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FOREWORD

This document is an English version of my Ph.D. thesis, initially written in French.

This is not a literal translation from the whole original document. Nevertheless, Introduction,
chapter 1, which sums up the state of the art of multiple testing, and the general conclusion of
this work are fully translated.

Comments and discussions in chapter 2 and chapter 3 are those of three articles published
recently. They have simply been organized as in the French document. Note that these results are
the core of my thesis and, of course, the French version has been fully inspired by these three articles
so that the two versions of these chapters are quite similar.

Chapter 4 introduces on-going work on Factor Analysis, and deals more particularly with the im-
plementation of this method in a high-dimensional setting. The English version of this chapter sums
up the main results on this subject whereas the French version gives in addition more bibliographical
details.

The proposed method to deal with dependence and high-dimension in multiple testing has been
assessed on several real datasets. The French document presents application on two examples (a
public dataset and a current study led by the Genomics department, INRA, Rennes). Here, the
application of the method on real data is described through the tutorial of the associated R package
(FAMT), which has been recently submitted to the Journal of Statistical Software.

The French version is available on TEL website: http://tel.archives-ouvertes.fr/tel-00539741/fr/
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CHAPTER 1

ABSTRACT

Motivated by issues raised by the analysis of gene expressions data, this thesis focuses on the impact
of dependence on the properties of multiple testing procedures for high-dimensional data. We propose
a methodology based on a Factor Analysis model for the correlation structure. Model parameters are
estimated thanks to an em algorithm and an ad hoc methodology allowing to determine the model
that fits best the covariance structure is defined.

Moreover, the factor structure provides a general framework to deal with dependence in multiple
testing. Two main issues are more particularly considered: the estimation of π0, the proportion of true
null hypotheses, and the control of error rates. The proposed framework leads to less variability in the
estimation of both π0 and the number of false-positives. Consequently, it shows large improvements
of power and stability of simultaneous inference with respect to existing multiple testing procedures.

These results are illustrated by real data from microarray experiments and the proposed methodology
is implemented in a R package called FAMT.

Key words Multiple testing, Dependence, Factor Analysis, Proportion of null hypotheses, FDR, R
package FAMT
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INTRODUCTION

Extending the well-assessed theory of hypothesis testing, issues raised by multiple testing, and more
generally by simultaneous inference, have been widely discussed in the statistical literature for a long
time. Indeed, Fisher firstly proposed in the 1930’s testing procedures to test several linear contrasts
in analysis of variance. These procedures are deduced from the general tests theory introduced at
the beginning of the XXth century by Fisher, Student, Neymann, K. and E. Pearson, itself based on
Laplace, Demoivre and Bernoulli works on the Error Theory by the end of the XIXth century (for
more historical details, see Salsburg [2002]).

The decision of a statistical test requires to choose between two hypotheses: the null hypothesis (H0)
and the alternative one (H1). The goal of a test procedure is to control the risk of wrongly reject H0

(type-I error). Naturally, extending this approach to multiple tests consists initially in controlling
the risk of wrongly rejecting H0 at least once. In the parametric setting, there is a parallel between
the univariate test theory and parameter estimation as determining the critical region of the test is
similar to determining the tested parameter’s confidence interval. A parallel can also be made in the
case of multiple tests with the simultaneous confidence interval for the tested parameters.

The univariate approach of test theory focus on optimal procedures. Optimality is achieved when,
while controlling the type-I error, power is maximized. When testing several hypotheses at the same
time, such definition of optimality does not arise and finding the best multiple testing procedure is
still an open question [Shaffer, 1995].

Multiplicity has been an abounding issue and many methods to deal with the number of tests are
available. We can quote among them post-hoc tests in ANOVA by Duncan, Dunnett, Scheffé and
Tukey. Choosing one method or another depends on the context: in biology when one studies the
effet of a treatment on several response variables, in medicine when one studies the effect of a dose
of drug at different clinical trial steps, or even in food-industry, when sensory studies are conducted
to characterize several products thanks to different descriptors.

5
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Basically, multiple testing procedures rely on the choice of a threshold on the p-values associated
to the individual tests, differences between them being due to the way of finding the threshold.
Comparative studies focus on the control of the type-I error, determined at the level of the whole
set of tests, namely the risk to wrongly reject H0 at least once (called the Family-Wise Error Rate,
FWER). Controlling type-I error is of most importance in these contexts where a moderate number of
tests are simultaneously performed, and power issue is often set apart. procedures such as Bonferroni
[1936] or Sidak [1967] that control the FWER become highly conservative as the number of tests
increases. As a matter of fact, the number of truly rejected null hypotheses is very low.

Besides, the assumption of independence on which most of these procedures are based is discussed
very seldom in the literature. In post-hoc tests, dependence is derived from the experimental design
and from the tested contrasts. It can be argued that a good design can limit and balance the effect
of dependence. General approaches to take into account dependence are often computationally
expensive, when the number of tested hypotheses increases.

Large scale multiple testing For the last two decades, innovative improvements have been made
to face new scientific challenges. Particularly, high throughput technologies result in huge volume of
data that allows the global analysis of complex systems. We can explore for example brain activity
thanks to functional Magnetic Resonance Imaging (fMRI), clusters of elementary particles thanks
to imaging in astrophysics, the capital market through commercial flows in finance, or the genome
thanks to functional genomics in life sciences.

Understand, analyse and predict the working of such complex systems require to take into account
both the heterogeneity and the dimension of the data. In most situations, the number of measured
variables is close to several thousands, whereas the sample size is about some tens at most. Data
are then said in high-dimension.

At the root of the main issue of this thesis lies questions raised by the analysis of DNA microarray
data. DNA microarrays are a biotechnology that allows the simultaneous measurement of gene
expressions, at the level of the whole genome. Such data can be used, for example, to diagnose tumors,
to profile drug-effect, or to group genes with similar expression patterns associated to common
biological processes. This biological context has markedly contributed to the development of the
statistical methodology for multiple testing in high dimensional data [Efron et al., 2001, Storey, 2002,
Dudoit et al., 2003]. Indeed, an important question in microarray experiments is the identification
of differentially expressed genes i.e genes whose expression levels differ with respect to a covariate
of interest, that can be either categorical, such as treatment/control status, or continuous such as a
drug dose. The biological question of differential analysis is then restated as a multiple hypotheses
testing issue, considering the simultaneous tests for each gene of the null hypothesis: H0 : "there is
no association between the expression levels and the covariate".

Contexts evoked previously induce thousands of simultaneous tests. Procedures controlling the
FWER have appeared unsuitable, as they lead to conservative decision in a high-dimensional setting.
An approach that has turned out to be more appropriate in high dimension is to control the False
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Discovery Rate (FDR) [Benjamini and Hochberg, 1995], which is the expected proportion of false
positives among the rejected hypotheses. This approach is useful in exploratory analyses, where one
aims at maximizing the discoveries of true positives, rather than guarding against one or more false
positives. Many methods have been proposed to control the FDR, the most famous being due to
Benjamini and Hochberg [1995] and called hereafter the BH procedure.

Most of such procedures assume that the p-values are independently distributed according to a two-
component mixture model [Efron et al., 2001], characterising p-values distributions under the true
null hypothesis and under the alternative one, respectively. The mixing parameter of this model,
denoted π0, is defined as the fraction of null hypotheses among the tests. In addition to being an
interesting quantity in itself, for its biological interpretation, π0 is a key parameter in assessing or
controlling error rates. Black [2004] or more recently Kim and Van de Wiel [2008] showed that a
more accurate estimation of π0 would improve the power of multiple testing procedures. Adaptative
procedures, including π0 estimation, has then emerged in the literature [Storey et al., 2004, Benjamini
et al., 2006].

Multiple testing and dependence Among the topics that are recently discussed in the literature
on multiple testing in large-scale data, the impact of dependence between the variables has elicited an
increasing interest. Indeed, dependence between tests in directly deduced from dependence between
the involved response variables. The true signal and several confusing factors are often observed at
the same time. These factors lead to misleading conclusion on tests decisions. In microarray data
analysis, dependence between gene expression may comes from some biological gene interactions, in
which the studied biological process is not necessarily involved but which impact the level of gene
expressions as well. Technological bias can also affect gene expressions, even if some pre-processing
treatments of the data such as normalisation aim at limiting their impacts. Dependence is therefore
complex and hard to model but its impact on procedures properties is far from negligible.

Methodology for multiple testing in high dimension under dependence Many papers
have especially focused on the control of the FDR under various patterns of dependence between test
statistics. An important contribution to this point was given by Benjamini and Yekutieli [2001]. They
showed the BH procedure still controls the FDR under assumption of a certain class of dependence
called positive. Extending the initial condition of the BH procedure was also the point of view of
Storey et al. [2004] or Blanchard and Roquain [2008]. Some authors [Storey et al., 2007] proposed to
modify the test statistic and recent proposals also suggest to modify the theorical null distribution
[Efron, 2004]. In fact, the general message seems to be that, for a high amount of dependence, the
BH thresholding method tends to over-control the FDR, leading to more conservative rules than
expected under the assumption of independence. Consequently, this also means that dependence
affects the power of the BH procedure and its stability.

Taking into account dependence casts doubt on multiple testing procedures as a whole. The models
that link each response variable and the covariate are not independent, but independent conditionally
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to the factors of heterogeneity. Thus, a common idea in many recent papers is that dependence
between test statistics should be taken into account by borrowing information across the variables
rather than treating them as independent [Leek and Storey, 2008]. This can be achieved by modeling
the common information and taking advantage of the information shared between variables.

The results presented in this thesis are in the continuation of this idea, and we focus on the properties
of multiple testing procedures under dependence. More particularly, we propose to stabilize multiple
testing procedures considering a Factor Analysis model for the dependence structure. Factor Anal-
ysis (FA) is an analytic tool used for many years in economics, social sciences and psychometrics,
originally in the field of intelligence research [Spearman, 1904], and has only appeared recently in the
study of the dependence structure in high dimensional datasets provided by microarray technology
[Pournara and Wernisch, 2007, Kustra et al., 2006]. It describes the covariance relations between
observed variables in terms of a meaningful small set of latent variables, called “common factors”.
FA model resembles a latent variables model, so an EM algorithm is used to estimates its parameters
[Rubin and Thayer, 1982].

The main goal of this thesis is to study the statistical properties of simultaneous inference under
dependence. First of all, we focus on the impact of dependence on the control of error rates and on
the power of procedures. Then, this study leads to th development of an adaptative strategy to deal
with dependence in multiple testing.

Chapter 1 sums up the state of the art of multiple testing in high-dimension. It essentially describes
the underlying hypotheses of usual multiple testing procedures, introducing error rates, decision rules
and the estimation of a key parameter of most procedures, the proportion of true null hypotheses.

In chapter 2, a general framework to take into account dependence in multiple testing is presented.
In this framework, we study the impact of a deviation to the assumption of independence. The impact
on tests statistics and p-values distributions, π0 estimation and error rates control are successively
considered. The main result is that the proposed framework allows to derive the exact expression of
π0 variance as well as the number of false-positives variance, under general dependence.

Chapter 3 introduce Factor Analysis as a model for dependence in multiple testing. More precisely,
we propose an approach based on conditionally independent test statistics to reduce the impact of
dependence. The proposed procedure is called FAMT, for Factor Analysis for Multiple Testing. More
over, conditional estimators of π0 and FDR are proposed.

Chapter 4 focuses on the estimation of the model parameters. A Maximum Likelihood estimation
is proposed, based on an EM algorithm. The choice of the number of factors to extract is studied,
and method to is proposed to determine the optimal number.

Finally, the proposed method is illustrated in chapter 5 thanks to an application to gene expressions
data. This chapter is both a case study and a tutorial for the R package that implements FAMT. The
aim of the case study is to show the improvement brought by our approach in a larger biological study,
such as factor interpretation, QTL identification or even gene networks inference. The examples
studied are different on the French and in the English version. Here, this chapter is the article
submitted to the Journal of Statistical Software presenting the R package FAMT.



CHAPTER 2

LARGE-SCALE MULTIPLE TESTING

abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbc
ddddddd

Abstract High-throughput experiments have markedly contributed to the development
of the statistical methodology for multiple testing in high-dimensional data. First of all,
this chapter presents the classical framework of large-scale multiple testing, in particular
usual hypotheses on p-values distribution. We put the emphasis on essential concepts of
multiple testing procedures, such as error rates and the true null hypotheses proportion.

eeeeeee
fggggggggggggggggggggggggggggggggggggggggggh
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Introduction: statistical context

Statistical modeling For k = 1, . . . ,m, let Yk denotes the kth response variable among m. In
high dimensional frameworks, m can be much larger than the number n of independent observations
of Y = [Y1, Y2, . . . , Ym]. For each response Yk, the link with p explanatory variables is explicitly
defined by the following regression model:

Yk = mk(x) + εk ∀k ∈ [1;m] ≡M (2.1)

where x is the p−vector of covariates, mk is an unspecified regression function and εk is a random
error term with density function ϕk. Furthermore, it is assumed that the density functions ϕk are
the same up to a scaling factor σk: ∀k, ϕk(ε) = ϕ(ε/σk)/σk where ϕ is the common standardized
density function with mean 0 and standard deviation 1. In practice, this means that the response
variables have homogeneous distributions.

Multiple testing For k ∈ M0 ⊂ M with #M0 = m0, mk(x) = m
(0)
k (x), where m(0)

k is an
arbitrary function of interest and for k /∈ M0, mk(x) 6= m

(0)
k (x). Multiple testing aims at finding

out the response variables for which Hk0 : mk(x) = m
(0)
k (x) is not true.

The test statistic is denoted Tk = sk(Yk). Under the true null hypothesis, its distribution F k0 (T ) is
known and we define the p-value for each test:

pk = 1− F k0 (Tk) (2.2)

Multiple hypotheses testing issues consider the simultaneous tests of the null hypotheses Hk
0 , one

test for each response variable. Most procedures can be split into two steps:

1. Computing a test statistic for each response variable, and deduce the associated p-value

2. Applying a thresholding procedure on the p-values of the individual tests to determine which
null hypotheses have to be rejected

In the first step, the choice of an appropriate test statistic only depends on the experimental design
and the type of response and covariate. We consider that the test statistic is correctly chosen with
respect to the statistical context. The second step is the main concern of the following as the
threshold on p-values can not be determined as in the univariate issue [Dudoit et al., 2002]. More
particularly, the choice of the threshold influence the number of errors in tests decisions.
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declared declared
Total

non significant significant

H0 Ut Vt m0

H1 Tt St m1

Total m−Rt Rt m

Table 2.1: Numbers of errors in a multiple testing procedure

For a given t, the number of possible errors in a multiple testing procedure are summarized in table

2.1, with the same notations as in Benjamini and Hochberg [1995].

m is the known number of tested hypotheses. m0 and m1, respectively the number of true null
and true alternative hypotheses, are unknown parameters. For a given threshold t for the p-values,
Rt =

∑
k∈M 1pk≤t, the total number of significant tests, is an observed random variable. On the

contrary, Ut and St on the one hand, and Tt and Vt on the other hand, respectively the number of
right and wrong decisions, are unobserved random variables.

Ideally, a multiple testing procedure would minimize both the number Vt of false positives (type-I
errors) and the number Tt of false negatives (type-II errors). A standard approach in practice in
the univariate setting is to minimize the type-II error rate, that is to say maximize power, for a
given acceptable level α for the type-I error rate. More false positives can occur when the number of
tests increase. Multiplicity necessitate to clearly define global type-I error rates, at the level of the
whole set of tests instead of the level of individual tests. More over, statistical significance is more
complex to manage in the multiple testing setting and dedicated procedures are settled to deal with
multiplicity.

Many recent articles and books describe the general framework of multiple testing [Efron et al., 2001,
Storey, 2003, Dudoit et al., 2002, Dudoit and VanDerLaan, 2008]. This usual setting for multiple
testing is defined in the first section of this chapter. Then, essential concepts are introduced, such
as the true null hypotheses proportion and error rates. Finally, major multiple testing procedures
are presented.

2.1. A mixture model for p-value density

2.1.1 General framework

Under the assumption of identically distributed standardized error terms εk/σk, the test statistics
marginal distributions F k(T ) only differ by the scaled regression function τk = mk(x)/σk. In the
following, G(t) = P(pk ≤ t) stands for the probability distribution function of pk.

Most of existing methodological development rely on the following assumption:
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Hypothèse 1. (P-values distribution)

1. ∀k, F (T ;m(0)
k (x)/σ) = F0(T ), so that the null distribution is the same for all tests.

The p-values are now defined as pk = 1 − F0(Tk). For k ∈ M0, pk is therefore distributed

according to the uniform distribution: ∀k ∈M0, G
k
0(t) = G0(t) =

{
t if p ∈ [0; 1]
0 otherwise

2. Under H1, p-values are identically distributed: ∀k ∈M1, G
k
1(t) = G1(t). The non-centrality

parameter is then assumed to be the same: ∀k ∈M1 τk = τ .

This leads to the following two-component mixture model [Efron et al., 2001, Storey, 2002]:

G(t) = π0G0(t) + (1− π0)G1(t) (2.3)

where π0 = m0
m is the unknown proportion of true null hypotheses (see section 2.2 for π0 estimation).

Let’s g denotes the p-values density.

g(p) = π0g0(p) + (1− π0)g1(p) (2.4)

where g0(p) = 1, ∀p. Further conditions are necessary to ensure identifiability of π0, which can be
obtained for instance by assuming that g1 is a decreasing function of the p-values with g1(1) = 0
[Genovese and Wasserman, 2002].

2.1.2 Linear model

The linear model, withmk(x) = xθk, is a very usual special case of model (2.1) for which ϕk(ε) ≡ N (0;σ2
k).

m
(0)
k is obtained by restrictions on mk such as c′θk = 0, where the p−vector c defines a given linear

contrast. Testing Hk
0 relies on the following t-test statistic:

Définition 2.1.1 (Student test statistic).

Tk =
c′θ̂k√
V̂(c′θ̂k)

=
c′θ̂k√

σ̂2
kn
−1c′S−1

x c
∼ Tτk(df = n− 2)

where Sx is the empirical covariance matrix of explanatory variables, and τk is the non-centrality
parameter of the Student distribution with df degrees of freedom.

Note that τk = 0 if k ∈M0 and τk = τ 6= 0, if k ∈M1.

Exemple 1. We first consider m = 500 independent variables and n = 60 observations such
as Yn×m ∼ Nm(µ; Im). The multiple testing procedure aims at finding out which among these m
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variables have different expectations in two groups with equal sample size n = 30. For m1 = 100
variables having different expectations in each group, the difference δ is chosen so that the usual
t-tests have a variable-by-variable power of 0, 8 and for the remaining m0 = 400 variables, the
difference is set to 0. The non-centrality parameter is here defined by τ = δ/

√
2/n.
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(p,

 τ)

τ = 1 : pw=10%
τ = 2 : pw=28%
τ = 3 : pw=54%
τ = 4 : pw=78%

Figure 2.1: Graphical representation of g1 for different values for τ - pw: individual power of t-test

φ0 and φτ denote Student density (df = n− 2) with non-centrality parameters 0 and τ respectively.
If qa = φ−1

0 (a), g1(p) = φτ (q1−p/2)+φτ (qp/2)

2×φ0(q1−p/2) (see figure 2.1). If the individual test power is high, then
g1(1) is close to 0. On the contrary, under the true null and the alternative hypotheses, distributions
are not well separated, which can induce problems for the identification of the mixture components
(see section 2.2).

