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Stochastic geometric networks : connectivity and
comparison

Rapporteurs :

Prof. André GOLDMAN

Prof. Mathew PENROSE

soutenue le 24 Novembre, 2010, devant le jury composé de :
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Résumé

Le cadre de la géométrie aléatoire pour les réseaux comporte deux objets : un processus

ponctuel Φ dans Rd, l’espace euclidien de dimension d, et une fonctionelle F (X,Y,Φ) ∈
{0, 1}, definie pour toutes les paires de points X,Y ∈ Φ. La valeur F = 1 se traduit par

l’existence d’une arête entre les points X et Y . F pourra également dépendre des marques

éventuelles du processus Φ. Dans cette thèse nous nous intéressons aux problèmes de

connexité et particulièrement à l’existence d’une composante infinie du graph engendré

par Φ et F . On appelle ce dernier phénomène la percolation du graph. Dans le langage des

communications, les points de Φ représentent les nœuds du réseau et les arêtes les commu-

nications possibles entre ces nœuds. Pour modéliser le réseau géométrique, le processus Φ le

plus fréquemment utilisé est le processus ponctuel de Poisson. Quant à la fonctionnelle F ,

le choix le plus naturel est celui du modèle booléen, où F (x, y,Φ) = 1[|x− y| ≤ 2r] : seuls

les nœuds situés à une distance au plus 2r peuvent communiquer. Nous nous intéressons

dans cette thèse à des extensions par rapport au choix de ces deux eléments fondamen-

taux Φ et F . Dans un premier temps, nous considérons des fonctionelles F plus complexe,

définies sur deux processus ponctuels de Poisson indépendants, ce qui nous conduit à

un nouveau modèle booléen, dit “de type AB”. En second lieu, nous nous intéressons

à des modèles non poissoniens. Nous faisons appel à la theorie des ordres stochastiques

pour élaborer des outils permettant la comparaison systématique des processus ponctuels

en fonction du comportement d’une certaine classe de fonctionnelles. En particulier, cela

nous permet de comparer qualitativement les performances des réseaux non-poissoniens à

celles des réseaux poissoniens. Voici un bref aperçu des résultats décrits dans les quatre

derniers chapitres.

Le modèle Booléen dit ”de type AB” : Étant donnés deux processus ponctuels de

Poisson indépendants Φ(1) et Φ(2) sur Rd, le modèle booléen de type AB est le graphe
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biparti dans lequel X ∈ Φ(1) est relié à Y ∈ Φ(2) si et seulement si |X − Y | ≤ 2r. Il s’agit

d’une généralisation du modèle de percolation AB sur les grilles. Dans le chapitre 3, nous

montrons l’existence d’une percolation pour toute dimension d ≥ 2, et nous établissons

des bornes pour l’intensité critique. Dans le cas d = 2, nous caractérisons exactement

l’intensité critique. Afin d’étudier les propriétés de connexité de ce réseau infini, nous

considérons le modèle booléen fini de type AB avec rayon r (au lieu de 2r) sur deux

processus ponctuels de Poisson indépendants dans le cube unité [0, 1]d, avec intensités

respectives n et cn. Lorsque n → ∞, nous établissons une loi faible pour la plus grande

distance au plus proche voisin, ainsi que des bornes asymptotiques presque sûres pour le

seuil de connexité. La section 1.2.1 contient une description des réseaux de communications

réels ayant motivé cette étude.

L’ordre directionnellement convexe des processus ponctuels : L’ordre stochas-

tique que l’on utilisera pour comparer les processus ponctuels est l’ordre directionnellement

convexe (dcx) : Etant donnés une classe F de fonctions réelles et deux vecteurs aléatoires

X,Y , nous écrirons X ≤F Y si pour tout f ∈ F, E(f(X)) et E(f(Y )) existent et satisfont

E(f(X)) ≤ E(f(Y )). Nous dirons que X est inférieur à Y pour l’ordre F. L’ordre direc-

tionnellement convexe sur les vecteurs alatoires est l’ordre ≤F obtenu en prenant pour F

la classe des fonctions dcx. Cet ordre est utile pour comparer la structure de dépendence

des vecteurs aléatoires en prenant en compte la variabilité de leurs marginales. Il s’étend

naturellement aux champs aléatoires par comparaison de toutes leurs marginales fini-

dimensionnelles. Pour definir l’ordre dcx sur les mesures aléatoires localement finies, nous

verrons celles-ci comme des champs aléatoires positifs indexés par les ensembles boréliens

bornés. C’est précisément cet ordre dcx sur les mesures aléatoires dans les espaces Polonais

qui fait l’objet de notre étude dans le chapitre 4.

Nous montrons que l’ordre dcx est preservé par certaines transformations naturelles

comme la translation deterministe des points, la superposition indépendante, le marquage

ou la suppression indépendante de points. Nous prouvons également que certaines trans-

formations plus sophistiquées, comme un marquage ou une translation qui dépend de la

position du point, sont encore preservées par l’ordre dcx pourvu que l’on se restreigne aux

processus ponctuels de Cox. Nous traitons également l’effet de l’ordre sur les propriétés

de second moment, notamment la tendance au regroupement des points et les mesures de

Palm. Tout semble indiquer que la tendance au regroupement est d’autant plus importante
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que le processus est élevé pour l’ordre dcx.

Les champs intégraux dits de bruit grenaille (shot-noise) de mesures aléatoires sont des

champs aléatoires qui peuvent s’écrire comme l’intégrale d’un noyau mesurable par rapport

à une mesure aléatoire. Le résultat principal du chapitre 4 est que des champs intégraux

de bruit grenaille engendré par des mesures aléatoires ordonnées selon l’ordre dcx sont

aussi ordonnés selon l’ordre dcx. Les champs dit extrémaux de bruit grenaille de processus

ponctuels sont les champs aléatoires qui s’écrivent comme le supremum d’un noyau sur tous

les points d’un processus ponctuel. Lorsque ces processus ponctuels sont ordonnés selon

l’ordre dcx, nous montrons que les champs extrémaux résultants sont toujours ordonnés

selon l’ordre dit orthant inférieur. Pour conclure de la chapitre 4, nous expliquons pourquoi

d’autres ordres – supermodulaire et convexe par rapport à chaque coordonées – ne sont

pas appropriés à la comparaison de processus ponctuels.

Exemples et Applications : Le but du chapitre 5 est de fournir des exemples de

mesures aléatoires et plus particulièrement de processus ponctuels ordonnés en dcx. Nous

exhibons des processus ponctuels supérieurs en dcx aux processus de Poisson (i.e. ayant

une plus forte tendance au regroupement des points) et des processus ponctuels inférieurs

en dcx aux processus de Poisson (i.e. ayant une plus forte tendance à l’éparpillement

des points). Parmi les premiers se trouvent notamment les processus ponctuels d’Ising-

Poisson et les processus ponctuels de Poisson regroupés. Quant-aux seconds, ils incluent

en particulier les perturbations de grilles régulières. Nous décrivons également certaines

fonctionnelles dcx de champs intégraux de bruit grenaille utilisées dans les réseaux sans fil :

couverture des reseaux de capteurs, degré d’un nœud typique dans un réseau géométrique

aléatoire, probabilité de connectivité dans les réseaux SINR.

Percolation et ordre dcx : Dans le chapitre 6 nous revenons aux problèmes de per-

colation et nous montrons comment exploiter l’ordre dcx sur les processus ponctuels pour

comparer des propriétés de percolation dans des modèles de percolation qu’ils engendrent.

Après avoir étudié l’effet de l’ordre dcx sur des fonctionnelles locales comme la couverture,

une question naturelle consiste à étudier l’effet de l’ordre sur des fonctionnelles globales, au

premier rang desquelles figure évidemment la percolation. Nous commençons par compa-

rer les fonctions de capacité des modèles booléens. Ce résultat nous conduit à définir deux

nouveaux rayons critiques, qui sont des bornes respectivement inférieure et supérieure du

rayon critique de percolation. Nous montrons que la borne supérieure crôıt avec l’ordre
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dcx, tandis que la borne inférieure décrôıt. Ces deux résultats restent vrais si nous compa-

rons des processus ponctuels de Cox aux processus ponctuels de Poisson. Le résultat pour

la borne inférieure reste vrai si nous comparons des processus ponctuels determinantaux

aux processus ponctuels de Poisson.

Plusiers modèles de percolation comme la k-percolation, la percolation de mots et la

percolation SINR sont définis par des champs intégraux de bruit grenaille de processus

ponctuels. Si l’on souhaite utiliser l’argument de Peierls pour établir l’existence d’une

transition de phase non-triviale dans ces modèles, il faut d’abord obtenir des bornes sur

les probabilités de depassement de niveau pour les champs intégraux de bruit grenaille.

Nous obtenons ces bornes en comparant la transformée de Laplace du champ intégral

de bruit grenaille en question ‘a celle du champ intégral de bruit grenaille induit par

un processus ponctuel de Poisson. Ces bornes sont valides dès que le processus ponctuel

considéré est inférieur au processus ponctuel de Poisson pour l’ordre dcx. À l’aide d’une

approximation discrète appropriée, nous déduisons finalement l’existence d’une transition

de phase pour cette classe de modèles.

Mots-clés : processus ponctuels, percolation, modèle booléen, graphe géométrique

aléatoire, measures aléatoires, champs aléatoires, l’ordre directionellement convexe.
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Abstract

The stochastic geometric setting for a network consists of two components : a point process

Φ in Rd, the d-dimensional Euclidean space and then a functional F (X,Y,Φ) ∈ {0, 1} for

any pair of points X,Y ∈ Φ. If F = 1, we say that an edge exists between the two points.

In many cases, the point process could have marks associated with the points and in such

cases the functional F shall depend on the marks. This thesis focuses on connectivity

problems in a network and in particular, the existence of an infinite component in the

graph generated by Φ and F . This latter phenomenon is called as percolation of the

graph. In network context, the points of the point process are nodes of the network and

an edge between a pair of points indicates that the nodes can communicate with each

other. The simplest continuum model is the Boolean model in which Φ is a point process

in Rd and F (x, y,Φ) = 1[|x−y| ≤ 2r] i.e, edges exist between points that are at a distance

2r of each other. A ubiquitous assumption in stochastic geometric networks is that Φ

is a Poisson point process. In this thesis, we study extensions in the above set-up with

respect to the choice of the two components – point process Φ and functional F . Firstly,

we consider a functional F acting on two independent Poisson point processes and define

what we call the AB Boolean model. Secondly, we construct tools for comparison of

certain functionals of point processes using the theory of stochastic ordering for random

vectors and thereby compare behaviour of networks with non-Poissonian node distributions

to those with Poissonian node distributions. In what follows, we shall provide a brief

summary of the results obtained in the thesis.

AB Boolean model : Given two independent Poisson point processes Φ(1),Φ(2) in

Rd, the AB Poisson Boolean model is the graph with edges only between X ∈ Φ(1) and

Y ∈ Φ(2) iff |X−Y | ≤ 2r. This is a generalization of the AB percolation model on discrete

lattices. In chapter 3, we show the existence of percolation for all d ≥ 2 and derive bounds
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for a critical intensity. We also provide a characterization for this critical intensity when

d = 2. To study the connectivity problem, we consider independent Poisson point processes

of intensities n and cn in the unit cube. The AB random geometric graph is defined as

above but with balls of radius r. We derive a weak law result for the largest nearest

neighbour distance and almost sure asymptotic bounds for the connectivity threshold.

For network models that resemble this model, see Section 1.2.1.

Directionally convex ordering of point processes : The stochastic order that we

shall use to compare point processes is the directionally convex (dcx) order. For a class

of real-valued functions, F and two random vectors X,Y , we say that X ≤F Y (i.e, X is

less than Y in F order) if E(f(X)) ≤ E(f(Y )) for all f ∈ F and the expectations exist.

Directionally convex order is the order defined when F is taken to be the class of dcx

functions. Directionally convex ordering is a tool for comparison of dependence structure

of random vectors that also takes into account the variability of the marginal distribu-

tions. When extended to random fields it concerns comparison of all finite dimensional

distributions. Viewing locally finite measures as non-negative fields of measure-values in-

dexed by the bounded Borel subsets of the space, in the chapter 4 we formulate and study

the dcx ordering of random measures on Polish spaces. We show that the dcx order is

preserved under some of the natural operations considered on random measures and point

processes, such as deterministic displacement of points, independent superposition and

thinning as well as independent, identically distributed marking. Further operations such

as the position dependent marking and displacement of points are shown to preserve the

order on Cox point processes. We also examine the impact of dcx order on the second

moment properties, in particular on clustering and on Palm distributions. Comparisons

of Ripley’s functions, pair correlation functions as well as examples seem to indicate that

point processes higher in dcx order cluster more.

Integral shot-noise fields of random measures are integrals of a measurable kernel with

respect to the random measure. As the main result of the chapter 4, we show that integral

shot-noise fields of non-negative kernels with respect to dcx ordered random measures

inherit this ordering from the measures. Extremal shot-noise fields of point processes are

supremum of a kernel over a point process. We show that extremal shot noise fields of

dcx ordered point processes are lower orthant ordered. Further, it is shown that two other

dependence orders – supermodular and componentwise convex – for random vectors, when

xiv



extended to point processes are stronger than coupling or called as strong ordering in the

terminology of stochastic ordering.

Examples and Applications : In the chapter 5, we give examples of random measures

and especially point processes that are dcx ordered. We give examples of point processes

that are greater as well as lesser in dcx order than the Poisson point process. The clus-

tered point processes are Ising-Poisson cluster point process, Poisson-Poisson cluster point

process, Generalized shot-noise cox point process, Lévy-based Cox point process and Log

Cox point process while the sparse point processes are perturbed lattices and generaliza-

tions. We also give examples of dcx functionals of shot-noise fields generated by point

processes that are used in wireless communication networks. These functionals pertain to

coverage in sensor networks, typical vertex degree in geometric networks and connectivity

probability in SINR networks.

Percolation and dcx order : Finally in chapter 6, we turn our attention to the re-

lation between percolation and dcx order. After studying impact of dcx order on local

functionals such as coverage, a natural question is to study the effect on global functionals

and percolation is the obvious candidate of interest for network theorists. The starting

point is the ordering of capacity functionals of Boolean models. With this, we define two

newer critical radii which are lower and upper bounds respectively to the critical radius

for percolation. We show that the lower bound is preserved and the upper bound is re-

versed by the dcx order. As a corollary we get that when the upper and lower bounds

are on-trivial for Poisson point process, so are they for sub-Poisson point processes (point

processes lesser than Poisson in dcx order). Both the results are also proved for any Cox

point process in comparison with the Poisson point process. The ordering of the lower

bound also holds true for determinantal point processes in comparison with Poisson point

process.

Many percolation models such as k-percolation, word percolation and SINR per-

colation are defined in terms of integral shot-noise fields of point processes. To show

non-trivial phase transitions in such models, one needs bounds on level crossing prob-

abilities of the integral shot-noise field and then it is possible to use Peierls argument.

These bounds are obtained by using their Laplace transforms and bounding them by

the Laplace transforms of the Poisson shot-noise fields. For sub-Poisson point processes,

using these bounds and suitable discrete approximations, we show the existence of phase
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transition in the models described above. We prove these phase transitions by obtaining

uniform (over all sparse point processes with the same mean measure) upper and lower

bounds for the critical parameters.
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Chapter 1

Introduction

This thesis aims to answer some questions arising in the percolation theoretic studies of

communication networks. Percolation is the mathematical term for existence of long-range

multi-hop communication in networks. Before describing the mathematical framework, in

this introductory chapter consisting of two parts, we will informally introduce percolation

and then provide a brief overview of the thesis. Let us outline the contents of each of the

two parts.

The first part (Section 1.1) will elucidate on the appearance and usage of stochastic

geometric tools in communication networks. Without being unduly reliant on specialist

terminology, we shall describe the basic stochastic models (both discrete and continuum)

used to study connectivity and long-range communication in wireless networks. We shall

also provide a flavour of the percolation theoretic results in these basic models.

In the second part (Section 1.2), the focus is on a few problems of interest to us and

some of their answers that can be found within the pages of this thesis. Section 1.2.1

motivates these problems of interest and in parallel, surveys the efforts of other people in

similar directions that have greatly aided our approach to the problems. A more extended

version of the abstract with a detailed chapter-wise presentation of results can be found in

Section 1.2.2. In that section, we highlight the important results in the thesis by stating

them rigorously but leaving the most general formulation to the respective chapters.

1



2 Introduction

1.1 Stochastic models of communication networks

Many models we consider have been initially motivated by various other applications but

we do not strive for an encyclopaedic presentation of the applications. We shall restrict

ourselves to a few applications in wireless communications. Further, we warn the reader

that the choice of models is greatly influenced by the contents of the thesis and hence

we absolve ourselves of any perceived injustice to the varied stochastic models in vogue

for wireless network applications. However, where we might have been frugal with our

descriptions of models or applications, we have tried to be generous in citing the necessary

literature.

A network, in the simplest terms, is a collection of points in space called nodes or

vertices and a collection of node pairs called edges. The presence of an edge between two

nodes indicates that they can communicate with each other. Communication between

nodes is not necessarily bi-directional. The mathematical name for a network is graph and

henceforth we shall alternate between the two terms – graph and network. The choice of

nodes or edges can be random and it is here that probability makes its way into these

models. Many models of communication networks also have a natural interpretation in

terms of spread of epidemics. It suffices to note that in this context, edges between two

nodes just mean that one node can infect the other node.

In the context of communications, the two basic questions one would like to ask about

a graph are – (1) When is the graph connected ? and (2) What is the maximum amount

of information that can be reliably communicated in the network per node ? The latter

quantity is called the capacity and it is measured in units of information per unit of time.

As we will hint later, recent methods do use graph connectivity to compute the capacity

of the network. When we say a subset of vertices is connected, we mean that there exists

a path (collection of edges) linking every vertex in the subset to every other vertex in the

subset. By graph connectivity, we imply that the set of all vertices forms a connected set.

Since an edge represents the presence of communication between nodes, connectivity of

the graph implies that any two nodes in the network can communicate via intermediate

nodes. Thus, we have made it clear as to why connectivity of a graph is important from a

communication perspective. Once communication is estabilished between two nodes, it is

important to know the amount of information they can communicate or transmit to each

other. Since there are costs associated in building and maintaining connections between

nodes in a network, it does not greatly benefit a network to have nodes connected but
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transmitting very little information.

Apart from the randomness in the choice of nodes or edges, there could be further

randomness in the graph arising from the medium or channel in which the nodes com-

municate. When nodes transmit information across the same channel, their transmissions

interfere with each other and hence the presence of an edge worsens the chances of neigh-

bouring edges. This in particular restrains too many nodes from communicating at the

same time. The perfect analogy is the following scenario : Consider a room with people

where each person is talking to his friend. If many people talk at the same time, it disad-

vantages everyone from listening clearly to their friends. In particular, a simple question

would be how many people can talk to their friends at the same time despite the noise

from others ? Such a question in a network is related to its capacity. We shall look at

specific models of graphs which can satisfiably capture some of these phenomena and also

be rigorously analysed to answer the questions of connectivity and capacity. Our goal

is mostly to understand these phenomena in infinite graphs. The reason being that in

practice one is interested in understanding the behaviour of large finite networks but in

many cases these do not seem to be tractable unlike their limiting infinite network i.e, the

network with infinite nodes.

1.1.1 Discrete networks

We shall start with discrete models not merely as a matter of customary lip service but

also because as we will see in the thesis, results for spatial models rely heavily on dis-

crete approximations. We shall be economical with our descriptions on the problem ori-

gin but the interested reader can read the excellent introduction to the recent book of

[Franceschetti and Meester 2007] or the cited articles.

We mentioned a few lines earlier that one of the first questions of interest is connec-

tivity. The question of connectivity in networks tends to veer between the trivial and the

very hard. So first, we try to address the relatively easier question of percolation. By per-

colation one refers to existence of a giant component i.e, a connected subset of the graph

with infinitely many nodes. Of course, the question makes sense only when the graph has

infinitely many nodes and as already said, this is true for all of our graphs. Once a network

percolates, it means that there can be long-range communication in the network i.e, nodes

located very far away in the network can relay information to each other via intermediate

nodes. Percolation has turned out to be a more reasonable question to answer in many
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communication networks and starting with the next section, we shall see many models

where study of percolation has turned out to be interesting and illuminating. Without

further ado, let us see some percolation models.

Bernoulli percolation

This is the simplest of the percolation models. Let us consider an arbitrary connected

graph G with V as the (infinite) set of vertices and E as the set of edges between the

vertices. Now we delete each edge independently with a probability 1 − p. The simpler

and a probabilist’s favourite way of describing the procedure is as follows : At each edge

one flips a coin and if it is heads (with probability p), the edge stays else it is removed.

We call the resulting random sub-graph (i.e, the graph with the remaining edges after

the edge-removal procedure) as G(p). This is called the Bernoulli bond percolation model.

The word ’bond’ implies that the removal procedure is applied to the bonds or edges. If

we were to apply the removal procedure to the sites or vertices, the resulting model is

called the Bernoulli site percolation model. In the site percolation model, edges are kept

only if both the end vertices are not removed. Both the bond and site percolation models

shall be used in the thesis.

Consider the Bernoulli bond percolation model. Fix a vertex O in V . To introduce

percolation into the picture, it helps to think of the edges as pipes that allow the flow

of some fluid. Now percolation of the graph means that if one pours liquid into the

pipe at O, will it flow to infinity with a positive probability ? This means that with a

positive probability, there exists an infinite sequence of adjacent edges e1, e2, . . . with the

edge e1 originating from O such that none of them are deleted by the removal procedure.

A little more formally, let us denote by θO(p) the probabilty that O is contained in an

infinite component of G(p). Then, by percolation we mean that θO(p) > 0 i.e, with a

positive probability, nodes located very far away are connected to O even after the edge-

removal procedure. Before introducing other notions such as phase transition and critical

parameters, we describe two examples of graphs and Bernoulli bond percolation on them.

These models will help one to understand percolation better. In many graphs (including

the two examples below), it is the case that the graph G(p) is connected only when p = 1.

Notice that our definition of percolation depends on the choice of vertex O. However, in

any connected graph, for two vertices v1 and v2, θv1(p) > 0 iff θv2(p) > 0. Thus, one need

not fret over the choice of O when studying percolation.
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Figure 1.1: The binary tree i.e, Galton-Watson tree with exactly two children at every
node. The edges that remain after the deletion procedure are shaded in black.

We also note here that this thesis will be oblivious to the Erdös-Rényi random graphs

and its many flourishing variants that started with the works of [Ford and Uhlenbeck 1957,

Gilbert 1959, Austin et al. 1959, Erdős and Rényi 1959]. The interested reader can refer

to the recent comprehensive course notes [Hofstad 2010] or the books [Bollobás 2001,

Durrett 2007]. For a one stop overview of percolation theory for the models in this chapter,

we recommend [Bollobás and Riordan 2006].

Galton-Watson trees :

This simplest of random graphs is obtained by imposing a graph structure on the Bien-

aymé-Galton-Watson processes. The model can be described more easily in terms of a pop-

ulation growth process. Indeed, the widely known origin of the model is the study by Gal-

ton and Watson in the context of survival of family names (see [Watson and Galton 1874]).

However, an earlier work on the same model by I.J.Bienaymé (1845) was discovered later.

See [Heyde and Seneta 1977, Kendall 1975] for more on the history of branching processes.

We ask the reader to refer to Figure 1.1.1 for a respresentation of the following graph.

Let us start with a node O called the root. It gives birth to X number of nodes where

X is a random number. These X nodes are called as the children of O. Each of the

children has further children and so on the procedure is repeated indefinitely. The number

of children of a node is independent of other nodes and random with the same distribution

as X. Give an edge between a child and its parent. This now gives a graph structure

called the Galton-Watson tree. Call it GW . In all the following discussion, we omit the
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trivial case when X ≡ 1 i.e, every parent has exactly one child. Now consider GW (p), the

p-thinned subgraph obtained after the edge-removal procedure as described above. The

component of GW (p) containing the root O will still be a Galton-Watson tree with the

number of children being distributed as the random number X∗ :=
∑X

i=1 Yi where Yi = 1

with probability p and else Yi = 0. Let E(X) denote the expected (or average) number of

children in the original Galton-Watson tree. Then E(X∗) = pE(X).

It is clear that the graph corresponds to a population growth process. Such growth

processes called the branching processes have a tendency to show up in various stochastic

models. For a detailed study of branching processes, refer to [Athreya and Ney 1972,

Harris 1963].

Percolation of the root in the graph is tantamount to non-extinction of the population

in the corresponding growth process. The famous result for Galton-Watson trees is that

the process survives with a positive probability only when the average number of children

is strictly greater than one or every parent has exactly one child i.e, E(X) > 1. Hence for

GW (p), percolation occurs (i.e, θO(p) > 0) iff pE(X) > 1. We must remark here that even

if the graph looks very simple, it has turned to be a very useful tool. For example, the

standard technique to show non-percolation in most graphs is to bound the growth of its

connected component by a sub-critical branching process.

Grid percolation model :

We shall describe the following model on a planar grid and it does not require a great

strech of imagination to construct the model in higher dimensions. The figure 1.1.1 conveys

more easily the grid model delineated below in words. Let L2 := (Z2,E2) be the graph

with vertex set Z2 := {(i, j) : i, j ∈ Z, the set of integers} and E2 := {〈(i, j), (i∗, j∗)〉 : i =

i∗, j = j∗
+
− 1 or vice-versa}. This the graph representing the grid.

The first percolation problem of this type appeared in [De Volson Wood 1894] where

an incorrect solution was given and almost after half a century of dormancy, the subject

had its rebirth in ([Broadbent and Hammersley 1957]). See [Kesten 2006, Kesten 2010] for

a very accessible, up-to-date introduction to percolation theory. This classical Bernoulli

bond percolation model on the grid L2 has been of interest to both mathematicians and

physicists. For further reading, we direct the reader to [Grimmett 1999, Kesten 1982]. Let

us at least describe one of the deeper and beautiful results in percolation theory : The

random sub-graph of the grid, L2(p) percolates if and only if p > 1
2 .
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Figure 1.2: The network of pipes described below as L2. The pipes that remain after the
removal procedure have been coloured black.

Phase transition and Critical values : Though phase transition and critical values

are more generic terms in statistical physics literature used in a great many contexts, we

shall describe them only in the context of percolation. However, this will give the reader

an idea of these terms in their full generality too. These terms will be used often in the

thesis and so we deem it worthwhile to explain them in this simple context.

In the Bernoulli bond percolation model on a graph, as we increase the parameter p,

the percolation probability θO(p) increases. From this increasing property and the fact

that θO(0) = 0, θO(1) = 1, we can say that there exists a real number pc, 0 ≤ pc ≤ 1 such

that the graph G(p) percolates (θ0(p) > 0) for p > pc and does not percolate (θ0(p) = 0) if

p < pc. We call such a pc the critical value. It could so happen that pc = 0 or pc = 1. But

such cases are generally less interesting to study. Thus one of the first aims in percolation

studies of a graph is to show that 0 < pc < 1. The graph G(p) is called sub-critical,super-

critical or critical depending on whether p < pc, p > pc or p = pc respectively. For the

above two examples, pc = 1
E(X) for a Galton-Watson tree with X as the distribution of the

children and pc = 1
2 for the grid. Further, observe that the Galton-Watson tree does not

percolate at criticality i.e, GW ( 1
E(X)) does not percolate. The same is also known to be

true for the Grid model too. Though it is believed that percolation is absent at criticality

in many models, it has been proven only for a few. Further, there is no reason for this

statement to be true in general.

Percolation also provides an example of the phenomenon of phase transition. The latter

term refers to a drastic change in a global property of the system (such as a graph in our
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case) due to a small variation in some of the local parameters governing the system. Global

property of a system, by its very name, is a property of the system that is not affected

by change in its local structure. In the Bernoulli bond percolation model, the percolation

probability θO(p) is a global property whereas the parameter p is a local parameter. From

our above discussions, we see that the percolative property of the graph changes suddenly

at p = pc i.e, a small increase in p beyond pc leads to percolation of the graph. This is

precisely what we earlier referred to as drastic change in a global property due to a small

variation in a local parameter. It must be remarked here that in the case θO(p) is not

monotonic, there is nothing to prevent multiple phase transitions. In such cases, we also

have multiple critical values and multiple singularity points. When 0 < pc < 1, the model

is said to have a non-trivial phase transition. Showing such non-trivial phase transitions

in various continuum percolation models is one of the contributions of this thesis.

1.1.2 Stochastic geometric networks

As briefly previewed above, discrete models are interesting in their own right and have

been crucial to various applications. In Galton-Watson trees as well as in Erdös-Rényi

random graphs, there is no spatial location associated with the nodes. In the grid model,

the node locations are deterministic but the nodes are regularly spaced. Though these

assumptions are helpful to study the models but from the perspective of applications, it

is also useful to construct models with more randomly spaced nodes and communication

links depending on inter-node distances. This necessity leads one to continuum models

i.e, models of network where the vertices are points randomly deployed in space and edges

depend on the distance between vertices and locations of other vertices.

The one stark omission in this subsection is of tessellations. These mod-

els have influenced both the theory and applications of stochastic geometry. We

shall refer to [Møller 1994] for a reading of this fascinating topic. For a

more broader overview of applications of stochastic geometry in wireless networks,

we refer the reader to [Baccelli and B laszczyszyn 2009b]. The compiled volume

[Eds. Kendall and Molchanov 2009] is a good starting point to learn about some recent

developments in stochastic geometry. For more information on the percolation, connec-

tivity, coverage and colouring of random geometric graphs, we point the accessible recent

survey [Balister et al. 2009].
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Boolean model :

Figure 1.3: The Boolean model. Balls are centred at points (stars in the figure) and edges
(lines in the figure) between points with intersecting balls.

The first simple stochastic geometric model of percolation was introduced and studied

in [Gilbert 1961] as a model of radio communication networks. This model is now called

the Boolean model or the Gilbert disk graph. Let Φ = {Xi, i = 1, 2...}, a collection of

random points in space (called the point process) be the set of vertices and edges are

between any pair Xi, Xj within a distance 2 of each other i.e, |Xi−Xj | ≤ 2. Alternatively,

one places unit balls (balls of radius 1) at each point of Φ and connects two points if their

balls intersect. Refer to Figure 1.1.2. The interpretation in terms of radio communication

networks is that the points of the point process represent the locations of radio stations and

stations can communicate to one another only if they are within a distance 2 of each other.

In this context, percolation guarantees long-distance relaying of messages in the network.

In most studies, Φ is assumed to be a Poisson point process of intensity λ > 0 and in

such cases we shall call the model as Poisson-Boolean model. Informally, a Poisson point

process can be constructed as follows : Divide the space into disjoint unit cubes. For each

of them, independently choose a random number N according to Poisson(λ) distribution.

Now throw these N points independently and uniformly over the unit cube. The collection

of all these points from all the unit cubes form a Poisson point process of intensity λ. It

has two significant properties - the number of points in different regions are independent

and have a Poisson distribution - that make it amenable to computations. It was shown

in [Gilbert 1961] that, there exists a small λ for which the Poisson-Boolean model does

not percolate and also there exists a large λ for which it percolates. In a formal language,
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one can define a critical intensity λc(1) such that the Poisson-Boolean model percolates

for λ > λc(1) and does not percolate for λ < λc(r). The above result of [Gilbert 1961]

guarantees that in a Poisson-Boolean model 0 < λc(r) <∞ i.e, there is a non-trivial phase

transition. Equivalently, one can fix λ and look for the least radius at which the Gilbert

disk graph percolates. This critical radius is denoted by rc(λ). Thus, it is true that for

λ > 0, we have 0 < rc(λ) < ∞. Further, due to scaling laws (rc(λ1)dλ1 = rc(λ2)dλ2),

it is good enough to study rc(1). Unfortunately though, even in this case exact values

have remained elusive despite tighter bounds. Currently, the best known bounds are from

[Hall 1985]. These are

0.834 ≤ rc(1) ≤ 1.836.

Simulations ([Quintanilla et al. 2000]) have given the improved bounds

1.19845 ≤ rc(1) ≤ 1.19846,

while in recent times, it has been shown in [Balister et al. 2005] that with confidence

99.99%,

1.19789 ≤ rc(1) ≤ 1.19882.

For a very detailed presentation of percolation in Boolean model, refer to

[Meester and Roy 1996]. Many variants of this basic Boolean model have been studied

(see [Balister et al. 2009]). We shall sketch a variant called the SINR graph in this chap-

ter (see Section 1.1.2) while another variant called the AB Boolean model is one of the

contributions of this thesis (see Chapter 3). We shall briefly mention a third variant called

the random connection model in the Section 1.2.1.

Random geometric graphs : For a detailed study of random geometric graphs, refer

[Penrose 2003]. The Poisson-Boolean model (and Boolean models driven by any ergodic

point process) will be fully connected if and only if the radius is infinite. Sometimes, the

more pertinent question is connectivity in a large finite region rather than connectivity

in the infinite space. Thus, one would like to know the radius required for connectivity

of nodes in a large region (sparse network). The other equivalent formulation is to keep

the region fixed and study the radius required for connectivity of a large number of nodes

(dense network). The radii obtained from these two formulations differ only by a scaling

factor.
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The mathematical formulation of the two approaches are as follows : We either consider

a Poisson point process of intensity 1 in a box of volume n or a Poisson point process of

intensity n in a box of volume 1. Call the Boolean model formed on these two point

processes with radius r as G1
n(r) and G2

n(r). Let the critical radii for connectivity in the

two cases be rni, i = 1, 2 respectively. By rni being the critical radius, we mean that it is

the least radius at which the corresponding graph is connected. It is known that for large

n, rdn1 is approximately logn
θd

and rdn2 is approximately logn
nθd

where θd is the volume of a

unit-radius ball in d-dimensions. In both the cases, the expected number of neighbours

(average degree of a node in the random geometric graph) is logn. So, the connectivity

result can be rephrased as follows : If the expected number of neighbours is more than

log n, the random geometric graph will be asymptotically connected with high probability

and else asymptotically disconnected with high probability. An analogous result exists for

Erdös-Rényi random graphs ([Bollobás 2001]).

Coverage processes : In a sensor network, the goal is to effectively monitor a given

region. Thus, in such networks the interest is the region covered by the nodes in the

network. In the simplest model, one can assume that each node can monitor its surround-

ing area at a distance r from itself. Thus, the total region covered can be expressed as

C =
⋃
X∈ΦBX(r) where BX(r) denotes the ball of radius r centred at X and Φ the un-

derlying point process. Such models are known as coverage processe and are the central

objects of study in [Hall 1988]. For a wide class of point process (ergodic point processes

to be more precise), both the volume of space covered as well as not covered will be in-

finite. Hence, we will use two approaches as in random geometric graphs for a better

understanding i.e, fixing the point process intensity and increasing the volume or fixing

the volume and increasing the point process intensity. As with random geometric graphs,

let n be the intensity of the Poisson point process and rn be the radius. For this Poisson

driven coverage process, it is known that when nθdr
d
n → c(a constant), the volume of the

covered region C in a region of unit volume is close to (1− exp{−c}) for a large n.

A performance guarantee one might demand a given set of sensors is the sensor power

required for complete coverage of a given large region. As sensor power directly relates to

the radius of the sensor in the Boolean model, we ask for the minimum radius at which

one can guarantee complete coverage. One might be tempted to ask the same for complete

k-coverage i.e, every point is to be covered by at least k sensors. More generally, it has
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been shown that (see [Janson86] for very general results and see [Balister et al. 2010] for

a shorter proof) in 2-dimensions, when πr2 = log n+ k log logn+ x, the probability that

the region [0,
√
n] is k-covered converges to e−e

−x/(k−1). This result gives a choice of radius

r (by chosing x) such that we can achieve complete k-coverage with as high a probability

as one wants to. In the above result, πr2 is actually the expected number of neighbours in

the corresponding Gilbert disk graph. Thus though connectivity is necessary for coverage,

we see that a significantly higher radius than critical connectivity radius is needed for

coverage.

SINR graphs :

The Boolean model is not sufficient for analyzing wireless networks as it ignores the fact

that in radio communications signal received from one particular transmitter is jammed by

the signals received from the other transmitters and the environmental noise. According

to information theory as well as existing technology, the quality of a given radio communi-

cation link is determined by the so called signal to interference and noise ratio (SINR) at

the receiver of this link. First we shall consider the scenario of only environmental noise

and no interfering transmissions from other transmitters.

Suppose that transmitters send signals at a power P . This signal decays over distances,

say as per a decreasing function l(r). Thus, the signal received at a location xj from the

transmitter at xi (and vice-versa) is Pl(|xi − xj |) where |xi − xj | denotes the distance

between the two locations. The function l(.) denoting the transmission gain factor de-

creases with distance i.e, the received power decreases as the distance increases. If the

environmental noise is N , then the receiver at xj can decode the signal (and vice-versa)

from xi if only Pl(|xi−xj |)
N > T . The ratio is called the signal to noise ratio (SNR) and

the condition means that the the nodes at xi and xj can communicate with each other

only when the SNR ratio is greater than a certain threshold T . One can construct the

SNR graph using this condition. The nodes are points of a point process Φ and edges

are placed between points if there is communication between the points as defined by the

SNR ratio. This graph is called the SNR graph. It can be observed that this graph is

equivalent to the Boolean model as there exists an edge between xi and xj only when

|xi − xj | ≤ rl = l−1(TNP ).

SNR graph is an accurate model when the nodes are placed far apart from each other

or each pair of nodes have a seperate channel for communication. In such a case, the
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interference from other nodes is minimal and hence can be neglected. Let us now also

consider a model in which concurrent transmissions interfere with each other. We treat all

other signals as noise and hence the total interference is the sum of all the transmissions

received at a node plus the environmental noise. Thus, the SINR ratio at a receiver for

a signal from a transmitter is the ratio of the received power from the transmitter to the

interference and noise (environmental or background). A receiver can decode the signal

from the transmitter (or a transmitter can communicate to a receiver) only if this SINR

ratio is high enough. The SINR graph is the graph with vertices as a point process Φ and

edges between points such that both the points can communicate with each other. Unlike

the SNR graph or the Boolean model, the edges in this graph depend on other points and

sometimes on all the points.

The foundations of the theory of SINR models are quite recent (see

[Gupta and Kumar 2000, Baccelli and B laszczyszyn 2001, Dousse et al. 2006,

Baccelli et al. 2006]). From a mathematical point of view, the interference in the

above considerations is called a shot-noise field. Shot-noise fields play a key role in

determining the connectivity and the capacity of the network in a broad sense. Let us

now then make a more mathematical formulation of the model. As above, let P be the

signal power, l(.) be the transmission loss factor, T the threshold, N be the environmental

noise and γ be the interference factor. Thus the SINR ratio at node Y for a transmission

from X is

SINR(X,Y ) :=
Pl(|X − Y |)

N + γ
∑

Z∈Φ,z 6=X,Y Pl(|Z − Y |)
.

So two nodes Xi, Xj in Φ can communicate if only SINR(Xi, Xj) > T and

SINR(Xj , Xi) > T . The SINR graph without the interference term (i.e, γ = 0) is the SNR

graph. In the above definition, we have considered only self-interference i.e, interference

from other communicating nodes alone. But, in reality, there could be interference from

other miscallaneous nodes as well. Suppose Φ denotes the set of communicating nodes,

Φ∗, the additional set of interferers, then we denote the corresponding SINR network as

G(Φ,Φ∗, γ). Observe that SNR network is now nothing but G(Φ, ∅, 0).

Let us describe one of the interesting results as regards percolation of SINR graphs.

Assuming that Φ is a Poisson point process, we have that whenver the SNR graph per-

colates then there exists a γ > 0 such that the SINR graph percolates as well (see

[Dousse et al. 2006]). We will extend this result in this thesis to the case when apart

from interference due to the transmitters one has interference from some other miscalla-
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neous nodes.

Fading : One key phenomenon, we have omitted in the above discussion but that shall

feature in Section 5.2 is fading. So far, we have only mentioned about loss in transmission

due to the distance between the emitter and receiver. However, there could be many

obstacles or reflectors in the transmission medium that divert the signal along multiple

paths. Thus the signal at the receiver is a superposition of multiple copies of these signals

that have traversed different paths. This deviation of the signal power from the attenuation

of path-loss is what is termed as fading. The various factors at play in fading explain why it

could be constructive as well as destructive. Thus, fading could either amplify or attenuate

the signal. In reality, fading is a random process that varies over time and space. Since

this thesis considers models that do not change over time, we study the effect of fading

across space alone.

The way to incorporate fading into our stochastic geometric models is to replace the

power P by PSX,Y where SX,Y is a random variable depending on the emitter location

X and receiver location Y . In theory, since all the signals from an emitter X traverse via

the same medium, the fading random variables need not be independent. However, if we

asssume that the locations of the emitters and receivers are located far away from each

other, it is not too far-fetched to assume that the paths traversed are disjoint and hence

the fading random variables are independent. This assumption of independence is crucial

to many computations.

The next issue is of choice of distribution for these fading random variables. As ex-

pected and as it turns out, different scenarios necessitate different choice of fading distribu-

tions. Based on the choice of fading distribution, various fading models such as Nakagami

fading, Rayleigh fading, Weibull fading, Rician fading, Log-Normal shadow fading etc...

have been proposed. We shall assume Rayleigh fading in one of our models (see Section

5.2).

