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Geéeonetrie d'images multiples

On étudie les relationsapnetriques entre une ene 3D et ses images perspectives. Les liens
entre lesimages, et la reconstruction 3D de &nse partir de ces images, sont partiesimentelu-
cidés. L'outil central est un formalisme tensoriel de Bog#8trie projective des images multiples.

La forme et la structure addprique des contrainteseghetriques qui lient les diéffentes images
d’'une primitive 3D sonefablies A partir de B, plusieurs nouvelles ethiodes de reconstruction 3D
projective d’une senea partir d'images non-caliBes sont evelopges. Pour rehausser cette struc-
ture projectivea’ une structure euclidienne, on introduit un nouveau formalisme d’auto-calibrage
d’'une cangra en mouvement.

Geometry of Multiple Images

We study the geometric relations that link a 3D scene to its perspective images. The focus is on
the connections between the images, and the 3D reconstruction of the scene from these images.
Our central tool is a tensorial formulation of the projective multi-image geometry. This is used to
determine the form and structure of the geometric constraints between the different images of a
3D primitive. Several new methods for 3D projective reconstruction of scenes from uncalibrated
images are derived from this. We then introduce a new formalism for the autocalibration of a
moving camera, that converts these projective reconstructions into Euclidean ones.
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Chapitre 1

Introduction

Cette tlesectudie les relationsapnmetriques entre une sne 3D et ses images perspectives. Les
liens entre les diffentes images, et la reconstruction 3D de Ene@ partir de ces images, sont
particuliérementelucidés. L'outil central est un formalisme tensoriel de koggtrie projective
des images multiples. Quoique I'orientation du travail soit parfois assexithie, ce formalisme
repeésente un ehicule de expressiones puissant, autant pour le calcul renque que pour le
calcul formel. Tout au long de ce travail, nous avonsedetd ne jamais perdre de vue les aspects
algorithmiques et nueriques du sujet.

Pourquoietudier la gongtrie multi-images? — Nous vivons un temps samsgdént historique.
L'accroissement explosive de tout quieeé de I'ordinateur — intelligence artificielle, lessgaux,
le web, multi-n€dia, Ealite virtuelle et augmenmt’vidéo et cirtma digitale — risque de changer non
seulement nos &ns de travailler, mais aussi nogdas de voir notre propre monde. Soit il pour
le bien ou non, le bureau et la foyer somsdfmais instrumees et vont certainement devenir de
plus en plus eactifs, sinon plus intelligents». Il ne s’agira plus de habiter dans nos espaces
mais plutt d’« interagir avec eux. La cangra et 'image seront au centre de cetealltion, car
de tous nos sens, la vision est le plus riche et le plus informatif. Les moyens de calcul serat bient”
a ce rendez-vous mais nous manquons cruellement d’algorithmes efficaces, en particulier en tout
ce qui concerne lintergtation et la commtension de &mes et de structures 3D et dynamiques.

Les @volutions techniques se fait paregjdlité, et ici on se focalise sur ladbfie d’extrac-
tion de la structure 3D partir de plusieurs images oacgiences d'image4\ titre indicative et
non-exhaustive, lesesultats obtenus porte sur les catgrices pratiques suivantes): (mesurer
ou modliser une sene pour mieux grer nos interventions sur lui @trologie photogrametrique,
contile de qualig, planification, surveillance, applicationedicales) ; i) resyntletiser d’autres
images de la mme sehe (visualisation,eduction du dbit de Eseau ehiculant des smes);

(iii) modifier ou interagir avec la soe (Ealitt augmerd; studio virtuel).

L'automatisation quasi-comegle sera souvent indispensable pour rendre ces applications viable.
Pour la plupart d’entre elles, les utilisateurs ne voudraient pakser ou maintenir un calibrage
précis des camras — il leur faut des syaties qui s'auto-calibraient euxames. Pour toutes ces
raisons, il y a un besoin deetliodes amliorées de correspondance entre images, de reconstruction
3D a partir des correspondances treas; et d’'(auto-)calibrage.

Sous-jacena tout cela, il y a un besoin de comprendre la structueerilque du domaine. Nous
partageons le point de vue qul n'y a rien de plus pratigue qu’'une bonneetirie» — elle peut
aider aux @fivations et aux implantations, indiquer les limites d’application, expliquer comment

1. Pour l'instant, un ordinateur personnel ne peut faire qu’une traitement simpliste dguense d'images de taille
raisonnablea ‘temps eel. Mais si on cri’la loi de Moore (augmentation des puissances de calcul par un facteur de deux
chaque 18 mois), il est (seulement!) 20-30 ansqx de la puissance de calcul du cortex visuel humain, estira*® a
10'* opérations par second.
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contourner leethecs, sugger d’autres directions fructueuses ...

La forme de la théese

Ceci est une thlse sur travaux. C'est un genre que je n'aimergumais que les limites de
temps et mes autresgoccupations multiples m’obligeatadopter. La plupart du texte consiste en
des articles éja publés ou soumis, reproduits ici tels qualsine simple mise en pageegr Jai
parfois pris une version longue et/ou coaigs'il en existe, mais ces modifications datent de la
mémeéepoque de la publication initiale.

J'ai résis€ a toute tentation deecrire ces travaux, ame Bgerement. Je n'ai e pas e
au dgsir d’harmoniser les notations qui varient librement de papier en papier. Ceci pour la simple
raison que si je commeajsa récrire ces textes — et en parti@rk les plus vieux — je changerais
souvent quasiment toute I'exposition ... et parfoismg (mais plus rarement) la substance.

Organisation

Le prochain chapitrevoque tes brevement, et sans entrer dans aucetai, le cadre technique
de la trese. Chacun des trois chapitres suivants introduit, et puis reproduit, plusieurs papiers sur un
théme commun: chapitre 3 — les contraintes d’appariement et I'approche tensorielle ; chapitre 4
— la reconstruction projective ; et chapitre 5 — l'auto-calibrage. Un appendice donne uemeatri’
ensemble de papiers qui n'ont pas treyslace dans le corps du texte. L'introduction de chaque
papier est susceptible de contenir des notes historiques, un bref sommaire techrégeetuet|e-
ment des perspectives et commentaires. Ces introductions n’ont pas pour intention de donner une
compehension techniqueettiillé du travail : pour cela il faut sans exception lire I'article.

Chaque papier a sa bibliographie proprtui. La bibliographiea’la fin de la teSe ne contient
que les eférences céés dans les textes introducteurs.



Chapitre 2

Cadre technigue

Geéonetrie projective

On peut maintenant raisonnablement supposer quedasjfie projective soit famiére au lec-
teur (voir,ex.[SK52, HP47]). On adopte toujours les coordeas’homoegnes pour ecrire I'espace
3D et les images projectives. Chaque point@3DY Z)" se repesente par son vecteur honeog'
(XY Z1)T ... ou par tout autre vecteur de dimensioegéla celui-cia un facteur déchelle pes.
(Cette relation dtquivalence est ne€« ~ »). Il en est de rafe pour les points imageés y) ' qui
deviennent(z y 1) ". Quoique redondante, cette repentation homagiea un avantage capital :
toute transformation projective prend une appardim@aire quand on I'exprime dans les coordon-
nées homognes. C’est le cas pour les transformations projectivé®ihographies») 3D-3D et
2D-2D, et plus particudifement pour les projections perspectives 3D-2D, qui sont au coeur de la
formation des images.

Projection centrale et calibrage interne d’'une canéra

On n'exposera pas ici sy@tiatiquement la #0rie de formation d’'images. Voir par exemple
Faugeras [Fau93] ou Horaud & Monga [HM93] pour le cas perspectif, et [JW76, Sla80] pour les
détails optiques. Bavement, i@alisons par unecaméra a projection centrale » tout dispositif de
projection d’'images avec la propit# que pour chaque demi-droiter@yon optique ») originea un
point 3D particulier (le« centre optique» de la canera), les images de tous les points 3D le long
de ce rayon soient confondus. Le netelSEnopE standard en est un exemple. Une eeancentrale
peut en principe enregistrer les rayons qui viennent de n'importe quelles directions 3D — une lentille
« oeil de poissom est une approximation — donc une image centrale cet@@st topologiqguement
un sptere (le spkte« panoramique de toutes les directions de vue au centre optique). On autorise
des @formations arbitraires dans I'image ... pourvu qu’on puissedésird’ plus tard pour retrouver
le « modele calibré » de la caneta, ar chaque point image correspoadine direction (rayon 3D au
centre) connue.

Supposons qu’on prend comme origine 3D le centre d'unescani est caligé. L'image du
point homogheX ~ (X Y Z 1)" estévidemment & un facteur céchelle pes) le point image
homoghnex ~ (X Y Z), car tous les point&\ X \Y AZ 1),\ > 0 se trouvent sur le erhe rayon
issu du centre. Cette projection image s’exprime detfichomoghe lirdaire commex ~ P X, ou
P = (I3x3]0) est lax matrice de projection » 3 x 4 de la canefa. On peut aussicrire cela sous
la formeAx = P X, oud on introduit une facteur dchelle\ pour compenser ¢chelle inconnue
relative des deuxatés de IBquation.\ s’appelle urx profondeur projective » car — moyennant
une normalisation convenable ©eX et P — elle devient la profondeur (distance du centre optique)
du point.
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Sous un changement de egp ‘euclidien (exprimen coordoneés homognes par une matrice
4 x4 (B1), ol Restune rotatiors x 3 ett un 3-vecteur de translation) on arrigeuhe matrice
de projectionP =~ (I3,3|0) (§}) = (R]t). Sion autorise aussi unefdrmation projective (ou
méme affine) arbitraire de I'image, on arrigeune matrice grérale3 x 4 (rang 3) de projection.
Au moyen de la dcomposition matricielle QR (ou plus exactement RQ), on peut obtenir d’'une telle
matrice une regi¢omposition dans la forme:

Uo
Yo

1/f

ou R;t sont une rotation et une translation qui donnenk fmse» (position et orientation) de
la can€ra, et la dformation 2D affine triangulair& est sa« matrice de calibrage interne» .
f,a,s,(ug,v) S'appellent respectivement la (distance) focale ; le rapporedeslles ; et leskewet

le point principal gongtrique de la caera. (On paratreK aussi parfois par les deux focales prin-
cipales(f,fa), et le skew et le point principalixéliquesf s et( fug,fvo). La focale peut s’exprimer
en pixéls ou — si les pigls sont dones$ en millinetres — en millinetres).

On appelle ce magle le moele « projectif sphérique » d’une canera. Il prend comme base
la géométrie projective spérique des rayons 3@ un point, notion qui date de lagdristoire de
la géonEtrie projectiveé. Le mocEle de projection centrale est en effetstipecis pour la plupart
des camsfas conventionnelles (mé part les camras« a balayage (pushbroom cameras) et les
mockEles avoisinants). Le metE projectif de calibrage internedgfbrmation projective de I'image)
est moins pecis: il esta la fois trop faible — pour la plupart des cara$, le skew est eptiément
négligeable — et trop fort — les distorsions optiques de lentille neEasen gréral régligeables,
en particulier avec les lentilles bon maegtde courte focale, ou de zoome&iimoins, dans cette
thése on adoptera toujours ce netelde camara projectif, car il est & maniable par comparaison
avec les modles internes non-lggires. En pratique, la distorsion optique ne pemegilementfre
incluse que:ij par pg-correction ;if) dans unestape d’estimation non-laggire —€tape quasiment
inévitable pour tout systhe pratique qui tenda la p€cision, mais gu’on n'abordera e ici.

1
P ~ K(R|t) K=10
0

S »

Reconstruction projective et euclidienne

Cong€quence ialuctable du fait que le processus de formation d'images soit projectif : tout
tentative dex reconstruction d’une sehea partir des images seules est aussi, de sa natemsem”
projective?. Une dsformation projective 3 la fois des caeras et de la grie ne change pas les
images, donc la structureefirmée ne peut pastfe distingee de la bonne structure au seul moyen
de ses images [Fau92, HGC92]. Pour remoatker structure refrique, il faut des contraintes non-
projectives, ou sur la soe, ou sur les mouvements, ou sur les calibrages desraarfMF92,

1. La projection suri(e. section par) un plan de la spte de rayons optiquesdit dgja courante chez lesegfretres
grecs, pouresoudre leurs probies de trigonostfie spletique &leste ... Le moele projectif spbfique s’appelle aussi
parfois le moele « projectif orient &€ » [Sto91].

2. Comme dans les images, la topologie naturelle de I'espace de reconstructions visuelles est toujours celle d’'une
sphere —ici d’'une 3-spére en 4 dimensions. Par exemple, I'imagessffue d’une droite infinie s’aget’abruptement aux
images de ses deux points de fuite ogsos coupure quietend de la structure affine 3D, et qu'on ne peut paseérgl
localiser dans les images si on ne voit qu'un segment fini de la droite. Dans chaque imagguepbn peut prolonger
le demi-cercle image de la droiteune cercle compte. La gongtrie de ces points supgptientaires reste celente —
sauf visibilite c’est identique celle des points visibles — et on peut les mettre en correspondance comremits les
images des points 3bau de& de l'infini », de la mMéme marére qu’on traite les vecteurs de direction commelpsints
a I'infini ». Gracea ces points 3D virtuels, la reconstruction de la droite devient un cercle topologique (mais elle est
droite, de rayon infini), et I'espace 3D devient uneesghtopologique. Il est dans la naturemmé de toute reconstruction
visuelle centrale de reger un tel espace. Mais la reconstruction projective rend la situation plus difficile, car sans le plan
a I'infini on ne sait plus quels sont les points virtualgeter.



FLM92, Har93a, Har94, MBB93]. C’est pour cela quetlidle de reconstruction visuelle spafe
naturellement en deux parties : la reconstruction 3D projectieed une projectivit’ 3D pies)a
partir des doneés images, et puis la reconstruction 3D euclidieneegjijsqua une transformation
3D euclidienne rigide @s)a partir de la reconstruction projective.

Il faut dire que ngime une structure projective edja tres informative. Elle nous donne toute
la géongtrie 3D nEtrique de la sene et des caaras — en principe un nombre presque illienité
paranetres —a seulement 9 paragtres pes:

— 3 déformations essentiellement projectivesgfldicement du plaa l'infini) ;
— 5étirements affines ;

— un facteur d&chelle global qu’'on ne peut jamais obtenir sans connaissances externes, car
toute 'optique (au moins dans sa limitegigtrique) est invarianta un Béchelonnement
global des camras et de la sne.

La structure projective suffit elle-emie pour certaines applications, en particulier celles de la re-
synthése des images quand elles peuvent se limiter awe@mT(Eels et virtuelles) projectives
non-calibges. Mais la plupart des applications exigent une structwigque, donc il faudra se
demander comment estimer ces derniers 8-9 patras Dans cette ¢ise onetudiera plusieurs
méthodes pour chacune de ces detapes de reconstruction.

Contraintes d’appariement multi-images

Considrons plusieurs images d’'uneese, images prises depuis plusieurs points de vue par
une ou plusieurs caenas projectives. Les images d’'une primitive 3D (qu’elle soit point, droite,
courbe, surface ...) ne sont pas ergiment indpendantes entre elles: elles doiveatifiér cer-
taines contraintes de ceténce gomngtriques, qui exigent qu’elles soient toutes les projections
d’'une méme primitive 3D quelconque. Grilddiera la forme algfirique de ces contraintes d’ap-
pariement multi-images» en dtail plus bas. En effet, elles sont toujours multetaires en les
primitives proje€es qui apparaissent, avec pour coefficients des tenseurs (tableaux multi-indices)
inter-images, fabriges de matrices de projection de plusieurs ems. Ces tenseurs d'appa-
riement » sontévidemment fonction de laepnetrie (poses relatives et calibrages internes) des
caneras. En effet, il se trouve gu’ereggral 'ensemble des tensewaracérisentet mémepara-
meétrisentla partie projective — et moyennant urggie connaissance suppientaire, souvent aussi
la partie euclidienne — de laegigtrie cangras,sans aucuneéference explicite aux quaréis 30D
En particulier, les tenseurs peuveite estinesa partir de un nombre suffisant de correspondances
inter-images des primitives, sans connaissances de qsBfit’ D'al les inEréts principaux des
contraintes d'appariement :

1° Correspondances des primitives Une fois estinees, elles sont une aide$rpuissanta
ce probEme @renne de la vision, la mise en correspondance des primitives entre images.
Elles Bduisent la recherche des points correspondants entre deux imagedraitesepi-
pblaires», et la recherche des points ou droites correspondants dans larreist sules
guentes imagea la simple pediction et rification de la pesence de la primitiva Une
position qui peut se pcalculer.

2° Synthese des nouvelles vued.a prédiction ci-dessus peut servir plus activement comme
« transfert> des primitives correspondantes entre images, pour siyséind partir de quelques
images d’'une @me, de nouvelles vues qui semblent aetér prises de points de vue dif-
ferents de ceux des images d'emtr Ceci constitue une applicatioega la mode pour la
realit virtuelle.

3° Reconstruction 3D: Vu que les contraintes d’appariemergpgéndent de laepnetrie
multi-canmgras, on peut songarrecouvrir celles-ci des contraintes, et aasstconstruire
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les primitives appaeés. Ce genre de reconstructi@ogétrique a maintes applications en
métrologie, conception, planification, visualisatioealitt virtuelle...
Une fois qu'on a estimles contraintes d’appariement, toutes ces applicationasmisiérer. En
plus, les contraintes ne reggéntent que leatiut d’'une grande toile de relationsayretriques, qui
relient primitives 3D, primitives projegs, profondeurs projectives, matrices de projection, tenseurs
d'appariement et contraintes euclidiennes dans une structure globale, complexe reegnteoh’
La plus haute revendication de cettedh, c’'est d’avoir contria élucider une partie de cette
structure.



Chapitre 3

Contraintes d’appariement, et
I'approche tensoriellea la geometrie des
Images multiples

Ce chapitre, et en particulier son premier papier, pose les fondations de touteasstdlttnaite
spécifiquement des contraintes d’appariement — contraintebatgies inter-images, qui exige que
les difféerentes images d’une primitive 3D soient toutes consistantes entre elles. Mais ces contraintes
ne sont qu’un aspect de la richegyfétrie multi-images, et les techniques tensorielles quered”
loppe ici pour ce cas sténdent et se ramifieatbien d’autres prokhes.

3.1 Resung de« The Geometry of Projective Reconstruction : Match-
ing Constraints and the Joint Image»

Historique

Ce papier re@Sente mon travail de base sur les contraintes d’appariement multi-images. Il
donne un apey résolument projective-tensorielle de ces contraintes, approche qui restera sans
doute difficile pour les non-initiés», mais qui repesentea’mon avis le moyen le plus puissant
d’aborder toute la gongtrie projective multi-images. Il fuecrit et diffug€ en manuscrit vers la fin
de 1994, et pubdi’en version courta ICCV’95! [Tri95] (voir appendice). Il fut aussi soumis a
IJCV a I'epoque, mais n’a jamass Ce jour atteint sa version finale, suéemes eticences sur sa
forme, et surtou mes peoccupations avec bien d’autres travaux.

M éthode

Avec toutes les contraintes d'appariement, I'essentiel conaigrendre legquations de pro-
jection d’'une primitive 3D« parent- hypotrétique de tous les primitives images qu’on voudrait
apparier, et dliminer algbriguement les coordoan$ 3D du parent — eventuellement aussi ses
profondeurs projectives inconnues — afin d'arriver aguations liant les primitives images entre
elles. Pour les classes principales de primitives, on peut choisir une @aisation o' I'equation de

1. ConErence qui fut un eritable tournant sur notre congrénsion de lagpmétrie multi-images, avec I'apparition
(entre autres!) d’'importantes papiers pai): Faugeras & Mourrain [FM95b, FM95a] et Heyden Astrom [Hey95,
HA95] sur les contraintes d’appariement multi-images — tous les deux traitents fapnsa peu pes le neme domaine
que cet article, avec des conclusions eahmtes;i{) Carlsson [Car95] sur la duaittntre points et centres des @aas;
(iii ) Shashua & Werman [SW95] et Hartley [Har95b] sur le tenseur trifocal, et Hartley sur I'estimation stable de la matrice
fondamentale [Har95a].
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projection estinéaire dans les coordom®s 3D inconnues de la primitive, et aussi dans sa profon-
deur projective (facteur dchelle inconnu dans I'image). Dans ce cas, les inconnues peetvent ~
éliminées avec lesatérminants, een principec’est relativement facile deediver les contraintes
d’appariement pour la primitive par cette pagtnsatior?.

Considrons le cas des points. On a plusieurs imaged'un point 3D inconnuX, par des
caneras projective®;, i = 1...m. L'equation de projection egt ~ P; X, ou, si on introduit
une profondeur projective / facteuretthelle inconnu;, A; x; = P; X. On peut rassembler toutes
ceséquations de projection dans un grand eyst matriciel3m) x (4 +m):

X
P, x¢ 0 ... 0 Y
Py 0 X ... 0 !
S .. || e =0
P, 0 0 ... Xn _)'\m

Les points imageg; et les matrices de projectidR; sont colerents avec quelque point 3D si et
seulement si ce syatie homogne a une solution. Et bien entendu, la solution donne le poifX3D
correspondant avec ses profondeurs projectlyeglgébriquement, il y a une solution si et seule-
ment si tous les mineurs étErminants des sous-matricéd)+ m) x (4 + m) de la matrice du
sysEme sont nuls. Chaque mineur se forme d'un sous-ensenmdatdigpé des lignes des matrices
de projection et des points images correspondants. Laendlliithineur donne une contrainteelg”
brique entre les projections et les points, contrainte quiatoi Erifiée si ils sont consistants avec
quelque point 3D. Unetude etaille Bvele 3 classes de ces contraintes d’appariement de points,
qui sont bilirgaire, trilirdaire, et quadrilieaire, dans les points correspondant dans 2,3,4 images.
Les coefficients des contraintes sont degedhinantst x 4 de 4 rangs des matrices de pro-
jection. lls peuvenefre rangs en«tenseurs inter-images — tableaux multi-indices, avec des
indices (dimensions) qui appartient aux plusieurs images. Pour les images 2D dnre38; il y
a precigment 4 types de tenseurs d’appariemepipdle, matrice fondamentale, tenseur trifocal et
tenseur quadrifocal. Epipdle ne figure pas directement dans les contraintes d’appariement, mais
d’ailleurs joue un ofe central dans le formalisme.

En effet, les contraintes d’appariement ne sont qu’un premier pas dans les aspects de la vi-
sion multi-images. Toute la dotie de la gonetrie multi-images s’exprimeeas naturellement sous
forme tensorielle, ce qui nous donne un moyen de calcul puissant pagor@ugie de la vision. Les
tenseurs d’appariement ne sont que I'expression la plus courante de cet aspect, et ils apparaissent
partout dans le formalisme.

Le lien entre les tenseurs et lagtétrie est tes naturel. Selon leet€bre« programme d’Erlan-
gen» de Felix KLEIN (ex.[Kle39]), une géonétrie se caraetise par son groupe de transformations,
et par les quan#s qui sont invariantes ou covariantes par ce groufmvariant » signifie « qui
transforme selon une loi cerénte eteguliere» — une telle loi s'appelle unereprésentation» du
groupe. Pour les groupes diaires (euclidien, affine, projectif ...), il se trouve que (quasiment) toutes
les repgsentations sont tensorielles, edarit construites par produit tensoriel d’'une ou plusieurs
« représentations de base — les« vecteurs» du syseme. Par exemple, dans I'espace projectif il
y a deux types de vecteurs — ceugontravariants » qui repgsentent les points projectifs, et ceux
« covariants» qui repesentent les hyperplans projectifs duaux des points. Les deux lois de trans-
formation sont aussi duales. Quand on construit un tenseur multi-indices, chaque indice correspond

2.« En principe» parce qu’en pratique, mis a part les points, cette approchegpeutes lourde. Elle ne peut que
difficilementétre implante pour les droites, et je n’ai jamais abouti pour les quadriques@hd¥ plusieurs tentatives.
Les équations de projection ne sont pluseliifes dans les matrices de projection agmscEuUxX caeras, et en plus la
dimension deseterminants monte. Donc la complexilggbrique augmenteds significativement.
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a un vecteur (ou plat™a une dimension vectorielle) d’'un de ces deux types, et transforme selon la
loi approprée. Mais dans 'espace euclidien, le groupe de transformations ag®est plus res-
treint et les deux lois de transformation se confondent, donc il N’y a qu’un seul type de vecteur et
d’indice.

En vision multi-images, il faut souvent travaillada fois dans plusieurs espaceseliffiits — par
exemple dans I'espace 3D et dans plusieurs images. En ce cas, les tenseurs peuseat gess’
indices de chacun des types disponibles en chaque espace. La notation devient plus complexe et un
peu lourde (si orvite détre ambige™...), mais le calcul tensoriel reste valable.

A titre indicatif, on peut identifier plusieurs facettes du formalisme tensoriel multi-images. Un
théme central dans nos approches est deesgmter chaque point 3D non par ses coordean”
3D, mais par I'ensemble de ses coordeas dans toutes les images. Cette aspntation« par
images eunies» est fortement redondante, mais ses liens aux geantisibles dans les images
sontévidemment beaucoup plus directes. Elle s’est neentirie approcheds fructueuse pour notre
probématique.

— La connexion projective / Plicker-Grassmann : Pour I'essentiel, la @dnétrie projective
est celle de I'alignement, de I'extension, de l'intersectioedimé. Dans un langage tensoriel,
ces oprations s’expriment par dee@rminants / sommes alte®s de composantes. Les
sous-espaces projectifs sont coordemmar leursc coordonnées Plicker-Grassmann» —
'ensemble de leursatérminants. Cette reggéntation a I'avantage atte linéaire (et donc
relativement maniable) dans ces coordees) mais elle devient rapidemergsiredondante
guand la dimension de I'espace augmente. Les coomtmnRlicker-Grassmann sont sujettes
aux« contraintes de consistance de Btker-Grassmanns, contraintes qui ont une structure
guadratique,eguliere mais exgfmement lourde en haute dimension. Tout reste maniable en
2 et 3 dimensions, mais reggénter une primitive 3D par ces images multiples peut largement
augmenter la dimension effective de I'espace ...

— « Projection inverse» des primitives images :Les primitives 3D principales (points, droites
dans la re@Sentation Ricker, quadriques dans la repentation duale) ont toutes une epr’
sentation a’leurs€équations de projection solibéairesdans leurs coordomes 3D. RCi-
proguement, on peut (si on conhi@ matrice de projection de la cama)« remonter d’'une
primitive image quelconqua Sa« primitive de support 3D » — la primitive 3D qui contient
tous les rayons optiques des points de la primitive image. (Si la primitive image est une pro-
jection, les rayons optiques — et donc famént la projection inverse — contiennent les points
de la primitive 3D d’origine). Par exemplei) (d’'un point image, on remonta son rayon
optique ; (i) d’'une droite image, on remongeson« (demi-)plan optique» — le (demi-)plan
qui contient la droite 3D et le centre optique de la eaan {ii) d’'une conique image, on
remontea son« cone optique».

On pourrait considfer qu'avec legquations de projection et lesaptions d'intersection et
d’'allongement lijaire, lesequations de projection inverse sont les emitle base de tout le
formalisme projectif-tensoriel.

— Reconstruction minimale : Si on connd”les matrices de projection des caras, on peut
reconstruire une primitive 3R partir d’'un nombre suffisant de ses images. Setpsations
de projection sont lieaires en la primitive 3D, on peugduire la reconstruction [a Bso-
lution d’'un syseme liréaire, ou — ce qui estquivalent —-a’l’« intersection » des primitives
reconstruite par projection inverse depuis les images (rayons optiques d’'un point 3D, plans
optiques d’'une droite 3D ...).
Si on ne prend que le nombre minimal des contraintes images pour faire la reconstruction,
on arrivea un« syseme de reconstruction minimal». Par exemple, il faut trois contraintes
linéaires pour reconstruire un point 3D, donc les deux cas minimaux $priitxgr une coor-
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donrée du point dans chacune de 3 imagés fiker les deux coordorg€s dans une image, et
une dans une autre. Toute autre combinaison est ou redondante, ou insuffisaeterin g’
reconstruction serait mieux conditioes si on prenait des contraintes redondantes, mais la re-
construction minimale fournit un lien important aux contraintes de transfert et d’appariement
discuges ci-dessous.

Equations de transfert : Une fois obtenue une reconstruction (soit minimale soit redondante)
d’une primitive 3D, on peut la reprojeter dans une autre image. Entre les primitivesed’entr”

et la primitive de sortie, il N’y a aucuneférence explicita'espace 3D. Donc on peut court-
circuiter I'espace 3D et travailler directement entre images.dangtrie 3D des camras est
repesente par ses auxiliaires dans les images, les tenseurs d'appariement. On peut utiliser
le transfert par exemple pour la syatie des nouvelles images depuis des points de vue
artificiels, ou pour gférer les contraintes d’appariement (voir ci-dessous).

Contraintes d’appariement: On a dja évoql€ ces contraintes. Elles peuvetie interpe-
tées dans les deuxdans suivantes i une primitive transffée vers une autres images doit
étre identigue la projection de la primitive d’origine 3D ; oui) les primitives 3D reprojetes
depuis toutes les images doivent s'intersecter d’'uperfazoterente en une primitive 3D bien
définie. Ces contraintes sont fortes utiles petablir les correspondances de primitives entre
images. Inversement, elles fournissent ureghuade pour estimer les tenseurs d’appariement
a partir d'un ensemble de correspondances initiales dans les images.

Contraintes de cbture : Vue la dgrivation des matrices de projection, les tenseurs d’appa-
riement doivent satisfaire certaines contraintes de consistance avec ces matricamrDe fa,
tensorielle, ces contraintes de cbture » expriment le fait que I'espaceel est seulement

de dimension 3 et se renferme sur lui ethe». La repgsentation d’'une primitive 3D par ses
images multiples a beaucoup degiEes de liber’et aurait pu regsenter les images 2D d’'un
espace de dimension plus grande que trois ... mais puisque ce n’est pas le cas, il doit y avoir
une« cldture» a la dimension trois. Les contraintes detale sont’'la base de la sthode de
reconstruction par otlre [Tri96b, Tri97a], qui estetrite dans le chapitre prochain. Elles en-
gendrent aussi les contraintes d’appariement aux profondeurs des contraintes de Grassmann,
qui vontétre discutes tout de suite.

Contraintes d’appariement aux profondeurs projectives :Les contraintes de atlre sont
lingaires dans les matrices de projection qui y apparaissent. Si on applique ces raatrices °
point 3D, on @grere une sfie analogue de contraintes qui lient les tenseurs d’appariement
aux images du poirdvec leurs profondeurs projectives correct8& on connd’les tenseurs

et les points images, on pewgatiErer de fapn linéaire les profondeurs correspondantes.
Ces contraintes somt I'origine de la nethode de reconstruction par factorisation projective
[ST96, Tri96a], qui esterit dans le chapitre prochain. Ehrminant les profondeurs (facteurs
d’echelle) inconnues, orcupere les contraintes d’appariement traditionnelles dont ogjaa d”
parké.

Identités Plicker-Grassmann: La dérivation depuis les matrices de projection des ten-
seurs d’appariement est essentiellemeneéasir les dferminants. En effet, les tenseurs
peuventetre identifés aux coordore€s de Rlcker-Grassmann de I'espace 3D dans I'espace
réuni de toutes les coordoa®s images. Ceci implique que les tenseurs doiverifier entre

eux des relations de consistance qui sont exactepwrivalentes aux contraintesueker-
Grassmann. Il y a un grand nombre de ces relations. Certaineseofdrrileres, mais pour

la plupart elles sont mal connues, bien que parfois utiles. On peut amségles contraintes
sur les tenseura partir des contraintes deotlite qui sont I'expression la plus primitive de
la cléture par @terminants. Les contraintes dei€kér-Grassmann servesmestimer certains
tenseurs d'appariemeatpartir d’autres, par exemple lepipdles s’expriment partir d’'une
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matrice fondamentale.

Perspectives

On peut maintenir que ce papier et ses pairs [FM95b, Hey95] ont canstitutournant de
I"etude systiatique des contraintes d’'appariement multi-images. Au nivezarithie, on a &
sormais une méise des aspects projectifs et des primitivegdimés (points, droites et plans 3D),
qui semble pour l'instant plus ou moircompEte» et « finale». Mais au niveau pratique le cas
est moins clair. Certes la communeawd dja pu capitaliser sur cette mi@Se pour ceer des al-
gorithmes de reconstruction et de transfert qui sembl@st ¢fficaces, au moins au niveau des
primitives ggongtriques isaes. Maisa'mon avis — comme c’est souvent le cas dans la recherche,
et bien qu’on a beaucoup appris dans le processustaitline victoire un pea la Pyrrhus. Misa®
part les cas les plus simples de deueerituellement de trois images, on a app&fnitivement
gue les contraintes d’appariement — et en particulier leurs contraintes de consistance entre elles —
sont algbriguement si complexes et redondantes, qu'’il semble plus prudent s’enfuir aot pleist”
la simplicite relative d’une re@sentation 3D traditionnelle. J'estime que le tenseur quadrifocal n'a
jamaiséte utilisé de faon convaincante en vraie grandeu, et que neéime pour le tenseur trifocal,

il est dans la plupart des cas plus facile de bascubar gqlie possible sur une repentation par
matrices de projection (ou ce qui revient en efida méme chose, sur une r&s€ntation homo-
graphie +epipdle). Méme si on se limite aux regséntations hyper-redondantek base d'images
(plénoptique, mosgues...), on ne peut pas se passes tohgtemps de la consistanaogBtrique
globale, qui semble exiger une repentation plus ou moins explicite du monde 3D.

Il faut également souligner qu'il y a des cas que I'on n'a pas encoresnudre, le plus im-
portantetant les contraintes d’appariement entre quadriques 3D dans 3 images (ce quieast li”
probléme de I'obtention de la structure euclidiermpartir de 3 images — voir plus bas). J'ai alberd”
ce probeme plusieurs fois par plusieursethodes diffrentes, avec des sascparfois partiels mais
jamais complets. En principe il esfacile » — 'expansion de certainsetérminantd 0 x 10 dont les
coefficients sont quadratique aux matrices de projection, et leur regroupement en terme de (termes
qui sont un produite de 5) tenseurs d’appariement. Mais en pratique c’est trop lcemtk avec
les astuces diverses que j'ai su mettre en oeuvre. |l est bien possible gu’il n'y ait aucune solution
simple. Et néme s'il N’y en a, il est probable qu’elle aurait un nombestimportante de formes
alternatives, gaCe auxequivalences Grassmann-Cayley.

3.2 Resung de « Optimal Estimation of Matching Constraints » —
SMILE’98

La version ci dessous de ce papier fut pataii workshop SMILE'98 de ECCV’98 [Tri98]. Il
décrit une approcha 'estimation optimale statistique adaptaux petits probémes gongétriques
tordus» qu’on retrouve si souvent en vision, et plus partierdment aux contraintes d’appariement
multi-images. Puis ilesume mes travaux sur une biblietjue nurefique sgcialig€e pour ce genre
de probEme. Une version pliminaire du papier contient plus detdil technique sur la &pn de
formuler I'optimisation [Tri97b].

Le texte repose sur quatre axes principaux uge reformulation du probhe gnréral d’ajuste-
ment d’un moele ggometrique sur les dora€s incertaines, bas’sur I'optimisation sous contraintes ;
(i) une discussion de la melilSation des erreurs statistiques robusté@g);une discussion de la pa-
ramétrisation des problhes gongtriques complexes, face aux litkestde choix de jauge (sygshe
de coordonaés), contraintes de consistanet, (iv) une beve discussion de comment casxér
la performance d’'une telle athode.
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Considrons un proldme d’'ajustementapnétrique simple, par exemple I'ajustement d’'une
surface implicite sur un ensemble de points 3D incertains. On suppose gu'il y«a/uaie» surface
sous-jacente qui est inconnue, et desais» points 3D sous-jacents qui scegdlement inconnus.
Les points tombent pcigment sur la surface, donc ilenfient sans aucuresidu sesquations
implicites. Mais on ne conn@i la surface ni les points — on observe seulement une versioméruit”
des points, et on voudrait estimer au mieux la surfacventuellement les points 3D sous-jacents.
L'approche classique consiste en). (minimiser en les paraatres de la surface, la somme des
distances (Mahalanobis-) orthogonales des observatidassurface ;i{) estimer le point dans la
surface la plus procha chague observation. La nouvelle approche consiste en: introduire les po-
sitions des points sous-jacents inconnus comme des paessupm@mentaires dans le prabhe,
et optimiser sutousles parareires, et de la surface, et des points. Cette @eueiapproche est
logiquement plus simple etdoriquement plus pcise, mais le nombre de paretresa optimiser
est nettement plus grandellhmoins, la matrice Jacobienne de ce nouveaersgsest &S creuse
et une formulation appro@€ de I'alggbre nunetique nous donne une algorithme efficace.

3.3 Resung de« Differential Matching Constraints » —ICCV’99

Cet article fut pubk'a ICCV’99 [Tri99]. Il reprend lesléments de base du papieatching
Constraints and the Joint Imagei dessus, et les redléloppe au cas @guent en pratique)uo”
plusieurs des caeras sont &S proches les unes aux autres. Il y avajadle nombreusetides
sur ce prol#me dans le cas de deux images caklisr& flot optique»), mais tes peu dans les cas
multi-images et/ou non-calibe’s [HO93, VF95, VFI6AH96, AHI8, SS97]. Le travail déstrém
& Heyden AH96, AH98] bas sur les sfies de Taylorgfait le seula’aborder systhatiquement
dans cette limite les contraintes multi-images. Maimon avis cette approcheetdit pas satisfai-
sante : elle mena# des contraintes etdes tenseurs défentiels tes complexes et sans fim, &
la théorie discete avait des contraintes et tenseurs relativement simples en 4 images au maximum.
La source de cette diffictest en effet lesesie de Taylor: approche hors pair quand lepld-:
cements sont vraiment infiesimaux, mais qui requiert un nombre infini de termes pour exprimer
tout dplacement fini (et tous legedlacements qu'on voit en pratiqaentfinis !).