2.1.3 Semi-parametric approach

Exemple 2. Assumption 1 is now illustrated using real microarray data which were primarily
analyzed by Golub Golub et al. [1999] in order to identify genes that are differentially expressed
in patients with two types of leukemias, acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML). The data are summarized by a 38 matrix Y = [Yij ], where Yij denotes the
expression level for gene j in tumor sample i. The dataset comprises n = 38 samples, 27 ALL
cases and 11 AML cases, and m = 3051 gene expressions. Preprocessing steps were applied to raw
data (available on the website http://www.broadinstitute.org/cgi-bin/cancer/datasets.

cgi). Normalized data are then available from the R package multtest [Pollard et al.]. A t-test
is performed for each gene expression.
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Figure 2.2: P-values distribution (Golub data): estimated density and identification of mixture
components

Figure 2.2 shows the decomposition of the p-values’ distribution into the two-component mixture
model introduced in (2.4). The semi-parametric approach implemented in the R package kerfdr

[Guedj et al., 2007] is used. In model (2.4), we need to estimate π0 and g1. Many methods can
achieve π0 estimation and are detailed in the following section. In this example, its estimation with
kerfdr’s dedicated function is 0, 499. We consider a kernel approach for g1 estimation [Silverman,
1986, Robin et al., 2007]:

ĝ1(p) =
1

m1ω

∑
k∈M1

K

(
p− pk
ω

)
(2.5)

M1 is unknown. A solution is to weight each observation with its posterior probability: η(pk) =
(1−π0)g1(pk)

g(pk) [Efron et al., 2001]. The estimation of the p-values density under the alternative hypoth-
esis is:

ĝ1(p) =
1

ω
∑

k∈M η(pk)

∑
k∈M

η(pk)K
(
p− pk
ω

)
(2.6)

And then one iterates g1 estimation steps and η update steps [Robin et al., 2007]. For the choice of
the bandwidth ω, see for example Silverman [1986].

2.2. Estimation of the proportion of true null hypotheses

In addition to being an interesting quantity in itself, for its interpretation in the studied context, π0

is a key parameter in assessing or controlling error rates.

Various methods for π0 estimation have been developed in the literature. Most of them rely on
the assumption of independent p-values distributed according to the two-component mixture model
(2.4), with a uniform distribution for null p-values, and taking advantage of the dominance of the
null component π0g0 of g for large p-values.
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2.2.1 Empirical estimator

The main approach, initially due to Schweder and Spjotvoll [1982], consists in estimating π0 by the
density of p-values exceeding a tuning parameter λ:

Définition 2.2.1 (empirical estimator of π0 [Schweder and Spjotvoll, 1982]).

π̂0(λ) =
#(pk > λ)
(1− λ)m

=
Wλ

(1− λ)m

where Wλ denotes the number of p-values larger than λ. Note that Wλ can be decomposed into the
sum of two independent binomial variables: Wλ =

∑m
k=1 1pk>λ =

∑
k∈M0

1pk>λ +
∑

k/∈M0
1pk>λ.

Under assumption (1), Uλ =
∑

k∈M0
1pk>λ ∼ Bin(m0, 1− λ) and Tλ =

∑
k/∈M0

1pk>λ ∼ Bin(m−
m0, 1 − G1(λ)). The expectation and variance of π̂0(λ) under assumption of independent p-values
are deduced:

Proposition 2.2.1.

E (π̂0(λ)) = π0 +
1−G1(λ)

1− λ
(1− π0) (2.7)

V (π̂0(λ)) =
λπ0

m(1− λ)
+
G1(λ)(1−G1(λ))(1− π0)

m(1− λ)2
(2.8)

It follows from the above expression of the bias of π̂0(λ) that dominance of the null component in
the mixture of distributions should reasonably be specified by assuming that [1−G1(λ)]/(1− λ) is
a decreasing function of λ. In this case, the minimum bias is (1 − π0)g1(1), which is obtained for
λ = 1. As illustrated by figure 2.3, it can be checked in the special case of t-tests (see example 2)
that (1−G1(λ))/(1− λ) is actually a positive decreasing function of λ with a lower bound at λ = 1
given by φτ (0)/φ0(0). However, for small values of |τ |, the minimum bias can be non-negligible, even
for large values of λ: E(π̂0(λ))− π0 ≥ (1− π0)φτ (0)/φ0(0) ≥ 0.

On the contrary, variance of π̂0 increases when λ tend to 1.

Choice of λ A relevant choice of the tuning parameter λ should result from a bias-variance trade-
off for π̂0(λ). Several techniques have been proposed to achieve a good compromise between bias and
variance [Langaas et al., 2005]. We only mention here the minimization of a bootstrap estimation of
the Mean Square Error [Storey et al., 2004] which is one of the most used in practice.

Smoothing method Note that π̂0(t) can also be expressed as follows: π̂0(λ) = (1−Ĝ(λ))/(1−λ),
where Ĝ is the empirical estimate of the probability distribution function G of the p-values. It is
deduced from the previous expression that, for λ close to 1, π̂0(λ) can be approximated by ĝ(1),
where ĝ is a consistent estimate of the density function g. This motivates the estimation of π0, using
smoothing techniques, by the limiting value of π̂0(λ) for λ = 1 [Storey and Tibshirani, 2003].
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Figure 2.3: Bias of π̂0 with respect to the tuning parameter λ, considering different levels of power
(pw) for individual tests (non-centrality parameter |τ |)

2.2.2 Density-based estimators

Furthermore, alternative estimators of the form π̂0 = ĝ(1) have recently been proposed. Estimation
procedures essentially differ by the choice of a non-parametric estimate for g, depending on the
underlying assumptions on the regularity and shape of g. We mention here kernel methods (see
example 2) and an algorithm dedicated to the estimation of a decreasing convex function [Langaas
et al., 2005]

A comprehensive comparative study provided by Langaas et al. [2005] concludes to a better ro-
bustness of this kind of density-based estimates to departures from independence of the p-values.
Nevertheless, the empirical estimator with a bootstrap approach to choose the tuning parameter λ
is widely used in practice.

2.3. Error rates

When testing a single hypothesis, the probability of a type-I error is usually controlled at some
designated level α. This can be achieved by choosing a critical value t for the p-values such that
P(pk < t|H0) < α. The multiple testing framework is concerned with several tests simultaneously
and statistical significance is more complex to define. A variety of generalizations to the multiple
testing situation are possible for error rates: the type-I and type-II error rates described in this
section are the most standard [Dudoit and VanDerLaan, 2008].



Chapter 2: Large-scale multiple testing 18

2.3.1 Type-I error rates

Two error rates associated with false rejections of null hypotheses (type-I errors) are manly consid-
ered:

• The family-wise error rate (FWER): FWERt = P(Vt ≥ 1) = 1− P(Vt = 0)

• The false discovery rate (FDR): FDRt = E(FDPt|Rt > 0).P(Rt > 0), where FDPt = Vt
Rt

.

The FWER of a multiple testing procedure is the probability of falsely rejecting at least one true null
hypothesis and the FDR is the expected ratio of the number of erroneously rejected null hypotheses
to the total number of rejected null hypotheses.

When the number of tests m is large, P(Rt > 0) m→∞→ 1. Storey et al. [2004] therefore define the
positive-FDR by:

pFDR = E(
Vt
Rt
|Rt > 0) =

FDRt
P(Rt > 0)

The Family Wise Error Rate (FWER) is historically the controlled error rate (see introduction).

However, these procedures may be very conservative, mainly when the number of hypotheses is very
large. An approach that has turned out to be more appropriate in high dimension is to control
the False Discovery Rate (FDR). This approach is useful in exploratory analyses, when one aims at
maximizing the discoveries of true positives, rather than guarding against one or more false positives.

2.3.2 Type-II error rates

Two error rates associated with false non-rejections of null hypotheses (type-II errors) can be con-
sidered:

• Expectation of the proportion of false-negatives FNPt = Tt
m1

: NDRt = E(FNPt)

• Probability that at least one true-positive occurs: P(St ≥ 1) = P(Tt ≤ m1 − 1)

2.4. Multiple testing procedures

Multiple testing procedures account for the multiplicity of the tests by a relevant thresholding tech-
nique: t is chosen so that all the null hypotheses Hk

0 for which pk ≤ t are rejected, where pk stands
for the p-value of the kth test. The threshold t can be fixed or data-dependent. A multiple testing
procedure is said to control a particular type-I error rate at level α, if this error rate is less than or
equal to α when the procedure is applied. Strong control refers to control of the type-I error rate
under any combination of true and false null hypotheses, and weak control refers to control of the
type-I error rate only when all the null hypotheses are true (π0 = 1).
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In general, the complete null hypothesis is not realistic and weak control is unsatisfactory. In many
realm of applications, not all null hypotheses may be true, but the subsetM0 is unknown. Strong
control ensures that the type-I error rate is controlled in this case. In practice then, where it is very
unlikely that no test is positive, it seems particularly important to consider strong control of the
type-I error rate.

A detailed review of multiple testing procedure is available in Dudoit and VanDerLaan [2008]. The
following section present the procedures mostly used in practice and usually implemented in the
leading statistical software. The different steps of multiple testing procedures are simplified on
figure 2.4.

Figure 2.4: Multiple testing procedures steps

2.4.1 Definitions and principle

Usually, one distinguishes among two types of multiple testing procedures:

• Single-step procedures Equivalent multiplicity adjustments are performed for all hypothe-
ses, regardless of the ordering of the p-values. Each hypothesis is evaluated considering a
threshold t for the p-values that is independent of the results of other tests.

• Step-wise procedures Hypotheses that correspond to the most significant p-values (resp.
least significant) are considered successively in step-down (resp. step-up) procedures, with
further tests dependent on the outcomes of earlier ones. In step-down procedures, as soon as
one fails to reject a null hypothesis, no further hypotheses are rejected - see figure 2.5(a). In
step-up procedures, as soon as one null hypothesis is rejected, all further hypotheses are also
rejected - see figure 2.5(b).

In step-wise procedures, rejection of a particular hypothesis is based not only on the total number
of hypotheses, but also on the outcome of the tests of other hypotheses. The threshold t is therefore
redefined at each step.

A large variety of procedures can be used to guarantee that the number of erroneous rejections of
the null hypothesis is maintained under a pre-specified level. Each of them provides a more or less
conservative trade-off strategy between rejecting true null hypotheses (false-positives) and accepting
true alternative hypotheses (false-negatives).
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(a) Step-down procedures (b) Step-up procedures

Figure 2.5: Principle of step-wise procedures. p(k) represents the kth p-value

2.4.2 Control of the FWER

This section discusses two procedures for control of the FWER. The first one is proposed by Bon-
ferroni [1936], based on the following threshold t = α/m:

P(Vt > 0) = P

 ∑
k∈M0

1pk<α/m > 0

 = P

 ⋃
k∈M0

pk < α/m


≤

∑
k∈M0

P (pk < α/m) = m0
α

m
≤ α

from Boole’s inequality.

Sidak [1967]’s procedure assumes independence for the null p-values. If t = 1− (1− α)1/m then:

P(Vt > 0) = 1− P(Vt = 0) = 1− P

 ⋂
k∈M0

pk > 1− (1− α)1/m


= 1−

∏
k∈M0

P
(
pk > 1− (1− α)1/m

)
= 1− (1− α)m0/m ≤ α

For small value of α and large m, the two thresholds lead to similar control level as 1− (1−α)1/m ≈
α/m.

2.4.3 Control of the (p)FDR

Let’s call Rt = {k|pk ≤ t}, Rt ⊂ M, of size Rt. Intuitively, the aim is to define the threshold t

so that Rt is as large as possible while FDRt ≤ α. For a given t, an approximation of FDRt is
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given considering the ratio of Vt and Rt expectancies: FDRt ≈ E(Vt)
Rt

=
∑
k∈M0

P(pk≤t)
Rt

≤ m0t
Rt
≤ mt

Rt
.

Therefore, t ≤ αRt/m⇒ FDRt ≤ α.

More generally, determining the subset Rt should check the condition Rt ⊂ {k|pk ≤ αβ(Rt)/m},
called self-consistency condition [Blanchard and Roquain, 2008], where β(x) is an increasing function.
In particular, step-wise procedures are self-consistent.

The step-up procedure associated to the linear shape function β(x) = x is the well-known linear step-
up procedure of Benjamini and Hochberg [1995], hereafter called BH procedure. If p(1), . . . , p(m) are
the ordered p-values, the BH procedure threshold is: t = p(k∗), where k∗ = argmax

(
k | p(k) <

k
mα
)
.

The algorithm of the BH procedure was initially demonstrated to control FDR thanks to Simes’s
inequality [Simes, 1986].

For a given level α, the BH procedure aims at finding the (data-dependent) threshold t so that FDRt
is less than the α level. An other approach is often considered in practice when determining multiple
testing significance. For a given threshold t on the p-values, we can form the associated FDR [Storey,
2002]:

tα = argmax
t∈[0;1]

{F̂DRt(λ) ≤ α}

where F̂DRt(λ) = m̂0(λ)t
Rt∨1 , and m̂0(λ) = mπ̂0(λ). The choice of the λ parameter has been evoked

previously (see section 2.2). Both point of view are equivalent, provided m is large and if m is
replaced by m̂0(λ) in the BH procedure [Storey et al., 2004].

The p-value measures the significance in the test of a single hypothesis. Similarly, the q-value
[Storey, 2003] is the FDR based measure of significance in the multiple testing setting. It is defined
as: qk = argmint>pk{pFDRt} and estimated in practice by q̂k = m̂0(λ)p(k)

k where m̂0(λ) = #{pk>λ}
(1−λ) .

Conclusion: improving multiple testing procedures

In this chapter, we have presented a usual framework of high-dimensional multiple testing and
introduced the main concepts. This framework relies on the assumption of independent p-values
distributed according to the two-component mixture model (2.4), with a uniform distribution for
null p-values. Special attention is paid to the estimation of the proportion of true null hypotheses
and to the definition of error rate in the multiple testing setting.

An area of current research is aimed at improving the power of multiple testing procedures. For a
given level of error rate control, the goal is to declare positive a larger number of tests.

First, improvement in power may be achieved by step-wise procedures with respect to single-step
ones, in which rejection of a particular hypothesis is based not only on the total number of hypotheses,
but also on the outcome of the tests of other hypotheses. For example, step-wise version of Bonferroni
and Sidak procedures have therefore been developed [Holm, 1979] and result in less conservative
decisions.
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In multiple hypotheses testing, the control of error rates is a crucial point of interest. However,
trade-off is to be made between controlling error rates and maximizing power of the procedures.
Besides, the control of these quantities is not exact and depends on the proportion of true null
hypotheses, which is of course unknown. A challenging issue is therefore to provide an accurate
estimation (small bias and small variance) of the proportion of null hypotheses among the whole set
of tests. Recent articles Storey [2002], Black [2004], Kim and Van de Wiel [2008] showed that a more
accurate estimation of π0 would improve the power of multiple testing procedures.

Most of the existing procedures involve assumptions about the p-values being independent. Recent
studies, many of them listed by Gordon et al. [2007], also suggest that high correlations among
test statistics affect a strong control of the actual proportion of false discoveries. Indeed, although
current methods of simultaneous testing are generally shown to control expected type-I error rates,
they suffer from high instability in the presence of correlation. The impact of dependence on the
procedure is also, and from the very beginning, a questioning issue. Many papers have especially
focused on the control of the FDR under various patterns of dependence between test statistics. An
important contribution to this point was given by Benjamini and Yekutieli [2001]. They showed
the BH procedure still controls the FDR under assumption of a certain class of dependence called
positive. In fact, the general message seems to be that, for a high amount of dependence, the BH
thresholding method tends to over-control the FDR, leading to more conservative rules than expected
under the assumption of independence. Consequently, this also means that dependence affects the
power of the BH procedure. These last ten years, many procedures have therefore been inspired by
the BH method, focusing on improvements of the thresholding technique, but without modifications
of the individual test statistics.

Some authors [Lönnstedt and Speed, 2002, Smyth, 2004] proposed moderated versions of the t-
statistics where the variable-specific variance estimator in the denominator is augmented by a con-
stant, which is derived from the whole set of variables. More recently, Storey et al. [2007] proposed
the so-called Optimal Discovery Procedure in which the idea of test statistics combining common
information across the variables is exploited thoroughly.

Recent proposals also suggest to modify the theorical null distribution [Efron, 2004].

Resampling methods are sometimes suggested to capture the dependence on the joint null distribution
of the test statistics [Westfall and Young, 1993]. However, some shortcomings can be highlighted for
resampling-based procedures, especially concerning the control of the type-I error rate [Yifan et al.,
2006] and computation time.

In the following chapter, we focus on the impact of dependence in multiple testing procedures. A
common idea in many recent papers is also that dependence between test statistics should be taken
into account by borrowing information across the variables rather than treating them as independent
[Kendziorski et al., 2003, Leek and Storey, 2008]. This can be achieved by modeling the common
information and taking advantage of the shared information between variables.

This approach is studied in chapter 3.



CHAPTER 3

MULTIPLE TESTING UNDER DEPENDENCE
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Abstract The impact of dependence is currently one of the most discussed topics
in the literature about multiple testing for high-dimensional data. High correlations
among test statistics affect a strong control of the actual proportion of false discoveries
and the estimation of key parameters of procedures such as the proportion of true null
hypotheses. In many areas, dependence can be explained by an underlying structure
of unobserved factors. Modeling this structure by a Factor Analysis model provides
a framework to study the impact of dependence on multiple testing procedures. It
is shown that the variance of the number of false discoveries increases along with
the fraction of common variance. The same results are obtained for the empirical
estimator of the proportion of true null hypotheses.
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Introduction

In multiple hypotheses testing, the control of error rates under dependence is a crucial point of
interest. Most proposals are concerned with the modification of initial algorithms to extend the
assumptions on p-values distribution [Benjamini and Yekutieli, 2001] or with the modification of the
theorical null distribution [Efron, 2004].

In the case of t-tests, the test statistics are then jointly distributed according to a non-central
multivariate Student distribution Tdf (τ ;R), where τ = (τ1; . . . ; τm) is the m−vector of non-centrality
parameters, df is the number of residual degrees of freedom and R is the residual correlation matrix
R. For k = 1, . . . ,m, τk =

√
nλ′β(k)/(σk

√
λ′S−1

xxλ), which equals 0 for k ∈ M0. In this case,
correlation across the test statistics is exactly the correlation between the response variables. More
generally, dependence among the p-values is also straightforward inherited from dependence among
the data.

We suppose now that the residual random vector E = [ε1, . . . , εm] has a variance matrix Σ which is
not necessarily a diagonal matrix.

The following proposition proved by Leek and Storey [2008] defines a general framework for multiple
testing dependence.

Proposition 3.0.1 (see Leek and Storey [2008]). Under assumption (2.1), suppose that for
each εk, there is no Borel measurable function g such that εk = g(ε1, . . . , εk−1, εk+1, . . . , εm) almost
surely. Then, there exists a random Q−vector Z, with 0 ≤ Q ≤ m and, for all k = 1, . . . ,m, there
exist Q−vectors bk such that,

Yk = mk(x) + Zb′k + εk, (3.1)

where ε = (ε1, . . . , εm) is a random vector with independent components.

