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FOREWORD

This document is an English version of my Ph.D. thesis, initially written in French.

This is not a literal translation from the whole original document. Nevertheless, INTRODUCTION,
CHAPTER 1, which sums up the state of the art of multiple testing, and the general CONCLUSION of

this work are fully translated.

Comments and discussions in CHAPTER 2 and CHAPTER 3 are those of three articles published
recently. They have simply been organized as in the French document. Note that these results are
the core of my thesis and, of course, the French version has been fully inspired by these three articles

so that the two versions of these chapters are quite similar.

CHAPTER 4 introduces on-going work on Factor Analysis, and deals more particularly with the im-
plementation of this method in a high-dimensional setting. The English version of this chapter sums
up the main results on this subject whereas the French version gives in addition more bibliographical
details.

The proposed method to deal with dependence and high-dimension in multiple testing has been
assessed on several real datasets. The French document presents application on two examples (a
public dataset and a current study led by the Genomics department, INRA, Rennes). Here, the
application of the method on real data is described through the tutorial of the associated R package
(FAMT), which has been recently submitted to the Journal of Statistical Software.

The French version is available on TEL website: http://tel.archives-ouvertes.fr/tel-00539741/fr/
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CHAPTER 1

ABSTRACT

Motivated by issues raised by the analysis of gene expressions data, this thesis focuses on the impact
of dependence on the properties of multiple testing procedures for high-dimensional data. We propose
a methodology based on a Factor Analysis model for the correlation structure. Model parameters are
estimated thanks to an EM algorithm and an ad hoc methodology allowing to determine the model

that fits best the covariance structure is defined.

Moreover, the factor structure provides a general framework to deal with dependence in multiple
testing. Two main issues are more particularly considered: the estimation of mg, the proportion of true
null hypotheses, and the control of error rates. The proposed framework leads to less variability in the
estimation of both 7y and the number of false-positives. Consequently, it shows large improvements

of power and stability of simultaneous inference with respect to existing multiple testing procedures.

These results are illustrated by real data from microarray experiments and the proposed methodology

is implemented in a R package called FAMT.

Key words Multiple testing, Dependence, Factor Analysis, Proportion of null hypotheses, FDR, R
package FAMT
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INTRODUCTION

Extending the well-assessed theory of hypothesis testing, issues raised by multiple testing, and more
generally by simultaneous inference, have been widely discussed in the statistical literature for a long
time. Indeed, Fisher firstly proposed in the 1930’s testing procedures to test several linear contrasts
in analysis of variance. These procedures are deduced from the general tests theory introduced at
the beginning of the XX century by Fisher, Student, Neymann, K. and E. Pearson, itself based on
Laplace, Demoivre and Bernoulli works on the Error Theory by the end of the XIX* century (for
more historical details, see Salsburg [2002]).

The decision of a statistical test requires to choose between two hypotheses: the null hypothesis (Hy)
and the alternative one (Hp). The goal of a test procedure is to control the risk of wrongly reject Hy
(type-I error). Naturally, extending this approach to multiple tests consists initially in controlling
the risk of wrongly rejecting Hy at least once. In the parametric setting, there is a parallel between
the univariate test theory and parameter estimation as determining the critical region of the test is
similar to determining the tested parameter’s confidence interval. A parallel can also be made in the

case of multiple tests with the simultaneous confidence interval for the tested parameters.

The univariate approach of test theory focus on optimal procedures. Optimality is achieved when,
while controlling the type-I error, power is maximized. When testing several hypotheses at the same
time, such definition of optimality does not arise and finding the best multiple testing procedure is

still an open question [Shaffer, 1995].

Multiplicity has been an abounding issue and many methods to deal with the number of tests are
available. We can quote among them post-hoc tests in ANOVA by Duncan, Dunnett, Scheffé and
Tukey. Choosing one method or another depends on the context: in biology when one studies the
effet of a treatment on several response variables, in medicine when one studies the effect of a dose
of drug at different clinical trial steps, or even in food-industry, when sensory studies are conducted

to characterize several products thanks to different descriptors.
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Basically, multiple testing procedures rely on the choice of a threshold on the p-values associated
to the individual tests, differences between them being due to the way of finding the threshold.
Comparative studies focus on the control of the type-I error, determined at the level of the whole
set of tests, namely the risk to wrongly reject Hy at least once (called the Family-Wise Error Rate,
FWER). Controlling type-I error is of most importance in these contexts where a moderate number of
tests are simultaneously performed, and power issue is often set apart. procedures such as Bonferroni
[1936] or Sidak [1967]| that control the FWER become highly conservative as the number of tests

increases. As a matter of fact, the number of truly rejected null hypotheses is very low.

Besides, the assumption of independence on which most of these procedures are based is discussed
very seldom in the literature. In post-hoc tests, dependence is derived from the experimental design
and from the tested contrasts. It can be argued that a good design can limit and balance the effect
of dependence. General approaches to take into account dependence are often computationally

expensive, when the number of tested hypotheses increases.

Large scale multiple testing For the last two decades, innovative improvements have been made
to face new scientific challenges. Particularly, high throughput technologies result in huge volume of
data that allows the global analysis of complex systems. We can explore for example brain activity
thanks to functional Magnetic Resonance Imaging (fMRI), clusters of elementary particles thanks
to imaging in astrophysics, the capital market through commercial flows in finance, or the genome

thanks to functional genomics in life sciences.

Understand, analyse and predict the working of such complex systems require to take into account
both the heterogeneity and the dimension of the data. In most situations, the number of measured
variables is close to several thousands, whereas the sample size is about some tens at most. Data

are then said in high-dimension.

At the root of the main issue of this thesis lies questions raised by the analysis of DNA microarray
data. DNA microarrays are a biotechnology that allows the simultaneous measurement of gene
expressions, at the level of the whole genome. Such data can be used, for example, to diagnose tumors,
to profile drug-effect, or to group genes with similar expression patterns associated to common
biological processes. This biological context has markedly contributed to the development of the
statistical methodology for multiple testing in high dimensional data [Efron et al., 2001, Storey, 2002,
Dudoit et al., 2003|. Indeed, an important question in microarray experiments is the identification
of differentially expressed genes i.e genes whose expression levels differ with respect to a covariate
of interest, that can be either categorical, such as treatment/control status, or continuous such as a
drug dose. The biological question of differential analysis is then restated as a multiple hypotheses
testing issue, considering the simultaneous tests for each gene of the null hypothesis: Hy : "there is

no association between the expression levels and the covariate".

Contexts evoked previously induce thousands of simultaneous tests. Procedures controlling the
FWER have appeared unsuitable, as they lead to conservative decision in a high-dimensional setting.

An approach that has turned out to be more appropriate in high dimension is to control the False
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Discovery Rate (FDR) [Benjamini and Hochberg, 1995|, which is the expected proportion of false
positives among the rejected hypotheses. This approach is useful in exploratory analyses, where one
aims at maximizing the discoveries of true positives, rather than guarding against one or more false
positives. Many methods have been proposed to control the FDR, the most famous being due to
Benjamini and Hochberg [1995] and called hereafter the BH procedure.

Most of such procedures assume that the p-values are independently distributed according to a two-
component mixture model [Efron et al., 2001|, characterising p-values distributions under the true
null hypothesis and under the alternative one, respectively. The mixing parameter of this model,
denoted mg, is defined as the fraction of null hypotheses among the tests. In addition to being an
interesting quantity in itself, for its biological interpretation, m is a key parameter in assessing or
controlling error rates. Black [2004] or more recently Kim and Van de Wiel [2008] showed that a
more accurate estimation of my would improve the power of multiple testing procedures. Adaptative
procedures, including 7y estimation, has then emerged in the literature [Storey et al., 2004, Benjamini
et al., 2006].

Multiple testing and dependence Among the topics that are recently discussed in the literature
on multiple testing in large-scale data, the impact of dependence between the variables has elicited an
increasing interest. Indeed, dependence between tests in directly deduced from dependence between
the involved response variables. The true signal and several confusing factors are often observed at
the same time. These factors lead to misleading conclusion on tests decisions. In microarray data
analysis, dependence between gene expression may comes from some biological gene interactions, in
which the studied biological process is not necessarily involved but which impact the level of gene
expressions as well. Technological bias can also affect gene expressions, even if some pre-processing
treatments of the data such as normalisation aim at limiting their impacts. Dependence is therefore

complex and hard to model but its impact on procedures properties is far from negligible.

Methodology for multiple testing in high dimension under dependence Many papers
have especially focused on the control of the FDR under various patterns of dependence between test
statistics. An important contribution to this point was given by Benjamini and Yekutieli [2001|. They
showed the BH procedure still controls the FDR under assumption of a certain class of dependence
called positive. Extending the initial condition of the BH procedure was also the point of view of
Storey et al. [2004] or Blanchard and Roquain [2008]. Some authors [Storey et al., 2007| proposed to
modify the test statistic and recent proposals also suggest to modify the theorical null distribution
[Efron, 2004]. In fact, the general message seems to be that, for a high amount of dependence, the
BH thresholding method tends to over-control the FDR, leading to more conservative rules than
expected under the assumption of independence. Consequently, this also means that dependence

affects the power of the BH procedure and its stability.

Taking into account dependence casts doubt on multiple testing procedures as a whole. The models

that link each response variable and the covariate are not independent, but independent conditionally
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to the factors of heterogeneity. Thus, a common idea in many recent papers is that dependence
between test statistics should be taken into account by borrowing information across the variables
rather than treating them as independent [Leek and Storey, 2008|. This can be achieved by modeling

the common information and taking advantage of the information shared between variables.

