily to hourly time scale, constitutes this chapter. The
model was run at time step of one or three hours on selected catchments. Other inputs
required by the model include soil and vegetation types, soil depth, basin mask file, digital
elevation model, and initial state files. The methods employed in creating these inputs from

the existing data are also presented.



6 Introduction

Chapter 6: Application of the physically-based distributed hydrological model to selected
catchments is presented in this chapter. An overview of methods used for calibration and
validation of hydrological models is included in the first part. This is followed by the
procedures used in calibrating and validating the model on the selected catchments. The
modeling results and their implications are finally discussed.

Chapter 7: Determination of the water and suspended sediment balance of Lake Tana is one
of the drivers of this study. The major water balance components of Lake Tana include direct
rainfall, evaporation, inflow from gauged and ungauged catchments, and surface outflow.
Computations of the different hydrological fluxes and the water balance of the lake are
presented and discussed. In addition, a section on suspended sediment balance of the lake is
included. The suspended sediment rating curve equations developed in Chapter 3 were used in
the estimation of the sediment influxes.

Finally, summary of the main results, overall conclusion and perspectives are presented. Key
contributions of the study and brief notes on identified areas for further researches are

included.
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Chapter 1

1 Water Resources Issues

This chapter sets a general context to the research by making concise presentations on
relevant topics. An overview of major water resource problems faced in developing countries
and the study area is presented in the first part. This is followed by a brief note on the role of
hydrology and sediment budget studies in addressing watershed issues. As application of
hydrological models is an important aspect of this study, an overall presentation on the types

and applications of hydrological models is included.

1.1 Water resource issues in developing countries

A concise presentation of pertinent water resource issues, with particular emphasis on
developing countries and Ethiopia, is made. The various water resources issues are grouped
into four classes: water quantity issues, water quality issues, hydrological extremes, and soil

erosion and reservoir sedimentation.

1.1.1 Water quantity issues

Water is required to meet various consumptive and non-consumptive uses. Consumptive uses
comprise water for irrigation, domestic and industrial supplies. Non-consumptive uses include
water required for hydropower generation, waste disposal, fish and wildlife habitat, inland
transport and recreation. Meeting these needs for water is becoming increasingly difficult
worldwide due to rapid population growth, improving living standards, urbanization and
expansion of agricultural and industrial activities (Jones, 1997). A comprehensive study on
water resources vulnerability indicated that about 60% of the world population would live in
moderately to extremely vulnerable regions by year 2025 (Kulshreshtha, 1998). The spatial
and temporal variability of water availability together with impacts of land use and climate

changes would exacerbate the problem.
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Water scarcity is serious in the developing world where most of the population growth takes
place and the coping-up capacities are weak. Half of the population of developing countries
lives in water poverty, having difficulty of getting a minimum per capita share of 1700
m3/year (WWAP, 2009). In Asia and Africa water is said to be a major constraint for
agriculture in the coming decades (Rijsberman, 2006). In Africa, only one-seventh of the
continent has surplus runoff, making water shortage a critical problem (Jones, 1997). The
transboundary nature of many rivers complicates and politicizes the issue of water supply-
demand issues. Large parts of Africa (60%) and Asia (65%) are located within transboundary
river basins where, in most cases, binding water use agreements are lacking (Jones, 1997).
The problem could also be an issue of major concern in Ethiopia as the various factors that
could lead to water scarcity do exist. An average per capita water share of 1700 m’/year could
be obtained based on the recent population census data and total freshwater potential of the
country. Water resources vulnerability is found to be high in Ethiopia according to a recent
study conducted for Eastern Nile Basin countries (Hamouda et al., 2009). Moreover, the high
spatial and temporal variability of water resources in Ethiopia makes the issue more serious.
Eighty three percent of the country has drier climate (moisture index ranging from -60 to 0)
with limited surplus water during the rainy season (Gonfa, 1996). The lowlands are water
deficit regions with unreliable annual rainfall of 200-600 mm. Most of the highlands receive
annual rainfall in excess of 1000 mm, but it is highly seasonal with most of it occurring
between June and September (Korecha and Barnston, 2006). The highlands are also regions
where population concentration, urbanization, and increasing agricultural and industrial
activities are seen. The water scarcity problem may also be aggravated by climate change. For
instance, predictions of hydrological impacts of climate change indicated decreases in runoff
in catchments located in the south central and eastern parts of the country (Hailemariam,
1999; Legesse et al., 2003). The transboundary nature of most rivers of Ethiopia is a serious
challenge (World Bank, 2006). It is particularly serious in the Blue Nile Basin which
contributes about 60% of the Nile flow. The Nile basin is shared by 10 riparian countries
whose major source of livelihood is agricultural production. Equitable water allocation has
been and continued to be a serious issue among the basin countries.

The pressure on the freshwater resources of Lake Tana Basin would mount, as the various
factors that are responsible for water demand increase do exist. According to the recent
census data, a total population of about 7 million lives in and around the basin (CSA, 2008).
Two major cities of the country, Bahir Dar and Gonder, with more than 200000 residents each

are located within the basin. Moreover, the Lake Tana region has been identified as one of the
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economic growth corridors of the country (MoFED, 2006). To this end implementation of
water resources development projects that are identified in the Abay Basin Master Plan study
(BCEOM, 1999a) has been going on. The Tana-Beles multipurpose project that relies on
water transfer from Lake Tana was recently completed. Major dam projects for irrigation
agriculture are going in different parts of the basin. A simulation study on the impact of the
different development scenarios indicated a decrease in the level and area of the lake with
anticipated socio-economic and environmental impacts (Alemayehu et al., 2009). Water
resources of Lake Tana basin are said to be susceptible to climate change with predicted

reduction in streamflows (Hassan, 2006; Abdo et al., 2009).

1.1.2 Water quality issues

Freshwater quality impairment has been a major issue of concern worldwide. The sources of
water pollution can be point or diffuse sources. Point sources of pollution include municipal
and industrial wastewaters for which specific points of entry to a receiving water body can be
identified. Diffuse sources of pollution include general land runoff from urban and
agricultural areas and other sources that do not have specific discharge points. Unlike point
sources, diffuse sources of pollution are difficult to manage (Novotony and Olem, 1994). Due
to the extensive damages that could be caused by diffuse sources of water pollution, the need
for addressing the issue as an international priority of concern was already heralded long ago
(Duda, 1996). Diffuse pollution is considered to be the dominant cause of water quality
impairment in many developing countries due to poor waste management and
environmentally unfriendly agricultural methods (Novotony, 1995). For instance, a study in
Uganda indicated pollution from diffuse sources to be higher than point sources (Banadda et
al., 2009). Water quality impairment in general, and diffuse pollution in particular, can be a
serious problem in Ethiopia for reasons related to widespread sources of pollution, favoring
hydrologic factors and lack of environmental services. The favorable hydro-meteorological
factors are related to the nature of the rainfall climate and watershed characteristics. Many
catchments in Ethiopia receive intense seasonal rainfall on steep slopes that have scarce
vegetation cover. These factors enhance high surface runoff and transport of sediments and
associated contaminants.

Though a general and systematic water quality assessment program is lacking, isolated studies
indicated existence of water pollution problems (MoWR et al., 2004). Major urban centers

and industrial establishments are sources of water pollution due to inadequate waste
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management services. For instance, pollution of streams that drain Addis Ababa due to poor
waste management practices is considered to be a major problem with adverse public health
and ecological impacts (Nigussie, 1999; Gebre and Rooijen, 2009). Various Water quality
studies on rift valley lakes indicated problems of pollution that include eutrophication, heavy
metals, salinity, and other pollutants (Zinabu et al.,2002, 2003; Teklemariam and
Wenclawiak, 2005; Ayenew, 2007). The causes of these problems are related mainly to
improper utilization of land and water resources in the lakes catchment (Legesse and
Tenalem, 2006). In another study high salinity level is noted in the middle Awash River Basin
due to intensive irrigation and upstream pollution sources (Tadesse ef al., 2007).

Water quality studies in the Lake Tana Basin are limited. But, considering the extensive
agricultural activities using chemical fertilizers, the growing urban settlement with poor waste
management services, as well as the favorable hydrological factors of erosion, the problem of
water pollution could be high. Indications of pollution of Lake Tana, with adverse socio-
economic and ecological impacts have already been reported (Teshale et al, 2001).
Assessment of the impact of Bahir Dar city on pollution of Lake Tana and groundwater

resources indicated high levels of nutrient and suspended sediment loads (Wondie, 2009).

1.1.3 Hydrological extremes

Two common and devastating hydrological extremes, floods and droughts, are discussed.
These disasters continue to affect generations, bringing suffering, death, and immense

material losses worldwide.

1.1.3.1 Flooding

A flood is an unusual high-water period in which water overflows its natural or artificial
banks onto normally dry land. Flood can cause great damage to land and water-related
infrastructure and it can have disastrous short and long-term consequences on people and
economies. Flooding problem is a critical issue in developing nations due to the magnitude of
the problem and lack of adequate coping-up mechanisms. A storm surge flood in 1991, for
instance killed 140 000 persons in Bangladesh (Kundzewicz and Kaczmarek, 2000). In
Africa, Mozambique was hit by a devastating flood that caused huge socio-economic
disruptions (Christie and Hanlon, 2001). Since the mid 1990s Africa has become the second
most flood-affected continent in the world following Asia (Yoganath and Junichi, 2009).
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In Ethiopia flooding affects mainly riverine and lowland areas with adverse consequences on
agricultural land, settlements and infrastructure. Areas commonly flooded in Ethiopia include
the Gambela Plain in the Baro-Akobo Basin, floodplains and irrigation areas along the Awash
River, the lower parts of Wabi-Shebele Basin and the downstream reaches of major
catchments in Lake Tana Basin (Woube, 1999; Achamyeleh, 2003). The socio-economic
impacts of flooding could be huge as exemplified by the year 2006 incident which covered
almost the entire country with affected population of about 700 000 (EWD, 2007).

Flooding is a recurrent problem in the Lake Tana basin (SMEC, 2008a). Flood risk areas
include floodplains located in the downstream reaches of Megech, Rib, Gumara and Gilgel
Abay rivers. Flooding is caused by combination of factors that include bank overflow,
sedimentation, poor drainage, lake level rise, and changes in the watershed characteristics.
The impacts of past flood incidents were serious with displacements of several inhabitants and

inundation of croplands (Riverside et al., 2009).

1.1.3.2 Drought

In the literature different types of drought are recognized- meteorological, hydrological,
agricultural and socio-economic drought (Kundzewicz ef al., 2002). Meteorological drought
is generally taken as shortage of rainfall. A meteorological drought can develop into
agricultural drought which is described by soil moisture deficit and low crop productivity.
Hydrological droughts are characterized by a reduction in lake storage, lowering of
groundwater levels and decrease of streamflow discharge. A socio-economic drought occurs
when the demand for water and water-related economic goods and services (e.g., fish,
hydropower, irrigated agriculture and horticulture) exceed supply. Hydrological droughts
usually lag the occurrence of meteorological and agricultural droughts. Although climate is a
primary contributor to hydrological drought, other factors such as changes in land use (e.g.,
deforestation), land degradation, and construction of dams all can affect the hydrological
characteristics of a basin. Because regions are interconnected by hydrologic systems, the
impact of hydrological drought may extend well beyond the borders of precipitation-deficient
area.

Drought is an issue of great concern in several countries, particularly, in the developing
world. The African continent suffered an extraordinary drought without precedence in the
records due to a significant drop in precipitation and decreasing streamflows (Kundzewicz

and Kaczmarek, 2000). Global analysis of water related disasters between 1980 and 2006
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indicated that 99% of the total drought fatalities were in Africa (Yoganath et Junichi, 2009).
In sub-Saharan Africa, where rain-fed agriculture is the predominant economic sector,
drought poses a great challenge to the overall performance of their economies (Gautam,
20006).

Drought is a recurring phenomenon in Ethiopia, with increased frequency of occurrence in
recent years (MoWR et al., 2004). According to the international disaster database, drought has
been top in the list of natural disasters affecting millions in the country for long (CRED,
2010). Combinations of the various types of drought could be the cause of the problem
(MoWR et al., 2004). Drought analysis in the Awash River indicated an average lag period of
7 months between hydrological and meteorological droughts (Edossa and Babel, 2010). The
adverse socio-economic impacts of drought are huge as most of the population depends on
agriculture and hydropower is the major source of electricity. For instance during the 1984/85
drought GDP declined by 9.7 percent, agricultural output declined by 21 percent, and gross
domestic savings declined by 58.6 percent (World Bank, 2006). Lower water level in

reservoirs has also been a major cause for extensive power rationing in recent years.

1.1.4 Soil erosion and reservoir sedimentation

Soil erosion by water and subsequent sediment transfer are global issues of great concern
because of their multiple adverse onsite and offsite consequences. The onsite effects include
soil degradation and reduction in crop productivity which would lead to food insecurity (Lal,
2001; Blanco and Lal, 2008). The offsite consequences are diverse and include changes in
channel morphology and habitat, reservoir sedimentation, transport of sediment-adsorbed
nutrients and contaminants such as particulate phosphorus, heavy metals, and pesticides
(Owens, 2005; Owens and Collins, 2006). Because of its diverse negative effects, soil erosion
is considered to be the single most environmental degradation problem in developing
countries (Ananda and Herath, 2003). Soil erosion contributes to chronic malnutrition and
rural poverty in these countries because of farmers’ weak capacity to establish mitigation
measures (Blanco and Lal, 2008).

Sedimentation in reservoirs and river beds could be an issue of major concern due to its
multiple effects. Some of the adverse effects include loss of storage capacity, damage of
hydraulic structures, modification of river morphology, and disruption of aquatic habitat
(Morris, 1998). Reservoir sedimentation is considered to be one of the most economically

crippling problems because of large investments in dams for generation of hydroelectric
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power and irrigation development (Nagle et al., 1999). For example, a drastic reduction in
hydropower generation and inefficiency of irrigation schemes due to large sediment loads
coming from Ethiopian highlands are noted to be serious problems encountered at Roseires
Dam in Sudan (Elsheikh et a/ ., 1991). Siltation in Lake Victoria is one of the critical factors
that is affecting the fishing industry (Ntiba et al., 2001).

Soil erosion by water has been a longstanding environmental problem in Ethiopia and is
considered to be a critical economic problem (Hurni, 1993; Bewket and Sterk, 2003). The
annual rate of soil loss in the country is greater than the annual rate of soil formation (Tamene
and Vlek, 2008). The rate of soil erosion is high due to a number of favoring factors that
include erosive rains, steep gradients, cultivation on steep terrain, deforestation, overgrazing,
and poor agricultural techniques (REDECO and HSD, 2002; Nyssen et al., 2004). The most
important soil erosion processes are sheet and rill erosion, and water-induced soil movements
by gullying and landsliding, particularly in the highlands (Oldeman ef al., 1991; Nyssen et al.,
2004). The mean annual soil loss rate by sheet and rill erosion in the highlands is estimated to
be 12 t/ha (Hurni, 1990). The soil loss rate from croplands by sheet and rill erosion is 42 t ha™
year'. Assessment of gully erosion rates is limited in which soil loss rates of 26 t ha'year”
and 6.2 t ha! year are noted, respectively, in the eastern and northern highlands (Shibru et
al.,2003; Nyssen et al., 2006).

Different studies indicated siltation of water systems in different parts of the country as a
major problem in Ethiopia. Assessment of siltation of water harvesting schemes in the
northern highlands indicated that most of them will be filled with sediment within less than
50% of their intended service time (Tamene et al ., 2006). Land degradation due to soil
erosion and reduction of storage capacity of Lake Alemaya, in the eastern highlands of
Ethiopia, is dubbed as a serious problem (Muleta et al, 2006). Siltation and nutrient
enrichment are found to be the major problems of Gilgel Gibe hydropower dam which is
located in the southwestern part of the country (Devi et al., 2008).

Soil erosion and sedimentation could be a major threat in the Lake Tana basin. Agriculture is
the mainstay of most of the population in the basin and hence land degradation by soil erosion
would directly affect the lives of millions. Sedimentation could adversely affect the storage
capacity, socioeconomic values and ecological health of Lake Tana. Moreover, the capacity
and efficiency of the existing and ongoing dam projects in the basin could be endangered.
Factors that contribute to accelerated soil erosion are evident in the basin and include
extensive cultivation (even on steep slopes), overgrazing, scarce vegetation cover on

hillslopes, and high rainfall intensity. Some relevant studies indicated high rates of soil
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erosion and adverse impacts of siltation. A recent study by Tebebu et al. (2009) on
hydrological controls of gully formation in the southern part of the basin indicated an average
gully erosion rate of 24.8 t ha” year’. A modeling study found 18.4% of the basin highly
susceptible to erosion with estimated sediment yield of 30 t ha™ year” (Setegn et al., 2009).
Siltation in the downstream reaches of the major rivers is one of the causes of overbank flow

and flooding (SMEC, 2008a).

1.1.5 Concluding remarks on water resources issues

The notes made in the previous sections did indicate how diverse and critical are watershed
problems in the developing world and the study area. The analysis and management of the
issues is even more challenging for various reasons. Some of the key constraints include weak
institutional arrangements and inadequate human, financial and technical capacities. Lack of
adequate and reliable hydro-meteorological and spatial data is the other major scientific
challenge that contributes to the improper formulation of problems and evaluation of
management options. Many catchments are ungauged or poorly gauged in many parts of the
world and the problem is worse in developing countries (Sivapalan, 2003). In Ethiopia in
general, and the study region in particular, there are several ungauged or poorly gauged
watersheds. Examples of specific problems associated with data availability include lack of
hydro-meteorological data at shorter time scales, representation of the naturally heterogeneous
land surface elements such as soil and vegetation types by very coarse-resolution. Such
problems make applications of hydrological models difficult, resulting in high prediction
uncertainties. As a response to this critical issue, the International Association of
Hydrological Sciences (IAHS) launched an international initiative called Predictions in
Ungauged Basins (PUB) and declared the period 2003-2012 as the decade of PUB (Sivapalan
et al., 2003). So far diverse promising outputs of the initiative have been noted (e.g. Sivapalan
et al., 2006). Different strategies can be used to bridge data paucity and make hydrological
predictions possible. Some of the strategies may include use of data from diverse sources,
disaggregation of existing meteorological data to finer time scales, application of pedotransfer
functions to derive soil hydraulic properties, and estimation of values of model parameters
from watershed physical characteristics through regionalization techniques. Such strategies

have been used in this study to make it more scientific.
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1.2 Role of hydrology, and erosion and sediment transfer in

watershed management

Watershed management is concerned with the protection and maintenance of land and water
resources. It is multidisciplinary and requires the involvement of various actors (Diplas,
2002). Watershed management is an effective tool in dealing with one or more of the issues
discussed in Section 1.1. It is a process that involves the following planning-stage activities

(Brooks et al., 2003):

e Formulation of the problem

e Identification of alternative plans

e Appraisal and evaluation of impacts of alternative plans
e Prioritization of alternatives to deal with the problem(s)

e Implementation of selected plans

The roles of hydrological and sediment-related studies are explicit and direct in the problem
formulation and evaluation of alternative plans. The problem formulation is a key step in the
process and should indicate among others, the magnitude and frequency of the problem,
priority problem areas, and causative factors. Appraisal and evaluation of impacts of
alternative plans require information on the socio-economic and environmental burdens of
proposed interventions.

Hydrological inputs and analysis make important contribution in addressing problems of
water quantity by providing basic information on water balance in space and time. Knowledge
of the relative magnitudes of the various water balance components such as
evapotranspiration, direct runoff, subsurface flow, soil moisture, etc. are essential in assessing
adequacy of water for current and planned developments. It also helps decision makers to
weigh the advantages of each proposed intervention on the hydrologic cycle against the
disadvantages (Ward and Trimble, 2004). Decisions made in the absence of basic
hydrological inputs would entail immense socio-economic and ecological costs. Hydrology
also allows assessment of land use and climate change impacts on water balance. The fact that
the hydrological literature is filled with several water balance related studies, from catchment

to global scale, is an indication of its importance in water management.
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Watershed managers are interested in the magnitude and frequency of hydrological extremes
for several purposes, from planning of water supply systems to protection against natural
disasters. Hydrological analysis allows estimation of the scale of devastating floods under
existing and predicted conditions. The results of the analysis can be used to identify flood
prone areas and optimal flood protection levels (Plate, 2002; Morita, 2008). Similarly,
hydrological studies on the magnitude and variability of low flows are important for
integrated and environmentally sensitive catchment management (Smakhtin, 2001). Outputs
of hydrological analysis are also required for the design and operation of flood control
structures and water supply systems.

Hydrological information such as low discharge, flow velocity, etc. are also required in water
quality management. Water quality management involves activities that include identification
of critical pollution source areas and pathways, estimation of pollutant loading, and evaluation
and selection of water quality management plans. Identification of critical source area is
important in order to utilize the limited available resources effectively. Several articles that
deal with these different aspects of water quality management could be found in the literature
(e.g. Cugier et al.,, 2005; Zhang and Jergensen, 2005; Ouyang et al., 2008; Pandey et al.,
2008).

Soil erosion and sediment transport is a critical environmental issue because of its adverse
socio-economic and environmental impacts such as loss of soil productivity, reservoir
sedimentation and associated effects, and water quality impairment (Owens and Collins,
2006). Studies on soil erosion and sediment transfer contribute to effective management of the
problem by providing basic information that include sediment source areas, pathways,
sediment yield, and other controlling factors (Owens, 2005). Such information, for instance,
could be used to identify and prioritize critical areas for soil conservation measures (Tripathi
et al., 2003).

In summary, watershed management should be scientifically valid, economically viable and
socially acceptable (Freehafer, 2008). Understanding the hydrologic response of watersheds
to land use and management is paramount if we are to sustain land and water resources for
future generations (Gregersen et al., 2007). Hydrological and sediment related studies
contribute to the scientific bases of sustainable watershed management. Suffice to mention
recent international level efforts to highlight the importance of hydrology and sediment
budget studies to the society (Walling and Horowitz 2005; Oki et al., 2006; Liebscher ef al.,
2009).
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1.3 Hydrological modeling

Watershed models play a fundamental role in addressing a range of water resources,
environmental and social problems (Singh and Frevert, 2006). Hydrological models of
different levels of complexity are invaluable tools in the planning, design, operation and
management of water resources. The use of modeling studies in water management decisions
is in fact increasing (Refsgaard et al., 2005). This can be evidenced by the plethora of simple
to complex models that simulate various processes like rainfall-runoff, nonpoint source
pollution, stormwater management, groundwater flow, erosion and sediment transport, etc.
Hydrological models may be divided into deterministic and stochastic models which are
further subdivided depending on the level of process description and spatial discretization as
presented in Figure 1-1. A deterministic model is one in which given inputs in a certain
physical environment produce same outputs. It could be a simple, data-driven “black-box”
model derived from past data such as the SCS curve number method (USDA-NRCS, 1986)
and the modern day artificial neural network (ANN) models (Govindaraju, 2000). It could be
a conceptual model in which processes are represented in a simplified manner like
TOPMODEL (Franchini et al., 1996) and HBV (Bergstrom, 1976). It could be a true
physically based model, in which processes are modeled according to fundamental scientific
laws like SHE (Abbott ef al., 1986) and SHETRAN (Ewen ef al., 2000). Stochastic models
allow for some randomness or uncertainty in the possible outcomes due to uncertainty in input
variables, boundary conditions or model parameters (Beven, 2001). They also consider the
natural variability that may occur in some model input parameters. The recognition that
hydrological processes contain both deterministic and stochastic elements leads to the
identification of another category called coupled deterministic-stochastic models.

The development and application of physically based distributed hydrological models is
getting wider as can be seen in the literature (Abbott, et al. 1986; Wigmosta, et al. 1994;
Ewen et al., 2000; Liu and Todini 2002). Such models require a large number of input factors
that vary in space and time.

Although this has been a bottleneck in their use, increasing availabilities of distributed
meteorological and spatial data have facilitated the development and application of physically
based models (Todini, 2007). Physically based models have two important advantages (Jones,
1997):
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They can be applied in different watersheds with minimum adjustments of parameter
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values. This makes them suitable for applications in ungauged catchments.

They enable to conduct more realistic assessment of hydrological consequences of

different scenarios like land use and climate changes.
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Figure 1-1 Classification of hydrological models. Based on Becker and Serban (1990)

Applications of physically-based hydrological models involve key steps that include
parameterization, calibration and validation (Refsgaard, 1997). The parameterization step
involves assignment of representative values to the model parameters based on data obtained
from field measurements and other sources. The use of data from other sources is necessary
because of the high heterogeneity of basin characteristics and lack of field data at the same
grid scale (Moreda et al., 2006). Model calibration is a process of adjustment of parameter
values of a model to reproduce the response of reality within the range of accuracy specified
in the performance. Model validation is substantiation that a model within its domain of
applicability possesses a satisfactory range of accuracy (Refsgaard and Henriksen, 2004).

Physically based distributed models have been successfully used to conduct water quantity
and quality analyses under existing and envisaged future conditions. Examples include
simulation of runoff and groundwater processes (Grayson et al., 1992; Giertz et al., 2006)
evaluation of effects of climate and land-use changes on water resources and hydrological
regimes (Thanapakpawin et al., 2006; Guo et al., 2009), nutrient load scenario analysis and
sediment yield modeling (Pandey et al., 2008; Yoshimura et al., 2009), water balance

simulation in ungauged catchments (Wanger et al., 2009), prioritization of watershed
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management options (Mishra et al., 2007; Prochnow et al., 2008), identification of priority
areas for soil and water management (Kaur et al., 2004), assessment of flood contributing
areas (Fiorentino et al., 2007).

A limited number of studies using distributed hydrological models are also available for
Ethiopia and neighboring countries. Examples include a study on agricultural nonpoint source
pollution (Mohammed et al., 2004), modeling effects of soil and water conservation practices
(Hengsdjij et al., 2005), climate and land use change impacts on catchment response (Legesse
et al., 2003), prediction of runoff and soil erosion in East African highland catchments (Hessel

et al., 2006).

1.4 Conclusion

The study region in general, and Lake Tana basin in particular, are faced with diverse
watershed issues. Hydrology plays a central role in clarifying the nature of these problems and
selecting scientifically valid watershed management options. To this end availability of
relevant and quality datasets as well as use of appropriate hydrological models and methods
are crucial. Creation of a sound knowledge base of the spatial and temporal coverage of the
existing hydro-meteorological datasets, their quality and characteristics based on a systematic
and critical approach is fundamental. Moreover, in areas where lack of meteorological data at
finer temporal resolution constrains application of hydrological models, the use of relevant
weather data disaggregation techniques could be an important strategy. In this study utmost
efforts have been exerted to evaluate and analyze the existing hydro-meteorological datasets
in the basin and construct quality-controlled continuous daily database following a systematic
approach. Physically-based, conceptual and empirical models have been used for different
purposes. The performances of a physically-based hydrological model have been evaluated on
selected catchments by using hourly meteorological forcings disaggregated from daily data.
Sustainable management of Lake Tana and its diverse socio-economic and ecological values
requires basic information on its water and suspended sediment balances. Generation of this
basic information has involved use of representative and quality-controlled datasets, a
dynamic conceptual model to estimate runoff from ungauged parts and empirical models to

quantify suspended sediment discharges.



20

Chapter 1 Water resources issues



Chapter 2 Description of the study area 21

Chapter 2

2 Description of the Study Area

This chapter describes the study area in terms of relevant aspects of the physical environment
and water resources development. The geographic and regional location of the basin as well
as major watershed characteristics that include topography, geology, soil and land cover are
described. The climatology of Ethiopia and the study area, the major hydrological systems

and the state of water resources development are also presented.
2.1 Location

Lake Tana basin is located in the northwestern plateau of Ethiopia. Geographically, it extends
from 10.9°N to 12.8°N latitude and from 36.7°E to 38.2°E longitude. In terms of the universal
transverse mecator (UTM) coordinate system it is located in zone N-37 extending between
253277E-416717E and 1211053N-1410403N.

The basin is located in an area where water resources issues are critical for sustainable
development, locally and regionally. It constitutes the upper catchment of the Blue Nile River
(locally called Abay) that has about 60% contribution to the main Nile River flow (Sutcliffe
and Parks, 1999). The Nile River is shared by ten riparian countries with an estimated current
and projected 2025 population of 420 and 600 million inhabitants, respectively'. Critical
issues in the basin include food insecurity, water scarcity, flooding, drought, soil erosion,
sedimentation, and lack of adequate and reliable hydro-meteorological data (Mohamed and
Loulseged, 2008).

In Ethiopia, the basin is located in an area where water resources development for various
purposes is identified to be a key element for achieving local and national development goals

(MoFED, 2006). Figure 2-1 illustrates the location of the study area.

*http://esa.un.org/unpp/
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Figure 2-1 The study area

2.2 Topography

The total catchment area of Lake Tana Basin is in excess of 15 000 square kilometer” of
which 20% is occupied by the lake’s water surface. It constitutes several streams and
catchments that all drain into Lake Tana. The basin is surrounded by lowlands to its west and
mountainous areas otherwise (Figure 2-2a). The mean altitude of the basin is 2025 m.a.s.l.
with about 90% having elevation in the range 1780-2500 m.a.s.l. Some areas close to the
watershed divide have altitude of 2500-4100 m.a.s.l. Following the topographic classification
indicated in REDECO and HSD (2002), the basin can be grouped into five relief types (Figure
2-2b)

e Flat areas with slopes between 0-2%

e Undulating terrain with slopes between 2-10%

e Rolling land with 10-15% slope

e Hilly areas having slopes of 15-30% and

e Steeply dissected and mountainous lands of slope > 30%
Most of the downstream part of the basin is either flat or gently undulating rendering a large
tract of floodplain around Lake Tana. The middle part of the basin has mainly rolling or hilly

relief. The upper part is dominantly hilly with limited mountainous and dissected land close to

? Various estimates of catchment areas that vary from 15030-15340 km” are reported in different studies. This
variation could be attributed to the method used in delineating the basin. In this study the catchment area of
Lake Tana Basin was found to be 15120 km® by delineating the basin using the Wang and Liu (2006) algorithm.
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the watershed divide. Mount Guna, one of the highest mountains in Ethiopia, is located at

extreme east of the basin.
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Figure 2-2 Topography of Lake Tana basin (a) Elevation relative to other regions in Ethiopia. Altitude ranges
correspond to classes used for traditional climate classification (b) Relief types based on terrain slope.

2.3 Geology and soil

The geology of the study region is dominated by thick Cenozoic volcanic sequence (Pik ef al.,
1998). The volcanic sequence is underlain by 1.5-2 km thick sedimentary series that could
have been deposited from early Mesozoic to Tertiary (Hautot et al, 2006). Precambrian
metamorphic rocks constitute the basement complex.

Most of the southern part of the basin is covered by Quaternary Volcanics overlying older
Tertiary flood basalts (Mohr, 1962). They consist of blocky and fractured vesicular basalt,
some basaltic breccias and tuff. The Quaternary Volcanics become less blocky with deeply
developed soils further to the south (SMEC, 2008b). The remaining part of the basin is
covered mainly by Tarmaber Basalts that overlie Ashangi Basalts (WWDSE and TAHAL,
2007a,b). The Ashangi Basalts are characterized by deep weathering and comprise basaltic
flows with scarce tuffs. The Tarmaber Basalt series is thick and consists of basaltic rocks
interbedded with tuffs, scoraceous lava and paleosoils. Alluvial sediments composed of fine
and coarse grained materials are found in the lower reaches of the main rivers and the
floodplains. Lacustrine deposits are observed in the eastern and northwestern parts of the
basin. Stiff and compacted sediment deposits with at least 50 m depth are also noted beneath

Lake Tana floor (Lamb et al., 2007). The geology of the basin is indicated in Figure 2-3a.
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A prominent structure that plays an important role in controlling groundwater flow path is the
Lake Tana graben (Kebede et al., 2005). It is a tectonically deformed circular depression
characterized by faulted blocks that dip towards the lake from all directions. Other structures
noted in the basin include joints and lineaments (WWDSE and TAHAL, 2007a,b; WWDSE
and TAHAL, 2008). Dikes and pipe feeders are also features that are commonly observed in
the Tana region (Chorowitcz, 1998).

The soils of the study area are derived from weathered volcanic rocks. Based on the FAO soil
classification system, ten types of soils are identified. The spatial distribution of the various
soil types is indicated in Figure 2-3b. About 70 % of the basin is covered by four major soil
groups: Luvisols, Leptosols, Vertisols and Fluvisols. The majority of the study area has deep

to very deep soil depth (BCEOM, 1999¢) with hillslopes having thin soil layer.
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Figure 2-3 (a) Geology and (b) soil types of Lake Tana basin
[Source: Ministry of Water Resources, Ethiopial

2.4 Land use and land cover

Significant part of the basin is designated for crop production using rain-fed agriculture
making it vulnerable to drought and flooding. Dominantly cultivated crop types include
barley, maize and teff. Because of the growing population pressure, cultivation is also
practiced on marginal lands with a resulting increase in upstream soil erosion and
sedimentation in downstream areas (SMEC, 2008c). The low-lying parts of the basin
bordering Lake Tana are extensive floodplains where recession cultivation is practiced.

Valuable wetlands are also found all around Lake Tana but they have been drained for

agricultural purposes (Kindie, 2001). Two major urban centers of the country, Bahir Dar and
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Gonder, with more than 200 000 inhabitants each are also found in the basin. Other land
cover types include grasslands, open shrublands and plantation, mainly eucalyptus. A major
road network traverses the study area from south to north. Figure 2-4 shows the land

cover/use types of the study area.
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Figure 2-4 Land cover/use types in the Lake Tana Basin
[Source: Ministry of Water Resources, Ethiopial

2.5 Climate

Ethiopia is located in East Africa where the common climatic feature is relatively low rainfall
with complicated distribution pattern showing a general increase from north to south
(McGregor and Nieuwolt, 1998). Rainfall in most of Africa and Ethiopia is highly seasonal as
it is dominantly controlled by the migrating inter-tropical convergence zone (ITCZ) (Hulme,
1996). The monthly march of the ITCZ together with typical surface winds and mean sea

level pressure over Africa are presented in Figure 2-5.
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Figure 2-5 The ITCZ over Africa (a) shows the monthly movement in the African ITCZ region, i.e., 10°E-40E°
longitude (b) and (c) shows the ITCZ position, mean sea level pressure and surface winds, respectively, for
January and July.

[Source: McGregor and Nieuwolt, 1998].

Depending on the amount of rainfall, three seasons are recognized in Ethiopia and they are
locally called Kiremt (June-September), Bega (October-January) and Belg (February-May).
Different regional and global weather systems control the climate of each season (NMSA,
1996). Moreover, orographic and convective factors shape the spatial and temporal patterns
of rainfall in Ethiopian highlands (Korecha and Barnston, 2006).

Kiremt is Ethiopia’s principal monsoon rain season. It is characterized by different large-scale
atmospheric circulation features that include northward migration of the ITCZ, development
of quasi-permanent high pressure systems over South Atlantic Ocean (St Helena) and South
Indian Ocean (Mascarene), development and persistence of the Arabian and Sudan cyclones
along 20 °N latitude, and generation of Tropical Easterly Jet and Somali low-level Jet

(NMSA, 1996). Kiremt season starts in March over southwestern regions, progresses
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northward to cover the western half of the country by mid-June and reaches northeastern
regions in mid-to-late July (Segele et al., 2005). In early September the Kiremt rains begin
retreating southwestward in the extreme northeast, and progresses gradually and uniformly
across the entire Kiremt region, and reaches far southwest in November. A large part of the
country is covered by the Kiremt rainfall, except some areas in the south and southeastern
parts (Seleshi and Zanke, 2004).

The Belg season is the short rainy season caused mainly by the development of thermal low
center over south Sudan and high pressure over the Arabian Sea. Winds from the Gulf of
Aden and the Indian Ocean highs are drawn towards this centre and blow across central and
southern Ethiopia. These moist, easterly and southeasterly winds produce the main rains in
southern and southeastern Ethiopia and the Belg rains to the east-central part of the
northwestern highlands (Seleshi and Zanke, 2004).

The Bega season is the dry, windy and sunny season of Ethiopia due to the influence of the
dry northeast monsoons that originate in the Saharan and/or Siberian anticyclones. However,
a low pressure air that moves from western to eastern Europe, very occasionally, passes over
Ethiopia and interacts with warm and humid air from the tropics creating unseasonal rainfall
in Ethiopia during this season (Kassahun, 1999). Moreover, occasional development of the
Red-Sea Convergence Zone (RSCZ) affects coastal areas. In Bega, most of the country is
generally dry except some areas in southern and southeastern parts of the country that receive
their second important seasonal rainfall associated with the southward retreat of the ITCZ
(NMSA, 1996).

Lake Tana Basin is located in a region where the annual rainfall is more than 900 mm with
unimodal pattern, and mean temperature is mainly in the range of 16-20 °C (Figure 2-6 and
Figure 2-7). Based on the Koppen climate classification system, the basin has a warm
temperate climate with dry summer (Cw). According to the traditional climate classification
of Ethiopia, most of the study area falls in Woina-Dega zone (1500-2300 m altitude with
mean annual temperature of 16-20°C).

The rainfall climate is highly seasonal with more than 70% of the rainfall occurring in the
Kiremt season. Based on rainfall data of stations located within and around the basin, the
mean annual rainfall of Lake Tana basin was estimated to be 1345 mm. Rainfall is convective
with most of it occurring in the afternoon and evening hours. The mean annual temperature is
19 °C with a corresponding coefficient of variation of 0.08. Temperature decreases with

altitude at an average lapse rate of 5 °C in 1000 m.
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Figure 2-6 Mean annual climatic variables over Ethiopia (a) rainfall (b) temperature.
Based on world climate data, 30 arc-seconds resolution. [http://www.worldclim.org/current]
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2.6 Hydrology and hydrogeology

Lake Tana basin comprises different catchments that all discharge into the lake (Figure 2-8).
About forty percent of the basin, mainly located in the western and lower parts of the various
catchments, is yet ungauged. The meteorological network coverage of the southwestern part is
also inadequate. More than ninety per cent of the runoff is contributed by four catchments:
Megech, Rib, Gumara and Gilgel Abay (Kebede ef al., 2006). Analysis of the streamflow data
from the gauged catchments indicated that runoff is highly seasonal with more than 75

percent of the annual volume concentrated in the Kiremt season. Flooding of low-lying areas
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due to overflow of the major rivers and the rising lake level is a frequent problem in the wet
season (SMEC, 2008a). Lake Tana discharges into the 4bay River with a long-term mean
annual runoff volume of 3.7 km3, which is about 8% of the Blue Nile flow at Roseires Dam in
Sudan (Conway, 2000).

Lake Tana represents a major hydrological system in the basin. Its formation is believed to be
associated with volcanic activity that created a barrier to the south during the Pleiocene
(Mohr, 1962). It is the largest lake in Ethiopia with a surface area of 3012 km” and volume of
28 km® at its longterm mean elevation of 1786 m.a.s.l. It is a shallow meso-oligotrophic lake
that is well mixed with no thermal stratification (Dejen, et al. 2004). It has an average and
maximum depth of 9 m and 14 m, respectively (Ayenew, 2009). Water balance study of the
lake indicated a water residence time of 3 years. The lake level has been monitored at three
stations for years. Based on the longterm lake level data at Bahir Dar station, the average
annual lake level fluctuation was found to be 1.7 m. Lake Tana, together with its surrounding
wetlands, provides various services of ecological, social, economic and hydraulic significance
for the local and regional inhabitants. The lake is a habitat for diverse fish species, birds and
large aquatic animals, some of which are near extinction (Wudneh, 1998; BCEOM, 1999a).
The lake is dotted with several islands most of which shelter fascinating monasteries and
churches. Lake Tana is one of the major sources of income in the region through fishing and
tourism-related activities.