The above result establishes the existence of latent variables Z which capture the dependence among
the variables in a Q−dimensional linear space. Therefore, model (3.1) can be viewed as a Factor
Analysis model and the variables Z will henceforth be called factors. If it is furthermore assumed that
the factors have means 0 and variance Iq as in the exploratory Factor Analysis model [Mardia et al.,
1979], the mixed-effects regression models (3.1) are equivalently defined as fixed-effects regression
models which residual variance Σ can be decomposed into the sum of two components: a diagonal
matrix Ψ of specific variances ψ2

k = V(εk) and a common variance component B′B, where the kth
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row of B is bk:

Σ = BB′ + Ψ (3.2)

Exemple 3. Impact of dependence is first illustrated by simulation scenarios with increasing
amounts of dependence among data: 10 levels of dependence are considered, form independence
(scenario 0) to highly correlated data (scenario 9). The proportion tr(BB′)/tr(Σ) of common
variance increases along with the scenarios: In each case, 1 000 datasets are simulated according

Scenario 0 1 2 3 4 5 6 7 8 9
Common variability (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19

Table 3.1: Common variability (%) for the 10 simulated scenarios

to a multivariate normal distribution. Each dataset is composed of m = 500 variables and n = 60
observations such as Yn×m ∼ Nm(0; Σs). Besides, let’s consider a binary variable X such that
the observations are split into two groups of size n/2. For each dataset, the p-values of the usual
t-tests for the comparison of means are calculated.

3.1. Impact of dependence on p-values distribution

Figure 3.1 reproduces the mean histograms of p-values with 95% confidence intervals in situations
of independence (scenario 1), intermediate (scenarios 3 and 6) and high level of dependence (scenario
9). Obviously, this shows that uniformity of the distribution of the null p-values is true on average,
but in case of dependent data, the histograms can show marked departures from uniformity.

Figure 3.2 represents the examples of histograms from two simulated datasets from scenario 9. De-
pendence can lead either to a much larger representation of the p-values close to 0 (and consequently
an under-representation of the p-values close to 1) or inversely much lesser small p-values than ex-
pected under uniformity. This violation of the uniformity of the null distribution is also mentioned
in Efron [2007], which reports that correlation can widen or narrow down the distribution of Z-scores
with respect to the theoretical null distribution.

3.2. Impact of dependence on the estimation of the proportion of true
null hypotheses (π0)

The immediate consequence of the above comments is a less accurate estimation of the proportion
of null hypotheses. We now slightly modify the simulation scheme of example 3:
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(a) Scenario 1 (b) Scenario 3

(c) Scenario 6 (d) Scenario 9

Figure 3.1: P-values distribution - Mean histogram over 1000 simulations - dotted lines: 95% confi-
dence interval

Figure 3.2: P-values distribution under H0: examples of two datasets - scenario 9



Chapter 3: Multiple testing under dependence 28

Exemple 4. For each dependence scenario, for each dataset, we now set different expectations
between groups of X for m1 = 100 variables. The difference is chosen so that the usual t-tests
have a variable-by-variable power of 0.8 and for the remaining m0 = 400 variables, the difference
is set to 0. The true value of π0 is therefore 0, 80. The p-values of the usual t-tests for the
comparison of means are then calculated.

In the simulated situations of dependence of example 4, π0 is estimated using the different methods
presented in chapter 2. The results are presented for two of them: empirical estimator with
bootstrap choice of λ [Storey et al., 2004] and considering the density estimation assuming it is a
convex decreasing function [Langaas et al., 2005]).

Figure 3.3 shows the estimated proportion of null hypotheses, along with the ∆ criterion. This
simple criterion is just used here to characterize departures of the null distribution of p-values from
uniformity. It is positive if close-to-0 p-values are over represented (figure 3.2, left)and negative if
close-to-1 p-values are over represented (figure 3.2, right).

Figure 3.3 shows that dependence induces a kind of local bias, in the sense that concave densities
of null p-values lead to an overestimation of π0 and inversely, convex densities to an underestimation
of π0.

π0 estimation under dependence In the following proposition, for k 6= k′, Gk(t) = P(pk ≤ t)
and Gkk′(t) = P(pk ≤ t; pk′ ≤ t). Gk(Z, t) = P(pk ≤ t|Z) is the conditional distribution of p-values
with respect to factor Z.

Proposition 3.2.1.

E(Gk(Z, t)) = Gk(t)

Cov(Gk(Z, t);Gk
′
(Z, t)) = Gkk

′
(t)−Gk(t)Gk′(t)

More particularly, if k ∈M0: E(Gk(Z, t)) = G0(t) = t

Proof. Gk(Z, t) = P(pk ≤ t|Z) = E(1pk≤t|Z).

Then E(Gk(Z, t)) = E(1pk≤t) = Gk(t)

We also define a general function called Dkk′′(t) as:

Définition 3.2.1.

Dkk′(t) =
Gkk

′
(t)−Gk(t)Gk′(t)
t(1− t)

Moreover, Ḡ1(λ) = 1
m1

∑
k∈M1

(
Gk1(λ)

)
where Gk1(λ) represents the p-values distribution under the

alternative hypothesis.
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(a) Density estimation assuming it is a convex decreasing function
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(b) Empirical estimator with bootstrap choice of λ

Figure 3.3: Estimation of π0 along with the ∆ criterion that characterizes the density of null p-values
around 0 - π0 = 0, 80

Proposition 3.2.2.

E(π̂0(λ)) = π0 + (1− π0)
1− Ḡ1(λ)

1− λ

V(π̂0(λ)) =
λπ0

m(1− λ)
+

∑
k∈M1

[
Gk1(λ)(1−Gk1(λ))

]
m2(1− λ)2

+
λ

1− λ
1
m2

∑
k 6=k′∈M

Dkk′(λ)

The proof of proposition 3.2.2 rely on the following lemmas about the conditional properties of Ut
and Tt.

Lemme 3.2.1.

E(Uλ) = m0(1− λ)

V(Uλ) =
[
m0 +

∑
k 6=k′∈M0

Dkk′(λ)
]
λ(1− λ)
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Proof.

E(Uλ|Z) =
∑
k∈M0

P (pk ≥ λ|Z) =
∑
k∈M0

(
1−Gk(λ)

)
V(Uλ|Z) =

∑
k∈M0

P (pk ≥ λ|Z) (1− P (pk ≥ λ|Z)) =
∑
k∈M0

(
1−Gk(λ, Z)

)
Gk(λ, Z)

card(M0) = m0 and E(Gk(λ, Z)) = Gk(λ) = λ, ∀k ∈ M0 from proposition 3.2.1. Therefore,
E(Uλ) = E (E(Uλ|Z)) = m0(1− λ).
The variance of Uλ is deduced from: V(Uλ) = E (V(Uλ|Z)) + V (E(Uλ|Z)).

V[E(Uλ|Z)] = V

 ∑
k∈M0

(1−Gk(λ,Z))

 = V

 ∑
k∈M0

(Gk(λ,Z))

 =
∑
k∈M0

V
(
Gk(λ,Z)

)
+

∑
k 6=k′∈M0

Cov
(
Gk(λ,Z);Gk

′
(λ,Z)

)
=

∑
k∈M0

E
(
Gk(λ,Z)2

)
−
∑
k∈M0

E
(
Gk(λ,Z)

)2

+
∑

k 6=k′∈M0

Cov
(
Gk(λ,Z);Gk

′
(λ,Z)

)
=

∑
k∈M0

E
(
Gk(λ,Z)2

)
−m0λ

2 +
∑

k 6=k′∈M0

Cov
(
Gk(λ,Z);Gk

′
(λ,Z)

)

E[V(Uλ|Z)] = E

 ∑
k∈M0

(
1−Gk(λ,Z)

)
Gk(λ,Z)


=

∑
k∈M0

E
(
Gk(λ,Z)

)
−
∑
k∈M0

E
(
Gk(λ,Z)2

)
= m0λ−

∑
k∈M0

E
(
Gk(λ,Z)2

)
Using the Dkk′(λ) function introduced previously:

⇒ V(Uλ) = m0λ(1− λ) +
∑

k 6=k′∈M0

Cov
(
Gk(λ, Z);Gk

′
(λ, Z)

)
=

[
m0 +

∑
k 6=k′∈M0

Dkk′(λ)
]
λ(1− λ) (3.3)

Lemme 3.2.2. Let’s denote Ḡ1(λ) = 1
m1

∑
k∈M1

(
Gk1(λ)

)
.

E(Tλ) = (m−m0)(1− Ḡk1(λ))

V(Tλ) =
∑
k∈M1

[
Gk1(λ)(1−Gk1(λ))

]
+
[ ∑
k 6=k′∈M1

Dkk′(λ)
]
λ(1− λ)

Proof.

E(Tλ|Z) =
∑
k∈M1

P (pk ≥ λ|Z) =
∑
k∈M1

(
1−Gk(λ, Z)

)
V(Tλ|Z) =

∑
k∈M1

P (pk ≥ λ|Z) (1− P (pk ≥ λ|Z)) =
∑
k∈M1

(1−Gk(λ, Z))Gk(λ, Z)
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card(M1) = m−m0 and E(Gk(λ, Z)) = Gk1(λ), ∀k ∈M1 from proposition 3.2.1.

Let’s call Ḡ1(λ) = 1
m1

∑
k∈M1

(
Gk1(λ)

)
. E(Tλ) = E (E(Tλ|Z)) = (m−m0)(1− Ḡk1(λ)).

The variance of Tλ is deduced from: V(Tλ) = E (V(Tλ|Z)) + V (E(Tλ|Z)). On a :

V[E(Tλ|Z)] = V

 ∑
k∈M1

(1−Gk(λ,Z))

V

 ∑
k∈M1

(Gk(λ,Z))

 =
∑
k∈M1

V
(
Gk(λ,Z)

)
+

∑
k 6=k′∈M1

Cov
(
Gk(λ,Z);Gk

′
(λ,Z)

)
=

∑
k∈M1

E
(
Gk(λ,Z)2

)
−
∑
k∈M1

E
(
Gk(λ,Z)

)2

+
∑

k 6=k′∈M1

Cov
(
Gk(λ,Z);Gk

′
(λ,Z)

)

E[V(Tλ|Z)] = E

 ∑
k∈M1

(
1−Gk(λ,Z)

)
Gk(λ,Z)


=

∑
k∈M1

E
(
Gk(λ,Z)

)
−
∑
k∈M1

E
(
Gk(λ,Z)2

)

Using the Dkk′(λ) function introduced previously:

⇒ V(Tλ) =
∑
k∈M1

[
E
(
Gk(λ,Z)

)
− E

(
Gk(λ,Z)

)2
]

+
∑

k 6=k′∈M1

Cov
(
Gk(λ,Z);Gk

′
(λ,Z)

)
=

∑
k∈M1

[
Gk1(λ)(1−Gk1(λ))

]
+

∑
k 6=k′∈M1

[
Gkk

′
(λ)−Gk(λ)Gk

′
(λ,Z)

]
=

∑
k∈M1

[
Gk1(λ)(1−Gk1(λ))

]
+
[ ∑
k 6=k′∈M0

Dkk′
(λ)
]
λ(1− λ) (3.4)

Lemmas 3.2.1 and 3.2.2 are now used for the proof of proposition 3.2.2.

Proof. Let’s call Ḡ1(λ) = 1
m1

∑
k∈M1

(
Gk1(λ)

)
. Expectation of π̂0 is deduced:

E(π̂0(λ)) =
E(Wλ)
m(1− λ)

=
E(Uλ) + E(Tλ)
m(1− λ)

=
m0(1− λ) +m1(1− Ḡ1(λ))

m(1− λ)
= π0 + (1− π0)

(1− Ḡ1(λ))
(1− λ)

Moreover, V(Wλ) = V(Uλ) + V(Tλ) + 2 Cov(Uλ;Tλ), where V(Uλ) and V(Tλ) are given in lemmas

3.2.1 and 3.2.2. Cov(Uλ;Tλ) = E (Cov(Uλ;Tλ|Z)) + Cov(E(Uλ|Z); E(Tλ|Z)). Conditional indepen-
dence in model (3.1) gives Cov(Uλ;Tλ|Z) = 0.

Cov(E(Uλ|Z); E(Tλ|Z)) = Cov

 ∑
k∈M0

(1−Gk(λ, Z));
∑
k∈M1

(1−Gk(λ, Z))


=

∑
k∈M0

∑
k′∈M1

Cov(Gk(λ, Z);Gk
′
(λ, Z))

=
∑
k∈M0

∑
k′∈M1

[
Gkk

′
(λ)−Gk(λ, Z)Gk

′
(λ, Z)

]
=

∑
k∈M0

∑
k′∈M1

[
Dkk′(λ)

]
λ(1− λ)
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The variance of π̂0(λ) is deduced:

V(π̂0(λ)) =
λπ0

m(1− λ)
+

∑
k∈M1

[
Gk1(λ)(1−Gk1(λ))

]
m2(1− λ)2

+
λ

1− λ
1
m2

∑
k 6=k′∈M

Dkk′(λ)

In the case of independent p-values, with identical distribution under the alternative hypothesis,
Ḡ1(λ) = G1(λ) and D(λ) = 0, which gives the bias and the variance as provided in expression 2.2.1
under assumption of a two-component mixture of distributions.

Minimising MSE to choose the tunig parameter Proposition 3.2.2 also shows how the
variance of the estimator depends on the correlation matrix R. In order to illustrate the impact of
dependence both on the choice of an optimal threshold and on the variability of the estimation, the
bias, variance and RMSE of π̂0(λ) are calculated in the three multiple testing situations introduced
for the simulation study in example 4. In a completely nonparametric framework, the bivariate
probability Gkk

′
(λ), which appears in the expression of the variance of π̂0(λ), can be estimated

using permutation techniques, provided it can be assumed that Gkk′(λ) is the same for all (k, k′).
In the present situation of Student’s tests, a closed-form expression of Gkk′(λ) is used, given by
Φ(2)([−uλ;uλ]2; ρkk′ , τk, τk′ , n − 2), where ρkk′ is the correlation between Tk and Tk′ , τ is the non-
centrality parameter of the non-null distribution of the test statistics, uλ is the (1− λ/2)−quantile
of the Student distribution with n − 2 degrees of freedom and Φ(2)(A; ρ, τ, τ ′, df) stands for the
probability that a bivariate Student vector with non-centrality parameter (τ, τ ′), degree of freedom
df and correlation ρ belongs to A ⊆ R2.

Figure 3.4 compares the RMSE curves of π̂0(λ) for different levels of dependence among test statis-
tics and different values for τ . The optimal choice for the threshold is given. It essentially shows
that ignoring dependence leads to an overestimation of this optimal threshold, and simultaneously
to an underestimation of the true variability of π̂0(λ).

3.3. Impact of dependence on error rates

3.3.1 Impact of dependence on the number of false-positives (Vt)

For each simulated dataset in example 4), Vt is calculated considering a fixed threshold t = 0, 05
on the p-values. results are given in table 3.2.

Figure 3.5 represents the distribution of Vt for four scenarios of increasing level of dependence. Both
table 3.2 and figure 3.5 show that the mean of Vt does not seem to be affected by dependence. On
the contrary, the variance of false-positives is increased in case of dependent data. These comments
are confirmed by the following proposition.
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Figure 3.4: Bias, variance and RMSE of π̂0(λ) under different scenarios of dependence (on each plot,
the vertical line locates the threshold for which the RMSE is minimized) - left panel: τ = 1 (power:
17%), middle panel: τ = 2, 8 (power: 80%), right panel: τ = 4 (power: 97%)
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scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
min 6.00 5.00 6.00 5.00 1.00 1.00 0.00 0.00 0.00 0.00
q0,25 17.00 17.00 15.00 13.00 11.00 8.00 8.00 6.00 6.00 4.00
median 20.00 20.00 19.00 17.00 16.00 14.00 14.00 12.00 12.00 11.00
mean 19.96 20.12 20.03 19.44 19.48 19.94 19.63 21.12 21.29 20.22
q0,75 23.00 23.00 23.00 23.00 23.00 24.25 24.00 25.00 26.25 25.25
max 36.00 45.00 72.00 90.00 157.00 169.00 152.00 206.00 206.00 195.00
std 4.43 4.96 7.33 10.43 14.26 18.73 19.83 26.19 26.14 26.35

Table 3.2: Descriptives statistics of Vt for the 10 different scenarios of dependence

Figure 3.5: Distribution of Vt for different level of dependence.
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For a given threshold t, Vt is defined as the number of erroneous rejections of the null hypotheses. For
independent test statistics, Vt is distributed according to a binomial distribution: Vt ∼ Bin(m0, t).
This random variable has meanm0t and variancem0t(1−t). Under general dependence, the following
proposition holds:

Proposition 3.3.1.

E(Vt) = m0t

V(Vt) =
[
m0 +

∑
k 6=k′∈M0

Dkk′(t)
]
t(1− t)

Proof. The proof is deduced from the proof of lemma 3.2.1. Indeed, Vt = m0 − Ut. Therefore,
E(Vt) = m0−m0(1−t) = m0t et V(Vt) = V(m0−Ut) = V(Ut) =

[
m0+

∑
k 6=k′∈M0

Dkk′(t)
]
t(1−t).

Therefore, by comparison with the binomial variance m0t(1 − t), the impact of dependence on the
variance of Vt can be measured by M0(R) =

∑
k 6=k′∈M0

Dkk′(t), where R is the correlation between
the test statistics. Proposition 3.3.1 shows that correlation modifies the distribution of Vt by
increasing its dispersion, leaving its expectation unchanged. Therefore, correlation shall have an
important impact on the tail of the distribution, which is directly involved in the calculation of the
error rates.
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Figure 3.6: Variance of Vt along with the threshold t, for each dependence scenario
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Figure 3.6 confirms that a high amount of conditional correlation leads to a very unstable distri-
bution of the number of false discoveries. Although it seems to show that the impact of dependence
becomes smaller when the threshold tends to zero, this have to be tempered by the fact that the
expected number of false discoveries also decreases along with the threshold.

Figure 3.7 shows that, for any preset t, Dt(ρ) is a U-shaped function that is close to some equivalent
term appearing in Owen [2005]’s formula for the variance of the number of false discoveries and in
Efron [2007], where the bivariate normal probability function is also involved in the expressions of
the variance inflation.

Figure 3.7: Dt(ρ) for various values of the threshlod t

3.3.2 Impact of dependence on the FWER

The Sidak procedure [Sidak, 1967] is now applied on the datasets of the simulation study presented
in example 4.

Implementation is done using the R package multtest [Pollard et al.]. Table 3.3 displays the fre-
quencies of the number of false-positives Vt and the estimated FWER using the simulated datasets.
It shows that the procedure based on the Student’s tests controls the FWER at a lower level than
α = 0, 05. Figure 3.8 reproduces multiple boxplots of the distributions of the non discovery pro-
portion NDPt = #{k /∈M0, H

(k)
0 not rejected}/m1. It shows that the fraction of common variance

generates instability in the distribution of NDPt. Moreover, the mean NDPt, which can be viewed
as a type-II error rate, remains high whatever the level of dependence.