On a donc dvelop® une expansioa la base de difffencedinies qui est mieux adapt au
probléme. En plus, pouetfe capable de traiter lee@iences multiples, oregéralise au caswles
images tombent en plusieurs groupes, celles de chaque grtami@roche les unes des autres, et les
groupesetant autories détre mieux spages. On consite aussi bavement le cas desuite d’'un
tenseur d’'appariement» le long d'une squence d’images, qui peatré une aide la suite des
cibles eta'la recouvrement de laegh¥trie caneras-sehe. Ce caa des liens forts avec I'estimation
optimale i€rative des tenseurs, car les miggeur du tenseur — ou le long de lecgience, ou dans
une boucle erative — se basent sur leemésequations.

Perspectives

Ce travail a €ussi dans le sensi@h a ceé un formalisme efficace et faci'emettre en oeuvre
pour les petits dplacements. BEnmoins, certaines de mes conclusions restgutives : dans les
cas @i tousles images sont proches les unes aux autres, bien que les expansiongremabf
finies soient possibles, elles ne me semblent pas apporter grand chose par rappesuliatsr’
correspondants non-défféntiels. Leur forme est plus complexe, leuegsion en pratique semble
la méme ou Egerement pirea'cause des erreurs de troncature, et leureddgrhon-ligarie esta
peu pes le néme: il n'y a pas de liaarisation de contraintes de consistance comme dans le cas
de la suite d’'un tenseur, car fgoint d’expansion» (le tenseur de bas quand toutes les images
coincident) est singulier.
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En plus, pour tous leesultats bass sur le tenseur trifocal, il me semble plus direct de convertir
dés que possible dans une regghtation bas sur les matrices de projection (ou — ce qui revéent °
la méme chose — sur les homographies etlaigsles).
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Abstract a topic of lively interest in the vision community.

_ _ _ _ This paper uncovers some of the beautiful and use-
This paper studies the geometry of perspective projecyy strycture that lies behind them and should be of
tion into multiple images and the matching constraints;

that this induces between the images. The combined prol—r?tereSt to anyone working on the geometry of vi-

jections produce a 3D subspace of the space of combined'©" We will show that in thre.e dimensions there

image coordinates called tiwnt image. This is a com-  are only three types of constraint: the fundamental
plete projective replica of the 3D world defined entirely Matrix, Shashua’s trilinear tensor, and a new quadri-
in terms of image coordinates, up to an arbitrary choice oflinear four image tensor. All other matching con-

certain scale factors. Projective reconstruction is a canonstraints reduce trivially to one of these three types.
ical process in the joint image requiring only the rescal- Moreover, all of the constraint tensors fit very natu-

ing of image coo'rdinates.. Thg matching cpnstraint_s te"rally into a single underlying geometric object, the

whether a set of image points is the projection of a smglejoint image Grassmannian Structural constraints

world point. In 3D there are only three types of match- h . lead drati |
ing constraint: the fundamental matrix, Shashua’s trilin- on the Grassmannian tensor lead to quadratic rela-

ear tensor, and a new quadrilinear 4 image tensor. Alltions between the matching tensors.
of these fit into a single geometric object, floint im- The joint image Grassmannian encodes precisely
age Grassmanniartensor. This encodes exactly the in- the portion of the imaging geometry that can be re-
formation needed for reconstruction: the location of the covered from image measurements. It specifies the
jointimage in the space of combined image coordinates.loca,[iOn of thgoint image, a three dimensional sub-
Keywords: Computer Vision, Visual Reconstruction, manifold of the space of combined image coordi-
Projective Geometry, Tensor Calculus, Grassmann Gepgtes containing the matching-tuples of image
ometry. points. The topology of the joint image is compli-
cated, but with an arbitrary choice of certain scale
factors it becomes a 3D projective space containing
a projective ‘replica’ of the 3D world. This replica

This is the first of two papers that examine the geom-'s all that can be inferred about the world from im-

. - age measurements. 3D reconstruction is an intrinsic,
etry underlying the recovery of 3D projective struc- . . : A
canonical geometric process only in the joint image,

ture from multiple images. This paper focuses on the . . .
P g bap however an appropriate choice of basis there allows

eometry of multi-image projection and theatch- o
9 yo 1g€ proj : the results to be transferred to the original 3D world
ing constraints that this induces on image measure- S
up to a projectivity.

ments. The second paper will deal with projective
reconstruction techniques and error models. This is a paper on the geometry of vision so there

Matching constraints like the fundamental ma- will be ‘too many equations, no algorithms and no
trix and Shashua'’s trilinear tensor [19] are currently real images’. However it also represents a power-
This unpublished paper dates from 1995. The work was sup-fUI new way to thmk_ about projective vision and
ported by the European Community through Esprit programsthat doeshave practical consequences. To under-
HCM and SECOND. stand this paper you will need to be comfortable

1 Introduction

15
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with the tensorial approach to projective geome-early vision will be ignored: we will basically as-
try: appendix A sketches the necessary backgroundsume that the images have already been reduced to
This approach will be unfamiliar to many vision re- a smoldering heap of geometry. When token match-
searchers, although a mathematician should have nmmg between images is required, divine intervention
problems with it. The change of notation is unfortu- will be invoked (or more likely a graduate student
nate but essential: the traditional matrix-vector nota-with a mouse).

tion is simply not powerful enough to express many  Our main interest is in sequences of 2D images of
of the concepts discussed here and becomes a reatdinary 3D Euclidean space, but when it is straight-
barrier to clear expression above a certain complexforward to generalize t@®; dimensional images of
ity. However in my experience effort spent learning ( dimensional space we will do so. 1D ‘linear’ cam-
the tensorial notation is amply repaid by increasederas and projection within a 2D plane are also prac-
clarity of thought. tically important, and for clarity it is often easier to

In origin this work dates from the initial projec- see the general case first.

tive reconstruction papers of Faugeras & Maybank OUr notation is fully tensorial with all indices
[3, 15, 5]. The underlying geometry of the situa- written out explicitly €.f. appendix A). It is
tion was immediately evoked by those papers gl-modelled on notation developed for mathematical
though the details took several years to gel. In thatPhySics and projective geometry by Roger Penrose

time there has been a substantial amount of word18l- Explicitindices are tedious for simple expres-
on projective reconstruction. Faugeras’ book [4] is SIoNs but make complex tensor calculatiansich

an excellent general introduction and Maybank [14] €2SI€r- Superscripts denote contravariaet point
provides a more mathematically oriented synthesis©" Vector) indices, while subscripts denote covari-
Alternative approaches to projective reconstruction@nt (- hyperplane, linear form or covector) ones.
appear in Hartleyet.al. [8] and Mohret.al. [17]. Contravariant and covariant |nd|ces transform in-
Luong & Vieville [13] have studied ‘canonic decom- Versély under changes of coordinates so thatime

positions’ of projection matrices for multiple views. traction (i.e. dot product’ or sum over all values)
Shashua [19] has developed the theory of the trilin-Of @ Covariant-contravariant pair is invariant. The
ear matching constraints, with input from Hartley EiNStein summation convention’ applies: when the
[7]. A brief summary of the present paper appearsSame index symbol appears in covariant and con-
in [21]. In parallel with the current work, both Wer- travariant positions it denotes a contraction (implicit
. ] . . b

man & Shashua [22] and Faugeras & Mourrain [6] sgmg over that index pair. For exampkjx” and
independently discovered the quadrilinear constraint< Lt POth stagdbfor standard matrix-vector multi-
and some of the related structure (but not the ‘bigPlication >-, Tyx". The repeated indices give the
picture’ — the full joint image geometry). However contraction, not the order of terms. Non-tensorial la-

the deepest debt of the current paper is to time sperf€!S like image number are never implicitly summed

in the Oxford mathematical physics research group®Ve"-

lead by Roger Penrose [18], whose notation | have Different types of index denote different space
‘borrowed’ and whose penetrating synthesis of theOr 1abel types. This makes the notation a little
geometric and algebraic points of view has been dParoque but it helps to keep things clear, espe-

powerful tool and a constant source of inspiration. Cially when there are tensors with indices in sev-
eral distinct spaces as will be common here*

denotes thehomogeneous vector space of objects
2 Conventions and Notation (i.e. tensors) with index type:, while P* denotes

the associategrojective space of such objects de-
The world and images will be treated as projectivefined only up to nonzero scale: tensdi¥ and
spaces and expressed in homogeneous coordinatesT® in ‘H” represent the same element7f for
Many equations will apply only up to scale, denoted all A # 0. We will not always distinguish points
a ~ b. The imaging process will be approximated of P* from their homogeneous representatives in
by a perspective projection. Optical effects such#*. Indicesa, b, ... denote ordinary (projectivized
as radial distortion and all the difficult problems of homogenizedd-dimensional) Euclidean space®
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(@ = 0,...,d), while A;, B;,... denote homoge- mann coordinates and dual Grassmann coordi-
neous coordinates in thB,;-dimensionali’” image  natesfor the subspace. Read appendix A for more
PAi (A; = 0,...,D;). When there are only two details on this.

imagesA and A’ are used in place of; andA,. In-

dicesi,j,... = 1,...,m areimage labels, while 3 Preludein F

p,q,... = 1,...,n arepoint labels. Greek in-

dicesa, ... denote the combined homogeneous g 4 prelude to the arduous general case, we wil

coordinates of all the images, thought of as a sin-yjeqy consider the important sub-case of a single
gle big (nl? + m)-dimensionaljoint image vector i o o images of 3D space. The low dimension-
(D =321 D). Thisis discussed in section 4. ality of this situation allows a slightly simpler (but
The same base symbol will be used for ‘the sameultimately equivalent) method of attack. We will
thing’ in different spaces, for example the equationswork rapidly in homogeneous coordinates, view-
x4 ~ Pix® (i = 1,... ,m) denote the projection ing the 2D projective image spac®s andP4’ as
of a world pointx® € P* tom distinct image points 3D homogeneous vector spadéd andH* (4 =
x4i ¢ PAi viam distinct perspective projection ma- 0,1,2; A = (/,1,2) and the 3D projective world
tricesPZ:. These equations apply only up to scale spaceP® as a 4D vector spacK® (a = 0,... ,3).
and there is an implicit summation over all values of The perspective image projections are tRent ma-
a=0,...,d tricesP4 andP2’ defined only up to scale. Assum-
We will follow the mathematicians’ convention ing that the projection matrices have rank 3, each
and use index0 for homogenization,i.e. a Eu- has a 1D kernel that corresponds to a unique world
clidean vector(z!---2%)T is represented projec- point killed by the projection:P; e* = 0 and
tively as (1 z'---z%)7 rather than(z!--- 29 1), P2 ¢ = 0. These points are called thentres
This seems more natural and makes notation an®f projection and each projects to thapipolein the
coding easier. opposite imagee? = PAe/” ande?’ = P¥ e
Tleb-< denotes the result of antisymmetrizing !fth_e centrgs of projection are distinct, the two pro-
the tensofT'®-< over all permutations of the indices 1€Ctions define & x 3 rank 2 tensor called thtein-
ab. .. c. For examplerlet = %(Tab — T, Inany Qamentallma;[‘nx 11‘;1,4/ [4]. This maps any given
d -+ 1 dimensional linear space there is a unique-up-'mage pointx (jf Jtoa correjpgndln@plpol_ar
to-scaled + 1 index alternating tensar®an and ~ 1N€ Loy ~ Fa4x” (La ~ F40x7) inthe otherim-
its dual €qyq,..a,. Up to scale, these have compo- age. Two image pom_ts c_orresponq in the sense _that
nents+1 and0 asagas . . . ay, is respectively an even ey could be the projections of a single world point
or odd permutation o1 ... n, or not a permutation I and only |fAea§,h lies on the epipolar line of the
at all. Any antisymmetrid: + 1 index contravariant Other: Faa x“x® = 0. The null d'reCt'Oni of the
tensor Tl%0-x] can be ‘dualized’ to an antisym- fundamentg! matrix are the ep_lpol$;.4A/ et =0
metric d — k index covariant oné+T),, , ,..q, = andF 44 e = 0, so every epipolar line must pass
1 Eak_,_l~~~adbo~~~kabOmbk1 and vice versa through the corresponding epipole. The fundamen-

T , . : )
Taoak  — L (4T, .y, ebsibaorar tal matrix F 44 can be estlmat_ed from image cor
. (ARt AT Okg1bd ' respondences even when the image projections are
without losing information.
_ _ T unknown.
A k dimensional projective subspace of the Two image vectors<? and x?’' can be packed

dimensional projective spacP can be denoted jnto a single 6 component vectaf = (x4 x4)T
by either the span of any + 1 independent \yhereq = 0,1,2,0/,1/,2. The space of such vec-

points{x}|i=0,... ,k} init or the intersection of o5 will be calledhomogeneous joint image space
any d — k independent linear forms (hyperplanes) 1y Quotienting out the overall scale factor
{Ili =k +1,... ,d} orthogonal to it. The an- produces a 5 dimensional projective space called
tisymmetric tensorscy® ... x,* and It -1, projective jointimage spaceP®. The two3 x 4im-

uniquely define the subspace and are (up to scale) inage projection matrices can be stacked into a single
dependent of the choice of points and forms and duab x 4 joint projection matrix P% = (P2 PA)T.
to each other. They are called respectivelsass-  If the centres of projection are distinct, no point in
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P is simultaneously killed by both projections, so any(x* x4)T € 1%, the equations

the joint projection matrix has a vanishing kernel A

and hence rank 4. This implies that the joint pro- 0 = < ua ta > ( ))XA, )
jection is a nonsingular linear bijection frof® va v A X

onto its image space if“. This 4 dimensional uax? upx? A
image space will be called tHeomogeneous joint - < vax?d vax? ) < N )

image Z7¢. Descending tgP¢, the joint projection h trivial solution if and onlv if
becomes a bijective projective equivalence between ave a nontrivial solution I and only |
uAXA uA/xA/ >

P¢ and theprojective joint image PZ¢ (the pro- AN
jection of Z into P%). The projection ofPZ“ to Fanx™x" = Det( vaxA v x4
each image is just a trivial deletion of coordinates,
so the projective joint image is a complete projec-
tive replica of the world space in image coordinates
Unfortunately,PZ is not quite unique. Any rescal-
ing {P2, P2} — {\PZ, NP2} of the underlying
projection matrices produces a different but equiv-
alent spacePZ®. However modulo this arbitrary
choice of scaling the projective joint image is canon-
ically defined by the physical situation.

Now suppose that the projection matrices are un-( uy uy > R A( uy uy )( /X 0 )
known but the fundamental matrix has been esti-\ va va VA Var 0 1/X
mated from image measurements. Silitkas rank  \yhere is an arbitrary nonsingularx 2 matrix and
2, it can be decomposed (non-uniquely!) as {\, \'} are arbitrary nonzero relative scale factors.

A is a linear mixing of the constraint vectors and has
ug  uy > no effect on the location of®, but A and \’ repre-
VA va sent rescalings of the image coordinates that move
Z° bodily according to

=0

In other words, the set of matching point pairs in
the two images is exactly the set of pairs that can
be rescaled to lie iTf“. Up to a rescaling, the joint
image is the set of matching points in the two images.
A priori, Z¢ depends on the choice of the decom-
positionF 4 4 = ua v — vauys. Infact appendix
B shows that the most general redefinition of tie
andv’s that leaved" unchanged up to scale is

Fao = ugvay —vauy = Det(

whereuy £ v4 anduy # vy are two pairs of N N

independent image covectors. It is easy to see that ( XA/ ) — ( /\/XA, >

uy < uy andvy < vy are actually pairs of cor- X A x

responding epipolar linés In terms of joint image  Hence, giverF and an arbitrary choice of the rel-
space, thex's andv’s can be viewed as a pair of 6 ative image scaling the joint imagg” is defined
component covectors defining a 4 dimensional Iin-unique|y_

ear subspacg® of H* via the equations: Appendix B also shows that given any pair of non-
singular projection matriceP# and P#" compat-

N x4 ug x4 +uy x4 ible with F 44/ in the sense that the projection of

NS {( <A ) | ( vaxA + vy xA ) every point of P* satisfies the epipolar constraint

Faa PAPY x9%" = 0, theZ® arising from fac-
AR VIR VY. x/ —0 torization of F' is projectively equivalent to th&“
VA Vg x4 arising from the projection matrices. (Here, non-
singular means that each matrix has rank 3 and the
Trivial use of the constraint equations shows that anyjoint matrix has rank 4i.e. the centres of projection
point (x4 x4")T of 7 automatically satisfies the are unique and distinct). In fact there is a constant
epipolar constrainF 4 4 x*x4" = 0. In fact, given  rescaling{PA, P2} — {APA X P’} that makes
. the two coincide.
1 H HTR. A .
Epipolarity: ua e® = 0 = wva e” follows In summary, the fundamental matrix can be fac-
from 0 = Fa. e = (uAeA) Var — (vAeA) uu, . : . . ..

. . torized to define a three dimensional projective sub-
given the independence ofiy, and v, for rank 2 F. o . .
CorrespondenceFor anyx® onu, us x* = 0 implies that ~ SPacePZ of the space of combined image coor-
Fau x? = —(vax®)uy ~uy. dinates. PZ¢ is projectively equivalent to the 3D
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world and uniquely defined by the images up to H?

an arbitrary choice of a single relative scale factor. >< Pa |

Projective reconstruction if?Z® is simply a mat- o e

ter of rescaling the homogeneous image measure-

ments. This paper investigates the geometrpHf i
and its multi-image counterparts and argues that up
to the choice of scale factor, they provitte natu-

ral canonical projective reconstruction of the infor-
mation in the images: all other reconstructions are
merely different ways of looking at the information
contained infPZ<.

HOMOGENEOUS

PROJECTIVE

"i

joint image

FULLY PROJECTIVE
/ 1-'
o
3 \e

2

x 2 <

] l =
v

>

4 Too Many Joint Images

WORLD SPACE JOINT IMAGE SPACE IMAGE SPACES

Now consider the general case of projection into
m > 1 images. We will model the world and im-
ages respectively as and D; dimensional projec-
tive spacesP® (a = 0,...,d) and P4 (4; = points. Since anyn-tuple of matching points is an
0,...,D;i=1,...,m)and use homogeneous co- element ofP41 x ... x P4n it may seem that this
ordinates everywhere. It may appear more naturakpace is the natural arena for multi-image projective
to use Euclidean or affine spaces, but when it comeseconstruction. This is almost true but we need
to discussing perspective projection it is simpler toto be a little more careful. Although most world
view things as (fragments of) projective space. Thepoints can be represented by their projections in
usual Cartesian and pixel coordinates are still in-P41 x ... x P4, the centres of projection are
homogeneous local coordinate systems covering almissing because they fail to project to anything at
most all of the projective world and image mani- all in their own images. To represent these, extra
folds, so projectivization does not change the essenpoints must be glued on B4t x - .. x PAm,
tial situation too much. When discussing perspective projections it is con-
In homogeneous coordinates the perspective imvenient to introduce homogeneous coordinates. A
age projections are represented by homogeneouseparate homogenizer is required for each image,
(D;+1) x (d+1) matrices{P2|i = 1,... ,m} that  so the result is just the Cartesian proda¢t’ x
take homogeneous representatives of world point§{42 x --. x H4= of the individual homogeneous
x® € P to homogeneous representatives of imageimage space${:. We will call this D + m di-
points x4 ~ PZix® ¢ P4, The homogeneous mensional vector spadeomogeneous joint image
vectors and matrices representing world poirts  space®. By quotienting out the overall scale fac-
image pointsx” and projectiondi are each de- tor in H® in the usual way, we can view it as a
fined only up to scale. Arbitrary nonzero rescal- D + m — 1 dimensional projective spag@* called
ings of them do not change the physical situationprojective joint image space This is abona fide
because the rescaled world and image vectors stilprojective space but it still contains the arbitrary
represent the same points of the underlying projectelative scale factors of the component images. A
tive space$® andP4, and the projection equations point of H* can be represented as/a+ m com-

Figure 1: The various joint images and projections.

x4 ~ P4 still hold up to scale. ponent column vectax® = (x4t ... x4»)T where
Any collecton of m image points thex“: are homogeneous coordinate vectors in each

{x4i]i =1,... ,m} can be viewed as a single point image. We will think of the index: as taking values

in the Cartesian produd®@4t x P42 x ... x PAm  0y,1y,...,D;,0i41,... , Dy, Where the subscripts

of the individual projective image spaces. This is aindicate the image the coordinate came from. An
D = """, D, dimensional differentiable manifold individual image vectox”i can be thought of as a
whose local inhomogeneous coordinates are jusvector inH* whose non-imageé-components van-
the combined pixel coordinates of all the image ish.
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Since the coordinates of each image are onlycoordinates. Similarly we can define the projective
defined up to scale, the natural definition of the and fully projective joint image$Z® and FPZ*
equivalence relation~’ on H® is ‘equality up as the images of the projective world spgee in
to individual rescalings of the component images’: the projective and fully projective joint image spaces
(x4t oo xAn)T o (A x4 A xA)T for P and FP* under the projective and fully pro-
all {\; #0}. So long as none of th&?: vec- jective joint projections. (EquivalentlyPZ® and
tors vanish, the equivalence classes of are m- FPI* are the projections af“ to P* and FP<).
dimensional subspaces ®i* that correspond ex- If the (D 4+ m) x (d + 1) joint projection ma-
actly to the points ofP4 x --- x P4m. However  tix P2 has rank less thai + 1 it will have a non-
when some of the“! vanish the equivalence classes trivial kernel and many world points will project to
are lower dimensional Subspaces that have no COlthe same set of image points, SO unique reconstruc-
responding point P4 x ... x P4 We will  tion will be impossible. On the other handBf* has
call the entire stratified set of equivalence classesankd-+1, the homogeneous jointimagé will be a
fully projective joint image space 7P“. Thisis g1 dimensional linear subspacef andP? will
basically P41 x ... x P4~ augmented with the pe a nonsingular linear bijection frofi® onto Z°.
lower dimensional product spacgs' x --- x P4 gimilarly, the projective joint projection will define
for each proper subset of imagés..,j. Most g nonsingular projective bijection frof® onto the
world points project to ‘regular’ points ofP“ in 4 dimensional projective spacBZ® and the fully
P4 x ... x P4, but the centres of projection projective joint projection will be a bijection (and at
prOjeCt into lower dimensional fragmentsﬁfpa. most points a diﬁeomorphism) fro® onto FPZ™

A set of perspective projections inta projec-  jn FP*. Structure inP* will be mapped bijectively
tive imagesP“i defines a uniqugoint projection g projectively equivalent structure IRZ<, SoPZ®
into the fully projective joint projective image space will be ‘as good as’P® as far as projective recon-
FP?. Given an arbitrary choice of scaling for the struction is concerned. Moreover, projection from
homogeneous representati@®;: i = 1,... ,;m} P to the individual images is a trivial throwing
of the individual image projections, the joint projec- away of coordinates and scale factors, so structure in
tion can be represented as asingle+m) x (d+1) Pz has a very direct relationship with image mea-

jOint projection matrix surements.
Pl Unfortunately, althouglPZ“ is closely related to
PO = CHE e the images it is not quite canonically defined by the

a

physical situation because it moves when the indi-
vidual image projection matrices are rescaled. How-
which defines a projective mapping between the un-ever, the truly canonical structure — the fully pro-
derlying projective spaceB* andP®. A rescaling jective joint imageFPI“ — has a complex strat-
{P4i} — {)\; P2} of the individual image projec- ified structure that is not so easy to handle. When
tion matrices does not change the physical situatiorrestricted to the product spad@’! x ... x P4m,
or the fully projective joint projection otFP%, but  FPZ? is equivalent to the projective spag¥ with
it doeschange the joint projection matriP; and  each centre of projection ‘blown up’ to the corre-
the resulting projections fror{® to H® and from  sponding image spad@“:. The missing centres of
P*toP<. An arbitrary choice of the individual pro- projection lie in lower strata ofFP“. Given this
jection scalings is always necessary to make thinggzomplication, it seems easier to work with the sim-
concrete. ple projective spac®Z® or its homogeneous repre-
Given a choice of scaling for the components of sentativeZ® and to accept that an arbitrary choice
P&, the image ofH® in H® under the joint projec- of scale factors will be required. We will do this
tion P¢ will be called thehomogeneous joint im-  from now on, but it is important to verify that this
ageZ“. This is the set of joint image space points arbitrary choice does not affect the final results, par-
that are the projection of some point in world space:ticularly as far as numerical methods and error mod-
{P& x* € H*| x® € H*}. InZ%, each world point els are concerned. It is also essential to realize that
is represented by its homogeneous vector of imagealthoughfor any one pointhe projection scale fac-

A
p;m
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tors can be chosen arbitrarily, once they are chosesome other world spacg® , the projection matrices
they apply uniformly to all other pointsno matter  (and hence the basis vectors Z“) must change
which scaling is chosen, there is a strong coherenceaccording taPg — f’g, =Py A’ to compensate.
between the scalings of different pointd central  The new basis vectors are a linear combination of the
theme of this paper is that the essence of projectivenld ones so the spad@Z® they span is not changed,
reconstruction is the recovery of this scale coherencéut the individual vectorsire changed: all we can
from image measurements. hope to recover from the images is the geometric lo-
cation of PZ%, not its particular basis.
But how can we specify the location &Z“ ge-
5 The Joint Image Grassmannian ometrically? We originally defined it as the span
Tensor of the columns of the joint projectio®y, but that
is rather inconvenient. For one thirRZ“ depends
We can view the joint projection matri@>  only on the span and not on the individual vectors,
(with some choice of the internal scalings) in two SO it is redundant to specify every componenif.
ways: (i) as a collection ofm projection ma- What is worse, the redundant components are ex-
trices from P¢ to the m imagesP4i; (i) as a actly the things that can not be recovered from image
set ofd + 1 (D + m)-component column vec- Measurements. It is not even clear how we would
tors {P%a =0,...,d} that span the joint im- USea‘span’even if we did manage to obtain it.
age subspaceZ® in H. From the second Algebraic geometers encountered this sort of

point of view the images of the standard basisproblem long ago and developed a useful par-

{(10---0)T,(01---0)7,... ,(00---1)T} for H® tial solution calledGrassmann coordinates(see
(i.e. the columns ofP%) form a basis forZ® and a  appendix A). Recall thafa---c] denotes anti-
set of homogeneous coordinates’|a = 0,... ,d} symmetrization over all permutations of the in-
can be viewed either as the coordinates of a poindices a---c. Given k + 1 independent vectors
x® in P or as the coordinates of a poilR2x® {x¢|i=0,... ,k} inad+ 1 dimensional vector

in Z* with respect to the basigP¥|a = 0,... ,d}.  spaceH?, it turns out that the antisymmetric+ 1
Similarly, the columns ofP® and the(d + 2)"¢  index Grassmann tensorx® - = x...x%]
column ZZ:O P& form a projective basis foPZ* uniquely characterizes thle+ 1 dimensional sub-
that is the image of the standard projective basisspace spanned by the vectors and (up to scale) does
{(10---0)7,...,(00---1)",(11---1) "} for P, not depend on the particular vectors of the subspace
This means thaany reconstruction iP® can be  chosen to define it. In fact a poigt lies in the span
viewed as reconstruction i®Z® with respect to a  if and only if it satisfiesx/@0ery+1] = 0, and un-
particular choice of basis thereThis is important ~ der a(k + 1) x (k + 1) linear redefinitionA’; of the
because we will see that (up to a choice of scale facbasis element$x{ }, x? % is simply rescaled by
tors)PZ¢ is canonically defined by the imaging situ- Det(A). Up to scale, the components of the Grass-
ation and can be recovered directly from image mea-mann tensor are thé + 1) x (k + 1) minors of the
surementsln fact we will show that the information (d + 1) x (k + 1) matrix of components of the{.
in the combined matching constraints is exactly the The antisymmetric tensors are global coordinates
location of the subspacBZ® in P%, and this is ex- for the £ dimensional subspaces in the sense that
actly the information we need to makecanonical each subspace is represented by a unique (up to
geometric reconstruction @“ in PZ* from image  scale) Grassmann tensor. However the parameteri-

measurements zation is highly redundant: for < k < d — 2 the
By contrast we can not hope to recover the ba-k + 1 index antisymmetric tensors have many more
sis in P or the individual columns oP¢ by im-  independent components than there are degrees of

age measurements. In fact any two worlds thatfreedom. In fact only the very special antisymmet-
project to the same joint image are indistinguish- ric tensors that can be written in the above ‘simple’
able so far as image measurements are concernetbrm xglo .- -xZ’“] specify subspaces. Those that can
Under an arbitrary nonsingular projective transfor- are characterized by the quadracassmann sim-

mationx® — %% = (A~1)%, x* betweenP® and  plicity relations x% % xbobxl = @,
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In the present case thit+ 1 columns ofP§ spec- image locations are locally parameterized by the
ify the d dimensional jointimage subspa®&€®. In-  ((D +m) — (d + 1)) x (d 4+ 1) matrices, or equiva-
stead of antisymmetrizing over the image space indently by givingd+1 (D+m)-component spanning
dicesa we can get the same effect by contracting basis vectors ifP* modulo(d + 1) x (d + 1) linear
the world space indiceswith thed+ 1 dimensional  redefinitions). The overall scale factor bf© >
alternating tensor. This gives thie+ 1 index anti-  has already been subtracted from this count, but
symmetricjoint image Grassmanniantensor it still contains them — 1 arbitrary relative scale

factors of them images. Subtracting these leaves

Iaoal---ad = 1 Pao Poq . Pad saoal---ad X K

(@+n! a0 a1 aq the Grassmann tensor (or the equivalent matching
N Pgao P .. Pgd} constraint tensors) withD +m —d — 1) (d + 1) —
m + 1 physically meaningful degrees of freedom.
Although we have defined the Grassmann tensor irThis agrees with the above degree-of-freedom count
terms of the columns of the projection matrix ba- based on projection matrices.
sis for PZ?, it is actually an intrinsic property of
PZ that defines and is defined by it in a manner
completely independent of the choice of basis (up to
scale). In fact we will see that the Grassmann tensor, . , :
. . . Suppose we are given a set of image points
contains exactly the same information as the com-__"; " .
, . : {x?|i=1,...,m} that may correspond to an un-
plete set of matching constraint tensors. Since th

. . . %nown world pointx® via some known projection
matching constraints can be recovered from image

matriceng‘i. Can the world poink® be recovered,
measurements, the Grassmann tensor can be too. .
and if so, how?

As a simple test of plausibility, let us verify that ~ As usual we will work projectively in homo-
the Grassmann tensor has the correct number ofeneous coordinates and suppose that arbitrary
degrees of freedom to encode the imaging geomenonzero scalings have been chosen forstfe and
try required for projective reconstruction. The ge- P4:, The image vectors can be stacked into a
ometry of anm camera imaging system can be D +m component joint homogeneous image vector
specified by giving each of the: projection map-  x“ and the projection matrices can be stacked into a
pings modulo an arbitrary overall choice of projec- (D + m) x (d + 1) component joint homogeneous
tive basis in?. Up to an arbitrary scale factor, a projection matrix, wheref is the world dimension
(Di + 1) x (d + 1) projection matrix is defined by andD = > D, is the sum of the image dimen-
(D; + 1)(d + 1) — 1 parameters while a projective sions.

6 Reconstruction Equations

basis inP* has(d + 1)(d + 1) — 1 degrees of free- Any candidate reconstructior® must project to
dom. Them camera projective geometry therefore the correct point in each image:*i ~ P2} x%. In-
has serting variableg\;| i = 1,... ,m} to represent the

m unknown scale factors gives homogeneous equa-

Z((Di +1)(d+1) — 1) — ((d+1)?=1) tions P4 x* — \; x4 = 0. These can be written as
1 asingle(D +m) x (d+1+m) homogeneous linear

= D+m—-d—-1)d+1)—m+1 system, théasic reconstruction equations
independent degrees of freedom. For example <4 0 ... o x*
11m — 15 parameters are required to specify the 0 x* ... o0 -\
geometry ofm 2D cameras viewing 3D projective Pg . ) ) ) A2 | =0
space [13]. : ' E : :
The antisymmetric Grassmann ten$8f "“¢ has 0 0 .o xAn -~ )\
(™) linearly independent components. However "

the quadratic Grassmann relations reduce the numAny nonzero solution of these equations gives a re-
ber ofalgebraicallyindependent components to the constructed world poink® consistent with the im-
dimension(D+m—d—1)(d+1) of the space of pos- age measurements?:, and also provides the un-
sible locations of the joint imagg&® in P~. (Joint  known scale factor§)\;}.



Papier : The Geometry of Projective Reconstruction 23

These equations will be studied in detail in the This construction is important because although
next section. However we can immediately remarkneither the coordinate systemf* nor the columns
that if there are less image measurements than worldf P¢ can be recovered from image measurements,
dimensions D < d) there will be at least two more the joint imageZ® canbe recovered (up to an arbi-
free variables than equations and the solution (if ittrary choice of relative scaling). In fact the content
exists) can not be unique. So from now on we re-of the matching constraints weciselythe location
quire D > d. of 7% in ‘H*. This gives a completely geometric

On the other hand, if there are more measure-and almost canonical projective reconstruction tech-
ments than world dimension®( > d) the system nique inZ“ that requires only the scaling of joint
will usually be overspecified and a solution will exist image coordinates. A choice of basisift is nec-
only when certain constraints between the projectionessary only to map the construction back into world
matricesP/ and the image measurememnt$ are  coordinates.
satisfied. We will call these constraintsatching Recalling that the joint image can be located by
constraints and the inter-image tensors they gener-giving its Grassmann coordinate tendst’ and
atematching tensors The simplest example is the that in terms of this a point lies in the joint image if
epipolar constraint. and only ifI [*%7 x% — 0, the basic reconstruction

It is also clear that there is no hope of a unique system is equivalent to the followirjgint image re-
solution if the rank of the joint projection matrR% construction equations
is less thand + 1, because any vector in the kernel
of P& can be added to a solution without changing m
the projection at all. So we will also require the joint Tlod. <Z Ai XAJ> =0
projection matrix to have maximal ranke. d + 1). =1
Recall that this implies that the joint projectid?f;
is a bijection fromP* onto its image the joint im-
agePZ? in P“. (This is necessary but not always
sufficient for a unique reconstruction).

In the usual 3B-2D case the individual projec-
tions are3 x 4 rank 3 matrices and each has a one
dimensional kernel: the centre of projection. Pro- There is yet another form of the reconstruction
vided there are at least two distinct centres of pro-equations that is more familiar and compact but
jection among the image projections, no point will slightly less symmetrical. For notational conve-
project to zero in every image and the joint projec- nience suppose that’ # 0. (We use component
tion will have a vanishing kernel and hence maximal 0 for normalization. Each image vector has at least
rank. (It turns out that in this cadeank(P$) = 4is  one nonzero component so the coordinates can be

This is a redundant system of homogeneous linear
equations for the\; given thel “%*7 and thexi.