Relevant information on the characteristics of the aquifers and groundwater flow systems of
the basin could be extracted from limited hydrogeological studies (SMEC, 2008b; Ayenew et
al., 2008; Kebede et al., 2005). In view of the geology of the region, three aquifer types are
identified- Tertiary basalt, Quaternary basalt, and Quaternary alluvial aquifers. The Tertiary
and Quaternary basalt aquifers are fractured rock systems in which groundwater flow rate is
largely determined by the intensity of fracturing in the rock mass. The transmissivity of the
basaltic aquifers is variable and their productivity is rated as low to moderate. The Tertiary
basalt aquifers generally have poor transmissivity. Most wells drilled in Tarmaber basalt
series show transmissivity in the range of <I1-11 m*/d. The Quaternary basalt aquifers have a
relatively better transmissivity with reported values in the range of <10-590 m®d. The
transmissivity of Quaternary alluvial sediments is the highest with reported values greater
than 700 m?%d. In the study area shallow groundwater flow systems controlled by local
topography are important. This is evident from the abundance of springs and a geochemical
and isotope study by Kebede et al. (2005). The existence of Lake Tana graben also favours

regional and probably deeper groundwater flows. Based on recorded piezometric levels, the
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groundwater flow direction is found to be consistent with the surface water drainage (SMEC,
2008b). In the downstream reaches of the major river systems, where the floodplains are

located, the hydraulic gradient is too low and the watertable is close to the ground surface.
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Figure 2-8 Major hydrological systems of Lake Tana Basin

2.7 Water resources development

Ethiopia has 12 river basins with estimated surface and groundwater resources potential of
122 BMC and 2.6 BMC, respectively (MoWR, 2002). The level of water resources
development in the country in general, and Lake Tana basin in particular, is low in
comparison to the potential. Based on different sources Awulachew et al. (2007) indicated
the potential to develop 155 TWh/year of hydropower and 3.8 millions hectares of irrigated
land. Until recently, only about 8% of the irrigation and 2% of the hydropower potentials
were developed and the clean water supply coverage was as low as 34% (MoWR et al., 2004).
There have been major water resource development efforts going on in the last five years and
there will be some improvements to the figures presented earlier.

One major existing hydraulic structure in the Lake Tana basin is the low-height Chara Chara
weir which regulates the outflow of the lake for downstream electricity generation at Tis-

Abay hydropower stations. The Abay Basin Master Plan study has identified medium scale
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irrigation schemes that have a total capacity to develop 85 375 hectares of land in the Lake
Tana basin (BCEOM, 1999a). Notable progresses have been achieved so far towards
implementation of these projects. Another recently completed major scheme is the Tana-Beles
project that combines generation of 460 MW of hydropower and irrigation development. The
project relies on water transfer from Lake Tana through a 12 km tunnel. Various studies
indicated the potential impacts of the development projects on the downstream environmental

and hydrological systems (SMEC, 2008c; Alemayehu ef al., 2009; McCartney et al., 2009).
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Chapter 3

3 Data availability and analysis

This study involved the use of a distributed hydrological model that requires extensive hydro-
meteorological and spatial data at finer temporal and spatial resolutions. They include:
= Meteorological data: precipitation, temperature, relative humidity, wind speed, short
wave solar radiation and long wave solar radiation
= Hydrological data: streamflow, stream network and channel properties
= Sediment data: sediment concentration, particle size distribution
= Spatial data: soil types and their hydraulic properties, vegetation types and properties,
and digital elevation model
The chapter presents the availability and characteristics of the major datasets that could be

obtained from different sources.

3.1 Meteorological data availability

The major source of meteorological data is the National Meteorological Agency of Ethiopia
(NMA) which recognizes four station classes based on the type of observations made (NMA,
2009).

Class 1: These are principal stations where meteorological observations are made for
climatological purposes every three hours from 03:00 to 15:00 GMT hours. There are more
than 150 principal stations in Ethiopia. Observed climatological variables include rainfall,
maximum and minimum temperatures, sunshine hour, relative humidity, wind speed at 2m
and 10m heights, pitch evaporation and soil temperature.

Class 2: These are synoptic stations at which meteorological observations are made for
synoptic meteorology purpose every hour for 24 hours a day at full GMT hours. There are 22
Synoptic stations in Ethiopia.

Class 3: These are ordinary stations at which only minimum and maximum air temperatures
of the day and total rainfall amount in 24 hours are observed. Minimum temperature
observation is taken at 06:00 and maximum temperature is observed at 15:00 hours.

Class 4. These are stations at which only total daily rainfall is observed.
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The distribution of the meteorological stations in the study area is indicated in Figure 3-1.

Detailed information on the stations is presented in Annex B-1.
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Figure 3-1 Meteorological stations in the Lake Tana basin

Data availability and coverage of the different meteorological elements was assessed based on
daily records of stations for which data could be obtained. The results of the assessment are

presented in the following sections.

3.1.1 Rainfall

Measurement of daily rainfall in the study area started in 1952 at Gonder station and presently
there are more than thirty observation stations fitted with non-recording gauges. Few stations
like Bahir Dar and Gonder are also equipped with floating-type recording gauges for rainfall
measurements at shorter time scales. Metadata with information about data acquisition and
the history of each station could not be found. Stations metadata are very useful in data

quality assessment and adjustment.



Chapter 3 Data availability and analysis 35

The rainfall data availability was assessed based on daily records obtained from twenty six
stations. Considerations that take into account the rainfall climate of the study region were
made in deciding whether data is available or not. Rainfall is highly seasonal with more than
70 % of the annual rainfall occurring in the kiremt season, 20% in the belg season and 2 % in
the bega season. Accordingly, rainfall data in a year was considered unavailable if the
percentage of missing daily rainfall data was greater than 30 % in kiremt or 80% in belg or
90% in bega season. Application of these criteria to the observations resulted in the rainfall
data availability chart presented in Figure 3-2. Data availability in most stations prior to 1982
is by and large poor and fragmented. A major data gap is obvious in 1991 for reasons related
to security problems during that period. Overall, the temporal data coverage starting from

1992 appeared to be good.
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Figure 3-2 Rainfall data availability in the Lake Tana Basin

The spatial coverage of the rainfall data in the basin was evaluated in light of recommended
minimum precipitation network density by the World Meteorological Organization (WMO)
indicated in Table 3-1. Adequacy of network coverage was analyzed by drawing circles with
centers corresponding to each station and radius that give the recommended minimum area in
the GIS environment. This has resulted in the spatial coverage of the rainfall stations shown

in Figure 3-3. The rain gauges covered 66% of the basin area. Notable areas in Gilgel Abay,



36 Chapter 3 Data availability and analysis

Rib and Gumara catchments as well as the lake surface appeared to be poorly covered by the

stations.
Table 3-1 Recommended minimum precipitation network density (WMO, 1994)
Physiographic unit Minimum density per station (area in km’ per station)
Non-recording Recording
Mountainous 250 2500
Interior plains 575 5750
Hilly/undulating 575 5750
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Figure 3-3 Spatial coverage of rainfall gauges in the Lake Tana basin according to WMO standard

3.1.1 Temperature

Availability of minimum and maximum temperature data was assessed based on daily
observations taken at 12 stations starting from 1982. In the construction of the data
availability chart (Figure 3-4), the low temporal variability of temperature in the tropics
(McGregor and Nieuwolt, 1998) was taken into account for setting the criteria. Accordingly,

temperature data was considered unavailable if more than 3 months in a year have missing
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data. The temperature data availability is relatively poor and fragmented in the period 1988-

1996 with a significant breakdown in 1991.
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Figure 3-4: Temperature data availability for Lake Tana Basin, Ethiopia

Spatial variation of temperature is mainly related to change in altitude in which temperature
decreases linearly with increase in altitude. This rate of decrease in temperature is called
lapse rate and it can be estimated from observed records. In light of this note and the spatial
distribution of Class 1 and 3 stations, the areal coverage of minimum and maximum

temperature measurements could be considered as adequate.

3.1.2 Wind speed, relative humidity and sunshine hour

Wind speed, relative humidity and sunshine hour data at five Class 1 stations could be
obtained. Wind speed is measured using standard anemometer at 2 m height. Measurements
of relative humidity are taken three times a day at 06:00, 12:00 and 18:00 hours. The data
availability charts of these meteorological variables were constructed following the same
procedure used for temperature (see Figure 3-5). Wind speed data is available starting from
1992. Most of the stations have a good temporal coverage of relative humidity data since

1985. The sunshine hour data for most of the stations is fragmented and the coverage is poor.
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Figure 3-5 Availability of wind speed, relative humidity and sunshine hour data in the Lake Tana basin

3.2 Hydrological data availability

3.2.1 Streamflow and lake level

Data on daily streamflow and lake level were obtained from the Ministry of Water Resources
of Ethiopia. Data availability at the major streamflow gauging stations and one of the three
limnimetric stations was evaluated (Figure 3-6). Streamflow measurements are done twice a
day using manual staff gauges. Some stations appeared to have automatic stage recorders but
their use ceased two decades ago (SMEC, 2008a). Although hydrological measurements in
the basin started around 1959 in connection with the first Abay Master Plan Study (USBR,
1964), this assessment was based on daily data for the period 1975-2005. As streamflow is
highly seasonal, the decision on data availability was made following the approach used for
rainfall data. The temporal coverage of the hydrological observations is shown in Figure 3-7.
Overall, the streamflow data coverage appeared to be adequate with few missing years at

limited hydrometric stations.
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Figure 3-6 Major streamflow and lake level gauging stations in the Lake Tana basin
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Figure 3-7: Streamflow and lake level data availability in the Lake Tana Basin (1975-2005)

The spatial location and distribution of the streamflow gauging stations were assessed in light
of recommended practices. WMO (1994) listed several factors that need to be considered in
locating hydrometric stations so that accurate stage-discharge relationship could be
established. Some of the important considerations include geometric (e.g. channel should be
straight for about 100m upstream and downstream of the gauge), hydraulic (e.g. maintenance
of stable stage-discharge relationship), and accessibility at all times and stages of flow. The
hydrometric stations of the study area appeared to be located by considering mainly

accessibility as most of them are located along or near the main roads. Previous studies
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reported problems associated with some of the existing gauging stations that include siltation,
bank overflow, variable backwater effect of Lake Tana, and unstable channel bank (BCEOM
1999b, SMEC 2008a). The spatial coverage of the gauging stations could be considered
acceptable with reference to the minimum recommendation of WMO (Table 3-2). A large
area downstream of the gauging stations and in the western part of the basin, however,

remains ungauged.

Table 3-2 WMO minimum recommendation for hydrometric network density (WMO, 1994)

Physiographic unit Minimum density per station (area in km’ per station)
Mountainous 1000
Interior plains 1875
Hilly/undulating 1875

3.2.2 Suspended sediment

Historical data on suspended sediment concentrations/loads could be obtained for four
gauging stations- Gilgel Abay, Gumara, Koga and Megech. Data from Rib and Abay stations
could not be obtained. Data availability is limited to very few days in a year and it is highly
fragmented as indicated in Figure 3-8. Most of the data corresponds to the main rainy season
where erosion rate is high. There is no clear information on the methods of sampling used in
the early years (BCEOM, 1999b). A discussion with technicians working at the hydrological
unit of the MoWR at Bahir Dar revealed the use of depth integrated suspended sediment
samplers in recent years. In addition to the historical data, limited suspended sediment
samples were collected at three gauging stations (Gilgel Abay, Koga and Abay close to the
lake outlet) as part of the field campaign of this study. Suspended sediment concentration was

determined by filtration method and a laser technique using MS-2000 was used to determine

the grain size distribution.
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Figure 3-8 Availability of suspended sediment concentration/load data in the Lake Tana basin. Based on river
stations for which data could be obtained
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3.2.3 Lake Tana bathymetry

Bathymetric data of lakes and reservoirs can be used for various purposes that include
establishment of relationships between water level-area-volume of a lake or reservoir,
estimation of sedimentation rates, prediction of design life of reservoirs, etc. It could be
learned that bathymetric surveys of Lake Tana were conducted at three different times in
1940, 1987 and 2006 (Ayana, 2007). Data could be found only for the recent year from the
researcher who conducted the bathymetric survey using a GIS-coupled dual frequency echo

sounder along traverse routes spaced 5 km apart in north-south direction (Ayana, 2007).

3.3 Spatial data availability

3.3.1 Soil types and properties

Soil types of the study area based on the revised FAO/UNESCO soil map legend (FAO, 1988)
could be acquired from MoWR. Soil types are defined by the major soil groups and lower soil units.
Data on hydrologic properties of soils was mainly obtained from the Abay Master Plan study
(BCEOM, 1999¢) and other catchment-specific project studies. Soil physical properties for
which data could be found include saturated hydraulic conductibility, field capacity,
permanent wilting point, infiltration capacity, bulk density, and soil texture. These properties
were determined from soil samples collected at different points in the basin (For instance, see

Table 3-3).

Table 3-3 Some examples of soil surveys within Lake Tana basin

Area, Number of  No. of sites where infiltration & hydraulic

Catchment
km? sample pits conductivity tests are made
Gilgel Abay 285 91 14
Kogat 289 46 8
Megech 133 33 7
Northeast Tana 85 28 11
Rib 346 94 24

tSource: Acres & Shawel, 1995 and for others: BCEOM, 1999c

3.3.2 Vegetation

Vegetation map of the study area was obtained from MoWR. It contains information on

percentage coverage of different land cover types in various parts of the study area. This data
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was used as a base for preparing land cover maps based on standard classifications like the
IGBP-DISCover legend. Global MODIS black and white sky albedo values at quarter degree spatial
resolution and 16 days temporal resolution could be downloaded for the full 2002 year from the
ISLSCP II website’. The actual blue sky albedo of each month could be determined by linearly
combining the black sky and white sky albedos. Albedo data is required to determine net solar

radiation which is one of the drivers of evapotranspiration.

3.3.3 Digital elevation model

Downloadable digital elevation data at a spatial resolution of 90 m could be obtained from the Shuttle
Radar Topography Mission (SRTM)*. SRTM is an international project that obtained a near-global
scale elevation data during an 11-day mission in February 2000. The data so acquired enabled to
generate the most complete high-resolution digital topographic database of the Earth. The overall
quality of SRTM datasets is considered to be sufficient for hydrological modeling applications
(Ludwing and Schneider, 2006).

Digital elevation data was used to extract the altitude of the meteorological stations, and to derive
basic watershed morphometric properties that include catchment boundaries, slope, stream networks,
etc. Moreover, DEM is one of the basic inputs required by the distributed hydrological model used in
the study.

3.4 Data analysis

In this section, analysis of the hydro-meteorological and spatial data of the study area is
presented. The analysis period for the hydro-meteorological data was set to be 1992-2005 as
the spatial and temporal coverage of the rainfall data is relatively better. As availability of
suspended sediment data is very limited, all data that could be accessed was used in the

analysis.

3.4.1 Analysis of meteorological data

Rainfall is a key meteorological variable that most affects the hydrological regime of the

study area. The analysis involved data quality assessment, filling of data gaps, and

* http://islscp2.sesda.com/ISLSCP2_1/html_pages/groups/veg/modis_albedo_2002_xdeg.html

* http ://srtm.csi.cgiar.org
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characterization of the meteorological elements. The methodologies employed for each of the

meteorological variables are discussed in the respective sections.

3.4.1.1 Rainfall

Daily rainfall data of twenty five stations for which data could be obtained and have less than
25 % missing data in the analysis period were used. Data of Korata and Wetet Abay
meteorological stations were not directly used in the spatial and temporal rainfall
characterization as they have long missing records. Their data, however, was used to fill

missing observations of nearby stations.

3.4.1.1.1 Filling of missing data

All of the stations have missing data in their daily rainfall series, with lower gaps observed in
Class 1 stations. Creation of continuous time series for each station by filling the gaps,
therefore, preceded the analysis. Data gaps of a target station may be filled by using available
records of the station itself or observed values of nearby stations. Examples from the first
approach include use of mean of the data series and linear interpolation. The use of these
methods is not recommended in areas where the temporal variability of rainfall is high
(Ramos-Calzado, 2008). Patching of rainfall data using observations at neighboring stations
has got wider applications (Xia et al., 1999; Eischeid et al., 2000; Teegavarapu and
Chandramouli, 2005). Specific methods in this category include nearest neighbor, inverse
distance, normal ratio, kriging, and regression. In this study an approach similar to the inverse
distance method was used in which the weighing factor was calculated by considering both
distance and correlation between daily rainfall of the target and surrounding stations
(Equation 3-1). This kind of weighting factor calculation is recommended for orographically
complex regions and the approach has been used to develop long years of continuous rainfall
database (Romero et al., 1998; Federico et al., 2009). All neighboring stations that are within
0.5 degree distance and have at least 1000 raindays in common with the target station were
used in the interpolation. A rainday is defined as a day with at least | mm of rainfall,

following Seleshi and Zanke (2004).

Equation 3-1
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Where,

p,-*” = estimated missing rainfall for target station 1 at day n from J neighboring stations
a;; = weighting factor between target station 1 and neighboring station |

q;' = estimated precipitation at the target station i from station j for day n

The weighting factor was calculated using Equation 3-2:

o, =— Equation 3-2

Where,
r; = correlation between rainfall amounts at target station i and neighboring station j

d;; = horizontal distance between stations i and j

The contribution of a nearby station j to precipitation at the target station i for day n (g;") was
computed using Equation 3-3. Interpolating normal ratio precipitations rather than absolute
values has the advantage of eliminating the influence of orographically enhanced precipitation

(Federico et al., 2009).

q;= pj— Equation 3-3

Where, p’is the observed precipitation at a nearby station j for day n; the other term

represents the ratio between total precipitations at the target and nearby stations for a common
period of K days which is set to be greater than or equal to 1000.
The gap filling resulted in a continuous daily rainfall series for twenty five stations for the

period 1992-2005.

3.4.1.1.2 Data quality and consistency

The continuous daily rainfall series of each station was subjected to quality control to detect
outliers caused by instrumental and/or human errors. Methods for outlier identification
include use of a fixed threshold derived from statistical properties of the series (Gonzalez-
Rouco et al., 2001), or statistical tests like Grubbs test (Grubb, 1969). In this study the Grubbs
test was used to detect the presence of outliers. Grubbs test is used for normally or log-
normally distributed data and has got some applications in hydro-meteorological areas (Chow

et al., 1988; Tang et al., 1996). The daily rainfall data of the stations was found to be log-
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normally distributed. Results of the test indicated absence of outliers in the data series of all
stations.

Spatially homogeneous historical records are required for various hydrological applications.
However, several non-climatic factors could affect the spatial consistency of records at a
given station. They may include damage and replacement of a rain gauge, change in the gauge
location, growth of high vegetation or construction of a building around the station, change in
measurement procedure, or human and instrumental errors in taking readings. Commonly
used data consistency checking methods include the graphical double mass analysis and the
statistical SNHT methods (Peterson et al., 1998). In this study the double mass analysis was
used to check the spatial consistency of the rainfall data as it has got wider applications in
hydrological areas and is considered to be reliable (Dingman, 1994; ASCE, 1996). The
method assumes that stations have regional consistency over long time period. Inconsistency
is detected by plotting accumulated annual rainfall of reference stations against accumulated
annual rainfall of the evaluation station and inspecting for abrupt changes in slope. Slope
changes are considered to be significant if they persist for at least five years (Dingman, 1994).
In using the method, observations of Class 1 stations were taken as reference stations.

The double mass curve plots are presented in Annex B-2. Visual inspection of the double
mass curves indicated no significant inconsistency in most of the stations. Inspection of the
double mass curves of three meteorological stations, i.e. Dek Estifanos (1992-1996), Hamusit
(1992-1998) and Maksegnit (1995-2001) suggested inconsistencies that are not related to the
regional climate. Corrections to the observed values of these stations were made following the

adjustment procedure of the method (Dingman, 1994).

3.4.1.1.3 Annual rainfall characteristics

Annual rainfall computed from a minimum of 30 years of data is generally accepted as an
indicator of the rainfall conditions of a region (McGregor and Nieuwolt, 1998). As most of
the stations in the study area have missing or no data in the years before 1992 with a major
gap in 1991, it was not possible to characterize the rainfall based on a minimum of thirty
years of data. Considering the insignificant annual rainfall trend in the region (Seleshi and
Zanke, 2004; Bewket and Coway, 2007; Cheung et al., 2008), however, the annual rainfall
calculated based on data of 1992-2005 could be taken as a good approximation to the climate
of the study area. To further support this argument, mean annual rainfall amounts of Bahir

Dar and Gonder meteorological stations computed from long years of data (1965-2005) were
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compared against those obtained from 1992-2005. The difference between the mean annual
rainfall amounts of the two periods was only 30 mm.

The annual rainfall characteristic of each station was determined based on the quality-
controlled continuous daily rainfall series. The results of the analysis are summarized in a
boxplot (Figure 3-9) which contains important information on the median, variability,
skewness and outliers of the data. The use of graphical methods like boxplots to summarize
hydro-meteorological datasets, which are usually characterized by skewness and outliers, are
considered to be better than the classical measures such as mean and standard deviation
(Helsel and Hirsch, 2002). It could be seen that stations located at lower latitudes have
generally higher median rainfall. This corresponds to the general climatology of East Africa
and Ethiopia where rainfall increases from north to south. Most of the stations exhibited
interquartile range of 200-330 mm and no well defined relationship between rainfall amount
and interannual variability could be detected. Six stations (Amba-Giorgis, Shebekit, Wereta,
Dek-Estfanos, Hamusit, and Tis Abay) showed outliers, which could be real or erroneous
values. It should be noted that the years that corresponded to these outliers did have observed
rainfall data for all or most of the days of the year. Generally, the stations exhibited a non-

normal annual rainfall distribution with positive or negative skewness.
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Figure 3-9 Boxplot of annual rainfall of stations located within and around Lake Tana basin (based on 1992-
2005 data). The stations are arranged according to their latitude which increases upward.
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3.4.1.1.4 Seasonal and monthly rainfall

Knowledge of seasonal rainfall distribution is important in tropical regions as it is a major
controlling factor of agricultural activities and forms the basis for classification of climates
(McGregor and Nieuwolt, 1998). The seasonal pattern of rainfall was assessed by computing
the monthly rainfall contribution and the Precipitation Concentration Index (PCI). PCI is a
statistical rainfall variability descriptor calculated using Equation 3-4 (Oliver, 1980). PCI
values of less than 10 indicate uniform monthly distribution of rainfall, values between 11 and
20 indicate high concentration, and values above 21 indicate very high concentration. The

monthly rainfall distribution of representative Class 1 stations is presented in Figure 3-10.

2
PCI = _ZPi x100 Equation 3-4

ZP)

Where P; is the rainfall amount of the i™ month and the summation is over the 12 months.

Rainfall in the study area was found to be monomodal with the kirem¢ season receiving more
than 70 % of the annual rainfall. The computed PCI values varied from 15 to 23, indicating
the high or very high seasonality of rainfall. Similar results were reported by Bewket and
Conway (2007) who analyzed the rainfall variability of Amhara region based on data of
twelve meteorological stations for the period 1975-2003. The seasonality of the rainfall is

consistent with the movement of the ITCZ.
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Figure 3-10 Monthly rainfall pattern of Class 1 stations within Lake Tana basin
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3.4.1.1.5 Areal rainfall

The median annual rainfalls of the stations were used to draw the isohyetal map of the basin
using spatial interpolation. Spatial rainfall interpolation methods are of two broad types: direct
average and surface fitting methods (Dingman, 1994). The direct average approaches have
low computational complexity and commonly used methods are the arithmetic average and
Thiessen polygon. Several types of surface fitting methods with moderate to high
computational complexity are available and methods in common use include inverse distance
weighting, multiquadric interpolation, spline surface fitting and kriging. Comparison of the
different areal rainfall estimation methods indicates the superiority of kriging and
multiquadric methods (Tabios and Salas, 1985). The performances of Thiessen polygon and
inverse distance weighing methods are also considered to be acceptable.

The isohyetal map developed from the interpolated annual rainfalls and the corresponding
interquartile ranges are shown in Figure 3-11. The median annual rainfall of the whole basin
was found to be 1330 mm by the multiquadric method with a coefficient of variation of 0.2.
The wider Lake Tana region is considered to be homogenous influenced by similar rainfall

patterns (Cheung ef al., 2008).

. Rainfall stations

" Catchment divides

0 km

Figure 3-11 Spatial pattern of rainfall in the Lake Tana basin (a) median annual rainfall (b) interquartile range.
The units are in mm
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3.4.1.1.6 Elevation/Latitude-annual rainfall relationship

Knowledge of rainfall variation with elevation could be used in distributed rainfall-runoff
modeling. The distributed hydrological model used in this study, for instance, requires
precipitation lapse rate as an input. In most regions of the world, long-term annual rainfall
increases with elevation (Dingman, 1994). This assumption, however, breaks down in the
tropics where rainfall increases up to 1000-1500 mm and decreases beyond this altitude
(McGregor and Nieuwolt, 1998). Effort was exerted to identify the relationship between
elevation and annual rainfall in the study area. The results of the analysis indicated no distinct
relationship between the two variables. Instead, a general decrease in annual rainfall amount
with increase in latitude could be detected as shown in Figure 3-12. This could be related to
the south-north-south movement of the ITCZ, which is the main rain producing mechanism in

the region during the wet season (NMSA, 1996).

13,0 -
12,5 - e R*f=0,5876
12,0 -
11,5 -

11,0 A

1405 A

Latitude (degrees north)

10,0
200 1000 1300 2000 2300

Median annual rainfall, mm

Figure 3-12 Median annual rainfall-latitude relationship in the Lake Tana basin

3.4.1.1.7 Daily and hourly rainfall characteristics

A detailed analysis of the temporal characteristics of daily and hourly rainfall was made for
Bahir Dar and Gonder stations based on long years of data. A paper submitted for journal
publication is attached in Annex A. The mean daily rainfall intensity varied from about 4 mm

in the dry season to 17 mm in the wet season with corresponding variation in raindays of 0.4-
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26 days per month. The observed maximum daily rainfall varied from 13 mm in the dry
month to 200 mm in the wet month. The average wet/dry spell length varied from 1/21 days
in the dry season to 6/1 days in the rainy season.

The hourly rainfall data appeared to be of poor quality as in most cases the hourly totals in a
day did not match the daily observation. For instance, investigation of wet season hourly
rainfall data of Bahir Dar station showed more than 25% difference between hourly totals and
daily observed values for 60% of the records. For Gonder similar difference was obtained in
40% of the records. Most of the hours in the data sheets are blank with notes indicating the
malfunctioning of the recorder. The limited good quality hourly rainfall data indicated that
most of the rainfall occurs in the afternoon and evening periods of the day with mean duration

of 1.5 hours in the dry season and 3.3 hours in the wet season.

3.4.1.2 Temperature

The minimum and maximum temperatures of the study area were assessed using observed
data of nine Class 1 and Class 3 stations with less than 25 % data gaps in the analysis period.
The analysis involved check for validity and homogeneity of the datasets, spatiotemporal
characterization of the annual and seasonal temperature and creation of continuous

temperature series by filling missing data.

3.4.1.2.1 Data quality and homogeneity

Temperature records could have errors emanating from instrumental, human and
environmental sources. The observed daily minimum and maximum temperature data were
subjected to quality control to identify invalid and temporally inconsistent records. The
invalid and inconsistent data were considered as missing. Identification of incorrect data was
done following the method discussed in Leung et al/ (2007). The first step involved quality
control checks to ensure that data is within valid ranges and no strange values are entered.

This was done through the following procedure:

= Checking whether the data is within valid ranges: both the minimum and maximum
temperature data were checked if they are within valid ranges. Considering the general
climate of the study area, the minimum temperature was considered to vary from -2°C to

14°C. For maximum temperature a range of 10 °C to 30 °C was taken.
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= Checking whether the minimum temperature is less than the maximum: this check was
performed to ensure that the maximum temperature is always greater than the minimum.

= Checking for suspicious data: it may happen that the difference between the maximum
and minimum temperature in a day is very large which could not be explained by normal
climatic conditions. In this case one or both of the records could be erroneous and they
would be flagged as suspicious data.

= Checking existence of constant temperatures for ten successive days, which is unrealistic.

The second data quality control was performed to ascertain that data record at any time is not
significantly different from the other records in the series. For each data of a station the
standardized Z-score was computed using Equation 3-5. The Z-score values represent the
number of standard deviations a data is away from the mean. For a station, those temperature
values that are more than 3 standard deviations away from the mean were considered to be

temporally inconsistent.

T -T

t

Or

7 =

Equation 3-5

Where, T; is temperature at any time t; Tis mean temperature of a station and

ot represents standard deviation.

The temperature data quality control resulted in 79 records that are temporally inconsistent.
Both the minimum and maximum temperature values were found to be within the valid range
and there were no unusual big differences between the maximum and minimum data records.

Spatial consistency of observed temperature data was checked using the double mass analysis
by taking observations of Class 1 stations as reference. The results are presented in Annex B
3-4. The result showed no significant inconsistency in the observed minimum and maximum

temperatures.

3.4.1.2.2 Annual and seasonal temperature characteristics

A boxplot was used to summarize the annual characteristics of the minimum and maximum
temperatures (Figure 3-13). The mean monthly temperature of each station together with its

coefficient of variation was also computed to depict the seasonal pattern. Results for Class 1
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stations are given in Figure 3-14. Moreover, the mean annual temperature of the whole basin
and its relationship with altitude were determined.

Stations that are located at higher altitude generally exhibited lower temperature. The majority
of the stations showed skewed annual minimum and maximum temperature distributions. The
interannual variability of temperature was found to be generally low with most stations
showing less than 1°C interquartile range. The apparent outliers and absence of whiskers in
the boxplots of some stations could be considered as manifestation of this low variability. The
outliers could not be real as they are not far from the median temperature.

During wet months the diurnal range of temperature appeared to be low which could be
related to the effects of cloud cover which lowers the daytime temperature. The dry season,
with clear day and night skies produced higher diurnal range of temperature. This is a
characteristic of tropical climatology (McGregor and Nieuwolt, 1998).

The mean annual temperature of Lake Tana basin was found to be 19 °C with a corresponding
coefficient of variation of 0.08.  An assessment on the relationship between average
temperature and elevation was made. The result indicated a general decrease in temperature
with increase in elevation as shown in Figure 3-15. The lapse rate was found to be -0.005 °C

per 1 m increase in elevation.
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Figure 3-13 Characteristics of annual temperature in the Lake Tana basin (a) minimum temperature (b)
maximum temperature. Stations are arranged according to their altitude which increases upward.
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Figure 3-14 Monthly minimum and maximum temperature pattern in the Lake Tana basin
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Figure 3-15 Temperature-Altitude relationship in the Lake Tana basin

3.4.1.2.3 Filling of data gaps

If temperature time series is used in hydrological simulations, all data gaps should be filled by
appropriate methods. In this study filling of missing daily minimum and maximum
temperatures was done using the inverse distance method with adjustment for elevation
difference (Equation 3-6). The temperature lapse rate computed in Section 3.4.1.2.2 was used

to compute the elevation adjustment factor. The use of similar spatial interpolation method for
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filling gaps in temperature data series could be found in the literature (Stahl et al., 2006; Snell
et al., 2000).

(T, + LPR(y, = y,))d:n

n 5
z d im
i=1

T =

m

Equation 3-6

Where, T, = estimated temperature at station m with missing data, °C; 7; = observed
temperature at surrounding station 1, °C; y; = altitude of station i in meters; y,, = altitude of the
station with missing data in meters; d;,, = horizontal distance between stations with known
and missing data in meters; LPR = temperature lapse rate, °C/m; n = number of surrounding

stations with observed temperature data.

3.4.1.3 Wind speed

Wind speed data was involved in the computation of potential evaporation from Lake Tana
and catchment evapotranspiration using the Penman-Monteith approach. Analysis was based

on daily/monthly data obtained from six Class 1 stations for the period 1992-2005.

3.4.1.3.1 Data quality and characteristics

The wind speed data was first visually inspected for obvious errors using graphical plots. This
was followed by temporal characterization of the wind speed pattern. No obvious deviations
in wind speed could be detected. Graphical presentation of the annual and monthly wind
speed pattern in the basin is given in Figure 3-16. The median annual wind speed varied from
0.6 m/s for Bahir Dar to 2.5 m/s for Aykel. After having compared data from different
sources, SMEC (2008a) questioned the quality of wind speed data of Bahir Dar station which
appeared to be very low. Overall, wind speed showed an increasing trend from south to north.
Mulugeta and Drake (1996) noted a general south-north and west-east increase in wind energy
distribution for Ethiopia. Right or left skewed distribution of wind speed is obvious from the
boxplot. A slight seasonal variation in wind speed could be noted with the kiremt season
exhibiting relatively calmer conditions. Monthly wind speed showed an increasing pattern
starting from October/November and attaining its peak in May/June when the monsoon

climate approaches the basin. Mulugeta and Drake (1996) characterize wind speeds as
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stronger and weaker, respectively, during dry and wet seasons in the highland regions of

Ethiopia.
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Figure 3-16 Wind speed in the Lake Tana basin (a) annual wind speed (b) mean monthly wind speed. Stations
in the boxplot are arranged according to their latitude which increases upward.

3.4.1.3.2 Filling of missing wind speed data

The missing daily wind speed data were filled stochastically using Weibull probability density
function (Equation 3-7). The Weibull function is the most widely used and accepted
distribution for wind speed (Carta et al., 2009). It is also assumed to be a good model for
representing the wind speed pattern in Ethiopia (Mulugeta and Drake, 1996; Bekele and Palm,
2009). The parameters of the model were derived from the observed daily wind speed data
and are given in Table 3-4. The continuous daily wind speed series was used in the distributed

hydrological modeling.

f(x|a,ﬂ) = aﬂfaxaflei(%}ja Equation 3-7

Where, x is the random wind speed; o ( shape parameter) and 3 ( scale parameter) are positive

real numbers.

Table 3-4 Weibull distribution parameters for wind speed in the Lake Tana basin

Station Shape parameter, o Scale parameter, 3
Bahir Dar 0.68 2.56
Dangila 1.19 3.48
Debre Tabor 1.31 3.02

Gonder 1.72 3.07
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3.4.1.4 Relative humidity

Relative humidity values are involved in the computation of the convective part of the
Penman-Monteith evapotranspiration equation. Data from four Class 1 stations that have three

measurements in a day were used in the analysis.

3.4.1.4.1 Data quality

Two simple checks were made to ascertain the quality of the relative humidity data. The first
check was done to ensure whether the recorded data is within a valid range. In many places,
the air’s total vapor content varies only slightly during the entire day, and it is the changing
air temperature that primarily regulates the daily variation in relative humidity (Ahrens,
1991). Considering the general climatology of the study region, the valid range for relative
humidity was assumed to be 5-100 %. Those relative humidity records that are less than 5%
and greater than 100% were treated as missing data. The second check was conducted to
make sure that the relative humidity value at sunrise is greater than that recorded at noon. At
most tropical stations, the daily maximum relative humidity is recorded shortly before sunrise
(McGregor and Nieuwolt, 1998). All of the observed data were found to be within the
specified minimum and maximum limits but each station had few records that did not meet

the second requirement.

3.4.1.4.2 Characteristics of the relative humidity data

The daily relative humidity was computed as the average of the three observations of the day.
This computed average daily data was then used to calculate the annual and monthly relative
humidity of the study area. The spatiotemporal behavior of relative humidity was
characterized based on the calculated annual and monthly values. Results of the analysis are
indicated in Figure 3-17.

The annual relative humidity appeared to have a strong correlation with annual rainfall
amount and altitude. Stations with high altitude and rainfall amount showed higher relative
humidity. High altitudes are characterized by lower temperature which results in higher
relative humidity. Larger amount of annual rainfall is associated with high moisture in the
atmosphere which leads to higher relative humidity. Relative humidity is highly seasonal with

wet months showing greater values due to the influx of larger amount of moist air. As
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expected the relative humidity exhibited high values early in the morning and lower values in

the day hours.
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Figure 3-17 Relative humidity in the Lake Tana basin in percent (a) annual (b) monthly. Stations in the
boxplot are arranged according to their altitude which increases upward.

As complete relative humidity data series is required for the hydrological simulation, gaps in
the records were filled using the inverse distance square method. All stations with recorded

relative humidity data were used in the interpolation without setting a limit to distance.

3.4.1.5 Sunshine hour

Sunshine hour data analysis was limited to Bahir Dar station as it is the only station that has
adequate data coverage. For the other stations the data gap in the analysis period was found to
be more than 60 %.

The daily sunshine hour data was checked graphically for obvious errors and this was

followed by another step to verify whether the recorded data is within a valid range. The
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lower sunshine hour limit corresponds to a day with cloud cover throughout the day. The
upper limit corresponds to the maximum day length that can be experienced in the study area
which is a function of latitude and day of the year. The valid sunshine hour range for the study
area was set to vary from O to 13 hours. Any data with obvious error or outside this valid
range was considered missing. No data quality problem could be detected.

The mean monthly sunshine hour distribution is indicated in Figure 3-18. The average
sunshine hour length varied from 5.6 hours during the kiremt season to 9.3 hours during the
dry season. The sunshine hour length during the wet season appeared to be in accordance with
the diurnal rainfall pattern where formation of clouds and rainfall generally occurs in the
afternoon and evening hours. The temporal variability of sunshine hour is relatively high with

a standard deviation of about 2 hours.
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Figure 3-18 Mean monthly sunshine hour at Bahir Dar

3.4.1.6 Potential evapotranspiration

Potential evapotranspiration represents the maximum amount of water that would be lost to
the atmosphere if there were no limit to water availability. Due to its geographic location
Africa has a positive radiation balance, making evapotranspiration an important water balance
component (Shahin, 2003). An estimation of the potential evapotranspiration of the study area
was made based on the Penman combination method which requires different meteorological
data including temperature, wind speed, relative humidity and shortwave and longwave
radiations. The mean annual potential evapotranspiration in Lake Tana basin was found to be
1585 mm. The mean monthly potential evapotranspiration pattern of Class 1 stations is
indicated in Figure 3-19. The ratio of mean annual precipitation to that of potential

evapotranspiration resulted in 0.85, indicating a humid climate.
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Figure 3-19 Mean monthly potential evapotranspiration in the Lake Tana basin

3.4.2 Hydrological data analysis

The section begins with presentation of the streamflow and lake level data analyses. This is
followed by estimation of baseflow from the daily streamflow series. Furthermore, notes on
flooding and rainfall-runoff relationships are made. Analysis of the bathymetry of Lake Tana
based on data obtained in a recent year is also included. The section concludes with the

analysis of the limited suspended sediment data obtained from four gauging stations.

3.4.2.1 Streamflow data

The annual and monthly characteristics of streamflows of eight gauging stations and the lake
level were analyzed for the period 1992-2005. The analysis involved description of the
watershed characteristics, data quality assessment, and temporal and spatial characterization

of the runoff.
3.4.2.1.1 Watershed characteristics
The various catchments of Lake Tana basin were basically delineated from the 90m DEM

obtained from SRTM. The DEM was preprocessed using the efficient Wang and Liu (2006)

algorithm which can simultaneously remove sinks and determine watersheds and flow paths.
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Each catchment was characterized in terms of median annual rainfall/runoff and
physiographic variables that included area, average altitude and slope. Areal rainfall was
determined from point observations using the multiquadric interpolation method. The average
altitude and slope of each catchment was calculated as mean of all cell values contained in the
catchment. The spatial distributions of soil and land cover types in each catchment are given
in Section 3.4.4. Summary of the characteristics of the gauged catchments in the Lake Tana

basin is presented in Table 3-5 and see Annex B-5 for all catchments.