Capacity and percolation :

We shall now turn our attention to the information-theoretic question of capacity. This

notion pertains to the rate at which the information flows in a network. In the earlier

models, by an edge we assumed the existence of a communication link between the two

nodes. However, nodes closer to each other can transmit information faster than far away
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nodes. To this end, one associates with each link its capacity denoting the number of bits

that can be transmitted across the link per second. The capacity clearly decreases with

the distance between the nodes but it is also known to be non-linear. Following Shannon’s

result on Gaussian channels, one defines the capacity of link in a SINR model as follows

(see [Franceschetti and Meester 2007, Chapter 5]) :

C(Xi, Xj) := log(1 + SINR(Xi, Xj)) = log(1 +
Pl(|X − Y |)

N + γ
∑

Z∈Φ,z 6=X,Y Pl(|Z − Y |)
).

Under this definition of capacity, any two nodes that are connected by an edge in the

SINR graph as described in the subsection above can transmit atleast log(1 + T ) bits per

second i.e, the link sustains a constant information flow. One can consider the per-node

capacity which is the capacity averaged over all nodes in the network.

We shall now discuss some results regarding the capacity of the wireless networks that

utilise results from percolation theory. In [Gupta and Kumar 2000], it was shown that in

a network with randomly deployed nodes, the capacity between each source-destination

pair must decay atleast at the rate 1√
n

as the number of nodes n increases to infinity.

But the authors could only construct a transmission strategy to achieve a capacity of the

order 1√
n logn

. This seminal work triggered efforts to answer similar questions for more

general models of transmission and interference but a tranmission strategy to eliminate

the logarithmic factor remained elusive. This gap was closed in [Franceschetti et al. 2007]

by using a specific multihop transmission strategy that involved percolation theory i.e.,

it was shown that this strategy achieves a capacity rate of the order of 1√
n

. The specific

strategy was to divide the nodes into disjoint sets that cross the network area forming

what the authors term as a “highway system”. Along this highway, nodes transmit in-

formation in short hops at a constant capacity. The source and destination nodes access

this highway in a single hop of longer length. However, after accounting for the fact that

various source-destination paris would access this highway, it turns out that the capacity

on the highway path is actually of order 1√
n

, the correct order. The construction of this

highway, which as expected relies heavily on percolation theory, is at the heart of the

above transmission strategy. Such connections between percolation theory and informa-

tion theory is envisioned to play key role in solving various other information-thoeretic

questions.
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1.2 Overview of the thesis

As explained in the above sections, there are fairly rich models of stochastic geometric

networks. The Boolean model is generally considered a good starting point for stochastic

geometric networks. The two important aspects of a network are its nodes (Φ) and the

notion of communication between nodes. The existence of an edge between two nodes

(i.e, their ability to communicate) can be seen as a functional F (x, y,Φ) dependent on

the positions of the two nodes x, y and the positions of other nodes Φ. In the case of a

Boolean model, this functional is simple in the sense that it depends only on the relative

positions of the two nodes i.e, F (x, y,Φ) = 1[|x− y‖ ≤ r].
We shall endeavour to study Boolean models where the point process (nodes) is not

necessarily a Poisson point process as well as a model where the functional F is not solely

dependent on inter-nodal distances. We have already seen the SINR graph which is a

variant of the Boolean model in the sense that the functional F depends on entire point

process. As avowed in the outlining of the introduction, the background and context of

such extensions shall be elaborated upon in the following section (Section 1.2.1). After

having broadly laid out the goals of the thesis in that section, we shall then preview the

remaining chapters of the thesis in Section 1.2.2.

1.2.1 Motivation and related works

AB Boolean model :

We shall describe wireless networks that motivate the study of a Boolean model with two

types of nodes which we shall call as the AB Boolean model. In the standard Boolean

model, points (nodes) communicate only if they lie within a distance r of each other.

In practice, this implies that all nodes transmit and receive at the same frequencies.

However certain transmission strategies entail transmission at a particular frequency and

reception at a different frequency. For example, consider the transmission scheme called

the frequency division half duplex, where each node transmits at a frequency f1 and

receives at a frequency f2 or vice-versa ([Tse and Vishwanath 2005]). Thus nodes with

transmission-reception frequency pair (f1, f2) can communicate only with nodes that have

transmission-reception frequency pair (f2, f1) that are located within the cutoff distance

r. Thus, in this model, one would like to model the node locations as two point processes

Φ(1),Φ(2) ; Φ(1) consisting of nodes with transmission-reception frequency pair (f1, f2),
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Φ(2) consisting of nodes with transmission-reception frequency pair (f2, f1) and edges only

between points of the opposite point processes provided they are within a distance r of

each other. Observe that the requirements for percolation in this graph are different from

those of the Boolean model.

Another example where such a model would be applicable is in communication between

nodes deployed at two different levels, for example surface (or underwater) and in air.

Nodes in a level can communicate only with those at the other level that are within a

certain range. A third example is in secure communication in wireless sensor networks with

two types of nodes, tagged and normal. Upon deployment, each tagged node broadcasts

a key over a predetermined secure channel, which is received by all normal nodes that are

within transmission range. Two normal nodes can then communicate provided there is a

tagged node from which both these normal nodes have received a key, that is, the tagged

node is within the transmission range of both the normal nodes.

Our model is named so because such a model of communication between nodes of

opposite types has been already considered in the discrete set-up and is known as the AB

percolation model ([Grimmett 1999, Wu and Popov 2003]). Given a graph G := (V,E),

each vertex is given a mark A or B independent of other vertices. Edges between vertices

with similar marks (A or B) are removed. The resulting random sub-graph is the AB

graph model. Percolation is said to happen in this model if there exists, with positive

probability, an infinite path of vertices with marks alternating between A and B. This

model has been studied on lattices and some related graphs. The AB percolation model

behaves quite differently as compared to the usual percolation model. For example, it

is known that AB percolation does not occur in Z2 ([Appel and Wierman 1987]), but

occurs on the planar triangular lattice ([Wierman and Appel 1987]), some periodic two-

dimensional graphs ([Scheinerman and Wierman 1987]) and the half close-packed graph

of Z2 ([Wu and Popov 2003]).

Beyond Poisson point process :

Throughout this introduction so far, point processes have only played the role of nodes

in a communication network. However, we must emphasise that point processes lie at

the heart of various studies in stochastic geometry, both theoretical and applied. Their

applications run the gamut from medical imaging to military applications.

Most of the work involving quantitative analysis of point processes have dealt with
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Poisson point process. One of the main reasons being that characteristics of Poisson point

process are amenable to computations and yield nice closed form expressions in many

cases. Even for Cox (doubly stochastic Poisson) point processes, the computations have

been cumbersome and often leading to complicated expressions.

To improve upon this situation, qualitative, comparative studies of point process have

emerged as useful tools. The first method of comparison of point processes has been

coupling or stochastic domination (see [Kamae et al. 1977, Lindvall 1992]). In our termi-

nology, these are known as strong ordering of point processes. When two point processes

can be coupled, one turns out to be a subset of the other (see [Rolski and Szekli 1991]).

This ordering is very useful for obtaining various bounds and proving limit theorems.

However, using it one cannot compare two different point processes with same mean mea-

sures. An obvious example is an homogeneous Poisson point process and a stationary Cox

point process with the same intensity. The question arises of how to compare such point

processes? This is an important question since it is expected that by comparing point pro-

cesses of the same intensity one should achieve a tighter bound than by coupling and also

one can analyse more point processes. For some more details on strong ordering of point

processes and need for other orders, see remarks in [Müller and Stoyan 2002, Sections 5.4

and 7.4.2].

Our interest in point processes, and in particular in the shot-noise fields they generate,

as seen earlier has roots in the analysis of wireless communications. According to a new

emerging methodology, stochastic geometric modeling of wireless communications provides

a way of defining and computing macroscopic properties of large wireless networks by av-

eraging over all potential random patterns for node locations in an infinite plane and radio

channel characteristics. This averaging procedure is in the same way as queuing theory

provides averaged response times or congestion over all potential arrival patterns within

a given parametric class. These macroscopic properties will allow one to characterize the

key dependencies of the network performance characteristics as a function of a relatively

small number of parameters. Shot-noise fields being one of the simplest functionals of a

point process occur in various contexts. For example, shot-noise fields are used to model

spike trains in neuronal networks. (refer to [Huffer 1984a]).

In the above context, Poisson distribution of emitters/receiver/users is often too sim-

plistic. Statistics show that the real patterns of users exhibits more clustering effects

(“hot spots”) than observed in an homogeneous Poisson point processes. On the other
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hand, good packet-collision-avoidance mechanisms scheme should create some “repulsion”

in the pattern of nodes allowed to access concurrently to the channel. Social networks

also exhibit such repulsive or hot spots behaviour. During major festive events in a town,

one observes people crowding certain spots in a town. Perhaps, in beaches or parks, there

would not be too many people close to each other. If one considers people as mobile users,

then they act as receivers or transmitters. Thus in the situations described above, one

would observe the nodes are either clustered or spread-out. This rises questions about

the analysis of non-Poisson models, which we wish to tackle using the theory of stochastic

ordering that will be introduced in the next subsection.

Stochastic orders :

Let us briefly dwell on stochastic ordering before proceeding to relating it to the compari-

son of point processes. Two random variables X and Y with the same mean E(X) = E(Y )

can be compared by how ”spread out” their distributions are. This statistical variabil-

ity (in a statistical ensemble) is captured to a limited extent by the variance, but more

fully by convex ordering, under which X is less than Y if and only if for all convex

f , E(f(X)) ≤ E(f(Y )). In multi-dimensions, besides different statistical variability of

marginal distributions, two random vectors can exhibit different dependence properties

on their coordinates. The most evident example here is comparison of the vector com-

posed of several copies of one random variable to a vector composed of independent copies

sampled from the same distribution. A useful tool for comparison of the dependence

structure of random vectors with fixed marginals is the supermodular order. The dcx or-

der is another integral order (generated by a class of dcx functions in the same manner

as convex functions generate the convex order) that can be seen as a generalization of the

supermodular one, which in addition takes into account the variability of the marginals

(cf [Müller and Stoyan 2002, Section 3.12]). More generally, one can compare two ran-

dom vectors with respect to a class of functions F i.e, we say X ≤ Y in F order if

E(f(X)) ≤ E(f(Y )) for all f ∈ F and such that the expectations exist. Such orders were

named integral stochastic orders in [Whitt 1986]. The goals of the theory are two-fold -

(1) To construct tools that shall simplify proving X ≤F Y and (2) Given F, what is the

maximal class G ⊃ F such that X ≤F Y implies X ≤G Y ? Finding a minimal class G ⊂ F

is also of interest and is one of the tools noted in the first statement above.

This notion of ordering of random vectors appears natural from the viewpoint of sub-
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jective expected utility theory axiomatically derived in the seminal work of Von Neumann

and Morgenstern (see [Neumann and Morgenstern 1947]). The concept was known to have

been already used by Bernoulli in the 18th century. Every agent has a utility function

which determines his actions. This utility function can be thought of as profit from an

action to agent. An agent chooses an action Y instead of X if on an average the action

Y is more beneficial to him i.e, E(u(X)) ≤ E(u(Y )) where u(.) is the utility function of

the agent. In many cases, one does not have complete knowledge of the utility function

of an agent but only the partial knowledge that the utility function belongs to a certain

class. Also, sometimes one considers a group of agents instead of a single agent and in

this case the utility functions belong to the class generated by all the individual utility

functions. These two possible scenarios lead to a definition of stochastic ordering as in the

last paragraph.

The theory of stochastic ordering provides elegant and efficient tools for comparison

of random objects and is now being used in many fields. The applicability of these results

has generated sufficient interest in the theory of stochastic ordering as can be seen from

the diverse results in the book of Müller and Stoyan ([Müller and Stoyan 2002]). We shall

skim through the applications to queueing theory and the major part of the thesis is

application to point processes.

Ross conjecture and dependence orders in queueing theory :

Generalizing the viewpoint of comparison expounded in the above section, to compare

random elements in an arbitrary space, we need to define suitable “utlity functions” for

elements in that space. Using these utility functions, one can define a ordering of random

elements. If the space is an Euclidean space, there are a host of utility functions such

as increasing functions, convex functions and many more readily available. However, it

is less clear what kind of interesting utility functions exist on the space of locally finite

measures, space of locally finite point processes or the space of closed sets. In the hope of

enticing the reader to continue reading the thesis, we mention that this thesis does study

a class of utility functions on the former two spaces. Due to the relation between queues

and point process, the comparison of queues was studied first and this later paved the

way for comparitive studies of point processes. Let us then make a brief foray into queues

before relating them to point processes.

The genesis of mathematical study of queues is unanimously attributed to
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[Erlang 1909]. A queuing network is a network of servers and customers. Customers

arrive in the network and are allocated to or choose a server. The server provides service

to the customer for a certain duration if it is free. Depending on the modalities of the

network, when the server is busy the protocol for re-access varies. In telephone networks,

the customer is routed to any free server and if there is no free server, the customer retries

after some time. In other networks, customers are forced to wait in a queue and then

based on some priority value assigned to the customer, he is served. In reservation coun-

ters, one would follow the simple FIFO (First-In-First-Out) rule but whereas in hospitals

the service rule would be based on the patient’s profile. The link between queues and

point processes is conspicuous once we observe that the arrival times of customers in a

network form a sequence of points on the positive real line. In other words, the arrival

times of customers are a one-dimensional point process and so are the exit times. As with

point processes, in most queueing networks also one assumes the arrival process to be a

Poisson point process. For more on queueing theory, refer [Baccelli and Brémaud 2003].

In the queueing theory context, it was conjectured [Ross 1978] that replacing a

stationary Poisson arrival process (the sequence of arrival times) in a single server

queue (with FIFO rule) by a stationary Cox point process with the same inten-

sity would increase the average customer delay. There have been many variations

of these conjectures which are now known as Ross-type conjectures. They trig-

gered the interest in comparison of queues with similar inputs ([Chang et al. 1991,

Miyoshi and Rolski 2004, Rolski 1989]). These comparisons relied heavily on the theory

of stochastic ordering. The notion of a dcx function was partially developed and used in

conjunction with the proving of Ross-type conjectures ([Meester and Shanthikumar 1993,

Meester and Shanthikumar 1999, Shaked and Shanthikumar 1990]). Directionally convex

(dcx) order of the point process of arrival times in queues was used to settle many of the

Ross-type conjectures. Much earlier than these works, a comparative study of queues using

supermodular order and motivated by neuron-firing models can be found in [Huffer 1984a].

Comparison of point processes and clustering effects :

As most works on ordering of point processes were motivated by applications to queueing

theory, results were primarily focused on one-dimensional point processes. However, from

the relation between queues and point processes, it is to be expected that comparisons

of queues with similar inputs shall play a crucial role in our work of extending them to
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Figure 1.4: Samples of translation invariant point processes in the plane: Poisson (left),
determinantal (center) and permanental (right) for kernel K(z, w) = 1

πe
zw− 1

2
(|z|2+|w|2).

These are examples of independent, sparse and clustered point processes. This figure is
reproduced from [Ben Hough et al. 2006].

point processes. An attempt to rectify the lack of work in higher dimensions was made

in [Miyoshi 2004], where comparison results for shot-noise fields of spatial stationary Cox

point process were given. In particular, it was shown that one-dimensional marginals of

some spatial stationary Cox point processes were greater in dcx order than those corre-

sponding to Poisson point process. The results of [Miyoshi 2004] are the starting point of

our investigation. Also comparison of variances of point processes and fibre processes was

studied in [Stoyan 1983] and hence it can be considered as a forerunner to our work.

A natural phenomenon that could be the basis for comparison among point processes

of similar intensity is clustering. This refers to the spread of the points of a point process

across space. In some point processes, the points tend to occur in clusters whereas in others

they are more evenly spread out. For example, in Figure 1.2.1 we can see three different

point processes - Poisson, Determinantal and Permanental. For proper definitions, see

Definitions 2.1.1 and 6.2.13. In a Poisson point process, the points are spread independent

of each other. In determinantal point processes, the points repel each other and hence are

spread out more sparsely. Permanental point processes lie at the other end of spectrum.

The points occur in clusters. We will see some more figures of sparse and clustered point

processes in Chapter 5.

There have been various statistical measures of clustering such as Ripley’s K-function

and pair correlation function (see Section 4.2.2). While these measures are sufficient for the

purposes of comparison of clustering properties of point processes, it is far from obvious
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whether they could be used to ascertain better coverage or better connectivity for less

clustered point processes. In our language of stochastic ordering, we are looking for a

larger class of utility functions than the afore-mentioned statistical measures of clustering.

While it should be rich enough to compare functionals of point processes such as coverage,

connecvitity or percolation, it should also be amenable so that we can provide examples of

point processes that can be compared via this class of utility functions. We shall propose

our contribution towards such a goal in Chapter 4 and demonstrate its amenability and

applications in the following chapters (chapters 5 and 6). These are inspired by the success

of dcx functions in the proving of Ross-type conjectures and by their spatial extensions in

[Miyoshi 2004].

Comparison studies in percolation theory :

We shall switch back to percolation from stochastic ordering and survey literature on

comparison studies in continuum percolation. Optimization of percolation over shapes

was first considered in [Jonasson 2001]. In particular, one can consider a general Boolean

model on Poisson point process with compact convex sets C of unit area instead of balls

in Figure 1.1.2. In [Jonasson 2001], it was shown that the critical intensity for percolation

required to percolate is minimized when C is a triangle and maximized for some centrally

symmetric set C. Critical intensity for percolation is the least intensity λ of the Poisson

point process above which the Boolean model percolates. The proof argument using

difference-body inequalities is applicable for a more general class of point processes. Similar

result was proved using more probabilistic arguments (namely enhancement technique)

for the case when C is a polygon in [Roy and Tanemura 2002]. Further, the usage of

enhancement arguments allowed [Roy and Tanemura 2002] to show strict inequalities as

well. This idea was also used for comparison of percolation models with different shapes

in three dimensions.

Another percolation model where comparison has been used is the random connection

model introduced in [Penrose 1991]. In this model, one connects points of a Poisson point

process in the plane at a distance r with probability f(r). Under reasonable assumptions

on f , it is shown that the critical intensity λc(f) is non-degenerate i.e, 0 < λc(f) <

∞. In [Franceschetti et al. 2005] two transformations to f were considered : fp(r) =

pf(
√
pr) and fs(r) = f(c−1(x − s)) for p, s > 1. Using a nice coupling argument and

the fact that bond percolation percolates better than site percolation on any graph, it
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is shown that these transformations help percolation i.e, λc(fp) ≤ λc(f) and λc(fs) ≤
λc(f). In other words, this says that spreading out the connections help percolation. The

strict inequalities for the first of these inequalities can be found in the recent pre-print

[Franceschetti et al. 2010]. Though the mean degree of nodes remain same under the

two transformations, it is conspicuous that nodes have more longer range edges in the

random connection models with the transformed connectivity function. For applications,

this means that it is beneficial to replace a few short-range communications by some

long-range ones.

Clustering and percolation :

In the above comparison studies, the underlying point process has been a Poisson point

process. It is in this regard that the thesis differs from previous efforts. We will try to study

the change in percolative properties when the underlying point process is changed. One

of the common heuristics is that more clustering in a point process impacts percolation

negatively. A more precise mathematical statement of the same would be that the critical

radius for percolation increases with increase in clustering of a point process. The focus

of the final part of the thesis is to study this heuristic.

For example, let us denote the Poisson, determinantal and permanental point processes

by Φi, i = 1, 2, 3 and their critical radii for percolation as rc(Φi), i = 1, 2, 3 respectively.

Then we expect that rc(Φ1) ≤ rc(Φ2) ≤ rc(Φ3) i.e, it should be easier for a determinantal

point process to percolate than the Poisson point process and which in turn should perco-

late better than a permanental point process. Now let us look at more concrete examples.

For the following three point processes known as perturbed lattices (see 5.1.7), we have

simulated their corresponding Boolean models or Gilbert disk graph for different radii.

These are obtained by independently replicating each vertex of an hexagonal grid random

number of times and then shifting each replication independently and uniformly within its

hexagon. In the following, the number of replications are distributed as Bin(n, 1/n) for

n = 1, 2, 5 where Bin(n, 1/n) stands for a Binomial distribution with parameters n and

1/n. Thus, all the three point processes have on a average same number (1 in this case)

of points within a hexagon.

A glance at the figures tell you that the clustering in the above point processes increases

from left to right. Heuristically, the radius required for percolation also should increase

from left to right. The simulations of their Gilbert disk graphs in Figure 1.2.1 show that



1.2. Overview of the thesis 25

●
●

●

● ●

●
● ● ●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

● ●

●
● ●

●

●

● ●

●
●

● ●
●

●

● ● ●

●

●

●

●

●
●

●
●

● ●

●

●

● ● ● ●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

● ● ● ●

●
●

● ●

● ● ●

●

● ●

● ●

●

● ● ● ●

●
●

●

● ●
● ●

●
●

●

●
●

● ●

● ●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

● ● ●

●
●

●

●
●

● ●
●

●
●

●

● ●

●
●

●

●

● ●
● ● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●
●

● ●

●
●

●

●

●

● ●

●

●

●
●

● ●

●

● ●
●

●

●

●

●
● ●

●

●

● ●
●

● ●

●

●
●

●
● ● ●

Bin(1/1)
●

●
●

●
●

●

●●

●●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
● ●

●
●

●●

●

●

● ●
●

● ●●

●

● ●

●

●

●

●
●

●
● ●

●

●
●

●●

● ● ● ●
●

● ●

●

●

● ●

●
●● ● ●

●

● ● ●●

●

●

●
●

● ●

●●
●

●
●

●●

● ● ● ●
●

●

●
●

●

●
●

● ● ●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●
●

●
●

●
●

●● ● ●●
● ●

●
●

●
●●

●
● ●

●
●

●
● ●

●

●●

●
●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●
● ● ●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

● ●
● ● ●

Bin(2, 1/2)
● ●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●
●

● ●●
●

●
●

●

● ●

●
●

●

●

● ● ●
●

●●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●● ●

●
●

●●

● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

● ●

●

● ●

●● ●
●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

●

● ●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ● ●

●

●
●

● ●
●

Bin(5, 1/5)

Figure 1.5: Three different perturbed lattices. See Section 5.1.7 for more explanations.

our heuristic is not too far off the mark.

The most general statement should be of the form Φ0 ≤F Φ implies that rc(Φ0) ≤ rc(Φ)

where F is the class of utility functions defining the ordering of point processes. What

would be a suitable class F that includes some reasonable point processes as examples ?

If we are greedy, we would demand the order to include the above point processes also as

examples. Surely, the class of increasing functions (corresponding to coupling) fails as it

cannot compare point processes of same mean intensity. In Chapter 6, we shall see how far

do dcx functions take us in this direction. As we have explained in the above subsection,

dcx ordering of point processes is a strong measure of clustering. Hence, it is natural

to ask whether the order can be used to compare the percolative properties as well. We

will see that though dcx order does not include the determinantal and permanental point

processes as examples, our proofs can be modified easily enough to prove comparison of

certain critical radii for these class of point processes also (see first Theorem in Section

1.2.2 below ). In Chapter 6, we will also present some simulations of the Boolean model

on different point processes that confirm the above heuristic.

1.2.2 Presentation of the results

In the chapter on preliminaries (Chapter 2), we lay out the stochastic geometric framework

encompassing the reccurrent themes of the thesis – point processes (pp), percolation and

directionally convex ordering. The main goal of the chapter is to find the middle between

over-crowding of the main chapters with standard results and self-containement of the

thesis. Firstly, we shall make a quick run through the definitions of random measures,
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10 largerst components

Bin(1, 1), ρ = 0.99
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10 largerst components

ρ = 1.03
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10 largerst components

ρ = 1.05
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10 largerst components

ρ = 1.08
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10 largerst components

Bin(2, 1/2), ρ = 0.99
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10 largerst components

ρ = 1.03
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10 largerst components

ρ = 1.05
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10 largerst components

ρ = 1.08
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10 largerst components

Bin(5, 1/5), ρ = 0.99
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Figure 1.6: Gilbert graph with communication range ρ and nodes in perturbed lattice pp
with Binomial Bin(n, 1/n) number of replicas uniformly distributed in hexagonal cells.
The largest component in the simulation window is highlighted. Bar-plots show the frac-
tion of nodes in ten largest components.

Palm measures, random closed sets, stationarity, ergodicity, Campbell-Mecke formula and

Choquet’s theorem. Secondly, we shall sketch the Peierls argument for proving percolation

on lattices as well as give a sufficient condition for non-percolation on lattices. Both these

conditions form the backbone of proofs of percolation and non-percolation in Boolean
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models respectively. Thirdly and finally, we shall state some results on directionally convex

ordering of random vectors that shall be used in the subsequent chapters.

For the ease of referencing, we would like to mention that the content of the four

remaining chapters are sourced from the following articles :

• The results of the chapter 3 can be found in the submitted pre-print

[Iyer and Yogeshwaran 2010].

• Most parts of the chapters 4 and 5 have already appeared in the publication

[Blaszczyszyn and Yogeshwaran 2009].

• Finally, the results of the chapter 6 are from an unsubmitted manuscript

[Blaszczyszyn and Yogeshwaran 2010b] and a more concise version in

[Blaszczyszyn and Yogeshwaran 2010] explaining the possible applications to

communication networks. An extended version of the above article with more

figures can be found in the technical report [Blaszczyszyn and Yogeshwaran 2010a].

AB random geometric graphs - Chapter 3 :

In Section 1.2.1, we have described models with communication only between opposite

types of nodes. In Chapter 3, we make a more rigorous formulation of this model. To

be consistent with the respective literatures, the model formulations are different for the

problems of percolation and connectivity. We denote the Boolean model as described in

subsection 1.1.2 as C(λ, 2r) where λ is the intensity of the Poisson point process and r is

the radius of the balls centred at the points.

A natural analog of the discrete AB percolation model or the usual Poisson Boolean

model to the AB set-up would be to consider a graph with vertex set Φ(1) where each

vertex is independently marked A or B. However, we will consider a more general model

from which the results for the above model will follow as a corollary. Let Φ(1),Φ(2) be

two independent Poisson point processes in Rd with intensities λ, µ respectively. Then,

the AB Poisson Boolean model G(λ, µ, r) is the graph with points of Φ(1) as vertices

and with edges between any pair of points for which the intersection of balls of radius

2r centred at these points contains at least one point of Φ(2) i.e, Xi, Xj ∈ Φ(1) have an

edge if there exists Y ∈ Φ(2) ∩ BXi(2r) ∩ BXj (2r) or in other words a Y ∈ Φ(2) such

that BXi(r) ∩ BY (r) 6= ∅, BXj (r) ∩ BY (r) 6= ∅. In two dimensions, the ease of geometry

allows us to characterize the point of transition of the critical intensity µc(λ, r) := sup{µ :



28 Introduction

P (G(λ, µ, r) percolates) = 0}. Let λc(r) := sup{λ : P (C(λ, r) percolates) = 0} be the

critical intensity for percolation of the Boolean model.

Theorem (Theorem 3.1.5). For d = 2, we have that µc(λ, r) <∞ iff λ > λc(2r).

In higher dimensions, we do not have such precise characterizations but we are still able

to derive bounds for the critical intensity µ required for percolation when r is fixed and

λ is chosen suitably large. This assures us of the existence of phase transitions in the AB

Boolean model in all dimensions starting from two. These results are obtained from more

general results on a continuum word percolation model. Word percolation is the occurence

of a given infinite sequence from {1, . . . , k}∞ in a giant component of the Boolean model

when the points are independently marked with marks in 1, . . . , k. By using these results,

we show that for large λ∗ , the AB Boolean model G(λ∗2 ,
λ∗
2 , r) percolates. By continuity

of the percolation function, we can deduce that the AB Boolean model G(λ∗p, λ∗(1−p), r)
percolates for all p sufficiently close to 1

2 and λ∗ large. Observe that this is the natural

extension of the AB grid percolation model in the continuum as independent thinning of

Poisson point process is also a Poisson point process.

To study the full connectivity problem, we consider independent Poisson point pro-

cesses of intensities n and cn in the unit cube. The AB random geometric graph Gn(c, r)

is defined on these two point processes similar to the AB Boolean model but with balls

of radius r
2 . We first describe the radius regime rn(c) = log(n/β)

cnθd

1
d such that the expected

number of isolated nodes in Gn(cn, rn(c)) converges to a non-degenerate Poisson random

variable. We prove such a total variation convergence result for all c < 1 in d ≥ 3 and for

all c < c0 < 4 in d = 2. Further, under this radius regime for c > 2d, we have that the

expected number of isolated nodes diverges. This indicates a phase transition for the ex-

pected number of isolated nodes under this radius regime. Using this convergence result,

we derive a weak law result for the largest nearest neighbour distance and almost sure

asymptotic lower bounds for the connectivity threshold. The upper bounds are derived

via coupling with usual random geometric graphs.

Theorem (Theorem 3.2.6). Define α∗n(c) := inf{a : Gn(cn, a
1
d rn(c)) is connected}. Then

there are constants c0 and α(c) such that

∀c < c0, a < 1, lim
n→∞

P (Gn(cn, arn) is connected ) = 0 and

∀c > 0, lim sup
n→∞

α∗n(c) ≤ α(c) a.s..



1.2. Overview of the thesis 29

In less mathematical terms, the result means that the AB random geometric graph

Gn(cn, a
1
d rn(c)) will remain connected asymptotically for c > 0, a > α(c) and disconnected

asymptotically for c < c0, a < 1.

Directionally convex ordering of point processes - Chapters 4 and 5 :

The order ≤ on Rn shall denote the component-wise partial order, i.e., (x1, . . . , xd) ≤
(y1, . . . , yd) if xi ≤ yi for every i. We shall abbreviate x ≤ q, y ≤ q to [x, y] ≤ q (and

similarly p ≤ [x, y]).We say that a function f : Rd → R is directionally convex (dcx) if for

every x, y, p, q ∈ Rd such that p ≤ [x, y] ≤ q and x+ y = p+ q,

f(x) + f(y) ≤ f(p) + f(q).

Two random vectors are said to be dcx ordered i.e, X ≤dcx Y if E(f(X)) ≤ E(f(Y )) for all

f dcx such that the expectations exist. We make a further extension that consists in dcx

ordering of locally finite measures on a Polish space E (to which belong point processes)

viewed as non-negative fields of measure-values on all bounded Borel subsets of the space.

More precisely, two random measures are said to be ordered and denoted Λ1 ≤dcx Λ2

if (Λ1(B1), . . . ,Λ1(Bn)) ≤dcx (Λ2(B1), . . . ,Λ2(Bn)) for any finitely many bounded Borel

subsets. This is the ordering of marginal vectors when the measures are viewed as random

fields indexed by bounded Borel subsets. A simple but powerful result is that random

measures are dcx ordered provided the above condition on ordering of their finite dimen-

sional marginals holds for all disjoint bounded Borel subsets. We show that the dcx order

is preserved under some of the natural operations considered on random measures and

point processes, such as independent superposition, i.i.d marking, deterministic displace-

ment, projection and thinning. The last three properties can also be viewed as special

cases of i.i.d. marking. It is known that that random measures with random densities (i.e,

Radon-Nikodyn derivatives) are dcx ordered when the densities are dcx ordered. We take

it one step further by showing that the Cox point process generated by random measures

preserve the dcx order. This can be exploited to show that intensity measures of indepen-

dently (not necessarily identical) marked Cox point processes preserve the dcx order as

well. This gives greater leverage when working with Cox point processes.

We next study the relation between clustering of point processes and dcx order. The

well-known statistical measures of clustering are the Ripley’s K(.)-function (the expected
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empirical average of neigbhours within a distance r) and the second moment densities.

We show that these respect the dcx order by proving that moment measures are preserved

by dcx order. We then turn our attention to Palm measures. Palm measure of a point

process is the distribution of the point process conditioned on existence of a point at a

given location x. We show that dcx ordering of random measures implies idcx (increasing

and dcx) ordering of their Palm measures. We also give counter-examples to show that

this result cannot be improved in full generality.

Many interesting characteristics of random measures, both in the theory and in ap-

plications have the form of integrals of some non-negative kernels. Suppose that k(., .) is

a measurable (in the first variable alone) non-negative kernel on E × S (for an arbitrary

index set S), then integral shot-noise field VΛ(.) of a random measure Λ and extremal

shot-noise field UΦ(.) of a point process Φ are defined as follows :

VΛ(y) :=
∫

E
k(x, y)Λ(dx) ; UΦ(y) := sup

X∈Φ
{k(X, y)}.

For example, many classes of Cox point process, with the most general being Lévy based

Cox point process (cf. [Hellmund et al. 2008]), have stochastic intensity fields, which are

integrable shot-noise fields. They are also key ingredients of the recently proposed, so-

called “physical” models for wireless networks, as was already explained in Section 1.1.2.

It is particularly appealing to study the shot-noise fields generated by dcx ordered random

measures as they appear in a variety of contexts.

Since integrals are linear operators on the space of measures, and knowing that a

linear function of a vector is trivially dcx, it is naturally to expect that the integral

shot-noise fields with respect to dcx ordered random measures will inherit this ordering

from the measures. However, this property cannot be concluded immediately from the

finite dimensional dcx ordering of measures. The formal proof of this fact is one of the

central results of the thesis (see Chapter 4) involves some arguments from the theory of

integration combined with the closure property of dcx order under joint weak convergence

and convergence in mean. Further for dcv (directionally concave) ordered point processes,

we show that the extremal shot-noise fields are lower orthant(lo) ordered. Formally, these

two results are together stated as follows :

Theorem (Theorem 4.1.3 and Proposition 4.3.3). Let S be an index set and E be a Polish
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space. Let Λ1 ≤dcx Λ2, Φ1 ≤dcx Φ2 and E(VΛi(y)) <∞, for all y ∈ S, i = 1, 2. Then

{VΛ1(y)}y∈S ≤dcx {VΛ2(y)}y∈S ; {UΦ1(y)}y∈S ≥lo {UΦ2(y)}y∈S ,

where by X ≥lo Y for two random vectors, we mean that P (X ≤ a) ≤ P (Y ≤ a) for all

a ∈ Rd.

We shall give examples of point processes that are smaller and larger than the Poisson

point process in the dcx order in Chapter 5. The point processes greater than the Poisson

point process in the dcx order are a wide class of Cox point processes - Cox point processes

with conditionally increasing intensity fields, Poisson-Poisson cluster point processes, Lévy

based Cox point processes, Log Lévy based Cox point processes and Generalized shot-noise

Cox point processes. Conditionally increasing property of random fields can be seen as

a continuum version of the famed FKG inequality in statistical physics. We shall indeed

show that when spin models on lattices satisfy the FKG inequality (such as random cluster

measures) they can be used to construct a point process with a conditionally increasing

intensity field and thereby a clustered point process. Lévy based Cox point processes are

Cox point processes with intensity fields being integral shot-noise fields driven by a ”nice”

kernel and the random measure as a Lévy basis (a completely independent, infinitely

divisible random measure). When the Lévy basis is a Poisson point process, we call

the corresponding Cox point process as a Poisson-Poisson cluster point process. These

are the most commonly studied models of clustered point processes. Further, under some

regularity conditions on the intensity field, it is possible to construct a family of dcx ordered

intensity fields in which the lower limit is the constant intensity field and the upper limit

is the homogeneous but random intensity field. These two limits correspond to intensity

fields of Poisson and mixed Poisson point process. The point processes smaller than

Poisson point process in the dcx order (called sub-Poisson point processes now onwards)

are perturbed lattices i.e, point processes obtained by making i.i.d. perturbations of

vertices in a discrete lattice. These point processes are considered as approximations to

the zeros of Gaussian analytic functions.

We will also give examples of interesting functionals of point processes that are a dcx

function of a shot-noise field generated by the point process. Let C(Φ, r) denote the

Boolean model driven by a point process Φ and balls of radius r. One would guess that

the expected region covered in a Boolean model decreases with clustering and we show



32 Introduction

that it is indeed true for dcx ordered point processes i.e, E(‖C(Φ1, r)‖) ≥ E(‖C(Φ2, r)‖)
when Φ1 ≤dcx Φ2. In contrast to Ross-type conjectures, these examples show that there

are certain performance characteristics in wireless networks that improve with more vari-

ability in the input process. More accurately, the performance measures that improve with

variablity are the probability of connectivity of nodes in a SINR network and the capacity

of a SINR network. We consider the set of interferers independent of the communicating

nodes Φ. For more clarity, define G(Φ,ΦI , γ) the SINR network on Φ (see subsection 1.1.2)

but with interference from both the points of Φ as well as points of ΦI , the set of external

interferers. Pick any finitely many source-destination pairs to communicate among the

points of Φ. Let p(ΦI) denote the probability of success of all the transmissions in the

SINR network and CΦI the capacity of the network. If Φ1,Φ2 are two sets of interferers

such that Φ1 ≤dcx Φ2, then p(Φ1) ≤ p(Φ2) and CΦ1 ≤ CΦ2 . Many of these performance

characteristics are dependent on the value of the shot-noise fields only at finitely many

points. One could conceive an extension to functionals of shot-noise fields dependent on a

bounded region but whether one could extend it to functionals that depend on the values

of shot-noise fields over unbounded regions is not clear. In the next subsection, we shall

throw more light on such a question.

Percolation and directionally convex ordering of point processes - Chapter 6 :

Percolation is the first candidate for a functional that depends on the behaviour of point

process over large regions. The hope for a connection between percolation and dcx order

comes from the fact that point processes smaller in dcx order have a larger capacity

functional of their Boolean models. This is proved using the lower orthant ordering of the

extremal shot-noise fields generating the Boolean model.

We define two new critical radii rc(Φ) and rc(Φ) for a point process that are respectively

lower and upper bounds to the critical radius rc(Φ) for percolation of the Boolean model.

rc(Φ) is the critical radius defined with respect to the expected number of paths in C(Φ, r)

to the boundary of a box [−m,m]d as m tends to∞. rc(Φ) is the critical radius such that

the super-critical Boolean model as per this radius satisfies Peierls argument on a sequence

of discrete models approximating the Boolean model. We show that rc(Φ) decreases with

the dcx order while rc(Φ) increases. The precise formulation of this result as follows will

be proved for Boolean models with arbitrary grains instead of just balls of raidus r as we

have seen so far.
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Theorem (Theorems 6.2.15 and 6.2.14). Let Φ1 ≤dcx Φ2 be two point processes. Then,

rc(Φ2) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ2).

Further, both the inequalities shall hold in the case when Φ2 is a Cox process with

intensity measure Λ(.) and Φ1 is a Poisson point process with intensity measure E(Λ(.)).

The inequality for the lower bound alone stays true when Φ1 is a stationary determinantal

point process with kernel K(x, y) and Φ2 is a Poisson point process with intensity K(0, 0).

Percolation or non-percolation in various continuum models are proved by discreti-

sation and then bounding the level crossing probabilities of integral shot-noise fields of

point processes – P (VΦ(zi) ≤ k, 1 ≤ i ≤ n) (or P (VΦ(zi) ≥ k, 1 ≤ i ≤ n)) – on the lattices.

We observe that these level crossing probabilities can be bounded by the corresponding

Laplace transforms using Chernoff’s bound. If these point processes are less in dcx or-

der than Poisson point process, this can in turn be bounded by the Laplace transforms

of the corresponding Poissonian shot-noise fields. These latter fields have closed form

expressions. On suitable discrete approximations for nice functions, one would hope to

show that the discrete model induced by the level crossings of the shot-noise fields can

be coupled with a sub-critical branching process for small values of the parameter and

in the other extreme, it can be proved that the discrete model will percolate by using

the Peierls argument. We carry out such a program to show non-trivial phase transition

for k-percolation and word percolation in Boolean models. A Boolean model is said to

k-percolate if the region is covered by at least k grains of the Boolean model percolates.

By non-trivial phase transition, we mean the existence of an r > 0 such that the Boolean

model does not k-percolate and also the existence of an r < ∞ such that the Boolean

model k-percolates. If we denote the critical radius for k-percolation as rkc (Φ) and Φλ is

the Poisson point process, the above discussion amounts to the following result.

Theorem (Theorem 6.3.4). For Φ ≤dcx Φλ, we have that

0 < c(λ) ≤ r1
c (Φ) ≤ rkc (Φ) ≤ C(λ, k) <∞,

where the constants depend only on λ, k and not on the finer structure of Φ.

While finiteness of the critical radius is intuitively a desired property, its positivity

might been seen as irrelevant if not a disadvantage from the networking point of view.
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However, as [Blaszczyszyn and Yogeshwaran 2010, Example 3.2] (Gilbert’s carrier sense

network) demonstrates, certain models do require non-percolation as well.

As in the former theorem, we prove that the lower bound also holds true for stationary

determinantal point processes with kernel K(x, y) by comparing them with a Poisson

point process of intensity K(0, 0). The uniform bounds in the theorem over all Φ such

that Φ ≤dcx Φλ will be a feature of all the results in this section on existence of non-

trivial phase transitions. In word percolation by super-criticality, we mean the almost

sure occurence of all words. As with k-percolation, we give an uniform bound on the

radius r above which all words occur almost surely for any sub-Poisson point process.

For Poisson SINR networks, it is known that when the SNR network G(Φλ, ∅, 0) (i.e,

network without any intereference) percolates, the SINR network G(Φλ, ∅, γ) percolates

for some γ > 0 (See Section 1.1.2). We show that this is true even if one adds an additional

set of sub-Poisson interferers. More precisely, if Φ ≤dcx Φλ and G(Φλ,Φ, 0) percolates, the

G(Φλ,Φ, γ) percolates for some γ > 0. Further, for a SINR network on sub-Poisson point

process G(Φ,Φ, γ), we show that by increasing the signal power P well above the critical

power one can find a γ > 0 such that the SINR network percolates.