The results presented in this thesis are in the continuation of this idea, and we focus on the properties
of multiple testing procedures under dependence. More particularly, we propose to stabilize multiple
testing procedures considering a Factor Analysis model for the dependence structure. Factor Anal-
ysis (FA) is an analytic tool used for many years in economics, social sciences and psychometrics,
originally in the field of intelligence research [Spearman, 1904], and has only appeared recently in the
study of the dependence structure in high dimensional datasets provided by microarray technology
[Pournara and Wernisch, 2007, Kustra et al., 2006|. It describes the covariance relations between
observed variables in terms of a meaningful small set of latent variables, called “common factors”.
FA model resembles a latent variables model, so an EM algorithm is used to estimates its parameters
[Rubin and Thayer, 1982].

The main goal of this thesis is to study the statistical properties of simultaneous inference under
dependence. First of all, we focus on the impact of dependence on the control of error rates and on
the power of procedures. Then, this study leads to th development of an adaptative strategy to deal

with dependence in multiple testing.

CHAPTER 1 sums up the state of the art of multiple testing in high-dimension. It essentially describes
the underlying hypotheses of usual multiple testing procedures, introducing error rates, decision rules

and the estimation of a key parameter of most procedures, the proportion of true null hypotheses.

In CHAPTER 2, a general framework to take into account dependence in multiple testing is presented.
In this framework, we study the impact of a deviation to the assumption of independence. The impact
on tests statistics and p-values distributions, my estimation and error rates control are successively
considered. The main result is that the proposed framework allows to derive the exact expression of

o variance as well as the number of false-positives variance, under general dependence.

CHAPTER 3 introduce Factor Analysis as a model for dependence in multiple testing. More precisely,
we propose an approach based on conditionally independent test statistics to reduce the impact of
dependence. The proposed procedure is called FAMT, for Factor Analysis for Multiple Testing. More

over, conditional estimators of my and FDR, are proposed.

CHAPTER 4 focuses on the estimation of the model parameters. A Maximum Likelihood estimation
is proposed, based on an EM algorithm. The choice of the number of factors to extract is studied,

and method to is proposed to determine the optimal number.

Finally, the proposed method is illustrated in CHAPTER 5 thanks to an application to gene expressions
data. This chapter is both a case study and a tutorial for the R package that implements FAMT. The
aim of the case study is to show the improvement brought by our approach in a larger biological study,
such as factor interpretation, QTL identification or even gene networks inference. The examples
studied are different on the French and in the English version. Here, this chapter is the article

submitted to the Journal of Statistical Software presenting the R package FAMT.




CHAPTER 2

LARGE-SCALE MULTIPLE TESTING

gt

Abstract High-throughput experiments have markedly contributed to the development
of the statistical methodology for multiple testing in high-dimensional data. First of all,
this chapter presents the classical framework of large-scale multiple testing, in particular
usual hypotheses on p-values distribution. We put the emphasis on essential concepts of

multiple testing procedures, such as error rates and the true null hypotheses proportion.
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11 Introduction: statistical context

Introduction: statistical context

Statistical modeling For k£ = 1,...,m, let Y; denotes the kth response variable among m. In
high dimensional frameworks, m can be much larger than the number n of independent observations
of Y = [Y1,Ys,...,Y,]. For each response Yj, the link with p explanatory variables is explicitly

defined by the following regression model:
Vi =mi(z)+e Vke[lym =M (2.1)

where x is the p—vector of covariates, my is an unspecified regression function and € is a random
error term with density function (. Furthermore, it is assumed that the density functions ¢ are
the same up to a scaling factor ox: Yk, pr(€) = @(e/or)/or where ¢ is the common standardized
density function with mean 0 and standard deviation 1. In practice, this means that the response

variables have homogeneous distributions.

Multiple testing For k € My C M with #My = mo, my(z) = m,(co)(a:), where m,(CO) is an
arbitrary function of interest and for k ¢ My, my(z) # m,(co) (). Multiple testing aims at finding
(0)

out the response variables for which H§ : my(z) = m,’(z) is not true.

The test statistic is denoted T}, = si(Y%). Under the true null hypothesis, its distribution F§(T) is

known and we define the p-value for each test:
pe = 1—Fy(Ti) (2.2)

Multiple hypotheses testing issues consider the simultaneous tests of the null hypotheses HY, one

test for each response variable. Most procedures can be split into two steps:

1. Computing a test statistic for each response variable, and deduce the associated p-value

2. Applying a thresholding procedure on the p-values of the individual tests to determine which
null hypotheses have to be rejected

In the first step, the choice of an appropriate test statistic only depends on the experimental design
and the type of response and covariate. We consider that the test statistic is correctly chosen with
respect to the statistical context. The second step is the main concern of the following as the
threshold on p-values can not be determined as in the univariate issue [Dudoit et al., 2002|. More

particularly, the choice of the threshold influence the number of errors in tests decisions.
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2.1.

declared declared
o o Total
non significant | significant
Hy Uy Vi mo
H, T; Sy mi
Total m — Ry Ry m

Table 2.1: Numbers of errors in a multiple testing procedure

For a given t, the number of possible errors in a multiple testing procedure are summarized in TABLE

2.1, with the same notations as in Benjamini and Hochberg [1995].

m is the known number of tested hypotheses. mg and mj, respectively the number of true null
and true alternative hypotheses, are unknown parameters. For a given threshold ¢ for the p-values,
Ry = 3 pem Lpe<t, the total number of significant tests, is an observed random variable. On the
contrary, U; and Sy on the one hand, and T; and V; on the other hand, respectively the number of

right and wrong decisions, are unobserved random variables.

Ideally, a multiple testing procedure would minimize both the number V; of false positives (type-I
errors) and the number T} of false negatives (type-II errors). A standard approach in practice in
the univariate setting is to minimize the type-II error rate, that is to say maximize power, for a
given acceptable level a for the type-I error rate. More false positives can occur when the number of
tests increase. Multiplicity necessitate to clearly define global type-I error rates, at the level of the
whole set of tests instead of the level of individual tests. More over, statistical significance is more
complex to manage in the multiple testing setting and dedicated procedures are settled to deal with

multiplicity.

Many recent articles and books describe the general framework of multiple testing [Efron et al., 2001,
Storey, 2003, Dudoit et al., 2002, Dudoit and VanDerLaan, 2008|. This usual setting for multiple
testing is defined in the first section of this chapter. Then, essential concepts are introduced, such
as the true null hypotheses proportion and error rates. Finally, major multiple testing procedures

are presented.

A mixture model for p-value density

2.1.1 General framework

Under the assumption of identically distributed standardized error terms € /oy, the test statistics
marginal distributions F*(T) only differ by the scaled regression function 7, = my(z)/og. In the
following, G(t) = P(px < t) stands for the probability distribution function of p.

Most of existing methodological development rely on the following assumption:
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HyYPOTHESE 1. (P-values distribution)

1. Yk, F(T; ml(CO) (x) /o) = Fo(T), so that the null distribution is the same for all tests.
The p-values are now defined as p, = 1 — Fy(Ty). For k € My, py is therefore distributed
t if p e [0;1]

according to the uniform distribution: Vk € Mo, GE(t) = Go(t) = )
0 otherwise

2. Under Hy, p-values are identically distributed: Vk € My, G¥(t) = G1(t). The non-centrality

parameter is then assumed to be the same: Vk € My 7, = 7.

This leads to the following two-component mixture model [Efron et al., 2001, Storey, 2002
G(t) = WQGo(t) + (1 — 7T0)G1 (t) (23)

where mp = 70 is the unknown proportion of true null hypotheses (see SECTION 2.2 for 7o estimation).

Let’s g denotes the p-values density.

9(p) = mogo(p) + (1 — m0)g1(p) (2.4)

where go(p) = 1,Vp. Further conditions are necessary to ensure identifiability of 7y, which can be
obtained for instance by assuming that g; is a decreasing function of the p-values with g;(1) = 0

|Genovese and Wasserman, 2002].

2.1.2 Linear model

The linear model, with my(z) = 20y, is a very usual special case of model (2.1) for which () = N(0;07).
(0)

my,’ is obtained by restrictions on my, such as ¢’y = 0, where the p—vector ¢ defines a given linear

contrast. Testing HY relies on the following t-test statistic:

DEFINITION 2.1.1 (Student test statistic).

0 /9
Too= = S T (ff=n-2)

\V(el)  \Jeintd Sy e

where S, is the empirical covariance matriz of explanatory variables, and 71 is the non-centrality

parameter of the Student distribution with df degrees of freedom.

Note that 7, = 0if k € Mg and 7, = 7 # 0, if k € M;.

EXEMPLE 1. We first consider m = 500 independent variables and n = 60 observations such

as Yoxm ~ N (13 1,). The multiple testing procedure aims at finding out which among these m
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variables have different expectations in two groups with equal sample size n = 30. For m; = 100
variables having different expectations in each group, the difference § is chosen so that the usual
t-tests have a variable-by-variable power of 0,8 and for the remaining mg = 400 variables, the
difference is set to 0. The non-centrality parameter is here defined by 7 = 4/ \/2/7

10
|

m=1:pw=10%
-=- T=2:pw=28%
----- = 3 : pw=54%
c=e= M=4:pw=78%

up)

Figure 2.1: Graphical representation of g; for different values for 7 - pw: individual power of t-test

¢o and ¢, denote Student density (df = n — 2) with non-centrality parameters 0 and 7 respectively.

If g = ¢ '(a), g1(p) = d)f(qzlx‘gé?;j%/(;])”p) (see FIGURE 2.1). If the individual test power is high, then
-p

g1(1) is close to 0. On the contrary, under the true null and the alternative hypotheses, distributions
are not well separated, which can induce problems for the identification of the mixture components

(see SECTION 2.2).

