N

N

*QMi B#miBQMb m T "iBIBQMM2K2Mi /2 ;" T
KmHIB@MBp2 mt
6° MIQBb S2HH2;"BMB

hQ +Bi2 i?Bb p2 " bBQM,

6° MIQBb S2HH2;"BMBX *QMi B#miBQMb m T iBiBQMM2K2Mi /2 ;" T?
M/ aBKmH iBQMX IMBp2 bBild a+B2M+2b 2i h2+?MQHQ:;B2b @ "Q /2 mt

> G A/, iZH@yy89y83R
2iiTh,ffi?2b2bX? HXb+B2M+2fi2H@yy89y83Ry
am#KBii2/ QM k3 LQp kyRYy

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://theses.hal.science/tel-00540581v1
https://hal.archives-ouvertes.fr

UNIVERSITE DE BORDEAUX |
LABORATOIRE BORDELAIS DE RECHERCHE EN INFORMATIQUE

HABILITATION A DIRIGER DES RECHERCHES

AU TITRE DE L'ECOLE DOCTORALE
DE MATHEMATIQUES ET D'INFORMATIQUE

Par Francois PELLEGRINI

Contributions au partitionnement de graphes
parallele multi-niveaux

(Contributions to parallel multilevel graph partitioning)

Soutenue et présentée publiquement le : 3 décembre 2009

Apres avis des rapporteurs :

Frédéric DESPREZ Directeur de recherche, INRIA
Bruce HENDRICKSON Senior scientist, SANDIA
Burkhard MONIEN ... Prof. Dr., Universitat Paderborn

Devant la commission d'examen composée de :

Rémi ABGRALL Professeur, IPB Examinateur

Olivier BEAUMONT .. Directeur de recherche, INRIA Examinateur

Michel COSNARD Professeur, U. Nice-Sophia Antipolis Examinateur
PDG, INRIA

Frédéric DESPREZ Directeur de recherche, INRIA Rapporteur

Cyril GAVOILLE Professeur, U. Bordeaux 1 & IUF .. Examinateur

Bruce HENDRICKSON Senior scientist, SANDIA Rapporteur

- 2009 -

Acknowledgements

This habilitation dissertation presents the current state of work on parallel graph partitioning
methods which | have been carrying out for more than a decade. It is a great pleasure for me
to reserve this page as a mark of gratitude to all those who participated in the realization of
this milestone.

First, | wish to thank Michel Cosnard for having taken the time, in a most busy schedule,
to come to Bordeaux to preside over this jury. Michel was also a member of my PhD jury,
fourteen years ago, and | have been harassing him for years to be on this one. | am glad he
could do it. | hope we will be able to talk shop from time to time, as we did during the famous
Euro-Par'’2006 Dresden banquet, where we conjectured that German waiters, trained to serve
tables of eight seats, could take into account a ninth surprise guest in three iterations of dish
service.

Many thanks also to Bruce Hendrickson for having undertaken such a long trip for just a
few hours of presence here. Being one of the authors of théhaco software, Bruce has been
a long-time coopetitor in the graph partitioning business. His friendly interest in my work,
materialized by his willingness to report on my dissertation and to participate in my jury, is
very touching indeed.

Another coopetitor in the graph partitioning business on this side of the Atlantic is the
team lead by Pr. Dr. Burkhard Monien. | deeply regret that, because of schedule constraints,
Pr. Monien could not be part of my jury. It is consequently all the more nice of him to have
accepted to report on my work.

Frédéric Desprez would have been a local member of my jury, if years ago he had not run
away (and cycle, and swim, too), back to Lyon. It is with great pleasure that | welcome him as
a foreigner, to close a question he opened twelve years ago. It is indeed in 1997 that he started
telling his students that a parallel version of Scotch was to be expected soon. It is often
said that in the software business, like in the construction business, delays are frequent. Well,
with a little delay, | am pleased to present him the said version.

I'm happy that Olivier Beaumont accepted to be part of my jury. Our busy lives did not
give us many occasions to discuss the current state of our respective research on distributed
graph algorithms, so that we had to resort to this most formal way to have me present it to
him in detail. | hope that other, more informal, occasions will happen in the near future.

As another prominent member of the local graph theory team, Cyril Gavoille personi es
both the reminiscence of my interest in graph theory, which takes its roots in my early PhD
years, and the reminder that | can always put more theory in my papers. More than that, he
is a most pleasant colleague, the opinion of whom on my work is warmly welcomed.

Last but not least, Rémi Abgrall is not only an esteemed colleague, but also represents the
most welcome bridge between applied mathematics and computer science in Bordeaux. Thanks

to the late ScAlApplix project, the links between these two communities have started to be
tightened towards the realization of common research goals and software tools. | hope that the
Bacchus project will bene t from my past and future work.

A habilitation jury is unfortunately too small to welcome all the people | would have liked
to participate in the evaluation of my work, as they have contributed to its very beginning. Let
me cite André Raspaud, one of my masters in graph theory, as well as Jean Roman, former head
of the ScAIApplix project, and before that of the Parallel Programming and Environments
team at LaBRI, who welcomed my very rst work on graph partitioning algorithms, making all
of the above possible.

Also, many thanks to Cédric Chevalier and Jun-Ho Her for their contributions to the mate-
rials presented in this document. It is a great pity that they could not be here to have a piece of
the Scotch cake with me. Thanks also to all the pastScotch team interns, and to Sébastien
Fourestier and Cédric Lachat, who are participating in writing the new page that begins right
now, after turning this one.

Contents

1 Introduction 1
2 Context 3
2.1 Elements of graphtheory 3
2.2 Elements of sparse linear algebra oL 6
221 Matrices e 6
2.2.2 Linear Systems 6
2.3 Sparse matrix reordering e e e e e 7
2.3.1 Nested dissection 8
2.3.2 Ordering quality metrics e 8
2.4 Graph partitioning 9
2.4.1 Data distribution for parallel processing 9
2.4.2 Mapping quality metrics 9
2.5 Multilevel framework 11
251 Renement 11
252 Coarsening e 13
2.5.3 Initial partitioning 16
2.6 Experimental framework 17
2.6.1 Basic assumptions e 17
2.6.2 Distributed graph structure 18
2.6.3 Experimental conditions o 18
3 Graph coarsening algorithms 23
3.1 Stateofthearto 23
3.1.1 Parallel matching algorithms 24
3.2 Folding e e e 26
3.3 Centralization 27
3.4 Parallel probabilistic matching, 27
3.5 Folding with duplication 29
3.6 Multi-centralization 30
4 Partition re nement algorithms 33
41 Stateoftheart e 33
4.1.1 Parallelization of local partition re nement methods 33
4.1.2 Parallel global partition re nement methods 35
4.2 Bandgraphs e 38

4.2.1 Reducing problem space 38

4.2.2 Dimensioning and impact of band graphs 39
4.2.3 Distributed bandgraphs L o 40
4.3 Multi-centralization 42
4.4 Genetic algorithms 44
4.4.1 Parallelization of genetic algorithms 46
4.5 Diusion algorithms 47
451 ThejugoftheDanaides 47
45.2 Diusiononbandgraphs o 48
4.5.3 Parallelization of the di usive algorithms 50
454 Extensiontok parts 61
455 The barrier of synchronicity 61
5 Conclusion and future works 69
5.1 Wherewe are NOW o i ittt i e 69
5.2 Whereweareheadingto. 69
5.2.1 Algorithmic issues e 69
5.2.2 Dynamic graph repartitioning 70
5.2.3 Adaptive dynamic mesh partitioning L. 70
A Bibliography 71

Acknowledgements

This habilitation dissertation presents the current state of work on parallel graph partitioning
methods which | have been carrying out for more than a decade. It is a great pleasure for me
to reserve this page as a mark of gratitude to all those who participated in the realization of
this milestone.

First, | wish to thank Michel Cosnard for having taken the time, in a most busy schedule,
to come to Bordeaux to preside over this jury. Michel was also a member of my PhD jury,
fourteen years ago, and | have been harassing him for years to be on this one. | am glad he
could do it. | hope we will be able to talk shop from time to time, as we did during the famous
Euro-Par'’2006 Dresden banquet, where we conjectured that German waiters, trained to serve
tables of eight seats, could take into account a ninth surprise guest in three iterations of dish
service.

Many thanks also to Bruce Hendrickson for having undertaken such a long trip for just a
few hours of presence here. Being one of the authors of théhaco software, Bruce has been
a long-time coopetitor in the graph partitioning business. His friendly interest in my work,
materialized by his willingness to report on my dissertation and to participate in my jury, is
very touching indeed.

Another coopetitor in the graph partitioning business on this side of the Atlantic is the
team lead by Pr. Dr. Burkhard Monien. | deeply regret that, because of schedule constraints,
Pr. Monien could not be part of my jury. It is consequently all the more nice of him to have
accepted to report on my work.

Frédéric Desprez would have been a local member of my jury, if years ago he had not run
away (and cycle, and swim, too), back to Lyon. It is with great pleasure that | welcome him as
a foreigner, to close a question he opened twelve years ago. It is indeed in 1997 that he started
telling his students that a parallel version of Scotch was to be expected soon. It is often
said that in the software business, like in the construction business, delays are frequent. Well,
with a little delay, | am pleased to present him the said version.

I'm happy that Olivier Beaumont accepted to be part of my jury. Our busy lives did not
give us many occasions to discuss the current state of our respective research on distributed
graph algorithms, so that we had to resort to this most formal way to have me present it to
him in detail. | hope that other, more informal, occasions will happen in the near future.

As another prominent member of the local graph theory team, Cyril Gavoille personi es
both the reminiscence of my interest in graph theory, which takes its roots in my early PhD
years, and the reminder that | can always put more theory in my papers. More than that, he
is a most pleasant colleague, the opinion of whom on my work is warmly welcomed.

Last but not least, Rémi Abgrall is not only an esteemed colleague, but also represents the
most welcome bridge between applied mathematics and computer science in Bordeaux. Thanks

to the late ScAlApplix project, the links between these two communities have started to be
tightened towards the realization of common research goals and software tools. | hope that the
Bacchus project will bene t from my past and future work.

A habilitation jury is unfortunately too small to welcome all the people | would have liked
to participate in the evaluation of my work, as they have contributed to its very beginning. Let
me cite André Raspaud, one of my masters in graph theory, as well as Jean Roman, former head
of the ScAIApplix project, and before that of the Parallel Programming and Environments
team at LaBRI, who welcomed my very rst work on graph partitioning algorithms, making all
of the above possible.

Also, many thanks to Cédric Chevalier and Jun-Ho Her for their contributions to the mate-
rials presented in this document. It is a great pity that they could not be here to have a piece of
the Scotch cake with me. Thanks also to all the pastScotch team interns, and to Sébastien
Fourestier and Cédric Lachat, who are participating in writing the new page that begins right
now, after turning this one.

Chapter 1

Introduction

The work presented in this dissertation relates to theScotch project. This project was carried

out at the Laboratoire Bordelais de Recherche en InformatiqugLaBRI) of the Université Bor-

deaux |, and now within the Bacchus team® of INRIA Bordeaux Sud-Ouest. This research

project started in 1992, at the beginning of my second PhD year. At that time, members of our
Parallel Programming and Environments team at LaBRI worked on a software environment

for the CHEOPS multicomputer which was part of the team's plans [19, 20, 27, 79, 92]. Given

the pyramidal shape of the interconnection network, a tool was required to adequately map

communicating processes onto the processors of the machine, so as to minimize inter-processor

communication and network congestion [92]. However, most of the algorithms which existed at

that time had a complexity in time well above linear [3, 11].

This is why my rst work on this subject aimed at providing a fast and e cient static
mapping procedure. Because of the orientation taken during my rst PhD year, working on
interconnection network properties with professor Johnny Bond before he left to Nice university,
the approach which | decided to follow in agreement with my other advisor, professor Jean
Roman, was to consider a divide and conquer approach. This rst work resulted in the
development of the Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study
of several graph bipartitioning heuristics [93]. To represent the fact that two communicating
processes should not be placed too far apart across processors of the target machine, one can
imagine that these processes are bound by a rubber string, which should be stretched as little as
possible. When doing plain graph partitioning in a recursive way, once a vertex of the original
graph is placed onto some subset of the processes, all of the rubber strings connecting it to
vertices in the other part are no longer considered, as if they were pinned on the boundary.
What happens afterward to vertices belonging to one side of the boundary will never impact
subsequent decisions for the vertex belonging to the other part. On the other hand, with static
mapping, the tension produced by moving a vertex further apart from the boundary should
induce that connected vertices on the other side of the boundary be placed closer to it, so as to
reduce the stretch of the cross-boundary strings. In this case, strings are not considered to be
pinned on the boundary, but instead are stuck by bridges of adhesive tape which allow them
to slide and propagate tension constraints. The hameScotch was coined by reference to this
analogy?.

By the time | completed this work [99], Jean Roman started supervising another PhD on
parallel sparse linear solvers. My next task was therefore to transpose the existing recursive

1One of the two o springs of the late ScAlApplix project [106].

2Hence the name of the machine.

3 Another possible reason which is also cited is the fondness of the author for old single malt whiskies, especially
of Islay and of the Highlands.

edge bipartitioning scheme to vertex separators, so as to be able to compute high-quality ver-
tex separators for the ordering of sparse matrices by nested dissection [100, 101]. In a few
years, a complete software chain for solving structural mechanics problems was designed and
implemented [47, 48], under contract from the CESTA center of the French CEA (atomic energy
agency). Its scientists, who had access to very large machines, began generating problems which
were so large that the sequential ordering phase soon became the main bottleneck because these
large graphs did not t in memory and resulted in heavy disk swapping. In order to overcome
this di culty, a rst solution was to extend the ordering capabilities of Scotch to handle native
mesh structures, in the form of bipartite graphs. These node-element bipartite graphs are a
representation of hypergraphs, for which vertex separation algorithms were designed [98]. For
the type of elements which were considered, memory usage was divided by a factor of three, at
the expense of an equivalent increase in run time. Yet, in the meantime, problem size went on
increasing, so that the problem remained.

For these reasons, thePT-Scotch project (for Parallel Threaded Scotch) was started
[109]. Several parallel graph partitioning tools had already been developed by other teams in
the meantime [62, 83], but serious concerns existed about their scalability, both in terms of
running time and of the quality of the results produced. In order to anticipate the expected
growth in problem and machine sizes, our design goal was to be able to partition graphs of
above one billion vertices, distributed over a thousand processors. Because of this deliberately
ambitious goal, scalability issues had to receive considerable attention.

This dissertation presents the main results which we obtained in our attempt to ful Il these
objectives.

Chapter 2

Context

The conceptual framework in which my research takes place is at the junction of two widely
studied elds. The rst one is parallel computing, more speci cally high performance scienti c
computing. The second one is graph theory, as graphs are a most powerful model to rep-
resent interrelated entities. Based on the joint use of the tools they provide has gathered a
small but lively community which refers to itself as combinatorial scienti c computing, which

is concerned with the formulation, application and analysis of discrete methods in scientic
applications [51, 55].

Bene ting from this mindset and toolset, the work presented in this dissertation focuses
on two problems which are critical for our research team: sparse matrix ordering and graph
partitioning.

2.1 Elements of graph theory

Readers interested in a thorough review on graph theory may refer to [10].

Graphs

An unoriented graph G(V; E) is a structure made of a setV of elements calledvertices, which
we will assume of nite size in all of the following, and of a setE of pairs of vertices called
edges The vertex and edge sets of graptG may be referred to asV (G) and E (G), respectively.
The number of vertices of a graph is called theorder of the graph. It is also commonly referred
to as its size

When graph vertices are weighted,w(v) denotes the vertex weight of some vertexv. When
graph edges are weightedw(e) denotes the weight of some edge. In all of the following, vertex
and edge weights are assumed to be integer and strictly greater than zero.

An edgefv® v is said to beincident to v?and to v®° vOand v®are the ends of fv®v%, and
are said to beadjacent An edge of the formfv;vg is called aloop. An edge existing as multiple
occurrences in the edge set is enultiple edge

A simple graph is a graph without any loop nor any multiple edges. In all of the following, we
will only consider simple graphs.

Let v be a vertex of a graphG. The degreeof v, noted (v), is the number of edges ofE (G)
incident to v. This notion is extended to the whole graph: theminimum degree of G, (G), is
the minimum of (v) over all verticesv of V(G). Similarly, the maximum degreeof G, noted
(G), is the maximum of (v) over all verticesv of V(G).

Let V%be a subset ofV (G). The cocycle! (V9 of VCis the set of edges having exactly one of
their ends in VO that is, | (VY € fv:9(v;v9 2 E(G)=w2 V%v 2 VY

Consequently, for any vertexv of V(G), ! (fvg) represents the neighborhood o/, that is, the
set of all of the vertices adjacent to it.

of edges ofE (G) such that v0= v; and v%°= vi. The number of edges in a path is called the
length of the path. The distance between two verticesv® and v®°of a graph G is the length of
the smallest path existing betweenv®and v® It is in nite if no such path exists.

A graph G is said to be connectedif a path exists between every pair of vertices in the graph.
The diameter of a connected graphG, noted diam(G), is the maximum, over all edges(v® v%

of G, of the distance betweenv® and v°°

A vertex v0of a connected graphG is peripheral if a vertex v®°f G exists such that the distance
betweenv®and v%is equal to diam(G).

Partitions and quotient graphs

Let V(G) be the non-empty vertex set of a graphG of order n. A partition of V(G) is the

splitting of V(G) into N vertex subsets ;, with 1 i N, called parts, such that: (i) no part
i is empty: 8i; ; 6 ; ; (ii) all parts are pairwise disjoint: 8i;j=i 6 j; i\ ; = ; ; (iii) the
union of all partsis equaltoV(G): [i i = V(G). An example of partition is given in Figure 2.1.
Pi
(a) Some graph G. (b) A partition of G with
some part i

Figure 2.1: Partition of a graph.

For some partition and for each vertexv of G, (v) is the part of which containsv.
By extension, (V9, whereV?is a subset ofV (G), represents the set of parts which contain all

vertices of VS (VO Ef ;2 : 902 VE (V)= ;g

The cut of a partiton s the union of the cocycles of every part:! () £ [.2 ! (1).

The halo (V9 of some subset/ %of V (G) is the set of vertices which are the ends of the cocycle
edges ofv % which do not belong to VOitself: (VY £ fv:fv;vg2! (VY andv 2 VY.

4

A part is said to be adjacent to another if at least one of its vertices belongs to the halo of the
other part.

The quotient graph Q = G- of some graphG with respect to some partition of V(G) is
de ned by:

vVQ=
(f i; j92E@Q) 0 (16 9v°2 ;v ; =fv8v 2 E(G)) :

When weighted quotient graphs are considered, their vertex weights are equal to the sum of the
weights of the coalesced vertices, and their edge weights are equal to the sum of the weights of
the original edges that they replace, as illustrated in Figure 2.2.b:

X
w(i) = w(v) ;
v2 i
X
w(f i; jg) = w(v®v%) | with i 6 j:
v2 v
fvovO(2 E (G)

For every part of , we denoteGJ[] the subgraphof G induced by , that is, the graph the
vertex set of which is , and the vertex set of which is the subset ofE (G) all edges of which
have both of their ends in

, 2 1 2
3
2
4
Pi 3 3 P P
(a) Unweighted graph G- . (b) Weighted graph G- . (c) Graph G[i].

Figure 2.2: Quotient and induced graphs resulting from partition of graph G, both represented
in Figure 2.1.

Mappings

The mapping of a graph G to a graph H is a couple ¢y = (on; on), Where oy IS an
injective application of V(G) to V(H), and 4 is an injective application which associates,
with every edgefv®v®9 of G, a path 4 (FVEVOY) of H linking & (VO to &y (V9.

The dilation of a mapping ¢x =(cn; on) IS dened by:

il o) E max (0 en (VI

where j o, (FV% V)] represents the length of path ¢y (v v®). This is the length of the
longest path induced by the mapping.

The congestionof a mapping e = (en | o) IS

def

cd(en) = max (f ou (VEVP?)= VBV 2 E(G) and whw® 2 oy (VEVDO)g)) ;

fwOwOH2E (H)
where fwew® 2 ., (v vO9) indicates that path ¢, (fv% VoY) uses edgd we w® of H. It
is the maximum number, for every edge ofH, of the number of mapping paths which use this
edge.

2.2 Elements of sparse linear algebra

2.2.1 Matrices

A matrix is a rectangular array of elements, or entries, set out by rows and columns. A matrix
A with m rows and n columns is denoted byA(m;n). Element a; of matrix A is the element
located at row i, column j.

A squarematrix is a matrix which has the same number of rows and columns. Theorder n of

a square matrix A(n; n) represents its number of rows and columns.

In all of the following, we will deal with square matrices the entries of which are scalar values,
either integer, real or complex.

A matrixis symmetric if, for all indices i andj, a;; = a;; . Itis said to be structurally symmetric,
or to have asymmetric pattern, if and only if, for all indices i and j, (a;; 60) ((a5 80).

A symmetric matrix of order n is called positive-de nite if, for all nonzero vectorsx 2 R", the
associated quadratic form given byQ(x) = x" Ax takes only strictly positive values.

A matrix is said to be sparseif most of its entries are zeros. From a practical point of view, a
matrix is said to be sparse if it contains enough zero entries to be worth taking advantage of
them to reduce both the storage and work.

The density of a sparse matrix is the ratio of the number of its non zero entries over its number
of entries. In combinatorial scienti c computing, most sparse matrices have a number of non
zeros entries per row and per column which is bounded by a constant depending on the type of
the problem, rather than on problem size. Consequently, the density of these matrices decreases
along with their order.

Let A(n;n) be a square matrix of ordern, either symmetric or with a symmetric pattern. The
adjacency graphof A is the graph G(V; E) with n vertices, one per row and column, such that
there exists an edge(vi; V) if and only if a; and a;; are non zero.

Adjacency graphs are relevant only for sparse matrices, many structural properties of which can
be re ected as topological graph properties.

2.2.2 Linear systems

A system of linear equations or linear system is a collection of linear equations involving the
same set of variables. It can be represented under the matrix fornAx = b, where A(m;n) is
the matrix of coe cients, with m rows (the equations) andn columns (the unknowns), x is a
column vector with n entries, and b is a column vector with m entries.