Chapter 2

Preliminaries

2.1 Random measures, point processes and random sets.

For a more detailed and classical presentation on the subject matter of this section, re-

fer to one or all of the following books : [Kallenberg 1983, Daley and Vere-Jones 1988,

Stoyan et al. 1995, Schneider and Weil 2008]. For a more hands-on introduction to the

subject (especially for readers interested in wireless networks), we suggest the recent mono-

graph [Baccelli and B laszczyszyn 2009a].

Random Measure : As concerns random measures, we shall work in the set-up of

[Kallenberg 1983]. Let D be a locally compact, second countable Hausdorff (LCSC) space.

Such spaces are Polish, i.e., complete and separable metric space. Let B(D) be the Borel

σ-algebra and Bb(D) be the σ-ring of bounded, Borel subsets (bBs). Let M = M(D) be

the space of non-negative Radon measures on D. The Borel σ-algebra M is generated by

the mappings µ 7→ µ(B) for all B bBs. A random measure Λ is a random element in

(M,M) i.e, a measurable map from a probability space (Ω,F,P) to (M,M). We shall call

a random measure Φ a point process (pp) if Φ ∈ N̄, the subset of counting measures in

M. The corresponding σ-algebra is denoted by N. Further, we shall say a pp Φ is simple

if a.s. Φ({x}) ≤ 1 for all x ∈ D. Throughout, we shall use Λ for an arbitrary random

measure and Φ for a pp.

Though pp are a class of random measures, due to the additional properties it can

be represented in various ways. We can represent Φ on a LCSC space D as a countable

sum of Dirac measures : Φ =
∑

i εXi (εx(A) = 1 if x ∈ A and 0 otherwise) where Xi are

35
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random elements in D. Another representation as a random set shall be given in Section

2.1.1.

Two classes of pp - Poisson pp and the more general Cox pp (also known as doubly

stochastic Poisson pp) - are the more tractable ones among various pp. Let us define them.

Definition 2.1.1. Let Λ(.) be a random measure as defined above. A pp Φ ⊂ Rd is said to

be a Cox pp with intensity measure Λ(.) and denoted by Cox(Λ) if given Λ(.), the following

properties hold :

1. for a bBs A, Φ(A) is distributed as a Poisson rv with mean Λ(A) and

2. for any finite collection of disjoint bounded Borel subsets A1, . . . , An, Φ(Ai), 1 ≤ i ≤
n conditioned on Λ(Ai), 1 ≤ i ≤ n are independent rvs.

If a random intensity measure has a (random) density λ(x) (where {λ(x)}x∈D is

a stochastic process) with respect to a locally finite measure µ(.) on E i.e, Λ(dx) =

λ(x)µ(dx), then λ(.) is called the intensity field and the corresponding Cox pp will be

denoted by Cox(λ(.)). When we speak of intensity fields of random measures on Rd, the

measure µ(.) will be taken to be the Lebesgue measure. If Λ(A) =
∫
A λ(x)dx for a deter-

ministic function {λ(x)}x∈Rd and for all bBs A, then we call Φ to be an inhomogeneous

Poisson (λ(x)) pp. If λ(x) ≡ λ, then Φ is said to be the Poisson pp with intensity λ or

Poisson (λ) pp in short. We denote it by Φλ.

Moment measures : By the n th power of a random measure Λ, we understand a

random measure Λk on the product space Dk given by Λk(A1 × . . .× Ak) =
∏k
j=1 Λ(Aj).

Its expectation, αk(·) = E(Λk(·)) is called the k th moment measure. The first moment

measure α(·) = α1(·) is called the mean measure.

The n th power joint intensity of a pp Φ ⊂ Rd w.r.t. Lebesgue measure is a function

(if it exists) ρ(n) : Dn → [0,∞) such that for any n disjoint subsets B1, . . . , Bn, we have

that

E

(
n∏
i=1

Φ(Bi)

)
=
∫

Qn
i=1Bi

ρ(n)(x1, . . . , xn)dx1 . . . dxn.

Stationarity and Ergodicity : The distribution of Λ is the measure PΛ−1(.) on

(M,M). For a measure ψ ∈ M(Rd), let ψ(x) be the translate measure given by

ψ(x)(B) = ψ(B − x) for x ∈ Rd, B ∈ B(Rd). A random measure is said to be sta-

tionary if the distribution of Λ(x) remains invariant i.e, PΛ−1
(x)(M) = PΛ−1(M) for all
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x ∈ Rd,M ∈M. For a stationary random measure in Rd, α(B) = λ‖B‖ for all B bBS and

this constant λ is called the intensity of the random measure. For Y ∈ N, let the translate

family be Yx := {φ(x) : φ ∈ Y}. A pp Φ is said to be ergodic if P (Φ ∈ Y) ∈ {0, 1} for any

Y ∈ N such that P (Φ ∈ (Y/Yx) ∪ (Yx/Y)) = 0 for all x ∈ Rd.

Palm measures: In the simplest informal terms, Palm measure is the probability mea-

sure of a point process conditioned to have a point at a given location. We shall now

define them formally. For more details regarding Palm distributions of random easures

see [Kallenberg 1983, Section 10].

Definition 2.1.2. For a fixed measurable f such that 0 < E(
∫

D f(x)Λ(dx)) < ∞, the

f -mixed Palm version of Λ, denoted by Λf ∈M, is defined as having the distribution

P(Λf ∈M) =
E(
∫

D f(x)Λ(dx)1[Λ ∈M ])
E(
∫

D f(x)Λ(dx))
, M ∈M.

In case Λ (say on the Euclidean space D = Rd) has a density {λ(x)}x∈Rd, we define for

each x ∈ Rd the Palm version Λx of Λ by the formula

P(Λx ∈M) =
E(λ(x)1[Λ ∈M ])

E(λ(x))
, M ∈M.

Palm versions Λx can be defined for a general random measure via some Radon-

Nikodym derivatives. However, we shall use only Λx and mixed Palm versions Λf as

defined above in order to avoid the arbitrariness related to the non-uniqueness of Radon-

Nikodym derivatives. From the above definition, it is easy to see that the expecations

with respect to Palm measure can be expressed as follows. For a function g : M→ R,

E(g(Λf )) =
E(
∫

D f(x)Λ(dx)g(Λ))
E(
∫

D f(x)Λ(dx))
,

E(g(Λx)) =
E(λ(x)g(Λ))

E(λ(x))
. (2.1)

The most common application of Palm measures is via the Campbell-Mecke formula

(see [Stoyan et al. 1995, Pg 119]). Though the result can be stated for stationary random

measures, we restrict ourselves to the case of point processes on Euclidean spaces.

Theorem 2.1.3 (Campbell-Mecke Formula). Suppose Φ is a stationary point process, with
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finite non-zero intensity λ. Then for any non-negative measurable function h : Rd × N→
R+,

E

(∑
X∈Φ

h(X,Φ)

)
= λ

∫
Rd

E(h(x,Φx))dx.

2.1.1 Random closed sets (racs)

Definition of racs : We shall work only with racs in Euclidean spaces and for general

racs, refer to [Stoyan et al. 1995]. Let F and K be respectively the family of all closed and

compact sets in Rd. Let F be the σ-algebra generated by the “hitting sets” : FK := {F ∈
F : F ∩K 6= ∅} for K ∈ K. Thus in the manner of random measures, we define racs Ξ to

be a rv taking values in (F,F). A simple pp can be viewed naturally as the following racs

: Ξ = {x ∈ Rd : Φ({x}) > 0}. Observe that the x’s are random due to the randomness

of Φ and also that the racs has countable cardinality. Because of this representation, we

shall sometimes use the notation Φ = {Xi}i≥1. Such dual viewpoint shall be used in the

thesis. The capacity functional TΞ(.) of a racs is defined as:

TΞ(K) := P (Ξ ∩K 6= ∅) , K ∈ K. (2.2)

The famed Choquet’s theorem (see [Matheron 1975]) states that the capacity functional

characterizes the distribution of racs. Thus stationarity (Ξ d= Ξ + x for all x ∈ Rd) is

equivalent to TΞ(K) = TΞ(K + x) for all x ∈ Rd and isotropy (Ξ d= m(Ξ) for all rigid

motions m) is equivalent to TΞ(K) = TΞ(m(K)) for all rigid motions m.

Let us remark at this point that even though we have formally defined random sets

among the class of closed sets alone, we would still take the liberty to use random com-

pact sets or random open sets when needed. Refer to [Hall 1988, Section 3.1] for formal

definition for both these classes of random sets.

Ergodicity: For F ∈ F and x ∈ Rd, the translate family is defined as Fx := {F + x :

F ∈ F}. A racs Ξ is said to be ergodic if P (Ξ ∈ F) ∈ {0, 1} whenever for all x ∈ Rd,
P (Ξ ∈ (F/Fx) ∪ (Fx/F)) = 0.
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2.2 Discrete percolation

Many proofs in continuum percolation proceed via discretisation and thus we deem it nec-

essary to collect some sufficient conditions used to prove percolation and non-percolation

on integer lattices. Let G := (V,E) be a graph with a countable vertex set V and edge

set E. Edges are also called as bonds. Let X := {Xv}v∈V be Bernoulli rvs indexed by

V . We say that a vertex is open if Xv = 1 and closed otherwise. The random field X is

said to percolate on G if the random subset {v : Xv = 1} ⊂ V has an infinite connected

component. If the underlying graph (or the random field) is disambiguous, we shall only

say G percolates (or X percolates). This is referred to as site percolation, as the random

field is indexed by vertices of the graph. Alternatively, one can define bond percolation

as above with the difference being that the Bernoulli random field will be indexed by the

edges and the random subset being vertices when one of their incident edges is open.

Peierls argument: The standard technique to prove percolation of graphs or random

fields is via Peierls argument. This was first used by Rudolf Peierls for showing phase

transition in the 2-dimensional Ising model ([Peierls 1936]). We give here details about

the Peierls argument that will be used in some of the proofs in the thesis. We shall sketch

the argument for site percolation in the close-packed lattice of all dimensions and in two

dimensions for bond percolation as well.

Definition 2.2.1. Let d ≥ 2. The (integer) lattice graph Ld = (Zd,Ed) is the graph with

usual d-dimensional integer lattice Zd as the vertex set and edge set Ed := {< z, z1 >:

|z − z1| = 1}. The close-packed lattice graph is L∗d = (Zd,E∗d) with Zd as the vertex

set and edge set E∗d := {< z, z1 >: ‖z − z1‖∞ = 1}, where for any x ∈ Rd, ‖x‖∞ :=

max{|x1|, . . . , |xd|} denotes the L∞ or maximum norm.

To know more about the notion of contours that shall be introduced in the following

proof and bounds on the number of contours surrounding the origin, the reader is referred

to [Lebowitz and Mazel 1998, Balister and Bollobás 2007]

Lemma 2.2.2. Let X(h) := {Xz(h)}z∈Zd be a collection of Bernoulli rvs indexed by the

sites of the lattice and parametrized by h ∈ R+. Suppose that there exists a function

g : R+ → R+ such that g(h) ↓ 0 as h ↑ ∞ and for any z1, . . . , zn ∈ Zd, the following holds
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for some constant c(h) > 0 :

P (Xzi(h) = 0, 1 ≤ i ≤ n) ≤ c(h)g(h)n.

Then there exists a hc < ∞ such that for all h > hc X(h) percolates in Ld and so in L∗d

also a.s..

Proof. The argument we sketch below is along the lines of the proof of

[Meester and Roy 1996, Theorem 8.3]. As in standard percolation theory, we shall call

a vertex z h-open if Xz(h) = 1, else h-closed. Thus, a set A is said to be h-closed if

Xz(h) = 0,∀z ∈ A. A finite connected set in L∗d is called a contour surrounding the origin

if it cuts off the origin from infinity and the set is minimal in the sense that no strict

subset of it has similar property. Now, note that X(h) does not percolate in Ld iff there

are infinitely many disjoint closed contours surrounding the origin in L∗d. Since a vertex

has at most (3d − 1) neighbours, the number of closed contours surrounding the origin

with n vertices is at most n(3d − 2)n−1 and the probability such a contour is closed is at

most c(h)g(h)n. Thus the expected number of closed contours surrounding the origin is

bounded by
∑

n n(3d − 2)n−1c(h)g(h)n. One can thus find a h < ∞ such that the latter

sum is finite and hence by Borel-Cantelli lemma, the number of disjoint closed contours

surrounding the origin is finite and hence X(h) percolates.

Lemma 2.2.3. Let X(h) := {Xe(h)}e∈E2 be a collection of Bernoulli rvs indexed by the

bonds of the planar lattice and parametrized by h ∈ R+. Suppose that there exists a function

g : R+ → R+ such that g(h) ↓ 0 as h ↑ ∞ and for any e1, . . . , en ∈ Zd, the following holds

for some constant c(h) > 0 :

P (Xei(h) = 0, 1 ≤ i ≤ n) ≤ c(h)g(h)n.

Then there exists a hc <∞ such that X(h) percolates a.s. in L2 for all h > hc.

Proof. Consider the dual graph L2 := (Z2,E2) + (1
2 ,

1
2). This is the graph L2 with vertices

and edges shifted by (1
2 ,

1
2). Each edge of the original graph intersects a unique edge of

the dual graph. Declare a bond in the dual graph open iff the corresponding bond in

the original graph is open under X(h). Note that the original graph does not percolate

iff there are infinitely many disjoint closed contours around the origin in the dual graph.

Since the number of contours of length n around the origin is atmost n4n, as in the above
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proof one can estimate the expected number of closed contours around the origin to be

finite and thus the proof follows.

Condition for non-percolation: We shall now give a sufficient condition for non-

percolation of random fields on lattices. The result shall be stated for site percolation

in the close-packed lattice and it is easy to see that it extends to bond percolation in

the lattice too. Further, we have stated the above lemmas for h → ∞ and the following

lemma will be for h → 0 but in usage the limits could be interchanged depending on the

parametrization.

Lemma 2.2.4. Let X(h) := {Xz(h)}z∈Zd be a collection Bernoulli rvs indexed by the

lattice and parametrized by h ∈ R+. Suppose that there exists a function g : R+ → R+

such that g(h) ↓ 0 as h ↓ 0 and for any z1, . . . , zn ∈ Zd, the following holds for some

constant c(h) > 0 :

P (Xzi(h) = 1, 1 ≤ i ≤ n) ≤ c(h)g(h)n.

Then there exists a hc > 0 such that X(h) does not percolates a.s. in L∗d for all h < hc.

Proof. Let knv and Nn
v (h) denote respectively the number of paths in L∗d and open paths

in L∗d (w.r.t X(h)) of length n starting from a vertex v. It is easily seen that for all v ∈ Zd,
n ≥ 1, knv ≤ (3d − 1)n. Denoting the probability of percolation of a vertex v (i.e, v is in a

giant component) in X(h) by pv(h), we have that

pv(h) = lim inf
n→∞

P (Nn
v (h) ≥ 1) ≤ lim inf

n→∞
E(Nn

v (h)) ≤ lim inf
n→∞

knv c(h)g(h)n.

Thus if g(h) < (3d − 2)−1, then E(Nn
v (h)) → 0 as n → ∞ and so pv(h) = 0. Thus there

exists a hc > 0 such that for h < hc, pv(h) = 0 for all v ∈ Zd. Now if we denote the

probability of percolation of X(h) as p(h), then the proof is complete by the following

observation

p(h) = P (∪v∈Zd{v percolates}) ≤
∑
v∈Zd

pv(h).
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2.3 Directionally convex ordering

We review here definitions and some useful results in the theory of directionally convex

ordering that are used in the thesis. Some of the other orders used occasionally are

defined when needed. To understand the later results, it is enough to read the subsection

on definitions alone. The auxiliary results used shall be cited in the thesis and hence can

be consulted when necessary.

2.3.1 Definitions

First, we start with a very brief introduction to dcx order. The order ≤ on Rn shall denote

the component-wise partial order, i.e., (x1, . . . , xd) ≤ (y1, . . . , yd) if xi ≤ yi for every i. We

shall abbreviate x ≤ q, y ≤ q to [x, y] ≤ q (and similarly p ≤ [x, y]).

Definition 2.3.1. • We say that a function f : Rd → R is directionally convex (dcx)

if for every x, y, p, q ∈ Rd such that p ≤ [x, y] ≤ q and x+ y = p+ q,

f(x) + f(y) ≤ f(p) + f(q).

• Function f is said to be directionally concave (dcv) if the inequality in the above

equation is reversed.

• Function f is said directionally linear (dl) if it is dcx and dcv.

Figure 2.1: Representation of the quadruple in the definition of dcx function for d = 2.

We shall try to explain geometrically what dcx means in two dimensions atleast. Con-

sider a parallelogram pxyq with vertices p, x, y, q in the upper orthant of p with the diag-

onals
→
pq and

→
xy (see Fig. 2.1). Such a quadruple satisfies p ≤ [x, y] ≤ q and p+ q = x+ y.
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Thus, a function f is dcx means that f(x) + f(y) ≤ f(p) + f(q) for all such paralleograms

pxyq.

Function f = (f1, . . . , fn) : Rd → Rn is said to be dcx(dcv) if each of its component fi is

dcx(dcv). Also, we shall abbreviate increasing (with respect to the component-wise partial

order on Rd) and dcx by idcx and decreasing and dcx by ddcx. Similar abbreviations shall

be used for dcv functions.The following characterizations from [Müller and Stoyan 2002,

Theorem 3.12.2] is very useful to understand as well as verify dcx property of functions.

Many other characterizations can be found in the cited Theorem.

Lemma 2.3.2. ([Shaked and Shanthikumar 1990])

1. A function f is dcx if and only if

f(x+ δej) + f(x+ εei) ≤ f(x+ εei + δej) + f(x),

for all ε, δ > 0, x ∈ Rd, 1 ≤ i, j ≤ d and where ei = (0, . . . , 1, . . . , 0) with the 1 in the

ith coordinate.

2. A twice differentiable function f is directionally convex if and only if
∂2

∂xi∂xj
f(x) ≥

0, for all x ∈ Rd, 1 ≤ i, j ≤ d.

Proof. We shall skip the proof of (2) as it is a consequence of (1). To prove (1), observe

that it is enough to show that the inequality implies the following inequality

f(x+ z)− f(x) ≤ f(y + z)− f(y),

for all vectors x ≤ y and z ≥ 0. Suppose that y = x +
∑

i yiei and z =
∑

i ziei for some

yi, zi ≥ 0, ∀i. By assumption we have that

f(x+z1e1)−f(x) ≤ f(x+z1e1+y1e1)−f(x+y1e1) ≤ . . . ≤ f(x+
∑
i

yiei+z1e1)−f(x+
∑
i

yiei).

Thus we have that f(y)−f(x) ≤ f(y+z1e1)−f(x+z1e1). Now using the above argument

inductively on z2, . . . , zn, we get the required inequality for x, y, z.

Example 2.3.3. By Lemma 2.3.2, it is easy to see that the following functions are dcx :
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1. f(x1, . . . , xn) :=
∏
fi(xi) where fi(.) are positive increasing ( or all the fi are positive

decreasing) convex functions on the real line ;

2. f(x1, . . . , xn) :=
∑
aifi(xi) where fi(.) are convex functions on the real line and ai

are positive constants ;

3. f(x, y) = xy.

In the following, let F denote some class of functions from Rd to R. The dimension d

is assumed to be clear from the context. Unless mentioned, when we state E(f(X)) for

f ∈ F and X a random vector, we assume that the expectation exists, i.e., for each random

vector X we consider the sub-class of F for which the expectations exist with respect to

(w.r.t) X.

Definition 2.3.4. • Suppose X and Y are real-valued random vectors of the same

dimension. Then X is said to be less than Y in F order if E(f(X)) ≤ E(f(Y )) for

all f ∈ F (for which both expectations are finite). We shall denote it as X ≤F Y .

• Suppose {X(s)}s∈S and {Y (s)}s∈S are real-valued random fields, where S is an arbi-

trary index set. We say that {X(s)} ≤F {Y (s)} if for every n ≥ 1 and s1, . . . , sn ∈ S,

(X(s1), . . . , X(sn)) ≤F (Y (s1), . . . , Y (sn)).

In the remaining part of the thesis, we will mainly consider F to be the class of dcx, idcx

and idcv functions; the negation of these functions give rise to dcv, ddcv and ddcx orders

respectively. If F is the class of increasing functions, we shall replace F by st (strong) in

the above definitions. These are standard notations used in literature. Here is a simple

condition for dcx ordering of random vectors with independent marginals.

Lemma 2.3.5. Let Xi, 1 ≤ i ≤ n and Yi, 1 ≤ i ≤ n be a collection of independent random

variables such that Xi ≤cx Yi,∀i where cx stand for convex order, the stochastic order

generated by convex functions. Then (X1, . . . , Xn) ≤dcx (Y1, . . . , Yn).

The proof just follows by noting that a dcx function is convex on each coordinate and

by conditioning on coordinates one by one, we get the required ordering.

2.3.2 Auxilliary results

In order to make the thesis more self-contained, we shall recall now some basic results on

stochastic orders used in the main stream of the thesis. The proofs in the this section will
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be detailed without being complete. The following lemmas which are true for many other

orders as well can be found in [Müller and Stoyan 2002, Chapter 3].

Lemma 2.3.6. If X ≤dcx (resp. idcx;idcv) Y , then for Z1, Z2 independent of X,Y and

Z1 ≤dcx (resp. idcx;idcv) Z2, we have that X + Z1 ≤dcx (resp. idcx;idcv) Y + Z2.

Proof. We shall prove in the case of dcx alone and the proof is similar for the other two

orders. Also, observe that it suffices to prove assuming Z1 = Z2 = Z as by re-using the

same arguments one can get the result stated in the lemma. For z ∈ Rd and a dcx function

f : Rd → R, define fz(x) := f(x+ z). Clearly, fz(.) is dcx for all z ∈ Rd, whenever f(.) is.

Thus,

E(f(X + Z)) = E(E(fZ(X)|Z)) ≤ E(E(fZ(Y )|Z)) = E(f(Y + Z)) .

Lemma 2.3.7. The stochastic order relation ≤dcx is generated by infinitely differentiable

dcx functions i.e, it suffices to check Definition 2.3.4 for infinitely differentiable dcx func-

tions alone.

Proof. The proof is an adaptation to dcx order of a more general result,

[Müller and Stoyan 2002, Theorem 2.5.5]. Since every dcx function is continuous also,

a dcx function f can be approximated by a sequence {fn} of infinitely differentiable func-

tions as follows (see [Rudin 1987, Theorem 9.10]) :

fn(x) =
∫

Rd
f(x− y)gn(y)dy and lim

n→∞
E(fn(X)) = E(f(X)) , for any random vector X

where gn(y) := ndg(nx) for some infinitely differentiable probability density g with com-

pact support. Using the fact that f(.− y) is dcx, it is easy to see that fn is also dcx and

so every dcx function can be approximated by a sequence of infinitely differentiable dcx

functions such that the expectations converge as well. This proves the result.

Lemma 2.3.8. Let (X(k) : k = 1, . . .) and (Y (k) : k = 1, . . .) be sequences of random

vectors. Suppose X(k) ≤dcx Y (k) for all k ∈ N. If X(k) d→ X and Y (k) d→ Y and moreover

E(X(k))→ E(X) and E(Y (k))→ E(Y ), then X ≤dcx Y .

Proof. Weak convergence and convergence of expectations together are equivalent to

E
(
f(X(k))

)
→ E(f(X)) for all continuous f such that f(x) = O(‖x‖) at infinity (see
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[Bickel and Freedman 1981, Lemma 8.3]). By this result and the continuity of a direc-

tionally convex function, we have that E(f(X)) ≤ E(f(Y )) for all directionally convex

f such that f(x) = O(‖x‖) at infinity. Now it is enough to show that a dcx function

can be approximated monotonically by a sequence of dcx functions with bounded growth

behaviour at infinity as described above. Such an approximation is given in what follows.

Define ψm : R→ R as

ψm(x) =


m if x > m

x if −m ≤ x ≤ m

−m if x < −m,

and now define gm,i : Rn → R, i = 1, . . . , n as

gm,i(x) =


∂−

∂xi
f(ψm(x1), . . . , ψm(xn)) if xi > m

∂+

∂xi
f(ψm(x1), . . . , ψm(xn)) if xi < −m

0 if else,

where ∂−

∂xi
, ∂

+

∂xi
are the left and right partial derivatives respectively. Now one can verify

that the following sequence of functions {fm} are dcx (by taking their second partial

derivatives), monotonically increasing and have bounded growth behaviour at infinity.

fm(x) = f(ψm(x1), . . . , ψm(xn)) +
n∑
i=1

gm,i(x)(xi − ψm(xi)).

Using the above approximation, one can show that E(fm(X)) ↗ E(f(X)) for any direc-

tionally convex f . This proves the lemma.

Let dcx, idcx, idcv functions be defined on Zd similar to Definition 2.3.1 using the

natural partial orders on those spaces respectively. Let sgn(x) := x
|x| denote the sign of a

number.

Lemma 2.3.9. ([Meester and Shanthikumar 1993, Lemmas 2.17,2.18]) For

(λ1, . . . , λk) ∈ Rk, let Ni, i = 1, . . . , k denote k mutually independent Poisson rv

where the mean of Ni is |λi|. If f : Zk → R is dcx (resp. idcx; idcv), then g : Rk → R
defined by g(λ1, . . . , λk) := E(f(sgn(λ1)N1, . . . , sgn(λk)Nk)) is also dcx (resp. idcx; idcv).

Proof. We provide the proof in the case of f being dcx and the other two are similar.
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Choose a quadruple in Rk such that λ1 ≤ [λ2, λ3] ≤ λ4, λ1 +λ4 = λ2 +λ3. Let Ni(|λ|), i =

1, . . . , k and Ñi(|λ|), i = 1, . . . , k denote independent families of mutually independent

Poisson rv with mean |λ|. As a consequence of the following obvious equalities,

sgn(λ3
i )|λ3

i | = sgn(λ1
i )|λ1

i |+ λ3
i − λ1

i , sgn(λ3
i )|λ3

i | = sgn(λ1
i )|λ1

i |+ λ3
i − λ1

i ,

we can construct a probability space such that ∀i = 1, . . . , k we have the following a.s.

equalities :

sgn(λ3
i )Ni(|λ3

i |)
a.s.= sgn(λ1

i )Ñi(|λ1
i |) + Ñi(λ3

i − λ1
i ),

sgn(λ4
i )Ni(|λ4

i |)
a.s.= sgn(λ2

i )Ni(|λ2
i |) + Ñi(λ3

i − λ1
i ).

Thus, we get that,

g(λ2) + g(λ3)

= E
(
f(sgn(λ2

1)N1(|λ2
1|), . . . , sgn(λ2

1)Nk(|λ2
k|))
)

+

E
(
f(sgn(λ1

1)N1(|λ1
1|) + Ñ1(λ3

1 − λ1
1), . . . , sgn(λ1

1)Nk(|λ1
k|) + Ñk(λ3

k − λ1
k))
)

= E
(
f(sgn(λ2

1)N1(|λ2
1|), . . . , sgn(λ2

1)Nk(|λ2
k|)) + f(sgn(λ2

1)N1(|λ1
1|) +

Ñ1(λ3
1 − λ1

1), . . . , sgn(λ1
k)Nk(|λ1

k|) + Ñk(λ3
k − λ1

k))
)

≤ E
(
f(sgn(λ2

1)N1(|λ2
1|) + Ñ1(λ3

1 − λ1
1), . . . , sgn(λ2

k)Nk(|λ2
k|) + Ñk(λ3

k − λ1
k)) +

f(sgn(λ1
1)N1(|λ1

1|), . . . , sgn(λ1
k)Nk(|λ1

k|))
)

= E
(
f(sgn(λ4

1)N1(|λ4
1|), . . . , sgn(λ4

k)Nk(|λ4
k|))
)

+

E
(
f(sgn(λ1

1)N1(|λ1
1|), . . . , sgn(λ1

k)Nk(|λ1
k|))
)

= g(λ4) + g(λ1).
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Chapter 3

AB random geometric graphs

3.1 Percolation in the AB Poisson Boolean model

3.1.1 Model definition

We shall now describe the AB Poisson Boolean model. Let Φ(1) = {Xi}i≥1 and Φ(2) =

{Yi}i≥1 be independent Poisson point processes in Rd, d ≥ 2, with intensities λ and µ

respectively. Recall that by Bx(r), we denote the closed ball of radius r centred at x ∈ Rd.
For a definition of Poisson point process, see Section 2.1.

The usual continuum percolation model is defined as follows.

Definition 3.1.1. Define the Poisson Boolean model G̃(λ, r) := (Φ(1), Ẽ(λ, r)) to be the

graph with vertex set Φ(1) and edge set

Ẽ(λ, r) = {〈Xi, Xj〉 : Xi, Xj ∈ Φ(1), |Xi −Xj | ≤ 2r}.

The edges in all the graphs that we consider are undirected, that is, 〈Xi, Xj〉 ≡
〈Xj , Xi〉. We will use the notation Xi ∼ Xj to denote existence of an edge between Xi, Xj

when the underlying graph is unambiguous. By percolation, we mean the existence of an

infinite connected component in the graph. Topologically, percolation means existence of

an unbounded connected subset of
⋃
Xi∈Φ(1) BXi(r). For fixed r > 0, define

λc(r) := inf
{
λ > 0 : P

(
G̃(λ, r) percolates

)
> 0
}
. (3.1)

For this usual continuum percolation model ([Meester and Roy 1996]), it is known that

49
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0 < λc(r) <∞.

A natural analog of this model to the AB set-up would be to consider a graph with

vertex set Φ(1) where each vertex is independently marked A or B. We will consider a

more general model from which results for the above model will follow as a corollary.

Definition 3.1.2. The AB Poisson Boolean model G(λ, µ, r) := (Φ(1), E(λ, µ, r)) is the

graph with vertex set Φ(1) and edge set

E(λ, µ, r) := {〈Xi, Xj〉 : Xi, Xj ∈ Φ(1), |Xi − Y | ≤ 2r, |Xj − Y | ≤ 2r, for some Y ∈ Φ(2)}.

Let θ(λ, µ, r) = P (G(λ, µ, r) percolates) . Since percolation of the model depends on

points outside B0(R) for any R > 0, it is in the tail sigma-field of (Φ(1)∪Φ(2))∩B0(N)c, N ∈
N. Thus, it follows from Kolmogorov’s 0− 1 law and the complete independence property

of the Poisson pp that θ(λ, µ, r) ∈ {0, 1}. We are interested in characterizing the region

formed by (λ, µ, r) for which θ(λ, µ, r) = 1.

Definition 3.1.3. For fixed λ, r > 0, define the critical intensity µc(λ, r) by

µc(λ, r) := sup{µ : θ(λ, µ, r) = 0}.

3.1.2 Main results

In this section, we shall state our results on percolation in the AB Boolean model and

the proofs are postponed to Section 3.3. We start with some simple lower bounds for the

critical intensity µc(λ, r).

Proposition 3.1.4. Fix λ, r > 0. Let λc(r), µc(λ, r) be the critical intensities as in (3.1)

and Definition 3.1.3, respectively. Then the following statements are true.

1. If λc(2r) < λ < λc(r), then µc(λ, r) ≥ λc(r)− λ.

2. If λ ≤ λc(2r), µc(λ, r) =∞.

However, it is not clear that µc(λ, r) <∞ for λ > λc(2r). We answer this in affirmative

for d = 2.

Theorem 3.1.5. Let d = 2 and r > 0 be fixed. Then for any λ > λc(2r), we have

µc(λ, r) <∞.
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Thus the AB Boolean model exhibits a phase transition in the plane. However, the

above theorem does not tell us how to choose a µ for a given λ > λc(2r) for d = 2 such

that AB percolation happens, or if indeed there is a phase transition for d ≥ 3. In other

words, we would like to obtain estimates on µc(λ, r). We have already obtained a lower

bound and we will obtain an upper bound for µc(λ, r) as a special case of a more general

result which is the continuum analog of word percolation on discrete lattices described in

the following paragraph.

Word percolation is a generalization of the discrete AB percolation model and has

been studied on various graphs by Kesten et. al. (see [Benjamini and Kesten 1995,

Kesten et al. 1998, Kesten et al. 2001]). The model is as follows : Mark each vertex

or site of a graph G := (V,E) independently as 0 or 1 with probability p and 1− p respec-

tively. Given any infinite sequence (referred to as a word) w ∈ {0, 1}∞, the question is

whether w occurs in the graph G or not. The words (1, 0, 1, 0...), (0, 1, 0, 1..) correspond to

AB percolation and the word (1, 1, 1...) corresponds to usual percolation. More generally

Kesten et. al. answer whether all (or almost all) infinite sequences (words) are seen in

G or not. The graphs for which the answer is known in affirmative are Zd for d large,

triangular lattice and L∗2, the close-packed graph of Z2 (see Definition 2.2.1). Our results

provide partial answers to these questions in the continuum.

For the purpose of stating our results, let us recall the Bernoulli or independent site

percolation model on a graph G (see 1.1.1) with parameter p is the subgraph G(p) obtained

by keeping vertices independently with probability p and else removing them. Edges are

retained only if both the corresponding vertices are in the sub-graph. Percolation, as

always, denotes the existence of an infinite connected component in this subgraph. The

critical probability of an independent site percolation on G is defined as pc(G) := inf{p :

P (G(p) percolates) > 0}.

Definition 3.1.6. For each d ≥ 2, define the critical probabilities pc(d), and the functions

a(d, r) as follows.

1. For d = 2, consider the triangular lattice T (see Figure 3.1) with edge length r/2.

Let pc(2) = pc(T) be the critical probability for independent site percolation on this

lattice. Around each vertex of T, place a “flower” formed by six circular arcs (see

Figure 3.1). These arcs are formed by circumferences of circles of radius r
2 drawn

from the mid-points of the six adjacent edges to the vertex. Let a(2, r) be the area of

a flower.
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Figure 3.1: The triangular lattice and flower in R2 with area a(2, r). The figure is repro-
duced from [Meester and Roy 1996, Fig. 3.2].

2. For d ≥ 3, let pc(d) = pc(L∗d) be the critical probability for independent site percola-

tion on L∗d, the close-packed integer lattice and define a(d, r) = (r/2
√
d)d.

It is known that pc(2) = 1
2 , and pc(d) < 1 for d ≥ 3 (see [Grimmett 1999, Theorem

1.33 and pp. 56]).

Definition 3.1.7. Fix k ∈ N and let (r1, . . . , rk) ∈ Rk+. For i = 1, . . . , k, let Φ(i) be

independent Poisson point processes of intensity λi > 0. A word ω = {w(i)}i≥1 ∈
{1, 2, . . . , k}∞ is said to occur if there exists a sequence of distinct elements {Xi}i≥1 ⊂ Rd,
such that Xi ∈ Φ(w(i)), and |Xi −Xi+1| ≤ rw(i) + rw(i+1), for i ≥ 1.

Proposition 3.1.8. For any d ≥ 2, let pc(d), a(d, r) be as in Definition 3.1.6. Let

k ∈ N, (r1, . . . , rk) ∈ Rk+ and Φ(i), i = 1, . . . , k be independent Poisson point processes of

intensity λi > 0. Set r0 = inf1≤i,j≤k{ri + rj} . If
∏k
i=1(1 − e−λia(d,r0)) > pc(d), then

almost surely, all words occur.

The following corollary gives an upper bound for µc(λ, r) for large λ.

Corollary 3.1.9. Suppose that d ≥ 2, r > 0, and λ > 0 satisfies

λ > − log (1− pc(d))
a(d, 2r)

,

where pc(d), a(d, r) are as in Definition 3.1.6. Let µc(λ, r) be the critical intensity as in
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Definition 3.1.3. Then

µc(λ, r) ≤ −
1

a(d, 2r)
log
[
1−

(
pc(d)

1− e−λa(d,2r)

)]
. (3.2)

Remark 3.1.10. A simple calculation (see [Meester and Roy 1996], pg.88) gives a(2, 2) '
0.8227, and so

−(a(2, 2))−1 log(1− pc(2)) ' 0.843.

Using these we obtain from Corollary 3.1.9 that µc(0.85, 1) ≤ 6.2001.

Remark 3.1.11. It can be shown that the number of infinite components in the AB

Boolean model is atmost one, almost surely. The proof of this fact follows along the

same lines as the proof in Poisson Boolean model (see [Meester and Roy 1996, Proposition

3.3, Proposition 3.6]), since it relies on the ergodic theorem and the topology of infinite

components, and not on the specific nature of the infinite components.

The above proposition can be used to show existence of AB percolation in the natural

analog of the discrete AB percolation model (refer to the two sentences above Defini-

tion 3.1.2). Recall that Φ(1) is a Poisson point process in Rd of intensity λ > 0. Let

{mi}i≥1 be a sequence of i.i.d. marks distributed as m ∈ {A,B}, with P (m = A) = p =

1− P (m = B). Define the point processes ΦA,ΦB as

ΦA := {Xi ∈ Φ(1) : mi = A}, ΦB := Φ(1) \ ΦA.

Definition 3.1.12. For any λ, r > 0, and p ∈ (0, 1), let ΦA,ΦB be as defined above and

Ĝ(λ, p, r) := (ΦA, Ê(λ, p, r)) be the graph with vertex-set ΦA and edge-set

Ê(λ, p, r) := {< Xi, Xj >: Xi, Xj ∈ ΦA, |Xi−Y | ≤ 2r, |Xj−Y | ≤ 2r, for some Y ∈ ΦB}.

Corollary 3.1.13. Let θ̂(λ, p, r) := P (Ĝ(λ, p, r) percolates). Then for any λ satisfying

λ > −
2 log

(
1−

√
pc(d)

)
a(d, 2r)

,

there exists a p(λ) < 1
2 , such that θ̂(λ, p, r) = 1, for all p ∈ (p(λ), 1− p(λ)).
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3.2 Connectivity in AB random geometric graphs

3.2.1 Model definition

The set up for the study of connectivity in AB random geometric graphs is as follows.

For each n ≥ 1, let P
(1)
n and P

(2)
n be independent homogenous Poisson point processes in

U = [0, 1]d, d ≥ 2, of intensity n. We also nullify some of the technical complications

arising out of boundary effects by choosing to work with the toroidal metric on the unit

cube, defined as

d(x, y) := inf{|x− y + z| : z ∈ Zd}, x, y ∈ U. (3.3)

Definition 3.2.1. For any m,n ≥ 1, the AB random geometric graph Gn(m, r) is the

graph with vertex set P
(1)
n and edge set

En(m, r) := {〈Xi, Xj〉 : Xi, Xj ∈ P(1)
n , d(Xi, Y ) ≤ r, d(Xj , Y ) ≤ r, for some Y ∈ P(2)

m }.

Our goal in this section is to study the connectivity threshold in the sequence of graphs

Gn(cn, r) as n → ∞ for c > 0. The constant c can be thought of as a measure of the

relative density of P
(1)
n with respect to P

(2)
cn (see Remark 3.2.5 below). It is easier to first

consider the critical radius required to eleminate isolated nodes.

Definition 3.2.2. For each n ≥ 1, let Wn(r) be the number of isolated nodes, that is,

vertices with degree zero in Gn(cn, r), and define the largest nearest neighbor radius as

Mn := sup{r ≥ 0 : Wn(r) > 0}.

3.2.2 Main results

In this section, we shall state our results on connectivity in the AB random geometric

graph and the proofs are postponed to Section 3.4. Let θd := ‖BO(1)‖ be the volume

of the d-dimensional unit closed ball. For any β > 0, and n ≥ 1, define the sequence of

cut-off functions,

rn(c, β) =
(

log(n/β)
cnθd

) 1
d

, (3.4)

and let

rn(c) = rn(c, 1). (3.5)
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Let φ(a) = arccos(a). For d = 2, define

A(c) = π−1

[
2φ

(
c

1
2

2

)
− sin

(
2φ

(
c

1
2

2

))]
. (3.6)

Define the constant c0 to be

c0 :=

{
sup{c : A(c) + 1

c > 1} if d = 2

1 if d ≥ 3.
(3.7)

The derivative of the function A(c) is A′(c) = 2φ(c
1
2 /2)
c

(
1− cos(2φ( c

1
2

2 ))
)
≤ 0 as the

first term is negative and the second term is positive in the interval 0 ≤ c ≤ 4. Thus

the function A(c) is decreasing and hence 1 < c0 ≤ 4 for d = 2. The first part of the

following Lemma shows that for c < c0, the above choice of radius stabilizes the expected

number of isolated nodes in Gn(cn, rn(c, β)) as n → ∞. The second part shows that the

assumption c < c0 is not merely technical. The Lemma also suggests a phase transition

at some c̃ ∈ [c0, 2d], in the sense that, for c < c̃ the expected number of isolated nodes in

Gn(cn, rn(c, β)) converges to a finite limit and diverges for c > c̃.

Lemma 3.2.3. For any β, c > 0, let rn(c, β) be as defined in (3.4), and Wn(rn(c, β)) be

the number of isolated nodes in Gn(cn, rn(c, β)). Let c0 be as defined in (3.7). Then as

n→∞,

1. E(Wn(rn(c, β)))→ β for c < c0, and

2. E(Wn(rn(c, β)))→∞ for c > 2d.

For c < c0, having found the radius that stabilizes the mean number of isolated nodes,

the next theorem shows that the number of isolated nodes and the largest nearest neigh-

bour radius in Gn(cn, rn(c, β)) converge in distribution as n → ∞. Let Po(β) denote a

Poisson rv with mean β and recall that d→ stands for convergence in distribution.

