Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Réflexions non-linéaires d'ondes de gravité internes

Nicolas Grisouard

Thèse préparée au sein du Laboratoire des Écoulements Géophysiques et Industriels (UMR 5519), dans l'École Doctorale Terre, Univers, Environnement de l'Université de Grenoble. Thèse encadrée par Chantal Staquet.

(🗆)

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Restoring force: buoyancy

Water parcel in a stably stratified fluid ($d\rho/dz < 0$):

Oscillation at the Brunt-Väisälä frequency

$$N = \sqrt{-\frac{g}{\rho}\frac{d\rho}{dz}}$$

Nicolas Grisouard

Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Oscillation of an object in a stably stratified fluid

• No rotation, infinite rod oscillating at frequency $\omega = 0.56N$:

Source: www.gfd-dennou.org

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Dispersion of internal gravity waves

- Dispersion relation: $\omega^2 = N^2 \sin^2 \theta$
- $\boldsymbol{\theta} = \text{angle of propagation of energy:}$
 - $\omega \nearrow \Rightarrow \theta \nearrow$ (steeper beams),
 - propagative only if $\omega < N$,

•
$$\vec{c}_{g} = \vec{\nabla}_{\vec{k}} \omega, \ \partial \omega / \partial |\vec{k}| = 0 \Rightarrow \vec{c}_{g} \perp \vec{k},$$

 $\omega = 0.56 N$

 $\omega = 0.78N$

 $\omega / N = 1.03$

Nicolas Grisouard

Réflexions non-linéaires d'ondes de gravité internes

Introduction Wav

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Motivation: the meridional overturning circulation

- Global scale oceanic circulation,
- crucial impact on climate.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

What drives the meridional overturning circulation? Mixing!

At the poles: surface water sinks down to the bottom \Rightarrow colder than surrounding water: why ?

- Because mixing transports solar heat downwards,
- sources of mechanical energy (Munk & Wunsch 1998): ~ 50% winds, ~ 50% tides ⇒ internal waves.

 \Rightarrow Internal waves play a crucial role in deep-ocean mixing.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

300 350

Internal tides in the ocean

Nicolas Grisouard

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Back to mixing: the role of topography

World map of tidal dissipation (Egbert & Ray 2001, from satellite altimetry).

Near topographies:

- reflection, scattering
- \Rightarrow enhanced non-linear effects
- ullet \Rightarrow pathway to smaller scales
- \Rightarrow increased mixing due to internal waves.

- 2 Generation of internal solitary waves by internal wave beams
- 3 Internal wave beams and solitary waves in the Bay of Biscay
- 4 Reflection of plane waves on a sloping wall
- 5 Conclusion

2 Generation of internal solitary waves by internal wave beams

3 Internal wave beams and solitary waves in the Bay of Biscay

4 Reflection of plane waves on a sloping wall

5 Conclusion

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Density jumps and solitary waves

↓ Numerical reproduction of Horn *et al.* (2001)

Nicolas Grisouard Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Density jumps and solitary waves

 Solitary waves: balance between nonlinear (finite amplitude) and dispersive (finite width) effects,

- in theory: can propagate without changing shape (in practice: dissipation, etc.),
- described by numerous mathematical models (*e. g.* KdV, Benjamin-Ono...),

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Horizontal velocity

Conclusion

Stratification in the summer Bay of Biscay

Strong density jump (= pycnocline) 60 m below the surface \Rightarrow solitary waves.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Internal solitary waves in the Bay of Biscay

New & Pingree (1990), Bay of Biscay: solitary waves arise (too) far from the shelf

↑ SAR images of the Bay of Biscay (*New & Da Silva 2002*)

Nicolas Grisouard

Explanation (*New & Pingree* 1990): IW beam impinging on the density jump ⇒ "local" generation.