A sparse linear systemis a system of linear equations the coe cient matrix of which is sparse.

Gaussian elimination is a method of solving a system oh linear equations in n unknowns, in
which there are rst (n 1) steps, them™ step of which consists in subtracting a multiple of
the m™" equation from each of the following ones so as to eliminate one variable, resulting in
a triangular set of equations. This triangular system can then be solved by back substitution,
computing the n variable from the n" equation, the (n 1) variable from the (n 1)1
equation, and so on.

The ll-in of a matrix represents its entries which change from an initial zero to a non-zero
value during the execution of an algorithm such as Gaussian elimination.

By nature of Gaussian elimination, a zerog;; term of a matrix will incur ll-in during factor-
ization if there exists in the associated adjacency graph a path linking vertices/; and v; such
that all of its intermediate vertices have indices smaller thanmin(i;j) 1.

An ordering ' of the vertices of some graphG is a b%ection betweery (G) andf0;1;:::;n 1g.

A permutation vector P(n) of sizen is a vector which contains only once every integer in the
rangef0;1;:::;(n 1)g. If i is some index in[0; (n 1)], P(i) is the application of (the direct)
permutation P to i, while j=P (j) = i is the result of the application of the inverse permutation
P ltoi. Hence,8i 2 [0;(n 1)P(P (i))=P (P(i)=i.

A permutation matrix P(n;n) is a square(0; 1)-matrix that has exactly one entry 1 in each row
and each column, andQ's elsewhere. Each such matrix represents a speci ¢ permutation off
elements and, when used to multiply another matrix, can produce that permutation in the rows
or columns of the other matrix.

A symmetric reordering is a pre-processing step applied to a sparse linear system prior to its
factorization. This reordering is chosen in such a way that pivoting down the diagonal in order
on the resulting permuted matrix PAP T produces much less ll-in and work than computing
the factors of A by pivoting down the diagonal in the original order.

2.3 Sparse matrix reordering

Many scienti ¢ and engineering problems can be modeled by sparse linear systems, which are
solved either by iterative or direct methods. Direct methods are popular because of their gener-
ality and robustness, especially in some application elds such as linear programming, structural
mechanics or magneto-hydrodynamics, where iterative methods may fail to achieve convergence
for speci c classes of problems. However, to solve e ciently large sparse linear systems with
direct methods, one must minimize the amount of ll-in induced by the factorization process.

As described above, ll-in is a direct consequence of the order in which the unknowns of the
linear system are numbered, and its e ects are critical both in terms of memory and computation
costs. In the general case, great care should be exercised when permuting rows and column of
matrices in the course of Gaussian elimination, because of the potential numerical instabilities
that could result from the ampli cation of rounding errors. However, for symmetric de nite-
positive matrices, the LL T Cholesky factorization that is used in lieu of the traditional LU
factorization exhibits higher numerical stability, which is independent of the order in which the

11t may happen that the new (i:j) coe cient is numerically equal to zero. Yet, in all sparse linear system
solving software, some space is pre-allocated to store such coe cients anyway. We will refer to the latter case as
symbolic Il-in, as opposed to numerical ll-in.

unknowns are considered [46]. Consequently, the two problems of reordering and numerical
factorization can be safely decoupled.

2.3.1 Nested dissection

An e cient way to compute Il reducing orderings of symmetric sparse matrices is to use
recursive nested dissection [43]. It amounts to computing a vertex se§ which separates the
adjacency graph associated with some matrix into two partsA and B, ordering S last, and
proceeding recursively on partsA and B until their sizes become smaller than some threshold
value. This ordering guarantees that no non-zero term can appear in the factorization process
between unknowns ofA and unknowns ofB.

The main issue of the nested dissection ordering algorithm is thus to nd small vertex
separators which balance the remaining subgraphs as evenly as possible. Vertex separators
are commonly computed by means of vertex-based graph algorithms [56, 78], or from edge
separators [102, and included references] using minimum cover techniques [33, 60], but other
techniques such as spectral vertex partitioning have also been used [103]. Many theoretical
results have been carried out on the nested dissection ordering [18, 80], and its divide and
conquer nature makes its parallelization easy at a coarse-grain level Provided that good
vertex separators are found, the nested dissection algorithm produces orderings which, both in
terms of ll-in and operation count, compare very favorably [49, 64, 100] to those based on the
minimum degree algorithm.

The minimum degree algorithm [114] is a local heuristic which is very often e cient and
extremely fast, thanks to the many improvements which have been made to it [1, 43, 44, 81],
but it is intrinsically sequential, so that attempts to derive parallel versions of it have not been
successful [21], especially for distributed-memory architectures.

Moreover, the elimination trees induced by nested dissection are broader, shorter, and more
balanced than those from multiple minimum degree [100], and therefore exhibit much more
concurrency in the elimination tree, which is essential in order to achieve high performance
when factorizing and solving these linear systems on parallel architectures [6, 41, 42, 49, 108].

2.3.2 Ordering quality metrics

The quality of orderings is commonly evaluated with respect to two criteria. The rst one, NNZ
(number of non-zeros), is the number of non-zero terms in the factorized reordered matrix,
which can be divided by the number of non-zero terms in the initial matrix to give the Il
ratio of the ordering. The second one, OPC (operation count), is the number Igf arithmetic
operations required to factor the matrix using the Cholesky method. Itis equalto n2, where
n¢ is the number of non-zeros of columrc of the factorized matrix, diagonal included.

NNZ and OPC are assumed to be indirect measurements of the overall quality of the nested
dissection process, that is, of the quality of the separators produced at each of its stages. Since
the diagonal blocks associated with separator vertices are almost always full in the factorized
matrix 3, small separators are likely to result in smaller such blocks, with fewer extra-diagonal
connections, that is, less ll-in. Yet, this is not always the case, as many hazards can impact
the ll-in of the matrix, and consequently the number of operations to perform.

20nce a separator has been computed on a graph distributed onp processes, each of the separated parts can be
redistributed onto & processes, such that the nested dissection algorithm can recursively operate independently
on each of the process subsets, see.g. [24].

3This property derives from the fact that, between any two vertices of some separator, a path always exists
linking these two vertices such that all path vertex indices are smaller than the minimum of the indices of the
two ends. If it is not the case, either the graph is disconnected or one of the end vertices can be safely removed
from the separator.

2.4 Graph partitioning

Graph partitioning is a ubiquitous technique which has applications in many elds of computer
science and engineering. It is mostly used to help solving domain-dependent optimization
problems modeled in terms of weighted or unweighted graphs, where nding good solutions
amounts to computing, possibly recursively in a divide-and-conquer framework, small vertex or
edge cuts that evenly balance the weights of the graph parts.

Since the computation of a balanced partition with minimal cut is NP-hard, even in the
bipartitioning case [39, 40], many heuristics have been proposed to provide acceptable partitions
in reasonable time. It is also the case for some of its variants, such as the mapping problem
which will be described below.

2.4.1 Data distribution for parallel processing

The e cient execution of a parallel program on a parallel machine requires that the communi-
cating processes of the program be assigned to the processors of the machine so as to minimize
its overall running time. When processes are assumed to coexist simultaneously for the entire
duration of the program, this optimization problem is referred to as mapping It amounts to
balancing the computational weight of the processes among the processors of the machine, while
reducing the cost of communication by keeping intensively inter-communicating processes on
nearby processors.

In most cases, the underlying computational structure of the parallel programs to map
can be conveniently modeled as a graph in which vertices correspond to processes that handle
distributed pieces of data, and edges re ect data dependencies. The mapping problem can then
be addressed by assigning processor labels to the vertices of the graph, so that all processes
assigned to some processor are loaded and run on it.

In a SPMD# context, this is equivalent to the distribution across processors of the data
structures of parallel programs; in this case, all pieces of data assigned to some processor are
handled by a single process located on this processor. This is why, in all of the following, we
will talk about processegather than processorsor processing elementdo represent the entities
across which data will be distributed.

When the architecture of the target machine is assumed to be fully homogeneous in term
of communication, this problem is called the partitioning problem, which has been intensely
studied [8, 53, 64, 65, 103]. Graph partitioning can be seen as a subproblem of mapping where
the target architecture is modeled as a complete graph with identical edge weights, while vertex
weights can di er according to the compute power of the processing elements running the
processes of the SPMD program. On the other hand, mapping can be seen as the inclusion
of additional constraints to the standard graph partitioning problem, turning it into a more
general optimization problem termed skewed graph partitioningby some authors [54].

2.4.2 Mapping quality metrics

The computation of e cient static mappings or graph partitions requires an a priori knowledge
of the dynamic behavior of the target machine with respect to the programs which are run
on it. This knowledge is synthesized in acost function, the nature of which determines the
characteristics of the desired optimal mappings.

While in some methods load imbalance and communication minimization are placed at
the same priority level, being aggregated in a unique cost function by means of weighting

“4Single Process, Multiple Data. This is a programming paradigm in which all processes of a parallel program
possess the very same code, the individual behavior of the processes being conditioned by the data they handle.

9

Figure 2.3: Inaccuracy of the graph partitioning model for representing data exchange. For
both of the above bipatrtitions, fc = 2, but 4 vertex data have to be exchanged in the leftmost
case, while it is3 in the rightmost case.

coe cients °, load imbalance takes precedence in most cases: the goal of the algorithms is then
to minimize some communication cost function, while keeping load balance within a speci ed
tolerance.

One of the most widely used cost functions for communication minimization is the sum, for
all edges, of their dilation multiplied by their weight [34, 50, 53, 93]:

fC(ST s S;T) e W(e)J ST (e)] .

e2E(S)

In the case of graph partitioning, where all edge dilations are equal td, this function simpli es
into:
def X
fc() = w(e:
e2! ()

The f¢ function has several interesting properties. First, it is easy to compute, and it allows
for incremental updates performed by iterative algorithms. Second, regardless of the type
of routing implemented on the target machine (store-and-forward or cut-through), it models
the tra c on the interconnection network, thus the risk of congestion, and its minimization
favors the mapping of intensively intercommunicating processes onto nearby processors [50, 93,
123]. However, it may be inaccurate to model data exchange for parallel computations. For
instance, in the case of hybrid or iterative solving of sparse linear systems, the main operation
to perform is a parallel matrix-vector product. Data borne by frontier vertices have to be sent
to neighboring processes, but only once per destination process, while the edge cut may account
for several edges incident to the same vertex, as illustrated in Figure 2.3. This is why many
authors have advocated for a hypergraph-based communication cost model, and use hypergraph
partitioning tools instead of graph partitioning tools to assign vertices to subdomains [14, 15, 52].
Although hypergraph partitioning represents data exchange in an exact way, yielding an
average decrease of communication cost &to 10 percent on mesh graphs, and up t®60 per-
cent for some non-mesh graphs, compared to plain graph partitioning [14], it is several times
slower than the latter, which is therefore still of economic interest for scienti c computing. In
particular, for 2D or 3D mesh graphs of bounded degree, which result in smooth and continuous

5This is for instance the case for genetic algorithms [72, 105], where individuals are evaluated by means of a
single cost function (see Section 4.4). Although this function could be crafted such that imbalanced partitions
yield in nite cost, so as to privilege balance enforcement over communication minimization, this is not desirable
as plateau e ects in the cost function hinder the convergence of these algorithms.

SHybrid solving is a paradigm which tries to combine the stability of direct methods and the speed and
small memory footprint of iterative methods for solving large sparse systems of equations. For instance, some
hybrid methods use a Schur complement decomposition to perform direct linear system solving on the separated
subdomains distributed across the processes, and to perform iterative solving on the separators, as in [38].

10

separators, the e ective di erence between the graph and hypergraph cost models is reduced
for interface faces, with respect to a constant factor which depends on the type and average
degree of the meshes.

For load balance, one can de ne map, the average load per computational power unit (which
does not depend on the mapping), and map, the load imbalance ratio, as:

w(vs)
def Vs2Y (S)
= and
e w(vr)
vt 2V (T)
0 1
P P
(\%T) W(ng map
v 2V (T) vg2V (S)
def sH (Vs)=vr
map C o w(vs)
VSZV(S)

map represents the normalized average, across all target vertices, of the absolute dierence
between the actual load per computational power unit and mnap, the ideal average load per
computational power unit.

2.5 Multilevel framework

Experience has shown that, for many graphs used in scienti ¢ computation$, best partition
quality is achieved when using a multilevel framework. This method, which derives from the
multigrid algorithms originally used in numerical physics, repeatedly reduces the size of the
graph to partition by clustering vertices and edges, computes an initial partition for the coarsest
graph obtained, and prolong$ the result back to the original graph [8, 53, 67], as illustrated in
Figure 2.4.

2.5.1 Renement

Multilevel methods are most often combined with partition re nement methods, in order to
smooth the prolonged partitions at every level so that the granularity of the solution is that of
the original graph and not that of the coarsest graph.

In the sequential case, the most popular re nement heuristics in the literature are the local
optimization algorithms of Kernighan-Lin [73] (KL) and Fiduccia-Mattheyses [37] (FM), either
on edge-based [53] or vertex-based [56] forms depending on the nature of the desired separators.
All of these algorithms are based on successive moves of frontier vertices to decrease the cur-
rent value of the prescribed cost function. Moves which adversely a ect the cost function may
be accepted, if they are further compensated by moves which result in an overall gain, there-
fore allowing these algorithms to performhill-climbing from local minima of the cost function.
In [30], groups of judiciously selected vertices (callechelpful set§ are moved togethe?, while

"These graphs have in common good locality and separation properties: their maximum degree is small, and
their diameter evolves as a fractional power of their size, e.g.in O nd for d-dimensional mesh graphs of sizen.

8While a projection is an application to a space of lower dimension, aprolongation refers to an application to
a space of higher dimension. Yet, the term projection is also used to refer to the propagation of the values borne
by coarse graph vertices to the ner vertices they represent.

9Such collective moves allow for partial hill-climbing of the cost function outside of the traditional operations
of the KL and FM algorithms, since a helpful set can contain vertices of both negative and positive gains.

11

Refined partition
Prolonged partition

Uncoarsening
phase

Initial partitioning

Figure 2.4: The multilevel partitioning process. In the uncoarsening phase, the light and bold
lines represent for each level the prolonged partition obtained from the coarser graph, and the
partition obtained after re nement, respectively.

NN

S -2 S
I o g L I
| Vi | o] egVe |

[Ve=fe Vo= | 1| |

+2

A Vet~ +a] |
(@) Current bipartition of an un- (b) Lists and gain bucket arrays corre-
weighted graph. sponding to the two parts of this bipar-

tition.

Figure 2.5: Typical bucket data structures used by Fiduccia-Mattheyses-like algorithms to
record vertex gains.

traditional implementations of KL and FM swap pairs of vertices or perform individual moves,
respectively.

Vertices to be moved are chosen according to theigain valueg denoted by r f¢, which is
the amount by which the current value of the cost function would be modied if the given
vertex were moved to some other part; vertices of negative gain values are consequently the
most interesting to move. For that purpose, vertex gain values are computed in advance, and
vertices of interest are inserted into data structures which implement some avor of sorting,
such that vertices with lowest gain values can be retrieved at small cost. Such data structures
can be linearly [53] or logarithmically [94] indexed bucket arrays (see Figure 2.5), or trees [118].
Additional selection criteria may be implemented into these data structures, such as secondary
sorting by vertex weight, so as to reduce imbalance as much as possible, by moving rst the
heaviest possible vertices from the most heavily loaded part to the lightest one [118].

In the case of bipartitioning, there is only one part to move the vertex to, and candidate
vertices can be stored in only one such data structure when individual vertex movements are

12

A 4K

Figure 2.6: Possible moves between neighboring parts for frontier vertices in some 3D space
divided into block subdomains. Vertices belonging to subdomain interface faces only have two
choices, while interface edges and points have more.

considered (for FM-like algorithms) [94], or two twin structures when vertex swaps are consid-
ered (for KL-like algorithms) [65]. In the case ofk-way partitioning, while most frontier vertices
also have only one neighbor part é.g. the vertices belonging to subdomain interface faces for
3D meshes), others may have moreg(g. vertices representing subdomain interface edges and
points in 3D, see Figure 2.6).

Handling frontier vertices with multiple potential destination parts requires either the use
of enhanced data structures which can record several gains per vertex, that is, one per tar-
get subdomain, or some pre-selection of the most appropriate destination part if simpler data
structures are sought [69].

While, in theory, all of the (k 1) parts other than the current part of any vertex might
be potential destinations for it, the set of destinations considered by the algorithms is always
much more reduced. Since the re nement process is expected to be local by the very nature of
the multilevel framework, the only vertices for which gains are computed are frontier vertices,
an optimization often referred to as boundary re nement in the literature [53, 68]. Also, the
only parts to be considered for destination of a frontier vertex are, in the context of graph parti-
tioning, the ones which are currently adjacent to it'° [69], which coerces the local optimization
algorithm to behave in the same way as a di usion-like method. For static mapping, the set of
potential destination parts may be extended to the union of all of the parts adjacent to the part
of the vertex'! [120]. This extension with respect to the graph partitioning case comes from the
potential need to introduce some bu er vertices between two subdomains so as to improve
communication locality on the target machine, at the expense of subdomain connectivity, as
illustrated in Figure 2.7.

2.5.2 Coarsening

Coarsening and re nement are intimately linked. By reducing the size of large-scale, graph-wide
topological structures into sets of a few tens of vertices, coarsening allows these structures to
be wholly handled by local optimization algorithms, conversely broadening the scope of the
latter and turning them into global-like optimization algorithms at the coarsest levels. Then,

0 That is, the set of potential destination parts of any vertex vis ((fvg) n (v) .
" That is, the set of potential destination parts of any vertex vis (((v))) .

13

@ L L
pR 1 A 1 P

(a) A ring-shaped, unweighted graph. (b) The target graph for static map-
ping. Distance betweenPy and P; and
between P; and P, is 1, while distance
betweenPg and P> is 2.

- —— B

(c) An initial mapping, obtained for (d) Static mapping after re nement.
instance by a greedy graph growing al- fc =4.

gorithm. fc = 5, because the cut edge

between white vertices has dilation2.

Figure 2.7: Example of the interest of considering all parts adjacent to the part of the vertex
when swapping vertices. Because white vertices can also be moved Ra, which is a neighbor
of Pg as well as ofP,, bu er vertices mapped to P; can be inserted between vertices oPg and
P», improving communication locality.

14

Figure 2.8: Partition of graph bump into 8 parts with Scotch 4.0 , using the multilevel frame-
work with a Fiduccia-Mattheyses re nement algorithm. The cut is equal to 714 edges. Seg-
mented frontiers are clearly evidenced, compared to Figure 4.12, page 50.

as uncoarsening takes place, partition re nement only focuses on smaller and smaller details of
the ner graphs, as large-scale structures regain their original sizes and become out of the scope
of local optimization.

However, the quality of partitions produced by a multilevel approach may not be as good
as that of long-running, global optimization algorithms. Indeed, the critical issue in multilevel
methods is the preservation, by the coarsening algorithm, of the topological properties of the
original graphs. Otherwise, solutions provided by the initial partitioning method would not be
relevant approximations of the solutions to the nest problems to solve. While some of the
topological bias induced by the coarsening can be removed by re nement methods, the local
nature of the latter most often hinders their ability to perform the massive changes that would
be required to alleviate any signi cant bias. Coarsening artifacts, as well as the topology of the
original graphs, can trap local optimization algorithms into local optima of their cost function,
such that re ned frontiers are often made of non-optimal sets of locally optimal segments, as
illustrated in Figure 2.8 (see also Figure 4.13.a, page 50).

Coarsening algorithms are based on the computation of vertex clusters in the ne graph,
which de ne a partition from which the coarse graph will be built by quotienting. Clusters will
become the vertices of the coarser graph, while edges of this latter will be created from the
edges linking ne vertices belonging to di erent clusters, so that the weight of a coarse edge is
equal to the sum of the weights of the ne edges it replaces (see Section 2.1).

Save for some promising work on multiple and weighted aggregation [25, 26] which aims at
removing further the impact of coarsening artefacts, all of the existing coarsening schemes are
based on edge matchings to mate the vertices of the ne graph, so that any coarse vertex contains
at most two ne vertices. Matchings are an essential tool for the solving of many combinatorial
scienti c computing problems [55]. In the context of graph coarsening, matchings do not need
to be maximal, which allows for the use of fast heuristics.

The most popular matching scheme in the literature is heavy-edge random matching [65]
(HEM), which is very easy to implement and provides matchings of good quality on average [63].
It operates by considering all graph vertices in random order, and by mating each of them with
one of its non already matched neighbors linked by an edge of heaviest possible weight. This
scheme favors the preservation of the large-scale topological structure of graphs because edge
weights increase with the desirability to match in a dimension which has not yet been explored.

15

Figure 2.9: Several steps of maximal heavy edge matching and coarsening on a 3D grid, di-
mension after dimension. After the three dimensions have been processed, grid structure and
proportions are preserved, and all edges have same weight anew.

Consider for instance ad-dimensional unweighted grid. If all vertices are matched along edges
belonging to only one of the dimensions, all remaining edges in this dimension will keep their
original weight, while all edges in other dimensions will be heavier. Then, if another dimension

is chosen, according to the HEM policy, edges in the remaining dimension will be even heavier,
and so on, such that all dimensions will be explored in turn, resulting in a grid of smaller size

but identical structure, as shown in Figure 2.9. This phenomenon can also be evidenced for
unstructured meshes.

In [87], Monien et al. propose a matching scheme based on the selection of locally heaviest
edges and the post-processing of the obtained matchings by an augmenting path method. While
this scheme yields matchings of heavier weights than HEM, with fewer remaining edges, it
results in more imbalanced coarse graphs with respect to the distribution of the weights of
coarse vertices, and induces more sequentiality in the edge selection process, which prevents its
parallelization.

2.5.3 Initial partitioning

Initial partitioning algorithms are in charge of computing, on the coarsest graph, the partition
which will be prolonged back to ner graphs. Since initial partition quality is mandatory,
expensive algorithms may be used, all the more that they operate on small graphs.

Many global methods have been investigated to compute graph partitions from scratch, ei-
ther as is or within a multilevel framework: evolutionary algorithms (comprising simulated an-
nealing [12, 75], genetic algorithms [13, 59], ant colonies [77], greedy iterative algorithms [9, 76]),
graph algorithms [35, 65], geometry-based inertial methods [89], spectral methods [8], region
growing [31], etc. While taking their inspiration from radically di erent elds such as genetics or
statistical physics, analogies between these methods are numerous, as well as cross-fertilization
in their implementations, so that it is sometimes di cult to categorize them unambiguously.