3.3.3 Impact of dependence on the FDR

Let’s consider two estimators: the empirical estimator F̂DRt = m0t
Rt

and the one resulting from
Storey et al. [2004]’s procedure where the FDR is estimated considering t = p(k∗), with k∗ =



37 3.3 Impact of dependence on error rates

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
counts
0 957 958 970 973 966 971 969 964 970 968
1 42 41 29 24 33 26 27 24 22 25
2 1 1 3 2 3 4 3 3
3 1 1 5 3 2
4 1 1 1
5 2
6 1
7
8 2
9
10
11
12
13
14
15 1

FWER
#{Vt > 0}/m 4,3 4,2 3,0 2,7 3,4 2,9 3,1 3,6 2,9 3,2

Table 3.3: Vt counts and FWERt estimated from the simulated datasets along with the proportion
of common variance, for the procedures based on t-tests p-values with Sidak correction - threshold:
t = 1, 0258.10−4)
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Student’s tests along with the different scenarios of dependence
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argmaxk
(
p(k) <

α
m0
k
)
. Both estimator are similar, but the second one considers a data-dependent

threshold.

Proposition 3.3.2 (from Storey et al. [2004]). Under assumption 1, for a fixed λ ∈ [0; 1[:

E(F̂DRt(λ)) ≥ FDRt

FDR estimator is biased. But this bias is positive, so procedures control the actual FDR at a lower
bound than estimated. The immediate consequence in practice is a lower power of procedures than
expected [Sarkar, 2008].

The BH procedure [Benjamini and Hochberg, 1995] and the q-value procedure [Storey, 2003] are now
applied on the datasets of the simulation study presented in exemple 4. Implementation is done using
the R package multtest [Pollard et al.] for the first method and the q-value package [Dabney et al.,
2009] for the second one. Table 3.3 displays the frequencies of the number of false-positives Vt and
the estimated FWER using the simulated datasets. It shows that the procedure based on the t-tests
control the FWER at a lower level than α = 0, 05. Figure 3.8 reproduces multiple boxplots of the
distributions of the non discovery proportion NDPt = #{k /∈ M0, H

(k) not rejected
0 }/m1. It shows

that the fraction of common variance generates instability in the distribution of NDPt. Moreover,
the mean NDPt, which can be viewed as a type-II error rate, remains high whatever the level of
dependence. To avoid discussions about the estimation of π0, this parameter is supposed to be known
in this comparative study.

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
F̂DRt=0.05

min 17,09 15,62 13,33 12,20 8,85 8,55 9,22 7,30 7,38 7,75
q0,25 19,23 19,23 19,05 19,23 19,23 19,42 19,61 19,23 19,23 19,42
median 20,00 20,00 20,00 20,41 20,62 20,83 21,05 21,05 21,05 21,28
mean 20,11 20,02 20,08 20,20 20,33 20,34 20,52 20,46 20,51 20,65
q0,75 20,83 20,83 21,05 21,28 21,74 21,98 21,98 22,47 22,47 22,47
max 25,32 24,10 24,69 25,00 25,64 25,00 27,40 26,67 28,17 30,30
sd 1,23 1,25 1,47 1,78 2,11 2,39 2,57 3,08 3,12 3,19
q-value
min 14,69 14,88 15,99 15,94 15,83 15,18 13,37 15,07 13,63 12,99
q0,25 19,16 19,17 19,16 19,10 19,12 19,15 19,09 19,10 19,11 19,02
median 19,59 19,59 19,59 19,55 19,62 19,59 19,59 19,56 19,60 19,56
mean 19,41 19,40 19,42 19,37 19,38 19,38 19,33 19,34 19,34 19,27
q0,75 19,84 19,83 19,85 19,82 19,85 19,83 19,82 19,84 19,84 19,84
max 20,29 20,33 20,54 20,44 20,47 20,36 20,28 20,58 20,51 20,41
sd 0,63 0,63 0,60 0,63 0,67 0,68 0,76 0,73 0,78 0,87

Table 3.4: Descriptive statistics for FDR estimation along with the different scenarios of dependence
(%)
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For each scenario, table 3.4 gives the descriptive statistics for both estimators. Whatever the level
of dependence, the mean estimation is steady in each case. The variability of FDR estimation is
lower with the data-dependent threshold.

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
FDP (t = 0, 05)
min 7,50 5,95 6,59 5,32 1,16 1,09 0,00 0,00 0,00 0,00
q0,25 17,53 17,17 15,83 13,33 11,83 9,19 8,51 6,67 6,38 4,88
median 19,80 20,00 19,01 17,53 16,13 14,74 14,44 13,16 13,02 11,52
mean 19,86 19,90 19,67 18,87 18,48 18,31 17,88 17,97 18,23 17,74
q0,75 22,43 22,45 22,55 22,93 22,25 23,79 23,75 24,53 26,18 24,82
max 31,58 35,16 48,00 58,07 69,47 72,22 70,05 76,37 76,75 76,03
sd 3,64 4,04 5,70 7,82 9,69 12,36 12,79 15,13 15,80 16,08
FDP (threshold q-value)
min 4,17 4,94 4,76 3,49 1,16 0,00 0,00 0,00 0,00 0,00
q0,25 17,17 16,83 15,05 12,37 10,78 8,05 7,30 5,60 5,32 3,90
median 19,82 20,21 19,00 17,20 15,53 14,00 13,40 12,07 11,43 10,01
mean 19,96 20,02 19,82 19,03 18,78 18,60 18,07 18,34 18,68 17,62
q0,75 22,86 23,17 23,15 23,48 23,00 24,16 24,30 25,05 26,6 25,60
max 32,80 36,50 54,26 63,59 74,83 76,27 76,38 78,07 79,18 79,75
sd 4,38 4,84 6,91 9,33 11,65 14,55 14,98 17,64 18,37 18,59

Table 3.5: Descriptive statistics for False Discovery Proportion along with the different scenarios of
dependence (%)

Table 3.5 gives descriptive statistics for the true proportion of false-positives (FDP). Mean of
FDP, which is FDR, is steady for all scenarios, but its variability sharply increases along with the
proportion of common variability (see figure 3.9(a)).

Figure 3.9(b) shows that the fraction of common variance generates slight instability in the dis-
tribution of NDPt. The mean NDPt, which can be viewed as a type-II error rate, remains steady
whatever the level of dependence.

We now compare FDR estimation and the true proportion of false-positives (NDP) in the simulation
study. Results are presented on figure 3.10 for four different scenarios and table 3.6 gives the
regression coefficients between the two FDR estimators and FDP.

As already observed by Efron [2007], the empirical estimate is negatively correlated with the observed
FDP, which can result in strongly misleading estimations especially when FDP is high. Figure 3.10
shows that this concern is particularly clear for large fractions of shared variance. When estimating
FDR with a data-dependent threshold, correlation is not negative anymore.
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Figure 3.9: False Discovery Proportion (FDP) and Non Discovery Proportion (NDP), along with the
10 scenarios

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
F̂DRt=0.05 -0,197 -0.196 -0,189 -0,176 -0.187 -0,171 -0,175 -0,182 -0,169 -0,171
q-value 0,025 0,026 0,017 0,016 0,015 0,013 0,017 0,013 0,014 0,016

Table 3.6: Regression coefficients between estimated FDR and the true proportion of false positives
(FDP)

Conclusion

Dependence induces variability that interferes in particular with p-values distribution that can
sharply deviates from the theorical null distribution when the level of common variability between
variables is high. Consequently, the variability of false-positives increases in presence of dependence,
leading to high instability in multiple testing procedures. Moreover, π0 estimation is biased when the
level of dependence is high. This bias depends on the impact of dependence on p-values distribution,
whether it yields to more small p-values or to more close-to-one p-values.

Considering the factor modeling of dependence, which describes the common structure through latent
variables as in (3.1), the variance of the number of false-positives and the variance of π0 are both
derived. Their expressions include a term which directly depends on the correlation between test
statistics.

Next chapter describes a method that borrows the information shared by all the variables to improve
multiple testing under dependence.
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Figure 3.10: Estimated FDR versus the observed proportion of false positives with t = 0, 05 (empir-
ical FDR) and data-dependent threshold (q-value) for 4 levels of dependence
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CHAPTER 4

CONDITIONAL APPROACH OF LARGE-SCALE MULTIPLE TESTING
UNDER DEPENDENCE
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Abstract Dependence between the responses is here modeled by a multiple factor
structure which is exploited to define new test statistics. As data are independent
conditionally on the factors, this framework allows to extend the results on error rates
control and on π0 estimation from the independent case to general dependence. This
leads to less correlation among tests and shows large improvements of the power and
stability of simultaneous inference. Conditional estimates are also deduced for FDR
and π0.
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Introduction

There are two main issues in carrying out multiple testing procedures: estimating the proportion of
true null hypotheses and controlling error rates. The classical approach is to perform simultaneous
tests and to base the decision rule on the resulting p-values. As described in chapter 2, most
of procedures make independence assumptions on the p-values distributions. Taking into account
dependence in large scale multiple testing has appeared to be a major concern. More particularly,
even if error rates can still be controlled under some weaker assumption on the p-values distribution,
each step of the procedures are impacted by the presence of dependence among tests.

Model (3.1) introduced in chapter 3 assumes that dependence can be represented by a small set
of random vectors Z associated to the information shared by the whole set of response variables:

Yk = mk(x) + Zb′k + εk

where E = [ε1, . . . , εm] has independent components.

In the first section, assuming such a covariance model for the conditional dependence of the responses
given the predictors, we propose modified test statistics, based on improved estimators of the linear
contrasts to be tested, by taking advantage of the factor structure. Section 4.2 presents a con-
ditional approach to estimate π0 and the FDR. Section 4.3 is dedicated to the presentation of a
factor-adjusted multiple testing procedure showing large improvements on the usual methods, called
FAMT.

4.1. Factor-adjusted data

4.1.1 Test statistics

Before presenting an improved multiple testing procedure which takes advantage of the factor struc-
ture, we start with a similar, yet much simpler, single-testing issue in which it can be assumed that
the null hypothesis is true for some auxiliary covariates.

4.1.1.1 Likelihood-ratio test in the presence of covariates under H0

Let us examine the following single-testing issue in the multivariate context: for a contrast of interest
defined by the p-vector of coefficients c, our aim is to test the null hypothesis H(m)

0 : cθm = 0 against
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H
(m)
1 : cθm 6= 0 under the assumptions H(j)

0 : cθj = 0, ∀j ∈ [1;m − 1]. For example, this situation
can be encountered in microarray data analysis, where Ym is a gene expression of interest and
[Y1; . . . ;Ym−1] are expressions of so-called housekeeping genes. Such control genes, which expression
has no biological reason to vary from an experimental condition to another, are introduced in some
microarray experiments in order to estimate and to remove an eventual technological bias between
microarrays. The above problem can be restated as a classical testing issue in a general linear model
context. Let Y be the mn-vector obtained by concatenating the measurements of Yj , j ∈ [1;m], on
the sample of size n. If θ = [θ0

1; θ1; . . . ; θ0
m; θm] is the vector of unknown regression coefficients in the

model relating Y to x, the test of H(m)
0 can be viewed as a test for the significance of a particular

linear combination of θ under linear restrictions which state the nullity of cθj , j ∈ [1;m − 1].
If the variance parameters are assumed to be known, it can be shown that the Likelihood-Ratio
Test statistics resulting from application of the normal theory in this special case of general linear
hypothesis testing is given by:

T̃k =
c′θ̂m − c′B̂(m−1) ˆγ(m−1)√

σ2
m|m−1c

′S−1
x c

(4.1)

where B(m−1) is the matrix containing the θj coefficients, j ∈ [1;m − 1], γ(m−1) is the vector
of regression coefficients for [Y1; . . . ;Ym−1] in the model relating Ym to x and [Y1; . . . ;Ym−1], and
σ2
m|m−1 is the residual variance of this model. Of course, if the conditional covariance between Ym and

[Y1; . . . ;Ym−1], given x, is zero, T coincides with the classical Student’s test statistics. Plugging-in the
maximum likelihood estimators of γ(m−1) and σ2

m|m−1 in expression (4.1) leads to an asymptotically
optimal test statistics, which can show large improvements with respect to the classical Student’s
test.

4.1.1.2 General framework for high-dimensional data

Generally, apart from the special case mentioned above of control genes in microarray experiments,
direct measurements of auxiliary covariates for which it could be assumed that H0 is true are not
available to improve large scale significance tests. However, in gene expression datasets for example,
it can often be assumed that H0 is true for a large fraction of variables, or in other words, that
M0 is large. The method we propose hereafter consists in taking advantage of this unknown but
large set of variables to derive new individual test statistics inspired by expression (4.1). A crucial
issue in such an approach is the handling of the potentially huge size ofM0. This can be addressed
by the Factor Analysis modeling of the conditional variance of the variables. Assumption (3.2) can
indeed be viewed as equivalent to the existence of latent factors Z = (Z(1), . . . , Z(q)), supposed to
concentrate in a small dimension space the common information contained in the m responses: for
k = 1, . . . ,m,

Yk = mk(x) + Zb′k + εk (4.2)

where bk is the kth row of B and E = [ε1; . . . ; εm] is a random m−vector, independent of Z, with
mean 0 and variance-covariance Ψ. The kernel dependence ZB′ is independent from the covariates
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x. We consider the data centered with respect to this dependence kernel:

Ỹk = Yk − Zb′k = mk(x) + εk (4.3)

Application of expression (4.1) using the factors as covariates results in the following factor-adjusted
test statistics:

T̃k = s(Ỹk) = s(Yk − Zb′k) (4.4)

The factor-adjusted p-values p̃k = 1− F0

[
s(Yk − Zb′k)

]
= 1− F0

[
s(mk(x) + εk)

]
, obtained using on

the residual vector Yk − Zb′k the same individual testing method as for the p-values pk on the raw
data Yk, are independent. The following proposition gives the probability distribution function of
these factor-adjusted p-values:

Proposition 4.1.1. Let G̃k(t) = P(p̃k ≤ t) denote the probability distribution function of the
kth factor-adjusted p-value p̃k. Assume that the density functions φk of the independent error
terms εk in model 2.1 only differs by a scaling parameter ψk and have the same standardized
density function as the random errors in model (3.1): φk(x) = ϕ(x/ψk)/ψk. Then, for k ∈ M0,
G̃k(t) = G0(t) = t and for k /∈M0, G̃k(t) = G1(t;mk(x)/ψk).

Proof. The probability distribution function of the factor-adjusted p-values is given by:

G̃k(t) =
∫
1[1−F0(s(mk(x)−εk))≤t]φk(εk)dεk

Due to the scale-invariance of the test statistics and the identical distribution of the standardized
residuals εk/ψk,

G̃k(t) =
∫
1[1−F0(s(mk(x)/Ψk−uk))≤t]ϕ(uk)duk = Gk(t; τ̃k)

Moreover, τ̃k = mk(x)/ψk = τkσk/ψk.

Note that ψ2
k is the conditional variance of εk given the factors, which implies that σk > ψk. There-

fore, the non-centrality parameter of the non-null distribution, or equivalently the power of the
individual tests, is larger for the factor-adjusted p-values than for the corresponding raw p-values.

4.1.1.3 Linear model

The present section focuses on t-tests because they are of major interest in various applied situations
but the general conclusions are valid for other types of tests such as Fisher’s analysis of variance
tests for example.

Hereafter, the least-squares estimator of θk is denoted θ̂k: c′θ̂k − c′θk is normally distributed with
expectation 0 and variance σ2

kn
−1c′S−1

x c, where σk is the conditional standard deviation of Y (k) given
x and Sx is the sample variance-covariance matrix of the explanatory variables x. Furthermore, for
k 6= k′, Cor(c′θ̂k, c′θ̂k) = ρkk′ , where ρkk′ is the conditional correlation between Yk and Yk′ given x.
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As mentioned above, the present section focuses on test statistics defined as normalized estimations
of the linear contrasts: Tk =

√
nc′θ̂k/(σk

√
c′S−1

x c). This test statistic has the following properties:

Proposition 4.1.2.

E(Tk) = τk =
√
nc′θk

σk
√
c′S−1

x c

V(Tk) = 1

Cov(Tk, Tk′) = ρkk′ , k 6= k′

Note that τk equals 0 if k ∈M0

Proposition 4.1.2 shows that the correlation structure between the test statistics is directly in-
herited from the correlation between the response variables. This property is generally not true for
other types of tests. Therefore, specific relationships between both correlation structures should be
taken into account in order to adapt the following results to other testing procedures.

The following proposition gives the conditional distribution of T = (T1; . . . ;Tm), given the factors.

Proposition 4.1.3. Conditionally on Z, T is normally distributed with, for k = 1, . . . ,m,
E(T (k) | Z) = τk + b′kτZ/σk, where τZ is the Q−vector defined by τZ =

√
ncθ̂z/

√
c′S−1

x c and θ̂z
denotes the least-squares estimator of the p×Q matrix of the slope coefficients in the multivariate
regression of Z onto the explanatory variables x. Moreover, V(T |Z) = diag(ψ2

k/σ
2
k). Note that τZ

is normally distributed with mean 0 and variance IQ

Proof. The conditional independence between the test statistics is inherited from the conditional
independence between the responses. The conditional expectation and variance are also deduced from
the conditional moments of θ̂(k) given the factors: E(θ̂k|Z) = θk+θ̂zbk and V(θ̂k|Z) = (ψ2

k/n)S−1
x .

Application of expression (4.1) using the factors as covariates results in the following factor-adjusted
test statistics:

T̃k = s(Yk − Zb′k) =
c′θ̂k − b̂′kθ̂zc
ψ̂k
√
c′S−1

x c
(4.5)

where b̂k is the kth row of the matrix B̂ of estimated loadings, ψ̂2
k is the kth diagonal element of

the matrix Ψ̂ of estimated uniquenesses and θ̂z is the least-squares estimator of the p × Q matrix
of slope coefficients in the multivariate regression model relating the estimated factors Ẑ and the
explanatory variables x.

Factor-adjusted test statistics T̃k are defined as conditionally centered and scaled versions of the
classical t-statistics Tk:
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Définition 4.1.1.

T̃k =
σk
ψk

[
Tk −

b′k
σk
τZ

]
.

The following proposition gives the distribution of T̃ = [T̃1; . . . ; T̃m].

Proposition 4.1.4. Under assumption of a decomposition of the covariance matrix as in (3.2),
T̃ is normally distributed with, for all k ∈ [1;m], E(T̃k) = τk/

√
1− h2

k, where h
2
k = bkb

′
k/σ

2
k is the

communality of Yk. Moreover, V(T̃ ) = Im.

Proof. The factor-adjusted test statistics are linear functions of the residual terms Yk−Zb′k, which are,
under assumption 3.1), normally distributed. Therefore, T̃ is also normally distributed. Moreover,
it results from proposition 4.1.3 that E(T̃k) = σk

ψk
τk = τk/

√
1− h2

k and V(T̃ ) = E[V(T̃ |Z)] +

V[E(T̃ |Z)] = (σ2
k/ψ

2
k)E[V(T |Z)] = Im

The non-centrality parameter of T̃k being always larger than τk, the variable-by-variable power of the
factor-adjusted tests are larger than for the t-tests. Furthermore, this non-centrality parameter, and
consequently the power of the factor-adjusted tests, are increasing functions of the communality h2

k,
which confirms the idea that the multiple testing procedure can be improved by a correction of the
individual test-statistics regarding their contribution to the common variability across variables. On
the contrary, if the kth variable does not contribute to the factor structure, bk = 0 and T̃k coincides
with the usual t-test Tk.