Horizontal velocity

Réflexions non-linéaires d'ondes de gravité internes

Introduction	Wave beams & solitary waves	in the Bay of Biscay	Plane waves & sloping walls	Conclusion
Objecti	ves			

- We have (too few) observations in the ocean: Bay of Biscay, Portugal (Da Silva *et al.* 2007), Indian Ocean (Konyaev 1995, Da Silva *et al.* 2008),
- we have (very idealized) theoretical models (Gerkema 2001, Akylas *et al.* 2007...)
- we will present direct visualizations of the process using numerical simulations...
- ... and a simple rule to understand the mechanism.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Numerical code: the MITgcm

Source: mitgcm.org

- Primitive equations solved \Rightarrow nonlinear, nonhydrostatic effects,
- approximations: incompressibility, Boussinesq,
- 2D configuration (vertical slice).

Wave beams & solitary waves

.. in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Numerical set-up #1

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Generation of mode-1 ISWs

Nicolas Grisouard Réflexions non-linéaires d'ondes de gravité internes

Introduction	Wave beams & solitary waves	in the Bay of Biscay	Plane waves & sloping walls	Conclusion
Modal	analysis			

• Assume for the vertical velocity:

$$w(x,z,t) = W(z) \exp i\Omega(x/c-t),$$

then (Taylor-Goldstein equation):

$$\frac{d^2 W}{dz^2} + \frac{N^2(z) - \Omega^2}{c^2} W = 0 \qquad + 2 B.Cs.,$$

• input: Ω , N(z), rigid-lid B.Cs.,

• output: infinite set of c_n and $W_n(z)$ (n = 1, 2, 3...)

s Conclusion

Modal analysis

$$\frac{d^2 W_n}{dz^2} + \frac{N^2(z) - \Omega^2}{c_n^2} W_n = 0 + B.Cs. \quad (n = 1, 2, ...)$$

- v_{beam} = phase speed of the IW beam
- mode-1 generated
- v_{beam} closer to c_1 for $\Omega > N_0$

Nicolas Grisouard

Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Application to mode-2 ISWs

$$\frac{d^2 W_n}{dz^2} + \frac{N^2(z) - \Omega^2}{c_n^2} W_n = 0 + B.Cs. \quad (n = 1, 2, ...)$$

- v_{beam} = phase speed of the IW beam
- v_{beam} close to c_2 for $\Omega > N_0$

Nicolas Grisouard

Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Application to mode-2 ISWs

Nicolas Grisouard Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Summary: a condition for the generation of mode-n ISWs

To generate mode-*n* ISWs in the pycnocline, make sure that these two match (Grisouard *et al.*, *J. Fluid Mech.* 2011):

- horizontal phase speed of the IW beam,
- horizontal phase speed of trapped mode-*n* IWs.

What about a more realistic case?

2 Generation of internal solitary waves by internal wave beams

Internal wave beams and solitary waves in the Bay of Biscay

4 Reflection of plane waves on a sloping wall

5 Conclusion

Wave beams & solitary waves

.. in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Bay of Biscay: parameters

- Length: 200 km,
- depth: 4300 m,
- semidiurnal tide (period: 12.42 hours),
- rotation: $f_{45^{\circ}}$,
- N(z) based on observations,
- again, forcing applied at boundary (no topography).

Wave beams & solitary waves

... in the Bay of Biscay ●●○○○○○○○○ Plane waves & sloping walls

Conclusion

Bay of Biscay: prediction by the selection condition

$$\frac{d^2 W_n}{dz^2} + \frac{\Omega^2}{c_n^2} \frac{N^2(z) - \Omega^2}{\Omega^2 - f_{45^\circ}^2} W_n = 0 + B.Cs. \quad (n = 1, 2, ...)$$

- v_{beam} = phase speed of the IW beam,
- v_{beam} closer to c_1 for $\Omega > N_0$,
- still, *v*_{beam} quite close to *c*₂.

Prediction Mode-1 dominant, mode-2 allowed.

Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Bay of Biscay: IW beam impinging on the pycnocline

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Bay of Biscay: space-time displacement

red lines: separated by one forcing period and $\approx 25 \text{ km}.$

Figure: Elevation of the middle of the pycnocline over one forcing period

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Contradiction?