2.1.3 Semi-parametric approach

EXEMPLE 2. ASSUMPTION 1 is now illustrated using real microarray data which were primarily
analyzed by Golub Golub et al. [1999] in order to identify genes that are differentially expressed
in patients with two types of leukemias, acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML). The data are summarized by a 38 matrix ¥ = [Y};], where Y;; denotes the
expression level for gene j in tumor sample i. The dataset comprises n = 38 samples, 27 ALL
cases and 11 AML cases, and m = 3051 gene expressions. Preprocessing steps were applied to raw
data (available on the website http://www.broadinstitute.org/cgi-bin/cancer/datasets.
cgi). Normalized data are then available from the R package multtest |Pollard et al.|. A t-test

is performed for each gene expression.
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density

p-values

Figure 2.2: P-values distribution (Golub data): estimated density and identification of mixture

components

FIGURE 2.2 shows the decomposition of the p-values’ distribution into the two-component mixture
model introduced in (2.4). The semi-parametric approach implemented in the R package kerfdr
[Guedj et al., 2007| is used. In model (2.4), we need to estimate my and g;. Many methods can
achieve mg estimation and are detailed in the following section. In this example, its estimation with
kerfdr’s dedicated function is 0,499. We consider a kernel approach for g; estimation [Silverman,
1986, Robin et al., 2007]:

i = 3 w2 (25)
keM;

miw w

M is unknown. A solution is to weight each observation with its posterior probability: n(py) =

W [Efron et al., 2001]. The estimation of the p-values density under the alternative hypoth-

esis is:

0 = s Y ok () (2:6)

T O ke () &,

And then one iterates g; estimation steps and 1 update steps [Robin et al., 2007]. For the choice of
the bandwidth w, see for example Silverman [1986].

Estimation of the proportion of true null hypotheses

In addition to being an interesting quantity in itself, for its interpretation in the studied context, g

is a key parameter in assessing or controlling error rates.

Various methods for my estimation have been developed in the literature. Most of them rely on
the assumption of independent p-values distributed according to the two-component mixture model
(2.4), with a uniform distribution for null p-values, and taking advantage of the dominance of the

null component mygg of g for large p-values.
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2.2.1 Empirical estimator

The main approach, initially due to Schweder and Spjotvoll [1982], consists in estimating 7y by the

density of p-values exceeding a tuning parameter \:

DEFINITION 2.2.1 (empirical estimator of 7y [Schweder and Spjotvoll, 1982]).

L e >N W)
N =0 55m T aoum

where W) denotes the number of p-values larger than A. Note that W) can be decomposed into the
sum of two independent binomial variables: Wy = > )" 1, >\ = > keMo Lpi>a + ZkgéMo Lpesa-

Under ASSUMPTION (1), Ux = 3 jepmy Lppsa ~ Bin(mo, 1 — A) and T = 3 pg g, Lpa ~ Bin(m —
mo, 1 — G1(A)). The expectation and variance of 7p(A) under assumption of independent p-values

are deduced:

PRroPoOSITION 2.2.1.

E(7o(A) = 7r0+1_flA(A)(1—m) (2.7)
V(70(N) = m(iﬁ_o 3 Gl(A)“y;(fl_(i)))fl_”“) (2.8)

It follows from the above expression of the bias of 7g(\) that dominance of the null component in
the mixture of distributions should reasonably be specified by assuming that [1 — G1(A)]/(1 — A) is
a decreasing function of A. In this case, the minimum bias is (1 — 7y)g1(1), which is obtained for
A = 1. Asillustrated by FIGURE 2.3, it can be checked in the special case of t-tests (see EXAMPLE 2)
that (1 — G1(X\))/(1 — \) is actually a positive decreasing function of A with a lower bound at A = 1
given by ¢-(0)/¢0(0). However, for small values of |7, the minimum bias can be non-negligible, even

for large values of \: E(7g(\)) — w9 > (1 — m0)¢-(0)/¢o(0) > 0.

On the contrary, variance of 7y increases when A tend to 1.

Choice of A A relevant choice of the tuning parameter A should result from a bias-variance trade-
off for (). Several techniques have been proposed to achieve a good compromise between bias and
variance [Langaas et al., 2005]. We only mention here the minimization of a bootstrap estimation of

the Mean Square Error [Storey et al., 2004] which is one of the most used in practice.

Smoothing method Note that 7(t) can also be expressed as follows: #g(A) = (1—G()))/(1—=X),
where G is the empirical estimate of the probability distribution function G of the p-values. It is
deduced from the previous expression that, for A close to 1, 7p(A\) can be approximated by g(1),
where ¢ is a consistent estimate of the density function g. This motivates the estimation of 7, using

smoothing techniques, by the limiting value of 7p(A) for A = 1 [Storey and Tibshirani, 2003].
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Figure 2.3: Bias of 7y with respect to the tuning parameter A, considering different levels of power

(pw) for individual tests (non-centrality parameter |7]|)

2.2.2 Density-based estimators

Furthermore, alternative estimators of the form 7y = (1) have recently been proposed. Estimation
procedures essentially differ by the choice of a non-parametric estimate for g, depending on the
underlying assumptions on the regularity and shape of g. We mention here kernel methods (see
example 2) and an algorithm dedicated to the estimation of a decreasing convex function [Langaas
et al., 2005]

A comprehensive comparative study provided by Langaas et al. [2005] concludes to a better ro-
bustness of this kind of density-based estimates to departures from independence of the p-values.
Nevertheless, the empirical estimator with a bootstrap approach to choose the tuning parameter A

is widely used in practice.

Error rates

When testing a single hypothesis, the probability of a type-I error is usually controlled at some
designated level a. This can be achieved by choosing a critical value ¢t for the p-values such that
P(pr < t|Hp) < a. The multiple testing framework is concerned with several tests simultaneously
and statistical significance is more complex to define. A variety of generalizations to the multiple
testing situation are possible for error rates: the type-I and type-II error rates described in this
section are the most standard [Dudoit and VanDerLaan, 2008].
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2.4.

2.3.1 Type-I error rates

Two error rates associated with false rejections of null hypotheses (type-I errors) are manly consid-

ered:

o The family-wise error rate (FWER): FWER; = P(V; >1) = 1-P(V; =0)

e The false discovery rate (FDR): FDR; = E(FDP;|R; > 0).P(R; > 0), where FDP, = %.

The FWER of a multiple testing procedure is the probability of falsely rejecting at least one true null
hypothesis and the FDR is the expected ratio of the number of erroneously rejected null hypotheses
to the total number of rejected null hypotheses.

When the number of tests m is large, P(R; > 0) "= 1. Storey et al. [2004] therefore define the

positive-FDR by:

Vi
FDR =E

p (%

t

FDR,
R >0)=——"_
R > 0) P(R; > 0)

The Family Wise Error Rate (FWER) is historically the controlled error rate (see INTRODUCTION).

However, these procedures may be very conservative, mainly when the number of hypotheses is very
large. An approach that has turned out to be more appropriate in high dimension is to control
the False Discovery Rate (FDR). This approach is useful in exploratory analyses, when one aims at
maximizing the discoveries of true positives, rather than guarding against one or more false positives.

2.3.2 Type-1I error rates

Two error rates associated with false non-rejections of null hypotheses (type-II errors) can be con-

sidered:

e Expectation of the proportion of false-negatives FN P, = 7%: NDR, =E(FNP,)

e Probability that at least one true-positive occurs: P(S; > 1) =P(Ty < my —1)

Multiple testing procedures

Multiple testing procedures account for the multiplicity of the tests by a relevant thresholding tech-
nique: t is chosen so that all the null hypotheses Hé“ for which p, <t are rejected, where p; stands
for the p-value of the k" test. The threshold ¢ can be fixed or data-dependent. A multiple testing
procedure is said to control a particular type-I error rate at level «, if this error rate is less than or
equal to a when the procedure is applied. Strong control refers to control of the type-I error rate
under any combination of true and false null hypotheses, and weak control refers to control of the

type-I error rate only when all the null hypotheses are true (mg = 1).
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In general, the complete null hypothesis is not realistic and weak control is unsatisfactory. In many
realm of applications, not all null hypotheses may be true, but the subset Mg is unknown. Strong
control ensures that the type-I error rate is controlled in this case. In practice then, where it is very
unlikely that no test is positive, it seems particularly important to consider strong control of the

type-I error rate.

A detailed review of multiple testing procedure is available in Dudoit and VanDerLaan [2008]. The
following section present the procedures mostly used in practice and usually implemented in the
leading statistical software. The different steps of multiple testing procedures are simplified on
FIGURE 2.4.

v =Y, —m(x)+emd (D e () emp ()

Distribution
underH,

Figure 2.4: Multiple testing procedures steps

2.4.1 Definitions and principle

Usually, one distinguishes among two types of multiple testing procedures:

e Single-step procedures Equivalent multiplicity adjustments are performed for all hypothe-
ses, regardless of the ordering of the p-values. Each hypothesis is evaluated considering a

threshold ¢ for the p-values that is independent of the results of other tests.

e Step-wise procedures Hypotheses that correspond to the most significant p-values (resp.
least significant) are considered successively in step-down (resp. step-up) procedures, with
further tests dependent on the outcomes of earlier ones. In step-down procedures, as soon as
one fails to reject a null hypothesis, no further hypotheses are rejected - see FIGURE 2.5(a). In
step-up procedures, as soon as one null hypothesis is rejected, all further hypotheses are also
rejected - see FIGURE 2.5(b).

In step-wise procedures, rejection of a particular hypothesis is based not only on the total number
of hypotheses, but also on the outcome of the tests of other hypotheses. The threshold t is therefore
redefined at each step.

A large variety of procedures can be used to guarantee that the number of erroneous rejections of
the null hypothesis is maintained under a pre-specified level. Each of them provides a more or less
conservative trade-off strategy between rejecting true null hypotheses (false-positives) and accepting

true alternative hypotheses (false-negatives).
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Figure 2.5: Principle of step-wise procedures. p) represents the Eth p-value

2.4.2 Control of the FWER

This section discusses two procedures for control of the FWER. The first one is proposed by Bon-
ferroni [1936], based on the following threshold ¢t = a/m:

P(V;>0) = P| > Iycam>0|=P| |J pr<a/m

keMy keMo
(6%
< Y Ppr<a/m)=mi—<a
keMo m

from Boole’s inequality.