Region growing algorithms have received much attention, as they result in connected parts,
which is a most desirable feature in numerous application domains [31, 116]. They consist in
selecting as many seed vertices in the graph as the number of desired parts, and grow regions
from these seeds until region boundaries meet.

In the most basic versions of this approach, such as Farhat's algorithm [35] or theyreedy
graph growing method [65], seeds are processed one by one, and parts are built one after the

16

other by breadth- rst traversal of the graph induced by the remaining unassigned vertices. Since
this approach is not likely to produce parts of equally good shape, especially for the last ones,
this algorithm is repeated several times on randomly chosen seeds, and the best partition is
kept.

In more advanced algorithms, such asbubble-growingalgorithms, parts are considered si-
multaneously in order to yield interfaces of higher quality [31, 85]. This class of algorithms is
based on the observation that sets of soap bubbles self-organize so as to minimize the surface of
their interfaces, which is indeed what is expected from a partitioning algorithm. Consequently,
the idea is to grow, from as many seed vertices as the desired number of parts, a collection of
expanding bubbles, by performing breadth- rst traversals rooted at these seed vertices. Once
every graph vertex has been assigned to some part, each part computes its center based on the
graph distance metric. These center vertices are taken as new seeds and the expansion process
is started again, until it converges, that is, until centers of subdomains no longer move. An
important drawback of this method is that it does not guarantee that all parts will hold the
same number of vertices, which requires a call to other heuristics afterward, to perform load
balancing.

In [124], Wan et al. explore a di usive model, called the in uence model, where vertices
impact their neighbors by di using them information on their current state. This model also
does not handle load balancing properly.

We will not discuss further the issue of initial partitioning, as it is not directly related to our
works, since this part of the multilevel framework will not be impacted by the parallelization of
the latter. Indeed, as we will see in the following, once parallel multilevel frameworks coarsen
distributed graphs down to some small enough size, coarsest distributed graphs can be central-
ized on some of the processes where traditional, sequential initial partitioning algorithms can
be used. No speci c improvement is therefore required.

2.6 Experimental framework

The need to process, in reasonable time, graphs of ever increasing sizes, renders the paralleliza-
tion of graph partitioning unavoidable. Leaving initial partitioning aside, the contributions
presented in this dissertation are aimed at devising scalable algorithms for parallel coarsening
and parallel re nement, in order to provide an e cient solution to the parallel multilevel graph
partitioning problem. These contributions will be described in detail in the next two chapters.

2.6.1 Basic assumptions

Our approach of the parallelization of coarsening and re nement bases on two main assumptions,
regarding the nature of the parallel machine to be used, and the type of graphs to be handled.

First, we considered a distributed memory model, since large machines with hundred thou-
sands of processing elements are not likely to ever implement e ciently a shared-memory
paradigm, even of NUMA!? type. The distributed memory paradigm has a strong impact on
algorithms, because mutual exclusion and locking issues, which are implicitly resolved by doing
memory accesses in the sequential case, have to be reformulated in terms of non-deterministic,
latency-inducing message exchanges, both for matching and re nement.

12Non Uniform Memory Access. The machines implementing this model are categorized by the fact that, while
their memory can be accessed from all of their processing elements, the cost of access may di er depending on
the location of the memory with respect to the processing element which makes the request.

17

Second, we assume that distributed graphs are of reasonably small degree, that is, that
graph adjacency matrices have sparse rows and columns. Unlike more robust approaches [117],
we presume that vertex adjacencies can be stored locally on every process, without incurring
too much memory imbalance or even memory shortage.

2.6.2 Distributed graph structure

According to the above assumptions, in ourPT-Scotch library, like in other packages, dis-
tributed graphs are represented by means of adjacency lists. Vertices are distributed across
processes along with their adjacency lists and with some duplicated global data, as illustrated
in Figure 2.10. In order to allow users to create and destroy vertices without needing any global
renumbering, every process is assigned a user-de ned range of global vertex indices. Range
arrays are duplicated across all processes in order to allow each of them to determine the owner
process of any non-local vertex by dichotomy search, whenever necessary.

Since many algorithms require that local data be attached to every vertex, and since using
global indices extensively would be too expensive in our opinioft, all vertices owned by some
process are also assigned local indices, suitable for the indexing of compact local data arrays.
This local indexing is extended so as to encompass all non-local vertices which are neighbors of
local vertices, which are referred to agghost or halo vertices. Ghost vertices are numbered by
ascending process number and by ascending global number, such that, when vertex data have
to be exchanged between neighboring processes, they can be agglomerated in a cache-friendly
way on the sending side, by sequential in-order traversal of the data array, and be received in
place in the ghost data arrays on the receiving side.

A low-level halo exchange routine is provided byPT-Scotch , to diuse data borne by
local vertices to the ghost copies possessed by all of their neighboring processes. This low-level
routine is used by many algorithms of PT-Scotch , for instance to share matching data in the
coarse graph building routine (see Section 3.1).

Because global and local indexings coexist, two adjacency arrays are in fact maintained
on every process. The rst one, usually provided by the user, holds the global indices of
the neighbors of any given vertex, while the second one, which is internally maintained by
PT-Scotch , holds the local and ghost indices of the neighbors. Since only local vertices are
processed by the distributed algorithms, the adjacency of ghost vertices is never stored on
the processes, which guarantees the scalability of the data structure as no process will store
information of a size larger than its number of local outgoing arcs.

2.6.3 Experimental conditions

Because the works reported here span on a duration of almost ten years, our experiments were
performed on various hardware platforms, ranging from a laptop (for sequential measurements)
to modern large-scale parallel systems, on up t@048 processing elements in some cases. Run
times vary accordingly, as well as with respect to the successive versions 8totch , which has
undergone many changes and improvements along with time.

The test graphs which we used during our experiments are listed in Table 2.1. Most of them
are freely available, on the Internet, to any people willing to compare its results with ours.
Many of them can be found in the University of Florida matrix collection [28]. Some others
were gathered during the course of the former European Project Parasol [91].

Bvet, some authors [121] report to have used more complex procedures, involving hash tables and binary
search, for global-to-local index conversion.

18

Figure 2.10: Data structures of a graph distributed across three processes. The global image
of the graph is shown above, while the three partial subgraphs owned by the three processes
are represented below. Adjacency arrays with global vertex indexes are stored iedgeloc
tab arrays, while local compact numberings of local and ghost neighbor vertices are internally
available in edgegsttab arrays. Local vertices owned by every process are drawn in white, while
ghost vertices are drawn in black. For each local vertex located on proces®, the global index
of which is (procvrttab [p]+i baseval), the starting index of the adjacency array ofi in edge
loctab (global indices) or edgegsttab (local indices) is given byvertloctab [i], and its after-
end index by vendloctab [i]. For instance, local vertex 2 on processl is global vertex 12; its
start index in the adjacency arrays is2 and its after-end index is5; it has therefore 3 neighbors,
the global indices of which arel9, 2 and 11 in edgeloctab .

19

Graph Size(10°) Avg. Graph Size(10°) | Avg.
vV | E degree vV | E degree
10millions 10424 78649 15.09 | | coupole5000 1105| 26036 | 47:12
144 145 1074 14:86 coupole8000 1768 | 41657 4712
23millions 23114 | 175686 1520 | | cranksegl 53| 5281 | 20001
3elt 5 14 5:81 crankseg?2 64| 7043| 22064
45millions 45241 | 335749| 1484 | | guptal 32| 1066 67:05
delt 16 46 5:88 inlinel 504 | 18156 72.09
4elt2 11 33 5:89 | | invextrusionl 30 907 59:64
598a 111 742 1337 Ihr71c 70| 1527 4343
82millions 82294 | 609508 14:81 m14b 215| 1679 15.64
aatken 43 88 4:.14 mixingtank 30 983 65.60
altr4 26 163 1250 | | mtl 98| 4828 98:96
audikwl 944 | 38354 81:28 | | ocean 143 410 5:71
auto 449 3315 1477 oilpan 74| 1762 4777
b5tuer 163 3874 47:64 | | pwt 37 145 7:93
bbmat 39 1274 65:77 | | gimonda07 8613 | 29143 6:76
bcsstk29 14 303 4327 quer 59| 1404 47.48
bcsstk30 29 1007 69:65 | | rotor 100 662 1330
bcsstk31 36 573 3220 | | s3dkg4m?2 90| 2365 52:30
bcsstk32 45 985 44:16 | | s3rmt3m3 5 101 3777
bmw32 227 5531 4865 | | ship001 35| 2305| 13200
bmw7stl 141 3599 50:93 | | ship003 122 | 3982 6543
bmwecral 149 5248 70:55 | | shipsecl 141 | 3836 54:46
body 45 164 7:26 | | shipsec5 180 | 4967 55:23
bracket 63 367 11:71 | | shipsec8 115| 3269 56:90
brgm 3699 | 151940 8214 | | sphere 16 49 6:00
bump 10 29 5:92 | | thread 30| 2220| 14932
cagel5 5154 | 47022 1824 | | tooth 78 453 11:58
chanellm 81 527 13.07 | | wang3 26 76 5:80
conespherelm 1055 8023 1521 x104 108 | 5030 9281

Table 2.1: Test graphs which we used in all of the experiments reported in this dissertation.

Because many experiments in science are now performed by means of software, it is of utmost
importance that software be released along with the publications which rely on it. Otherwise,
peer referring is no longer possible and, since software can take time to be recoded, scientic
progress is slowed down. For all these reasons, since its versidrD, our Scotch software has
been released as free/libre software. Versiob of Scotch is distributed under the CeCILL-C
license [16], which has basically the same features as the GNU LGPLLésser General Public
License) [45]: ability to link the code as a library to any free/libre or even proprietary software,
ability to modify the code and to redistribute these modi cations.

Also, Scotch has been designed in a highly modular way, so that new methods can be
easily added to it, in order for it to be used as a testbed for the design of new partitioning and
ordering methods [97].

For the sake of reproducibility and ease of comparison, the random generator used Bcotch
is initialized with a xed seed. This feature is essential to end users, who can more easily

20

reproduce their experiments and debug their own software, and is not signi cant in term of
performance. Indeed, in the case of sparse matrix ordering, we have experimented that the
maximum variation of ordering quality, in term of OPC, between 10 runs performed with
varying random seed, was less thar2:2 percent on our test graphs [24]. Consequently, we did
not nd necessary to perform multiple runs of Scotch to average quality measures.

21

22

Chapter 3

Graph coarsening algorithms

As said in the previous chapter, multilevel schemes are extremely powerful tools for graph
partitioning, provided that unbiased coarsening and local optimization algorithms are de ned
for the targeted classes of graphs.

In the next section, we will describe the ways in which the parallel graph partitioning
problem has been addressed in the literature, with respect to each of its key issues: matching,
folding, and centralization of the distributed data for the computation of the initial partition on
the coarsest graph. Then, in the following sections, we will present our contributions to these
issues.

3.1 State of the art

The process of creating a coarser distributed graph from some ner distributed graph is quite
straightforward, once every ne vertex has been assigned to the cluster representing its future
coarse vertex. By performing a halo exchange of the cluster indices borne by ne vertices, each
of the latter can know the indices of the clusters to which its neighbors belong. The coarse
adjacencies of each of the ne vertices contributing to some cluster can then be gathered on
the respective processes which will host each of the resulting coarse vertices, such that coarse
adjacencies of coarse vertices can be determined by removing duplicate coarse neighbors from
the received neighbor lists.

Several methods can be used to create the vertex clusters. All of them use graph adjacency
to mate vertices which are as close to each other as possible, so as to preserve the high-level
topological structure of the ner graphs. Otherwise, the prolongation to the ner graphs of
partitions computed on the coarser graphs would not be likely to represent good solutions of
the original problem, because of the biases introduced by coarsening artifacts. While large
clusters may result in less coarsening levels, therefore potentially reducing the accumulation of
artifacts over the levels, they can also be a source of artifacts if they are not compact enough.
Because the creation of large compact clusters in parallel is more complex and more likely to
require more communication than for smaller clusters, most parallel coarsening methods are
based on edge matchings, which result in clusters comprising at most two vertices.

The key issue for parallel graph coarsening is therefore to devise parallel matching algorithms
which are both e cient and unbiased, that is, which provide coarse graphs the topological
properties of which are independent of the distribution of ne vertices across the processes of
the parallel program.

23

3.1.1 Parallel matching algorithms

Parallel matching algorithms are a very active research topic [17]. In our context, this problem is
relaxed, because matchings do not need to be maximal. Instead, they should exhibit randomness
properties suitable to the preservation, by the coarsened graphs, of the topological properties
of the ner graphs to which they are applied.

The critical issue for the computation of matchings on distributed graphs is the breaking
of mating decision ties for edges spanning across processes. Any process willing to mate one
of its local vertices to a remote adjacent vertex has to perform some form of query-reply com-
munication with the process holding the remote vertex. Because of communication latency and
overhead, mating requests are usually aggregated per neighbor process, resulting in a two-phase
algorithm. In the rst phase, processes send mating requests to their neighbors. In the second
phase, neighbors answer positively or negatively depending whether the requested vertices are
free, have already been matched in a previous phase, or are temporarily unavailable because
they have themselves requested another remote vertex for mating. The asynchronicity between
requests and replies creates ties and dependency chains which hinder the convergence of the
algorithm. For instance, when several vertices located on di erent processes request the same
remote vertex, at most only one of the requests can be satis ed. Moreover, when the requested
vertex has itself asked for another vertex, none of the incoming requests will be satis ed, be-
cause the solicited vertex cannot know whether its own request will be satis ed or not before
replying to its applicants. This phenomenon increases along with the probability of neighbor
vertices to be remote: when graphs are arbitrarily distributed (which is usually the case before
they are partitioned for the rst time), when they have high degrees, and/or when the number
of processes is high.

Several solutions to the tie-breaking problem have been proposed in the literature, which
di er in the granularity of the remote dependency exclusion mechanism.

Tie breaking at the vertex level

The rst solution for tie-breaking at the vertex level was proposed by Barnard [7] in the con-
text of a parallel formulation of a multilevel spectral partitioning algorithm [103], and based
on a parallel formulation of Luby's graph coloring algorithm [82] to compute a maximal in-
dependent set of vertices. The rationale behind the use of a graph coloring is to completely
avoid dependency chains, by preventing potential sought-after vertices from being applicants
themselves.

In the matching algorithm, each of the colors is considered in turn, and only vertices of
the current color can perform mating requests. Since, by de nition, independent set coloring
guarantees that no two neighbor vertices have the same color, potential mates cannot be appli-
cants, and thus will always be able to answer positively to one of their own applicants. Colors
are processed in a round-robin way until all vertices are matched or have all of their neighbors
matched, or until some minimum coarsening threshold is reached [66, 71]. This algorithm does
not guarantee that collisions between requests will not happen, since two vertices of the same
color can still send a request to a same common neighbor vertex of another color; however, re-
ducing the number of vertices able to send a request during each time step signi cantly reduces
the number of such collisions.

The distributed formulation of Luby's algorithm works as follows. First, every graph vertex
is assigned a random number, and a halo exchange is performed so that all vertices know the
number borne by all of their neighbors, whether local or remote. Then, vertices having the
highest number among all of their neighbors are painted with the rst color, after which these

24

998699| 908307 | 848574 | 804471| 777182| 757239| 743009| 733290
720049| 700112| 661773| 590857 | 478982 | 338154| 200174| 99186
41975| 15071 4750 1377 372 108 20 6

Table 3.1: Sizes of Luby's color sets for grapiOmillions . Our test implementation of Luby's
algorithm, applied to a randomly permuted vertex set, yields 24 color sets with the above
distribution. Data extracted from [58].

vertices are removed from the graph. Remaining vertices having the highest number among all
of their remaining neighbors are painted with the second color and removed, and so on until all
of the vertices have been considered.

This algorithm is simple and elegant, but it has some drawbacks. The sizes of the color sets
are usually unbalanced, the last ones being much smaller than the rst ones; it is often the case
that the last set comprises only one single vertex.

This imbalanced distribution adversely a ects convergence time, both for computing the
coloring and for performing the matching. Because the last rounds of the coloring algorithm
involve small sets of vertices, little useful work is carried out in comparison to the induced com-
munication overhead which is itself dominated by network latency, resulting in poor scalability.
This is why, in at least one implementation [71], the coloring algorithm is halted prematurely,
the loss in coarsening quality resulting from the absence in the mating process of the remaining
small fraction of the vertices having been judged negligible with respect to the overall gain in
run time. Regarding the matching algorithm, larger sets increase the probability that multiple
requests are directed towards the same vertices, therefore reducing their probability of success,
while smaller sets again result in excessive communication overhead. A solution to this problem
could be to rework Luby's algorithm so as to improve the balance of color sets. However, this
is not likely to reduce much the number of color sets, that is, the number of communication
rounds.

All these reasons have motivated the early replacement ifParMeliS of the aforementioned
implementation of Luby's algorithm by a more straightforward algorithm [66, Section 4], almost
similar in outcome to the probabilistic matching algorithm that we devised and which will be
described in Section 3.4. Karypis' modi ed algorithm works as follows. In the beginning, all
local and halo vertices of every process are agged as unmatched. The algorithm performs a xed
number of passes4, in the current implementation), during which all remaining unmatched local
vertices are considered in randomized order, by means of a precomputed random permutation.
Every considered vertex selects a potential mate among its yet unmatched neighbors linked by
edges of heaviest weight, according to the heavy edge matching policy [71]. If the mate is local,
both vertices are immediately agged as matched with each other. Otherwise, the behavior of
the algorithm depends whether some condition, based on the pass number and on the respective
global indices of the requesting vertex and of its potential mate, is satis ed. If it is, a mating
request is stored into the proper communication bu er, to be sent to the relevant process at the
end of the pass, and the local vertex is agged as busy. Otherwise, nothing happens. However,
in both cases, the halo vertex representing the remote mate is agged as busy, so that no
other local vertices can ask it for mating. At the end of the pass, mating request messages are
exchanged and processed in random order. Mating requests are accepted or rejected by the
destination processes, depending whether their local vertices have already been matched or not,
and corresponding replies are aggregated and sent back.

If the aforementioned condition were not present, all possible remote matings would lead to
the sending of mating requests, thus saturating the system as all senders would not be willing
to mate as receivers. By preventing roughly half of the requests from being sent, and by letting

25

their senders remain free to mate as receivers, the algorithm increases convergence speed. This
will be discussed further in Section 3.4.

Tie breaking at the subdomain level

This section discusses attempts to avoid as much communication as possible during the matching
process, so as to reduce the impact of dependency chains on the convergence of the matching
algorithm. This result is sought for by privileging local matings over remote ones, that is,

by restricting matings of vertices to their local subdomains. In this case, like in the fully
sequential case, tie breaking is naturally resolved by the sequentiality of computations within
each subdomain.

This approach has been followed by Walshawet al. in [121]. However, the e ciency of
this method heavily depends on the initial distribution of the vertices across the processes of
the parallel partitioner. In the case of random distribution, the probability of two neighbors
being located on the same process decreases along with the number of processes. This is why,
as a fall-back strategy, Walshawet al. also provide an iterative remote mating algorithm to
post-process remaining unmatched vertices [122].

Indeed, depending on the distribution of graph vertices, local matching can induce heavy
topological bias in the coarsened graphs. Consequently, its use must be restricted to cases
where this bias is likely to be minimal, that is, when the number of ghost vertices (the possible
remote mates) is small enough compared to to the number of local vertices. This may be true
only in the case of dynamic repartitioning of graphs which have already been partitioned, or
for graphs which have been distributed by means of low-cost, geometrical partitioning, when
geometrical data are available and when the mesh geometry is simple enough to be e ciently
cut by planes. In the case of repatrtitioning, local matching may also be necessary to be sure
that all ne vertices of some coarse vertex belong to the same subdomain, in order to compute
accurately migration costs of the coarse vertices [107].

3.2 Folding

In the course of the coarsening phase of a multilevel framework, folding refers to the process
of redistributing the vertices of a coarse graph onto a smaller number of processes than those
holding the ner graph. Performing such a folding has several bene ts. First, it can reduce
communication overhead. As coarsening goes on, the number of vertices per process is bound to
decrease, and communication time tends to be dominated by start-up time and latency. Using
too many processes to handle so little data makes collective communication prone to operating
system hazards, and increases the probability of increased latency. Second, concentrating ver-
tices on fewer processes is most likely to decrease the number of remote neighbors per process,
resulting in shorter messages. Third, for algorithms biased towards local computations (see the
above section), increasing the number of local vertices can improve the quality of the output
they produce [70].

In all of the multilevel implementations that we are aware of, when a folded subgraph is
created on a subset of the processes, the rest of the processes remain idle until they are required
again during the uncoarsening phase [66]. However, they can be used in parallel to compute
the initial partition at the coarsest level, when coarse distributed graphs are small enough to
be able to be centralized on a single processor (see Section 3.5).

26

3.3 Centralization

Once the distributed graph is coarsened down to a prescribed, small size, an initial partition
has to be computed. While fully parallel methods for an initial partitioning could be used, such
as parallel genetic algorithms (see Section 4.1.2), all implementations we are aware of resort
to state-of-the-art sequential methods, because of the very high quality of the partitions they
produce, at reasonable cost for such small graphs. Since the initial partition will only be subject
to re nement and will never be reconsidered globally, quality concerns dominate at this stage.

When folding is used, the coarsest graphs are already concentrated on a small number of
processes, and centralizing them on a single process is not much work. Yet, all the remaining
processes are idle, and may be used to speed-up the computation of the initial partition. In [71],
the centralized graph is duplicated on all processes, and each of them computes sequentially
the branch of the recursive bipartitioning tree leading to the subdomain it is in charge of. Let
T(x) be the cost of computing a bipartition on some fractionx of the centralized graph, linear
in x. With the above approach, instead of computing the initial partition in T(1)+2T % +
4T % + , which leads to a computation time in log(p)T (1), each branch is independently
computedinT(1)+ T 3 +T 1 + =2T(1).

