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Géométrie d’images multiples

On étudie les relations g´eométriques entre une sc`ene 3D et ses images perspectives. Les liens
entre les images, et la reconstruction 3D de la sc`eneà partir de ces images, sont particuli`erement ´elu-
cidés. L’outil central est un formalisme tensoriel de la g´eométrie projective des images multiples.
La forme et la structure alg´ebrique des contraintes g´eométriques qui lient les diff´erentes images
d’une primitive 3D sont ´etablies.À partir de là, plusieurs nouvelles m´ethodes de reconstruction 3D
projective d’une sc`eneà partir d’images non-calibr´ees sont d´eveloppées. Pour rehausser cette struc-
ture projective `a une structure euclidienne, on introduit un nouveau formalisme d’auto-calibrage
d’une caméra en mouvement.

Geometry of Multiple Images

We study the geometric relations that link a 3D scene to its perspective images. The focus is on
the connections between the images, and the 3D reconstruction of the scene from these images.
Our central tool is a tensorial formulation of the projective multi-image geometry. This is used to
determine the form and structure of the geometric constraints between the different images of a
3D primitive. Several new methods for 3D projective reconstruction of scenes from uncalibrated
images are derived from this. We then introduce a new formalism for the autocalibration of a
moving camera, that converts these projective reconstructions into Euclidean ones.





À tous ceux qu’on aime.
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Chapitre 1

Introduction

Cette thèseétudie les relations g´eométriques entre une sc`ene 3D et ses images perspectives. Les
liens entre les diff´erentes images, et la reconstruction 3D de la sc`eneà partir de ces images, sont
particulièrement ´elucidés. L’outil central est un formalisme tensoriel de la g´eométrie projective
des images multiples. Quoique l’orientation du travail soit parfois assez th´eorique, ce formalisme
représente un v´ehicule de expression tr`es puissant, autant pour le calcul num´erique que pour le
calcul formel. Tout au long de ce travail, nous avons tent´e de ne jamais perdre de vue les aspects
algorithmiques et num´eriques du sujet.

Pourquoiétudier la géométrie multi-images? – Nous vivons un temps sans pr´ecédent historique.
L’accroissement explosive de tout qui rel`eve de l’ordinateur – intelligence artificielle, les r´eseaux,
le web, multi-média, réalité virtuelle et augment´e, vidéo et cinéma digitale – risque de changer non
seulement nos fa¸cons de travailler, mais aussi nos fa¸cons de voir notre propre monde. Soit il pour
le bien ou non, le bureau et la foyer sont d´esormais instrument´es et vont certainement devenir de
plus en plus r´eactifs, sinon plus(( intelligents)). Il ne s’agira plus de(( habiter dans nos espaces)),
mais plutôt d’(( interagir avec eux)). La caméra et l’image seront au centre de cette r´evolution, car
de tous nos sens, la vision est le plus riche et le plus informatif. Les moyens de calcul seront bientˆot
à ce rendez-vous1, mais nous manquons cruellement d’algorithmes efficaces, en particulier en tout
ce qui concerne l’interpr´etation et la compr´ehension de sc`enes et de structures 3D et dynamiques.

Les révolutions techniques se fait par sp´ecialité, et ici on se focalise sur la th´eorie d’extrac-
tion de la structure 3D `a partir de plusieurs images ou s´equences d’images.̀A titre indicative et
non-exhaustive, les r´esultats obtenus porte sur les comp´etences pratiques suivantes : (i) mesurer
ou modéliser une sc`ene pour mieux g´erer nos interventions sur lui (m´etrologie photogramm´etrique,
contrôle de qualité, planification, surveillance, applications m´edicales) ; (ii ) resynthétiser d’autres
images de la mˆeme sc`ene (visualisation, r´eduction du d´ebit de réseau v´ehiculant des sc`enes) ;
(iii ) modifier ou interagir avec la sc`ene (réalité augment´e, studio virtuel).

L’automatisation quasi-compl`ete sera souvent indispensable pour rendre ces applications viable.
Pour la plupart d’entre elles, les utilisateurs ne voudraient pas r´ealiser ou maintenir un calibrage
précis des cam´eras – il leur faut des syst`emes qui s’auto-calibraient eux mˆemes. Pour toutes ces
raisons, il y a un besoin de m´ethodes am´eliorées de correspondance entre images, de reconstruction
3D à partir des correspondances trouv´ees, et d’(auto-)calibrage.

Sous-jacent `a tout cela, il y a un besoin de comprendre la structure th´eorique du domaine. Nous
partageons le point de vue qu’(( il n’y a rien de plus pratique qu’une bonne th´eorie)) – elle peut
aider aux d´erivations et aux implantations, indiquer les limites d’application, expliquer comment

1. Pour l’instant, un ordinateur personnel ne peut faire qu’une traitement simpliste d’une s´equence d’images de taille
raisonnable `a temps r´eel. Mais si on croˆıt la loi de Moore (augmentation des puissances de calcul par un facteur de deux
chaque 18 mois), il est `a (seulement!) 20-30 ans pr`es de la puissance de calcul du cortex visuel humain, estim´e à 1013 à
1014 opérations par second.
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contourner les ´echecs, sugg´erer d’autres directions fructueuses ...

La forme de la thèse

Ceci est une th`ese sur travaux. C’est un genre que je n’aime gu`ere, mais que les limites de
temps et mes autres pr´eoccupations multiples m’obligent `a adopter. La plupart du texte consiste en
des articles d´ejà publiés ou soumis, reproduits ici tels quels `a une simple mise en page pr`es. J’ai
parfois pris une version longue et/ou corrig´ee s’il en existe, mais ces modifications datent de la
mêmeépoque de la publication initiale.

J’ai résisté à toute tentation de r´ecrire ces travaux, mˆeme légèrement. Je n’ai mˆeme pas c´edé
au désir d’harmoniser les notations qui varient librement de papier en papier. Ceci pour la simple
raison que si je commen¸caisà récrire ces textes – et en particuli`ere les plus vieux – je changerais
souvent quasiment toute l’exposition ... et parfois mˆeme (mais plus rarement) la substance.

Organisation

Le prochain chapitre ´evoque très brièvement, et sans entrer dans aucun d´etail, le cadre technique
de la thèse. Chacun des trois chapitres suivants introduit, et puis reproduit, plusieurs papiers sur un
thème commun : chapitre 3 – les contraintes d’appariement et l’approche tensorielle ; chapitre 4
– la reconstruction projective ; et chapitre 5 – l’auto-calibrage. Un appendice donne un quatri`eme
ensemble de papiers qui n’ont pas trouv´e place dans le corps du texte. L’introduction de chaque
papier est susceptible de contenir des notes historiques, un bref sommaire technique, et ´eventuelle-
ment des perspectives et commentaires. Ces introductions n’ont pas pour intention de donner une
compréhension technique d´etaillé du travail : pour cela il faut sans exception lire l’article.

Chaque papier a sa bibliographie propre `a lui. La bibliographie `a la fin de la th`ese ne contient
que les références cit´ees dans les textes introducteurs.
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Chapitre 2

Cadre technique

Géométrie projective

On peut maintenant raisonnablement supposer que la g´eométrie projective soit famili`ere au lec-
teur (voir,ex.[SK52, HP47]). On adopte toujours les coordonn´ees homog`enes pour d´ecrire l’espace
3D et les images projectives. Chaque point 3D(X Y Z)> se représente par son vecteur homog`ene
(X Y Z 1)> ... ou par tout autre vecteur de dimension 4 ´egalà celui-cià un facteur d’´echelle près.
(Cette relation d’´equivalence est not´ee((' ))). Il en est de mˆeme pour les points images(x y)> qui
deviennent(x y 1)>. Quoique redondante, cette repr´esentation homog`eneà un avantage capital :
toute transformation projective prend une apparencelinéairequand on l’exprime dans les coordon-
nées homog`enes. C’est le cas pour les transformations projectives ((( homographies))) 3D–3D et
2D–2D, et plus particuli`erement pour les projections perspectives 3D–2D, qui sont au coeur de la
formation des images.

Projection centrale et calibrage interne d’une caḿera

On n’exposera pas ici syst´ematiquement la th´eorie de formation d’images. Voir par exemple
Faugeras [Fau93] ou Horaud & Monga [HM93] pour le cas perspectif, et [JW76, Sla80] pour les
détails optiques. Bri`evement, id´ealisons par une(( caméra à projection centrale)) tout dispositif de
projection d’images avec la propri´eté que pour chaque demi-droite ((( rayon optique ))) origineà un
point 3D particulier (le(( centre optique)) de la cam´era), les images de tous les points 3D le long
de ce rayon soient confondus. Le mod`ele sténopé standard en est un exemple. Une cam´era centrale
peut en principe enregistrer les rayons qui viennent de n’importe quelles directions 3D – une lentille
(( oeil de poisson)) est une approximation – donc une image centrale compl`ete est topologiquement
un sphère (le sph`ere(( panoramique)) de toutes les directions de vue au centre optique). On autorise
des déformations arbitraires dans l’image ... pourvu qu’on puisse les d´efaire plus tard pour retrouver
le (( modèle calibré)) de la cam´era, où chaque point image correspond `a une direction (rayon 3D au
centre) connue.

Supposons qu’on prend comme origine 3D le centre d’une cam´era qui est calibr´ee. L’image du
point homogèneX ' (X Y Z 1)> est évidemment (`a un facteur d’´echelle près) le point image
homogènex ' (X Y Z), car tous les points(λX λY λZ 1),λ > 0 se trouvent sur le mˆeme rayon
issu du centre. Cette projection image s’exprime de fa¸con homog`ene linéaire commex ' P X, où
P ≡ (I3×3 |0) est la(( matrice de projection )) 3× 4 de la cam´era. On peut aussi ´ecrire cela sous
la formeλ x = P X, où on introduit une facteur d’´echelleλ pour compenser l’´echelle inconnue
relative des deux cˆotés de l’équation.λ s’appelle un(( profondeur projective )) car – moyennant
une normalisation convenable dex, X etP – elle devient la profondeur (distance du centre optique)
du point.
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Sous un changement de rep`ere euclidien (exprim´e en coordonn´ees homog`enes par une matrice
4 × 4

(
R t
0 1

)
, où R est une rotation3 × 3 et t un 3-vecteur de translation) on arrive `a une matrice

de projectionP ' (I3×3 |0)
(

R t
0 1

)
= (R | t). Si on autorise aussi une d´eformation projective (ou

même affine) arbitraire de l’image, on arrive `a une matrice g´enérale3 × 4 (rang 3) de projection.
Au moyen de la d´ecomposition matricielle QR (ou plus exactement RQ), on peut obtenir d’une telle
matrice une red´ecomposition dans la forme :

P ' K (R | t) K ≡

1 s u0

0 a v0

0 0 1/f


où R,t sont une rotation et une translation qui donnent la(( pose)) (position et orientation) de
la caméra, et la d´eformation 2D affine triangulaireK est sa(( matrice de calibrage interne)) .
f,a,s,(u0,v0) s’appellent respectivement la (distance) focale ; le rapport des ´echelles ; et leskewet
le point principal géométrique de la cam´era. (On param`etreK aussi parfois par les deux focales prin-
cipales(f,fa), et le skew et le point principalpixéliquesfs et(fu0,fv0). La focale peut s’exprimer
en pixéls ou – si les pix´els sont donn´es en millimètres – en millim`etres).

On appelle ce mod`ele le modèle (( projectif sphérique )) d’une caméra. Il prend comme base
la géométrie projective sph´erique des rayons 3D `a un point, notion qui date de la pr´ehistoire de
la géométrie projective1. Le modèle de projection centrale est en effet tr`es précis pour la plupart
des cam´eras conventionnelles (mis `a part les cam´eras(( à balayage)) (pushbroom cameras) et les
modèles avoisinants). Le mod`ele projectif de calibrage interne (d´eformation projective de l’image)
est moins pr´ecis : il està la fois trop faible – pour la plupart des cam´eras, le skew est enti`erement
négligeable – et trop fort – les distorsions optiques de lentille ne sontpasen général négligeables,
en particulier avec les lentilles bon march´e, de courte focale, ou de zoom. N´eanmoins, dans cette
thèse on adoptera toujours ce mod`ele de cam´era projectif, car il est tr`es maniable par comparaison
avec les mod`eles internes non-lin´eaires. En pratique, la distorsion optique ne peut g´enéralement ˆetre
incluse que : (i) par pré-correction ; (ii ) dans une ´etape d’estimation non-lin´eaire –étape quasiment
inévitable pour tout syst`eme pratique qui pr´etendà la précision, mais qu’on n’abordera gu`ere ici.

Reconstruction projective et euclidienne

Conséquence in´eluctable du fait que le processus de formation d’images soit projectif : tout
tentative de(( reconstruction)) d’une scèneà partir des images seules est aussi, de sa nature mˆeme,
projective2. Une déformation projective 3D `a la fois des cam´eras et de la sc`ene ne change pas les
images, donc la structure d´eformée ne peut pas ˆetre distingu´ee de la bonne structure au seul moyen
de ses images [Fau92, HGC92]. Pour remonter `a la structure m´etrique, il faut des contraintes non-
projectives, ou sur la sc`ene, ou sur les mouvements, ou sur les calibrages des cam´eras [MF92,

1. La projection sur (i.e. section par) un plan de la sph`ere de rayons optiques ´etait déjà courante chez les g´eomètres
grecs, pour r´esoudre leurs probl`emes de trigonom´etrie sphérique céleste ... Le mod`ele projectif sph´erique s’appelle aussi
parfois le mod`ele(( projectif orient é)) [Sto91].