Sidak [1967]’s procedure assumes independence for the null p-values. If t = 1 — (1 — )"/™ then:

P(V;>0) = 1-PV;=0)=1-P| () pe>1-(1—a)/™
keMo

- 1-J] P(pk>1—(1—a)1/m):1—(1—a)m0/m§a
keMo

For small value of o and large m, the two thresholds lead to similar control level as 1 — (1 — a)l/ ™

a/m.

2.4.3 Control of the (p)FDR

Let’s call Ry = {klpr < t}, Ry C M, of size R;. Intuitively, the aim is to define the threshold ¢
so that R; is as large as possible while FDR; < a. For a given ¢, an approximation of FFDR; is
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E(Vi) _ 2 kemy P(Pr<?) <~ mot
Ry Ry — R

IA
Bl

given considering the ratio of V; and R; expectancies: FDR; =~
Therefore, t < aR;/m = FDR; < .

More generally, determining the subset R; should check the condition R; C {k|pr < aB(R:)/m},
called self-consistency condition [Blanchard and Roquain, 2008|, where 3(x) is an increasing function.

In particular, step-wise procedures are self-consistent.

The step-up procedure associated to the linear shape function 3(x) = z is the well-known linear step-
up procedure of Benjamini and Hochberg [1995], hereafter called BH procedure. If P@)s - -+ P(m) are
the ordered p-values, the BH procedure threshold is: ¢ = p(;+), where k* = argmax (k \ Pk) < %a).
The algorithm of the BH procedure was initially demonstrated to control FDR, thanks to Simes’s
inequality [Simes, 1986.

For a given level «, the BH procedure aims at finding the (data-dependent) threshold ¢ so that FFDR,
is less than the « level. An other approach is often considered in practice when determining multiple
testing significance. For a given threshold ¢ on the p-values, we can form the associated FDR [Storey,
2002]:

to = argmax{ﬁt(/\) < a}
te[0;1]

where ﬁt()\) = @t(\;\l)t, and mo(A) = ma(A). The choice of the A parameter has been evoked
previously (see SECTION 2.2). Both point of view are equivalent, provided m is large and if m is

replaced by mg(\) in the BH procedure [Storey et al., 2004].

The p-value measures the significance in the test of a single hypothesis. Similarly, the g-value
[Storey, 2003] is the FDR based measure of significance in the multiple testing setting. It is defined

as: q = argmin,.,, {pF'DR;} and estimated in practice by gy = % where mg(\) = %.

Conclusion: improving multiple testing procedures

In this chapter, we have presented a usual framework of high-dimensional multiple testing and
introduced the main concepts. This framework relies on the assumption of independent p-values
distributed according to the two-component mixture model (2.4), with a uniform distribution for
null p-values. Special attention is paid to the estimation of the proportion of true null hypotheses

and to the definition of error rate in the multiple testing setting.

An area of current research is aimed at improving the power of multiple testing procedures. For a

given level of error rate control, the goal is to declare positive a larger number of tests.

First, improvement in power may be achieved by step-wise procedures with respect to single-step
ones, in which rejection of a particular hypothesis is based not only on the total number of hypotheses,
but also on the outcome of the tests of other hypotheses. For example, step-wise version of Bonferroni
and Sidak procedures have therefore been developed [Holm, 1979] and result in less conservative

decisions.
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In multiple hypotheses testing, the control of error rates is a crucial point of interest. However,
trade-off is to be made between controlling error rates and maximizing power of the procedures.
Besides, the control of these quantities is not exact and depends on the proportion of true null
hypotheses, which is of course unknown. A challenging issue is therefore to provide an accurate
estimation (small bias and small variance) of the proportion of null hypotheses among the whole set
of tests. Recent articles Storey [2002], Black [2004], Kim and Van de Wiel [2008] showed that a more

accurate estimation of my would improve the power of multiple testing procedures.

Most of the existing procedures involve assumptions about the p-values being independent. Recent
studies, many of them listed by Gordon et al. [2007], also suggest that high correlations among
test statistics affect a strong control of the actual proportion of false discoveries. Indeed, although
current methods of simultaneous testing are generally shown to control expected type-I error rates,
they suffer from high instability in the presence of correlation. The impact of dependence on the
procedure is also, and from the very beginning, a questioning issue. Many papers have especially
focused on the control of the FDR under various patterns of dependence between test statistics. An
important contribution to this point was given by Benjamini and Yekutieli [2001]. They showed
the BH procedure still controls the FDR under assumption of a certain class of dependence called
positive. In fact, the general message seems to be that, for a high amount of dependence, the BH
thresholding method tends to over-control the FDR, leading to more conservative rules than expected
under the assumption of independence. Consequently, this also means that dependence affects the
power of the BH procedure. These last ten years, many procedures have therefore been inspired by
the BH method, focusing on improvements of the thresholding technique, but without modifications

of the individual test statistics.

Some authors |[Lonnstedt and Speed, 2002, Smyth, 2004] proposed moderated versions of the t-
statistics where the variable-specific variance estimator in the denominator is augmented by a con-
stant, which is derived from the whole set of variables. More recently, Storey et al. [2007] proposed
the so-called Optimal Discovery Procedure in which the idea of test statistics combining common

information across the variables is exploited thoroughly.
Recent proposals also suggest to modify the theorical null distribution [Efron, 2004].

Resampling methods are sometimes suggested to capture the dependence on the joint null distribution
of the test statistics [Westfall and Young, 1993]. However, some shortcomings can be highlighted for
resampling-based procedures, especially concerning the control of the type-I error rate [Yifan et al.,

2006] and computation time.

In the following chapter, we focus on the impact of dependence in multiple testing procedures. A
common idea in many recent papers is also that dependence between test statistics should be taken
into account by borrowing information across the variables rather than treating them as independent
[Kendziorski et al., 2003, Leek and Storey, 2008]. This can be achieved by modeling the common

information and taking advantage of the shared information between variables.

This approach is studied in CHAPTER 3.




CHAPTER 3

MULTIPLE TESTING UNDER DEPENDENCE

Abstract The impact of dependence is currently one of the most discussed topics
in the literature about multiple testing for high-dimensional data. High correlations
among test statistics affect a strong control of the actual proportion of false discoveries
and the estimation of key parameters of procedures such as the proportion of true null
hypotheses. In many areas, dependence can be explained by an underlying structure
of unobserved factors. Modeling this structure by a Factor Analysis model provides
a framework to study the impact of dependence on multiple testing procedures. It
is shown that the variance of the number of false discoveries increases along with
the fraction of common variance. The same results are obtained for the empirical

estimator of the proportion of true null hypotheses.

%
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25 Introduction

Introduction

In multiple hypotheses testing, the control of error rates under dependence is a crucial point of
interest. Most proposals are concerned with the modification of initial algorithms to extend the
assumptions on p-values distribution [Benjamini and Yekutieli, 2001] or with the modification of the
theorical null distribution [Efron, 2004].

In the case of t-tests, the test statistics are then jointly distributed according to a non-central
multivariate Student distribution Zgf(7; R), where 7 = (71;...;7y,) is the m—vector of non-centrality
parameters, df is the number of residual degrees of freedom and R is the residual correlation matrix
R. For k =1,...,m, 7, = /nNB® /(c),\/NSza)), which equals 0 for k € My. In this case,
correlation across the test statistics is exactly the correlation between the response variables. More
generally, dependence among the p-values is also straightforward inherited from dependence among
the data.

We suppose now that the residual random vector E = [e1, ..., €,] has a variance matrix ¥ which is

not necessarily a diagonal matrix.

The following proposition proved by Leek and Storey [2008] defines a general framework for multiple

testing dependence.

PROPOSITION 3.0.1 (see Leek and Storey [2008]). Under assumption (2.1), suppose that for
each €y, there is no Borel measurable function g such that € = g(€1, ..., €x—1,€xt1,---,€m) almost
surely. Then, there exists a random Q—wvector Z, with 0 < Q < m and, for allk =1,...,m, there

exist QQ—wvectors by such that,
Y :mk(x)—kbek%—ak, (3.1)

where € = (£1,...,6m) i a random vector with independent components.

The above result establishes the existence of latent variables Z which capture the dependence among
the variables in a Q—dimensional linear space. Therefore, model (3.1) can be viewed as a Factor
Analysis model and the variables Z will henceforth be called factors. If it is furthermore assumed that
the factors have means 0 and variance I; as in the exploratory Factor Analysis model [Mardia et al.,
1979], the mixed-effects regression models (3.1) are equivalently defined as fixed-effects regression
models which residual variance ¥ can be decomposed into the sum of two components: a diagonal

matrix ¥ of specific variances w,% = V(ex) and a common variance component B’B, where the kth
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row of B is by:

Y=BB +V¥ (3.2)

EXEMPLE 3. Impact of dependence is first illustrated by simulation scenarios with increasing
amounts of dependence among data: 10 levels of dependence are considered, form independence
(scenario 0) to highly correlated data (scenario 9). The proportion tr(BB’)/tr(X) of common

variance increases along with the scenarios: In each case, 1 000 datasets are simulated according

1 2 3 4 5 6 7 8 9
4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19

Scenario ‘

0
Common variability (%) ‘ 0

Table 3.1: Common variability (%) for the 10 simulated scenarios
to a multivariate normal distribution. Each dataset is composed of m = 500 variables and n = 60
observations such as Yyxm ~ Ni(0;35). Besides, let’s consider a binary variable X such that

the observations are split into two groups of size n/2. For each dataset, the p-values of the usual

t-tests for the comparison of means are calculated.

3.1. Impact of dependence on p-values distribution

FIGURE 3.1 reproduces the mean histograms of p-values with 95% confidence intervals in situations
of independence (scenario 1), intermediate (scenarios 3 and 6) and high level of dependence (scenario
9). Obviously, this shows that uniformity of the distribution of the null p-values is true on average,

but in case of dependent data, the histograms can show marked departures from uniformity:.