In the ocean:

- distance between two trains \approx 50 km,
- wavelength of the internal tide in the upper ocean \approx 50 km.

 \uparrow Surface signature of the internal tide (modeled zonal velocity), Bay of Biscay

Necessity of taking into account more than the IW beam?

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Bay of Biscay: full internal tide, design of the forcing

- Idea: to force both IW beam + internal tide in the upper ocean.
- means: running of a low-resolution, low-amplitude simulation with topography ⇒ new forcing.

Wave beams & solitary waves

... in the Bay of Biscay ○○○○○●○○○○ Plane waves & sloping walls

Conclusion

Bay of Biscay: full internal tide

Distance between two trains of ISWs \approx 50 km, like in the ocean.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Full internal tide: space-time displacement

red lines: separated by one forcing period and 52 km, like in the ocean.

Is the IW beam involved ?

Figure: Elevation of the middle of the pycnocline over one forcing period

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Bay of Biscay: without IW beam

IW beam "removed" from the forcing, upper signal kept \Rightarrow dynamics is much more linear, no ISWs.

Introduction Wave beams & solitary waves ... in the Bay of Biscay Plane waves & sloping walls Conclusion

Bay of Biscay: with and without IW beam

Elevations of the pycnocline with and without IW beam \Rightarrow internal tide in the upper ocean = carrier wave.

Summary

- Selection condition seems to work OK in a realistic setting,
- however, ISWs are very different than in-situ observations (distance between trains),
- interaction with the sub-surface component of the internal tide seems crucial.

Grisouard & Staquet, Nonlin. Processes Geophys. (2010).

- 2 Generation of internal solitary waves by internal wave beams
- 3 Internal wave beams and solitary waves in the Bay of Biscay
- 4 Reflection of plane waves on a sloping wall

Wave beams & solitary waves

... in the Bay of Biscay

 $\omega^2 = N^2 \sin^2 \theta$

Plane waves & sloping walls

Conclusion

Linear reflection of internal waves

• ω is conserved,

• N: external parameter,

 θ conserved (instead of $\vec{c}_g \cdot \vec{n}$).

Internal wave reflection is not specular

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Reflection of a plane wave on a slope and nonlinearities

 \bullet incident + reflected

blue: incident & reflected

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Reflection of a plane wave on a slope and nonlinearities

• incident + reflected = forced secondary wave ("forced 2nd"): $\omega_i + \omega_r = 2\omega_i$ $\vec{k}_i + \vec{k}_r = \vec{k}_f$

blue: incident & reflected red: forced 2nd

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Reflection of a plane wave on a slope and nonlinearities

- incident + reflected = forced secondary wave ("forced 2nd"): $\omega_i + \omega_r = 2\omega_i$ $\vec{k}_i + \vec{k}_r = \vec{k}_f$
- free secondary wave ("free 2nd"): dispersion relation OK $(2\omega_i)^2 = N^2 \sin^2 \theta_{2\omega_i}.$

 $\downarrow \ \theta_i = 11^{\circ}$, not resonant.

blue: incident & reflected red: forced 2nd green: free 2nd

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Reflection of a plane wave on a slope and nonlinearities

- incident + reflected = forced secondary wave ("forced 2nd"): $\omega_i + \omega_r = 2\omega_i$ $\vec{k}_i + \vec{k}_r = \vec{k}_f$
- free secondary wave ("free 2nd"): dispersion relation OK $(2\omega_i)^2 = N^2 \sin^2 \theta_{2\omega_i}$.

Resonance if

$$\theta_{2\omega_i} = (\vec{k}_f, \hat{e}_z)$$

 $\downarrow \ \theta_i = 11^{\circ}$, not resonant.

 $\downarrow \ \theta_i = 12.17^{\circ}$, resonant.

blue: incident & reflected red: forced 2nd green: free 2nd

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Resonance curves (Thorpe 1987)

Other resonances:

- incident + free 2^{nd} = free 3^{rd} ,
- 2 incident + forced 2^{nd} = free 3^{rd} ,

3 ...