Table 3-5 Characteristics of gauged catchments in the Lake Tana basin

Catchment Gauged area Median annual Median annual Altitude, Slope
km? rainfallt, mm runofff, mm m.a.s.| %
Garno 103 1031 246 2354 23.6
Gilgel Abay 1641 1750 1030 2298 10.7
Gumara 1279 1392 815 2271 13.8
Gumero 169 951 273 2278 20.3
Koga 297 1477 600 2108 6.5
Megech 514 1048 418 2348 19.7
Rib 1448 1486 325 2274 15.5
Whole basin 15120 1330 287 2025 9.3

fMedian annual rainfall and runoff were computed from daily observed data of year 1992-2005

3.4.2.1.2 Data quality

The streamflow data quality was first checked for unrealistic records such as negative flows
and constant observations for successive days following notable rain events. The observed
data was treated as erroneous if a constant high runoff was encountered for three or more
successive days. This check was followed by Grubbs test to detect outliers in the daily runoff
records. The streamflow data was found to be log-normally distributed. The first check
enabled to identify few unrealistically constant records for successive days in the streamflow

series of Gilgel Abay and Rib rivers. No outlier could be detected with the Grubbs test.

3.4.2.1.3 Characteristics of runoff and lake level

The annual and monthly streamflow characteristics of the study area were described based on
observed data of the major gauged catchments. The lake level records at Bahir Dar were used
to characterize its fluctuation. The annual and monthly streamflow values were determined
from the quality-controlled observed daily data. The runoff in units of millimeter (streamflow

in m*/s divided by the catchment area) was used in the analysis to facilitate comparison
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between stations. Boxplots were used to summarize the annual runoff characteristics (Figure
3-20). The monthly runoff and lake level pattern were described by their mean value (Figure
3-21).

The median unit runoff production varied from 283 mm for Garno to 1030 mm for Gilgel
Abay and has shown a general increase with rainfall. But an apparent decrease in runoff with
increase in rainfall could be seen at Rib and Koga relative to that at Gumara. Possible
explanations for this obvious discrepancy may include flooding and deep percolation in the
Rib catchment, more baseflow contribution to Gumara catchment from outside its limit,
particularly from areas where Mount Guna is situated or the actual rainfall amounts may be
very different from the estimated. Detailed studies with good quality datasets may provide
sound explanations. The storage effect of the lake is reflected in the outflow which showed a
lesser runoff depth than that observed at Megech with lower rainfall. The high runoff
generation rate together with its large size makes Gilgel Abay the greatest streamflow
contributor to Lake Tana. The interannual rainfall variability was found to be higher at those
gauging stations with lower runoff amount.

An obvious outlier could be observed in the streamflow records of Koga which corresponded
to data of year 1995. Closer investigation of the daily streamflow data of this year indicated
high successive observations in the months of August and September. This was not detected
in Section 3.4.2.1.2 where data quality assessment was done based on the daily data. This
signifies the importance of making data quality assessment at different temporal scales.
Streamflows in the study area are highly seasonal as illustrated in Figure 3-21 and this is a
characteristic feature of regions dominated by monsoonal climate. More than 70% of the
runoff occurs during the main rainy season, from June to September. The lake level and
outflow attain their maximum in September/October and their minimum in May/June. The
mean annual lake level fluctuation in the analysis period was found to be 1.5 m.

Construction of the Chara Chara weir at the outlet of the lake has affected the lake level and
its outflow regime as seen in Figure 3-22. The weir was constructed in two stages to regulate
the water surface elevation between 1984 and 1987 m.a.s.l. for generation of hydropower at
Tis-Abay I and II stations. In the first stage two weirs, each having a capacity of 70m’/s, were
completed in May 1996. Additional five weirs each also with 70m’/s capacity became
operational during the second stage in January 2001 (McCartney et al. 2009). A clear
reduction in the seasonality of the outflow and the lake level could be seen after all the seven

gates have become operational.
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Figure 3-20 Boxplot of annual runoff of gauged catchments in the Lake Tana basin.
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3.4.2.2 Baseflow

Studies on baseflow characteristics of the study area are scant. In this study an attempt was
made to estimate the contribution of baseflow following a method originally proposed by the
United Kingdom Institute of Hydrology (UKIH) and that has got applications in different
studies (Piggott et al., 2005, Aksoy et al., 2008). The method requires daily discharge series

and baseflow separation is done through the following summarized procedure:

= Divide the daily flow data into non-overlapping blocks of n days.
= Mark the local minima of each of these blocks, and call them Q;,Q-, . . ., Q..
= Compare three successive local minima (Q;.1, Qi, Qi+1) to identify turning points. If

0.90 <min(Q, —1,0,,), then the central value is the change point for the baseflow line.

Do this for the whole time series.
=  Make linear interpolation between successive turning points to estimate the baseflow of
each day. If, on any day, the baseflow estimated by this line exceeds the total flow on that
day, the base flow is set equal to the total flow.
= (alculate the baseflow index (BFI) as the ratio of mean baseflow to mean total discharge
of the whole period.
In the original UKIH method the length of the non-overlapping blocks (n) is 5 days. In this
study we used 7 days after having considered the maximum mean wet spell lengths of the
study area. Daily rainfall analysis of Bahir Dar and Gonder stations gave a maximum wet
spell length of 5-6 days. The baseflow determination was done using continuous daily
discharges obtained after having filled missing records by the longterm average flows.
Longterm average flows were computed for each month.
Summary results of the baseflow analysis for the major catchments are presented in Table 3-6.
Baseflow appeared to be a major flow pathway in all catchments with relatively higher
contributions in Gilgel Abay and Gumara watersheds. The calculated baseflow indices are
within ranges reported in different studies (Eckhardt, 2008; Aksoy et al., 2008; Chapman,
1999).

Table 3-6 Baseflow indices for major gauged catchments of Lake Tana basin

Catchment BFI

Gilgel Abay 0.57
Gumara 0.51
Megech 0.44

Rib 0.45
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3.4.2.3 Flooding

Flooding is a recurrent problem in the downstream reaches of Megech, Rib, Gumara and
Gilgel Abay rivers. A combination of factors that include bank overflow, sedimentation, poor
drainage, lake level rise, and changes in the watershed characteristics are the causes of the
problem. Annual flood frequency analysis was carried out using time series of maximum
daily discharges for the period 1977-2006. Instantaneous peak discharges could not be found.
Figure 3-23 shows the results of the analysis for the four major rivers together with the
theoretical lognormal distribution. Overall, the lognormal distribution appeared to be a good
fit to the observed maximum daily streamflow series. The maximum daily discharges for 50
year recurrence interval (exceedance probability = 0.02) were found to be 488 m?/s for Gilgel

Abay, 400 m?/s for Gumara, 532 m’/s for Megech and 171 m’/s for Rib rivers.

3.4.2.4 Rainfall-runoff relationships

Streamflow is commonly subdivided into two parts- direct runoff and baseflow. Direct runoff
is produced by either infiltration excess (Horton) or saturation overland flow (Kinghton,
1998). Infiltration excess overland flow often occurs in semi-arid and arid areas with sparse
vegetation and thin soils. Saturated overland flow is produced by precipitation that falls
directly on saturated areas and/or return flow from a rising watertable. It usually occurs at the
base of slopes (particularly those with concave profile), thin soils and topographic hollows
where both surface and subsurface flow converge. In deeper soils with good permeability,
baseflow (subsurface flow) is the dominant streamflow mechanism. It may be generated by
Darcian flow through microspores of the soil matrix or preferential flows through large voids
such as macrospores or pipes.

To get an insight on the possible runoff generating mechanisms of the study area, the
observed rainfall and runoff of four catchments were investigated. A scatter plot of weekly
rainfall against runoff data for the period 2001-2005 was used for this purpose. For the main
rain season a subdivision into three classes was made based on the antecedent rainfall amount.
A similar approach is found in Awulachew et al. (2008). The results of the analysis are
indicated in Figure 3-24. A stronger linear relationship between rainfall and runoff could be
seen for Megech, Rib and Gumara catchments when the cumulative rainfall was greater than a
certain threshold (500 mm for Megech, 650 mm for Rib and 750 mm for Gumara). This may

be related to the dominance of saturated excess overland flow above these thresholds. For
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Gilgel Abay catchment such distinct relationship between rainfall and runoff could not be

seen even for higher thresholds. This could be explained by the dominance of subsurface

flow. A higher baseflow index was also found for Gilgel Abay and Gumara in Section

3.4.2.2.
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Figure 3-23 Log-normal probability plot of annual maximum daily streamflow in the Lake Tana basin (a) Gilgel
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3.4.2.5 Lake Tana bathymetry

Analyses were limited to drawing of bathymetric map, establishment of lake level-area-
volume relationships and determination of the average and maximum lake depths based on
data obtained for year 2006. An estimate on the rate of sediment deposit in the lake could not
be made due to lack of bathymetric data of the other two previous years. The average and
maximum depths of the lake were found to be, respectively, 8.7 m and 14 m with respect to
the longterm mean lake level (1786 m.a.s.l). The lake area and volume corresponding to the

mean water level were calculated to be 3012 km” and 28 km’, respectively.
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Figure 3-25 Bathymetry of Lake Tana based on data collected in 2006 (a) lake bottom contour map (b) lake
level-area-volume relationship.

3.4.3 Suspended sediment yield

Accurate estimates of suspended sediment yields of catchments rely on availability of long
and reliable records of suspended sediment concentrations, particularly during peak flow
seasons. But when these records are unavailable, estimates are often derived from empirical
relations between river discharges and corresponding suspended  sediment
concentrations/loads (Horowitz, 2003; Ulke et al., 2009). The relationship can be expressed in
different forms with the power function shown in Equation 3-8 being the most commonly

used one (Asselman, 2000).
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SS =aQ’ Equation 3-8

Where, SS is suspended sediment concentration/load, Q is streamflow rate, a and b are
constants to be determined from observed discharges and suspended sediment

concentrations/loads.

This type of rating curve, however, has the weakness of underestimating the longterm
suspended sediment load by 10-50% due to bias introduced when transformation from a
logarithmic to arithmetic scale is made (Asselman, 2000). A better unbiased estimate of the

suspended load could be obtained by introducing a correction factor (Equation 3-9).

SScorr = [aQb]x CF Equation 3-9
Where, CF is the bias correction factor.

Different methods are suggested to calculate the bias correction factor (Ferguson, 1986; Duan,
1983). The smearing estimate suggested by Duan (1983) has got wider acceptance with
several applications (Rovira and Batalla, 2006; Horowitz, 2003; Jansson, 1995). The

correction factor is calculated by Equation 3-10:

>exp(s))

CF=42— Equation 3-10

Where, n is the number of observations and ¢; is the residual at each observation time step

which is calculated by Equation 3-11:
& =In(SS, ) —1n(aQ") Equation 3-11

Availability of suspended sediment data in the study area is very limited and fragmented.
Most of the existing data corresponds to the wet season, with few observations during the dry
months. Use of rating curve equations to estimate suspended sediment loads can be found in
several project-specific study reports (e.g. BCEOM, 1999b; WWDSE and TAHAL, 2008).
The suspended sediment loads, however, might have been underestimated as no correction for

bias has been applied.
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In this study, effort has been exerted to develop suspended sediment rating curve equations at
four gauging stations (Gilgel Abay, Gumara, Koga and Megech) where data could be obtained
for at least thirty days. All historical data that could be accessed were used. Moreover, the
limited suspended sediment data collected during the field campaign of this study was
included for Gilgel Abay and Koga stations. Correction factors calculated based on the
smearing method were also used. The performance of the rating curves with and without
correction factor was measured by the Nash-Sutcliffe efficiency.

The suspended sediment rating curves obtained for both with and without correction factors
are shown in Figure 3-26. The calculated Nash-Sutcliffe performance measure is indicated in
the legend. Overall, the performance of the rating curves appeared to be good with a slightly

better fit when bias corrections were applied.

®  Observed 150000 M & Obzsrved
L ]
[ ]
0000
. Rating curve 120000 —_——— \ll,:i-th;mﬂ::;rs[ ection
0000 . 3zh = 0.55)
z [4.15501599] % 1,11 b = = =Without correction =
= i [Nash = 0.68) = With correction
g oo E E0000 [Nash=0.41)
m L] ‘I . —Wi!hh:oror?q;iqn m
20000 Mash =
P, 4155017 ¢ )
A 40000 3 La23
P 23.0870
10000 =
o®
[ ]
0 : : . . . o L
o 50 100 isp 200 280 o 100 200 300
Discharge, m3/s Discharge, m3/s
a b
20000 & Observed 1000 & Observed
L ]
1333 n
[73170%%|x132 _ _ P0.9520"*|x2.08 *
o004~ 4 = Without correction BOO = . - - - - Without carrection
[Wash=0.45) [Mazh =0.35)
E 12000 ; —— with correction T s
;‘ 4 [Maszh =0.48) o With Correction
E: f\ 2 [Mash=10.67)
g BO00 13170 @400
4000 200 20 969 9+
'.' [ ]
. :
o . ) o .
o 20 a0 &0 BD o 5 10 15
Discharge, m3/s Discharge, m3/s d
C

Figure 3-26 Suspended sediment rating curves for four gauged catchments in the Lake Tana basin (a) Gilgel
Abay (b) Gumara (c) Koga (d) Megech.
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3.4.4 Soil and land cover data analysis

3.4.4.1 Soil

Information on the type and physical properties of the study area soils could be extracted from
the Abay Master Plan (BCEOM, 1999c¢) and other catchment specific studies (Acres and
Shawel, 1995). These data and relevant notes from literatures were used to determine the
average characteristics of the soil types. Information on soil texture and soil hydraulic
properties were used to parameterize the physically based hydrological model used in this

study.

Soil types
Lake Tana basin is covered by eight major FAO/UNESCO soil groups: Luvisols (LV),

Leptosols (LP), Vertisols (VR), Fluvisols (FL), Alisols (AL), Nitosols (NT), Regosols (RG)
and Cambisols (CM). The basin is dominantly covered by the first three soil groups. A brief
presentation on the general characteristics of each soil group is given below (Driessen et al.,
2001).

Luvisols: represent soils having an argic subsurface horizon. They are most common in flat or
gently sloping land and have granular surface soils that are porous and well aerated. The
available moisture storage capacity is highest in the argic horizon.

Leptosols: these are shallow soils mostly located at medium-high altitude and strongly
dissected topography. The very shallow soils (less than 10 cm thick) are called Lithic
Leptosols. They are found in all climatic zones, in particular in strongly eroding areas. By and
large, they are free draining and have low water holding capacity.

Vertisols: are deep clayey soils that expand upon wetting and shrink upon drying. They are
found in level to undulating terrain with distinct wet and dry periods. They are poorly drained
and largely have good water holding capacity.

Fluvisols: These are soils developed in fluvial, alluvial, lacustrine or marine deposits and are
common along rivers and lakes, in floodplains and deltaic areas. Fluvisols in upstream parts
of river systems are normally confined to narrow strips of land adjacent to the actual riverbed.
In the middle and lower stretches, the flood plain is wider and has the classical arrangement of
levees and basins, with coarsely textured Fluvisols on the levees and more finely textured
soils in basin areas further away from the river. Fluvisols on river levees are porous and better

drained than those in low landscape positions.



Chapter 3 Data availability and analysis 71

Alisols: They are strongly acid soils with subsurface accumulation of high activity clays. They
are most common in old land surfaces with a hilly or undulating topography, in humid (sub)
tropical and monsoon climates.

Nitosols: are deep and well-drained tropical soils with a clayey subsurface horizon. They are
found on level to hilly topography.

Regosols: are soils in unconsolidated material without significant evidence of soil formation.
They are particularly common in mountainous regions associated with Leptosols. They are
well-drained and medium-textured soils with lower water holding capacity.

Cambisols: are soils at an early stage of soil formation. They exhibit different characteristics
depending on the environmental setting in which they are developed. However, most
Cambisols are medium-textured soils with high porosity, good water holding capacity and

internal drainage.

The distribution of each soil group is indicated in Table 3-7 for the gauged catchments and in
Annex B-6 for all catchments of the basin. It could be seen that those catchments that are
steeper and rugged (Garno, Gumero and Megech) are dominated by Leptosols. The more
erodible Luvisols represent a major part in the catchments that exhibited higher runoff

generation.

Table 3-7 Distribution of major soil types in the gauged catchments of Lake Tana basin (%)

Catchment LV LP VR FL AL NT RG
Garno 71 9 20
Gilgel Abay 56 2 40 1 1
Gumara 88 9 3

Gumero 6 68 16 4 6
Koga 47 10 12 24 7

Megech 5 81 3 11

Rib 35 40 24 1

Whole basin 47 20 13 12 6 1 1

LV: Luvisols; LP: Leptosols; VR: Vertisols; FL: Fluvisols; AL: Alisols; NT: Nitosols; RG: Regosols

Soil physical properties

Relevant soil analysis results reported in the Abay Master Plan study and other catchment-
specific documents were used to estimate the average texture and hydraulic properties of each
soil type. The estimated soil hydraulic properties included bulk density, porosity, field
capacity, permanent wilting point, saturated hydraulic conductivity and infiltration capacity.

As measured data on porosity could not be found, it was estimated from bulk density. Because
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field capacity and permanent wilting point measurements are limited, pedotransfer functions
that relate these parameters to percentages of clay, silt and sand were developed and used. The
use of pedotransfer functions to estimate missing soil hydraulic characteristics is considered
to be a good strategy where measured data are lacking (Wosten et al, 2001). A good
relationship between soil texture and saturated hydraulic conductivity could not be

established. The physical characteristic of each soil type is presented in Annex B-7.

3.4.4.2 Land cover

The data obtained from the MoWR is limited to indicating the percentage distribution of land
cover types in different parts of the basin. This information was used to identify a set of land
cover classes based on the IGBP-DISCover land cover classification legend which was found
to be suitable for the modeling aspect of this study. The legend comprises 17 classes and has
been used in global-scale modeling of climate, biogeochemistry and other Earth system
processes (FAO, 2000; ISLSCP, 2010). Eleven types of land cover classes could be identified
for the study basin. They included croplands, cropland/grassland mosaic, cropland/shrubland
mosaic, cropland/woodland mosaic, cropland/woody savana mosaic, grassland, open
shrubland, plantation, afro-alpine forest, urban area and water. The distribution of the land
cover types is indicated in Table 3-8 for the gauged parts of the basin and in Annex B-8 for all
catchments. It could be seen that most of the gauged catchment is dominantly cultivated
except the two smaller catchments, Garno and Gumero, which are located close to the basin’s

divide where the topography is mountainous and dissected.

Table 3-8 Distribution of land cover types in the gauged catchments of Lake Tana basin (%)

Catchment LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10
Garno 33.2 11.2 554 0.2

Gilgel Abay 95.8 1.2 2.9 0.1

Gumara 65.9 28.1 1.7 04 3.9 0.1

Gumero 29.8 70.2

Koga 80.5 10.3 0.6 8.5 0.1

Megech 97.1 1.2 0.5 1.2

Rib 78.6 4.9 0.3 1.5 14.5 0.1

Whole basin 63.0 6.5 3.9 0.1 0.5 0.2 5.6 0.1 0.1 20

LC1: cropland; LC2: cropland/grassland mosaic; LC3: cropland/shrubland mosaic; LC5: cropland/woodland mosaic; LC5:
cropland/woody savana mosaic; LC6: grassland; LC7: open shrubland; LC8: plantation; LC9: urban; LC10: water.
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3.5 Concluding remarks

In this chapter assessments of the availability, quality and characteristics of the existing
hydro-meteorological and spatial data in the Lake Tana basin were conducted. Based on the
data quality assessment results, the daily hydro-meteorological observations of most stations
could be considered as good. Though most of the meteorological stations do not have
continuous daily rainfall observations for long years, the temporal coverage could be taken as
adequate considering the absence of significant annual rainfall trends in the study region.
About 34% of the basin is not covered by the rainfall stations according to the minimum
recommendation of WMO. Improving the network coverage by installing more standard rain
gauges would be useful. Availability of rainfall data at sub-daily time scale is by far
inadequate with existing hourly rainfall records only at Bahir Dar and Gonder stations, but
which are highly fragmented and of poor quality. Use of daily rainfall disaggregation
techniques could be considered as a good strategy in applications that require shorter time
scale data. The temporal coverage of temperature measurements could be taken as adequate in
light of its low interannual and seasonal variability. In addition, considering the general linear
relationship that temperature has with altitude, the spatial coverage of the observations could
be considered as adequate. Though relative humidity data is available only at limited stations,
its spatial coverage could be considered as fair due to its stronger relationship with
temperature that has a better coverage.

Considering, the long and continuous daily discharge measurements at the major rivers, the
temporal coverage could be treated as adequate. The lower reaches of the various feeding
rivers and the western and southwestern parts of the basin, however, need improved coverage.
In light of the seriousness of erosion and sedimentation problems and the very limited
observations, the suspended sediment data coverage could be considered as highly inadequate.
It would be better to limit the use of the rating curve equations developed based on this
limited data to planning level applications. Acquiring more and reliable suspended sediment
data would be crucial for the design and management of water resources systems in the
region. The available data on soil physical properties could not adequately characterize the
highly heterogeneous soil material. In hydrological modeling the influential soil hydraulic

properties should be identified and used as calibration parameters.
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Chapter 4

4 Sensitivity analysis of Distributed Hydrology, Soil,
Vegetation Model Parameters

4.1 Introduction

Watershed models, which vary from simple empirical to complex physically based models,
play a fundamental role in addressing a range of water resources, environmental and social
problems. The development and application of physically based distributed hydrological
models is getting wider as can be seen in the literature (e.g. Abbot et al., 1986; Wigmosta et
al., 1994; Ewen et al., 2000; Liu and Todini, 2002). Such models require a large number input
factors that vary in space and time. This makes parameterization and calibration of these
models difficult and demanding (Refsgaard, 1997; Moreda et al., 2006; Francés et al., 2007).
Refsgaard (1997) thus stresses on the significance of rigorous parameterization and
identification of few calibration parameters.

The dimensionality of a parameter space can be reduced by different techniques, of which
sensitivity analysis is the one that is commonly used (Saltelli et al, 2006). The use of
sensitivity analysis is also common in hydrological modeling (Muleta and Nicklow, 2005;
Griensven et al., 2006; Kannan et al., 2007). Model sensitivity analysis is performed to rank
factors based on their influence on model outputs. The factors may include parameters,
forcings, initial conditions, boundary conditions, etc. By enabling modelers identify factors
that contribute most to output variability, sensitivity analysis facilitates model calibration
(Hamby, 1994; Kannan et al., 2007; Werkhoven et al., 2008). Sensitivity analysis methods are
classified into two broad categories: local and global sensitivity analysis (Saltelli ez al., 1999).
Local sensitivity analysis uses the one-factor-at-time (OFAT) method where one factor is
changed at a time keeping the others at their base value. The method enables to
unambiguously determine the effect caused by changing a single factor. Implementation of
the method is straightforward and its computational requirement is modest (Griensven ef al.,
2006; Cloke et al., 2008). One major drawback of the method is that it does not address
interactions among factors which are the case in non-linear models. Two kinds of local

sensitivity analysis techniques exist- the nominal range and differential analysis techniques
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(Tang et al., 2007). In the nominal range technique, the percent change in model output
caused by perturbation of a factor relative to its base value is used to measure the sensitivity.
The partial derivative of model output with respect to factor perturbation is used in the
differential analysis method. In most sensitivity analysis the OFAT approach is used
(Wainwright and Mulligan, 2004). The use of OFAT in its different forms is also common in
hydrological and environmental modelling applications (De Roo et al., 1996; Xevi et al.,
1997; Lenhart et al., 2002; Dubus et al., 2003; Holvoet et al., 2005; Kannan et al., 2007;
Nishat et al., 2007; Bahremand and De Smedt, 2008).

Global sensitivity analysis is multivariate in its approach where model output’s sensitivity is
evaluated by changing multiple factors simultaneously. The method enables to consider
interactions among factors, which is the case in nonlinear models. Global sensitivity analysis
is computationally expensive, making its application difficult for models having a large
number of factors (Cariboni et al., 2007; Cloke et al., 2008). To circumvent this disadvantage
of the method, global sensitivity analysis using OFAT with different random base values are
recommended (Campologo et al., 2007).

In this study sensitivity analysis of the Distributed Hydrology-Soil-Vegetation Model
(DHSVM) parameters was done using OFAT method. DHSVM is a grid based distributed
hydrological model with a number of input factors. The model was originally developed for
applications in mountainous forested watershed (Wigmosta et al., 1994) and has been applied
in different environmental settings. It also incorporates soil erosion and sediment transport
module (Doten and Lettenmaier, 2004).

Examples of applications of DHSVM include assessment of impacts of climate and land use
changes on streamflows and municipal water supply (Leung and Wigmosta, 1999; Cuo et al.,
2006; Thanapakpawin et al., 2006; Wiley and Palmer, 2008; Cuo et al., 2009); real-time
streamflow forecasting (Westrick et al., 2002) and prediction of soil erosion and sediment
transport (Doten et al., 2006). The use of the model, with some modifications, in urban
watersheds is also noted (Cuo et al., 2008).

The number and diversity of applications of DHSVM is increasing. With its large number of
soil and vegetation parameters, the task of calibration remains a real challenge. Which of the
parameters should be changed so that the simulated and observed quantities closely match?
For which of the parameters can we adapt values from literature? Where should we focus our
efforts during the data collection campaign? Answering such questions require ranking of the

parameters in terms of their contribution to output variability.
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This study aims at identifying those soil and vegetation parameters of DHSVM that have
relatively greater influence on outputs of the model. Sensitivity analysis using the OFAT
approach on small virtual catchments was used for this purpose. The virtual catchments
represent different land surface characteristics. The analysis enabled to screen out important
soil and vegetation parameters that had greater contribution to output variability. This

outcome can be used as a guide for calibration of the model.

4.2 Materials and methods

4.2.1 Description of the model

DHSVM is a grid-based distributed hydrological model that simultaneously solves water and
energy balance equations at each pixel per simulation time step (Wigmosta et al., 1994). It
provides a dynamic representation of watershed processes at spatial resolution described by
Digital Elevation Model (DEM) data. This kind of representation of the watershed enables to
model topographic controls on absorbed shortwave radiation, precipitation, air temperature,
and downslope water movement. Each grid cell may be covered by bare soil, understory and/
or overstory vegetation. If present, understory vegetation is assumed to fully cover a grid cell.
For overstory vegetation, the coverage is limited to a predefined fraction. Individual grid cells
are hydrologically linked through surface and subsurface flow routing. The model has been
applied from plot to watershed scale at subdaily or daily temporal resolution.

The major hydrological processes represented in the model include interception,
evapotranspiration, unsaturated flow, saturated flow, and snow accumulation and melt. Below
is a brief presentation of how each process is represented in the model. A detailed account is
found in Wigmosta et al. (1994, 2002). The main processes and equations of the model are
presented in Annex C-1. The overstory and understory vegetation canopies are assumed to
intercept precipitation until their maximum storage capacity, which is a function of leaf area
index (LAI), is reached. Evapotranspiration from vegetation canopies is calculated in a
stepwise fashion where firstly the potential evaporation rate is calculated for the overstory.
This represents the maximum moisture that the atmosphere can absorb. Then evaporation of
water intercepted by the overstory (wet fraction), is computed as the minimum of the
intercepted water or the potential evaporation rate. Transpiration from the dry vegetation
surface (dry fraction) is modeled by the Penman-Monteith equation. The total

evapotranspiration from the overstory (both dry and wet fractions) is then subtracted from the
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potential evaporation of the overstory. The difference is then considered as a modified
potential evaporation rate for the understory. The approach ensures that the total
evapotranspiration from both canopy layers does not exceed the potential evaporation for the
overstory. Evaporation from the upper soil layer is simulated for only bare soil surfaces and
the process may be climate- or soil-controlled depending on the soil moisture content.

The snow accumulation and melt module comprises energy and mass balance components.
The energy balance component is used to simulate snowmelt, refreezing, and changes in the
snowpack heat content. The mass balance component computes snow accumulation/ablation,
changes in snow water equivalent, and water yield from the snowpack.

A soil surface may receive water from throughfall, snowmelt or surface runoff from adjacent
cells. Water in excess of infiltration capacity becomes overland flow and the remaining
infiltrates into the soil. The downward unsaturated moisture movement is simulated using
two-layer soil depth model in which discharge is computed by Darcy’s law. Saturated flow is
modeled by a quasi-three dimensional method with transient conditions approximated by
series of steady state solutions. The hydraulic gradient may be approximated by the local
terrain slope on steep slopes with shallow soils, and the watertable slope must be used
otherwise.

The model involves several factors that include soil and vegetation parameters, initial model
states, state variables, constants, and spatial and meteorological forcings. The required input
forcings to run the model include DEM, soil types and properties, soil depth, vegetation types
and properties, stream networks and characteristics, and meteorological variables. The
meteorological forcings comprise precipitation, temperature, wind speed, relative humidity,

solar radiation and long wave radiation per simulation time step.

4.2.2 The sensitivity analysis method

Evaluations of sensitivity of different mass balance outputs and flow regimes to terrain slope,
soil depth, and soil and vegetation parameters of DHSVM were made. The simulation was
done on catchments that represent different land surface characteristics for a period of one
year at one hour time step and spatial resolution of 10m. This meant a large number of
simulations and consequently, small virtual catchments representing twenty four different
land surface characteristics were used. The OFAT sensitivity analysis method was used to

determine the relative importance of the soil and vegetation parameters of the model.
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4.2.3 Virtual catchments

The size of the virtual catchment was 50m by 170m (Figure 4-1) with different land surface
characteristics defined by slope, soil and vegetation types, and soil thickness. Two types of
uniform slopes were considered- flat slope (2°) and steep terrain (30°). Bare soil, shrubland,
and mixed forest were used to represent land covers. Three types of soils representing fine,
medium and coarse-textured soils were considered. Soil thicknesses of 0.1m and 1m for bare
soil and 1m for shrubland and mixed forest were used. Combinations of the various land
surface characteristics resulted in twenty-four virtual catchments. The characteristics of the
different virtual catchments are summarized in Table 4-1.

A one year meteorological data that included precipitation, temperature, relative humidity as
well as short and long-wave radiation at a temporal resolution of one hour was also used. The
values of the meteorological variables corresponded to data of Fish Lake meteorological
station given with the model tutorial data set for Rainy Creek catchment, which is a tributary
to Wenatchee River in USA’. The model initial state files comprising soil moisture,
interception storage, and snow and channel states were created using relevant executable

programs provided with the model.

Ay €< >
s v &

Figure 4-1 The virtual catchment

> http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/documentation.shtml
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Table 4-1 Description of virtual catchments used for the sensitivity analysis

Chapter 4 Sensitivity analysis of DHSVM parameters

Soil type  Vegetation type Surface slope Soil thickness (m)* Land surface type code'”
B 2° 0.1/1 1/2
are 30° 0.1/1 3/4
2° 1 5
Clay Shrubland 30° ) 5
. 2° 1 7
Mixed forest 30° 1 3
B 2° 0.1/1 9/10
are 30° 0.1/1 11/12
2° 1 13
Loam Shrubland 30° 1 14
. 2° 1 15
Mixed forest 30° 1 16
Bar 2° 0.1/1 17/18
¢ 30° 0.1/1 19/20
2° 1 21
Sand Shrubland 30° 1 2
. 2° 1 23
Mixed forest 30° ) 24

" For bare soil two different thicknesses were used- 0.1 m and 1 m and the corresponding land surface codes are 1 and 2.
" These codes were used in the presentation of the results (Figure 4.4-6)

4.2.3.1 Parameters and reference values

Fifteen soil and thirty-one vegetation parameters were considered for the sensitivity analysis.

Base values for each of these parameters were derived from relevant literatures. The list of the

parameters and their corresponding base values are presented in Table 4-2 and Table 4-3.

Table 4-2 Soil parameters and corresponding base values

Parameter Clay Loam Sand
Lateral saturated hydraulic conductivity, m/s 1.67x 107  3.61x10° 5.83x10”
Exponential decrease for lateral hydraulic conductivity 1 1 1
Maximum infiltration, m/s 2.80x 107  556x10°  6.94x10°
Surface albedo 0.17 0.14 0.2
Porosity 0.48 0.46 0.44

Pore size distribution 0.165 0.22 0.59
Bubbling pressure, m 0.373 0.112 0.073
Field capacity 0.4 0.27 0.09
Wilting point 0.27 0.12 0.035
Bulk density, Kg/m® 1350 1450 1550
Vertical conductivity, m/s 1.67x107  3.61x10° 5.83x10°
Thermal conductivity, W/m-°C 0.5 0.6 1.2
Thermal capacity, J/m’-°C 225x 107 2.19x10° 2.12x 10°
Capillary drive 0.41 0.11 0.05
Manning’s coefficient 0.225 0.225 0.13
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Table 4-3 Vegetation parameters and corresponding base values
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Parameter Bare

Shrubland Mixed forest

Fractional coverage

Trunk space (fraction of height)

Aerodynamic attenuation

Radiation attenuation

Max snow interception capacity, m of equivalent water
Mass release drip ratio

Snow interception efficiency

Height of overstory, m

Height of understory, m

Maximum resistance of overstory, s/m

Maximum resistance of understory, s/m

Minimum resistance of overstory, s/m

Minimum resistance of understory, s/m

Moisture threshold of overstory

Moisture threshold of understory

Vapor Pressure deficit of overstory, Pa

Vapor Pressure deficit of understory, Pa

Fraction of photosynthetically active radiation for overstory
Fraction of photosynthetically active radiation for understory

Depth of root zone layer 1, m 0.02
Depth of root zone layer 2, m 0.03
Depth of root zone layer 3, m 0.04

Overstory root fraction in layer 1
Overstory root fraction in layer 2
Overstory root fraction in layer 3
Understory root fraction in layer 1
Understory root fraction in layer 2
Understory root fraction in layer 3
Overstory monthly LAT'
Understory monthly LAI '
Overstory monthly albedo’
Understory monthly albedo’

600

200

0.33

4000

0.108

0.15

0.4
0.4

0.4
0.6
0.0
0.36-1.12

0.2

0.5
0.45
1.2
0.15
0.003
0.4
0.6
25
25
4500
2300
300
150
0.33
0.13
4000
4000
0.5
0.5
0.15
0.4
0.4
0.2
0.4
0.4
0.5
0.5
0.0
0.75-10.13
0.4-4.5
0.2
0.2

"values are given for each month of a year: for LAI a range of values is indicated; for monthly albedo constant
value of 0.2 is used; empty cells represent parameters that are not applicable for the specified land cover.

4.2.3.2 Sensitivity analysis

The sensitivities of various processes of the model, i.e., global outputs per simulation period

(1 year) and runoff per simulation time step (1 hour), to changed parameter values were

assessed. The global outputs included evapotranspiration, runoff and final soil moisture within

the catchment.

representing low, medium, high and all flows were considered.

For outputs per simulation time step, different streamflow regimes
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The classification of flow regimes into low, medium and high flows was made based on flow
duration curves of reference outputs. In the literature different exceedance probabilities are
used to classify flows as low (Q70-Q99), median (Q50) and high (Q5-Q10) (Smakhtin, 2001;
Davie, 2003). In this study, flows having exceedance probability greater than 70% (Q70)
represented low flows; high flows were flows with less than 10% exceedance probability
(Q10) and those between Q10 and Q70 were taken as medium flows.

Each of the soil and vegetation parameters were changed one-at-a-time from -100% to 100%
of the base value at a step of 25%. The changed parameter values were made to be physically

meaningful.

4.2.3.3 Metrics for sensitivity evaluation

Based on their contribution to output variability, parameters were labeled as insensitive, low,
average or high using relevant criteria. In the literature the sensitivity criteria used include
sensitivity index, root mean square error, coefficient of variation, percent of output deviation,
and Nash-Sutcliffe efficiency (Xevi et al., 1997; Anderton et al., 2002; Griensven et al., 2006;
Zoras et al., 2007; Bahremand and De Smedt, 2008).

In this study two different sensitivity criteria were used depending on the model output. For
mass balance outputs, the criterion used was a weighted percentage of departure from the base
output. In this method, first the absolute percentage of departure was calculated for each
percentage change in parameter value. In order to represent the overall effect of a parameter
on the model output by a single number, the concept of weighted departure was introduced.
This was based on the fact that a departure of, say 5 % obtained when a parameter value is
increased by 25% is greater than a departure of 5% obtained when the parameter value is
increased by 75%. This was accounted in the analysis by assigning weights that vary from 1
to 4 according to the percentage changes of parameter values. A larger weight was given for
the smallest percentage of change in parameter value. Accordingly, a weight of 4 was
assigned for departures that corresponded to a 25% change in parameter value. Two absolute
weighted departures that corresponded to decreasing (-25% to -100%) and increasing (+25%
to +100%) parameter values were calculated. The larger of the two absolute weighted
departures was used as a measure of the relative importance of the parameter.

The weighted departure was calculated using Equation 4-1.
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100%
> . Weight, x Departure,

i=25%

Weigheted departure = Equation 4-1

100% .
> - Weight,
i=25%

Decision on the relative importance of a parameter to a mass balance output was made based

on the criteria presented in Table 4-4.

Table 4-4 Sensitivity criteria for the mass balance outputs
Weighted departure, % Level of sensitivity

0 Insensitive
0-5 Low
5-30 Average
>30 High

For outputs per simulation time step, the Nash-Sutcliffe Efficiency (NSE) was used as a
measure of sensitivity. The method is commonly used in the performance assessment of
hydrological models (Krause et al., 2005; Schaefli and Gupta, 2007). The method of
calculation is presented in Chapter 6. NSE can have values that vary from —oo to 1. Lower
NSE values indicate greater departure from the base output. If a change in parameter value
does not affect the output, then NSE becomes 1 and the parameter is considered to be
insensitive. In this study outputs that corresponded to +50% change in parameter value were
used to calculate the NSE values. This was done for each of the flow regimes. The sensitivity

ranking was done based on the criteria presented in Table 4-5.

Table 4-5 Sensitivity criteria for the outputs per simulation time step

NSE Level of sensitivity
1.0 Insensitive
0.9-1.0 Low
0.5-0.9 Average
<0.5 High

4.3 Results and discussion

The level of influence of changes in slope, soil depth, and soil and vegetation parameters on
the major outputs of DHSVM are presented in this section. The relative importance of soil
and vegetation parameters was assessed by considering virtual catchments that represented
different land surface characteristics. ~ The effects of slope and soil depth changes were

assessed by comparing outputs obtained with reference parameter values. The simulation
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period was representative of the different seasons of temperate climate. A total of 8856

simulations were performed at hourly time step.

4.3.1 Sensitivity to terrain slope

Various studies consider slope as one of the major topographic controls of soil moisture
variability (e.g. Moore et al., 1993; Famiglietti et al., 1998). It controls streamflow generating
mechanisms, and surface and subsurface flow rates. It is considered to be one of the most
important controls of laminar subsurface flow which is assumed to be directly proportional to
slope gradient (Whipkey and Kirkby, 1978). In the model slope is used in overland flow

routing and computation of saturated subsurface flow.

4.3.1.1 Effect on soil moisture

The effect of terrain slope change on soil moisture in different soil types is presented in
Figure 4-2b. Soil moisture decreased with increasing slope. The level of sensitivity was much
more pronounced in coarse-grained soil due to its higher hydraulic conductivity. In fine
textured soil, slope change appeared to have insignificant effect on soil moisture and this is
due to its poor hydraulic conductivity. The model result indicated slope as having influence
on soil moisture both in wet and dry periods. This is partially in contrast to the results of
Ridolfi et al (2003) who noted negligible influence of topography in the dry period. But the
model result agrees with findings of Meerveld and McDonnel (2006) who observed

topography-related soil moisture pattern in dry period.

4.3.1.2 Effect on evapotranspiration

The difference in evapotranspiration obtained from flatter and steeper slopes is presented in
Figure 4-2c. Positive difference signifies greater evapotranspiration on the flatter slope. Slope
gradient affects evapotranspiration through its effect on soil moisture availability.
Evapotranspiration is moisture controlled when the soil gets drier (Brustaert, 2005). The
sensitivity of evapotranspiration to slope change was negligible during the winter period. This
period is characterized by very low temperature and evapotranspiration is climate controlled.
A general decrease in evapotranspiration with increase in slope could be obtained in the dry

period. This could be due to a decrease in soil moisture with slope as noted in Section 4.3.1.1.
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The relative effect of slope change is minimal in fine textured soils due to low variability of

soil moisture.