The gain, albeit real in percentage, is small in absolute value, as it only concerns small
graphs. Moreover, this approach can only be used when successive bipartitioning processes are
independent, which prevents it from being used in the context of static mapping [93, 96].

3.4 Parallel probabilistic matching

The approach we have chosen to the parallel matching problem follows a Monte-Carlo approach.
This idea, rst exposed by Chevalier in [22], consists in allowing a vertex to send a request only
when the random number it draws is above some threshold. In [22] and [24], this threshold
depended on the numbers of local and remote neighbors of the vertex. In [58], we opted for a
more straightforward algorithm, which does not take into consideration any parameter linked
to the graph distribution, and is consequently less susceptible to distribution biases: every
unmatched vertex can send a mating request with probability 0:5, or remain silent.

Our algorithm, which consists of successive matching rounds, works as follows. Initially, all
local vertices are put in a wait queue, in random order. During a matching round, all queued
vertices are processed one by one. For each vertex, a random bit value is considered. If it is
zero, the vertex is put back into the queue, else one of its yet unmatched neighbors of highest
edge weight is randomly selected for mating, according to the heavy edge matching policy. If
the selected vertex is local, the matching is immediately accepted; else, a mating request is
enqueued in the message destined to its owner process. After all vertices have been considered,
mating request messages are exchanged between processes, and are processed in random order
by their recipients. Each of the requests is considered in message order. If the sought-after
vertex is itself a sender, no reply will be returned, indicating collision; the matching did not
succeed this round, but may well succeed next time. Otherwise, if the vertex is not already
matched, the matching is accepted; else, a negative answer is crafted so that the halo copy of
the remote vertex will be agged as already matched by the sending process (however, other
processes may not yet be aware of this information until one of their local vertices sends a
request directed towards this vertex). Then, reply messages are sent back, and mating data for
local and ghost vertices are updated accordingly. The above communication round is repeated
several times, after which a nal local matching sweep is performed to match locally, either
with a local unmatched neighbor or with itself, every vertex remaining in the queue.

27

Albeit motivated by the same rationale (reducing communication overhead and leaving some
vertices idle to increase the probability of successful mating during each pass), our algorithm
di ers in some aspects from the non color-based matching algorithm oParMeliS (see page 25).

First, the decision of keeping a vertex active or not is taken individually per vertex, on a
random basis, and does not depend on its relations with some remote potential mate.

Second, this activity test concerns all vertices, also including internal vertices, that is, those
which have no remote neighbor. While this may seem useless at rst sight, because matings
between these vertices and their neighbors would be immediately accepted, thus speeding up
convergence, it prevents a subtle bias that would impact border vertices. Indeed, in the case of
ParMeTiS , border vertices are active only half of the time when willing to mate with remote
neighbors, while their local matings are always immediately accepted, as are those of inter-
nal vertices. Half the time, a border vertex willing to mate with a remote vertex will remain
inactive and agged as unmatched, leaving it free to be matched locally by subsequent local
vertices before any remote mating message arrives. Moreover, its ghost mate will be agged as
busy, preventing neighboring border vertices to mate it, and therefore also favoring their local
matching. All of the internal vertices will be matched at the end of the rst pass, so that,
starting from the second pass, only border vertices will be processed, for which local matchings
with neighboring border vertices will again be privileged.

In order to evaluate the convergence speed of our algorithm, we have instrumented our
matching algorithm to output two values after each round. The rst value is the ratio of
matched vertices, expressed as a percentage of the total number of ne vertices. This value is
obviously equal to 100 % after the nal pass. The second value is the coarsening ratio among
matched vertices, that is, the number of coarse vertices computed to date, divided by the number
of processed ne vertices. By nature, this value ranges betweeb0 %, in the ideal case where all
ne vertices have been paired into coarse vertices, and00 %, in the case where no neighbors
could be found and all coarse vertices each comprise one single ne vertex.

Table 3.2 presents the data collected when recursively coarsening our test graphs down to
one thousand of vertices per process, for a number of processes ranging fr@to 512 It shows
the mean value and the mean absolute deviation of each of the two aforementioned values, for
each of the collective rounds and for the nal local round. The number of collective rounds
has been set to5, to keep it small comparatively to the size of the color sets computed by
Luby's algorithm; it is just one more than the number of rounds in the matching algorithm
of ParMeTiS . Assuming, as a rule of thumb, a matching probability a bit lower than 0:5
(depending on the probability of the requested vertex to be inactive and of the probability of
collision between matching requests, based on graph topology}, collective passes were supposed
to be enough to match more than80 % of the vertices.

Experimental gures corroborate our assumptions and validate our approach. Five collective
rounds are enough to match more tharB0 % of the graph vertices, with a low resulting coarsening
ratio of 53:7 %. This ratio indicates that remote mating is e cient, and that no topological
biases, due to initial graph data distribution across processes, are likely to occur. Consequently,
the nal, local round is not likely to induce an important topological bias, since it only involves
15 % of the vertices on average, after many remote matings have been performed. A sixth
collective round has been experimented with, but did not signi cantly change partition results.

This algorithm has been introduced in PT-Scotch quite recently, as it is only available
since revision5.1.6. It provides a signi cant improvement in speed compared to the previous

1Using such a local round will result in the same biases as those criticized in the implementation of the
matching algorithm of ParMeTiS . Yet, unlike for the latter, these biases are not inherent to the algorithm, but
depend on the number of collective rounds that the user is willing to perform.

28

Matching Coarsening
Avg. | Ma.d. || Avg. | M.ad.
C1 53.3 12.3| 50.4 0.7
C2 68.7 13.6|| 51.6 2.2
C3 76.2 12.2|| 52.5 3.3
c4 81.0 10.6 || 53.2 4.0
C5 84.5 9.1 53.7 4.5
LF || 100.0 0.0 59.4 6.8

Pass

Table 3.2: Average and mean absolute deviation of the percentage of the vertices processed, and
of the coarsening ratio of the processed vertices, after each of ve collective matching rounds
(C) and after the local nal (LF) round. These data were collected by recursively coarsening
our test graphs on numbers of processes ranging frodto 512 Data extracted from [58].

Figure 3.1: Diagram of the parallel computation of the separator of a graph distributed across
four processes, by parallel coarsening with folding-with-duplication, multi-sequential computa-
tion of initial partitions that are locally prolonged back and re ned on every process, and then

parallel uncoarsening of the best partition encountered.

version.

3.5 Folding with duplication

One of the original features of our multilevel framework, as opposed to competing implementa-
tions (see Section 3.2), is its ability to duplicate coarse graphs during the folding process, so that
no process remains idle. The coarsening phase starts once the matching phase has completed.
It can be parametrized so as to allow users to choose between two options. In the rst case, all
coarsened vertices are kept on their local processes (that is, processes that hold at least one of
the ends of the coarsened edges), as shown in the rst steps of Figure 3.1, which decreases the
number of vertices owned by every process and speeds-up future computations. In the second
case, coarsened graphs are folded and duplicated, as shown in the next steps of Figure 3.1,
which increases the number of working copies of the graph and can thus reduce communication
and improve the nal quality of the separators.

29

In fact, separator computation algorithms, which are local heuristics, heavily depend on the
quality of the coarsened graphs, and we have observed with the sequential version 8totch
that taking every time the best partition among two, obtained from two fully independent mul-
tilevel runs, usually improves overall ordering quality. By enabling the folding-with-duplication
routine (which will be referred to as fold-dup in the following) in the rst coarsening levels,
one can implement this approach in parallel, every subgroup of processes that hold a working
copy of the graph being able to perform an almost-complete independent multilevel computa-
tion, save for the very rst level which is shared by all subgroups, for the second which is shared
by half of the subgroups, and so on.

The problem with the fold-dup approach is that it consumes a lot of memory. When no
folding occurs, and in the ideal case of a perfect and evenly balanced matching, the coarsening
process yields on every process a part of the coarser graph which is half the size of the ner
graph, and so on, such that the overall memory footprint on every process is about twice the
size of the original graph. When folding occurs, every process receives two coarsened parts,
one of which belongs to another process, such that the size of the folded part is about that of
the ner graph. The footprint of the fold-dup scheme is therefore logarithmic in the number
of processe’ and may consume all available memory as this number increases. Consequently,
as in [66], a good strategy can be to resort to folding only when the number of vertices of the
graph to be considered reaches some minimum threshold. This threshold allows one to set up a
trade-o between the level of completeness of the independent multilevel runs which result from
the early stages of the fold-dup process, which impact partitioning quality, and the amount of
memory to be used in the process.

Our fold-dup implementation is also insensitive to the number of processes on which it is
run. In the case of an uneven number of processes, one of the process subsets has simply
one more element than the other. The smaller subset on which the coarse graph is folded is
of course likely to take more time to perform the same amount of computation, but this is a
negligible percentage for large a number of processes, and a small amount of computation for a
small number of processes. Anyway, the cost is not greater than that of running the program
on a number of processes equal to the immediately smaller power of two, and this penalty
only happens for the stages of coarsening where folding occurs, that is, where the amount of
computation is small.

3.6 Multi-centralization

After the nal stage of our fold-dup method, no more than two processes may have the same
coarse graph, since the two copies of a graph folded at some stage undergo afterward an in-
dependent coarsening process, using a di erent pseudo-random seed. Unlike in [71], where all
centralized graphs are identical and the same bipartitions must be computed on all processes,
we favor the computation of di erent initial partitions by each of the processes.

This multi-sequential phase is illustrated at the bottom of Figure 3.1: the routines of the se-
guential Scotch library are used on every process to complete the coarsening process, compute
an initial partition, and prolong it back up to the largest centralized coarsened graph stored on
each of the processes. Then, the partitions are prolonged back in parallel to the ner distributed
graphs, selecting the best partition between the two available when prolonging to a level where
fold-dup had been performed. This distributed prolongation process is repeated until we obtain
a partition of the original graph.

2The computations leading to this result are equivalent to those in page 27.

30

The bene ts of producing di erent initial partitions have been shown in [22]. Further results
integrating the use of fold-dup will be presented in the next chapter.

31

32

Chapter 4

Partition re nement algorithms

As discussed above, multilevel schemes can be extremely powerful tools for graph partitioning,
provided that unbiased coarsening and partition re nement algorithms are de ned for the tar-
geted classes of graphs. While several authors had already proposed scalable solutions for the
parallelization of the coarsening phase, as seen in the previous chapter, the situation was not
as satisfactory for re nement algorithms, so that several of my contributions have speci cally
addressed this topic.

4.1 State of the art

Because the state-of-the-art local optimization methods used for partition re nement in sequen-
tial multilevel frameworks were so robust and cost-e ective, much e ort has been put on their
parallelization. Yet, it is common knowledge in the parallel computing community that the best
parallel algorithm to solve a given problem is most often not the parallel transposition of the
best sequential algorithm for this purpose. Partition re nement by no means escapes this rule,
as state-of-the-art sequential methods bear strong sequentiality constraints which prevent their
direct transposition into scalable parallel formulations, so that global methods have also been
considered.

4.1.1 Parallelization of local partition re nement methods
The issue of colliding moves

As seen in Section 2.5.1, local optimization algorithms for partition re nement are based on
successive moves of frontier vertices to decrease the current value of the prescribed cost function.
In the sequential case, vertices are moved one by one, and the gains of the selected vertex and
of its neighbors are recomputed on the vy, such that one always knows exactly the outcome of
a sequence of moves. However, this no longer holds if moves are to be performed independently
in parallel, as illustrated by the infamous neighbors swap case of Figure 4.1.

If the two vertices had been far away one from one another, the problem described above
would not have shown up. What causes it is that the two vertices are neighbors, and that the
mutual impact of their moves cannot be accounted for to avoid performing the second move
as soon as the rst one takes place. Indeed, if the two vertices are distributed across separate
processors, there is no immediate means for each of the processes running the algorithm to
inform its peers; this is not desirable either, as taking into account the constraint of having
to update the gain values of neighbor vertices would create time dependencies which would
dramatically hinder the scalability of the algorithm.

33

(a) Current bipartition of a weighted graph, with (b) Resulting partition after moving simultane-
fc =2, rfc(vo)=+1 ,rfc(vi)= 1 ,rfc(ve)= ously v; and v,. While each of them had negative
1L rfc(vs)=+1. gain, fc =4.

Figure 4.1: Adverse impact on the cost function of the simultaneous move of two vertices which,
moved individually, would have improved it.

It follows from the previous example that, for any parallel version of some FM-like local
optimization algorithm to work, no two neighbor vertices must ever be considered at the same
time by distinct processing elements. This is indeed a very strong constraint, which imposes a
heavy burden on the programmer. Since dynamic remote locking mechanisms would generate
too much communication, this constraint must be enforced a priori, with certainty, within the
core of the algorithm itself. Several solutions have been proposed in the literature, which di er
by the granularity of the exclusion mechanism, in a way very similar to the matching problem
(see Section 3.1.1). All of them are based on rounds within which the exclusion constraint will
be enforced, with some synchronization taking place at the end of the rounds so as to recompute
the gains of remote neighbors.

Collision exclusion at the vertex level

The rst solution, proposed by Karypis and Kumar, enforces neighbor exclusion at the vertex
level [71]. It is based on a coloring of the distributed graph, computed by means of a distributed
variant of Luby's algorithm (see Section 3.1.1), to split vertices into groups such that no two
neighbor vertices belong to the same group. The groups associated with the colors are then
processed in a round-robin fashion, and within each round all vertices of negative gain are moved
to their preferred destination part. Then, vertex movement information is exchanged between
neighboring processes, so that the gains of their neighbors can be recomputed before the next
round begins. Vertices are not physically moved from one process to another when changing
their part, but have their subdomain tag updated on their owner process, as well as on all of
the neighbor processes which maintain a halo copy of the vertex as a remote neighbor of their
local vertices.

While this method is very scalable, as computations are most likely to be evenly spread
across processes (assuming that the number of vertices of the same color is approximately the
same on every process), it loses the hill-climbing capabilities of the original sequential algorithm,
resulting in poorer partition quality. In the sequential version, the algorithm could accept moves
of smallest positive gains, with the expectation that further moves of neighboring vertices would
decrease the cost function to a lower value. By uncoupling moves of neighboring vertices into
di erent rounds which may not be performed just one after the other, the parallel algorithm
forgoes the possibility to accept moves of positive gain. Otherwise, many processes could decide
simultaneously, within the same round, to select vertices of positive gain, which might not be
of overall minimum positive gain, without any chance for the algorithm to compensate later
for these moves. Consequently, this parallel version can only behave as a gradient-like algorithm.

Indeed, as the number of communication rounds induced by the vertex coloring can be very
large, as already evidenced in Section 3.1.1 in the case of matching, this color-based, vertex-level

34

exclusion process has also been abandoned RarMeTiS , in favor of a variant of the second
solution described below.

Collision exclusion at the subdomain level

The second solution, proposed by Walshaw and Cross, enforces neighbor exclusion at the sub-
domain interface level [119]. Here again, the algorithm takes the form of two nested loops.
At the outer level, interface regions between di erent subdomains are separated into disjoint
areas, which are centralized on one of their two owner processes. These subgraphs are treated
as independent problems, onto which sequential optimization algorithms are applied. All of the
moves performed locally on the subgraphs are then prolonged back to the full distributed graph,
and this process goes on until convergence is achieved.

This algorithm preserves, in each interface subgraph, the hill-climbing capabilities of the
sequential local optimization algorithm, in this case a KL-like algorithm. Although it has only
a limited e ect because the interface regions are generally long and thin, it can help smooth the
frontiers, by allowing vertices to line up, along the mesh structure, with their already moved
neighbors.

However, what is gained in quality is lost in runtime e ciency. Interface subgraphs are
assigned to processes in an arbitrary way, which may result in heavy load imbalance, all the
more that some faces may require more work than others. Moreover, with this method, vertices
are physically moved when changing their part, such that each process owns only the vertices of
the subdomain it represents. This can cause additional load imbalance, as subdomains having
fewer but heavier vertices represent less work in term of graph algorithms than subdomains
lled with many light vertices, but also induces more communication. All of these factors tend
to result in poor overall scalability [119, page 1653]. Furthermore, this one-to-one mapping
between subdomains and processes hinders the ability of the algorithm to run e ciently on a
number of processors which is not a divisor of the number of subdomains. This design choice
comes from the fact that Jostle was mainly devised as a parallel dynamic repartitioner.

In the method actually implemented in ParMeTiS [66, Section 4], interfaces are not con-
sidered explicitly. Instead, for each pass, all vertex moves which would improve the cut are
performed provided that some condition, depending on the pass number and on a randomized
function of the numbers of the origin and destination subdomains, is satis ed. The purpose of
this condition is to exclude collisions at the subdomain level: during some pass, for all origin
and destination subdomains, moves are only accepted in one of the two possible directions,
which changes along with the parity of the pass number. Consequently, neighbor swaps cannot
happen, because one of the two moves will always be rejected. While this solution is much eas-
ier to implement than interface centralization, it can only perform gradient-like improvements,
without any hill-climbing capabilities.

4.1.2 Parallel global partition re nement methods

Since the road to parallel local optimization methods was so full of hurdles, several authors have
investigated the path of global methods. These methods, which are too expensive to be applied
to large graphs in the sequential case (see Section 2.5.3 for an overview of the most popular
ones), most often have a strong potential for parallelization. Yet, due to their global nature,
their cost may be high even in parallel, and their use within a multilevel framework somehow
goes against the nature of this framework, which is designed to use fast algorithms that operate
on reduced problem spaces.

35

Re nement by genetic algorithms

The class of global methods which has been used the most extensively in the literature is
evolutionary algorithms, and more speci cally genetic algorithms [4, 13, 104, 105, 113]. Genetic
algorithms (GA) are meta-heuristics used to solve multi-criteria optimization problems using
an evolutionary method (see [125] for a good introduction to these methods). They consist in
simulating iteratively, generation after generation, the evolution of a population of individuals
which represent solutions to the given problem, selecting best- tting individuals as candidates
for breeding the next generation. GA are known to converge very slowly and cannot therefore be
applied to large graphs [4, 13], as evidenced in Figure 4.2, which illustrates both the versatility
of GA, that is, their ability to converge even with very naive criteria, and the very slow rate of
this convergence in the absence of specialized local optimization methods.

(@) Best individual of the (b) Best individual of the (c) Best individual of the

rst generation. The separa- hundredth generation. The thousandth generation.

tor is long and irregular. size of the separator de- Parts are now almost con-
creases, and its contour gets nected and separator size is
smoother. closer to the optimal.

Figure 4.2: Example of results which can be obtained when using a bare GA, without any
multilevel or local optimization heuristics, to search for a vertex separator on a simple 2D grid.
Figure extracted from [22].

Talbi and Bessiére [113] were among the rst to use parallel GA to solve the graph par-
titioning problem. In their implementation, the individuals which represent solutions to the
k-way graph partitioning problem are encoded in the form of a linear array of size equal to the
number of graph vertices, each cell of which holds the number of the part to which the associ-
ated vertex is assigned. The population is evenly spread across all processes. In order to reduce
communication and increase concurrency, all of the individuals which are located on the same
process are considered as an isolated population (also calleime living on an island [126].
Only occasionally can a few champions move from one island to another, to propagate their
successful chromosomes into other populations which could have been trapped in local optima.
The exchange of champions is performed between neighboring processors only, across the links
of the torus-shaped communication system of their Supernode Transputer-based machine. This
limitation in communication allows them to achieve linear speed-up up to the64 processors of
their machine.

In the context of mesh partitioning for FEM computations, for which vertex coordinates are
available, several authors have used di erent, more compact representations of individuals to

36

model geometric bipartitions. For instance, Khan and Topping consider a population of cutting
planes to bisect recursively the problem space [74], while Rama Mohan Rao [104] represents
a bipartition as a force eld created by two point-charges (de ned by only 8 numbers: two
coordinate sets for the points and two scalars for intensities), used as a separator. The GA
computations of this latter implementation are performed in parallel according to a multi-deme
distribution of the population. However, unlike for Talbi and Bessiére's implementation, cham-
pions are exchanged between all processes at the end of local computations.

In order to speed-up the convergence of GA, the o spring produced by breeding and mutation
can be improved, by means of problem-dependent optimization algorithms, before placing it
into the next generation. In the case of graph partitioning, this can be done by running some
local optimization algorithm such as KL to re ne the partitions associated with all of the
newly created individuals [4, 13, 105]. While this idea can seem interesting at rst sight, as
it dramatically speeds up the convergence rate of the GA during the rst generations, it may
impede its e ciency afterward, by considerably reducing genetic diversity towards the norm
imposed by the local optimization algorithm, thus making it harder to escape from local optima
of the cost function.

In a somewhat di erent approach, Soper, Walshaw and Cross [111] use théostle multi-
level graph partitioner to compute locally optimal partitions from a set of perturbed instances
of the original problem graph, these perturbations taking the form of slight variations in vertex
and edge weights. Their crossing-over operator computes a new perturbed graph from two or
more of such partitions, by lowering the weight of edges which belong to frontier areas in all of
the considered parents, such that the optimized partition which will be computed from the new
perturbed graph is likely to have its frontier close to that of its parents. While this approach
is reported to compute high quality partitions, and can easily be parallelized according to the
multi-deme paradigm, its current sequential implementation is extremely time-consuming.

While the use of re nement methods within a GA framework may not prove a judicious
combination, the use of GA as a re nement method within a multilevel framework seemed more
promising [72, 105]. Both of the cited methods have been implemented in a sequential way.
In [72], the GA re nement method is applied to the whole graphs during the uncoarsening
process, resulting in large compute times, while in [105] GA are only applied to groups &0 to
80 frontier vertices, in order to smooth the partition after a greedy rebalancing phase has taken
place.

In the second paper, a method called LRGA is also presented, in which GA re nement takes
place only on a small band of vertices around the current separator. In this GA, mutations
happen with a higher probability for frontier vertices (where this behavior may be desirable to
start the realignment of a whole line of vertices along the faces of a set of mesh elements) than
for internal vertices (where this behavior is not likely to bring any improvement). Yet, unlike
the band graph method which we will present later, this banded GA re nement method does
not take place within a multilevel framework, resulting in worse partitions.