It will be used in section 10 to derive implicit ‘re-
construction’ methods that are independent of any
choice of world or joint image basis.

alsosufficientfor a unique reconstruction). relabelled if necessary so thaf: # 0). The pro-
. - L At ; A; oy oA
Recalling that the joint projection columns JECtion etguatlonsPa Xt = A x can be SO|(YEd
{P%a=0,...,d} form a basis for the homoge- for the 0™ component to give\; = (Pg’ x*)/x".

neous joint imag&® and treating thec’ as vectors Substituting back into the projection equations for
in 4 whose other components vanish, we can inter-the other components yields the following constraint
pret the reconstruction equations as the geometricafauations fox® in terms ofx" andP:

statement that the space spanned by the image vec-

tors {x*|i = 1,... ,m} in H* must intersecz®. (X" Py —xMPR)x*=0  Ai=1....D;

At the intersection there is a point @{“ that can

be expressed(i) as a rescaling of the image mea- (Equivalentlyx?i ~ P4ixa impliesx/4: P2 xa =
surements) , \; x4 (ii) as a point off® with co- 0, and the constraint follows by setting; = 0;).
ordinatesx® in the basis{P%|a =0, ... ,d}; (iii) Each of these equations constraitfsto lie in a hy-

as the projection int@® of a world pointx® under  perplane in thel-dimensional world space. Com-
P&, (Since’H® is isomorphic taZ® underP¢, the  bining the constraints from all the images gives the
last two points of view are equivalent). following D x (d + 1) system ofreduced recon-
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struction equations. struction matrix vanish. These minors are exactly
the matching constraints.
x0 P — x4 Py In either case each of the minors involvesd 1
: x*= 0 (world-space) columns and some selectiorl &f 1
x0m PAm _ xAm pOn (Ai=1....Dy) (image-space) rows of the combined projection ma-

trices, multiplied by image coordinates. This means

Again a solution of these equations provides thethat the constraints will be polynomialsg| tensors)
reconstructed homogeneous coordinates of a world the image coordinates with coefficients that are
point in terms of image measurements, and again théd+1) x (d+1) minors of the(D+m) x (d+1) joint
equations are usually overspecified when> d. projection matrixP¢. We have already seen in sec-
Providedx? £ 0 the reduced equations are equiv- tion 5 that these minors are precisely the Grassmann
alent to the basic ones. Their compactness makegoordinates of thgoint imageZ*, the subspace of
them attractive for numerical work, but their lack homogeneous jointimage space spanned by the

of symmetry makes them less suitable for symboliccolumns ofPg. The complete set of these defines
derivations such as the extraction of the matchingZ” in @ manner entirely independent (up to a scale

constraints. In practice both representations are usd@ctor) of the choice of basis If*: they are the only
ful. quantities thatould have appeared if the equations

were to be invariant to this choice of basis (or equiv-
alently, to arbitrary projective transformations of the

7 Matching Constraints world space).
Each of the(d +m + 1) x (d +m + 1) minors of

Now we are finally ready to derive the constraints the basic reconstruction system contains one column
that a set of image points must satisfy in order tofrom each image, and hence is linear in the coordi-
be the projections of some world point. We will as- nates of each image separately and homogeneous of
sume that there are more image than space dimerdegreem in the combined image coordinates. The
sions (O > d) (if not there are no matching con- final constraint equations will be linear in the co-
straints) and that the joint projection mati#X' has  ordinates of each image that appears in them. Any
rank d + 1 (if not there are no unigue reconstruc- choice ofd+m + 1 of the D +m rows of the matrix
tions). We will work from the basic reconstruction specifies a minor, so naively there a(gé?:ﬁl) dis-
equations, with odd remarks on the equivalent re-tinct constraint polynomials, although the simple de-
duced case. gree of freedom count given above shows that even

In either case there arB — d — 1 more equa- in this naive case only) — d of these can be alge-
tions than variables and the reconstruction systeméraically independent. However the reconstruction
are overspecified. The image points must satisfymatrix has many zero entries and we need to count
D — d additional independent constraints for there more carefully.
to be a solution, since one degree of freedom is lost Each row comes from (contains components
in the overall scale factor. For example in the usualfrom) exactly one image. The only nonzero entries
3D—2D case there arkn — 3 additional scalar con- in the imagei column are those from imagstself,
straints: one for the first pair of images and two moreso any minor that does not include at least one row
for each additional image. from each image will vanish. This leaves omly- 1

An overspecified homogeneous linear system ha®f the m + d + 1 rows free to apportion. On the
nontrivial solutions exactly when its coefficient ma- other hand, if a minor contains only one row from
trix is rank deficient, which occurs exactly when some image — say the?: row for some particular
all of its maximal-size minors vanish. For generic values ofi and A; — it will simply be the product
sets of image points the reconstruction systems typof +x“: and anm — 1 image minor because: is
ically have full rank: solutions exist only for the the only nonzero entry in its imagé column. But
special sets of image points for which all of the exactly the samém — 1)-image minor will appear
(d+m+ 1) x (d +m + 1) minors of the basic in several othern-image minors, one for each other
(or (d+ 1) x (d + 1) minors of the reduced) recon- choice of the coordinatel; = 0,... ,D;. At least
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one of these coordinates is nonzero, so the vanishinghosen arbitrarily from any of the images, ... , &,

of the D; + 1 m-image minors is equivalent to the up to the maximum oD; + 1 indices from each im-

vanishing of the singlém — 1)-image one. age. (NB: thex?: stand form distinct vectors whose
This allows the full set ofm-image matching non< components vanish, not for the single vector

polynomials to be reduced to terms involving at x® containing all the image measurements. Since

mostd + 1 images. € + 1 because there are only I%°% js already antisymmetric and permutations

d + 1 spare rows to share out). In the standardthat place a nor-index onx?: vanish, it is enough

3D—2D case this leaves the following possibilities to antisymmetrize separately over the components

(¢t #35#k#£1=1,...,m) (i) 3rows each from eachimage).

in images: and j; (i) 3 rows in image:, and 2 This is all rather intricate, but in three dimensions

rows each in imageg andk; and (i) 2 rows each the possibilities are as follows (£ j # k # | =
in images:, j, k andl. We will show below that ;|

these possibilities correspond respectively to funda- ’
mental matricesi . bilinear two image constraints),
Shashua’s trilinear three-image constraints [19], and
a new quadrilinear four-image constraint. For 3 di- [1AiBidjAx yCiyBiyBil  —
mensional space this is the complete list of possi-
bilities: there areno irreducible k-image matching
constraints fok > 4.

We can look at all this in another way. Consider These represent respectively the epipolar constraint,
thed +m +1 (D + m)-component columns of the  Shashua'’s trilinear constraint and the new quadrilin-
reconstruction system matrix. Temporarily writing ear four image constraint.
x¢ for the image: column whose only nonzero en-
tries arex, the columns ar§P%|a =0,... ,d}
and {x{*|i=1,... ,m} and we can form them
into ad + m + 1 index antisymmetric tensor

., M)

1[ABiA;B; xCigGil — o

I[AiAjAkAz XBiXBjXBkXBl] =0

We will discuss each of these possibilities in detail
below, but first we take a brief look at the constraints
that arise from theeducedreconstruction system.
(o0 g B B Each row of this system is linear in the coordinates
Py Pyixyt - x". Up to scale, the compo-  of one image and in the corresponding rows of the
nents of this tensor are exactly the possille-m + joint projection matrix, so eactd + 1) x (d + 1)

1) x (d +m + 1) minors of the system matrix. The minor can be expanded into a sum of degdee 1
termx{ vanishes unless is one of the components polynomial terms in the image coordinates, with
A;, so we need at least one index from each image(d +1) x (d + 1) minors of the joint projection
in the index setv, ... , aq, b1, ... , Bm- IfONlyON€  matrix (Grassmann coordinates BEZ®) as coeffi-
component from imageis presentin the setf; say,  cients. Moreover, any term that contains two non-
for some fixed value of3;), we can extract an over- ,eroth coordinates from the same image (day2 0

all factor of xP as above. Proceeding in this way gng B; # 0) vanishes because the rdW): appears
the tensor can be reduced to irreducible terms of th§yjice in the corresponding coefficient minor. So

[0 ag B Bj By] ; . . . .
form Py™ - P x;"x;7 ---x, ", These contain  gach term is at most linear in the non-zeroth coordi-

anything from2 to d + 1 distinctimages, j,... ,k. nates of each image. A is the total number of rows
The indicesay, ... , aq are an arbitrary choice of from the i image in the minor, this implies that
indices from images, j,... ,k in which each im-  {he zeroth coordinate® appears eithek; or k; — 1

age appears at least once. Recalling that up to scalgmes in each term to make up the total homogeneity
the components of the joint image Grassmanniaryf k. in the coordinates of thé® image. Throw-

120 are justPy™ --- P5*), and dropping the re- ing away the nonzero overall factors (0 )ki—1
dundant subscripts on tbm§1 we can write the final leaves a constraint polynomial linear in the coordi-

constraint equations in the compact form nates of each image and of total degree at ndast,
lAid - AvaB ( BiscBy | 3 Bil _ o v_vith (d + 1) x (d + 1.) minors of the joint'projec-
tion matrix as coefficients. Closer inspection shows
wherei, j, ... , k contains betweed andd + 1 dis-  that these are the same as the constraint polynomials

tinct images. The remaining indices -- G can be  found above.
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7.1 Bilinear Constraints it was generated by thé — 4 = 2 six dimensional
constraint covectora,, andv,, for Z% in section 3.

Now we restrict attention to 2D images of a 3D . . :
The bilinear constraint equation

world and examine each of the three constraint types
in turn. First consider the bilinear joint image Grass-
mannian constrairit51¢1 52025 A1 5 A2] — 0 where

as usual *»? = L PoPJPIPJ eo. Recalling
that it is enough to antisymmetrize over the compo-
nents from each image separately, the epipolar con
straint becomes

A pBipC
0= (5A1B101X 1Pa1Pbl>'
AspBapC bed
: (sAQBQCQX 2P02pd2> g™

can be interpreted geometrically as follows. The du-
alizatione g x“ converts an image point into

A1 TBICIB:Ca A] _ g covariant coordinates in the image plane. Roughly
speaking, this represents the point as the pencil of

Dualizing both sets of antisymmetric indices by con- linés through it: - for any two lineds and my4

tracting with e 4, 5,0, €4,5,c, gives the epipolar through x#, the tensorljzmc, is proportional to

constraint the equivalent but more familiar form:  €apcx™. Any covariantimage tensor can be ‘pulled
back’ through the linear projectioR? to a covari-

0 = Faax ant tensor in 3D space. An image lidg pulls
T A1 1B B back to the 3D plané, = 1,P through the pro-
T (EAlBlClX ‘PP ) ' jection centre that projects toathe line. The tensor

. (EAQBQCQXAQPCBQP%) gabed eapc x pulls back to the 2 index covariant tensor
X[p = eapox* PPPS . This is the covariant repre-
where the3 x 3 = 9 component bilinear constraint sentation of a line in 3D: the optical ray througH.
tensor ofundamental matrix F 4, 4, is defined by  Given any two linesc(,; andyy,; in 3D space, the
requirement that they intersectis;, y.q e%°? = 0.

Ay XA2

F = 1lg € T B1C1B2Co . . . .
A1dz = 7 CAL1B1C S A2BCh So the above bilinear constraint equation readly
_ 1 B pCi the standard epipolar constraing. the requirement
— 147 5A1B101Pa Pb : . . .
that the optical rays of the two image points must
. <€AQBQCQPCBQP52) gabed intersect. Similarly, thé 4, 4, tensor really is the
usual fundamental matrix. Of course this can also
[B101B20 — oy eM1BiCigA2 B0 be illustrated by explicitly writing out terms.

Equivalently, the epipolar constraint can be de-

rived by direct expansion of thé x 6 basic recon- 7.2 Trilinear Constraints

struction system minor Now consider the trilinear, three image Grassman-
nian constrainfl [F1C15283 xA1xAaxAsl — 0. This
P4 x4 0 . . :
Det a -0 corresponds to & x 7 basic reconstruction minor
P4 0 x™ . o
a formed by selecting all three rows from the first im-

age and two each from the remaining two. Restrict-
ing the antisymmetrization to each image and con-
tracting withe 4, 5, ¢, gives the trilinear constraint

Choosing the imagé rows and column and any
two columnsa and b of P gives a3 x 3 sub-
determinanteAlBlClelPflel. The remaining
rows and columns (for image and the remain- xAixlAz G 4 BallBs xAs] — ¢

ing two columnsc and d of P, say) give the
factor 5A23202xA2PCB2P52 multiplying this sub-  where the3 x 3 x 3 = 27 component trilinear con-
determinant in the determinantal sum. Antisym- straint tensoiG 4, 243 is defined by

metrizing over the possible choices @ftthroughd

. i . . G A4z — 1z
gives the above bilinear constraint equation. When =4 2 EA1B1Cy
there are only two imageg, can also be written as = L (E Ao, PP Pbcl> pAz pAs gabed
the inter-image part of thB“ (six dimensional) dual
FA1A2 — iEAlBICIAQBQCQIBlclBQCQ' This is Why IAlB1A2A3 — G01A2A3 EclAlBl

I B1C1 A2 A3
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TlA2B21x4s for somex“i-dependent tensa4252]
- . . . (and similarly withT¢, for the dual form). By fix-
D_uallzmg the image 2 _and 3 indices b_y contracting ing suitable values o4, Bs] or Cs, these equations
With € 4, 5,C, €435, gIVes the constraint the alter- - .o e ysed transfer points from images 1 and 2

native form to image 3,i.e. to directly predict the projection in
= [ 3 of a 3D point whose projections in images
0 = €Ay BoCy EAaBaC 'GA Bo B3 'XA1XA2XA3 Image : . |
e ' 1 and 2 are known, without any intermediate 3D re-
= 70 <€A13101XA1PaB 1P1?1). construction step
-(EAQBQCQXA2Pf2> (a AsBs 03XA3P§33> gabed The trilinear constraints can be interpreted ge-

ometrically as follows. As above the quantity
These equations must hold for 8lix 3 = 9 values  €apc x* PPPY represents the optical ray through
of the free indice; andC;. However wherCy is ~ x* in covariant 3D coordinates. For agy* € P4
projected along theC direction orCj is projected  the quantitye spc x*y®P¢ defines the 3D plane
along thex® direction the equations are tautolog- through the optical centre that projects to the image
ical because, for example., s,c, x42x% = 0.  line throughx* andy“. All such planes contain the
So there are actually onl§ x 2 = 4 linearly in-  optical ray ofx#, and asy” varies the entire pencil
dependent scalar constraints amongihe 3 = 9 of planes through this line is traced out. The con-
equations, corresponding to the two image 2 direc-Straint then says that for any plane through the opti-
tions ‘orthogonal’ tox*? and the two image 3 di- cal ray ofx42 and any other plane through the op-
rections ‘orthogonal’ tax3. However, each of the tical ray ofx43, the 3D line of intersection of these
3 x 3 = 9 constraint equations arg# = 27 com-  planes meets the optical rayof'’.
ponents of the constraint tensor are ‘activated’ for The line of intersection always meets the optical
somex“i, so none can be discarded outright. rays of bothx4? andx“s because it lies in planes

The constraint can also be written in matrix containing those rays. If the rays are skewveryline

notation as follows &.f. [19]). The contraction through the two rays is generated as the planes vary.
xA1G 4, 4243 has free indicesd, 45 and can be The optical ray througl“: can not meet every such
viewed as & x 3 matrix [G x1], and the fragments line, so the constraint implies that the optical rays
€ 4,8,0, X2 and e, 5,0, x5 can be viewed as of x2 andx“s can not be skew. In other words
3 x 3 antisymmetric ‘cross product’ matricéss]| ., the image 1 trilinear constraint implies the epipolar
and[xs], (Wherex x y = [x], y for any 3-vector ~constraint between images 2 and 3.
y). The constraint is then given by tBex 3 matrix Given that the rays o&4? andx“3 meet (say, at
equation

2If x41 andx“? arenot matching points, the transfer equa-
tions trace out an entire line of mutually inconsistent ‘solutions’
[x2], [Gx1] [x3] = Ogzxay as[A2Ba] or C; vary. For fixedx”! andanyline 14, there is a
‘solution’ x*3 (x1,14,) ~ la, Ga, 243 x41, This is just
The projections along:ér (on the left) andxs (on the intersection of the image 3 epipolar linexof! with the
the right) vanish identically, e} again there are onIyimage 3 epipolar line of the intersection bf, and the image
4 linearly independent equations. 2 epipolar line ofx*1, i.e. the transfer of the only point ohy,

The trilinear constraint formula thatcould be a correct match. In general, lag, traces out the
the pencil of lines througk“2 the corresponding ‘solutions’

x“3 trace out the entire epipolar line af** in image 3. The
line of ‘solutions’ collapses to a point only wheri'? lies on the
. . L epipolar line ofx*1. For reliable transfer the links, should
also implies that for all values of the free indices meet the epipolar line ak*! reasonably transversally and if

<A1y [A2 GAle][Bg xAsl — 0

[A2Bs] (or dually Cs) possible should pass close to the image 3 epipole. This can be
arranged by projecting the free indé% along (an approxima-
x4~ xAixle gy Pl tion to) the image 3 epipoles2.

Similarly, x*2 could be predicted as the intersection of the
epipolar lines ofk“1 andx“2 in P43, This intersection always

. L A exists, but it is not structurally meaningful st andx“2 do
More precisely, fomatchingx”t andx”2 the quan- o correspond. The moral is that it is dangerous to use only

tity xA1x[42 GAIBQ]A3 can always be factorized as someof the available equations for transfer.

A1 A Bo A
~  ECyAuBy X 1X2GA1 2A3
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some poink®), as the two planes through these rayslinear constraint is more powerful than the epipolar
vary their intersection traces out every line throughones, but this is not really so. Given a triple of im-
x not in the plane of the rays. The only way that age points{x?:|i =1,...,3}, the three pairwise
the optical ray ofx”! can arrange to meet each of epipolar constraints say that the three optical rays
these lines is for it to pass througt? as well. In must meet pairwise. If they do not meet at a single
other words the trilinear constraint for each image point, this implies that each ray must lie in the plane
implies that all three optical rays pass through theof the other two. Since the rays pass through their re-
same point. Thus, the epipolar constraints betweerspective optical centres, the plane also contains the
images 1 and 2 and images 1 and 3 also follow fromthree optical centres, and is therefore thiéocal
the image 1 trilinear constraint. plane. But this is impossible in general: most im-
The constraint tensor G4, 4242 — age po'ints simply dq not lie on the trifocal lines (the
€A BLCy IB1014245 treats image 1 specially. prOJecfuon_s of the t_rlfocal planes). _ So for gene_ral
The analogous image 2 and image 3 ten_matchlngilmage points the three gplpolar constraints
sors GA2A3A1 = eano, 182024541 gng together |mpl3_/ that t_he_ three optlca_l rays meeF _at a
Ga M = eqpo, 15304142 gre linearly  Unique 3D pomt. Thls is enough to imply the trilin-
independent OGAlAzAg and give further linearly —€&r constralnt_s. Since we knoyv that. oy —3 =3 _
independent trilinear constraints aalixAzx4s,  Of the constraints are algebraically independent, this
Together, the 3 homogeneous constraint tensors s expected.
contain3 x 27 = 81 linearly independent com- Similarly, the information contained in just one
ponents (including 3 arbitrary scale factors) and of the trilinear constraint tensors is generically>
naively give3 x 9 = 27 trilinear scalar constraint 2m — 3 = 3 linearly independent constraints, which
equations, of which3 x 4 = 12 are linearly is enough to imply the other two trilinear tensors as
independent for any given tripke1 x42x43, well as the three bilinear ones. This explains why
However, although there are dimear relations  most of the early work on trilinear constraints suc-
between the x 27 = 81 trilinear and3 x 9 = 27 cessfully ignores two of the three available tensors
bilinear matching tensor components for the three[19, 7]. However in the context of purelinear re-
images, the matching tensors are certainlyaige-  construction all three of the tensors would be neces-
braically independent of each other: there are manysary.
guadraticrelations between them inherited from the
guadratic simplicity constraints on the joint image
Grassmannian tensor. In fact, we saw in section
5 that the simplicity constraints reduce the number7.3 Quadrilinear Constraints
of algebraically independent degrees of freedom of
170722 (and therefore the complete set of bilinear ginajly, the quadrilinear, four image Grassmannian
and trilinear matching tensor components) to only sonstraini [B: B2B3B1 xA1xA24Asx Al — ( corre-
1lm — 15 = 18 form = 3 images. _Similarly, sponds to al x 8 basic reconstruction minor that
there are only2m — 3 = 3 algebraicallyindepen-  sejects two rows from each of four images. As usual
dent scalar constraint equations amonglihearly e antisymmetrization applies to each image sepa-

independens x 4 = 12 trilinear and3 x 1 = 3bi-  r5tely, but in this case the simplest form of the con-
linear constraints on each matching triple of points. giraint tensor is just a direct selection 3 = 81
One of the main advantages of the Grassmann forgomponents of the Grassmannian itself

malism is the extent to which it clarifies the rich al-
gebraic structure of this matching constraint system.
The components of the constraint tensors are essen- HA1424341 = A1424344
tially just Grassmann coordinates of the joint image, — L paplplspii gobed
and Grassmann coordinates afe/ayslinearly in-
dependent and quadratically redundant.
Since all three of the epipolar constraints follow Dualizing the antisymmetric index paifsl; B;| by
from a single trilinear tensor it may seem that the tri- contracting withe 4, 5,c, fori = 1,... ,4 gives the
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guadrilinear constraint linesly, andly, are the projection of some unique
0 — ¢ . . . . 3D line: simply pull back the image lines to two
A1B1C1 T A2 B2Ch T A3 B3Cs = AaBaCa 3D planesly, P2 andl,, P22 through the centres
cxArxAaxAsxAs [ B1B2B3 Ba of projection and intersect the planes to find the 3D
line 1y, = 14,14, Pf;ng]‘?.
= & (sAlBlclelel) <5A23202xA2PbBQ)- However for three or more images of a line there

5 5 are trilinear matching constraints as follows [7]. An
'(€A33303XA3PC 3) (5A4B4C4XA4Pd4> e® image line is the projection of a 3D line if and only
if each point on the 3D line projects to a point on

- 4 _
This must hold for each of the" = 81 values of o image line. Writing this out, we immediately

C1C,C3Cy . But again the constraints withi; along

) ‘ e see that the lineély,|i = 1,... ,m} correspond to
the directionx™ foranyi = 1,... .4 vanish iden- 5 3p jine if and only if them x 4 reconstruction
tically, so for any given quadruple of points there equati

A , _ _ quations
are only2* = 16 linearly independent constraints
among thed* = 81 equations. 14, P4
Together, these constraints say that for every pos- : x4 — 0
sible choice of four planes, one through the optical 1 f’Am
A'm a

ray defined by“: for eachi = 1,... , 4, the planes

meet in a point. By fixing three of the planes and pgye alinei(e.a 2D linear space) of solutionsc® +
varying the fourth we immediately find that each of /,ya for some solutions? % ye.

the optical rays passes through the point, and hence There is a 2D solution space if and only if the co-
that they all meet. This brings us back to the two andefficient matrix has rank—2 = 2, which means that
three image sub-cases. _ every3 x 3 minor has to vanish. Obviously each mi-
Agiln, there is nothing algebraically new here. nor is a trilinear function in threé,,’s and misses
The 3° = 81 homogeneous components of the gyt one of the columns d2. Labelling the miss-

dent of each other and of thex 3 x 27 = 324 gquations like

homogeneous trilinear an@l x 9 = 54 homoge-

neous bilinear tensor components; and 2he= 16 14, L, La, (Pg‘ng‘QPg‘?’ Eabcd) —0

linearly independent quadrilinear scalar constraints

are linearly independent of each other and of the These simply require that the three pulled back
linearly independent x 3 x 4 = 48 trilinear and planeSIAng‘l, 1A2P&42 and1A3Pg‘3 meet in some

6 x 1 = 6 bilinear constraints. However there are common 3D line, rather than just a single point.
only 11m — 15 = 29 algebraically independent  Note the geometry here: each lihg pulls back to
tensor components in total, which gi%en — 3 = ahyperplane ifP® under the trivial projection. This

5 algebraically independent constraints on each 4- restricts to a hyperplane iRZ®, which can be ex-
tuple of points. The quadrilinear constraint is al- pressed a$,, P2 in the basisP for PZ*. There
gebraically equivalent to various different combina- are2m — 4 algebraically independent constraints for
tions of two and three image constraints. For exam-;; images: two for each image except the first two.
ple five scalar epipolar constraints will do: take the There arenoirreducible higher order constraints for
three pairwise constraints for the first three imagesjines in more than 3 images,g.there is no analogue
then add two of the three involving the fourth im- of the quadrilinear constraint for lines.

age to force the optical rays from the fourth image By contracting with a finaP2, the constraints can

to pass through the intersection of the correspondingalso be written in terms of the Grassmannian tensor
optical rays from the other three images. as

i i i aA1 Al A
7.4 Matching Constraints for Lines 1y, La, 1y, T 4224%8 = 0

It is well known that there is no matching constraint for all «. Choosingx from images 1, 2 or 3 and con-
for lines in two images. Any two non-epipolar image tracting with an image 1, 2 or 3 epsilon to produce
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a trivalent tensorGAiAﬂ'Ak, or choosinga from a  irreducible constraints — and correspondingly sim-

fourth image and substituting the quadrivalent tensorple interpretations of the matching tensors’ content
HA:4:4:41 reduces the line constraints to the form — for an image point against two lines containing

M it and four non-corresponding image lines that inter-
243

1A2 1A3 l[A1 GBl] = 0 sect in 3D:
AyAsAsAs  _
1A1 1A2 1A3H s =0 XA1 GA1A2A3 1A2 143 =0
These formulae illustrate and extend Hartley’s ob- HAAA A, V1Y = 0

servation that the coefficient tensors of the three-

im_age Iine_constraint; are equivalent to those of the; g Matching Constraints for k-Subspaces

trilinear point constraints [7]. Note that although all

of these line constraints atglinear, some of them More generally, the projections offadimensional

do involvequadrivalent point constraint tensors. subspace ind dimensions are (generically) di-

Sincea can take any oBm values4;, for each  mensional image subspaces that can be written as

triple of lines andm > 3 images there are very antisymmetricD; — k index Grassmann tensors

naively 3m trilinear constraints of the above two Xa4,.-5;--c;- The matching constraints can be built

forms. However all of these constraints are de-by selecting anyl + 1 — k of these covariant in-

rived by linearly contractingd underlying world  dices from any set, j, ... , k of image tensors and

constraints withP2’s, so at most4 of them can contracting with the Grassmannian to ledvdree

be linearly independent. For matching images indices:

of lines this leavesi(’;) linearly independent con-

straints of which only2m — 4 are algebraically in- 0 = Xp,..B,C;B; """ XA ByChEp

dependent. _ JorranAse B A By

The skew symmetrization in the trivalent tensor

based constraintimmediately implies tivee trans-  pya1izing each covariant Grassmann tensor gives an

fer equation equivalent contravariant form of the constraint, for
oA image subspaces”i"; defined by the span of a

Ly ~ Lag gy Ga, ™27 set of image points

This can be used to predict the projection of a 3D  _ yorax[AiBiAgBe 3 CiEi | 3 CiEil

line in image 1 given its projections in images 2

and 3, without intermediate 3D reconstruction. Note As usual it is enough to antisymmetrize over the
that line transfer from images land2to image 3 iSindices from each image Separate|y. Each set
most simply expressed in terms of the image 3tri|in-Aj ---B;C;--- E; is any choice of up td; + 1

ear tensoiG 4,'?, whereas the image 1 or image indices from imageg, j =i, ... , k.

2 tensorsG 4, 4243 or G 4,143 are the preferred
form for point transfer.

It is also possible to matclfi) points against
lines that contain them an@) distinct image lines
that are known to intersect in 3D. Such constraintsOur formalism also works for 2D projective images
might be useful if a polyhedron vertex is obscured of a 2D space. This case is practically important
or poorly localized. They are most easily derived because it applies to 2D images of a planar surface
by noting that both the line reconstruction equationsin 3D and there are many useful plane-based vision
and the reduced point reconstruction equations aralgorithms. The joint image of a 2D source space
homogeneous ir®, the coordinates of the intersec- is two dimensional, so the corresponding Grass-
tion point. So line and point rows from several im- mannian tensor has only three indices and there are
ages can be stacked into a single 4 column matrixonly two distinct types of matching constraint: bi-
As usual there is a solution exactly whenalk 4  linear and trilinear. Let indices and A; represent
minors vanish. This yields two particularly simple 3D space and thé" image as usual, and indices

7.6 2D Matching Constraints & Homogra-
phies
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A = 0,1, 2 represent homogeneous coordinates orlose their free indices. In particular, when all of the

the source plane. If the plane is givenpyx® = 0, cameras are 1D there are no bilinear or trilinear ten-
the three index epsilon tensor on it is proportional tosors and the only irreducible matching constraint is
p.c®“¢ when expressed in world coordinates, so thethe quadrilinear scalar:

Grassmann tensor becomes

0 = HA1A2A3A4XA1XA2XA3XA4

Ia,@w = 1 Pe Pﬁ P’Y 5ABC
st At BLC — (€A1B1 xA1 PaBl) (EA232 xA2 PbBQ> .

~ 4 p.PyPIP] el ., .,
o . - 3 . <€A3Bg x4 p! 3> (€A4B4 A Pd4> gabed
This yields the following bilinear and trilinear
matching constraints with free indices respectively This says that the four planes pulled back from the

Cy andC1C5C3 four image points must meet in a 3D point. If one of
the cameras is 2D and the other two are 1D a scalar
0 = pa <5A13101 x4 PbBlel) trilinear constraint also exists.

. As pB2 abed
(%BQCQX Pd>€ 7.8 3D to 2D Matching

B B .
0 = pa <€A13101 xMPy 1) (€A23202 xA2P; 2>~ It is also useful to be able to match known 3D struc-
A B bed ture to 2D image structure, for example when build-
3 aoc . . .
: (€A33303 x® Py ) € ing a reconstruction incrementally from a sequence

of images. This case is rather trivial as the ‘con-
The bilinear equation says thatx"* is  gtraint tensor is just the projection matrix, but for
the image of the intersection of optical comparison it is perhaps worth writing down the
ray of x4 with the plane p,;: x%  ~ equations. For an image poist' projected from
(pa €A Bc, PE'POT P2 sade) x4, In aworld pointx® we havex? ~ P2 x* and hence
fact it is well known that any two images of a plane the equivalent constraints
are projectively equivalent under a transformation
(homography)x?2 ~ H%? x1. In our notation xMPIx* =0 = eapox'Px" =0

the homography is just There are three bilinear equations, only two of which

are independent for any given image point. Simi-
larly, a world linely,; (or dually,11*}) and a corre-
sponding image liné, satisfy the equivalent bilin-
ear constraints

Ay _ BipC: . pA bed
H)? = pa-eapo, PP -Py2 e

The trilinear constraint says that any three image
lines through the three image points't, x42 and
x“43 always meet in a point when pulled back to 1, PA1
the planep,. This implies that the optical rays of [@ "]
the three points intersect at a common point on theor dually
plane, and hence gives the obvious cyclic consis-
tency conditionEl’j! H4? ~ H! (or equivalently
H)! H{> H ~ &7 ) between the three homo- Each form contains four bilinear equations, only two
graphies. of which are linearly independent for any given im-
age line. For example, if the line is specified by giv-
7.7 Matching Constraints for 1D Cameras  ing two points on i1’ ~ x[*yl, we have the two

_ _ _ scalar equationky P4 x® = 0 andly P2 y?® = 0.
If some of the images are taken with one dimen-

sional ‘linear’ cameras, a similar analysis applies
but the corresponding entries in the reconstruction
equations have only two rows instead of three. Con-There is still one aspect af*° "4 that we have not
straints that would require three rows from a 1D im- yet seen: the Grassmannian tensor also directly con-
age no longer exist, and the remaining constraintdains theepipoles In fact, the epipoles are most

=0 < P e =0

1L, P21 = 0

7.9 Epipoles
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naturally viewed as the first order term in the se-8 Minimal Reconstructions and
guence of matching tensors, although they do not Uniqueness
themselves induce any matching constraints.
Assuming that it has rank, thed x (d+1) projec-
tion matrix of ad— 1 dimensional image af dimen-
sional space defines a uniquentre of projection
e;% by Pg‘i e;% = 0. The solution of this equation is
given (.f. section 8) by the vector af x d minors
of P2, i.e.

The matching constraints found above are closely
associated with a set ahinimal reconstruction
techniques that produce candidate solutions®
from minimal sets ofl image measurements (three
in the 3D case). Geometrically, measuring an image
coordinate restricts the corresponding world point to
a hyperplane irP®. The intersection of any inde-
pendent hyperplanes gives a unique solution candi-
datex?, so there is a minimal reconstruction tech-
The projection of a centre of projection in another nique based on any set@independent image mea-

a A; C; ~aai-a
€ ~ €., Pyl Pgretttd

image is arepipole surements. Matching is equivalent to the require-
" ment that this candidate lies in the hyperplane of
el ~ eac Pod PR PO ghom each of the remaining measurements. d linea-

surements are not independent the corresponding

Recognizing the factor of 4i4:5Ci we can fix ~ minimal reconstruction technique will fail to give a

the scale factors for the epipoles so that unigue candidate, but so long as the images contain
someset ofd independent measurements at least one
e = % EA,B,.C, 1 A5AiBi-Ci of the minimal reconstructions will succeed and the
TAABCi _ o Aj gAiBiCi overa_tll reconstruct!on solution WI|| be unlq_ue (orfall_
to exist altogether if the matching constraints are vi-
olated).

Thed-dimensional joint image subspafg® of P

passes through thécadimensional projective sub- Algebraically, we can restate this as follows. Con-
spacex”i = 0 at thejoint image epipole sider a generat x (k + 1) system of homogeneous

linear equations with rank. Up to scale the sys-
tem has a unique solution given by the + 1)-
e’ (eiAlv e 0, e veiAm)T component vec?or df x k mingrs of thz sl)(]/stem 2na—
trix3. Adding an extra row to the system destroys the
As usual, an arbitrary choice of the relative scale fac-so|ytion unless the new row is orthogonal to the ex-
tors is required. isting minor vector: this is exactly the requirement
that the determinant of theg + 1) x (k + 1) matrix
vanish so that the system still has raik With an
overspecified rank system: any choice df rows
gives a minor vector; at least one minor vector is
nonzero by rankeness; every minor vector is or-
thogonal to every row of the system matrix by non-

Counting up the components of t{#&) quadri-
linear, 3(;) trilinear, (") bilinear andm(m — 1)
monolinear (epipole) tensors for images of a 3D
world, we find a total of

<3ZL> — 31. (T) 1 27, 3<m> rank{k + 1)-ness; and all of the minor vectors are
3 equal up to scale because there is only one direc-
1 9. <’m> + 3-m(m—1) tion orthogonal to any giveh indepeno!ent rows. In
2 other words the existence of a solution can be ex-

linearly independent components. These are linearly  3proof. By the rankk condition the vector of minors does
equivalent to the complete set 612") linearly inde-  not vanish. Adding anyk + 1)** row vectorv to the system
pendent components &<, so the joint image 9ves a(k+1) x (k+1) matrix. By the usual cofactor expansion,

. fiteet the determinant of this matrix is exactly the dot productvof
Grassmannian tensor can be reconstru rly with the vector of minors. The determinant vanishes whés

given the entire set of (appropriately scaled) match-chosen to be any of the existing rows of the matrix, so the minor
ing tensors. vector is orthogonal to each row.
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pressed as a set of simple orthogonality relations orwith indices[B; - - - Byy---0A; - - - Ax], project the
a candidate solution (minor vector) produced from solution to some imagkto get
any set oft independent rows.

We can apply this to th&l+m) x (d+m) minors
of the(D +m) x (d +m + 1) basic reconstruction ¢ he constraint is to hold, this must be propor-
system, or equivalently to thé x d minors of the  tional toxCi. If [ is one of the existing images, (
D x (d + 1) reduced reconstruction system. The g4yyx4: is already in the antisymmetrization, so if

situation is very similar to that for matching con- \ye extend the antisymmetrization @ the result
straints and a similar analysis applies. The result iSyy st vanish:T [C1BiBrr-0 xAi ... xA — 0. If

thatifs,7,... ,kisaset o2 < m' < d distinct im-

[ is distinct from the existing images we can explic-

ages and;,... , d is any selection off —m’indices iy add x4 to the antisymmetrization list, to get
from imagesi, j,... ,k (@t mostD; — 1 from any  [[CiBi-Bry-6 Ai . AkxAll — .
one image), there is a pair of equivalent minimal re-  gimjjarly, the minimal reconstruction solution for
construction techniques foar* € P* andx® € P*: 3p |ines from two images is just the pull-back

Xa ~ Pa[BiBj"'Bk"/"'(S XAiXAj . XAk} lab ~ 1A11A2 P,[/il PZ?Q

x¢ ~ I a[B;Bj---Byy---d XAiXAj . XAk]

or in contravariant form
where 1%~ 14,14, P?IPZ?Q gabed
palorod = L pot... pod gaarad This can be projected into a third image and dualized

: : _ to give the previously stated line transfer equation
In these equations, the right hand side has tenso- g 3 y g

rial indices [B;--- Byy---6A;--- Ap] in addition 14, ~ 14,14, - €a,5,0, PP PP g0bd
to a or a, but so long as the matching constraints Lo 1o G o ArA2
hold any value of these indices gives a vector par- A1 7A2 A3
allel to x* or x (i.e. for matchingimage points  More generally, the covariant form of thé-
the tensorPeBiBryd xAi ... x4l can be fac- subspace constraint equations given in section 7.5
torized asx® TIBi~Brr-04i-Al for some tensors generates basic reconstruction equations Afati-
x® and T). Again it is enough to antisymmetrize mensional subspaces of ti¢ image or the world
over the indices of each image separately. Forspace by dropping one index; from the contrac-
2D images of 3D space the possible minimal re-tion and using it as the, of a set ofc+1 free indices
construction techniques aR¢[P11 52 xAixA2land ... oy, designating the reconstructddsubspace
palBiB2Bs xAix A2y As] in P45. To reconstruct thé-subspace in world co-

. A BBInC ordinates, the projection tensdp$;’ corresponding
X"~ (EAlBlcl x PP 1)' to the free indices must also be dropped, leaving free
, <€A23202 xA2 P%) gabed world indicesag - - - a.

a A C A C .
x5~ (EAlBlclx IPb1)<€Aszch QPCQ)' 9 Grassmann Relations between
: <5A3B303 xAs Pff) gabed Matching Tensors

These correspond respectively to finding the inter-The components of any Grassmann tensor must sat-
section of the optical ray from one image and theisfy a set of quadratic ‘simplicity’ constraints called
constraint plane from one coordinate of the secondthe Grassmann relations In our case the joint im-
one, and to finding the intersection of three con-age Grassmannian satisfies
_stralnt planes from one coordinate in each of three _ {oo-aa-1l60 1 fo-Bas1]
images. 1

To recover the additional matching constraints ~ _ 1 Z(_l)alao---ad_l,@a I 8o Ba—1Bas1-Bapa
that apply to the minimal reconstruction solution d+2 =
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Table 1: The Grassmann identities between the matching tensors of two and three images.