4.3.1.3 Effect on runoff

The influence of terrain slope on runoff volume is indicated in Figure 4-2d. During low flow
periods, runoff volume was generally greater on the steeper slope. An exception to this is the
observed runoff decrease on steeper sand soil during the dry period which could be due to
depletion of soil moisture in the previous dry days. During peak flow periods, runoff did not
show significant variation with slope in fine textured soil as the dominant flow pathway is
overland flow. On small areas, like the virtual catchment used here, the variation of overland
flow response time with slope is negligible (Burt, 1992). In loam and sand soils, flatter
slopes generated more runoff and this could be due to the enhancement of saturation excess
overland flow. Flatter slopes tend to retard flow rate and hence enhance saturation excess

overland flow (Jones, 1997).

4.3.2 Sensitivity to soil depth

Soil depth is one of the most important controls of water storage capacity and streamflow
generating mechanisms (Dunne, 1978). It is also considered important to understand the
relationships between soil moisture and transpiration (Meerveld and McDonnell, 2006). In the
model, soil depth is involved in the determination of soil moisture dynamics and saturated

subsurface flow.

4.3.2.1 Effect on soil moisture

Increase in soil moisture storage could be seen with increasing depth in both wet and dry
periods (Figure 4-3b). The effect was considerable in fine and medium-textured soils. These
soils have greater moisture holding capacity and slower drainage. Coarse textured soils have
lesser water storage capacity and it is highly variable due to its high hydraulic conductivity.
Results of the simulation are similar to findings of Meerveld and McDonnel (2006) who noted

depth as a major factor that controls variations in soil moisture storage.
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Figure 4-2 Sensitivity of DHSVMM mass balance outputs to terrain slope (a) precipitation (b) soil moisture (c)
evapotranspiration (d) runoff
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4.3.2.2 Effect on evaporation

Because soil depth was made to vary only on bare soil surfaces, its effect on evaporation from
soil was evaluated. The effect of soil depth on evaporation is presented in Figure 4-3c. In the
model evaporation is allowed to remove water from the upper bare soil layer. It could be
noted that soil depth exhibited similar effects on all soil types. During the cold period
evaporation is climate controlled and remained very low in both shallow and deep soils.
During the dry period evaporation generally increased with depth as deeper soils have more
water to sustain the process. An exception to this is, during the intermittent rain events,
evaporation was higher in shallower soils due to availability of more moisture in the upper
layer. The simulation results are in agreement to the explanations given by Meerveld and

McDonnel (2006).

4.3.2.3 Effect on runoff

The sensitivity of runoff to soil depth is presented in Figure 4-3d using log-scale for better
visualization. During low flow periods, runoff from deeper soils was greater as their higher
moisture storage allowed them to sustain the supply. During high flow periods the effect of
soil depth was insignificant in clay soil as the rapidly responding overland flow is the
dominant process. In medium and coarse textured soils a slight increase in runoff could be
noted on thinner soils and this could be due to the contribution of saturation excess overland
flow. As thinner soils have low soil moisture deficit, they can get saturated rapidly and favor

generation of saturation excess overland flow (Beven, 2001).

4.3.3 Sensitivity to soil parameters

DHSVM uses soil parameters to model various processes that include evaporation from soil,
transpiration, soil moisture balance, unsaturated flow and saturated subsurface flow. Soil
parameters affect these processes through their influence on water holding capacity and
movement. Whipkey and Kirkby (1978) considered physical properties of soils as major

controlling factors of subsurface flow.
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4.3.3.1 Effect on soil moisture

The effects of soil parameters on soil moisture are indicated in Figure 4-4a. In the model the
soil moisture balance of each soil layer is computed by considering different fluxes that
include infiltrated precipitation, downward water discharged in each soil layer, evaporation
from soil, evapotranspiration, water supplied by a rising water table and a return flow.
Porosity appeared to have a significant effect in all soil types which could be due its use in the
computation of the various fluxes mentioned. The apparent effects of field capacity and
wilting point could also be partly attributed to that of porosity as in some cases conjoint
variation of these parameters was made to ensure that wilting point < field capacity <
porosity. Soil moisture in coarse-grained soils was also sensitive to other parameters including
lateral and vertical saturated hydraulic conductivities, maximum infiltration capacity, and
pore size distribution. This could be explained by the relatively better infiltration and drainage

capacity of coarse textured soils.

4.3.3.2 Effect on evapotranspiration

The effect of soil parameters on evapotranspiration is presented in Figure 4-4b. The
significance of soil properties in controlling evapotranspiration becomes apparent during the
dry period when soil moisture deficit is large (Brutsaert, 2005). Porosity affected
evapotranspiration noticeably in all soil types. The influence was more pronounced on
vegetation-covered surfaces which could be due to its involvement in the computation of
evapotranspiration from the different soil layers. Other parameters that had moderate effect on
evapotranspiration included field capacity, wilting point, lateral and vertical saturated
hydraulic conductivities, maximum infiltration capacity, pore size distribution and bubbling
pressure. The relative effect of lateral saturated hydraulic conductivity was high on coarse
grained soil due to its good drainage. In general, a larger number of soil parameters had
moderate influence on evapotranspiration in all soil types. This moderate effect on fine
textured soil was not, however, reflected on soil moisture balance as seen in Figure 4-4a. This
could be due to the comparatively lower contribution of evapotranspiration to soil moisture

balance variability.
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4.3.3.3 Effect on runoff

The effect of soil parameters on runoff was noticeable mainly on deep coarse textured soil
with steeper slope as shown in Figure 4-4c. In deep and well-drained soils subsurface flow is
the dominant streamflow generating process (Dunne, 1978). The parameters with noticeable
effect included porosity, field capacity, lateral saturated hydraulic conductivity, vertical
saturated hydraulic conductivity, maximum infiltration capacity, and pore size distribution.
These parameters influence runoff volume through their effect on soil moisture movement. In
fine and medium textured soils the relative contribution of overland flow to runoff volume
could be dominant. Consequently, the influence of subsurface flow and hence soil parameters

on long-term runoff volume is insignificant.

4.3.3.4 Effect on streamflow hydrograph

Low flow

The sensitivity of low flow to soil parameters is presented in Figure 4-4d. Subsurface flow is
the dominant source of low flow (Jones, 1997). The influence of few soil parameters was
relatively higher in deeper and steeper coarse textured soils which could be due to their better
drainage characteristic. Parameters with noticeable effect included lateral saturated hydraulic
conductivity and its rate of exponential decrease, porosity, field capacity, and pore-size
distribution. In the model these parameters are involved in the computation of saturated
subsurface flow. The effect of vertical saturated hydraulic conductivity is low as percolation
from the lower zone is negligible during the dry period. Most of the soil parameters did have
no or insignificant effect on low flow in fine and medium textured soils and this could be

related to their low lateral and vertical saturated hydraulic conductivities.

Medium flow

Medium flow became more sensitive to various coarse grained soil parameters that affected
low flows as shown in Figure 4-4e. The increase in the level of sensitivity could be associated
to availability of more soil moisture. In shallow and flat bare coarse soils the effect of these
sensitive parameters was negligible which could be due to enhancement of saturation excess
overland flow. The influences of pore size distribution and vertical hydraulic conductivity
were negligible on flat slopes which could be due to the relatively lower variability of soil

moisture. Parameters of fine grained soils that are bare or covered by understory vegetation
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did not have any effect on medium flows and this could be due to the dominance of overland
flow contribution. In forest-covered clay soil the contribution of subsurface flow could have
become noticeable due to canopy interception so that porosity, field capacity and infiltration

showed influence on medium flow.

High flow

Most soil parameters that were responsible for variation of medium flows also affected high
flows generated in coarse grained soils as shown in Figure 4-4f. The effects of porosity, field
capacity and pore size distribution became insignificant on deep bare soil with flat slope. This
could be due to the enhancement of saturation excess overland flow on flatter slopes. The
effect of saturated vertical hydraulic conductivity became pronounced which could be due to
the greater availability of soil moisture for percolation. As overland flow is the dominant
pathway in fine and medium textured soils during high flow period, most of the soil
parameters had no or negligible effect on high flow. The considerable effect of porosity on
high flows coming from forest-covered fine and medium soils could be related to the
enhancement of subsurface flow by forest that has the potential to reduce rainfall intensity

through interception storage.

Overall hydrograph

The influence of the soil parameters on the overall hydrograph showed similar pattern as that
of low flows (Figure 4-4g). This could be due to the dominance of low flows in the whole
simulation period. This concealed the significance of some parameters in medium and high

flow regimes. It is therefore important to make sensitivity analysis for different flow regimes.

4.3.4 Sensitivity to vegetation parameters

Vegetation cover plays a significant role in the hydrological cycle through its effect on
interception storage, evapotranspiration and infiltration (Brooks et al., 2003). For instance, the
proportion of precipitation that will be yielded as streamflow will be greatest for bare soil and
least for forested area. Evapotranspiration is potentially higher in forested lands than areas
with bare soil or shrublands. In the model vegetation parameters are used to compute

interception storage and evapotranspiration.
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4.3.4.1 Effect on soil moisture

Soil moisture of coarse textured soils on steep slope was sensitive to most of the vegetation
parameters as presented in Figure 4-5a. This could be related to the variability of soil moisture
in these soils due to their higher permeability. For other land surface types, vegetation
parameters with moderate effect on soil moisture included fractional coverage, minimum
stomatal resistance, vapor pressure deficit, rooting depth and fraction, and leaf area index.
Soil moisture dynamics is controlled by evapotranspiration and subsurface water movement.
The influence of vegetation parameters on soil moisture is realized through transpiration

process.

4.3.4.2 Effect on evapotranspiration

The effects of the various vegetation parameters on evapotranspiration are presented in Figure
4-5b. Generally, fractional coverage, height of vegetation, stomatal resistance, understory
moisture threshold, vapor pressure deficit, rooting depth, root fraction, and leaf area index
appeared to have moderate effect on evapotranspiration. The model uses the Penman-
Monteith approach to estimate evapotranspiration. The various vegetation parameters
influence the process by controlling the radiation budget and/or rate of moisture transfer to the
atmosphere. Fractional coverage and leaf area index could also influence evapotranspiration
by limiting moisture availability through interception storage. In the model water that is
intercepted by the understory and overstory vegetation is assumed to evaporate at potential
rate. It could be observed that the effects of vegetation parameters of the overstory
overshadowed that of understory when two canopy layers existed. Rooting depth appeared to
have influence on bare soil and this is due to the use of this parameter in the calculation of soil

moisture balance.

4.3.4.3 Effect on runoff

The variation of vegetation parameters did not have noticeable effect on the long-term runoff
as indicated in Figure 4-5c. This could be due to the relatively smaller amount of water loss
by evapotranspiration. During the longer winter period evapotranspiration was negligible as

observed for the reference parameter values (Figure 4-2c¢).



Chapter 4 Sensitivity analysis of DHSVM parameters

Soil Parameter/Case

Lateral cond

Exponential decrease

Maximum infiltration

/ IIII\/ IIIIIIIIIIIIIII/ Al

Soil Parameter/Case

CLAY | LOAM |

93

SAND |

1 2

FIERERR
77

Lateral conductivity

o] 5[ 6 7] 8| s[10]11
I

=

3
Il

Exponential decrease
Maximum infiltration

n
o
||||%

Surface albedo

Bulk density

Surface albedo
Porosity
Pore size distribution

Bubbling pressure
Field capacity

Wilting point

Bulk density

Vertical cond

HHHHMM

Vertical cond

12/13(14(15/16]17)18|19(20|21(22{23|24

22 ZNNZ2Z2Z 2

ii7

T

Thermal conductivity Thermal conductivity
Thermal capacity Thermal capacity
Capillary drive Capillary drive
Mannings n gs 1
(a) Sensitivity of final soil moisture (b) Sensitivity of evapotranspiration
Soil Parameter/Case CLAY LOAM ‘ SAND ‘ Soil Parameter/Case CLAY ‘ LOAW SAND |
1] 2{ 3| 4/ 5 6] 7| 8] 9/1011{12/13|14|15|16|17(18|19|20|21|22|23|24 1) 2) 3| 4] 5[ 6] 7| 8 9|10{11|12|13(14/15|16|
Lateral conductivity Lateral conductivity [T |||||/|||||/// 7
Exponential decrease Exponential decrease M= 7 i
Maximum infiltration Masinum infiltration m[m] = \HW —=
Surface albedo — Surface albedo = —— ——
Porosity % Parosity M[M A RN 2 2%
Pore size distribution Pore size distribution = — ——
Bubbling pressure Bubbling pressure = = —— i . T
Field capacity Ficld capacity [ (I (=
Wilting point Wilting point = = M= :
Bulk density ——— Bulk density !
Vertical cond N A Vertical cond ET
Thermal conductivity Thermal conductivity
Thermal capacity Thermal capacity
Capillary drive Capillary drive
M: gsn gs 1
(c) Sensitivity of runoff volume (d) Sensitivity of low flow
Soil Parameter/Case CLAY LOAM | SAND | Soil P ase CLAY LOAM ‘ SAND ‘
10 2] 3] 4] 5 6] 7] 8 9(10/11]12{13(14)1516|17/18|19|20|21(22|23]24 1) 2] 3] 4] 5| 6] 7| 8] 9(10/11|12(13/14]15]16|17(18|19|20{21|22 23|24
Lateral conductivity = Lateral conductirity
Exponential decrease = Exponential decrease ‘ ‘ ‘ ‘
Maximum infiltration Maximum infiltration —
Surface albedo —— Surface albedo —
Porosity E Porosity %”H HH
Pore size distribution == Pore size distribution T
Bubhbling pressure = Bubbling pressure ]
Field capacity E = ” ‘ ‘ E‘ ‘ H H” Field capacity lm M
Wilting point ——— Wilting point
Bulk density Bulk density
Vertical cond lm lm Vertical cond
Thermal conduetivity Thermal cond
Thermal capacity Thermal capacity
Capillary drive Capillary drive
Mannings n Mannings n
(e) Sensitivity of medium flow (f) Sensitivity of high flow
) CLAY [ LOAM
Soil Parameter/Case e e

Lateral conductivity

13]14|15]16]17
H

Pore size distribution

Exponential decrease —F

Msimun inilraion I, ==
Surface albedo = —— ==
Poosty 0 1 R A 7

W22,

Bubbling pressure

Field capacity

Wilting point

Bulk density

Vertical cond

Thermal cond

Thermal capacity

Capillary drive

AL

g5 n

(g) Sensitivity of all flow

Figure 4-4 Sensitivity of DHSVM outputs to soil parameters




94 Chapter 4 Sensitivity analysis of DHSVM parameters

4.3.4.4 Streamflow hydrograph

Low flow

Most parameters did have no or little effect on low flow as indicated in Figure 4-6a. Low
flows occur during winter months when most of the water is retained in snowpack or dry
periods when moisture deficit is large. Due to the weak radiation energy in winter and large
moisture deficit in summer, evapotranspiration and its effect on low flow are negligible. The
observed moderate influences of fractional coverage, radiation attenuation and overstory leaf
area index could be related to evapotranspiration that occurred during the intermittent rain
showers in summer. Reference to the model equations indicated that these three parameters

are involved in the computation of radiation budget which is the driver of evapotranspiration.

Medium flow
The three parameters that had moderate influence on low flows also showed significant

effects on medium flows in all soil types (Figure 4-6b). The relative increase in their influence
could be related to availability of greater soil moisture during medium flow period. For
coarse textured soil additional vegetation parameters with considerable effect included
maximum snow interception capacity, aerodynamic attenuation, overstory height, minimum
stomatal resistance, and rooting depth. The sensitivity of medium flows to these additional
parameters could be due to the relatively high variability of soil moisture in coarse textured
soils caused by quicker soil water movement. In the fine and medium textured soils, soil

moisture variability is low and hence lesser influence on medium flows.

High flow

High flows were found to be sensitive to fractional coverage, and maximum snow
interception capacity in all soil types as indicated Figure 4-6¢c. As overland flow is the
dominant pathway in fine and medium textured soils, the effect of these parameters on high
flows could be related to interception storage. The influence of other vegetation parameters
was apparent only on coarse textured soil with relatively higher moisture variability. These
parameters included trunk space, radiation attenuation, aerodynamic attenuation, height and

LAI of overstory, minimum stomatal resistance, and rooting depths.

Overall hydrograph
The sensitivity of the overall storm hydrograph was similar to that of low flow (Figure 4-6d)

since the streamflow period is dominated by low flows. The influential parameters that were
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observed in medium and high flows could not be detected when the overall streamflow

hydrograph is analyzed.
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Figure 4-5 Sensitivity of DHSVM mass balance outputs to vegetation parameters
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Figure 4-6 Sensitivity of DHSVM hydrograph simulations to vegetation parameters
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4.4 Conclusions

The main objective of this study was to assess the sensitivity of different outputs of DHSVM
to soil and vegetation parameters. The OFAT sensitivity analysis method was used for this
purpose by considering virtual catchments representing twenty four different land surface
characteristics. The effects of slope and soil depth on the outputs of the model were also
assessed.

Outputs of the simulation are in general agreement with results reported in literatures for
hillslope scale studies. The study enabled to identify the relative influence of parameters of
the model on different outputs. Use of the identified parameters in the calibration of the model
for real catchments could be noted.

The fact that actual catchments are large and complex may result in some variations to the
outcomes of the assessment when applied to real world problems. Nonetheless, the results
can be used as a guide to calibrate parameters of the model. They could also be taken as
screening level results for making further analysis using global sensitivity method.

The findings of the study can be particularly useful in making better runoff simulations by
adjusting few influential parameters. Soil depth can be considered as an important calibration
parameter for adjusting low flows in different soil types. Porosity and saturated lateral
hydraulic conductivity can be used as calibration parameters in coarse, medium and forest-
covered fine textured soils. Vegetation parameters are influential in forest-covered surfaces
with fractional coverage, radiation attenuation and leaf area index showing greater effect in all
soil types. Adjustment of additional soil and vegetation parameters may be required in coarse

textured soils.



98

Chapter 4 Sensitivity analysis of DHSVM parameters



Chapter 5 DHSVM input data creation for Lake Tana basin 99

Chapter 5

5 DHSVM Input Data Creation for Lake Tana Basin

5.1 Introduction

Hydrological modeling using DHSVM was done at temporal and spatial resolutions of 1 hour
and 90 m, respectively. The available and derived hydro-meteorological and spatial datasets
were processed using different techniques and tools to create the input files at the required
resolutions and formats (Figure 5-1). This chapter presents the methodologies employed in the
creation of these input datasets and parameterization of the distributed hydrological model.
Meteorological forcings at a temporal resolution of one hour were created by disaggregating
the daily data series. The specific disaggregation techniques used for the various
meteorological elements is discussed in relevant sections. Spatial datasets and initial model
state files were created in the required format using relevant GIS tools and executable
programs supplied with the DHSVM source code. The methods used in assigning a priori

values for soil and vegetation parameters are also presented.

= 5 | Daily meteorological series Spatial datasets Initial model state
= Obzerved : ramfall, temperature, Raster~vector data: DEM, soil type, Soil motsture
E T | windspesd, relative humidity vegetztion type, catchments Interception storage
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= TE Configuration file
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Figure 5-1 Required input files for DHSVM
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5.2 Weather data disaggregation

The weather data required by the model include rainfall, temperature, wind speed, relative
humidity, shortwave radiation, and downward longwave radiation. Observed daily time series
for the first four meteorological elements are available. Daily solar radiation and downward
longwave radiation were estimated by empirical equations that relate these variables to
temperature, which has a relatively better coverage in the study area. The observed and
estimated daily meteorological time series were then disaggregated into hourly time scale
using appropriate techniques that are presented in the following sections. The use of weather
data disaggregation techniques to generate meteorological forcings at finer temporal
resolution for simulating hydrological processes is common (Bormann et al., 1997; Waichler

and Wigmosta, 2002; Debele ef al., 2007).

5.2.1 Rainfall

This section represents part of a paper submitted to Journal of Hydrology for publication
(Engida and Esteves, 2010). The revised manuscript is presented in Annex A.

Rainfall disaggregation models are used to obtain rainfall time series at subdaily scale from
daily values. The different approaches of rainfall disaggregation can be classified into four
groups (Onof et al, 2000): complex process-based meteorological models, multi-scale
stochastic models such as multi-fractal cascades, statistical models developed on the bases of
observed statistics and point-process stochastic models. The commonly used point process
stochastic models are the Bartlett-Lewis and Neyman-Scott cluster models. The point-process
models have practical advantage of summarizing the many rainfall characteristics by few
parameters and representing the hierarchical nature of rainfall structure conveniently (Onof et
al., 2000).

In this study, the Modified Bartlett-Lewis Rectangular Pulse Model (MBLRPM) was used to
generate hourly rainfall series from daily data. The MBLRPM has got relatively wider
applications in different climates with reported good performance levels (Glasbey ef al., 1995;
Khaliq and Cunnane, 1996; Smithers et al., 2002; Campo et al., 2008). Figure 5-2 illustrates
how rainfall processes are represented in the model (Rodriguez-Iturbe et al., 1988;
Koutsoyiannis and Onof, 2001). Storms are assumed to originate at times t; following a

Poisson process at a rate A; each storm is then assumed to generate rain cells at times tj

according to a Poisson process at a rate ; Generation of cells corresponding to a storm
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terminates after a time X; that is exponentially distributed with parameter y. Rain depth of each
cell yjj is a random constant exponentially distributed with mean p. Each cell has a random
duration X;; that is exponentially distributed with parameter n which is assumed to vary from
storm to storm with a gamma distribution having a scale and shape parameters of a and v,
respectively. The parameters 3 and y are also made to vary with storms so that k¥ = 3/ and
¢ = y/m remain constant. The rainfall amount in any time interval T is then represented by the

sum of all active cells in that period. The model equations are indicated in Annex A.

Rain cells S R >

Rain intensity
-\i___\_‘

W

T t /Cg Time

Storm origins

Figure 5-2 Rainfall process as assumed in the MBLRPM

5.2.1.1 Evaluating the performance of MBLRPM

The applicability of the MBLRPM to the rainfall pattern of the study area was first evaluated
based on the available limited hourly data of Bahir Dar and Gonder meteorological stations.
The six parameters of the MBLRPM were estimated using the method of moments where
non-linear equations that relate observed and analytical moments are solved simultaneously.
Inclusion of moments that describe depth processes and dry probabilities are deemed to be
necessary in order to arrive at reasonable parameter values (Onof and Wheater, 1993). Based
on the recommendation of Khaliq and Cunnane (1996), the model parameters were
determined from more moment equations than the number of unknowns. The moments
included mean, variance, lag-1 autocovariance and dry probabilities for different levels of

aggregation.
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Many applications of the model recommend inclusion of subdaily rainfall statistics in the
estimation of the model parameters (Khaliq and Cunnane, 1996). In this study the estimation
was done based on two sets of rainfall statistics depending on the relative length of available
hourly rainfall records. For the main wet months, i.e. June, July, August, and September,
rainfall statistics calculated from 1-, 6-, 24- and 48-hours historical data were used to estimate
the model parameters. For the other months the estimation was based on only 24- and 48-
hours rainfall statistics as the length of the hourly data is very short. There are studies which
estimate parameters of the model from 24- and 48-hours rainfall statistics and yet conclude
good performance of the model. Bo and Islam (1994) are able to infer satisfactorily subdaily
rainfall statistics from 24 hours and 48 hours data. Similarly, Campo et al. (2008) reasonably
infer 10 min, 30 min, 1 hours, 2 hours, 6 hours and 12 hours rainfall statistics using
parameters estimated from accumulated 24- and 48-hours rainfalls. Successful parameter
estimation is also reported by Smithers ef al. (2002) who make the determination with and
without subdaily rainfall statistics. The optimum parameter values of the MBLRPM for each
station are presented in Annex A.

Disaggregation of the observed daily rainfall into hourly series was then done using the
computed optimum parameter values. A repetition technique with proportional adjustment
was followed during the disaggregation to ensure that daily rainfall equals the sum total of
disaggregated hourly rainfalls. This method is recommended by Koutsoyiannis and Onof
(2001) and is incorporated in a disaggregation model developed by Gyasi-Agyei (2005). The
approach enables to obtain consistent finer time scale rainfalls by distributing the error
proportionally to each of the disaggregated results. A computer program called Hyetos® in
which the Bartlett-Lewis model and the adjusting procedures are implemented (Koutsoyiannis
and Onof, 2000) was employed in the disaggregation. Debele ef al. (2007) reported very good
performance of the model in disaggregating daily rainfall data into hourly data.

The direct outputs of the MBLRPM did not match well the average diurnal rainfall pattern of
the study area during the main wet season (See Figure 5-3 for Bahir Dar). The performances
of the model as measured by the mean square error (MSE) varied from 15% to 25%.
Similarly, poor performance was noted for Gonder meteorological station. The MBLRPM
stochastically generated rainfalls at any hour of the day following the Poisson process. This
resulted in a mismatch between the observed and disaggregated rainfalls during the morning

day hours which hardly receive rainfall. Rainfall in the study region is convective and most of

® http://www.itia.ntua.gr/en/softinfo/3/
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it occurs in the afternoon and night hours (Nyssen et al. 2005; Haile et al., 2009). Outputs of
the MBLRPM were, therefore, stochastically redistributed to mimic the diurnal rainfall

pattern of the study area.
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Figure 5-3 Comparison between observed and disaggregated mean hourly rainfall of Bahir Dar station for the
wet months. The mean square errors (MSE) are also indicated.

5.2.1.2 Adjustment of the MBLRPM outputs

Stochastic redistribution of the direct outputs of MBLRPM was done using Beta distribution
function (Equation 5-1) which was found to better describe the diurnal rainfall patterns of
Bahir Dar and Gonder meteorological stations. During the main rainfall season, the daily
rainfall pattern at Bahir Dar and Gonder meteorological stations showed a Beta distribution
starting from 11:00-13:00 hour local time (See Figure 5-4 for Bahir Dar). Use of Beta
probability distribution function to simulate rainfall occurrence time in a day could be found

in the literature (Hershenhorn and Woolhiser, 1987; Connolly et al., 1998).
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LD 1t for0<i<la>0,b>0
F@r®) Equation 5-1

=0 otherwise

f(t;a,b)

Where t is scaled hour of the day between 0 and 1; a = scale parameter; b = shape parameter.

The optimum parameters of the Beta probability distribution function could be estimated from
the mean and variance of the observed hourly rainfall occurrence hours using Equation 5-2.
The estimated average Beta distribution parameters for Bahir Dar were a = 2.8 and b = 3.8

and that for Gonder were a=2.0 and b =3.7.

a
E@) =
® a+b
Equation 5-2
Var(t) = ab .
(a+b+1)(a+b)

Where E(t) is the mean rainfall occurrence hour; Var(t) is the variance of the rainfall

occurrence hour, i.e., E(t)-[E(t)]*

-
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Figure 5-4 Typical distribution of rain start hour for Bahir Dar station

The redistribution was done by generating a scaled random rainfall occurrence hour from the
Beta distribution. The redistributed hourly rainfall showed a better fit to the observed data as
indicated by the relatively smaller MSE values and the graphical similarity (See Figure 5-5

for Bahir Dar station). Similar improvements could be obtained for Gonder meteorological
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station. See Annex A for more results and discussions on the performance of the MBLRPM
and its subsequent adjustments using the Beta distribution.

For the other stations the rainfall disaggregation was done following the same procedure. The
Beta distribution parameters of either Bahir Dar or Gonder were used for the redistribution

depending on which station is close to the station concerned.
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Figure 5-5 Comparison between observed and disaggregated hourly rainfall after adjustment. Bahir Dar, for
the main rainy season.

5.2.2 Temperature

Observed temperature data at most meteorological stations is often limited to daily minimum
and maximum records. Simple to complex disaggregation models are, therefore, usually used
to determine the diurnal temperature pattern. The methods that are in use include simpler
models based on sinusoidal curves or Fourier analysis and complex energy balance relations
(Reicosky et al., 1989; Sadler and Schroll, 1997). The simpler methods have a practical
advantage of using commonly available daily minimum and maximum temperature

observations (Sadler and Schroll, 1997). In this study the daily air temperature was
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disaggregated using a sinusoidal model originally proposed by De Wit (1978). This model has
got different applications with reported good performance levels (Baker, 1988; Bilbao et al.,
2002; Debele et al., 2007). The model uses three sinusoidal segments to connect the times of
minimum and maximum daily air temperatures. The temperature at any hour t is then

calculated using the following equations.

T +T T -T. t—t_ +24
T(t) — _min max _ ~ max min_ cosS 7[* 1 S t S tmin Equation 5-3
2 2 Z‘min - tmax + 24
T +T T -—-T. -t .
T(l,) _ min max __  max min_ cos ”—mm tmin < t < tmax Equat|on 5-4
2 2 tmax ~ “min
T +T T —-T. t—t
T(t) — __min max __ _ max min x cos| max tmax S t S 24 Equation 5-5
2’ tmin - tmax + 24

Where, T(t) is temperature at any hour t in °C; Ty, is minimum daily temperature in °C; Tyax
1s maximum daily temperature in °C; tyi, and tyax are hours at which minimum and maximum

daily temperatures occur, respectively.

Minimum and maximum temperatures of a day are assumed to occur at 06:00 and 15:00
hours, respectively. These hours correspond to the minimum and maximum temperature
observation hours of the Ethiopian National Meteorological Agency. The average diurnal
temperature patterns for Class 1 stations that are located within the basin are indicated in
Figure 5-6. Due to lack of observed hourly temperature data, it was not possible to check the

performance of the disaggregation model.
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Figure 5-6 Average diurnal temperature pattern of four Class 1 stations in the Lake Tana basin (Based on
disaggregated daily data).
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5.2.3 Wind speed

Wind speed disaggregation models include direct use of the average daily wind speed
(Waicheler and Wigmosta, 2002), curve-fitting like cosine function (Debele et al., 2007) or
simple random distribution-based model (Neitsch et al., 2001). In this study disaggregation of
daily wind speed was done using a simple random distribution-based model given in Equation
5-6. A similar method is incorporated in the Soil and Water Assessment Tool (SWAT) model
for calculating daily wind speed from monthly values (Neitsch et al., 2001). Debele et al.
(2007) used this model to disaggregate daily wind speed into hourly data and obtained

reasonable results.

w, =W, [— ln(rnd[O,l])]0'3 Equation 5-6

Where, wy, is estimated hourly wind speed, m/s; wq is mean daily wind speed, m/s and

rnd[0,1] represents a random number between 0 and 1.

The disaggregation resulted in a longterm average diurnal pattern that closely matched the
longterm mean daily wind speed. However, a notable variation in hourly wind speed could be
seen in any single day. For instance, the average range of wind speed in a day was 1.7 m/s for
Gonder and 0.7 m/s for Bahir Dar. The diurnal wind speed pattern for a typical day at Gonder
meteorological station is shown in Figure 5-7. Lack of observed hourly wind speed data could

not allow assessment of the performance of the disaggregation.

Wind speed, m/s
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Figure 5-7 Diurnal wind speed pattern on a typical day at Gonder (Based on disaggregated daily data)
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5.2.4 Relative humidity

Disaggregation of relative humidity was done using Equation 5-7. The method requires data
on dew point temperature and hourly ambient air temperature. The daily minimum
temperature is usually taken as a surrogate of dew point temperature or it is estimated from
regression equations developed from observed minimum and maximum daily temperatures
(Hubbard et al., 2003; Andersson-Skold et al., 2008). In this study, use of daily minimum
temperature as dew point temperature was first tested. The disaggregated hourly temperature

series obtained from Section 5.2.2 were taken as the ambient air temperature.

RH(t)= G4 % 100% Equation 5-7
e

a

Where ¢4 and e, are vapor pressures at dew point and ambient air temperatures, respectively.

They can be computed from known temperature values using Equation 5-8.

Equation 5-8

e=0.61 lexp(ﬂj

2373+T

Where, T in °C is dew point temperature for g and ambient air temperature for e,.

The disaggregated relative humidity at 12:00 and 18:00 hours were compared against five
year observations (1999-2003) made at Bahir Dar, Dangila, Debre Tabor and Gonder stations.
The performance of the disaggregation as measured by the Nash-Sutcliffe efficiency was
found to vary from 0.22 for Dangila to 0.31 for Bahir Dar. This poor performance may be
related to the use of minimum temperature as dew point temperature. Although this
assumption is often used, its unsuitability in sites with arid and semi-arid climate
characteristics is also reported (Kimball ef al., 1997). Regression based desegregation models
were also tried but they did not show better performance. The diurnal pattern of relative

humidity is illustrated in Figure 5-8.
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Figure 5-8 Mean diurnal pattern of relative humidity in the Lake Tana basin (Based on disaggregation of daily
average values)

5.2.5 Solar radiation

In DHSVM solar radiation data is involved in the simulation of snow melt and
evapotranspiration processes. Hourly solar radiation data was determined by disaggregating
estimated daily solar radiation. As direct observation of daily solar radiation is limited, it is
often estimated from sunshine hour or temperature measurements (Podesa et al., 2004). One
commonly used simpler method is the Angstrom—Prescott (A-P) equation which requires data
on daily sunshine hour (Liu et al., 2009). As discussed in Chapter 3 the spatial coverage of
sunshine hour data in the study area is highly inadequate. An alternative method that makes
use of temperature data, which has a relatively better spatial and temporal coverage, was
therefore employed. The Hargreaves equation (Equation 5-9) is one such method that enables
estimation of global solar radiation from observed minimum and maximum daily
temperatures. The method has got applications in data sparse regions with reported good
performance levels (Chineke, 2008). The daily solar radiation obtained from the Angstrom—
Prescott and the Hargreaves equations were compared for Bahir Dar station and the results are
indicated in Figure 5-9. The coefficients of the Angstrom—Prescott equation used were a =
0.385 and b = 0.348 as reported in Mulugeta and Drake (1996). It appeared that the two

methods give comparable estimates of daily solar radiation.

R, =0.16R, (Tmax -T,., )0'5 Equation 5-9

Where, Ryq is daily solar radiation in MJ/mz; R. is extraterrestrial solar radiation in MJ/m? and

Tmin and Tpax are minimum and maximum temperatures, respectively, in °C.
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The extraterrestrial solar radiation is a function of latitude, day of the year, solar declination,

and solar constant (Alam et al., 2005).

35

— 0P ethod

Hargreaves

Solar rad, MIfm2

Figure 5-9 Comparison of daily solar radiation values computed by the A-P and Hargreaves equations at Bahir
Dar meteorological station for the period 1992-2005.

The estimated daily solar radiation was then disaggregated into hourly data using Equation 5-
10. This method is proposed by Kaplanis (2006) and is considered to be good in generating

hourly solar radiation values that can closely match the observed data.
R (t)=a +b 008[22—22:) Equation 5-10

Where, Rq(t) is the hourly solar radiation in W/m?; t is the hour at which solar radiation is
computed which varies from 00:00 to 23:00; a; and b; are constants to be determined for each

day.

The two constants, a; and b;, were calculated for each day from two boundary conditions

given by Equations 5-11 and 5-12.

24 . (m
R,=a (tss - l},)*‘ b, x —sin| —= Equation 5-11
T 12

7
O0=a +b COS( 1‘2“ ) Equation 5-12
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The parameters ty; and tg represent, respectively, sunrise and sunset hours of a particular day.
They can be computed as a function of latitude and solar deflection angle. Equation 5-5b
ensures equality of the sum total of hourly solar radiation to the daily global solar radiation.
The second boundary condition ensures that the solar radiation at sunrise and sunset equals
zero. The two equations were solved simultaneously on each day to determine the constants.

The average diurnal solar radiation pattern for Class 1 stations is indicated in Figure 5-10. No

solar radiation data could be obtained to evaluate the performance of the disaggregation.
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Figure 5-10 Average diurnal pattern of solar radiation in the Lake Tana basin (Based on disaggregation)
5.2.6 Downward longwave radiation

The distributed hydrological model requires data on downward longwave radiation to
compute the energy balance. Because, direct measurement of downward longwave radiation is
difficult and expensive, it is often estimated with radiation models that use readily available
air temperature and/or humidity data (Duarte et al., 2006). Clear sky downward longwave

radiation is usually computed by a relation given in Equation 5-13.

R, = & ol Equation 5-13

Where, Ry is clear sky downward longwave radiation, in W/m?; g, is effective clear-sky
atmospheric emissivity; o represents the Stefan—Boltzmann’s constant (5.67 x 10® Wm2K™);

T is air temperature near the ground surface in Kelvin.
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Different methods are available for estimating the atmospheric emissivity as a function of
temperature and/or humidity. Considering the availability of data in the study area, the
simpler Idso and Jackson (1969) method was selected (Equation 5-14). The method uses only
air temperature as input and it has got applications associated with evapotranspiration and soil
moisture dynamics studies (Brandes and Wilcox, 2000; Ward and Trimble, 2004). Moreover,
after having compared the performance of five simpler models under clear and cloudy sky

conditions, Finch and Best (2004) considered this method as the best choice.

g, =1-0261exp|-7.77x10*(273 - T} | Equation 5-14
Where, T is temperature in °K.

In reality the sky is covered by cloud and this increases the amount of longwave radiation
reaching the ground surface. Therefore, the clear sky downward longwave radiation should be
adjusted for cloud cover. A method proposed by Sugita and Brutsaert (1993) was used in this
study. Accordingly, the actual downward longwave radiation in the presence of cloud cover

(Rja) was estimated by Equation 5-15.

R, d=R, 1 (1+0.0496C**) Equation 5-15

Where, C is fractional cloud cover. As this data is not available, a method suggested by
Crawford and Duchon (1999) was used to estimate it from global and extraterrestrial solar
radiation (Equation 5-16). Use of this method in estimating cloud fraction where observed

data is lacking could be found in the literature (Duarte et al., 2006; Kruk et al. 2010).

C=1-— Equation 5-16

Where, R and R, are global and extraterrestrial solar radiations, respectively, in MJm™.

The hourly downward longwave radiation was directly computed using the disaggregated
hourly temperature. The average diurnal downward longwave radiation pattern is presented in

Figure 5-11.
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Figure 5-11 Mean diurnal pattern of downward longwave radiation in the Lake Tana basin (based on
disaggregation)

5.3 Spatialization of meteorological data

DHSVM solves water and energy balance equations at grid scale, which in this study was 90
m by 90 m. As the meteorological forcings were not available at this fine grid scale, they had
to be spatialized by interpolation from the observed values. The model has built-in alternative
interpolation methods that include nearest neighbor, inverse distance and Cressman
techniques. In this study the nearest neighbor method was selected and all rainfall stations that
had influence on any single pixel of a simulation catchment were involved. In case the rainfall
station lacks data on other meteorological elements, time series obtained by interpolation from
neighboring stations was used. Accordingly, the meteorological stations involved in the

interpolation per catchment were determined as shown in Table 5-1.

Table 5-1 Meteorological stations used for simulation catchments in the Lake Tana basin

Gauged catchment Meteorological stations used

Megech Amba-Giorgis, Gonder, Maksegnit, Shebekit

Rib Adis Zemen, Debre Tabor, Enfraz, Wereta, Yifag
Gumara Debre Tabor, Wanzaye, Wereta

Gilgel Abay Adet, Dangila, Engibara, Meshenti, Sekela
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5.4 Creation of spatial datasets

DHSVM requires certain spatial datasets in binary format. These datasets include DEM, maps
of soil and vegetation types, catchment-specific mask file, and soil depth map. In addition to
these maps, stream network files are required. A brief presentation of the procedures followed

in creating these files is presented below.