2. Comme dans les images, la topologie naturelle de l’espace de reconstructions visuelles est toujours celle d’une
sphère – ici d’une 3-sph`ere en 4 dimensions. Par exemple, l’image sph´erique d’une droite infinie s’arrˆet abruptement aux
images de ses deux points de fuite oppos´es – coupure qui d´epend de la structure affine 3D, et qu’on ne peut pas en g´enéral
localiser dans les images si on ne voit qu’un segment fini de la droite. Dans chaque image sph´erique on peut prolonger
le demi-cercle image de la droite `a une cercle compl`ete. La géométrie de ces points suppl´ementaires reste coh´erente –
sauf visibilité c’est identique `a celle des points visibles – et on peut les mettre en correspondance comme s’ils ´etaient les
images des points 3D(( au delà de l’infini )), de la même mani`ere qu’on traite les vecteurs de direction comme les(( points
à l’infini )). Grâceà ces points 3D virtuels, la reconstruction de la droite devient un cercle topologique (mais elle est
droite, de rayon infini), et l’espace 3D devient une sph`ere topologique. Il est dans la nature mˆeme de toute reconstruction
visuelle centrale de recr´eer un tel espace. Mais la reconstruction projective rend la situation plus difficile, car sans le plan
à l’infini on ne sait plus quels sont les points virtuels `a jeter.
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FLM92, Har93a, Har94, MBB93]. C’est pour cela que l’´etude de reconstruction visuelle se s´epare
naturellement en deux parties : la reconstruction 3D projective (i.e. à une projectivit´e 3D près) à
partir des donn´ees images, et puis la reconstruction 3D euclidienne (i.e. jusqu’à une transformation
3D euclidienne rigide pr`es)à partir de la reconstruction projective.

Il faut dire que même une structure projective est d´ejà très informative. Elle nous donne toute
la géométrie 3D métrique de la sc`ene et des cam´eras – en principe un nombre presque illimit´e de
paramètres –à seulement 9 param`etres près :

– 3 déformations essentiellement projectives (d´eplacement du plan `a l’infini) ;

– 5 étirements affines ;

– un facteur d’échelle global qu’on ne peut jamais obtenir sans connaissances externes, car
toute l’optique (au moins dans sa limite g´eométrique) est invariante `a un rééchelonnement
global des cam´eras et de la sc`ene.

La structure projective suffit elle-mˆeme pour certaines applications, en particulier celles de la re-
synthèse des images quand elles peuvent se limiter aux cam´eras (réels et virtuelles) projectives
non-calibrées. Mais la plupart des applications exigent une structure m´etrique, donc il faudra se
demander comment estimer ces derniers 8–9 param`etres. Dans cette th`ese on ´etudiera plusieurs
méthodes pour chacune de ces deux ´etapes de reconstruction.

Contraintes d’appariement multi-images

Considérons plusieurs images d’une sc`ene, images prises depuis plusieurs points de vue par
une ou plusieurs cam´eras projectives. Les images d’une primitive 3D (qu’elle soit point, droite,
courbe, surface ...) ne sont pas enti`erement ind´ependantes entre elles : elles doivent v´erifier cer-
taines contraintes de coh´erence g´eométriques, qui exigent qu’elles soient toutes les projections
d’une même primitive 3D quelconque. On ´etudiera la forme alg´ebrique de ces(( contraintes d’ap-
pariement multi-images)) en détail plus bas. En effet, elles sont toujours multi-lin´eaires en les
primitives projetées qui apparaissent, avec pour coefficients des tenseurs (tableaux multi-indices)
inter-images, fabriqu´es de matrices de projection de plusieurs cam´eras. Ces(( tenseurs d’appa-
riement )) sont évidemment fonction de la g´eométrie (poses relatives et calibrages internes) des
caméras. En effet, il se trouve qu’en g´enéral l’ensemble des tenseurscaract́erisentet mêmepara-
métrisentla partie projective – et moyennant une l´egère connaissance suppl´ementaire, souvent aussi
la partie euclidienne – de la g´eométrie caméras,sans aucune réf́erence explicite aux quantités 3D.
En particulier, les tenseurs peuvent ˆetre estim´esà partir de un nombre suffisant de correspondances
inter-images des primitives, sans connaissances de quantit´es 3D. D’où les intérêts principaux des
contraintes d’appariement :

1o Correspondances des primitives :Une fois estim´ees, elles sont une aide tr`es puissante `a
ce problème pérenne de la vision, la mise en correspondance des primitives entre images.
Elles réduisent la recherche des points correspondants entre deux images aux(( droitesépi-
pôlaires)), et la recherche des points ou droites correspondants dans la troisi`eme et subs´e-
quentes images `a la simple pr´ediction et vérification de la pr´esence de la primitive `a une
position qui peut se pr´ecalculer.

2o Synthèse des nouvelles vues :La prédiction ci-dessus peut servir plus activement comme
(( transfert)) des primitives correspondantes entre images, pour synth´etiserà partir de quelques
images d’une sc`ene, de nouvelles vues qui semblent avoir ´eté prises de points de vue dif-
férents de ceux des images d’entr´ee. Ceci constitue une application tr`esà la mode pour la
réalité virtuelle.

3o Reconstruction 3D : Vu que les contraintes d’appariement d´ependent de la g´eométrie
multi-caméras, on peut songer `a recouvrir celles-ci des contraintes, et aussi `a reconstruire
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les primitives appari´ees. Ce genre de reconstruction g´eométrique a maintes applications en
métrologie, conception, planification, visualisation, r´ealité virtuelle...

Une fois qu’on a estim´e les contraintes d’appariement, toutes ces applications sont `a considérer. En
plus, les contraintes ne repr´esentent que le d´ebut d’une grande toile de relations g´eométriques, qui
relient primitives 3D, primitives projet´ees, profondeurs projectives, matrices de projection, tenseurs
d’appariement et contraintes euclidiennes dans une structure globale, complexe mais coh´erente.
La plus haute revendication de cette th`ese, c’est d’avoir contribu´e à élucider une partie de cette
structure.
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Chapitre 3

Contraintes d’appariement, et
l’approche tensorielleà la géométrie des
images multiples

Ce chapitre, et en particulier son premier papier, pose les fondations de toute cette th`ese. Il traite
spécifiquement des contraintes d’appariement – contraintes alg´ebriques inter-images, qui exige que
les différentes images d’une primitive 3D soient toutes consistantes entre elles. Mais ces contraintes
ne sont qu’un aspect de la riche g´eométrie multi-images, et les techniques tensorielles qu’on d´eve-
loppe ici pour ce cas s’´etendent et se ramifient `a bien d’autres probl`emes.

3.1 Resuḿe de(( The Geometry of Projective Reconstruction : Match-
ing Constraints and the Joint Image))

Historique

Ce papier repr´esente mon travail de base sur les contraintes d’appariement multi-images. Il
donne un aper¸cu résolument projective-tensorielle de ces contraintes, approche qui restera sans
doute difficile pour les(( non-initiés)), mais qui repr´esente `a mon avis le moyen le plus puissant
d’aborder toute la g´eométrie projective multi-images. Il fut ´ecrit et diffusé en manuscrit vers la fin
de 1994, et publi´e en version courte `a ICCV’951 [Tri95] (voir appendice). Il fut aussi soumis a
IJCV à l’époque, mais n’a jamais `a ce jour atteint sa version finale, suite `a mes réticences sur sa
forme, et surtout `a mes pr´eoccupations avec bien d’autres travaux.

Méthode

Avec toutes les contraintes d’appariement, l’essentiel consiste `a prendre les ´equations de pro-
jection d’une primitive 3D,(( parent)) hypothétique de tous les primitives images qu’on voudrait
apparier, et d’´eliminer algébriquement les coordonn´ees 3D du parent – et ´eventuellement aussi ses
profondeurs projectives inconnues – afin d’arriver aux ´equations liant les primitives images entre
elles. Pour les classes principales de primitives, on peut choisir une param´etrisation où l’ équation de

1. Conférence qui fut un v´eritable tournant sur notre compr´ehension de la g´eométrie multi-images, avec l’apparition
(entre autres!) d’importantes papiers par : (i) Faugeras & Mourrain [FM95b, FM95a] et Heyden &̊Aström [Hey95,
HÅ95] sur les contraintes d’appariement multi-images – tous les deux traitent `a leurs fa¸consà peu près le même domaine
que cet article, avec des conclusions coh´erentes; (ii ) Carlsson [Car95] sur la dualit´e entre points et centres des cam´eras;
(iii ) Shashua & Werman [SW95] et Hartley [Har95b] sur le tenseur trifocal, et Hartley sur l’estimation stable de la matrice
fondamentale [Har95a].
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projection estlinéairedans les coordonn´ees 3D inconnues de la primitive, et aussi dans sa profon-
deur projective (facteur d’´echelle inconnu dans l’image). Dans ce cas, les inconnues peuvent ˆetre
éliminées avec les d´eterminants, eten principec’est relativement facile de d´eriver les contraintes
d’appariement pour la primitive par cette param´etrisation2.

Considérons le cas des points. On a plusieurs imagesxi d’un point 3D inconnuX, par des
caméras projectivesPi, i = 1 . . . m. L’ équation de projection estxi ' Pi X, ou, si on introduit
une profondeur projective / facteur d’´echelle inconnuλi, λi xi = Pi X. On peut rassembler toutes
ceséquations de projection dans un grand syst`eme matriciel(3m) × (4 +m) :


P1 x1 0 . . . 0
P2 0 x2 . . . 0
...

...
...

. . .
...

Pm 0 0 . . . xm




X
−λ1

−λ2
...
−λm

 = 0

Les points imagesxi et les matrices de projectionPi sont cohérents avec quelque point 3D si et
seulement si ce syst`eme homog`ene a une solution. Et bien entendu, la solution donne le point 3DX
correspondant avec ses profondeurs projectivesλi. Algébriquement, il y a une solution si et seule-
ment si tous les mineurs (d´eterminants des sous-matrices)(4 + m) × (4 + m) de la matrice du
système sont nuls. Chaque mineur se forme d’un sous-ensemble sp´ecifique des lignes des matrices
de projection et des points images correspondants. La nullit´e du mineur donne une contrainte alg´e-
brique entre les projections et les points, contrainte qui doit ˆetre vérifiée si ils sont consistants avec
quelque point 3D. Une ´etude détaille révèle 3 classes de ces contraintes d’appariement de points,
qui sont bilinéaire, trilinéaire, et quadrilin´eaire, dans les points correspondant dans 2,3,4 images.

Les coefficients des contraintes sont des d´eterminants4 × 4 de 4 rangs des matrices de pro-
jection. Ils peuvent ˆetre rang´es en(( tenseurs inter-images)) – tableaux multi-indices, avec des
indices (dimensions) qui appartient aux plusieurs images. Pour les images 2D d’une sc`ene 3D, il y
a précisément 4 types de tenseurs d’appariement : ´epipôle, matrice fondamentale, tenseur trifocal et
tenseur quadrifocal. L’´epipôle ne figure pas directement dans les contraintes d’appariement, mais
d’ailleurs joue un rˆole central dans le formalisme.

En effet, les contraintes d’appariement ne sont qu’un premier pas dans les aspects de la vi-
sion multi-images. Toute la th´eorie de la g´eométrie multi-images s’exprime tr`es naturellement sous
forme tensorielle, ce qui nous donne un moyen de calcul puissant pour la g´eométrie de la vision. Les
tenseurs d’appariement ne sont que l’expression la plus courante de cet aspect, et ils apparaissent
partout dans le formalisme.

Le lien entre les tenseurs et la g´eométrie est très naturel. Selon le c´elèbre(( programme d’Erlan-
gen)) de Felix KLEIN (ex.[Kle39]), une géométrie se caract´erise par son groupe de transformations,
et par les quantit´es qui sont invariantes ou covariantes par ce groupe.(( Covariant )) signifie (( qui
transforme selon une loi coh´erente et r´egulière)) – une telle loi s’appelle une(( repr ésentation)) du
groupe. Pour les groupes lin´eaires (euclidien, affine, projectif ...), il se trouve que (quasiment) toutes
les représentations sont tensorielles, car ´etant construites par produit tensoriel d’une ou plusieurs
(( repr ésentations de base)) – les(( vecteurs)) du système. Par exemple, dans l’espace projectif il
y a deux types de vecteurs – ceux(( contravariants )) qui représentent les points projectifs, et ceux
(( covariants)) qui représentent les hyperplans projectifs duaux des points. Les deux lois de trans-
formation sont aussi duales. Quand on construit un tenseur multi-indices, chaque indice correspond

2. (( En principe)) parce qu’en pratique, mis a part les points, cette approche peut ˆetre très lourde. Elle ne peut que
difficilementêtre implantée pour les droites, et je n’ai jamais abouti pour les quadriques, en d´epit de plusieurs tentatives.
Les équations de projection ne sont plus lin´eaires dans les matrices de projection associ´ees aux cam´eras, et en plus la
dimension des d´eterminants monte. Donc la complexit´e algébrique augmente tr`es significativement.
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à un vecteur (ou plutˆot à une dimension vectorielle) d’un de ces deux types, et transforme selon la
loi appropriée. Mais dans l’espace euclidien, le groupe de transformations autoris´ees est plus res-
treint et les deux lois de transformation se confondent, donc il n’y a qu’un seul type de vecteur et
d’indice.

En vision multi-images, il faut souvent travailler `a la fois dans plusieurs espaces diff´erents – par
exemple dans l’espace 3D et dans plusieurs images. En ce cas, les tenseurs peuvent poss´eder des
indices de chacun des types disponibles en chaque espace. La notation devient plus complexe et un
peu lourde (si on ´evite d’être ambigu¨e ...), mais le calcul tensoriel reste valable.