FIGURE 3.2 represents the examples of histograms from two simulated datasets from scenario 9. De-
pendence can lead either to a much larger representation of the p-values close to 0 (and consequently
an under-representation of the p-values close to 1) or inversely much lesser small p-values than ex-
pected under uniformity. This violation of the uniformity of the null distribution is also mentioned
in Efron [2007|, which reports that correlation can widen or narrow down the distribution of Z-scores

with respect to the theoretical null distribution.

3.2. Impact of dependence on the estimation of the proportion of true

null hypotheses (m)

The immediate consequence of the above comments is a less accurate estimation of the proportion

of null hypotheses. We now slightly modify the simulation scheme of EXAMPLE 3:
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EXEMPLE 4. For each dependence scenario, for each dataset, we now set different expectations
between groups of X for m; = 100 variables. The difference is chosen so that the usual t-tests
have a variable-by-variable power of 0.8 and for the remaining my = 400 variables, the difference
is set to 0. The true value of mg is therefore 0,80. The p-values of the usual t-tests for the

comparison of means are then calculated.

In the simulated situations of dependence of EXAMPLE 4, 7 is estimated using the different methods
presented in CHAPTER 2. The results are presented for two of them: empirical estimator with
bootstrap choice of A [Storey et al., 2004] and considering the density estimation assuming it is a

convex decreasing function |Langaas et al., 2005]).

FIGURE 3.3 shows the estimated proportion of null hypotheses, along with the A criterion. This
simple criterion is just used here to characterize departures of the null distribution of p-values from
uniformity. It is positive if close-to-0 p-values are over represented (FIGURE 3.2, left)and negative if

close-to-1 p-values are over represented (FIGURE 3.2, right).

FIGURE 3.3 shows that dependence induces a kind of local bias, in the sense that concave densities
of null p-values lead to an overestimation of my and inversely, convex densities to an underestimation

of 0.

7o estimation under dependence In the following proposition, for k # k/, G¥(t) = P(py < t)
and G (t) = P(py, < t;pr < t). GF(Z,t) = P(py, < t|Z) is the conditional distribution of p-values
with respect to factor Z.

ProprosiIiTION 3.2.1.

E(G*(Z,t) = G*t)
Cov(GH(Z,1);GF (Z,1)) = G*'(t) - G*()G¥ (1)

More particularly, if k € Mo: E(GF(Z,1)) = Go(t) =t

Proof. GM(Z,t) = P(py, < 1Z) = E(1,,<|2).
Then E(G*(Z,t)) = E(1,,<t) = G¥(t) O

We also define a general function called D*¥" (t) as:

DEFINITION 3.2.1. ” i I
D’“’“'(t) _ G (t) — GF(t)G" (t)
t(1—1t)

Moreover, G1(\) = le > ke, (G5(N)) where G§(X) represents the p-values distribution under the

alternative hypothesis.
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Figure 3.3: Estimation of my along with the A criterion that characterizes the density of null p-values

around 0 - g = 0, 80

PROPOSITION 3.2.2.

B(ro() = o+ (1 - m) - Y
7r Ykem, |GTAN(L = GE(N) ,
RO = En;u—x)? e 2 P

The proof of PROPOSITION 3.2.2 rely on the following lemmas about the conditional properties of Uy
and T;.

LEMME 3.2.1.

=
=
I

mo(1 — A)
[mo + 3 Dk’“’(x)}m ~ )

k#k'e Mo

=
S
I
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Proof.
EU\MZ) = Y Pm2AN2Z)= Y (1—Gk()\)>
keMo keMo
VINZ) = PN (1-Pre=AZ) = 3 (1-G50,2)) GH(\ 2)
keMo keMy

card(Mp) = mg and E(G¥(\, Z)) = G¥()\) = )\, Yk € Mg from PROPOSITION 3.2.1. Therefore,
E(Uy) = E(E(UA|Z)) = mo(1 — A).
The variance of Uy is deduced from: V(Uy) = E (V(Ux|Z)) + V (E(Ux|2)).

VEWUAZ) = VY -G =V [ Y 2| = Y v(¢F )+ Y Cov(GF(A2)6M (A 2)
kEMg kEM kEMg k#k! EMo
= Y E(E0n2)- X ]E(Gk()\,Z)>2+ > Cov (6P (1 2):6M (A, 2))
keMg keMg k#k’ e Mg
- ¥ E(Gk(z\,Zf) —moA?+ Y Cov (G’“(A,Z);G’“’(A,Z))
keMg k#k!' e Mg
E[V(Us|Z)] = E[Z <1_Gk(x,z)) G*(\, 2)
keMy
= ¥ E(Gk(A,Z)) - JE(G]“(A,Z)2>
keMg keMg
= moA— > ]E(G'“()\,Z)Q)

keMg
Using the Dkk/()\) function introduced previously:
SVT) = moA1-N+ Y Cov (G’“(A, Z),G¥ (), Z))
k#k'e Mo

_ [m0+ 3 Dkk/(x)}A(l—A) (33)

k#k' €Mg

LEMME 3.2.2. Let’s denote G1(A) = =Y, (GF(V).

B(Ty) = (m—mo)(1—Gi(V)
vm) = Y [Gia-cton]+ [ Y DFoaa -

keMy k#£k' e My

Proof.
B(TZ) = Y PmezAz) =Y (1-6*(\2)
keM; keMy

V(TNZ) = D> Pe=MN2)1-Ppr=2A2) = > (1-G"(\2)G"\2)
keM; keMy
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card(Mi) = m —mg and E(G¥(\, Z)) = Gk( ), Yk € M from PROPOSITION 3.2.1.

Let’s call G1(\) = m% D ke, (GY(N). E(T E(E(T\|Z)) = (m—mg)(1 —GFN)).

The variance of T) is deduced from: V(7)) = E(V(T)\|Z)) + V(E(T)|Z)). On a :

VETZ) = V| (1Gk()\,Z))] vy @t =3 V( O\, Z)) Y Cov (Gk(A,Z);G’“’(A, Z))
kEM; kEM, kEM; k#k! €M

> E(G027) - X E(Gk(A,Z)>2+ S Cov (60, 2):6M (1, 2)

keMy keMy k#k'e My

E[V(T:|Z)] = E[Z <1Gk()\,Z)>Gk(,\,Z)]

keMy
— k _ k 2
- %;ME(G (A,Z)) kg\;lE(G A\ 2) )

Using the D*¥'()\) function introduced previously:

SVn) = Y {E(G’“(A,Z))-E(GWA,Z)H+ 3 cov(Gk(A,Z);Gk’(A,Z))

kEMy k#k’€ My

> [etma-cton]+ Y [¢ o -ctnet i 2)]

keMy k#k' e My
- ¥ [GT(A)Q-G’{(A))} +[ 3 Dkk’(A)}Au—A) (3.4)
keM;y k#k'e Mg

LEMMAS 3.2.1 and 3.2.2 are now used for the proof of PROPOSITION 3.2.2.

Proof. Let’s call G1()\) = mil > ke, (G%(X)). Expectation of 7 is deduced:

E(Wx) _ E(U,) +E(T))

E@M) = Sa=n T mi—w
mo(1—X) +ma(l - Gi(\) (1-Gi()
- BORERGEO) - )

Moreover, V(W) = V(Uy) + V(Ty) + 2 Cov(Uy; Ty), where V(Uy) and V(7)) are given in LEMMAS
3.2.1 and 3.2.2. Cov(Ux;T)\) = E(Cov(Uyx;T)\|Z)) + Cov(E(Ux|Z); E(Tx|Z)). Conditional indepen-
dence in model (3.1) gives Cov(Uy; Ta|Z) = 0.

Cov(E(U)|2); E(T)Z)) = Cov ( S a-ctonz) Y a- Gk(A,z»)

keMy keMy
= Y Y Cov(GF(N, 2);GF(\, 2))
keMo k'e My
- > ¥ [Gkk’(A)—Gk(A,Z)Gk’(A,Z)]
keMo ke My

= Y 3 [proa-n

keMo k'e My
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3.3.

The variance of T(\) is deduced:

AT S ke, |GEN(L = GE(N) v /
m(l_o)\)Jr keM m;(l_)\)2 1 :|+1_)\7’n/2 Z DM (\)

V(7o (A)) =

In the case of independent p-values, with identical distribution under the alternative hypothesis,
G1(M\) = G1(A\) and D()\) = 0, which gives the bias and the variance as provided in expression 2.2.1

under assumption of a two-component mixture of distributions.

Minimising MSE to choose the tunig parameter PROPOSITION 3.2.2 also shows how the
variance of the estimator depends on the correlation matrix R. In order to illustrate the impact of
dependence both on the choice of an optimal threshold and on the variability of the estimation, the
bias, variance and RMSE of () are calculated in the three multiple testing situations introduced
for the simulation study in EXAMPLE 4. In a completely nonparametric framework, the bivariate
probability G*¥'()), which appears in the expression of the variance of 7g(\), can be estimated
using permutation techniques, provided it can be assumed that Gy ()) is the same for all (k, k).
In the present situation of Student’s tests, a closed-form expression of Gkk,()\) is used, given by
D@ ([—ux; unl?; priss Thy Tw, . — 2), where pp is the correlation between T}, and T}, 7 is the non-
centrality parameter of the non-null distribution of the test statistics, uy is the (1 — A/2)—quantile
of the Student distribution with n — 2 degrees of freedom and ®®3)(A;p, 7,7, df) stands for the
probability that a bivariate Student vector with non-centrality parameter (7,7’), degree of freedom

df and correlation p belongs to A C R2.

FIGURE 3.4 compares the RMSE curves of 7p(\) for different levels of dependence among test statis-
tics and different values for 7. The optimal choice for the threshold is given. It essentially shows
that ignoring dependence leads to an overestimation of this optimal threshold, and simultaneously

to an underestimation of the true variability of 7g(A).

Impact of dependence on error rates

3.3.1 Impact of dependence on the number of false-positives (1})

For each simulated dataset in EXAMPLE 4), V; is calculated considering a fixed threshold ¢ = 0,05

on the p-values. results are given in TABLE 3.2.