As proposed in chapter 5, estimated factor-adjusted test statistics T̃ are obtained by plugging
the ML estimates of the factor model’s parameters in the test statistic defined in 4.1.1. As these
estimators of the variance parameters are consistent, this does not affect the asymptotic distribution
of the factor-adjusted test statistics. By analogy with the classical situation, we propose to take into
account the effect of estimating the variance parameters in small-sample conditions by approximating
the null distribution of ˆ̃Tk by a Student distribution with dfr degrees of freedom (see (5.9)).

P-values distribution under H0 Factor-adjusted test statistics and associated p-values are first
calculated in the simulation study of example 3. Figure 4.1 shows the mean distribution of
adjusted p-values for four scenarios od dependence, as in section 3.1. In each case, p-values
distribution is uniform in average. In opposition to the distribution of usual p-values (figure

3.1), there is low variability around this uniform distribution, whatever the level of dependence, as
suggested by the 95% confidence interval.

Figure 4.2 shows the p-values distribution for two datasets from scenario 9 as in section 3.1, for
factor-adjusted data and for raw data (in blue). For highly correlated data, p-values distribution
shows low depature from the theorical null distribution, with respect to the distribution of usual
p-values.
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(a) Scenario 1
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(b) Scenario 3
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(c) Scenario 6
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(d) Scenario 9

Figure 4.1: P-values distribution - Mean histogram over 1000 simulations - dotted lines: 95% confi-
dence interval

4.1.2 Estimation of the proportion of true null hypotheses

Factor-adjusted test statistics and associated p-values are now calculated in the simulation study of
example 4. π0 estimations are then performed with the different methods previously introduced.
The results are presented for two of them: empirical estimator with bootstrap choice of λ [Storey
et al., 2004] and considering the density estimation assuming it is a convex decreasing function
[Langaas et al., 2005]).

Figure 4.3 shows the estimated proportion of null hypotheses, along with the ∆ criterion, introduced
in section 3.2. The local bias induced by dependence observed previously when using usual p-values
is strongly reduced.
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Figure 4.2: P-values distribution under H0: examples of two datasets - scenario 9. In blue: usual
p-values distribution from the same datasets (see figure 3.2).

4.1.3 FWER and FDR control

Proposition 3.3.1 shows that correlation modifies the distribution of Vt by increasing its dispersion,
leaving its expectation unchanged. Therefore, correlation shall have an important impact on the tail
of the distribution, which is directly involved in the calculation of the error rates.

FWER Hsu [1992] gives an explicit expression of the FWER in the case of a one-factor approxima-
tion of the correlation between test statistics. This approximation is shown to be appropriate for the
most usual experimental designs in univariate ANOVA situations where a set of linear contrasts are
tested simultaneously. In the case of differential analysis for microarray data, the significance of only
one contrast is tested for each response variable and multiplicity of the tests is due to the number
of responses. Here, correlation between test statistics does not depend on the design but is directly
inherited from the correlation between the responses. The one-factor approximation can therefore be
too simple regarding the complexity of the dependence between gene expressions. Moreover, propo-

sition 3.3.1 gives an exact expression for the first two moments of Vt which only involves a 2-d
integration for the probability function of the bivariate normal distribution, whereas the extension
of Hsu [1992]’s formula for the FWER to a larger number of factors leads probably to numerically
untractable expressions.

The Sidak procedure [Sidak, 1967] is now applied on factor-adjusted p-values from the datasets
of the simulation study presented in example 4. Implementation is done using the R package
multtest [Pollard et al.]. Table 3.3 displays the frequencies of the number of false-positives Vt
and the estimated FWER using the simulated datasets. It shows that the procedure based on the
factor-adjusted test statistics controls the FWER at a level close to α = 0, 05, whatever the level of
dependence.

Figure 4.4 reproduces multiple boxplots of the distributions of the non discovery proportionNDPt =
#{k /∈ M0, H

(k)
0 not rejected}/m1. It shows that the variability of the NDPt distribution remains
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(a) Density estimation assuming it is a convex decreasing function
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(b) Empirical estimator with bootstrap choice of λ

Figure 4.3: Estimation of π0 along with the ∆ criterion that characterizes the density of null p-values around 0,
from factor-adjusted p-values (in black) and usual p-values (in grey) - π0 = 0, 80

constant along with the proportion of common variance. In gray is recalled the distribution of NDPt
obtained for the usual t-tests’ p-values. Moreover, the mean NDPt, which can be viewed as a type-II
error rate, decreases markedly with the factor-analytic procedure with respect to procedures based
on usual t-tests. A striking property of our method, compared with the procedures based on t-tests,
is the very important improvement of the global power (1-type-II error rate) of the multiple testing
procedure in presence of dependence.

FDR Figure 4.5 shows multiple boxplots of the distributions of the False Discovery Proportion
and the Non-Discovery Proportion. By comparison with figure 3.9 for a BH procedure applied on
classical t-tests (duplicated in gray on figure 4.5), the distribution of the FDP is clearly stabilized:
using the usual t-tests, the standard deviations of the FDP reaches up to four times the standard
deviations obtained under independence whereas it remains controlled at almost the same level using
the factor-adjusted method.
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scenario 0 1 2 3 4 5 6 7 8 9
common var.(%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
counts
0 957 954 965 951 960 966 967 963 960 955
1 42 45 34 49 39 32 30 35 36 34
2 1 1 1 2 3 1 3 9
3 1 1 1 1
4 1
FWER
#{Vt > 0}/m 4,3 4,6 3,5 4,9 4,0 3,4 3,3 3,7 4,0 4,5

Table 4.1: Estimated FWER along with the proportion of common variance (%) and observed counts
of false-positives - Sidak procedure [Sidak, 1967] applied to factor-adjusted p-values
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Figure 4.4: Non Discovery Proportion along with the level of dependence - Sidak procedure applied
on factor-adjusted p-values. In gray: same procedure applied on usual t-tests p-values (figure 3.8)

Another striking property of our method, as already noticed in the previous section on FWER, is
the very important improvement of the global power of the multiple testing procedure compared with
the BH procedure based on t-tests, illustrated by figure 4.5(b). This result probably illustrates the
idea that dependence between the responses should not just be seen as a nuisance for controlling the
FDR but also as a support to provide improved estimation of the effects of covariates.
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Figure 4.5: Distributions of FDP and NDP along with the proportion of common variance, using
the factor-adjusted test statistics - BH procedure. In gray: same thresholding procedure applied to
usual t-tests (figure 3.9)

4.2. Conditional estimators

4.2.1 Conditional estimation of π0

It is noticeable in the proof of proposition 3.2.2 that the variability of the empirical estimator of
π0 due to dependence essentially comes from the variance of the conditional bias given the factors:

E (π̂0(λ)|Z) =
E (Wλ|Z)
m(1− λ)

=
∑

k∈M
(
1−GZ(k;λ)

)
m(1− λ)

=
∑

k∈M
(
[G(k;λ)−G(k;λ)] + [1−GZ(k;λ)]

)
m(1− λ)

=
∑

k∈M (1−G(k;λ))
m(1− λ)

+
∑

k∈M
(
G(k;λ)−GZ(k;λ)]

)
m(1− λ)

= B(π̂0) +
∑

k∈M
(
G(k;λ)−GZ(k;λ)]

)
m(1− λ)

(4.6)

B(π̂0) = (1 − π0)1−Ḡ1(λ)
1−λ is the unconditional bias of π̂0(λ) and BZ(π̂0) =

∑
k∈M (G(k;λ)−GZ(k;λ)])

m(1−λ) =
Ḡ(Z,λ)
(1−λ) , is a random variable with mean 0.

For each dataset in the simulation scenarios introduced in example 4, the random part of B(π̂0) is
calculated with the optimal threshold λ previously used to obtain the estimated values displayed in
figure 3.3(b) and the classical Thompson method [Mardia et al., 1979] to estimate the factors Z.
In figure 4.6, the graphical representation of this random term along with the ∆ criterion exhibits
the same kind of patterns as observed on figure 3.3(b). This suggests that ∆̄GZ(k;λ)/(1 − λ)
captures the local bias identified in section 3.2 as due to dependence.
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(c) Scenario 6

0 2 4 6 8

−0
.4

−0
.2

0.
0

0.
2

0.
4

∆

B Z
(π 0

) ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) Scenario 9

Figure 4.6: Graphical representation of BZ(π̂0) along with the ∆ criterion for different levels of
dependence.

We therefore propose a conditionally bias-corrected version of π̂0(λ):

Définition 4.2.1.

π̌0(λ) = π̂0(λ)− BZ(π̂0)

whereBZ(π̂0) = ∆̄GZ(k;λ)/(1− λ).
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(a) Scenario 1
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(b) Scenario 3
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(d) Scenario 9

Figure 4.7: Conditional estimate π̌0 along with the ∆ criterion for different levels of dependence

4.2.2 Conditional estimation of FDR

The following expression gives the expectation of Vt conditionally on the factors.

E(Vt|Z) =
∑
k∈M0

P (pk ≤ t|Z) =
∑
k∈M0

GZ(k, t) (4.7)

(4.8)

The above expression of E(Vt|Z) is now used to define a conditional estimate FDRZt of the FDR,
by analogy with the proposition made by Efron [2007], who defines FDRAt as E(Vt|A)/Rt, where A
is a random variable which value essentially differs according to the amount of dispersion among the
correlations between the test statistics.
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Définition 4.2.2 (FDR conditionnel).

FDRZt =
E(Vt|Z)
Rt

=

∑
k∈M0

(GZ(k, t))
Rt

=
m0t

Rt
+

∑
k∈M0

(GZ(k, t))
Rt

− m0t

Rt

= F̂DRt.

[
1 +

∑
k∈M0

(GZ(k, t)− t)
m0t

]
where F̂DRt = m0t

Rt
is the empirical estimator of FDR.

The above expression of FDRZt appears to be very close toEfron [2007]’s conditional FDRAt estimate:

FDRAt = F̂DRt.

[
1 +A

utφ(ut)√
2(1− Φ(ut))

]
Both conditional FDR estimates are defined as corrections of the unconditional estimate, accounting
for the correlation among the test statistics through factors for FDRZt or through A for FDRAt .

If m0 is unknown, it is replaced by m (as in the expression of FDRAt given by Efron [2007]) or
estimated (see section 2.2). It is also interesting to note that estimation of both conditional FDR
involves a preliminary approximation of the null distribution of the test statistics: this point is
handled in Efron [2007] by focusing on the Z-scores which absolute value is less than 1 to estimate
A and a rough estimation ofM0 is also proposed later in section 4.3 by M̂0 = {k : pk ≥ 0, 05}.

The conditional estimates of the FDR are now compared by means of simulations involving 10
scenarios of conditional correlation matrices which differ by their proportion of common variance
(example 4). For each dataset and for t = 0, 05, the conditional estimate FDRZt is estimated, to-
gether with FDRAt (following the suggestions in Efron [2007]) and the unconditional estimate F̂DRt.
To avoid discussions about the impact of the estimation of m0 in this comparative study, m0 = 400
is supposed to be known. For each scenario, table 4.2 gives the regression coefficients between the
observed false discovery proportion FDPt and each of the estimates. Results for scenarios 1, 3, 6 and
9 are illustrated on figure 4.2.2 by plots of the FDR estimates versus FDPt. As already observed

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
F̂DRt -0,197 -0,196 -0,189 -0,176 -0,187 -0,171 -0,175 -0,182 -0,169 -0,171
FDRAt 0,155 0,335 0,748 0,966 1,062 1,129 1,139 1,09 1,134 1,180
FDRZt -0,197 0,025 0,578 0,815 0,844 0,886 0,907 0,889 0,915 0,913

Table 4.2: Regression coefficients between FDR estimates and FDP - t = 0, 05

by Efron [2007], the unconditional estimate F̂DRt is negatively correlated with the observed FDPt,
which can result in strongly misleading estimations especially when FDPt is high. Figure 4.2.2
shows that this concern is particularly clear for large fractions of shared variance. For small fraction
of shared variance, FDRZt suffers from the same problem, essentially because the number of factors
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Figure 4.8: Estimated FDR versus the observed FDP with t = 0, 05, for different simulation scenarios

is most often estimated by zero (see figure 5.3), in which case FDRZt = F̂DRt. From scenario 3 to
10, when the factor structure is clearer, both FDRZt and FDRAt are positively correlated with FDPt,
confirming the importance of accounting for the correlation between test statistics in multiple testing
procedures. Figure 4.2.2 and table 4.2 both suggest that, for large values of common variance,
FDRZt provides much more precise estimations of FDPt than FDRAt . The important dispersion
appearing in the distribution of FDRAt is also revealed in the simulation experiment reported in
Efron [2007].
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4.3. Factor Analysis for Multiple Testing: FAMT

This section is dedicated to the presentation of a procedure called Factor Analysis for Multiple
Testing (FAMT), from the name of the R package. This package is available on the R website
(http://cran.r-project.org/). The package has also its own website (http://famt.free.fr).
Next chapter is organiased as a tutorial. This section describes the different steps of the procedure,
built on the factor-adjusted approach presented in the present chapter.

A factor-adjusted testing procedure is carried out on the datasets simulated in the 10 scenarios of
dependence introduced in section 3:

1. Estimation of M0 Classical t-tests are calculated for each variables and a first estimation of
M0 is deduced by taking the indices of the p-values exceeding α = 0.05;

2. Choice of the number of factors The number of factors is estimated by minimisation of
the criterion given in proposition 5.4.1 in the following chapter;

3. Estimation of the model’s parameters

4. Calculating factor-adjusted p-values The factor-adjusted test statistics T̃ and the corre-
sponding p-values are calculated;

5. Up-dating the estimation of M0 The estimation of M0 is updated by taking the indices
of the factor-adjusted p-values exceeding 0, 05.
Steps 2 to 4 are performed again with this new estimation ofM0;

6. π0 estimation The estimation of this parameter is in general a crutial step of multiple testing
procedures. It is here estimated according to one of the method introduced in section 2.2,
applied to the factor-adjusted p-values.

7. Decision rule A BH thresholding procedure at level α = 0, 05 is applied to the factor-adjusted
p-values to decide which null hypotheses are rejected. The BH procedure is improved by
estimating m0 according to one of the method introduced in section 2.2, applied to the
factor-adjusted p-values.

Conclusion

This chapter introduces a general framework for high-dimensional multiple testing procedures. This
framework makes the most of the modeling of dependence through a low dimensional set of latent
variables, as described in the previous chapter.

As data are independent conditionally on the factors, this framework allows to extend the results on
error rates control in the independent case to general dependence. Factor-adjusted data can be used
to apply multiple testing procedures initially derived for independent variables. This setting leads
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to less correlation among tests and shows large improvements of power and stability of simultaneous
inference.

The impact of dependence on π0 estimation is markedly reduced, as the variability of null p-values
under dependence becomes stable.

Besides, this modeling of dependence allows to derive the exact expression of the variance of both
false positives and π0 (chapter 3). Considering these properties, we introduce conditional estimates
for FDR and π0, that appear as corrections for the respective empirical estimates under dependence.

Finally, a procedure called FAMt is introduced. It describes the different steps implementing the
proposed methodology for large-scale multiple testing under dependence. This procedure is illus-
trated thanks to the tutorial of the associated R package (FAMT). Beforehand, chapter 5 focuses on
model parameters estimation and on the differents methods to choose the number of factors to be
included in the model.



CHAPTER 5

FACTOR ANALYSIS IN HIGH-DIMENSIONAL DATA
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Abstract This chapter deals with the parameter estimation of the latent variable
model introduced in the previous chapters. Two methods are discussed, and we opt
for a Maximum Likelihood approach. An algorithm that implements this method
in the high-dimensional setting is presented in this chapter. Moreover, a crucial
step in conducting Factor Analysis is to determine the optimal number of factors.
Different methods are discussed and a strategy suited to the multiple testing context
is proposed.
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5.1. Introduction

In all applied sciences that deal with large quantities of data, such as economics, marketing or
even life sciences, we often need to determine a smaller set of synthetic variables that could explain
the original set. Moreover, the dimensionality of the data may make one to assume that simple
dependence structures, for instance independence between blocks of variables, or simple within-
block correlation patterns, can be far from the observed structure. Factor Analysis aims at dealing
with such issues: originally developed for reducing a large number of observed variables in term
of a meaningful small set of latent variables, also called common factors, this method appears as
a nice tool to investigate the dependence structure between a large set of variables. It describes
the covariance relations between observed variables in terms of a meaningful small set of latent
variables, called “common factors”. It is an analytic tool used for many years in economics, social
sciences and psychometrics, originally in the field of intelligence research [Spearman, 1904], and
has only appeared recently in the study of the dependence structure in high dimensional datasets
provided by microarray technology [Pournara and Wernisch, 2007, Kustra et al., 2006].

In Factor Analysis, we assume a model for the correlation matrix between the m observed variables
to describe the data dependence structure that links factors, unobserved latent variables, to the
original data. The influence of the latent variables can be identified considering factors that are
common to the whole set of variables, and factors that are specific to each ones. The n × m-data
matrix Y = [Y1, ..., Ym] can the be split into two parts, associated to the common and to the specific
information as in (3.1):

Yk = mk(x) + bkZ + εk

or in a matrix form:
Y = Mx + ZB′ + E

Where B is the m × Q-matrix of loadings, Z = [Z1, ..ZQ] is the n × Q-matrix of common factors,
and E = [E1, ..Em] is the n × m-matrix of specific factors. Some constraints are assumed in the
FA framework:

Hypothèse 2.

1. Common factors Z are centred, scaled and independent random variables: Z ∼ N (0; I(Q))

2. Specific factors E are centred and independent random variables: E ∼ N (0; Ψ), where Ψ is
diagonal
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3. Common and specific factors are uncorrelated:

Cov(Zq, Ei) = 0, q = 1..Q, i = 1..m

Considering model (3.1), V(Yk) =
∑Q

q=1

(
b2kq

)
+ ψ2

k, where bkq is the loading for variable k and

common factor q. h2
k =

∑Q
q=1

(
b2kq

)
is called “communality”, it is the kth diagonal element of BB′ and

represents the part of variability of Yk explained by the common factors. The kth diagonal element
of Ψ, ψ2

k, is the specific variability. We also deduce from (3.1) that Cov(Yk, Yk′) =
∑Q

q=1 bkqbk′q. We
can the define a model for the covariance matrix Σ:

Σ = BB′ + Ψ (5.1)

A recurring question in Factor Analysis is to determine the minimal number of observation necessary
to conduct the study and to get stable estimates [Preacher and MacCallum, 2002]. Many rules of
thumb can sometimes be found in the literature, such as a minimum of 500 or a ratio of 10 times as
many subjects as variables. Actually, the issue mostly depends on the studied structure, and more
particularly on the communalities. Indeed, smaller sized sample can be considered if both the ratio
m/Q and the communalities are high. Although the more observations the better, it is even more
important to have high communalities and a small number of factors with respect to the number of
variables (a high m/Q ratio) [MacCallum et al., 2008].