Theorem 3.2.4. Let rn(c, β) be as defined in (3.4) with β > 0 and 0 < c < c0. Then as

n→∞,

Wn(rn(c, β)) d→ Po(β), (3.8)

P (Mn ≤ rn(c, β))→ e−β. (3.9)
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Remark 3.2.5. Let Bx(r) denote the closed ball of radius r centred at x ∈ Rd. For any

locally finite point process X (for example P
(1)
n or P

(2)
n ), we denote the number of points of

X in A, A ⊂ Rd by X(A). Define

W 0
n(c, r) =

∑
Yi∈P

(2)
cn

1[P(1)
n (BYi(r)) = 0],

that is, W 0
n(c, r) is the number of P

(2)
cn nodes isolated from P

(1)
n nodes. From Palm calculus

for Poisson point processes (Theorem 2.1.3) and the fact that the metric is toroidal, we

have

E
(
W 0
n(c, rn(c, β))

)
= cn

∫
U

P
(
P(1)
n (Bx(r)) = 0

)
dx = cn exp(−nθdrn(c, β)d).

Substituting from (3.4) we get

lim
n→∞

E
(
W 0
n(c, rn(c, β))

)


0 if c < 1

β if c = 1

∞ if c > 1.

(3.10)

Thus there is a trade off between the relative density of the nodes and the radius required

to stabilise the expected number of isolated nodes.

The next theorem gives asymptotic bounds for strong connectivity threshold in the

AB random geometric graph. While the lower bound can be derived using Theorem 3.2.4,

for the upper bound, we couple the AB random geometric graph with the Poisson random

geometric graph and use the connectivity threshold for the usual random geometric graph

(see Theorem 3.4.5). As will become obvious, the bounds are very tight for small c. We

will take β = 1 in (3.4) and work with the cut-off functions rn(c) as defined in (3.5).

Define the function η : R2
+ → R by

η(a, c)


1
π

[
2φ
(

1
2

(
c
a

) 1
2

)
− sin

(
2φ
(

1
2

(
c
a

) 1
2

))]
if d = 2(

1− 1
2

(
c
a

) 1
d

)d
if d ≥ 3,

(3.11)
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where φ(a) = arccos(a). Define the function α : R+ → R by

α(c) := inf{a : aη(a, c) > 1}. (3.12)

It is easily seen that α(c) ≤
(

1 + c
1
d

2

)d
for d ≥ 2 with equality for d ≥ 3.

Theorem 3.2.6. Let α(c) be as defined in (3.12), rn(c) be as defined in (3.5) and c0 be

as in (3.7). Define α∗n(c) := inf{a : Gn(cn, a
1
d rn(c)) is connected}. Then

∀c < c0, a < 1, lim
n→∞

P (Gn(cn, arn) is connected ) = 0 and

∀c > 0, lim sup
n→∞

α∗n(c) ≤ α(c) a.s..

Strong law of large numbers and central limit theorems for stabilizing functionals of

Poisson p.p. have been developed in [Penrose and Yukich 2005, Penrose 2007]. Heuristi-

cally, stabilizing functionals are functionals of the point process such that the contribution

of each point to the functional depends only on points in a bounded window around the

point. Though we do not go into details here, it is expected that, strong laws and central

limit theorems can be derived for stabilizing functionals of AB random geometric graph

as they are nothing but stabilizing functionals of a marked Poisson process with intensity

(1 + c)n.

3.3 Proofs for Section 3.1

Proof of Proposition 3.1.4

(1). Recall from Definition 3.1.2 the graph G(λ, µ, r) with vertex set Φ(1) and edge

set E(λ, µ, r). Consider the graph G̃(λ+ µ, r) (see Definition 3.1.1), where the vertex set

is taken to be Φ(1) ∪ Φ(2) and let the edge set of this graph be denoted Ẽ(λ+ µ, r).

If < Xi, Xj > ∈ E(λ, µ, r), then there exists a Y ∈ Φ(2) such that < Xi, Y >,<

Xj , Y >∈ Ẽ(λ+µ, r). It follows that G(λ, µ, r) has an infinite component only if G̃(λ+µ, r)

has an infinite component. Consequently, for any µ > µc(λ, r) we have µ + λ > λc(r),

and hence µc(λ, r) + λ ≥ λc(r). Thus for any λ < λc(r), we obtain the (non-trivial) lower

bound µc(λ, r) ≥ λc(r)− λ.

(2). Again < Xi, Xj > ∈ E(λ, µ, r) implies that |Xi−Xj | ≤ 4r. Hence, G(λ, µ, r) has

an infinite component only if G̃(λ, 2r) has an infinite component. Thus µc(λ, r) = ∞ if
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λ ≤ λc(2r).
Proof of Theorem 3.1.5

Fix λ > λc(2r). The proof adapts the idea used in [Dousse et al. 2006] (see also proof

of Theorem 6.3.10) of coupling the continuum percolation model to a discrete percolation

model. For l > 0, let lL2 be the graph with vertex set lZ2, the expanded two-dimensional

integer lattice, and endowed with the usual graph structure, that is, x, y ∈ lZ2 share an

edge if |x − y| = l. Denote the edge-set by lE 2. For any edge e ∈ lE 2 denote the mid-

point of e by (xe, ye). For every horizontal edge e, define three rectangles Rei, i = 1, 2, 3 as

follows : Re1 is the rectangle [xe− 3l/4, xe− l/4]× [ye− l/4, ye + l/4]; Re2 is the rectangle

[xe− l/4, xe + l/4]× [ye− l/4, ye + l/4] and Re3 is the rectangle [xe + l/4, xe + 3l/4]× [ye−
l/4, ye + l/4]. Let Re = ∪iRei. The corresponding rectangles for vertical edges are defined

similarly. The reader can refer to Figure 3.2.

Figure 3.2: An horizontal edge e that satisfies the condition for Be = 1. The balls are of
radius 2r, centered at points of Φ(1) and the adjacent centers are of at most distance r1.
The dots are the points of Φ(2).

Due to continuity of λc(2r) (see [Meester and Roy 1996, Theorem 3.7]), there exists

r1 < r such that λ > λc(2r1). We shall now define some rvs associated with horizontal

edges and the corresponding definitions for vertical edges are similar. Let Ae be the

indicator rv for the event that there exists a left-right crossing of Re by a component of

G̃(λ, 2r1) and top-down crossings of Re1 and Re3 by a component of G̃(λ, 2r1). Suppose

that Ae = 1. Draw balls of radius 2r1 around each vertex of any left-right crossing of Re
and every top-down and left-right crossing of Re1 and Re3. Let Ce be the indicator rv of

the event that, for each pair of balls drawn above that have non-empty intersection, when

expanded to balls of radius 2r contain atleast one point of Φ(2). Let Be be the indicator

rv for the event that {Ae = 1} ∩ {Ce = 1}.
Declare an edge e ∈ lE 2 to be open if Be = 1. We first show that for λ > λc(2r) there
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exists a µ, l such that lL2 percolates (Step 1). The next step is to show that this implies

percolation in the continuum model G(λ, µ, r). (Step 2).

Step 1: The rvs {Be}e∈lE2 are 1-dependent, that is, Be’s indexed by two non-

adjacent edges are independent. Hence, given edges e1, . . . , en ∈ lE2, there exists

{kj}mj=1 ⊂ {1, . . . , n} with m ≥ n/4 such that {Bekj }1≤j≤m are i.i.d. Bernoulli rvs. Hence,

P (Bei = 0, 1 ≤ i ≤ n) ≤ P
(
Bekj = 0, 1 ≤ j ≤ m

)
≤ P (Be = 0)n/4 . (3.13)

We need to show that for a given ε > 0 there exists l, µ for which P (Be = 0) < ε for any

e ∈ lE2. Fix an edge e. Observe that

P (Be = 0) = P (Ae = 0) + P (Be = 0|Ae = 1) P (Ae = 1)

≤ P (Ae = 0) + P (Be = 0|Ae = 1) . (3.14)

Since λ > λc(2r1), G̃(λ, 2r1) percolates. Hence by [Meester and Roy 1996, Corollary 4.1],

we can and do choose a l large enough so that

P (Ae = 0) <
ε

2
. (3.15)

Now consider the second term on the right in (3.14). Given Ae = 1, there exist crossings

as specified in the definition of Ae in G̃(λ, 2r1). Draw balls of radius 2r(> 2r1) around

each vertex. Any two vertices that share an edge in G̃(λ, 2r1) are centered at a distance of

at most 4r1. The width of the lens of intersection of two balls of radius 2r whose centers

are at most 4r1(< 4r) apart is bounded below by a constant, say b(r, r1) > 0. Hence if we

cover Re with disjoint squares of diagonal-length b(r, r1)/3, then every lens of intersection

will contain at least one such square. Let Sj , j = 1, . . . , N(b), be the disjoint squares of

diagonal-length b(r, r1)/3 that cover Re. Note that

P (Be = 1|Ae = 1) ≥ P
(

Φ(2) ∩ Sj 6= ∅, 1 ≤ j ≤ N(b)
)

= (1− exp(−µb(r, r1)2

18
))N(b) → 1, as µ→∞.

Thus for the choice of l satisfying (3.15), we can choose a µ large enough so that

P (Be = 0|Ae = 1) <
ε

2
. (3.16)
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From (3.14) - (3.16), we get P (Be = 0) < ε. Hence given any ε > 0, it follows from (3.13)

that there exists l, µ large enough so that P (Bei , 1 ≤ i ≤ n) ≤ εn/4. That lL2 percolates

now follows from a standard Peierls argument (see Lemma 2.2.3).

Step 2: By Step 1, choose l, µ so that lL2 percolates. Consider any infinite component

in lL2. Let e, f be any two adjacent edges in the infinite component. In particular

Be = Bf = 1. This has two implications, the first one being that there exists crossings Ie
and If of Re and Rf respectively in G̃(λ, 2r1). Since e, f are adjacent, Rei = Rfj for some

i, j ∈ {1, 3}. Hence there exists a crossing J of Rei in G̃(λ, 2r1) that intersects both Ie

and If . Draw balls of radius 2r around each vertex of the crossings J, Ie, If . The second

implication is that every pairwise intersection of these balls will contain atleast one point

of Φ(2). This implies that Ie and If belong to the same AB component in G(λ, µ, r).

Therefore G(λ, µ, r) percolates when lL2 does. .

Proof of Proposition 3.1.8. Recall Definition 3.1.6. For d = 2, let T∗ be the

triangular site percolation model with edge length r0/2, and let Qz be the flower centred

at z ∈ T∗ as shown in Figure 3.1. For d ≥ 3, let Z∗dr0 = r0
2
√
d
Zd, and Qz be the cube of

side-length r0
2
√
d

centred at z ∈ Z∗dr0 . Note that the flowers or cubes are disjoint. We declare

z open, if Qz ∩ Φ(i) 6= ∅, 1 ≤ i ≤ k. This is clearly an independent site percolation model

on T∗ (d = 2) or L∗d (d ≥ 3) with probability
∏k
i=1(1 − e−λia(d,r0)) of z being open.

By hypothesis,
∏k
i=1(1 − e−λia(d,r0)) > pc(d), the critical probability for site percolation

on T∗ (d = 2) or L∗d (d ≥ 3) and hence the corresponding graphs percolate. Let

< z1, z2, ... > denote the infinite percolating path in T∗ (d = 2) or L∗d (d ≥ 3). Since it

is a percolating path, almost surely, for all i ≥ 1, and every j = 1, 2, . . . , k, Φ(i)(Qzi) > 0,

that is, each (flower or cube) Qzi contains a point of Φ(i). Hence almost surely, for every

word {w(i)}i≥1 we can find a sequence {Xi}i≥1 such that for all i ≥ 1, Xi ∈ Φ(w(i)) ∩Qzi .
Further, |Xi −Xi+1| ≤ r0 ≤ rw(i) + rw(i+1). Thus, almost surely, every word occurs.

Proof of Corollary 3.1.9. Apply Proposition 3.1.8 with k = 2, λ1 = λ, λ2 = µ,

r1 = r2 = r, and so r0 = 2r. It follows that almost surely, every word occurs provided

(1 − e−λa(d,2r))(1 − e−µa(d,2r)) > pc(d). In particular, under the above condition, almost

surely, the word (1, 2, 1, 2, . . .) occurs. This implies that there is a sequence {Xi}i≥1 such

that X2j−1 ∈ Φ(1), X2j ∈ Φ(2), and |X2j−X2j−1| ≤ 2r, for all j ≥ 1. But this is equivalent

to percolation in G(λ, µ, r) as the pp is locally finite. This proves the corollary once we note

that there exists a µ <∞ satisfying the condition above only if (1− e−λa(d,2r)) > pc(d), or

equivalently a(d, 2r)λ > log( 1
1−pc(d)) and the least such µ is given in the RHS of (3.2).
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Proof of Corollary 3.1.13. By the given condition (1 − e−λa(d,2r)/2) >
√
pc(d),

and continuity, there exists an ε > 0 such that for all p ∈ (1/2 − ε, 1/2 + ε), we have

(1−e−λpa(d,2r)) >
√
pc(d). Thus for all p ∈ (1/2−ε, 1/2+ε), we get that (1−e−λpa(d,2r))(1−

e−λ(1−p)a(d,2r)) > pc(d). Hence by invoking Proposition 3.1.8 as in the proof of Corollary

3.1.9 with λ1 = λp, λ2 = λ(1− p), r1 = r2 = r, we get that θ̂(λ, p, r) = 1.

3.4 Proofs for Section 3.2

For any locally finite point process X ⊂ U, the coverage process is defined as

C(X, r) := ∪Xi∈XBXi(r), (3.17)

and we abbreviate C(P(1)
n , r) by C(n, r). Recall that for any A ⊂ Rd, we write X(A) to

be the number of points of X that lie in the set A. We will need the following vacancy

estimate similar to [Hall 1988, Theorem 3.11] for the proof of Lemma 3.2.3. ‖ · ‖ denotes

the Lebesgue measure on Rd.

Lemma 3.4.1. For d = 2 and 0 < r < 1
2 , define V (n, r) := 1 − ‖BO(r)∩C(n,r)‖

πr2
, the

normalised vacancy in the r-ball. Then

P (V (n, r) > 0) ≤ (1 + nπr2 + 4(nπr2)2) exp(−nπr2).

Proof of Lemma 3.4.1. Write P (V (n, r) > 0) ≤ p1 + p2 + p3, where

p1 = P
(
P(1)
n (BO(r)) = 0, V (n, r) > 0

)
= P

(
P(1)
n (BO(r)) = 0

)
= exp(−nπr2),

p2 = P
(
P(1)
n (BO(r)) = 1, V (n, r) > 0

)
≤ P

(
P(1)
n (BO(r)) = 1

)
= nπr2 exp(−nπr2),

p3 = P
(
P(1)
n (BO(r)) > 1, V (n, r) > 0

)
.

We shall now upper bound p3 to complete the proof. A crossing is defined as a point

of intersection of two r-balls centred at points of P
(1)
n . A crossing is said to be covered

if it lies in the interior of another r-ball centred at a point of P
(1)
n , else it is said to be

uncovered. If there is more than one point of P
(1)
n in BO(r), then there exists atleast one

crossing in BO(r). If V (n, r) > 0 and there exists more than one r-ball centred at a point

of P
(1)
n in BO(r), then there exists atleast one such r-ball with two uncovered crossings on
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its boundary. Denoting the number of uncovered crossings by M , we have that

p3 ≤ P (M ≥ 2) ≤ E(M)
2

.

Given a disk, the number of crossings is twice the number of r-balls centred at a

distance within 2r. This number has expectation 2
∫ 2r

0 2nπxdx = 8nπr2, where 2nπxdx

is the expected number of r-balls whose centers lie between x and x+ dx of the center of

the given r-ball. Thus,

E(M) = E
(
P(1)
n (BO(r))

)
8nπr2P (a crossing is uncovered) = 8(nπr2)2 exp(−nπr2).

Lemma 3.4.2. For any r > 0 and x ∈ Rd with 0 ≤ R = ‖x‖ ≤ 2r, define L(r,R) :=

‖BO(r) ∩Bx(r)‖. Then

L(r,R) =
(

2φ
(
R

2r

)
− sin

(
2φ
(
R

2r

)))
r2, if d = 2,

L(r,R) ≥ θd

(
r − R

2

)d
, if d ≥ 3, (3.18)

where φ(a) = arccos(a).

Proof of Lemma 3.4.2.

Figure 3.3: |x| = R,φ = φ(r,R) and L(r,R) is the area of the lens of intersection, the
shaded region.

Let d = 2. From Figure 3.3, it is clear that L(r,R) is cut into two equal halves by

the line PQ and the area of each of those halves is the area enlosed between the chord

PQ in the circle BO(r) and its circumference. The area of the segment OPQ (with PQ

considered as the arc along the circumference of the circle) is φ
(
R
2r

)
r2. The area of the



3.4. Proofs for Section 3.2 63

triangle OPQ is

r sin
(
φ

(
R

2r

))
× r cos

(
φ

(
R

2r

))
=
r2

2
sin
(

2φ
(
R

2r

))
.

Hence L(r,R) =
(
2φ
(
R
2r

)
− sin

(
2φ
(
R
2r

)))
r2. Consider the case d ≥ 3. The width of the

lens of intersection of the balls BO(r) and Bx(r) is 2r − R. Thus the lens of intersection

contains a ball of diameter 2r−R. Hence the volume of such a ball, θd(r− R
2 )d, is a lower

bound for L(r,R).

Proof of Lemma 3.2.3. We first prove the second part of the Lemma which is easier.

(2). Let Ŵn(r) be the number of P
(1)
n nodes for which there are no other P

(1)
n node

within a distance r. Note that Ŵn(2r) ≤Wn(r). By this inequality and the Palm calculus

(Theorem 2.1.3), we get

E(Wn(rn(c, β))) ≥ E
(
Ŵn(2rn(c, β))

)
= n

∫
U

P
(
P(1)
n (Bx(2rn(c, β))) = 0

)
dx

= n exp(−2dnθdrdn(c, β)) = n exp
(
−2d

c
log(

n

β
)
)
→ ∞,

as n→∞ since c > 2d.

(1). We prove the cases d = 2 and d ≥ 3 separately. Let d ≥ 3 and fix c < 1. Define

W̃n(c, r) to be the number of P
(1)
n nodes for which there are no P

(2)
cn nodes within a distance

r and Wn(c, r) be the number of P
(2)
cn nodes with only one P

(1)
n node within a distance r.

Note that

W̃n(c, r) ≤Wn(r) ≤ W̃n(c, r) +Wn(c, r). (3.19)

By Palm calculus for Poisson point processes, we have

E
(
W̃n(c, rn(c, β))

)
= n

∫
U

P
(
P(2)
cn (Bx(rn(c, β))) = 0

)
dx

= n exp(−cnθdrdn(c, β)) = β, (3.20)

E
(
Wn(c, rn(c, β))

)
= cn

∫
U

P
(
P(1)
n (Bx(rn(c, β))) = 1

)
dx

= c n exp(−nθdrdn(c, β))n θd rdn(c, β)→ 0, (3.21)

since c < 1. It follows from (3.19), (3.20) and (3.21) that E(Wn(rn(c, β)))→ β, as n→∞,
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if d ≥ 3 and c < 1.

Now let d = 2, fix c < c0, where c0 is as defined in (3.7) and choose n large enough

such that rn(c, β) < 1
2 . For any X ∈ P

(1)
n , using (3.17), the degree of X in the graph

Gn(cn, r) can be written as

degn(cn,X) :=
∑

Xj∈P
(1)
n

1{< Xj , X >∈ En(cn, r)} = P(1)
n (C((P(2)

cn ∩BX(r)), r) \ {X}),

Since

{P(1)
n (C((P(2)

cn ∩BX(r)), r) \ {X}) = 0} = {P(2)
cn (BX(r) ∩ C(P(1)

n \ {X}, r)) = 0}, (3.22)

we have

Wn(r) =
∑

Xi∈P
(1)
n

1{degn(cn,Xi) = 0} =
∑

Xi∈P
(1)
n

1{P(2)
cn (BXi(r) ∩ C(P(1)

n \ {X}, r)) = 0}.

(3.23)

By Palm calculus for Poisson point processes and the metric being toroidal, we have,

E(Wn(r)) = n

∫
U

E(1{degn(cn, x) = 0}) dx = nP
(
P(2)
cn (BO(r) ∩ C(n, r)) = 0

)
, (3.24)

where C(n, r) = C(P(1)
n , r). For any bounded random closed set F , conditioning on F and

then taking expectation, we have

P
(
P(2)
cn (F ) = 0

)
= E(exp(−cn‖F‖)) . (3.25)

Thus from (3.24), (3.25) we get

E(Wn(r)) = n E(exp(−cn‖BO(r) ∩ C(n, r)‖)) = n E
(
exp(−cnπr2(1− V (n, r)))

)
, (3.26)

where V (n, r) is as defined in Lemma 3.4.1. Let A(c) be as defined in (3.6) and e1 = (1, 0).

Since rn(1,β)
2rn(c,β) = c

1
2

2 , by Lemma 3.4.2, we have

‖BO(rn(c, β)) ∩Brn(1,β)e1(rn(c, β))‖
πrn(c, β)2

= π−1

(
2φ
(
rn(1, β)
2rn(c, β)

)
− sin

(
2φ
(
rn(1, β)
2rn(c, β)

)))
= A(c).
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Given c < c0, by continuity, we can choose an ε ∈ (0, 1), such that

A(c, ε) =
‖BO(rn(c, β)) ∩Brn(1−ε,β)e1(rn(c, β))‖

πrn(c, β)2
satisfies A(c, ε) +

1
c
> 1. (3.27)

From Lemma 3.4.1, we obtain the bound,

P (V (n, rn(c, β)) > 0) ≤ D(1 + log n+ 4(log n)2)n−
1
c , (3.28)

for some constant D. Let Nn = P
(1)
n (BO(rn(1− ε, β))). On the event {Nn > 0}, we have

1− V (n, rn(c, β)) ≥ A(c, ε). (3.29)

From (3.26), we get

E(Wn(rn(c, β))) = nE
(
e−cnπr

2
n(c,β)(1−V (n,rn(c,β)))1{V (n, rn(c, β)) = 0}

)
+ nE

(
e−cnπr

2
n(c,β)(1−V (n,rn(c,β)))1{V (n, rn(c, β)) > 0, Nn = 0}

)
+ nE

(
e−cnπr

2
n(c,β)(1−V (n,rn(c,β)))1{V (n, rn(c, β)) > 0, Nn > 0}

)
.(3.30)

Consider the first term in (3.30).

nE
(
e−cnπr

2
n(c,β)(1−V (n,rn(c,β)))1{V (n, rn(c, β)) = 0}

)
= n exp(−cnπrn(c, β)2)P (V (n, rn(c, β)) = 0))

= β P (V (n, rn(c, β)) = 0)→ β, (3.31)

as n → ∞, since P (V (n, rn(c, β)) = 0) → 1 by (3.28). The second term in (3.30) is

bounded by

nP (Nn = 0) = n exp(−nπrn(1− ε, β)2) = n1− 1
1−εβ

1
1−ε → 0, (3.32)

as n→∞. Using (3.29) first and then (3.28), the third term in (3.30) can be bounded by

ne−cnπrn(c,β)2A(c,ε)P (V (n, rn(c, β)) > 0, Nn > 0) ≤ n1−A(c,ε)βA(c,ε)P (V (n, rn(c, β)) > 0)

≤ D n1−A(c,ε)− 1
c (1 + log n+ 4(log n)2)βA(c,ε)

→ 0, (3.33)
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as n→∞ by (3.27).

It follows from (3.30) - (3.33) that

E(Wn(rn(c, β)))→ β, as n→∞.

We shall need the notion of dependency graphs and Poisson approximation lemma for

the proof of Theorem 3.2.4. Let (V,E) be a graph with countable vertex set V . We shall

denote the edges by < i, j > when (i, j) ∈ E. The adjacency neigbourhood of a vertex

i ∈ V is defined as Ni := {i} ∪ {j :< i, j >∈ E}. The graph (V,E) is called a dependency

graph for a collection of rvs {Ψi}i≥1 if {Ψi}i∈V1 and {Ψi}i∈V2 are independent for two

disjoint subsets V1, V2 ⊂ V such that there are no edges between V1 and V2. Let dTV (., .)

be the total variation distance between two integer valued rvs ψ, ζ defined as

dTV (ψ, ζ) = sup
A⊂Z
|P (ψ ∈ A)− P (ζ ∈ A) |. (3.34)

The following theorem originally proved by [Arratia et al. 1989] using the Stein-Chen

method can be found in [Penrose 2003, Theorem 2.1].

Theorem 3.4.3. Let {Ψi}i≥1 be a collection of Bernoulli rvs with dependency graph

(V,E). Define pi := E(Ψi), pij := E(ΨiΨj), λ :=
∑

i∈V pi and W :=
∑

i∈V Ψi. Then

dTV (W,Po(λ)) ≤ min(3,
1
λ

){
∑

i∈V,j∈Ni/{i}

pij +
∑

i∈V,j∈Ni

pipj}.

The following estimate in the spirit of Theorem 6.7([Penrose 2003]) will be our main

tool in proving Poisson convergence of Wn(rn(c, β)). We denote the Palm version P
(1)
n ∪{x}

of P
(1)
n by P

(1,x)
n .

Lemma 3.4.4. Let 0 < r < 1 and let C(. , .) be the coverage process defined by (3.17).

Define the integrals Iin(r), i = 1, 2, and n ≥ 1 by

I1n(r) := n2

∫
U

dx
∫
Bx(5r)∩U

dy P
(
P(1)
n (C(P(2)

cn ∩Bx(r), r)) = 0
)

P
(
P(1)
n (C(P(2)

cn ∩By(r), r)) = 0
)
,

I2n(r) := n2

∫
U

dx
∫
Bx(5r)∩U

dy P
(
P(1,x)
n (C(P(2)

cn ∩By(r), r)) = 0 = P(1,y)
n (C(P(2)

cn ∩Bx(r), r))
)
.
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Then,

dTV (Wn(r), Po(E(Wn(r)))) ≤ min
(

3,
1

E(Wn(r))

)
(I1n(r) + I2n(r)). (3.35)

Proof of Lemma 3.4.4. The proof follows along the same lines as the proof of The-

orem 6.7 ([Penrose 2003]). For every m ∈ N, partition U into disjoint cubes of side-length

m−1 and corners at m−1Zd. Let the cubes and their centres be denoted by Hm,1, Hm,2, ...

and am,1, am,2... respectively. Let

ξm,i := 1{P(1)
n (Hm,i)=1}∩{P(1)

n (C(P
(2)
cn ∩Bam,i (r),r)∩H

c
m,i)=0}.

ξm,i = 1 provided there is exactly one point of P
(1)
n in the cube Hm,i which is not connected

to any other point of P
(1)
n that falls outside Hm,i in the graph Gn(cn, r).

Define Vm := {i ∈ N : Hm,i ⊂ [0, 1]d} and Em := {< i, j > : i, j ∈ Vm, 0 < ‖am,i −
am,j‖ < 5r}. The graph Gm = (Vm, Em) forms a dependency graph (see Theorem 3.4.3)

for the rvs {ξm,i}i∈Vm . The dependency neighbourhood of a vertex i is Nm,i = i ∪ {j :<

i, j >∈ Em}. Let Wm =
∑

i∈Vm ξm,i, pm,i = E(ξm,i) and pm,i,j = E(ξm,iξm,j). By Theorem

3.4.3, we have

dTV (Wm, Po(E(Wm))) ≤ min(3,
1

E(Wm)
)(b1(m) + b2(m)), (3.36)

where b1(m) =
∑

i∈Vm
∑

j∈Nm,i pm,ipm,j and b2(m) =
∑

i∈Vm
∑

j∈Nm,i/{i} pm,i,j . The result

follows if we show that the expressions on the left and right in (3.36) converge to the left

and right hand expressions respectively in (3.35).

Note that,

Wn(r) = lim
m→∞

Wm, a.s.. (3.37)

Let wm(x) = mdpm,i for x ∈ Hm,i. Then
∑

i∈Vm pm,i =
∫
U wm(x) dx. Clearly,

lim
m→∞

wm(x) = nP
(
P(1,x)
n (C((P(2)

cn ∩Bx(r))/{x}, r)) = 0
)

= nP
(
P(1)
n (C(P(2)

cn ∩Bx(r), r)) = 0
)
.

Since wm(x) ≤ mdP
(
P

(1)
n (Hm,i) = 1

)
≤ n,

lim
m→∞

E(Wm) = n

∫
U

P
(
P(1)
n (C(P(2)

cn ∩Bx(r), r)) = 0
)

dx = E(Wn(r)) ,
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where the first equality is due to the dominated convergence theorem and the second

follows from (3.22) - (3.24). Similarly by letting um(x, y) = m2dpm,ipm,j1[j∈Nm,i] and

vm(x, y) = m2dpm,i,j1[j∈Nm,i/{i}] for x ∈ Hm,i, y ∈ Hm,j , one can show that

b1(m) =
∫
U×U

um(x, y) dx dy → I1n(r),

b2(m) =
∫
U×U

vm(x, y) dx dy → I2n(r).

Proof of Theorem 3.2.4. (3.9) follows easily from (3.8) by noting that

P (Mn ≤ r) = P (Wn(r) = 0) .

Hence, the proof is complete if we show (3.8) for which we will use Lemma 3.4.4. Let

Iin(rn(c, β)), i = 1, 2, be the integrals defined in (3.35) with r taken to be rn(c, β) satisfying

(3.4). From Lemma 3.2.3, E(Wn(rn(c, β)))→ β as n→∞. Using (3.24) and Lemma 3.2.3,

we get for some finite positive constant C that

I1n(rn(c, β)) =
∫
U

dx
∫
Bx(5rn(c,β))∩U

dy (E(Wn(rn(c, β))))2 ≤ C(5rn(c, β))d → 0, as n→∞.

We now compute the integrand in the inner integral in I2n(r). Let Γ(x, r) = ‖BO(r) ∩
Bx(r)‖. For x, y ∈ U , using (3.25) we get

P
(
{P(1,x)

n (C(P(2)
cn ∩By(r), r)) = 0} ∩ {P(1,y)

n (C(P(2)
cn ∩Bx(r), r)) = 0}

)
= P

(
P(2)
cn (By(r) ∩ (C(n, r) ∪Bx(r))) = 0,P(2)

cn (Bx(r) ∩ (C(n, r) ∪By(r))) = 0
)

≤ P
(
P(2)
cn (By(r) ∩ C(n, r)) = 0,P(2)

cn (Bx(r) ∩ C(n, r)) = 0
)

= P
(
P(2)
cn ((By(r) \Bx(r)) ∩ C(n, r)) = 0,P(2)

cn (Bx(r) ∩ C(n, r)) = 0
)

= E(exp(−cn‖(By(r) \Bx(r)) ∩ C(n, r)‖) exp(−cn‖Bx(r) ∩ C(n, r)‖)) . (3.38)

We can and do choose an η > 0 so that for any r > 0 and ‖y−x‖ ≤ 5r (see [Penrose 2003,

Eqn 8.21]), we have

‖Bx(r) \By(r)‖ ≥ η rd−1 ‖y − x‖.
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Hence if ‖y − x‖ ≤ 5r, the left hand expression in (3.38) will be bounded above by

E

(
exp

(
−cnηrd−1‖y − x‖‖(By(r) \Bx(r)) ∩ C(n, r)‖

‖By(r) \Bx(r)‖

)
exp (−cn‖Bx(r) ∩ C(n, r)‖)

)
.

Using the above bound, we get

I2n(rn(c, β)) ≤
∫
U

∫
BO(5rdn(c,β))∩U

n2E
(

exp (−cn‖BO(rn(c, β)) ∩ C(n, rn(c, β))‖)

exp
(
−cnηrn(c, β)d−1‖y‖‖(By(rn(c, β)) \BO(rn(c, β))) ∩ C(n, rn(c, β))‖

‖By(rn(c, β)) \BO(rn(c, β))‖

))
dy dx.

Making the change of variable w = nrn(c, β)d−1y and using (3.26), we get

I2n(rn(c, β)) ≤
∫
BO(5nrn(c,β)d)∩U

(nrn(c, β)d)1−dE

(
n exp(−cn‖BO(rn(c, β)) ∩ C(n, rn(c, β))‖)

exp

(
−cη‖w‖

‖(Bw(nrn(c,β)d−1)−1(rn(c, β)) \BO(rn(c, β))) ∩ C(n, rn(c, β))‖
‖Bw(nrn(c,β)d−1)−1(rn(c, β)) \BO(rn(c, β))‖

))
dw

≤ (nrn(c, β)d)1−dE(Wn(rn(c, β)))→ 0,

as n→∞, since by Lemma 3.2.3, E(Wn(rn(c, β)))→ β as n→∞ and nrdn(c, β) = log
n
β

cθd
.

We have shown that for i = 1, 2, Iin(rn(c, β))→ 0, and hence by Lemma 3.2.3,

dTV (Wn(rn(c, β)), Po(E(Wn(rn(c, β)))))→ 0,

as n → ∞. Again, since E(Wn(rn(c, β))) → β, we have Po(E(Wn(rn(c, β)))) d→ Po(β).

Consequently, dTV (Wn(rn(c, β)), Po(β)→ 0 as n→∞. As convergence in total variation

distance implies convergence in distribution, we get (3.8).

We now prove Theorem 3.2.6. In the second part of this proof, we will couple our se-

quence of AB RGGs with a sequence of usual RGGs. By usual RGG we mean the sequence

of graphs Gn(r) with vertex set P
(1)
n and edge set {〈Xi, Xj〉 : Xi, Xj ∈ P

(1)
n , d(Xi, Xj) ≤ r},

where d is the toroidal metric defined in (3.3). We will use the following well known result

regarding strong connectivity in the graphs Gn(r).

Theorem 3.4.5 (Theorem 13.2, [Penrose 2003]). For Rn(A0) =
(
A0 logn
nθd

)1/d
, almost

surely, the sequence of graphs Gn(Rn(A0)) is connected eventually if and only if A0 > 1.
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We will also need the following estimate ([Penrose 2003, Lemma 1.4]).

Lemma 3.4.6. Let γ > 1
2 . Then there exists a constant λ1 = λ1(γ) such that for all

λ > λ1,

P
(
Po(λ) > λ+ λ

γ
2

)
≤ exp{−λ

2γ−1

9
},

P
(
Po(λ) > λ− λ

γ
2

)
≤ exp{−λ

2γ−1

9
}.

Proof of Thm 3.2.6. Let rn = a
1
d rn(c), where rn(c) = rn(c, 1) is as defined in (3.5).

It is enough to show the following :

For all c < c0 and a < 1, lim
n→∞

P (Gn(cn, rn) is not connected ) = 1. (3.39)

For all c > 0 and a > α(c), P (Gn(cn, rn) is not connected i.o.) = 0, (3.40)

where i.o. stands for infinitely often. To show (3.39), note that for a < 1

rdn =
log( n

n1−a )
cnθd

<
log(nβ )

cnθd
,

for any β > 0 and sufficiently large n. From Theorem 3.2.4, if c < c0, then the largest

nearest neighbour radius is asymptotically greater than rn with probability tending to

one. This gives (3.39) and thus we have proved the lower limit.

Let Rn(A0) be as in Theorem 3.4.5. We will show (using a subsequence argument)

that if a > α(c), then we can find A0 > 1, such that the probability of the event that not

every point of P
(1)
n is connected to all points of P

(1)
n that fall within a distance Rn(A0) in

Gn(cn, rn), is summable. (3.40) then follows from Theorem 3.4.5 and the Borel-Cantelli

Lemma.

Since a > α(c), by definition aη(a, c) > 1. By continuity, we can choose A0 > 1 such

that aη(a,A0c) > 1. Choose ε ∈ (0, 1) so that

(1− ε)2aη(a,A0c) > 1. (3.41)

For each Xi ∈ P
(1)
n , define the event

Ai(n,m, r,R) := {Xi connects to all points of P
(1)
n ∩BXi(R) in Gn(m, r)},
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and let

B(n,m, r,R) = ∪
Xi∈P

(1)
n
Ai(n,m, r,R)c.

We shall explain a coupling of P
(1)
n ’s and a similar coupling for P

(2)
n ’s also shall be used.

Suppose that P̂
(1)
i , i ≥ 1 be a sequence of i.i.d. homogeneous Poisson pp of unit intensity

in U . Set P
(1)
0 = ∅ and for n ≥ 1, let P

(1)
n = P

(1)
n−1∪ P̂

(1)
n . Clearly we have that for all n ≥ 1,

P
(1)
n is an homogeneous Poisson pp of intensity n and P

(1)
n ⊂ P

(1)
n+1. By such a coupling,

we have that B(n,m, r,R) ⊂ B(n1,m1, r1, R1), provided n ≤ n1,m ≥ m1, r ≥ r1, R ≤ R1.

Let nj = jb for some integer b > 0 that will be chosen later. Since B(n, cn, rn, Rn) ⊂
B(nj+1, cnj , rnj+1 , Rnj ), for nj ≤ n ≤ nj+1,

∪nj+1
n=nj B(n, cn, rn, Rn) ⊂ B(nj+1, cnj , rnj+1 , Rnj ). (3.42)

Let pj = P
(
Ai(nj+1, cnj , rnj+1 , Rnj )

c
)
. Let Nn = P

(1)
n ([0, 1]2). From (3.42) and the union

bound we get

P
(
∪nj+1
n=njB(nk, cn, rn, Rn)

)
≤ P

(
B(nj+1, cnj , rnj+1 , Rnj )

)
≤ P

(
∪
Nnj+1

i=1 Ai(nj+1, cnj , rnj+1 , Rnj )
c
)

≤
nj+1+n

3
4
j+1∑

i=1

P
(
Ai(nj+1, cnj , rnj+1 , Rnj )

c
)

+ P

(
|Nnj+1 − nj+1| > n

3
4
j+1

)
≤ 2nj+1pj + P

(
|Nnj+1 − nj+1| > n

3
4
j+1

)
. (3.43)

We now estimate pj . Let e1 = (1, 0, . . . , 0) ∈ Rd. Conditioning on the number of points

of Pnj+1 in BO(Rnj ) and then using the Boole’s inequality, we get

pj ≤
∞∑
k=0

(nj+1θdR
d
nj )

ke
−nj+1θdR

d
nj

k!
k

θdRdnj

∫
BO(Rnj )

e−cnj‖B0(rnj+1 )∩Bx(rnj+1 )‖dx

≤
∞∑
k=0

(nj+1θdR
d
nj )

ke
−nj+1θdR

d
nj

k!
k

θdRdnj

∫
BO(Rnj )

e
−cnj‖B0(rnj+1 )∩BRnj e1 (rnj+1 )‖dx,

= nj+1θdR
d
nje
−cnjL(rnj+1 ,Rnj ),
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where L(r,R) is as defined in Lemma 3.4.2. Since

Rnj
rnj+1

=
(
A0 log nj
θdnj

cnj+1θd
a log nj+1

) 1
d

→
(
A0c

a

) 1
d

,

by Lemma 3.4.2, we have

L(rnj+1 , Rnj ) ≥ (1− ε) η(a,A0c) θdrdnj+1
, (3.44)

for all sufficiently large j, where η is as defined in (3.11). For all j sufficiently large, we

have ( j
j+1)b ≥ (1− ε). Using (3.44) and simplifying by substituting for Rnj and rnj+1 , for

all sufficiently large j, we have

pj ≤
(j + 1)bA0 b log j

jb
e
− jb

(j+1)b
(1−ε) η(a,A0c) a b log(j+1)

≤ A0 b log j
(1− ε)

e−(1−ε)2 η(a,A0c) a b log(j+1)

=
A0 b log j

(1− ε)(j + 1)(1−ε)2 η(a,A0c) a b
.

Hence

nj+1 pj ≤
A0 b log j

(1− ε)(j + 1)((1−ε)2 η(a,A0c) a−1)b
. (3.45)

Using (3.41), we can choose b large enough so that ((1− ε)2 η(a,A0c) a − 1)b > 1. It then

follows from (3.45) that the first term on the right in (3.43) is summable in j. From

Lemma 3.4.6, the second term on the right in (3.43) is also summable.

Hence by the Borel-Cantelli Lemma, almost surely, only finitely many of the events

∪nj+1
n=njB(n, cn, rn, Rn)

occur, and hence only finitely many of the events B(n, cn, rn, Rn) occur. This implies that

almost surely, every vertex in Gn(cn, rn) is connected to every other vertex that is within

a distance Rn(A0) from it, for all large n. Since A0 > 1, it follows from Theorem 3.4.5

that almost surely, Gn(cn, rn) is connected eventually. This proves (3.40).
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Chapter 4

Directionally convex ordering of

random measures and shot-noise

fields.

4.1 Definitions and the main result

A random measure Λ can be viewed as the following random field {Λ(B)}B∈Bb(D). With

this viewpoint and the previously introduced notion of ordering for random fields (see

Section 2.3), we define ordering on random measures.

Definition 4.1.1. Suppose Λ1(·) and Λ2(·) are random measures on D. We say that

Λ1(·) ≤dcx Λ2(·) if for any I1, . . . , In bBs in D,

(Λ1(I1), . . . ,Λ1(In)) ≤dcx (Λ2(I1), . . . ,Λ2(In)). (4.1)

The definition is similar for other orders, i.e., when F is the class of

idcx/idcv/ddcx/ddcv/st functions.