FIGURE 3.5 represents the distribution of V; for four scenarios of increasing level of dependence. Both
TABLE 3.2 and FIGURE 3.5 show that the mean of V; does not seem to be affected by dependence. On
the contrary, the variance of false-positives is increased in case of dependent data. These comments

are confirmed by the following proposition.
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Figure 3.4: Bias, variance and RMSE of 7p(A) under different scenarios of dependence (on each plot,
the vertical line locates the threshold for which the RMSE is minimized) - left panel: 7 =1 (power:
17%), middle panel: 7 = 2,8 (power: 80%), right panel: 7 = 4 (power: 97%)
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scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
min 6.00 5.00 6.00 5.00 1.00 1.00 0.00 0.00 0.00 0.00
qo,25 17.00 17.00 15.00 13.00 11.00 8.00 8.00 6.00 6.00 4.00
median 20.00 20.00 19.00 17.00 16.00 14.00 14.00 12.00 12.00 11.00
mean 19.96 20.12 20.03 19.44 19.48 19.94 19.63 21.12 21.29 20.22
qo,75 23.00 23.00  23.00 23.00 23.00 24.25 24.00 25.00 26.25 25.25
max 36.00 45.00 72.00 90.00 157.00 169.00 152.00 206.00 206.00 195.00
std 4.43 4.96 7.33 10.43 14.26 18.73 19.83 26.19 26.14 26.35

Table 3.2: Descriptives statistics of V; for the 10 different scenarios of dependence
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For a given threshold t, V; is defined as the number of erroneous rejections of the null hypotheses. For
independent test statistics, V; is distributed according to a binomial distribution: V; ~ Bin(myg,t).
This random variable has mean mgt and variance mot(1—t). Under general dependence, the following

proposition holds:

ProprosiTION 3.3.1.

E(‘/t) = mot
V) = [me+ 3 D] -

k#k'e Mo

Proof. The proof is deduced from the proof of LEMMA 3.2.1. Indeed, V; = mg — U;. Therefore,
]E(‘/;j) = mo—mo(l—t) = mot et V(%) = V(mO_Ut) = V(Ut) = mO+Z/€7H€’EMO Dkk’ (t) t(]_—t) D

Therefore, by comparison with the binomial variance m0t(1 — t), the impact of dependence on the
variance of V; can be measured by Mo(R) = 3y e rm, DFK'(+), where R is the correlation between
the test statistics. PROPOSITION 3.3.1 shows that correlation modifies the distribution of V; by
increasing its dispersion, leaving its expectation unchanged. Therefore, correlation shall have an
important impact on the tail of the distribution, which is directly involved in the calculation of the

error rates.
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Figure 3.6: Variance of V; along with the threshold ¢, for each dependence scenario
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FIGURE 3.6 confirms that a high amount of conditional correlation leads to a very unstable distri-
bution of the number of false discoveries. Although it seems to show that the impact of dependence
becomes smaller when the threshold tends to zero, this have to be tempered by the fact that the

expected number of false discoveries also decreases along with the threshold.

FIGURE 3.7 shows that, for any preset t, Dt(p) is a U-shaped function that is close to some equivalent
term appearing in Owen [2005]’s formula for the variance of the number of false discoveries and in
Efron [2007], where the bivariate normal probability function is also involved in the expressions of

the variance inflation.

— — t=5e-01
== t=1e-01
ceee t=1e-02
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— - t-1e-04
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|
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Figure 3.7: Dy(p) for various values of the threshlod ¢

3.3.2 Impact of dependence on the FWER

The Sidak procedure [Sidak, 1967] is now applied on the datasets of the simulation study presented
in EXAMPLE 4.

Implementation is done using the R package multtest [Pollard et al.]. TABLE 3.3 displays the fre-
quencies of the number of false-positives V; and the estimated FWER using the simulated datasets.
It shows that the procedure based on the Student’s tests controls the FWER at a lower level than
a = 0,05. FIGURE 3.8 reproduces multiple boxplots of the distributions of the non discovery pro-
portion NDP;, = #{k ¢ My, H(()k) not rejected}/ml. It shows that the fraction of common variance
generates instability in the distribution of NDP,. Moreover, the mean N D P, which can be viewed

as a type-1I error rate, remains high whatever the level of dependence.

3.3.3 Impact of dependence on the FDR

Let’s consider two estimators: the empirical estimator FDR;, = %(f and the one resulting from

Storey et al. [2004]’s procedure where the FDR is estimated considering ¢ = p(+), with k* =
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scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 1556 28,56 40,31 50,76 57,90 65,45 70,09 75,19
counts

0 957 958 970 973 966 971 969 964 970 968
1 42 41 29 24 33 26 27 24 22 25
2 1 1 3 2 3 4 3 3
3 1 1 5 3 2
4 1 1 1

5 2

6 1

7

8 2
9

10

11

12

13

14

—
(@2
—

FWER
#{V; > 0}/m 4,3 4,2 3,0 2,7 3,4 2,9 3,1 3,6 2,9 3,2

Table 3.3: V; counts and FW ER; estimated from the simulated datasets along with the proportion
of common variance, for the procedures based on t-tests p-values with Sidak correction - threshold:
t=1,0258.10"%)
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Figure 3.8: Distributions of the Non Discovery Proportion for the Sidak procedure based on the

Student’s tests along with the different scenarios of dependence
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argmaxy, (p) < k). Both estimator are similar, but the second one considers a data-dependent
k\FP(k) = mg
threshold.

PROPOSITION 3.3.2 (from Storey et al. [2004]). Under ASSUMPTION 1, for a fized X € [0;1][:

E(FDR,(\) > FDR,

FDR estimator is biased. But this bias is positive, so procedures control the actual FDR at a lower
bound than estimated. The immediate consequence in practice is a lower power of procedures than
expected |Sarkar, 2008].

The BH procedure [Benjamini and Hochberg, 1995] and the g-value procedure [Storey, 2003] are now
applied on the datasets of the simulation study presented in exemple 4. Implementation is done using
the R package multtest [Pollard et al.| for the first method and the q-value package [Dabney et al.,
2009 for the second one. TABLE 3.3 displays the frequencies of the number of false-positives V; and
the estimated FWER using the simulated datasets. It shows that the procedure based on the t-tests
control the FWER at a lower level than o« = 0,05. FIGURE 3.8 reproduces multiple boxplots of the
distributions of the non discovery proportion NDP, = #{k ¢ My, Hék) not rejecmd} /ml. It shows
that the fraction of common variance generates instability in the distribution of NDP;. Moreover,
the mean NDP;, which can be viewed as a type-II error rate, remains high whatever the level of
dependence. To avoid discussions about the estimation of 7y, this parameter is supposed to be known

in this comparative study.

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
FDRi—o0.05

min 17,09 15,62 13,33 12,20 8,85 8,55 9,22 7,30 7,38 7,75
qo,25 19,23 19,23 19,05 19,23 19,23 19,42 19,61 19,23 19,23 19,42
median 20,00 20,00 20,00 20,41 20,62 20,83 21,06 21,06 21,05 21,28
mean 20,11 20,02 20,08 20,20 20,33 20,34 20,52 20,46 20,51 20,65
qo,75 20,83 20,83 21,06 21,28 21,74 21,98 21,98 2247 2247 2247
max 25,32 24,10 24,69 25,00 25,64 25,00 27,40 26,67 28,17 30,30
sd 1,23 1,25 1,47 1,78 2,11 2,39 2,57 3,08 3,12 3,19
g-value

min 14,69 14,88 15,99 15,94 15,83 15,18 13,37 15,07 13,63 12,99
qo,25 19,16 19,17 19,16 19,10 19,12 19,15 19,09 19,10 19,11 19,02
median 19,59 19,59 19,59 19,55 19,62 19,59 19,59 19,56 19,60 19,56
mean 19,41 19,40 19,42 19,37 19,38 19,38 19,33 19,34 19,34 19,27
qo,75 19,84 19,83 19,85 19,82 19,85 19,83 19,82 19,84 19,84 19,84
max 20,29 20,33 20,54 20,44 20,47 20,36 20,28 20,58 20,51 20,41
sd 0,63 0,63 0,60 0,63 0,67 0,68 0,76 0,73 0,78 0,87

Table 3.4: Descriptive statistics for FDR estimation along with the different scenarios of dependence

(%)
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For each scenario, TABLE 3.4 gives the descriptive statistics for both estimators. Whatever the level
of dependence, the mean estimation is steady in each case. The variability of FDR estimation is
lower with the data-dependent threshold.

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 6545 70,09 75,19
FDP (t =0,05)

min 750 595 659 532 1,06 1,00 000 0,00 0,00 0,00
qo,25 17,53 17,17 1583 13,33 11,83 9,19 8,51 6,67 6,38 4,88
median 19,80 20,00 19,01 17,53 16,13 14,74 14,44 13,16 13,02 11,52
mean 19,86 19,90 19,67 18,87 18,48 18,31 17,88 17,97 18,23 17,74
075 22,43 2245 22,55 22,93 22,25 23,79 23,75 24,53 26,18 24,82
max 31,58 3516 48,00 58,07 69,47 7222 70,05 76,37 76,75 76,03
sd 3,64 4,04 5,70 7,82 9,69 12,36 12,79 15,13 15,80 16,08
FDP (threshold g-value)

min 4,17 4,94 4,76 3,49 1,16 0,00 0,00 0,00 0,00 0,00
qo,25 17,17 16,83 1505 12,37 10,78 8,05 7,30 5,60 5,32 3,90
median 19,82 20,21 19,00 17,20 1553 14,00 13,40 12,07 11,43 10,01
mean 19,96 20,02 19,82 19,03 18,78 18,60 18,07 18,34 18,68 17,62
qo,75 22,86 23,17 23,15 23,48 23,00 24,16 24,30 25,05 26,6 25,60
max 32,80 36,50 54,26 63,59 74,83 7627 76,38 78,07 79,18 79,75
sd 4,38 4,84 6,91 9,33 11,65 14,55 14,98 17,64 18,37 18,59

Table 3.5: Descriptive statistics for False Discovery Proportion along with the different scenarios of

dependence (%)

TABLE 3.5 gives descriptive statistics for the true proportion of false-positives (FDP). Mean of
FDP, which is FDR, is steady for all scenarios, but its variability sharply increases along with the
proportion of common variability (see FIGURE 3.9(a)).