À titre indicatif, on peut identifier plusieurs facettes du formalisme tensoriel multi-images. Un
thème central dans nos approches est de repr´esenter chaque point 3D non par ses coordonn´ees
3D, mais par l’ensemble de ses coordonn´ees dans toutes les images. Cette repr´esentation(( par
images ŕeunies)) est fortement redondante, mais ses liens aux quantit´es visibles dans les images
sontévidemment beaucoup plus directes. Elle s’est montr´ee une approche tr`es fructueuse pour notre
problématique.

– La connexion projective / Pl̈ucker-Grassmann : Pour l’essentiel, la g´eométrie projective
est celle de l’alignement, de l’extension, de l’intersection lin´eaire. Dans un langage tensoriel,
ces opérations s’expriment par des d´eterminants / sommes altern´ees de composantes. Les
sous-espaces projectifs sont coordonn´es par leurs(( coordonnées Pl̈ucker-Grassmann)) –
l’ensemble de leurs d´eterminants. Cette repr´esentation a l’avantage d’ˆetre linéaire (et donc
relativement maniable) dans ces coordonn´ees, mais elle devient rapidement tr`es redondante
quand la dimension de l’espace augmente. Les coordonn´ees Pl¨ucker-Grassmann sont sujettes
aux(( contraintes de consistance de Plücker-Grassmann)), contraintes qui ont une structure
quadratique, r´egulière mais extrˆemement lourde en haute dimension. Tout reste maniable en
2 et 3 dimensions, mais repr´esenter une primitive 3D par ces images multiples peut largement
augmenter la dimension effective de l’espace ...

– (( Projection inverse)) des primitives images :Les primitives 3D principales (points, droites
dans la repr´esentation Pl¨ucker, quadriques dans la repr´esentation duale) ont toutes une repr´e-
sentation o`u leurséquations de projection sontlinéairesdans leurs coordonn´ees 3D. R´eci-
proquement, on peut (si on connaˆıt la matrice de projection de la cam´era)(( remonter)) d’une
primitive image quelconque `a sa(( primitive de support 3D )) – la primitive 3D qui contient
tous les rayons optiques des points de la primitive image. (Si la primitive image est une pro-
jection, les rayons optiques – et donc forc´ement la projection inverse – contiennent les points
de la primitive 3D d’origine). Par exemple : (i) d’un point image, on remonte `a son rayon
optique ; (ii ) d’une droite image, on remonte `a son(( (demi-)plan optique)) – le (demi-)plan
qui contient la droite 3D et le centre optique de la cam´era ; (iii ) d’une conique image, on
remonteà son(( cône optique)).
On pourrait consid´erer qu’avec les ´equations de projection et les op´erations d’intersection et
d’allongement linéaire, les ´equations de projection inverse sont les unit´es de base de tout le
formalisme projectif-tensoriel.

– Reconstruction minimale : Si on connaˆıt les matrices de projection des cam´eras, on peut
reconstruire une primitive 3D `a partir d’un nombre suffisant de ses images. Si les ´equations
de projection sont lin´eaires en la primitive 3D, on peut r´eduire la reconstruction `a la réso-
lution d’un système linéaire, ou – ce qui est ´equivalent – `a l’(( intersection)) des primitives
reconstruite par projection inverse depuis les images (rayons optiques d’un point 3D, plans
optiques d’une droite 3D ...).
Si on ne prend que le nombre minimal des contraintes images pour faire la reconstruction,
on arriveà un(( syst̀eme de reconstruction minimal)). Par exemple, il faut trois contraintes
linéaires pour reconstruire un point 3D, donc les deux cas minimaux sont : (i) fixer une coor-
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donnée du point dans chacune de 3 images ; (ii ) fixer les deux coordonn´ees dans une image, et
une dans une autre. Toute autre combinaison est ou redondante, ou insuffisante. En g´enéral, la
reconstruction serait mieux conditionn´ee si on prenait des contraintes redondantes, mais la re-
construction minimale fournit un lien important aux contraintes de transfert et d’appariement
discutées ci-dessous.

– Équations de transfert :Une fois obtenue une reconstruction (soit minimale soit redondante)
d’une primitive 3D, on peut la reprojeter dans une autre image. Entre les primitives d’entr´ee
et la primitive de sortie, il n’y a aucune r´eférence explicite `a l’espace 3D. Donc on peut court-
circuiter l’espace 3D et travailler directement entre images. La g´eométrie 3D des cam´eras est
représentée par ses auxiliaires dans les images, les tenseurs d’appariement. On peut utiliser
le transfert par exemple pour la synth`ese des nouvelles images depuis des points de vue
artificiels, ou pour g´enérer les contraintes d’appariement (voir ci-dessous).

– Contraintes d’appariement : On a déjà évoqué ces contraintes. Elles peuvent ˆetre interpré-
tées dans les deux fa¸cons suivantes : (i) une primitive transf´erée vers une autres images doit
être identique `a la projection de la primitive d’origine 3D ; ou (ii ) les primitives 3D reprojet´ees
depuis toutes les images doivent s’intersecter d’une fa¸con cohérente en une primitive 3D bien
définie. Ces contraintes sont fortes utiles pour ´etablir les correspondances de primitives entre
images. Inversement, elles fournissent une m´ethode pour estimer les tenseurs d’appariement
à partir d’un ensemble de correspondances initiales dans les images.

– Contraintes de cl̂oture : Vue la dérivation des matrices de projection, les tenseurs d’appa-
riement doivent satisfaire certaines contraintes de consistance avec ces matrices. De fa¸con
tensorielle, ces(( contraintes de cl̂oture )) expriment le fait que l’espace r´eel est seulement
de dimension 3 et(( se renferme sur lui mˆeme)). La représentation d’une primitive 3D par ses
images multiples a beaucoup de d´egrées de libert´e et aurait pu repr´esenter les images 2D d’un
espace de dimension plus grande que trois ... mais puisque ce n’est pas le cas, il doit y avoir
une(( clôture)) à la dimension trois. Les contraintes de clˆoture sont `a la base de la m´ethode de
reconstruction par clˆoture [Tri96b, Tri97a], qui est d´ecrite dans le chapitre prochain. Elles en-
gendrent aussi les contraintes d’appariement aux profondeurs des contraintes de Grassmann,
qui vontêtre discut´ees tout de suite.

– Contraintes d’appariement aux profondeurs projectives :Les contraintes de clˆoture sont
linéaires dans les matrices de projection qui y apparaissent. Si on applique ces matrices `a un
point 3D, on génère une s´erie analogue de contraintes qui lient les tenseurs d’appariement
aux images du pointavec leurs profondeurs projectives correctes. Si on connaˆıt les tenseurs
et les points images, on peut r´ecupérer de fa¸con linéaire les profondeurs correspondantes.
Ces contraintes sont `a l’origine de la méthode de reconstruction par factorisation projective
[ST96, Tri96a], qui est d´ecrit dans le chapitre prochain. En ´eliminant les profondeurs (facteurs
d’échelle) inconnues, on r´ecupère les contraintes d’appariement traditionnelles dont on a d´ejà
parlé.

– Identit és Pl̈ucker-Grassmann : La dérivation depuis les matrices de projection des ten-
seurs d’appariement est essentiellement bas´ee sur les d´eterminants. En effet, les tenseurs
peuventêtre identifiés aux coordonn´ees de Pl¨ucker-Grassmann de l’espace 3D dans l’espace
réuni de toutes les coordonn´ees images. Ceci implique que les tenseurs doivent v´erifier entre
eux des relations de consistance qui sont exactement ´equivalentes aux contraintes Pl¨ucker-
Grassmann. Il y a un grand nombre de ces relations. Certaines sont tr`es familières, mais pour
la plupart elles sont mal connues, bien que parfois utiles. On peut aussi g´enérer les contraintes
sur les tenseurs `a partir des contraintes de clˆoture qui sont l’expression la plus primitive de
la clôture par d´eterminants. Les contraintes de Pl¨ucker-Grassmann servent `a estimer certains
tenseurs d’appariement `a partir d’autres, par exemple les ´epipôles s’expriment `a partir d’une
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matrice fondamentale.

Perspectives

On peut maintenir que ce papier et ses pairs [FM95b, Hey95] ont constitu´e un tournant de
l’ étude syst´ematique des contraintes d’appariement multi-images. Au niveau th´eorique, on a d´e-
sormais une maˆıtrise des aspects projectifs et des primitives lin´eaires (points, droites et plans 3D),
qui semble pour l’instant plus ou moins(( complète)) et (( finale)). Mais au niveau pratique le cas
est moins clair. Certes la communaut´e a déjà pu capitaliser sur cette maˆıtrise pour créer des al-
gorithmes de reconstruction et de transfert qui semblent tr`es efficaces, au moins au niveau des
primitives géométriques isol´ees. Mais `a mon avis – comme c’est souvent le cas dans la recherche,
et bien qu’on a beaucoup appris dans le processus – c’´etait une victoire un peu `a la Pyrrhus. Mis `a
part les cas les plus simples de deux et ´eventuellement de trois images, on a appris d´efinitivement
que les contraintes d’appariement – et en particulier leurs contraintes de consistance entre elles –
sont algébriquement si complexes et redondantes, qu’il semble plus prudent s’enfuir au plus tˆot vers
la simplicité relative d’une repr´esentation 3D traditionnelle. J’estime que le tenseur quadrifocal n’a
jamaisété utilisé de façon convaincante(( en vraie grandeur)), et que mˆeme pour le tenseur trifocal,
il est dans la plupart des cas plus facile de basculer d`es que possible sur une repr´esentation par
matrices de projection (ou ce qui revient en effet `a la même chose, sur une repr´esentation homo-
graphie +épipôle). Même si on se limite aux repr´esentations hyper-redondantes `a la base d’images
(plénoptique, mosa¨ıques...), on ne peut pas se passer tr`es longtemps de la consistance g´eométrique
globale, qui semble exiger une repr´esentation plus ou moins explicite du monde 3D.

Il faut également souligner qu’il y a des cas que l’on n’a pas encore pu r´esoudre, le plus im-
portantétant les contraintes d’appariement entre quadriques 3D dans 3 images (ce qui est li´e au
problème de l’obtention de la structure euclidienne `a partir de 3 images – voir plus bas). J’ai abord´e
ce problème plusieurs fois par plusieurs m´ethodes différentes, avec des succ`es parfois partiels mais
jamais complets. En principe il est(( facile)) – l’expansion de certains d´eterminants10×10 dont les
coefficients sont quadratique aux matrices de projection, et leur regroupement en terme de (termes
qui sont un produite de 5) tenseurs d’appariement. Mais en pratique c’est trop lourd, mˆeme avec
les astuces diverses que j’ai su mettre en oeuvre. Il est bien possible qu’il n’y ait aucune solution
simple. Et même s’il n’y en a, il est probable qu’elle aurait un nombre tr`es importante de formes
alternatives, grˆace aux ´equivalences Grassmann-Cayley.

3.2 Resuḿe de (( Optimal Estimation of Matching Constraints )) –
SMILE’98

La version ci dessous de ce papier fut publi´e au workshop SMILE’98 de ECCV’98 [Tri98]. Il
décrit une approche `a l’estimation optimale statistique adapt´ee aux(( petits problèmes g´eométriques
tordus)) qu’on retrouve si souvent en vision, et plus particuli`erement aux contraintes d’appariement
multi-images. Puis il r´esume mes travaux sur une biblioth`eque num´erique sp´ecialisée pour ce genre
de problème. Une version pr´eliminaire du papier contient plus de d´etail technique sur la fa¸con de
formuler l’optimisation [Tri97b].

Le texte repose sur quatre axes principaux : (i) une reformulation du probl`eme général d’ajuste-
ment d’un mod`ele géométrique sur les donn´ees incertaines, bas´ee sur l’optimisation sous contraintes ;
(ii ) une discussion de la mod´elisation des erreurs statistiques robustes ; (iii ) une discussion de la pa-
ramétrisation des probl`emes g´eométriques complexes, face aux libert´es de choix de jauge (syst`eme
de coordonn´ees), contraintes de consistance,etc; (iv) une brève discussion de comment caract´eriser
la performance d’une telle m´ethode.
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Considérons un probl`eme d’ajustement g´eométrique simple, par exemple l’ajustement d’une
surface implicite sur un ensemble de points 3D incertains. On suppose qu’il y a une(( vraie)) surface
sous-jacente qui est inconnue, et des(( vrais)) points 3D sous-jacents qui sont ´egalement inconnus.
Les points tombent pr´ecisément sur la surface, donc ils v´erifient sans aucun r´esidu ses ´equations
implicites. Mais on ne connaˆıt ni la surface ni les points – on observe seulement une version bruit´ee
des points, et on voudrait estimer au mieux la surface et ´eventuellement les points 3D sous-jacents.
L’approche classique consiste en : (i) minimiser en les param`etres de la surface, la somme des
distances (Mahalanobis-) orthogonales des observations `a la surface ; (ii ) estimer le point dans la
surface la plus proche `a chaque observation. La nouvelle approche consiste en : introduire les po-
sitions des points sous-jacents inconnus comme des param`etres suppl´ementaires dans le probl`eme,
et optimiser surtous les param`etres, et de la surface, et des points. Cette deuxi`eme approche est
logiquement plus simple et th´eoriquement plus pr´ecise, mais le nombre de param`etresà optimiser
est nettement plus grand. N´eanmoins, la matrice Jacobienne de ce nouveau syst`eme est tr`es creuse
et une formulation appropri´ee de l’algèbre num´erique nous donne une algorithme efficace.