5.4.1 Soil and land cover maps

The soil and land cover maps obtained from the MoWR have coarse resolutions. This is
evident from the representation of the basin by few soil and land cover types. The great
majority of the basin is designated as cropland with four soil types and this appeared to be
against the natural heterogeneity of the land surface. Soil types were differentiated based on
the FAO-UNESCO classification system as obtained from the MoWR. A suitable
classification system, however, was followed for land cover types. The original classification
gives very general classes like ‘dominantly cultivated’, ‘moderately cultivated’, etc. which
were found to be inconvenient for the parameterization of vegetation properties.
Consequently, a better classification system based on the IGBP-DISCover land cover legend
was adopted. The IGBP-DISCover legend comprises 17 classes and has been used in global-
scale modeling of climate, biogeochemistry and other Earth system processes (FAO, 2000;
ISLSCP, 2009). Data on the percentage distribution of specific land cover types was used in

the classification and the final outcome was a basin-wide land cover map with eleven classes.

5.4.2 Soil depth

As data on soil depth in the study area is highly limited, a method that relates soil depth to
basic topographic attributes was used. Because information on soil depth is usually lacking,
its derivation from digital elevation data is common (Boer et al., 1996; Ziadat, 2010). In this
study soil depth at grid scale was estimated using a regression equation provided with the
DHSVM source code (Westrick, 1999). The formula (Equation 5-17) relates soil depth to
slope, upslope contributing area, and elevation. All these basic topographic attributes could be
derived from the digital elevation data. Maximum values of these topographic attributes at

which they cease to have effect on soil depth are also required. Values of the parameters used
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for the soil depth calculation are presented in Annex C-2. The computed soil depth map is
indicated in Figure 5-12.

Soil depth map at grid scale was created in a GIS environment by writing an appropriate batch
file. A binary map of soil depth was created following the procedure discussed in the next

section.

s Y 4 Y zZ Y
Sd,=Sd,, +(Sd, —Sd, )| a e I U R R Equation 5-17

ma: max ma:

Where Sd; is soil depth at any point; Sdmin and Sdmax are minimum and maximum soil depth
limits, respectively; S;; and Smax are local and maximum slopes, respectively; Aj; and Amax
represent local and maximum upslope areas, respectively; Z;j and Zm.x indicate local and
maximum elevations, respectively; a, b and ¢ are weights; A, B and C are exponents.

Optimum weights and exponents could be determined from field data, if available.

Soil depth, m

LAKE TANA
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80 Km

Figure 5-12 Soil depth map of Lake Tana basin derived from topographic attributes

5.4.3 Binary maps

All maps that were in shapefile format (soil and vegetation types and individual catchment
boundaries) were first converted to raster data format in SAGA’ GIS environment. These
raster grids, the soil depth map and the 90-m digital elevation model were then converted to

ascii data format in the GIS environment. Finally, the required files in binary format were

7 SAGA (System for Automated Geoscientific Analyses) is a free open source GIS software and can be
downloaded from http://www.saga-gis.org/en/index.html
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created from the ascii files using the relevant executable program provided at the DHSVM

official web site®.

5.4.4 Stream files

The stream network files required by the model are three- stream class, stream network map
and stream network. These files are required for routing channel flows to the basin outlet. The
files were created from DEM using MS-DOS executable program developed by Hydrowide, a
company associated with Laboratoire d’Etude des Transferts en Hydrologie et Environnement
(LTHE) and that has been active in developing modeling tools for DHSVM. The DS
algorithm was used to generate the stream networks and it was assumed that they have five
orders with manning roughness coefficient of 0.035-0.060. This value for manning roughness
is in the range recommended for natural streams. Streams were assumed to be created when
the upslope contributing area exceeds 0.25 km?. Typical vegetation and stream class inputs

used for creating the stream files are given in Annex C-3.

5.5 Creation of initial model state files

Noto et al. (2008) stated the importance of defining initial models states carefully to better
simulate watershed responses. The initial state files required by DHSVM include soil
moisture, canopy interception, snow state and channel state. These files were created by the
relevant executable programs downloaded from the official DHSVM web site. No snow fall is
expected in the study area throughout the year. As the model start time was January, which is
a dry month, initial soil moisture close to the field capacity was used. The decrease in soil
moisture occurs very slowly once it reaches its field capacity (Dingman, 1994). The average
catchment temperature at the model starting day was made to represent the soil surface
temperature. As data on soil temperature of the root zone could not be found, it was calculated
by adding 1°C to the ambient air temperature. Use of this assumption could be found in the
Abay Master Plan study report (BCEOM, 1999c¢). Initial water depth of 0.1 m was assumed in
the creation of the channel state file. To improve the initial state files, the model was run for a
year using the state files created by the above procedures. The model state files obtained at the

end of the one-year model run were used as initial state files for the calibration and validation

8 ftp://ftp.hydro.washington.edu/pub/HYDRO/tools/dhsvm/DHSVMPC/executables/
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of the model. Use of a similar approach in creating improved model initial states could be
found in the literature (Refsgaard, 1997). The text file used for creating the initial model state

files is presented in Annex C-4.

5.6 Parameterization of soil and vegetation properties

This section discusses the methods employed in assigning a priori parameter values for the
fifteen soil and thirty-one vegetation properties. Measured parameter values for some soil
hydraulic properties could be obtained from the Abay Master Plan study and other project-
specific studies. These measured values were used directly or with some modifications as a
priori parameter estimates. Moreover, for soil parameters without measured data relevant
literatures and pedotransfer functions were used to estimate parameter values based on
information on soil texture.

A priori saturated lateral hydraulic conductivity values were set by increasing the measured
values to account for the difference between the scale of measurement and the larger scales at
which hydrological processes take place. Saturated lateral hydraulic conductivities found in
soil survey reports represent point scale measurements which usually underestimate the actual
hillslope/watershed-scale values (Brooks ef al., 2004). This is related to difficulties in
measurement setups and preferential flows that may become important at larger scales.
Therefore, hillslope-scale saturated hydraulic conductivities could be one to two orders of
magnitude greater than those obtained from point scale measurements (Brooks et al., 2004).
In assigning a priori saturated hydraulic conductivity, first average values of the reported
point measurements were calculated for each soil type. The computed average values were
then increased by one order of magnitude to obtain the a priori saturated hydraulic
conductivities. The exponential rate of decrease of hydraulic conductivity was estimated from
measured values at 60 cm and 100 cm depth.

As field data on vertical hydraulic conductivity of the soils could not be found, it was
assumed to be one order of magnitude less than the saturated hydraulic conductivity. Brooks
et al. (2004) found the vertical saturated conductivity as having this kind of relation with
lateral conductivity.

Measured values of infiltration capacity and bulk density were directly taken as a priori
estimates. The observed soil bulk densities were further used to estimate porosities of the
various soil types. A priori values of field capacity and permanent wilting point were

determined with the help of pedotransfer functions developed from available measurements
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and the percentage of clay, silt and sand (Annex B-7). The regression coefficients of the
pedotransfer functions were determined from the observed field capacity, permanent wilting
point and soil texture values.

Parameter values of the remaining soil hydraulic properties were fixed from relevant
literatures based on information on soil texture type (Rawls et al., 1982; Sumner, 2000;
Bonan, 2002; Kozak et al., 2005). The sensitivity analysis results presented in the previous
chapter indicated these parameters as having negligible or no influence on the various outputs
of the model. Accordingly, the use of appropriate literature values could be reasonable.

As there are no measured data on the required properties of the different vegetation types of
the study area, the values of the parameters were assigned by referring to relevant literatures
(Vorosmarty et al., 1989; Asner et al., 2003; Xavier and Vettorazzi, 2003; Chen et al., 2005;
Cuo et al., 2006; Thanapakpawin, 2006). For leaf area index and photosynthetically active
radiation parameters, reference to MODIS satellite products was also made. For
cropland/natural vegetation mosaics the average properties of the two land cover types were
used.

The a priori parameter values for the various soils and land covers of the study area are given
in the typical configuration file presented in Annex C-5. The values of the critical soil and

vegetation parameters were further adjusted during the model calibration.

5.7 Creation of configuration file

The configuration file could be considered as an interface between the input datasets and the
model. It is a text file which comprises different sections that describe the methods to be used
by the model, the spatial and temporal extent and resolution for the modeling, locations of the
input meteorological, spatial and initial state files, values of constants and parameters, and the
types and locations of the output files. A typical configuration file for the Rib catchment is

presented in Annex C-5.

5.8 Concluding remarks

The chapter presented various techniques employed in creating the various hydro-
meteorological and spatial input files. Creation of good quality input datasets is a crucial step

in hydrological modeling for reliable and useful outputs. Otherwise, the old adage, Garbage
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in-Garbage out, would be the result. In this study effort has been exerted to create the input
meteorological datasets from the quality-controlled observed time series using commonly
used disaggregation techniques. The use of weather data disaggregation techniques can be
considered as an important strategy to get fine resolution datasets. This is particularly true in
developing countries where most of the existing data are found at coarse resolution and the
potential for making observations at finer scales is low due to resource constraints. It is often
difficult to get some spatial datasets like soil types and properties at the resolution of
distributed hydrological model grids. Data from different sources including field
measurements, use of remotely sensed data and pedotransfer functions could serve as good
strategies in bridging the gap. In this study effort has been exerted to create the required
spatial inputs from datasets obtained from limited observations and relevant literatures. In
view of the highly heterogeneous nature of soil hydraulic properties, the coverage of the
observed data could be considered as inadequate. The few influential soil and vegetation
parameters identified through the sensitivity analysis could be used as calibration parameters

to improve model simulation.
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Chapter 6

6 Application of DHSVM to Selected Catchments in the Lake
Tana Basin

6.1 Introduction

There has been a surge in the development and use of physically-based distributed
hydrological models despite difficulties in their parameterization and calibration (Beven,
2001). Some of the scientific and practical reasons behind this include the need to better
predict erosion and sediment transport in a catchment, and assessment of the hydrological
impacts of changes in land use and catchment characteristics.

This chapter evaluates the performance of the distributed hydrology-soil-vegetation model in
predicting streamflows on selected catchments in the study area. The application of the model
to predict sediment yield was abandoned as it gave results that were unrealistically low when
applied to catchments in the study basin and others. The team that is working actively on
DHSVM at LTHE is trying to sort out and solve the problem. A brief literature review on
calibration and validation of distributed hydrological models is made at the outset. This is
followed by a detailed presentation on the calibration and validation of the model on Megech
and Rib catchments. A modeling period of 14 years at a temporal resolution of 1 hour for
Megech and 3 hours for Rib catchment was used. Reference to the results of the sensitivity
analysis study presented in Chapter 4 was made in the calibration of the model parameters.

The model inputs created using the different methods discussed in Chapter 5 were utilized.

6.2 Calibration and validation of models: Literature review

6.2.1 Calibration

Model calibration is done in order to arrive at parameter values that result in outputs which
are in close agreement with observed quantities. In principle, a fully physically-based
distributed hydrological model would not require calibration as it contains parameters which
can be obtained from measurements (Refsgaard and Storm, 1996; Beven, 2001). The natural

heterogeneity and complexity of catchment characteristics, however, make impractical and
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impossible to take measurements at the scale required by a distributed model (Madsen, 2003;
Ajami et al., 2004). For this reason model calibration is still a requirement for physically
based distributed hydrological models for better simulation results. Unlike empirical and
lumped conceptual models, however, the variation in parameter values is restricted to a
relatively narrow interval during the calibration.

Two broad classes of model calibration can be identified- manual and automatic methods.
Automatic calibration involves use of optimization algorithms that can identify optimum
parameter sets that minimize an objective function. Several applications of this method in
calibrating conceptual and distributed hydrological models could be found in the literature
(Eckhardt and Arnold, 2001; Madsen, 2003; Ajami et al., 2004; Francés et al., 2007). In
manual calibration adjustment to selected parameter values is done systematically until the
difference between the model outputs and observed quantities is within acceptable range. The
manual methods are time consuming and demand a skilled modeler (Francés et al., 2007).
This weakness of manual calibration methods can, however, be overcome by following

systematic approaches like the one proposed by Vieux and Moreda (2003).

6.2.2 Validation

Model validation is the process of demonstrating that a given site-specific model is capable of
making accurate predictions for periods outside the calibration period (Refsgaard, 1997). A
model is said to be validated if its accuracy and predictive capability in the validation period
is proved to be within acceptable limits or errors. KlemeS (1986) recommends four

hierarchical validation schemes for hydrological models.

= Split-sample test: this is the classical method in which the available time series is split into
two parts each of which should be used in turn for calibration and validation and the
results from both arrangements compared. The model is considered acceptable only if the
model validation results are satisfactory in both cases.

= Differential split-sample test: this is similar to the previous but the data is split based on a
criterion that is consistent with the change in the catchment condition. This is done to
ascertain the validity of the model in environmental conditions that are different from
those used during the calibration. For instance, if simulation of the effects of climate
change is the objective, the historical record could be divided into two- one with a higher

average precipitation, and the other with a lower average precipitation. If the model is
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intended to simulate streamflow for a wet climate scenario, then it should be calibrated on
a dry segment of the historical record and validated on a wet segment.

= Proxy-basin test: this should be applied to test the geographic transferability of the model
in a region that is assumed to be hydrologically and climatologically homogeneous. If, for
example, streamflow has to be predicted in ungauged catchment Z, two gauged
catchments X and Y within the region should be selected. The model should be calibrated
on catchment X and validated on catchment Y and vice versa. Only if the two validation
results are acceptable, should one consider the model as having a basic level of credibility
with regard to its ability to simulate the streamflow in catchment Z adequately.

= Proxy-basin differential split-sample test: this is the most involved model validation test
which combines features of the second and third methods. The test requires splitting of the
observed data of each catchment into two sets based on a certain environmental criteria.
Then, one of the datasets of the first catchment is used to calibrate the model and the
contrasting dataset from the second catchment is used to validate the model. This can
help, for instance, to assess whether a rainfall-runoff model calibrated with a dry climate

on basin X can simulate streamflow of basin Y under wet condition, and vice versa.

Refsgaard and Storm (1996) recommend multi-criteria and multi-site calibration/validation
for distributed hydrological models to be consistent with their level of complexity. But this
requires availability of observed data on different variables such as streamflow, groundwater

table, soil moisture, etc.

6.2.3 Model performance measures

For a model to be considered acceptable it is required that model outputs during the
calibration and validation periods are sufficiently close to the observed data. The goodness-of-
fit of model predictions to observations can be measured by methods that range from
subjective graphical techniques to objective statistical criteria (Moriasi et al., 2007). The
graphical method is usually the first step in model evaluation and relies on visual assessment
of the fit between the simulated and observed quantities. Hydrographs and percent exceedance
plots are widely used graphical techniques. The final decision on the performance of a model
is often made based on methods that rely on objective criteria. A range of methods that could
be grouped into three broad classes could be identified: error index, dimensionless and

regression-based methods. Commonly used techniques in the error index category include



124 Chapter 6 Application of DHSVM to selected catchments in the Lake Tana basin

mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), ratio
of mean square error to standard deviation (RSR) and percent bias (PBIAS). The most widely
used dimensionless model performance measure is the Nash-Sutcliffe efficiency (NSE).
Regression-based techniques in common use include the coefficient of determination (R?),
Pearson’s correlation coefficient (r), and slope and y-intercept. A detailed presentation is
made on three of the statistical techniques, i.e., RSR, PBIAS and NSE, which were used in
this study.

6.2.3.1 Ratio of root mean square error to standard deviation (RSR)

The RSR is calculated as the ratio of the root mean square error to the standard deviation of
the observed quantity (Equation 6-1). The RSR assumes values that are greater than or equal
to zero, with 0 indicating a perfect fit. RSR value less than or equal to 0.7 is considered as

appropriate threshold to judge the model performance as satisfactory (Moriasi ef al., 2007).

2

RMSE _ \/’i1 (Qi—obs - Qi—sim)
Stdevabs g(QHbS _éabs )2

RSR = Equation 6-1

Where Qs 1s observed quantity; Q;qm 1s simulated quantity, é mean of the observed

obs

quantity.

6.2.3.2 Percent bias (PBIAS)

The PBIAS measures the average tendency of the simulated data to be larger or smaller than
their observed counterparts (Gupta et al., 1999) and is computed using Equation 6-2. The
optimal value of PBIAS is 0.0 with positive values indicating underestimation by the model
and negative values signifying model overestimation bias. Generally, the performance rating
of hydrological models has been reported as very good if the absolute value of PBIAS is less
than 10% and satisfactory if it is in the range of 10% to 25 % (Moriasi et al., 2007).

n

(Qi—obs - Qi—sim )
PBIAS == - x100% Equation 6-2
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6.2.3.3 Nash-Sutcliffe efficiency (NSE)

The NSE is a normalized measure that compares the mean square error generated by a
particular model simulation to the variance of the observed data (Nash and Sutcliffe, 1970). It
is computed by Equation 6-3 and assumes values in the range —inf to 1.0. NSE value of 1.0
indicates perfect match of the model and NSE value of 0.0 shows that the model performs
only as good as the mean of the observed data, and NSE less than 0.0 indicates the
unsuitability of the model. NSE values between 0.0 and 1.0 are, therefore, considered as
acceptable levels of model performance. Moriasi et al. (2007) sets a minimum threshold of
0.5 to judge the model performance as satisfactory. They also give references that have rated

hydrological model performances as satisfactory with NSE values > 0.36.

2
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.M= I

NSE =1- Equation 6-3
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6.3 Selected catchments

The selection of catchments for the model evaluation purpose was based on the following

criteria:

= Availability of at least three meteorological stations within and adjacent to the
catchment, with at least one of them being Class 1 station.

» Availability of observed daily runoff data for the period 1992-2005 with less than 10%
missing data.

= Spatial representativeness of the catchment in terms of geographic location and soil

and vegetation types.

Four catchments were selected based on the above criteria. The location of the catchments and
their description with respect to the criteria are presented in Figure 6-1 and Table 6-1. The
distribution of the soil types for Megech and Rib catchments is also given in Figure 6-2. Land

cover is mainly cropland.
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Figure 6-1 Catchments on which DHSVM was evaluated

Table 6-1 Characteristics of the simulation catchments

Catchment Area No. of nearby % of missing ~ Major soil Major
km® meteorological  daily runoff type(s)t vegetation
stations data type(s) tt
Megech 514 4 0.3 LPe, NTh LC1
Rib 1448 5 0.9 LPe,LVc,FLe LC1, LC7
Gumara 1279 3 3.6 LVh LC1, LC2
Gilgel Abay 1641 5 0.4 LVh, ALh LCl1

"LPe- Eutric Leptosols; NTh- Haplic Nitosols; LVc-Chromic Luvisols; LVh-Haplic Luvisols; FLe- Eutric
Fluvisols; ALh- Haplic Alisols
ttLC1- cropland; LC2- cropland/grassland mosaic; LC7- shrubland

The model was run for the period 1992-2005 at a temporal resolution of 1 hour for the smaller
catchments and 3 hours for the larger catchments. The period was divided into three sub-
periods as “warming-up period”, calibration period and validation period. This kind of
simulation periods classification is common in hydrological model applications (Ahl et al.,
2008). The first two years period was used as “warming-up period” and is meant for
minimizing the effects of incorrect initial states. The period 1994-2000 was used for

calibrating the model parameters and the remaining years were used for validation.
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Figure 6-2 Distribution of soil types in (a) Megech and (b) Rib catchments

6.4 Calibration and validation of the model

The model was calibrated against observed daily streamflow records and monthly runoff
volumes. The simulated hourly discharges were used to calculate the daily average simulated
streamflow. Lack of observed data on other state variables like watertable, soil moisture, etc.
did not allow multi-objective calibration. Calibration of DHSVM was limited to sensitive
parameters of the dominant soil and vegetation types of the selected catchments.

A systematic manual calibration procedure similar to that recommended by Vieux and

Moreda (2003) was followed:

= Assign a priori parameter values based on field data and relevant literatures

= Make sensitivity study of the streamflow hydrograph to the different parameters and
identify key calibration parameters based on the results

= Run the model using a priori parameter values

= Evaluate of the level of agreement between the model outputs and observed discharge

= In case of poor model performance, change the values of the calibration parameters and
run the model repeatedly until better agreements between simulated and observed

discharges and runoff volumes are obtained.

The model was assigned with a priori soil and vegetation parameter values obtained from
field measurements and relevant literatures as discussed in Chapter 5. Sensitivity of

streamflow hydrograph to soil and vegetation parameters of the model was studied using a



128 Chapter 6 Application of DHSVM to selected catchments in the Lake Tana basin

small virtual catchment in Chapter 4. In light of the dominant soil and vegetation types of the
selected catchments and the sensitivity analysis results, five key calibration parameters were
identified: porosity, lateral hydraulic conductivity and its rate of exponential decrease, rooting
depth and soil depth. The model was run repeatedly by changing the values of these
calibration parameters until a relatively good agreement between simulated and observed
hydrographs was obtained.

The performance of the calibrated model was then validated using the standard split-sample
technique. Some adjustments to the manning roughness coefficients of streams were made in

case of clear timing mismatch between the simulated and observed hydrographs.

6.5 Results and discussion

The performance of DHSVM during the calibration and validation periods is presented for
only Megech and Rib catchments. The model goodness-of-fit was very poor for Gumara and
Gilgel Abay catchments with consistent underestimation of streamflows. These two
catchments are relatively larger and wetter with higher baseflow contributions. The dominant
soil and land cover types are similar to that of Megech and Rib catchments. Different values
of the calibration parameters that favor high flows were tried, but the simulated hydrograph
remained low in each case. Further investigation is required to better explain the issue. For
Megech and Rib catchments, the performance of the model was evaluated at daily and
monthly time scales. Three statistical performance measures were used to evaluate the level of
agreement between the model outputs and observed discharges. Moreover, graphical plots

were used to visualize the agreement between the simulated and observed hydrographs.

6.5.1 Performance of the model at daily time step

The model was calibrated manually by changing porosity (0), lateral saturated hydraulic
conductivity (Ks) and its rate of exponential decrease (A), and soil and rooting depths. For
Megech catchment, a relatively better performance was obtained when the upper and lower
rooting depths of the dominant land cover type, i.e., cropland were 0.2 m each with a total
depth of 1.2 m. The a priori upper and lower rooting depths and total soil depth were,
respectively, 0.105 m, 0.28 m and 0.70 m. The following calibrated parameter values were
used for the dominant soil types with the a priori values indicated in brackets, if different:

Eutric Leptosols- 6 = 0.59 (0.53), Ks = 2.0 x 10* m/s (8.4 x 107 m/s), A = 0.6 (1.1); Haplic
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Nitosols- 8 = 0.53, K = 1.7 x 10 m/s (7.7 x 107 m/s), and A = 1.10. For Rib catchment a
relatively better result was obtained when the upper and lower rooting depths of cropland
were 0.06 m and 0.160 m, respectively with a total depth of 0.40 m. The a priori depths were
the same as those used for Megech catchment. The parameter values used for the three
dominant soil types were: Eutric Leptosols- same values used for Megech; Chromic Luvisols-
0=0.53,Ks=1.0x 10° m/s (6.38 x 10° m/s), A = 0.3(1.1); Eutric Fluvisols- 6 = 0.5, K, = 2.0
x 10 m/s (4.55 x 10° m/s), L = 0.2 (1.1).

The performance of the model at daily time step in each year is indicated in Table 6-2 and
Figure 6-3 for Megech and Table 6-3 and Figure 6-4 for Rib catchment. The level of
agreement between the observed and simulated discharges should be evaluated in light of the
meteorological and spatial input datasets, the streamflow data used for calibration/validation
purposes, and the size of the catchments. The meteorological forcings were created by
disaggregating observed/estimated daily average values and parts of the catchments are not
adequately covered by the existing observation stations. The soil and vegetation maps have
coarse resolution with one or two soil and vegetation types covering most of the catchments.
For instance, Megech was represented mainly by Leptosols (81%) and cropland (97%). The
observed streamflow data could not truly represent the daily average value as stage
measurements are taken once or twice a day. The simulated daily average discharge was
calculated, however, from the hourly simulation results. The catchments are large in size

making spatial variations of rainfall and soil characteristics greater.

Table 6-2 DHSVM performance at daily time step on Megech catchment

Calibration Validation
Year NSE RSR PBIAS Year NSE RSR PBIAS
1994 0.59 0.64 -18.90 2001 0.47 0.73 17.65
1995 0.55 0.67 -0.46 2002 0.30 0.83 -17.80
1996 0.43 0.76 -10.30 2003 0.38 0.79 25.84
1997 0.54 0.68 -18.60 2004 0.27 0.86 21.66
1998 0.44 0.75 -5.13 2005 0.21 0.89 45.24
1999 0.32 0.82 25.83
2000 0.39 0.78 30.40
Overall 0.46 0.73 2.80 Overall 0.35 0.81 22.26
Overall 0.25 0.87 10.11

In light of these facts and model performance ratings discussed in Section 6.2.3, the goodness-
of-fit for Megech catchment could be considered as satisfactory during the calibration period

and poor in the validation period. In some years the three model performance measures were
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all within the recommended acceptable limits. There was a general underestimation of
streamflow during both calibration and validation periods. In the period 1994-1998 an
overestimation of the model could be observed and this is mainly related to dry period flows.
In the validation period, however, the model resulted in lower dry period flows. The model
could not capture the peak discharges during the wet season. The observed peaks may be

instantaneous and could not therefore be representative of daily average values.
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Figure 6-3 Measured and simulated hydrographs for Megech catchment

The overall performance of the model in Rib catchment appeared to be satisfactory during
both the calibration and validation periods with NSE value greater than 0.6 in some years. A
significant underestimation could, however, be seen in most of the years. This could be
associated to sedimentation and overbank flow upstream of the gauging station which is
reported to be a common problem (SMEC, 2008a). This can result in unrealistically high

observed streamflows, particularly in the days following flooding. As evidence to this, the
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streamflow data analysis in Chapter 3 indicated constant and high flows for successive days.
The considerable underestimation by the model may not therefore be a real one. But if the
observed flow is accepted as real one, then the underestimation may be caused by poor
representation of the areal rainfall pattern. In Chapter 3 it was indicated that notable area in
the middle part of Rib did not fulfill the recommended minimum network density of WMO.
To get an insight into the effect of rainfall pattern, the model was run by taking the
meteorological forcings of Class 1 station (Debre Tabor) alone. An improvement in the
overall goodness-of-fit was noted in both the calibration and validation periods (Table 6-4 and
Figure 6-4c¢). This suggests the importance of having good quality rainfall data with adequate

spatial coverage for better model predictions.

Table 6-3 DHSVM performance at daily time step on Rib catchment when all nearby meteorological stations

were used
Calibration Validation

Year NSE RSR PBIAS Year NSE RSR PBIAS
1994 0.57 0.66 41.01 2001 0.16 0.91 70.23
1995 0.46 0.74 48.68 2002 0.48 0.72 -24.9
1996 0.24 0.87 43.54 2003 0.69 0.56 30.71
1997 0.14 0.93 60.89 2004 0.71 0.54 15.23
1998 0.33 0.82 64.61 2005 0.63 0.61 2491
1999 0.61 0.63 46.93
2000 0.67 0.57 2.26

Overall 0.47 0.73 42.58 Overall 0.52 0.69 28.30

Table 6-4 DHSVM performance at daily time step on Rib catchment when Debre Tabor meteorological
station was used

Calibration Validation
Year NSE RSR PBIAS Year NSE RSR PBIAS
1994 0.75 0.50 9.53 2001 0.77 0.48 13.91
1995 0.75 0.50 16.55 2002 0.62 0.62 7.76
1996 0.51 0.70 33.75 2003 0.64 0.60 29.20
1997 -0.23 1.11 -53.24 2004 0.62 0.62 18.5
1998 0.64 0.60 6.64 2005 0.69 0.56 7.93
1999 0.62 0.62 24.35
2000 0.67 0.58 4.03
Overall 0.59 0.64 8.18 Overall 0.69 0.56 15.89
Overall 0.25 0.86 56.39
(a priori)
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Figure 6-4 Measured and simulated hydrographs for Rib catchment (a) precipitation (b) when all nearby
meteorological stations were used (c) when only Debre Tabor meteorological station was used



Chapter 6 Application of DHSVM to selected catchments in the Lake Tana basin 133

6.5.2 Performance of the model at monthly time step

This evaluation was done to see how well the model could reproduce the runoff volume at a
monthly time scale. The results are shown in Table 6-5 and Figure 6-5. The overall goodness-
of-fit appeared to be relatively good, particularly for Megech catchment with all performance
measures being well within the recommended limits. The goodness-of-it in the dry period,
however, was weak, especially during the validation period where the model predicted
consistently lower flows. For Rib catchment, a considerable difference between the observed
and simulated runoff volumes could be seen in the wet and subsequent dry months when all
nearby meteorological stations were used. A better match could, however, be obtained when

the model prediction was based on meteorological datasets of Debre Tabor station.

Table 6-5 DHSVM performance at monthly time step on Megech and Rib catchments

Calibration Validation

NSE RSR PBIAS | NSE RSR PBIAS

Megech
Overall 0.85 0.39 1.75 0.81 043 2471

Wet 0.73 052  0.63 0.67 057 14.01

Dry 051 0.7 7.22 -0.49 122 6243

Rib (using all surrounding meteo stations)
Overall 0.67 0.57 38.56 0.66 0.58 28.32

Wet 0.27 0.86 34.03 0.11 094 2572

Dry 045 0.74 64.71 041 0.77 5232

Rib (using only Debre Tabor meteo station)
Overall 085 039 -0.55 089 033 1592

Wet 0.73 052 410 0.73 052 14.89

Dry 023 0.88 -2740 | 041 0.77 2540
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Figure 6-5 Measured and simulated monthly discharges (a) Megch (b) Rib using all nearby meteorological
stations (c) Rib using only Debre Tabor meteorological station
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6.6 Conclusion

The aim of this chapter was to assess the applicability of the distributed hydrological model,
DHSVM, on selected catchments in the study area. The assessment indicated a relatively
better goodness-of-fit on Megech and Rib catchments and it was very poor in Gilgel Abay and
Gumara catchments. In view of the coarse temporal and spatial resolutions of the observed
datasets used to calibrate and validate the model, the performance of the model can be judged
satisfactory. Testing the model on other catchments that have hydro-meteorological and
spatial datasets with better quality and spatial coverage would be important. It would also be
useful to test the model’s capability in predicting other state variables like groundwater table,
soil moisture content, etc if data is available. DHSVM is a physically-based model that
simulates various hydrological processes, soil erosion and sediment transport with reported
good performances on experimental and mesoscale catchments. It would therefore be helpful
to consider this model as an important tool in future water, and soil erosion and sediment

transport related researches.
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Chapter 7

7 Water and Suspended Sediment Balances of Lake Tana

7.1 Introduction

Worldwide, lakes represent the major reserves of readily available freshwater resources
(WWAP, 2009). They provide human beings with multitude of goods and services.
Unsustainable land development activities and water uses, however, have endangered the
quality and quantity of lake water resources. For instance, the area of Lake Chad has shrunk
by 95% from a surface area of 22902 km? in 1963 to 304 km® in 2001 due to both climatic
and human factors (UNEP, 2006). In Ethiopia, the storage capacity of Lake Alemaya is
reported to have shown a rapid decrease due to erosion and sedimentation (Muleta et al.,
2006). Major rift valley lakes of Ethiopia are also threatened by unsustainable land and water
resources management (Legesse and Tenalem, 2006). The management of lakes and
reservoirs is difficult due to their unique features that include their role as integrating sink of
pollutants, longer water residence times and complex response dynamics (Jorgensen and Rast,
2007).

Water and sediment balance of lakes provide basic information that contribute to sustainable
management of these important resources. Previous studies on water balance of Lake Tana
indicate different results which could be due to the difference in the data period and methods
used to estimate the various components. Summary of the major water balance components
obtained in previous studies is presented in Table 7-1. It could be seen that the difference in
some of the water balance components (e.g. inflow from rivers) is large. Meaningful studies
on suspended sediment balance of the lake could not be found.

The purposes of this study are twofold (i) to make an update to the water balance of Lake
Tana based on representative hydro-meteorological datasets and (ii) to provide an estimate of
its suspended sediment balance which could be useful for planning level applications. The
lake water balance modeling comprised estimation of the various components of the water
balance based on quality controlled hydro-meteorological datasets and relevant computational
methods. The specific methods used for each of the water balance components are presented
in the respective sections. The estimate for longterm suspended sediment balance of the lake

involved use of rating curves and a regional suspended sediment yield model.
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Table 7-1 Reported magnitudes of major Lake Tana water balance components

Water balance componentt Kebede et al.,2006 SMEC, 2008a Wale et al., 2009
Rainfall, mm 1451 1264 1220
River inflow, mm 1162 1650 2160
River outflow, mm 1113 1240 1520
Evaporation, mm 1478 1675 1690

TSome of the values were directly reported in unit of mm. For those reported in volumetric unit a conversion to
unit of mm was made by dividing it by the lake area.

7.2 Lake water balance model

A lake water balance model comprises three major components- inflow, outflow and storage.
Mathematically, it is defined by a continuity equation that establishes mass balance among the
various components for any temporal resolution (See Figure 7-1 and Equation 7-1). Inflow
may comprise on-lake precipitation, surface inflow from contributing catchments and influx
from aquifer systems. Outflow may consist of river discharge, water withdrawal for various
purposes, evaporation and leakage through the bottom of the lake. The storage component at

any time can be positive or negative depending on the relative magnitudes of inflows and

Is Pl TE Os
£ 5 —>

outflows.

Figure 7-1 Components of Lake water balance

I.+1,+P-E-0-0,-L —-AS=0 Equation 7-1

Where, I is surface inflow; I, is lateral groundwater inflow; P represents on-lake
precipitation; E is evaporation from the lake surface; O is surface outflow; O, is lateral
groundwater outflow; L, indicates vertical leakage through the bottom of the lake; AS is

change in water storage.
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The relative magnitudes of the water balance components vary from season to season and in
most cases the groundwater component is small compared to the other inflow and outflow
components (Ferguson and Znamensky, 1981). In reality, the water balance equation defined
by Equation 7-1 is not satisfied due to uncertainties associated with measurements and
estimates of the different components. The equation is, therefore, usually modified by

including a closure term (Equation 7-2).

I +1,+P-E-0-0,—-L -AS+6=0 Equation 7-2

Where, 6 is the error of closure. It can be positive or negative depending on the relative
magnitudes of total inflow, outflow and storage. The relative discrepancy can be calculated by
dividing the absolute value of the closure error by the maximum of the total inflow or

outflow.

7.3 Computation of the water balance components of Lake Tana

Lake Tana is an open lake with several feeder rivers and a single natural outflow to the Abay
River. The major water balance components of the lake and their relative magnitudes are
presented in this section. They include on-lake precipitation, river inflow from gauged and
ungauged catchments, evaporation, river outflow and interaction with the groundwater

system.

7.3.1 Rainfall

On-lake precipitation represents a major water balance component as the lake has a large
surface area and is located in a region where the annual rainfall exceeds 1000 mm. Accurate
estimation of areal precipitation on the lake is, therefore, important. Previous water balance
studies applied different methods that include use of a nearby point rainfall data (Kebede et
al., 2006), Thiessen polygon and inverse distance weighing (SMEC, 2008a; Wale et al.,
2009). The estimated on-lake precipitation varied from 1220 mm to 1450 mm.

In this study three spatial rainfall interpolation methods were compared: Thiessen, inverse
distance square, and multiquadric methods. A brief presentation on different spatial
interpolation methods was made in Chapter 3. More information on the methods could be
found in Dingman (1994). Quality-controlled rainfall data of stations that have relatively low

data gaps and are within a buffer distance of 0.5° from shoreline were included in the
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calculation (Figure 7-2). The mean annual areal rainfall on Lake Tana as estimated by the

different methods is presented in Table 7-2.
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Figure 7-2 Stations used for spatial rainfall interpolation. Stations in red were used for the Thiessen method.
Both stations in red and green were used for the other methods.

Table 7-2 Estimated mean annual on-lake precipitation for Lake Tana (1992-2005)

Method Mean annual rainfall, mm
Thiessen 1250
Inverse distance square 1222
Multiquadric 1225

The multiquadric and inverse distance square interpolation methods gave comparable annual
areal rainfall estimates. The mean annual areal rainfall on Lake Tana was taken to be 1225
mm, considering the positive comments on the superiority of kriging or multiquadric
interpolation methods (Tabios and Salas, 1985). The corresponding mean monthly areal
rainfall pattern is also indicated in Table 7-3. The estimated mean annual rainfall is in close
agreement to two of the previous studies despite the difference in the periods and stations
used in the estimation. The difference is, however, notable with that reported by Kebede et
al. (2006) who used the rainfall records of Bahir Dar station alone and this appeared to be an
overestimation. Observed mean annual rainfalls at stations close to the lake indicated low
values (<1000 mm) in the western part and high values (>1400 mm) in the southern part of

the lake.

Table 7-3 Mean monthly on-lake precipitation on Lake Tana (1992-2005)

Month Annual Jan Feb Mar Apr May Jun Jul Aug Sep  Oct Nov Dec

Rainfall, mm 1225 08 0.7 115 192 651 1934 3440 3379 150.7 90.8 100 1.3
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7.3.2 Inflow from contributing catchments

Lake Tana is surrounded by different contributing catchments that have a total surface area of
12108 km?, some of them being gauged in their upstream parts. Two methods were used to
estimate the contributions of these catchments depending on streamflow data availability.
Direct utilization of historical streamflow data was made to those catchments for which data
could be obtained. For some of the gauged catchments data could not be obtained and a large
part of the basin is ungauged. The contribution of these catchments was estimated by using a
conceptual hydrologic model. The model was also used to fill data gaps in the gauged

catchments. Figure 7-3 shows areas to which these methods were applied.
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Figure 7-3 Methods used to estimate inflow contributions

7.3.2.1 Inflow from the major gauged catchments

The monthly runoff time series of each gauged station was created from the observed daily
data for the period 1992-2005. The mean monthly and annual contributions of the major

gauged catchments are presented in Table 7-4.
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Table 7-4 Contributions of major gauged catchments to surface inflow into Lake Tana (1992-2005)

Catchment Annual Mean monthly contribution (x 10° m®)
(x10°m¥ J F M A M J J A S 0 N D
Garno 30 0.8 1.0 08 0.8 1.3 5.2 11.2 4.0 1.6 1.3 1.0 1.1
Gilgel Abay 1700 9.6 5.6 54 57 206 1369 4039 4963 3504 179.7 57.8 28.1
Gumara 1126 12.1 6.3 62 52 7.5 46.1 2443 4109 2322 95.9 373 21.7
Gumero 47 0.5 0.5 0.5 05 0.8 3.9 10.7 19.8 5.7 1.9 1.0 0.8
Koga 167 43 2.9 27 2.6 3.5 9.6 31.9 43.7 27.2 22.5 9.8 6.2
Megech 212 2.9 2.4 29 3.1 43 12.7 42.1 88.7 30.3 12.1 6.2 4.6
Rib 473 29 1.2 1.3 2.1 4.6 18.7 119.7 189.4 86.3 273 13.5 59
Total, Mm® 3755 331 199 198 20 426 2331 863.8 1253 733.7 340.7 126.6 68.4
Total, mmt 1247 11 6.6 6.6 6.6 14.1 774 286.8 416 2436 113.1 42 22.7

tThe total in mm was obtained by dividing the total in Mm® by the lake’s average surface area, i.e., 3012 km™.

7.3.2.2 Inflow from other catchments

Notable area in the Lake Tana basin is ungauged and data from few gauged catchments could
not be obtained. Hydrological models are often used to estimate streamflows that are
unavailable. Physically-based distributed hydrological models are considered to be useful for
predicting runoff in ungauged catchments. However, as the performance of DHSVM was
found to be unsatisfactory in some of the major gauged catchments, its use for estimating
runoff from ungauged catchments was not considered.

Consequently, a lumped conceptual water balance model was used to estimate the
contributions of catchments that are lacking streamflow data. The model was first calibrated
and validated against runoff data obtained from gauged catchments. Then, a regionalization
technique was used to establish values of the model parameters to each catchment with

unavailable data.