 \downarrow Loci of the resonances in the (θ_i,α) space (α = slope angle)

Nicolas Grisouard Réflexions non-linéaires d'ondes de gravité internes

Objectives

- Observation of the resonances (if any) & quantification of their importance,
- quantification of the induced mixing,
- experimental study, continuing Gostiaux's PhD (2006),

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Experimental set-up: overview

Dec. 2009 - Jan. 2010 on the Coriolis platform (Grenoble)

- Wave generator \rightarrow downward propagating plane wave,
- reflection of the waves on a slope (angle 5.71°),
- fluid seeded with particles, illuminated by laser,
- velocity field measured by PIV,
- no rotation.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Velocity field, no filtering

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Velocity field, no filtering: the parameter space

Experimental subset: 18 incident angles, $\theta_i = 5.1^{\circ} \rightarrow 26.4^{\circ}$.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Are the predicted resonances observed?

- Harmonic filtering $(2\omega_i)$,
- Exp. 30: predicted resonance incident + reflected = free 2nd.

 $\uparrow \operatorname{sgn}(u_{\scriptscriptstyle X}) |\vec{u}|$

- No obvious resonance here,
- no obvious resonance anywhere.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Instead, a strong mean flow appears

- Very strong mean flow (\uparrow) compared with the forcing (\rightarrow) ,
- stronger in the interaction zone.

 \uparrow Harmonic filtering (ω_i).

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Instead, a strong mean flow appears

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Structure of the mean flow

 $\begin{array}{l} \mbox{Stratification} + \mbox{lateral confinement} \Rightarrow \mbox{flow} \\ \mbox{must be horizontal } \& \mbox{dipolar}. \end{array}$

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Is the mean flow a systematic error?

- A physical fact: wave beams are curved \Rightarrow Doppler effect?
- mean flow ref. frame: intrinsic frequency $\omega_D = \omega \vec{U} \cdot \vec{k}$.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Is the mean flow a systematic error?

- A physical fact: wave beams are curved \Rightarrow Doppler effect?
- mean flow ref. frame: intrinsic frequency $\omega_D = \omega \vec{U} \cdot \vec{k}$.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Is the mean flow a systematic error?

- A physical fact: wave beams are curved \Rightarrow Doppler effect?
- mean flow ref. frame: intrinsic frequency $\omega_D = \omega \vec{U} \cdot \vec{k}$.

The mean flow is a physical effect, with physical consequences.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Energy of the mean flow: temporal evolution

$$E_k^{slice} = \frac{1}{2} \iint_{slice} \rho \vec{u}^2 dx dz \quad (J.m^{-1}).$$

Moving temporal average when wave field is established (Exp. 24):

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

What source of energy accelerates the mean flow?

80% of the flux "lost" by the waves in ABC!

Could be transferred to:

- mean flow,
- viscous dissipation.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Dissipation of gravity waves and mean flow dissipation

• Waves (gravity, Rossby, sound...) can deposit momentum through dissipation and feed mean flows.

← Bühler & McIntyre (2005) on confined gravity waves.

A relevant interpretation:

- Intensification in the interaction zone? More wave motion \Rightarrow more dissipation,
- temporal evolution? Effect is cumulative.

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Plane waves and sloping walls: summary

Q: are the nonlinear resonances observed?
 A: No, instead: strong mean flow,

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Plane waves and sloping walls: summary

- Q: are the nonlinear resonances observed?
 A: No, instead: strong mean flow,
- Q: is the mean flow of physical nature?
 A: Yes (induced Doppler effect),

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Plane waves and sloping walls: summary

- Q: are the nonlinear resonances observed?
 A: No, instead: strong mean flow,
- Q: is the mean flow of physical nature?
 A: Yes (induced Doppler effect),
- Q: shape of the mean flow?
 A: horizontal dipole (stratification + lateral confinement),

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Plane waves and sloping walls: summary

- Q: are the nonlinear resonances observed?
 A: No, instead: strong mean flow,
- Q: is the mean flow of physical nature?
 A: Yes (induced Doppler effect),
- Q: shape of the mean flow?
 A: horizontal dipole (stratification + lateral confinement),
- Q: driving mechanism?