Re nement by di usion-based methods

Many authors had already noticed that partitions yielded by local optimization algorithms were
not optimal. One of the most vocal communities was the users of iterative linear system solving
methods [31, 116], who found that such partitions were not tted for their purpose, because
subdomains with longer frontiers or irregular shapes resulted in a larger number of iterations
to achieve convergence. To measure the quality of each of the parts, several authors refer to a
metric called aspect ratio, which can be thought in d dimensions as the ratio between the size of

37

the interface of a part with respect to the % g power of the size of its contents [29, 31, 104].

The more compact a part is, the smaller its aspect ratio value is.

In [31], Diekmann et al. demonstrated such a behavior, and proposed both a measure of
the aspect ratio of the parts, as well as a set of heuristics to create and re ne the partitions,
with the objective of decreasing their aspect ratio. Among these algorithms is a bubble-growing
algorithm, the principle of which was presented in Section 2.5.3. An important drawback of this
method is that it does not guarantee that all parts will hold the same number of vertices, which
means that afterward other heuristics have to be called on to restore the load balance. Also, all
of the graph vertices must be visited many times, which makes this algorithm quite expensive,
the more so because it is combined with costly algorithms such as simulated annealing, and the
computation of the aspect ratio requires some knowledge on the geometry of the graphs, which
is not always available.

In [85], Meyerhenke and Schamberger further explore the bubble model, and devise a way
to grow the bubbles by solving, possibly in parallel, systems of linear equations, instead of
iteratively computing bubble centers. This method yields partitions of high quality too, but is
very slow, even in parallel [86], and the load balancing problem is also not addressed, which
means resorting to a greedy load balancing algorithm afterward. Speed concerns were partially
resolved by their integration of our band graph technique [84], which we are going to describe
in detail in the next section.

4.2 Band graphs

4.2.1 Reducing problem space

Since the strong sequentiality constraint of local re nement algorithms seemed too hard to
overcome, resulting either in a loss of partition quality or o ering poor scalability, the most
straightforward path towards e cient parallel re nement was to try to reduce the cost of global
algorithms without losing in partition quality; otherwise, the solutions already implemented
in ParMeTliS would already have been an acceptable trade-o . This strong constraint on the
preservation of quality prevents the weakening of the algorithms in any way. The only solution
was therefore to reduce problem space.

By looking back at the essence of the multilevel framework, it soon appeared that, because
of the local nature of both the FM and the uncoarsening algorithms, it was most likely that
the re ned partition computed at any level would not di er much from the partition that was
prolonged back to this level, as this latter is itself the prolongation of a partition that was a
local optimum in the coarser levels. Therefore, to re ne a partition, FM-like algorithms would
not need to know more of the graph topology than a small band around the boundary of the
prolonged partition. We have therefore implemented a band graph extraction algorithm, which
only keeps vertices that are at small distance from the prolonged separators, such that our local
optimization algorithms are applied to these band graphs rather than to the whole graphs, as
illustrated in Figure 4.3 in the sequential case. Vertices which do not belong to the band graph
are merged into two anchor vertices of weights equivalent to those of the merged vertices.

Using local optimization algorithms such as FM on band graphs substantially di ers from
what is called boundary FM in the literature [53, 68]. This latter technique amounts in
FM-like algorithms to recomputing gains of vertices which are in the immediate vicinity of the
current separator only, in order to save computation time, and our FM implementations also

LFor instance, for a 2D mesh, the aspect ratio of a part is measured as the ratio between the length of the
perimeter of the part, with respect to the square root of its surface. The lower bound for this metric is achieved
for parts of circular shape in the 2D Euclidean space.

38

Figure 4.3: Multilevel banded re nement scheme. A band graph of small width is created around
the prolonged ner separator, with anchor vertices representing all of the removed vertices in
each part. After some optimization algorithm (whether local to the frontier or global to the
band graph) is applied, the re ned band separator is prolonged back to the full graph, and the
uncoarsening process continues.

bene t from this optimization, even on band graphs themselves. What di ers with our use of
band graphs is that feasible moves are limited to the band area, from which re ned separators
will never move away, while they could move far away from prolonged separators in the case of
unconstrained FM, whether boundary-optimized or not.

4.2.2 Dimensioning and impact of band graphs

Our rst experiments with band graphs were carried out on the sequential version ofScotch [23],
to re ne vertex separators for nested dissection ordering; an edge-oriented version was completed
shortly afterward [95], as well as parallel implementations of both of the above [24].

We started by instrumenting our sequential partitioning software Scotch in order to mea-
sure how much re ned partitions di er from prolonged partitions. Since, at the time, our target
application required vertex separators, we focused on them for these experiments, but the same
kind of measures could have been obtained from edge separation routines as well. For every
separator computed in a nested dissection process (which stops when subgraphs are of sizes of
about a hundred vertices), we accumulated the numbers of re ned separator vertices that ended
up at a given distance from the prolonged separators. These results are presented in Table 4.1.

As expected, the overwhelming majority of re ned separator vertices was not located at a
distance greater than three from the vertices of the prolonged separators. Therefore, it could be
assumed that the quality of partitions should not be impacted if re ned partitions are computed
on band graphs only. In order to validate this second assumption, we developed iBcotch a
partitioning method which extracts a band subgraph of given width from a given graph and its
given initial separator, applies an FM separator re nement method to the initial separator of
the band subgraph, and prolongs back the re ned band separator to the full graph. We then
replaced all of our calls to the FM re nement algorithm by calls to this band FM re nement
algorithm.

Looking at the results produced, it appeared that band FM re nement seemed to be more
stable than the classical FM algorithm. In the former production version of Scotch , two runs
of multilevel bipartitioning were performed for each subgraph, and then the best separator of
the two was kept. When using band FM re nement, equivalent results were obtained with only
one run, as presented in Table 4.2.

Most of the time, the quality of band FM lies between the one exhibited by one and two
runs of the classical FM method. In terms of time, we can evidence a moderate over-cost
with respect to a single run of classical FM, because of the computation of the band graph.
Our interpretation is that pre-constrained banding prevents local optimization algorithms from
exploring and being trapped in local optima that would be too far from the global optimum

39

Figure 4.4. When two coarse vertices are at distancd from each other, their associated ne
vertices are at most at distance3. Ellipses in the left picture represent coarse vertices.

sketched at the coarsest level of the multilevel process. The optimal band width value o8
that we have evidenced is signi cant in this respect: it is the maximum distance at which two
vertices can be in some graph when the coarse vertices to which they belong are neighbors in
the coarser graph at the next level (see Figure 4.4). Therefore, keeping more layers of vertices
in the band graph is not useful, because allowing the ne separator to move a distance greater
than 3 in the ne graph to reach some local optimum means that it could already have moved
to this local optimum in the coarser graph, save for coarsening artefacts, which are exactly what
we do not want to be in uenced by. Moreover, even if the separator cannot move more than
three vertices away at any level, it has the ability to move again at the next levels to reach its
local optimum, therefore compensating on several levels for the necessary moves it could not do
on a single level.

4.2.3 Distributed band graphs

The computation and use of distributed band graphs does not di er much from their sequential
counterparts [58]. Given a distributed graph and a prolonged separator, which can span across
several processes, vertices which are closer to separator vertices than some small user-de ned
distance are selected, by spreading distance information from all of the separator vertices by
means of as many halo exchanges as the desired width of the band graph. Then, the distributed
band graph is created, by adding on every process two anchor vertices, which are connected to
the last layers of vertices of each of the parts. The vertex weight of the anchor vertices is equal
to the sum of the vertex weights of all of the vertices they replace, to preserve the balance of
the two band parts.

While sequential band graphs have only one anchor vertex per part, we did not transpose
this to the parallel case, because anchor vertices would have had very high degrees, possibly
creating communication bottlenecks and interfering with the internals of some optimization al-
gorithms. In the parallel bipartitioning case, there are two anchor vertices per process, so that
each of the anchor vertices is connected to all of the local vertices of the last layer belonging
to the same part, as well as to all the remote anchor vertices of the same part, forming two
distributed cliques, as illustrated in Figure 4.5. Of course, for numbers of processes above tens
of thousands, another system should be implemented, for instance some avor of tree or some
low degree, low diameter graph such as the hypercube. As for the sequential case, once the
separator of the band graph has been re ned using some parallel re nement algorithm, the new
separator is prolonged back to the original distributed graph.

40

Figure 4.5: Computation of a distributed band graph from a bipartitioned graph distributed
across three processes. The solid line is the current partition frontier, while dotted lines represent
the separation between process domains. Merged vertices in each part are now represented by
a cligue of local anchor vertices, one per process and per part.

Figure 4.6: Computation of a distributed band graph from a 8-partitioned graph distributed
across three processes. The solid line is the current partition frontier, while dotted lines represent
the separation between process domains. Merged vertices in each part are now represented by
a cligue of local anchor vertices, one per process and per part. Anchor vertices which would not
be connected to vertices in their part are not created.

At the time being, band graphs extraction methods are available, both for centralized and
distributed graphs, for the vertex separation and edge bipartitioning strategies ofScotch .
This work is currently being extended to the k-way case, by creating as many cliques of anchor
vertices as there are parts in the partition, as illustrated in Figure 4.6. This k-way band
graph is planned to be used in conjunction withk-way versions of the algorithms described in
sections 4.4.1 and 4.5.3.

Although the distribution of band graph data is likely to be extremely imbalanced, with
some processes even being completely idle, to date, we do not redistribute band graph data
before calling parallel re nement methods, because we assume that the cost of redistribution
would be too high?. Yet, when running on very large machines, where collective communication
costs are likely to be very high, it might be interesting to fold-dup band graphs on several
subsets of processes and to run re nement methods concurrently and independently on each of
these subsets. The application to parallel GA of such a multiple fold-dup will be described in
Section 4.4.1.

2All the more so as we perform multi-centralization on band graphs just after they are created; see next
section.

41

Figure 4.7: Diagram of the multi-sequential re nement of a separator prolonged back from a
coarser graph distributed across four processes to its ner distributed graph.

4.3 Multi-centralization

The implementation of distributed band graphs in PT-Scotch was accompanied by the cod-
ing of a multi-centralized re nement algorithm, outlined in Figure 4.7. At every distributed
uncoarsening step of the multilevel framework, a distributed band graph is created. Centralized
copies of this band graph are then gathered on every participating process, which can run fully
independent instances of sequential local optimization algorithms such as FM. The perturba-
tion, on every process, of the initial state of the sequential FM algorithm, by permuting the
order in which vertices of same gain value are inserted into the gain arrays, allows each of the
local optimization algorithms to explore slightly di erent solution spaces, and thus to improve
re nement quality. Finally, the best re ned band separator is prolonged back to the distributed
graph, and the uncoarsening process continues.

This method is clearly not scalable at all. There will always be a point where centralized
graphs will no longer tin the memory of the processors of the parallel machine, and where the
execution of so many local optimization algorithms on the multi-centralized band graphs will
be a waste of run time because, in spite of the perturbations of their initial state, most of the
obtained local optima will be identical.

Yet, as a temporary solution, it has proved useful to preserve separator quality when comput-
ing nested dissection orderings for graphs of up t&82 million vertices, on hundreds of processors.
This was one of the bottlenecks we had to overcome in order to provide a fully parallel software
chain, in conjunction with the PaStiX parallel sparse linear solver also developed within our
team [36, 57], for solving some large-scale structural mechanics and electro-magnetics prob-
lems [48].

The limitation of problem space o ered by band graphs seems to be signi cant enough to
allow us to compute high-quality partitions of distributed 3D mesh graphs of up to a billion
vertices, which was the goal of our initial roadmap. Since the expected size of the separator of
a n-vertex 3D mesh graph is inO(n%73) [110], the order of magnitude of the rst separator of
a 3D graph about a billion vertices should be of about a million vertices, which can be handled
by a sequential computer.

Tables 4.3 and 4.4 present the operation counts (OPC) computed on the orderings yielded by
PT-Scotch and ParMeTiS for some test graphs. These results have been obtained by running

42

PT-Scotch with the following default strategy: in the multilevel process, graphs are coarsened
without any folding until the average number of vertices per process becomes smaller that00
after which the fold-dup process takes place until all graphs are folded on single processes and
the sequential multilevel process relays it.

On these moderate numbers of processes, the improvement in quality ®T-Scotch is
clear. Ordering quality does not decrease along with the number of processes, as our local
optimization scheme is not sensitive to it, but instead most often slightly increases, because
of the increased number of multi-sequential optimization steps which can be run in parallel.
Graphs in Figures 4.8 and 4.9 evidence thatPT-Scotch clearly outperforms ParMeTiS in
term of ordering quality. For both graphs, the results of PT-Scotch are very close to those
obtained by the sequential Scotch software, while the costs ofParMeliS orderings increase
dramatically along with the number of processes.

(a) OPC for graph audikwl . (b) NNZ Il ratio for graph audikwl .

Figure 4.8: Ordering results with PT-Scotch and ParMeliS for graph audikwl . Figures
extracted from [24].

(a) OPC for graph cagel5s. (b) NNZ Il ratio for graph cagel5.

Figure 4.9: Ordering results with PT-Scotch and ParMeliS for graph cagel5. Figures
extracted from [24].

While PT-Scotch is slower on average tharParMeliS , because it computes its orderings
by means of recursive bipartitioning rather than by extrapolation from a direct k-way parti-
tioning, it can yield operation counts that are as much twice as small as those fronParMeTS
which is of interest as factorization times are more than one order of magnitude higher than or-

43

dering times. For example, it took only 41 seconds to versiorb.0.6 of PT-Scotch to order the
brgm matrix on 64 processes, and abouk80seconds toMUMPS [2] to factorize the reordered
matrix on the same number of processes. As the factorization process is often very scalable,
it can happen, for very large numbers of processes, that ordering times withPT-Scotch are
higher than factorization times, because communication latencies dominate and scalability can
no longer be guaranteed. Because of their di erent complexity and scalability behavior, it is in
general not useful to run the ordering tool on as many processes as the solver; what matters is to
have enough distributed memory to store the graph and run the ordering process, while keeping
good scalability in time. Moreover, in various applications, the ordering phase is performed
only once while the factorization step is repeated many times with di erent numerical values,
the matrix structure being invariant. This is the reason why, at rst, we essentially focused on
ordering quality rather than on optimal scalability.

As seen above, the multi-sequential FM re nement algorithm that we currently use is by
nature not scalable, and its cost, even on band graphs, is bound to dominate parallel execution
time when the number of processors increases. This is why on some of the graphs presented
here, depending on their size, average degree and topology, the run time &T-Scotch no
longer decreases. This is why we investigated global re nement methods.

4.4 Genetic algorithms

Local optimization algorithm are not well suited because of their iterative nature, which implies
sequential computations on large chunks of the graph so as to bene t from their hill-climbing
capabilities on the enclosed portions of the frontier. As evidenced in [119], the trade-o0 between
scalability and partition quality lies in the number and size of the chunks. On the contrary,
global heuristics, although potentially more scalable, are usually not considered as good candi-
dates because of the size of the problem spaces to explore. However, the band graphs which we
introduced in the previous section result in a dramatic reduction of problem space. Perform-
ing sequential optimization on band graphs is somewhat equivalent to applying the method of
Walshaw and Cross to only one big chunk containing all of the area around the frontier, which
is obviously not scalable in their case. However, global methods could well take advantage of
this reduction.

The rst class of global methods that we considered for this purpose was genetic algo-
rithms [23]. The proof-of-concept algorithm which we developed in order to validate the use of
genetic algorithms on band graphs was based on the sequential version €otch , to speed-up
developments, and used thread-based parallelism to implement concurrency.

Since, at that time, we were focusing on sparse matrix ordering, individuals of the genetic
population represent vertex separators. In the graph separation problem, every vertex can
belong to three di erent domains: the separator, or any of the two separated parts. Therefore,
every individual in the population is represented as a linear array, modeling a chromosome,
which associates a number betweef and 2 to any graph vertex index.

The reproduction operator is a classical multi-points cross-over operator, which is applied
at a randomly-selected position of two mated individuals, and swaps one part of their arrays
to produce two descendants. The mutation operator consists in swapping the part of randomly
chosen vertices on some individuals. Since these naive operators cannot enforce that the crossed-
over and mutated individuals be valid solutions, they are post-processed with a consistency-
checking phase which adds vertices to the separator whenever necessary, and removes unneeded

3However, the solution which we implemented easily transposes to the edge partitioning case, in a way similar
to the one presented in [113].

44

separator vertices.

Individuals are evaluated by means of a tness function, which linearly combines dimen-
sionless numbers such as the ratio of graph vertices that belong to the separator, the imbalance
between the two parts, and the ratio of graph edges that link separator vertices. The rst
generation is made up of individuals that are mutations of the prolonged patrtition, plus some
entirely random individuals which provide genetic diversity. To select and mate individuals, we
have implemented several classical algorithms [61, 72, 88]. Although all methods behave quite
similarly, best results were achieved in our case with a mix of the elitism and roulette methods:
the 5% best individuals are kept unconditionally, and each of the remaining ones is kept with
a probability proportional to its tness; the e ciency of elitist policies in the case of graph
partitioning has also been noted by other authors [104, 111], as related to the fact that most
of the o spring generated are not of very high quality. Then, individuals are mated by pairs of
descending tness, and bred so as to keep constant population. Our prototype sequential imple-
mentation was multi-deme, each of the demes being handled by a di erent thread. Migration
is performed when the variety of the population in some deme decreaseise. when individuals
are too similar to their local champion.

To evaluate the convergence speed of our GA algorithm, we computed nested dissection
orderings of several test graphs with our multilevel band GA method. These tests were run
on the M3PEC machine of the Université Bordeaux |, an eleven-node IBM machine with eight
1.5 MHz dual-core processors and 32 GB of memory per node. Since our implementation
was thread-based only, timings of tests involving more than sixteen threads (written between
parentheses) are estimated: these tests are still run on a single SMP node, with as many threads
per core as necessary, and the running time is divided by the appropriate ratio.ParMeTS
however, uses MPI, and runs fully in parallel.

Table 4.5 presents some results for grapbcsstk29 . These results show that GA converges
quite well, and that quality can be improved by increasing computation time and/or population
size. As expected, running times are high, but GA are highly scalable, so that computation time
can be reduced by adding processes, and partitioning quality can be increased by giving more
time. The comparison between the two lines of equivalent computational cost, that is(80; 1; 25)
and (40; 2; 25), is also very informative, as it shows the interest of multiple demes when mating
is performed on an elitism basis. Indeed, the problem with the elitism selection policy is that it
might wipe out individuals which are too far from the optimum while possessing characteristics
which, combined with the best individuals, would yield an improvement. Being able to preserve
such individuals on separate demes preserves genetic diversity. In the above cases, more demes
with smaller populations mean faster execution (because of increased concurrency in the GA
method) and better solution (because of increased genetic diversity).

The second class of experiments that we have run aimed at evaluating the scalability of
our method in terms of quality and running time. In order to compare our ordering software
to ParMeTS in similar conditions, we ran our method on numbers of processorp which are
powers of twd* and performed band GA on the rst log,(p) levels only, using band FM afterward.
This execution scheme, which we will refer to as limited GA (LGA) in all of the following,
aims at simulating the execution of PT-Scotch on p processes, where distributed algorithms
(including some distributed version of our GA method) would be used on the rstlog,(p) levels
of nested dissection, before the software switches to purely sequential processing which can
make use of the sequential FM local optimization method. When running the threaded GA
method, the population is evenly spread on all of the threads, with at least100 individuals on

“ParMeTiS can only compute orderings on numbers of processes which are a power of two. Our method itself
bears no such limitation.

45

the whole and at least25 individuals per deme; therefore, from4 threads and above, the global
population remains constant per thread and doubles with the number of threads.

Our results, which are summarized in Table 4.6, are mixed, but encouraging as our im-
plementation left much room for improvements. On the whole, partitioning quality tends to
degrade when the number of processors increases: on our worst casew32, we lose about60%
in OPC quality between 1 and 64 processors, while it remains almost constant focoupole8000 .
However, above8 processors, our results clearly outperform those oParMeTiS , by a factor
greater than two for thread . As expected, the higher the degree of the graph is, the bigger the
di erence, becauseParMelS can only do gradient local optimizations on nodes which have
neighbors on other processors. In that respect, GA prove they can o er a scalable solution to
the problem experienced by parallel implementations of FM-like algorithms. Yes, the loss in
separator quality has to be fought.

Partitioning times are also promising. Although the run time of a single sequential band
GA re nement algorithm is between 30 and 80 times higher than that of its sequential band
FM counterpart, the scalability of GA allows it to compete favorably with distributed FM-
like methods for large numbers of processes. In the above results, the overall running time
of our LGA ordering program does not increase much with respect to FM-like methods when
the number of processors increase. While a doubling of the number of processors implies the
turning of a whole level of band FM re nements into band GA re nements, it is only smaller
and smaller subgraphs which are passed to GA instead of FM, resulting in a bounded increase
of run time.

4.4.1 Parallelization of genetic algorithms

For reasons which will be exposed in the next section, the prototype implementation described
above has not been turned into a distributed, fully functional production code. Yet, we are
convinced that, when applied to band graphs and when judiciously accelerated by means of
more specialized methods, distributed GA can be an e ective algorithm for parallel partition
re nement. However, in order to achieve maximum scalability, its implementation must possess
several key features.

First, it should be able to handle chromosomes split across several processes. For graphs
well above a billion of vertices, centralized band graphs will no longer hold in the memory of
compute nodes, and storing the individuals as well as computing their tness must consequently
be performed in a distributed way, based on the assignment of the vertices of the distributed
band graph to the nodes of the target machine. Second, in order to preserve the desirable multi-
deme feature, demes should also be able to span across several processes. However, in order
to localize intra-deme communication, as well as inter-deme communication when exchanging
champions, demes should span on as few processes as possible. The number of processes onto
which chromosomes will have to be split can be estimated depending on available memory, on
the size of the band graph, and on the desired maximum population per deme. This will give an
upper bound on the number of demes. Then, knowing the number of desired or possible demes
and/or the number of processes per deme, band graphs can be redistributed such that each of the
demes will possess a copy of the (re-)distributed band graph The distributed GA computation
can then take place, synchronously or asynchronously, on each of the sub-communicators created
for each of the demes, with the occasional sending of champions from the processes of one deme
to their counterparts of some other deme. The potential asynchronicity of the method might

5This redistribution will in fact be a concentration, since the data of band graphs distributed across all of the
available processes will be gathered onto limited subsets of these processes, in multiple copies. This process is
very much like a fold-dup, albeit in multiple copies and not just two.