3.3 Resuḿe de(( Differential Matching Constraints )) – ICCV’99

Cet article fut publié à ICCV’99 [Tri99]. Il reprend les ´eléments de base du papier(( Matching
Constraints and the Joint Image)) ci dessus, et les red´eveloppe au cas (fr´equent en pratique) o`u
plusieurs des cam´eras sont tr`es proches les unes aux autres. Il y avait d´ejà de nombreuse ´etudes
sur ce probl`eme dans le cas de deux images calibr´ees ((( flot optique))), mais très peu dans les cas
multi-images et/ou non-calibr´ees [HO93, VF95, VF96,̊AH96, ÅH98, SS97]. Le travail de̊Aström
& Heyden [ÅH96, ÅH98] basé sur les s´eries de Taylor, ´etait le seul `a aborder syst´ematiquement
dans cette limite les contraintes multi-images. Mais `a mon avis cette approche n’´etait pas satisfai-
sante : elle menait `a des contraintes et `a des tenseurs diff´erentiels très complexes et sans fin, l`a où
la théorie discrète avait des contraintes et tenseurs relativement simples en 4 images au maximum.
La source de cette difficult´e est en effet les s´erie de Taylor : approche hors pair quand les d´epla-
cements sont vraiment infinit´esimaux, mais qui requiert un nombre infini de termes pour exprimer
tout déplacement fini (et tous les d´eplacements qu’on voit en pratiquesontfinis !).

On a donc d´eveloppé une expansion `a la base de diff´erencesfinies, qui est mieux adapt´ee au
problème. En plus, pour ˆetre capable de traiter les s´equences multiples, on g´enéralise au cas o`u les
images tombent en plusieurs groupes, celles de chaque groupe ´etant proche les unes des autres, et les
groupes ´etant autoris´es d’être mieux s´eparées. On consid`ere aussi bri`evement le cas de(( suite d’un
tenseur d’appariement)) le long d’une s´equence d’images, qui peut ˆetre une aide `a la suite des
cibles età la recouvrement de la g´eométrie caméras-sc`ene. Ce cas `a des liens forts avec l’estimation
optimale itérative des tenseurs, car les mises `a jour du tenseur – ou le long de la s´equence, ou dans
une boucle it´erative – se basent sur les mˆemeséquations.

Perspectives

Ce travail a réussi dans le sens o`u on a créé un formalisme efficace et facile `a mettre en oeuvre
pour les petits d´eplacements. N´eanmoins, certaines de mes conclusions restent n´egatives : dans les
cas où tous les images sont proches les unes aux autres, bien que les expansions en diff´erences
finies soient possibles, elles ne me semblent pas apporter grand chose par rapport aux r´esultats
correspondants non-diff´erentiels. Leur forme est plus complexe, leur pr´ecision en pratique semble
la même ou légèrement pire `a cause des erreurs de troncature, et leur degr´e de non-linéarité està
peu près le même : il n’y a pas de lin´earisation de contraintes de consistance comme dans le cas
de la suite d’un tenseur, car le(( point d’expansion)) (le tenseur de bas quand toutes les images
coı̈ncident) est singulier.
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En plus, pour tous les r´esultats bas´es sur le tenseur trifocal, il me semble plus direct de convertir
dès que possible dans une repr´esentation bas´ee sur les matrices de projection (ou – ce qui revient `a
la même chose – sur les homographies et les ´epipôles).
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Abstract

This paper studies the geometry of perspective projec-
tion into multiple images and the matching constraints
that this induces between the images. The combined pro-
jections produce a 3D subspace of the space of combined
image coordinates called thejoint image. This is a com-
plete projective replica of the 3D world defined entirely
in terms of image coordinates, up to an arbitrary choice of
certain scale factors. Projective reconstruction is a canon-
ical process in the joint image requiring only the rescal-
ing of image coordinates. The matching constraints tell
whether a set of image points is the projection of a single
world point. In 3D there are only three types of match-
ing constraint: the fundamental matrix, Shashua’s trilin-
ear tensor, and a new quadrilinear 4 image tensor. All
of these fit into a single geometric object, thejoint im-
age Grassmanniantensor. This encodes exactly the in-
formation needed for reconstruction: the location of the
joint image in the space of combined image coordinates.

Keywords: Computer Vision, Visual Reconstruction,
Projective Geometry, Tensor Calculus, Grassmann Ge-
ometry.

1 Introduction

This is the first of two papers that examine the geom-
etry underlying the recovery of 3D projective struc-
ture from multiple images. This paper focuses on the
geometry of multi-image projection and thematch-
ing constraints that this induces on image measure-
ments. The second paper will deal with projective
reconstruction techniques and error models.

Matching constraints like the fundamental ma-
trix and Shashua’s trilinear tensor [19] are currently

This unpublished paper dates from 1995. The work was sup-
ported by the European Community through Esprit programs
HCM and SECOND.

a topic of lively interest in the vision community.
This paper uncovers some of the beautiful and use-
ful structure that lies behind them and should be of
interest to anyone working on the geometry of vi-
sion. We will show that in three dimensions there
are only three types of constraint: the fundamental
matrix, Shashua’s trilinear tensor, and a new quadri-
linear four image tensor. All other matching con-
straints reduce trivially to one of these three types.
Moreover, all of the constraint tensors fit very natu-
rally into a single underlying geometric object, the
joint image Grassmannian. Structural constraints
on the Grassmannian tensor lead to quadratic rela-
tions between the matching tensors.

The joint image Grassmannian encodes precisely
the portion of the imaging geometry that can be re-
covered from image measurements. It specifies the
location of thejoint image, a three dimensional sub-
manifold of the space of combined image coordi-
nates containing the matchingm-tuples of image
points. The topology of the joint image is compli-
cated, but with an arbitrary choice of certain scale
factors it becomes a 3D projective space containing
a projective ‘replica’ of the 3D world. This replica
is all that can be inferred about the world from im-
age measurements. 3D reconstruction is an intrinsic,
canonical geometric process only in the joint image,
however an appropriate choice of basis there allows
the results to be transferred to the original 3D world
up to a projectivity.

This is a paper on the geometry of vision so there
will be ‘too many equations, no algorithms and no
real images’. However it also represents a power-
ful new way to think about projective vision and
that doeshave practical consequences. To under-
stand this paper you will need to be comfortable

15
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with the tensorial approach to projective geome-
try: appendix A sketches the necessary background.
This approach will be unfamiliar to many vision re-
searchers, although a mathematician should have no
problems with it. The change of notation is unfortu-
nate but essential: the traditional matrix-vector nota-
tion is simply not powerful enough to express many
of the concepts discussed here and becomes a real
barrier to clear expression above a certain complex-
ity. However in my experience effort spent learning
the tensorial notation is amply repaid by increased
clarity of thought.

In origin this work dates from the initial projec-
tive reconstruction papers of Faugeras & Maybank
[3, 15, 5]. The underlying geometry of the situa-
tion was immediately evoked by those papers, al-
though the details took several years to gel. In that
time there has been a substantial amount of work
on projective reconstruction. Faugeras’ book [4] is
an excellent general introduction and Maybank [14]
provides a more mathematically oriented synthesis.
Alternative approaches to projective reconstruction
appear in Hartleyet.al. [8] and Mohr et.al. [17].
Luong & Viéville [13] have studied ‘canonic decom-
positions’ of projection matrices for multiple views.
Shashua [19] has developed the theory of the trilin-
ear matching constraints, with input from Hartley
[7]. A brief summary of the present paper appears
in [21]. In parallel with the current work, both Wer-
man & Shashua [22] and Faugeras & Mourrain [6]
independently discovered the quadrilinear constraint
and some of the related structure (but not the ‘big
picture’ — the full joint image geometry). However
the deepest debt of the current paper is to time spent
in the Oxford mathematical physics research group
lead by Roger Penrose [18], whose notation I have
‘borrowed’ and whose penetrating synthesis of the
geometric and algebraic points of view has been a
powerful tool and a constant source of inspiration.

2 Conventions and Notation

The world and images will be treated as projective
spaces and expressed in homogeneous coordinates.
Many equations will apply only up to scale, denoted
a ∼ b. The imaging process will be approximated
by a perspective projection. Optical effects such
as radial distortion and all the difficult problems of

early vision will be ignored: we will basically as-
sume that the images have already been reduced to
a smoldering heap of geometry. When token match-
ing between images is required, divine intervention
will be invoked (or more likely a graduate student
with a mouse).

Our main interest is in sequences of 2D images of
ordinary 3D Euclidean space, but when it is straight-
forward to generalize toDi dimensional images of
d dimensional space we will do so. 1D ‘linear’ cam-
eras and projection within a 2D plane are also prac-
tically important, and for clarity it is often easier to
see the general case first.

Our notation is fully tensorial with all indices
written out explicitly (c.f. appendix A). It is
modelled on notation developed for mathematical
physics and projective geometry by Roger Penrose
[18]. Explicit indices are tedious for simple expres-
sions but make complex tensor calculationsmuch
easier. Superscripts denote contravariant (i.e. point
or vector) indices, while subscripts denote covari-
ant (i.e. hyperplane, linear form or covector) ones.
Contravariant and covariant indices transform in-
versely under changes of coordinates so that thecon-
traction (i.e. ‘dot product’ or sum over all values)
of a covariant-contravariant pair is invariant. The
‘Einstein summation convention’ applies: when the
same index symbol appears in covariant and con-
travariant positions it denotes a contraction (implicit
sum) over that index pair. For exampleTa

bx
b and

xbTa
b both stand for standard matrix-vector multi-

plication
∑

b Ta
bx

b. The repeated indices give the
contraction, not the order of terms. Non-tensorial la-
bels like image number are never implicitly summed
over.

Different types of index denote different space
or label types. This makes the notation a little
baroque but it helps to keep things clear, espe-
cially when there are tensors with indices in sev-
eral distinct spaces as will be common here.Hx
denotes thehomogeneous vector space of objects
(i.e. tensors) with index typex, while Px denotes
the associatedprojective space of such objects de-
fined only up to nonzero scale: tensorsTx and
λTx in Hx represent the same element ofPx for
all λ 6= 0. We will not always distinguish points
of Px from their homogeneous representatives in
Hx. Indicesa, b, . . . denote ordinary (projectivized
homogenizedd-dimensional) Euclidean spacePa
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(a = 0, . . . , d), while Ai, Bi, . . . denote homoge-
neous coordinates in theDi-dimensionalith image
PAi (Ai = 0, . . . ,Di). When there are only two
imagesA andA′ are used in place ofA1 andA2. In-
dicesi, j, . . . = 1, . . . ,m are image labels, while
p, q, . . . = 1, . . . , n are point labels. Greek in-
dicesα, β, . . . denote the combined homogeneous
coordinates of all the images, thought of as a sin-
gle big (D + m)-dimensionaljoint image vector
(D =

∑m
i=1Di). This is discussed in section 4.

The same base symbol will be used for ‘the same
thing’ in different spaces, for example the equations
xAi ∼ PAi

a xa (i = 1, . . . ,m) denote the projection
of a world pointxa ∈ Pa tom distinct image points
xAi ∈ PAi viam distinct perspective projection ma-
tricesPAi

a . These equations apply only up to scale
and there is an implicit summation over all values of
a = 0, . . . , d.

We will follow the mathematicians’ convention
and use index0 for homogenization,i.e. a Eu-
clidean vector(x1 · · · xd)> is represented projec-
tively as (1 x1 · · · xd)> rather than(x1 · · · xd 1)>.
This seems more natural and makes notation and
coding easier.

T[ab...c] denotes the result of antisymmetrizing
the tensorTab...c over all permutations of the indices
ab . . . c. For exampleT[ab] ≡ 1

2(Tab−Tba). In any
d+ 1 dimensional linear space there is a unique-up-
to-scaled+ 1 index alternating tensorεa0a1···an and
its dualεa0a1···an . Up to scale, these have compo-
nents±1 and0 asa0a1 . . . an is respectively an even
or odd permutation of01 . . . n, or not a permutation
at all. Any antisymmetrick + 1 index contravariant
tensorT[a0...ak ] can be ‘dualized’ to an antisym-
metric d − k index covariant one(∗T)ak+1···ad ≡

1
(k+1)! εak+1···adb0···bkT

b0...bk , and vice versa

Ta0...ak = 1
(d−k)! (∗T)bk+1···bd ε

bk+1···bda0···ak ,
without losing information.

A k dimensional projective subspace of thed
dimensional projective spacePa can be denoted
by either the span of anyk + 1 independent
points{xai | i = 0, . . . , k} in it or the intersection of
any d − k independent linear forms (hyperplanes)
{lia|i = k + 1, . . . , d} orthogonal to it. The an-

tisymmetric tensorsx[a0

0 . . .xak ]
k and lk+1

[ak+1
· · · ldad]

uniquely define the subspace and are (up to scale) in-
dependent of the choice of points and forms and dual
to each other. They are called respectivelyGrass-

mann coordinates and dual Grassmann coordi-
nates for the subspace. Read appendix A for more
details on this.

3 Prelude in F

As a prelude to the arduous general case, we will
briefly consider the important sub-case of a single
pair of 2D images of 3D space. The low dimension-
ality of this situation allows a slightly simpler (but
ultimately equivalent) method of attack. We will
work rapidly in homogeneous coordinates, view-
ing the 2D projective image spacesPA andPA′ as
3D homogeneous vector spacesHA andHA′ (A =
0, 1, 2; A′ = 0′, 1′, 2′) and the 3D projective world
spacePa as a 4D vector spaceHa (a = 0, . . . , 3).
The perspective image projections are then3×4 ma-
tricesPA

a andPA′
a defined only up to scale. Assum-

ing that the projection matrices have rank 3, each
has a 1D kernel that corresponds to a unique world
point killed by the projection:PA

a eA = 0 and
PA′
a e′a = 0. These points are called thecentres

of projection and each projects to theepipole in the
opposite image:eA ≡ PA

a e′a andeA
′ ≡ PA′

a ea.
If the centres of projection are distinct, the two pro-
jections define a3 × 3 rank 2 tensor called thefun-
damental matrix FAA′ [4]. This maps any given
image pointxA (xA

′
) to a correspondingepipolar

line lA′ ∼ FAA′xA (lA ∼ FAA′xA
′
) in the other im-

age. Two image points correspond in the sense that
they could be the projections of a single world point
if and only if each lies on the epipolar line of the
other: FAA′ xAxA

′
= 0. The null directions of the

fundamental matrix are the epipoles:FAA′ eA = 0
andFAA′ eA

′
= 0, so every epipolar line must pass

through the corresponding epipole. The fundamen-
tal matrix FAA′ can be estimated from image cor-
respondences even when the image projections are
unknown.