0.4, = Faa, 1™ [111,11122]

04142 Fp, B, Fo,0, eP101A1 gB2C242 1 9 gy 41 o A2 [112,11222]

04, Fa,4, €172 — €4,850, €17 €3 [111,22233]

04 4, €8sy €152 Ga, % 1 e Fy 4, 111, 11223]

042 4, €458,05 €172 Ga, M2 +en B0 €157 Gu, 115 [111, 12233]

054243 Fp,p, Go, 224 eB101A1 _ g 42 G Aids | 5, A2 o,C2 G, M1 [112,11223]

o €a38;0; Ga, P Gp, P2 —e1M2 ey, 0, Ga, 1P (112, 11233]
—Fu,c, €228 Fp g4,

0%, Faa; G, 2™ +ea,3,0, €37 €1 [112,11333]

Ay €38;05 Ga, P3G 2, P10 —F g 4, G, P72 [112, 12233]
404,72 Fay0, Ga, P12 + 64,8 €152 Faya,

0f1 4252 G, P82 G o, 208 4 e3B1 Fy 0, €924252 4 54 B 042 €72 [112,12333]

042 4, €43B5Cy €27 Ga, 205 —Fy, g, Fe,a, eP20242 [112, 22233]

0424, Faya, Ga, % + Fa,a, €372 — 64,2 F a0, €37 [112,22333]

oM A2BaAsBs — Gp 4243 G, PP B1C1A — G, M1 gCataB g s [123,11123]
_G03A1A2 ECgAng 8132

05 BedsBs = G, B Gy, PoAs — Gy, P1Be Gy, P24 — F g 4, G, P02 €CoeBs [123,11223)

B B1A C2 B B C1B B2 A
_6142 2G02 1 SGAl 2 3+6A1 1GA2 1 3GCI 243

Mechanically substituting expressions for the vari- sumed to be normalized as in their above definitions,
ous components df*°"*< in terms of the matching in terms of an arbitrary choice of scale for the un-
tensors produces a long list of quadratic relations bederlying image projections. In practice, these scale
tween the matching tensors. For reference, table factors must often be recovered from the Grass-
gives a (hopefully complete) list of the identities that mann relations themselves. Note that with these
can be generated between the matching tensors afonventions,F 4,4, = F4,4, and G4, 424 =
two and three images ih = 3 dimensions, modulo —GA1A3A2. For clarity the free indices have been
image permutation, traces of identities with covari- displayed on the (zero) left-hand side tensors. The
ant and contravariant indices from the same imagelabels indicate one choice of image numbers for the
and (anti-)symmetrization operations on identitiesindices of the Grassmann simplicity relation that
with several covariant or contravariant indices from will generate the identity (there may be others).

the same image. (For examplg, 4, G a,

AsAs -
= As an example of the use of these identities,

A AxAsz ,
2F 4,4, €372 andF 454, G,)*7* = Ofollowre- G | 4245 follows from linearly fromF 4, 4,, F A, 4,
spectively from tracingl 12, 22233] and symmetriz- 5 the corresponding epipoles’?, e; A1 ande;4?

ing [112,11333] ). The constraint tensors are as- by applying[112, 11333] and[112, 22333]
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10 Reconstruction in Joint Image equations. Note that since the equations are alge-
Space braically redundant it is only necessary to apply a
subset of at least: — 1 of them to solve for then
We have argued that multi-image projective recon-scale factors. The optimal choice of equations prob-
struction is essentially a matter of recovering a co-ably depends on the ease and accuracy with which
herent set of projective scale factors for the mea-the various matching tensor components can be esti-
sured image points, that it canonically takes place inmated.
the joint image spacfP®, and that reconstruction in Recovery of the scale factors locates the recon-
world coordinates is best seen as a choice of basis istructed joint image point® unambiguously in the
the resulting joint image subspagy . To empha- subspacé”Z®. Its coordinates in any chosen basis
size these points it is interesting to develop ‘recon-(i.e. with respect to any given choice of the basis-
struction’ techniques that work directly in joint im- vector columns of the joint projection matriR$)
age space using measured image coordinates, wittsan easily be obtained, if required. Although this
out reference tany 3D world or basis. process is arguably too abstract to be called ‘recon-
First suppose that the complete set of matchingstruction’, all of the relevant structure is certainly
tensors between the images has been recovered. present in the joint image representation and can
is still necessary to fix an arbitrary overall scale fac- easily be extracted from it.
tor for each image. This can be done by choosing Given an efficient numerical technique for the res-
any coherent set of relative scalings for the matchingolution of sets of bilinear equations and a sufficient
tensors, so that they verify the Grassmann simplic-number of matching points, it would also be possible
ity relations as given above. Then, since the com-to solve the above equations simultaneously for the
ponents of the joint image Grassmann terE%f 7 vector of matching tensor components and the vec-
can be recovered directly from the matching tensorstor of scale factors, given the measured image co-
the location of the joint imag®Z“ has been fixed.  ordinates as coefficients. Algebraic elimination of
Now consider a matching set of image pointsthe scale factors from these equations should ulti-
{x41, ..., x4} with arbitrary relative scalings. As mately lead back to the various matching constraints
discussed in section 6, the matching constraints ar¢modulo probably heavy use of the Grassmann rela-
equivalent to the requirement that there be a rescaltions). Elimination of the matching tensors (mod-
ing of the image points that places the joint imageulo the matching constraints viewed as constraints
space vectod ;" ; A; x“¢ in the joint imagePZ®.  on the matching tensor components) for sufficiently
Expressed in terms of the Grassmannian, this bemany matching points would lead to (high degree!)
comes thgoint image reconstruction system basic reconstruction methods for the recovery of the
m scale factors directly from measured image coordi-
I [of. (Z \; xAi]> =0 nates.
i=1 Geometrically, the reconstruction process can be
This is a redundant set of homogeneous multilin-pictured as follows. Each image point is ;-
ear equations in the Grassmannieitf 7, the im-  codimensional subset of it®;-dimensional image,
age pointsx?i, and the scale factors;, that can  so under the trivial projection it can be pulled back
be used to ‘reconstruct’ the scale factors given theto a D;-codimensional subspace of the joint image
Grassmannian and the image measurements. spaceP?. Intersecting the subspaces pulled back
These equations can be reexpressed in terms dfom the different images results in gm — 1)-
the matching tensors, in much the same way as thelimensional projective subspace7@f. This is pre-
Grassmann simplicity relations can. The types ofcisely the set of all possible rescalings of taé:.
constraint that can arise for 2D images of 3D spaceThe joint imagePZ intersects this subspace if and
are shown in table 2. The left hand sides are zeroonly if the matching constraints are satisfied, and
tensors and the labels give index image numberghe intersection is of course the desired reconstruc-
that will generate the equation. The numerical co-tion. So the problem of multi-image projective re-
efficients are valid only for correctly scaled match- construction from points can be viewed as the search
ing tensors. Permuting the images generates furthefior the (d + m — 1)-dimensional subspace @
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Table 2: The five basic types of reconstruction equation for a point in the joint image.

0.4, = (Fa,4, X))\ + (e4,8,0, €172 xC2) Ny [11122]
04243 = (Ga, 21 xM)\ — (€1 xA2) Ay + (€142 xM3) A3 [11123]
0%t 4, = (ea;B,0y G, xO)AL + (ea,B,0 Ga, PP xP2) Ny — (Faya, x19) A3 [11223]
042 4s s — (ea,po, HEA2A41 xC)) | 4 (G A1 xA2) ), [11234]
—(Ga, M xA3) N3 + (G, 27 xM)\y
041 A2 A Auds — (FAadsAads y A1)\ (HAIAsAAs gda)) | (HAIA2 A4S As) )\ [12345]

_(HA1A2A3A5 XA4)/\4 4 (HA1A2A3A4 XA5))\5

that contains (or comes closest to containing) a giverremains to be done on the practical aspects, particu-
set of (m — 1)-dimensional joint-image-point sub- larly on error models [17, 4, 20] and the recovery of
spaces, followed by an arbitrary choice (the scaleEuclidean structure [17].
factors) of ad-dimensional subspace (the joint im-  Given the complexity and algebraic redundancy
age) of thgd+m—1)-dimensional space that meets of the trilinear and quadrilinear constraints it is cer-
each joint-image-point subspace transversally. Theainly legitimate to ask whether they are actually
reconstruction of lines and higher dimensional sub-likely to be usefulin practice. | think that the an-
spaces can be viewed in similarly geometric terms. swer is a clear ‘yes’ for the trilinear constraints and
the overall joint image/Grassmannian picture, but
) the case for the quadrilinear constraints is still open.
11 Perspectives The principal application of the matching tensors
must be for token matching and verification. The tri-
The theoretical part of the paper is now finished, butjinear constraints can be used directly to verify the
before CIOSing it may be worthwhile to reflect a lit- correspondence of a triple of points or lines, or in-
tle on our two principal themes: projective recon- directly to transfer a hypothesized feature location
struction and the tensor calculus. We will take it for to a third image given its location in two Others’ in
granted that the projective and algebraic-geometricy hypothesize-and-test framework. Image synthesis
approaches to vision are here to stay: the ‘unrea{e.g.image sequence compression and interpolation)

sonable efficacy of mathematics in the physical sci-is |ikely to be another important application of trans-
ences’ can only lead to an increasing mathematizafer [10].

tion of the field. Fundamental matrices can also be used for these
applications, but because the higher order con-
11.1 Matching & Reconstruction straints ‘holistically’ combine data from several im-

ages and there is built-in redundancy in the con-
Clearly visual scene reconstruction is a large andstraint equations, it is likely that they will prove
complex problem that is not going to be ‘solved’ by less prone to mismatches and numerically more sta-
any one contribution, so we will restrict ourselves to ble than a sequence of applications of the epipo-
a few technical remarks. To the extent that the probdar constraint. For example Shashua [19] has re-
lem can be decomposed at all, the most difficult partgported that a single trilinear constraint gives more
of it will probably always be the low level feature reliable transfer results than two epipolar ones, and
extraction and token matching. 3D reconstruction Faugeras and Mourrain [6] have pointed out that bi-
seems relatively straightforward once image tokendinear constraint based transfer breaks down when
have been put into correspondence, although muckhe 3D point lies in the trifocal plane or the three op-
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tical centres are aligned, whereas trilinear transferffundamental or trilinear constraints. Also, different
continues to be reasonably well conditioned. trilinear tensors are required for point transfer and
When there are four images the quadrilinear con-line transfer.
straint can also be used for point matching and trans- Unfortunately, it turns out that the above linear
fer, but the equations are highly redundant and itestimation techniques (particularly that for the fun-
seems likely that bilinear and trilinear methods will damental matrix) are numerically rather poorly con-
prove adequate for the majority of applications. Theditioned, so that the final estimates are very sensi-
trilinear constraint is nonsingular for almost all situ- tive to measurement errors and outliers. Moreover,
ations involving points, provided the optical centres even in the case of a single fundamental matrix there
do not coincide and the points avoid the lines passis a nonlinear constraint that can not be expressed
ing between them. within the linear framework. The quadratic epipo-
The most important failure for lines is probably lar relationF 4, 4, e;? = 0 implies the cubic con-
that for lines lying in an epipolar plane of two of straintDet(F) = 0. If this constraint is ignored,
the images. In this case the constraints mediated byne finds that the resulting estimateskovfand the
trivalent tensors are vacuous (although there is stillepipoles tend to be rather inaccurate [12]. In fact,
enough information to reconstruct the correspond-the linear method is often used only to initialize non-
ing 3D line unless it lies in the trifocal plane or the linear optimization routines that take account of the
optical centres are aligned) and those mediated byonlinearity and the estimated measurement errors
quadrivalent tensors are rank deficient. But givenin the input data.
the linear dependence of the various line constraints This leads to the following open question:
it is not clear that the quadrivalent ones have any adWhen several matching tensors are being esti-
vantage over an equivalent choice of trivalent ones. mated, to what extent is it possible or necessary to
A closely related issue is that of linear versus [@ke account of the quadratic constraints between
them? The full set of quadratic relations is very

higher order methods. Where possible, linear for- o _
mulations are usually preferred. They tend to becomplex and it is probably not practical to account
for all of them individually: it would be much sim-

simpler, faster, better understood and numerically

more stable than their nonlinear counterparts, and'€" Just to work directly in terms of the 3D joint

they are usually much easier to adapt to redundant™@ge geometry. Moreover, many of the relations
data, which is common in vision and provides in- depend on the relative scaling of the constraint ten-
creased accuracy and robustness. On the other hang"s and the recovery of these further complicates

nonlinear constraints can not be represented accuN€ issue (it is a question of exactly which combi-
rately within a linear framework. nations of components need to be fixed to ensure

This is especially relevant to the estimation of consistency and numerical stability). On the other

the matching tensors. We have emphasized that thB2nd: €xperience with the fundamental matrix sug-
matching tensor components and constraint eo|uages_'[s that it is dangerous to |gnore.the constrgmts
tions are linearly independent butuadratically ~ Entrely. Some at least of them are likely to be im-
highly dependent. It is straightforward to provide PO"ant in any given situation. Our current under-
linear minimum-eigenvector methods to estimate: Standing of these matters is very sketchy: essentially

the 9-component fundamental matrix from at least 82!l We have is afevad hoccomparisons of particular
pairs of corresponding points in two images [11, 12]; echniques.

each of the three linearly independent 27-component As a final point, a few people seem to have been
trilinear tensors from at least 7 triples of points in hoping for some ‘magic’ reconstruction technique
three images; and the 81-component quadrilineathat completely avoids the difficulties of image-to-
tensor from at least 6 quadruples of correspondingmage matching, perhaps by holistically combining
points in four images [20]. For complex applications data from a large number of images (or a single
several of these tensors might be needed, for examdense image sequence). The fact that the matching
ple a fundamental constraint might provide initial constraints stop at four images (or equivalently three
feature pairings that can be used to check for cortime derivatives) does not preclude this, but perhaps
responding features in a third image using furthermakes it seem a little less likely. On the other hand,
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the simplicity of the jointimage picture makes incre- ple vector calculations in a single Euclidean space.
mental recursive reconstruction techniques that cordt is only too easy to writex' x = 1 in a projective
rectly handle the measurement errors and constrainspace where no transpose (metric tensor) exists, or a
geometry seem more likely {.[16]). meaningless ‘epipolar equatioh’ F x = 0 wherel

is actually the 3-component vector of an image line
(rather than an imagpoint) and x belongs to the
wrong image for the fundamental matfx (which

This paper is as much about the use of tensors aghould have been transposed in any case).
a vehicle for mathematical vision as it is about im-  T0 avoid this sort of confusion, it is essential to
age projection geometry. Tensors have seldom beeHS€ @ notation that clearly distinguishes the space
used in vision and many people appear to be rathefnd covariant/contravariant type of each index. Al-
tensor-phobic, so it seems appropriate to say a feWhough it can not be denied that this sometimes leads
words in their favour: Don't panic? [1]. to rather baroque-looking formulae — especially
First of all, whatis a tensor? — It is a collec- when there are many indices from many different
tion (a multidimensional array) of components that SPaces as in this paper — it is much preferable to
represent a single geometric object with respect idhe alternatives of using either no indices at ali,or
some system of coordinates, and that are intermixed> @ndk for everything, so that one can never quite
when the coordinate system is changed. This immeS€€ Whatis supposed to be happening. Itisimportant
diately evokes the two principal concerns of tensor"Ot to be fooled into thinking that tensor equations
calculus: (i) to perform manipulationabstractlyat ~ &re intrinsically difficult just because they have in-
the object level rather than explicitly at the compo- dices. For simple calculations the indexed notation
nent level; andji) to ensure that all expressions are IS N0t significantly more difficult to use than the tra-
properlycovariant(i.e. have the correct transforma- ditional index-free one, and it becomesichclearer
tion laws) under changes of basis. The advantagegd more powerful in complex situations. For a vi-
are rather obvious: the higher level of abstractionSually appealing (but typographically inconvenient)
brings greater compactness, clarity and insight, andicterial notation, see the appendix of [18].
the guaranteed covariance of well-formed tensorial Simultaneously with the work presented in this
expressions ensures that no hidden assumptions agmper, at least two other groups independently con-
made and that the correct algebraic symmetries angterged on parts of the constraint geometry from
relationships between the components are automatieomponent-based points of view: Faugeras & Mour-
cally preserved. rain [6] using the Grassmann-Cayley algebra of
Vectors are the simplest type of tensor and theskew linear forms, and Werman & Shashua [22] us-
familiar 3D vector calculus is a good example of ing Grobner bases and algebraic elimination theory.
the above points: it is much simpler and less errorBoth approaches make very heavy use of computer
prone to write a single vectorinstead of three com- algebra whereas all of the calculations in the present
ponents(z!, 22, 2%) and a symbolic cross product paper were done by hand, and neither (notwithstand-
z = x x y instead of three equations = 2%y3 — ing the considerable value of their results) succeeded
23y?, 22 = 3yt — 2y and2? = 2'y? — 2%y, in obtaining anything like a complete picture of the
Unfortunately, the simple index-free matrix-vector constraint geometry. My feeling is that it is per-
notation seems to be difficult to extend to higher- haps no accident that in each of the three categories:
order tensors with the required degree of flexibil- level of geometric abstraction, efficiency of calcula-
ity. (Mathematicians sometimes define tensors agion, and insight gained, the relative ordering is the
multilinear functionsT(x,... ,z) wherex, ...,z same: tensor calculus Grassmann-Cayley algebra
are vectors of some type and the result is a scalar;> elimination theory.
but this notation becomes hopelessly clumsy when it Elimination-theoretic approaches using resul-
comes to inter-tensor contractions, antisymmetrizatants and Gobner bases seem to be intrinsically
tion and so forth). In fact, the index-free notation component-based. They take no account of the
becomes as much a dangerous weapon as a usefidnsorial structure of the equations and therefore
tool as soon as one steps outside the realm of simmake no use of the many symmetries between them,

11.2 Tensors vs. the Rest



Papier : The Geometry of Projective Reconstruction 39

so even when the coordinate systems are carefullyora. The fact that the algebra has a stratified tenso-
adapted to the problem they tend to carry a signifi-rial structure is usually hidden in the definitions of
cant amount of computational redundancy. Wermarthe basic product operations, but it becomes a cen-
& Shashua [22] suggest that an advantage of suclral issue as soon as geometric invariance is called
approaches is the fact that very little geometric in-into question.

sight is required. Unfortunately, one might also sug- In summary, my feeling is that the tensorial ap-
gest that very little geometric insight gmined the  proach is ultimately the most promising. The in-
output is a complex set of equations with no very dexed notation is an extraordinarily powerful, gen-
clearly articulated structure. eral and flexible tool for the algebraic manipula-

The Grassmann-Cayley algebra [6, 2] is spiri- tion of geometric objects. It displays the under-
tually much closer to the tensorial point of view. lying the structure and covariance of the equations
Indeed, it can be viewed as a specialized index-very clearly, and it naturally seems to work at about
free notation for manipulating completely antisym- the right level of abstraction for practical calcula-
metric covariant and contravariant tensors. It Sup_tionS: neither so abstract nor so detailed as to hide
ports operations such as antisymmetrization over inthe essential structure of the problem. Component-
dices from several tensors (wedge product), conbased approaches are undoubtedly useful, but they
tractions over corresponding sets of covariant andere probably best reserved urdfter a general ten-
contravariant antisymmetric indices (hook product), sorial derivation has been made, to specialize and
and contravariant-covariant dualization (sometimessimplify a set of abstract tensorial equations to the
used to identify the covariant and contravariant alge-Particular application in hand.
bras and then viewed as the identity, in which case As an example of this, A+ 1 index antisymmet-
the hook product is replaced by the join product). fic tensor representing fadimensional subspace of
Given the connection with Grassmann coordinates@ d dimensional projective space has (veryvesy)
the Grassmann-Cayley algebra can be viewed as & + 1)¥+1 components, but onl(ﬁjﬂ) of these are
calculus of intersection and union (span) for projec-linearly independent owing to antisymmetry. The
tive subspaces: clearly a powerful and highly rele-independent components can easily be enumerated
vant concept. It is likely that this approach would (the indicesigiy - --ix for 0 < ip < i3 < ... <
have lead fairly rapidly to the full Grassmannian i < d form a spanning set) and gathered into an
matching constraint geometry, notwithstanding theexplicit ({71) component vector for further numer-

relative opacity of the initial component-oriented ical or symbolic manipulation. In fact, these com-
formulations. ponents span exactly one tensorial stratum of the

Despite its elegance, there are two problems withCrassmann-Cayley algebra.

the Grassmann-Cayley algebra as a general formal- It is perhaps unfortunate that current computer
ism. The first is that it is not actually very general: 2/9€Dra systems seem to have very few tools for

it is good for calculations with linear or projective Manipulating general tensorial expressions, as these

subspaces, but it does not extend gracefully to moré(vogld greatly streamline the derivation and special-
complex situations or higher-degree objects. For ex/Zalion processes. However, there does not appear to

ample quadric surfaces are representedyoyimet- be any se.ri(_)usT obstacle to theldevelopment pf such
ric tensors which do not fit at all well into the an- f[ools and it is likely that they will become available
tisymmetric algebra. Tensors are much more flex-IN the near future.

ible in this regard. The second problem with the

Grassmann-Cayley algebra is that it is often infuri- 12 Summary

atingly vague about geometric (covariance) issues.

Forms of different degree with indices from differ- Given a set of perspective projections into pro-

ent spaces can be added formally within the algebrajective image spaces, there is a 3D subspace of
but this makes no sense at all tensorially: such obthe space of combined image coordinates called the
jects do not transform reasonably under changes ojointimage. This is a complete projective replica of
coordinates, and consequently do not have any cleahe 3D world expressed directly in terms of scaled
geometricmeaning, whatever the status of the alge-image coordinates. It is defined intrinsically by the
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physical situation up to an arbitrary choice of some mation on our notation. For more details on using
internal scalings. Projective reconstruction in the tensor calculus for projective space see [9, 18].
joint image is a canonical process requiring only a
rescaling of the image coordinates. A choice of ba-
sis in the joint image allows the reconstruction to be
transferred to world space. A vector spaceH“ is a space on which addition and
There are multilineamatching constraints be-  scaling of elements are definellk® + py® is in H®
tween the images that determine whether a set of imfor all scalars\ and i and elementx® andy® of
age points could be the projection of a single world 4. The span of a set{e{,... ,e{} of elements
point. For 3D worlds only three types of constraint of #“ is the vector space of linear combinations
exist: the epipolar constraint generated by the fun-zle¢ + --- + xkez of elements of the set. A min-
damental matrix between pairs of images, Shashua'$mal set that spans the entire space is callbdsis
trilinear constraints between triples of images and aand the number of elements in the set isdiraen-
new quadrilinear constraint on sets of correspondingsion of the space. Given a basfe{, ... ,e4} for a
points from four images. d dimensional vector spack®, any elemeni® of
Moreover, the entire set of constraint tensors forthe space can be expressed:&s? + - - - + x4 and
all the images can be combined into a single com-associated with the coordinate vectat, . .. ,2%).
pact geometric object, the antisymmetric 4 index |t is helpful to view the superscript as anab-
joint image Grassmanniantensor. This can be re- stract index [18], i.e. an abstract label or place-
covered from image measurements whenever the inholder denoting the space the object belongs to.
dividual constraint tensors can. It encodes preciselyHowever given a choice of basis it can also be
the information needed for reconstruction: the lo- thought of as a variable indexing the coordinate vec-
cation of the joint image in the space of combined tor that represents the object in that basis.
image coordinates. It also generates the matching For every vector spack® there is a dual vector
constraints for images of lines and a seti@himal space of linear mappings di“, denotedH,. An
reconstruction techniquesclosely associated with elementl, of H, acts linearly on an element* of
the matching constraints. Structural constraints onye to produce a scalar. This action is denoted sym-
the Grassmannian tensor produce quadratic identiboncauy by 1,x* and calledcontraction. Any ba-
ties between the various constraint tensors. sis{e{,... ,e%} for H* defines a uniqueual basis
{es,. .. ,el} for H, with ele = &%, whered! is
1 wheni = j and 0 otherwise. Thé&" coordinate
of x* in the basis{ef} is justz’ = e x*. If el-

This work was supported by the European Com_ements ofH* are represented in the 'Pasﬁs?} as
munity through Esprit programs HCM and SEC- d index column vectors, elements &, in the dual
o LT i
OND and benefited from discussions with many col-bas'_s{eq} beha}ve liked index row vectors. an
leagues. The notation and the tensorial treatmenfraction is theanUSt the d?lt pr?duct of theccl:oordlnate
N ... a ... a f—
of projective space are based on Roger Penrose¥eCtOrs:(u1 eq + j“éea)(x et Jix €q) =
approach to relativistic spinors and twistors [18], %1 & T *- + ua 7. Contraction involves a sum

which partly derives (I believe) from Hodge & Pe- over coqrdlngtes.bu';]we do not epr|C|tI.y V‘I’”tt)e Ith?
doe’s excellent treatise on algebraic geometry [9]_summat|on signs: whenever a superscript label also

Without these powerful tools this work would not 2PPears as a subscript a summation is implied. This
have been possible.

A.1 Vectors and Tensors

Acknowledgements

is called theEinstein summation convention The
order of terms is unimportanti, x* andx® u, both
denote the contraction of the dual vectgrwith the
A Mathematical Background vectorx®.
Suppose we change the basis?f according
This appendix provides a very brief overview of the to e — &} = Zj e AJ; for some matrixA7;.
linear algebra and projective geometry need to un-To keep the resulting abstract element’ef the
derstand this paper, and a little background infor-same, coordinate vectors must transform inversely
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according tor’ — &' = Y, (A™!)"; 7. To pre- TP 4 Tbe* — T 4 T — T js an antisym-

serve the relationg}, & = ¢, the dual basis must metric 3 index tensor. A group of indices (anti-

also transform ag! — & = S A—l)z‘j el . Fi- )symmetric if (anti-)symmetrization over them does

nally, to leave the abstract element of the dual spac&©t change the tensof: - - ) and[. - -] are also used

the same, dual coordinate vectors must transform a9 denote this, for exampﬁé‘g‘zz]) e Hl 4 is an-

wp — U =Y uy AJ;. Because of the transfor- tisymmetric inab and symmetric ired. Permutation

mations of their coordinates under changes of basis¢f (anti-)symmetric indices changes at most the sign

vectorsx® are calleccontravariant and dual vectors ~ Of the tensor.

u, are calleccovariant. In d dimensions antisymmetrizations over more
An elementx® of H® can also be viewed as a lin- than d indices vanish: in any basis each index

ear mapping on elements &, defined byu,x?, in must take a di;tinct va_llue betwednand d._ Up
other words as an element of the dual of the dual of® SCalé there is a unique annsym'metrlﬂ;:mddex
1. For finite dimensional spaces every linear map-tensore™ E_H[alagmad}: choosinge ¢ =
ping onH, can be written this way, so there is a T1 IN Some basis, all other components afé

complete symmetry betweér® andH,: neither is or O(;l“inder a change of basis the _components
‘more primitive'. of ¢ are rescaled by the determinant of the

transformation matrix. There is a corresponding
dual tensoreq,ay.-ay € Hajaz--ay) With cOMpo-
nents+1 or 0 in the dual basis. €4,4,...q, de-
fines a volume element oft{*, giving the vol-
ume of the hyper-parallelepiped formed Byec-

It is possible to take formal (‘tensor’ or ‘outer’) tors X¢, .. X% AS €qyap0y XJ1 - X5%. The de-
products ofn-tuples of elements of vector spaces, terminant of a linear transformatioli¢ on H* can
for example a formal elemerf®, = x* y4 z,  pe defined Sk €arap-ay TO - - T8 ghib2-ba, and
can be made from elements’, y*, z, of vector  this agrees with the determinant of the matrix of
spacesi”, H*' and*,. The vector space of linear T in any coordinate basis. A contravariant anti-
combinations of such objects (for different choices symmetrick index tensorTl®: ! has a covariant
of x*, y* andz,) is called the tensor product space antisymmetricd — & index dual (+T)q,,,..a, =
HA, = H* ® HA ® Ho. When there are several % € agbr-by bi-br ConversewTZlmak —
distinct copies of{* we use distinct letters to denote _ ’(*T)karl--’-bd gbret1baarar A tensor and its
them,e.g.H% . = H*®@H’®@H,. contains two copies
of H°. Elements of a tensor product space are calle
tensorsand can be thought of as multidimensional
arrays of components in some chosen set of bases. )
Under changes of basis each of the indices must b&-2 Grassmann Coordinates

transformed individually. Antisymmetrization and duality are important in
There are a number of important generic opera-the theory of linear subspaces. Consider a set
tions on tensors. A set of tensors can be contractedv{, ... ,v{} of k independent vectors spanning a
together over any appropriate subset of their indicesdimensional subspace of H%. Given some choice
for exampleug, x® € Hy, u, TP, x¢ € HE. Self  of basis the vectors can be viewed as column vec-
contractionsT% ... € H""... are calledtraces tors and combined into a singlex k matrix. Any
A group of indices can béanti-)symmetrized by  set{as, ... ,a} of k distinct rows of this matrix de-
averaging over all possible permutations of their po-fines ak x k& submatrix whose determinant iga k
sitions, with an additional minus sign for odd permu- minor of the original matrix. Up to a constant scale
tations during antisymmetrization. Onindicés,-)  factor these minors are exactly the components of
denotes symmetrization arfd- -] antisymmetriza- the tensorn® o = V[lal-"VZk}. If the original
tion. For exampleT(®) = (T + T**) and  vectors are independent thex k matrix has rank:
Tl = 2(T* — T") can be viewed as symmetric and at least one of the x k minors (and hence the
and antisymmetric matrices, afi**?l = &(T®°—  tensorxe ) will not vanish. Conversely, if the

Any nonzero element ¢, defines al—1 dimen-
sional subspace df{® by the equations,x* = 0,
and conversely any — 1 dimensional subspace de-
fines a unique element @{, up to scale.

1
(d—k)!
ci}lual contain the same information and both hé@e
Independent components.
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tensor vanishes the vectors are linearly dependent. These relations obviously hold for any tensor of the
A vector x? lies in the subspaCE if and onIy if form Vlal ... Vzk} because one of the vectors must
all of the(k+1) x (k+1) minors of thed x (k+1)  appear twice in an antisymmetrization. What is less
matrix whose columns are” and thev{ vanish. In  obvious is that they do not hold for any tensor that
tensorial terms:x® is an element ob if and only  can not be written in this form.
if $lor-a x9l = 0. So no two distinct subspaces  Although their redundancy and the complexity of
have the sam&““*. Under ak x k linear redef-  the Grassmann relations makes them rather incon-
inition v — v{ = ., A;/v{ of the spanning vec- venient for numerical work, Grassmann coordinates
tors, thek x k minors are simply a constant factor are a powerful tool for the algebraization of geomet-
of Det(A;”) different from the old ones by the usual ric operations on subspaces. For example the union
determinant of a product rule. So up to scafe of two independent subspaces is jhst 01 bi]
is independent of the set of vectors3hchosen to  and dually the intersection of two (minimally) inter-
span it. secting subspaces gy, ...q, [y, ..5,]-
A subspaceX can also be defined as the null
space of a set off — k independent linear forms

{ul*l ... udl, ie. as the set ok® on which all A.3  Projective Geometry
of theu}, vanish:u}, x* = 0. Theu), can be viewed  Gjven ad + 1 dimensional vector spack® with

, p
as a(d — k) x d matrix of row vectors. Arguments ,onzero elements® andy® (a =0, ... , d), we will
analogous to those above show that the covarianfyrite x* ~ y* and say thak® andy® areequiva-
az'ﬂ?ymmectirlcd — k index tensor¥,, ., .a;, =  |ent up to scalevhenever there is a nonzero scalar

ap,, " Ug, 1S independent (up to scale) of the \ such thatx® = A y®. Thed dimensionalpro-
{u!} chosen to characteriZé and defines as the jective spaceP” is defined to be the set of nonzero
set of points for whichZ,, ..., x* = 0. We elements of{* under equivalence up to scale. When
use the same symbol fal,, . ..., andX* % pe- ~ we writex® € P* we really mean the equivalence
cause up to scale they turn out to be mutually dual:class{\ x*| A # 0} of x* under~.

Yapiraq ~ % Eajr-agbi by bk In particu- The span of any + 1 independent representa-
lar a hypersurface can be denoted eithenpyr by  tives {x§,... ,x}} of points inP* is ak + 1 di-
uloraa-1], mensional vector subspace Af that projects to a

Hence, up to scalg,;* " and its duabl,, . ...,  Well-definedk dimensional projective subspace of
are intrinsic characteristics of the subspatende-  P¢ called the subspadarough the points. Two in-
pendent of the bases chosen to span it and uniqueldependent points define a one dimensional projec-
defined by and defining it. In this sense the antisym-tive subspace called a projective line, three points
metric tensors provide a sort of coordinate system ordefine a projective plane, and so forth. The vector
the space of linear subspaces?of, calledGrass-  subspaces df(® support notions of subspace dimen-
mann coordinates sion, independence, identity, containment, intersec-

Unfortunately, only very special antisymmetric tion, and union (vector space sum or smallest con-
tensors specify subspaces. The spacé dfimen-  taining subspace). All of these descend to the pro-
sional linear subspaces of&dimensional vector jective subspaces @“. Similarly, linear mappings
space is onlyk (d — k) dimensional, whereas the between vector spaces, kernels and images, injectiv-
antisymmetrick index tensors hav(é,j) independent ity and surjectivity, and so on all have their coun-
components, so the Grassmann coordinates are materparts for projective mappings between projective
sively redundant. The tensors that do define subspaces.
spaces are callesimple because they satisfy the fol- ~ Tensors or{* also descend to projective tensors
lowing complex quadratiGrassmann relations defined up to scale o®*. Elementsu, of the
T P e S R projectiye ver_siorTPa o_f th_e dual spacé, defir_1e

d — 1 dimensional projective hyperplanes?i via
or in terms of the dual u,x® = 0. The duality ofH* andH, descends to
a powerful duality principle between points and hy-

Sy 1ag 42 =0 perplanes orP? andP,,.
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More generally the antisymmetrie + 1 index v 4 uyu/, the most general redefinition of tles and
contravariant and — & index covariant Grassmann v's that leaves unchanged up to scale is
tensors or{* definek dimensional projective sub-
spaces of®. For example given independent points ( ua ua ) . A( ua ua )(1/)‘ 0 /)
x%, y® andz® of P the projective tensaxl*y®! de- va va va va 0 1/A
fines the line througlx® andy® andx!“y’z) defines  \yheren is an arbitrary nonsingula® x 2 matrix and
the plane througlx?, y* andz?. Similarly, in 3D a P\, X'} are arbitrary nonzero relative scale factors.
line can be represented dually as the intersection of gincew, andv 4 are independent epipolar lines
two hyperplanesi, v, while a point requires three  gng there is only a two parameter family of these,
u, VW In 2D asingle hyperplane, suffices for 5y other choicdiy, ¥4 must be a nonsingular lin-

aline, and two are required for a poin, v;). Dual- - ear combination of these two, and similarly fes
ization gives back the contravariant representationgngy ,,. Hence the only possibilities are:

e.g.x% = u,v, e® are the coordinates of the inter-

section of the two lines, andv, in 2D. ( uy ) A ( uy )
A d dimensional projective space can be thought va va
of as ad dimensional affine spaced. a Euclidean
. . . u 4/ ’ u 4/
space with points, lines, planes, and so on, but no ( v ) — A ( v )

origin or notion of absolute distance) with a num-

ber of ideal points added ‘at infinity’. Choosing for nonsingular2 x 2 matricesA andA’. Then
a basis forH®, any representativ® of an ele-

mentP® with z° # 0 can be rescaled to the form g _ ( 0 1 ) <UA/ >
aar = (ua va
(1,2%,...,2%)T. This defines an inclusion of the ( ) -1 0/ \va
affine spacgz!,... ,z%) in P2, but thed — 1 di- (0 1\ ., [ uu
mensional projective subspace ‘at infinity’ of ele- - (uA VA ) A (_1 0> A <VA,>

ments of P¢ with z° = 0 is not represented. Un-

der this inclusion affine subspaces (lines, planes, etcpince the covectoras, v, anduy, vy are inde-
become projective ones, and all of affine geometrypendent, forF to remain unchanged up to scale we
can be transferred to projective space. However promust have

jective geometry is simpler than affine geometry be- 0 1 0 1

cause projective spaces are significantly more uni- AT < 10 > A~ ( 10 >

form than affine ones — there are far fewer special

cases to consider. For example two distinct linesUsing the2 x 2 matrix identity

always meet exactly once in the projective plane,

whereas in the affine plane they always meeatept A = —Det (A) < 0 1 )A—T( 0 1 >
when they are parallel. Similarly, there are natu- -10 -10

ral transformations that preserve projective SrUCtUre o find thatA’ ~ A up to scale. Defining\/\ to

(i.e. that map lines to lines, preserve INtersections gqa the difference in scale, the result follows.
and so) that are quite complicated when expressed

in affine space but very simple and natural in projec-  (2) Given any factorizatio® 44 = us var —

tive terms. The 3D->2D pinhole camera projection VA u defining a 4D subspacg® of 1 via

is one of these, hence the importance of projective A
() (R ) o

eometry to computer vision.
g y p va \FY XA/

L and any pair{P2, P2’} of rank 3 projection ma-
B Factorization of the Fundamen- trices with dis{tinct cent}res of projection compatible
tal Matrix with F 4 4 in the sense thaf 44 P2P{" xx = 0
for all x* € H“, there is a fixed rescalingA, \'}
This appendix proves two claims made in section 3.that make<“ coincide with the image df(® under
(1) Given the factorizatio¥ 4, = us va —  the joint projection(A P2 X PA)T,
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If the compatibility condition holds for akk®, the
symmetric part of the quadratic forii, 4 PAP;Y
must vanish. Expandin§ and for clarity defining
u, = ug P4, ), = uy PY, v, = va P4, and
v/ = v P4 we find:

U, v+ viu—veu, —u, vy, = 0

Since both projections have rank 3 none of the pulled
back covectorai,, u/,, v,, v, vanish, and since the
pairsug 4 v4 anduy £ vy are independent,
u, % v, andu, ¢ v/, are independent too. Con-

tracting with any vectox® orthogonal to botha,
andu, we find that

(Vi x")up — (vox*)uy, = 0

Either there is som&® for which one (and hence

both) of the coefficientsv, x* and v/, x* are
nonzero — which implies thati, ~ ul, — or
both coefficients vanish for all suck®. But in
this case we could conclude thej and v/, were
in Span(u,,u,) and sincev, is independent of
u, and v, of u), thatv, ~ u, andv) ~ u,.