46

well be its key advantage on very large target architectures of the future, compared to the
method described below.

4.5 Di usion algorithms

As demonstrated in the previous section, GAs have interesting characteristics in terms of scal-
ability and quality. However, their convergence rate is slow, because they are not specialized
enough with respect to the problem at stake, as illustrated in Figure 4.2. In order to save time
and compute power, it appeared worthwhile to turn to methods which speci cally address our
requirements for small and smooth frontiers, while still being of global and scalable nature. This
is why we investigated di usion-based methods instead of developing a fully parallel version of
our GA method.

In spite of the quality of the partitions they provide, all of the existing di usion schemes (see
Section 4.1.2) had two drawbacks. First, they did not intrinsically balance loads between parts,
which required further post-processing of the produced partition by local migration algorithms
of an iterative nature, that is, just those which we wanted to eliminate; second, they were quite
expensive, as they involved all of the graph vertices. The method which we devised [95], and
which is described below, aimed at addressing concurrently both of these issues.

4.5.1 The jug of the Danaides

Our di usion scheme can apply to an arbitrary number of parts, but for the sake of clarity we
will describe it in the context of graph bipartitioning, that is, with two parts only. We modeled
the graph to bipartition in the following way, depicted in Figure 4.10. Nodes are represented as
barrels of in nite capacity, which leak so that one unit of liquid at most drips per unit of time.
When graph vertices are weighted, always with integer weights, the maximum quantity of liquid
to be lost per unit of time is equal to the weight of the vertex. Graph edges are modeled by
pipes of cross-section equal to their weight. In both parts, a source vertex is chosen, to which
a source pipe is connected, which ows in'VTJ units of liquid per unit of time. Two sorts of
liquids are in fact injected in the system: scotch in the rst pipe, and anti-scotch in the second
pipe, such that when some quantity of scotch mixes with the same quantity of anti-scotch, both
vanish®. To ease the writing of the algorithm in the bipartitioning case, scotch is represented by
positive quantities and anti-scotch is represented by negative ones, so that mutual destruction
naturally takes place when adding any two quantities of opposite signs.

The di usion algorithm performs as outlined in Figure 4.11. For each time step, and for
each vertex, the amount of liquid (whether scotch or anti-scotch) which remains after some
has leaked is spread across the connecting pipes towards the neighboring barrels, according to
their respective sections. This process could be iterated until convergence, but in fact it is only
performed for a number of steps su cient to achieve sign stability. Indeed, we are not interested
in complete convergence, but in the stability of the signs of all content quantities borne by graph
vertices, which indicate whether scotch or anti-scotch dominates in the barrels, that is, if the
vertex belongs to part 0 or 1.

SincejVj units of both liquids are injected on the whole per unit of time, and since all of the
barrels can leak the same overall amount in the same time, the system is bound to converge,
all the more so that liquid can disappear by collision of scotch and anti-scotch. As in the
bubble schemes, what is expected is that a smooth front will be created between the two parts.

5The author cannot imagine what anti-scotch can be, and therefore has not provided an explicit name for
it. The idea of having so much scotch leak from its barrels, or to have it vanish, is also quite revolting for any
civilized mind. Science indeed imposes sacri ces.

47

Figure 4.10: Sketch of our di usion model.

The purpose of the algorithm is more to have a global smoothing of the frontier than a strict
minimization of the cut. In fact, unlike all of the algorithms presented in Section 4.1.2, our
method privileges load balancing over cut minimization. For this latter criterion, we rely on an
additional feature of our scheme, as explained below.

4.5.2 Diusion on band graphs

Our di usion algorithm, as such, presents two weaknesses: nothing is said about the selection of
the seed vertices, and performing such iterations over all of the graph vertices is very expensive
compared to local optimization algorithms which only consider vertices in the immediate vicinity

of the frontiers. However, both issues can be solved by the use of the band graphs presented in
Section 4.2.

Anchor vertices represent a natural choice to be taken as seed vertices. Indeed, the most
important problem for bubble-growing algorithms is the determination of the seed vertices from
which bubbles are grown, which requires expensive processes involving all of the graph ver-
tices [31, 85]. Since anchor vertices are connected to all of the vertices of the last layers, the
di used liquids ow as a front as if they originated from the farthest vertices from the frontier,
which is indeed what would happen if they owed from the center of a bubble having the frontier
as its perimeter.

The di usion algorithm discussed above has been implemented as a sequential graph bipar-
titioning method. All of the necessary oating-point arithmetic has been implemented in single
precision.

These tests were run on a Lenovo ThinkPad T60 laptop, with an Intel dual-core T2400
processor running at 1.8 MHz and 1 Gb of memory. As we ran sequential tests only, the
dual-core feature of the processor is not relevant. Test graphs were partitioned int@ to 128
parts, and three quality metrics were considered: the number of cut edges, calle@ut ; a load
imbalance ratio equal to the size of the largest part divided by the average size, calledlaCut ;
and the maximum diameter of the parts, referred to asMDi , which is an indirect metric of
the shape of the partition, and is usable even in the case of graphs of unknown or nonexistent
geometry. The latter metric is however insu cient, as it does not really capture the smoothness
of the interfaces, since irregularly shaped parts can still have small diameters.

Three di usion heuristics were compared against the classical multilevel recursive bipar-

48

while (number of passes to do) {
reset contents of newarray to 0;
old[sp] old[so] j Vj=2; [* Refill source barrels */
old[s1] old[s1]+ jV)j=2;
for (all vertices v in graph) {

c old[v]; /* Get contents of barrel */
if (jcj > weight [v]) { [* If not all contents have leaked */
c % weight [v] sign(c); /* Compute what will remain */
e=(viv 0) weight [€]; /* Sum weights of all adjacent edges */
for (all edgese=(v;Vv9) { /* For all edges adjacent to v */
f c weight[e]= ; [* Fraction to be spread to V' */
newv’ newv?+ f; /* Accumulate spreaded contributions */
}
}

}

swap old and newarrays;

}

Figure 4.11: Sketch of the jug of the Danaides diusion algorithm. Scotch, represented as
positive quantities, ows from the source of part 1, while anti-scotch, represented as negative
guantities, ows from the source of part 0. For each step, the current and new contents of every
vertex are stored in arraysold and new respectively.

titioning strategy implemented in Scotch 4.0 , referred to as RMF in the following, which
performs recursive bipartitioning with bipartitions computed in a multilevel way, using FM
re nement.

The rst method, RMBD, uses the same recursive bipartitioning and multilevel strategy, but
banded di usion is performed during the multilevel re nement steps. The results achieved with
this method validate our approach: the obtained partitions have very smooth boundaries (see
Figure 4.13.b), and are adequately balanced if the number of di usion iterations is su ciently
high, as shown in Table 4.7.

When performing 100 di usion steps, the average MaCut value for RMBD is 1:046, only
1:80 % higher than the one of RMF. However, the maximum diameterMdi is not signi cantly
reduced, and is even increased on average b469% with respect to RMF. This method is
also 5:33 times slower than RMF and increases the cut by about20% which makes it of little
practical use.

We have therefore experimented a second method, RMBDF, where the classical FM algo-
rithm is applied to the band graph after the di usion algorithm. The idea of this strategy is
to benet from the global optimization capabilities brought by the di usion algorithm, while
locally optimizing the frontier afterward. Even when performing 40 di usion steps only, the
smoothness of the boundaries is preserved and parts are more balanced, while the cut is only
increased by 3:10% with respect to RMF. This strategy is also only three times slower than
RMF, which is extremely fast for a di usion-based algorithm.

In order to favor the minimization of diameters, we have modi ed our di usion method so
as to double at each step the amount of liquid borne by every vertex, in an avalanche -like
process. This method is referred to as aD. It is no longer bound to converge, and indeed
causes over ows for large numbers of di usion steps, but gives good results for small numbers
of iterations. As a matter of fact, we can see in Table 4.7 that the RMBaDF method is the
most e cient one on average, and yields better results than the classical RMF method while
still providing smooth boundaries, as evidenced in Figure 4.13.c. Further studies are however
necessary to determine whether this scheme is stable enough for larger band graphs or yields
over ows before all signs have been stabilized.

49

Figure 4.12: Partition of graph bump into 8 parts with Scotch 5.0.6 , using the MBDF strategy.
The cut is equal to 713 edges. This picture is to be compared with Figure 2.8, page 15.

(a) RMF. (b) RMBD. (c) RMBaDF.

Figure 4.13: Partition of graph altr4 into 8 parts using Scotch 5.0.6 with three di erent
strategies. The segmented frontiers produced by FM-like algorithms are clearly evidenced in
Figure (a). RMBD produces the smoothest boundaries, as shown in Figure (b). RMBaDF takes
the best of both worlds, in Figure (c).

Table 4.8 compares some of our results against those obtained witkMeTiS . kMeTS
uses directk-way partitioning instead of recursive bipartitioning, which usually makes it more
e cient when the number of parts increases, and also much faster (from10 to 20 times). As
analyzed in [110], the performance of recursive bipartitioning methods tends to decrease when
the number of parts increases, which should limit the e ciency of RMBDF methods for large
numbers of parts. A full k-way di usion algorithm is therefore required.

4.5.3 Parallelization of the di usive algorithms

Our diusion algorithm has the additional benet of being highly scalable, and its parallel
version does not substantially di er from its sequential counterpart [58]. It relies on the low-
level halo exchange routines of thePT-Scotch library to propagate on local ghost nodes the
amount of liquids to be spread, per edge weight unit, by each non-local neighbor vertex as the
result of the previous iteration, and uses these values to compute the new amounts for all of
the local vertices, including the leakage e ect once all contributions have been received.

As said above, to date, it only handles two kinds of liquid, limiting its use to the recursive
bipartitioning case.

50

We present below the results that we have obtained with the most recent version oPT-
Scotch by the time this dissertation is written, that is, revision 5.1.6. This revision includes
all of the contributions that were discussed in the previous sections. In these test$?T-Scotch
has been used to compute graph partitions in parallel by means of recursive bisection, using
probabilistic matching, fold-dup on the nal coarsening stages, and diusion on distributed
band graphs.

Our experiments were performed on the Platine supercomputer at CCRT. This machine
is a Bull Novascale cluster 0f932 compute nodes interconnected via an In niband network.
Each node has four dual-core Intel Itanium Il processors. The metric that we considered for
evaluating the quality of partitions is cut size.

51

Distance

Graph 0T T 2] 3] 4
3elt 5351 | 3423 | 867 | 2.31 | 1.29
4elt2 51.:66 | 3798 | 7:33 | 1:63 | 1:40
4elt 5316 | 3629 | 7:16 | 1:84 | 1.54
598a 76:23 | 2345 | 0:32 | 0:00 | 0:00
aatken 77.00 | 2045 | 2.27 | 0:24 | 0:04
altr4 7419 | 2489 | 0:80 | 0:12 | 0:00
audikwl 91:44 | 855 | 0:01 | 0:00 | 0:00
auto 77:89 | 21:89 | 0:22 | 0:00 | 0:00
b5tuer 7418 | 2296 | 1:85 | 0:42 | 0:59
bcsstk29 82:04 | 17.66 | 0:30 | 0:00 | 0:00
bcsstk30 87:17 | 1253 | 0:29 | 0:01 | 0:00
bcsstk31 81:90 | 17:69 | 0:39 | 0:02 | 0:00
bcsstk32 81:91 | 17:80 | 0:23 | 0:03 | 0:02
bmw32 8098 | 1831 | 0:50 | 0:08 | 0:14
bmwcral 91:29 | 858 | 0:13 | 0:00 | 0:00
body 6749 | 30:20 | 2208 | 0:20 | 0:04
bracket 7247 | 2619 | 1:.08 | 0:16 | 0:10
bump 4833 | 37.08 | 9:54 | 273 | 2:32
chanellm 7465 | 2409 | 1:16 | 0:10 | 0:00

conespherelm 8216 | 17:67 | 0:17 | 0:00 | 0:00
coupole8000 90:23 | 9:74 | 0:03 | 0:00 | 0:00

crankseg2 9580 | 4:17 | 0:01 | 0:02 | 0:00
guptal 96.05 | 3:61 | 0:34 | 0:00 | 0:00
inlinel 87:57 | 1235 | 0:08 | 0:00 | 0:00

m14b 7865 | 21:17 | 0:18 | 0:00 | 0:00
mtl 84:79 | 1400 | 0:93 | 0:25 | 0:04
ocean 60:43 | 3286 | 458 | 1.29 | 0:84
oilpan 7760 | 2054 | 1:20 | 0:17 | 0:49
pwt 5435 | 37.31 | 6:10 | 1:56 | 0:69
rotor 7709 | 21:99 | 0:75 | 0:11 | 0:06
s3dkg4m2 7872 | 20:34 | 0:89 | 0:04 | 0:00
ship001 91:43 | 851 | 0:05| 0:00 | 0:00
shipsec5 8229 | 17:28 | 0:41 | 0:03 | 0:00
sphere 46:32 | 39.82 | 9:44 | 2.02 | 240
thread 91:40 | 853 | 0:06 | 0:00 | 0:00
tooth 6990 | 26:82 | 242 | 0:63 | 0:24
x104 8664 | 1281 | 0:51 | 0:03 | 0:00

Table 4.1: Distance histogram (in % of the number of separator vertices) of the location of
re ned separator vertices with respect to prolonged separators, for a representative subset of
our test graphs. These statistics have been collected over all separators when performing nested
dissection on the given graphs. Data extracted from [23].

52

Graph Band FM (1 run) FM (2 runs) FM (1 run)

OPC | Time (s) OPC | Time (s) OPC | Time (s)
aatken 1.72e+11 6.17 | 1.70e+11 10.79| 1.73e+11 5.38
auto 5.14e+11 47.09 | 4.98e+11 75.00| 5.27e+11 39.40
bcsstk32 1.40e+9 1.16 | 1.28e+9 1.65 1.40e+9 1.02
coupole8000 7.57e+10 210.15| 7.48e+10 346.81| 7.57e+10 183.72
m14b 6.27e+10 21.4| 6.31le+10 33.42 | 6.03e+10 17.56
tooth 6.50e+9 5.66 6.51e+9 9.01 6.71e+9 4.64
audikwl 5.58e+12 59.32 | 5.48e+12 86.78 | 5.64e+12 50.33
bmw32 3.15e+10 452 | 2.75e+10 6.51| 3.07e+10 4.08
oilpan 2.92e+9 0.73| 2.74e+9 0.95 2.99e+9 0.69
thread 4.17e+10 1.62 | 4.14e+10 230 | 4.17e+10 1.44
x104 1.84e+10 1.97 | 1.64e+10 2.60| 1.80e+10 1.83
altr4 3.68e+8 1.55| 3.65e+8 2.52 3.84e+8 1.32
conespherelm|| 1.83e+12 122.03| 1.85e+12 192.27| 1.88e+12 100.19

Table 4.2: Comparison between band FM and classical FM. Tests have been run on a 375MHz
IBM SP3.

53

Test Number of processes
case 2 4 \ 8 \ 16 \ 32 \ 64
23millions
Opts || 1.45e+14 | 2.91e+14 | 3.99e+14 | 2.71e+14 | 1.94e+14 | 2.45e+14
Opm y y y y y y
tpTs 671.60 416.75 295.38 211.68 147.35 103.73
tpm y y y y y y
altr4
Opts || 3.84e+8 3.75e+8 3.93e+8 3.69e+8 4.09e+8 4.15e+8
Opwm 4.20e+8 4.49e+8 4.46e+8 4.64e+8 5.03e+8 5.16e+8
tpTs 0.42 0.30 0.24 0.30 0.52 1.55
tpm 0.31 0.20 0.13 0.11 0.13 0.33
audikwl
Opts || 5.73e+12 | 5.65e+12 | 5.54e+12 | 5.45e+12 | 5.45e+12 | 5.45e+12
Opwm 5.82e+12 | 6.37e+12 | 7.78e+12 | 8.88e+12 | 8.91e+12 | 1.07e+13
tpTs 73.11 53.19 45.19 33.83 24.74 18.16
tpm 32.69 23.09 17.15 9.804 5.65 3.82
bmw32
Opts || 3.50e+10 | 3.49e+10 | 3.14e+10 | 3.05e+10 | 3.02e+10 | 3.00e+10
Opwm 3.22e+10 4.09e+10 | 5.11e+10 | 5.61e+10 | 5.74e+10 | 6.31e+10
tpTs 8.89 7.41 5.68 5.45 8.36 17.64
tpm 3.39 2.28 151 0.92 0.68 1.08
brgm
Opts || 2.70e+13 | 2.55e+13 | 2.65e+13 | 2.88e+13 | 2.86e+13 | 2.87e+13
Opm y y y y y
tpTs 276.9 167.26 97.69 61.65 42.85 41.00
tpm y y y y y
cagel5
Opts || 4.58e+16 | 5.01e+16 | 4.64e+16 | 4.95e+16 | 4.58e+16 | 4.50e+16
Opwm 4.47e+16 6.64e+16 y 7.36e+16 | 7.03e+16 | 6.64e+16
tpTs 540.46 427.38 371.70 340.78 351.38 380.69
tpm 195.93 117.77 y 40.30 22.56 17.83
conespherelm
Opts || 1.88e+12 | 1.89e+12 | 1.85e+12 | 1.84e+12 | 1.86e+12 | 1.77e+12
Opwm 2.20e+12 | 2.46e+12 | 2.78e+12 | 2.96e+12 | 2.99e+12 | 3.29e+12
tpTs 31.34 20.41 18.76 18.37 25.80 92.47
tpm 22.40 11.98 6.75 3.89 2.28 1.87

Table 4.3: Comparison betweenPT-Scotch 5.0.6 (PTS) and ParMeliS (PM) for several
graphs. Opts and Opy are the operation counts for PTS and PM, respectively, whiletprs
and tpy, are their run times, in seconds. Dashes indicate abortion due to memory shortage.
Daggers indicate abortion due to an invalid MPI operation. Data extracted from [24].

54

Table 4.5: OPC of the reorderedbcsstk29 matrix when multilevel band GA is used for all
levels of nested dissection. Classical multilevel FM yields an OPC 08:43e+ 08 in 0:74s. Data

Test Number of processes
case 2 \ 4 \ 8 \ 16 \ 32 \ 64
coupole8000
Opts || 8.68e+10 | 8.54e+10 8.38e+10 | 8.03e+10 | 8.26e+10 | 8.21e+10
Opwm y y 8.17e+10 | 8.26e+10 | 8.58e+10 | 8.71e+10
tpTs 114.41 116.83 85.80 60.23 41.60 28.10
tpm 63.44 37.50 20.01 10.81 5.88 3.14
gimonda07
OpTs 5.80e+10 | 6.38e+10 | 6.94e+10 | 7.70e+10
Opm y y y y y y
tpTs 34.68 22.23 17.30 16.62
tpm y y y y y y
thread
Opts || 3.52e+10 | 4.31e+10 | 4.13e+10 | 4.06e+10 | 4.06e+10 | 4.50e+10
Opwm 3.98e+10 | 6.60e+10 | 1.03e+11 | 1.24e+11 | 1.53e+11
tpTs 3.66 3.61 3.30 3.65 5.68 11.16
tpm 1.25 1.05 0.68 0.51 0.40
Table 4.4: Continuation of Table 4.3.
Deme size | # Demes | Generations || OPC | Time (s) |

40 1 25 5.32e+08 4.05

80 1 25 5.37e+08 7.95

80 1 100 4.36e+08 25.72

40 2 25 4.65e+08 6.61

40 2 100 4.57e+08 20.17

80 8 100 3.75e+08 | 50.90

extracted from [23].

55

Test Number of processors or threads
case 1 2 \ 4 \ 8 \ 16 32 64
bcsstk32

Ciea 1.60e+9 1.55e+9 1.67e+9 1.82e+9 1.83e+9 1.53e+9 2.07e+9

Cpm 1.29e+9 1.55e+9 1.62e+9 3.09e+9 4.11e+9 5.85e+9 4.01le+9

tLea 0.42 0.88 0.84 0.97 2.07 (2.86) (4.06)

audikwl

Cica || 5.68e+12 | 5.91e+12 | 5.70e+12 | 5.82e+12 | 5.99e+12 | 6.44e+12 | 6.02e+12

Cpm 7.78e+12 | 8.88e+12 | 8.9le+12 | 1.07e+13

tLea 19.78 22.77 29.55 32.89 60.24 (74.64) (91.78)
bmw32

Ciea 3.04e+10 | 3.44e+10 | 3.75e+10 | 4.13e+10 | 4.64e+10 | 4.57e+10 | 5.01e+10

Cpm 2.84e+10 | 3.22e+10 | 4.09e+10 | 5.11e+10 | 5.61le+10 | 5.74e+10 | 6.31e+10

tLea 1.69 1.79 2.48 2.36 3.67 (5.11) (7.80)
altr4

Ciea 3.46e+8 3.71e+8 4.23e+8 4.06e+8 4.31e+8 4.92e+8 4.71e+8

Cewm 4.25e+8 4.20e+8 4.49e+8 4.46e+8 4.64e+8 5.03e+8 5.16e+8

tLGa 0.65 1.78 2.25 1.95 3.36 (5.43) (7.20)

tpm 0.58 0.31 0.20 0.13 0.11 0.27 0.31

conespherelm

Ciea || 1.90e+12 | 1.92e+12 | 1.99e+12 | 2.37e+12 | 2.34e+12 | 2.53e+12 | 2.63e+12

Cepm 2.04e+12 | 2.20e+12 | 2.46e+12 | 2.78e+12 | 2.96e+12 | 2.99e+12 | 3.29e+12

tLea 44.03 69.66 86.47 90.44 120.87 (134.85) (158.07)

coupole8000

Cica || 7.64e+10 | 7.64e+10 | 7.62e+10 | 7.65e+10 | 7.66e+10 | 7.68e+10 | 7.66e+10

Cpm 8.17e+10 | 8.26e+10 | 8.58e+10 | 8.71le+10

tLca 125.69 75.40 55.19 49.16 52.59 (61.93) (77.26)
thread

Ciea 4.10e+10 | 3.99e+10 | 4.41e+10 | 4.64e+10 | 4.43e+10 | 4.59e+10 | 5.19e+10

Cpm 3.65e+10 | 3.98e+10 | 6.60e+10 | 1.03e+11 | 1.24e+11 | 1.53e+11 | 1.28e+11

tLea 0.56 2.33 3.10 2.93 4.22 (5.02) (5.92)

Table 4.6: Comparison betweenParMeTliS

Timings for ParMeTS are provided for graph altr4

(PM) and our Scotch LGA scheme for several
graphs. C,ga and Cpy are the OPC for LGA and PM, respectively. Dashes indicate abortion
due to memory shortage. LGA timings between parentheses are extrapolated times for cases
requiring more than 16 threads, as we had to run several threads per core on a single SMP node.

to give an idea of its speed, buttp)y and

tica cannot be compared, because PM is a fully parallel program, while our LGA testbed is

the purely sequential nested dissection routine ofScotch . Data extracted from [23].