7.3.2.2.1 The model

A parsimonious and dynamic water balance model developed based on Budyko framework
was used. The original Budyko method takes into account only the dominant factors that
control the longterm water balance, i.e., precipitation and evapotranspiration (Budyko, 1958).
Zhang et al. (2008) have extended the original version of the model by including more
features that simulate soil moisture dynamics and baseflow. These additional features of the
model enable simulation at shorter time scales (e.g. daily and monthly time steps). Three key
strengths of the model are noted by the developers- consistency in predictions across different
time scales, parsimoniousness and robustness. Based on promising simulation results
obtained in a number of catchments, the model is considered to be a good candidate for
predicting streamflow in ungauged catchments (Zhang et al., 2008). The various model

equations and the calculation steps are indicated in Figure 7-4.
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P(r) Precipitation

)
! !

Catchmentretention X(r) = ET(r)+ AS(1)+ R(@) @ 0.(5) =P(r)— X () Directrunoff

X0

X(H=PQ@)-

(1) x0-ro d o J
X (O=E () +S5 . —S-1) Maximum retention

@ W) = X(6)+S(—1) Water availability

o ey A BO S ) Evapotranspirati tunt
@}(x)_ﬁ'(g) Fi ) GLJ vapotranspiration opportunity

(1) 00=00+0.0

@ ETiH=W5- Fi H’((g Evapotranspiration Total runoff
(5)s0=re-ET) Soil moisture
() RO=I0-T0 Recharge
@ GO =(1—-DGE—D+RH Groundwater storage

0.()=d-Gt—1) Baseflow

- The index t represents the current time step and t-1 the previous time step
- Inputs: rainfall P(t), potential evapotranspiration, Eo(t)

- Model parameters: o, O, d and maximum soil storage capacity (Sqa)

- Initial conditions: Soil moisture, ${t=0) and groundwater storage G(t=0)

- AS(#) is change in soil moisture: 5(t})-5(t-1)

- X(t), ¥(t), and ET(t) are calculated using Fu's function Flu, o) defined as:

1 1-a
F(uza):l+u—[l+ug:|

X.@)
P(z)

Where uis a variable and o is model parameter. For instance, for X(t), u= and o = o1

Figure 7-4 The model Equations (Developed based on the model description given in Zhang et al.,2008)

7.3.2.2.2 Creation of inputs for the model

The water balance model was run at a monthly time step using rainfall and potential
evapotranspiration as meteorological forcings. For each catchment, first the daily average
rainfall and potential evapotranspiration series were computed using the Thiessen polygon
and then aggregated to a monthly time step. The daily potential evapotranspiration was

computed by the Penman method.
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7.3.2.2.3 Calibration and validation of the model

The model was first calibrated and validated against observed monthly streamflow series of
seven gauged catchments. The data for the period 1993-1997 and 1998-2002 were used,
respectively, for calibration and validation purposes. Three measures were used to evaluate
the performance of the model- NSE, RSR and PBIAS (refer to Chapter 6 for their definition).
The quantitative thresholds indicated in Table 7-5 were used to decide the performance rating

of the model.

Table 7-5 Recommended model performance ratings for monthly streamflow (Moriasi et al., 2007)

Performance rating NSE RSR PBIAS (%)
Very good 0.75-1.00 0.00-0.50 <10
Good 0.65-0.75 0.50-0.60 15-30
Satisfactory 0.50 - 0.65 0.60 —0.70 30-55
Unsatisfactory <0.50 >0.70 > 55

TPBIAS can assume negative and positive values; the thresholds indicated are absolute values.

For each gauged catchment, the optimum values of the four parameters of the model (a.;, a,, d
and Syax) were determined by the Microsoft Office Excel Solver tool which uses the
generalized reduced gradient nonlinear optimization code. The optimum values of the model
parameters are presented in Table 7-6. The calibrated model was then tested in the validation
period. The results of calibration and validation are indicated in Figure 7-5 and Table 7-7.
With reference to the recommended model performance ratings (Table 7-5), the level of
performance in five of the catchments could be considered as good or very good. The

performance of the model was poor in Garno and Gumero catchments.

Table 7-6 Optimum model parameter values for the gauged catchments

Catchment o ol d Siax

Gilgel Abay 0.69 0.51 0.90 185.56
Gumara 0.61 0.40 0.90 251.55
Megech 0.47 0.80 0.50 406.80
Rib 0.53 0.89 0.50 600.00
Koga 0.51 0.59 0.61 596.49
Gumero 043 0.66 0.90 600.00
Garno 0.43 0.90 0.50 600.00

Table 7-7 Goodness-of-fit of the conceptual model during the calibration and validation periods

Catchment Calibration (1993-1997) Validation (1998-2002)

NSE RSR PBIAS NSE RSR PBIAS
Gilgel Abay 091 0.3 2.76 091 0.29 -16.3
Gumara 0.88 0.35 0.44 0.71 0.53 -32.31
Megech 0.71 0.53 -3.19 0.85 0.38 21.98
Rib 0.8 0.44 -0.61 0.84 0.4 3.86
Koga 0.73 0.52 3.27 0.82 0.42 0.35
Gumero 0.5 0.7 11.16 0.7 0.55 12.32
Garno 0.39 0.77 13.35 0.3 0.83 26.28
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Figure 7-5 Calibration and validation results of the conceptual rainfall-runoff model (a) Gilgel Abay (b)

Gumara (c) Megech (d) Rib. Period of calibration is 1993-1997 and that of validation is 1998-2002
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7.3.2.2.4 Parameter regionalization

In order to apply the model in the ungauged parts of the basin, appropriate parameter values
should first be established. Model parameters for ungauged catchments are often extrapolated
from those obtained at gauged catchments using regionalization techniques. Parameter
regionalization is commonly accomplished by using regression equations that relate model
parameters to physiographic attributes of a catchment (Parajka et al., 2005). Direct transfer of
calibrated parameters from nearby gauged catchments is also possible. Kim and Kaluarachchi
(2008) listed specific parameter regionalization techniques used in different studies. In this
study a regression equation that relates the model parameters to area, slope and mean annual
rainfall of a catchment was used for the regionalization (Equation 7-3). Slope was calculated
as the mean of slopes of all grid cells found in a particular catchment. The calibrated model
parameters of the five catchments that showed good performance were used in the

regionalization.

Yi=p'Xx" Equation 7-3

Where Y* is matrix of the k™ parameter, and A" is the corresponding matrix of the regression

coefficients; X* is matrix of the catchment characteristics.
The analysis resulted in regression coefficients shown in Table 7-8. These coefficients,
together with the three watershed characteristics, have been used to estimate the model

parameters of each catchment without streamflow data.

Table 7-8 Regression coefficients used to estimate the regional model parameters

Model parameter, pt Regression coefficients
Bo B B2 By R’
p=P,+ B x Area+ B,xSlope + f,x ARF oy |  0.8505 00002 - - 079
o -3.2451 - 0.1089 0.0022 0.66
Snax -822.15 - 31.734 0.8692 0.53
d 3.567 0.0007 - - 0.65

tCatchment area is in kmz; mean watershed slope is in %; ARF is mean annual catchment rainfall in mm
tp stands for any of the model parameters (o1, 0, Spax, d)

As the number of the gauged catchments was limited, they were all used in the parameter
regionalization and thus it was not possible to use a proxy basin test for validating the

regional model. Instead, the validity of the regression equations was tested by comparing
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runoff computed using parameters obtained from the regional equation against observed
streamflows for the period 2003-2005 in each of the gauged catchments. Wale et al.(2009)
used the same approach in validating the regional equation for the HBV model parameters.
The validation result is shown in Table 7-9. By and large, the performance of the regional
model parameter equations appeared to be good. The poor performance in the Rib catchment
could be related to the unique feature of this catchment as mentioned in Chapter 3 where the

observed runoff appeared to be low in comparison to its large area and rainfall.

Table 7-9 Validation results of the regional model parameters equations (2003-2005)

Catchment Performance measures

NSE RSR PBIAS
Gilgel Abay 0.96 0.2 -1.67
Gumara 0.91 0.3 6.72
Megech 0.72 0.52 42.46
Rib 0.25 0.85 -71.08
Koga 0.77 0.47 -14.71

After having established values of the model parameters using the regional equation, runoff
contribution of each ungauged catchment and gauged area for which data could not be

accessed were estimated. Summary of the simulation results is presented in Table 7-10.

Table 7-10 Runoff contribution of catchments without streamflow data (1992-2005)

Catchment (f?(?ﬁun?!) — Mei/r; montJth contJributionA(x 10° rr;’) . —
Dirma 149.5 05 02 03 1 4 21.5 44.7 46.6 156 112 26 13
Gabi Kura 107.4 08 05 03 1 32 15 26.2 28.7 17.1 9.6 34 1.6
Garnot 81.4 03 0 03 05 13 8.6 27.3 32.1 6.7 3.2 0.8 0.3
Gelda 243.7 35 1.2 05 03 1.6 11.9 52.8 68.8 45.1 31.1 181 8.8

Gilgel Abayt 2309 1.1 0 03

—_

29.2 2385 7473 7382 3445 157 446 7

Gumaraf 176.6 24 1 05 03 1.1 8.6 39.1 514 308 22 13 64
Gumerot 89.4 0 0 03 08 24 9.8 31.1 35.6 6.2 24 05 03
Megecht 78 03 0 03 05 21 114 241 24.6 7.3 5.6 1.3 05
Ribt 202.4 05 02 03 05 16 132 659 85.7 233 8.8 1.6 0.8
West Tana 148.1 03 02 03 13 43 181 45 47.7 189 102 13 05
Total, Mm? 3585 97 33 34 72 508 3566 11035 1159.4 5155 2611 872 275
Total, mm 1191 33 1 1 23 169 1185 3665 3848 1713 867 289 93

TRepresent areas other than the gauged parts indicated in Figure 7-3
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7.3.3 Evaporation

Tropical regions are characterized by high energy fluxes, making evaporation to be a
dominant process. Open water evaporation should, therefore, be considered as an important
water balance component in the planning and management of surface water resources. As
supply of water is not a limiting factor, evaporation from lakes is controlled by climatic
factors and occurs at potential rate (Dingman, 1994; Ward and Trimble, 2004). Evaporation
from lakes is often estimated using indirect methods due to the difficulties involved in making
direct observations (WMO, 1994). Different approaches are available to estimate evaporation
indirectly which include water budget, energy balance, mass transfer and combined
approaches. The combined approach considers both energy balance and mass transfer
processes. The Penman approach is the most widely used combined method and it is
considered to be theoretically sound (Dingman, 1994).

In this study the Penman approach (Equation 7-4), was used to estimate evaporation from
Lake Tana. Use of this method in estimating evaporation from lakes that are located in
Ethiopia and the wider East African region could be found in the literature (Yin and

Nicholson, 1998; Vallet-Coulomb et al., 2001; Kebede et al., 2006).

A .&4_ A 6.43(f,)(e —e,)
A+y A A+y A

Equation 7-4

Where E is open water (potential) evaporation in mm/d; A is the slope of saturation vapour
pressure curve (kPa/°C); vy is psychrometric coefficient (kPa/°C); R, is the net radiation at the
surface (MJ/m?/d); A is latent heat of vaporization (MJ/kg); f, is wind function; e; and e, are

saturation and actual vapour pressures, respectively in kPa.

This equation does not include other energy balance terms such as heat exchange with the
ground, water advected energy or change in heat storage. But, its application for monthly or
daily evaporation estimations is considered to be acceptable (Shuttleworth, 1993; Allen et
al.,1998). The different methods used to compute the various terms of the Penman equation
are presented in Annex D. Brief notes on the methods used to determine the wind function,

temperature and albedo, however, are presented below.
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Wind function

The wind function, f,, is calculated by the empirical relation given in Equation 7-5.

f.=a,+bu Equation 7-5

Where u is wind speed at 2 m height in m/s; a, and b, are wind function coefficients.

In the original Penman formulation a, is taken as 1.0 and b, as 0.536. The use of 1.0 for a,,
however, makes evaporation from open water bodies unrealistically high and a lower value of
0.5 is suggested (Cohen et al., 2002). Making the value of a, 0.0 is considered to be more
appropriate for estimating evaporation from large lakes (Valiantzas, 2006). In this study the a,

value was made to be zero and the wind function was calculated as f, = 0.536u.

Temperature

Minimum, maximum and average daily temperatures were used to calculate the various terms
of the Penman equation. The areal temperature of Lake Tana was computed from point
observations using the nearest neighbor method adjusted for elevation. Temperature
observations of six stations (Bahir Dar, Enfranz, Gorgora, Maksegnit, Wereta and Zege) were

used.

Albedo

Albedo is a measure of the light reflectance properties of surfaces and therefore controls the
amount of shortwave radiation received by a surface. It assumes values between 0 and 1
depending on the whiteness of the surface. A constant albedo value between 0.05 and 0.10 is
often taken for a water surface (Dingman, 1994). In this study monthly albedo values were
derived from the MODIS white and black sky albedos with a temporal resolution of 16 days
and spatial resolution of a quarter degree. The complete data for year 2002 could be obtained
from the ISLSCP initiative website’. The actual or blue sky albedo was computed by linearly

combing the white and black sky albedos using Equation (7-6).

aactual = awhitefsky X Skyl - ablack—sky (1 - Skyl) Equation 7-6
Where, skyl is diffusivity which is a function of solar zenith angle, optical depth and solar

band.

? http://daac.ornl.gov/ISLSCP_Il/islscpii.shtml
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Evaporation was first calculated at daily time step and then aggregated to monthly and annual
periods. The mean monthly inputs and the estimated evaporation are given in Table 7-11. The
estimated annual evaporation was 1687mm based on data of 1992-2005. This value is close to
two of the previous estimates but Kebede et al. (2006) who used meteorological datasets of

Bahir Dar and Addis Ababa stations for the period 1961-1992.

Table 7-11 Mean monthly and annual evaporation from Lake Tana using the Penman method (1992-2005)

Annual Mean monthly magnitude

Input/output
mm J F M A M J J A S O N D

Temperature, °C 20.4 193 208 219 227 224 207 193 192 197 20 198 193
Wind speed, m/s 11 1 11 1.2 1.2 12 12 1 1 1 0.9 0.9 0.9

Relative hum, % 61.5 50.1 446 446 467 553 72 813 821 763 69 61 54.8

Incoming SRt 22 208 227 24 242 235 218 199 198 209 205 201 20
Net LRt -5.6 -5.8 -5.6 54 -5.3 -5.3 -5.6 -5.7 -5.7 -5.7 5.7 -5.7 -5.8
Evap., mm/d 1687 1343 1441 1733 1775 1732 1414 1152 1184 1256 1319 1243 1279

tThe unit for incoming solar radiation (SR) and net longwave radiation (LR) is MJm™d™". Net longwave
radiation is calculated as the difference between the incoming downward and outgoing longwave radiation.

7.3.4 Interaction with groundwater

Depending on the relative positions of the lake water and groundwater levels and the
surrounding geologic conditions, there could be inflow to or outflow from the lake. Based on
isotope studies, Kebede (2004) concludes that it is unlikely to have outflow from the lake to
the surrounding groundwater aquifer system. They attribute this conclusion to the graben
structure of the basin that dips towards Lake Tana from all directions. Moreover, considering
the thick and compacted sediment deposits beneath the bottom of the lake (Lamb et al 2007),
the vertical leakage could be assumed negligible. Kebede et al. (2006) considered the
groundwater component of the water balance term to be generally low with an estimated
contribution of less than 7% of the total inflow. There was no need for estimating
groundwater separately in this study as this was already considered in the conceptual model

that has a recharge and baseflow component.

7.3.5 River outflow

With its long years of streamflow data, the Abay River represents the only river outflow from

the lake. The daily streamflow data for the period 1992-2005 was used to create the monthly
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river outflow series. The mean annual and monthly outflows from the lake are shown in Table

7-12.

Table 7-12 Mean monthly and annual outflow from Lake Tana (calculated based on daily data of 1992-2005)

Unit Annual J F M A M J J A S (0] N D

x10° m? 4228 2479 181 179.2 1745 1404 1354 2262 4153 825  790.1 549.8 362.7

mm 1404 823 60.1 595 579  46.6 45 75.1 137.9 2739 2623 1825 1204

7.3.6 Floodplain evaporation

Lake Tana is surrounded by extensive floodplains and wetlands where considerable amount of
water could be lost via evaporation and percolation into the aquifer system. Based on five
years of satellite images (1998-2003), Daniel (2007) has been able to estimate the average
extent of flooded areas during seven months (June-December). The mean annual basin-wide
rainfall in this five years period was close to that calculated from the longer 1992-2005
period. The estimated average flooded areas could, therefore, be taken as representative of the
water balance study period. These areas, together with the mean monthly evaporation rates
estimated in Section 7.3.3, were used to estimate the loss of water from floodplains via

evaporation. The results are shown in Table 7-13.

Table 7-13 Estimated evaporation from the floodplains that surround Lake Tana (1992-2005)

Flooded Monthly Floodplain Equivalent floodplain evaporation with
Month area evaporation  evaporation respect to Lake Tana’s area

km® mm x10° m’ mm

June 112 141.4 15.8 5.2

July 349 115.2 40.2 13.3
August 563 118.4 66.7 22.1
September 432 125.6 54.3 18
October 411 131.9 54.2 18
November 209 124.3 26 8.6
December 193 127.9 24.7 8.2
Total 282 94

7.3.7 Change in lake water storage

The lake storage could be positive or negative depending on the relative magnitudes of the

total inflow and outflow. During the dry months the storage becomes negative as there is no
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significant inflow. The mean monthly and annual storage volume was estimated from the
observed daily lake level records at Bahir Dar for the period 1992-2005. The results are
shown in Table 7-14.

Table 7-14 Mean changes in Lake Tana water storage (from daily lake level at Bahir Dar, 1992-2005)

Unit Annual J F M A M J J A S (0] N D

x10° m? 29 -623.8  -559.3  -690.7 -598.2 -533.4 96.7 1803 23903 6024 -395.8 -7443 -6584

mm 88 -207.1  -1857 -2293 -198.6 -177.1 321 598.6 793.6 200 -131.4 -247.1 -218.6

7.3.8 Summary of the major water balance components of Lake Tana

Summary of the water balance of the lake is shown in Table 7-15. The relative discrepancy
varied from a minimum of 1.7% in December to 43.1% in June. A criterion recommended by
Ferguson and Znamensky (1981) was used to decide whether the computed discrepancy is
acceptable or not. The criterion is that the discrepancy should not exceed the square root of

the sum of the squares of the error limits of the water balance components (Equation 7-7).

o< \/512 + 52+ et O Equation 7-7

Where 6 is the maximum acceptable discrepancy; 01, 02, . Om are error limits of the different

water balance components.

For catchments with good network density, the long-term mean monthly, seasonal or annual
error limits may be set as £10-20% for precipitation and evaporation, £5% for runoff and +1
cm for lake level measurements (Ferguson and Znamensky, 1981).

In this study the allowable discrepancy was calculated by using error limits of £20% for
precipitation and evaporation, +5% for inflow from gauged catchments, and +20% for
catchment inflow estimated by the conceptual model. The model catchment inflow was
estimated based on precipitation and potential evaporation data. This resulted in the maximum
acceptable relative discrepancies indicated in the last row of Table 7-15. The relative
discrepancies for the average year and nine of the months were found to be less than the
acceptable limit. For the months of May, June and July, however, the relative discrepancies
were greater than the allowable limit. The major source of this discrepancy could be the

runoff estimated by the model. These months, particularly from late May to end of June,

represent rainfall onset period in the study area where the major runoff mechanism could be
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subsurface flow. Analysis of the rainfall-runoff data in Chapter 3 hinted this could be the case
until the antecedent rainfall reaches a certain threshold after which saturated excess overall
flow would occur. Most of the rainfall in these months may, therefore, recharge the
groundwater aquifer instead of directly contributing to the lake. The model result, however,
indicated direct runoff to be the dominant pathway. It could be reasonable to consider only the
subsurface flow part of the model as the contribution to the lake in May, June, and the
beginning of July. With this adjustment the mean annual total inflow to the lake was found to
be 3350 mm with respect to the lake’s average surface area and the relative discrepancy
reduced to 6.9%. It is also important to note that the model indicated a total annual baseflow
contribution of 250 mm which equaled 7.5% of the total inflow. This appeared to be a further
confirmation to the estimate of Kebede ef al. (2006), who assumed it to be about 7% of the

total inflow.

Table 7-15 Mean monthly and annual water balance of Lake Tana (1992-2005)

Water balance

component! Annual J F M A M J J A S 0 N D

Inflow
On-lake rainfall, mm  1225(34%) 0.8 0.7 115 19.2 65.1 1934 344 3379 1507 908 10 13
ftCatchment inflow, mm  2344(66%) 14.3 7.6 7.6 8.9 31 190.7 640 7786 3969 1818 62.3 238
Total, mm 3569 151 8.3 19.1 28.1 9.1 384.1 984 11165 5476 2726 723 25.1
Outflow
Lake evaporation,mm  1687(47%) 1343 1441 1733 1775 1732 1414 1152 1184 1256 1319 1243 1279
River outflow, mm  1403(39%) 823 601 595 579  46.6 45 751 1379 2739 2623 1825 1204

Total , mm 3090 2163 2041 2323 2355 2202 1864 1902 2564 399.6 3939 3073 2479

Change in storage, mm 30 (1%) -207 186 229 199  -177 32 599 794 200 -131  -247  -219
Actual discrepancy, % 12.6 2.7 49 6.9 37 241 431 19.8 6 95 2.6 39 17
Allowed discrepancy, % 13.4 12.6 14.2 15 15.2 16.9 13.8 10.4 9.4 9.8 9.5 8.6 10.3

TThe water balance components in volumetric units could be obtained by multiplying the values in mm by the average lake
surface area, i.e., 3012 km?
ftCatchment inflow was calculated as: observed surface inflow + simulated catchment inflow — floodplain evaporation

Catchment inflow represented about 66% of the total mean annual water influx. A breakdown
of the total catchment inflow indicated that 85% of the contribution came from four
watersheds (54% Gilgel Abay, 18% Gumara, 9% Rib and 4% Megech). The contribution of
direct precipitation was limited to 34%. Loss of water by evaporation from the lake exceeded
on-lake precipitation by 38%. These percentages of inflow and evaporation are different from

that reported by Kebede et al. (2006) who used rainfall data of a single station, meteorological
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data of Addis Ababa to estimate evaporation and assumed negligible contributions from the
ungauged parts. The results are, however, in close agreement to Wale et al. (2009) who
estimated average areal rainfall and evaporation from more point measurements and found the
contribution of the ungauged part to be notable. A difference in the observed outflow quantity
was also noted among the various studies due to the data period used. For instance, Wale et
al. (2009) took data of a short period (1995-2001), where the recorded outflow appeared to be

relatively high in most of the years.

7.3.9 Simulation of lake level fluctuation

To further verify the degree of accuracy of the estimated water balance components of Lake
Tana, the observed mean monthly water level time series of the lake was compared against

that simulated using the model rewritten in the form of Equation 7-8 without the closure term.

1,()-0.()
A(h)

Where, H(t) and H(t-1) in meters represent lake levels at the current and previous months

Ht)=H(t-1)+P(t)-E(¢)+ Equation 7-8

respectively; P(t) is on-lake precipitation in meters; E(t) evaporation in meters; Iy(t) and O(t)
are river inflow and outflow, respectively in m’/month; A(h) is lake surface area in m’
corresponding to the lake level at the current time step.
A relationship between the lake level and the corresponding water surface area was
established based on the bathymetric data obtained for year 2006. A polynomial function of
third degree fitted well the observed data.
Equation 7-20 is a nonlinear function of the unknown lake level. The following procedure was
followed to determine lake level that satisfies the equation at each time step.

1. Take the lake level of the previous time step H(t-1) as the initial state. For instance, if
a monthly water balance model starts in January 1992, then lake level recorded in
December 1991 represents the initial state
Assume lake level at the current time step and compute A(h)
Compute H(t) using Equation 7-8

Compare the calculated and assumed lake levels of the current time step

A

Repeat steps 2-4 until the difference between the calculated and assumed lake levels is
within a tolerable limit

6. Repeat 2-5 for the next time step using the lake level just computed as the initial state
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These steps were automatically executed in a Matlab environment. A constrained nonlinear
optimization algorithm was employed to obtain optimum values that could minimize the
difference between the assumed and calculated lake levels at each time step.

Simulation result of the lake level fluctuation is shown in Figure 7-5. Closer investigation of
Figure 7-6a generally indicated that the rising limb of the simulated lake level lagged behind
that of the observed. This systematic phase difference between the simulated and observed
lake levels could be attributed to the effect of routing in the lake. This was also evident from
the computed stronger lag-1 autocorrelation coefficient between the observed and simulated
levels. The performance of the water balance model was, therefore, reevaluated by
comparing the simulated lake levels against the observed by considering a phase shift of one
month. A better performance could be noted as indicated in Figure 7-6b. In light of the good
reproducibility of the amplitude and timing of the monthly water level fluctuations, the water

balance model appeared to have captured the dominant processes that control the lake level.
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Figure 7-6 Comparison of observed and simulated levels of Lake Tana (a) without the lake’s routing effect (b)

considering the routing effect of the lake
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7.4 Suspended sediment balance of Lake Tana

The suspended sediment balance modeling involved different parts that aimed at estimating
the various components of the mass balance. It was not possible to exploit the erosion and
sediment transport capability of DHSVM as it gave sediment yields that were too low. First,
the suspended sediment rating curves developed in Chapter 3 were used to estimate the mean
annual sediment load contributed by the gauged catchments. Then, a regional model that
relates specific suspended sediment yield to catchment area was used to estimate suspended
sediment discharge from watersheds without rating curves. Figure 7-7 illustrates parts of the
basin for which each of these methods were applied. The suspended sediment outflow was
estimated by using a rating curve obtained in the Abay Master Plan study report (BCEOM,
1999b). Finally, the calculated mean annual suspended sediment influx and outflow were used

to estimate the sediment trap efficiency of the lake and the mean deposition rate.

VZ{ With rating curve

Gumara

Koga
0 40 80 K ‘/‘,’%‘#, Gilgel Abay
1"_‘-’ 1

Figure 7-7 Catchments to which rating curves or regional models were applied to estimate suspended
sediment discharges
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7.4.1 Suspended sediment discharge from gauged catchments

The contributions of gauged catchments for which suspended sediment data could be obtained
were estimated by using rating curves. Suspended sediment rating curves, with and without
correction for bias, were established for the gauged parts of Gilgel Abay, Gumara, Koga and
Megech catchments in Chapter 3. The rating curve equations together with the corresponding
Nash-Sutcliffe efficiencies are presented in Table 7-16. Rating curve equations with better

performance were used to estimate the mean annual sediment load.

Table 7-16 Suspended sediment rating curve equations of four gauged catchments in the Lake Tana basin

Rating curve equation’

Catchment SS=aQ"x CF NSE
a b CF Without correction With correction
Gilgel Abay  4.155 1.698 1.11 0.68 0.70
Gumara 23.087 1.428 242 0.56 0.41
Koga 7.686 1.825 1.35 0.45 0.46
Megech 20.969 1.194 2.08 0.35 0.67

'SS is suspended sediment load in t/d; Q in m®/s; a and b are rating curve parameters; CF is correction for bias

The mean annual suspended sediment discharge was first estimated based on the monthly
streamflow series for the period 1992-2005. It represents suspended sediment load at the
gauging stations which are located upstream of floodplains and wetlands that surround Lake
Tana. Overbank deposition on floodplains during flood events usually represents a major sink
to suspended sediment and may account for as much as 40-50% of the load delivered to the
main channel system (Walling, 2005). A sediment budget study in Zambia by Walling (2001)
indicated a 30% suspended sediment loss in a floodplain. Nyssen et al. (2004) indicates
absence of any study related to sediment deposition rates in floodplains in Ethiopia. It could
be assumed that a considerable amount of the suspended sediment load obtained at the
gauging stations would be deposited in the low-lying areas. In fact, sedimentation in the lower
reaches of the main rivers in the Lake Tana basin was already reported to be the major cause
of overbank flow and flooding (SMEC, 2008a). The suspended sediment load contribution of
the gauged catchments to the lake was, therefore, estimated by considering floodplain
deposition. It is assumed that 30% of the suspended sediment load obtained at the gauging
stations during the main rain season would be stored in the downstream floodplains. The

estimated suspended sediment loads are presented in Table 7-17.
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The specific suspended sediment loads at the gauging stations for Gumara and Gilgel Abay
appeared to be high. Previous modeling studies in the Lake Tana basin also indicated high soil
erosion potential and sediment yield in these catchments (Awulachew and Tenaw, 2009;

Setegn et al.,2009).

Table 7-17 Suspended sediment discharges from four gauged catchments in the Lake Tana basin

Annual SS load at the Specific SS load at the Estimated annual SS
Area . . . . .
Catchment K gauging station gauging station load reaching Lake Tana
x10° tons t km™year’ x10° tons
Gilgel Abay 1641 2720 1658 1983
Gumara 1280 2109 1648 1535
Megech 514 204 396 137
Koga 297 199 670 107
Total 5232 3762

7.4.2 Suspended sediment discharge from streams with no data

A large part of the basin with notable flat areas does not have observed suspended sediment
data. Estimation of mean annual suspended sediment yields from these catchments without
rating curves could be done by using empirical models that relate specific suspended sediment
yields to catchment area and/or discharge. Akrasi (2005), for instance used this approach to
estimate suspended sediment inputs to Lake Volta from the ungauged catchments. The limited
number of catchments with observed/estimated suspended sediment loads, however, became a
constraint to developing similar relationship in the study area. Moreover, relations developed
based on data from the gauged catchments that are found in the upstream parts of the basin
may not adequately represent the flatter downstream areas. It was therefore decided to use a
regional suspended sediment-catchment area relationship developed for the wider central and
Northern Ethiopian highlands. The model was developed by Nyssen ef al. (2004) based on
existing suspended sediment yield data (Equation 7-9).

SSy =259547"% (n=20; r* = 0.59) Equation 7-9
Where SSy is specific suspended sediment yield in t km™ year; A is area in km?

The model indicates an inverse relationship between suspended sediment yield and catchment

size. The explanation to this inverse relationship is often associated to the increased
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opportunity for sediment deposition as it moves through the channel system and into flatter
areas and well-developed floodplains (Walling and Webb, 1996). On the contrary there are
cases that show increase in suspended sediment yield with increase in catchment area and
Dedkov (2004) related this to the increase in discharge with area which leads to higher rate of
channel erosion. Considering the existence of a sizeable floodplain area all around the lake,
the opportunity for sediment deposition could be high in the study area. The use of the
regional area-specific suspended sediment yield equation could, therefore, be considered as
acceptable. The mean annual suspended sediment contributions of catchments without rating

curves are presented in Table 7-18.

Table 7-18 Estimated mean annual suspended sediment discharges from catchments without rating curves

Catchment Are? Mean annual suspe}nded sediment load
km x 10° tons
Dirma 568 234
Gabikura 377 175
Garno 402 183
Gelda 411 186
Gilgel Abay" 2657 701
Gumara' 300 149
Gumero 548 228
Megech’ 299 149
Rib 2193 611
West Tana 621 250
Total 2866

TRepresent parts of the catchment excluding the gauged areas shown in Figure 7-7
7.4.3 Total suspended sediment inflow

The total suspended sediment discharge was finally calculated as the sum total of those
estimates obtained for catchments with and without rating curves. The estimated mean annual
suspended influx was found to be 6.6 x 10° tons. Dividing this total suspended sediment load
by the basin’s area (excluding the water surface) resulted in a specific suspended sediment
yield of 545 t km™ year”. The calculated specific suspended sediment yield is within the
range indicated for Ethiopian highlands by Walling and Webb (1983). A recent study on
sediment export from medium-sized catchments in the northern highlands of Ethiopia has also
shown suspended sediment yields that vary from 497 to 6543 t km™ year" (Vanmaereke et

al.,2010).
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7.4.4 Suspended sediment outflow

The measured suspended sediment concentration at the Abay River gauging station which is
located close to the lake’s outfall could not be obtained. But, the suspended sediment rating
curve equation developed based on data collected during 1961-1995 could be found in the
Abay Master Plan study report (BCEOM, 1999b). The rating curve has a power function
form and is given in Equation 7-10. It could be seen that the rating curve exponent is
relatively low (b = 1.163) in comparison to that of the contributing rivers. This could be

related mainly to the effect of the high sediment trap efficiency of the lake.

SSy =10.860"'% Equation 7-10

Application of the rating curve equation to monthly outflow series for the period 1992-2005

resulted in a mean annual suspended sediment outflow of 1.3 x 10° tons.

7.4.5 Suspended sediment deposition

A net annual suspended sediment deposition of 5.3 x 10° tons could be calculated from the
estimated influxes and outflows. Dividing this mass by the bulk density of sediment particles
could give the equivalent volumetric deposition rate. Use of reported bulk density of 1250
kg/m’ resulted in a volumetric suspended sediment deposition rate of 4.2 x 10° m® per year.
Dividing this volume by the mean lake surface area gave a uniform suspended sediment
deposition rate of 1.4 mm/year. Uniform sediment accumulation pattern is, however, unusual.
The suspended sediment trap efficiency of Lake Tana was also calculated from the estimated
fluxes using Equation 7-11. The result indicated a trap efficiency value of 80%. This is
different from the 50% trap efficiency used in the Abay Master Plan study (BCEOM, 1999a).
Corresponding to the lake’s average volume and mean annual catchment inflow, the
commonly used Brune’s curve (Morris, 1998), however, indicated trap efficiency greater than

90%.

TE =|1- % x100% Equation 7-11
SS

in

Where TE is suspended sediment trap efficiency in %; SS;, and SS,,, are suspended sediment

inflow and outflow, respectively, in tons per year.
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The floodplain and wetland systems that are found all around the lake play an important role
in preventing a large amount of sediment from reaching the lake. With the estimated
suspended sediment deposition rate, it requires 65 years for the lake to lose 1% of its volume
corresponding to the average water surface level. The situation would be different for
reservoirs located in the upstream parts of the basin because of a higher suspended sediment
yield and lower storage capacity of reservoirs. The problem of suspended sediment deposition
in the lake should also be assessed in terms of its impact on water quality. Fine sediments and
associated nutrients and contaminants are major sources of water pollution with adverse
effects on the ecology of lakes (Donohue and Molinos, 2009). Adverse effects associated with
fine sediments in the Lake Tana ecosystem has already been noted by Dejene et al. (2004).
Management efforts to reducing suspended sediment discharge to the lake should, therefore,

be driven by issues related to its effects on both storage capacity and water quality.

7.5 Concluding remark

The study on water and suspended sediment balance of Lake Tana provided useful outputs
that could contribute to its sustainable management. It indicated the relative contributions of
the different water balance components. The contribution from ungauged parts is not
negligible as assumed in some of the previous studies. It is important to ensure minimal
disruptions to the hydrologic regimes of the few catchments that contribute most of the
surface inflow. In recent years Lake Tana basin has seen major water resource development
projects, some completed and some ongoing. The projects have the effect of modifying
inflows coming from the major catchments and bringing in a new outflow component via the
direct transfer of water from the lake to a downstream basin. It would, therefore, be important
to update the water balance of the lake by considering these major developments.

The mean annual suspended sediment load was estimated based on rating curves developed
from limited data, a regional area-specific sediment yield model and an assumption on
sediment loss in the floodplains. Considering these facts, the result could only be taken as a
firsthand estimate useful for planning level applications. It would be important to make a
concerted sediment measuring campaign at representative locations both in the upstream and
downstream reaches. This would contribute to better understand sediment export processes

and the role of floodplains and wetlands in the study area.
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General conclusion and perspectives

Summary and conclusion

This study had three major components that include evaluation and analysis of the existing
meteorological and spatial datasets in the Lake Tana basin, assessment of the applicability of
a physically-based distributed hydrological model, and modeling the water and suspended
sediment balance of the lake. Overall, the daily hydro-meteorological dataset could be
considered as having good quality. A notable part of the basin, however, failed to meet the
minimum rainfall network density of the WMO. The hourly rainfall data of Bahir Dar and
Gonder meteorological stations were found to be by far inadequate and unreliable. In view of
the spatially heterogeneous nature of soil properties, the available data could be considered as
inadequate for carrying out studies that require higher resolution. The existing data on
suspended sediment solids is limited to very few days in a year and is highly fragmented. The
sensitivity analyses of soil and vegetation parameters of DHSVM enabled identification of
few influential parameters and this has greatly simplified calibration of the model in the
selected catchments. In light of the coarse spatial and/or temporal resolutions of the hydro-
meteorological and spatial datasets used, the distributed hydrological model showed a
promising performance in Megech and Rib catchments. The magnitudes of the estimated
water balance components of Lake Tana could be considered acceptable, as the relative
discrepancy was in general found to be within recommended limits. This was further
supported by the ability of the water balance model to closely simulate the lake level
fluctuation. Runoff from the contributing catchments of the lake was found to be a major
component of the annual water balance of Lake Tana. Considering the limit in the spatial and
temporal representativeness of the existing suspended sediment data, the results of the lake’s
sediment balance analysis should be considered relevant for planning level applications. The
lake was found to be an important sink to the incoming suspended sediment.

Watersheds in Ethiopia in general, and Lake Tana basin in particular, are faced by a number
of critical issues that include erosion and sedimentation, water availability, flooding, and
nonpoint source pollution. The search for sustainable management options that effectively and
efficiently address these issues requires a hydro-meteorological and spatial database with
adequate quality, quantity and resolution as well as sound analysis tools. For Lake Tana basin
it is important to strengthen the network density of rainfall gauging stations in different parts

of the basin. A major improvement in the acquisition and quality control of data from the
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recording rain gauges is required. Availability of adequate and reliable rainfall data at finer
time scales is important to make scientific studies on some of the key issues of the basin that
include soil erosion, water quality and flooding. The use of relevant disaggregation techniques
should also be considered as an alternative strategy to generate meteorological data at the
required temporal resolution.

In light of the seriousness of soil erosion and sedimentation problems and the ongoing major
water resources development endeavors in the study region, a concerted effort should be
exerted to acquiring, analyzing and archiving suspended sediment data. Physically-based
distributed hydrological models are considered to be good for making predictions in ungauged
catchments. They also have strengths that enable to carry out scientific researches on soil
erosion and hydrological impacts of land use and climate changes. It, therefore, of great value
to further test and apply the distributed hydrological model used in this study and other
similar models in different catchments in the country.

This study has shown how demanding and challenging is making hydrological studies under
poor data conditions. The various methods and results of the study could be considered as
useful for managing water resources in the region and making relevant scientific researches.

The key contributions of this dissertation could be summarized as follows:

= Systematic approach for building a reliable hydro-meteorological database which can be
used to carry out similar studies.

= Quality controlled continuous daily hydro-meteorological database for Lake Tana basin for
the period 1992-2005.

= Methodological contribution on daily rainfall disaggregation where convective rain
producing mechanisms are dominant. Stochastic redistribution of the outputs of the
MBLRPM by Beta probability function could reproduce the diurnal rainfall pattern.

= The sensitivity analysis of soil and vegetation parameters of DHSVM helped to identify few
influential parameters and this could serve as a guide in calibrating the model.

= Useful body of knowledge on the spatial and temporal characteristics of hydrological and
meteorological elements such as the wvariation of rainfall and temperature with
altitude/latitude, baseflow indices, and insight on rainfall-runoff relationships.

= Updated water balance of Lake Tana based on quality controlled and representative datasets

= Longterm suspended sediment balance of Lake Tana based on comprehensive analysis
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Perspectives

The study has enabled to explore and identify key areas for further research that would

enhance its scientific and practical values. Four lines of research have been identified.

Uncertainty and sensitivity analysis

Uncertainty in outputs of the model is a major issue in hydrological and environmental
modeling. The sources of uncertainty may include data uncertainty and model uncertainty.
Data uncertainty is related to the quality, and spatial and temporal representativeness of
observed quantities like precipitation, streamflow, soil hydraulic properties, etc. Model
uncertainty 1s associated to the representations of the real world system and physical
processes and parameter values.