Two image vectorsxA and xA
′

can be packed
into a single 6 component vectorxα = (xA xA

′
)>

whereα = 0, 1, 2, 0′, 1′, 2′. The space of such vec-
tors will be calledhomogeneous joint image space
Hα. Quotienting out the overall scale factor inHα
produces a 5 dimensional projective space called
projective joint image spacePα. The two3×4 im-
age projection matrices can be stacked into a single
6 × 4 joint projection matrix Pα

a ≡ (PA
a PA′

a )>.
If the centres of projection are distinct, no point in
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Pa is simultaneously killed by both projections, so
the joint projection matrix has a vanishing kernel
and hence rank 4. This implies that the joint pro-
jection is a nonsingular linear bijection fromHa
onto its image space inHα. This 4 dimensional
image space will be called thehomogeneous joint
image Iα. Descending toPα, the joint projection
becomes a bijective projective equivalence between
Pa and theprojective joint image PIα (the pro-
jection of Iα into Pα). The projection ofPIα to
each image is just a trivial deletion of coordinates,
so the projective joint image is a complete projec-
tive replica of the world space in image coordinates.
Unfortunately,PIα is not quite unique. Any rescal-
ing {PA

a ,P
A′
a } → {λPA

a , λ
′PA′

a } of the underlying
projection matrices produces a different but equiv-
alent spacePIα. However modulo this arbitrary
choice of scaling the projective joint image is canon-
ically defined by the physical situation.

Now suppose that the projection matrices are un-
known but the fundamental matrix has been esti-
mated from image measurements. SinceF has rank
2, it can be decomposed (non-uniquely!) as

FAA′ = uA vA′ − vA uA′ = Det
(

uA uA′
vA vA′

)
whereuA 6∼ vA anduA′ 6∼ vA′ are two pairs of
independent image covectors. It is easy to see that
uA ↔ uA′ andvA ↔ vA′ are actually pairs of cor-
responding epipolar lines1. In terms of joint image
space, theu’s andv’s can be viewed as a pair of 6
component covectors defining a 4 dimensional lin-
ear subspaceIα ofHα via the equations:

Iα ≡
{(

xA

xA
′

)
|
(

uA xA + uA′ xA
′

vA xA + vA′ xA
′

)

=
(

uA uA′
vA vA′

)(
xA

xA
′

)
= 0

}
Trivial use of the constraint equations shows that any
point (xA xA

′
)> of Iα automatically satisfies the

epipolar constraintFAA′ xAxA
′

= 0. In fact, given

1Epipolarity: uA eA = 0 = vA eA follows
from 0 = FAA′ eA = (uAeA) vA′ − (vAeA) uA′ ,
given the independence ofuA′ and vA′ for rank 2 F.
Correspondence:For anyxA on uA, uA xA = 0 implies that
FAA′ x

A = −(vAxA) uA′ ∼ uA′ .

any(xA xA
′
)> ∈ Hα, the equations

0 =
(

uA uA′
vA vA′

)(
λ xA

λ′ xA
′

)
=

(
uAxA uA′xA

′

vAxA vA′xA
′

)(
λ
λ′

)
have a nontrivial solution if and only if

FAA′ xAxA
′

= Det
(

uAxA uA′xA
′

vAxA vA′xA
′

)
= 0

In other words, the set of matching point pairs in
the two images is exactly the set of pairs that can
be rescaled to lie inIα. Up to a rescaling, the joint
image is the set of matching points in the two images.

A priori, Iα depends on the choice of the decom-
positionFAA′ = uA vA′−vAuA′ . In fact appendix
B shows that the most general redefinition of theu’s
andv’s that leavesF unchanged up to scale is(

uA uA′
vA vA′

)
−→ Λ

(
uA uA′
vA vA′

)(
1/λ 0
0 1/λ′

)
whereΛ is an arbitrary nonsingular2×2 matrix and
{λ, λ′} are arbitrary nonzero relative scale factors.
Λ is a linear mixing of the constraint vectors and has
no effect on the location ofIα, but λ andλ′ repre-
sent rescalings of the image coordinates that move
Iα bodily according to(

xA

xA
′

)
−→

(
λ xA

λ′ xA
′

)
Hence, givenF and an arbitrary choice of the rel-
ative image scaling the joint imageIα is defined
uniquely.

Appendix B also shows that given any pair of non-
singular projection matricesPA

a and PA′
a compat-

ible with FAA′ in the sense that the projection of
every point ofPa satisfies the epipolar constraint
FAA′ PA

a PA′
b xaxb = 0, theIα arising from fac-

torization ofF is projectively equivalent to theIα
arising from the projection matrices. (Here, non-
singular means that each matrix has rank 3 and the
joint matrix has rank 4,i.e. the centres of projection
are unique and distinct). In fact there is a constant
rescaling{PA

a ,P
A′
a } → {λPA

a , λ
′ PA′

a } that makes
the two coincide.

In summary, the fundamental matrix can be fac-
torized to define a three dimensional projective sub-
spacePIα of the space of combined image coor-
dinates. PIα is projectively equivalent to the 3D
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world and uniquely defined by the images up to
an arbitrary choice of a single relative scale factor.
Projective reconstruction inPIα is simply a mat-
ter of rescaling the homogeneous image measure-
ments. This paper investigates the geometry ofPIα
and its multi-image counterparts and argues that up
to the choice of scale factor, they providethe natu-
ral canonical projective reconstruction of the infor-
mation in the images: all other reconstructions are
merely different ways of looking at the information
contained inPIα.

4 Too Many Joint Images

Now consider the general case of projection into
m ≥ 1 images. We will model the world and im-
ages respectively asd andDi dimensional projec-
tive spacesPa (a = 0, . . . , d) andPAi (Ai =
0, . . . ,Di, i = 1, . . . ,m) and use homogeneous co-
ordinates everywhere. It may appear more natural
to use Euclidean or affine spaces, but when it comes
to discussing perspective projection it is simpler to
view things as (fragments of) projective space. The
usual Cartesian and pixel coordinates are still in-
homogeneous local coordinate systems covering al-
most all of the projective world and image mani-
folds, so projectivization does not change the essen-
tial situation too much.

In homogeneous coordinates the perspective im-
age projections are represented by homogeneous
(Di+1)×(d+1) matrices{PAi

a |i = 1, . . . ,m} that
take homogeneous representatives of world points
xa ∈ Pa to homogeneous representatives of image
points xAi ∼ PAi

a xa ∈ PAi . The homogeneous
vectors and matrices representing world pointsxa,
image pointsxAi and projectionsPAi

a are each de-
fined only up to scale. Arbitrary nonzero rescal-
ings of them do not change the physical situation
because the rescaled world and image vectors still
represent the same points of the underlying projec-
tive spacesPa andPAi , and the projection equations
xAi ∼ PAi

a still hold up to scale.
Any collection of m image points

{xAi |i = 1, . . . ,m} can be viewed as a single point
in the Cartesian productPA1 × PA2 × · · · × PAm
of the individual projective image spaces. This is a
D =

∑m
i=1Di dimensional differentiable manifold

whose local inhomogeneous coordinates are just
the combined pixel coordinates of all the image
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Figure 1: The various joint images and projections.

points. Since anym-tuple of matching points is an
element ofPA1 × · · · × PAm , it may seem that this
space is the natural arena for multi-image projective
reconstruction. This is almost true but we need
to be a little more careful. Although most world
points can be represented by their projections in
PA1 × · · · × PAm , the centres of projection are
missing because they fail to project to anything at
all in their own images. To represent these, extra
points must be glued on toPA1 × · · · × PAm .

When discussing perspective projections it is con-
venient to introduce homogeneous coordinates. A
separate homogenizer is required for each image,
so the result is just the Cartesian productHA1 ×
HA2 × · · · × HAm of the individual homogeneous
image spacesHAi . We will call this D + m di-
mensional vector spacehomogeneous joint image
spaceHα. By quotienting out the overall scale fac-
tor in Hα in the usual way, we can view it as a
D + m− 1 dimensional projective spacePα called
projective joint image space. This is abona fide
projective space but it still contains the arbitrary
relative scale factors of the component images. A
point ofHα can be represented as aD + m com-
ponent column vectorxα = (xA1 · · ·xAm)> where
thexAi are homogeneous coordinate vectors in each
image. We will think of the indexα as taking values
01, 11, . . . ,Di, 0i+1, . . . ,Dm, where the subscripts
indicate the image the coordinate came from. An
individual image vectorxAi can be thought of as a
vector inHα whose non-image-i components van-
ish.
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Since the coordinates of each image are only
defined up to scale, the natural definition of the
equivalence relation ‘∼’ on Hα is ‘equality up
to individual rescalings of the component images’:
(xA1 · · · xAm)> ∼ (λ1 xA1 · · · λm xAm)> for
all {λi 6= 0}. So long as none of thexAi vec-
tors vanish, the equivalence classes of ‘∼’ are m-
dimensional subspaces ofHα that correspond ex-
actly to the points ofPA1 × · · · × PAm . However
when some of thexAi vanish the equivalence classes
are lower dimensional subspaces that have no cor-
responding point inPA1 × · · · × PAm . We will
call the entire stratified set of equivalence classes
fully projective joint image spaceFPα. This is
basicallyPA1 × · · · × PAm augmented with the
lower dimensional product spacesPAi × · · · × PAj
for each proper subset of imagesi, . . . , j. Most
world points project to ‘regular’ points ofFPα in
PA1 × · · · × PAm , but the centres of projection
project into lower dimensional fragments ofFPα.

A set of perspective projections intom projec-
tive imagesPAi defines a uniquejoint projection
into the fully projective joint projective image space
FPα. Given an arbitrary choice of scaling for the
homogeneous representatives{PAi

a | i = 1, . . . ,m}
of the individual image projections, the joint projec-
tion can be represented as a single(D+m)×(d+1)
joint projection matrix

Pα
a ≡

 PA1
a
...

PAm
a

 : Ha −→ Hα

which defines a projective mapping between the un-
derlying projective spacesPa andPα. A rescaling
{PAi

a } → {λi PAi
a } of the individual image projec-

tion matrices does not change the physical situation
or the fully projective joint projection onFPα, but
it doeschange the joint projection matrixPα

a and
the resulting projections fromHa to Hα and from
Pa toPα. An arbitrary choice of the individual pro-
jection scalings is always necessary to make things
concrete.

Given a choice of scaling for the components of
Pα
a , the image ofHa in Hα under the joint projec-

tion Pα
a will be called thehomogeneous joint im-

ageIα. This is the set of joint image space points
that are the projection of some point in world space:
{Pα

a xa ∈ Hα| xa ∈ Ha}. In Iα, each world point
is represented by its homogeneous vector of image

coordinates. Similarly we can define the projective
and fully projective joint imagesPIα andFPIα
as the images of the projective world spacePa in
the projective and fully projective joint image spaces
Pα andFPα under the projective and fully pro-
jective joint projections. (Equivalently,PIα and
FPIα are the projections ofIα toPα andFPα).

If the (D + m) × (d + 1) joint projection ma-
trix Pα

a has rank less thand + 1 it will have a non-
trivial kernel and many world points will project to
the same set of image points, so unique reconstruc-
tion will be impossible. On the other hand ifPα

a has
rankd+1, the homogeneous joint imageIα will be a
d+1 dimensional linear subspace ofHα andPα

a will
be a nonsingular linear bijection fromHa ontoIα.
Similarly, the projective joint projection will define
a nonsingular projective bijection fromPa onto the
d dimensional projective spacePIα and the fully
projective joint projection will be a bijection (and at
most points a diffeomorphism) fromPa ontoFPIα
in FPα. Structure inPa will be mapped bijectively
to projectively equivalent structure inPIα, soPIα
will be ‘as good as’Pa as far as projective recon-
struction is concerned. Moreover, projection from
PIα to the individual images is a trivial throwing
away of coordinates and scale factors, so structure in
PIα has a very direct relationship with image mea-
surements.

Unfortunately, althoughPIα is closely related to
the images it is not quite canonically defined by the
physical situation because it moves when the indi-
vidual image projection matrices are rescaled. How-
ever, the truly canonical structure — the fully pro-
jective joint imageFPIα — has a complex strat-
ified structure that is not so easy to handle. When
restricted to the product spacePA1 × · · · × PAm ,
FPIα is equivalent to the projective spacePa with
each centre of projection ‘blown up’ to the corre-
sponding image spacePAi . The missing centres of
projection lie in lower strata ofFPα. Given this
complication, it seems easier to work with the sim-
ple projective spacePIα or its homogeneous repre-
sentativeIα and to accept that an arbitrary choice
of scale factors will be required. We will do this
from now on, but it is important to verify that this
arbitrary choice does not affect the final results, par-
ticularly as far as numerical methods and error mod-
els are concerned. It is also essential to realize that
althoughfor any one pointthe projection scale fac-
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tors can be chosen arbitrarily, once they are chosen
they apply uniformly to all other points:no matter
which scaling is chosen, there is a strong coherence
between the scalings of different points. A central
theme of this paper is that the essence of projective
reconstruction is the recovery of this scale coherence
from image measurements.