Substituting back intdF immediately shows that

Au,up — XN vevy = 0 with nonzero) and)\, and

hence thatu, ~ v,. So this branch is not pos-

[3]

[4]

[5]

[6]

[7]

sible and we can conclude that for some nonzero [8]

Aand XN, Au, + XN u, = 0. Similarly, u v, +
w' v!, = 0 for some nonzerg andy’. Substituting
back intoF gives (A/\N — /1) (ugvy + veup) =
0, so up to scale{u, '} ~ {\,X'}. The rescal-
ing {P4, P4’} — {AP4, X P4’} then takes the
projection of anyx® to a vector lying inZ<:

uq4 Uy )\].);'14 a
V4 Var N ng x
B Au, + N u, o 0 a0
T UavetxNv, ) T o)t T
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Abstract

We describe work in progress on a numerical library for estimating multi-image matching
constraints, or more precisely the multi-camera geometry underlying them. The library will
cover several variants of homographic, epipolar, and trifocal constraints, using various differ-
ent feature types. It is designed to be modular and open-ended, so) theiv(feature types
or error models,i{) new constraint types or parametrizations, aiig few numerical reso-
lution methods, are relatively easy to add. The ultimate goal is to provide practical code for
stable, reliable, statistically optimal estimation of matching geometry under a choice of robust
error models, taking full account of any nonlinear constraints involved. More immediately,
the library will be used to study the relative performance of the various competing problem
parametrizations, error models and numerical methods. The paper focuses on the overall de-
sign, parametrization and numerical optimization issues. The methods described extend to
many other geometric estimation problems in visiew, curve and surface fitting.
Keywords: Matching constraints, multi-camera geometry, geometric fitting, statistical estima-
tion, constrained optimization.

1 Introduction and Motivation

This paper describes work in progress on a numerical library for the estimation of multi-image
matching constraints. The library will cover several variants of homographic, epipolar, and trifocal
constraints, using various common feature types. It is designed to be modular and open-ended, so
that new feature types or error models, new constraint types or parametrizations, and new numerical
resolution methods are relatively easy to add. The ultimate goal is to provide practical code for
stable, reliable, statistically optimal estimation of matching geometry under a choice of robust error
models, taking full account of any nonlinear constraints involved. More immediately, the library is
being used to study the relative performance of the various competing problem parametrizations,
error models and numerical methods. Key questions inclugjehov much difference does an
accurate statistical error modehake; {i) which constraint parametrizationsnitialization methods
and numerical optimization schemedfer the best reliability/speed/simplicity. The answers are
most interesting fonear-degeneratgroblems, as these are the most difficult to handle reliably.
This paper focuses on architectural, parametrization and numerical optimization issues. | have tried
to give an overview of the relevant choices and technology, rather than going into too much detail
on any one subject. The methods described extend to many other geometric estimation problems,
such as curve and surface fitting.

After motivating the library and giving notation in this section, we develop a general statistical
framework for geometric fitting i§2 and discuss parametrization issue§3n§4 summarizes the
library architecture and numerical techniquégs discusses experimental testing, §6cdconcludes.

This paper appeared in SMILE'98, European Workshop on 3D Structure from Multiple Images of Large-scale Envi-
ronments, Springer LNCS, 1998. The work was supported by Esprit LTR projg@atCi .
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Why study matching constraint estimation? — Practically, matching constraints are central
to both feature grouping and 3D reconstruction, so better algorithms should immediately benefit
many geometric vision applications. But there are many variations to implement, depending on
the feature type, number of images, image projection model, camera calibration, and camera and
scene geometry. So a systematic approach seems more appropriate #thhaotase-by-case
one. Matching constraints also have a rather delicate algebraic structure which makes them difficult
to estimate accurately. Many common camera and scene geometries correspond to degenerate cases
whose special properties need to be detected and exploited for stability. Even in stable cases it is
not yet clear how best to parametrize the constraints — usually, they belong to fairly complicated
algebraic varieties and redundant or constrained parametrizations are required. Some numerical
sophistication is needed to implement these efficiently, and the advantages of different models and
parametrizations need to be studied experimentally: the library is a vehicle for this.

It is also becoming clear that in many cases no single model suffices. One should rather think
in terms of a continuum of nested models linked by specialization/generalization relations. For
example, rather than simply assuming a generic fundamental matrix, one should use inter-image
homographies for small camera motions or large flat scenes, affine fundamental matrices for small,
distant objects, essential matrices for constant intrinsic parameters, fundamental matrices for wide
views of large close objects, lens distortion corrections for real imagfes,ldeally, the model
should be chosen to maximize the statistically expected end-to-end system performance, given the
observed input data. Although there are many specific decision criteria (ML, AIC,.BIQ, the
key issue is always thieias of over-restrictive models versus thariability of over-general ones
with superfluous parameters poorly controlled by the data. Any model selection approach requires
several models to be fitted so that the best can be chosen. Some of the models must always be
inappropriate — either biased or highly variable — so fast, reliable, accurate fitting in difficult
cases is indispensable for practical model selection.

Terminology and notation: We use homogeneous coordinates throughout, with upright bold
for 3D quantities and italic bold for image ones. Image projections are descrilied Byperspec-
tive projection matrices P, with specialized forms for calibrated or very distant cameras. Given
m images of a static scene, our goal is to recover as much information as possible about the camera
calibrations and poses, using only image measurements. We will call the recoverable information
the inter-image geometryto emphasize that no explicit 3D structure is involved. The ensemble of
projection matrices is defined only up to a 3D coordinate transformation (projectivity or similarity)

T: (Py,...,P,)— (PiT,...,P,T). We call such coordinate freedorgauge freedoms So
our first representation of the inter-image geometry ipragection matrices modulo a transfor-
mation group. In the uncalibrated case this givesdmn parameter representation with gauge
freedoms, leaving1m — 15 essential d.o.f. £ 7, 18,29 for m = 2, 3,4). In the calibrated case
there are&sm — 7 essential degrees of freedom.

Any set of four (perhaps not distinct) projection matrices can be combined to fonateh-
ing tensor [14, 5] — a multi-image object independent of the 3D coordinates. The possible
types are:epipolese;; 3 x 3 fundamental matrices F;j; 3 x 3 x 3 trifocal tensors Gz?k ; and
3 x 3 x 3 x 3 quadrifocal tensors H7*', Their key property is that they are the coefficients
of inter-imagematching constraints — the consistency relations linking corresponding features
in different images.E.g, for imagesz, ’, "’ of a 3D point we have the 2-imaggpipolar con-
straint =" F ' = 0; the 3-imagetrinocular constraint which can be written symbolically as
[2']x (G -x)[z"]x = 0 where[z ]« is the matrix generating the cross prodiet] .y = z A y;
and a 4-imagejuadrinocular constraint. The matching tensors also characterize the inter-image
geometry. This is attractive because they are intimately connected to the image measurements —
it is much easier to get linearized initial estimates of matching tensors than of projection matrices.
Unfortunately, this linearity is deceptive. Matching tensors are not really linear objects: they only
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represent a valid, realizable inter-image geometry if they satisfy a set of nonlinear algehrsig-
tency constraints These rapidly become intractable beyond 2—3 images, and are still only partially
understood [4, 14, 5, 9, 6]. Our second parametrization of the inter-image geometmascisng
tensors subject to consistency constraints

We emphasize that camera matrices or matching tensors are only a means to an end: it is the
underlying inter-image geometry that we are really trying to estimate. Unfortunately, this is abstract
and somewhat difficult to pin down because it im@ntrivial algebraic variety — thereare no
simple, minimal, global parametrizations.

2 Optimal Geometric Fitting

2.1 Direct Approach

Matching constraint estimation is an instance ofastract geometric fitting problem which

also includes curve and surface fitting and many other geometric estimation problems: estimate the
parameters of a modeldefining implicit constraintg; (x;, u) = 0 on underlying features;, from

noisy measurements of the features. More specifically we assume:

1. There are unknowfrue underlying features xX; and an unknowrtrue underlying model
u which exactly satisfy implicitnodel-feature consistency constraintg;(X;,a) = 0. (For
matching constraint estimation, these ‘features’ are actually ensembles of several correspond-
ing image ones).

2. Each underlying featurg; is linked to observations, or other prior information by an
additive posterior statistical error measure p;(x;) = p;(x;|x;). For examplep; might
be (robustified, bias correcte@psterior log likelihood. There may also be model prior
pprior(u). These distributions are independent.

3. The model parametrizatianmay itself be complexg.g.with internal constraint&(u) = 0,
gauge freedomstc

4. We want to findoptimal consistent point estimates(x;, i) of the true underlying modei
and featurex;

(X4,...,0) = arg min <ppri0r(u) + Zpi(xi\&) ci(x;,u) =0, k(u) = 0)

Consistentmeans thatx;, i) exactly satisfy all the constraintptimal means that they

minimize the total error over all such estimat&aint estimatemeans that we are attempting

to “summarize” the joint posterior distributigrix;, . . . , u|x;, ... ) with just the few numbers

(Xiy ... ,0).
We call this thedirect approach to geometric fitting because it involves direct numerical optimiza-
tion over the “natural” variablegx;, u). Its most important characteristics aré) If gives exact,
optimal results — no approximations are involveii) I produces optimal consistent estimatgs
of the underlying features;. These are useful whenever the measurements need to be made coher-
ent with the model. For matching constraint estimation such feature estimates are “pre-triangulated”
or “implicitly reconstructed” in that they have already been made exactly consistent with exactly
one reconstructed 3D featureiii X Natural variables are used and the error function is relatively
simple, typically just a sum of (robustified, covariance weighted) squared devidtions x; ||?.
(iv) However, a sparse constrained nonlinear optimization routine is required: the problem is large,
constrained and usually nonlinear, but the features couple only to the model, not to each other.
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As an example, for the uncalibrated epipolar geometry: the “features” are pairs of correspond-
ing underlying image point$z;, «/); the “model” u is the fundamental matri¥' subject to the
consistency constraintet(F) = 0; the “model-feature constraints” are the epipolar constraints
z/F x/ = 0; and the “feature error modep;(x;) might be (a robustified, covariance-weighted
variant of) the squared feature-observation distghee- z|? + ||z’ — z/||%.

2.2 Reduced Approach

If explicit estimates of the underlying features are not required, one can attempt to replace step 4
above with an optimization over alone:

4'. Find anoptimal consistent point estimatea of the true underlying modéi

k(u) = O>

Here, thereduced error functions p;(u|x;) are obtained by freezing and eliminating the
unknown features from the problem using eith&yppint estimates

a = arg min (pprior(u) + Zpi(u\gi)
i

Xi(x;;,u) = arg min (p;(x[x;) | ¢i(xi,u) = 0)

of x; givenx; andu, with p;(ulx;) = pi(xi(x;,u)|x;); or (i) marginalization with respect to;:

it )

pi(u|x;) = e (i, u)=0 pi(x;|x;) dx;. These two methods are not equivalent in general, although
their answers happen to agree in the linear/Gaussian limit. But both represent reasonable estimation
techniques.

We call this thereduced approachto geometric fitting, because the problenvésiuced to
one involving only the model parametens The main advantage is that the optimization is over
relatively few variablesi. The constraintg; do not appear, so a non-sparse and (perhaps) uncon-
strained optimization routine can be used. The disadvantage is that the reduggdi¢@sseldom
available in closed form. Usually, it can only be evaluated to first order in a linearized + central
distribution approximation. In fact, the direct method (witlirozen, and perhaps limited to a sin-
gle iteration) is often the easiest way to evaluate the point-estimate-based reduced cost. The only
real difference is that the direct method explicitly calculates and applies feature udstateghile
the reduced method restarts each time feome x,. But the feature updates are relatively easy to
calculate given the factorizations needed for cost evaluation, so it seems a pity not to use them.
The first order reduced cost can be estimated in two ways, ei)rgiréctly from the definition
by projectingx; Mahalanobis-orthogonally onto the local first-order constraint surtfaeeg—}‘z .
dx; = 0; or (i) by treatingc; = c;(x;,u) as a random variable, using covariance propagation
w.r.t. x; to find its covariance, and calculating té-like variablec] Cov(c;)~tc;. In either case
we obtain thegradient weighted least squaresost functiont [13]

-1
-1
_ T ( de; (d%ps dc; T .
plu) = ) ¢ (dxz (dxg dx, Ci

1

(57; ,ll)

This is simplest for problems with scalar constrairEsg. for the uncalibrated epipolar constraint
we get the well-known form [10]

W=y (z] F a;)’
u =
P z] F Cov(z!) FTz, + z!" FT Cov(z;) F z/

i o

LIf any of the covariance matrices is singular (which happens for redundant constraints or homogenesy)sttata
matrix inverses can be replaced with pseudo-inverses.
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2.3 Robustification — Total Distribution Approach

Outliers are omnipresent in vision data and it is essential to protect against them. In general, they
are distinguished only by their failure to agree with the consensus established by the inliers, so
one should really think in terms drfilier or coherencedetection. The hardest part is establishing

a reliable initial estimatei,e. the combinatorial problem of finding enough inliers to estimate the
model, without being able to tell in advance that tleginliers. Exhaustive enumeration is usually
impracticable, so one falls back on either RANSAC-like random sampling or (in low dimensions)
Hough-like voting. Initialization from an outlier-polluted linear estimate is seldom completely
reliable.

Among the many approaches to robustness, | prefer M-like estimators and particuladiathe
distribution approach: hypothesize a parametric form for th&l observation distribution —

i.e. including both inliers and outliers — and fit this to the data using some standard criterion,
e.g.maximum likelihood. No explicit inlier/outlier decision is needed: the correct model is located
simply because it provides an explanation more probable than randomness for the coherence of
the inlier$. The total approach is really just classical parametric statistics with a more realistic
or “robust” choice of parametric family. Any required distribution parameters can in principle be
estimated during fittingg.g. covariances, outlier densities). For centrally peaked mixtures one can
view the total distribution as a kind of M-estimator, although it long predates these and gives a much
clearer meaning to the rather arbitrary functional forms usually adopted for them. As with other M-
like-estimators, the estimation problem is nonlinear and numerical optimization is required. With
this approach, both of the above geometric fitting methods are ‘naturally’ robust — we just need to
use an appropriate total likelihood.

Reasons for preferring M-like estimators over trimmed ones like RANSAC’s consensus and
rank-based ones like least median squares incluidep the extent that the total distribution is
realistic, the total approach is actually the statistically optimal oinepily M-like cost functions
are smooth and hence easy to optimizie) the ‘soft’ transitions of M-like estimators allow better
use of weak ‘near outlier’ data,g. points which are relatively uncertain owing to feature extraction
problems, or “false outliers” caused by misestimated covariances or a skewed, biased, or badly
initialized model; {v) including an explicit covariance scale makes the results more reliable and
increases thexpectedreakdown point — ‘scale free’ rank based estimators can not tell whether
the measurements they are including are “plausible” or mtal{ of these estimators assume an
underlying ranking of errors ‘by relative size’, and none are robust against mismodelling of this
— rank based estimators only add a little extra robustness against the likelilsoaror size
assignment.

3 Parametrizing the Inter-image Geometry

As discussed above, what we are really trying to estimate isrifee-image geometry — the

part of the multi-camera calibration and pose that is recoverable from image measurements alone.
However, this is described by a nontrivial algebraic variety — iti@asimple, minimal, concrete,

global parametrization. For example, the uncalibrated epipolar geometry is “the variety of all ho-
mographic mappings between line pencils in the plane”, but it is unclear how best to parametrize
this. We will consider three general parametrization strategies for algebraic varigtiestupdant
parametrizations with internal gauge freedonis; fedundant parametrizations with internal con-
straints; {ii) overlapping local coordinate patchédathematicallythese are all equivalent — they

only differ in relative convenience and numerical properties. Different methods are convenient for

2If the total distribution happens to be an inlier/outlieixture — e.g. Gaussian peak + uniform background —
posterior inlier/outlier probabilities are easily extracted as a side effect.
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different uses, so it is important to be able to convert between them. Even the numerical differences
are slight for strong geometries and careful implementations, but for weak geometries there can be
significant differences.

3.1 Redundant Parametrizations with Gauge Freedom

In many geometric problemaybitrary choices of coordinatesare required to reduce the problem
to a concrete algebraic form. Such choices are cajledge freedoms— ‘gauge’ just means
coordinate system. They are associated with an intexyraimetry or coordinate transformation
group and its representations. Formulae expressed in gauged coordinates reflect the symmetry by
obeying well-defined transformation rules under changes of coordinaelsy belonging to well-
defined group representations. 3D Cartesian coordinates are a familiar example: the gauge group is
the group of rigid motions, and the representations are (roughly speaking) Cartesian tensors.

Common gauge freedoms include) 8D projective or Euclidean coordinate freedoms in re-
construction and projection-matrix-based camera parametrizatiifsarifitrary homogeneous-
projective scale factors; andij choice-of-plane freedoms inomographic parametrizations of
the inter-image geometry. These latter represent matching tensors as products of epipoles and inter-
image homographies induced by an arbitrary 3D plane. The gauge freedom is the 3 d.o.f. choice of
plane. The fundamental matrix can be writtenfas~ | e |« H wheree is the epipole andd is
any inter-image homography [11, 3]. Redefining the 3D plane chafhés H + e a' for some
image line 3-vectow. This leavesF' unchanged, as do rescalings— \e, H — pH. So there
are3+ 1+ 1 gauge freedoms in thie+ 3 x 3 = 12 variable parametrizatiof” ~ F (e, H ), leaving
the correctl2 — 5 = 7 degrees of freedom of the uncalibrated epipolar geometry. Similarly [8], the
image(1, 2, 3) trifocal tensorG can be written in terms of the epipolég’, e”) and inter-image
homographies H', H") of image 1 in images 2 and 3

G~eoH' -H e withfreedom (H,) — (H,)+(5)a’

The gauge freedom corresponds to the choice of 3D plane and 3 scale d.o.f. — the relative scaling
of (e/, H') vs. (e”, H") being significant — so the 18 d.o.f. of the uncalibrated trifocal geometry
are parametrized by + 3 + 9 + 9 = 24 parameters modul® + 1 + 1 + 1 = 6 gauge freedoms.
For calibrated cameras it is useful to place the 3D plane at infinity so that the resulting absolute
homographies are representedby3 rotation matrices. This gives well-known 6 and 12 parameter
representations of the calibrated epipolar and trifocal geometries, each with just one redundant scale
dof:E~[e]xR,G ~ e ®R"— R' ®e". All of these homography + epipole parametrizations
can also be viewed as projection matrix based ones, in a 3D frame where the first projection takes
the form(I3.3|0). The plane position freedoma corresponds to the 3 remaining d.o.f. of the 3D
projective frame [8]. These methods seem to be a good compromise: compared to ‘free’ projections,
they reduce the number of extraneous d.o.f. from 15 to 3. However their numerical stability does
depend on that of the key image.

Gauged parametrizations have the following advantagdsthdy are very natural when the
inter-image geometry is derived from the 3D onig) they are close to the underlying geometry,
so it is relatively easy to derive further properties from them (projection matrices, reconstruction
methods, matching tensorsijj Y a single homogeneous coordinate system covers the whole variety;
(iv) they are numerically fairly stable. Their main disadvantage is that they include extraneous,
strictly irrelevant degrees of freedom which have no effect at all on the residual error. Hence,
gauged Jacobians are exactly rank deficient: specially stabilized numerical methods are needed to
handle them. The additional variables and stabilization also tend to make gauged parametrizations
slow.
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3.2 Constrained Parametrizations

Another way to define a variety is in terms obnsistency constraintsthat “cut the variety out

of” a larger, usually linear space. Any coordinate system in the larger space then parametrizes
the variety, but this is an over-parametrization subject to nonlinear constraints. Points which fail

to satisfy the constraints have no meaning in terms of the varéfching tensors are the most

familiar example. In the 2- and 3-image cases a single fundamental matrix or trifocal tensor suffices
to characterize the inter-image geometry. But this is a linear over-parametrization, subject to the
tensor’s nonlinear consistency constraints — only so is a coherent, realizable inter-image geometry
represented. Such parametrizations are valuable because they are close to the image data, and (in-
consistent!) linear initial estimates of the tensors are easy to obtain. Their main disadvantages are:
(i) the consistency conditions rapidly become complicated and non-obvigusie(representation

is only implicit — it is not immediately obvious how to go from the tensor to other properties of

the geometry such as projection matrices. The first problem is serious and puts severe limitations
on the use of (ensembles of) matching tensors to represent camera geometries, even in transfer-type
applications where explicit projection matrices are not required. Three images seems to be about the
practical limit if a guaranteed-consistent geometry is required, although — at the peril of a build-up

of rounding error — one can chain together a series of such three image solutions [12, 15, 1].

For the fundamental matrix the codimension is 1 and the consistency constr&n{#s) = 0
— this is perhaps the simplest of all representations of the uncalibrated epipolar geometry. For the
essential matri¥ the codimension is 3, spanned either by the requiremeni#isitould have two
equal (which counts for 2) and one zero singular values, or by a local choice of 3 of the 9 Demazure
constraints EE" — Jtrace(EET)) E = 0 [4]. For the uncalibrated trifocal tense¥ we locally
need26 — 18 = & linearly independent constraints. Locally (only!) these can be spanned by the 10
determinantal constraint—aé}f’—3 det(G -x) = 0 — see [6] for several global sets. For the quadrifocal
tensor H the codimension i80 — 29 = 51 which is locally (but almost certainly not globally)
spanned by tha! - 3 - 3 = 54 determinantal constrainthetij(Hijkl) = 0 + permutations.

Note that the redundancy and complexity of the matching tensor representation rises rapidly as
more images or calibration constraints are added. Alsostraint redundancyis common. Many
algebraic varieties require a number of generators greater than their codimension. Intersections
of the minimal number of polynomiallcally give the correct variety, but typically have other,
unwanted components elsewhere in the space. Extra polynomials must be included to suppress
these, and it rapidly becomes difficult to say which sets of polynomials are globally sufficient.

3.3 Local Coordinate Patches / Minimal Parametrizations

Both gauged and constrained parametrizations are redundant and require specialized numerical
methods. Why not simplify life by using minimal set of independent parameter® — The

basic problem is that no such parametrization can cover the whole of a topologically nontrivial
variety without singularities. Minimal parametrizations are intrinsicélgal: to cover the whole

variety we need several such partially overlapping ‘local coordinate patches’, and also code to select
the appropriate patch and manage any inter-patch transitions that occur. This can greatly complicate
the optimization loop.

Also, although infinitely many local parametrizations exist, they are not usually very ‘natural’
and finding one with good properties may not be easy. Basically, starting from some ‘natural’
redundant representation, we must either come up with some inspired nonlinear change of variables
which locally removes the redundancy, or algebraically eliminate variables by brute force using
consistency or gauge fixing constraints. For example, Lugtngl [10] guaranteelet(F) = 0
by writing each row of the fundamental matrix as a linear combination of the other two. Each
parametrization fails when its two rows are linearly dependent, but the three of them suffice to
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cover the whole variety. In more complicated situations, intuition fails and we have to fall back on
algebraic elimination, which rapidly leads to intractable results. Elimination-based parametrizations
are usually highly anisotropic: they do not respect the symmetries of the underlying geometry. This
tends to mean that they are messy to implement, and numerically ill-behaved, particularly near the
patch boundaries.

The above comments apply only édgebraically derived parametrizations. Many of the nu-
merical techniques for gauged or constrained problems eliminate redundant vaniaisiescally
to first order, using the constraint Jacobians. Such local parametrizations are much better behaved
because they are always used at the centre of their valid region, and because stabilizing techniques
like pivoting can be usedlt is usually preferable to eliminate variables locally and numerically
rather than algebraically.

4 Library Architecture and Numerical Methods

The library is designed to be modular so that different problems and approaches are easy to im-
plement and compare. We separai¢thie matching geometry type and parametrizatidin;e@ch
contributing feature-group type, parametrization and error moiiélttfe numerical optimization
method, and its associated linear algebig; the search controller (step acceptance and damping,
convergence tests). This decomposition puts some constraints on the types of algorithms that can
be implemented, but these do not seem to be too severe in practice. Modularization also greatly
simplifies the implementation.

Perhaps the most important assumption is the adoption throughout of a “square root” or nor-
malized residual vector based framework, and the associated use of Gauss-Newton techniques.
Normalized residual vectorsare quantitiese; for which the squared norrfe;||> — or more gen-
erally a robust, nonlinear functiop;(||e;||>) — is a meaningful statistical error measurg.g.
ei(x;) = Cov(gi)*é(xi — x;). This allows a nonlinear-least-squares-like approach. Whenever
possible, we work directly with the residualand its Jacobiarie rather than withj|e||2, its gra-

dient %‘1”2) = e'3¢ and its Hessiariﬂé”xieﬁ = eTg—fﬁ + j—f{Tg—f{. We use theGauss-Newton
approximation, i.e. we discard the second derivative teaﬁ% in the Hessian. This buys us
simplicity (no second derivatives are needed) and also numerical stability because we can use sta-
ble linear least squaresmethods for step prediction: by default we U@ decomposition with
column pivoting of 9¢, rather than Cholesky decomposition of the normal majfixde. This is
potentially slightly slower, but for ill-conditioned Jacobians it has much better resistance to round-
ing error. (The default implementation is intended for use as a reference, so it is deliberately rather
conservative). The main disadvantage of Gauss-Newton is that convergence may be slow if the
problem has botlarge residualandstrong nonlinearity— i.e. if the ignored Hessian terng—ig

is large. Howevergeometric vision problems usually have small residualshe noise is usually

much smaller than the scale of the geometric nonlinearities.

4.1 Numerical Methods for Gauge Freedom

The basic numerical difficulty with gauge freedom is that because gauge motions represent exact
redundancies that have no effect at all on the residual error, in a classical optimization framework
there is nothing to say what they should be: the error gradient and Hessian in a gauge direction both
vanish, so the Newton step is undefined. If left undamped, this leddsg® gauge fluctuations

which can destabilize the rest of the system, prevent convergence tests from opetatifigere

are two ways around this problem:

1. Gauge fixing conditionsbreak the degeneracy by addiagificial constraints. Unless we are
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clever enough to choose constraints that eliminate variables in closed form, this reduces the problem
to constrained optimization. The constraints are necessarily non-gauge-inviegiamin-tensorial

under the gauge group. For example, to fix the 3D projective coordinate freedom, Hartley [8] sets
P, = (I3.3]0) and)_, e"Hji = 0 whereP, = (H|e). Neither of these constraints is tensorial —

the results depend on the chosen image coordinates.

2. Free gauge methods— like photogrammetricfree bundle ones — leave the gauge free to

drift, but ensure that it does not move too far at each step. Typically, it is also monitored and
reset “by hand” when necessary to ensure good conditioning. The basic toaéardeficient

least squaresmethods €.g. [2]). These embody some form of damping to preclude large fluctu-
ations in near-deficient directions. The populegularization method minimizeg|residual|? +

\?||step siz¢? for some small > 0 — an approach that fits very well with Levenberg-Marquardit-

like search control schemes. Alternativeljasic solution— a solution where certain uncontrolled
components are set to zero — can be calculated from a standard pivoted QR or Cholesky decom-
position, simply by ignoring the last few (degenerate) columns. One can also find vectors spanning
the local gauge directions and treat them as ‘virtual constraints’ with zero residual, so that the gauge
motion is locally zeroedHouseholder reduction, which orthogonalizes the rows §§ w.r.t. the

gauge matrix by partial QR decomposition, is a nice example of this.

4.2 Numerical Methods for Constrained Optimization

There are at least three ways to handle linear constraints numericaliyin{inate variables using

the constraint JacobianijXintroduceLagrange multipliers and solve for these toaiji() weighting
methodstreat the constraints as heavily weighted residual errors. Each method has many variants,
depending on the matrix factorization used, the ordering of operat@ins,As a rough rule of

thumb, for dense problems variable elimination is the fastest and stablest method, but also the most
complex. Lagrange multipliers are slower because there are more variables. Weighting is simple,
but slow and inexact — stable orthogonal decompositions are needed as weighted problems are
ill-conditioned.

For efficiency, direct geometric fitting requires a sparse implementation — the features couple
to the model, but not to each other. The above methods all extend to sparse problems, but the
implementation complexity increases by about one order of magnitude in each case. My initial
implementation [16] used Lagrange multipliers and Cholesky decomposition, but | currently prefer
a stabler, faster ‘multifrontal QR’ elimination method. There is no space for full details here, but it
works roughly as follows (NB: the implementation orders the steps differently for efficiency): For
each constrained system, the constraint Jacog;-’r(aiss factorized and the results are propagated to
the error Jacobiaﬁg. This eliminates thelim(c) variables best controlled by the constraints from
%, leaving a ‘reduceddim(e) x (dim(x) — dim(c)) least squares problem. Many factorization
methods can be used for the elimination and the reduced problem. | currently use column pivoted
QR decomposition for both, which means that the elimination step is essentially Gaussian elimina-
tion. All this is done for each feature system. The elimination also carriegﬁrm)lumns into the
reduced system. The residual error of the reduced system can not be reduced by ckabging
it is affected by changes i acting via these reduce%ﬁ columns, which thus give contributions

to an effective reduced error Jacobig%{ul) for the modelu. (This is the reduced geometric fit-

ting method’s error function). The resulting model system is reduced against any model constraints
and factorized by pivoted QR. Back-substitution through the various stages then gives the required
model update and finally the feature updates.
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4.3 Search Control

All of the above techniques are linear. For nonlinear problems they must be used in a loop with
appropriate step damping and search control strategies. This has been an unexpectedly troublesome
part of the implementation — there seems to be a lack of efficient, reliable search control heuristics
for constrained optimization. The basic problem is that the dual goals of reducing the constraint
violation and reducing the residual error often conflict, and it is difficult to find a compromise that is
good in all circumstances. Traditionallypanalty function [7] is used, but all such methods have a
‘stiffness’ parameter which is difficult to set — too weak and the constraints are violated, too strong
and the motion along the constraints towards the cost minimum is slowed. Currently, rather than
a strict penalty function, | use a heuristic designed to allow a reasonable amount of ‘slop’ during
motions along the constraints. The residual/constraint conflict also afftapsdamping — the

control of step length to ensure acceptable progress. The principléudtaegion — a dynamic

local region of the search space where the local function approximations are thought to hold good —
applies, but interacts badly witjuadratic programming based step prediction routines which try

to satisfy the constraints exactly no matter how far away they are. Existing heuristics for this seemed
to be poor, so | have developed a new ‘dual control’ strategy which damps the towards-constraint
and along-constraint parts of the step separately using two Levenberg-Marquardt parameters linked
to the same trust region.

Another difficulty is constraint redundancy. Many algebraic varieties require a number of
generators greater than their codimension to eliminate spurious components elsewhere in the space.
The corresponding constraint Jacobians theoretically have +agkdimension on the variety,
but usually rank> codimension away from it. Numerically, a reasonably complete and well-
conditioned set of generators is advisable to reduce the possibility of convergence to spurious solu-
tions, but the high degree of rank degeneracy on the variety, and the rank transition as we approach
it, are numerically troublesome. Currently, my only effective way to handle this is to assume known
codimensiorn- and numerically project out and enforce only thetrongest constraints at each it-
eration. This is straightforward to do during the constraint factorization step, 1orec&nown.

As examples: the trifocal point constraints’ |« (G - z)[z” ]x = 0 have rank 4 in(z, 2, ")

for most invalid tensors, but only rank 3 for valid ones; and the trifocal consistency constraints
dd—; det(G - ) = 0 have rank 10 for most invalid tensors, but only rank 8 for valid ones. In both
cases, overestimating the rank causes severe ill-conditioning.

4.4 Robustification

We assume that each feature haseatral robust cost functiom;(x;) = p;(||ei(x;)||?) defined

in terms of a covariance-weightetbrmalized residual error e;(x;) = e;(x;|x;). This defines

the ‘granularity’ — entire ‘features’ (for matching constraints, ensembles of corresponding image

features) are robustified, not their individual components. The robuspgasusually some M-

estimator, often a total log likelihood. For a uniform-outlier-polluted Gaussian it has the form

p(z) = —2log (e */% + j3), wheref3 is related to outlier density. Typically)(z) is linear near

0, monotonic but sublinear for > 0 and tends to a constant at— oo if distant outliers have

vanishing influence. Hencg, = d—g decreases monotonically foandp” = % is negative.
Robustification can lead to numerical problems, so care is needed. Firstly, since the cost is

often nonconvex for outlying points, strong regularization may be required to guarantee a positive

Hessian and hence a cost reducing step. This can slow convergence. To partially compensate for this

curvature, and to allow us to use a fma” Gauss-Newton step calculation while still accounting for

robustness, we define a weighted, rank-one-correeffettive residual e = %e and effective

Jacobian ¢ = \/p' (I — Ter ee’) 92 wherea = RootOf(1a? — a — %’,/HeHz). These definitions
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Figure 1: Ground feature residuals for strong and near-coplanar epipolar geometries.

ensure that to second orderdranddx and up to an irrelevant constant, the true robust st +

%dxH?) is the same as the n&’ effective squared errdfe + %dx”? l.e. the same stegx

is generated, so if we use effective quantities, we need think no further about robtistdess

the \/p’ weighting is the first order correction, and theterms are the second order one. Usually

o — 0 for distant outliers. Since the whole feature system is scale¢/by this might cause
numerical conditioning or scaling problems in the direct method. To avoid this, we actually apply
the /p’-weighting at the last possible moment — the contribution of the feature to the model error
— and leave the feature systems themselves unweighted.

5 Measuring Performance

We currently test mainly on synthetic data, to allow systematic comparisons over a wide range of
problems. We are particularly concerned with verifying theoretical statistical performance bounds,
as these are the best guarantee that we are doing as well as could reasonably be expected. Any
tendency to return occasional outliers is suspect and needs to be investigated. Histograms of the
ground-truth-feature residual (GFR) have proven particularly useful for this. These plot fre-
quencyvs. size of the total squared deviation of thmund truthvalues of the noisy features used

in the estimate, from the estimated matching relations. This measuresomaigtenthe estimated
geometry is with the underlying noise-free features. For weak feature sets the geometry might still
be far from the true one, but consistency is the most we can expect given the data. In the linear
approximation the GFR ig?2 distributed for any sufficient model and number of features, where

is the number of d.o.f. of the underlying inter-image geometry. This makes GFR easy to test and
very sensitive to residual biases and oversized errors, as these are typically proportional to the num-
ber of features: and hence easily seen against the fixddackground fom > v. For example,

fig.1 shows GFR histograms for the 7 d.o.f. uncalibrated epipolar geometry for direct and reduced
F-matrix estimators and strong and weak (1% non-coplanar) feature sets. For the strong geometry
both methods agree perfectly with the theoretigaldistribution without any sign of outliers, so

both methods do as well as could be hoped. This holds for any number of points from 9 to 1000 —
the estimated geometry (error per point) becomes more accurate, but the total GFR error stays con-
stant. For the weak geometry both methods do significantly worse than the theoretical limit — in
fact they turn out to have a small but roughly constant residual peopointrather than in total —

with the direct method being somewhat better than the reduced one. We are currently investigating
this: in theory it should be possible to get near the limit, even for exactly singular geometries.

i ”p—l,l le[> < —1 the robust Hessian has negative curvature and there is no real solutienifopractice we limit
a < 1 — e to prevent too much ill-conditioning. We would have had to regularize this case away anyway, so nothing is
lost.
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6 Summary

We have described work in progress on a generic, modular library for the optimal nonlinear estima-
tion of matching constraints, discussing especially the overall approach, parametrization and numer-
ical optimization issues. The library will cover many different constraint types & parametrizations
and feature types & error models in a uniform framework. It aims to be efficient and stable even
in near-degenerate case&sg. so that it can be used reliably for model selection. Several fairly
sophisticated numerical methods are included, including a sparse constrained optimization method
designed fodirect geometric fitting . Future work will concentrate mainly or) {mplementing and
comparing different constraint types and parametrizations, feature types, and numerical resolution
methods; andii() improving the reliability of the initialization and optimization stages, especially

in near-degenerate cases.
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Abstract is largely cosmetic: feature positions could equally
. o _ well be used. Our method spans the gap between
We introduce a finite difference expansion for closely jhfinitesimal [17, 2] and discrete approaches: only

spaced cameras in projective vision, and use it to derive; o ¢ the cameras need coincide and our differ-
differential analogues of the finite-displacement projec-

tive matching tensors and constraints. The results aré:j‘n,ce expansmqs are short, finite polynomials not in-
simpler, more general and easier to use tRatiom & finite Taylor series.

Heyden’s time-derivative based ‘continuous time match-  This section gives motivation and previous work,
ing constraints’. We suggest how to use the formalism§2 reviews discrete matching constrairit3 reviews

for ‘tensor tracking’ — propagation of matching relations gnd critiques,&str('jm & Heyden’s differential ap-
against a fixed base image along an image sequence. We.qach 4 introduces our difference formalism and
relate this to nonlinear tensor estimators and show howdifferential matching tensor§5 derives various dif-

‘unwrapping the optimization loop’ along the sequence . . . .
allows simple ‘linearn point’ update estimates to con- ferential matching constraints, arié summarizes

verge rapidly to statistically near-optimal, near-consistent2nd concludes.

tensor estimates as the sequence proceeds. We also give\otivation: Theoretically, “nothing is gained”

guidelings as to when diﬁerenge expansion is likely to beby a differential approach: the same underlying ge-

worthwhile as Compared toad!screte appr,oaCh' ometric constraints and image error models apply

Keywords: Matching ConStra'me Mat‘_:h'ng Tensors, in poth differential and discrete approaches. How-

Image Sequences, Tensor Tracking, Difference Expang, o small displacements are practically common

sion. (e.g.video sequences) and have special properties
that make purpose-built methods desirable:

1 Introduction (+) Feature correspondences much easier so
more data is available, especially with region based

This paper studiesdifferential matching con-  (‘direct’, ‘least squares’, ‘intensity based’) ap-
straints — limiting forms of ordinary multi-image  Proaches.

matching constraints [5, 7, 8, 12, 15], when some(+) Differential problems are oftetess nonlinear

of the image projections nearly coincide. We intro- than discrete ones, as nonlinear geometry (rotations,
duce a finite difference based formalism that is easycalibration, matching tensor consistency) can be lo-
to use and covers most aspects of projective multi-cally linearized and included in the initial linear es-
image geometry: matching constraints and tensorstimation for improved stability. Simpler models can
feature transfer, reconstruction. Modulo suitable im-be used, and local minima may be less of a problem.
age rectification (fixation, dominant plane stabiliza- (—) Small motion linearization is only aapprox-

tion [9, 10]), the results extend to admall trans- imation. It has limited validity and introduces
lation geometriesj.e. whenever some of the cam- bias/truncation error.

era centres are near-coincident on the scale of th€—) The additional correspondences are ofteloaf
scene. For convenience we will often express resultsjuality: they may add a lot of computation but rela-
in terms of feature displacements (‘flow’). But this tively little precision.