56

Table 4.7: Evolution of the cut size (Cut), of the load imbalance ratio (MaCut) and of
the maximum diameter of the parts (MDi) produced by various partitioning heuristics with
respect to the RMF strategy, averaged over all test graphs and numbers of parts. Figures below
partitioning strategy names indicate the number of di usion steps performed. Data extracted
from [95].

Method RMBD RMBDF RMBaDF
500 \ 200 \ 100 \ 40 500 \ 40 40
Cut (%) +19.51 | +20.01 | +18.15 | +21.49 | +2.26 | +3.10 -3.17
MaCut (%) +0.58 | +1.12 | +1.80 | +9.76 | -0.95| -0.29 -0.21
MDi (%) +3.86 | +1.92 | +4.69 | +5.43 | +2.26 | +3.10 -3.24
Time () 21.31 9.33 5.33 293 | 21.47| 2.99 3.07

Table 4.8: Comparison of the results, in terms of cut size Cut) and maximum diameter of
the parts (MDi), between three heuristics: multi-level with FM re nement (RMF, as imple-
mented in Scotch 4.0), multi-level with banded di usion and FM re nements (RMBaDF),
and kMeTiS . Data extracted from [95].

Test Number of parts
case 2 \ 4 \ 8 \ 16 \ 32 \ 64 \ 128
altr4
RME Cut 1688 | 3197 | 4978 7788 11905 17656 | 24478
MDi 50 52 40 33 25 21 14
RMBaD(40)F Cu'F 1621 3203 | 5017 7776 11980 17669 | 24831
MDi 48 46 41 30 25 18 14
KMeTiS Cut 1670 | 3233 | 4981 8115 12147 | 17355 | 24058
MDi 48 45 41 34 26 22 14
bmw32
RME Cut 17271 | 54424 | 84222 | 120828 | 181844 | 267427 | 394418
MDi 93 116 130 106 74 120 68
RMBaD(40)F Cu'F 16032 | 54446 | 83422 | 124945 | 183454 | 275594 | 411154
MDi 91 130 96 84 68 63 56
KMeTiS Cut 15529 | 55506 | 92658 | 125686 | 193169 | 286111 | 420965
MDi 87 108 99 87 70 61 68

57

‘[85] wouy pajoenxs ereq ‘uonelsado |dIA PIfeAul ue 01 anp uonoge aledlpul siebbeq ~redy

[en1oe saledlpul awin uonndaxa ay) Jaye ybu sasayuared ul Jaquinu ayl "ydelb yoea loj asuewlopad yead paplodal NG pue S1d Ydiym uo
s10ssa204d Jo Jaquinu sy si edefjaanoadsal ‘|INd pue S1d 10) (SPU02as ul awi UoiNIaxXa ayl) INd abpa ay) Jo azis ay) are (Wd) pue Slid))

Wdo pue Sldgsued pue sassadsoud Jo siaquinu aaneluasaldal Jo) (Nd) SlBnIed pue (S1d)

40109S- | dU9amiaq uosuedwod 6y a|qeL

9G2)00°0€ 06'9¢ ¢coe €8'¢e €9'T¢ Ev've 8E'8Y 9L 18'G8 0v'9.T Wdy
(c6T)E6'9T ¥S'19 T6°9v 9¢'ee ¢S'T6 98'G. 86°LT 9/°.6¢ cv'68T 8y'oy Sid)
G0+3T9'T L0+3IPT'T 90+3G6°'S SO+3EL'T LO+3IPT'T 90+38T¥ GO+369'T LO+3IET'T 90+3ZT'C GO+3A8LT WdD
G0+3SP'T L0+360°T 90+3.5'S GO+30F'T L0+3I60'T 90+3S6'€ SO+3IYY'T L0+380'T 90+306'T GO+3I9Y'T StdD

suol|jiweg

9G62)T5'1¢ ST'€C G9'G¢ ¢L'8¢ S [44VN" 82'9¢ T29€ 14414 SG'v8 Wdy
(z6T)92 0T ¥0°0€ 80'8¢ G8'€T 156V 16°'6€ 69°0T 9G°09T 6¢'¢0T veye Sidl
G0+392°T 90+329'L 90+3T8'E€ GO+3I6E'T 90+38S'L 90+322.°C SO+3EET 90+3.SL 90+38E'T GO+39Z'T WdD
G0+3S0'T 90+362°L 90+3S9°€ G0+390°T 90+392°L 90+32S¢ GO+3ITT'T 90+3A¥Z’L 90+3ET'T GO+3IST'T StdD

suol|jiwsy

26T)SE0T 6097 00'vT €S°LT S2'9 9€'L 66°¢CT 00'8T L9°6T LO'EY Wdy
(821)ST'9 19°0¢ Tc0c GC'0T ¥9'9¢ 05'T¢ ST'9 6C'VL 6897 6v'¢T Sid)
¥0+36.°6 90+3.€'G 90+36/.'C SO+390°'T 90+3EE’'S 90+386'T VYO+3IAEY'6 90+39¢'S G0+308'6 +vO+3E6'6 WD
¥0392°6 90+30¢'S 90+359°C ¥0+3.06 90+38T'S 90+388'T ¥0+392'6 90+36T'S G0+3ISY'6 ¥Y0+3I0T'6 SL<9D

suol|jiwee

(821)59°L S9've 9/'6¢ 09°6¢ 9T'v L2°S 99, 189 68°L Ev'8T Wdy
(r9)tse 18°GT ST9T ov'L XA L2°0T S0'v €G¢e TT°6T 0T’ Sid
¥0+39T°'S 90+3.6'€ 90+320'C V¥0+38Z’'S 90+3V6'E 90+39%'T V¥O+39T'G 90+3/6'€C SO+3AYTL +vO+3ZT'G WdD
¥0+368F 90+306°'€ 90+396'T ¥0+30L ¥ 90+388'€ 90+38E'T ¥O+3TL¥ 90+368'€ SO+38L'9 ¥0O+3SLY SLdD

suoljjiwot

z: 4y 20T:¥8¢ 9G¢:v8¢€ 8¢ ¥¢07:8¢T 821:8¢1 2:8¢l ¥20T1:¢€ [ARYA [AY4 ased
sued JO ._mQEJZ”w‘_OmwmoO._Q JO JaquinN 1S9

58

'6'¥ 9|qel Jo uonenunuod 0Tt S|qeL

(4

(8)zs0 L0¢ 680 00°¢ 86'T /90 0.0 66T G.°0 110 Wdy
(om)2v0 8¢'T 12T G80 SO0'T 80'T 090 /0T 160 €60 Sid
¥0+3€9°'S 90+3¥8'T 90+36Z2'T ¥O+3EL'S 90+3G8'T 90+320T ¥0+3/9'GS 90+3¥8'T GO+3E09 ¥O+329'G WdD
¥0+32¢9°'S 90+3¢8'T 90+36¢'T +v0+309'G 90+3¢8'T 90+3E0°T ¥0+309'S 90+32¢8'T GO+3ST'9 +0+309'G SLdD

peaiyl

(¥8ge)28°0 ¥6°0 68°0 /80 1T 29T yA) 16°¢ 8¢ ar'e Wdy
(8zT)es0 88t 08'vy S0°¢ €L'E 96°¢C €80 S9°0T 9.9 89'T Sid]
€0+3aYT'E 90+382°€ GO+3I6E'8 €0+3aAYT'E 90+382°€ GO+3I6T¥ €0+30C2°€ 90+382°€ ¥0+3T6'6 €0+3ET'E WdD
€0+380°'€ 90+3.T'€ G0+388'/ €0+380°€ 90+3LT'€ G0+32Z6'€ £0+380°€ 90+3.T'€ ¥0+395'6 £0+380°'€ SLdD

00089j0dnod

(r9)sv'9 r'Te 19'G2 15°9¢ 06'8 69°S 189 eTeT 196 1z Wdy
Z1)0L'62 7T'6L 0g's8 98TV 0619 0829 0L'6¢C 16°00T 9628 L0'TE Sid)
G0+3€2’'8 /L0+360°T 90+32€/. GO+3S8.L L0+390°T 90+3S09 SO+3aAYY'8 L0+3IVY0T 90+386°€ GO+36E8 WdD
G0+3E€S'. 90+32/.'8 90+3¢Z’9 G0+308'L 90+3£6'8 90+39T'S SO0+3ES . 90+392'6 90+36£'€ G0+399°L SLdD

GTobeo

A A A A A A A A A A Wd)
(8eT)ve's ov'6T €e'6T 6£'8 82't¢ €687 €' /T1°89 gT'2¢ 98, Sild]
A A A A A A A A A A Wdp
§o+36¥'€ L0+3ST'C L0+360'T SO0+30€'€ L0+3.T'C 90+309'. GO+36¥'E L0+3.T'C 90+30S'€ SO+3I9Y’'E S1dD
whiq

(z6T)IE2 187 9 v Sv'v 16C 10¢ cv'e YRAC] 6S°€ 06°¢€ Wdy
(8zT)T0°€ 90°0T ¢l 0T 18'S 626 cL'8 06'¢ GE'LT 78'TT 16 Sid)
GO+3ZT'T 90+39/.6 90+392'S GO+3AST'T 90+3S.6 90+3STV¥ GO+3ACT'T 90+39.6 90+3a¥0C SO+3aYT'T WdD
GO+3TT'T 90+396'6 90+3T8'S GO+3ISO'T 90+366'6 90+3dgZv SO+390'T L0+300'T 90+380'C SO+3I80'T S1d9D
T ipne

2y yZ0oT:v8e 9G2:¥78€ Z:v8¢€ ¥20T1:8¢T 8¢T:8¢CT 2:8¢T ¥20T:¢€ [44) [AT4 9sed
sued Jo JagqwinN:siossadold Jo JaquinN 1S9

59

Table 4.9 presents the execution times and the cut sizes yielded tRT-Scotch and ParMeTiS
for our test graphs, for representative numbers of processes and parts.

On most of these test cases, the partitions computed byPT-Scotch compare favorably
to those produced by ParMeliS . This gain can be as high as20 % when bipartitioning
graph 82millions , irrespective of the number of processes.PT-Scotch always computes
better results for small numbers of parts, whileParMeTiS produces marginally better cuts for
three graphs, namelyaudikwl , thread and brgm , when the number of parts increases. This
phenomenon is due to the fact that, to date,PT-Scotch performsk-way partitioning by means
of recursive bipartitioning, while ParMeliS uses a directk-way algorithm. Consequently, the
quality of the partitions produced by PT-Scotch is likely to degrade for large numbers of parts,
because of the greedy nature of the recursive bipartitioning scheme which prevents reconsidering
earlier choices. It is therefore not surprising that the three graphs for whichParMeTiS gains
over PT-Scotch are those of higher degree, for which bad decisions in the earlier bipartitioning
stages produce higher penalties in terms of cut.

However, this phenomenon is most often compensated by the improvement in quality yielded
by folding-with-duplication and multi-sequential phases (see Section 3.5). Indeed, for most of the
test graphs, both PT-Scotch and ParMeliS exhibit stable partition quality for all numbers
of parts and up to 384 processes (which is the largest number of processes in our experiment),
as can be seen for instance for graphiOmillions in Figure 4.14.

Yet, in the case of graphcagel5, partition quality for ParMeTiS decreases as the number
of processes and parts increases, while it improves f®T-Scotch . This graph, which is not
a mesh, has many topological irregularities (in terms of degrees and connectivity) which are
likely to create coarsening artefacts, and therefore require e cient local optimization during
the uncoarsening phase of the multilevel framework. As we have exposed in Section 4.1.1, and
as had been already evidenced in the context of parallel ordering [24], the relaxation of the
sequentiality constraint in the FM implementation of ParMeTiS hinders its e ciency when the
number of processes increases.

To compare the relative e ciency of partition quality between PT-Scotch and ParMeTiS
based on the data collected, we have plotted the ratio between the cut sizes yielded by these
two tools, in Figures 4.15 and 4.16. On mesh graphs, the relative e ciency becomes close tb
as the number of parts increases. Our assumption is that the decrease in partition quality due
to the greedy nature of our recursive bipartitioning algorithm starts to overwhelm the gain of
our re nement methods for thousands of parts.

The negative impact of recursive bipartitioning is of course even more perceptible for run
time. While PT-Scotch can be more than three times faster thanParMeTiS in the biparti-
tioning case, such as for grapt82millions , when the number of parts increases, its execution
time su ers a penalty factor which tends to a constant proportional to the inverse of the coars-
ening ratio, as evidenced in Figures 4.17 and 4.18. These gures represent the running times of
PT-Scotch for our test graphs, with respect to the numbers of processes and parts. As the
number of parts increase, the height of the plots increases and tends to a limit value.

Figure 4.17 plots the execution times ofPT-Scotch for graphs 10millions , 23millions
45millions and 82millions , which have similar topological characteristics. We could not col-
lect data on 2 processors ford5millions , and from 2 to 16 processors for82millions , as the
pieces of the distributed graphs could not t in the memory of the nodes. The same also hap-
pened to ParMeTiS

In order to analyze the time scalability of PT-Scotch , we focus on the bipartitioning case,
for which the penalty factor has no impact. A quick look at the plots shows that PT-Scotch

60

is scalable up t064 processors for graphlOmillions , and up to 128 processors for23millions
However, the peak speed is still reached a128 processors ford5millions , without signi cant
speed-up forl92 processors. For82millions , we can see a slight speed-up fat92 processors,
while the rise in run time which appeared on256 processors for grapm5millions is reduced.
As argued in [71], signi cant increase in the graph size was required, foParMeTiS to achieve
constant parallel e ciency. This does not seem to be dierent with PT-Scotch from the
asymptotic point of view. Consequently, to evidence some speed-up o256 processes, a graph
at least four times larger than 23millions is required, as the plots suggest.

Figure 4.18 plots the execution times ofPT-Scotch for graphs audikwl , coupole8000 ,
cagel5, and brgm . Even though these graphs may have di erent topological properties than
those of Figure 4.17, the same scalability properties and limits can be evidenced: the small sizes
of the graphs limit the time scalability to 128 processes.

As a last comparison betweenPT-Scotch and ParMeIliS , the last column of Table 4.9
presents the best execution time, and the associated cut size, obtained ByT-Scotch and
ParMeTiS when bipartitioning each of the graphs. We can see thatPT-Scotch maostly pro-
duces partitions of better quality in smaller time. Moreover, PT-Scotch shows peak perfor-
mance using less numbers of processors th&arMeliS for mesh graphs. This lack of scalabil-
ity is, in our opinion, caused by our recursive bipartitioning scheme, which requires many data
movements between processes, all the more when graph pieces are spread across many of them.

45.4 Extension to k parts

Considering the advantages of the di usion scheme in terms of quality and scalability, its ex-
tension to k-way partitioning is under way. We assume the behavior of this version should not
di er much from the bipartitioning version, as the majority of interface vertices have only two
neighbors (see Figure 2.6, page 13). It will be based on the structure of thke-way distributed
band graph presented in Figure 4.6 to owk sorts of liquids from the existing anchor vertices.

In the mean time, basing on ak-way formulation of our band graphs, Meyerhenkeet al. [84]
have already devised a parallel version of their bubble-growing algorithm with a much faster
convergence speed because of this reduced problem space. Their implementation provides very
good results in term of quality, but the time they take is still long, so we expect that our solution
will bring an improvement in this respect.

4.5.5 The barrier of synchronicity

Performing a halo exchange at each iteration, the above parallel formulation of our di usion
algorithm is highly synchronous. With the advent of machines having several hundred thou-
sands of processing elements, and in spite of the continuous improvement of communication
subsystems, the demand for more asynchronicity in parallel algorithms is likely to increase.
Yet, devising an asynchronous version of the jug of the Danaides algorithm is not so easy as
for the original di usion algorithms. The latter is based on solving a linear system, which
may be performed by means of iterative algorithms for which there exist asynchronous formu-
lations [112, 115], while our requirement to remove one unit of liquid per time step creates a
threshold e ect which cannot be rolled back so easily; it would require every vertex to record
the amount of liquid that it could have leaked at each step and did not because there was not
enough, so that late incoming quantities can be cut by the amount that would have leaked in
the past rounds.

In this respect, GAs may o er a better alternative, as computations can take place asyn-
chronously within independent demes. When enough of them exist, convergence is likely to be

61

achieved even if some of them may lag behind.

62

Figure 4.14: Cut sizes ofPT-Scotch (PTS, left) and ParMeTiS (PM, right) for graphs 10mil-
lions and cagel5. Data extracted from [58].

63

Figure 4.15: Cut size ratio betweenPT-Scotch (PTS) and ParMeTiS (PM) for graphs 10mil-
lions , 23millions , audikwl , and cagel5. Cpts and Cpy are the size of the edge cut for
PTS and PM, respectively. Data extracted from [58].

64

Figure 4.16: Cut size ratio betweenPT-Scotch (PTS) and ParMeliS (PM) for graphs
coupole8000 and thread . Cpts and Cpy are the size of the edge cut for PTS and PM,
respectively. Data extracted from [58].

65

Figure 4.17: Execution times ofPT-Scotch for graphs 10millions , 23millions , 45millions
and 82millions . Data extracted from [58].

66

Figure 4.18: Execution times ofPT-Scotch for graphs audikwl , coupole8000 , cagel5 and
brgm . Data extracted from [58].

67

68

Chapter 5

Conclusion and future works

5.1 Where we are now

As the nal results of last chapter show, most of the goals of our initial roadmap are about to be
ful lled by the time this dissertation is written. While we have been able to run PT-Scotch

in parallel on more than one thousand processing elements, we lack real-world test graphs of a
billion vertices to experiment with. In this respect, some work has to be done regarding I/O:
even for graphs as small a82millions , we are experiencing bottlenecks problem as graph load
time is dominating computation time.

To date, PT-Scotch can only compute graph partitions in parallel by means of recursive
bipartitioning, but thanks to the upcoming parallel k-way partitioning scheme based on dis-
tributed k-way band graphs, we are also about to release a new version providing parallel static
mapping features, which are likely to gain popularity as large parallel systems are more and
more heterogeneous.

The Scotch software package currently comprises a bit less than one hundred thousand
lines of C code. It is distributed at no charge, under the CeCILL-C free software license, to
all interested parties, whether they are simple users, researchers working on the same sub-
jects, or potential contributors. We plan to improve Scotch regularly, according to the new
developments of our research, so that we remain under the scrutiny of peer evaluation.

5.2 Where we are heading to

In spite of the results already achieved, much is still to be done. We present in the following
paragraphs some directions and medium-term goals for future research, which have already
started.

5.2.1 Algorithmic issues

First, the scalability of our existing algorithms has to be thoroughly analyzed in the context of
large-scale and potentially heterogeneous systems. We do not plan to hawrl-Scotch ported

on heterogeneous processor architectures such as the Cell [5], because data locality of irregular
graph algorithms does not seem su cient to take advantage of them. However, we have to
investigate how the interconnection networks of such large heterogeneous machines can sustain
the load of inter-processor collective communication. As suggested in the previous chapter, more
room may have to be made for asynchronous algorithms if collective communication latency
becomes a problem.

69

5.2.2 Dynamic graph repartitioning

Second, since /O is a bottleneck and all data cannot be repartitioned from scratch, it is essential
to provide dynamic repartitioning capabilities in PT-Scotch . Many methods already exist in
the literature, as well as many existing tools. We plan to take advantage of the static mapping
capabilities of Scotch to coerce new mappings to be as close as possible to the original ones.
This graph-based formulation will have to be compared to di usion-based, vertex migration
methods.

5.2.3 Adaptive dynamic mesh partitioning

Many simulations which model the evolution of a given phenomenon along with time (turbulence
and unsteady ows, for instance) need to re-mesh some portions of the problem graph in order to
capture more accurately the properties of the phenomenon in areas of interest. This re-meshing
is performed according to criteria which are closely linked to the undergoing computation and
can involve large mesh modi cations: while elements are created in critical areas, some may be
merged in areas where the phenomenon is no longer critical.

Performing such remeshing in parallel creates additional problems. In particular, splitting
an element which is located on the frontier between several processors is not an easy task,
because deciding when splitting some element, and de ning the direction along which to split it
SO as to preserve numerical stability most, requires shared knowledge which is not available in
distributed memory architectures. Ad-hoc data structures and algorithms have to be devised so
as to achieve these goals without resorting to extra communication and synchronization which
would impact the running speed of the simulation.

Basing on a sequential (re)mesher such aMMG [32], as well as on the dynamic graph
repartitioning routines provided by PT-Scotch , we aim to create a parallel framework for
dynamic mesh adaption, remeshing and load balancing.

As former INRIA CEO Gilles Kahn said in his last video conference to personnel: One
always overestimates the work (s)he is able to do in one year, but one always underestimates
the results that (s)he is able to achieve in ve years

| hope the ve years to come will be as interesting as the previous ve.

70

Appendix A

Bibliography

[1] P. Amestoy, T. Davis, and I. Du . An approximate minimum degree ordering algorithm.
SIAM J. Matrix Anal. and Appl. , 17:886 905, 1996.

[2] P. Amestoy, I. Du, and J.-Y. L'Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Computer methods in applied mechanics and engineering.84:501
520, 2000.

[3] F. André and J.-L. Pazat. Le placement de taches sur des architectures paralléleJech-
nique et Science Informatiques pages 385 401, April 1988.

[4] S. Areibi and Y. Zeng. E ective memetic algorithms for VLS| design automation =
genetic algorithms + local search + multi-level clustering. Evolutionary Computation,
12(3):327 353, 2004.