5 The Joint Image Grassmannian
Tensor

We can view the joint projection matrixPα
a

(with some choice of the internal scalings) in two
ways: (i) as a collection ofm projection ma-
trices from Pa to the m imagesPAi ; (ii) as a
set of d + 1 (D + m)-component column vec-
tors {Pα

a |a = 0, . . . , d} that span the joint im-
age subspaceIα in Hα. From the second
point of view the images of the standard basis
{(10 · · · 0)>, (01 · · · 0)>, . . . , (00 · · · 1)>} for Ha
(i.e. the columns ofPα

a ) form a basis forIα and a
set of homogeneous coordinates{xa|a = 0, . . . , d}
can be viewed either as the coordinates of a point
xa in Pa or as the coordinates of a pointPα

axa

in Iα with respect to the basis{Pα
a |a = 0, . . . , d}.

Similarly, the columns ofPα
a and the(d + 2)nd

column
∑d

a=0 Pα
a form a projective basis forPIα

that is the image of the standard projective basis
{(10 · · · 0)>, . . . , (00 · · · 1)>, (11 · · · 1)>} for Pa.

This means thatany reconstruction inPa can be
viewed as reconstruction inPIα with respect to a
particular choice of basis there.This is important
because we will see that (up to a choice of scale fac-
tors)PIα is canonically defined by the imaging situ-
ation and can be recovered directly from image mea-
surements.In fact we will show that the information
in the combined matching constraints is exactly the
location of the subspacePIα in Pα, and this is ex-
actly the information we need to make acanonical
geometric reconstruction ofPa in PIα from image
measurements.

By contrast we can not hope to recover the ba-
sis inPa or the individual columns ofPα

a by im-
age measurements. In fact any two worlds that
project to the same joint image are indistinguish-
able so far as image measurements are concerned.
Under an arbitrary nonsingular projective transfor-
mationxa → x̃a

′
= (Λ−1)a

′
b xb betweenPa and

some other world spacePa′ , the projection matrices
(and hence the basis vectors forPIα) must change
according toPα

a → P̃α
a′ = Pα

b Λba′ to compensate.
The new basis vectors are a linear combination of the
old ones so the spacePIα they span is not changed,
but the individual vectorsare changed: all we can
hope to recover from the images is the geometric lo-
cation ofPIα, not its particular basis.

But how can we specify the location ofPIα ge-
ometrically? We originally defined it as the span
of the columns of the joint projectionPα

a , but that
is rather inconvenient. For one thingPIα depends
only on the span and not on the individual vectors,
so it is redundant to specify every component ofPα

a .
What is worse, the redundant components are ex-
actly the things that can not be recovered from image
measurements. It is not even clear how we would
use a ‘span’ even if we did manage to obtain it.

Algebraic geometers encountered this sort of
problem long ago and developed a useful par-
tial solution calledGrassmann coordinates(see
appendix A). Recall that[a · · · c] denotes anti-
symmetrization over all permutations of the in-
dices a · · · c. Given k + 1 independent vectors
{xai | i = 0, . . . , k} in a d + 1 dimensional vector
spaceHa, it turns out that the antisymmetrick + 1
index Grassmann tensorxa0···ak ≡ x[a0

0 · · ·x
ak ]
k

uniquely characterizes thek + 1 dimensional sub-
space spanned by the vectors and (up to scale) does
not depend on the particular vectors of the subspace
chosen to define it. In fact a pointya lies in the span
if and only if it satisfiesx[a0···akyak+1] = 0, and un-
der a(k + 1)× (k + 1) linear redefinitionΛij of the
basis elements{xai }, xa0···ak is simply rescaled by
Det(Λ). Up to scale, the components of the Grass-
mann tensor are the(k+ 1)× (k+ 1) minors of the
(d+ 1)× (k + 1) matrix of components of thexai .

The antisymmetric tensors are global coordinates
for the k dimensional subspaces in the sense that
each subspace is represented by a unique (up to
scale) Grassmann tensor. However the parameteri-
zation is highly redundant: for1 ≤ k ≤ d − 2 the
k + 1 index antisymmetric tensors have many more
independent components than there are degrees of
freedom. In fact only the very special antisymmet-
ric tensors that can be written in the above ‘simple’
form x[a0

0 · · ·x
ak ]
k specify subspaces. Those that can

are characterized by the quadraticGrassmann sim-
plicity relations xa0···[ak xb0···bk] = 0.
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In the present case thed+ 1 columns ofPα
a spec-

ify the d dimensional joint image subspacePIα. In-
stead of antisymmetrizing over the image space in-
dicesα we can get the same effect by contracting
the world space indicesa with thed+1 dimensional
alternating tensor. This gives thed + 1 index anti-
symmetricjoint image Grassmanniantensor

I α0α1···αd ≡ 1
(d+1)! Pα0

a0
Pα1
a1
· · ·Pαd

ad
εa0a1···ad

∼ P[α0

0 Pα1
1 · · ·P

αd]
d

Although we have defined the Grassmann tensor in
terms of the columns of the projection matrix ba-
sis for PIα, it is actually an intrinsic property of
PIα that defines and is defined by it in a manner
completely independent of the choice of basis (up to
scale). In fact we will see that the Grassmann tensor
contains exactly the same information as the com-
plete set of matching constraint tensors. Since the
matching constraints can be recovered from image
measurements, the Grassmann tensor can be too.

As a simple test of plausibility, let us verify that
the Grassmann tensor has the correct number of
degrees of freedom to encode the imaging geome-
try required for projective reconstruction. The ge-
ometry of anm camera imaging system can be
specified by giving each of them projection map-
pings modulo an arbitrary overall choice of projec-
tive basis inPa. Up to an arbitrary scale factor, a
(Di + 1) × (d + 1) projection matrix is defined by
(Di + 1)(d + 1) − 1 parameters while a projective
basis inPa has(d + 1)(d + 1) − 1 degrees of free-
dom. Them camera projective geometry therefore
has

m∑
i=1

(
(Di + 1) (d+ 1)− 1

)
−
(
(d+ 1)2 − 1

)
= (D +m− d− 1) (d+ 1)−m+ 1

independent degrees of freedom. For example
11m − 15 parameters are required to specify the
geometry ofm 2D cameras viewing 3D projective
space [13].

The antisymmetric Grassmann tensorI α0···αd has(D+m
d+1

)
linearly independent components. However

the quadratic Grassmann relations reduce the num-
ber ofalgebraically independent components to the
dimension(D+m−d−1)(d+1) of the space of pos-
sible locations of the joint imageIα in Pα. (Joint

image locations are locally parameterized by the
((D +m)− (d+ 1))×(d+ 1) matrices, or equiva-
lently by givingd+1 (D+m)-component spanning
basis vectors inPα modulo(d+ 1)× (d+ 1) linear
redefinitions). The overall scale factor ofI α0···αd

has already been subtracted from this count, but
it still contains them − 1 arbitrary relative scale
factors of them images. Subtracting these leaves
the Grassmann tensor (or the equivalent matching
constraint tensors) with(D +m− d− 1) (d+ 1)−
m + 1 physically meaningful degrees of freedom.
This agrees with the above degree-of-freedom count
based on projection matrices.

6 Reconstruction Equations

Suppose we are given a set ofm image points
{xAi | i = 1, . . . ,m} that may correspond to an un-
known world pointxa via some known projection
matricesPAi

a . Can the world pointxa be recovered,
and if so, how?

As usual we will work projectively in homo-
geneous coordinates and suppose that arbitrary
nonzero scalings have been chosen for thexAi and
PAi
a . The image vectors can be stacked into a

D+m component joint homogeneous image vector
xα and the projection matrices can be stacked into a
(D + m) × (d + 1) component joint homogeneous
projection matrix, whered is the world dimension
andD =

∑m
i=1 Di is the sum of the image dimen-

sions.
Any candidate reconstructionxa must project to

the correct point in each image:xAi ∼ PAi
a xa. In-

serting variables{λi| i = 1, . . . ,m} to represent the
unknown scale factors givesm homogeneous equa-
tionsPAi

a xa − λi xAi = 0. These can be written as
a single(D+m)× (d+1+m) homogeneous linear
system, thebasic reconstruction equations:

 Pα
a

xA1 0 · · · 0
0 xA2 · · · 0
...

...
.. .

...
0 0 · · · xAm




xa

−λ1

−λ2
...
−λm

 = 0

Any nonzero solution of these equations gives a re-
constructed world pointxa consistent with the im-
age measurementsxAi , and also provides the un-
known scale factors{λi}.
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These equations will be studied in detail in the
next section. However we can immediately remark
that if there are less image measurements than world
dimensions (D < d) there will be at least two more
free variables than equations and the solution (if it
exists) can not be unique. So from now on we re-
quireD ≥ d.

On the other hand, if there are more measure-
ments than world dimensions (D > d) the system
will usually be overspecified and a solution will exist
only when certain constraints between the projection
matricesPAi

a and the image measurementsxAi are
satisfied. We will call these constraintsmatching
constraints and the inter-image tensors they gener-
atematching tensors. The simplest example is the
epipolar constraint.

It is also clear that there is no hope of a unique
solution if the rank of the joint projection matrixPα

a

is less thand + 1, because any vector in the kernel
of Pα

a can be added to a solution without changing
the projection at all. So we will also require the joint
projection matrix to have maximal rank (i.e.d+ 1).
Recall that this implies that the joint projectionPα

a

is a bijection fromPa onto its image the joint im-
agePIα in Pα. (This is necessary but not always
sufficient for a unique reconstruction).

In the usual 3D→2D case the individual projec-
tions are3 × 4 rank 3 matrices and each has a one
dimensional kernel: the centre of projection. Pro-
vided there are at least two distinct centres of pro-
jection among the image projections, no point will
project to zero in every image and the joint projec-
tion will have a vanishing kernel and hence maximal
rank. (It turns out that in this caseRank(Pα

a ) = 4 is
alsosufficientfor a unique reconstruction).

Recalling that the joint projection columns
{Pα

a | a = 0, . . . , d} form a basis for the homoge-
neous joint imageIα and treating thexAi as vectors
inHα whose other components vanish, we can inter-
pret the reconstruction equations as the geometrical
statement that the space spanned by the image vec-
tors {xAi | i = 1, . . . ,m} in Hα must intersectIα.
At the intersection there is a point ofHα that can
be expressed:(i) as a rescaling of the image mea-
surements

∑
i λi xAi ; (ii) as a point ofIα with co-

ordinatesxa in the basis{Pα
a | a = 0, . . . , d}; (iii)

as the projection intoIα of a world pointxa under
Pα
a . (SinceHa is isomorphic toIα underPα

a , the
last two points of view are equivalent).

This construction is important because although
neither the coordinate system inHa nor the columns
of Pα

a can be recovered from image measurements,
the joint imageIα canbe recovered (up to an arbi-
trary choice of relative scaling). In fact the content
of the matching constraints ispreciselythe location
of Iα in Hα. This gives a completely geometric
and almost canonical projective reconstruction tech-
nique inIα that requires only the scaling of joint
image coordinates. A choice of basis inIα is nec-
essary only to map the construction back into world
coordinates.

Recalling that the joint image can be located by
giving its Grassmann coordinate tensorI αβ···γ and
that in terms of this a point lies in the joint image if
and only ifI [αβ···γ xδ] = 0, the basic reconstruction
system is equivalent to the followingjoint image re-
construction equations

I [αβ ··· γ ·
(

m∑
i=1

λi xAi]
)

= 0

This is a redundant system of homogeneous linear
equations for theλi given theI αβ···γ and thexAi .
It will be used in section 10 to derive implicit ‘re-
construction’ methods that are independent of any
choice of world or joint image basis.

There is yet another form of the reconstruction
equations that is more familiar and compact but
slightly less symmetrical. For notational conve-
nience suppose thatx0i 6= 0. (We use component
0 for normalization. Each image vector has at least
one nonzero component so the coordinates can be
relabelled if necessary so thatx0i 6= 0). The pro-
jection equationsPAi

a xa = λi xAi can be solved
for the 0th component to giveλi = (P0i

a xa)/x0i .
Substituting back into the projection equations for
the other components yields the following constraint
equations forxa in terms ofxAi andPAi

a :(
x0i PAi

a − xAi P0i
a

)
xa = 0 Ai = 1, . . . ,Di

(Equivalently,xAi ∼ PAi
a xa impliesx[AiPBi]

a xa =
0, and the constraint follows by settingBi = 0i).
Each of these equations constrainsxa to lie in a hy-
perplane in thed-dimensional world space. Com-
bining the constraints from all the images gives the
following D × (d + 1) system ofreduced recon-
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struction equations: x01 PA1
a − xA1 P01

a
...

x0m PAm
a − xAm P0m

a

xa = 0

(Ai=1,... ,Di)

Again a solution of these equations provides the
reconstructed homogeneous coordinates of a world
point in terms of image measurements, and again the
equations are usually overspecified whenD > d.
Providedx0i 6= 0 the reduced equations are equiv-
alent to the basic ones. Their compactness makes
them attractive for numerical work, but their lack
of symmetry makes them less suitable for symbolic
derivations such as the extraction of the matching
constraints. In practice both representations are use-
ful.

7 Matching Constraints

Now we are finally ready to derive the constraints
that a set of image points must satisfy in order to
be the projections of some world point. We will as-
sume that there are more image than space dimen-
sions (D > d) (if not there are no matching con-
straints) and that the joint projection matrixPα

a has
rank d + 1 (if not there are no unique reconstruc-
tions). We will work from the basic reconstruction
equations, with odd remarks on the equivalent re-
duced case.

In either case there areD − d − 1 more equa-
tions than variables and the reconstruction systems
are overspecified. The image points must satisfy
D − d additional independent constraints for there
to be a solution, since one degree of freedom is lost
in the overall scale factor. For example in the usual
3D→2D case there are2m−3 additional scalar con-
straints: one for the first pair of images and two more
for each additional image.