Definition 4.1.2. Let S be any set and D a LCSC space. Given a random measure Λ on

D and a measurable (in the first variable alone) response function h(x, y) : D × S → R̄+

where R̄+ denotes the completion of positive real-line with infinity, the (integral) shot-noise

field is defined as

VΛ(y) =
∫

D
h(x, y)Λ(dx). (4.2)

75
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With this brief introduction, we are ready to state our key result that will be proved

in Section 4.3.1.

Theorem 4.1.3. 1. If Λ1 ≤idcx (resp. idcv) Λ2, then {VΛ1(y)}y∈S ≤idcx (resp. idcv)

{VΛ2(y)}y∈S.

2. Let E(VΛi(y)) < ∞, for all y ∈ S, i = 1, 2. If Λ1 ≤dcx Λ2, then {VΛ1(y)}y∈S ≤dcx
{VΛ2(y)}y∈S.

The first part of the above theorem for the one-dimensional marginals of bounded

shot-noise fields generated by lower semi-continuous response functions is proved

in [Miyoshi 2004] for the special case of spatial stationary Cox pp. It is conspicuous

that we have generalized the earlier result to a great extent. This simple-looking the-

orem will be at the heart of all our future analysis of directionally convex ordering of

point processes and its applications. In particular we will use it to prove ordering of

i.i.d. marked pp (Proposition 4.2.3), moment measures (Proposition 4.2.4), Ripley’s K-

functions (Proposition 4.2.6), Palm measures (Proposition 4.2.8), independently marked

Cox processes (Proposition 4.2.11), extremal shot-noise fields (Proposition 4.3.5). Apart

form these results, Sections 5.1 and 5.2 shall provide enough examples and applications

that shall need Theorem 4.1.3. We will also use the theorem to comparse percolative

properties of point processes in various percolation models in Chapter 6. In short, all the

future sections in the thesis would use this theorem.

4.2 Ordering of random measures and point processes

We shall now give a sufficient condition for random measures to be ordered, namely that

the condition (4.1) in Definition 4.1.1 needs to be verified only for disjoint bBs. The

necessity is trivial. This is a much easier condition and will be used many times in the

future.

Proposition 4.2.1. Suppose Λ1(·) and Λ2(·) are two random measures on D. Then

Λ1(·) ≤dcx Λ2(·) if and only if condition (4.1) holds for all mutually disjoint bBs. The

same results holds true for idcx and idcv order.

Proof. We need to prove the ’if’ part alone. We shall prove for dcx order and the same

argument is valid for f being idcx or idcv. Let condition (4.1) be satisfied for all mutually
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disjoint bBs. Let f : Rn → R be dcx function and B1, . . . , Bn be bBs. We can choose

mutually disjoint bBs A1, . . . , Am such that Bi = ∪j∈JiAj for all i. Hence Λ(Bi) =∑
j∈Ji Λ(Aj). Now define g : Rm → Rn as g(x1, . . . , xm) = (

∑
j∈J1

xj , . . . ,
∑

j∈Jn xj). Then

g is idl and so f ◦ g is dcx. Moreover, f(Λ(B1), . . . ,Λ(Bn)) = f ◦ g(Λ(A1), . . . ,Λ(Am))

and thus the result for dcx follows.

Proposition 4.2.2. Let C ⊂ B(D) be a semi-ring of D and Λi, i = 1, 2 be two random mea-

sures such that for any n ≥ 1, C1, . . . , Cn ∈ C∩Bb(D) and for all f dcx ( (resp. idcx; idcv))

E(f(Λ1(C1), . . . ,Λ1(Cn))) ≤ E(f(Λ2(C1), . . . ,Λ2(Cn))) .

Further, let α1(.) and α2(.) be σ-finite measures. Then Λ1 ≤dcx (resp. idcx; idcv) Λ2.

Proof. Let B1, . . . , Bm be disjoint bBs. Recall that αl(.) = E(Λl(.)) , l = 1, 2 denote the

respective mean measures. Since αl(.) is an outer measure on C, for 1 ≤ i ≤ m, we have

that there exist sequences {Bi
nj}n≥1,1≤j≤kn<∞ ⊂ C ∩ Bb(D) such that

∀n &j 6= k Bi
nj ∩Bi

nk = ∅, ; ∪j≥1B
i
(n+1)j ⊂ ∪j≥1B

i
nj ; Bi ⊂ ∪j≥1B

i
nj ;

αl(∪j≥1B
i
nj/B

i)↘ 0, as n→∞ l = 1, 2.

Existence of such an approximating sequence is guaranteed by Carathéodory’s extension

theorem and uniqueness due to the σ-finiteness of the measures.

First note that for f dcx ( (resp. idcx; idcv)) as in the proof of Proposition 4.2.1, we

have that for all n ≥ 1,

E

f(
∑
j≥1

Λ1(B1
nj), . . . ,

∑
j≥1

Λ1(Bm
nj))

 ≤ E

f(
∑
j≥1

Λ2(B1
nj), . . . ,

∑
j≥1

Λ2(Bm
nj))

 .

Since for all n ≥ 1 and 1 ≤ i ≤ k, αl(∪j≥1B
i
nj/B

i) ↘ 0, l =

1, 2, we have that
∑

j≥1 Λl(B1
nj) ↘ Λl(Bi) a.s.. Now use Lemma 2.3.8

for f dcx (with approximating sequences (
∑

j≥1 Λ1(B1
nj), . . . ,

∑
j≥1 Λ1(Bm

nj) and

(
∑

j≥1 Λ2(B1
nj), . . . ,

∑
j≥1 Λ2(Bm

nj)) and monotone convergence theorem for f idcx or idcv,

to show that E
(
f(Λ1(B1), . . . ,Λ1(Bm)

)
≤ E

(
f(Λ2(B1), . . . ,Λ2(Bm)

)
.
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4.2.1 Simple operations preserving order

Point processes are special cases of random measures and as such will be subject to the

considered ordering. Let Φ =
∑

i εXi (εx(.) is the Dirac measure) for random elements

Xi in D. We shall now show that all the three orders dcx, idcx, idcv preserve some sim-

ple operations such as deterministic mapping, independent identically distributed (i.i.d.)

thinning and independent superposition on random measures and pp.

Let φ : D→ D′ be a measurable mapping to some LCSC space D′. By the image of a

(random) measure Λ by φ we understand Λ′(·) = Λ(φ−1(·)). Note that the image of a pp

Φ by φ consists in deterministic displacement of all its points by φ.

Let Φ =
∑

i εxi . By i.i.d. marking of Φ, with marks in some LCSC space D′, we

understand a pp on the product space D × D′, with the usual product Borel σ-algebra,

defined by Φ̃ =
∑

i ε(xi,Zi), where {Zi} are i.i.d. rvs, so called marks, on D′. By i.i.d.

thinning of Φ, we understand Φ =
∑

i Ziεxi , where Zi are i.i.d. 0-1 Bernoulli rvs. The

probability P{Z = 1} is called the retention probability. Superposition of random measures

is understood as addition of measures. Measures on Cartesian products of LCSC spaces

are always considered with their corresponding product Borel σ-algebras.

Proposition 4.2.3. Suppose Λi, i = 1, 2 are random measures and Φi, i = 1, 2 are pp.

Assume that Λ1 ≤dcx (resp. idcx; idcv) Λ2 and Φ1 ≤dcx (resp. idcx; idcv) Φ2.

1. Let Λ′i be the image of Λi, i = 1, 2, by some mapping φ : D → D′. Then

Λ′1 ≤dcx (resp. idcx; idcv) Λ′2. As a special case, the same holds true for the displace-

ment of points of Φi’s by φ.

2. Let Φi, i = 1, 2, be simple pp and Φ̃i, i = 1, 2, be the corresponding i.i.d. marked

pp with the same distribution of marks. Also assume that α̃i(.), i = 1, 2 are σ-finite

measures. Also, assume that α(.) = α1(.) = α2(.) is a σ− finite measure. Then

Φ̃1 ≤dcx Φ̃2.

3. Then Φi be i.i.d. thinning of Φi, i = 1, 2, with the same retention probability. Also

assume that αi(.), i = 1, 2 are σ-finite measures. Then Φ1 ≤dcx Φ2.

4. Let Λ′1 and Λ′2 be two random measures such that Λ′1 ≤dcx (resp. idcx; idcv) Λ′2. Assume

that Λ′i’s are independent of Λi’s. Then Λ1 + Λ′1 ≤dcx (resp. idcx; idcv) Λ2 + Λ′2, where

+ is understood as the addition of measures.
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5. Suppose the random measures are on the product space D × D′. Then Λ1(D ×
·) ≤dcx (resp. idcx; idcv) Λ2(D × ·), provided the respective projections are Radon mea-

sures.

Proof. (1): The result follows immediately from the Definition 4.1.1.

(2): We shall prove Φ̃1 ≤dcx Φ̃2. Since D is a LCSC space, for every B bBs, there exists

a null-array of partitions {Bn,j}n≥1,j≥1, i.e., Bn,j , n ≥ 1, j ≥ 1 are bBs and form a finite

disjoint partition of B for every n and maxj≥1{|Bn,j |} → 0 as n → ∞ where | · | denotes

the diameter in any fixed metric (see [Kallenberg 1983, page 11]). For every x ∈ D, let

j(n, x) be the unique index such that x ∈ Bn,j(n,x). For Xk ∈ Φ1 (and similarly for Φ2),

define n(Xk) := inf{n : j(n,Xk) 6= j(n,Xi) ∀ i 6= k}. Let Z = {Zn,j}n≥1,j≥1 be a family

of D′-valued i.i.d. rvs with distribution F (·). Now define marked pp Φ̃i, Φ̃n
i , i = 1, 2, n ≥ 1

as follows :

Φ̃n
i =

∑
Xk∈Φi

ε(Xk,Zn,j(n(Xk)∧n,Xk ); Φ̃i =
∑
Xk∈Φi

ε(Xk,Zn,j(n(Xk),Xk)
.

We shall now verify that the sequences Φ̃n
i ’s satisfy the assumption of Lemma 2.3.8 with

limits Φ̃i’s respectively.

Firstly let B1, . . . , Bm ⊂ D × D′ be bBs and g : Rm → R be a continuous bounded

function. Let B
′
i, B

′′
i denote the projection of Bi onto D and D′ respectively for all 1 ≤

i ≤ m. Since Bj ’s are bounded and Φi’s are simple, given Φi, i = 1, 2, there exists a.s.

N(Φi, B1, . . . , Bm) ∈ N such that n(Xk) ≤ N(Φi, B1, . . . , Bm) for all Xk ∈ (B
′
1 ∪ . . . ∪

B
′
m) ∩ Φi. For n ≥ N(Φi, B1, . . . , Bm),i = 1, 2

(Φ̃n
i (B1), . . . , Φ̃n

i (Bm)) = (Φ̃i(B1), . . . , Φ̃i(Bm)).

As a consequence we have that for i = 1, 2,

(Φ̃n
i (B1), . . . , Φ̃n

i (Bm)) n→∞→ (Φ̃i(B1), . . . , Φ̃i(Bm)) a.s.

and so

(Φ̃n
i (B1), . . . , Φ̃n

i (Bm)) d→ (Φ̃i(B1), . . . , Φ̃i(Bm)).

Secondly it is easy to check that for B1 = B′ × B′′ and i = 1, 2 we have E(Φ̃n
i (B1)) =

E(Φi(B′))F (B
′′
) = E(Φ̃i(B1)) and hence by an appropriate approximation as in Proposi-
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tion 4.2.2, we have that E(Φ̃n
i (B1)) = E(Φ̃i(B1)) for any bBs B1.

Finally for any bBs B ⊂ D× D′ and any realization Z = z = {zn,j}n≥1,j≥1, define

V z
i (B) := Φ̃n

i (B)|{Z = z} =
∫

D
1[(x, zn,j(n,x)) ∈ B]Φi(dx).

Since zn,j(n,·) is a piecewise constant function, 1[(x, zn,j(n,x)) ∈ B] is a measurable function

in x and so V z
i ’s are integral shot-noise fields (as per Definition 4.1.2) indexed by bBs of

D× D′. Thus from Theorem 4.1.3, we have that for any dcx function f ,

E(f(Φ̃n
1 (B1), . . . , Φ̃n

1 (Bm))|Z = z) = E(f(V z
1 (B1), . . . , V z

1 (Bm)))

≤ E(f(V z
2 (B1), . . . , V z

2 (Bm))) = E(f(Φ̃n
2 (B1), . . . , Φ̃n

2 (Bm))|Z = z)

Now, taking further expectations we get (Φ̃n
1 (B1), . . . , Φ̃n

1 (Bm)) ≤dcx (Φ̃n
2 (B1),

. . . , Φ̃n
2 (Bm)). Since the approximation satisfies the assumption of Lemma 2.3.8, the proof

follows.

(3): Given a pp Φ, consider the marked pp Φ̃ with marks as i.i.d. 0-1 Bernoulli rvs Zi.

Now note that the thinned pp can be represented in terms of the marked pp as follows :

Φ(B) = Φ̃(B × {1}) for any bBS B. Now the result follows from the second part of the

proposition.

(4): This follows from Lemma 2.3.6.

(5): This result follows easily from Lemma 2.3.8 using an increasing approximation of

D by bBs.

4.2.2 Impact on higher order properties

We will state now some results involving ordering of moments of random measures (refer

Section 2.1) and draw some conclusions concerning the so called second order properties.

These latter ones make it possible to characterize the clustering in pp.

Proposition 4.2.4. Consider random measures Λ1 ≤idcx Λ2. Also assume that αki (.), i =

1, 2 are σ-finite measures. Then Λk1 ≤idcx Λk2 and αk1(·) ≤ αk2(·). Moreover, if Λ1 ≤dcx Λ2

then α1(·) = α2(·).

Proof. Since the set of rectangles form a semi-ring in Dk, by Proposition 4.2.2, it is enough

to show the inequality (4.1) with idcx functions for the random measures Λk1(.) and Λk2(.)



4.2. Ordering of random measures and point processes 81

on rectangles alone. For the same, we consider a idcx function f : Rl → R taken of the

values of the moment measures on l rectangles in Dk. In this context, consider g : Rm → R
given by

g(y1, . . . , ym) = f
( ∏
j∈J1

y+
j , . . . ,

∏
j∈Jl

y+
j

)
,

where J1, . . . , Jl are k-element subsets of the set {1, . . . ,m} and for y ∈ R, y+ :=

max{y, 0}. Since y+
j , j ∈ [m] are increasing non-negative convex functions, the products

are idcx functions as well (see Example 2.3.3) and hence g is idcx as it is the composition

of an idcx function f with another idcx function.

The second statement follows easily from the first one by the fact that f(x) = x is

idcx. For the first moment (mean measure) note that both f(x) = x and f(x) = −x are

dcx.

A useful characteristic for measuring clustering effect in point processes is the pair

correlation function defined on R2 as g(x, y) = ρ(2)(x,y)

ρ(1)(x)ρ(1)(y)
, where ρ(k) is the k th joint

intensity (see Section 2.1).

Corollary 4.2.5. Let Φ1 ≤idcx Φ2 be two pp with joint intensities ρ(k)
i (x1, . . . , xk), i = 1, 2

respectively. Then ρ
(k)
1 (x1 . . . , xk) ≤ ρ

(k)
1 (x1 . . . , xk) for Lebesgue a.e. (x1 . . . , xk). If

Φ1 ≤dcx Φ2, then g1(x, y) ≤ g2(x, y) for Lebesgue a.e. (x, y).

Proof. The proof follows from the following two observations :For any disjoint bBs

B1, . . . , Bn,

1. By Proposition 4.2.4, we have that E(
∏n
i=1 Φ1(Bi)) ≤ E(

∏n
i=1 Φ2(Bi)) and

2. we have from definition of joint intensities, E(
∏n
i=1 Φj(Bi)) =∫Qn

i=1Bi
ρ

(n)
j (x1, . . . , xn)dx1 . . . dxn, j = 1, 2.

We shall now explore further the relation between dcx ordering and clustering of points

in a pp. One of the most popular functions for the analysis of this effect is the Ripley’s

K function K(r) (reduced second moment function); see [Stoyan et al. 1995]. Assume

that Φ is a stationary pp on Rd with finite intensity λ = α(B), where B is a bBs such

that ‖B‖ = 1. Then

K(r) =
1

λ‖G‖
E
( ∑
Xi∈Φ∩G

(Φ(BXi(r))− 1)
)
,
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where Bx(r) is the ball centered at x of radius r and ‖G‖ denotes the Lebesgue measure

of a bBs G; due to stationarity, the definition does not depend on the choice of G.

Proposition 4.2.6. Consider two stationary pp Φi, i = 1, 2, with same finite intensity

and denote by Ki(r) their Ripley’s K functions. If Φ1 ≤dcx Φ2 then K1(·) ≤ K2(·).

Proof. Denote Ii = E
(∑

Xj∈Φi∩G(Φi(BXj (r)) − 1)
)

, i = 1, 2. By the equality of mean

measures (Proposition 4.2.4), it is enough to prove that I1 ≤ I2. Note that Ii can be

written as the value of some shot noise evaluated with respect to Φ2
i , the second product

of the pp.

Ii =
∑

Xj ,Xk∈Φi

1[Xj ∈ G]1[0 < |Xk −Xj | ≤ r] ,

where 1[·] denotes the indicator function. Thus, the result follows from Proposition 4.2.4

and Theorem 4.1.3.

4.2.3 Impact on Palm measures

We shall start with a lemma that guarantees that intensity measures of ordered intensity

fields are ordered. The first part of the following lemma is an easy extension of the one-

dimensional version in [Meester and Shanthikumar 1993, Lemma 3.3]. The second part,

which we prove in what follows, is a further extension of it.

Lemma 4.2.7. Suppose {λ1(s)}s∈Rd and {λ2(s)}s∈Rd are two non-negative real-valued

and a.s. locally Riemann integrable random fields. Define random measures Λi(B) :=∫
B λi(s)ds,i = 1, 2 for any B bBs.

1. If {λ1(s)} ≤idcx (resp. idcv) {λ2(s)}, then Λ1 ≤idcx;idcv Λ2.

2. Suppose further that E(
∫
A λ1(x)dx) < ∞ for all bBs A in Rd and similarly for

{λ2(x)}. If {λ1(x)} ≤dcx {λ2(x)}, then Λ1 ≤dcx Λ2.

Proof. (2) We shall prove for d = 1 and as can be seen from the proof, the generalization

is fairly straightforward. The proof of the first part is also similar.

Due to Proposition 4.2.1, Proposition 4.2.2 and the fact that intervals form a semi-

ring on the real line, we only need to prove that (
∫
I1
X(s)ds, . . . ,

∫
In
X(s)ds) ≤dcx

(
∫
I1
Y (s)ds, . . . ,

∫
In
Y (s)ds), for Ii, i = 1, . . . , n disjoint intervals. We shall give an approx-

imation satisfying the assumptions of Lemma 2.3.8. Let Ii = [ai, bi]; ai, bi ∈ R, i = 1, . . . , n.
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Let {(timj)1≤j≤km , i = 1, . . . , n} be the sequences of mth nested partition of each interval.

The middle Riemann sum can be given as follows : Xm(Ii) =
∑

j X(timj)(t
i
m(j+1)−t

i
mj), i =

1, . . . , n,m ∈ N and similarly for Y (x). These are the variables satisfying the approxima-

tion as in Lemma 2.3.8. As X(s) is Riemann integrable,

(Xm(I1), . . . , Xm(In))→ (J1
X , . . . , J

n
X) a.s.

and hence in distribution. It is also clear the middle Riemann sums of X(·) and Y (·) are

ordered. The proof is complete by showing that for all i = 1, . . . , n,

EXm(Ii) =
∑
j

EX(timj)(t
i
m(j+1) − t

i
mj)→

∫
Ii

EX(s)ds = EJ iX ,

where the convergence follows from integrability of E(X(x)) and last equality is due to

Fubini’s theorem. The proof of (1) also uses the same idea of approximation via Riemann

sums with the difference being in the usage of upper and lower Riemann sums while

convergence is shown via monotone convergence theorem for idcx or idcv functions.

The generalization to higher dimensions is by approximating the integral over disjoint

rectangles by a linear combination of appropriately chosen X(ti)’s as above and then again

using Propositions 4.2.1 and 4.2.2.

Refer to Section 2.1 for definition of Palm measures.

Proposition 4.2.8. Suppose Λi, i = 1, 2 are random measures.

1. If Λ1 ≤dcx Λ2 then (Λ1)f ≤idcx (Λ2)f for any non-negative measurable function f

such that 0 <
∫

D f(x)α(dx) < ∞, where α is the (common) mean measure of Λi,

i = 1, 2.

2. Suppose that Λi has locally finite mean measure and almost surely (a.s.) locally

Riemann integrable density λi, i = 1, 2. If {λ1(x)} ≤dcx {λ2(x)}, then for every

x ∈ Rd, (Λ1)x ≤idcx (Λ2)x.

Proof. (1): Denote Ii =
∫

D f(x)Λi(dx), i = 1, 2. By Proposition 4.2.4, Λ1 ≤dcx Λ2 implies

that the mean measures are equal and thus E(I1) = E(I2). From (2.1), it remains to prove

E(g(Λ1(B1), . . . ,Λ1(Bn))I1) ≤ E(g(Λ2(B1), . . . ,Λ2(Bn))I2)
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for idcx function g. Now, if we show that

(I1,Λ1(B1), . . . ,Λ1(Bn)) ≤dcx (I2,Λ2(B1), . . . ,Λ2(Bn))

then the proof follows from the fact that h(x0, x) = x+
0 g(x) : Rn+1 → R is dcx (use

Lemma 2.3.2). To show the above inequality, use Theorem 4.1.3, with S = {0, . . . , n} and

h(x, 0) = f(x) and h(x, i) = 1[x ∈ Bi], 1 ≤ i ≤ n.
(2): The first part follows immediately from the second statement of Lemma 4.2.7. For

the second part, use the same argument about h(x0, x) = x+
0 g(x) being dcx as above.

Remark 4.2.9. Compared to earlier results where dcx ordering led to dcx ordering, one

might tend to believe that the loss here (as dcx implies idcx only) is more technical. How-

ever the following illustrates that it is natural to expect so: consider a Poisson pp Φ and

its (deterministic) intensity measure α(·) (i.e., its mean measure α(·) = E(Φ(·)). Using

the complete independence property of the Poisson pp and the fact that each dcx func-

tion is component-wise convex, one can show that for disjoint bBs A1, . . . , An and any

dcx function f , f(α(A1), . . . , α(An)) ≤ E(f(Φ(A1), . . . ,Φ(An)). Thus α ≤dcx Φ. It is

easy to see that for any ”nice” function f , αf (·) = α(·) (mixed Palm version of a de-

terministic measure is equal to the original measure). Take f(x) = 1[x ∈ A] for some

bBs A. Then E(Φf (A)) = E((Φ(A))2)/α(A) = α(A) + 1 since Φ(A) is a Poisson rv.

Thus αf (A) < E(Φf (A)) disproving αf (A) ≤dcx Φf (A). Another counterexample involv-

ing Poisson-Poisson cluster pp will be given in Remark 5.1.9. Further, as will be seen in

the discussion after Corollary 5.2.3, it is also not possible to get ddcx ordering of Palm

measures assuming dcx ordering of the random measures. Thus, it is clear that the above

result is the best possible in full generality.

4.2.4 Cox point processes

We will consider now Cox pp (see Section 2.1), which constitute a rich class often used to

model patterns which exhibit more clustering than in Poisson pp. Note that Cox pp may

be seen as a result of an operation transforming some random (intensity) measure into a

point (Cox) pp. One can easily show that this operation preserves our orders.

Proposition 4.2.10. Consider two ordered random measures Λ1 ≤dcx (resp. idcx; idcv) Λ2.

Then ΦΛ1 ≤dcx (resp. idcx; idcv) ΦΛ2.
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Proof. Taking a dcx (resp. idcx; idcv) function φ, assuming (by Proposition 4.2.1) mutually

disjoint bBs Ak, k = 1, . . . , n, using the definition of Cox pp and Lemma 2.3.9, one shows

for i = 1, 2 that given the intensity measure Λi, the conditional expectation

g(Λi(A1), . . . ,Λi(An)) := E(φ(ΦΛi(A1), . . . ,ΦΛi(An))|Λi)

is a dcx (resp. idcx; idcv) function. The result follows thus from the assumption of the

measures Λi being dcx ordered.

We will show now using Theorem 4.1.3 that dcx, idcx, idcv ordering of Cox intensity

measures is preserved by independent (not necessarily identically distributed) marking

and thinning, as well as independent displacement of points of the pp.

By independent marking of pp Φ on D with marks on some LCSC space D′, we under-

stand a pp Φ̃
∑

i ε(xi,Zi) such that given Φ =
∑

i εxi , Zi are independent random elements

in D′, with distribution P{Zi ∈ ·|Φ =
∑

i εxi} = Fxi(·) given by some probability (mark)

kernel Fx(·) from D to D′. The fact that Fx(·) may depend on x (in contrast to i.i.d. mark-

ing) is sometimes emphasized by calling Φ̃ a “position dependent” marking. Independent

thinning can be seen as the projection on D of the subset Φ̃(·, {1}) of the independently

marked pp Φ̃ where the marks Zi ∈ {0, 1} = D′, are independent Bernoulli thinning

variables Zi = Zi(x), whose distributions may be dependent on xi. Similarly, the pro-

jection of an independently marked pp Φ̃ =
∑

i ε(xi,Zi) on the space of marks D′; i.e.,

Φ̃(D × ·) =
∑

i εZi can be seen as independent displacement of points of Φ to the space

D′. Special examples are i.i.d. shifts of points in the Euclidean space, when Zi = xi + Yi,

where Yi are i.i.d.

Proposition 4.2.11. Suppose Φi, i = 1, 2, are two Cox (Λi) pp be such that their inten-

sity measures are ordered Λ1 ≤dcx (resp. idcx; idcv) Λ2. Let Φ̃i, i = 1, 2 be the corresponding

independently marked pp with the same mark kernel Fx(·). Then Φ̃1 ≤dcx (resp. idcx; idcv) Φ̃2.

From the above Proposition, the following corollary follows immediately by the last

statement of Proposition 4.2.3.

Corollary 4.2.12. Independent thinning and displacement of points preserves dcx (resp.

idcx; idcv) order of the intensities of Cox pp.

Proof. (Prop. 4.2.11) Let Φi be Cox (Λi) i = 1, 2 respectively and Λ1 ≤dcx(idcx,idcv) Λ2. It

is known that independent marking of Cox (Λi) pp is a Cox (Λ̃i) pp with intensity measure
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Λ̃i on D × D′ given by Λ̃i(·) =
∫

D
∫

D′ 1[(x, y) ∈ ·]Fx(dy)Λi(dx); cf. [Stoyan et al. 1995,

Secs 4.2 and 5.2]. Let S be the family of bBs in D × D′; for x ∈ D and bBs

C ⊂ D × D′ consider h(x,C) =
∫

D′ 1[(x, y) ∈ C]Fx(dy). Then the integral shot noise

VΛi(C) =
∫

D h(x,C) Λi(dx) satisfies VΛi(C) = Λ̃i(C) for all bBs C. Thus, by Theo-

rem 4.1.3 Λ̃1 ≤dcx (resp. idcx; idxv) Λ̃2 and the result follows from Proposition 4.2.10.

Recall that if Λ(·) ∈ M(Rd) a.s has a density {λ(x)}x∈Rd with respect to Lebesgue

measure then the density is referred to as the intensity field of the Cox pp, which will be

called in this case Cox (λ) pp and denoted by Φλ.

It is known that Cox pp is over-dispersed with respect to the Poisson pp, i.e.,

Var(Φ1(B)) ≤ Var(Φ2(B)) where Φ1,Φ2 are, respectively, Poisson and Cox pp with the

same mean measure. Hence, it is clear that a Cox pp can only be greater in dcx order than

a Poisson pp with the same mean measure. Indeed, in Section 5.1 we will show several

examples when this stronger result holds, namely Cox pp that are dcx ordered (larger)

with respect to the corresponding Poisson pp, as well as Cox pp dcx ordered with respect

to each other.

4.2.5 Alternative definition of dcx order

We viewed a random measure as a random field and have defined ordering from this view-

point. Alternatively, one can consider a random measure as an element of the space of

Radon measures M and define ordering between two M-valued random elements. This

can be done once we define what is a dcx function on M. The dcx order can be de-

fined on more general spaces; [Meester and Shanthikumar 1999] extends the notion of dcx

ordering to lattice ordered Abelian semigroups (LOAS+) with some compatibility con-

ditions between the lattice structure and the Abelian structure. The space M can be

equipped with the following lattice and algebraic structure. Consider the following par-

tial order: for µ, ν ∈ M, we say µ ≤ ν if µ(B) ≤ ν(B) for all bBs B in D and addition

(µ+ν)(B) = µ(B)+ν(B). Under this definition, the space M forms a LOAS+ as required

by [Meester and Shanthikumar 1999]. Then one can define a directionally convex function

onM as in Definition 2.3.1. Call it a dcx1 function. This gives rise to dcx1 order of random

measures analogously to the first part of the Definition 2.3.4.

Now we have two reasonable definitions of ordering of random measures. It is

easy to see that dcx1 ordering implies dcx ordering. In light of Example 5.1.7 of
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[Müller and Stoyan 2002], existence of a counterexample to the converse looks plau-

sible, though we failed in our attempts to construct one. However, the result of

[Bassan and Scarsini 1991] proves that convex ordering of real valued stochastic process

{Xn}n∈N implies continuous, convex ordering of the corresponding elements of the infinite-

dimensional Euclidean spaces RN. This suggests that dcx of random measures may imply

a dcx1∗ order induced by some subclass of dcx1 functionals of random measures, which

are regular in some sense. Leaving this general question as an open problem, we remark

only that the integral shot-noise fields studied in the next section can be seen as some

particular class of functionals of random measures, which are dcx1 (in fact linear on M)

and regular enough for their means to satisfy the required inequality provided the random

measures are dcx ordered. It is natural thus to have them in the suggested dcx1∗ class.

Recall also that for strong order of pp there is the full equivalence between these two

definitions, and both imply the possibility of a coupling of the ordered pp such that the

smaller one is a.s. a subset of the greater one; cf [Rolski and Szekli 1991].

4.3 Ordering of shot-noise fields

In this section we will prove Theorem 4.1.3 concerning dcx ordering of integral shot-noise

fields, which is the main result of this chapter. We will also consider the so called extremal

shot-noise fields.

4.3.1 Integral shot-noise fields

Usually shot-noise fields are defined for pp as the following sum (thus sometimes called

additive shot-noise fields) VΦ(y) =
∑

Xn∈Φ h(Xn, y) where Φ =
∑

n εXn and h is a non-

negative response function. In definition 4.1.2, we have made a significant but natural

generalization of this definition. It is pretty clear as to why we call this generalization

the integral shot-noise field. The extension to unbounded response functions is not just

a mathematical generalization alone. It shall provide us a simple proof of ordering for

extremal-shot-noise fields of pp.

Now, we shall prove Theorem 4.1.3. The proof is inspired by [Miyoshi 2004].

Proof. (Theorem 4.1.3) We shall prove the second statement first. The necessary modifi-

cations for the proof of the first statement shall be indicated later on.
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(2): We need to show that (V 1(y1), . . . , V 1(ym)) ≤dcx (V 2(y1), . . . , V 2(ym)) for yi ∈
S, 1 ≤ i ≤ m and V j(·) = VΛj (·), j = 1, 2. The proof relies on the construction of two

sequences of random vectors (V j
k (y1), . . . , V j

k (ym)), k = 1, 2. . . ., j = 1, 2 satisfying the

assumptions of Lemma 2.3.8.

Choose an increasing sequence of compact sets Kk, k ≥ 1 in D, such that Kk ↗ D.

Since h is measurable in its first argument, we know that there exists a sequence of simple

functions hk(·, yi), k ∈ N supported by Kk such that as k → ∞, hk(·, yi) ↑ h(·, yi) for

1 ≤ i ≤ m. They can be written down explicitly as follows:

hk(x, yi) = γk1[x ∈ Iik∞] +
γk∑
n=1

n− 1
2k

1[x ∈ Iikn]

for 1 ≤ i ≤ m, where γk = k2k, Iikn = {x ∈ Kk : n−1
2k
≤ h(x, yi) < n

2k
} and Iik∞ = {x ∈

Kk : h(x, yi) =∞} for 1 ≤ i ≤ m and 1 ≤ n ≤ γk. Note that all Iikn n = 1, . . . ,∞ are bBs

and the sequence of random vectors we are looking for is

V j
k (yi) =

∫
D
hk(x, yi)Λj(dx) = γkΛj(Iik∞) +

γk∑
n=1

n− 1
2k

Λj(Iikn),

for j = 1, 2. By the monotone convergence theorem, it is clear that for j = 1, 2 as k →∞,

(V j
k (y1), . . . , V j

k (ym)) ↑ (V j(y1), . . . , V j(ym)) a.s. and hence in distribution. By monotone

convergence theorem, the expectations, which are finite by the assumption, also converge.

What remains to prove is that for each k ∈ N, the vectors are dcx ordered.

Fix k ∈ N. Now observe that for j = 1, 2, i = 1, . . . ,m, V j
k (yi) are idl functions of

the vectors (Λj(Iikn) : n = 1, . . . , γk,∞), j = 1, 2. The latter are dcx ordered by the

assumptions. And since composition of dcx with idl functions is dcx, it follows that

(V 1
k (y1), . . . , V 1

k (ym)) ≤dcx (V 2
k (y1), . . . , V 2

k (ym)).

(1): For vectors (V j
k (y1), . . . , V j

k (ym)), k = 1, 2. . . ., j = 1, 2 defined as above,

f(V j
k (y1), . . . , V j

k (ym)) ↑ f(V j(y1), . . . , V j(ym)) a.s. for f idcx (resp. idcv) and hence

E(f(V j
k (y1), . . . , V j

k (ym))) ↑ E(f(V j(y1), . . . , V j(ym))), j = 1, 2. The proof is complete

by noting that Ef(V 1
k (y1), . . . , V 1

k (ym)) ≤ E(f(V 2
k (y1), . . . , V 2

k (ym)) for all k ≥ 1 and f

idcx (resp. idcv).
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4.3.2 Extremal shot-noise fields

We recall now the definition of the extremal shot-noise field, first introduced in

[Heinrich and Molchanov 1994].

Definition 4.3.1. Let S be any set and D a LCSC space. Given a pp Φ on D and

a measurable (in the first variable alone) response function h(x, y) : D × S → R, the

extremal shot-noise field is defined as

UΦ(y) = sup
Xi∈Φ

{h(Xi, y)}. (4.3)

In order to state our result for extremal shot-noise fields, we shall use the lower or-

thant (lo) order.

Definition 4.3.2. Let X and Y be random Rd vectors. We say X ≤lo Y if P(X ≤ t) ≥
P(Y ≤ t) for every t ∈ Rd.

On the real line, this is the same as the strong order (i.e., when F consists of increasing

functions) but in higher dimensions it is different. Obviously st order implies lo order

and examples of random vectors which are ordered in lo but not in st are known; see

([Müller and Stoyan 2002]). Thus, it is clear that the following proposition is a gener-

alization of the corresponding one-dimensional result in [Miyoshi 2004] where the proof

method was similar to the proof of the ordering of integral shot-noise fields. We shall give

a much simpler proof using the already proved result.

Proposition 4.3.3. Let Φ1 ≤idcv Φ2. Then {UΦ1(y)}y∈S ≤lo {UΦ2(y)}y∈S.

Proof. The probability distribution function of the extremal shot-noise can be expressed by

the Laplace transform of some corresponding (additive) one as follows. Let {x1, . . . , xm} ⊂
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S and (a1, . . . , am) ∈ Rm. Then

P(U(yi) ≤ ai, 1 ≤ i ≤ m) = E(
∏
i

1[sup
n
h(Xn, yi) ≤ ai])

= E(
∏
i

∏
n

1[h(Xn, yi) ≤ ai])

= E(
∏
i

∏
n

elog 1[h(Xn,yi)≤ai])

= E(
∏
i

e−
P
n− log 1[h(Xn,yi)≤ai])

= E(e−
P
i Û(yi))

where Û(yi) =
∑

n− log 1[h(Xn, yi) ≤ ai] is an additive shot-noise with response function

taking values in [0,∞]. The response function is clearly non-negative and measurable. The

function f(x1, . . . , xm) = e−
P
i xi is a ddcx function on (−∞,∞]. The result follows by

the first statement of Theorem 4.1.3.

4.3.3 Ordering of the capacity functional of Boolean models

The extremal shot-noise field can be used to define the Boolean model. We gave the

graph-theoretic definition in Definition 3.1.1 but now we shall give a more topological

definition.

Definition 4.3.4. Given a (generic) random compact set (racs; see Section 2.1.1) G, let

h((x,G), y) = 1[y ∈ x + G]. By a Boolean model with the pp of germs Φ and the typical

grain G we call the random set C(Φ, G) = {y : UΦ̃(y) > 0} where Φ̃ =
∑

i ε(Xi,Gi) is i.i.d.

marking of Φ with the mark distribution equal to this of G.

We shall call G a fixed grain if there exists a closed set B such that G = B a.s.. In

the case B = BO(r), we shall abbreviate by C(Φ, r). In the case when, G = BO(ρ) for a

random variable ρ, we shall denote the Boolean model by C(Φ, ρ).

The following result (Proposition 4.3.5) is the starting point for our investigation of

the connections between percolation and directionally convex ordering of point processes

(see Chapter 6 and Section 5.2.1).

Proposition 4.3.5. Let Φ1,Φ2 be two point processes and UΦi(x) their respective extremal

shot-noise fields with response functions h(., .). Define level sets of the extremal shot-noise
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fields for a level h as S>h(Φi) := {x : UΦi(x) > h}, i = 1, 2. Let B be a Borel set such

that h̃(., B) := supy∈B h(., y) is measurable. Then Φ1 ≤ddcx Φ2 ⇒ P (S>h(Φ1) ∩B = ∅) ≤
P (S>h(Φ2) ∩B = ∅).

In the special case of the Boolean model, we have that Φ1 ≤ddcx Φ2 ⇒ TC(Φ,G)(B) ≥
TC(Φ,G)(B) for all Borel sets B.

Proof. The proof for the general case follows from Proposition 4.3.3 and the measurability

of h̃(., B), once we note the following for i = 1, 2 :

P (S>h(Φi) ∩B = ∅) = P

(
sup
x∈B

UΦi(x) ≤ h
)

= P

(
sup
x∈B

sup
X∈Φi

h(X,x) ≤ h
)

= P

(
sup
X∈Φi

h̃(X,B) ≤ h
)
.

We have expressed P (S>h(Φi) ∩B = ∅) in terms of a level non-crossing probability of

another extremal shot-noise field and thus we can use Proposition 4.3.3 with response

function h̃(., B).

As noted in the Definition 4.3.4, when the response function is h((x, S), y) = 1[y ∈
x+ S], we get that S>0(Φ̃i) = C(Φ, G), the Boolean model. In this case the proof follows

from the first part because h̃((x, S), B) = 1[(x + S) ∩ B 6= ∅] is measurable in (x, S) for

all Borel sets B.

4.4 Relations to other orders

The entire chapter has focussed on directionally convex ordering of point processes and a

natural question arises that are these properties specific to dcx order or not ? We will see

some partial results that rule out some of the other orders as suitable for comparison of

point processes with same mean measures.

The other well studied dependence orders for rvs are supermodular order (sm), convex

order (cx) and componentwise convex order (ccx). The latter two are defined in similar

fashion as dcx order but with convex and componentwise convex functions i.e, a function is

ccx if it is convex in each variable when the other variables are fixed. A function f : Rd → R
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is said to be supermodular(see [Müller and Stoyan 2002, § 3.9]) if for x, y ∈ Rd,

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y),

where x ∧ y := (x1 ∧ y1, . . . , xd ∧ yd), x ∨ y := (x1 ∨ y1, . . . , xd ∨ yd), a ∧ b := min{a, b}
and a ∨ b := max{a, b} for a, b ∈ R. This immediately leads to the definition of the

supermodular order (denoted by sm) on vectors as in Definition 2.3.4. Similar to Lemma

2.3.2, one can characterize sm order and ccx order for twice differentiable functions as

below. Let f be a twice differentiable function.

• f is sm iff
∂2

∂xi∂xj
f(x) ≥ 0, for all x, 1 ≤ i 6= j ≤ n.

• f is ccx iff
∂2

∂x2
i

f(x) ≥ 0, for all x, 1 ≤ i ≤ n.

Thus a function is dcx iff it is sm and ccx.

Definition 4.4.1. Let X,Y be two random vectors. We say that X is less than Y in

upper orthant (uo) order and denote it by X ≤uo Y if P (X ≥ x) ≤ P (Y ≥ x) for every

x ∈ Rd.

Figure 4.1 (see [Müller and Stoyan 2002, Sec 3.14]) explains the various implications

amidst the orders we have defined on random vectors. Note that the implications of the

orders on random vectors are reversed with respect to the respective implications on the

classes of the functions. For example, a dcx function is sm also and hence if two vectors

are ordered in sm order, they will be ordered in dcx order also.

Figure 4.1: Relations between various orders on random vectors
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For the rest of the section, we shall restrict ourselves to Rd. Given two racs Ξ1,Ξ2, we

shall say that Ξ1 ≤st Ξ2 if there exists a coupling Ξ̂1
d= Ξ1, Ξ̂2

d= Ξ2 such that a.s. Ξ̂1 ⊂ Ξ̂2.