A: dissipative momentum deposit (cumulative effect, intensification in the interaction zone).

- 2 Generation of internal solitary waves by internal wave beams
- 3 Internal wave beams and solitary waves in the Bay of Biscay
- 4 Reflection of plane waves on a sloping wall

 Introduction
 Wave beams & solitary waves
 ... in the Bay of Biscay
 Plane waves & sloping walls
 Conclusion

 000000000
 00000000000
 00000000000
 000000000000
 ●0

Take-home results

- Reflection of gravity waves on a pycnocline: a selection condition for the vertical structure of the solitary waves,
- in the Bay of Biscay: latter selection condition insufficient to explain the observations ⇒ necessity of taking into account the upper internal tide,
- reflection of gravity waves on a sloping boundary: generation of a strong mean flow,
- all results show new paths for energy dissipation in the ocean.
- initial goal of this PhD: to investigate downscale transfers of energy, related to mixing,
- lab experiments show us that upscale transfers might be very important too (mean flow generation).

Perspectives

- Selection condition: interaction between waves (ω, k) , and waves $(n\omega, nk)$: rather unusual \Rightarrow need of a theoretical model,
- interactions between (solitary) waves and (meso-scale) structures,
- role of mean flows in ocean transport,
- 2D internal wave studies: are the results recovered in 3D?
- in the ocean: $\omega_{\textit{forcing}} \sim f \Rightarrow$ role of rotation?

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

La fin !

Nicolas Grisouard Réflexions non-linéaires d'ondes de gravité internes

Introduction	Wave beams & solitary waves	in the Bay of Biscay	Plane waves & sloping walls	Conclusion
Energy	budget			

• Work-energy theorem (dipole): $\dot{E}_{k}^{tot} = P_{in}^{(waves)} - P_{out}^{(waves)} - P^{(heat)} (1)$ • $E_{k}^{tot} = \mu E_{k}^{slice}$ (2), μ constant (m),

3 unknowns - 2 equations = 1 problem.

$$P^{(heat)} = 4\nu \sum_{i=1}^{3} k_i^2 E_k^{(i\omega)} + P^{(wall)}.$$

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Sensitivity of the local generation viewed from the lab

- Gerkema *et al.*, in the lab: mean flow around the pycnocline has to be taken into account to explain the observations,
- confirmation that perturbations have to be taken into account.

Taylor-Goldstein with horizontal mean flow U(z):

$$\frac{d^2W}{dz^2} + \left(\frac{N^2(z)}{(U(z) - c)^2} - \frac{\Omega^2}{c^2} - \frac{U''(z)}{U(z) - c}\right)W = 0$$

Réflexions non-linéaires d'ondes de gravité internes

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Stratification of the experiments

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Application to mode-3 ISWs

$$\frac{d^2W}{dz^2} + \frac{N^2(z) - \Omega^2}{c^2}W = 0 \qquad + B.Cs$$

- v_{beam} = horiz. phase speed of the IWB,
- conjecture: if for Ω > N₀, v_{beam} closer to c_n, then mode-n ISWs are generated,
- (*left*) design of a simulation such that $v_{beam} \approx c_3$ for $\Omega > N_0$

Wave beams & solitary waves

... in the Bay of Biscay

Plane waves & sloping walls

Conclusion

Application to mode-3 ISWs

Nicolas Grisouard Réflexions non-linéaires d'ondes de gravité internes

Near-field behavior

Let us have a closer look at the pycnocline:

The refracted vertical wavelength matches the vertical wavelength of the mode-n trapped internal waves.

 Introduction
 Wave beams & solitary waves
 ... in the Bay of Biscay

 00000000
 00000000000
 00000000000

Plane waves & sloping walls

Conclusion

Comparison between experiments and numerics