An overspecified homogeneous linear system has
nontrivial solutions exactly when its coefficient ma-
trix is rank deficient, which occurs exactly when
all of its maximal-size minors vanish. For generic
sets of image points the reconstruction systems typ-
ically have full rank: solutions exist only for the
special sets of image points for which all of the
(d + m + 1) × (d + m + 1) minors of the basic
(or (d+ 1)× (d+ 1) minors of the reduced) recon-

struction matrix vanish. These minors are exactly
the matching constraints.

In either case each of the minors involves alld+1
(world-space) columns and some selection ofd + 1
(image-space) rows of the combined projection ma-
trices, multiplied by image coordinates. This means
that the constraints will be polynomials (i.e. tensors)
in the image coordinates with coefficients that are
(d+1)×(d+1) minors of the(D+m)×(d+1) joint
projection matrixPα

a . We have already seen in sec-
tion 5 that these minors are precisely the Grassmann
coordinates of thejoint imageIα, the subspace of
homogeneous joint image space spanned by thed+1
columns ofPα

a . The complete set of these defines
Iα in a manner entirely independent (up to a scale
factor) of the choice of basis inIα: they are the only
quantities thatcould have appeared if the equations
were to be invariant to this choice of basis (or equiv-
alently, to arbitrary projective transformations of the
world space).

Each of the(d+m+ 1)× (d+m+ 1) minors of
the basic reconstruction system contains one column
from each image, and hence is linear in the coordi-
nates of each image separately and homogeneous of
degreem in the combined image coordinates. The
final constraint equations will be linear in the co-
ordinates of each image that appears in them. Any
choice ofd+m+1 of theD+m rows of the matrix
specifies a minor, so naively there are

( D+m
d+m+1

)
dis-

tinct constraint polynomials, although the simple de-
gree of freedom count given above shows that even
in this naive case onlyD − d of these can be alge-
braically independent. However the reconstruction
matrix has many zero entries and we need to count
more carefully.

Each row comes from (contains components
from) exactly one image. The only nonzero entries
in the imagei column are those from imagei itself,
so any minor that does not include at least one row
from each image will vanish. This leaves onlyd+ 1
of them + d + 1 rows free to apportion. On the
other hand, if a minor contains only one row from
some image — say thexAi row for some particular
values ofi andAi — it will simply be the product
of ±xAi and anm− 1 image minor becausexAi is
the only nonzero entry in its imagei column. But
exactly the same(m − 1)-image minor will appear
in several otherm-image minors, one for each other
choice of the coordinateAi = 0, . . . ,Di. At least
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one of these coordinates is nonzero, so the vanishing
of theDi + 1 m-image minors is equivalent to the
vanishing of the single(m− 1)-image one.

This allows the full set ofm-image matching
polynomials to be reduced to terms involving at
mostd + 1 images. (d + 1 because there are only
d + 1 spare rows to share out). In the standard
3D→2D case this leaves the following possibilities
(i 6= j 6= k 6= l = 1, . . . ,m): (i) 3 rows each
in imagesi and j; (ii ) 3 rows in imagei, and 2
rows each in imagesj andk; and (iii ) 2 rows each
in imagesi, j, k and l. We will show below that
these possibilities correspond respectively to funda-
mental matrices (i.e.bilinear two image constraints),
Shashua’s trilinear three-image constraints [19], and
a new quadrilinear four-image constraint. For 3 di-
mensional space this is the complete list of possi-
bilities: there areno irreduciblek-image matching
constraints fork > 4.

We can look at all this in another way. Consider
thed+m+ 1 (D+m)-component columns of the
reconstruction system matrix. Temporarily writing
xαi for the imagei column whose only nonzero en-
tries arexAi , the columns are{Pα

a | a = 0, . . . , d}
and {xαi | i = 1, . . . ,m} and we can form them
into a d + m + 1 index antisymmetric tensor
P[α0

0 · · ·Pαd
d xβ1

1 · · ·x
βm]
m . Up to scale, the compo-

nents of this tensor are exactly the possible(d+m+
1)× (d+m+ 1) minors of the system matrix. The
termxαi vanishes unlessα is one of the components
Ai, so we need at least one index from each image
in the index setα0, . . . , αd, β1, . . . , βm. If only one
component from imagei is present in the set (Bi say,
for some fixed value ofBi), we can extract an over-
all factor of xBi as above. Proceeding in this way
the tensor can be reduced to irreducible terms of the
form P[α0

0 · · ·Pαd
d xBii xBjj · · · x

Bk]
k . These contain

anything from2 to d+ 1 distinct imagesi, j, . . . , k.
The indicesα0, . . . , αd are an arbitrary choice of
indices from imagesi, j, . . . , k in which each im-
age appears at least once. Recalling that up to scale
the components of the joint image Grassmannian
I α0···αd are justP[α0

0 · · ·Pαd]
d , and dropping the re-

dundant subscripts on thexAii , we can write the final
constraint equations in the compact form

I [AiAj ···Akα···β xBixBj · · ·xBk] = 0

wherei, j, . . . , k contains between2 andd+ 1 dis-
tinct images. The remaining indicesα · · · β can be

chosen arbitrarily from any of the imagesi, j, . . . , k,
up to the maximum ofDi + 1 indices from each im-
age. (NB: thexBi stand form distinct vectors whose
non-i components vanish, not for the single vector
xα containing all the image measurements. Since
I α0···αd is already antisymmetric and permutations
that place a non-i index onxBi vanish, it is enough
to antisymmetrize separately over the components
from each image).

This is all rather intricate, but in three dimensions
the possibilities are as follows (i 6= j 6= k 6= l =
1, . . . ,m):

I [AiBiAjBj xCixCj ] = 0

I [AiBiAjAk xCixBjxBk] = 0

I [AiAjAkAl xBixBjxBkxBl] = 0

These represent respectively the epipolar constraint,
Shashua’s trilinear constraint and the new quadrilin-
ear four image constraint.

We will discuss each of these possibilities in detail
below, but first we take a brief look at the constraints
that arise from thereducedreconstruction system.
Each row of this system is linear in the coordinates
of one image and in the corresponding rows of the
joint projection matrix, so each(d + 1) × (d + 1)
minor can be expanded into a sum of degreed + 1
polynomial terms in the image coordinates, with
(d + 1) × (d + 1) minors of the joint projection
matrix (Grassmann coordinates ofPIα) as coeffi-
cients. Moreover, any term that contains two non-
zeroth coordinates from the same image (sayAi 6= 0
andBi 6= 0) vanishes because the rowP0i

a appears
twice in the corresponding coefficient minor. So
each term is at most linear in the non-zeroth coordi-
nates of each image. Ifki is the total number of rows
from the ith image in the minor, this implies that
the zeroth coordinatex0i appears eitherki or ki − 1
times in each term to make up the total homogeneity
of ki in the coordinates of theith image. Throw-
ing away the nonzero overall factors of(x0i)ki−1

leaves a constraint polynomial linear in the coordi-
nates of each image and of total degree at mostd+1,
with (d + 1) × (d + 1) minors of the joint projec-
tion matrix as coefficients. Closer inspection shows
that these are the same as the constraint polynomials
found above.
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7.1 Bilinear Constraints

Now we restrict attention to 2D images of a 3D
world and examine each of the three constraint types
in turn. First consider the bilinear joint image Grass-
mannian constraintI [B1C1B2C2xA1xA2] = 0, where
as usualI αβγδ ≡ 1

4! Pα
aPβ

bP
γ
cPδ

d ε
abcd. Recalling

that it is enough to antisymmetrize over the compo-
nents from each image separately, the epipolar con-
straint becomes

x[A1 IB1C1][B2C2 xA2] = 0

Dualizing both sets of antisymmetric indices by con-
tracting with εA1B1C1 εA2B2C2 gives the epipolar
constraint the equivalent but more familiar form:

0 = FA1A2 xA1xA2

= 1
4·4!

(
εA1B1C1x

A1PB1
a PC1

b

)
·

·
(
εA2B2C2x

A2PB2
c PC2

d

)
εabcd

where the3 × 3 = 9 component bilinear constraint
tensor orfundamental matrix FA1A2 is defined by

FA1A2 ≡ 1
4 εA1B1C1 εA2B2C2 IB1C1B2C2

= 1
4·4!

(
εA1B1C1P

B1
a PC1

b

)
·

·
(
εA2B2C2P

B2
c PC2

d

)
εabcd

IB1C1B2C2 = FA1A2 ε
A1B1C1εA2B2C2

Equivalently, the epipolar constraint can be de-
rived by direct expansion of the6 × 6 basic recon-
struction system minor

Det
(

PA1
a xA1 0

PA2
a 0 xA2

)
= 0

Choosing the image1 rows and column and any
two columnsa and b of P gives a 3 × 3 sub-
determinantεA1B1C1x

A1PB1
a PC1

b . The remaining
rows and columns (for image2 and the remain-
ing two columns c and d of P, say) give the
factor εA2B2C2x

A2PB2
c PC2

d multiplying this sub-
determinant in the determinantal sum. Antisym-
metrizing over the possible choices ofa throughd
gives the above bilinear constraint equation. When
there are only two images,F can also be written as
the inter-image part of thePα (six dimensional) dual
FA1A2 = 1

4 εA1B1C1A2B2C2 IB1C1B2C2 . This is why

it was generated by the6 − 4 = 2 six dimensional
constraint covectorsuα andvα for Iα in section 3.

The bilinear constraint equation

0 =
(
εA1B1C1x

A1PB1
a PC1

b

)
·

·
(
εA2B2C2x

A2PB2
c PC2

d

)
εabcd

can be interpreted geometrically as follows. The du-
alizationεABC xA converts an image pointxA into
covariant coordinates in the image plane. Roughly
speaking, this represents the point as the pencil of
lines through it: for any two lineslA and mA

through xA, the tensorl[BmC] is proportional to
εABCxA. Any covariant image tensor can be ‘pulled
back’ through the linear projectionPA

a to a covari-
ant tensor in 3D space. An image linelA pulls
back to the 3D planela = lAPA

a through the pro-
jection centre that projects to the line. The tensor
εABC xA pulls back to the 2 index covariant tensor
x[bc] ≡ εABCxAPB

b PC
c . This is the covariant repre-

sentation of a line in 3D: the optical ray throughxA.
Given any two linesx[ab] andy[ab] in 3D space, the
requirement that they intersect isxab ycd εabcd = 0.
So the above bilinear constraint equation reallyis
the standard epipolar constraint,i.e. the requirement
that the optical rays of the two image points must
intersect. Similarly, theFA1A2 tensor really is the
usual fundamental matrix. Of course this can also
be illustrated by explicitly writing out terms.

7.2 Trilinear Constraints

Now consider the trilinear, three image Grassman-
nian constraintI [B1C1B2B3 xA1xA2xA3] = 0. This
corresponds to a7 × 7 basic reconstruction minor
formed by selecting all three rows from the first im-
age and two each from the remaining two. Restrict-
ing the antisymmetrization to each image and con-
tracting withεA1B1C1 gives the trilinear constraint

xA1x[A2 GA1
B2][B3 xA3] = 0

where the3 × 3 × 3 = 27 component trilinear con-
straint tensorGA1

A2A3 is defined by

GA1
A2A3 ≡ 1

2 εA1B1C1 IB1C1A2A3

= 1
2·4!

(
εA1B1C1P

B1
a PC1

b

)
PA2
c PA3

d εabcd

IA1B1A2A3 = GC1
A2A3 εC1A1B1
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Dualizing the image 2 and 3 indices by contracting
with εA2B2C2 εA3B3C3 gives the constraint the alter-
native form

0 = εA2B2C2 εA3B3C3 ·GA1
B2B3 · xA1xA2xA3

= 1
2.4!

(
εA1B1C1x

A1PB1
a PC1

b

)
·

·
(
εA2B2C2x

A2PB2
c

)(
εA3B3C3x

A3PB3
d

)
εabcd

These equations must hold for all3 × 3 = 9 values
of the free indicesC2 andC3. However whenC2 is
projected along thexC2 direction orC3 is projected
along thexC3 direction the equations are tautolog-
ical because, for example,εA2B2C2 xA2xC2 ≡ 0.
So there are actually only2 × 2 = 4 linearly in-
dependent scalar constraints among the3 × 3 = 9
equations, corresponding to the two image 2 direc-
tions ‘orthogonal’ toxA2 and the two image 3 di-
rections ‘orthogonal’ toxA3 . However, each of the
3 × 3 = 9 constraint equations and33 = 27 com-
ponents of the constraint tensor are ‘activated’ for
somexAi , so none can be discarded outright.

The constraint can also be written in matrix
notation as follows (c.f. [19]). The contraction
xA1GA1

A2A3 has free indicesA2A3 and can be
viewed as a3 × 3 matrix [G x1], and the fragments
εA2B2C2 xA2 and εA3B3C3 xA3 can be viewed as
3 × 3 antisymmetric ‘cross product’ matrices[x2]×
and[x3]× (wherex × y = [x]× y for any 3-vector
y). The constraint is then given by the3× 3 matrix
equation

[x2]× [G x1] [x3]× = 0{3×3}

The projections alongx>2 (on the left) andx3 (on
the right) vanish identically, so again there are only
4 linearly independent equations.

The trilinear constraint formula

xA1x[A2 GA1
B2][B3 xA3] = 0

also implies that for all values of the free indices
[A2B2] (or duallyC2)

xA3 ∼ xA1x[A2 GA1
B2]A3

∼ εC2A2B2 xA1xA2 GA1
B2A3

More precisely, formatchingxA1 andxA2 the quan-
tity xA1x[A2 GA1

B2]A3 can always be factorized as

T[A2B2]xA3 for somexAi-dependent tensorT[A2B2]

(and similarly withTC2 for the dual form). By fix-
ing suitable values of[A2B2] orC2, these equations
can be used totransfer points from images 1 and 2
to image 3,i.e. to directly predict the projection in
image 3 of a 3D point whose projections in images
1 and 2 are known, without any intermediate 3D re-
construction step2.