FIGURE 3.9(b) shows that the fraction of common variance generates slight instability in the dis-
tribution of NDP;. The mean N DPF,, which can be viewed as a type-1I error rate, remains steady

whatever the level of dependence.

We now compare FDR estimation and the true proportion of false-positives (NDP) in the simulation
study. Results are presented on FIGURE 3.10 for four different scenarios and TABLE 3.6 gives the

regression coefficients between the two FDR estimators and FDP.

As already observed by Efron [2007], the empirical estimate is negatively correlated with the observed
FDP, which can result in strongly misleading estimations especially when FDP is high. FIGURE 3.10
shows that this concern is particularly clear for large fractions of shared variance. When estimating

FDR with a data-dependent threshold, correlation is not negative anymore.
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Figure 3.9: False Discovery Proportion (FDP) and Non Discovery Proportion (NDP), along with the

10 scenarios

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 1556 28,56 40,31 50,76 57,90 65,45 70,09 75,19
FDR¢—0.05 -0,197 -0.196 -0,189 -0,176 -0.187 -0,171 -0,175 -0,182 -0,169 -0,171

g-value 0,025 0,026 0,017 0,016 0,015 0,013 0,017 0,013 0,014 0,016

Table 3.6: Regression coefficients between estimated FDR and the true proportion of false positives
(FDP)

Conclusion

Dependence induces variability that interferes in particular with p-values distribution that can
sharply deviates from the theorical null distribution when the level of common variability between
variables is high. Consequently, the variability of false-positives increases in presence of dependence,
leading to high instability in multiple testing procedures. Moreover, my estimation is biased when the
level of dependence is high. This bias depends on the impact of dependence on p-values distribution,

whether it yields to more small p-values or to more close-to-one p-values.

Considering the factor modeling of dependence, which describes the common structure through latent
variables as in (3.1), the variance of the number of false-positives and the variance of my are both
derived. Their expressions include a term which directly depends on the correlation between test

statistics.

Next chapter describes a method that borrows the information shared by all the variables to improve

multiple testing under dependence.
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Figure 3.10: Estimated FDR versus the observed proportion of false positives with ¢ = 0,05 (empir-
ical FDR) and data-dependent threshold (q-value) for 4 levels of dependence
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CHAPTER 4

LCONDITIONAL APPROACH OF LARGE-SCALE MULTIPLE TESTING
UNDER DEPENDENCE

g

Abstract Dependence between the responses is here modeled by a multiple factor
structure which is exploited to define new test statistics. As data are independent
conditionally on the factors, this framework allows to extend the results on error rates
control and on my estimation from the independent case to general dependence. This
leads to less correlation among tests and shows large improvements of the power and
stability of simultaneous inference. Conditional estimates are also deduced for FDR

and .

ﬁ
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45 Introduction

Introduction

There are two main issues in carrying out multiple testing procedures: estimating the proportion of
true null hypotheses and controlling error rates. The classical approach is to perform simultaneous
tests and to base the decision rule on the resulting p-values. As described in CHAPTER 2, most
of procedures make independence assumptions on the p-values distributions. Taking into account
dependence in large scale multiple testing has appeared to be a major concern. More particularly,
even if error rates can still be controlled under some weaker assumption on the p-values distribution,

each step of the procedures are impacted by the presence of dependence among tests.

Model (3.1) introduced in CHAPTER 3 assumes that dependence can be represented by a small set

of random vectors Z associated to the information shared by the whole set of response variables:
Y = mp(z)+ Zb;§ + &k

where E = [e1,..., &) has independent components.

In the first section, assuming such a covariance model for the conditional dependence of the responses
given the predictors, we propose modified test statistics, based on improved estimators of the linear
contrasts to be tested, by taking advantage of the factor structure. SECTION 4.2 presents a con-
ditional approach to estimate my and the FDR. SECTION 4.3 is dedicated to the presentation of a
factor-adjusted multiple testing procedure showing large improvements on the usual methods, called

FAMT.

4.1. Factor-adjusted data

4.1.1 Test statistics

Before presenting an improved multiple testing procedure which takes advantage of the factor struc-
ture, we start with a similar, yet much simpler, single-testing issue in which it can be assumed that

the null hypothesis is true for some auxiliary covariates.

4.1.1.1 Likelihood-ratio test in the presence of covariates under H

Let us examine the following single-testing issue in the multivariate context: for a contrast of interest

defined by the p-vector of coefficients ¢, our aim is to test the null hypothesis H[()m) : ¢l = 0 against
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Hl(m) : 0, # 0 under the assumptions H(()j) :cf; =0, Vj € [1;m — 1]. For example, this situation
can be encountered in microarray data analysis, where Y;, is a gene expression of interest and
[Y1;...;Y,,_1] are expressions of so-called housekeeping genes. Such control genes, which expression
has no biological reason to vary from an experimental condition to another, are introduced in some
microarray experiments in order to estimate and to remove an eventual technological bias between
microarrays. The above problem can be restated as a classical testing issue in a general linear model
context. Let Y be the mn-vector obtained by concatenating the measurements of Yj, j € [1;m], on
the sample of size n. If § = [09;61;...;0%;0,,] is the vector of unknown regression coefficients in the
model relating Y to x, the test of H(()m) can be viewed as a test for the significance of a particular
linear combination of § under linear restrictions which state the nullity of ¢f;, j € [1;m — 1].
If the variance parameters are assumed to be known, it can be shown that the Likelihood-Ratio
Test statistics resulting from application of the normal theory in this special case of general linear
hypothesis testing is given by:

Tk _ C/ém . C/B(mfl),y(n{—l) (4.1)

2 ro—1
Um|m—lc z €

where B(m=1) is the matrix containing the 6; coefficients, j € [1;m — 1], ~(m=1) is the vector

of regression coefficients for [Y7;...;Y,,—1] in the model relating Y,, to x and [Y1;...;Y¥,,—1], and
o2 is the residual variance of this model. Of course, if the conditional covariance between Y,,, and

m|m—1
[Yi;...; Y1), given x, is zero, T' coincides with the classical Student’s test statistics. Plugging-in the

maximum likelihood estimators of (™1

and 072”|m_1 in expression (4.1) leads to an asymptotically
optimal test statistics, which can show large improvements with respect to the classical Student’s

test.

4.1.1.2 General framework for high-dimensional data

Generally, apart from the special case mentioned above of control genes in microarray experiments,
direct measurements of auxiliary covariates for which it could be assumed that Hg is true are not
available to improve large scale significance tests. However, in gene expression datasets for example,
it can often be assumed that Hj is true for a large fraction of variables, or in other words, that
My is large. The method we propose hereafter consists in taking advantage of this unknown but
large set of variables to derive new individual test statistics inspired by expression (4.1). A crucial
issue in such an approach is the handling of the potentially huge size of M. This can be addressed
by the Factor Analysis modeling of the conditional variance of the variables. Assumption (3.2) can
indeed be viewed as equivalent to the existence of latent factors Z = (Z W, ...,z (‘Y)), supposed to
concentrate in a small dimension space the common information contained in the m responses: for

k=1,...,m,
Y., = mk(x)+Zb§€+€k (4.2)

where by, is the k™ row of B and E = [€1;...;6m] Is a random m—vector, independent of Z, with

mean 0 and variance-covariance W. The kernel dependence ZB’ is independent from the covariates
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x. We consider the data centered with respect to this dependence kernel:
ffk =Y. — Zb;c =my(z) + &g (4.3)

Application of expression (4.1) using the factors as covariates results in the following factor-adjusted

test statistics:

T = (Vi) = s(Ye — 2b}) (4.4)
The factor-adjusted p-values pj, = 1 — Fy[s(Yy — Zb)| = 1 — Fy[s(my(x) + €)], obtained using on
the residual vector Y}, — Zbj, the same individual testing method as for the p-values py on the raw
data Y, are independent. The following proposition gives the probability distribution function of

these factor-adjusted p-values:

PROPOSITION 4.1.1. Let Gi(t) = P(p, < t) denote the probability distribution function of the
kth factor-adjusted p-value pi. Assume that the density functions ¢ of the independent error
terms e in model 2.1 only differs by a scaling parameter 1y and have the same standardized
density function as the random errors in model (3.1): ¢r(z) = @(x/Yr)/VYr. Then, for k € Mo,
Gi(t) = Go(t) =t and for k ¢ Mo, Gi(t) = G (t;mi(x)/¢r).

Proof. The probability distribution function of the factor-adjusted p-values is given by:

G"(t) :/ﬂ[lFo(s(mk(:c)sk))gt}¢k(5k)d5k

Due to the scale-invariance of the test statistics and the identical distribution of the standardized

residuals ey /1y,
G*(t) = /ﬂ[1—F0(s(mk(x)/x1/k—uk))<t]sﬁ(uk)duk = G (t; %)

Moreover, 7, = my(x)/VYr = TpoK/Vk. -

Note that @Dz is the conditional variance of g, given the factors, which implies that o5 > ;. There-
fore, the non-centrality parameter of the non-null distribution, or equivalently the power of the

individual tests, is larger for the factor-adjusted p-values than for the corresponding raw p-values.

4.1.1.3 Linear model

The present section focuses on t-tests because they are of major interest in various applied situations
but the general conclusions are valid for other types of tests such as Fisher’s analysis of variance
tests for example.