More rigorously, st order on racs can be defined as the integral order generated by the

class of increasing functions where increasing is taken with respect to the partial ordering

of set inclusion. Even though the capacity functional characterizes the distribution of racs

(see 2.2), ordering of capacity functionals is not enough to guarantee strong ordering of

racs. The counter-example for the same as well as a sufficient and necessary condition for

strong ordering of racs was provided in [Norberg 1992].

Theorem 4.4.2. Let Ξ1,Ξ2 be two racs in Rd. Then we have that,

Ξ1 ≤st Ξ2 iff P (∩ni=1{Ξ1 ∩Ki 6= ∅}) ≤ P (∩ni=1{Ξ2 ∩Ki 6= ∅}) ,

for all n and all compact subsets K1, . . . ,Kn of Rd.

Thus when simple pp are viewed as racs, we can restate the result in the following

manner :

Φ1 ≤st Φ2 iff P (∩ni=1{Φ1(Ki) ≥ 1}) ≤ P (∩ni=1{Φ2(Ki) ≥ 1}) , (4.4)

for all n and all compact subsets K1, . . . ,Kn of Rd. Thus, immediately it is clear that uo

order for simple pp implies st order. Instead of considering ccv order, let us consider the

stronger order of ccv+ - the order generated by functions that are ccv on the non-negative

orthant. Define g : R+ → R as g(x) = 1, x ≥ 1 and else g(x) = x. Then, note that

f(x1, . . . , xn) =
∏n
i=1 g(xi) is a ccv function on the positive orthant. Thus if Φ1 ≤ccv+ Φ2,

then they satisfy the inequality on the rhs of (4.4) and hence Φ1 ≤st Φ2. This indicates

the infeasibility of ccx+ as an order for comparison of point processes with same mean

measure. The function g above is also sm+ i.e, sm on the positive orthant.

Given a function g : R → R, let f(x1, . . . , xn) := g(x1). It is easy to see that both

f and −f are sm and from this one can show that the one-dimensioanl marginals are

equal if X ≤sm Y . This helps us to rule out supermodular order as a reasonable one in

the context of random measures. The reason is that it allows to compare only measures

with the same one dimensional marginals, and thus a Poisson pp can only be (trivially)

compared to itself in this order on the class of pp. Indeed, Poisson one dimensional

marginal imply total independence property and thus uniquely characterize Poisson pp

cf [Daley and Vere-Jones 1988, Lemma 2.3.I]. Now let us see a more stronger reasoning to
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rule out sm order. The function f(x1, . . . , xn) :=
∏n
i=1 1[xi ≥ 1] is sm and so from (4.4),

we get that Φ1 ≤sm Φ2 implies that Φ1 ≤st Φ2. The reverse implication is trivial. Hence,

among the dependence orders, this leaves only the cx order as unexplored and hinting

that cx order could be the other order of interest apart from dcx order when one wishes

to compare point processes with same mean measures.



Chapter 5

Examples and applications of dcx

order

5.1 Examples of dcx ordered random measures and point

processes

In this section, we shall provide some examples of dcx ordered measures and pp on the

Euclidean space E = Rd. The examples are intended to be illustrative and not ency-

clopaedic. The purpose of the examples is to show that there are dcx ordered pp as well

as demonstrate some methods to prove dcx ordering of two pp. Many of the examples

seem to indicate that pp higher in dcx order cluster more, at least for Cox pp. Due to

Proposition 4.2.8, we shall in many examples prove ordering of the intensity fields alone.

5.1.1 Cox point processes with conditionally increasing intensity fields

Let {λ(s)}s∈Rd be a stationary random intensity field. Define a new field, which is random

but constant in space {λm(s) = λ(O)} and deterministic constant field {λh(s) = E(λ(0))}.
Cox(λm) is known as mixed Poisson pp and Cox(λh) is just the well-known homogeneous

Poisson pp. Denote the random intensity measures of the Cox, mixed and homogeneous

Poisson pp, by Λ,Λm and Λh respectively (i.e., Λ(dx) = λ(x) dx, etc.)

A random field {X(s)} is a conditionally increasing field if for any k and s1, . . . , sk ∈ Rd

the expectation E(f(X(s1))|X(sj) = aj ∀ 2 ≤ j ≤ k) is increasing in aj for all increasing

f whenever the conditioning event has a positive probability. The following proposition

95
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is contained in the proof of [Miyoshi 2004, Theorem 1].

Proposition 5.1.1. Let λh(.), λ(.), λm(.) be respectively the intensity fields of homoge-

neous Poisson pp, Cox pp and mixed Poisson pp as defined above. Then we have that

{λ(s)}s∈Rd ≤dcx {λm(s)}s∈Rd ,

and when {λ(s)} is a conditionally increasing field,

{λh(s)}s∈Rd ≤dcx {λ(s)}s∈Rd .

Proof. The first part follows easily from Lorentz’s inequality([Müller and Stoyan 2002,

Th. 3.9.8]) : If X1, . . . , Xd are identically distributed r.vs as X, then (X1, . . . , Xd) ≤sm
(X, . . . ,X), where sm stands for supermodular (Section 4.4). The above result was proved

in [Tchen 1980].

It is proved in [Meester and Shanthikumar 1993, Theorem 3.8] that if {Yi}ni=1 is a

conditionally increasing field and {Xi}ni=1 is a sequence of independent random variables

such that Xi
d= Yi,∀i, then (X1, . . . , Xn) ≤sm (Y1, . . . , Yn) and so (X1, . . . , Xn) ≤dcx

(Y1, . . . , Yn). By Jensen’s inequality, we have that E(Yi) = E(Xi) ≤cx Xi, ∀i. Now by inde-

pendence of co-ordinates (see 2.3.5) and transitivity of the order, (E(Y1) , . . . ,E(Yn)) ≤dcx
(Y1, . . . , Yn). Thus when {λ(s)} is a conditionally increasing field, {λh(s)}s∈Rd ≤dcx
{λ(s)}s∈Rd .

Conditionally increasing random field : Suppose that a random vector X =

(X1, . . . , Xn) has a density f with respect to the Lebesgue measure on Rn. We say that

X (or f) is said to be multivariate totally positive of order 2 (MTP − 2 for short) if

f(x ∧ y)f(x ∨ y) ≥ f(x)f(y) for x, y ∈ Rn and · ∧ ·, · ∨ · are coordinate-wise minimum

and maximum respectively ; cf. [Karlin and Renott 1980]. This can be considered as the

continnum version of the famed FKG condition on lattices in statistical mechanics (see

(5.1)). Equivalently, f is MTP − 2 iff log f is sm. For a finite S ⊂ Rd, let fS denote

the marginal probability denisty of {λ(s)}s∈S . From [Müller and Stoyan 2002, Theorem

3.10.14, Theorem 3.10.16], we know that if fS is MTP − 2 for all finite S ⊂ Rd, then the

random intensity field {λ(s)}s∈Rd is conditionally increasing.

Let us now give some MTP − 2 functions. The simplest MTP − 2 function is perhaps

f(x1, . . . , xn) =
∏n
i=1 h(xi) for some function h on R. This corresponds to the case of an
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intensity with independent 1-dimensional marginals. From [Rüschendorf 1981] (see also

[Müller and Stoyan 2002, Theorem 3.10.18]), we have that for a random vector having a

multivariate normal distribution with an invertible covariance matrix Σ, both MTP − 2

and conditionally increasing property are equivalent to the off-diagonal entries in Σ−1

being non-positive (i.e, Σ−1 is an M -matrix).

1-monotonic measures : We shall make a short digression into 1-monotonic measures

as they will lead naturally to construction of a conditionally increasing intensity field for

pp. For more details on monotonic measures, refer to [Grimmett 2006, Chapter 2].

Definition 5.1.2. For a finite set S ⊂ Zd, let ΩS := {0, 1}S and FS be the corresponding

σ-field. Let ν be a strictly positive measure on ΩS i.e, ν(w) > 0, ∀w ∈ ΩS. For a

x ∈ S, ξ ∈ ΩS\{X}, define

Ωξ
x,S := {w ∈ ΩS : w(s) = ξ(s), s ∈ S \ {x}}.

A strictly positive measure ν on ΩS is said to be 1-monotonic if for every ξ ≤ η on ΩS\{x},

ie., ξ(s) ≤ η(s), s ∈ S \ {x}, we have that

ν(w(x) = 1|Ωξ
x,S) ≤ ν(w(x) = 1|Ωη

x,S).

A measure ν on Ω is said to be 1-monotonic if it is strictly positive and 1-monotonic on

every finite subset.

From [Grimmett 2006, Theorem 2.27], we get that for strictly positive measures on ΩS

(S finite), 1-monotonicity is equivalent to the FKG lattice condition i.e, for all w1, w2 ∈ ΩS

ν(w1 ∧ w2)ν(w1 ∨ w2) ≥ ν(w1)ν(w2). (5.1)

This condition on the lattices is named so in honor of the authors of the paper

[Fortuin, Kasteleyn and Ginibre 1971], who proved it to be a sufficient condition for posi-

tive association of measures. From [Grimmett 2006, Theorem 2.22]), FKG lattice condition

is true if it holds for pairs w1, w2 such that w1 � w2, w1 � w2 and w1, w2 differ in two co-

ordinates alone i.e,
∑

s∈S 1[w1(s) 6= w2(s)] = 2 . This simplifies greatly the construction

of 1-monotonic measures. It is trivial to see that if µ is the product measure (i.e, X(z)

are i.i.d), then µ is 1-monotonic. A very general measure µ that is 1-monotonic is the
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random cluster measure ([Grimmett 2006, Chapter 1]) and of which the specific cases are

the Ising model and Potts model. Now we will construct conditionally increasing intensity

fields using 1-monotonic measures on lattices.

Ising-Poisson cluster point process : Consider the d-dimensional lattice Zd. Let

{X(z)}z∈Zd be a stationary (with respect to Zd-shifts) random field taking values in {0, 1}.
Call {X(z)} a (random) configuration of spins and let µ, the induced measure on Ω =

{0, 1}Zd be 1-monotonic. In order to obtain a stationary field consider a random shift of

the origin of Zd to U with uniform distribution on [0, 1]d (U independent of {X(z)}). Let

the lattice shifted by U be denoted by Zd∗. Pick two numbers c2 ≤ c1. For s ∈ Rd, define

λµ(s) = c11[X(ṡ) = 1] + c21[X(ṡ) = 0] where ṡ represents the unique “lower left” point

in Zd∗ nearest to s. The intensity field is clearly stationary. We shall now show that for µ

1-monotonic, {λµ(s)} is conditionally increasing. Note that

f(λµ(s)) = 1[x(ṡ) = 1](f(c1)− f(c2)) + f(c2). (5.2)

From Theorem 1.2.15 of [Müller and Stoyan 2002], it is sufficient to show the conditional

increasing property conditioned on U , the random origin of the lattice Zd∗. Hence it is

equivalent to the spin model possessing the following property:

P (X(z1) = 1|X(zj) = aj , j = 2, . . . , k) ≤ P (X(z1) = 1|X(zj) = bj , j = 2, . . . , k) ,(5.3)

where ai ≤ bi ∈ {0, 1} and zi ∈ Zd, i = 1, . . . , k. From the definition 5.1.2, it is clear that

any 1-monotonic measure µ will satisfy (5.3).

We call the Cox pp generated by the above conditionally increasing field {λµ(s)} the

Ising-Poisson cluster pp. Thus by Proposition 5.1.1, it is dcx larger than the homoge-

neous Poisson pp with the same intensity. Note that intuitively the Ising-Poisson cluster

pp “clusters” its points more than a homogeneous Poisson pp. In what follows, we will

see more examples of cluster (Cox) pp which are dcx larger than the corresponding homo-

geneous Poisson pp.

5.1.2 Lévy based Cox point processes (LCPs)

This class of pp is being introduced in [Hellmund et al. 2008]. One can find many examples

of LCPs in the above mentioned paper. In simple terms, a LCP is a pp whose intensity
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field is an integral shot-noise field of a Lévy basis. A collection of random variables

{L(B) : BbBs} is said to be a non-negative Lévy basis if

• for any sequence {An} of disjoint, bBs of Rd, L(An) are independent random vari-

ables (complete independence ) and L(
⋃
An) =

∑
L(An) a.s. provided ∪An is also a

bBs of Rd.

• for every bBs A of Rd, L(A) is infinitely divisible.

We shall consider only non-negative Lévy bases, even though there exist signed Lévy bases

too (see [Hellmund et al. 2008]). If we assume non-negativity i.e, L(B) ≥ 0∀B bBS, then

L is equivalent to a random measure (see [Daley and Vere-Jones 1988, Theorem 6.1.VI]).

Hence, we shall omit the reference to non-negativity in future and thus for us Lévy bases

will be random measures.

A Cox pp Φ is said to be a LCP, if has an intensity field of the form

λ(y) =
∫

Rd
k(x, y)L(dx),

where L is a Lévy basis and the kernel k is a non-negative function such that k(., y)

is a.s. integrable with respect to L and k(x, .) is integrable with respect to Lebesgue

measure. As in [Hellmund et al. 2008] the response function k and the Lévy basis L are

chosen such that
∫
B λ(y) dy < ∞ a.s. for all bBs B, for which a sufficient condition is∫

B E(λ(y)) dy < ∞. In our considerations, in order to be able to use 4.2.7 for showing

ordering results, we will require that λ(y) is a.s. locally Riemann integrable.

Remark 5.1.3. Note that a sufficient condition for λ(y) being a.s. locally Riemann

integrable is that λ(y) is a.s. continuous, for which, in turn, it is enough to assume that

k is continuous in its second argument and that for all x ∈ Rd, there exist Bx(εx), εx > 0

such that
∫

Rd supz∈Bx(εx) k(z, y)α(dx) < ∞ for all y, where α(B) = E(L(B)), the mean

measures of the Lévy bases; (cf [Baccelli and B laszczyszyn 2001]).

Proposition 5.1.4. Let L1 and L2 be Lévy bases with mean measures α1 and α2 re-

spectively. Let Φi, i = 1, 2 be LCPs with sam response function k(., .) and Lévy bases

Li, i = 1, 2 respectively.

1. L1 ≤dcx (resp. idcx; idcv) L2 if and only if L1(A) ≤cx (resp. icx; icv) L2(A) for all bBs A of

Rd, where cx, icx, icv stands, respectively for convex, increasing convex and increas-

ing concave.
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2. If L1 ≤dcx (resp. idcx; idcv) L2, then Φ1 ≤dcx (resp. idcx; idcv) Φ2 provided the intensity

fields

λi(y) of LCP Φi are a.s. locally Riemann integrable with these integrals, in case of

dcx, having finite means.

3. αi ≤dcx Li.

Proof. The first part is due to Proposition 4.2.1, the complete independence property of

Lévy bases and 2.3.5. As for the second part, from Theorem 4.1.3 we get that the respective

intensity fields are dcx ordered and then from Propositions 4.2.8 and Proposition 4.2.10,

we can conclude that the corresponding intensity measures as well as the point processes

are also dcx ordered. The third part follows from complete independence and Jensen’s

inequality (see Lemma 2.3.5).

We shall now give some examples of dcx ordered Lévy basis.

Example 5.1.5. Let {xi} be a locally finite deterministic configuration of points in Rd.
Let {Xj

i }i≥1, j = 1, 2 be i.i.d sequence of infinite divisible random variables such that

X1
1 ≤cx X2

1 . (For example, X1
1 can be sum of two independent exponential r.v. with mean

1/2 and X2
1 be an exponential r.v. with mean 1.) Define the Lévy bases as follows:

Lj(A) =
∑
xi∈A

Xj
i ,

where A is a bBs of Rd and j = 1, 2. By 5.1.4 and the fact that X1
1 ≤cx X2

1 it follows

that L1 ≤dcx L2.

Example 5.1.6. Let Φ̃ =
∑

i ε(xi,Zi) be an homogeneous Poisson pp on Rd marked by

independent non-negative random variables {Zi} with mean λ0. Consider two random

measures Λ1 =
∑

(xi,Zi)∈Φ̃ λ0εxi and Λ2 =
∑

(xi,Zi)∈Φ̃ Ziεxi. Note that Li, i = 1, 2 are

Lévy bases. By 5.1.4 and the fact that λ0 ≤cx Zi, conditioning on the number of points

and using the same arguments as in the proof of the second statement of Proposition 4.2.3,

one can prove that Λ1 ≤dcx Λ2.

5.1.3 Poisson cluster point processes

By Poisson cluster pp, we understand a LCP with the Lévy basis being a Poisson pp. This

class deserves a separate mention due to the generality of the ordering results that are
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possible.

We shall now give an example of a parametric family of dcx ordered Poisson cluster

pp. Fix λ > 0. Let Φc, c > 0 be a family of homogeneous Poisson pp on Rd of intensity cλ.

Let a non-negative function h : Rd ×Rd → R be given and consider a family of shot noise

fields λc(y) =
∫

Rd (h(x, y)/c) Φc(dx), which are assumed a.s. locally Riemann integrable

with
∫
B E(λc(y)) dy <∞ for bBs B.

Proposition 5.1.7. The family of shot-noise fields {λc(y)}y∈Rd is decreasing in dcx, i.e.,

for 0 < c1 ≤ c2 we have {λc2(y)} ≤dcx {λc1(y)}. Consequently Cox(λc2)≤dcxCox(λc1).

Proof. Note that {λc(x)} can be seen as a shot-noise field generated by the response

function h and the Levy basis Lc = (1/c)Φλc. By 5.1.4 and Theorem 4.1.3, it is enough

to prove that Lc2(A) ≤cx Lc1(A) for A bBs and c2 > c1 > 0.

Since, X ≤cx Y implies that aX ≤cx aY for all scalars a > 0, it suffices to prove

that Lca(A) ≤cx La(A) for A bBs and c > 1, a > 0. This essentially boils down to

proving that Nca ≤cx cNa, c > 1, a > 0, where Na stands for a Poisson r.v. with

mean a. Let {Xn
i }1≤i≤n and {Y n

i }1≤i≤n, n ≥ 1 be i.i.d. sequences of Bernoulli r.v’s with

probability of success ca/n and a/n, respectively, with n ≥ ca. Let Xn =
∑n

i=1X
n
i and

Y n =
∑n

i=1 cY
n
i . It is well known that Xn, Y n converge weakly and in expectations to

Nca, Na respectively, as n → ∞. As convex order preserves weak convergence with L1-

convergence (see [Müller and Stoyan 2002, Theorem 3.4.6] which is similar to 2.3.8), we

need to only prove that Xn ≤cx cY n. Due to 2.3.6 and the independence of summands, it is

enough to prove thatXn
i ≤cx cY n

i , which we shall do in what follows. Let f be a convex and

differentiable function. Define g(c) := Ef(Xn
i )−Ef(cY n

i ) = a
n{c(f(1)−f(0))−f(c)+f(0)}.

Note that g(1) = 0. Hence, our proof is complete if we show that g is decreasing in c > 1.

Indeed,

g′(c) =
a

n
{(f(1)− f(0))− f ′(c)}

=
a

n
{f ′(b)− f ′(c)} ≤ 0, (b < c)

where b ∈ (0, 1) by mean-value theorem and f ′ is increasing due to convexity.

Since Poisson pp can be seen as the limit of the parametric pp at infinity, it is expected

that Poisson pp can be compared in dcx order to Poisson cluster pp. For rest of the section,

assume that h(x) is a non-negative measurable function such that
∫

Rd h(x)dx = λ0 <∞.



102 Examples and applications of dcx order

Proposition 5.1.8. Let Φ and Φ′ be homogeneous Poisson pp on Rd with intensities

λ < ∞ and λ × λ0 respectively. Define µ(y) =
∑

Xi∈Φ h(Xi − y). Let Φ′′ be Cox(µ(x)).

Assume that µ(y) is a.s. locally Riemann integrable and E(µ(y)) = E(µ(0)) < ∞. Then

Φ′ ≤dcx Φ′′.

Proof. By the last statement of 5.1.4 we have λ dx ≤dcx Φ(dx). Note that λ × λ0 =∫
Rd h(x−y)λdx and thus by the second statement of Theorem 4.1.3 (note the assumption

E(µ(y)) <∞) {λ×λ0} ≤dcx {µ(y)}, where the dcx smaller field is a deterministic, constant.

The result follows now from Proposition 4.2.10 and the second statement of 4.2.7 by

assumption that µ(y) is a.s. Riemann integrable and observing that E(
∫
A µ(y) dy) =

E(µ(0))
∫
A dy <∞ for all bBs A.

Remark 5.1.9. Consider Poisson pp Φ′ and Cox(µ) as in Proposition 5.1.8. It is known

that the Palm version (given a point at the origin) of Φ′ can be constructed taking Φ′+ ε0.

By [Møller 2003, Proposition 2], analogously, Palm version of Cox(µ) can be taken as

Cox(µ)+ε0 +Φ′′, where Φ′′ is an independent of Cox(µ) Poisson pp with intensity h(y−ξ)
where ξ is sampled from the distribution h(dx)/

∫
h(y)dy. This shows that one cannot

expect dcx ordering of the Palm versions of Φ′ and Cox(µ).

5.1.4 Log Cox point processes

This class of pp are defined by the logarithm of their intensity fields.

An extension of LCP studied in [Hellmund et al. 2008] is the Log-Lévy driven Cox

process (LLCPs). Under the notation of the previous subsection, a Cox pp Φ is said to be

a LLCP if it has a intensity field of the form

λ(y) = exp
(∫

Rd
k(x, y)L(dx)

)
.

[Hellmund et al. 2008] allows for negative kernels and signed Lévy measures but these do

not fit into our framework. Suppose that L1 ≤idcx L2, then Φ1 ≤idcx Φ2 where Φi, i = 1, 2

are the respective LLCPs of Li, i = 1, 2 with kernel k(., .). These are simple consequences

of Theorem 4.1.3 and the exponential function being icx.

Another class is the Log-Gaussian Cox process (LGCPs)(see [Møller et al. 1998]). A

pp Φ is said to be a LGCP if its intensity field is λ(y) = exp{X(y)} where {X(y)} is a

Gaussian random field. Suppose {Xi(y)}, i = 1, 2 are two Gaussian random fields, then
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{X1(y)} ≤idcx {X2(y)} if and only if E(X1(y1)) ≤ E(X2(y1)) and Cov(X1(y1), X1(y2)) ≤
Cov(X2(y1), X2(y2)) for all y1, y2 ∈ Rd (see [Müller and Stoyan 2002, Theorem 3.13.6]).

From the composition rules of idcx order (f(g(.)) is idcx whenever f and g are ; use

partial derivative conditions of 2.3.2 to verify this) is idcx, it is clear that idcx ordering of

Gaussian random fields implies idcx ordering of the corresponding LGCPs. An example

of a parametric family of dcx ordered Gaussian random fields from [Miyoshi 2004, Sec 4]

is presented in Section 5.1.6.

5.1.5 Generalized shot-noise Cox processes (GNSCPs)

This class of Cox pp was first introduced and its various statistics were studied in

[Møller and Torrisi 2005]. In simple terms, these are Cox pp whose random intensity

field is a shot-noise field of a pp We say a Cox pp is GNSCP if the random intensity

field {λ(y)}y∈Rd driving the Cox pp is of the following form : λ(y) =
∑

j γjkbj (cj , y)

where (cj , bj , γj) ∈ Φ, a pp on Rd × (0,∞) × (0,∞). Also we impose the following con-

dition on the kernel k : kbj (cj , y)k1(cj/bj ,y/bj)

bdj
where k1(cj , .) is a density with respect to

the Lebesgue measure on Rd. We shall denote the GNSCP driven by Φ as ΦG. This

class includes various known pp such as Neyman-Scott pp, Thomas pp, Matérn Cluster

pp among others. The case when bj ’s are constants and {(cj , γj)} is a Poisson pp is

called as Shot Noise Cox process (See [Møller 2003]). Shot Noise Cox process are also

LCPs. Suppose two pp Φ1 ≤dcx (resp. idcx; idcv) Φ2, then from Theorem 4.1.3, we infer that

ΦG
1 ≤dcx (resp. idcx; idcv) ΦG

2 .

5.1.6 Parametric family of dcx ordered fields

We shall now construct a parametric family of dcx ordered random fields start-

ing with the following regularity condition on a random field (see [Miyoshi 2004,

Miyoshi and Rolski 2004]). This section is based on [Miyoshi 2004, Section 4].

Definition 5.1.10. A stationary and isotropic random field {X(s)}s∈Rd is said to be

dcx(resp.idcx; idcv)− regular if for any k ∈ N and any s1, . . . , sk, t1 . . . , tk ∈ Rd such that

‖si − sj‖ ≤ ‖ti − tj‖, 1 ≤ i, j ≤ k, the following holds :

(X(t1), . . . , X(tk)) ≤dcx(resp.idcx;idcv) (X(s1), . . . , X(sk)).
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The following follows easily from the definition and is our main tool in constructing

dcx ordered random fields.

Lemma 5.1.11 ([Miyoshi 2004]). Let {X(s)}s∈Rd be a stationary and isotropic

dcx(resp.idcx; idcv) regular random field. Then the family of random fields {Xc(s)}s∈Rd

for c > 0 defined by Xc(s) = X(cs) are dcx(resp.idcx; idcv) decreasing in c i.e,

{Xc1(s)}s∈Rd ≤ {Xc2(s)}s∈Rd for c1 > c2 > 0.

Example 5.1.12. Let {X(s)}s∈Rd be a stationary and isotropic Gaussian random field.

Then E(X(s)) is a constant and Cov (X(s), X(t)) = C(‖s− t‖) for a function C(.). From

[Müller and Stoyan 2002, Theorem 3.13.6], {X(s)}s∈Rd is dcx regular iff C(.) is decreas-

ing. Thus the random intensity field Y (s) = exp{−X(s)} is ddcx regular if C(.) is de-

creasing.

The intensity fields corresponding to Poisson pp and the mixed Poisson pp can be

seen as extreme cases of a Cox intensity field. Let {λ(s)}s∈Rd be a dcx regular random

field with a.s. continuity at O and for c > 0, let Λc(.) denote the intensity measure with

{λc(s)}s∈Rd as the intensity field and λ = E(λ(s)). Then for any bBs B of Rd,

lim
c→0

Λc(B) = lim
c→0

∫
s∈B

λ(cs)ds = λ(O)‖B‖, a.s.

where O denotes the origin and if Λ1(.) is an ergodic random measure,

lim
c→∞

Λc(B) = lim
c→∞

∫
s∈B

λ(cs)ds = lim
c→∞

‖B‖
‖cB‖

∫
s∈cB

λ(s)ds = λ‖B‖. a.s. (5.4)

Thus Proposition 5.1.1 can be seen as the the above comparison result ( 5.1.11) for the

extremal cases.

5.1.7 Perturbed point processes

Let Φ be a pp. Given Φ, consider the following family of mutually independent ran-

dom variables and vectors {NX , YiX : X ∈ Φ , i = 1, 2, . . .}, where the replication field

N = {NX}X∈Φ is a collection of i.i.d integer-valued random variables with finite expec-

tations and for each X ∈ Φ, {YiX : i = 1, 2, . . .} are identically distributed vectors in

Rd, with YX denoting a generic copy, such that a.s.,
∑

X∈Φ P (X + YX ∈ A) <∞ for any

bounded Borel subset A ⊂ Rd. Note that the following assumption suffices for the same :
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∫
Rd P (x+ Yx ∈ A)α(dx) < ∞, where we recall that α(.) = E(Φ) (.) is the mean measure

of the pp. The condition guarantees that the following pattern of points in Rd is locally

finite and thus can be considered as a pp:

Φ(N) =
⋃
X∈Φ

NX⋃
j=1

{X + YjX} , (5.5)

where the inner union is interpreted as ∅ when NX = 0. Point process Φ(N) can be

seen as replicating and dispersing points from the lattice Φ, with the number of point

replications driven by the field N. We will call Φ(N) the perturbed point process of Φ.

The class of perturbed pp encompasses as a special case some of the perturbed lattice

pp considered in [Sodin and Tsirelson 2004] and also, surprisingly enough, homogeneous

Poisson pp. The former shall be shown dcx smaller that the latter.

Proposition 5.1.13. Consider a pp Φ and two replication fields Ni, i = 1, 2 such that

N1 ≤dcx N2 (due to the independence this is equivalent to usual convex ordering N1X ≤cx
N2X for all X ∈ Φ, where Ni = {NiX}). Then Φ(N1) ≤dcx Φ(N2) where the same

perturbation vectors {YX}X∈Φ are used for both.

Proof. Let ΦiX =
⋃NiX
j=1 {X + YjX} for i = 1, 2 and every X ∈ Φ. Thus conditioned on

Φ, Φ(Ni), i = 1, 2 are independent superpositions of ΦiX for X ∈ Φ and hence by Propn.

4.2.3(4) and 2.3.8, it is enough to show that conditioned on Φ, Φ1X ≤dcx Φ2X for every

X ∈ Φ.

Let A1, . . . , Aj be disjoint bounded Borel subsets and f : Rj → R, a dcx function.

Define g : Z+ → R as g(k) = E
(
f(
∑k

i=1(1[YiX ∈ A1 −X], . . . ,1[YiX ∈ Aj −X]))|Φ
)
.

Note that E(g(NiX)|Φ) = E(f(ΦiX(A1), . . . ,ΦiX(Aj))|Φ) for i = 1, 2, X ∈ Φ. Thus by

assumption, the proof is complete once we show that g(k) is a dcx function.

Take a quadruple (p, q, n,m) ∈ N4 with p ≤ n,m ≤ q such that p + q = n + m and

without loss of generality assume n ≤ m. For k ≤ l define

G(k, l) :=
l∑

i=k+1

(1[YiX ∈ A1 −X], . . . ,1[YiX ∈ Aj −X])

Note thatG(p, n) andG(m, q) have the same distribution and thatG(0, p), G(p, n), G(m, q)
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are mutually independent. Thus,

g(n) + g(m) = E(f(G(0, p) +G(p, n))|Φ) + E(f(G(0, p) +G(p, n) +G(n,m))|Φ)

= E(f(G(0, p) +G(m, q))|Φ) + E(f(G(0, p) +G(p, n) +G(n,m))|Φ)

≤ E(f(G(0, p))|Φ) + E(f(G(0, p) +G(p, n) +G(n,m) +G(m, q))|Φ)

= g(p) + g(q) ,

where the inequality follows from the assumption that f is dcx. This completes the

proof.

Now,we shall discuss some specific examples in the above framework that served as a

motivation. The first is to recast Poisson cluster pp within this set-up and the second is

a minor extension of the ’toy models’ in [Sodin and Tsirelson 2004].

Example 5.1.14. Let Φ be a Poisson (λ) pp, N1X ≡ 1, N2X , be i.i.d. Poisson variables

with parameter 1 for all X ∈ Φ and YX be i.i.d. random vectors with density h(.). Then

Φ(N1) is also a Poisson (λ) pp and Φ(N2) is a Cox pp with random intensity field λ(x) =∑
X∈Φ h(x−X). The latter pp is nothing but the Poisson cluster pp introduced in Section

5.1.3.

Example 5.1.15. Let Φ = Zd, N1z ≡ 1 for all z ∈ Zd and N2z, be i.i.d. Poisson

variables with parameter 1. Moreover, let YX , z ∈ Zd be i.i.d. random vectors with

some given distribution G(dx) on Rd. With these choice of parameters, Φ(N1) is the

perturbed lattice as considered in [Sodin and Tsirelson 2004] and Φ(N2) is Cox(Λ) pp,

where Λ(dx)
∑

z∈Zd G(dx − z). By Proposition 5.1.13, the former process is dcx smaller

than the latter (indeed, 1 ≤dcx N , where N is a random variable with mean 1).

It is also clear that if for mi ∈ Z, 1 ≤ i ≤ d, we set G(dx) = 1{x ∈∏d
i=1[0,mi]}dx/

(∏d
i=1mi

)
, then Λ(dx) = dx i.e., Φ(N2) is Poisson pp with intensity 1.

Thus, perturbed lattice Φ(N1) is dcx smaller than Poisson pp with the same intensity.

Another ’toy’ model in [Sodin and Tsirelson 2004] assumes G(dx) being the Gaussian

distribution on the plane.

Here is another example of a point process that is lesser in dcx than Poisson : let Φ1

be the pp on the unit cube [0, 1]d obtained by distributing n points uniformly and indepen-

dently. Let Φ2 be the Poisson pp with intensity n. An easy corollary of the above example

is Φ1 ≤dcx Φ2.
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The interest in perturbed lattices stems from their relations to zeros of Gaussian an-

alytic functions (GAFs) (see [Peres and Virag 2005, Sodin and Tsirelson 2004]). More

precisely, [Sodin and Tsirelson 2006] shows that zeros of GAFs have the same distribution

as the pp
⋃
z∈Zd{z + Xz} for a Z2-shift invariant sequence {Xz}z∈Z2 . Simulations and

second-moment properties ([Peres and Virag 2005]) indicate that the zero set of GAFs

are sparsely distributed than Poisson pp. The above example when seen in the light of

the above-mentioned papers, asks the question whether zeros of GAF are less in dcx than

Poisson pp ? Before giving further motivation to study such a question, we present some

simulations of the many perturbed lattices discussed above. In the next chapter, we will

also see their corresponding Boolean models.

5.1.8 Ginibre-radii like point process

A class of pp related to the zeros of GAF are determinantal pp and it is natural to ask if

they are less in dcx than Poisson pp. Here we take the first step towards proof of such a

statement for the Ginibre pp, one of the well-known examples of determinantal pp.

Let {Φi}i≥0 be an i.i.d. family of pp on R+. So, the points of each pp Φi can be

sequenced based on their distance from the origin. Let Φ be the pp formed by picking the

ith point of Φi for i ≥ 1. We shall from now on abbreviate Φ([0, b]) by Φ(b) for b > 0 and

similarly for other pp used. Note the following representation for Φ(b) and Φ0(b):

Φ(b) =
∑
k≥1

1[Φk(b) ≥ k] ; Φ0(b) =
∑
k≥1

1[Φ0(b) ≥ k].

Let

Φm(b) =
m∑
k=1

1[Φk(b) ≥ k] ; Φm
0 (b) =

m∑
k=1

1[Φ0(b) ≥ k].

By Lorentz’s inequality (see the proof of Proposition 5.1.1 ), it follows that

(Φ1(b), . . . ,Φm(b)) ≤sm (Φ0(b), . . . ,Φ0(b)) where sm stands for supermodular as defined

in Section 4.4. Define the f : Rm → R as follows :

f(x1, . . . , xm) =
m∑
k=1

1 ∧ (xk − k + 1).

It is easy to verify that both f and −f are sm since for each k = 1, . . . ,m and for all
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Figure 5.1: ”Unperturbed” hexagonal lattice and sub-Poisson perturbed lattices with
the number of replicas N having binomial distribution B(n, 1/n). In the last row three
examples of super-Poisson perturbed lattices: with N having double stochastic Poisson
(Cox) distribution of random mean L having Bernoulli distribution n×Bin(1, 1/n) (i.e.,
Pr{L = n } = 1 − Pr{L = 0 } = 1/n) and “rescaled” Poisson distribution N ∼ n ×
Poi(1/n).

x, y ∈ R,

1 ∧ (x ∧ y − k + 1) + (1 ∧ (x ∨ y − k + 1) = 1 ∧ (x− k + 1) + (1 ∧ (y − k + 1).
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Thus for all x, y ∈ Rd, we have that

f(x ∧ y) ≤ [f(x), f(y)] ≤ f(x ∨ y), f(x) + f(y) = f(x ∧ y) + f(x ∨ y).

So for any cx g : R→ R, we have that for all x, y ∈ Rd,

(g ◦ f)(x) + (g ◦ f)(y) ≤ (g ◦ f)(x ∧ y) + (g ◦ f)(x ∨ y)

and thus g ◦ f is also sm. Thus

E(g(Φm(b))) = E(g ◦ f(Φ1(b), . . . ,Φm(b))) ≤ E(g ◦ f(Φ0(b), . . . ,Φ0(b))) = E(g(Φm
0 (b))).

Hence Φm(b) ≤cx Φm
0 (b) and using 2.3.8, we get that Φ(b) ≤cx Φ0(b). To complete the

proof Φ ≤dcx Φ0, one would require a multi-variate generalization of Lorentz’s inequality

which we have been unable to prove.

We shall now explain the reasons for considering the above pp Φ.

Example 5.1.16. If we assume that Φi above are Poisson pp, then Φ is known to be a

representation of the pp of the squared radii |ΦG|2 = {|Xn|2 : Xn ∈ ΦG} of the Gini-

bre process ΦG (see [Kostlan 1992, Ben Hough et al. 2006]). The Ginibre point process

([Ben Hough et al. 2006, Example 15]) is defined as the limiting point process of the fol-

lowing sequence ΦGn of ensembles. ΦGn is the ensemble of the n eigenvalues of a n × n
matrix with i.i.d. standard normal entries. This was shown to be a determinantal pro-

cess in [Ginibre 1965]. It has been observed in simulations that this determinental pp (see

Figure 1.2.1) exhibits less clustering than the homogeneous Poisson pp.

5.2 Applications to wireless communication networks

From the point of view of applications of our main result (Theorem 4.1.3), what remains

is examples of interesting dcx functions. In what follows, we will provide such functions

arising in the context of wireless networks. In many of the models we have assumed ordered

point processes with i.i.d. marks. However due to Proposition 4.2.11, the results hold for

independently marked Cox pp provided the respective intensity measures are ordered. The

applications here concern with functionals of the point process that mainly depend on the

local configuration of the points. Comparison of some functionals on the global properties



110 Examples and applications of dcx order

of the pp will be analyzed in Chapter 6. All the point processes in this section will be lie

in the Euclidean space Rd for some d ≥ 1.

5.2.1 Coverage number in Boolean model

The Boolean model C(Φ, G) defined earlier (see Definition 4.3.4) is also the main object

of analysis in the theory of Coverage processes (see [Hall 1988]). Applications of Boolean

model and coverage processes have been already discussed in Section 1.1.2. For Φ̃ as in

the Definition 4.3.4 of the Boolean model, denote by V (y) =
∑

(Xi,Gi)∈Φ̃ 1[y ∈ Xi + Gi]

the number of grains covering y ∈ Rd. Denote by ψ(s1, . . . , sn) the joint probability

generating functional (p.g.f) of the number of grains covering locations y1, . . . , yn ∈ Rd i.e,

ψ(s1, . . . , sn) = E
(∏n

j=1 s
V (yj)
j

)
, sj ≥ 0, j = 1, . . . , n.

Thus the following result follows from Theorem 4.1.3, Proposition 4.2.3, Proposition

4.2.11 once we note that the the function g(v1, . . . , vn) =
∏n
j s

vj
j is idcx when sj ≥ 1 for

all j = 1, . . . , n while it is ddcx when 0 ≤ sj ≤ 1 for all j. Also note that the function

xβ ∨ 0, x ∈ R is idcx for β ≥ 1 (Use 2.3.2).

Corollary 5.2.1. Let Φi, i = 1, 2 be a simple pp (of germs) on Rd. Consider the cor-

responding Boolean models with the typical grain G and, as above, denote the respective

coverage number fields by {Vi(y)} and their p.g.f by ψi. If Φ1 ≤dcx (resp. idcx; idcv) Φ2 then

{V1(y)} ≤dcx (resp. idcx; idcv) {V2(y)}, with the result for dcx holding provided E(Vi(y)) <∞
for all y. In particular, if Φ1 ≤idcx Φ2 then E(V1(y)β) ≤ E(V2(y)β) for all β ≥ 1. If

Φ1 ≤idcx (resp. ddcx) Φ2 then ψ1(s1, . . . , sn) ≤ ψ2(s1, . . . , sn) for sj ≥ 1 (resp. sj ≤ 1)

j = 1, . . . , n.

Note that 1−ψ(0, . . . , 0) represents the expected coverage measure, i.e.,the probability

whether the locations y1, . . . , yn are covered by at least one grain. In [Hall 1988, Section

3.8] it is shown that expected one-point coverage (or volume fraction in case of stationary

pp) for a stationary Cox pp and some clustered pp is lower than that of a stationary,

homogeneous Poisson pp.

5.2.2 Typical vertex degrees in geometric intersection graphs

Recall that, a random geometric graph is defined as a graph with Φ ⊂ Rd, d ≥ 1 as the

vertex set and the edge-set E = {{Xi, Xj} : |Xi − Xj | ≤ r}. Clearly this is related

to the Boolean model defined in the previous subsection. The obvious generalization of
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RGG to arbitrary shapes instead of balls of fixed radius is called an geometric intersection

graph. One of the objects of interest in a geometric intersection graph is the typical

degree. Under the notation of the previous subsection, the typical degree (deg(Φ, G)) for

a geometric intersection graph formed by a stationary pp Φ and grain distribution G is

deg(Φ, G) = 1
λ|A|

∑
Xi,Xj∈Φ 1[Xi ∈ U ]1[Xi 6= Xj ]1[(Xi + Gi) ∩ (Xj + Gj) 6= ∅], where

U = [0, 1]d is the unit cube. If G = B0(r), r > 0, then E(deg(Φ, G)) = K(r) is the Ripley’s

K function defined in Section 4.2.2. The following result follows easily from Theorem

4.1.3, Proposition 4.2.4 and Proposition 4.2.11.

Corollary 5.2.2. Suppose that simple pp Φ1 ≤dcx Φ2, then deg(Φ1, G) ≤idcx deg(Φ2, G).