Considering high-dimensional data for Factor Analysis is the major concerns of this chapter. Indeed,
in the settings evoked previously, n << m then the rules on size sample needed to yield accurate
estimates are strongly violated. After a recall on various methods for parameters estimation, we study
the estimation bias of parameters, and propose a correction to almost remove it in the small sample
case. In the next part, we consider the factor number determination issue, which is a fundamental
question of the method.

Note that estimation algorithms consider centered data:

Y ∗k = Yk −mk(x) = b′kZ + εk

5.2. Estimation of the Factor Analysis model

Factor Analysis first consists in estimating the number Q of common factors, which is a crucial point
of the method. In this section, we will consider that Q is known, in order to focus on the estimation
of model’s parameters only. The issue of factor number determination is discussed latter in this
paper.

Methods Let’s consider that each variable Yk, k ∈ [1..m], can be expressed as a linear combination
of common factors, Zq, q ∈ [1..Q] and a specific term Ek as in (3.1). The issue is then to determine B̂
and Ψ̂, respectively the estimation of the loadings, representing the weight of the considered variable
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on the Z structure, and the estimation of the uniquenesses, so that: S = B̂B̂′+Ψ̂. There are several
methods to extract factors from the data such as Unweighted Least Squares (ULS), Generalized
Least squares (GLS), Singular Value Decomposition (SVD), Principal Factoring (PF), Maximum
Likelihood (ML) or even Alpha Factoring. Generally, two of them are evoked to deal with this issue
and are implemented in the leading statistical software: Principal Factoring (PF) and Maximum
Likelihood (ML).

PF consists in iterative PCA. B is then estimated by the Q first principal components and Ψ by the
diagonal of R−B̂B̂′. Each step of PF algorithm involves the storage of the m×m correlation matrix
and its decomposition that can be numerically complicated. Nevertheless, factorial approaches are
commonly used in practice, and results are said correct provided the number of factors Q is well
chosen.

The ML method has some nice statistical properties such as asymptotic efficiency, invariance under
change of scale, and the existence of a test for additional factors. ML method is favored in the
following for these interesting properties in an inference aim. Algorithms implementing this method
usually constrain Ψ to be diagonal, so that all the items given in assumption 2 are satisfied. This
is a point of most interest as, as described in chapter 4, the Ψ matrix plays an important role in
the proposed inference framework.

ML Factor Analysis for high-dimensional data To avoid “Heywood cases” that can be brought
by Newton-Raphson algorithms in the seek of the ML estimators, Rubin and Thayer [1982] proposed
an EM algorithm. This class of algorithm is now a very popular tool for iterative ML estimation in
issues involving missing or incomplete data. In the Factor Analysis framework, we aim at estimating
the parameters of a multivariate normal model with missing data, where in this case, the missing
data are the unobserved latent variables Z. The EM algorithm developed for Factor analysis is
iterative, and has the same attractive properties as ML-based methods. An iteration consists of
two steps, the Expectation Step (E-step) and the Maximization Step (M-step), increasing each time
the (log)likelihood of the parameters. Each iteration is not computationally expensive, and only
involves the decomposition of a Q×Q-matrix, Q << m. Many extensions have been developed, for
instance when closed forms can not be achieved for the E-step solution (Monte Carlo EM (MCEM),
[Wei and Tanner, 1990]) or for the M-step solution (Generalized EM (GEM),[Dempster et al., 1977],
Expectation-Conditional Maximisation (ECM), [Meng and Rubin, 1993]). Other extensions are also
proposed to improve computational properties and convergence rate of the EM algorithm (Incremen-
tal EM (IEM), Sparse EM (SPEM), [Neal and Hinton, 1998] ). See for instance McLachlan et al.
[2004] for a larger review. In the following, we consider the issue of parameter estimation in the
Factor Analysis framework, and speed of convergence improvements are kept aside.

Let’s call Y (i) the ith line of Y , associated to the observation i, of size 1 × m, and Z(i) the 1 × Q-
vector of scores associated to the ith observation. The EM algorithm is based on the log-likelihood
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of the model (3.1) given in (5.2) and aims at maximizing its expectation (5.3):

L(B,Ψ) = −nm
2
ln(2π) +

n

2
ln
∣∣Ψ−1

∣∣− 1

2

n∑
i=1

[
Y (i)Ψ−1Y ′(i) − 2Y (i)Ψ−1BZ′(i) + tr

(
B′Ψ−1BZ′(i)Z(i)

)]
(5.2)

E(L|Y ) = cst+
n

2
ln
∣∣Ψ−1

∣∣− 1

2

n∑
i=1

[
Y (i)Ψ−1Y ′(i) − 2Y (i)Ψ−1BE(Z′(i)|Y (i)) + tr

(
B′Ψ−1BE(Z′(i)Z(i)|Y (i))

)]
(5.3)

tr(M) is the trace of matrix M . Considering the joint density of Y and Z, we get

E(Z(i)|Y (i)) = Y (i)Ψ−1B(IQ +B′Ψ−1B)−1 (5.4)

E(Z ′(i)Z(i)|Y (i)) = (IQ +B′Ψ−1B)−1 + E(Z(i)|Y (i))′E(Z(i)|Y (i)) (5.5)

To find ML estimates of B and Ψ, we maximize (5.3) and find:

B̂ =
n∑
i=1

[
Y ′(i)E(Z(i)|Y (i))

] [ n∑
i=1

E(Z ′(i)Z(i)|Y (i))

]−1

(5.6)

Ψ̂ = S − 1
n

n∑
i=1

Y ′(i)E(Z(i)|Y (i))B′ (5.7)

The EMFA algorithm is described hereafter, based on expressions (5.4) and (5.5) for the E-step and
(5.6) and (5.7) for the M-step:

1. Initialization: rough estimation B̂0 and Ψ̂0.

2. Iterations

• E-step: Expectation of the log-likelihood

E(Z(i)|Y (i)) = Y (i)Ψ−1
0 B0(IQ +B′0Ψ−1

0 B0)−1

E(Z(i)Z ′(i)|Y (i)) = (IQ +B′0Ψ−1
0 B0)−1 + E(Z(i)|Y (i))′E(Z(i)|Y (i))

• M-step: Estimation of the ML estimators for B and Ψ

B1 =
n∑
i=1

[
Y ′(i)E(Z(i)|Y (i))

] [ n∑
i=1

E(Z ′(i)Z(i)|Y (i))

]−1

Ψ1 = diag

[
S − 1

n

n∑
i=1

Y ′(i)E(Z(i)|Y (i))B′1

]

3. Stop: The E- and M-steps are alternated repeatedly until convergence, which may be deter-
mined by using a suitable stopping rule like for example, tr(Ψ0 −Ψ1) < ε, ε > 0.

The details of up-dating equations are available in the appendix
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Degree of freedom of the FA model We can write a model as Ŷ = PY where P represents
the smoother matrix. In the linear model theory, the number of degree of freedom corresponds to
the trace of the matrix 2P − PP ′. Therefore, the degrees of freedom associated to the residuals are
defined as ddlr = n− tr(2P − PP ′). These definitions can be extended to the non parametric case,
where P is no more independent of Y distribution: P = P (Y ) (see Hastie and Tibshirani [1990]).

In the case of Factor Analysis, the model is defined in (3.1). Predictions can be written as Ŷ = ZB′.
Let’s call G = [IQ +B′Ψ−1B]−1.

Ŷ = ZB′

=
(
Z[nG+ Z ′Z]−1Z ′

)
Y see (5.6)

= HY (5.8)

Therefore, the degrees of freedom for the residuals of the Factor Analysis model are:

dfr = n− tr(2H −HH ′) (5.9)

5.3. Validation of parameters estimation in high-dimension

Properties of the estimates yielded by the EM algorithm are studied in details in many books and
papers, in the classical setting for data dimension. As huge datasets of multidimensional observations
are commonplace in real-data analysis, we can wonder whether these properties still hold while
considering high-dimensional settings. In this section, we will focus on the estimation of B and Ψ.
The estimates brought by the EM algorithm are convergent, but may be biased in the case of finite
samples. For small samples, the bias of ML estimators can be substantial.

Exemple 5. We consider simulated datasets to study the impact of high-dimension on FA
model parameters estimation. The simulated datasets are characterized by 10 different schemes
of dependence structure of Q = 5 factors, from a low to a high level of correlation, as described
in example 3. Each dataset is composed of m = 500 variables and n = 10, 50, 500 observations.
These 3 configurations for sample sizes allow to compare estimations in small samples and in an
asymptotic setting. Each time, 1000 datasets are simulated. Considering the number of factors
as known, the EMFA algorithm is computed to get B and Ψ ML estimates.

Estimation of loadings (B) B is determined up to an orthogonal rotation. Estimation is then
assessed thanks to the RV coefficient [Escouffier, 1973]. This coefficient evaluates the relationship
between the variables of two datasets X and Y, observed on the same individuals. It takes values
between 0 (each variable of X is uncorrelated to each variable of Y ) and 1 (the configurations of the
individuals induced by X and Y are homothetic). Between theses two extreme bounds, the value of
an RV coefficient can be tested for its significance [Josse et al., 2008]. This test is performed on the
estimations obtained in the simulation study described in example 5. The main result is that the
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higher the dependence among tests is, the more accurate the loading estimation is. This results is
linked to the fact that for a low dependence level, the number of factors should be less than 5, and
most often 0 or 1 (see next section for more details). In this case, it may be more appropriate to
use methods designed for the independent case.

Estimation of specific variances (Ψ) Figure 5.1 shows the Ψ estimation with respect to the
true Ψ, along with different sample sizes and different dependence structures, from the simulation
study of example 5. For small sample sizes (see figures 5.1(a) and 5.1(b)), there is a bias
in Ψ estimation: high “uniquenesses” tend to be under-estimated, in particular when the level of
dependence increases. As the sample size grows, the bias disappears, which confirms that the ML
estimate provided by the EM algorithm converges (see figure 5.1(c)).

Our proposal is to correct the bias in Ψ estimation in the high dimensional framework thanks to the
residual degrees of freedom as given in (5.9). Ψ estimation is then the one obtained by the EMFA
algorithm, multipied by a coeffifient cz = n−1

dfr
. We apply this correction to the simulation study

presented previously. The results for the different scenarios (levels 1,4,et 8), and the different sample
sizes (n = 10, 50, 500), are given on figure 5.2. The cZ correction reduces the bias in Ψ estimation
in the case of small samples.

5.4. Number of factors

In Factor Analysis, the first step consists in estimating the number of factorsQ to be considered in the
model. This step is the most crucial in conducting Factor Analysis. Indeed, we must balance between
parsimony, that is to say to consider few parameters in the model, and accuracy in representing the
correlation structure. Choosing the “right” number of factors requires to be able to identify major and
minor factors. Under-estimation of Q leads to loss of information by ignoring a factor or recombining
one with another. The loadings for measured variables are therefore biased and interpretation based
on them would not be much reliable, the true structure of the data being concealed. Over-estimation
is commonly considered as less severe. But considering too many factors underlines minors factors,
with only a few high loadings so that interpretation is difficult and such model is unlikely to be robust
for replication. Therefore, considering both too few and too much factors has significant consequences
in the reduction of information, affecting parameters estimation and data interpretation. Because of
all these reasons, the number of factors issue leads to plenty of methods proposed in the literature,
with more or less subjective decision rules.

Exiting methods The most famous criteria are the ones proposed by Kaiser [1960] (K1: eigen-
values greater than 1) and Cattell [1966] (scree-test: examination of eigen values pattern for dis-
continuities). The ease of implementation and theorical basis of both K1 and scree test rules make
them widely used in practice, as shown by a lot of reviews on the use of factor retention methods
in psychology or marketing where FA is commonplace, through the study of articles published in
major journals of these research fields (Stewart [1981], Ford et al. [1986], Fabrigar et al. [1999] or
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(a) sample size n = 10

(b) sample sizen = 50

(c) sample size n = 500

Figure 5.1: Ψ estimation considering 3 different dependence structures: low (1), intermediate (4)
and high (8) - 1000 simulated datasets for each scenario - means along with the 1000 replicates are
represented on the plots
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(a) sample size n = 10

(b) sample size n = 50

(c) sample size n = 500

Figure 5.2: Ψ estimation with residual degrees of freedom correction, considering 3 different depen-
dence structures: low (1), intermediate (4) and high (8) - 1000 simulated datasets for each scenario
- means along with the 1000 replicates are represented on the plots
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more recently Norris and Lecavalier [2009]). Other methods are proposed in the literature. Compar-
ing eigen-values of the real dataset and those of same-sized datasets of simulated random variables
is the principle of Parallel Analysis, suggested by Montanelli and Humphrey [1976] to take into
account in the factor number determination the variation of eigen-values due to sampling. Other
criteria are sometimes considered such as Very Simple Structure [Revelle and Rocklin, 1979], based
on a goodness-of-fit index, or the Minimum Average Partial test [Velicer, 1976], based on the partial
correlation matrix.

However, all of these criteria often do not lead to the same, or even similar, results. Therefore, there
is no consensus on which one, among the huge number of available criteria, is more appropriate to
use. Many authors have conducted studies to compare the performance and accuracy of the previous
criteria (see for example Ford et al. [1986] or Velicer et al. [2000]). The general conclusion is that,
despite their popularity, K1 or scree test criteria are not much accurate, especially when the sample
size is small. K1 tend to over-estimate Q as it yields a lower bound for the rank of the correlation
matrix, and then an upper bound for Q [Horn, 1965]. Scree test suffers from subjectivity, as breaks
are less likely evident in the case of small samples and when the correlation structure is not strong.
For many authors (Hayton et al. [2004], Velicer et al. [2000]), PA should be preferred for factor
retention as the most accurate method, and only slightly over estimates Q in case of error. A major
problem in high dimensional data with methods such as PA is that they require the factorisation
of huge covariance matrix (m ×m) so computation may not be possible from a practical point of
view. Considering the ML estimation of the parameters, we could use χ2-based methods, such as a
goodness-of-fit criterion to test for the number of factors to retain. But this is too sensitive to the
sample size to be considered in a high-dimensional setting.

A criterion based on the variance inflation of Vt We propose a new criterion to determine the
number of factors to retain, which matches with high-dimension constraints. Factor Analysis aims
at modeling the covariance (or correlation) structure. Let’s consider the following model defined
previously in (3.1) and assuming q common factors for each variable k: Yk = µk + Zb

′(q)
k + ε

(q)
k .

If the whole correlation structure is well modeled by the Factor Analysis model, then the resid-
ual correlation should be zero. Our method is based on this proposition. Indeed, Cov(εk; εk′) =
σkσk′ρkk′ − bkb′k′ and V(εk) = Ψk so we can define the residual correlation, assuming a q-common
factors model, by:

ρ
(q)
kk′ =

σkσk′ρkk′ − b
(q)
k b
′(q)
k′√

ΨkΨk′
(5.10)

Beforehand, let’s recall the definition a U-shaped criterion called Dkk′(t) that ranges from 0 in ρ = 0
to 1 in ρ = −1 and ρ = 1 (see definition 3.2.1 and figure 3.7). Considering the Dkk′(t) criterion
for each pair of variables {Yk, Yk′}, k 6= k′ ∈ [1;m], the proposed method to determine the number
of factors is to choose Q satisfying:
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Proposition 5.4.1. If ρ(q)
kk′) is the residual correlation between Yk and Yk′ as in (5.10), let’s

define Q as:

Q = argmin
q∈[0;qmax]

1
m(m− 1)

∑
k 6=k′∈[1;m]

Dkk′(t)(q)) (5.11)

Q is the number of factors that minimises the mean of Dkk′(t) criterion over all the pairs of variables.
In the multiple testing context, this criterion calculated over variables inM0 allows to extract the
number of factors that minimises the variance of Vt. According to the study led in the previous
chapters, the consequence is that procedures are stabilized. In practice, this criterion is successively
estimated using the residual matrix obtained with an increasing number of factors and the retained
number of factors is obtained when the variance inflation is minimised.

Simulation study This estimation procedure for the number of factors is now implemented in
the 10 scenarios of simulated data introduced in example 5, in which the true number of factors
is Q = 5. Figure 5.3 reproduces barplots of the distribution of Q̂. It clearly shows that when the
proportion of common variance is small, the estimated number of factors is relevantly lower than Q
and when the factor structure dominates the specific part, Q̂ provides a precise estimation of Q.

Figure 5.3: Distributions of the estimated number of factors along with the dependence level. From
scenarios 4 to 9, Q̂ turns out to be constant and equal to 5.
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In practice, implementing this method requires to calculate the Dkk′(t) criterion for all pairs of
variables, namely m × (m − 1). As the correlation matrix is symmetric, it actually requires to
consider m× (m− 1)/2 pairs. In the multiple testing framework, this is reduced to m0× (m0− 1)/2
pairs. In any case, the number of pairs is very huge, and can reach several thousands. As also
suggested by Owen [2005], we propose to consider a range of η values, uniformly distributed on
[0; 1]. Then, we count the number of times each value appears in the correlation matrix, considering
an approximation of correlations by taking their absolute value and rounding them at the specified
significant decimal figure:

∑
k 6=k′∈M

Dkk′(t) ≈
η∑
j=1

njD(t; ρj) (5.12)

where nj represents the number of variables pairs for which the rounded correlation is equal to
ρj . If the correlation distribution is symmetric, which is the case in most of applications, then the
approximation given in (5.12) is accurate and leads to a sharp increase in computation time.

In the R package called FAMT, the minimised criterion is based on the following approximation:

1
m(m− 1)

∑
Dkk′(t) ≈

∫
[0;1]

Dkk′(t)f(ρ)dρ

where f(ρ) is the correlations density function. It is estimated thanks to sampling in observed
correlations.

Conclusion

Several methods are available to estimate the parameters of a latent variables model. We here
consider a Maximum Likelihood Factor Analysis using an EM algorithm to deal with high dimension.

Determining the optimal number of factors is a crucial step of Factor Analysis. We propose a criterion
allowing to define the model that fit best the covariance structure. By minimising this criterion, the
inflation of variance of false-positives is also minimised. Using this criterion is therefore of great
interest for the FAMT procedure introduced in chapter 4.

In case of strong dependence structure among tests, the model is easier to fit and estimation by Factor
Analysis is more accurate, even for small samples. The consequence when using Factor Analysis for
multiple testing is that it may be more appropriate to use procedures derived in the independent
case when the dependence structure is very low. Considering our criterion to determine the number
of factors leads to this strategy.