Hereafter, the least-squares estimator of 6 is denoted ék: c ék — 0}, is normally distributed with

expectation 0 and variance U,%

n~1¢' S e, where oy, is the conditional standard deviation of Y(¥) given
x and S, is the sample variance-covariance matrix of the explanatory variables x. Furthermore, for

k # K, Cor(c Oy, ¢ ék) = pri’, where pgis is the conditional correlation between Y and Yy given x.
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As mentioned above, the present section focuses on test statistics defined as normalized estimations
of the linear contrasts: Ty = /nc'0)/(ci\/ /Sy '¢). This test statistic has the following properties:

PROPOSITION 4.1.2.

nc'o
B(T) — mo— Y%
o\ Sy e
V(Tx) = 1

COV(Tk,Tk/) = pkk/,k‘#k,

Note that 1, equals 0 if k € My

PROPOSITION 4.1.2 shows that the correlation structure between the test statistics is directly in-
herited from the correlation between the response variables. This property is generally not true for
other types of tests. Therefore, specific relationships between both correlation structures should be

taken into account in order to adapt the following results to other testing procedures.

The following proposition gives the conditional distribution of T' = (71;...;T),), given the factors.

PRoOPOSITION 4.1.3. Conditionally on Z, T is normally distributed with, for k = 1,...,m,
E(T(k) | Z) = 13, + U772/ 0k, where Tz is the Q—vector defined by 7, = \/ﬁcéz/\/ ¢S e and 0,
denotes the least-squares estimator of the p x QQ matriz of the slope coefficients in the multivariate
regression of Z onto the explanatory variables x. Moreover, V(T|Z) = diag(y? /o). Note that Tz

is normally distributed with mean 0 and variance I

Proof. The conditional independence between the test statistics is inherited from the conditional
independence between the responses. The conditional expectation and variance are also deduced from
the conditional moments of %) given the factors: E(0|Z) = 0,40.bx and V(6] Z) = (Wi/n)Syt. O

Application of expression (4.1) using the factors as covariates results in the following factor-adjusted
test statistics:
~ C/ék — I;/ ézc
Te = s(Y— 2b,) = ————r2 (4.5)
bpV Sz e
where by, is the k' row of the matrix B of estimated loadings, 1[),% is the k" diagonal element of
the matrix U of estimated uniquenesses and éz is the least-squares estimator of the p x @) matrix
of slope coefficients in the multivariate regression model relating the estimated factors Z and the

explanatory variables x.

Factor-adjusted test statistics Ty are defined as conditionally centered and scaled versions of the

classical t-statistics T}:
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DEFINITION 4.1.1.

~ Y
T, = 25T - Ly,
(o o

The following proposition gives the distribution of T = [11;...; T},,].

PROPOSITION 4.1.4. Under assumption of a decomposition of the covariance matriz as in (3.2),
T is normally distributed with, for all k € [1;m], E(Tk) =T1k/4/1 — h%, where h% = bkbk/ai 18 the
communality of Yi.. Moreover, V(T) = 1,,,.

Proof. The factor-adjusted test statistics are linear functions of the residual terms Y, —Zb} , which are,
under assumption 3.1), normally distributed. Therefore, T is also normally distributed. Moreover,
it results from PROPOSITION 4.1.3 that E(T}) = Gim = m3/4/1 - hi and V(T) = E[V(T|Z)] +
VIE(T|2)] = (o} /4R)EV(T|Z)] = I, O

The non-centrality parameter of T, being always larger than 74, the variable-by-variable power of the
factor-adjusted tests are larger than for the t-tests. Furthermore, this non-centrality parameter, and
consequently the power of the factor-adjusted tests, are increasing functions of the communality h%,
which confirms the idea that the multiple testing procedure can be improved by a correction of the
individual test-statistics regarding their contribution to the common variability across variables. On
the contrary, if the kth variable does not contribute to the factor structure, by = 0 and T, L coincides
with the usual t-test Tj.

As proposed in CHAPTER 5, estimated factor-adjusted test statistics 7' are obtained by plugging
the ML estimates of the factor model’s parameters in the test statistic defined in 4.1.1. As these
estimators of the variance parameters are consistent, this does not affect the asymptotic distribution
of the factor-adjusted test statistics. By analogy with the classical situation, we propose to take into
account the effect of estimating the variance parameters in small-sample conditions by approximating
the null distribution of T, 1 by a Student distribution with df, degrees of freedom (see (5.9)).

P-values distribution under Hy Factor-adjusted test statistics and associated p-values are first
calculated in the simulation study of EXAMPLE 3. FIGURE 4.1 shows the mean distribution of
adjusted p-values for four scenarios od dependence, as in SECTION 3.1. In each case, p-values
distribution is uniform in average. In opposition to the distribution of usual p-values (FIGURE
3.1), there is low variability around this uniform distribution, whatever the level of dependence, as

suggested by the 95% confidence interval.

FIGURE 4.2 shows the p-values distribution for two datasets from scenario 9 as in SECTION 3.1, for
factor-adjusted data and for raw data (in blue). For highly correlated data, p-values distribution
shows low depature from the theorical null distribution, with respect to the distribution of usual

p-values.
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Figure 4.1: P-values distribution - Mean histogram over 1000 simulations - dotted lines: 95% confi-

dence interval
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4.1.2 Estimation of the proportion of true null hypotheses
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Factor-adjusted test statistics and associated p-values are now calculated in the simulation study of

EXAMPLE 4. 7 estimations are then performed with the different methods previously introduced.

The results are presented for two of them: empirical estimator with bootstrap choice of A [Storey

et al., 2004] and considering the density estimation assuming it is a convex decreasing function

[Langaas et al., 2005]).

FI1GURE 4.3 shows the estimated proportion of null hypotheses, along with the A criterion, introduced
in SECTION 3.2. The local bias induced by dependence observed previously when using usual p-values

is strongly reduced.




51 4.1 Factor-adjusted data

Densty
2
|
Densty
2
|

T T T T T 1 T T T T T 1
oO.0 o.2 o.4a oO.6 o.8 1.0 e e} o.2 o.4a o.6 o.8 1.0

probabilités critiques probabilités critiques

Figure 4.2: P-values distribution under Hp: examples of two datasets - scenario 9. In blue: usual

p-values distribution from the same datasets (see FIGURE 3.2).

4.1.3 FWER and FDR control

PRrROPOSITION 3.3.1 shows that correlation modifies the distribution of V; by increasing its dispersion,
leaving its expectation unchanged. Therefore, correlation shall have an important impact on the tail

of the distribution, which is directly involved in the calculation of the error rates.

FWER Hsu [1992] gives an explicit expression of the FWER in the case of a one-factor approxima-
tion of the correlation between test statistics. This approximation is shown to be appropriate for the
most usual experimental designs in univariate ANOVA situations where a set of linear contrasts are
tested simultaneously. In the case of differential analysis for microarray data, the significance of only
one contrast is tested for each response variable and multiplicity of the tests is due to the number
of responses. Here, correlation between test statistics does not depend on the design but is directly
inherited from the correlation between the responses. The one-factor approximation can therefore be
too simple regarding the complexity of the dependence between gene expressions. Moreover, PROPO-
SITION 3.3.1 gives an exact expression for the first two moments of V; which only involves a 2-d
integration for the probability function of the bivariate normal distribution, whereas the extension
of Hsu [1992]’s formula for the FWER to a larger number of factors leads probably to numerically

untractable expressions.

The Sidak procedure [Sidak, 1967| is now applied on factor-adjusted p-values from the datasets
of the simulation study presented in EXAMPLE 4. Implementation is done using the R package
multtest [Pollard et al.]. TABLE 3.3 displays the frequencies of the number of false-positives V;
and the estimated FWER using the simulated datasets. It shows that the procedure based on the
factor-adjusted test statistics controls the FWER at a level close to a = 0,05, whatever the level of

dependence.

FIGURE 4.4 reproduces multiple boxplots of the distributions of the non discovery proportion NDP; =
#{k ¢ Mo, H(()k) not rejected}/ml. It shows that the variability of the NDP; distribution remains
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(a) Density estimation assuming it is a convex decreasing function
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(b) Empirical estimator with bootstrap choice of A

Figure 4.3: Estimation of 7o along with the A criterion that characterizes the density of null p-values around 0,

from factor-adjusted p-values (in black) and usual p-values (in grey) - mo = 0, 80

constant along with the proportion of common variance. In gray is recalled the distribution of N DP;
obtained for the usual t-tests’ p-values. Moreover, the mean N D P;, which can be viewed as a type-11
error rate, decreases markedly with the factor-analytic procedure with respect to procedures based
on usual t-tests. A striking property of our method, compared with the procedures based on t-tests,
is the very important improvement of the global power (1-type-II error rate) of the multiple testing

procedure in presence of dependence.

FDR FIGURE 4.5 shows multiple boxplots of the distributions of the False Discovery Proportion
and the Non-Discovery Proportion. By comparison with FIGURE 3.9 for a BH procedure applied on
classical t-tests (duplicated in gray on FIGURE 4.5), the distribution of the FDP is clearly stabilized:
using the usual t-tests, the standard deviations of the FDP reaches up to four times the standard
deviations obtained under independence whereas it remains controlled at almost the same level using
the factor-adjusted method.
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scenario 0 1 2 3 4 5 6 7 8 9
common var.(%) 0 4,65 1556 28,56 40,31 50,76 57,90 65,45 70,09 75,19
counts

0 957 954 965 951 960 966 967 963 960 955
1 42 45 34 49 39 32 30 35 36 34
2 1 1 1 2 3 1 3 9
3 1 1
4 1
FWER

#{V, > 0}/m 4,3 4,6 3,5 49 4,0 3,4 3,3 3,7 4,0 4.5

Table 4.1: Estimated FWER along with the proportion of common variance (%) and observed counts
of false-positives - Sidak procedure [Sidak, 1967| applied to factor-adjusted p-values
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Figure 4.4: Non Discovery Proportion along with the level of dependence - Sidak procedure applied

on factor-adjusted p-values. In gray: same procedure applied on usual t-tests p-values (FIGURE 3.8)

Another striking