This study involved use of simpler models associated with water and suspended sediment
balance of Lake Tana and a complex physically-based model associated with the evaluation of
the applicability of DHSVM. The quality and areal coverage of the daily rainfall data could be
a major source of uncertainty in the lake water balance model. As discharges are estimated by
rating curves, the quality of the observed streamflows could also be a major source of
uncertainty. Moreover, the estimated discharges from the ungauged catchments could be
affected by uncertainties due to the use of the conceptual model and the corresponding driving
meteorological inputs. The distributed hydrological model used meteorological forcings
derived from few stations that may not fully represent the catchment. This could be a major
source of uncertainty in the outputs of the model. Conducting further studies on uncertainty
analysis of the lake water balance and predictions of the distributed hydrological model would
therefore be useful in refining the modeling results and defining the level of efforts that must
be invested in acquiring the required inputs. Moreover, it would be relevant to assess the
sensitivity of the water balance of Lake Tana to the different water resource developments as

well as land use and climate changes.

Meteorological data disaggregation

In this study various disaggregation techniques were used to generate meteorological time
series at hourly temporal resolution. But due to lack of observed hourly data for most of the
meteorological elements in the study area, it was not possible to evaluate the level of

performance of the disaggregation techniques. Lack of meteorological data at shorter time
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scales is a general problem in the country and may continue so due to resource constraints.
The use of weather data disaggregation techniques should, therefore, be considered as an
important strategy. Evaluation of the performances of the disaggregation models based on
data that could be obtained from synoptic meteorological stations of the country like Addis

Ababa should, therefore, be regarded as an important line of research.

Testing DHSVM on other catchments

Evaluation of the performances of DHSVM in the study area gave mixed results- satisfactory
in some and poor in others. Good performance of the model from field to watershed scale is
reported in the literature. Further evaluation of the model would be required to reach a better
judgment on its performance. It is, therefore, important to test the applicability of the model
on other catchments with better hydro-meteorological and spatial data coverage and
resolution. Moreover, it would be good to evaluate the capability of the model in predicting

other state variables like groundwater level and soil moisture content if data is available.

Further study on suspended sediment

The study on suspended sediment yield provided the order of magnitude of the problem. In
light of the seriousness of soil erosion and sedimentation problems in the study area as well as
the ongoing and planned major water resource developments in the study region, more
research is required on the issue. Further studies using representative and good quality data on
sources and yield of suspended sediment would strengthen the scientific bases of watershed
management alternatives that aim at reducing the onsite and offsite impacts of soil erosion.
Research on suspended sediment yields is also important to make related studies such as
estimation of nonpoint source pollution loads. In this regard, it is of great value to further

exploit the erosion and sediment transport capabilities of DHSVM.
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Characterization and Disaggregation of Daily Rainfall in the Upper
Blue Nile Basin in Ethiopia
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Abstract

In Ethiopia, available rainfall records are mainly limited to daily time steps. Though rainfall
data at shorter time steps are important for various purposes like modeling of erosion
processes and flood hydrographs, they are hardly available in Ethiopia. The objectives of this
study were 1) to study the temporal characteristics of daily rains at two stations in the region
of the Upper Blue Nile Basin (UBNB) and ii) to calibrate and evaluate a daily rainfall
disaggregation model. The analysis was based on rainfall data of Bahir Dar and Gonder
Meteorological Stations. The disaggregation model used was the Modified Bartlett-Lewis
Rectangular Pulse Model (MBLRPM). The mean daily rainfall intensity varied from about 5
mm in the dry season to 17 mm in the wet season with corresponding variation in raindays of
0.4-26 days per month. The observed maximum daily rainfall varied from 13 mm in the dry
month to 200 mm in the wet month. The average wet/dry spell length varied from 1/21 days
in the dry season to 6/1 days in the rainy season. Most of the rainfall occurs in the afternoon
and evening periods of the day. Daily rainfall disaggregation using the MBLRPM alone
resulted in poor match between the disaggregated and observed hourly rainfalls. Stochastic
redistribution of the outputs of the model using Beta probability distribution function
improved the agreement between observed and calculated hourly rain intensities. In areas
where convective rainfall is dominant, the outputs of MBLRPM should be redistributed using

relevant probability distributions to simulate the diurnal rainfall pattern.

Key words: Ethiopia, Rainfall, Disaggregation, Bartlett-Lewis model
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1. Introduction

Rainfall is the main driving force for runoff generation and soil erosion by water. Availability
of rainfall data at relevant time scales is therefore important for water resources management.
In Ethiopia, rainfall data are usually available at time scales of daily and above. Automatic
gauges that record instantaneous rainfall rates are found only in limited meteorological
stations. Investigation of the hourly rainfall records of Bahir Dar and Gonder meteorological
stations indicated a significant mismatch between the daily rainfall calculated from the hourly
chart data and that measured by the non-recording gauges in many cases. Moreover, the data
from the automatic gauges is characterized by a long series of missing data with notes
indicating the malfunctioning of the recorder.

Previous studies on rainfall of Ethiopia focused mainly on variability and trend analyses of
annual and seasonal rainfall (Seleshi and Zanke, 2004; Cheung et al., 2008; Bewket and
Conway, 2007; Conway et al., 2004). There are also few studies on daily/subdaily rainfall
variability at local scale (Nyssen et al., 2005; Bitew et al., 2009). Studies on disaggregation of
daily rainfall records to subdaily scales could not be found. But certain hydrologic
applications require rainfall data at subdaily time scales (Khaliq and Cunnane, 1996; Connolly
et al., 1998; Smithers et al., 2002; Onof ef al., 2000). Such applications include modeling of
erosion and sediment transport, flood analysis, water quality modeling, design of hydraulic
structures, etc. It is therefore of practical and academic importance to have hourly rainfall
series for hydrological and soil erosion related studies.

Rainfall disaggregation models are used to obtain rainfall time series at subdaily scale from
daily values. Onof et al. (2000) have classified the different approaches of rainfall
disaggregation into four groups: complex process-based meteorological models, multi-scale
stochastic models such as multi-fractal cascades, statistical models developed on the bases of
observed statistics and point-process stochastic models. The point process stochastic models
commonly used are the Bartlett-Lewis and Neyman-Scott cluster models. The point-process
models have practical advantage of summarizing the many rainfall characteristics by a few
parameters and representing the hierarchical nature of rainfall structure conveniently (Onof et
al., 2000).

In this study the application of the Modified Bartlett-Lewis Rectangular Pulse Model
(MBLRPM) in disaggregating daily rainfall data into hourly time series was evaluated.

Rainfall data of Bahir Dar and Gonder Meteorological Stations, which are located in the
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Upper Blue Nile Basin (UBNB), were used for the purpose. The outputs of the model were
compared against average diurnal rainfall patterns of the stations. Observed diurnal pattern
close to the study area indicates the dominance of convective rains where most of the rainfall
occurs in the afternoon and evening hours (Nyssen et al., 2005). Similar diurnal rainfall
pattern is noted for the wider Sub-Saharan Africa region (Mohr, 2004). The MBLRPM was
selected because of its relatively wider application under different climates (Campo et al.,
2008; Khaliq and Cunnane, 1996; Glasbey et al., 1995; Smithers et al., 2002).

The objectives of this study were twofold. First the daily and hourly rainfall characteristics of
the stations were summarized using relevant descriptors. The descriptors used included daily
rainfall intensity and its variation, number of raindays, dry/wet spell lengths, maximum daily
rainfall intensity and diurnal rainfall pattern. Second, the performance of the MBLRPM in
disaggregating daily rainfall into hourly data was evaluated using optimum parameter values

derived from 24-, 48-hours and subdaily rainfall statistics.

2. Data and methods

2.1. The study area

The study area is located in the UBNB in Ethiopia (Abay Basin) where the regional climatic
feature is relatively low rainfall with complicated distribution pattern showing a general
increase from north to south (McGregor and Nieuwolt, 1998). Ethiopia has a total area of 1.13
x 10° km® with complex topography that varies in altitude from 120 m below sea level in the
northeast to over 4000 m above sea level in the northern highlands. The UBNB comprises
17.7 percent of the total area and is dominated by highland topography (Figure 1). It is the
largest tributary of the main Nile River with more than 50 % contribution to annual runoff
(Conway, 2000; Sutcliffe and Parks, 1999).

The rainfall climate of the study area is influenced by various regional and global weather
systems that include the seasonal northward movement of the inter-tropical convergence zone
(ITCZ) that drives the summer monsoon, the positions and strengths of the nearby subtropical
high-pressure systems, upper-level jet streams and tropical cyclones (NMSA, 1996).
Orographic and convective factors also shape the spatial and temporal patterns of rainfall in

Ethiopian highlands (Korecha and Barnston, 2006). Analysis of the rainfall data of Bahir Dar
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and Gonder stations indicated a monomodal pattern with more than 75% of the annual rainfall
volume occurring between June and September.

The UBNB is relatively wet with mean annual rainfall varying from 1000 mm in the northeast
to 2000 mm in the southwest (Conway, 2000). The rainfall climate is highly seasonal with
more than 70% of the rainfall occurring in the wet season called Kiremt (June to September)
(Korecha and Barnston, 2006). The remaining rainfall occurs in the light wet season called

Belg (February to May) and dry season called Bega (October to January).
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Figure 1 The stations in the Upper Blue Nile Basin (Abay)

2.2. The rainfall data

In this study we used observed daily and hourly rainfall data of two meteorological stations
that have long periods of historical records- Bahir Dar station (11.60N, 37.42E, 1824 m.a.s.])
and Gonder station (12.55N, 37.42E, 2094 m.a.s.I). Bahir Dar and Gonder stations are
classified as Class I meteorological stations where observations of essential climatological
elements are made at daily and subdaily scales. The data were obtained from the National and
/or Regional Meteorological offices which make observations using non-recording standard
rain gauges for daily rainfall and float-type recording gauges for hourly rainfalls. Daily

rainfall records starting from 1961 for Bahir Dar and 1953 for Gonder are available. We used
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daily rainfall data for the period 1965-2006. The percentage of missing daily data for Bahir
Dar in the analysis period is 0.97% and that for Gonder is 3.56%.

There are also limited reliable hourly rainfall data for the stations. Hourly rainfall records
starting from year 1964 for Bahir Dar and 1976 for Gonder meteorological stations are
available. The records are, however, characterized by long periods of missing data with notes

indicating the malfunctioning of the recording gauges as observed in the data record sheets.

2.3. Daily and hourly rainfall data analyses

Daily rainfall data analysis included temporal characterization of rainfall and computation of
statistical variables that are relevant for the disaggregation task. The observed records were
checked for outliers and obvious errors prior to the analyses using Grubbs test. Grubbs test is
used for normally or log-normally distributed data and has some examples of applications in
hydro-meteorological areas (Chow et al., 1988; Tang et al., 1996). The daily rainfall data of
both stations was found to be log-normally distributed.

The pluviometric regime of the stations was described by variables that included average
daily rainfall intensity and its variability, mean number of raindays, mean wet/dry spell
lengths and maximum daily rainfall. These variables were computed for each month of the
year. As the magnitude of average statistical variables would not be noticeably affected by
some missing daily rainfall data, no effort was made to replace the data gaps by interpolation
(Lana et al., 2004). The calculation was based on daily rainfall amounts that exceeded 1 mm
which was set to be the minimum threshold for defining a rainday following Seleshi and
Zanke (2004). In the literature the use of different thresholds like 0.1 mm, 0.25 mm, 1 or 5
mm to define a rainday could be found (Bewket and Conway, 2007; Lana et al., 2004;
McGregor and Nieuwolt, 1998). The use of a higher threshold is, however, recommended in
warmer climates for reasons related to practical usages like agriculture and water supply
(McGregor and Nieuwolt, 1998).

The statistical parameters relevant to the rainfall disaggregation task included mean, variance,
lag-1 autocovariance and dry probability of rainfall time series at different levels of
aggregation. In the computation of these variables both dry (rainfall < Imm) and rainy days
data were considered. The probability of dry day for each month was computed as the ratio of

number of raindays to total number of days in a month.
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As the hourly rainfall data record is fragmented with notes stating the malfunctioning of the
equipment, a check on the validity of the records preceded the analysis. The validity of the
hourly records was checked by comparing the hourly totals of a day against daily observations
obtained from the non-recording standard gauges. We considered data obtained from the
standard non-recording rain gauges to be more reliable than the hourly totals (Srivastava,
2008). Hourly records were rejected when the absolute difference between the sum of the
hourly rainfalls and the daily record exceeded 25% of the daily observation. The diurnal
pattern of the rainfall was described in terms of the relative proportion of rainfall amounts at

different hours of a day.

2.4. Temporal characteristics of rainfall

2.4.1. Daily rainfall frequency and intensity

The mean daily rainfall intensity, the number of raindays, mean dry/wet spell days and the
mean monthly rainfall of each month are presented in Table 1 and Table 2. The average
number of raindays could vary from 0.4 days in the dry month to 26 days in the wet period.
Comparison of raindays of the two stations indicated a slightly higher number wet days at
Bahir Dar station during the Kiremt season. The greater difference in the number of raindays
during the late wet months could be related to the retreat of the ITCZ southwards. The mean
wet/dry spell length varied from 1/21 days in the dry season to 6/1 days in the rainy season.
This indicated the occurrence of wet and dry spell days in groups which is caused by the
persistence of synoptic scale weather systems. The results obtained corresponded to the
general characteristics of tropical rainfall climatology (McGregor and Nieuwolt, 1998).

The variability of the daily rainfall intensity was high in all months as depicted by larger
coefficients of variation. The mean daily rainfall intensity varied from about 4 mm in the dry
season to 17 mm in the wet season. Overall, the daily rainfall intensity at Bahir Dar was
greater than at Gonder station. This may be due to the location of Bahir Dar at a lower latitude
and elevation that favor development of intense rain producing convective systems. The
observed maximum daily rainfall varied from 13 mm in the dry month to 200 mm in the wet

month.
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Table 1 Daily rainfall characteristics of Bahir Dar Meteorological Station
Month . Meap rainfall Mean No. of wet/dry Ma>(<r.nirrr11t/e;r;sity T;:;Z:?/
intensity (mm/d) raindays spell days (mm)
Jan 4.8 0.81 0.6 1/21 16 2.8
Feb 6.5 0.86 0.4 1/21 19.6 2.5
Mar 5.2 1.54 1.6 1/14 57.2 9
Apr 8.9 1.12 23 1/11 52.8 21.3
May 11.3 1.35 7 2/5 116.3 81.4
Jun 12.7 1.09 15 372 94.8 192.3
Jul 16.7 0.98 26 6/1 133.2 437.1
Aug 15.2 1.05 25.1 5/1 200.3 384
Sep 11.1 1.08 17.9 32 80.6 201.1
Oct 11.2 0.98 8.4 2/5 88.5 95.4
Nov 73 1.1 23 1/12 38.8 16.7
Dec 53 0.74 0.5 1/22 14.8 3
Table 2 Daily rainfall characteristics of Gonder Meteorological Station
Month . Mear\ rainfall Mean No. of wet/dry ~ Max intensity ~ Monthly rainfall
intensity (mm/d) raindays spell days (mm/d) (mm)
Jan 53 0.8 0.6 1/21 17 3.8
Feb 3.9 1 0.7 1/18 13.4 34
Mar 5.8 1.3 2.7 1/10 47.8 18.1
Apr 6.6 1.2 4.4 2/7 65.4 342
May 8 1.1 9.6 2/4 56.7 86.6
Jun 10 1.1 15.7 2/2 82 161.2
Jul 12 1 24.8 51 161.1 309.7
Aug 11.1 0.9 234 51 70.5 278.9
Sep 8.3 1.1 12.4 2/3 69.5 114.8
Oct 9.3 1.1 7.1 2/5 72.3 70.8
Nov 6.2 1.2 32 1/8 40.3 22.4
Dec 6 1 1.3 1/17 25.1 8.1
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2.4.2. Temporal variation of hourly rainfall

Overall, the hourly rainfall totals in a day did not match daily observations obtained from the
standard rain gauges. For instance, investigation of wet season hourly rainfall data of Bahir
Dar Meteorological Station showed more than 25% difference between hourly totals and daily
observed values for 60% of the records. For Gonder similar difference was obtained in 40%
of the records. Most of the hours in the data sheets are blank with notes indicating the
malfunctioning of the recorder.

The percentage of rainfall amounts during different periods of a day in the kiremt season is
presented in Figure 2. It could be seen that most of the rainfall occurred in the afternoon and
evening hours. This could be explained by the dominance of convective rains caused by the
heating of the land surface during the morning day hours. A similar diurnal rainfall pattern
was observed in the Northern Ethiopian highlands where eighty four percent of the rain

volume occurs between afternoon and midnight (Nyssen et al., 2005).
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Figure 2 Percentage of rainfall volume during different periods of the day in wet season



Annexes 193

2.5. Description of the MBLRPM

The MBRRPM is a stochastic point process rainfall model and is illustrated in Figure 3
(Rodriguez-Iturbe et al., 1988; Koutsoyiannis and Onof, 2001). Storms are assumed to
originate at times t; following a Poisson process at a rate A; each storm is then assumed to
generate rain cells at times tjj according to a Poisson process at a rate 3; Generation of cells
corresponding to a storm terminates after a time X; that is exponentially distributed with
parameter y. Rain depth of each cell yjj is a random constant exponentially distributed with
mean L. Each cell has a random duration X;; that is exponentially distributed with parameter
n which is assumed to vary from storm to storm with a gamma distribution having a scale
and shape parameters of a and v, respectively. The parameters § and y are also made to vary
with storms so that k¥ = 3/n and ¢ =y/n remain constant. The rainfall amount in any time

interval T is then represented by the sum of all active cells in that period.
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Figure 3 Representation of rainfall process in the MBLRPM model

The different parameters of the model were computed by equating simulated second-order
statistics to observed statistics. The second-order statistics of the accumulated process over

time interval T are computed by the following equations.
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*  Mean storm depth (Xr)
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2.6. Estimation of the MBLRPM parameters

The six parameters of the MBLRPM were estimated using the method of moments where
non-linear equations that relate observed and analytical moments are solved simultaneously.
Inclusion of moments that describe depth processes and dry probabilities are deemed to be
necessary in order to arrive at reasonable parameter values (Onof and Wheater, 1993). Based
on the recommendation of Khaliqg and Cunnane (1996), the model parameters were
determined from more moment equations than the number of unknowns. The moments
included mean, variance, lag-1 autocovariance and dry probabilities for different levels of
aggregation.

Many applications of the model recommend inclusion of subdaily rainfall statistics in the
estimation of the model parameters (Khaliq and Cunnane, 1996). In this study the estimation
was done based on two sets of rainfall statistics depending on the relative length of available
hourly rainfall records. For the main wet months, i.e. June, July, August, and September,
rainfall statistics calculated from 1-, 6-, 24- and 48-hours historical data were used to estimate
the model parameters. For the other months the estimation was based on only 24- and 48-
hours statistics as the length of the hourly data is very short. There are studies which estimate
parameters of the model from 24- and 48-hours rainfall statistics and yet conclude good
performance of the model. Bo and Islam (1994) are able to infer satisfactorily subdaily
rainfall statistics from 24 hours and 48 hours data. Similarly, Campo et al. (2008) reasonably
infer 10 min, 30 min, 1 hours, 2 hours, 6 hours and 12 hours rainfall statistics using
parameters estimated from accumulated 24- and 48-hours rainfalls. Successful parameter
estimation is also reported by Smithers ef al. (2002) who make the determination with and
without subdaily rainfall statistics.

Analytical moments defined by the various equations given in Section 2.5 were equated to the
corresponding observed statistics. The resulting systems of nonlinear equations were solved
simultaneously to determine the optimum parameter sets for each month. This was achieved

by minimizing the objective function given in Equation 10 using the Excel Solver tool. Use of
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similar objective function is found in the literature (Smithers et al., 2002; Velghe et al., 1994).
Parameter estimates on monthly basis was done to account for seasonal effects (Onof and

Wheater, 1993; Debele et al., 2007)

n . . ) 5
7 =min 2(1 _Simulated statistics; j 0

P Observed statistics;

Where n is the number of statistics (moments) used

The goodness-of-fit of the rainfall statistics calculated using the calibrated parameters to those
obtained from the historical records was evaluated based on the absolute deviate statistics
(Equation 11). This statistics is used by Velghe et al. (1994) to measure the overall

performance of the model in reproducing the historical rainfall statistics.
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Where, S is the computed statistic; Siops 1S the corresponding observed statistic; n is the

number of statistics evaluated.

2.7. Disaggregation of daily rainfall

Disaggregation of observed daily rainfall into hourly series was done using the computed
optimum parameter values. A repetition technique with proportional adjustment was followed
during the disaggregation to ensure that daily rainfall equals the sum total of disaggregated
hourly rainfalls. This method is recommended by Koutsoyiannis and Onof (2001) and is
incorporated in a disaggregation model developed by Gyasi-Agyei (2005). The approach
enables to obtain consistent finer-time scale rainfalls by distributing the error proportionally
to each of the disaggregated results.

Daily rainfalls for which corresponding hourly observations exist were first disaggregated

using a computer program called Hyetos in which the Bartlett-Lewis model and the adjusting
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procedures are implemented (Koutsoyiannis and Onof, 2000). Debele et al. (2007) reported

very good performance of the model in disaggregating daily rainfall data into hourly data.

2.8. Adjusting time of rainfall occurrence

Adjustments to the outputs of the MBLRPM model were made to mimic the observed diurnal
rainfall pattern by stochastically redistributing the outputs using Beta probability distribution.
Beta distribution to simulate rainfall occurrence time in a day is used by different researchers
(Hershenhorn and Woolhiser, 1987; Connolly et al., 1998). The Beta distribution function is

defined by two parameters as shown in Equation 11.

=M;“*‘(l—z)b" for0<t<I1,a>0,b>0
'(a)[(b) (h

=0 otherwise

S (t;a,b)

Where t is scaled hour of the day between 0 and 1; a = scale parameter; b = shape parameter.

The scale and shape parameters can be determined from the mean and variance of the

observed hourly rainfall.

a

E(t) = 12

0] —37 (12)

Var(t) = ab (13)
(a+b+1)(a+b)’

Where E(t) is the mean rainfall occurrence hour; Var(t) is the variance of the rainfall

occurrence hour, i.e., E(t)-[E(H)]*

A small computer program was written in a Matlab environment with required inputs

including the outputs of the MBLRPM, the two parameters of the Beta function and the
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average hour starting from which the diurnal rainfall pattern could be defined by the Beta
probability distribution.  First, scaled random rainfall occurrence hours that correspond to
each of the disaggregated hourly rain events were generated from a Beta distribution. The
scaled hour could be converted to equivalent actual hour of the day by multiplying it by 24.
The outputs of the MBLRMP were then redistributed such that they would correspond to the

random hours generated from the Beta distribution.

3. Disaggregation results and discussion

3.1. Calibration of the MBLRPM parameters

Optimum parameters for the MBLRPM were derived from 24-, 48-hours and sub-daily
rainfall statistics. A typical observed daily rainfall statistics is shown in Table 3. Subdaily
rainfall statistics of 1- and 6-hours rainfalls were considered only for the main wet months,
i.e., June, July, August and September. The lag-1 autocovariances of both stations were found
to be positive indicating persistence, which is a clear characteristic of tropical rainfall
(McGregor and Nieuwolt, 1998). The magnitudes of dry probabilities indicated the
seasonality of rainfall with most of the wet season days getting rainfall. The optimum
magnitudes of the model parameters for each month are presented in Table 4 and Table 5. The
computed values were generally within ranges reported in literatures (Segond et al., 2006;
Schnorbus and Alila, 2004). Higher values of Poisson arrival rates and mean cell rain depths
corresponded to the wettest months of July and August that have negligible dry probabilities.
The daily rainfall data analysis indicated these months as having mean dry spell length of 1

day.
Table 3 Observed daily rainfall statistics for Bahir Dar and Gonder Meteorological Stations
Daily rainfall variance (mm?)  Daily rainfall covariance (mm?) Daily dry probability
Month Bahir Dar Gonder Bahir Dar Gonder Bahir Dar  Gonder

Jan 0.62 1.01 0.03 0.09 0.97 0.97

Feb 0.83 0.8 0.03 0.16 0.96 0.95

Mar 4.34 6.45 0.10 0.62 0.91 0.87

Apr 18.00 17.72 4.69 2.62 0.87 0.79

May 73.59 40.22 12.68 3.89 0.67 0.54

Jun 132.47 113.67 17.87 9.27 0.37 0.31

Jul 263.10 108.22 27.40 4.01 0.07 0.08
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Aug
Sep
Oct
Nov

Dec

237.79
115.12
57.46
8.36
0.81

94.64
51.3
36.84
10.82
2.69

11.56
6.14
7.54
1.67
0.13

1.4
522
4.18
0.57
0.32

0.09
0.28
0.67
0.89
0.97

0.1
0.43
0.66
0.85
0.94
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Table 4 Optimum MBLRPM model parameter values for Bahir Dar Meteorological Station

Month A(h?) K=pB/n o=v/n o v (h) Hy (mmh™)
Jan 0.001 0.399 0.222 10.534 6.759 1.340
Feb 0.001 1.372 1.552 7.423 8.386 1.195
Mar 0.002 2.722 1.356 6.848 3.949 2.628
Apr 0.006 2.499 0.588 2.503 0.547 2.727
May 0.008 0.048 0.018 3.384 1.933 4.597
Jun 0.028 0.053 0.022 2.968 0.514 8.556
Jul 0.101 0.270 0.099 2.978 0.24 11.206
Aug 0.088 0.124 0.082 4.855 0.722 11.281
Sep 0.031 0.010 0.010 13.278 5.769 8.164
Oct 0.013 0.467 0.061 21.952 7.803 3.124
Nov 0.003 0.171 0.047 7.524 4.289 2.522
Dec 0.006 0.113 1.096 4263 1.275 1.739
Table 5 Optimum MBLRPM model parameters for Gonder Meteorological Station

Month AhY) k=B/n d=v/n a v (h) iy (mmh™)
Jan 0.001 0.762 0.172 15.925 10.980 1.011
Feb 0.001 0.523 0.112 11.644 4.984 1.493
Mar 0.005 0.209 0.496 6.565 8.599 1.630
Apr 0.004 0.029 0.010 4.799 3.363 3.337
May 0.025 0.199 0.065 3.282 0.553 4.558
Jun 0.027 0.024 0.010 2.668 0.597 4.859
Jul 0.089 0.055 0.045 22.125 4.329 9.158
Aug 0.086 0.417 0.106 8.914 0.675 9.999
Sep 0.021 0.037 0.021 19.224 9.093 4.704
Oct 0.010 0.020 0.010 4.505 2.981 3.754
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Nov 0.006 0.612 0.240 9.621 5.316 2.547
Dec 0.002 0.578 0.111 10.109 5.936 1.112

The various rainfall statistics computed from the optimum parameters sets were compared
against the observed ones. The overall performance of the model in reproducing the observed
statistics appeared to be good for all months as shown in Table 6. A general improvement in
goodness-of-fit could be seen in the main wet months which could be due to the inclusion of

subdaily rainfall statistics.

Table 6 Absolute deviate of the overall rainfall statistics computed by using the optimum parameter values
of the MBLRPM (in percent)

Station Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Bahir Dar 8.61 3.03 1044 470 157 230 265 152 172 873 439 1046

Gonder 948 2.65 251 270 797 637 168 1.08 273 234 9.5 4.44

3.2. Disaggregation of daily rainfall into hourly data

The performance of the model was further evaluated by comparing the disaggregated hourly
rainfalls with the reliable observed hourly data. Graphical comparisons of these data for the
wet months at Bahir Dar station are presented in Figure 4. A poor match between observed
and disaggregated rainfalls in the morning hours of a day could be seen. This poor
performance of the MBLRPM was also supported by the larger mean square errors (MSE)
(See Table 7). Similar results were obtained for Gonder station.

The MBLRPM model generated rainfall cells stochastically at any moment along the day
hours that could not be consistent with the diurnal rainfall pattern of the study area. The
differences are particularly clear in the morning hours of the day that hardly see rainfall. The
diurnal rainfall pattern of the study region is mainly influenced by convective rain producing
mechanisms where most of the rainfall occurs in the afternoon and evening hours. A research
done in the Northern Ethiopian highlands close to the study area indicated that only 4 % of the
daily rainfall occurs in the morning hours (Nyssen et al., 2005). A recent study on the spatio-
temporal rainfall variability in the Lake Tana basin further revealed the dominance of

convection in the late afternoon and evening hours (Haile et al., 2009).
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Figure 4 Comparison between observed and disaggregated mean hourly rainfall of Bahir Dar Station for

the wet months

3.3.  Adjustment of outputs of MBLRPM

In order to mimic the diurnal rainfall pattern of the stations, adjustments to the direct outputs

of the MBLRPM were made through stochastic redistribution using Beta probability

distribution. The use of Beta probability distribution function was justified after having

analyzed the available hourly data at the two stations. During the dominant rainfall months,

the daily rainfall pattern at Bahir Dar and Gonder Stations showed a Beta distribution starting

from 11:00-13:00 hour local time (See Figure 5 for Bahir Dar). The estimated average Beta

distribution parameters for Bahir Dar were a = 2.8 and b = 3.8 and that for Gonder were a =

2.0 and b =3.7.
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Figure 5 Typical distribution of rain start hour for Bahir Dar station

Rainfall occurrence hours of the MBLRPM outputs were adjusted following the method
discussed in Section 2.8. The redistributed hourly rainfall showed a better fit to the observed
data as indicated by the smaller MSE (Table 7) and the graphical similarity (Figure 6 and
Figure 7) for both Bahir Dar and Gonder stations. The morning hours appeared to have

insignificant rainfall which is consistent with the average diurnal pattern of the study region.

Table 1 Performance of the MBLRPM

MSE. %
Month MBLRPM alone With adjustment using Beta
Bahir Dar Gonder Bahir Dar Gonder
June 15.0 9.0 3.0 6.0
July 22.9 10.1 6.4 4.2
August 25.6 9.6 5.6 5.2

September 17.2 3.3 3.7 1.5
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4. Conclusions

The objectives of this study were to investigate the temporal characteristics of rainfall data of
two meteorological stations located in the Upper Blue Nile Basin in Ethiopia and to calibrate
and evaluate the performance of a daily rainfall disaggregation model. The rainfall is highly
seasonal with more than 75% of the rainfall occurring in the wet season from June to
September. The daily rainfall showed characteristics similar to tropical climates. Most of the
rainfall occurred in the afternoon and evening hours which could be explained by the
dominance of convective rain producing mechanisms.

The disaggregation task was done in two major steps- determination of optimum parameter
values and disaggregation of observed daily rainfall data. Several studies on the subject
accomplish the first step and reach conclusion on the performance of the model by comparing
the observed and simulated statistics of the rainfall. If the objective of the modeling exercise
is to generate rainfalls at finer scales from coarse measurements, its performance should
further be evaluated by comparing the observed and disaggregated rainfalls. We compared
observed and disaggregated mean hourly rainfalls at both Bahir Dar and Gonder
meteorological stations.

The MBLRPM stochastically generated rainfalls at any hour of the day following the Poisson
process. This resulted in a mismatch between the observed and disaggregated rainfalls during
the morning day hours which hardly receive rainfall. To improve the fit, stochastic adjustment
to the disaggregated hourly rainfall pattern was made by using Beta probability distribution
function. Redistribution of outputs of MBLRPM using Beta probability distribution improved
the fit between the observed and disaggregated rainfalls. In areas where convective rainfalls
are dominant, the outputs of MBLRPM should be redistributed using relevant probability

distributions to simulate the diurnal rainfall pattern.
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Annex B: Information on hydro-meteorological and spatial

characteristics of Lake Tana basin

B-1 Meteorological stations within and near Lake Tana basin

Station Class Geodetic coordinates UTM coordinates Altitude,
Latitude Longitude East North m.a.s.l
degree degree m m
Adis Zemen 3 12.13 37.78 367246.68 1341225.90 1970
Adet 1 11.26 37.47 332986.66 1245163.53 2195
AmbaGiorgis 4 12.77 37.60 348029.77 1412111.60 2900
Arb Gebeya 4 11.63 37.74 362643.09 1285944.83 2305
Aykel 1 12.53 37.05 288111.20 1385943.64 2172
Bahir Dar 1 11.60 37.42 327733.01 1282800.77 1824
Chandiba 3 12.39 37.03 285822.25 1370469.98 2071
Chwahit 4 12.33 37.22 306441.23 1363687.05 1890
Dangila 1 11.25 36.83 263090.20 1244497.86 2127
Debre Tabor 1 11.85 38.01 392165.34 1310158.37 2700
Dek Estifanos 4 11.91 37.27 311585.17 1317188.85 1808
Delgi 4 12.19 37.04 286748.65 1348334.05 1814
Enfranz 3 12.18 37.68 356390.40 1346806.91 1882
Enjibara 4 10.98 36.92 272710.90 1214554.10 2574
Gassay 3 11.79 38.14 406306.09 1303476.13 2850
Gonder 1 12.55 37.42 328339.37 1387887.20 2094
Gorgora 3 12.25 37.30 315086.98 1354780.61 1786
Hamusit 4 11.78 37.55 342011.91 1302634.88 1939
Korata 3 11.83 37.63 350757.13 1308121.36 1797
Kunzila 4 11.87 37.03 285406.42 1312937.65 1808
Maksegnit 3 12.35 37.56 343432.98 1365677.35 1897
Mekane Yesus 3 11.60 38.06 397519.81 1282492.12 2373
Merawi 3 11.25 37.15 298038.47 1244258.57 2020
Meshenti 4 11.41 37.28 312338.89 1261871.33 2056
Sekela 4 11.00 37.22 305516.76  1216556.03 2626
Shebekit 4 12.70 37.47 333869.74 1404448.00 2471
Tis Abay 4 11.48 37.58 345115.44 1269436.19 1648
Wanzaye 3 11.77 37.69 357263.36 1301453.82 1934
Wereta 3 11.92 37.68 356252.06 1318049.50 1801
Wetet Abay 3 11.37 37.05 287206.46 1257605.12 1922
Yifag 4 12.08 37.72 360690.95 1335725.63 1849
Zege 3 11.68 37.32 316879.60 1291712.71 1786
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B-2 Double mass curve of annual rainfall (black line): X-axis and Y-axis represent cumulative

Annexes

mean annual rainfall for the base and target stations, respectively. Red line is linear trendline.
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B-2 Double mass curve of annual rainfall- continued...
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B-2 Double mass curve of annual rainfall- continued...
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B-3 Double mass curve for mean annual minimum temperature (black line). X- & Y-axis represent

cumulative temperature for base and target stations, respectively. Red line is linear trendline
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B-4 Double mass curve for mean annual maximum temperature (black line). X- & Y-axis represent

cumulative temperature for base and target stations, respectively. Red line is linear trendline
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B-5 Physical characteristics of catchments in the Lake Tana basin

Catchment Total Altitude, Slope Meanannual Median annual
area, km’ m.a.s.| % rainfall, mm rainfall, mm

Dirma 568 1959 6.7 1063 1071
Gabi-Kura 377 1894 4.5 1089 1101
Garno 402 2136 17.8 979 1030
Gelda 411 1954 6.3 1407 1402
Gilgel Abay 4595 2080 6.5 1635 1592
Gumara 1579 2188 20.3 1439 1389
Gumero 548 2048 12 913 950
Megech 813 2158 134 1044 1036
Rib 2194 2139 12.1 1346 1395
West of Tana 621 1911 7.5 944 883
Lake Tana 3012 1786 0 1225 1225
Whole basin 15120 2025 9.3 1345 1330

B-6 Distribution of soil types in the Lake Tana basin (in percent)

Catchment LVh LVe LPe VRe FLe ALh LPI NTh RGe CMe
Dirma 8.6 31 488 116 0

Gabi-Kura 11.9 06  70.1 174 0

Garno 25  56.1 25 8.6 14 6.4

Gelda 46.3  50.1 0.7 2.9

Gilgel Abay 42  16.2 0.5 8.7 32 162 102 2.1 0.9
Gumara 523 289 7 8.1 3.7 0

Gumero 13.6 43 395 0.8 1.1 2
Megech 6.8 51.6 29.9 4.6 71

Rib 4.2 271 307 6 316 0.5

West of Tana 105 275 3 58.8 0.2

Whole Tana basin 26 209 16.3 13 11.6 6.2 3.9 1.5 0.6

LVh-Haplic Luvisols; LVc-Chromic Luvisols; LPe- Eutric Leptosols; VRe-Eutric Vertisols; FLe- Eutric
Fluvisols; ALh- Haplic Alisols; LPI- Lithic Leptosols; NTh- Haplic Nitosols; RGe- Eutric Regosols; CMe-
Eutric Cambisols.
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B-7 Average soil physical properties in the Lake Tana basin
(Based on data reported in the Abay Master Plan ( BCEOM, 1999)
So Claoy Silt Sand  FC oo Porosiy IC  Ks 60 Ks_100
% % % % kg/m3 m/d m/d m/d

Haplic Luvisols 577 26.1 162 043 023 1250 053 - - -
Chromic Luvisols 61.7 255 128 044 024 1250 053 2.1 03 03
Eutric Leptosols 59 247 163 043 023 1250 0.53 28 - -
Eutric Vertisols 763 185 56 047 027 1250 0.53 0.7 0.2 0.1
Eutric Fluvisols 516 412 72 045 024 1300 0.51 23 02 0.1
Haplic Alisols 54.2 304 151 044 023 1250 053 3.2 05 08
Haplic Nitisols 464 354 183 041 021 1250 0.53 26 0.3 0.3
Eutric Regosols 54 35 11 044 024 1250 0.53 - - -
Eutric Cambisols 466 346 185 042 021 1250 0.53 0.8 0.1 0.1

FC: field capacity; PWP: permanent wilting point; BD: bulk density; IC: infiltration capacity; Ks_60 and Ks_100:

saturated hydraulic conductivity at 60 cm and 100 cm soil depth, respectively;

Field capacity and permanent wilting point were determined by the following pedotransfer functions

developed from limited measurements.

Field capacity:

FC(%) = -1.245 x %Clay — 1.351 x %Silt — 1.623 x %Sand + 176.574 (n = 34, RMSE = 3.8%)

Permanent wilting point:

PWP(%) = 0.062 x %Clay — 0.066 x %Silt — 0.244 x %Sand + 25.274 (n= 34, RMSE = 1.8%)

Porosity was calculated from the bulk density by the following relation:

Porosity =1—-

bulk density

particle density
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B-8 Distribution of land cover types in the Lake Tana basin (in percent)

Catchment LC1 LC2 LC3 LC4 LC5 LC6 LC7  LC8 LC9 LC10
Dirma 920 12 66 0.2
Gabi-Kura 98.8 1.1 0.1

Garno 24.0 32.6 43.4

Gelda 83.0 5.7 9.4 13 0.6
Gilgel Abay 794 72 33 04 11 01 84 0.1
Gumara 718 233 13 04 31 0.1
Gumero 63.7 0.5 35.7 0.1
Megech 96.5 1.7 0.7 0.3 0.8

Rib 78.6 8.4 0.7 1.0 10.8 0.4 0.1

West of Tana 89.8 7.6 0.4 13 0.8 0.1

Whole Tana basin 63.0 6.5 39 0.1 0.5 0.2 5.6 0.1 0.1 20.0

LC1: cropland; LC2: cropland/grassland mosaic; LC3: cropland/shrubland mosaic; LC4: cropland/woodland
mosaic; LC5: cropland/woody savanna mosaic; LC6: grassland; LC7: open shrubland; LC8: plantation; LC9: urban
area; LC10: water
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Annex C: Main processes of DHSVM and typical input files

C-1 Main processes and equations of the DHSVM model

The major hydrological processes represented in the DHSVM model are shown in Figure C-1.
Some of the mathematical equations used to model these processes are also given. The
equations that represent snow accumulation and melt processes are not given. The model
solves water and energy balance equations simultaneously at grid scale.