This paper appeared in ICCV’99. The work was supported by(__) Signal-to-noise ratiois lower with S_ma” mo-
Esprit LTR project CUMULL. | would like to thank P. Anandan 0N, SO fewer parameters can be estimated accu-
and T. Viéville for useful discussions. rately €.g. SFM, perspective) and error modelling

61
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is more critical: bias, outliers, linearization error. determinants built from 4 rows taken from 2—4 pro-
Given that geometric constraints are known to jection matrices. The determinants can be arranged

improve robustness and efficiency even for smallinto 4 types ofmatching tensot, depending on how

motion (.f. ‘Geometrically Constrained Multiphoto many rows are taken from each image. It will be

Matching’ [3]), it seems worthwhile to develop the useful to view the tensors as multi-index, multilin-

matching constraint formalism in this direction. We ear forms in the components of 4 (possibly repeated)

will also link our differential matching constraints projection matrices. Symbolically:

to the local linearization used in nonlinear estima-

tors for the discrete case, so a better understand- el = e1,1,1,2) epipole

ing of differential case may lead to better estima- Fio F(1,1,2,2) fundamental matrix

tors for the d'lscrete one. Another mo_nvanon was to T 2 T(1,1,2,3) trifocal tensor

Qevelop r_outlnes foma‘Fchlng constraint tracklng Q1234 Q(1,2,3,4) quadrifocal tensor

i.e. updating the matching geometry along an image

sequence from linear change estimates, rather than @)

wastefully recalculating it from scratch each time, or

using the image tracks only to get correspondence

between the two widely-spaced end images.

where,e.g.F(1,1’,2,2") stands for & x 3-matrix-
Valued quadrilinear forni (P, P}, Py, PY) in the
four projection matricesP;, P}, P2, P), and the
Previous Work: There are many papers on all fndamental matri¥ 12 (P, P2) is the result of sub-
aspects of optical flow — see [4] for references — gtjtuting P! = P, andP, = P, into this. As
but here we will focus on differential analogues of mutilinear forms in four projections, the compo-
the uncalibrateddiscrete matching constraints. The pents ofe(-), F(-), T(-) are simple, fixed linear com-
key contributions on this are by M‘/llle & Faugeras pination€ of those ofQ(:). When their arguments
[16, 17] for the two image case aActrom & Hey-  are repeated as shown abosg), F(-), T(-) contain
den [1, 2] for the multi-image one. We will returnto exactly the same information as the corresponding
the Astrom-Heyden approach below. Other relatedygrsion ofQ(-), in a more compact, easier-to-use

work includes [13, 6, 14]. form. Even when the arguments are not repeated,
e(-),F(:), T(-) are automatically symmetric in the
2 Discrete Matching Constraints arguments shown as repeatedy.e(1,1’,1”,2) and

F(1,1,2,2") are symmetric under all permutations

In homogeneous coordinates, imades3 x 4 pro-  of the threePy’s and twoPy's.

jection matrixP;. The imagex; of a 3D pointX Given the tensors, the matching constraints we
is )\2 X; = PZ X. The scale factorg‘i are called will differentialize below can be written SymbOIi'
projective depthsGatherm image projections ok cally as:
into a big3m x (4 + m) matrix [15]:

x{ F12Xo = 0 epipolar constraint
P, x4 0 --- 0 X Xo A (T -x1) Axg = 0 trifocal point constraint
?2 0 ?(2 0 _')‘1 —0 (1) I3 (T#3 Aly) I3 = 0 trifocal line constraint
Iy (T#3-x1) I3 = 0 trifocal point-line const.

P, 0 0 - Xn —Am

_ _ _ Here, x; (I;) denote corresponding image points

As there is a solution, the matrix has ragk3 + m,
i.e.all ofits (4 + m) % (4 + m) minors must vanish. Tensorsare just multi-index arrays of components. They

E di d si lifvi . ‘epipolar’. ‘trif are not intrinsically difficult to handle, but lie outside the usual
xpanding and simplifying gives ‘epipolar’, ‘trifo- matrix-vector notation. For simplicity I'll display results as ma-

cal' and ‘quadrifocal’multi-image matching con-  trices whenever possible, and switch into indexed notation [15]
straintslinking corresponding points; in 2,3,4 im-  when matrix notation is too weak. For calculations | tee-
ages. Similar constraints exist for 3 images of a |ine_sor_diagrams— ‘circuit diagrams’ that show graphically which
and for 2 images of a line plus 1 image of a point 'nd'ZCTes are connected. e

. . . ) . ey are contractions d(-) against image tensors —
on it. Each constraint is multilinear in the 2-4im- ¢ g F,;(1,1/,2,2) = leacn enr Q°PEF(1,1/,2,2))

age features involved, with coefficients that &se4 [15]. -
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(lines) in imaged, and A or [-] denotes vector- This approach is certainly powerful, but | feel
vector or matrix-vector cross product. that it is not “the right thing” for most applications:
Geometrically, the matching constraints express(i) The constraints combine infinitely many feature
3D incidence relations between the optical rays /derivatives and differential matching tensors of ar-
planes pulled back from corresponding image pointsbitrarily high orders, even though the discrete case
/ lines. The matching tensors are a nonlinear encodstops atn = 4 features and tensorsii)(The con-
ing of the camera geometry in image coordinates.straints areextremely complicatedeven form = 3.
They can be estimated “linearly” from image data (iii) It is very difficult to relate them to the discrete
using the matching constraints, but only by:using  case, even though their derivation is almost identi-
a heuristic error modelji§ ignoring nonlinear self-  cal. (v) They depend on the exact form of the cam-
consistency constraintdhat guarantee that the ten- era motion betweetandt + At, whereas we often
sor(s) correspond to some underlying set of projecknow or care only about the cameuasitionsat the
tion matrices. Examples of such constraints includeendpointst andt + At. (v) Many things remain to
Fioel = 0, det(Fi2) = 0, det (TZ?-x;) = 0  be done: lines, transfer, depth recovery, cases where
for all x;, and many more [15]. One advantage of some images are from other, more widely-spaced
the differential approach is that it often allows the camerasetc
consistency constraints and the true statistical error Note that only the geometric path of the camera
model to be locally linearized, so that simple linear matters for the constraints, not its time parametriza-
least squares tensor estimators can take nearly fulion. So they should really be formulated in terms of
account of both. some geometric, parametrization-invariant analogue
of differential equations such aterior differen-
tial systems(c.f. also [13]). This was my first in-
tention, but on reflection it does not solve the main
This section summarizes and critiquelstrom problem, which is simply thatlifferentiation is not
& Heyden's approach to differential multi-image the appropriate tool here.

matching constraints [1, 2]. A moving camera Inapplications, images are alwdysitely (though
with time varying projection matri¥(¢) viewing a  perhaps closely) spaced. What we measure is fea-

3 TheAstrom-Heyden Approach

static scene generates image projectidt$ x(t) = ture positions at these discrete times, and what we

P(t) X. Taylor expand at: use is matching constraints, projection matrices,
etc again at these discrete times. Time derivatives

Pt +At) = PO+ PO At + PP (A1)2+...  never explicitly appear, and if introduced, they are

serve only to re-synthesize the finite-time positions
whereP¥) = %%P, and similarly forx(z + At)  that we actually measure or use. Finite differences
and\(t + At). Substitute into the projection equa- are a more appropriate tool for such discrete-time
tions, truncate at orden, split by powers ofAt, and  problems. Given measurements of some quantity
gather the resulting equations int@@n+1) x (4+  x(t),x(t + At), their finite difference is simply

(m + 1)) matrix AXx = Xx(t + At) — x(t). So we have a finite,
0 0 one term ‘expansionX(t + At) = X(t) + AX
PE1) XE1) 8}) 0 X(O) rather than an infinite Taylor seriegt + At) =
P X X e 0 —A

X(t) + X At + F X At?+. ... If we usex(t + At) in
: : . : : some polynomial expression (matching constraints,
P x(m) x(m=1) . x(0) [\ _\(m) transfer, SFM), difference expansion gives a rela-
tively simple polynomial imAx, while Taylor expan-
As in (1), all maximal minors vanish. Expanding sion a very complicated infinite series int. The
gives multilineardifferential matching constraints Taylor series is ultimately more powerful in that it
involving all of the point derivatives®,... . x(™),  implies values ok for all At. But if we measure and
The coefficients ardifferential matching tensors  usex only atone At as herex At + % XAt2+ ... is
formed from4 x 4 minors of 4 rows of the projection a very complicated way of parametrizing the simple
derivativesP(® ...  P(™), differenceAx.

=0
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In summary,&str('jm & Heyden got an infinite se- in that variable. One can certainly derive expan-
ries of complicated equations rather than a finite sesions for linearly-appearing variables of the form
ries of simple ones simply because they asked fofA + AA+...) - (X+AXx) =~ A-X+ A-Ax+
too much. Their results are like a series solution to aAA - x+ O (A?), whereA stands for other stuff in-
differential equation: they imply the matching con- dependent af’ = x+ Ax and hence\x. But there’s
straints forevery At with any analytic camera mo- really no point. If you already have, Ax and are
tion, whereas in practice we usually only want them trying to calculateA, AA, you might as well just
at the endpoints afne particularAt¢. usex’ in the exact expression. This is simpler, has
less truncation error, and (at least in vision) is un-
likely even to cause problems with numerical loss
of precision: A’s usually scale roughly as measured

Now we begin to assemble the elements of our ﬁ_image differences, which have a minimum relative
nite difference approach to projective vision. First, S'#€ of about 0™ as differences much smaller than

a clarification. We work with projective quantities & PiXel or greater than the image width can not be

expressed in homogeneous coordinateg, image measured. In fact, since we are working to lowest

pointsx, projectionsP. We want to expand projec- n/omam_shmg order il and A is independent of
tive expressions in’, P’ in terms of “nearby” base X+ Invariance unden\x — Ax + ux implies that

quantitiesx, P and “projective differencesAx — A - x must actuallywanish(at least in the zero noise
¥ — x. AP ’: P’ — P. Unfortunately, homogeneous case). Conversely, if you are trying to calculaia
quantities likex, x’ are only defined up to scale, so g/|venA, AA, the equation is linear in eithekx or
differences like<’ — x are not well defined: as their X = X+ AX, S0 you might as well just form the up-
relative scale changes, — x sweeps out the entire date(A + AA +...) and calculate’ directly. This

projective line througt, X'. Nevertheless, if we are €mains true even i depends om, so long as itis
careful about scales, we can still usa = x' —x  independent ok’

to represent the displacement between two projec- FOf €xample, matching constraints and transfer
tive points. Fix the scale ok once and for all. relations are usually linear in each of their image

Under rescalingd — (1 + u)X, Ax changes as features, so there is no real advantage in using im-

AX — Ax+pux ~ Ax+ px+O(uAx). So  age displacements or ‘flow’ for them — one can just

for small rescalings: and displacementax, Axis @S Well use the underlying featuresx'. Arguably,

only defined modulo the approximate affine freedomthis also applies to ‘direct’ (intensity based, opti-
AX — AX + ux. The expressions we need to ex- cal flow) approaches — one can use intensity dif-
pand are always separately homogeneous &md ferences to estimate local correlation shifts just as
x' = x + Ax, so this freedom leads to the following well as image derivaf[ivés Similarly, for epipoles,
importantinvariance principle: The term of lowest nomographies and trifocal tensors, some of the pro-
nonvanishing order in\x is explicitly invariant un- jection matrices appear linearly and there is no real
der shiftsAx — Ax -+ x. We usually work only to advantage in making a difference expansion in these.
this order, so formulae whichseAx are invariant, (More precisely, there is none once the coefficients
and formulae whictcalculateit can do so only up  Multiplying the projection to form the epipolec
to an unknown multiple ok. For example, our for- have been recovered). On the other hand, for linear
mulae for differential matching tensors are defined!€nsor-based parametrizations, the consistency con-
only up to multiples of the underlying base tensor. straints are glways nonlinear and hemtebenefit
In practice, for input data we simply choose simi- from expansion.
lar normalizations fox, x’ so thatyu is small. But We will sometimes need to take differences in
for numerically calculated\'s we always need to several images simultaneoustyg.for eachi, if P,
enforce some sort of normalization condition to re-is near toP; we defineAP; = P, — P;. If there
move the superfluous rescaling degree of freedom. S ae vt the Ta s above. the derivati |
. . . e S Wi e laylor series apove, the aerivatives are only an

A related p_omt Wh!Ch greatly S|mpl!f|es_ many Pf indirect way of synthesizing image displacements, which could
the formulae is thatDifference expansion in a vari- haye been produced more directly using (sub-pixel/multi-scale/
able is only worthwhile if the problem is nonlinear ... )image interpolation.

4 Projective Difference Expansion
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are several projectionP’, P/ near the same base once. We attach primes an\'s to indices rather
projectionP;, each generates its own independentthan whole tensorse(g.F12, €3,), because the lat-
differenceAP;, AP/.

By substituting the updateB, = P, + AP; =

(1 + A)P; into the multilinear matching forms (2)

ter becomes hopelessly confusing when several pro-
jections vary at once.
The differential tensors depend on the normal-

and expanding, we can derive exact finite differenceizations of theAP’s, and are only defined up to
expansions of all the matching tensors. For exampleadmixtures of lower order term®.9. F1no —
for the -2 fundamental matrix

F1/2 = F(ll,l/,2,2)
F((1+A)Py, (1+A)P, Py, Py)

whereAl stands forAPq, etc If only one projec-
tion varies, the full list of such expansion types is:

el =

Fi2
T2

2/
el _—
23 _
Tl

Q1’234

_|_
_|_
_|_
_|_

_|_

2 2 2
€A1 T €r2; t€xsy
Fai2 + Fazio

23 23
TAT + TAy
ep?

A23
Tl

— Q234 | QA1

= F(1,1,2,2) + 2F(A1,1,2,2) + F(A1,Al1,2,2)

®3)

where we define the followindifferential match-

ing tensorshy successively replacing projectioR$

with projection differenced\P = P’ — P:

2

€A1

Fai2

23

TA

A1234
Q

2
€as1

= 3¢(A1,1,1,2)

2F(AL,1,2,2)
2T(A1,1,2,3)
Q(A1,2,3,4)
e(1,1,1,A2)
T(1,1,A2,3)
3e(Al,Al,1,2)
F(AL,AL2,2)
T(A1,AL2,3)
e(A1,Al,AlL?2)

Fia2 + pFio. Saturated differential tensors have
all P’s of a certain type replaced byP’s. They be-
have just like ordinary matching tensors formed with
“projections” AP, e.g. the “fundamental matrix”
Fazio = F(A1, AL, 2,2) satisfiesdet(Fp29) = 0

and has “epipolesé*! ande?,,. But unsaturated
tensors are more common in low order expansions:
these have the same index structure but different
properties.

5 Differential Matching  Con-
straints

Given these expansions, it is very straightforward
to develop differential forms of the various discrete
matching constraints, transfer relatioes;. Simply
take each discrete formula, choose the type of near-
coincidence that should occur between its projection
matrices, substitute the corresponding difference ex-
pansions (and optionally the difference expansions
of the corresponding image features), expand, and
truncate at the desired order.

Note that onlysomeof the projections need be
near coincident, unlikee.g.[2]. In particular, we
are investigating methods fanatching constraint
tracking, i.e. propagating a matching tensor against
a base image along an image sequence by small up-
dates, without having to recalculate it from scratch
at each new image. This sort of approach should
be useful for providing search constraints in geo-
metrically guided feature trackers, as a tensor is
available at each time step. And numerically it
should allow linearized approximations to nonlin-

Very few of these are needed in any one application.£ar €mor models and tensor consistency relations, so
If AP is small, we can truncate the finite differ- that a linearly-estimated tensor converges to a near-
ence expansions at any desired order. The scales GPnsistent, near-optimal estimate as the sequence
the differential tensors were chosen to make the dif-continues. I.e., the usual iterative refinement _Ioop
ference expansions simple, as this is essentially th&r the tensor would be ‘unwrapped along the image
only place they appear. The derivations use the symS€duence’, tracking the moving tensor by a kind of

metry of the formse(-), F(-), T(-). There are anal-

locally-linearized control lawg.f. [13].

ogous expansions when several projections vary at Differential Epipolar Constraint: The simplest
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case is the epipolar constraint between a fixed cam- The Optimization Point-of-View: The above
eraP; and a moving on@-(t). We suppose that discussion should sound very familiar to anyone
we have already calculated the fundamental matrixwho has implemented a nonlinear fundamental ma-
F12 # 0, and want to update it t6,» whereP!,, = trix estimator. In fact, the above;s — F1o update
P5+ AP,. Using (3), and optionally), = X2+ AXa rule is exactly one step of a Sequential Quadratic
and the 1-2 epipolar constrairf F1oxo = 0, the  Programming (SQP) style refinement routine for
first order expansion of the 1-2pipolar constraint F;,, started from the estimaté;». Further itera-

is simply tions could be used to improve the accuracy, if de-
T - . sired. The moral is thaffensor tracking and nonlin-

0 = % Fior X ~ X; (Fi2 + Fia2) X ear tensor refinement are basically the same prob-

~ xlTFm AXg + xlTFlAg Xo lem So the same numerical methods can be used

for both. We also emphasize that there is really no
Using either formF14, can be estimated linearly 5gvantage to using ‘flowAx rather than position
from F12, X1, andx; or X, AXp. Fior canbe recov- v and the differential tensd¥, a» plays exactly the
ered fromF > ~ F12+Fia2. The advantages over game role as a conventional first order model update
direct ‘linear 8 point’ estimation oF 1 are: ) we  AF. The difference expansion merely serves as a

can enforce the consistency constralnt(F) = 0,  systematic way to derive such update equations.
at least to d*‘-order approximation;ii) because of

this, we need only 7 pointsjii) we can use ;s to Differential Trifocal Constraints: First order
pre-calculate approximately statistically optimal er- €xpansion of the 1-23 and 1-2-3 trifocal point,
ror weightings, so the initial linear estimator should !in€ and point-line matching constraints modulo the
have near-optimal accuracy. The linearization of thel=2—3 Ones gives:

consistency constraintet(Fo) = 0 is

(X /\(TA23 Xl)—l—AXQ/\(Tl ))/\Xg ~ 0
trace (cof (F12) F1a2) + det(Fi2) = 0 (4) ( |7 (T A23 A ) + AIT T SN ) ) I 0
2 (11 1 ! 3
T :
wherecof (F12) ~ e%ef is the matrix of_ cofac- 1] (TAB . x) + Al (T2 %) ) I3 ~ 0
tors of F15. Even if Fy3 is inconsistent, this equa- 2 \71 b P

tion enforceslet(F12/) = 0 to first order, and hence
converges rapidly towards consistency.

As expectedF - is only defined up to multi- Iy (TA /\|1 +THEAAL) I3 = 0
ples ofF 5. For example, the error ter®] Fiaz Xo 1) ( X +TEAx )
and the linearized consistency constraint (4) have
such invariances k| F12 x» anddet(F12) are ex-  ag in the two image case, the 27 components of
actly 0. The exact multiple we choose is irrelevant TA23 or T23 can be estimated linearly from the con-
so long as it is small, but some choice is ”eededstramts modulo a multiple oF 3. However this is
to avoid numerical ill-conditioning. In practice, we 4 gross overparametrization as the unknown projec-
constrainF a2 to be orthogonal té 2 as a 9-vector,  ions AP, , AP, have only 12 d.o.f. apiece. We
L.e. trace(F{, F1a2) = 0. Given the above anBlia,  peed to constrain thAT's to respect the constancy

near OP“ma' 7 point’ estimation df a2 reduges 0 of the constanP’s involved. This is possible using
a 9 variable linear least squares problem with 2 lin-;ter_tensor consistency constrainesg. for -|-2 3

ear constraints. Any standard numerical method can,qe either of
be usede.g.Gauss (LU) or Householder (LQ) based
constraint elimination followed by QR decomposi-
tion to solve the reduced least squares problem. (For
7 point RANSAC, the problem becomes a simple €A43B3C3
9 x 9 linear system).

Only the 1-2 and 1Z2%pipolar constraints were where as usudl 2'® ~ T23 + T223, But this whole
used here: the 1-2-&ifocal one will be considered approach seems over-complicated. Given Hhat
below. is actually linear inP5y, we might as well just find a

¢
o

X2/\(TA1 X1—|—T1 Axl)/\ng‘\/

l
o

|3N

TR P Fpics + (a1-81) = 0

TAQ’ A3 TBQB3 C3

e’ + (41-B1) = 0
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homography-epipole decomposition [7, 11] 5 €a2pace THEAC% We will silently adopt
whichever form is the most convenient.

23 _ 42 3 a2 3
T =Hi®e —e @H;j Differential Epipolar Constraint: If P; andP,

(T2-x) = (H2|e}) (7% ’8) (H?| ef)T coincide,F, vanishes anéf 1, reduces td e | .
' We relabell” — 2 for clarity, i.e. APy = Py — Py.
and work directly in terms oP; = (H{|e{) for ~ Theexactexpansion of; is

1=1,2,2",3. As always,H — e parametrization of
T (or F) is just a closet form of projective camera Fi2 = Fui +Fia1 + Fiaz
reconstruction, so we might as well do things prop- =0+ [612 L +Fiazy

erly with a clean reconstruction method, followed
by conventional tracking of the moving projection

using the ‘linear 6 point’ DLT estimator (or better).

My experiments suggest that this is not only the eas
iest, but also the stablest and most accurate way t([)16’ 17]:

work — the tensor i®nly useful for the initial re- Nl Fl(;) x; + x| [e2] Axy ~ 0 (5)
construction. l.e., tracking of the trifocal tensor is x

certainly possible, but | have not found any advan-
tage over conventional projection matrix tracking.

The leading term is skew so the epipolar constraint
vanishes to first order. The second order term is
Vieville & Faugeras*first order’ motion equation

whereFS) = 2 (Fi2 +F],) is the symmetric

part of F15 or FyA2;. The constraint uses onkf

o and Ff;’> so it has3 + 6 = 9 linearly independent
5.1 Coincident Images & Degeneracy components, modulo joint overall rescaling and the

Now we study what happens to the differential consistency constraintet(F) = 0 which becomes
matching constraints when more of their images aree?' F3 2 = 0. Like det(Fy) = 0, this is cu-
near-coincident. When some of the cameras (oic in the unknowns. The linearization base point
modulo image rectification, some of their centres) F11 vanishes, so we can no longer linearize the con-
coincide, the discrete matching tensors either vanisisistency constraint and error model. Hence, the dif-

or degenerate to lower degree ones ferential method has about the same degree of com-
plexity and nonlinearity as direct estimationef,.
el =0 Normalizing (Ffj),ef) so that|le?|| = 1, we can
Fiu. =0 recoverF, from
TH = et @) Fio = [e], +F ) ve(FOe "~ (F e e
T = Fapape™?P2C2 = [e]x+(l+eeT)F(S) (I —eeT)

Q1123 — TA412A3 6AlBlCl
(The second form is preferred as it automatically
The corresponding matching constraints also deprojects onte' F (*) e = 0). In generatlet(F () £
generate,e.g. the trifocal point constrainix, A (: it vanishes iff the motion is planar or a parallel
(T123 . X1)/\X3 =0 becomeiXIFlg X2) [XQ ]x =0 twist.
for P3 — P, and vanishes faP3 — P;. Similarly, | have investigated matching and depth recovery
some the differential matching tensors degenerate t@sing this differential approach, but found no prac-
lower degree ones when their base images coincidetical advantage over direct ‘8 point’ estimation of
F12. The accuracy and stability are at best the same,

1 _ aA1 Al . .
e =6 =6 and become worse whenever truncation error in (5)
! . .
Fiai = [ef'] = [ef | is above the noise level.
TiA2 — §lgel? Trifocal Constraints: The differential trifocal
1 1 1
12 __ 1 2 Al12 i i i
T2 = 6/ wed, — T/ constraints remain nondegenerate when two of their

images coincide, but their coefficient tensors sim-
Coincidence also produces redundancies betweeplify. This case is especially interesting because it
various differential tensors,e.g. FA1aa2 = allows us to propagate matches from a base image
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plus the current one to the next image in the se-Here,Tl(23) is the 18 d.o.f. symmetric part af 2
quence. To first order id\, both the 1-42 and  on its two upper indices. The point equation uses 24
1'-1-2 trifocal point, line and point-line matching d.o.f. of T?® plus two epipoles, so it does not seem
constraints reduce to competitive with standard finif€?* estimation. The
line and point-line equations use orly*  e?, e3

T and hence havél8 + 3 + 3 = 24 linear parame-

— (X1 A AXy) (612 AXg) = 0 ters to estimate. The point-line equation is the basis

2

X1 A (TlA12 'Xl) N Xg

of Stein & Shashua’s ‘tensor brightness constraint’
I (TE2AR) 12 = (A Al (IQT el) ~ 0 [14], where the lines are local tangents to the iso-
T/~ AL2 T T 9 intensity contour ak;, displaced by normal flow
(T8 x) 12 - <|1 AXl) <|2 e1> ~ 0 into nearby images 2 and 3. But in this case the
Similarly, the 2—1—constraints become Iine-baseq constrqints are quite iII-cqnditiongd and
they require special motion assumptions which re-
X1 A (THM  x0) Axy 4 (Fra o) (X1 A Ax) " duce the problem to one considered by [6].

—|—<AX1TF12 x2) x] ~ 0
I]— (T2A11 A IQ) Il . ((Il /\All)T F12) A |2 ~ 0 6 COﬂC'USIOnS
17 (TS %) 11— (i AAl) T Fiaxe = 0 We have introduced a finite difference expansion
. . for projective vision problems with near-coincident
All of these are mpdulo the o;dlngryl_l—z_empolar cameras. In contrast tAstrom & Heyden'’s time-
constraint and maintenance of point-line 'nc'dencederivative based approach, it gives fairly manage-

T T Ty, _
A gl Xi) = _Il AhX1 + Al Xt; - do' _ . .able expansions for geometric vision problems like
nce again, the tensor-based parameterization Iﬁ1atching tensors and constraints, transfer and recon-

fea_15|ble but Seems overly complex. A homography"struction. Here, we used it to systematically derive
epipole One 1S preferable, _bUt reduc_:es_the prOb'various differential matching constraints. Basically,
lem to classical reconstruction-reprojection. Thethree cases occur when difference expansion is used:
parametrizgtion can be initializgd using any homog-. For problems linear in the expanded variables, ex-
ra2ph¥ obtained fronfy, '(e.g.Hl = [k ]X2F21 T pansion is possible but redundant. This happens for
e I, for any non-gplpolarll, o, or HYY = most feature-based calculations once the matching
[ef ], F1 + Aef e, in a well-normalized im-  tensors or homographies are knowne-g. feature
age frame). The initiaH — e decompositions are tansfer or reconstruction.
thenT/? = 4/ ®ef —0@HZandTy! = For nonlinear, non-degenerate problems, first
Hy ®e —e @H,. order difference expansion gives a useful lo-
If all three images nearly coincide, the trifocal cal linearization. Consistency-constraint-satisfying,
constraints degenerate further are’é-order 1-1-  statistically-near-optimal tensor update becomes a
1" expansion is needed. For clarity, we renah&l  simple constrained linear least squares problem.
to 2,3 and use our normalization freedom to replaceThis is always equivalent to one step of an iterative
TAZSWith T2 ~ 6{ @ el —e? ® 61 + TA223, nonlinear estimator started from the base tensor.
giving matching constraints: e For nonlinear problems where the expansion base
T case is degenerate, second (or higher) order expan-
XL A <(T123 )+ Ax e —ef AX;) AX 0 gion givesga valid but nonlinéar Iogcal z)arametrizpa-
tion. This may be simpler or less nonlinear than the
original one, but it is not clear that much is really
_ (|1Te12) (LA Alg) ~ 0 gained. So far none of my experiments have shown
any clear advantage for the differential approach in
(T x) 1 — (Agxl) <|1Tef> this case.
Future work will include experimental studies of
+ (llTel2 ) (Al; Xl) constraint tracking in the’22 and 1-+-2 cases, and

T AL+ (Al (1 ef)

%
o
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development of analogous expansions for more confl4] G. Stein and A. Shashua. Model-based brightness
strained problems like calibrated cameras and auto-
calibration.
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Chapitre 4

Reconstruction projective

Ce chapitre dérit trois papiers sur le recouvrememtpartir de plusieurs images projectives
non-calibges, de la gonétrie 3D projective d’'une sre statique et des canas. On suppose que
I'approche tensorielle etrite ci-dessus pour laegirétrie des images multiples est faraile au
lecteur. Sur le plan pratique, on suppose que les primitieesrgtriques 2D (pour la plupart des
points, mais aussi parfois des droites) oejadte extraites des images, et mis en correspondance
entre images.

4.1 Resung de « A Factorization-based Algorithm for Multi-image
Projective Structure and Motion » — ECCV’96

Historique

Ce papier avec Peterrf8RM fut publié a ECCV'96 [ST96]. Il donne une athode de recons-
truction projective multi-images qui se montregrstable en pratique, et qui reste de loin me&a m”
thode grérale peférée pour ce prolkime. Historiquement, elle est uneda, de coller ensemble
des reconstructions partielles 3D obtenues paetpgmfions« estimation des profondeurs projec-
tives» décrites ci-dessus [Tri95]. Mais ellesté vulgari€e comme uneeaggralisation projective de
la méthode de factorisation affine de Tomasi & Kanade [TK92].

M éthode

Supposons qu’on a points 3DX,...X,, visibles dansn images projectives avec des ma-
trices de projectio®P, ... ,P,,. Pour chaque paire, d'imade; et de point 3DX,,, on a un point
imagex;, avec l'équation de projection;, x;, = P; X,,, ou \;;, est la profondeur / facteur @helle
projective correspondant. On peeuriir toutes cegwn équations dans une grande gyst matri-
cielle:

A1Xi1 A2Xiz ... A Xig P,
A21X21 A2 X22 ... AanXop Py (X, X X,)

. . = : 1 Xo o ... n) 4xn
)\ml Xm1 )\mQ Xm2 .- )\mn Xmn (3m)xn Pm (3m) x4

L'essentiel de la rathode est que si on peut retrouver les profondeurs projectjyela matrice des
Xip Xip Serait for&ment —comme leaté droit — de rang 4. On peut toujoursabmposer nuerique-

ment une telle matrice en forme datédroit, par exemple par moyenne de la SV2EOMposition
par Valeurs Singudires). Il y a I'ambigué d’'une transformation legdire4 x 4 non-singulére dans
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cette @fcomposition, mais cette ambitgine fait que re@sSenter I'homographié x 4 libre asso@’
au choix d’'un repre projectif arbitraire : toute factorisati@nrang 4 donne une reconstruction 3D
valable des camras et des points, et ce dans urerepgrojectif.

Pour retrouver les\;,, on applique leséquations d’estimation des profondeurs projectives
[Tri], qui lie les primitives images, leurs profondeurs / facteursctiélle projectives, et les tenseurs
d’'appariement. Il existe des contraintes pour tout type de tenseur, mais ici on ne se servira que de
celles de la matrice fondamentale, qui prennent la forme :

Fij NjpXip) = € A (Aip Xip)

Cette€quation vectorielle impose que les droigspdlaires des deux points correspondantsm€o”
cident, et en plus elle relie les positions relatives de ces points le long ces drigites profondeurs
projectives relatives. Ici c’est seulement les profondeurs projectives qu’on veut, donc oeeut r’
soudre cegquations au moindre caes :

N = & AXip) - (FijXjp) y
v leji Axipl> "

Les matrices fondamentales sont est@sa partir des donges images. On peut fixeethelle);,

de chaque point arbitrairement en une image, puis on emel@Esequations pour retrouver ses
echelles correspondants dans tous les autres images. Une fois ceci fait, on construit la matrice
des \;, X, €t On la factorise pour extraire la reconstruction. En pratique, c’'est aussi important
d'appliquer uneetape de renormalisation nenjue qui est eérite dans le papier, afin de mieux
conditionner le moele du bruit qui est implicite au syste.

Perspective

Il se trouve gu’en pratique cetteatiiode fonctionne &s bien. Elle est certainement parmi les
méthodes les plus stables eepises pour la reconstruction projectiveagcg”sans doute au fait
gu'elle integre d’'une fapn équilibrée toutes les dome’s images la fois. (La plupart des autres
méthodes ne font qu’iegrer les doneés d’'un nombre fixe d'images, ou se basent sur le choix d’'une
«image de eférence> qui n'est pas irgg®e syngtriquement aux autres). Mais cettetimbde a aussi
une faiblesse significative qui limite son application pratique : elle exige la visilgtit’extraction
detousles pointsa reconstruire dan®utesles imagesa utiliser, ce qui n'est gere Ealiste pour
les €quences longues. |l existe plusieursdias de contourner cette limitation fondamentale, mais
aucune solution nette ne segiige pour l'instant. Le profaine de factorisation d’une matrice dont
certaineseléments sont inconnus est important aussi en statistique et en traitement du signal. Il
existe des algorithmes type optimisation noreéine [Wib76, SIR95], mais ils ont besoin d’'une
initialisation approximative de la structure, ce qui n’est pas le cas pour SVD.

Un aspect surprenant de leethode de factorisation projective, c'est sa stabiiiCe aux in-
certitudes des points et des tenseurs dantAvec la nrethode basé sur la matrice fondamentale,
on peut enchaer une bonne vingtaine ou trentainegiiations de profondeur avant que cela nuise
a la pecision des sorties 3D. Je n’'ai pas destbonne explication, mais on peut noter que quand
il y a une €quence d'images avec desogrEtries €pipdlaires similaires entre chaque paire, les
erreurs dans les profondeurs ont une forte tendance de s’annuler entre une image et la prochaine.
Par exemple, si un point estarse trouve un peu trop prochd'epipdle, il donne une profondeur
relative un peu trop petite dans cette image, mais dmmfait une profondeur relative un peu trop
grande dans la prochaine, et les elifhces ont tendanees’annuler.
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4.2 Resung de « Factorization Methods for Projective Structure &
Motion » — CVPR’96

Ce papier fut pubéa CVPR’96 [Tri96a]. Il donne plusieurs raffinements au papiecdatént,
il'y inclut une discussion gliminaire des mthodes de factorisation agéfées (spcialiges au cas
de bas rang) et une comparaison exmentale avec plusieurs autregtimbdes de reconstruction
projectives.

Mais sa contribution la plus importante est I'extension de kthode de factorisation aux
droites. Si on pouvait repsenter chaque droite par deux points 3D le long de la droite, la re-
projection de ces points donnerait deux points images sur chaque droite image, lestaninén”
correspondance entre les images. Quand on ne voit pas de tels petitigpon peut les syrth”
tiser : faire une choix arbitraire de deux points sur la droite dans la prerimage, et on coupe les
droitesepipdlaires de chacun de ces points dans les autres images par les images des droites d’ori-
gine. Ceci donne les points correspondants requis, qui peatrentetonstruits comme des points
normaux pour reconstituer la droiteene 3D. En plus, un tel transfert des points donne automati-
quement les bons facteursedtielle pour la reconstruction projective, sans qu’os &is recouvrir
explicitement. On peut aussi utiliser le tenseur trifocal comme moteur de transfert, poemie m”~
effet. La meéthode inégre des points et des droites dans krm factorisation. Elle marche bien
tant que les droites 3D ne passent pas tras tes centres de projection, et donc éonent, les
droites images somioigrées des droitegpipdlaires. (Dans le cas inverse, I'image d’'une droite est
treés sensible aux perturbations 3D).

4.3 Resung de« Linear Projective Reconstruction from Matching Ten-
sors» —IVC'97

Ce papier fut pubé’en« Image & Vision Computing [Tri97a], apes la publication d'une ver-
sion peéliminairea BMVC’96 [Tri96b]. Le talon d’Achille des rathodes bas=s sur la factorisation
matricielle est qu’elles ne peuvent paset@l des donees manquantes. Dans notre dassles
points 3Da reconstruire doiverdtfe visibles dansutesles images utiliser ... ce qui n’est gre
réaliste en pratique pour lesgiences longues. Alors qu'il existe plusieurs moyens d’esquiver ce
probleéme en pratique [TK92, SIR95, Jac97], on peut souhaiter @tisatiés de reconstruction pro-
jectives qui fonctionnent arhe avec des dorrS manquantes.

Cet article @crit une telle famille de mthodes, qui extraient des matrices de esmprojectives
consistantes directement des tenseurs d’appariement. Les primitives image seesut#iglement
pour estimer les tenseurs, donc les deemimanquantes neggentent aucune difficeltUne fois les
matrices de projection des camas obtenues, les primitives 3D peuveme estinees lirdairement’
partir de leurs projections images respectives. Au coeur dethadé sont lescontraintes de cb-
ture » liant les tenseurs d’appariement et leurs matrices de projectisdragiices. En empilant ces
contraintes (tenseurs) — et sur condition d’avoir choisi deriacompatible leurschelles relatives —
on cée une grande matrice dont I'espace nul est de dimension 4 et contient les 4 colonnes de toutes
les matrices de projection. Les projections ellesmas peuverdtfe obtenues par leedomposition
SVD ou tout autre algorithme permettant deetiminer le noyau d’'une application diaire.

Les @sultats de la ethode sont en pratique plus ou moins bons, mais ils ne sont pas aussi
stables que ceux de la reconstruction par factorisation. En particulieeost®ié quand on inclut
seulement les matrices fondamentales dans les contrahtess les centres optiques sont ali-
gnés. Ceci remsente uechec fondamental de la reséntation de lagpngtrie multi-cangras par
matrices fondamentalesgjd’bien connu dans d’autres circonstanaes[[F94]). Par contre, la re-
construction par factorisation des matrices fondamentalespasstise en éfaut par I'alignement
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des centres, car elledlimine pas les coordomes des points images.
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Abstract

We propose a method for the recovery of projective shape and motion from multiple images
of a scene by the factorization of a matrix containing the images of all points in all views.
This factorization is only possible when the image points are correctly scaled. The major
technical contribution of this paper is a practical method for the recovery of these scalings,
using only fundamental matrices and epipoles estimated from the image data. The resulting
projective reconstruction algorithm runs quickly and provides accurate reconstructions. Results
are presented for simulated and real images.