The FAMT procedure is now assessed in chapter 6 thanks to an application to gene expressions
data and presented as a tutorial of the R package called FAMT.
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CHAPTER 6

FACTOR ANALYSIS FOR MULTIPLE TESTING (FAMT): AN R
PACKAGE FOR LARGE-SCALE SIGNIFICANCE TESTING UNDER

DEPENDENCE

abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbc
dddddddddddddddddddddddddddddd

Abstract The R package FAMT (Factor Analysis for Multiple Testing) provides a
powerful method for large-scale significance testing under dependence. It is espe-
cially designed to select differentially expressed genes in microarray data when the
correlation structure among gene expressions is strong. Indeed, this method reduces
the negative impact of dependence on the multiple testing procedures by modeling
the common information shared by all the variables using a factor analysis (FA) struc-
ture. New test statistics for general linear contrasts are deduced, taking advantage
of the common factor structure to reduce correlation and consequently the variance
of error rates. Thus, the FAMT method shows improvements with respect to most
usual methods regarding the Non Discovery Rate (NDR) and the control of the False
Discovery Rate (FDR). The steps of this procedure, each of them corresponding to
R functions, are illustrated in this paper by two microarray data analyses. We first
present how to import the gene expression data, the covariates and the genes anno-
tations. The second step includes the choice of the optimal number of factors and
the FA model fitting, and provides a list of selected genes according to a preset FDR
control level. Finally, diagnostic plots are provided to help the user interpret the
factors using available external information on either genes or arrays.

Keywords: factor analysis, multiple testing, dependence, false discovery rate, non
discovery rate, R
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6.1. Introduction

Independence among tests is assumed in the settings of most multiple testing procedures. However,
for instance in the case of microarray data, the dependence between gene expressions is often strong,
due to complex biological regulatory relationships. It has been proved that this dependence has a
negative impact on the multiple testing procedures, particularly on the variance of the number of false
positive genes, thus on the control of the False Discovery Proportion (Efron [2007], Kim and Van de
Wiel [2008], Friguet et al. [2008]). The FAMT procedure deals with this problem by modeling the
common information shared by all the variables using a factor analysis structure. New test statistics
for general linear contrasts are deduced, taking advantage of the common factor structure to reduce
correlation and consequently the variance of error rates. The details of this method are given in
Friguet et al. [2008].

The present paper aims at presenting the statistical handling of multiple testing dependence as
proposed in the R package FAMT. The crucial steps of the analysis correspond to core functions:
as.FAMTdata to import the data and create a single R list from multi-sourced datasets, modelFAMT
to estimate the dependence kernel and adjust the data from heterogeneity components and defacto

to relate the heterogeneity components to external information if provided. Moreover, additional
functions are proposed to summarize the results (summaryFAMT) and to optimize the procedure by
modifying the default choices implemented in modelFAMT, such as the estimation procedure for the
proportion of true null hypotheses (pi0FAMT) or the optimal number of factors (nbfactors).

The FAMT procedure is applied on two microarray datasets, which both describe chicken hep-
atic transcriptome profiles, and are provided by the INRA Animal Genetics department in Rennes,
France. The first microarray data analysis studies the relationships between hepatic gene expression
and abdominal fatness (Blum et al. [2010], LeMignon et al. [2009]). The normalized microarray
dataset is available in the FAMT package, and is used here to describe the method step by step. The
second microarray data analysis focuses on the feeding-to-fasting transition in chicken liver by Désert
et al. [2008].

The first dataset is a relevant example of a situation where the classical multiple testing method
fails to detect differentially expressed genes, due to the high amount of dependence among the gene
expressions (see Blum et al. [2010]). Indeed, Figure 6.1 represents the empirical distribution of the F-
tests p-values: note that there are less small p-values than expected under the hypothetical situation
where all genes would be under the null hypothesis. In situations of highly dependent data, Friguet
et al. [2008] show that the empirical distribution of p-values corresponding to true null hypotheses
can markedly depart from the uniform distribution. In this situation, it is therefore recommended
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to take into account the dependence to improve the data analysis. On the contrary, in our second
example, the distribution of the p-values is apparently more common (see Figure 6.8). Yet, we show
hereafter that the FAMT method can still be used to give more insight into the multiple testing
procedure and increase its overall power.

6.2. Data manipulation

In microarray data analysis, the selection of differentially expressed genes involves at least two
datasets with different dimensions. First, the expression dataset, which directly results from mi-
croarray experiments and usually a normalization procedure, has much more variables (gene expres-
sions) than individuals (arrays). For convenience, it is stored as a m genes × n microarrays table. In
the following illustative example, this dataset concerns hepatic transcriptome profiles for m = 9893
genes of n = 43 half sib male chickens selected for their variability on abdominal fatness (Af). The
data comes from the Animal Genetics department (INRA-Rennes), and it was generated to map
quantitative trait loci (QTL) for abdominal fatness in chickens. Animals, marker genotyping and
transcriptome data acquisition and normalization are described in LeMignon et al. [2009].

The covariates dataset gives information about the experimental conditions: the identifier of each
row (arrays), as used in the column names of expression, is provided, together with the value of
the main explanatory variable in the testing issue (Af in the present example) and possibly of other
covariates. This dataset is optional: if not provided, the procedure aims at testing the significance
of the mean expressions.

Finally, the annotations dataset provides additional information about the response variables of
the multiple testing procedure to be used to describe the results: for example, the functional char-
acterization of each gene extracted from the Gene Ontology can be useful to directly connect the
list of differentially expressed genes to biological processes. In the present example, some additional
variables are also used to locate the spots on the microarray (block, row, column). One column of
this dataset must be named ID and gives the variable (gene) identifier that will be used in the final
output of the procedure. This dataset is optional: if not provided, a basic annotations dataset is
created with row indices as variable identifiers.

The first step of the FAMT method uses the as.FAMTdata function to create a single R list contain-
ing the multi-sourced datasets. To avoid violations of the correspondence between the columns of
the expression dataset and the rows of the covariates dataset, this function also checks that one
column in covariates, which number is given by the argument idcovar, gives the individual (array)
identifier, such as stored in the column names of expression. Some simple tests for the compatibility
of the datasets’ dimensions are also performed: the number of columns of expression must corre-
spond to the number of rows of covariates and furthermore, expression and annotations must
have the same number of rows. The subclass of the output is named FAMTdata and the belonging to
this class is required by the other functions of the package.

In our example, three datasets are provided:
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• expression contains 9893 gene expressions or tests, and 43 individuals.

• covariates with variables AfClass (the abdominal fatness class, with 3 levels: F (Fat), L
(Lean), NC (Intermediate)), ArrayName (identifying the arrays), Mere (the dam of the off-
springs, a factor with 8 levels), Lot (the hatch, a factor with 4 levels), Pds9s (the body weight,
a numeric vector), and Af (the abdominal fatness, a numeric vector). Af is the experimental
condition of main interest in this example.

• annotations with variables ID (the gene identification), Name (the gene functional category),
Block, Column and Row (location on the microarray), Length (the oligonucleotide size).

The following code creates the FAMTdata object called chicken.

R> chicken = as.FAMTdata(expression, covariates, annotations, idcovar=2)

$‘Rows with missing values‘

integer(0)

$‘Columns with missing values‘

integer(0)

By default, idcovar=1. Here we use idcovar=2 because the array identification is given in the second
column of covariates.

Besides, this step checks for missing data, since the FAMT method cannot be applied with incomplete
observations. The as.FAMTdata function gives the indices of the rows and columns of expression
with missing values. If needed, using na.action=TRUE, the missing values are imputed by nearest
neighbor averaging (function impute.knn of the package impute, Hastie et al. [2009]). Here, the
expression component of chicken has no missing data.

Some classical componentwise summaries can be obtained on a FAMTdata object with the summaryFAMT
function. The function provides:

• for expression: the number of tests which corresponds to the number of rows, the sample size
which is the number of columns.

• for covariates and annotations: classical summaries as returned by the generic function
summary in package base.

The code to perform the summary of a FAMTdata object is:

R> summaryFAMT(chicken)

$expression

$expression$‘Number of tests‘
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[1] 9893

$expression$‘Sample size‘

[1] 43

$covariates

AfClass ArrayName Mere Lot Pds9s Af

F :18 F10 : 1 GMB05555:10 L2:16 Min. :1994 Min. :-25.5397

L :19 F11 : 1 GMB05625: 7 L3:11 1st Qu.:2284 1st Qu.: -8.0042

NC: 6 F12 : 1 GMB05562: 5 L4: 8 Median :2371 Median : 2.7166

F13 : 1 GMB05599: 5 L5: 8 Mean :2370 Mean : 0.2365

F14 : 1 GMB05554: 4 3rd Qu.:2474 3rd Qu.: 8.6037

F15 : 1 GMB05589: 4 Max. :2618 Max. : 18.1024

(Other):37 (Other) : 8

$annotations

ID Name Block Column

RIGG00001: 1 Length:9893 23 : 237 9 : 502

RIGG00002: 1 Class :character 25 : 237 6 : 501

RIGG00003: 1 Mode :character 9 : 232 12 : 499

RIGG00005: 1 17 : 231 18 : 499

RIGG00006: 1 29 : 230 14 : 494

RIGG00007: 1 43 : 229 16 : 491

(Other) :9887 (Other):8497 (Other):6907

Row Length

20 : 500 Min. :60.00

15 : 498 1st Qu.:70.00

16 : 493 Median :70.00

8 : 483 Mean :69.57

17 : 481 3rd Qu.:70.00

9 : 468 Max. :75.00

(Other):6970

This step is especially useful to check the class of variables in covariates and annotations. Here,
note that all the variables in annotations except ID are intended to be used as explanatory variables
in the description of the latent factors after model fitting. Therefore, character information such as
the functional characterization of the genes in microarray data has to be stored as a character

variable, and not as a factor with a large number of levels.
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6.3. Multiple testing

This section is dedicated to the use of the FAMT method as a classical multiple testing procedure
controlling the FDR, without any modeling for the dependence structure across the variables.

6.3.1 Multiple F-tests for general linear hypotheses

The scope of models for the relationship between the responses and the explanatory variable(s)
of interest is restricted to linear models. Let Y = (Y (1), . . . , Y (m))′ be the m-vector of response
variables and x = (x(1), . . . , x(p))′ the p−vector of explanatory variables. It is assumed that:

Y (k) = β
(k)
0 + x′β(k) + ε(k), (6.1)

where ε = (ε(1), . . . , ε(m))′ is a normally distributed m−vector with mean 0 and variance-covariance
Σ.

The individual tests are the usual Fisher tests for the marginal effect of one or more explanatory
variables of interest among x, considering the other ones as covariates. In most of the cases, only
one explanatory variable x is included in the model and the aim is then to test the significance of the
relationship between each variable and x. However, more complex situations also occur, where the
effect of this explanatory variable shall be examined after adjustment from other effects, which have
been accounted of in the experimental design. Note also that, if no covariates dataset is provided,
then model (6.1) is the null model and the significance of the mean of each variable is tested.

The thresholding procedure applied on the p-values of the F-tests to control the FDR at a given level
α is the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg [1995]). The cut-off on the
p-values under which the hypotheses are rejected is derived from the increasingly ordered p-values
p(k) as follows: tα = p(k∗) with k∗ = arg maxk

{
mπ0p(k)/k ≤ α

}
, provided the proportion of true

null hypotheses π0 is known. Many multiple testing procedures assume that the fraction of non-null
hypotheses among the tests is negligible regarding the large number of tests (π0 ≈ 1). For example,
with the Benjamini-Hochberg procedure, approximating π0 by 1 leads to a FDR control at level π0α

instead of α. Generally, plugging-in an estimate of π0 into the expression of the FDR corrects for
this control level and results in a less conservative procedure (see Benjamini and Hochberg [1995],
Black [2004] and Storey [2002] for details).

Two methods are proposed in the FAMT package to estimate π0: the first one is based on a non-
parametric estimate of the density function of the p-values by a convex curve using Langaas et al.
[2005]’s approach and another one uses the smoothing spline approach by Storey and Tibshirani
[2003].

In the following, the use of the modelFAMT function is illustrated using the chicken dataset.

6.3.2 Results

In the chicken example, the aim is to test the significance of the relationship between each gene
expression and the abdominal fatness variable (6th column of covariates), taking into account the
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Figure 6.1: Histogram of the raw p-values for the chicken dataset

effect of the dam (3rd column of covariates). The Fisher test statistics and the corresponding
p-values are obtained using the modelFAMT function with arguments x=c(3,6) to give the column
numbers of the explanatory variables in the covariates component of chicken and test=6 to give
the column number of the explanatory variable of interest. The following code also uses argument
nbf=0, which means no common factors in the model for the conditional variance Σ, to get the raw
F-tests.

R> chicken.raw = modelFAMT(chicken, x=c(3,6), test=6, nbf=0)

R> hist(chicken.raw$pval, main="Histogram of p-values", xlab="p-values")

Figure 6.1 displays the histogram of the raw p-values, as produced by the command lines above.
The shape of the histogram clearly shows an abnormal under-representation of the p-values in the
neighborhood of 0. Indeed, if all the gene expressions were all truly under the null hypothesis, the
p-values should be uniformly distributed on [0, 1] and the proportion of observed p-values under 0.05
should be close to 0.05, provided the gene expressions are independent. This marked departure of
the empirical distribution of p-values from the density function of a uniform distribution has been
recently considered by some authors as the impact of a high amount of dependence among tests (see
Efron [2007], Leek and Storey [2007] and Friguet et al. [2008]).

The modelFAMT function creates a R list with subclass FAMTmodel. This subclass is required for the
main input of the other functions in the package. Thus, the summaryFAMT function can be applied
to a FAMTmodel object to get the list of positive tests for a control of the FDR at a preset level α
(the default level is alpha=0.15). Moreover, some useful information about the positive responses is
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provided, using the argument info which gives the names of columns in the annotations component
of chicken. Here, the columns named ID and Name give the gene identifier and the functional
annotation of the significant genes.

R> summaryFAMT(chicken.raw, alpha=0.05, info=c("ID","Name"))

$nbreject

alpha Raw analysis FA analysis

1 0.05 0 0

$DE

integer(0)

$pi0

[1] 1

The nbreject component in the output of summaryFAMT is a table providing the number of positive
tests using the raw multiple testing procedure and the factor analytic approach, for possibly different
values of the FDR control level α. In this special use of summaryFAMT with nbf=0, the columns named
Raw analysis and FA analysis gives the same result since they are equivalent. The result shows
no positive genes for a FDR control at level 0.05. The DE component of the output also provides the
additional information on the responses specified in the argument info.

Note that, if not explicitly provided as an input of the function summaryFAMT using argument pi0,
the proportion π0 of true null hypotheses is estimated from the histogram of p-values, by the method
proposed by Storey and Tibshirani [2003], and returned in the pi0 component of the output. Here,
π̂0 = 1 is a direct consequence of the abnormal shape of the histogram of p-values as displayed in
Figure 6.1. Indeed, the dependence across genes induces a bias in the estimation of π0. Analysis
of this dependence among gene expressions is addressed in section 5 but a first possible biological
explanation is that all the chickens in this experiment are half sib males, which is to say genetically
very similar.

This example is a typical situation where the dependence among genes must be taken into account
to have a chance to reveal significant relationships between the hepatic transcriptome profile and the
quantity of abdominal fatness.

6.4. Multiple testing dependence using FAMT

6.4.1 Method

The details of the method are described in Friguet et al. [2008]. The main innovation with respect
to most classical methods consists in capturing the components of dependence between variables
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into latent factors and integrating these latent structure in the calculation of the test statistics. It
is indeed assumed that the conditional covariance matrix Σ of the responses, given the explanatory
variables is represented by a factor analysis model:

Σ = Ψ + BB′, (6.2)

where Ψ is a diagonalm×m matrix of uniquenesses ψ2
k and B is am×q matrix of factor loadings. In

the above decomposition, the diagonal elements ψ2
k in Ψ are also referred to as the specific variances

of the responses. Therefore, B′B appears as the shared variance in the common factor structure.

The factor analysis representation of the covariance is equivalent to the following mixed effects
regression modeling of the data: for k = 1, . . . ,m,

Y (k) = β
(k)
0 + x′β(k) + b′kZ + ε(k), (6.3)

where bk is the kth row of B, Z = (Z(1), . . . , Z(q)) are latent factors supposed to concentrate in
a small dimension space the common information in the m responses, Z is normally distributed
with expectation 0 and variance Iq and ε = (ε(1), . . . , ε(m))′ is a normally distributed m−vector,
independent of Z, with mean 0 and variance-covariance Ψ. Therefore, factor analysis can be viewed
as simultaneous mixed effects regression models sharing common covariance components.

An EM algorithm inspired from Rubin and Thayer [1982] is used to estimate Ψ, B and Z (see
Friguet et al. [2008] for details). Since this algorithm only implies inversions of q× q matrices, fitting
the FA model on high-dimensional datasets is computationally much less cumbersome than more
usual algorithms such as Principal Factoring used in psychometrics. As recommended in Friguet
et al. [2008], the number of factors is chosen according to an ad-hoc procedure which consists in
minimizing the variance of the number of false discoveries. Once the factor model is estimated,
so called factor-adjusted test statistics are derived as F-tests calculated on the adjusted response
variables Y (k) − b′kZ obtained by subtracting the dependence kernel from the data. Friguet et al.
[2008] show that the resulting tests statistics are asymptotically uncorrelated, which improves the
overall power of the multiple testing procedure.

6.4.2 Results of the FAMT analysis

Optimal number of factors for the FA model fitting The modelFAMT function implements
the whole FAMT procedure with default options for the estimation of π0 and the number of factors.
As mentioned in the previous section, the method proposed by Storey and Tibshirani [2003] is
implemented to estimate π0.

Concerning the number of factors, the dependence in the residual correlation matrix resulting from
the k-factor analysis model fitting induces an inflation of the variance of the number of false positives.
This variance has a negative impact on the actual control of the false discovery proportion. Hence,
as explained by Friguet et al. [2008], the number of factors considered in the model is chosen to
reduce this variance. In order to avoid the overestimation of the number of factors, the function is
implemented in such a way that the optimal number of factors corresponds to the largest number of
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Figure 6.2: Variance inflation criterion for the determination of the optimal number of factors

factors for which the decrease of the variance inflation criterion is lower than 5 % of the previous value
(see the Cattell scree test criterion, Cattell [1966]). Nevertheless, the optimal number of factors can
also be specified by the nbf argument in the modelFAMT function (see the second illustrative example
of this paper). Once the optimal number of factors is chosen, the model parameters are estimated
using an EM algorithm. Factor-adjusted tests statistics are derived, as well as the corresponding
p-values.

The testing issue is the same as in the previous section.

R> modelfinal=modelFAMT(chicken, x=c(3,6), test=6)

R> modelfinal$nbf

[1] 3

A side effect of the modelFAMT function is to produce a diagnostic plot, displaying the values of
the variance inflation criterion along with the number of factors. Figure 6.2 shows that the optimal
number of factors obtained by the modelFAMT function, which is modelfinal$nbf=3, also corresponds
in this case to the minimum value of the variance inflation criterion. The model parameters are
estimated with this choice of a 3-factor structure and π0 is estimated using the method by Storey
and Tibshirani [2003] applied on the factor-adjusted p-values.

The number of positive tests is provided for each level of FDR control chosen by the user (in our
example below, the levels are defined by the argument alpha=seq(0, 0.3, 0.05)). The list of
positive genes (DE component) is given for the highest alpha.