5.2.3 Connectivity and capacity in signal to interference noise ratio

(SINR) graph

In Section 1.1.2, we have already introduced SINR graphs informally. Now we shall place

them in a more formal set-up and give comparison results on some simple properties of the

network. The more complex properties of the network such as percolation will be analyzed

in the next chapter. As said earlier, the pp considered in this section are assumed to be

lie in the Euclidean space Rd, d ≥ 1. Let the set of emitters be a pp Φe = {Y e
i }ni=1

and the set of receivers be a pp Φr = {Y r
i }ni=1. For the ease of stating the results, we

have assumed an enumeration of the points of the two pp. Let l : R+ → R+ denote the

omni-directional path-loss function. We assume that l(.) is a non-increasing function. Let

{Sik} be independent random variables and independent of the emitter and receiver pp

too. The signal received by a receiver Y r
k from Y e

i is given by PSikl(|Y e
i − Y r

k |) where P

is the power of the signal transmitted by an emitter Y e
i . The presence of a non-increasing

function is justified by the decay of signal power over distances and the random variables

Sik’s appear due to the phenomenon of fading (see Section 1.1.2).

Let the set of additional interferers be modeled by an i.i.d. marked pp Φ̃ =∑
j ε(Xj ,(Z1

j ,...,Z
n
j )), independent of {Sik},Φe,Φr, where Zij is the power received by the

receiver Y r
i from the interferer located at Xj . Denote the background noise random vari-

able by N .

We say that the signal from Y e
i is successfully received by Y r

i if SINRi(Φ̃) > T where

SINRi(Φ̃) := Sii/(N + Ii + Vi) with Ii =
∑

k 6=i PSkil(|Y e
i − Y r

k |) and Vi =
∑

j Z
i
j is the

interference received at Y r
i from the set of other emitters {Y e

k : k 6= i} and interferers in Φ̃,

respectively. T > 0 is some (assume constant) required SINR threshold. If we denote by
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p(n), the probability of successful reception of signals from each Y e
i to Y r

i for 1 ≤ i ≤ n,

then

p(n) = P(Sii > (N + Ii + Vi)
T l(|Y e

i − Y r
k |)

P
∀i = 1, . . . , n)

= E(
∏
i

F ii(
T l(|Y e

i − Y r
k |)

P
(N + Ii + Vi))) , (5.6)

where F ii(s) = P(Sii > s) and the second equality is due to independence. These commu-

nicating pairs (Y e
i , Y

r
i ) are called the source-destination pairs.

Given Φe,Φr, {Ii : i = 1, . . . , n} and N , the expression under expectation in (5.6) can

be viewed as a function of the value of the shot-noise vector (V1, . . . , Vn) evaluated with

respect to Φ̃. Theorem 4.1.3 implies the following result concerning the impact of the

structure of the set of interferers Φ̃ on p(n).

Corollary 5.2.3. Consider emitters Φe = {Y e
i }, receivers Φr = {Y r

i } and powers {Ski} as

above. Let Φ̃u, u = 1, 2 be two simple marked pp of interferers. Denote by pu(n), u = 1, 2

the probability of successful reception given by (5.6) and the capacity (per-node throughput)

of a network given by Cu(n) = 1
n

∑n
i=1 E

(
log(1 + SINRi(Φ̃u))

)
in the model with the set

of interferers Φ̃u. Assume the product of tail distribution functions of the received powers∏n
i=1 F ii(si) be dcx. If Φ̃1 ≤ddcx Φ̃2 then p1(n) ≤ p2(n) and C1(n) ≤ C2(n).

Proof. p1(n) ≤ p2(n) follows from Theorem 4.1.3 and the fact that the function in (5.6) is

a ddcx function conditioned on N, Ii, 1 ≤ i ≤ n. The ordering of capacities Cu(n) follows

from the ordering of pu(n) and the following observation : for u = 1, 2 and 1 ≤ i ≤ n,

E
(

log(1 + SINRi(Φ̃u))
)

=
∫

R+

P
(
SINRi(Φ̃u) > ex − 1

)
dx.

Note that the integrand is the same as pu(1) excepting that we have ex − 1 instead of a

T .

It is quite natural to assume ddcx
∏n
i=1 F ii(si). For example Rayleigh fading in the

radio channel implies Ski are i.i.d. exponential random variables with mean 1. In this

case
∏n
i=1 F ii(si) is ddcx. Recently in [Ganti and Haenggi 2009], under the assumption

of Rayleigh fading, direct analytical methods have been used to compare the probability

of successful reception in Poisson pp and a class of Poisson-Poisson cluster pp known as
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Neyman-Scott pp for both stationary and Palm versions. These results relay on explicit

expressions for this probability known in the considered cases. Further, it is shown that for

a certain choice of parameters, Palm version of the Poisson-Poisson cluster pp has a worse

probability of successful reception than the Poisson pp. In our terminology, it simply means

that the corresponding Palm versions aren’t ddcx ordered as the connectivity probability

is a ddcx function (Eqn. 5.6) of the integral shot-noise fields of the corresponding Palm

versions. This strengthens Remark 5.1.9 by showing that idcx ordering of Palm versions

is the best one can obtain in full generality.
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Chapter 6

Percolation and directionally

convex ordering of point processes

6.1 Notations

Though we focus on continuum percolation models, but as is the wont in the subject we

shall extensively use discrete percolation models. Here we give the generic construction

that shall be used with minor modifications often in the chpater. Many percolation models

in R are degenerate and so we shall work with higher dimensional models, i.e, models in

Rd, d ≥ 2. For r > 0, x ∈ Rd, define the following subsets of Rd:

Qr := (− 1
2r
,

1
2r

]d, Qr(x) := x+Qr;

Qr := (−r, r]d, Qr(x) := x+Qr, Qr,3r,...,3r := [0, r]× [0, 3r]× . . .× [0, 3r].

Let A = {Kz}z∈Zd ⊂ (Kd)Zd be a sequence of compact sets. The three discrete graphs we

consider often are the following : For n ∈ N,

L∗dn := (Zdn =
1
n
Zd,E∗dn ), E∗dn := {〈zi, zj〉 : Q

n
2 (zi) ∩Q

n
2 (zj) 6= ∅};

L∗dn (A) := (Zdn,E∗dn (A)), E∗dn (A) := {〈zi, zj〉 : {Qn(zi) +Kzi} ∩ {Qn(zj) +Kzj} 6= ∅};

L∗dn (r) := (rZd,E∗d(r)), E∗d(r) := {〈zi, zj〉 ∈ (rZd)2 : Qr(zi) ∩Qr(zj) 6= ∅}.

A path in L∗dn (A) from 0 to ∂Qm is γ = 〈z1, . . . , zk+1〉 ⊂ Zdn such that for 1 ≤ i ≤
k, zi ∈ Qm, 〈zi, zi+1〉 ∈ Edn(A), {Qn(zi) + Kzi} ∩ ∂Qm = ∅ and 0 ∈ {Qn(z1) + Kz1},

115
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{Qn(zk+1) + Kzk+1
} ∩ ∂Qm 6= ∅. Let Υn

m(A) be the set of all such paths from origin to

∂Qm in L∗dn (A). Let Γn be the set of all contours around the origin in L∗dn . Recall that a

contour in L∗dn is a minimal collection of vertices such that any infinite path from the origin

has to contain one of these vertices. The minimality condition implies that removal of any

vertex from the collection will lead to existence of an infinite path from the origin without

any intersection with the remaining vertices in the collection. For a path γ ∈ Υn
m(A),Γn,

we associate Qγ =
⋃
z∈γ Q

n(z).

6.2 Comparison of a critical intensity

6.2.1 Percolation of racs

By percolation of a racs Ξ, we refer to the existence of an unbounded connected subset

(giant component) of Ξ. We say that O percolates in Ξ if the origin O is contained

in a giant component. We shall always use W to denote the component containing O.

Typically, the giant component is unique. For a set A, let A(r) :=
⋃
x∈ABx(r), the r-th

parallel set of A.

Definition 6.2.1. For a racs Ξ, we define some critical radii for percolation as follows:

rc(Ξ) := inf{r : P
(
Ξ(r) percolates

)
> 0}.

rc(Ξ) := inf{r : ∀n,
∑
γ∈Γn

P
(

Ξ(r) ∩Qγ = ∅
)
<∞}.

For an ergodic racs, it is the case that P
(
Ξ(r) percolates

)
∈ {0, 1} for all r > 0.

Further, assuming stationarity of the racs, we get that P
(
Ξ(r) percolates

)
= 1 iff

P
(
O percolates in Ξ(r)

)
> 0. Thus for ergodic racs, there is a strict phase-transition.

rc(Ξ) is similar to the critical radius defined for percolation in various continuum

percolation models and the second critical radius rc(Ξ) defined above might be seen as

a critical radius corresponding to a phase transition when some suitable discrete site

percolation models approximating the racs start percolating through the Peierls argument

(cf the proof of Lemma 6.2.2). In consequence rc(Ξ), is an upper bound for the actual

critical radii as we will see now.

Lemma 6.2.2. For a racs Ξ, rc(Ξ) ≥ rc(Ξ).
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Proof. The proof as indicated above shall use Peierls argument on a suitable discrete

approximation. Consider the graph L∗dn . We shall define a random field Xr := {Xr(z)}z∈Zdn
such that Xr(z) = 1[Ξ(r) ∩ Qn(z) 6= ∅]. By Peierls argument (cf. the proof of Lemma

2.2.2) for r > rc(Ξ), Xr percolates in L∗dn a.s. for all n. Thus for all n, Ξ(r+
√
d
n

) percolates

a.s. and so r +
√
d
n > rc(Ξ). Hence, r ≥ rc(Ξ).

The following lemma follows directly from the definition of rc(Ξ).

Lemma 6.2.3. Let Ξ1,Ξ2 be two racs such that their capacity functionals satisfy TΞ1(B) ≤
TΞ2(B) for all bBs B. Then, rc(Ξ1) ≥ rc(Ξ2).

6.2.2 Percolation of level sets of random fields.

While little can be said about percolative properties of racs in general, much can be said

about percolation of level sets of random fields and also about percolation of Boolean

model (see Section 6.2.3). The interest is to characterize the levels (h) for percolation of

the level sets.

For a real valued stationary random field X = {X(x)}x∈Rd , we define its lower and

upper level sets respectively as follows: S≤h(X) := {x : X(x) ≤ h}, S>h(X) := {x :

X(x) > h}. We denote the closure and the interior of a set A by A and Â respectively.

We will also work with the closures or the interiors of the level sets : S>h(X) := S>h(X),

Ŝ>h(X) := Ŝ>h(X) and similarly for S≤h(X). If a random field {X(x)}x∈Rd a.s. lower semi-

continuous (LSC) i.e., if a.s. its sample paths are lower semi-continuous, then Ŝ>h(X) =

S>h(X) and S≤h(X) = S≤h(X). We refer the reader to [Hall 1988, Chapter 3] for more

details on random open sets. Note that when X = UΦ̃, S≤0(X) = Rd \ C(Φ, G) and

S>0(X) = C(Φ, G), the Boolean model (see Definition 4.3.4).

For a given constant 0 ≤ R <∞, denote

gn(X, h,R) :=
(
P
(
Ŝ>h(X) ∩Qn(0) 6= ∅

)) 1

n(2R+3)d .
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Definition 6.2.4. Define

hlc(X) := inf{h : P
(
S≤h(X) percolates

)
> 0} ,

huc (X) := sup{h : P
(
S>h(X) percolates

)
> 0} ,

h
l
c(X, R) := inf{h : ∃n, gn(X, h,R) < (3d − 2)−1} ,

huc (X) := sup{h : ∀n,
∑
γ∈Γn

P
(
Ŝ>h(X) ∩Qγ = ∅

)
<∞} ,

h
u
c (X) := sup{h : ∀r > 0,P

(
S

(r)
>h(X) percolates

)
> 0} .

Remark 6.2.5. hlc(X) and huc (X) are the actual critical levels for the percolation of the

closure of the respective lower and upper level sets ,i.e., for the appearance of their giant

components. Note that the upper set S>h(X) percolates below its critical level huc (X). huc (X)

can be considered as a critical level for S>h(X) ”nearly percolating” and clearly huc (X) ≥
huc (X). We shall see in Remark 6.2.11, cases when h

u
c (X) = huc (X). As for the other two

defined critical levels, they correspond to the phase transition when some suitable discrete

approximating site percolation models start percolating through the Peierls argument. This

suggests that the new critical radii hlc(X, R) and huc (X) are, respectively, upper and lower

bounds for the critical levels hlc(X) and huc (X), which will be proved under some conditions.

In fact, the announced inequality for hlc(X, R) will be proved under the following as-

sumption regarding the constant R involved in the definition of gn(X, h,R). Namely,

we say a random field X is R-independent if for any collection of bounded measurable

sets A1, . . . , An with d(Ai, Aj) > R, ∀i, j, the σ−algebras generated by {X(x)}X∈Ai ; i =

1, . . . , n are independent.

Lemma 6.2.6. For a stationary random field X = {X(x)}x∈Rd, we have huc (X) ≤ huc (X) ≥
huc (X) and further assuming R-independence of X, we have that hlc(X, R) ≥ hlc(X).

Proof. We begin with the second statement. Defining a site z ∈ Zdn open if S≤h(X) ⊃
Qn(z), we obtain a site percolation model on L∗dn . Note that the percolation of this model

for some n ≥ 1 implies percolation of S≤h(X). Thus in order to conclude the proof, it is

enough to show that for any h > h
l
c(X, R) the auxiliary discrete site percolation model

percolates for some n ≥ 1. This can be shown via Peierls argument (Lemma 2.2.2) by

observing that the probability that a given site is closed is equal to P
(
S≤h(X) 6⊃ Qn(0)

)
=
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P
(
Ŝ>h(X) ∩Qn(0) 6= ∅

)
and for R-independent field X(·) we have

P
(
Ŝ>h(X) ∩Qn(zi) 6= ∅, 1 ≤ i ≤ k

)
≤ (gn(X, h))k .

Thus the proof of second statement is complete.

Now, to the first part, define a site z ∈ Zdn open if S>h(X) ∩Qn(z) 6= ∅. Note that for

h < huc (X), this adjacent discrete site model percolates via the Peierls argument for any n ≥
1. Indeed, the probability that a given site is closed satisfies P

(
S>h(X) ∩Qn(z) = ∅

)
≤

P
(
Ŝ>h(X) ∩Qn(z) = ∅

)
and thus for h < huc (X) the expected number of closed contours

around the origin is finite for all n ≥ 1 (see Lemma 2.2.2). It remains to show, that the

fact that the auxiliary discrete site model percolates for every n ≥ 1 implies percolation

of S(r)
>h(X) for every r > 0. For a n ≥ 1, if S>h(X) ∩Qn(z) 6= ∅, then Qn(z) ⊂ S(r)

>h(X) for

any r >
√
d
n . Thus percolation in the auxiliary discrete site percolation model for a n ≥ 1

implies percolation of S(r)
>h(X) for any r >

√
d
n . This proves that huc (X) ≤ h

u
c (X) and the

other inequality is obvious as mentioned in Remark 6.2.5.

It is easy to see that X1 ≤st X2 implies ordering of all the critical levels defined above.

But we shall show here that a weaker condition suffices for comparison of two bounds for

the critical levels. This can be used to ascertain non-degeneracy of the critical level in a

random field if the other field has a non-degenerate critical level. Examples satisfying the

assumptions follow from Propositions 4.3.5, 4.3.3 and Section 5.1. The starting point is

an analogous proposition to Proposition 4.3.5.

Proposition 6.2.7. Define K0 to be the class of subsets B ⊂ Rd such that B is (a) count-

able set or (b) such that B ⊂ B̂ or (c) a union of countably many sets satisfying (a)

or (b). Let X1,X2 be two LSC random fields on Rd such that X1 ≤lo X2. Then

TbS>h(X1)
(B) ≤ TbS>h(X2)

(B) for all B ∈ K0.

Proof. Assume first that B = {x1, x2, . . . } is countable. By lo ordering of the random

fields, we have

P
(
Ŝ>h(X1) ∩ {x1, . . . , xn} = ∅

)
= P (X1(xi) ≤ h∀i)

≥ P (X2(xi) ≤ h,∀i)

= P
(
Ŝ>h(X2) ∩ {x1, . . . , xn} = ∅

)
.
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Moreover,
⋂∞
n=1{ Ŝ>h(Xi) ∩ {x1, . . . , xn } = ∅} = { Ŝ>h(Xi) ∩ B = ∅ } for i = 1, 2. Thus,

the result (for countable B) follows by the continuity of probability.

Assume now that B ⊂ B̂. The proposition rests on the following simple observation

{Ŝ>h(Xi) ∩ B = ∅} = {Ŝ>h(Xi) ∩ Qd ∩ B = ∅}, where Qd is the set of all d-dimensional

rational vectors, which reduces the proof to the previously consider case of countable B.

In order to prove this fact note first that the inclusion ⊂ is trivial. Suppose now that

x ∈ Ŝ>h(Xi) ∩ B. By the assumption on B we have x ∈ B̂ and thus there exist an open

neighborhood U of x in Ŝ>h(Xi) in which we can further find a non-empty open set U ′

satisfying U ′ ⊂ Ŝ>h(Xi) ∩B and therefore Ŝ>h(X) ∩B ∩Qd 6= ∅.

To show the result under assumption (c), observe that whenever countably many sub-

sets satisfy assumption (a) or (b), their union also satisfies assumption (a) or (b) respec-

tively. Thus without loss of generality, to prove (c), we can consider the case of B = A∪A0

where A = {x1, . . . , } is a countable subset and A0 ⊂ Â0. Now note that

{Ŝ>h(Xi) ∩B = ∅} = {Ŝ>h(Xi) ∩ ∩A0 = ∅} ∩ {Ŝ>h(Xi) ∩A = ∅}.

Now we can complete the proof by using arguments as used in the first two parts of the

proof.

We give here a comparison result for LSC random fields and we shall see in the next

section, comparison results for non-LSC random fields (namely, the Boolean model) also.

Theorem 6.2.8. Let X1,X2 be two stationary LSC random fields on Rd such that X1 ≤lo
X2. Then huc (X1) ≤ huc (X2) and we have that hlc(X1) ≤ hlc(X2).

Proof. From Proposition 6.2.7, we have that gn(X1, h) ≤ gn(X2, h) as well as

P
(
Ŝ>h(X1) ∩Qγ = ∅

)
≥ P

(
Ŝ>h(X2) ∩Qγ = ∅

)
and thus the proof follows by noting that Qγ ∈ K0.

However, in view of Lemma 6.2.6, the comparison result for lower level sets makes

sense only when Xi, i = 1, 2 are R-independent.



6.2. Comparison of a critical intensity 121

6.2.3 Percolation of a Boolean model

For a pp Φ and a random compact set S (i.e, S ∈ Kd), recall that the Boolean model

(Definition 4.3.4) denoted by C(Φ, S) is the union of ’grains’ SX (i.i.d. distributed as S)

centred at ’germs’ X ∈ Φ. Further, we assume throughout that S is a.s. path connected.

Let the set of grains associated with the pp Φ be S = {SX}X∈Φ, where SX are

i.i.d distributed as S. We say that the origin percolates in C(Φ, S) if there exists an

infinite component W ⊂ C(Φ, S) such that the origin O ∈ W . We shall always use W to

denote the component containing O. An open path γ in C(Φ, S) from the origin to ∂Qm is

〈X1, . . . , Xk+1〉 ⊂ Φ such that ∀1 ≤ i < k, {Xi}i≥1 ⊂ Qm, {Xi+1+SXi+1}∩{Xi+SXi} 6= ∅
and {Xk+1 + SXk+1

} ∩ ∂Qm 6= ∅ , 0 ∈ {X1 + SX1}. Let Nm(Φ, S) be the number of paths

from the origin to ∂Qm. We call a path γ = 〈X1, . . . , Xk+1〉 ⊂ Φ an open crossing of

Qm,3m,...,3m if ∀1 < i ≤ k, {Xi+1 + SXi+1} ∩ {Xi + SXi} 6= ∅ and {X1 + SX1} ∩ Lm0 6=
∅, {Xk+1 +SXk+1

}∩Lmm 6= ∅, where Lmj = {j}× [0, 3m]× . . .× [0, 3m], j ∈ Z. Let σm(Φ, S)

be the number of open crossings of Qm,3m,...,3m. Note that the crossings of Qm,3m,...,3m
can be formed totally by points outside Qm,3m,...,3m.

We shall now show that our definition of crossing is consistent with that already defined

in the literature. Crossing in C(Φ, S) of a box B = [0, l1]× . . .× [0, ld] in the i-th direction

was defined in [Meester and Roy 1996, Example 2.2] as a continuous curve γ ∈ C(Φ, S)∩B
and γ ∩ [0, l1]× . . . [0, li−1]× {0} × [0, li+1] . . .× [0, ld] 6= ∅, γ ∩ [0, l1]× . . . [0, li−1]× {li} ×
[0, li+1] . . .× [0, ld] 6= ∅. It is easy to see that the event there exists a crossing of Qm,3m,...,3m
in the shortest direction is equivalent to the event {σm(Φ, S) ≥ 1}. The above notion of

crossing in terms of a continuous curve can be extended to give a definition of a path in

C(Φ, S) from 0 to ∂Qm as well. Such a definition will again be consistent with ours as in

that existence of a path will be equivalent to {Nm(Φ, S) ≥ 1}. Our definitions can be seen

as a way of enumerating the crossings. We have associated a continuous curve γ in C(Φ, S)

to the set of points in Φ through whose grains the curve passes. This consistency between

the two definitions will allow us to talk of the critical radii defined below as critical radii

for percolation as known in the literature (see [Meester and Roy 1996, Eqns. (3.20) and

(3.41)]).
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Definition 6.2.9. For a Boolean model C(Φ, S), define the critical radii as follows :

rc(Φ, S) := inf{r : lim inf
m→∞

P
(
Nm(Φ, S(r)) ≥ 1

)
> 0} ,

rs(Φ, S) := inf{r : lim inf
m→∞

P
(
σm(Φ, S(r)) ≥ 1

)
> 0} ,

rc(Φ, S) := inf{r : lim inf
m→∞

E
(
Nm(Φ, S(r))

)
> 0} ,

rs(Φ, S) := inf{r : lim inf
m→∞

E
(
σm(Φ, S(r))

)
> 0} ,

rc(Φ, S) := inf{r : ∀n,
∑
γ∈Γn

P
(
C(Φ, S(r)) ∩Qγ = ∅

)
<∞} .

When S ≡ {O}, we shall abbreviate rc(Φ, S) by rc(Φ). Before going any further let us

comment on the defined critical radii.

Remark 6.2.10. • We have C(Φ, S)(r) = C(Φ, S(r)) and so rc(C(Φ, S)) = rc(Φ, S),

the critical radii for the Boolean model as defined above is equivalent to the definition

of the critical radii as a racs (see Definition 6.2.1).

• If Φ is a stationary pp, it is straightforward to see that

rc(Φ, S) = inf{r : P
(
0 percolates in C(Φ, S(r))

)
> 0} ,

= inf{r : P
(
C(Φ, S(r)) percolates

)
> 0} ,

i.e., that the critical radius corresponding to the appearance of open paths from 0 to

∂Qm for arbitrarily large m is equal to the actual critical radius for the percolation

of the Boolean model when viewed as a racs (Section 6.2.1).

• If Φ is a Poisson pp and ρ is a.s. bounded positive random variable, then

rc(Φ, BO(ρ)) = rs(Φ, BO(ρ)) (see Theorem 3.5, [Meester and Roy 1996]), i.e., the

actual critical radius of the Boolean model corresponds also to the appearance of

open crossings of Qm,3m,...,3m for arbitrarily large m.

• The two new critical radii rc(Φ, S) and rs(Φ, S) correspond to phase transitions in

the Boolean model when the expected number of these paths and crossings become

positive for arbitrarily large m. By Markov’s inequality, we get easily that rc(Φ, S) ≤
rc(Φ, S) and rs(Φ, S) ≤ rs(Φ, S).
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• The last critical radius rc(Φ, S) defined above is equivalent to the critical radius

defined in Definition 6.2.1, when the Boolean model is viewed as a racs. As a con-

sequence rc(Φ, S) ≥ rc(Φ, S) by Lemma 6.2.2.

Remark 6.2.11. Given a marked stationary pp Φ̃ ⊂ Rd ×Kd with i.i.d. marks, consider

the random field Xr = {Xr(x)}x∈Rd where Xr(x) = sup(X,SX)∈Φ̃ 1[x ∈ X + S
(r)
X ], x ∈ Rd.

The random field Xr is an example of extremal shot-noise field as seen in Definition 4.3.4

and S>0(Xr) = S>0(Xr) = C(Φ, S(r)). Let us elaborate more on the relation between the

critical radii for Boolean model and the critical levels for its associated extremal shot-noise

field.

r > rc(Φ, S) ⇒ huc (Xr) = 1 ; r < rc(Φ, S)⇒ huc (Xr) = 0

r ≥ rc(Φ, S) ⇔ h
u
c (Xr) = 1 ; r < rc(Φ, S)⇔ h

u
c (Xr) = 0

r > rc(Φ, S) ⇒ huc (Xr) = 1 ; r < rc(Φ, S)⇒ huc (Xr) = 0.

The last line follows from (6.11) (See proof of Theorem 6.2.15). Thus huc (Xr) and huc (Xr)

differ only at the critical radius for the Boolean model. Further, if Xir, i = 1, 2 are the ex-

tremal shot-noise fields associated to the Boolean models of two pp Φi, i = 1, 2 respectively,

then we have that ,

rc(Φ1, S) ≤ rc(Φ2, S) ⇔ h
u
c (X1

r) ≤ h
u
c (X2

r) ∀r > 0.

rc(Φ1, S) < rc(Φ2, S) ⇒ huc (X1
r) ≤ huc (X2

r) ∀r > 0.

rc(Φ1, S) ≤ rc(Φ2, S) ⇒ huc (X1
r) ≤ huc (X2

r) ∀r > 0.

So, for extremal shot-noise fields of Boolean models (though it is not a LSC random field),

Theorem 6.2.8 follows as a corollary from Theorem 6.2.15. This consistency is due to

Proposition 4.3.3.

Remark 6.2.12. In the above remark, set Φ = Φλ, Poisson pp and S = BO(ρ) with ρ

a.s. bounded random variable. In d = 2, from [Meester and Roy 1996, Theorem 4.4] we

know that for r < rc(Φ, S) C(Φλ, S) does not percolate and Rd \C(Φλ, S) percolates ; For

r > rc(Φ, S) C(Φλ, S) percolates and Rd \ C(Φλ, S) does not. Thus, we have that

r > rc(Φ, S)⇒ hlc(Xr) = 1 ; r < rc(Φ, S)⇒ hlc(Xr) = 0.
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However in d ≥ 3, by [Sarkar 1997] we have that there exists λ, ρ such that both C(Φλ, ρ)

and Rd \ C(Φλ, ρ) percolate. Thus there exists λ, ρ such that hlc(Xρ) = 0 = 1− huc (Xρ).

Our first comparison result on the lower critical radii uses comparison of their joint

intensities (see Section 2.1) and hence this result holds for a wide class of pp apart from

dcx ordered pp. We shall now make a small detour into these pp and their properties that

allow us to make such a comparison.

For Cox pp, associativity makes it possible to proceed with the proofs of their com-

parison results bypassing dcx ordering. A random measure Λ(.) is said to be associated if

for any finite collection of Borel subsets B1, . . . , Bn and f, g : Rn → [0, 1] continuous and

increasing,

Cov (f(Λ(B1), . . . ,Λ(Bn))g(Λ(B1), . . . ,Λ(Bn))) ≥ 0. (6.1)

The above definition is the natural extension of association of random vectors and ran-

dom fields. From [Burton and Waymire 1985, Theorem 5.5], we know that Cox pp are

associated.

Another class of pp whose joint intensities have neat expressions are determinantal pp.

For a quick introduction refer [Ben Hough et al. 2006] and for a more elaborate reading,

see [Ben Hough et al. 2009].

Definition 6.2.13. A determinantal pp is a simple pp whose joint intensities satisfy for

all n,

ρ(n)(x1, . . . , xn) = det
(
K(xi, xj)

)
1≤i,j≤n

,

for some locally square integrable, Hermitian and non-negative definite kernel K : Rd ×
Rd → C and where

(
aij

)
1≤i,j≤n

stands for a matrix with entries aij and det
(
.
)

denotes

the determinant of the matrix.

We have only briefly mentioned the conditions on the kernel K that suffice for our

purposes and refer the unsatisfied reader to [Ben Hough et al. 2009, Section 4.2.1] for the

precise conditions on K in terms of its associated integral operator K. Our assumptions

in particular imply that, a.e. K(x, y) = K(y, x) and det
(
K(xi, xj)

)
1≤i,j≤n

≥ 0. More

importantly for us, these assumptions allow us to use Hadamard’s inequality :

det
(
K(xi, xj)

)
1≤i,j≤n

≤
n∏
i=1

K(xi, xi). (6.2)
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The pp is stationary if the kernel is stationary i.e, K(x, y) = k(x − y) for all x, y ∈ Rd

and some suitable function k : Rd → C. See [Ben Hough et al. 2009, Chapter 6] for a

great many examples of determinantal pp including zeros of Gaussian analytic functions.

We have already seen in Section 5.1.7 that perturbed lattices which are approximations

to zeros of Gaussian analytic functions are less in dcx order than Poisson pp. The results

below gives further hope to prove that determinantal processes are lesser in dcx order than

Poisson pp.

For a kernelK, we define the ΦK to be the inhomogeneous Poisson pp with the intensity

field {K(x, x)}x∈Rd . In the case of a stationary kernel, ΦK is the Poisson pp ΦK(0,0) with

intensity K(0, 0).

Similar to determinantal pp, one can define permanental pp as simple pp whose joint

intensities satisfy for all n, ρ(n)(x1, . . . , xn) = per
(
K(xi, xj)

)
1≤i,j≤n

where per
(
.
)

stands

for the permanent of a matrix. From [Ben Hough et al. 2006, Proposition 35 and Remark

36], it follows that all permanental pp are Cox pp with intensity field |F |2 where F is a

complex Gaussian process on Rd. Due to this nice representation, this special class has

been studied in more detail (see [Mccullagh and Møller 2006]) and since our comparison

result shall cover all Cox pp, permanental pp are also included in them as a special case.

The following theorems are the comparison of the lower and upper bounds of the

critical radii of dcx ordered point processes.

Theorem 6.2.14. Let S be an a.s. bounded path connected racs. By boundedness, we

mean that there exists a R <∞ such that S ⊂ BO(R) a.s..

1. Let (Φi, S) be two marked pp with joint intensities ρ
(n)
i (., . . . , .) respectively. Let

ρ
(n)
1 (x1, . . . , xn) ≤ ρ(n)

2 (x1, . . . , xn) a.e.. Then we have that

rc(Φ1, S) ≥ rc(Φ2, S) and rs(Φ1, S) ≥ rs(Φ2, S). (6.3)

2. The inequalities (6.3) hold for Φ1 ≤idcx Φ2.

3. The inequalities (6.3) hold also for Φ1, a determinantal pp with kernel K and Φ2 =

ΦK (the inhomogeneous Poisson pp).

4. The inequalities (6.3) hold also for Φ2, a Cox(Λ) pp and Φ1, a Cox (α) pp (α(.) =

E(Λ(.)) i.e, the mean intensity measure of the Cox pp)).



126 Percolation and dcx order

Though the reversal of the inequality for the critical radii than the heuristical prediction

is surprising, it says that in a clustered pp whenever there is a path from origin to the

∂Qm (which should happen with a smaller probability for a large m than for a unclustered

pp) there are far too many paths to balance out that the non-existence of paths for other

realizations. The proof of the result also can be extended to yield comparison result for

critical radius defined with respect to N∗n, defined as the number of paths of length n in

the Boolean model.

Theorem 6.2.15. Let Let S be an a.s. bounded path connected racs andΦi, i = 1, 2 be

stationary pp such that Φ1 ≤ddcx Φ2. Then rc(Φ1, S) ≤ rc(Φ2, S). The inequality holds

also if Φ2 is a Cox(Λ) pp and Φ1 is a Cox (α) pp and S = {O}.

Remark 6.2.16. Thus for Φ1 ≤dcx Φ2 (or Φ1 is a Cox (α) and Φ2 is Cox(Λ) with

S = {O}), combining Theorems 6.2.14, 6.2.15 and Remark 6.2.10, we have that

rc(Φ2, S) ≤ rc(Φ1, S) ≤ rc(Φ1, S) ≤ rc(Φ1, S) ≤ rc(Φ2, S).

Proof. (Theorem 6.2.14) (1) : Assume that Φi are pp such that their joint intensities

satisfy ρ(n)
1 (x1, . . . , xn) ≤ ρ(n)

2 (x1, . . . , xn) a.e. for all n ≥ 1 respectively. This implies that

for any disjoint bBs B1, . . . , Bk we have that

E

(
k∏
i=1

Φ1(Bi)

)
=

∫
Qn
i=1Bi

ρ
(n)
1 (x1, . . . , xk)dx1, . . . ,dxk

≤
∫

Qn
i=1Bi

ρ
(n)
2 (x1, . . . , xk)dx1, . . . ,dxk = E

(
k∏
i=1

Φ2(Bi)

)
. (6.4)

Our proof will be driven by this simple inequality.

We will now first prove that rc(Φ1, S) ≥ rc(Φ2, S). For the same, it suffices to show

that

E
(
Nm(Φ1, S

(r))
)
≤ E

(
Nm(Φ2, S

(r))
)
, for r 6= r∗m (6.5)

where r∗m := inf{r : E
(
Nm(Φ2, S

(r))
)

=∞},m ≥ 1. Let us first argue that (6.5) is enough

to conclude this part of the proof. Indeed, suppose that rc(Φ2, S) > rc(Φ1, S),

then choose a r /∈ {r∗m}m∈N such that rc(Φ2, S) > r > rc(Φ1, S). Then

0 < lim infm E
(
Nm(Φ1, S

(r))
)
≤ lim infm E

(
Nm(Φ2, S

(r))
)

implying that r ≥ rc(Φ2, S), a

contradiction.
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We work with a fixed m for rest of the proof. Let {Sn,z}n≥1,z∈Zdn be i.i.d random variables

distributed as S. Let n0 be the least n such that Φ2(Qn(z)) ≤ 1,∀z ∈ Qm+R ∩ Zdn.

For a simple point process, such a n0 exists a.s.. Now define {S∗n,z}n≥1,z∈Zdn as follows :

S∗n,z = Sn,z if z /∈ Qm+R ∩ Zdn or n < n0 or Φ2(Qn(z)) = 0 ; Else S∗n,z = Sn0,z(n0), where

z ∈ Qn0(z(n0)). Let Sn = {Sn,z}z∈Zdn and Sn = {S∗n,z}z∈Zdn for n ≥ 1. Also, we assign the

marks S to Φ2 ∩Qm+R using Sn0 i.e, for X ∈ Φ2 ∩Qn0(z), let SX = Sn0,z. Clearly, this

marking yields the i.i.d. marked pp Φ̃2 = (Φ2, S) in Qm. We extend above construction

can also be extended to the entire plane to assign i.i.d. marks to all the points of Φ2

(see [Meester and Roy 1996, Sec 1.4]) as follows : If X /∈ Qm+R, then SX = Sn0,z) where

n0 := n0(X) is chosen as the least integer for which there exists a z := z(X) such that

Qn0(z) ∩ Φ = {X}. For each X ∈ Φ2, n0(X) < ∞ and also z(X) 6= z(Y ) for X,Y ∈ Φ.

Hence we have assigned i.i.d. marks to Φ2. We shall use this marking scheme in the

proof. This way of assigning marks is valid for Φ1 as well but with a different n0. Also

for n ≥ 1, let S
(r)
n := {S(r)

n,z}z∈Zdn and similarly for S
∗(r)
n .

Recall that Υn
m(S(r)

n ) was the set of open path from the origin to ∂Qm in the

graph L∗dn (S(r)
n ) (see Section 6.1). For a point process Φ and a path γ ∈ Υn

m(S(r)
n ),

let Nγ(Φ) =
∏
z∈γ Φ(Qn(z)), the number of paths through points of Φ lying in

the boxes of the discrete path. Denote by Nn
m(Φ1,S

(r)
n ) =

∑
γ∈Υnm(S

(r)
n )

Nγ(Φ1),

Nn
m(Φ1,S

∗(r)
n ) =

∑
γ∈Υnm(S

∗(r)
n )

Nγ(Φ1) respectively the number of paths of Φ1 in

Υn
m(S(r)

n ) and Υn
m(S∗(r)n ) (paths from the origin to ∂Qm) in this discrete model induced

by Φ1,S
(r)
n ,S

∗(r)
n . Note that E

(
Nn
m(Φ1,S

(r)
n )
)

= E
(
Nn
m(Φ1,S

∗(r)
n )

)
, ∀n ≥ 1. The
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following observation regarding the discrete models is crucial for our proof.

E
(
Nn
m(Φ1,S

(r)
n )|Sn

)
=

∑
γ∈Υnm(S

(r)
n )

E(Nγ(Φ1))

=
∑

γ=〈0,z0,z1,...,zk〉∈Υnm(S
(r)
n )

E

(
k∏
i=1

Φ1(Qn(zi))

)

≤
∑

γ=〈0,z0,z1,...,zk〉∈Υnm(S
(r)
n )

E

(
k∏
i=1

Φ2(Qn(zi))

)

=
∑

γ∈Υnm(S
(r)
n )

E(Nγ(Φ2))

= E
(
Nn
m(Φ2,S

(r)
n )|Sn

)
(6.6)

where the inequality is due to (6.4). By unconditioning over Sn, we get that

E
(
Nn
m(Φ1,S

(r)
n )
)
≤ E

(
Nn
m(Φ2,S

(r)
n )
)
. (6.7)

We will prove first that

lim
n→∞

E
(
Nn
m(Φ2,S

(r)
n )
)

= lim
n→∞

E
(
Nn
m(Φ2,S

∗(r)
n )

)
= E

(
Nm(Φ2, S

(r))
)

for r 6= r∗m. (6.8)

For all n > n0, Nm(Φ2, S
(r)) ≤ Nn

m(Φ2,S
∗(r)
n ). Thus Nm(Φ2, S

(r)) ≤
lim infn→∞Nn

m(Φ2,S
∗(r)
n ) and by Fatou’s lemma we get that

E
(
Nm(Φ2, S

(r))
)
≤ E

(
lim inf
n→∞

Nn
m(Φ2,S

∗(r)
n )

)
≤ lim inf

n→∞
E
(
Nn
m(Φ2,S

∗(r)
n )

)
. (6.9)

This proves (6.8) for r > r∗m. For r < r∗m, we need to show the converse inequality to (6.9)

as well to complete the proof of (6.8).

Choose n1 such that for all n ≥ n1, r+
√
d

2n < r∗m. For n > n1, clearly there is a surjective

mapping from Υm(Φ2, S
(r+

√
d

2n
)) to Υn

m(S∗(r)n ) and thus, Nn
m(Φ2,S

∗(r)
n ) ≤ Nm(Φ2, S

(r+
√
d

2n
))

for all n. This is so because, in Nn
m(Φ2,S

∗(r)
n ) we are counting the paths of C(Φ2, S

(r+
√
d

2n
))

from O to ∂Qm that do not have edges between points in the same box Qn(z) for a

z ∈ Zdn. Hence lim supn→∞Nn
m(Φ2,S

∗(r)
n ) ≤ Nm(Φ2, S

(r)). Further, Nn
m(Φ2,S

∗(r)
n ) ≤

Nm(Φ2, S
(r+

√
d

2n1
)) for all n > n1 and E

(
Nm(Φ2, S

(r+
√
d

2n1
))
)
< ∞. So, we can use reverse
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Fatou’s lemma to get

lim sup
n→∞

E
(
Nn
m(Φ2,S

∗(r)
n )

)
≤ E

(
lim sup
n→∞

Nn
m(Φ2,S

∗(r)
n )

)
≤ E

(
Nm(Φ2, S

(r))
)
. (6.10)

Thus we have shown (6.8).

We are ready now to prove (6.5). The inequality is trivial for r > r∗m . Now consider

r < r∗m. Observe that (6.9) holds for Φ1 by same arguments as for Φ2. Thus, by discrete

approximation inequality (6.7) and (6.8) we get that

E
(
Nm(Φ1, S

(r))
)
≤ lim inf

n→∞
E
(
Nn
m(Φ1,S

∗(r)
n )

)
≤ lim inf

n→∞
E
(
Nn
m(Φ2,S

∗(r)
n )

)
= E

(
Nm(Φ2, S

(r))
)
.

This completes the proof of the first statement.

The proof of the second inequality in (6.3) rs(Φ1) ≥ rs(Φ2) goes along the same

lines except that the Υn
m(Sn) is replaced by the set of all crossings of Qm,3m,...,3m in

the discrete lattice instead of paths from origin to ∂Qm. Since a.s. S ⊂ BO(R) , the

possible crossings in the discrete model lie within Q
(R)
m,3m,...,3m and hence the number of

such crossings is finite and the summation is well defined.

(2): If Φ1 ≤idcx Φ2, then from Corollary 4.2.5 we have ordering of the joint intensities

as required in the assumption of the theorem.

(3): If Φ is a determinantal pp, then by Hadamard’s inequality (6.2), we have that

ρ
(n)
Φ (x1, . . . , xn) ≤

∏
iK(xi, xi) = ρ

(n)
ΦK

(x1 . . . , xn) and the result follows as above.