1 Introduction

In the last few years, the geometric and algebraic relations between uncalibrated views have found
lively interest in the computer vision community. A first key result states that, from two uncalibrated
views, one can recover the 3D structure of a scene up to an unknown projective transformation
[Fau92, HGC92]. The information one needs to do so is entirely contained in the fundamental
matrix, which represents the epipolar geometry of the 2 views.

Up to now, projective reconstruction has been investigated mainly for the case of 2 views.
Faugeras [Fau92] studied projective reconstruction using 5 reference points. Hartley [HGC92]
derives from the fundamental matrix 2 projection matrices, equal to the true ones up to an unknown
projective transformation. These are then used to perform reconstruction by triangulation[HS94].
As for multiple images, most of the current methods [MVQ93, Har93, MM95] initially privilege a
few views or points and thus do not treat all data uniformly.

Recently, multi-linear matching constraints have been discovered that extend the epipolar ge-
ometry of 2 views to 3 and 4 views. Shashua [Sha95] described the trilinear relationships between
3 views. Faugeras and Mourrain [FM95], and independently Triggs [Tri95a] have systematically
studied the relationships betweé&himages. Triggs introduced a new way of thinking about pro-
jective reconstruction. The image coordinates of the projections of a 3D point are combined into
a single “joint image vector”. Then, projective reconstruction consists essentially of rescaling the
image coordinates in order to place the joint image vector in a certain 4-dimensional subspace of
the joint image space called theint image This subspace is characterized by the multi-linear
matching constraints between the views.

The projective reconstruction method we propose in this paper is based on the joint image for-
malism, but it is not necessary to understand this formalism to read the paper. We show that by

*This work was performed within a joint research programme betweeRrsCINPG, INRIA, UJF.
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rescaling the image coordinates we can obtameasurement matrif¢he combined image coor-
dinates of all the points in all the images), which is of rank 4. Projective structure and motion
can then be obtained by a singular value factorization of this matrix. So, in a sense this work can
be considered as an extension of Tomasi-Kanade's and Poelman-Kanade’s factorization methods
[TK92, PK94] from affine to perspective projections.

The paper is organized as follows. (1) We motivate the idea of reconstruction through the
rescaling of image coordinates. Throughout this paper we will restrict attention to the case of
bilinear matching constraints (fundamental matrix), although the full theory [Tri95b] also allows
tri- and quadrilinear matching constraints to be used. (2) We discuss some numerical considerations
and describe the proposed projective reconstruction algorithm. (3) We show results that we have
obtained with real and simulated data. (4) We conclude and discuss several open issues, which will
be part of our future work.

2 Projective Reconstruction from Multiple Views

2.1 The Projective Reconstruction Problem

Suppose we have a setof3D points visible inm perspective images. Our goal is to recover 3D
structure (point locations) and motion (camera locations) from the image measurements. We will
assume no camera calibration or additional 3D information, so we will only be able to reconstruct
the scene up to an overall projective transformation of the 3D space [Fau92, HGC92].

We will work in homogeneous coordinates with respect to arbitrary projective coordinate frames.
Let Q,, be the unknown homogeneous coordinate vectors of the 3D pBintee unknown3 x 4
image projection matrices, angl, the measured homogeneous coordinate vectors of the image
points, wherevp = 1,...,n labels points and = 1,...,m labels images. Each object is defined
only up to an arbitrary nonzero rescalirgg. Q, ~ 1,Q,. The basic image projection equations
say that — up to a set of unknown scale factors —dheare the projections of th@,,:

)\z’pqip = Pi Qp

We will call the unknown scale factors, projective depthst. If the Q, and theqg;, are chosen to
have affine normalization (‘weight’ components equal to 1) and®thare normalized so that the
vectorial part of the ‘weight’ component row has norm 1, the projective depths become true optical
depthsj.e. true orthogonal distances from the focal plane of the camera.

The complete set of image projections can be gathered into a Singbe n matrix equation:

A1t A12di2 0 Apdin P,
A21Q21  A22Q22 - A2,Q2, P,

W = . C . = (@ @ - Q)
)\ml dmi1 )\qum2 e )\mnqmn Pm

Notice thatwith the correct projective depths,,, the3m x n rescaled measurement matrixw

has rank at most 4. If we could recover the depths, we could apply an SVD based factorization
technique similar to that used by Tomasi and Kanade [TK92Mpand thereby recover both 3D
structure and camera motion for the scene. The main technical advance of this paper is a practical
method for the recovery of the unknown projective depths, using fundamental matrices and epipoles
estimated from the image data.

1This is not the same notion as the “projective depth” of Shashua, which is a cross ratio of distances along epipolar
lines [Sha94]
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Taken individually, the projective depths are arbitrary because they depend on the arbitrary scale
factors chosen for thP;, theQ,, and theq;,. However taken as a whole the rescaled measurements
W have a strong internal coherence. The overall scale of each triple of rows and each column of
W can be chosen arbitrarilye . the arbitrary scales of the projectioRs and the 3D point€),),
but once thesen + n overall scales have been fixed there is no further freedom of choice for the
remainingmn — m — n scale factors in\;,. Hence, the projective depths really do contain useful
information.

2.2 Recovery of Projective Depths

Now we will show how the projective depths can be recovered from fundamental matrices and
epipoles, modulo overall row and column rescalings. The point projection equatign = P;Q,

implies that thes x 5 matrix

P; | AipQip P; | P;Q, P;

= = Iixa | Q

( Pj | AjpQip P; | P;Q, P; (Tl Q)
has rank at most 4. Hence, all of fisx 5 minors vanish. We can expand these by cofactors in
the last column to get homogeneous linear equations in the componentgigfand;,q;,. The
coefficients aret x 4 determinants of projection matrix rows. These turn out to be just funda-
mental matrix and epipole components [Tri95a, FM95]. In particulatpif anda’b’c’ are even
permutations oi23 andP¢{ denotes row: of P;, we have:

P? Py
P¢ P!
[Fij]aa/ = sz/ [eij]a = P% (1)
J 7
/ 3
P;j P;

Applying these relations to the thréex 5 determinants built from two rows of imageand three
rows of imagej gives the following fundamental relation between epipolar lines:

(Fijdjp) Ajp = (€45 A dip) Aip )

This relation says two things:

e Equality up to scale: The epipolar line ofy;, in imagei is the line through the corresponding
pointq;, and the epipole;;. This is just a direct re-statement of the standard epipolar constraint.

e Equality of scale factors: If the correct projective depths are used in (2), the two terms
haveexactly the same size- the equality is exact, not just up to scale. This is the new result that
allows us to recover projective depths using fundamental matrices and epipoles. Analogous results
based on higher order matching tensors can be found in [Tri95b], but in this paper we will use only
equation (2).

Our strategy for the recovery of projective depths is quite straightforward. Equation (2) relates
the projective depths of a single 3D point in two images. By estimating a sufficient number of
fundamental matrices and epipoles, we can amass a system of homogeneous linear equations that
allows the complete set of projective depths of a given point to be found, up to an arbitrary overall
scale factor. At a minimum, this can be done with any sehof 1 fundamental matrices that link
them images into a single connected graph. If additional fundamental matrices are available, the
equations become redundant and (hopefully) more robust. In the limit,(all— 1) /2 fundamental
matrices and alln(m — 1) equations could be used to find theunknown depths for each point, but
this would be computationally very expensive. We are currently investigating policies for choosing
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economical but robust sets of equations, but in this paper we will restrict ourselves to the simplest
possible choice: the images are taken pairwise in sequ&hgeeFos, ..., Fu1m.

This is almost certainly not the most robust choice, but it (or any other minimal selection) has
the advantage that it makes the depth recovery equations trivial to solve. Solving the vector equation
(2) in least squares fox;, in terms of);,, gives:

Nip = (eij A dip) - (Fijqjp) iy 3)
leij A aipl?
Such equations can be recursively chained together to give estimates for the complete set of depths
for point p, starting from some arbitrary initial value suchag = 1.

However there is a flaw in the above argument: fundamental matrices and epipoles can only be
recovered up to an unknown scale factor, so we do not actually know the scale factors in equations
(1) or (2) after all! In fact this does not turn out to be a major problem. Itis a non-issue if a minimal
set of depth-recovery equations is used, because the arbitrary overall scale factor for each image can
absorb the arbitrary relative scale of ti@nde used to recover the projective depths for that image.
However if redundant depth-recovery equations are used it is essential to choose a self-consistent
scaling for the estimated fundamental matrices and epipoles. We will not describe this process here,
except to mention that it is based on the quadratic identities between matching tensors described in
[Tri95b].

Note that with unbalanced choices of scale for the fundamental matrices and epipoles, the av-
erage scale of the recovered depths might tend to increase or decrease exponentially during the
recursive chaining process. Theoretically this is not a problem because the overall scales are ar-
bitrary, but it could well make the factorization phase of the reconstruction algorithm numerically
ill-conditioned. To counter this we re-balance the recovered matrix of projective depths after it has
been built, by judicious overall row and column scalings.

2.3 Projective Shape and Motion by Factorization

Once we have obtained the projective depths, we can extract projective shape and motion from the
rescaled measurement matix.
Let
W = U diag(oy,09,...,05) V

be a Singular Value Decomposition (SVD) W, with s = min{3m,n} and singular values; >
o9 > ... > 0 > 0. SinceW is of rank 4, thes; for ¢ > 4 vanish. Thus, only the first 4 columns
(rows) of U (V) contribute to this matrix product. L&J’ (V') the matrix of the first 4 columns
(rows) of U (V). Then,
W = U, ., diag(o1,02,03,04) Vi, =U X V' .
by
Any factorization ofX into two4 x 4 matrices¥’ andX”, ¥ = X'¥”, leads to
W = U/AE/ z/iv/ = UspxaVixn -
U Vv

We can interpret the matri& as a collection ofn. (3x4) projection matrice®; andV as collection
of n 4-vectorsQ,, representing 3D shape :
P,
P,

W =0V = (Ql Q - Qn)4><n 4)
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Equation (4) shows that tHe; and Qp represent at least projective motion and shape, since
]-SiQp = )\ipqip ~Qip -

Unlike the case of orthographic projections [TK92], there are no further constraints &? the
Qp . we canonly recover projective shape and motion. For any non singular projective transforma-
tion Tyys, P, T andT*lQp is an equally valid factorization of the data into projective motion and
shape : R R o

(PiT)(TilQp) =PiQp~qip -
A consequence of this is that the factorizatiorddfs arbitrary. For the implementation, we chose
Y =x=x2= diag(o‘i/Q,05/2,J§/2,0i/2).

3 The Algorithm

Based on the observations made above, we have developed a practical algorithm for projective
reconstruction from multiple views. Besides the major two steps, determination of the scale factors
Aip and factorization of the rescaled measurement matrix, the outline of our algorithm is based on
some numerical considerations.

3.1 Normalization of Image Coordinates

To ensure good numerical conditioning of the method, we work with normalized image coordi-
nates, as described in [Har95]. This normalization consists of applying a similarity transformation
(translation and uniform scalindll; to each image, so that the transformed points are centered at
the origin and the mean distance from the origin/&.

All of the remaining steps of the algorithm are done in normalized coordinates. Since we
actually compute projective motion and shape for the transformed image s, lﬁiQp =
ApTiqip ~ Tiqip, the resulting projection estimat® must be correctedP; = T; 'P;. The
P/ ande then represent projective motion and shape corresponding to the measured image points
Qip-

Our results show that this simple normalization drastically improves the results of the projective
reconstruction.

3.2 Balancing the Rescaled Measurement Matrix

Consider the factorization of the rescaled measurement m&tiix projective motion and shape:

Al1di1 - A2 ApQin ffl

A21Q21  A22Q22 o A2nQ2p Py . . .
S o = (@ Qe e qa)

)\ml am1 )\qum2 to )\mnqmn PAm

Multiplying column ! of W by a non zero scalar, corresponds to multiplying); by ;. Analo-
gously, multiplying the imagé rows (3k — 2,3k — 1, 3k) by a non zero scalar;, corresponds to
multiplying the projection matri®;, by 1. Hence, point-wise and image-wise rescaling$\étlo
not affect the recovered projective motion and shape.

However, these considerations are only valid in the absence of noise. In presence oWioise,
will only be approximately of rank 4, and scalar multiplicationsWfas described aboweill affect
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the results. We therefore aim to improve the results of the factorization by applying appropriate
point- and image-wise rescalings W. The goal is to ensure good numerical conditioning by
rescaling so that all rows and columnsWf have on average the same order of magnitude. To do
this we use the following iterative scheme :

1. Rescale each colunirso thaty">", (w,;)? = 1.
2. Rescale each triplet of row8k — 2,3k — 1, 3k) so thatyr, %%, o w? = 1.
3. If the entries ofW changed significantly, repeat 1 and 2.

Note that, since we work with normalized image coordinajgs it would be sufficient to
balance only then x n matrix (\;,) instead ofW.

3.3 Outline of the Algorithm

The complete algorithm is composed of the following steps.

1. Normalize the image coordinates, by applying transformafions
Estimate the fundamental matrices and epipoles with the method of [Har95].
Determine the scale factokg, using equation (3).
Build the rescaled measurement maiix
BalanceW by column-wise and “triplet-of-rows”-wise scalar mutliplications.
Compute the SVD of the balanced maf\.

From the SVD, recover projective motion and shape.

© N o g > W DN

Adapt projective motion, to account for the normalization transformationsf step 1.

4 Experimental Evaluation of the Algorithm

4.1 Experiments with Simulated Images

We conducted a large number of experiments with simulated images to quantify the performance of
the algorithm. The simulations used three different configurations : lateral movement of a camera,
movement towards the scene, and a circular movement around the scene (see figure 1). In configu-
ration 2, the depths of points lying on the line joining the projection centers can not be recovered.
Reconstruction of points lying close to this line is extremely difficult, as was confirmed by the
experiments, which resulted in quite inaccurate reconstructions for this configuration.

For the circular movement, the overall trajectory of the camera formed a quarter circle, centered
on the scene. For each specific experiment, the trajectory length was the same for all three configu-
rations. Then different viewing positions were equidistantly distributed along the trajectory.

In order to simulate realistic situations, we adopted the following parameters : the camera’s cal-
ibration matrix wasliag(1000, 1000, 1). The scene was composed of points distributed uniformly
in a sphere of radius 100. The distance between the camera and the center of the sphere was 200
(for configuration 2 this was the distance with respect to the viéw

For each configuration, the following experiment was conducted 50 times::

1. Determine at random 50 points in the sphere.
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Figure 1:The 3 configurations for simulation. (1)Lateral movement2) Translation towards the
scene(3) Circular movement.

Project the points into the views.

Add Gaussian noise of level9), 0.5, . .. , 2.0 to the image coordinates.

Carry out projective reconstruction with our algorithm.

o ~ WD

Compute the image distance error of the backprojected points (2D error)
3 Y1 IPiQyp — aipll, wherel|.|| means the Euclidean vector norm.

mn £-1=

6. Align the projective reconstruction with the Euclidean model and compute the distance error
in the Euclidean frame (3D error).

The results of these experiments were analyzed with respect to several variables, as reported in the
following subsections. All values represented in the graphs are the mean result over 50 trials. To
monitor the effect of outliers on the results, we also computed the median values. These gave graphs
similar to those for the means, which we will not show here.

2D errors are given in pixels, whereas 3D errors are given relative to the scene’s size, in percent.

4.1.1 Sensitivity to Noise

Graphs 1 and 2 show the behavior of the algorithm with respect to different noise levels for the three
configurations. For this experiment, reconstruction was done from 10 views.

5 T T T 0.25 T -
configuration 1 —— i configuration 1 ——
configuration 2 —— configuration 2 -~

4+ configuration 3 e 0.2 configuration 3 -=

= =
o
é 3r = 0.15
g
~N © g
[
1 0.05
0 o L L L 0 L L L
0 0.5 1 15 2 0 0.5 1 15 2
noise noise

Graphs 1 and 2: Sensitivity to noise.The 2D error curves for the configurations 1 and 3 are
nearly undistinguishable. 3D error for configuration 2 goes rapidly off scale.

The algorithm performed almost equally well for configurations 1 and 3, whereas the 3D error
for configuration 2 exceeds 100 % for 2.0 pixels noise. Considering the graphs of configuration 2,
we also see that 2D and 3D error are not always well correlated. For configurations 1 and 3, the 2D
error is of the same order as pixel noise. Note also the linear shape of the graphs.
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4.1.2 Number of Views
The image noise for this experiment was 1.0 pixel.

5

0.25

configuration 1 ——
configuration 2 - configuration 2 ——
configuration 3 =

configuration 1 ——

4 b configuration 3 =

o
[N}

o
[
a

2D error [pixel]
relative 3D error [%)]

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
# views # views

Graphs 3 and 4: Behavior with respect to number of views.The 2D error curves for the

configurations 1 and 3 are nearly undistinguishable. The 3D error for configuration 2 lies above 5
%. The curve is thus not visible in the graph.

The graphs show the expected behavior: when more views are used for reconstruction, the
structure is recovered more accurately. Secondly, 2D error augments with increasing number of

views, but shows a clearly asymptotic behavior. 1. Note that the use of 20 views reduces the 3D
error to 50 % of that for 2 views.

4.1.3 Importance of Normalization and Balancing

The error values in the previous graphs were obtained with the algorithm as described in subsection
3.3. To underline the importance of using normalized image coordinates, we also ran the algorithm

using unnormalized ones. The effects of not balancing the rescaled measurement matrix before
factorization were also examined.

5

o
)
a

anci normalization + balancing ——
only normalization -~ only normalization -~
4 only balancing -= only balancing =

normalization + balancing ——

o
)

2D error [pixel]
o
N
(4]

o
o

relative 3D error [%]

0 . . . ) . . .
0 0.5 1 1.5 2 0 0.5 1 15 2
noise noise

Graphs 5 and 6: Influence of normalization and balancing.The results presented here were

obtained for configuration 1. The 2D error curve for “only balancing” goes off scale even for 0.5
pixels noise and the 3D curve is so steep that it is not even visible.

When the image coordinates are not normalized, the error is already off scale for 0.5 pixel noise.
An explanation for this is the bad conditioning of the rescaled measurement matrix (see also next

paragraph). As for balancing, we see that this improves 3D errors up to 20 %, and hence should
always be part of the algorithm.

4.1.4 Robustness of the Factorization

The applicability of our factorization method is based on the rank 4-ness of the rescaled measure-
ment matrixW (in the noiseless case). To test the robustness of this property, we evaluated how
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closeW is to rank 4 in practice. To be close to rank 4, the ratio of the 4th and 5th largest singular
values ,o4 : o5, should be large with respect to the ratio of the 1st and 4th largest,o4. In

the following graphs, these two ratios are represented, for configurations 1 and 2 and for 2 and 20
views. Note that the y-axes are scaled logarithmically.
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Graphs 7 and 8: Ratios of singular values for configuration 1.The graph on the left shows
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Graphs 9 and 10 : Ratios of singular values for configuration 2The graph on the left shows
the situation for 2 views, on the right for 20 views.

We see that for configuration 1, the matrix is always very close to rankr4 : o4) is lower
than 2, whereaéo, : o5) lies clearly above 100. As for configuration 2, the graphs reflect the bad
performance in 3D reconstructiotu; : o4) is about 10, while for high noise levels or many views
(04 :05)iscloseto 1.

4.2 Evaluation with Real Images

The algorithm has also been tested on several sequences of real images. For 2 of them we show
results.

4.2.1 The House Sequence

Figure 2 shows the first and last image of a sequence of 6 images of a scene with a wooden house.
38 points were tracked over the whole sequence, but only extracted-witlixel accuracy.

To estimate the quality of the projective reconstruction, we aligned it with an approximate
Euclidean model of the scene obtained from calibrated views (see figure 3). Lines have been drawn
between some of the points to aid visualization.

In the side and front views we see that right angles are approximately conserved, and that the
windows are coplanar with the wall. The bumpiness on the left side of the roof is due to the fact
that the roof stands out slightly from the house’s front wall (see figure 2), thus causing occlusion in
the last view of the edge point between roof and wall.
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Figure 2:First and last image of the house sequence and one image of the castle sequence.
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Figure 3: Three views of the reconstructed house. (1)General view”. (2) Side view.(3) Front
view.

4.2.2 The Castle Sequence

28 points have been tracked through the 11 images of the scene shown in the right part of figure 2.
3D ground truth is available, and the reconstruction errors have been evaluated quantitatively. The
projective reconstruction was aligned with the Euclidean model and the resulting RMS error was
4.45 mm for an object size of abo@20mm x 210mm x 280mm. The RMS error of the reprojected
structure with respect to the measured image points was les$ fiapixels.

We also applied a Levenberg-Marquardt nonlinear least-squares estimation algorithm, with the
results of our method as initialization. This slightly improved the 2D reprojection error, however
the 3D reconstruction error was not significantly changed.

5 Discussion and Further Work

In this paper, we have proposed a method of projective reconstruction from multiple uncalibrated
images. The method is very elegant, recovering shape and motion by factorization of one matrix,
containing all image points of all views. This factorization is only possible when the image points
are correctly scaled. We have proposed a very simple way to obtain the individual scale factors,
using only fundamental matrices and epipoles estimated from the image data.

The algorithm proves to work well with real images. Quantitative evaluation by numerical
simulations shows the robustness of the factorization and the good performance with respect to
noise. The results also show that it is essential to work with normalized image coordinates.

Some aspects of the method remain to be examined. In the current implementation, we recover
projective depths by chaining equation (2) for pairs of vién®), (23), ..., (m — 1, m). However,
it would be worth investigating whether other kinds of chaining are not more stable. Furthermore,
uncertainty estimates on the fundamental matrices should be considered when choosing which of
the equations (2) to use. To run the algorithm in practice, it should also be able to treat points which
are not visible in all images. Finally the method could be extended to use trilinear and perhaps even
quadrilinear matching tensors.
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Abstract formation if needed [5, 10, 1]. The key result is
_ . . o that projective reconstruction is the best that can be
This paper describes a family of factorization-based al-qone without calibration or metric information about
gorithms that recover 3D projective structure and mo- o scene, and that it is possible from at least two

tion from multiple uncalibrated perspective images of 3D . f point h . i
points and lines. They can be viewed as generalizationé’IeWS Of poInt-Scenes or three views of finé-scenes

of the Tomasi-Kanade algorithm from affine to fully per- [2, 3,8, 6].

spective cameras, and from points to lines. They make no Most current reconstruction methods either work
restrictive assumptions about scene or camera geometrynly for the minimal number of views (typically
and unlike most existing reconstruction methods they doyyo), or single out a few ‘privileged’ views for ini-

not rely on privileged’ points orimages. All of the avail- yigi7ation before bootstrapping themselves to the
able image data is used, and each feature in each image 'r?lulti-view case [5, 10, 9]. For robustness and ac-
treated uniformly. The key to projective factorization is o

the recovery of a consistent setmbjective depthéscale ~ curacy, there is a need for methods that uniformly
factors) for the image points: this is done using funda-take account of all the data in all the images, without

mental matrices and epipoles estimated from the imagdanaking restrictive special assumptions or relying on
data. We compare the performance of the new techniqueprivileged features or images for initialization. The
with several existing ones, and also describe an approxorthographic and paraperspective structure/motion
imate factorization method that gives similar results to {5ctorization methods of Tomasi. Kanade and Poel-
E\r/[;-b?sslcé:gtonzatmn, but runs much more quickly for ., oy 117 11 partially fulfill these requirements, but
gep L — they only apply when the camera projections are
Keywords: Multi-image Structure, Projective Recon- ; . ) .
. . o well approximated by affine mappings. This hap-
struction, Matrix Factorization. L .
pens only for cameras viewing small, distant scenes,
which is seldom the case in practice. Factorization
1 Introduction methods for perspective images are needed, however
it has not been clear how to find the unknown pro-

There has been considerable progress on scene rigctive scale factors of the image measurements that
construction from multiple images in the last few are required for this. (In the affine case the scales
years, aimed at applications ranging from very pre-aré constant and can be eliminated).

cise industrial measurement systems with several As part of the current blossoming of interest in
fixed cameras, to approximate structure and mo-multi-image reconstruction, Shashua [14] recently
tion from real time video for active robot naviga- extended the well-known two-image epipolar con-
tion. One can usefully begin by ignoring the is- straint to a trilinear constraint between matching
sues of camera calibration and metric structure, ini-points in three images. Hartley [6] showed that this
tially recovering the scene up to an overall projec- constraint also applies to lines in three images, and
tive transformation and only later adding metric in- Faugeras & Mourrain [4] and | [18, 19] completed
that corner of the puzzle by systematically studying

This paper appeared in CVPR’96. The work was supported by, . . . .
an EC HCM grant and INRIA Ririe-Alpes. | would like to the constraints for lines and points in any number

thank Peter Sturm and Richard Hartley for enlightening discus-Of images. A key aspect of the viewpoint presented
sions. in [18, 19] is that projective reconstruction is essen-
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tially a matter of recovering a coherent setpyb- problems.
jective depths— projective scale factors that rep-  Only the speed problem will be considered here.
resent the depth information lost during image pro-SVD is slow because it was designed for general,
jection. These are exactly the missing factorizationfull rank matrices. For matrices of fixed low ramk
scales mentioned above. They satisfy a set of consisias here, where the rank is 3 for the affine method
tency conditions called ‘joint image reconstruction or 4 for the projective one), approximate factoriza-
equations’ [18], that link them together via the cor- tions can be computed in tin@(mnr), i.e. directly
responding image point coordinates and the variougproportional to the size of the input data.
inter-image matching tensors. The Tomasi-Kanade ‘hallucination’ process can
In the MOVI group, we have recently been de- be used to work around missing data [17], as in the
veloping projective structure and motion algorithms affine case. However this greatly complicates the
based on this ‘projective depth’ picture. Several of method and dilutes some of its principal benefits.
these methods use the factorization paradigm1 ana—here is no obvious solution to the error modelling
so can be viewed as generalizations of the TomasiProblem, beyond using the factorization to initial-
Kanade method from affine to fully perspective pro- ize @ nonlinear least squares routine (as is done in
jections. However they also require a depth recoverysome of the experiments below). It would probably
phase that is not present in the affine case. The basiee possible to develop incremental factorization up-
reconstruction method for point images was intro- date methods, although there do not seem to be any
duced in [15]. The current paper extends this in sev-dn the standard numerical algebra literature.
eral directions, and presents a detailed assessment of The rest of the paper outlines the theory of pro-
the performance of the new methods in Comparisoriective factorization for points and lines, describes
to existing techniques such as Tomasi-Kanade facthe final algorithms and implementation, reports on
torization and Levenberg-Marquardt nonlinear leastexperimental results using synthetic and real data,
squares. Perhaps the most significant result in thénd concludes with a discussion. The full theory
paper is the extension of the method to work for linesOf projective depth recovery applies equally to two,
as well as points, but | will also show how the fac- three and four image matching tensors, but through-
torization can be iteratively ‘polished’ (with results ©out this paper | will concentrate on the two-image
similar to nonlinear least squares iteration), and how(fundamental matrix) case for simplicity. The un-
any factorization-based method can be speeded uferlying theory for the higher valency cases can be
significantly for large problems, by using an approx- found in [18].
imate fixed-rank factorization technique in place of

the Singular Value Decomposition. 2  Point Reconstruction
The factorization paradigm has two key attrac-

tions that are only enhanced by moving from the We need to recover 3D structure (point locations)
affine to the projective casé) All of the datain all  and motion (camera calibrations and locations) from
of the images is treated uniformly — there is no needm uncalibrated perspective images of a scene con-
to single out ‘privileged’ features or images for spe- taining n 3D points. Without further information
cial treatment;(ii) No initialization is required and it is only possible to reconstruct the scene up to
convergence is virtually guaranteed by the nature ofan overall projective transformation [2, 8], so we
the numerical methods used. Factorization also hasvill work in homogeneous coordinates with respect
some well known disadvantages: Every primitive to arbitrary projective coordinate frames. L,
must be visible in every image. This is unrealisticin (p = 1,...,n) be the unknown homogeneous 3D
practice given occlusion and extraction and trackingpoint vectorsP; (i = 1, ..., m) the unknowr x 4
failures. Itis not possible to incorporate a full statis- image projections, ans;, the measured homoge-
tical error model for the image data, although someneous image point vectors. Modulo some scale fac-
sort of implicit least-squares trade-aéfmade. Itis  tors \;,, the image points are projected from the
not clear how to incorporate additional points or im- world points: A\, x;, = P;X,. Each object is
ages incrementally: the whole calculation must bedefined only up to rescaling. Thes ‘cancel out’
redone. SVD-based factorization is slow for large the arbitrary scales of the image points, but there is
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still the freedom to: ij arbitrarily rescale each world nonsingular linear transformatioP — P T !,
point X, and each projectio®;; (i) apply an arbi- X — T X, which can be regarded as a projective
trary nonsingulard x 4 projective deformatiorl: transformation of the reconstructed 3D space.
X, — TX,, P; — P;T~!. Modulo changes of the
Aip, the image projections are invariant under both
of these transformations.

The scale factors\;, will be called projective

One practical method of factorizin§V is the
Singular Value Decomposition [12]. This decom-
poses an arbitrary: x [ matrix Wy, of rank r
. . . into a productWy ) = Uy, D« V], where the
depths With correctly normalized points and pro- columns ofVy.., and Uy, are orthonormal bases

Jectlon_s they become true optical depiis, orthog- for the input (co-kernel) and output (range) spaces
onal distances from the focal planes of the cameras, W andD,., is a diagonal matrix of posi
kx1Is rXxr -

(NB: this is not the same as Shashua's proJeCtwetive decreasing ‘singular values’. The decomposi-

depth’ [13]). In_ger?eralern—.l prOJectlve_depths tion is unique when the singular values are distinct,
can be set arbitrarily by choosing appropriate scales

. and can be computed stably and reliably in time
for the X, andP;. However, once this is done the . P . y ) y
remainin 1 1) dear ¢ freedom contain O(klmin(k,l)). The matrixD of singular values
ema g(m'— )(n—1) degrees of freedom conta can be absorbed into eith®ror V to give a decom-
real information that can be used for 3D reconstruc- ... - .
. L osition of the projection/point for®X. (I absorb
tion: taken as a whole the projective depths have ap .

. it into V to form X).

strong internal coherence. In fact, [18, 19] argues
that just as the key to calibrated stereo reconstruc- The SVD has been used by Tomasi, Kanade
tion is the recovery of Euclidean depth, the essenceand Poelman [17, 11] for their affine (orthographic
of projective reconstruction is precisely the recovery and paraperspective) reconstruction techniques. The
of a coherent set of projective depths modulo over-current application can be viewed as a generaliza-
all projection and world point rescalings. Once this tion of these methods to projective reconstruction.
is done, reconstruction reduces to choosing a pro-The projective case leads to slightly larger matrices
jective basis for a certain abstract three dimensional3m x n rank 4 as opposed tn x n rank 3), but
‘joint image’ subspace, and reading off point coor- is actually simpler than the affine case as there is no

dinates with respect to it. need to subtract translation terms or apply nonlin-
ear constraints to guarantee the orthogonality of the
21 FEactorization projection matrices.

Ideally, one would Ilike to find re-
constructions in time O(mn) (the size
of the input data). SVD is a factor of

Gather the point projections into a singler x n
matrix equation:

AM1X11 AM2X12 o An Xin O(min(3m,n)) slower than this, which can be
Aol X271  A22 X2 --- Aop Xon significant if there are many points and images. Al-
W = : : . . though SVD is probably near-optimal for full-rank

matrices, rank matrices can be factorized in ‘out-
put sensitive’ timeO(mnr). | have experimented
P, with one such ‘fixed rank’ method, and find it to be
Py almost as accurate as SVD and significantly faster
- : ( X1 Xy o Xy ) for large problems. The method repeatedly sweeps
P'm the matrix, at each sweep guessing and subtracting
a column-vector that ‘explains’ as much as possible
Hence, with a consistent set of projective depths theof the residual error in the matrix columns. A
rescaled measurement matriXW has rank at most rank » matrix is factorized inr sweeps. When
4. Any rank 4 matrix can be factorized into some the matrix is not exactly of rank the guesses
3m x 4 matrix of ‘projections’ multiplying a1 x n are not quite optimal and it is useful to include
matrix of ‘points’ as shown, and any such factoriz- further sweeps (sa@r in total) and then SVD the
ation corresponds to a valid projective reconstruc-matrix of extracted columns to estimate the best
tion: the freedom in factorization is exacthax 4 combinations of them.

)\ml Xm1 )\m2 Xm2 )\mn Xmn
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2.2 Projective Depth Recovery each pointp can be found trivially by chaining to-
gether the solutions for each image, starting from
some arbitrary initial value such ag, = 1. Solving

the depth recovery equation in least squares gives a
Jimple recursion relation fox;, in terms of)\;,

The above factorization techniques @any be used

if a self-consistent set of projective depthg can
be found. The key technical advance that makes thi
work possible is a practical method for estimating
thgse using funglamental matrices and epipoles ob- - (e Axip) - (Fij xip) N
tained from the image data. The full theory can be P

found in [18], which also describes how to use triva-

lent and quadrivalent matching tensors for depth relf additional depth recovery equations are used, this
covery. Here we briefly sketch the fundamental ma-Simple recursion must be replaced by a redundant
trix case. The image projections, xi, = P; X, (and hence potentially more robust) homogeneous

J

lleji A xip 12

imply that the6 x 5 matrix linear system. _However, car_e.is needed. The depth
recovery equations are sensitive to the scale factors

Pi | Aip Xip P; chosen for theF’'s and e’s, and these can not be

Pi | Aip Xip - P; ( L | Xy ) recovered directly from the image data. This is ir-

relevant when a single chain of equations is used,

has rank at most 4, so all of itsx 5 minors van- ~ as rescalings oF ande affect all points equally
ish. Expanding by cofactors in the last column givesand hence amount to rescalings of the correspond-
homogeneous linear equations in the components dhg projection matrices. However with redundant
Aip Xip @and Ay, X;p, With coefficients that aré x 4 ~ equations it is essential to choose a mutually self-
determinants of projection matrix rows. These turnconsistent set of scales for tl&s ande’s. | will

out to be the expressions for the fundamental matrixnot describe this process here, except to note that
F;; and epipolee;; of cameraj in imagei in terms  the consistency condition is the Grassmann identity

of projection matrix components [19, 4]. The result Fijei; = eix A ej [18].

is theprojective depth recovery equation It is still unclear what the best trade-off be-
tween economy and robustness is for depth recov-
(Fij xip) Aip = (i AXip) Aip (1) ery. This paper considers only two simple non-
redundant choices: either the images are taken pair-
This says two things: i)Y The epipolar line ofx;, wise in sequencdis;, Fso, ..., Fnm_1, or all sub-
in image: is the same as the line through the cor- sequent images are scaled in parallel from the first,
responding pointx;, and epipolee;; (as is well  Fg;,F3q,...,Fy. It might seem that long chains

known); (i) With the correct projective depths and of rescalings would prove numerically unstable, but
scalings forF;; ande;;, the two terms have exactly in practice depth recovery is surprisingly well con-
the same sizeThe equality is exact, not just up to ditioned. Both serial and parallel chains work very
scale. This is the new result that allows us to re-well despite their non-redundancy and chain length
cover projective depths using fundamental matricesor reliance on a ‘key’ image. The two methods give
and epipoles. Analogous results based on higher orsimilar results except when there are mam4Q)
der matching tensors can be found in [18]. images, when the shorter chains of the parallel sys-
It is straightforward to recover projective depths tem become more robust. Both are stable even when
using (1). Each instance of it linearly relates the epipolarpoint transfer is ill-conditioned €.g. for a
depths of a single 3D point in two images. By esti- camera moving in a straight line, when the epipolar
mating a sufficient number of fundamental matriceslines of different images coincide): the image obser-
and epipoles, we can amass a system of homogerations act as stable ‘anchors’ for the transfer pro-
neous linear equations that allows the complete setess.
of depths for a given point to be found, up to an arbi- Balancing: A further point is that with arbitrary
trary overall scale factor. At a minimum, this can be choices of scale for the fundamental matrices and
done by selecting any setof—1 equations that link  epipoles, the average size of the recovered depths
the m images into a single connected graph. With might tend to increase or decrease exponentially
such a non-redundant set of equations the depths falturing the solution-chaining process. Theoretically
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this is not a problem as the overall scales are arbifind the corresponding, correctly scaled via-points
trary, but it could easily make the factorization phasein the other images. The required fundamental ma-
numerically ill-conditioned. To counter this the re- trices can not be found directly from line matches,
covered matrix of projective depths must be bal-but they can be estimated from point matches, or
anced after it has been built, by judicious overall row from the trilinear line matching constraints (trivalent
and column rescalings. The process is very simpletensor) [6, 14, 4, 19, 18]. Alternatively, the triva-
The image points are normalized on input, so ide-lent tensor can be used directly: in tensorial nota-
ally all of the scale factors;, should have roughly tion [18], the trivalent via-point transfer equation is
the same order of magnitud€(1) say. For each lp, G¢, BeyCi = (Ip, e )y

point the depths are estimated as above, and then: As with points, redundant equations may be in-
(i) each row (image) of the estimated depth matrix iscluded if and only if a self-consistent normalization
rescaled to have lengtfin; (i) each column (point) is chosen for the fundamental matrices and epipoles.
of the resulting matrix is rescaled to lengtfim. For numerical stability, it is essential to balance
This process is repeated until it roughly converges,the resulting via-pointsi.g. depth estimates). This
which happens very quickly (within 2-3 iterations). works with the3m x 2njines ‘W’ matrix of via-
points, iteratively rescaling all coordinates of each
image (triple of rows) and all coordinates of each
line (pair of columns) until an approximate equilib-
&ium is reached, where the overall mean square size
of each coordinate i©®(1) in each case. To ensure
that the via-points representing each line are on av-
erage well separated, | also orthonormalize the two
3m-component column vectors for each line with re-
spect to one another. The via-point equations (2) are
IJi'near and hence invariant with respect to this, but it
does of course change the 3D representai¥esd

Z recovered for each line.