R> summaryFAMT(modelfinal, alpha=seq(0, 0.3, 0.05))
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$nbreject

alpha Raw analysis FA analysis

1 0.00 0 0

2 0.05 0 0

3 0.10 0 2

4 0.15 0 6

5 0.20 0 6

6 0.25 0 8

7 0.30 0 11

$DE

ID

6722 RIGG05436

3885 RIGG04393

1119 RIGG15056

3484 RIGG05478

463 RIGG09893

124 RIGG12578

9859 RIGG03755

9840 RIGG04507

3925 RIGG10355

4968 RIGG05365

3855 RIGG13434

6722 Same gene X54200

3885 Weakly similar to CAE03429 (CAE03429) OSJNBa0032F06.12 protein

1119 ENSGALT00000015290.1

3484 Weakly similar to Q8IUG4 (Q8IUG4) Rho GTPase activating protein (Fragment)

463 ENSGALT00000000452.1

124 ENSGALT00000008042.1

9859 Contig Hit 348847.1

9840 Weakly similar to Q8AWZ8 (Q8AWZ8) Voltage-gated potassium channel subunit MiR

3925 Transforming protein p54/c-ets-1. [Source:SWISSPROT

4968 Genome Hit Contig7.437

3855 Troponin T fast skeletal muscle isoforms. [Source:SWISSPROT

$pi0

[1] 0.9738531

With a FDR control at level 0.15, there is no differentially expressed gene with the raw analysis,
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Figure 6.3: Histograms of raw p-values (left panel plot) and factor-adjusted p-values (right panel
plot)

whereas 6 genes are differentially expressed with the FAMT analysis based on factor-adjusted tests
statistics. In order to figure out the differences between both analyses, Figure 6.3 compares the
empirical distributions of the raw and the factor-adjusted p-values.

R> par(mfrow=c(1,2))

R> hist(modelfinal$pval, main="Histogram of p-values", xlab="Unadjusted p-values")

R> hist(modelfinal$adjpval, main="Histogram of adjusted p-values",

+ xlab="Adjusted p-values")

Factor-adjustment restores independence between tests statistics, which results in a correction of the
distribution of the p-values from the concave shape observed on the left panel plot of Figure 6.3.
Indeed, it seems that a large amount of p-values are uniformly distributed and a few small p-values
shall correspond to significant genes.

Note that the user can choose to focus on two aspects of the multiple testing procedure, which are
the choice of the optimal number of factors with the nbfactors function and the estimation of π0

with the pi0FAMT function.

R> nbfactors(chicken, x=c(3,6), test=6, diagnostic.plot=TRUE)

This function gives the optimal number of factors as obtained from the modelFAMT function and
produces the same plot as shown in Figure 6.2.



Chapter 6: FAMT: an R package for large-scale significance testing under dependence 88

Figure 6.4: Estimation of the proportion of true null hypotheses using a non-parametric estimate of
the density function of the p-values proposed by Langaas et al. [2005].

The pi0FAMT function provides 2 algorithms to estimate π0. The density method is based on
Langaas et al. [2005]’s approach where the density function f of the p-values distribution is estimated
assuming f is a convex function: the estimation of π0 is then f(p = 1). The smoother method uses
the smoothing spline approach proposed by Storey and Tibshirani [2003]. In most situations, these
two methods give similar results but the smoother method is numerically less time-consuming.

The following code uses the density method to estimate π0 and produces a histogram of the p-values
(Figure 6.4), on which the convex estimation of f is represented.

R> pi0FAMT(modelfinal, method="density", diagnostic.plot=TRUE)

The estimated value of π0 is 0.95, which is slightly less than with the smoother method (π̂0 = 0.97).

6.5. Interpretation of the common factors

The defacto function helps the user to give more insight on the common factors using some available
external information on either response variables or individuals (see Blum et al. [2010]). The use
of this function requires a FAMTmodel as returned from the function modelFAMT and one or more
explanatory variable in covariates. The external variables available to describe the responses in
annotations must be categorical variables. As the factors are designed to be independent from the
explanatory variables (the abdominal fatness and the dam in our example), they shall be described
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Figure 6.5: Loadings circle plot of the genes
in the chicken example

Figure 6.6: Score plot of the microarrays in
the chicken example

according to the other covariates. In our example, the argument select.covar=4:5 gives the 2
column numbers in covariates picking two external variables: Lot and Pds9s, which are respectively
the hatch and the body weight of the chickens. Similarly, the argument select.annot=3:6 picks 4
external variables in annotations: Block, Column, Row and Length.

As for many implementations of PCA-like methods, two plots are provided to summarize the re-
lationships between the latent factors extracted from the data and the external variables. First, if
there are at least 2 common factors in the FA model, the defacto function provides a loadings circle
plot displaying the largest loadings along with two factors which numbers are given by the argument
axes (the default option is axes = c(1, 2)). Points are automatically labelled by their identifier
as given in annotations (see Figure 6.5). Moreover, the score plot displays the coordinates of the
individuals along the two factors, with different colors according to the levels of the factors selected
in covariates (their hatch in the chicken example, see Figure 6.6).

R> chicken.defacto = defacto(modelfinal, axes=1:2, select.covar=4:5,

+ select.annot=3:6, cex=0.6)

In addition to these plots, F-tests are provided for the significance of the linear relationship between
each component of the external information and each factor. The corresponding p-values are given
in the covariates and annotations components of the defacto function.

R> chicken.defacto$covariates

Lot Pds9s

Factor 1 0.006437319 0.27847793

Factor 2 0.258859549 0.00124608
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Factor 3 0.271648846 0.96813322

R> chicken.defacto$annotations

Block Column Row

Loadings 1 8.148075e-25 0.2368072 0.21767892

Loadings 2 3.328477e-19 0.9323152 0.01889079

Loadings 3 0.000000e+00 0.1030426 0.68201616

Here, Factor 1 is clearly affected by a hatch effect, and Factor 2 by a body weight effect. Thus,
part of the expression heterogeneity is probably due to these marked biological effects, which are
independent of the abdominal fatness, the explanatory variable of main interest in this study.

Moreover, some second-order technological biases turn out to have an impact on the correlation
structure of the gene expressions, since the location of the spots on the microarray (Block, Column,
and Row here) appears as significantly related to the loadings. According to Qiu et al. [2005], such
kinds of effects on the correlation between gene expressions may be induced by the normalization
procedure itself. The effect of Block is captured by all the factors, and the effect of Row by factor 2.

6.6. Second illustrative example

The Animal Genetics Department (INRA-Rennes) studies the transcriptome profiling of the feeding-
to-fasting transition in chicken liver. Désert et al. [2008] show that numerous genes are altered by
starvation in chickens, and the study suggests a global repression of cellular activity in response to
this stressor. In this section, the related gene expression data are used to illustrate that the FAMT
method is still useful to increase the power of the multiple testing procedure in a case where a large
proportion of genes are significant.

From the 20460 oligos present in the microarray data, 13057 aligning with a unique coding region of
the 2.1 Washington University assembly of the chicken sequence genome, were chosen for statistical
analyses. The dataset was finally restricted to 7419 genes (out of 13057) presenting a human ortholog
with a HUGO (Human Gene Ontology) symbol allowing to recover functional annotations from those
databases. 18 microarrays were analyzed: 6 corresponding to fed chickens, 5 to 16-hour fasted animals
and 7 to 48-hour fasted animals. We calculate the p-values of the classical Fisher tests. The left
panel plot of Figure 6.8 shows that a large number of genes have small p-values, which means that
many genes are involved in the fasting process.

Figure 6.7, resulting from the modelFAMT function, shows that the variance inflation criterion is
minimum for 5 factors. Yet, the modelFAMT function proposes nbf=1 as optimal number of factors,
using the Catell scree test criterion (see the previous section). In this case, the plot appears as a
useful tool to modify, if necessary, the default number of factors resulting from modelFAMT. We finally
choose to fit the factor analysis model with 5 factors.
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Figure 6.7: Variance inflation criterion

The following code fits the FA model with 5 factors and extracts the numbers of rejected genes for
the given FDR control levels.

R> model=modelFAMT(Poulets, x=2, nbf=5)

R> rejections =summaryFAMT(model, alpha=seq(0.001,0.01,0.001))$nbreject

R> plot(rejections[,1], rejections[,3], type="l", lty=1, ylab="Number

+ of significant genes", xlab="False Discovery Rate control level",

+ ylim=c(0,7000))

R> lines(rejections[,1], rejections[,2], type="l", lty=2)

R> legend("topleft", c("FAMT","Classical method"), lty=c(1,2))

The number of significant genes for various FDR control levels are plotted in Figure 6.9. For a same
level of FDR control, more genes are considered as differentially expressed with the FAMT method
than using the raw p-values. This illustrates that the FAMT procedure improves the power of the
multiple testing procedure since, for a same FDR control level, more genes are significant.
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Figure 6.8: Raw p-values and factor-adjusted p-values

6.7. Conclusion

The R package FAMT provides a powerful method for large-scale significance testing under dependence.
It is essentially based on a factor modeling of the conditional covariance structure of the response
variables. As these factors capture the dependence, there can be used to restore independence among
tests, which results in a gain in terms of control of the false discovery proportion and on the overall
power of the multiple testing procedure.

The main functions of the package are described in the paper, and are illustrated using a gene
expression dataset available in the package. The package offers also tools to help the user describe and
interpret the factors using some external informations on either genes or arrays. The functions of the
package, their arguments and values, are detailed in the help files. The website http://famt.free.fr
sums up the FAMT package and gives news about eventual updates.

Forthcoming versions of the package should include currently studied procedures aiming at inferring
on the gene regulatory network using a Gaussian Graphical Model. Excel add-ins should also be
included in the next update in order to help non-R users to analyse microarray data using FAMT.
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Figure 6.9: Number of significant genes with the raw method and FAMT
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CONCLUSION

This thesis deals with studying the impact of dependence in large-scale multiple testing procedures.
Motivated by issues raised by the analysis of gene expressions data, the aim is to propose a statistical
tool to take into account data heterogeneity in simultaneous hypotheses testing for high-dimensional
data.

Heterogeneity may arise from technical or environnemental factors that have not been observed or
have not been controled by the experimental design. The proposed method consists in identifying the
linear space generated by a set of latent variables that models the heterogeneous structure, catching
the common variability shared by all the response variables. The suggested model is related to a
Factor Analysis model [Mardia et al., 1979].

The mentioned latent factors are identified as sources of variability which is ignored by the model
expectancy and therefore assimilated to heterogeneity. Leek and Storey [2008] also refer to spatial
dependence, such as in medical imaging. Finally, the considered modeling of dependence is quite
general.

Most of the existing multiple testing procedures rely on the analysis of the empirical process of p-
values associated to the individual tests, under the assumption of independence. A thresholding rule
takes into account the multiplicity of the tests. There are two main issues in carrying out multiple
testing procedures: estimating π0, the proportion of true null hypotheses, and controlling error rates.
The impact of dependence on the stability of these procedures is one of the prime results of this work.
Indeed, dependence induces variability that interferes in particular with p-values distribution under
the true null hypothesis. The main impact is a sharp deviation from the theorical null distribution
when the level of common variability between variables is high. Consequently, the variability of false-
positives increases and the estimation of π0 is biased. More precisely, the variance of the number of
false-positives and the variance of π0 both include a term which explicitly depends on the correlation
between the response variables. Dependence has therefore repercussion on the estimation of error
rates, leading to high instability in multiple testing procedures.

A procedure is defined from the factor adjusted variables as the data are independent conditionally
on the latent structure. Dependence is actually adressed at the level of the original data, integrated
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in the model used to calculate the tests statistics. Consequently, the present method illustrates the
fact that the well-known individual optimality of the tests indebted to the Neyman-Pearson theory
does not imply the global optimality of a multiple testing procedure in situations of dependence
between the variables.

As data are independent conditionally on the factors, this framework allows to extend to general
dependence the results on error rates control initially gained under independence. Thus, the proposed
framework leads to less correlation among tests and shows large improvements of power and stability
of simultaneous inference.

Besides, in a high-dimensional setting, representing the covariance matrix with a Factor Analysis
structure, through a linear space of moderate dimensions, can be compared to other approaches such
as shrinkage methods [Schäfer and Strimmer, 2005]. It turns out to be interesting for the estimation
of the partial correlation matrix.

Beyond the study of the model itself, many points concerning the effective implementation of the
factor-adjusted multiple testing procedure are addressed in this thesis, including the model parame-
ters estimation thanks to an em algorithm, the estimation of the proportion of true null hypotheses
and the choice of the number of factors. The emfa algorithm provides accurate estimates of vari-
ance parameters in a high-dimensional setting (not asymptotic). We propose a criterion allowing
to define the model that fits best the covariance structure, minimising the inflation of variance of
false-positives. However, some issues are still to be explored, such as the preliminary estimation of
M0 involved in the calculation of the scores. This last issue is probably very similar to problems
encountered by Efron [2007] and by Leek and Storey [2007].

Finally, the method has been applied to microarray data and great improvements for biological
interpretation of differential analysis in gene expressions data have been highlighted [Blum et al.,
2010]. Representing direct interactions between genes with gene regulatory networks is a continuation
of gene expressions differential analysis. Graphical models, where a node corresponds to a gene and
an edge corresponds to a biological deppendence, turn out to be interesting tools for modelling
multivariate dependence patterns. The estimation of the partial correlations matrix is involved.
On-going work on the use of a Factor Analysis model to estimate this matrix gives promising first
results (42èmes Journées de la SFdS, 2010). They are also confirmed more analytically [Fan et al.,
2008, Ambroise et al., 2009] so that such approach is encouraged.

The R package called FAMT [Causeur et al., 2010] implements the proposed procedure to make it widely
at the users’ disposal, mainly in favor of genomics applications. It is available on the R project website
(http://www.r-project.org/) and a website is dedicated to the package (http://famt.free.fr/).



APPENDIX

EMFA algorithm

This appendix presents the reasonning behind the up-dating equations in the EM algorithm for
Maximum Likelihood Factor Analysis (section 5.2).

In the following, Y (i) is the 1 × m-vector corresponding to observation i in matrix Y and Z(i) is
the 1 × Q-vector corresponding to observation i in matrix Z.

1. Log-likelihood of the model

L(B,Ψ) =

n∑
i=1

ln

{
(2π)−m/2 |Ψ|−1/2 exp

[
−1

2
(Y (i) − Z(i)B′)Ψ−1(Y (i) − Z(i)B′)′

]}
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Y (i)Ψ−1Y ′(i) − Z(i)B′Ψ−1Y ′(i)
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n∑
i=1

[
Y (i)Ψ−1Y ′(i) − 2Y (i)Ψ−1BZ′(i) + tr

(
B′Ψ−1BZ′(i)Z(i)

)]
(.4)

Considering: Z(i)B′Ψ−1Y ′(i) = (Z(i)B′Ψ−1Y ′(i))′ = Y (i)Ψ−1BZ ′(i) and x′Ax = tr(Axx′)
with A = B′Ψ−1B et x = Z ′(i).

E(L|Y ) = cst+
n

2
ln
∣∣Ψ−1

∣∣ − 1

2

n∑
i=1

[
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)]
(.5)

97



Appendix 98

2. Maximisation of (.5)

• Maximisation wrt B: ∂E(L|Y )
∂B = 0

∂E(L|Y )

∂B
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1

2

n∑
i=1
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(.6)

Using ∂A′XB
∂X = AB′ et ∂tr(X′AXB)

∂X = AXB +A′XB′.

• Maximisation wrt Ψ−1: ∂E(L|Y )
∂Ψ−1 = 0
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Using (.6) to “simplify” this equation:
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Ψ is estrimated considering the diagonal in (.7).

3. Calcul of E(Z ′(i)|Y (i)) and E(Z ′(i)Z(i)|Y (i)). The density of Z|Y , denoted f(z|y) is:
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Where C = V(Y,Z) =

[
Σ B

B′ IQ

]
.

C−1 =

[
(C−1)11 (C−1)12

(C−1)21 (C−1)22

]
=

[
Ψ−1 Σ−1B′(B′Σ−1B − IQ)−1

(B′Σ−1B − IQ)−1BΣ−1 IQ +B′Ψ−1B

]
(.9)

Considering the expression of θ in the exponential term of (.8).

θ = y(C−1)11y
′ + y(C−1)12z

′ + z(C−1)21y
′ + z(C−1)22z

′ − yΣ−1y′

= y[(C−1)11 − Σ−1]y′ + 2y(C−1)12z
′ + z(C−1)22z

′

Indeed, (C−1)12 = (C−1)′21. Moreover, considering (C−1)11−Σ−1 = Ψ−1B(IQ+B′Ψ−1B)−1B′Ψ−1:

θ = y[Ψ−1B(IQ +B′Ψ−1B)−1B′Ψ−1]y′ + 2y[Σ−1B′(B′Σ−1B − IQ)−1]z′ + z[IQ +B′Ψ−1B]z′

= [z − yΣ−1B][IQ +B′Ψ−1B][z′ −B′Σ−1y′]

= [z − yΣ−1B][IQ +B′Ψ−1B][z − yΣ−1B]′ (.10)

As [B′Σ−1B−IQ]−1 = −[IQ+B′Ψ−1B]. Therefore, considering f(z|y) as a mixture of gaussian
distribution, with mean yΣ−1B et de variance G = [IQ +B′Ψ−1B]−1.

Consequently, E(Z(i)|Y (i)) is derived:

E(Z(i)|Y (i)) = Y (i)Σ−1B = Y (i)[Ψ−1 −Ψ−1B(IQ +B′Ψ−1B)−1B′Ψ−1]B

= Y (i)[Ψ−1B −Ψ−1B(IQ +B′Ψ−1B)−1B′Ψ−1B]

= Y (i)Ψ−1B[IQ − (IQ +B′Ψ−1B)−1B′Ψ−1B]

= Y (i)Ψ−1B[IQ − (IQ +B′Ψ−1B)(IQ +B′Ψ−1B)−1 + (IQ +B′Ψ−1B)−1]

= Y (i)Ψ−1B(IQ +B′Ψ−1B)−1 (.11)

And then E(Z(i)|Y (i)) is derived:

E(Z ′(i)Z(i)|Y (i)) = V(Z(i)|Y (i)) + E(Z(i)|Y (i))′E(Z(i)|Y (i))

= [(C−1)22]−1 + E(Z(i)|Y (i))′E(Z(i)|Y (i))

= (IQ +B′Ψ−1B)−1 + E(Z(i)|Y (i))′E(Z(i)|Y (i)) (.12)

The EMFA algorithm is then described as the following:

1. Initialization: rough estimation B̂0 and Ψ̂0.

2. Iterations

• E-step: Expectation of the log-likelihood

E(Z(i)|Y (i)) = Y (i)Ψ−1
0 B0(IQ +B′0Ψ−1

0 B0)−1

E(Z(i)Z ′(i)|Y (i)) = (IQ +B′0Ψ−1
0 B0)−1 + E(Z(i)|Y (i))′E(Z(i)|Y (i))
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• M-step: Estimation of the ML estimators for B and Ψ

B1 =
n∑
i=1

[
Y ′(i)E(Z(i)|Y (i))

] [ n∑
i=1

E(Z ′(i)Z(i)|Y (i))

]−1

Ψ1 = diag

[
S − 1

n

n∑
i=1

Y ′(i)E(Z(i)|Y (i))B′1

]

3. Stop: The E- and M-steps are alternated repeatedly until convergence, which may be deter-
mined by using a suitable stopping rule like for example, tr(Ψ0 −Ψ1) < ε, ε > 0.
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