[5] A. Arevalo, R. M. Matinata, M. Pandian, E. Peri, K. Ruby, F. Thomas, and C. Almond.
Programming the Cell Broadband Enginé™ Architecture Examples and Best Practices
Redbooks. IBM, 2008.

[6] C. Ashcraft, S. Eisenstat, J. W.-H. Liu, and A. Sherman. A comparison of three column
based distributed sparse factorization schemes. IProc. Fifth SIAM Conf. on Parallel
Processing for Scienti c Computing, 1991.

[71 S. T. Barnard. PMRSB: Parallel multilevel recursive spectral bisection. In Proc.
ACM/IEEE Conference on Supercomputing (CDROM), December 1995.

[8] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and Experience
6(2):101 117, 1994.

[9] R. Battiti and A. A. Bertossi. Greedy, prohibition, and reactive heuristics for graph
partitioning. IEEE Trans. Comput., 48(4):361 385, 1999.

[10] C. Berge. Graphs and Hypergraphs North Holland Publishing, 1973.

[11] S. H. Bokhari. On the mapping problem.|EEE Transactions on Computing, C-30(3):207
214, 1981.

[12] S. W. Bollinger and S. F. Midki . Processor and link assignment in multicomputers using
simulated annealing. InProc. 11 Int. Conf. on Parallel Processing, pages 1 7. The Penn.
State Univ. Press, August 1988.

71

[13] T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning. IEEE Trans.
Comput., 45(7):841 855, 1996.

[14] U. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. on Par. and Dist. Syst., 10(7):673 693,
1999.

[15] U. Catalyurek and C. Aykanat. A hypergraph-partitioning approach for coarse-grain
decomposition. In Proc. ACM/IEEE conference on Supercomputing (CDROM), 2001. 28
pages.

[16] CeCILL. CEA-CNRS-INRIA Logiciel Libre free/libre software license. Available from
http://www.cecill.info/licenses.en.html

[17] A. Chan, P. Dehne, F. Bose, and M. Latzel. Coarse grained parallel algorithms for graph
matching. Parallel Computing, 34(1):47 62, 2008.

[18] P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un solveur de
type dissections emboitéesNumerische Mathematik 55:463 476, 1989.

[19] S. Chaumette. A software environment for programming distributed memory machines. In
Proc. 25" Hawaii International Conference on System Sciencesvolume 1, pages 257 266.
IEEE, 1992.

[20] S. Chaumette and M.-C. Counilh. A development environment for distributed systems.
In Proc. European Distributed Memory Computing Conference, Minehen volume 487 of
LNCS, pages 110 119, 1991.

[21] T.-Y. Chen, J. R. Gilbert, and S. Toledo. Toward an e cient column minimum degree
code for symmetric multiprocessors. InProc. 9" SIAM Conf. on Parallel Processing for
Scienti c Computing, San-Antonio, 1999.

[22] C. Chevalier. Conception et mise en ceuvre d'outils e caces pour le partitionnement et la
distribution paralléles de probléemes numériques de tres grande taill@hese de Doctorat,
LaBRI, Université Bordeaux I, September 2007.

[23] C. Chevalier and F. Pellegrini. Improvement of the e ciency of genetic algorithms for
scalable parallel graph partitioning in a multi-level framework. In Proc. Euro-Par'06,
Dresden volume 4128 ofLNCS, pages 243 252, September 2006.

[24] C. Chevalier and F. Pellegrini. PT-Scotch : A tool for e cient parallel graph ordering.
Parallel Computing, 34:318 331, 2008.

[25] C. Chevalier and I. Safro. Comparison of coarsening schemes for multilevel graph par-
titioning. In Proc. LION'3 Combinatorial Scientic Computing , Trento, Italy, January
2009.

[26] C. Chevalier and I. Safro. Weighted aggregation for multi-level graph partitioning. In
Combinatorial Scientic Computing, number 09061 in Dagstuhl Seminar Proceedings.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany, 2009.

[27] M.-C. Counilh and J. Roman. Expression for massively parallel algorithms description
and illustrative example. Parallel Computing, 16(2 3):239 251, 1990.

72

[28] T. Davis. University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/
research/sparse/matrices/

[29] R. Diekmann, D. Meyer, and B. Monien. Parallel decomposition of unstructured FEM-
meshes.Concurrency: Practice & Experience, 10(1):53 72, 1998.

[30] R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph bisections. In
Interconnection Networks and Mapping and Scheduling Parallel Computationsvolume 21
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science pages
57 73, 1995.

[31] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Aspect ratio for mesh partition-
ing. In Proc. Euro-Par'98, volume 1470 ofLNCS, pages 347 351, 1998.

[32] C. Dobrzynski. 3d local anisotropic remeshing for rigid bodies displacement. IrBec-
ond Workshop on Grid Generation for Numerical Computations , INRIA Rocquencourt,
October 2007. http://lwww-rocq.inria.friwho/Frederic.Alauzet/tetra_eng.html

[33] I. Du. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Soft. ,
7(3):315 330, September 1981.

[34] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hypercube by re-
cursive mincut bipartitioning. Journal of Parallel and Distributed Computing, 10:35 44,
1990.

[35] C. Fahrat. A simple and e cient automatic FEM domain decomposer. Computers and
Structures, 28(5):579 602, 1988.

[36] M. Faverge, X. Lacoste, and P. Ramet. A NUMA aware scheduler for a parallel sparse
direct solver. In Proc. PMAA , June 2008.

[37] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proc. 19th Design Automation Conference pages 175 181. IEEE, 1982.

[38] Jérémie Gaidamour and Pascal Hénon. A parallel direct/iterative solver based on a Schur
complement approach. InProc. 11" Int. Conf. on Comp. Sci. and Eng., pages 98 105,
Sao Paulo, 2008.

[39] M. Garey, D. Johnson, and L. Stockmeyer. Some simpli ed NP-complete graph problems.
Theoretical Computer Science 1:237 267, 1976.

[40] M. R. Garey and D. S. Johnson.Computers and Intractablility: A Guide to the Theory
of NP-completeness W. H. Freeman, San Francisco, 1979.

[41] G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky factorization.
International Journal of Parallel Programming , 18(4):291 314, 1989.

[42] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky factorization on
a local memory multiprocessor. SIAM Journal on Scienti ¢ and Statistical Computing ,
9:327 340, 1988.

[43] A. George and J. W.-H. Liu. Computer solution of large sparse positive de nite systems
Prentice Hall, 1981.

[44] A. George and J. W.-H. Liu. The evolution of the minimum degree ordering algorithm.
SIAM Review, 31:1 19, 1989.

73

[45] GNU. Lesser General Public License. Available fromhttp://www.gnu.org/copyleft/
lesser.html

[46] G.H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins University
Press, 1996. ISBN: 0-8018-5414-8.

[47] D. Goudin, P. Hénon, F. Pellegrini, P. Ramet, J. Roman, and J.-J. Pesqué. Descrip-
tion of the Emilio software processing chain and application to structural mechanics. In
Proceedings of PMAA, August 2000.

[48] D. Goudin, P. Hénon, F. Pellegrini, P. Ramet, J. Roman, and J.-J. Pesqué. Parallel sparse
linear algebra and application to structural mechanics.Numerical Algorithms, 24:371 391,
2000.

[49] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse
matrix factorization. IEEE Trans. Parallel Distrib. Syst. , 8(5):502 520, 1997.

[50] S. W. Hammond. Mapping unstructured grid computations to massively parallel comput-
ers. PhD thesis, Rensselaer Polytechnic Institute, Troy, New-York, February 1992.

[51] B. Hendrickson. Combinatorial scientic computing. http://www.sandia.gov/
~bahendr/csc.html .

[52] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes?
In IRREGULAR'98: solving irregularly structured problems in parallel, number 1457 in
LNCS, pages 218 225, August 1998.

[53] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc.
ACM/IEEE conference on Supercomputing (CDROM), December 1995. 28 pages.

[54] B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning. IfProceed-
ings of the 8" SIAM Conference on Parallel Processing for Scienti ¢ Computing IEEE,
March 1997.

[55] B. Hendrickson and A. Pothen. Combinatorial scienti c computing: The enabling power
of discrete algorithms in computational science. InHigh Performance Computing for
Computational Science - VECPAR 2006 number 4395 in LNCS, pages 260 280, 2007.

[56] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection
ordering. SIAM J. Sci. Comput., 20(2):468 489, 1998.

[57] P. Hénon, P. Ramet, and J. Roman.PaStiX : A high-performance parallel direct solver
for sparse symmetric de nite systems.Parallel Computing, 28(2):301 321, January 2002.

[58] J.-H. Her and F. Pellegrini. E cient and scalable parallel graph partitioning by recursive
bipartitioning. Parallel Computing, 2010. To appear.http://www.labri.fr/~pelegrin/
papers/scotch_parallelbipart_parcomp.pdf

[59] J. Holland. Adaptation in Natural and Arti cial Systems . University of Michigan Press,
Ann Harbor, 1975.

[60] J. Hopcroft and R. Karp. An n®7 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225 231, December 1973.

74

[61] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic algorithm for mul-
tiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence pages 82 87, 1994.

[62] Jostle : Graph partitioning software. http://staffweb.cms.gre.ac.uk/~c.walshaw/
jostle/

[63] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In Proc. ACM/IEEE
conference on Supercomputing (CDROM) December 1995. 19 pages.

[64] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. Technical Report 95-035, University of Minnesota, June 1995.

[65] G. Karypis and V. Kumar. Multilevel graph partitioning schemes. In Proc. 24th Intern.
Conf. Par. Proc., lll , pages 113 122. CRC Press, 1995.

[66] G. Karypis and V. Kumar. A coarse-grain parallel formulation of multilevel k-way graph-
partitioning algorithm. In Proc. 8" SIAM Conference on Parallel Processing for Scienti ¢
Computing, 1997.

[67] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scienti c Computing , 20(1):359 392, 1998.

[68] G. Karypis and V. Kumar. MEeTS - A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
University of Minnesota, September 1998.

[69] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48:96 129, 1998.

[70] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing, 48:71 95, 1998.

[71] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular
graphs. SIAM Review, 41(2):278 300, 1999.

[72] A.Kaveh and H. A. B. Rahimi. A hybrid graph-genetic method for domain decomposition.
Finite. Elem. Anal. Des., 29:1237 1247, 2003.

[73] B. W. Kernighan and S. Lin. An e cient heuristic procedure for partitionning graphs.
BELL System Technical Journal, pages 291 307, February 1970.

[74] A. I. Khan and B. H. V. Topping. Subdomain generation for parallel nite element
analysis. Comput. Syst. Eng, 4:96 129, 1998.

[75] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science 220(4598):671 680, May 1983.

[76] M. Laguna, T. A. Feo, and H. C. Elrod. A greedy randomized adaptative search procedure
for the two-partition problem. Operations Research pages 677 687, August 1994.

[77] A. E. Langham and P. W. Grant. Using competing ant colonies to solve k-way parti-
tioning problems with foraging and raiding strategies. In ECAL'99: Proc. 5™ European
Conference on Advances in Arti cial Life , number 1674 in LNCS, pages 621 625, 1999.

75

[78] C. Leiserson and J. Lewis. Orderings for parallel sparse symmetric factorization. Iihird
SIAM Conference on Parallel Processing for Scienti ¢ Computing, 1987.

[79] J.-M. Lépine and F. Rubi. The CHEOPS operating system. InProc. First European
Workshop on Hypercube and Distributed Computerspages 161 174. North-Holland, 1989.

[80] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.SIAM J.
Numerical Analysis, 16(2):346 358, April 1979.

[81] J. W.-H. Liu. Modi cation of the minimum-degree algorithm by multiple elimination.
ACM Trans. Math. Soft., 11(2):141 153, 1985.

[82] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036 1055, 1986.

[83] MeliS : Family of multilevel partitioning algorithms. http://glaros.dtc.umn.edu/
gkhome/views/metis .

[84] H. Meyerhenke, B. Monien, and T. Sauerwald. A new di usion-based multilevel algorithm
for computing graph partitions of very high quality. In Proc. 22nd IPDPS, pages 1 13,
2008.

[85] H. Meyerhenke and S. Schamberger. Balancing parallel adaptive FEM computations by
solving systems of linear equations. InProc. Euro-Par'05, volume 3648 ofLNCS, pages
209 219, 2005.

[86] H. Meyerhenke and S. Schamberger. A parallel shape optimizing load balancer. Froc.
Euro-Par'06, volume 4128 ofLNCS, pages 232 242, 2006.

[87] B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement for
multilevel graph-partitioning. Parallel Computing, 26(12):1609 1634, 2000.

[88] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts,
towards memetic algorithms. Technical Report 826, California Intitute of Technology,
1989.

[89] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving nite element equations on con-
current computers. In A. K. Noor, editor, Parallel Computations and Their Impact on
Mechanics pages 209 227. ASME Press, 1986.

[90] T. Oakenshield. Recursive Bipartitioning of Trolls with a Two-Handed Axe. Moria Press,
1947.

[91] PARASOL project (EU ESPRIT IV LTR Project No. 20160), 1996 1999.

[92] J.-L. Pazat and B. Vauquelin. MAPP: un mécanisme d'aide au placement des processus
sur multiprocesseur. InActes des journées du péle architecture & volume 56 ofBigre +
Globule pages 116 124, 1987.

[93] F. Pellegrini. Static mapping by dual recursive bipartitioning of process and architecture
graphs. In Proc. SHPCC'94, pages 486 493. IEEE, May 1994.

[94] F. Pellegrini. Application de méthodes de partition a la résolution de problémes de graphes
issus du parallélisme Thése de Doctorat, LaBRI, Université Bordeaux I, January 1995.

76

[95] F. Pellegrini. A parallelisable multi-level banded di usion scheme for computing balanced
partitions with smooth boundaries. In Proc. Euro-Par'07, volume 4641 ofLNCS, pages
191 200. Springer, August 2007.

[96] F. Pellegrini. Scotch and libScotch 5.1 User's Guide. LaBRI, Université Bordeaux I,
August 2008. Available from http://www.labri.fr/~pelegrin/scotch/

[97] F. Pellegrini. Distillating knowledge about Scotch. In Combinatorial Scienti c Computing ,
number 09061 in Dagstuhl Seminar Proceedings, February 2009. 12 pages.

[98] F. Pellegrini and D. Goudin. Using the native mesh partitioning capabilities of Scotch 4.0
in a parallel industrial electromagnetics code. InEleventh SIAM Conference on Parallel
Processing for Scienti c Computing, San Francisco, USA, February 2004.

[99] F. Pellegrini and J. Roman. Scotch : A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs. InProc. HPCN'96, Brussels,
volume 1067 ofLNCS, pages 493 498, April 1996.

[100] F. Pellegrini and J. Roman. Sparse matrix ordering withscotch . In Proc. HPCN'97,
volume 1225 ofLNCS, pages 370 378, April 1997.

[101] F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and halo approx-
imate minimum degree for e cient sparse matrix ordering. Concurrency: Practice and
Experience 12:69 84, 2000.

[102] A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM
Trans. Math. Software, 16(4):303 324, December 1990.

[103] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors
of graphs. SIAM J. Matrix Analysis , 11(3):430 452, July 1990.

[104] A. Rama Mohan Rao. Distributed evolutionary multi-objective mesh-partitioning algo-
rithm for parallel nite element computations. Computers & Structures, 87, number =.

[105] A. Rama Mohan Rao, T. V. S. R. Appa Rao, and B. Dattaguru. Automatic decomposition
of unstructured meshes employing genetic algorithms for parallel FEM computationsint.
J. Struct. Eng. Mech., 14:625 647, 2002.

[106] ScAlApplix : Algorithms and high performance computing for grand challenge applica-
tions. http://www.inria.fr/recherche/equipes/scalapplix.en.html

[107] K. Schloegel, G. Karypis, and V. Kumar. Wavefront di usion and LMSR: Algorithms
for dynamic repartitioning of adaptive meshes. IEEE Transactions on Parallel and Dis-
tributed Systems 12(5):451 466, 2001.

[108] R. Schreiber. Scalability of sparse direct solvers. Technical Report TR 92.13, RIACS,
NASA Ames Research Center, May 1992.

[109] Scotch : Static mapping, graph partitioning, and sparse matrix block ordering package.
http://www.labri.fr/~pelegrin/scotch/

[110] H. D. Simon and S.-H. Teng. How good is recursive bisectionSIAM J. Sci. Comput.,
18(5):1436 1445, September 1997.

77

[111] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search and multilevel
optimisation approach to graph-partitioning. J. of Global Optimization, 29(2):225 241,
2004.

[112] D. B. Szyld. Di erent models of parallel asynchronous iterations with overlapping blocks.
Computational and Applied Mathematics 17:101 115, 1998.

[113] E.-G. Talbi and P. Bessiére. A parallel genetic algorithm for the graph partitioning
problem. In ICS'91: Proceedings of the &' international conference on Supercomputing
pages 312 320. ACM, 1991.

[114] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally
ordered triangular factorization. J. Proc. IEEE , 55:1801 1809, 1967.

[115] G. Tongxiang. Asynchronous relaxed iterative methods for solving linear systems of equa-
tions. Applied Mathematics and Mechanics 18(8):801 806, August 1997.

[116] R. Vanderstraeten, R. Keunings, and C. Farhat. Beyond conventional mesh partitioning
algorithms. In SIAM Conf. on Par. Proc., pages 611 614, 1995.

[117] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev., 47(1):67 95, 2005.

[118] C. Walshaw and M. Cross. Mesh partitioning: a multilevel balancing and re nement
algorithm. SIAM J. Sci. Comput., 22(1):63 80, 2000.

[119] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh partition-
ing. Parallel Computing, 26(12):1635 1660, 2000.

[120] C. Walshaw and M. Cross. Multilevel mesh partitioning for heterogeneous communication
networks. Future Generation Comput. Syst, 17(5):601 623, 2001.

[121] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for
adaptive unstructured meshes.J. Parallel Distrib. Comput., 47(2):102 108, 1997.

[122] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for
unstructured meshes. Technical Report 97/IM/20, University of Greenwich, London SE18
6PF, UK, March 1997.

[123] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus. Partitioning &
mapping of unstructured meshes to parallel machine topologies. IrProc. Irregular'95s,
number 980 in LNCS, pages 121 126, 1995.

[124] Y. Wan, S. Roy, A. Saberi, and B. Lesieutre. A stochastic automaton-based algorithm for
exible and distributed network partitioning. In Proc. Swarm Intelligence Symposium
pages 273 280. IEEE, 2005.

[125] D. Whitley. A genetic algorithm tutorial. Mathematics and Statistics 4:65 85, June 1994.

[126] D. Whitley, S. Rana, and R. B. Heckendorn. The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Information
Technology, 7:33 47, 1999.

78

Contributions au partitionnement de graphes parallele multi-niveaux

Le partitionnement de graphes est une technique employée dans de nombreux domaines scien-
tiques. Il est utilisé pour résoudre des problémes d'optimisation, modélisés sous la forme de
graphes valués ou non, et pour lesquels la recherche de bonnes solutions équivaut au calcul,
éventuellement récursivement, de coupes sommet ou aréte les plus petites possible et qui équili-
brent les tailles des sous-parties séparées. La plupart des méthodes actuelles de partitionnement
de graphes mettent en +uvre un schéma multi-niveaux, dans lequel le graphe a partitionner est
successivement contracté pour former une famille de graphes de plus en plus petits, mais de
structure topologique similaire, de sorte qu'une partition initiale calculée sur le plus petit graphe
puisse étre propagée de proche en proche, par prolongations et ra nements successifs, jusqu'a
obtenir un partitionnement du graphe initial.

Du fait de I'augmentation croissante de la taille des problémes a résoudre, ceux-ci he peuvent
plus étre traités de facon séquentielle sur un unique ordinateur. Il est donc nécessaire de
concevoir des algorithmes paralléles de partitionnement de graphes, aptes a traiter des graphes
a plusieurs milliards de sommets distribués sur plusieurs milliers de processeurs. Plusieurs
auteurs s'étaient déja attelés a cette tache, mais la performance des algorithmes proposés, ou
la qualité des solutions produites, se dégradent lorsque le nombre de processeurs augmente.

Ce mémoire présente les travaux réalisées au sein du proj&T-Scotch sur la concep-
tion d'algorithmes e caces et robustes pour la parallélisation du schéma multi-niveaux. Il se
concentre en particulier sur les phases de contraction et de ra nement, qui sont les plus cri-
tiques en termes de performance et de qualité des solutions produites. Il propose un algorithme
paralléle probabiliste d'appariement, ainsi qu'un ensemble de méthodes permettant de réduire
I'espace des solutions au cours la phase de ra nement et facilitant l'usage de méthodes glob-
ales, qui passent mieux a I'échelle mais sont en général bien plus colteuses que les algorithmes
d'optimisation locale habituellement mis en +uvre dans le cas séquentiel.

Contributions to parallel multilevel graph partitioning

Graph partitioning is a technique which has applications in many elds of science. It is used
to solve domain-dependent optimization problems, modeled in terms of weighted or unweighted
graphs, where nding good solutions amounts to computing, eventually recursively, smallest
possible vertex or edge cuts which balance evenly the weights of the separated parts. Most of
current graph partitioning methods implement a multilevel framework, in which the graph to
partition is successively coarsened to create a family of smaller graphs, of similar topological
structure, so that an initial partition computed on the coarsest graph can be propagated, from
coarser to ner graphs, by prolongation and re nement of the prolonged patrtitions, up to obtain

a partition of the original graph.

Because of the ever increasing size of the problems to solve, these can no longer be handled
sequentially on a single computer. It is therefore necessary to devise parallel graph partitioning
algorithms, suitable for the handling of graphs with several billion vertices distributed over
several thousands of processing elements. Several authors already tackled this task, but either
the performance of the proposed algorithms, or the quality of the solutions produced, decrease
when the number of processing elements increases.

This dissertation presents the works carried out, within the PT-Scotch project, on the
design and implementation of e cient and robust algorithms for the parallelization of the multi-
level framework. It focuses particularly on the coarsening and re nement phases, which are the
most critical in terms of performance and of quality of the produced solutions. It presents a

probabilistic parallel matching algorithm, as well as a set of methods allowing to reduce the the
solution space during the re nement phase, allowing for the use of global methods, which are
more scalable but are generally much more expensive than the local optimization algorithms

which are commonly used in the sequential case.