Evapotranspiration

Eo

_—
erception
Oversto
— i
Sy,
d, Throug
______ : Soil evaporation,E, Understory
d; ation,|;
e - S nsaturated

zone

Saturated
zone

"—‘—h_‘_.é
Saturauun ﬂl:lw

Figure C-1 major hydrological processes in DHSVM

Interception and throughfall

Precipitation is assumed to be stored on the surfaces of overstory and understory vegetation
until maximum storage capacities defined by Equations C-1 and C-2 are reached.

l, = 107 LAI F Equation C-1
I, =10"LAI, Equation C-2

Where, 1. represents maximum interception storage; LAI is leaf area index; F stands for the
fraction of ground surface covered by overstory; the subscripts o and u indicate the overstory
and understory, respectively.



Annexes 217

Throughfall is generated when the canopy storage calculated by Equation C-3 exceeds the
maximum interception storage.

Si=sij+P—E, Equation C-3

Where, the subscript j denotes separate values for the overstory (j = 0) and the understory (j =
u). Siand S represent the actual interception storage at time t and t + At, respectively. For

i > lg, throughfall is calculated as sj™ -1 ;and sj*is set equal to L;. P is equal to the

overstory throughfall when Equation C-3 is applied to the understory.

Evapotranspiration

Evaporation and transpiration are calculated independently for the overstory and understory in
a stepwise fashion. Evaporation of intercepted water from wet vegetation surfaces is assumed
to occur at the potential rate. Transpiration from dry vegetation surface over the time period
At is calculated using the Penman-Monteith approach given by Equation C-4.

g = Ajni-:f;p(l(if I’;I)’/ ]aj At Equation C-4
v ci/ aj

Where, A is the slope of the saturated vapor pressure; Ry is the net radiation flux density; p is
the density of moist air; ¢, is the specific heat of air at constant pressure; e; and e are the
saturation and actual vapor pressure, respectively; r,; 1s the aerodynamic resistance to vapor
transport; r; is the canopy resistance to vapor pressure; A, is the latent heat of vaporization of
water; y 1s the psychrometric constant. Ry, 1, and r are calculated separately for the
overstory and understory. Different equations for calculating aecrodynamic resistance to vapor
transfer depending on the vegetation covers are given Wigmosta et al (1994). Vegetation
parameters like height, fractional coverage, and leaf area index are involved in the
calculations. Canopy resistance is represented as a summation of the stomatal resistance of
individual leaves, rg, which is dependent on vegetation type and environmental factors. The
various vegetation parameters involved in the computation of stomatal resistance include
minimum and maximum stomatal resistance, vapor pressure deficit, fraction of
photosynthetically active radiation, and plant wilting point.

First, evaporation of intercepted water from the overstory (Ej) is calculated as the minimum
of the interception storage amount or the potential evaporation demand (E,;) which is obtained
by setting r in Equation C-4 to zero. Then transpiration from the dry surface (E;) is
computed by Equation C-5.
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A+y
E =(E. —-E. E tion C-5
i = (Ey ")A+7(l+ r,/r,) quation

Evaporation from soil is calculated as the minimum of potential evaporation demand (Es) or
the soil desorption volume, F. (Equation C-5) which refers to the rate at which soil delivers
water to the surface.

F = SeAtm Equation C-6

172 (1/2m)+2
S, = 8K (9w, o Equation C-7
3(1+3m)(1+4m) ¢

Where, ¢ i1s porosity; O is saturation soil moisture which is taken to be ¢; 0 is actual soil
moisture; K(0;) is saturated lateral hydraulic conductivity; yy, is the soil bubbling pressure; m
is the pore size distribution index.

Unsaturated flow

Unsaturated moisture movement is simulated using a multi-soil layer representation. Each
vegetation layer may remove water from one or more soil layers, and each soil layer may
contain roots from one or more vegetation layers. Transpiration by a given canopy is first
calculated for each soil layer using the approach discussed above, then multiplied by the root
fraction in that soil layer. Soil evaporation is restricted to the upper zone. For three-soil layers
(see Figure C-3), the mass balance equations are given by the following equations:

dl (0{4-At - 9}) = I £ Ql (01)_ Etol - Etul - Esl +Vex2 _Vexl Equation c-8
d,(65*-65)=Q,(0)-Q,(0,)-E,,—E,, +V,, Equation C-9
d3 (65 —68) = Q, (02) + (QtSin - Qts)At Equation C-10

Where,

dk (k= 1, 2, 3) is thickness of k™ soil layer; Ok and Q are, respectively, average soil moisture
and percolation in soil layer k; Eix and Eux are evapotranspiration from overstory and
understory respectively; Es; evaporation from top soil layer; Ve exfiltration from layer k;
Qsin and Qg are the volumes of lateral subsurface inflow and outflow in the saturated zone at
the start of the time step, respectively.
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The percolation in each soil layer, Qy, is computed as a function of the actual vertical
hydraulic conductivity (Equation C-11)

K, (6k) + K, (6«
Q. =|: V(ek)z V(ek)]At Equation C-11

Where, K,(t) is the soil vertical unsaturated hydraulic conductivity; 8k = @k + (Qua/di). The

Brooks-Corey equation is used to calculate the unsaturated hydraulic conductivity (Equation
C-12).

2/m+3
K,(8)=K,(6, )|:Z : z: :| Equation C-12

0; is the residual soil moisture content which is assumed to be equal to zero (i.e. ¢ = ;).

Saturated subsurface flow

The model employs a cell-by-cell approach to route subsurface flow. Model grid cells are
centered on each DEM elevation point. Directions between a node and its neighbors are
assigned the index k and numbered from 0 to 7 in a clockwise direction from north. The rate
of saturated subsurface flow from cell i, j in the k direction is computed by Equation C-13.

s i =W, BT (2, D) Equation C-13

Where wi; 1s the grid cell flow width in the k-direction; B;; 1s the water table slope in the k-
direction; T;;(z,D) is the grid cell transmissivity. Soil lateral saturated hydraulic conductivity
is assumed to decrease exponentially with depth and soil transmissivity is calculated by
Equation C-14.

K. -t . e b
Ti,j(z’ D):ﬁ(e i3 —-€ fI'J'D"J) Equation C-14

i

Where Kjj; is the grid cell lateral saturated hydraulic conductivity at the soil surface, f;; is the
rate of exponential decrease, and D;; is the grid cell soil thickness. The total subsurface
outflow from a grid cell, Qsij, is equal to the sum of the component flows obtained from
Equation C-13.
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C-2 Parameter values used to estimate soil depth

Soil depth was estimated from topographic attributes using equation C-1.

s, Y 4.\ z
Sd,=Sd,, + (Sd_ —Sd_ )x a(l - - ] + b(l 7 : ] + c(l - : ] Equation C-1

max max max

Topographic attribute Parameter Value used

Soil depth limits Sdimin, minimum soil depth (m) 0.1
Sdinax, maximum soil depth, m 1.5

Slope a, weight for slope 0.5
A, exponent for slope 0.25
Smax, maximum limiting slope(decimal) 0.35

Upslope area b, weight for area 0.2
B, exponent for upslope area 1.0
A nax, maximum limiting area, m? 1000000

Altitude ¢, weight for altitude 0.3
C, exponent for altitude 0.75
Z max, maximum limiting elevation (m) 2800

C-3 Typical vegetation and stream inputs used to create stream network files
for Rib catchment

Vegetation class (Name) Rooting depth, m
1 (Cropland) 0.7
2 (Cropland/grassland mosaic) 0.4
3 (Cropland/shrubland mosaic) 0.4
4 (Cropland/woodland mosaic) 1.0
5 (Cropland/woody savanna mosaic) 0.8
6 (Grassland) 0.2
7 (Open shrubland) 0.2
8 (Plantation) 1.2
9 (Urban area) 1.2
10 (Water) 0.1

2

Stream class Width, m Depth, m Upslope area range, m“ Manning n
1 2.0 0.25 0.25x 10°1 x 10’ 0.03
2 6.0 0.4 1x10’-5x 10’ 0.03
3 10.0 0.8 5x 10’-5 x 10° 0.06
4 25.0 1.5 5x 10%-1 x 10° 0.06
5 50.0 2.5 1x10°%2 x 10° 0.06
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C-4 Typical text file used to create initial model state file for Rib catchment

./Init_Model/
01/01/1992-00
642 631

2

0.0 0.0

0.0

0

365

0.0

0.0

20.0

0.0

20.0

0.0

3
04040404

20.0
19.019.019.0
0.0

0.0

# Path for the output file

# Date for the model state in mm/dd/yyyy-hh

# Number of rows (ny) and number columns (nx) of the catchment grid

# Maximum number of vegetation layers

# Rain interception in m for each vegetation layer

# Snow interception in m for top vegetation layer

# Snow cover mask

# Number of days since last snow fall

# Snow water equivalent in m

# Liquid water content in m of bottom layer of snowpack

# Temperature in °C of bottom layer of snowpack

# Liquid water content in m of top layer snowpack

# Temperature in °C of top layer of snowpack

# Cold content of snowpack

# maximum number of root zone layers

# Volumetric soil moisture content of each layer (including the layer below
lowest root zone layer)

# Temperature in °C at soil surface

# Soil temperature in °C for each root zone layer

# Ground heat exchange

# Runoff

221
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C-5 Typical configuration file used for Rib catchment

HAHAHAH R
# OPTIONS SECTION
HAHAH R

[OPTIONS] # Model Options

Format =BIN # BIN. BYTESWAP or NETCDF

Extent = BASIN # POINT or BASIN

Gradient = WATERTABLE # TOPOGRAPHY or WATERTABLE
Flow Routing = NETWORK # UNIT_HYDROGRAPH or NETWORK
Sensible Heat Flux = FALSE # TRUE or FALSE

Sediment = FALSE # TRUE or FALSE

Sediment Input File =./TBsediment.MWM # path for sediment c
Overland Routing = CONVENTIONAL  # CONVENTIONAL or KINEMATIC

Interpolation = NEAREST # NEAREST or INVDIST or VARCRESS
MM5 = FALSE # TRUE or FALSE

QPF = FALSE # TRUE or FALSE

PRISM = FALSE # TRUE or FALSE

PRISM data path = ./input/prism/PrismMap # path for PRISM files
PRISM data extension = bin # file extension for PRISM files
Canopy radiation attenuation mode = FIXED # FIXED or VARIABLE
Shading = FALSE # TRUE or FALSE

Shading data path = # path for shading files

Shading data extension = bin # file extension for shading files
Skyview data path = # path for skyview file

Snotel = FALSE # TRUE or FALSE

Outside =TRUE # TRUE or FALSE

Rhoverride = FALSE # TRUE or FALSE
Precipitation Source = STATION # STATION or RADAR

Wind Source = STATION # STATION or MODEL

Temperature lapse rate = CONSTANT  # CONSTANT or VARIABLE
Precipitation lapse rate = CONSTANT  # CONSTANT. MAP. or VARIABLE

Infiltration = STATIC # STATIC or DYNAMIC
Cressman radius =10 # in model pixels
Cressman stations =4 # number of stations

HAHGHHHFH AR A A R R A A TR R A A
# MODEL AREA SECTION
HEHAHAH R

[AREA] # Model area
Coordinate System =UTM
Extreme North =1352173.0000
Extreme West =359927.0000
Center Latitude =11.97

Center Longitude  =37.97

Time Zone Meridian =37
Number of Rows =642

Number of Columns =631

Grid spacing =90

Point North =

Point East =

Annexes
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HAHAHAH R TIME SECTION###HEHEHAHAHHH R

[TIME] # Model period

Time Step =3 # Model time step (hours)

Model Start =01/01/1992-00:00 # Model start time (MM/DD/YYYY-HH)
Model End =12/31/2005-21:00 # Model end time (MM/DD/YYYY-HH)

Number of Model State =0
Model State Date =0
HtHH R H CONSTANTS SECTION #it i H

[CONSTANTS] # Model constants

Ground Roughness =0.02 # Roughness of soil surface (m)

Snow Roughness  =0.02 # Roughness of snow surface (m)

Rain Threshold =-1.0 # Minimum temperature at which rain occurs (°C)
Snow Threshold =0.5 # Maximum temperature at which snow occurs (°C)
Snow Water Capacity =0.03 # Snow liquid water holding capacity (fraction)
Reference Height =50.0 # Reference height (m)

Rain LAl Multiplier =0.0001 # LAl Multiplier for rain interception

Snow LAI Multiplier =0.0005 # LAl Mulitplier for snow interception

Min Intercepted Snow = 0.005 # Intercepted snow that can only be melted (m)
Outside Basin Value =0 # Value in mask that indicates outside the basin

Temperature Lapse Rate =-0.005 # Temperature lapse rate (C/m)
Precipitation Lapse Rate =0.0 # Precipitation lapse rate (m/m)

HEHAHAH R TERRAIN INFORMATION SECTION #it###HBHAHAHHHHHHTH

[TERRAIN] # Terrain information
DEM File = ./Input_data/DEM/Rib_dem.bin  # path for DEM file
Basin Mask File = ./Input_data/Mask/Rib_mask.bin # path for mask file

HHEHHEH Y ROUTING SECTION #H I
[ROUTING] # Routing information. This section is only relevant if the Extent = BASIN
# The following three fields are only used if Flow Routing = NETWORK

Stream Map File = ./Input_data/Stream/Rib_stream.map.dat  # path for stream map file
Stream Network File =./Input_data/Stream/Rib_stream.network.dat # path for stream network file
Stream Class File = ./Input_data/Stream/Rib_stream.class.dat # path for stream class file

HEHAH T METEOROLOGY SECTION #H##HHHHHHHHHHEHAH A

[METEOROLOGY] # Meteorological stations

Number of Stations =5 # Number of meteorological stations

Station Name 1 = Debre Tabor # Name for station 1

North Coordinate 1 =1310158.37 # North coordinate of station 1

East Coordinate 1 =392165.34 # East coordinate of station 1

Elevation 1 =2700 # Elevation of station 1in m

Station File 1 = ./Input_data/Meteo/Debretabor.txt # path for station 1 file
Station Name 2 = Addis Zemen # Name for station 2

North Coordinate 2 =1341225.90 # North coordinate of station 2

East Coordinate 2 =367246.68 # East coordinate of station 2

Elevation 2 =1970 # Elevation of station 2 in m

Station File 2 =./Input_data/Meteo/Adiszemen.txt # path for station 2 file
Station Name 3 =Enfraz # Name for station 3

North Coordinate 3 =1346806.96 # North coordinate of station

East Coordinate 3 =356390.40 # East coordinate of station 3

Elevation 3 =1882 # Elevation of station 3inm

Station File 3 =./Input_data/Meteo/Enfraz.txt # path for station 3 file



224 Annexes

Station Name 4 = Wereta # Name for station 4

North Coordinate 4 =1318049.50 # North coordinate of station 4

East Coordinate 4 =356252.06 # East coordinate of station 4

Elevation 4 =1801 # Elevation of station 4 in m

Station File 4 =./Input_data/Meteo/Wereta.txt # path for station 4 file
Station Name 5 =Yifag # Name for station 5

North Coordinate 5 =1335725.63 # North coordinate of station 5

East Coordinate 5 =360690.95 # East coordinate of station 5

Elevation 5 =1849 # Elevation of station 5in m

Station File 5 =./Input_data/Meteo/Yifag.txt # path for station 5 file

HAHEHHEH I SOILS INFORMATION SECTION##Ht I
[SOILS] # Soil information

Soil Map File =./Input_data/Soil/Rib_soil.bin
Soil Depth File = ./Input_data/Soil/Rib_soildepth.bin
Number of Soil Types =10

Soil Description 1
Lateral Conductivity 1
Exponential Decrease 1
Maximum Infiltration 1

Haplic Luvisols (C-C-C)
1.07E-06 #m/s

1.10

2.95E-06 #m/s

Surface Albedo 1 = 017

Number of Soil Layers1 = 3

Porosity 1 = 0.45 0.45 0.45

Pore Size Distribution1 = 0.131 0.131 0.131
Bubbling Pressure1 =  0.373 0.373 0.373 #m
Field Capacity 1 = 03 03 0.3

Wilting Point 1 = 0.150.15 0.15

Bulk Density 1 = 1250 1250 1250 #kg/m3
Vertical Conductivity 1 = 1.07E-06 4.44E-07 3.56E-07 #m/s
Thermal Conductivity1l = 0.61 0.61 0.61

Thermal Capacity 1 = 2.25E+06 2.25E+06 2.25E+06
Capillary Drive 1 = 0.41

0.25

Mannings n 1

Soil Description 2 Chromic Luvisols (SiC-C-C)

Lateral Conductivity 2 = 1.0E-06

Exponential Decrease2 = 0.3

Maximum Infiltration2 = 3.0E-06

Surface Albedo 2 = 017

Number of Soil Layers2 = 3

Porosity 2 = 0.53 0.53 0.53

Pore Size Distribution2 = 0.127 0.131 0.131
Bubbling Pressure 2 = 0.342 0.373 0.373

Field Capacity 2 = 04 04 04

Wilting Point 2 = 0.250.250.25

Bulk Density 2 = 1250 1250 1250

Vertical Conductivity 2 = 1.07E-06 4.44E-07 3.56E-07
Thermal Conductivity2 = 0.63 0.61 0.61

Thermal Capacity 2 =  2.25E+06 2.25E+06 2.25E+06
Capillary Drive 2 = 041

Mannings n 2 = 0.25
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Soil Description 3

Eutric Leptosols (CL - C- C)

Lateral Conductivity 3 = 2.0E-04
Exponential Decrease3 = 0.3
Maximum Infiltration3 = 2.0E-05
Surface Albedo 3 = 017
Number of Soil Layers3 = 3
Porosity 3 = 0.59 0.59 0.59

Pore Size Distribution 3
Bubbling Pressure 3 =

Field Capacity 3 =

Wilting Point 3 =

Bulk Density 3 =

Vertical Conductivity 3

Thermal Conductivity 3
Thermal Capacity 3 =

Capillary Drive 3
Mannings n 3

Soil Description4 =

= 0194 0.131 0.131
0.256 0.373 0.373

04 04 04

0.19 0.25 0.25

1250 1250 1250

=  6.79E-06 2.82E-06 2.26E-06
= 0.650.610.61

2.28E+06 2.25E+06 2.25E+06

= 041

0.25

Eutric Vertisols (C-C-C)

Lateral Conductivity 4 = 1.0E-07
Exponential Decrease 4 = 1.10
Maximum Infiltration4 = 3.0E-06
Surface Albedo 4 = 017
Number of Soil Layers4 = 3
Porosity 4 = 0.45 0.45 0.45

Pore Size Distribution 4
Bubbling Pressure 4 =

Field Capacity 4 =

Wilting Point 4 =

Bulk Density 4 =

Vertical Conductivity 4
Thermal Conductivity 4
Thermal Capacity 4 =

Capillary Drive 4
Mannings n 4

Soil Description5 =
Lateral Conductivity 5
Exponential Decrease 5
Maximum Infiltration 5

Surface Albedo 5
Number of Soil Layers 5
Porosity 5 = 0.5

Pore Size Distribution 5
Bubbling Pressure 5 =
Field Capacity 5 =
Wilting Point 5 =
Bulk Density 5 =
Vertical Conductivity 5
Thermal Conductivity 5
Thermal Capacity 5 =
Capillary Drive 5
Mannings n 5 =

= 0131 0.131 0.131
0.373 0.373 0.373

03 03 03

0.27 0.28 0.27

1250 1250 1250

=  4.50E-06 1.85E-07 1.48E-07
= 0.610.610.61

2.25E+06 2.25E+06 2.25E+06

= 041

0.25

Eutric Fluvisols (SiC. SiC. C)

=  2.0E-06

= 0.2

=  2.68E-06

= 0.17

= 3

0.5 0.5

= 0.127 0.127 0.131
0.342 0.342 0.373
0.35 0.35 0.35

0.15 0.15 0.15

1300 1300 1250

=  4.72E-06 1.93E-07 1.54E-07
= 0.630.630.61

2.25E+06 2.25E+06 2.25E+06
= 041

0.25
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Soil Description 6

Haplic Alisols (C-CL-C)

Lateral Conductivity 6 = 1.69E-06
Exponential Decrease6 =  1.10
Maximum Infiltration6 = 3.74E-06
Surface Albedo 6 = 017
Number of Soil Layers6 = 3
Porosity 6 = 0.45 0.45 0.45

Pore Size Distribution 6
Bubbling Pressure 6 =

Field Capacity 6 =

Wilting Point 6 =

Bulk Density 6 =

Vertical Conductivity 6
Thermal Conductivity 6
Thermal Capacity 6 =

Capillary Drive 6
Mannings n 6

Soil Description 7

= 0131 0.194 0.131
0.373 0.256 0.373

03 03 03

0.15 0.15 0.15

1250 1250 1250

=  1.69E-06 7.00E-07 5.62E-07
= 0.61 0.650.61

2.25E+06 2.28E+06 2.25E+06

= 041

0.25

Letic Leptosols (CL-CL-CL)

Lateral Conductivity 7 = 6.37E-06

Exponential Decrease 7 = 1.10

Maximum Infiltration7 = 7.08E-06

Surface Albedo 7 = 017

Number of Soil Layers7 = 3

Porosity 7 = 0.45 0.45 0.45

Pore Size Distribution 7 = 0.19 0.19 0.19
Bubbling Pressure 7 = 0.256 0.256 0.256
Field Capacity 7 = 03 03 0.3

Wilting Point 7 = 0.150.150.15

Bulk Density 7 =
Vertical Conductivity 7
Thermal Conductivity 7
Thermal Capacity 7 =
Capillary Drive 7
Mannings n 7 =

Soil Description 8

1250 1250 1250

=  6.79E-06 6.79E-07 6.79E-07
= 0.65 0.65 0.65

2.28E+06 2.28E+06 2.28E+06

= 041

0.25

Haplic Nitisols (C-SiL-C)

Lateral Conductivity 8 =  9.56E-06
Exponential Decrease 8 =  1.10
Maximum Infiltration 8 = 3.01E-06
Surface Albedo 8 = 017
Number of Soil Layers8 = 3
Porosity 8 = 0.45 0.45 0.45

Pore Size Distribution 8
Bubbling Pressure 8 =
Field Capacity 8 =
Wilting Point 8 =
Bulk Density 8 =
Vertical Conductivity 8
Thermal Conductivity 8
Thermal Capacity 8 =
Capillary Drive 8
Mannings n 8 =

= 0131 0.211 0.131
0.373 0.208 0.373

03 03 03

0.22 0.17 0.25

1250 1250 1250

=  9.56E-06 3.97E-07 3.18E-07
= 06107 0.61

2.25E+06 2.31E+06 2.25E+06

= 041

0.25
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Soil Description 9

Eutric Regosols (C-C-C)

Lateral Conductivity 9 =  6.37E-06
Exponential Decrease9 =  1.10
Maximum Infiltration9 = 8.46E-06
Surface Albedo 9 = 017
Number of Soil Layers9 = 3
Porosity 9 = 0.45 0.45 0.45

Pore Size Distribution 9
Bubbling Pressure 9 =

Field Capacity 9 =

Wilting Point 9 =

Bulk Density 9 =

Vertical Conductivity 9
Thermal Conductivity 9
Thermal Capacity 9 =

Capillary Drive 9
Mannings n 9

Soil Description 10 =
Lateral Conductivity 10
Exponential Decrease 10
Maximum Infiltration 10
Surface Albedo 10 =
Number of Soil Layers 10
Porosity 10 =
Pore Size Distribution 10
Bubbling Pressure 10
Field Capacity 10
Wilting Point 10

Bulk Density 10 =
Vertical Conductivity 10
Thermal Conductivity 10
Thermal Capacity 10 =
Capillary Drive 10 =
Mannings n 10 =

HEHHHHHEHH A HAHHE VEGETATION INFORMATION SECTION #i#####H#HHAHHHHHHHHHHFHHT

[VEGETATION]

Vegetation Map File

Number of Vegetation Types

Vegetation Description 1
Overstory Present 1
Understory Present 1
Fractional Coverage 1
Trunk Space 1

= 0131 0.131 0.131
0.373 0.373 0.373

03 03 03

0.15 0.15 0.15

1250 1250 1250

=  4.45E-07 1.85E-07 1.48E-07
= 0.610.610.61

2.25E+06 2.25E+06 2.25E+06

= 041

0.25

Eutric Cambisols (CL-C-C)

=  6.79E-06

= 1.10

=  7.08E-06

0.17

= 3

0.45 0.45 0.45

= 0.19 0.131 0.131
= 0.256 0.373 0.373
0.3 03 0.3

= 0.190.2 0.25
125012501250

=  6.79E-06 2.82E-07 2.26E-07
= 0.650.610.61

2.28E+06 2.25E+06 2.25E+06
0.41

0.25

./Input_data/Vegetation/Rib_vegetation.bin
10

=  Cropland
=  FALSE
= TRUE

Aerodynamic Attenuation 1 =

Radiation Attenuation 1
Hemi Fract Coverage 1
Clumping Factor 1

Leaf Angle A1

Leaf Abgle B 1
Scattering Parameter 1
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Max Snow int Capacity 1
Mass Release Drip Ratio 1
Snow Interception Eff 1
Impervious Fraction 1
Height 1 =
Maximum Resistance 1
Minimum Resistance 1
Moisture Threshold 1
Vapor Pressure Deficit 1
Rpc1 =
Number of Root Zones 1
Root Zone Depths 1
Overstory Root Fraction 1
Understory Root Fraction 1
Overstory Monthly LAl 1
Understory Monthly LAl 1
Overstory Monthly Alb 1
Understory Monthly Alb 1

Vegetation Description 2
Overstory Present 2 =
Understory Present 2
Fractional Coverage 2
Trunk Space 2 =
Aerodynamic Attenuation 2
Radiation Attenuation 2
Hemi Fract Coverage 2
Clumping Factor 2 =
Leaf Angle A2 =
Leaf Abgle B 2 =
Scattering Parameter 2
Max Snow int Capacity 2
Mass Release Drip Ratio 2
Snow Interception Eff 2
Impervious Fraction 2
Height 2 =
Maximum Resistance 2
Minimum Resistance 2
Moisture Threshold 2
Vapor Pressure Deficit 2
Rpc 2 =
Number of Root Zones 2
Root Zone Depths 2
Overstory Root Fraction 2
Understory Root Fraction 2
Overstory Monthly LAI 2
Understory Monthly LAI 2
Overstory Monthly Alb 2
Understory Monthly Alb 2

Vegetation Description 3
Overstory Present 3 =
Understory Present 3
Fractional Coverage 3
Trunk Space 3 =
Aerodynamic Attenuation 3
Radiation Attenuation 3

0.50

0.06

0.0

600
120
0.33
4000

3
0.16 0.18

03 05 0.2

0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50

0.2020202020.2 020.20.20.20.20.2

Cropland/Grassland mosaic

FALSE

0.50

TRUE

0.0

600
200
0.33
4000

3

0.045 0.120 0.135

FALS

04 06 O

0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50
020202020202 020.20.20.20.20.2

Cropland/Shrubland mosaic
E

TRUE
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Hemi Fract Coverage 3
Clumping Factor 3
Leaf Angle A3 =
Leaf Abgle B 3

Scattering Parameter 3
Max Snow int Capacity 3
Mass Release Drip Ratio 3
Snow Interception Eff 3
Impervious Fraction 3
Height 3 =
Maximum Resistance 3
Minimum Resistance 3
Moisture Threshold 3
Vapor Pressure Deficit 3
Rpc 3 =
Number of Root Zones 3
Root Zone Depths 3
Overstory Root Fraction 3
Understory Root Fraction 3
Overstory Monthly LAI 3
Understory Monthly LAI 3
Overstory Monthly Alb 3
Understory Monthly Alb 3

Vegetation Description 4
Overstory Present 4 =
Understory Present 4
Fractional Coverage 4
Trunk Space 4 =
Aerodynamic Attenuation 4
Radiation Attenuation 4
Hemi Fract Coverage 4
Clumping Factor 4 =
Leaf Angle A 4 =
Leaf Abgle B 4 =
Scattering Parameter 4
Max Snow int Capacity 4
Mass Release Drip Ratio 4
Snow Interception Eff 4
Impervious Fraction 4
Height 4 =
Maximum Resistance 4
Minimum Resistance 4
Moisture Threshold 4
Vapor Pressure Deficit 4
Rpc 4 =
Number of Root Zones 4
Root Zone Depths 4
Overstory Root Fraction 4
Understory Root Fraction 4
Overstory Monthly LAl 4
Understory Monthly LAl 4
Overstory Monthly Alb 4
Understory Monthly Alb 4

0.60

0.0

600
200
0.33
4000

3

0.045 0.120 0.135

TRUE

0.45

15.0

0.60

04 06 O

0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50

020202020202 020202020202

Cropland/Woodland mosaic

TRUE
0.5

1.2
0.15

0.003

0.4

0.6

0.0

2.0

4500. 2300.
300. 150.

0.33 0.13

4000. 4000.
0.50

3

0.105 0.280 0.315

0.20 0.40 0.40
0.50 0.50 0.0

1.00 1.00 0.80 0.80 0.90 0.90 1.60 2.30 2.70 2.10 1.30 1.00
0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50
020202020202 020202020202
020202020202 020202020202
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Vegetation Description 5 =  Cropland/Woody savana mosaic
Overstory Present 5 = TRUE

Understory Present 5 = TRUE

Fractional Coverage 5 = 05

Trunk Space 5 = 0.45

Aerodynamic Attenuation5 = 1.2

Radiation Attenuation 5 = 0.15

Hemi Fract Coverage 5 =

Clumping Factor 5 =

Leaf Angle A5 =

Leaf Abgle B5 =

Scattering Parameter 5 =

Max Snow int Capacity 5 = 0.003

Mass Release Drip Ratio 5 = 04

Snow Interception Eff 5 = 06

Impervious Fraction 5 = 0.0

Height 5 = 15.0 2.0

Maximum Resistance 5 = 4500. 2300.
Minimum Resistance 5 = 300. 150.

Moisture Threshold 5 = 0.33 0.13

Vapor Pressure Deficit 5 = 4000. 4000.

Rpc 5 = 0.50 0.50

Number of Root Zones 5 = 3

Root Zone Depths 5 = 0.090 0.240 0.270
Overstory Root Fraction 5 = 0.20 0.40 0.40
Understory Root Fraction 5 = 0.50 0.50 0.0
Overstory Monthly LAI 5 = 0.90 0.90 0.80 0.80 0.90 0.90 1.60 1.80 2.40 1.90 1.20 1.00

Understory Monthly LAI 5
Overstory Monthly Alb 5
Understory Monthly Alb 5

0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50
020202020202 020.2020.20.20.2
020202020202 020202020202

Vegetation Description 6 =  Grassland
Overstory Present 6 = FALSE
Understory Present 6 = TRUE
Fractional Coverage 6 =

Trunk Space 6 =

Aerodynamic Attenuation 6
Radiation Attenuation 6
Hemi Fract Coverage 6
Clumping Factor 6 =
Leaf Angle A6 =
Leaf Abgle B6 =
Scattering Parameter 6
Max Snow int Capacity 6
Mass Release Drip Ratio 6
Snow Interception Eff 6

Impervious Fraction 6 = 00

Height 6 = 05

Maximum Resistance 6 = 600

Minimum Resistance 6 = 200

Moisture Threshold 6 = 033

Vapor Pressure Deficit 6 = 4000

Rpc 6 = 0.40

Number of Root Zones 6 = 3

Root Zone Depths 6 = 0.030 0.080 0.090

Overstory Root Fraction 6 =
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04 06 O

Understory Root Fraction 6
Overstory Monthly LAI 6
Understory Monthly LAI 6
Overstory Monthly Alb 6
Understory Monthly Alb 6

0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50

0.2020202020.2 020.20.20.20.20.2

Vegetation Description 7 = Open Shrubland
Overstory Present 7 = FALSE
Understory Present 7 = TRUE

Fractional Coverage 7 =
Trunk Space 7 =
Aerodynamic Attenuation 7
Radiation Attenuation 7
Hemi Fract Coverage 7
Clumping Factor 7 =
Leaf Angle A7 =
Leaf Abgle B 7 =
Scattering Parameter 7
Max Snow int Capacity 7
Mass Release Drip Ratio 7
Snow Interception Eff 7

Impervious Fraction 7 = 0.0

Height 7 = 1.5

Maximum Resistance 7 = 600

Minimum Resistance 7 = 200

Moisture Threshold 7 = 033

Vapor Pressure Deficit 7 = 4000

Rpc 7 = 0.60

Number of Root Zones 7 = 3

Root Zone Depths 7 = 0.030 0.080 0.090
Overstory Root Fraction 7 =

Understory Root Fraction 7 = 04 06 O
Overstory Monthly LAl 7 =

Understory Monthly LAI 7 = 0.40 0.40 0.40 0.30 0.30 0.30 1.00 2.00 2.50 1.60 0.80 0.50
Overstory Monthly Alb 7 =

Understory Monthly Alb 7 = 020202020202 020202020202
Vegetation Description 8 = Plantation
Overstory Present 8 = TRUE

Understory Present 8 = TRUE

Fractional Coverage 8 = 05

Trunk Space 8 = 0.45

Aerodynamic Attenuation 8 = 1.2

Radiation Attenuation 8 = 0.15

Hemi Fract Coverage 8 =

Clumping Factor 8 =

Leaf Angle A8 =

Leaf Abgle B 8 =

Scattering Parameter 8 =

Max Snow int Capacity 8 = 0.003

Mass Release Drip Ratio 8 = 04

Snow Interception Eff 8 = 06

Impervious Fraction 8 = 0.0

Height 8 = 25015

Maximum Resistance 8 = 4500. 2300.
Minimum Resistance 8 = 300. 150.
Moisture Threshold 8 = 0.33 0.13
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Vapor Pressure Deficit 8
Rpc 8

Number of Root Zones 8
Root Zone Depths 8 =
Overstory Root Fraction 8
Understory Root Fraction 8
Overstory Monthly LAI 8
Understory Monthly LAI 8
Overstory Monthly Alb 8
Understory Monthly Alb 8

Vegetation Description 9
Overstory Present 9 =
Understory Present 9
Fractional Coverage 9
Trunk Space 9 =
Aerodynamic Attenuation 9
Radiation Attenuation 9
Hemi Fract Coverage 9
Clumping Factor 9 =
Leaf Angle A9 =
Leaf Abgle B9 =
Scattering Parameter 9
Max Snow int Capacity 9
Mass Release Drip Ratio 9
Snow Interception Eff 9
Impervious Fraction 9
Height 9 =
Maximum Resistance 9
Minimum Resistance 9
Moisture Threshold 9
Vapor Pressure Deficit 9
Rpc9 =
Number of Root Zones 9
Root Zone Depths 9 =
Overstory Root Fraction 9
Understory Root Fraction 9
Overstory Monthly LAI 9
Understory Monthly LAI 9
Overstory Monthly Alb 9
Understory Monthly Alb 89

Vegetation Description 10
Overstory Present 10
Understory Present 10
Fractional Coverage 10
Trunk Space 10 =
Aerodynamic Attenuation 10
Radiation Attenuation 10
Hemi Fract Coverage 10
Clumping Factor 10

Leaf Angle A 10 =
Leaf Abgle B 10
Scattering Parameter 10
Max Snow int Capacity 10
Mass Release Drip Ratio 10
Snow Interception Eff 10

= 4000. 4000.
0.70 0.60

= 3

0.150 0.400 0.450
= 0.20 0.40 0.40

0.50 0.50 0.0

020202020202 020202020202
020202020202 020202020202

= Urban
TRUE

= TRUE
= 05
0.55

1.2
0.15

0.003

0.5

= 0.6

= 0.0

25.01.5

= 5500. 2300.
300. 150.

= 033013

= 5000. 5000.
0.70 0.40

= 3

0.150 0.400 0.450
= 02004 04
0.50 0.50 0.0

2.40 2.50 1.80 2.10 2.40 2.50 2.60 2.60 3.10 3.10 2.40 2.30
0.36 0.30 0.30 0.30 0.20 0.30 1.00 1.00 2.00 1.20 0.70 0.50

0.2020202020.2 020.20.20.20.20.2
0.2020202020.2 020.20.20.20.20.2

Water
= FALSE
FALSE

2.40 2.50 1.80 2.10 2.40 2.50 2.60 2.60 3.10 3.10 2.40 2.30
0.36 0.30 0.30 0.30 0.20 0.30 1.00 1.00 2.00 1.20 0.70 0.50
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0.0

Impervious Fraction 10
Height 10 =
Maximum Resistance 10
Minimum Resistance 10 =
Moisture Threshold 10
Vapor Pressure Deficit 10
Rpc 10 =
Number of Root Zones 10
Root Zone Depths 10
Overstory Root Fraction 10
Understory Root Fraction 10
Overstory Monthly LAl 10
Understory Monthly LAI 10
Overstory Monthly Alb 10
Understory Monthly Alb 10

3
0.015 0.04 0.045

HAHAHAH AR MODEL OUTPUT SECTION##HH#HEHBHAHFHEHEHHHHEHEHAHHHH
[OUTPUT]

Output Directory = ./Results/
Initial State Directory = ./ModelState/
Number of Model States = 2

State Date 1 = 12/31/1993-21:00
State Date 2 = 12/31/2000-21:00

Number of Map Variables 0
HUHHH S R R R R
[End]
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Annex D: Equations used to calculate the various terms in
the Penman equation

Saturation vapor pressure

The saturation vapor pressure in kPa at temperature T in °C was computed by Equation D-1.

Equation D-1

eS(T):0.6ll-exp( 17.271 ]

T+237.3

Actual vapor pressure
The actual vapor pressure was then calculated from the saturated vapor pressure and observed
relative humidity (RH in %) using Equation D-2.

RH
e =e(T) —— Equation D-2
=) 00 a

Slope of saturation vapor pressure

Equation D-3 was used to determine the slope of the saturation vapor pressure curve.

4098-¢e.(T) .
A=————"— Equation D-3
(T +237.3)
Psychrometric constant
The psychrometric constant was calculated by Equation D-4.
i E D-4
= tion D-
"= 06224 auatien

Where, c, is the specific heat of water at constant pressure (0.001013 kJ/kg/°C. The latent
heat of vaporization (1) and atmospheric pressure (P) were calculated from Equations D-5 and

D-6, respectively.

A=2.501-(2.361x107)-T Equation D-5
526
P=101.3- [Wj Equation D-6

T is temperature in °C and Z is altitude in meters above mean sea level.
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Net radiation at the surface
The net radiation at the water surface was determined as the algebraic sum of the solar and

longwave radiations (Equation D-7).

R =R (-a)+R, Equation D-7
a is albedo of the water surface; Ry is solar radiation reaching the ground surface, and in the
absence of observed data it can be estimated from readily available measurements using
empirical relations. In this study as availability of temperature data is relatively better, solar

radiation was estimated using Equation D-8.

R =kR (T, —T

0.5
max min )

Equation D-8

Where, k is a constant which is usually taken as 0.16; Ty and Ty, are the daily minimum

and maximum temperatures in °C; R, is extraterrestrial solar radiation which is given by
Ro =37.59d [, sin(¢)sin(5) + sin(w, ) cos(S)] Equation D-9

Where ¢ is latitude (rad) and the other terms are functions of the position of the sun: d; is the

relative distance between the sun and the earth, s sunset hour angle (rad), o solar declination

angle (rad); they could be calculated as follows:

2
d’, =1+ 0.033 cos (%J} Equation D-10

Where, J is the Julian day number which starts on January 1.

5 =0.409sin| 2F 7 -139 Equation D-11
365

o, = arccos(—tan(g) tan(o)) Equation D-12

The net longwave radiation was computed as the difference between the downward and
outgoing longwave radiations. The downward longwave radiation was determined following
the procedure presented in Chapter 5, Section 5.2.6. The outgoing longwave radiation was
calculated by Equation D-13.

R T=¢oT* Equation D-13

Where is emissivity of water surface, taken as 0.97; ¢ is Stephan-Boltzman constant (5.67 x

10® Wm™?K™*s™); T is the water surface temperature (K), assumed to be the air temperature.