(4): For the case of Cox(Λ) pp Φ2, by associativity of the pp (see (6.1)) we have (6.4)

for Φα and Φ2 and the proof follows as above.

Proof. (Theorem 6.2.15)

(1): The proof follows similar to Lemma 6.2.3 by noting that due to Proposition 4.3.5,

we have,

P (C(Φ1, S) ∩Qγ = ∅) ≤ P (C(Φ2, S) ∩Qγ = ∅) . (6.11)
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(2): For any Borel set B, by Jensen’s inequality and concavity of (1− e−x),

TC(Φ2,r)(B) = TΦ2(B(r)) = E
(

1− exp{−Λ(B(r))}
)
≤ 1− exp{−α(B(r))} = TC(Φ1,r)(B).

The rest of the proof is similar to Lemma 6.2.3 or the first part.

6.3 Non-trivial phase transition for percolation models on

sub-Poisson point processes

In the earlier section, we compared critical radii for Boolean model and crucial to the proof

was the extremal shot-noise field representation of the Boolean model and the lo ordering

of its capacity functionals. This technique does not extend to percolation models defined

by additive shot-noise fields as we know that additive shot-noise fields are dcx ordered and

not lo ordered. But, still we wish to say something about percolation models driven by

additive shot-noise fields. For this, we need to get bounds on certain probabilities so as

to couple these fields with a sub-critical branching process or use Peierls argument. The

rough idea is as follows : Even though the probabilities of interest are not dcx functions of

the shot-noise fields, they can be bounded by exponential estimates (namely via Laplace

transforms) which are dcx function of the shot-noise fields. For sub-Poisson pp (pp that

are lesser than Poisson in dcx), this can further be bounded by Laplace transform of the

corresponding Poisson shot-noise field. Laplace transforms of the Poisson shot-noise field

have closed-form expressions. For ’nice’ response functions, one would expect the Laplace

transform of Poisson shot-noise fields to be amenable enough to deduce asymptotic bounds

for application of Lemmas 2.2.2, 2.2.3 and 2.2.4 on suitable discretisations. Then, we can

ascertain existence of a non-trivial phase transition for the percolation model. We shall

carry out such a program for various percolation models.

6.3.1 Bounds in discrete models

We shall again start with a generic bound on a discrete model which shall be used to

prove bounds in the continuum models. Recall that VΦ(x) :=
∑

X∈Φ `(x,X) is the addi-

tive shot-noise field (Definition 4.1.2) generated by a pp Φ and a non-negative response

function `(., .). Define Zdr(VΦ,≤ h) := {z ∈ rZd : VΦ(z) ≤ h} and Zdr(VΦ,≥ h) := {z ∈
rZd : VΦ(z) ≥ h}. Percolation of Zdr(VΦ,≤ h),Zdr(VΦ,≥ h) is understood in the sense of



6.3. Non-trivial phase transition for sub-Poisson point processes 131

percolation as subsets of L∗d(r). We will derive generic bounds that shall be required for

the use of Lemmas 2.2.2, 2.2.3 and 2.2.4 in all of the future subsections of the chapter.

Lemma 6.3.1. Let Φ be a stationary pp and VΦ(.), Zdr(VΦ,≤ h) and Zdr(VΦ,≥ h) be as

defined above.

1. If Φ ≤idcx Φλ for some λ > 0, then for any s > 0,

P (VΦ(zi) ≥ h, 1 ≤ i ≤ n) ≤ exp{−snh} exp{λ
∫

Rd
(es

Pn
i=1 `(x,zi) − 1)dx}. (6.12)

2. If Φ ≤ddcx Φλ for some λ > 0, then for any s > 0,

P (VΦ(zi) ≤ h, 1 ≤ i ≤ n) ≤ exp{snh} exp{λ
∫

Rd
(e−s

Pn
i=1 `(x,zi) − 1)dx}. (6.13)

Proof. The proofs will use the following representation of a the Laplace transform of a

functional of Poisson pp. For a function f : Rd → R+, s ∈ R, (see [Kingman 1993, Pg.

28] and [Baccelli and B laszczyszyn 2009a, Proposition 1.5])

E

exp{s
∑
X∈Φλ

f(X)}

 = exp{−λ
∫

Rd
(1− esf(x))dx} (6.14)

(1): For any s > 0,

P (VΦ(zi) ≥ h, 1 ≤ i ≤ n) ≤ P

(
n∑
i=1

VΦ(zi) ≥ nh

)

≤ exp{−snh}E

(
exp{s

n∑
i=1

VΦ(zi)}

)
(by Chernoff’s inequality)

≤ exp{−snh}E

(
exp{s

n∑
i=1

VΦλ(zi)}

)
(by idcx ordering)

= exp{−snh} exp{−λ
∫

Rd
(1− es

Pn
i=1 `(x,zi))dx} (by Eqn. 6.14).

(2): The proof follows as above by noting that for any random variable X and a ∈ R, s > 0,

P (X ≤ a) = P (exp{−sX} ≥ exp{−sa}) ≤ exp{sa}E(exp{−sX}) .
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The following lemma is useful when we are interested in percolation and non-

percolation of multiple shot-noise fields simultaneously. It says that if we can use Peierls

argument on each of the shot-noise fields individually, we shall also be able to use them

collectively.

Lemma 6.3.2. Let {Xij}1≤i≤k,1≤j≤n be Bernoulli random variables (not necessarily in-

dependent) such that for all I ⊂ [n], E
(∏

j∈I Xij

)
≤ q

|I|
i for 1 ≤ i ≤ k with qi < 1 and

Xij = 1−Xij. Then

E

 n∏
j=1

k∏
i=1

Xij

 ≤ (
k∑
i=1

q
1
k
i )n.

Proof. In the following we adopt the following convention
∏
i∈∅ xi ≡ 1 for any collection

of xi’s.

E

 n∏
j=1

k∏
i=1

Xij

 ≤ E

 n∏
j=1

(
k∑
i=1

Xij)


=

∑
(kj)nj=1∈[k]n

E

 n∏
j=1

Xkjj

 =
∑

(kj)nj=1∈[k]n

E

 k∏
i=1

∏
j:kj=i

Xij


≤

∑
(kj)nj=1∈[k]n

k∏
i=1

(
E

 ∏
j:kj=i

X
k
ij

) 1
k (by Cauchy-Schwartz inequality)

=
∑

(kj)nj=1∈[k]n

k∏
i=1

(
E

 ∏
j:kj=i

Xij

) 1
k

≤
∑

(kj)nj=1∈[k]n

k∏
i=1

∏
j:kj=i

(qi)
1
k

=
∑

(kj)nj=1∈[k]n

n∏
j=1

(qkj )
1
k = (

k∑
i=1

q
1
k
i )n.
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6.3.2 k-percolation

The aim of this subsection is to show that for sub-Poisson pp (i.e, less in dcx) than Poisson

pp (denoted by Φλ), the critical intensity for k-percolation is non-degenerate.

Definition 6.3.3. Given a pp Φ and {SX}X∈Φ ⊂ Kd where SX are i.i.d. copies of a racs

S ∈ Kd, define a shot-noise field VΦ(x) :=
∑

X∈Φ 1[x ∈ X + SX ]. The k-covered set is

defined as

Ck(Φ, S) := {x : VΦ(x) ≥ k}.

Note that Ck(Φ, S)(r) percolates iff Ck(Φ, S(r)) percolates. Thus the critical radii can

be expressed as

rkc (Φ, S) := rc(Ck(Φ, S)) = inf{r : P
(
Ck(Φ, S(r)) percolates

)
> 0}.

Clearly, r1
c (Φ, S) = rc(Φ, S) ≤ rkc (Φ, S). We shall abbreviate Ck(Φ, BO(r)) by Ck(Φ, r)

and rkc (Φ, {O}) by rkc (Φ).

Theorem 6.3.4. For k ≥ 1, λ > 0, there exist c(λ) and c(λ, k) (i.e, depending only on

k, λ and not on Φ) such that

Φ ≤idcx Φλ ⇒ 0 < c(λ) ≤ r1
c (Φ).

Φ ≤ddcx Φλ ⇒ rkc (Φ) ≤ c(λ, k) <∞.

Thus, for Φ ≤dcx Φλ combining both the above statements, we have that

0 < c(λ) ≤ r1
c (Φ) ≤ rkc (Φ) ≤ c(λ, k) <∞.

Remark 6.3.5. 1. More simply, the theorem gives an upper and lower bound for the

critical radius of a sub-Poisson pp dependent only on its mean measure (as this

determines the λ in Φλ) and not on the finer structure.

2. The following extensions follow by obvious coupling arguments. For a racs S ⊂
BO(R) a.s. with R < c(λ), we have that rc(Φ, S) ≥ rc(Φ, BO(R)) ≥ c(λ) − R and

for a racs S ⊃ BO(R) a.s. with R < c(λ, k), rkc (Φ, S) ≤ rkc (Φ, BO(R)) ≤ c(λ, k)−R.
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3. For Poisson pp, we know that with probability 1, ‖Rd \ C(Φλ, G)‖ = 0 iff E(‖G‖) =

∞ ([Hall 1988, Theorem 3.1]) and the same result holds for any ergodic pp but

restricting G to be a ball of random radius ([Meester and Roy 1996, Proposition

7.3]). Thus, the most general version of Theorem 6.3.4 would assume E(‖G‖) <∞
instead of a.s. bounded grains. But we would like to call attention to fact that this

assumption of a.s. bounded grains is not uncommon in percolation theory even when

the underlying pp is a Poisson pp.

Proof. Let Φ ≤idcx Φλ and r > 0. Consider the close packed lattice L∗d(2r). Define the

response function lr(x, y) := 1[x ∈ Qr(y)] and the corresponding shot-noise field V r
Φ(z) on

L∗d(2r). Note that C(Φ, r) percolates only if Zd2r(V r
Φ,≥ 1) percolates. We shall now show

that there exist r > 0 such that Zd2r(V r
Φ,≥ 1) does not percolate.

For any n and zi ∈ rZd, 1 ≤ i ≤ n,
∑n

i=1 lr(x, zi) = 1 iff x ∈ ∪ni=1Qr(zi) and else 0.

Thus, from Lemma 6.3.1, we have that

P (V r
Φ(zi) ≥ 1, 1 ≤ i ≤ n) ≤ exp{−sn} exp{λ

∫
Rd

(es
Pn
i=1 l(x,zi) − 1)dx},

= exp{−sn} exp{λ‖ ∪ni=1 Qr(zi)‖(es − 1)}dx,

= (exp{−(s+ (1− es)λ(2r)d)})n. (6.15)

Choosing s large enough that e−s < (3d−1)−1 and then by continuity of (s+(1−es)λ(2r)d)

in r, we can choose a c(λ) > 0 such that for all r < c(λ), exp{−(s + (1 − es)λ(2r)d))} <
(3d − 1)−1. Now as in Lemma 2.2.4, we can show non-percolation of Zd2r(V r

Φ,≥ 1) for

r < c(λ). Hence for all r < c(λ), C(Φ, r) does not percolate and so c(λ) ≤ rc(Φ).

Let Φ ≤ddcx Φλ. Consider the close packed lattice L∗d( r√
d
). Define the response

function lr(x, y) := 1[x ∈ Q r

2
√
d
(y)] and the corresponding additive shot-noise field V r

Φ(z)

on L∗d( r√
d
). Note that Ck(Φ, r) percolates if Zdr√

d

(V r
Φ,≥ dk/2e) percolates. We shall now

show that there exist r <∞ such that Zdr√
d

(V r
Φ,≥ dk/2e) percolates.

For any n and zi, 1 ≤ i ≤ n, from Lemma 6.3.1, we have that

P (V r
Φ(zi) ≤ dk/2e − 1, 1 ≤ i ≤ n) ≤ exp{sn(dk/2e − 1)} exp{λ

∫
Rd

(e−s
Pn
i=1 l(x,zi) − 1)dx},

= exp{sn(dk/2e − 1)} exp{λ‖ ∪ni=1 Q r

2
√
d
(zi)‖(e−s − 1)}, dx

= (exp{−((1− e−s)λ(
r√
d

)d − s(dk/2e − 1))})n. (6.16)
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For any s, there exists c(λ, k, s) < ∞ such that for all r > c(λ, k, s), the last term in

the above equation is strictly less than (3d − 1)−n. Thus one can use a Peierls argument

(Lemma 2.2.2) to show the finiteness of the number of closed contours around origin and

so Zdr√
d

(V r
Φ,≥ dk/2e) percolates. Further defining c(λ, k) := infs>0 c(λ, k, s), we have that

Ck(Φ, r) percolates for all r > c(λ, k). Thus rkc (Φ) ≤ c(λ, k).

We have seen earlier in Theorem 6.2.15 that, by using the representation of the Boolean

model as an extremal shot-noise field, we avoided the usage of exponential estimates as

in the above theorem. We shall use such a representation to get an improved bound than

C(λ, 1).

Proposition 6.3.6. Let Φ ≤ddcx Φλ for some λ > 0. Then

rc(Φ) ≤ C̃(λ) :=
√
d

1
d

√
log(3d−2)−1

λ ≤ C(λ, 1) <∞.

Proof. As in the second part of the proof of Theorem 6.3.4, consider the close packed

lattice L∗d( r√
d
). Define the response function lr(x, y) := 1[x ∈ Q r

2
√
d
(y)] and the corre-

sponding extremal shot-noise field U rΦ(z) on L∗d( r√
d
). Now, note that C(Φ, r) percolates if

Zd r
2
√
d

(U rΦ,≥ 1) percolates. We shall now show that Zd r
2
√
d

(V r
Φ,≥ k) percolates for r > C̃(λ).

From Proposition 4.3.3, we have that TC(Φ,r)(B) ≥ TC(Φλ,r)(B) for all bBs B. Thus,

P (U rΦ(zi) = 0, 1 ≤ i ≤ n) = P
(

Φ ∩ ∪ni=1Q r

2
√
d
(zi) = ∅

)
≤ P

(
Φλ ∩ ∪ni=1Q r

2
√
d
(zi) = ∅

)
= (exp{−λ(

r√
d

)d})n. (6.17)

Clearly for r > C̃(λ), Zd r
2
√
d

(V r
Φ,≥ k) percolates by Peierls argument and hence C(Φ, r).

It is easy to see that for any s > 0, exp{−λ( r√
d
)d} ≤ exp{−(1 − e−s)λ( r√

d
)d} and hence

C̃(λ) ≤ C(λ, 1).

Non-percolation in a Boolean model can be proved for more general class of pp by

using the ordering of joint intensities as in Theorem 6.2.14. Thus, in particular, this is

true for stationary determinantal pp. From Proposition 4.2.4, we know that the ordering

of joint intensities is weaker assumption than

Proposition 6.3.7. Let Φ be a stationary pp such that all its joint intensities satisfy

ρ(k)(x1, . . . , xk) ≤ λk a.e. for some λ. Then rc(Φ)d ≥ 3d−1
λ2d

> 0.
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Proof. We shall use the same method as in the first part of Theorem 6.3.4 but just that

we will bound the level crossing probabilties by using the joint intensities. As in Theorem

6.3.4, consider the close packed lattice L∗d(2r), the response function lr(x, y) := 1[x ∈
Qr(y)] and the corresponding shot-noise field V r

Φ(z) on L∗d(2r). We know that C(Φ, r)

percolates only if Zd2r(V r
Φ,≥ 1) percolates. Let us disprove the latter for r < 3d−1

λ2d
.

P (V r
Φ(zi) ≥ 1, 1 ≤ i ≤ n) = P (Φ(Qr(zi)) ≥ 1,∀i) = P

(
n∏
i=1

Φ(Qr(zi)) ≥ 1

)

≤ E

(∏
i

Φ(Qr(zi))

)
≤ E

(∏
i

Φλ(Qr(zi))

)
=

∏
i

E(Φλ(Qr(zi))) = (λ(2r)d)n

Now using Lemma 2.2.4, we can see that for r < 3d−1
λ2d

, the expected number of infinite

paths in Zd2r(V r
Φ,≥ 1) is 0. This disproves percolation in this discrete model and so C(Φ, r)

also does not percolate for this value of r.

6.3.3 Word percolation

Word percolation has been already studied for Poisson pp in Chapter 3. Here we give the

obvious extended definition for a general pp and prove the existence of a phase transition

for sub-Poisson pp. In particular, it also proves phase transition for AB percolation on

sub-Poisson pp.

A k-word (k ∈ N) is an infinite sequence w := {wi}i≥1 ∈ [k]∞. Let p := (pi)ki=1 be a

probability distribution such that p∗ := mini pi > 0. Given a pp Φ, let Φ̃ := {(X, IX)}X∈Φ

be the marked pp with the marks {IX}X∈Φ being i.i.d. distributed in [k] with distribution

p. A k-word w occurs in (Φ̃, r) if there exists an infinite sequence {Xi}i≥1 such that for

all i, BXi(r) ∩BXi+1(r) 6= ∅ and IXi = wi.

Theorem 6.3.8. Let k ≥ 1 and Φ ≤ddcx Φλ for some λ > 0. Then there exists a C(λ, p∗)

such that ∀r > C(λ, p∗), P
(

all k-words occur in (Φ̃, r)
)

= 1.

Proof. Let Φi(.) = Φ̃(. × i) be the projected pp on Rd, l(x, y) = 1[x ∈ Q r

2
√
d
(y)] the

response function and V r
Φi

(z) be the corresponding additive shot-noise field on Zd( r√
d
).

Define the following Bernoulli random fields on Zd( r√
d
) : Xr

i (z) := 1[V r
Φi

(z) ≥ 1], Xr(z) :=
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∏k
i=1X

r
i (z). If Xr(.) percolates in L∗d( r√

d
), then all words occur in (Φ̃, r). We shall now

show that the former event has probability 1.

Set Xr
i (z) = 1−Xr

i (z) for i ∈ [k]. By Proposition 4.2.3 and our assumption, ∀i ∈ [k],

Φi ≤ddcx Φλpi . From the proof of Proposition 6.3.6 (or from (6.17)) and that the upper

bound is decreasing in λ, we have that there exists a C(λ, p∗) such that for all r > C(λ, p∗),

∀n,E

 n∏
j=1

X
r
i (zj)

 ≤ qn, 1 ≤ i ≤ k,

for a q < (k(3d − 1))−k. From Lemma 6.3.2, for r > C(λ, p∗),

E

 n∏
j=1

X
r(zj)

 ≤ (kq
1
k )n < (3d − 1)−n.

By Peierls argument (Lemma 2.2.2), Xr(z) percolates a.s. in L∗d( r√
d
) and so all words

occur in (Φ̃, r) a.s..

6.3.4 Percolation in SINR graphs

SINR graphs have been introduced informally in Section 1.1.2 and capacity of a link and

connectivity probability have been studied in Section 5.2.3. Since we need to impose

a graph based on SINR on the pp, we modify our framework for this section. In this

subsection, we shall work only in R2. The parameters of the model are non-negative num-

bers P (signal power), N(environmental noise), γ, T (SINR threshold) and an attenuation

function ` : R2
+ → R+ satisfying the following assumptions :

`(x, y) = l(|x− y|) for some function l : R+ → R+; (6.18)

l(x) ≤ 1; (6.19)

l(.) is continuous ; l(.) strictly decreasing on its support; (6.20)

l(0) ≥ TN

P
; (6.21)∫ ∞

0
xl(x)dx < ∞. (6.22)

The first three assumptions are from the physics of the wave-propagation and the last two

are to ensure that the model does not degenerate. In particular, if Assumption (6.21) is
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violated, SINR ratio (see (6.24)) will never be greater than the threshold T . For a Poisson

pp, the interference (see (6.23)) is a.s. finite iff Assumption (6.22) holds ([Daley 1971]).

Given a point process Φ, the interference generated due to the point process at a

location x is defined as

IΦ(x) :=
∑

X∈Φ\{x}

l(|X − x|). (6.23)

The interference is an additive shot-noise field (see Definition 4.1.2) of the pp. The SINR

from x to y with interference from Φ is defined as

SINR(x, y,Φ, γ) :=
Pl(|x− y|)

N + γPIΦ\{x}(y)
. (6.24)

Definition 6.3.9. Let ΦB and ΦI be two pp. Let P,N, T > 0 and γ ≥ 0. The SINR graph

is defined as G(ΦB,ΦI , γ) := (ΦB, E(ΦB,ΦI , γ)) where E(ΦB,ΦI , γ) := {〈X,Y 〉 ∈ Φ2
B :

SINR(Y,X,ΦI , γ) > T, SINR(X,Y,ΦI , γ) > T}. The SNR graph(i.e, the graph without

interference, γ = 0) is defined as G(ΦB) := (ΦB, E(ΦB)) where E(ΦB) := {〈X,Y 〉 ∈ Φ2
B :

SINR(X,Y,ΦB, 0) > T}.

Observe that the SNR graph G(Φ) is the same as the graph C(Φ, rl) with 2rl =

l−1(TNP ). Also, when ΦI = ∅, we shall omit it from the parameters of the SINR graph.

Recall that percolation in the above graphs is existence of an infinite connected component

in the graph-theoretic sense.

Poissonian back-bone nodes

Firstly, we consider the case when the backbone nodes (ΦB) form a Poisson pp and in the

next section, we shall relax this assumption. When ΦB = Φλ, the Poisson pp, we shall

use G(λ,ΦI , γ) and G(λ) to denote the SINR and SNR graphs respectively. Recall that

λc(r) is the critical intensity for percolation of C(λ, r). The following result guarantees

the existence of a γ > 0 such that for any sub-Poisson pp Φ = ΦI , G(λ,Φ, γ) will percolate

provided G(λ) percolates i.e, the SINR graph percolates for small interference values when

the corresponding SNR graph percolates.

Theorem 6.3.10. Let λ > λc(rl) and Φ ≤idcx Φµ for some µ > 0. Then ∃γ > 0 such that

G(λ,Φ, γ) percolates.

Note that we have not assumed the independence of Φ and Φλ. In particular, Φ could
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be Φλ ∪ Φ0 where Φ0 is an independent sub-Poisson pp. The case Φ0 = ∅ was proved in

[Dousse et al. 2006]. Our proof follows a similar idea of coupling the continuum model

with a discrete model. Such a coupling technique has been already used in the thesis for

the proof of Theorem 3.1.5. As in [Dousse et al. 2006], it is clear that in case of N ≡ 0,

the above result holds with λc(rl) = 0.

Proof. By rescaling, we get that the critical radius for C(λ, r) is r(λ) =
√

λc(rl)
λ rl < rl

and thus C(λ, r) with r(λ) < r < rl is still super-critical i.e, C(λ, r) percolates.

For b > 0, recall that L2(b) is the graph with vertex set Z2(b), the expanded two-

dimensional integer lattice, and endowed with the usual graph structure, that is, x, y ∈ bZ2

share an edge if |x− y| = b. Denote the edge-set by E2(b). For any edge e ∈ E2(b) denote

the mid-point of e by ze = (xe, ye). For every horizontal edge e, define three rectangles

Rei, i = 1, 2, 3 as follows : Re1 is the rectangle [xe − 3b/4, xe − b/4]× [ye − b/4, ye + b/4];

Re2 is the rectangle [xe − b/4, xe + b/4] × [ye − b/4, ye + b/4] and Re3 is the rectangle

[xe + b/4, xe + 3b/4]× [ye − b/4, ye − b/4]. Let Re = ∪iRei. The corresponding rectangles

for vertical edges are defined similarly. These rectangles are depicted in Figure 6.1.

Figure 6.1: An horizontal edge e that satisfies the condition for Xe = 1. The balls are
of radius 2r, centered at points of Φλ. The figure is reproduced from [Dousse et al. 2006,
Fig. 1]

We shall now define two Bernoulli random fields indexed by the edges of the lattice

and show that for suitable choice of parameters the product random field percolates This

will then be used to conclude that the SINR graph percolates. For ease of exposition, we

shall break the proof into three steps.
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Step 1: Let Xe be the indicator random variable for the event that there exists a left-

right crossing of Re by a component of C(λ, r) and top-down crossings of Re1 and Re3

by a component of C(λ, r). Refer Figure 6.1 for a pictorial representation of this event.

Given ε > 0, from [Meester and Roy 1996, Corollary 4.1] and 1-dependence of the random

field, we can and do choose a b large enough such that (see also derivation of Eqn. (3.13)

in the proof of Theorem 3.1.5), for all n

P (Xei = 0, 1 ≤ i ≤ n) ≤ qnX , (6.25)

where qX ≤ ε and ei, 1 ≤ i ≤ n are collection of n distinct edges.

Step 2: Now, given a b, we define a second random field Ye indexed by the edges. Define

the following shifted version l̃(.) of l(.) as follows :

l̃(x) :=

{
l(0) x ≤

√
10b
4

l(x−
√

10b
4 ) x >

√
10b
4

Let Ĩ(.) := ĨΦ(.) be the interference (Eqn. (6.23)) generated by a pp Φ with attenuation

function l̃(.). Define Ye = 1[Ĩ(ze) ≤ M ]. By the choice of R(e), we have that for all

z ∈ R(e), x ∈ Rd, |ze − x| ≤ |z − x|+
√

10b
4 and thus from the definition of Ĩ(.), it follows

that IΦ(z) ≤ Ĩ(ze) for all z ∈ R(e). Hence Ye = 1 implies that I(z) ≤M for all z ∈ R(e).

Now we show that for all qY > 0, there exists a M <∞ such that

P (Yei = 0, 1 ≤ i ≤ n) = P
(
ĨΦ(zei) > M, 1 ≤ i ≤ n

)
≤ qnY , (6.26)

where ei, 1 ≤ i ≤ n are any collection of n distinct edges. Then we have from Lemma

6.3.1 that

P
(
ĨΦ(zei) ≥M, 1 ≤ i ≤ n

)
≤ exp{−snM} exp{µ

∫
R2

(es
Pn
i=1 l̃(|x−zei |) − 1)dx}. (6.27)

Thus, it is enough to show that the latter term in the above equations can be made

as small as possible by increasing M . We shall first bound
∑n

i=1 l̃(|x− zei |) uniformly in

n. The contribution to
∑n

i=1 l̃(|x− zei |) from the square in which x is located is atmost 4

as each of the corners contribute atmost 1 (l̃(.) ≤ 1). Inductively, one can calculate that
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there are 4 + 8k nodes of the lattice at a distance of at least kb√
2
. So,

n∑
i=1

l̃(|x− zei |) ≤
∑

e∈Z2(b)

l̃(|x− ze|) ≤ 4 +
∞∑
k=1

(4 + 8k)l̃(
kb√

2
) ≡ K.

Since Assumption (6.22) on l(.) implies the same for l̃(.) also, we have that∫ ∞
y

xl̃(x)dx <∞ for some y > 0.

Thus, we have that K <∞.

Now choose s = 1
K and so s

∑n
i=1 l̃(|x−zei |) ≤ 1 for all x. As ex−1 ≤ 2x for all x ≤ 1,

from equation (6.27), we have that for Φ and a q > 0,

P
(
ĨΦ(zei) ≥M, 1 ≤ i ≤ n

)
≤ exp{−nM

K
} exp{2µ

K

∫
R2

n∑
i=1

l̃(|x− zei |)dx}

= exp{−nM
K
} exp{2nµ

K

∫
R2

l̃(|x|)dx}

= exp{− 1
K

(M − 2µ
∫

R2

l̃(|x|)dx)}n ≤ qn. (for M large enough)

Thus we have shown (6.26).

Step 3: Now, from (6.25), (6.26) and Lemma 6.3.2, we have that for any given q > 0,

there exists b,M such that for all n,

P (XeiYei = 0, 1 ≤ i ≤ n) ≤ qn,

where ei, 1 ≤ i ≤ n are collection of n distinct edges. Thus by Peierls argument (Lemma

2.2.3), the random field We = XeYe percolates. Choose γ = N
PM ( l(2r)l(2rl)

− 1) > 0. Suppose

Ye = 1 (and so IΦ(z) ≤ M for all z ∈ R(e)), then for x, y ∈ R(e) and ‖x − y‖ ≤ 2r we

have that
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Pl(|x− y|)
N + γI(Φ)\{x}(y)

≥ Pl(|x− y|)
N + γPM

≥ Pl(2r)
N + γPM

=
Pl(2rl)
N

= T.

Thus, there exists γ > 0 such that 〈X,Y 〉 ∈ E(Φλ,Φ, γ) for any X,Y ∈ R(e) ∩ Φλ with

‖X − Y ‖ ≤ 2r. So all edges of C(λ, r) in R(e) are preserved in the SINR graph also

when Ye = 1. Crossings in adjacent edges e and f overlap and hence they are in the same

connected component. Consider the crossings in the infinite component induced by We

(i.e, crossings in those boxes with We = 1). These overlap and form an infinite component

of C(λ, r). Since any two adjacent vertices in such an infinite component also will be in the

same component of SINR graph, it follows that the infinite component will be preserved

in the SINR graph i.e, the SINR graph percolates.

Non-Poissonian back-bone nodes

We shall now consider the case when the backbone nodes are formed by a sub-Poisson pp.

In this case, we can give a weaker result, namely that with an increased signal power (i.e,

much greater than the critical power), the SINR graph will percolate for small intereference

parameter γ > 0.

Theorem 6.3.11. Let Φ ≤ddcx Φλ for some λ > 0 and ΦI ≤idcx Φµ for some µ > 0 and

also assume that l(x) > 0 for all x ∈ R+. Then there exists P, γ > 0 such that G(Φ,ΦI , γ)

percolates.

As in Theorem 6.3.10, we have not assumed the independence of ΦI and Φ. For exam-

ple, ΦI = Φ ∪ Φ0 where Φ and Φ0 are independent sub-Poisson pp. As can be seen from

the proof, the above theorem is valid in higher dimensions provided that
∑

z∈Zd(r) l(|x−z|)
is a.s. bounded for all x ∈ Rd and any discretisation Zd(r). Let us also justify the as-

sumption of unbounded support for l(.). Suppose that r = sup{x : l(x) > 0} <∞. Then

if C(Φ, r) is sub-critical, G(Φ,ΦI , γ) will be sub-critical for any ΦI , P, γ.

Proof. Consider the lattice L2( r√
2
). Define random fields Xz := 1[Φ(Q r

2
√

2
(z)) ≥ 1] and
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Yz := 1[Ĩ(z) ≤M ] on Z2( r√
2
) where Ĩ(.) is defined using l̃(.) as in Equation (6.26) in the

proof of Theorem 6.3.8. From Propositon 6.3.6, for a q > 0 we have r(q) < ∞ such that

for all r > r(q),

P (Xzi = 0, 1 ≤ i ≤ n) ≤ qn, (6.28)

where zi, 1 ≤ i ≤ n are distinct collection of n vertices in the lattice. Since l(.) has

unbounded support, we can choose P large enough such that 2rl = l−1( TNP (q)) > 2r(q).

Choose r such that rl > r > r(q). Fixing the lattice L2( r√
2
) and proceeding as in the

proof of Eqn. (6.26), we get that for a q > 0, there exists M(q) < ∞ such that for

M > M(q)

P (Yzi = 0, 1 ≤ i ≤ n) ≤ qn. (6.29)

Now from Equations (6.28), (6.29) and Lemma 6.3.2, we have that for a q sufficiently

small, the Bernoulli random field Wz = XzYZ percolates on L2( r√
2
) for 2r(q) < 2r <

2rl = l−1( TNP (q)) and M > M(q). Suppose that for two adjacent sites z, z∗, we have

that Wz = 1,Wz∗ = 1. Let X,Y ∈ Φ ∩ (Q r
2
√

2
(z)) ∩ Q r

2
√

2
(z∗)). Since XzXz∗ = 1, we

can always choose two such points. Then we have that |X − Y | ≤ 2r ≤ 2rl and also

IΦI (X) ≤M, IΦI (Y ) ≤M as Yz ≤M,Yz∗ ≤M . Now for γ = N
PM ( l(2r)l(2rl)

− 1) > 0,

Pl(|X − Y |)
N + γIΦI\{X}(Y )

≥ Pl(|X − Y |)
N + γPM

≥ Pl(2r)
N + γPM

=
Pl(2rl)
N

= T.

Thus whenever an edge exists between z, z∗ in the sub-graph induced by the Bernoulli

random field W., the points of the pp Φ that lie in the cubes centered at z, z∗ are in the

same component. Arguing as in the proof of the Theorem 6.3.10, we have that there exists

P <∞ and γ > 0 such that G(Φ,ΦI , γ) percolates.

6.3.5 Percolation in a parametric family of point processes

In Sections 6.3.2 and 6.3.3, we gave sufficient conditions on the pp for non-degeneracy of

the critical radius for k-percolation and word percolation. In this section, we will derive

similar results for a parametric family of sub-Poisson pp as a corollary of Lemma 6.3.1.

If the family has the same finite range dependence, then these results as well as non-
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percolation of clustered pp can be deduced as a corollary of [Liggett et al. 1997, Theorem

1.3].

For a family of stationary pp, {Φλ}λ>0, define

λkc (r) := inf{λ : P
(
Ck(Φλ, r) percolates

)
> 0}.

As nothing is known about the monotonicity of Φλ, it is not necessarily the case that

Ck(Φλ, r) percolates for λ > λkc (r).

Proposition 6.3.12. Let {Φλ}λ>0 be a family of pp and r > 0. Then there exist constants

λ(r), λ(r, k) such that

∀λ > 0,Φλ ≤idcx Φλ ⇒ λc(r) ≥ λ(r) > 0. (6.30)

∀λ > 0,Φλ ≤ddcx Φλ ⇒ ∀k, λkc (r) ≤ λ(r, k) <∞. (6.31)

A pp is said to be R-independent if for bBs Ai, 1 ≤ i ≤ n such that d(Ai, Aj) > R for

all i, j we have that the random variables Φ(Ai), 1 ≤ i ≤ n are independent.

Proposition 6.3.13. Let {Φλ}λ>0 be a family of stationary R-independent pp. Suppose

that

lim
λ→0

P
(

Φλ(Qr) ≥ 1
)

= 0. (6.32)

Then λ1
c(r) > 0. Now if

lim
λ→∞

P
(

Φλ(Q r

2
√
d
) ≥ k

)
= 1, (6.33)

then λkc (r) <∞ and further for any k, Ck(Φλ, r) percolates for λ large enough.

The following proposition combined with examples in Chapter 5 provides many exam-

ples satisfying the conditions of the above theorem.

Proposition 6.3.14. Let {Φλ}λ>0 be a family of R-independent pp. Then

∀λ > 0,Φλ ≤idcx Φλ ⇒ lim
λ→0

P
(

Φλ(Qr) ≥ 1
)

= 0. (6.34)

∀λ > 0,Φλ ≤ddcx Φλ ⇒ lim
λ→∞

P
(

Φλ(Q r

2
√
d
) ≥ k

)
= 1,∀k. (6.35)

∀λ > 0,Φλ ≤ddcx Φλ ⇒ lim
λ→0

P
(

Φλ(Qr) ≥ 1
)

= 0. (6.36)

Further, (6.32) holds when Φλ is a Cox(Λλ(.)) pp where E
(
Λλ(.)

)
= λ‖.‖.
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Before moving onto the proofs, we shall briefly contrast the two Propositions 6.3.12

and 6.3.13. The latter is the only result in the chapter that can be used to ascertain non-

degeneracy of critical radius for clustered point processes. The main limitation as regards

considering a parametric family of pp is that many pp depend on two or more parameters

unlike the Poisson pp which is characterized by a single parameter. In such cases, it is not

not natural to parametrize it in terms of a single parameter. The second problem with

parametrization that can affect Proposition 6.3.13 alone is that the dependence structure

of the pp can change with the parametrization. The more natural way of looking at

comparing percolative properties of two pp is to look at the critical radius as we have

done in Section 6.3.2. We think this is the better approach, especially when one wants to

see the impact of the dependence structures of the pp on their percolative properties.

Proof. (Proposition 6.3.12.) For the first statement, we use the bound in (6.15) and

observe that as in that proof, we can first choose a s large enough and then λ small enough

such that C(Φλ, r) does not percolate. This choice is dependent on λ alone and hence the

bound is uniform. For the second statement, we use the bound in (6.16) and deduce that

for a s and large enough λ, Ck(Φλ, r) percolates through Peierls argument. The bound is

again uniform in this case too.

As in Proposition 6.3.6, we can get an improved bound for λ1
c(r) using the arguments as

in that proposition. We shall state [Liggett et al. 1997, Theorem 1.3] for Bernoulli random

fields on their dependent graphs and then use it for ascertaining non-trivial phase transi-

tions in finite-range dependent pp (Proposition 6.3.13). Recall that the critical probability

of independent site percolation on G is defined as pc(G) := inf{p : P (G(p) percolates) >

0}. It is known that for close-packed lattices, 0 < pc(L∗d) < 1.

Theorem 6.3.15. Let G = (V,E) be a graph with countable vertex set V and maximum

vertex degree k. Let {Xv}v∈V be a stationary Bernoulli random field with G as the depen-

dency graph (for definition, see the paragraph before Theorem 3.4.3). Denote the induced

measure on {0, 1}V by ν(.) and let Πp be the product measure on {0, 1}V with p being the

’open’ probability. Suppose we have,

P (Xv = 1) ≥ p, q = 1− p ≤ kk

(k + 1)k+1
.

Then there exists ρ(p) > 0 such that Πρ(p)(.) ≤st ν(.). Further, limp→1 ρ(p) = 1. Suppose
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we have,

P (Xv = 1) ≤ p, p ≤ kk

(k + 1)k+1
.

Then for the same ρ(.) as above, Π1−ρ(1−p)(.) ≥st ν(.).

Proof. (Proposition 6.3.13.) First assume limλ→0 P
(
Φλ(Qr) ≥ 1

)
= 0. Define the

graph Gdr(R) := (Zd(2r),Ed(R)) where the edge-set Ed(R) := {〈z, z∗〉 : d(Qr(z), Qr(z∗)) ≤
R}. This graph satisfies the assumptions of Theorem 6.3.15. Define X(z) :=

1[Φλ(Qr(z))) ≥ 1]. Let νX(.) be the induced measure on Zd. Choose a p such that

1− ρ(1− p) < pc(d) and so the Bernoulli random field with distribution Π1−ρ(1−p)(.) does

not percolate in L∗d(2r). Now choose λ large enough such that P
(
Φλ(Qr) ≥ 1

)
≤ p and

so νX(.) ≤ Π1−ρ(1−p)(.) and hence X(z) does not percolate in L∗d(2r). This implies that

C(Φλ, r) also does not percolate.

In the above one can replace r by r√
d

and define X(z) := 1[Φλ(Q r

2
√
d
(r)) ≥ dk/2e].

If X(z) percolates in L∗d(2r), then Ck(Φλ, r) also percolates. Now arguing as above, we

have the required result.

Proof. (Proposition 6.3.14.) Note that from Proposition 4.3.5, we have that for any

k ≥ 1, r > 0 and two pp Φ1,Φ2

Φ1 ≤ddcx Φ2 ⇒ P (Φ1(Qr) ≥ k) ≥ P (Φ2(Qr) ≥ k) .

By standard computations with Poisson pp, this proves Equations (6.36) and (6.35). As

for Eqn. (6.34), note that

P
(

Φλ(Qr) ≥ 1
)
≤ E

(
Φλ(Qr)

)
≤ λ(2r)d.



Notations and Symbols

Basic Notation

• A+B := {x+ y : x ∈ A, y ∈ B}, the Minowski sum of two sets A,B ⊂ Rd.

• A(r) := A+BO(r), the rth parallel set of A.

• Bx(r) - the closed Euclidean ball centred at x and of radius r.

• B(D) - the σ-ring of Borel subsets of D.

• Bb(D) or bBS - the class of bounded Borel subsets of D.

• C - the semi-ring of D.

• C(Φ, G) - The Boolean model with germs as point process Φ and i.i.d. grains dis-

tributed as G.

• D,D′ - Polish spaces.

• Ed - edge set in the usual d-dimensional integer lattice

• E∗d - edge set in the close-packed d-dimensional integer lattice,

• F - class of functions.

• G or S - generic grain in a Boolean model.

• Kd - class of compact sets in Rd.

• [k] = {1, . . . , k}, k ∈ N.

• Λ - random measure.
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• Ld - the usual d-dimensional integer lattice viewed as a graph with nearest neighbour

bonds.

• L∗d - the close-packed d-dimensional integer lattice viewed as a graph with diagonal

bonds as well.

• M = M(D) be the space of non-negative Radon measures on D.

• M - the canonical Borel σ-algebra on M.

• N - set of Natural numbers.

• O - the origin in Rd.

• Φ - point process.

• Φ̃ - marked point process.

• Φλ - Poisson point process with intensity λ.

• Rd - d-dimensional Euclidean lattice.

• R+ - non-negative half of the real line. R+ := R+ ∪ {∞}.

• Zd - d-dimensional integer lattice. Z+ - set of non-negative integers.

• inf ∅ =∞ and sup ∅ = 0.

Other symbols

• | · | - the metric on Rd be given by the usual Euclidean norm

• ‖.‖ - the Lebesgue measure on Rd.

• d→ - convergence in distribution (weak convergence).

• ≤F - the stochastic order generated by F functions.

• cx - convex.

• ccx - componentwise convex.
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• dcx - directionally convex.

• idcx - increasing directionally convex.

• ddcx - decreasing directionally convex.

• dcv - directionally concave.

• idcv - increasing directionally concave.

• ddcv - decreasing directionally concave.

• lo - lower orthant order.

• st - strong.

• sm - supermodular.
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