3 Line Reconstruction

3D lines can also be reconstructed using the abov
techniques. A lind. can be represented by any two
3D points lying on it, sayY andZ. In imagei, L
projects to some image lilgandY andZ project

to image pointsy; andz; lying on l;. The points
{yil = 1,...,m} are in epipolar correspondence,
so they can be used in the depth recovery equatio
(1) to reconstrucl’, and similarly forZ. The repre-
sentativesy’ andZ can be fixed implicitly by choos-
ing y1 andz; arbitrarily onl; in the firstimage, and
using the epipolar constraint to transfer these to the .
corresponding points in the remaining images: 4 Implementatlon
lies on bothl; and the epipolar line of, so is lo-

cated at their intersection. This section summarizes the complete algorithm

In fact, epipolar transfer and depth recovery canfor factorization-based 3D projective reconstruction
be done in one step. Lt stand for therescaled from imqge points ar_1d Iines,_and discus_ses afewim-
via pointsP;Y. Substitute these into equation (1), portant implementation details and variants. The al-

cross-product with;, expand, and simplify using - gorlthm goes as foII_ows: Extract and match points
and lines across all images.

yi=0 Standardize all image coordinates (see below).
LA(Fy5) = LA(eiAyi) Estimate a set of fundamental matrices and
= —(L-e)yi+ 1 yi)es epipoles sufficient to chain all the images together
= (L-en)y: @) (e.g.using point matches).

For each point, estimate the projective depths us-
Up to a factor ofl;-ej;, the intersectiod; A (F; y;) of  ing equation (1). Build and balance the depth matrix
1; with the epipolar line of/; automatically gives the A, and use it to build the rescaled point measure-
correct projective depth for reconstructiotdence, ment matrixw.
factorization-based line reconstruction can be imple- For each line choose two via-points and transfer
mented by choosing a suitable (widely spaced) paithem to the other images using the transfer equations
of via-points on each line in the first image, and (2). Build and balance the rescaled line via-point
then chaining together instances of equation (2) tomatrix.
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Combine the line and point measurement matricessured image line. With SVD-based factorization and
into a3m x (npoints + 2nuines) data matrix and fac- standardized image coordinates the iteration turns
torize it using either SVD or the fixed-rank method. out to be extremely stable, and always improves the
Recover 3D projective structure (point and via-point recovered structure slightly (often significantly for
coordinates) and motion (projection matrices) fromlines). For points, one can even start with arbitrary

the factorization. initial depths (say the affine oneg, = 1) and it-
Un-standardize the projection matrices (see be-erate to convergence. This requires no fundamental
low). matrices or depth recovery equations and converges

reliably in practice, although it can be rather slow if
started far from the true solution.

Nonlinear Least Squares: The ‘linear
factorization-based projective reconstruction
methods described above are a suitable starting
point for more refined nonlinear least-squares
estimation. This can take account of image point
error models, camera calibrations, or Euclidean
constraints, as in the work of Szeliski and Kang

Complexity: The algorithm is dominated by the
O(mnmin (3m,n)) SVD step if this is used, while
if an approximate factorization is used it is propor-
tional to the input data siz& (mn).

Standardization: To get acceptable results from
the above algorithm, it isabsolutely essentialo
work in a well-adapted image coordinate system.
The basic idea is to choose working coordinates

that reflect the least squares trade-offs implicit |n[16], Hartley [5] and Mohr, Boufama and Brand

the factorization algorithm. This is standard prac-
. 'zatl gorith 'S | P [10]. The standard workhorse for such problems
tice in numerical analysis, but it does not seem to.

. S : is Levenberg-Marquardt iteration [12], so for
have been widely known in vision until Hartley [7] ; . ) .
. o . comparison with the linear methods | have imple-
pointed out its importance for fundamental matrix . o )
o . ... mented simple L-M based projective reconstruction
estimation. The exact scheme used is not criti-

. . algorithms. These can be initialized from either

cal, provided that the homogeneous working coor-_. o :
) . fixed-rank or SVD-based factorizations. For lines
dinates are all of the same order of magnitude. | cur- . . .
the recovered structure is often improved signifi-

rently prefer to scale the image into the unit square . . .
. .__cantly, while for points the improvement over the
[—1,1] x [-1,1], homogenize, and then normalize .
linear methods is usually small.

the resulting homogeneous 3-vectors to unit length o .
9 | o 2 genec 9MAftine Factorization: To illustrate the advantages
x® 4+ y° + z= = 1. This simple scheme works very

. . o : .~ of projective factorization over the original Tomasi-
well in practice. The normalization applies to line

. Kanade-Poelman work [17, 11], | have also imple-
vectors as well as point ones, and behaves well even : : . .

: . . o mented affine SVD-based point reconstruction. This
for points g.g.epipoles) near the line at infinity. Af-

. L ives rather poor results in the below experiments
ter reconstruction, the camera projections need to b%ecause the perspective distortions are quite large
un-standardized by multiplying by the inverse trans- Persp a ge.
formation.

5 Experiments

4.1 Generalizations & Variants . :
To quantify the performance of the various algo-

| have implemented and experimented with a num-rithms, | have run a large number of simulations us-
ber of variants of the above algorithm, the moreing synthetic data, and also tested the algorithms on
promising of which are featured in the experimentsmanually matched primitives derived from real im-
described below. ages. There is only space for a very brief summary
Iterative Factorization: The projective depths de- here, more details can be found in [20].

pend on the 3D structure, which in turn derives from  The simulations are based on trial scenes consist-
the depths. The reconstruction can be iteratively im-ing of random 3D points and lines in the unit cube
proved by reprojecting to refine the depth estimateg—1,1] x [-1,1] x [—1,1], perturbed by uniform
and then re-factorizing. For points one finds thenoise and viewed by identical perspective cameras
component of the reprojected 3D point vector alongin various arrangements. In the graphs shown here,
each image vector, while for lines the reprojectedthe cameras are spaced uniformly along a 90 degree
via-point is perturbed orthogonally to lie on the mea- arc of radius 2 in the equatorial plane of the scene,
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Figure 1 Mean 3D reconstruction error for points and lings, noise, number of views and number of primitives.
Defaults:£1 pixel noise; 10 views; 50 primitives.

and are directed towards the scene ceriteethere a2 oonSueton Error vs: mage Standardzaton
is a large baseline and significant perspective dis- 16 fon \ ine S ";ﬁ_?ﬁ‘f
tortion). Reconstruction error is measured over 50 g i ‘ i (YD - |
trials, after least-squares projective alignment with g 2 SE R
the true 3D structure. Mean errors are reported for g 1 SR
points, while for lines there are always outliers so 0?2'2 : P b
median errors are uskd 0125

0.01 0.1 1 10 100

Fundamental matrices and epipoles are estimated coordinate scale

using the linear least squares method with all the
available point matches, followed by a supple-
mentary SVD to project the fundamental matri-

ces to rank 2 and find the epipoles. In standard- . . I .
) . . of views, and number of scene primitives (points or
ized coordinates this method performs very well

. ; lines). The methods shown amgoints: fundamental
[7], and it has not proved necessary to refine the ; . .

. . matrix depth recovery with SVD and fixed-rank fac-
results with a nonlinear method. Unless other-

torization, iterated SVD and nonlinear least-squares

wise noted, the.p.rOJectlve depths of points are ' initialized from SVD;lines: fundamental matrix and
covered by chaining sequentially through the im

ages: Fio F F A parallel chain “trilinear parallel and serial via-point transfer fol-
ges: ¥i2,Xa3,.- o ¥moim. A D lowed by SVD, iterated SVD, and SVD plus non-
Fi2,F13,...,F1n usually gives similar results. For

. . ; .. linear least-squares.
lines in more than a few images, the parallel chain is _ _
superior and is used by defaullt. Al of the point methods are very stable. Their er-

Fig. 1 shows the sensitivity of various point and TOrS vary linearly with noise and decrease as more

line reconstruction methods to image noise, numbelP?iNts or views are added. There is not much dif-
ference in precision, but generally the fixed-rank

'The image of a line passing near the optical centre of amethod is slightly less accurate (but significantly

camera is extremely sensitive to small 3D perturbations. Also,faster) than SVD. Iterating the SVD makes a small

if the camera centres_lle in a plane (a_s here), all lines in thatimprovement, and nonlinear least-squares is slightly
plane have the same image, so such lines can not be uniquely

reconstructedc(f. axial points for cameras lying in a line; in MOre accurate again. Serial depth recovery chains
this case, only lines skew with the axis can be reconstructed). become ill-conditioned when more than 30-40 im-

Figure 2 Reconstruction errors.image standardization.
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Reconstruction Error vs. Scene Distance

32 the final aligned reconstructions seem qualitatively
16 e ank accurate and in good agreement with the results ob-
8 SVD-i-a- . . .
g 4 iterative SVD tained using synthetic data.
g SVD + L-M e
2 2
[}
a 1
o™
0.5
0.25 feusgsg: . . . .
o10s LTt 6 Discussion & Conclusions
' 2 4 8 16 32 64 128 256

scene distance
Within the limitations of the factorization paradigm,
factorization-based projective reconstruction seems
quite successful. For points, the methods studied
have proved simple, stable, and surprisingly accu-
ages are chained: beyond this parallel chaining igate. For lines the situation is less clear: the methods
advised. work, but least-squares refinement often improves
Line reconstruction is less stable. Only the least-the results significantly. As with any line reconstruc-
squares methods consistently give reconstruction ertion, there are always outliers, especially when the
rors commensurate with the input noise. Parallel F-cameras are collinear or coplanar.
matrix transfer plus factorization is a factor of 2 or  Fixed-rank factorization works well, although (as
more worse than this, and serial transfer is worsemight be expected) SVD always produces slightly
again. Iterative factorization helps a little, but the more accurate results. The savings in run time over
use of a nonlinear least-squares routine is still ad-SvVD probably only become significant for quite
visable. Any of these methods are accurate enougharge problems (say more than 40 images and 100
for reliable initialization of the least-squares itera- points), but in these cases they can become very sub-
tion. If my implementation is correct, trilinear trans- stantial.

fer based reconstruction is too sensitive to noise t0 Thig paper presents only the first few members of
be useful (this requires confirmation). For all of the 5 large family of reconstruction techniques, based
above methods, there are outliers corresponding @, the recovery of projective depths or scale factors.
lines that either can not be reconstructed uniquelyeiure work will expand on this. There are anal-
or are very sensitive to small 3D perturbations. ogous factorization methods using higher match-
The importance of standardization is illustrated |ng tensors, and also methods that reconstruct the
in fig. 2, where the image coordinates are standardprojection matrices directly from matching tensors
ized toO(scalg rather tharO(1) before reconstruc-  without factorization (and hence do not require to-
tion. Pixel coordinates Correspond to a scale of 256kens to be tracked through every image)_ All of these
and give errors hundreds of times worse than well-a|low various trade-offs between redundancy, com-
standardized coordinates. The rapid increase in errObutation and implementation effort. | am also in-
at scales below 0.1 is caused by floating-point trun-yestigating numerical factorization methods that can
cation error. handle missing data and incremental updates grace-
Fig. 3 illustrates the advantages of using perspec{ully, and alternatives to Levenberg-Marquardt re-
tive rather than affine reconstruction, for a camerafinement (which | feel is not well suited to nonlinear
driving in a 90 degree arc around a scene at vari{east-squares reconstruction).
ous distances. Clearly, the affine approximation in-
troduces a considerable amount of systematic error Summary: Projective structure and motion can
even for quite distant scenes. Projective factoriz-pe recovered from multiple perspective images of a
ation is stable and accurate even for distant scenesicene consisting of points and lines, by estimating
even in these cases, the only real advantage of affinfundamental matrices and epipoles from the image
factorization is the fact that it is 2-3 times faster. data, using these to rescale the image measurements,
| have also run the point-based algorithms onand then factorizing the resulting rescaled measure-
several data sequences extracted from real imagesnent matrix using either SVD or a fast approximate
Without the ground truth it is hard to be precise, but factorization algorithm.

Figure 3 Projective and affine reconstructies. scene
distance.



Papier : Factorization Methods for Projective Structure & Motion — CVPR’'96 95

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

References

P. Beardsley, I. Reid, A. Zisserman, and D. Murray.
Active visual navigation using non-metric structure.
In E. Grimson, editor|EEE Int. Conf. Computer
Vision pages 58-64, Cambridge, MA, June 1995.

O. Faugeras. What can be seen in three di-
mensions with an uncalibrated stereo rig? In
G. Sandini, editorEuropean Conf. Computer Vi-
sion, Santa Margherita Ligure, Italy, May 1992.
Springer-Verlag.

O. Faugeras, Q.-T. Luong, and S. J. Maybank. Cam-
era self calibration: Theory and experiments. In
European Conf. Computer Visip8anta Margherita
Ligure, Italy, May 1992. Springer-Verlag.

O. Faugeras and B. Mourrain. On the geometry and

algebra of the point and line correspondences be{l

tweenn images. INIEEE Int. Conf. Computer Vi-
sion pages 951-6, Cambridge, MA, June 1995.

R. Hartley. Euclidean reconstruction from multi-

ple views. In2"¢ Europe-U.S. Workshop on Invari- [18]

ance pages 237-56, Ponta Delgada, Azores, Octo-
ber 1993.

R. Hartley. Lines and points in three views — an in- [19]

tegrated approach. llmage Understanding Work-
shop Monterey, California, November 1994.

(14]

(15]

[13] A. Shashua. Projective structure from uncalibrated

images: Structure from motion and recognition.
IEEE Trans. Pattern Analysis & Machine Intelli-
gence 16(8), 1994.

A. Shashua. Algebraic functions for recognition.
IEEE Trans. Pattern Analysis & Machine Intelli-
gence 17(8):779-89, 1995.

P. Sturm and B. Triggs. A factorization based algo-
rithm for multi-image projective structure and mo-
tion. In European Conf. Computer Visippages
709-20, Cambridge, U.K., 1996. Springer-Verlag.

R. Szeliski and S. B. Kang. Recovering 3d shape
and motion from image streams using nonlinear
least squares. IFEEE Conf. Computer Vision &
Pattern Recognitioypage 752, 1993.

7] C. Tomasi and T. Kanade. Shape and motion from

image streams under orthography: a factorization
method. Int. J. Computer Vision 9(2):137-54,
1992.

B. Triggs. The geometry of projective reconstruc-
tion I: Matching constraints and the joint image.
Submitted tdnt. J. Computer Vision

B. Triggs. Matching constraints and the jointimage.
In E. Grimson, editor]EEE Int. Conf. Computer
Vision pages 338-43, Cambridge, MA, June 1995.

R. Hartley. In defence of the 8-point algorithm. In [20] B. Triggs. New methods for projective reconstruc-

E. Grimson, editor]EEE Int. Conf. Computer Vi-
sion, pages 1064—70, Cambridge, MA, June 1995.

R. Hartley, R. Gupta, and T. Chang. Stereo from
uncalibrated cameras. IREE Conf. Computer Vi-
sion & Pattern Recognitiorpages 761-4, Urbana-
Champaign, lllinois, 1992.

P. F. McLauchlan and D. W. Murray. A unifying
framework for structure and motion recovery from
image sequences. In E. Grimson, edit&fE Int.
Conf. Computer Visigrpages 314-20, Cambridge,
MA, June 1995.

R. Mohr, B. Boufama, and P. Brand. Accurate pro-
jective reconstruction. 12"¢ Europe-U.S. Work-
shop on Invariance page 257, Ponta Delgada,
Azores, October 1993.

C. J. Poelman and T. Kanade. A parapersective fac-
torization method for shape and motion recovery.
In J-O. Eklundh, editorEuropean Conf. Computer
Vision pages 97-108, Stockholm, 1994. Springer-
Verlag.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. FlanneryNumerical Recipes in C: The Art of
Scientific ComputingCambridge University Press,
1992.2"4 edition.

tion. In preparation, 1996.






Linear Projective Reconstruction
from Matching Tensors

Bill Triggs

INRIA Rhone-Alpes,
655 avenue de I'Europe, 38330 Montbonnot St. Martin, France.
Bill. Triggs@inrialpes.fr ¢ http://www.inrialpes.fr/movi/Triggs

Abstract

This paper describes initial work on a family of projective reconstruction techniques that com-
pute projection matrices directly and linearly from matching tensors estimated from the image
data. The approach is based on ‘joint image closure relations’ — bilinear constraints between
matching tensors and projection matrices, that express the fact that the former derive from
the latter. The simplest methods use fundamental matrices and epipoles, alternative ones use
trilinear tensors. Itis possible to treat all of the image data uniformly, without reliance on ‘priv-
ileged’ images or tokens. The underlying theory is discussed, and the performance of the new
methods is quantified and compared with that of several existing ones.

Keywords: Multi-image structure, projective reconstruction, matching tensors.

1 Introduction

Traditional stereo vision systems use carefully calibrated cameras to provide metric reconstruction
from a single pair of static images. It has long been clear that the redundancy offered by fur-
ther images can significantly increase the quality and stability of visual reconstructions, as well
as extending their coverage to previously hidden parts of the scene. Furthermore, much of the 3D
structure can be recovered with@urty prior camera calibration. Even in the extreme case of several
distinct unknown projective cameras viewing the scene from unknown positions, the entire metric
scene geometry can be recovered up to just 9 global parameters — 3 scale factors, 3 skews and
3 projective distortions[4, 7, 13]. Various common scene or camera constraints can be used to
further reduce this ambiguitg.g.known vanishing points or length ratios, known skew or aspect
ratio, motion-constancy of intrinsic parameters,[6]. This is especially relevant to applications
such as scene modelling for virtual reality or robot navigation, where many images are needed to
cover the scene and precise calibration is difficult owing to uncertain camera motions, changes in
internal parameters (focus, zooming) or the use of several cameras.

There is a need for visual reconstruction methods with the following characteristics:
1) Multi-image/multi-point/missing data: It is hard to match features reliably across many im-
ages, especially under large changes of viewpoint. Reconstruction methods requiring long se-
guences of matches tend to run into missing data problems. For example, factorization methods
[26, 25, 29, 24] are very stable and treat all images and points equally, but require completely filled
‘blocks’ of pointsvs.images. Traditional methods further limit these blocks to small fixed numbers

This paper was published in Image & Vision Computing. An earlier version appeared in BMVC’96. The work was
supported by INRIA RbAe-Alpes, the Esprit HCM network and the Esprit LTR grant CUMULL.
LIf there is lens distortion, this can also (in theory) be recovered up to an unknown image homography.
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of images or points. The stability of such methods is critically dependent on the images chosen,
and since these must usually be closely-spaced to allow reliable matching, overall accuracy suffers.
It is possible to work around gaps in the data by ‘patching together’ several partial reconstructions,
but it would be useful to have methods that handled missing data naturally, without relyiad on

hoc patching, key points, or key images.

2) Flexible calibration: Calibration constraints come in many forms: prior knowledge, calibration
images, scene or motion constraints, ... Itis not always obvious how to incorporate them into the
multi-image reconstruction process. Often it is simpler to ignore them at first, working projectively
and only later going back and using them to ‘straighten’ the recovered projective structure. This
‘stratification’ school [6] has its critics [32, 20]. In particular, it is felt that stability may be com-
promised by failing to enforce reasonable camera and motion models at the outset. However as far
as | know it is the only approach that has yet produced true multi-image reconstruction algorithms
for general cameras and motions [25, 29, 30, 24].

3) Precision/robustness/stability: Precisionmeans that the method gives accurate results when

it works; robustnesghat it works reliably é.g.in the face of mismatches or initialization errors);
stability that the results are not overly sensitive to perturbations in the input data. Stability is a
precondition for precision and robustness, but is easily compromised by degeneracies in either the
viewing geometry or the algorithmic formulation used.

For the best precision there is no substitute for rigorous statistical parameter estiraaion,
maximum likelihood. For this, a nonlinear cost reflecting a statistical error model of the image
observations must be globally optimized over all unknown 3D structure and calibration parameters.
With Gaussian errors, this reduces to covariance-weighted nonlinear least squares. Such statistical
‘bundle adjustment’ is a truism for photogrammetrists but seems to be tacitly discouraged in com-
puter vision, where the traditional emphasis is on A.l. image understanding rather than precision
(howevercf. [17, 10, 19, 14, 9]). Efficient numerical methods exist for handling large problems,
both off-line and in a linearized recursive framework [1, 18].

Rigorous, statistically weighted least squares should not be confused with ‘unweighted’ or
‘linear least squares’ minimization @fd hoc'‘algebraic distances’ — sums of squared algebraic
constraint violations with no direct relation to measured image residuals. For example the ‘lin-
ear’ method for the fundamental matrix [12], reconstruction by affine and projective factorization
[26, 25, 29, 24], and the new ‘closure based’ methods presented here, all linearize the problem and
minimize algebraic distances using linear algebra technicrigsVD). Common characteristics
of such methods arei)(they are linear and much simpler to implement than the corresponding sta-
tistical methods;i{) no prior initialization is neededji{) somewhat more than the minimal amount
of data is required, to allow nonlinearities to be “linearized awaly); they are sensitive to the rel-
ative weighting of different components of the error function (but the choice is not too critical once
you realize it has to be made)) (with suitable weighting, they give results not too far from (but
still worse than) the statistical optimum. Criticisms includg: ignoring constraints may reduce
stability and make the results difficult to interpret) general linear methods are often slower than
dedicated nonlinear ones, as large matrices tend to be invohigdt i6 difficult to detect outliers
without a clear error model.

Bundle adjustment routines provide all of the desirable features listed above, except robustness
against initialization. As they are only iterative improvement techniques, they require initial esti-
mates for all unknown parameters. In practice they are seldom robust against gross errors in these,
or even against re-parametrizatiand.convergence tests are notoriously sensitive to this).

Hence, there is still a need for stable and relatively tractable suboptimal reconstruction methods
that require no prior initialization, take into account as many as possible of the above properties, and
can be used as input to nonlinear methods if more precision is required. Partly in response to this,
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there has recently been a significant amount of work on the theoretical foundations of multi-image
projection and reconstruction [11, 10, 19, 18, 23, 2, 22, 8, 15, 16, 31, 27, 28, 3]. The problem turns
out to have a surprisingly rich mathematical structure and several complementary approaches exist.
The field is developing rapidly and there is no space for a survey here, so | will only mention a
few isolated results. The epipolar constraint (the geometry of stereo pairs) is now well understood
(e.g.[5]). Shashua [22] and Hartley [11] developed the theory of the trivalent tensor (three view
constraint). Faugeras and Mourrain [8] and | [28] systematically studied the complete family of
multi-image constraints (only one was unknown: a quadrilinear one).

As a means to this, | developed a tensorial approach to multi-image vision [28], which nicely
unifies the geometric and algebraic aspects of the subject. This leadjtirthienage picture, in
which the combined homogeneous coordinates of all the images of a 3D point are stacked into a
single big ‘joint image’ vector. The geometry of this space can be related to that of the original
3D points via the stacked projection matrices. All of the familiar image entities — points, lines,
homographies, matching tensoet¢c — fall naturally out of this picture as the joint image repre-
sentatives of the corresponding 3D objects. The approach is also ‘dual’ (in the sense of Carlsson
[3]) to Sparr’s ‘affine shape’ formalism [23, 15, 24], where coordinates are stacked by point rather
than by image.

In the MOVI group, we have recently developed several families of projective reconstruction
methods based on the joint image approach. The factorization-based ‘projective depth recovery’
methods [25, 29] use matching tensors to recover a coherent set of projective scale factors for the
image points. This gives an implicit reconstruction, which can be concretized by factorizing the
matrix of rescaled image points into projection and structure matrices by a process analogous to the
Tomasi-Kanade-Poelman method for affine structure [26, 21]. Factorization-based methods give
an implicit linear least squares fit to all of the image data. They are simple and extremely stable,
but have the serious practical disadvantage that each point must be visible in every image (modulo
‘hallucination’ [26]). This is unrealistic when there are many images covering a wide range of
viewing positions.

The current paper represents a first attempt to overcome this problem. It describes a new fam-
ily of reconstruction methods that extract projection matrices directly and linearly from estimated
matching tensors, after which the scene structure can be recovered linearly by back-projecting the
image measurements. The projections are estimated using ‘joint image closure relations’ — bi-
linear constraints between projections and their matching tensors, analogous to the depth recovery
relations used for projective factorization, but with projection matrices replacing image points.

In principle, the closure based reconstruction methods treat all of the images uniformly, so they
have the potential to be significantly more stable than the commonly used approach of initially
reconstructing from two key images, then reprojecting into the other ones to estimate the remaining
projection matrices. On the other hand, because they only use the image data indirectly via the
matching tensors, they are not as stable as factorization based methods. The suggestion is that
they will prove good replacements for the ‘stereo + reprojection’ methods (whose main application
is probably to initialize more refined nonlinear least squares iterations), but that when tokens are
visible in every image factorization will still be the best linear method.

The rest of the paper outlines the theory of the closure relations, describes the resulting re-
construction algorithms and their implementation, reports on an initial experimental study of their
performance, and ends with a short discussion.

2 Theory

This section sketches the theoretical background of multi-image reconstruction, and discusses the
‘joint image closure relations’ on which the new reconstruction methods are based. The theory is
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not difficult, but when more than two images are involved the equations are hard to express without
using tensorial notation. We will use ordinary matrix-vector notation except for a few trivalent
tensor equations, so you should be able to follow most of the paper without a knowledge of tensors.
An extremelybrief introduction to them follows — see [28, 27] for more details. All quantities are
assumed to be projective, expressed in homogeneous coordinates.

Tensorsare just multidimensional arrays of components. Vectors (1-index arrays) and matrices
(2-index arrays) are examples. Each index is associated with a specific space (the 3D world, im-
agei, ...), and inhéts the corresponding change-of-basis law. Many common vector and matrix
operations generalize directly to tensors, provided we specify which of the many indices the op-
eration applies to. (For matrices, the index is implicit in the ‘juxtaposition = multiplication’ rule).

To keep track of the indices, we write them out explicitty:b, c. .. for world-space indices and

A;, B;, C; ... for imagei ones. The most common operatiorc@ntraction — summing a corre-
sponding pair of indices over the range of their values, as in vector dot-product, matrix product or
trace. The summation signs are elided: any index that appears twice in a term is implicitly summed
over.

A further complication is that in projective geometry each space has a correspahdihg.g.
in each image, the space of points is dual to the space of lines (hyperplanes). This means that
every index actually comes in two varieties: point-likecomtravariant and hyperplane-like or
covariant. These havaifferent (complementary) transformation laws under changes of basis, so
they must be carefully distinguished: point indices are written as superscripts, hyperplane ones as
subscripts. Contractions are only meaningful between covariant-contravariant pairs of indices from
the same space,g.there isno meaningful ‘dot product’ between pairs of projective points — the
result would be completely dependent on the basis chosen.

World pointsX® project to image ones“: by contraction witt8 x 4 projection matriced®:
x4 ~ PAIX (implicit summation ovem). e{‘Q denotes the epipole of camera 1 in image 2;

F 4, B, the fundamental matrix between images 1 and 2;@nd”2“* the trivalent tensor between
images 2 and 3 based in image 1. (There are also corresponding trivalent tensors based in images
2 and 3). In ordinary matrix-vector notatioX, stands forX®, x; for x“i, P; for Pg‘i, e;; for efj,

andF;; for Fa,p;.

Consider the projections;,x;, = P;X,, of n homogeneous world poinX,,, p = 1,...,n,
into m images via3 x 4 perspective projection matricd®;, i = 1,...,m. The resultingmn
homogeneous image points, are only defined up to unknown scale factaggs, calledprojective
depths As eachP; andX,, can be arbitrarily rescaled, there is some superficial freedom in the
choice of these scales. However there is a strong underlying coherence that embodies the projective
structure of the scene: the depthg, really do capture the projective part of visual depth. An
algebraic result of the coherence is the low rank (four) of the rescaled data matrix:

A11X11 o ApXin Py
)\mlxml to )\mnxmn Pm
It is useful to view this column-by-column, as the projection of world pokjsto 3m-component
joint image spacevectors via the stackein x 4 joint projection matrix P:
AMpXip P,
=PX, where P =
)\mpxmp P,

The joint projection can be viewed as a projective injection mapping the 3D projective world bijec-
tively to thejoint image — a 3D projective subspace @§m — 1)-D projective joint image space
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[28, 27]. This is a faithful projective copy of the world expressed entirely in image coordinates.
Projection from it to the individual images is a trivial forgetting of coordinates and scale factors.
Projective reconstruction of the joint image amounts to recovering the missing dgpth$his

is a canonical proce$sip to a once-and-for-all choice of scales for the projectiBps The four
columns of the joint projection matrix form a spanning basis for the joint image. The coordinates
of a rescaled joint image point with respect to this basis are exactly the corresponding 3D point’s
homogeneous world coordinates. But neither the basis nor the world coordinates are canonical:
only the geometric position of the point in the joint image is recoverable from the image data.

The above geometry can be converted directly to algebra. 4Thel minors (submatrix de-
terminants) of the joint projection encode the location of the joint image (and hence the projective
camera geometry) in a well-defined algebraic sense: they are its ‘GrassmafpsRI6ordinates’.
Moreover, the minors turn out to be just the components ofntla¢éching tensorsbetween the
images. These generate the multilinear constraints that tokens in different images must satisfy if
they are to be the projections of a single world token. They can also be used for projective depth
recovery, and to transfer tokens between images. There are four basic types of matching tensors:
epipolese;; (tensorially: ef‘j), fundamental matrices F;; (F 4, 5,), trivalent tensors G, BiCr
andquadrivalent tensors HA:BiC¢x Dt These are formed from minors with respectively 3+1, 2+2,
2+1+1, and 1+1+1+1 rows from 2, 2, 3 and 4 imagesk, [ [22, 8, 28].

The ‘joint image closure relations’ that underlie the new reconstruction methods are bilinear
constraints between projection matrices and the corresponding matching tensors. They guarantee
that the projections are coherent with the joint image subspace defined by the tensors. Algebraically,
they express the four-dimensionality (“closure”) of the jointimage. The simplest way to derive them
is to append any column of ti3an x 4 joint projection matrix to the existing matrix, to form a rank
deficient3m x 5 matrix. The5 x 5 minors of this matrix vanish. Expand by cofactors in the
appended column. The coefficients are matching tensor compodents (ninors of the original
joint projection matrix). Closer examination reveals five basic types of relation. We use only the
simplest two her&

F;;P;+[e;P; = 0 F-e closure @

Gp,tiCk P4 ej‘i PCr — pAi ejck =0 e-G-e closure 2)
These relations provide constraints between matching tensors (which can be estimated from the
image data) and columns of the joint projection matrix. For each column, (1) contains 3 constraints
of which 2 are linearly independent, while (2) contains 3 = 9 constraints of which 5 are linearly
independent. By accumulating enough of these constraints, we can solve linearly for tRexfour
component joint projection columns, up to an oveda# 4 linear transformation that amounts to

a homography of the reconstructed world space. Geometrically, the joint image (the 4D subspace
spanned by the columns of the joint projection) is the null space of the constraints. Given the
projections, the scene reconstruction can be completed by linearly back-projecting image structure
into the world space, which amounts to solving redundant linear equations

Xip A (PiXp) =0 (3)

for the world pointsX,, in terms of their images;, and the projection matricds,;.
The depth recovery relations used for projective factorization [25, 29, 27] follow directly
from the above closure constraints. Attaching a world pdiptto each projection gives bilinear

2:Canonical’ means that it characterizes the imaging geometry and is characterized uniquely (up to the scales) by it;
it does not depend on the world or image coordinate systems used; and it is in some sense the ‘natural’ arena of action
for anyreconstruction method.

3[x]. denotes the ske® x 3 matrix giving the vector cross produdk],y = x A y.
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constraints between the matching tensors andtnectly rescaledmage points\;,x;, = P; X,

Fji ()‘ipxip)+eij (AjpXjp) = 0 4)
GBinCk ()‘jXBj)_()\z‘XA) +e ()\kx )y =0 (5)

Given the matching tensors, a coherent set of projective depths for the images of each world point
can be recovered linearly using these relations. These already contain a virtual projective recon-
struction, implicit in the fact that the rescaled data matrix (2) has rank 4. The reconstruction can be
consolidated and ‘read off’ by any convenient matrix factorization algorithm [25, 29].

Another way to express (1) is to note tiAY; has rank 2 and hence can be decomposed (non-
uniquely) asF;; = u;v, — v;u/. Here,u; <> u; andv; < v; turn out to be corresponding pairs
of epipolar Iine-vectors (with approprlate relative scaling), and hepice- u; Avj, ej; = v; Au,.
Suitableu's andv's are easily obtained by rescaling the SVD basi¥ gt Sincele;;], = u;v; —
vjujT, the combinedF-e closure constraints from images; and j-i have rank just 2 and are
spanned by the rows ofax 6 matrix U;;:

Fji  [eijl —vj u g
= U, where Uy = | i
< lejil  Fij Vi W Y N v j

In fact, theu’s andv’s extracted from the SVD dF ;; combine to form a basis of the 2D orthogonal

complement of the-j joint image. (The space spanned by the 4 columns of-thint projection

matrix( ) or equivalently by those of thej rescaled data matr|é< “X“ )‘mfg”)) Hence,
Jjnagn

another Way to obtain the constraint matftix; is to use any two |mage reconstructlon methed;(
factorization) and extract the left null space of the resultifjgjoint projection or rescaled data
matrix, e.g.by QR or SVD.

Similarly, thee-G-e closure constraint (2) can be written @nx 3 blocks) as @ x 9 rank 5
matrix

—e;?’“ I3><3 G.‘ Tk ejz- 0 0 Pz’
—e]y-’“ I3><3 G.' Yk 0 €4 0 Pj =0
—ej’“ ngg G.' Zk 00 €4 Pk

Here, the 27 components G 4, BiCk are viewed as threg x 3 matrices, forCj, = z,y, z. As

before, the rank remains 5 even if further bilinear or trilinear closure constraints are added for
the same images taken in a different order (tfuthe discussion on scaling below). Any rank 5
decompositiorlJ; j;, of this constraint matrixg.g.by SVD) gives a trivalent equivalent of the above

U;; matrix. For any sucfU,;;, each of its 5 rows contains three 3-component row vectors which
define a matching triplet of image lines, and hence a corresponding 3D lin¢u,(lf;, us} is

such a triplet, the closure constraint says that the pulled-back visual planes meet in a common 3D
line: (w;P;) + (u;P;) + (u,Py) = 0). The 4D projective space of linear combinations of these

5 line-triplet vectors bijectively spans the entire 4D spacedckt quadric) of lines in 3Dexcept

that the correspondence is singular for lines in the trifocal plane.

The complete closure-based reconstruction process runs roughly as follows. A very large num-
ber of closure constraints is available, relating the projections of any selection of 2, 3, or even (for
higher closure constraints) 4 or 5 images. It would be impractical to enforce all of these, but in any
case they are highly redundant and only a small subset of them need be used in practice. The choice
must depend on the correspondences and matching tensors available, convenience, and a run time
vs.redundancy trade-off. To fully constrain the projections, each image (except the first pair) must
be related tat leasttwo others. This can be done with oadgG-e constraint or twdF'-e ones, in
either their full or reducedlJ-matrix) versions. (The experiments below use the full versions).
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This paper considers only the simplest possible choices, based on minimal sets of constraints
for the first two types of closure relation. Each image is connected to exactly two previous ones in
a chain. The following types of chain have been considered

Q——E, O ONFONFO
R S O)O)CHER S W
F-e serial F-e parallel e-G-e serial

Serial chains connect each image to the two immediately preceding ones, while parallel ones con-
nect each image to two ‘key frames’. For theG-e chains, the trivalent tensor based in (with
covariant index in) the middle image of the triplet is used,, 5 — G ,"1“* — €5 for images

1-2-3. Note that the basic formulation is symmetric in that it allows any pair or triplet of images to
be incorporated. Choosing a particular constraint topology breaks this symmetry, but the choice is
at least under user control (modulo suitable estimates of the matching tensors).

Each constraint contributes several rows to adigcolumn, m image constraint matrix (un-
used elements are zero). It is essential to choose consistent relative scalings (see below), but once
this is done the constraint matrix generically has rank— 4. Its null space is exactly the joint
image (the 4D space spanned by the joint projection columns). Any basis for the null space provides
four 3m-component column vectors that can be regarded as the columns of a valid reconstructed
joint projection. The freedom of choice in the basis correspondsite @ nonsingular mixing of
the columns, which amounts to a projective deformation of the reconstructed world coordinates.

The above process enforces a particular relative scaling for the projection matrices, so it is
necessary to choose coherent scalings for the overlapping constraint equations. In fact, matching
tensors inherit ‘natural’ scalings from their definitions as minors of projection matrices, but these
are lost when they are estimated from image data. The closure relations depend critically on these
scalings, so the relevant part of them must be recovered.

It turns out that the scales can be chosen arbitrarily modulo one constraint for each closed loop
in the above chains. The same constraints guarantee the existence of consistent choices of depths
in the depth recovery equations (4) or (5), and it turns out to be easiest to recover the scalings using
this. For each closed loop, scalings are chosen arbitrarily and the depths of (a selection of) measured
image points are propagated around the loop by a chain of depth recoverycét¢ps]). Then,
one of the tensor scales is modified to make the average ‘closed-loop gain’ unity, as it must be for
consistency. For th&'-e constraint this involves 3-image loops.§.1 — 2 — 3 — 1