The trilinear constraints can be interpreted ge-
ometrically as follows. As above the quantity
εABC xA PB

b PC
c represents the optical ray through

xA in covariant 3D coordinates. For anyyA ∈ PA
the quantityεABC xAyBPC

c defines the 3D plane
through the optical centre that projects to the image
line throughxA andyA. All such planes contain the
optical ray ofxA, and asyA varies the entire pencil
of planes through this line is traced out. The con-
straint then says that for any plane through the opti-
cal ray ofxA2 and any other plane through the op-
tical ray ofxA3 , the 3D line of intersection of these
planes meets the optical ray ofxA1 .

The line of intersection always meets the optical
rays of bothxA2 andxA3 because it lies in planes
containing those rays. If the rays are skeweveryline
through the two rays is generated as the planes vary.
The optical ray throughxA1 can not meet every such
line, so the constraint implies that the optical rays
of xA2 and xA3 can not be skew. In other words
the image 1 trilinear constraint implies the epipolar
constraint between images 2 and 3.

Given that the rays ofxA2 andxA3 meet (say, at

2If xA1 andxA2 arenot matching points, the transfer equa-
tions trace out an entire line of mutually inconsistent ‘solutions’
as[A2B2] orC2 vary. For fixedxA1 andany line lA2 there is a
‘solution’ xA3(xA1 , lA2) ∼ lA2 GA1

A2A3 xA1 . This is just
the intersection of the image 3 epipolar line ofxA1 with the
image 3 epipolar line of the intersection oflA2 and the image
2 epipolar line ofxA1 , i.e. the transfer of the only point onlA2

thatcouldbe a correct match. In general, aslA2 traces out the
the pencil of lines throughxA2 the corresponding ‘solutions’
xA3 trace out the entire epipolar line ofxA1 in image 3. The
line of ‘solutions’ collapses to a point only whenxA2 lies on the
epipolar line ofxA1 . For reliable transfer the linelA2 should
meet the epipolar line ofxA1 reasonably transversally and if
possible should pass close to the image 3 epipole. This can be
arranged by projecting the free indexC2 along (an approxima-
tion to) the image 3 epipoleeA2

3 .

Similarly, xA3 could be predicted as the intersection of the
epipolar lines ofxA1 andxA2 inPA3 . This intersection always
exists, but it is not structurally meaningful ifxA1 andxA2 do
not correspond. The moral is that it is dangerous to use only
someof the available equations for transfer.
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some pointxa), as the two planes through these rays
vary their intersection traces out every line through
xa not in the plane of the rays. The only way that
the optical ray ofxA1 can arrange to meet each of
these lines is for it to pass throughxa as well. In
other words the trilinear constraint for each image
implies that all three optical rays pass through the
same point. Thus, the epipolar constraints between
images 1 and 2 and images 1 and 3 also follow from
the image 1 trilinear constraint.

The constraint tensor GA1
A2A3 ≡

εA1B1C1 IB1C1A2A3 treats image 1 specially.
The analogous image 2 and image 3 ten-
sors GA2

A3A1 ≡ εA2B2C2 IB2C2A3A1 and
GA3

A1A2 ≡ εA3B3C3 IB3C3A1A2 are linearly
independent ofGA1

A2A3 and give further linearly
independent trilinear constraints onxA1xA2xA3 .
Together, the 3 homogeneous constraint tensors
contain 3 × 27 = 81 linearly independent com-
ponents (including 3 arbitrary scale factors) and
naı̈vely give 3 × 9 = 27 trilinear scalar constraint
equations, of which3 × 4 = 12 are linearly
independent for any given triplexA1xA2xA3.

However, although there are nolinear relations
between the3 × 27 = 81 trilinear and3 × 9 = 27
bilinear matching tensor components for the three
images, the matching tensors are certainly notalge-
braically independent of each other: there are many
quadraticrelations between them inherited from the
quadratic simplicity constraints on the joint image
Grassmannian tensor. In fact, we saw in section
5 that the simplicity constraints reduce the number
of algebraically independent degrees of freedom of
I α0···α3 (and therefore the complete set of bilinear
and trilinear matching tensor components) to only
11m − 15 = 18 for m = 3 images. Similarly,
there are only2m − 3 = 3 algebraically indepen-
dent scalar constraint equations among thelinearly
independent3 × 4 = 12 trilinear and3 × 1 = 3 bi-
linear constraints on each matching triple of points.
One of the main advantages of the Grassmann for-
malism is the extent to which it clarifies the rich al-
gebraic structure of this matching constraint system.
The components of the constraint tensors are essen-
tially just Grassmann coordinates of the joint image,
and Grassmann coordinates arealways linearly in-
dependent and quadratically redundant.

Since all three of the epipolar constraints follow
from a single trilinear tensor it may seem that the tri-

linear constraint is more powerful than the epipolar
ones, but this is not really so. Given a triple of im-
age points{xAi | i = 1, . . . , 3}, the three pairwise
epipolar constraints say that the three optical rays
must meet pairwise. If they do not meet at a single
point, this implies that each ray must lie in the plane
of the other two. Since the rays pass through their re-
spective optical centres, the plane also contains the
three optical centres, and is therefore thetrifocal
plane. But this is impossible in general: most im-
age points simply do not lie on the trifocal lines (the
projections of the trifocal planes). So for general
matching image points the three epipolar constraints
together imply that the three optical rays meet at a
unique 3D point. This is enough to imply the trilin-
ear constraints. Since we know that only2m−3 = 3
of the constraints are algebraically independent, this
is as expected.

Similarly, the information contained in just one
of the trilinear constraint tensors is generically4 >
2m− 3 = 3 linearly independent constraints, which
is enough to imply the other two trilinear tensors as
well as the three bilinear ones. This explains why
most of the early work on trilinear constraints suc-
cessfully ignores two of the three available tensors
[19, 7]. However in the context of purelylinear re-
construction all three of the tensors would be neces-
sary.

7.3 Quadrilinear Constraints

Finally, the quadrilinear, four image Grassmannian
constraintI [B1B2B3B4 xA1xA2xA3xA4] = 0 corre-
sponds to an8 × 8 basic reconstruction minor that
selects two rows from each of four images. As usual
the antisymmetrization applies to each image sepa-
rately, but in this case the simplest form of the con-
straint tensor is just a direct selection of34 = 81
components of the Grassmannian itself

HA1A2A3A4 ≡ IA1A2A3A4

= 1
4! PA1

a PA2
b PA3

c PA4
d εabcd

Dualizing the antisymmetric index pairs[AiBi] by
contracting withεAiBiCi for i = 1, . . . , 4 gives the
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quadrilinear constraint

0 = εA1B1C1
εA2B2C2

εA3B3C3
εA4B4C4

·

·xA1xA2xA3xA4 HB1B2B3B4

= 1
4!

(
εA1B1C1x

A1PB1
a

)(
εA2B2C2x

A2PB2
b

)
·

·
(
εA3B3C3x

A3PB3
c

)(
εA4B4C4x

A4PB4
d

)
εabcd

This must hold for each of the34 = 81 values of
C1C2C3C4 . But again the constraints withCi along
the directionxCi for any i = 1, . . . , 4 vanish iden-
tically, so for any given quadruple of points there
are only24 = 16 linearly independent constraints
among the34 = 81 equations.

Together, these constraints say that for every pos-
sible choice of four planes, one through the optical
ray defined byxAi for eachi = 1, . . . , 4, the planes
meet in a point. By fixing three of the planes and
varying the fourth we immediately find that each of
the optical rays passes through the point, and hence
that they all meet. This brings us back to the two and
three image sub-cases.

Again, there is nothing algebraically new here.
The 34 = 81 homogeneous components of the
quadrilinear constraint tensor arelinearly indepen-
dent of each other and of the4 × 3 × 27 = 324
homogeneous trilinear and6 × 9 = 54 homoge-
neous bilinear tensor components; and the24 = 16
linearly independent quadrilinear scalar constraints
are linearly independent of each other and of the
linearly independent4 × 3 × 4 = 48 trilinear and
6 × 1 = 6 bilinear constraints. However there are
only 11m − 15 = 29 algebraically independent
tensor components in total, which give2m − 3 =
5 algebraically independent constraints on each 4-
tuple of points. The quadrilinear constraint is al-
gebraically equivalent to various different combina-
tions of two and three image constraints. For exam-
ple five scalar epipolar constraints will do: take the
three pairwise constraints for the first three images,
then add two of the three involving the fourth im-
age to force the optical rays from the fourth image
to pass through the intersection of the corresponding
optical rays from the other three images.

7.4 Matching Constraints for Lines

It is well known that there is no matching constraint
for lines in two images. Any two non-epipolar image

lines lA1 andlA2 are the projection of some unique
3D line: simply pull back the image lines to two
3D planeslA1P

A1
a andlA2P

A2
a through the centres

of projection and intersect the planes to find the 3D
line lab = lA1lA2 PA1

[a PA2

b] .
However for three or more images of a line there

are trilinear matching constraints as follows [7]. An
image line is the projection of a 3D line if and only
if each point on the 3D line projects to a point on
the image line. Writing this out, we immediately
see that the lines{lAi | i = 1, . . . ,m} correspond to
a 3D line if and only if them × 4 reconstruction
equations  lA1P

A1
a

...
lAmPAm

a

xa = 0

have a line (i.e.a 2D linear space) of solutionsλxa+
µya for some solutionsxa 6∼ ya.

There is a 2D solution space if and only if the co-
efficient matrix has rank4−2 = 2, which means that
every3×3 minor has to vanish. Obviously each mi-
nor is a trilinear function in threelAi ’s and misses
out one of the columns ofPα

a . Labelling the miss-
ing column asa and expanding produces constraint
equations like

lA1 lA2 lA3

(
PA1
b PA2

c PA3
d εabcd

)
= 0

These simply require that the three pulled back
planeslA1P

A1
a , lA2P

A2
a and lA3P

A3
a meet in some

common 3D line, rather than just a single point.
Note the geometry here: each linelAi pulls back to
a hyperplane inPα under the trivial projection. This
restricts to a hyperplane inPIα, which can be ex-
pressed aslAiP

Ai
a in the basisPα

a for PIα. There
are2m−4 algebraically independent constraints for
m images: two for each image except the first two.
There areno irreducible higher order constraints for
lines in more than 3 images,e.g.there is no analogue
of the quadrilinear constraint for lines.

By contracting with a finalPα
a , the constraints can

also be written in terms of the Grassmannian tensor
as

lA1 lA2 lA3 I αA1A2A3 = 0

for all α. Choosingα from images 1, 2 or 3 and con-
tracting with an image 1, 2 or 3 epsilon to produce
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a trivalent tensorGAi
AjAk , or choosingα from a

fourth image and substituting the quadrivalent tensor
HAiAjAkAl reduces the line constraints to the form

lA2 lA3 l[A1
GB1]

A2A3 = 0

lA1 lA2 lA3 HA1A2A3A4 = 0

These formulae illustrate and extend Hartley’s ob-
servation that the coefficient tensors of the three-
image line constraints are equivalent to those of the
trilinear point constraints [7]. Note that although all
of these line constraints aretri linear, some of them
do involvequadrivalent point constraint tensors.

Sinceα can take any of3m valuesAi, for each
triple of lines andm ≥ 3 images there are very
naı̈vely 3m trilinear constraints of the above two
forms. However all of these constraints are de-
rived by linearly contracting4 underlying world
constraints withPα

a ’s, so at most4 of them can
be linearly independent. Form matching images
of lines this leaves4

(
m
3

)
linearly independent con-

straints of which only2m − 4 are algebraically in-
dependent.

The skew symmetrization in the trivalent tensor
based constraint immediately implies theline trans-
fer equation

lA1 ∼ lA2 lA3 GA1
A2A3

This can be used to predict the projection of a 3D
line in image 1 given its projections in images 2
and 3, without intermediate 3D reconstruction. Note
that line transfer from images 1 and 2 to image 3 is
most simply expressed in terms of the image 3 trilin-
ear tensorGA3

A1A2, whereas the image 1 or image
2 tensorsGA1

A2A3 or GA2
A1A3 are the preferred

form for point transfer.
It is also possible to match(i) points against

lines that contain them and(ii) distinct image lines
that are known to intersect in 3D. Such constraints
might be useful if a polyhedron vertex is obscured
or poorly localized. They are most easily derived
by noting that both the line reconstruction equations
and the reduced point reconstruction equations are
homogeneous inxa, the coordinates of the intersec-
tion point. So line and point rows from several im-
ages can be stacked into a single 4 column matrix.
As usual there is a solution exactly when all4 × 4
minors vanish. This yields two particularly simple

irreducible constraints — and correspondingly sim-
ple interpretations of the matching tensors’ content
— for an image point against two lines containing
it and four non-corresponding image lines that inter-
sect in 3D:

xA1 GA1
A2A3 lA2l

′
A3

= 0

HA1A2A3A4 lA1l
′
A2

l′′A3
l′′′A4

= 0

7.5 Matching Constraints for k-Subspaces

More generally, the projections of ak dimensional
subspace ind dimensions are (generically)k di-
mensional image subspaces that can be written as
antisymmetricDi − k index Grassmann tensors
xAi···Bi···Ci . The matching constraints can be built
by selecting anyd + 1 − k of these covariant in-
dices from any seti, j, . . . , k of image tensors and
contracting with the Grassmannian to leavek free
indices:

0 = xAi···BiCi···Ei · · · xAk···BkCk ···Ek ·

· I α1···αkAi···Bi···Ak···Bk

Dualizing each covariant Grassmann tensor gives an
equivalent contravariant form of the constraint, for
image subspacesxAj ···Ej defined by the span of a
set of image points

0 = I α1···αk [Ai···Bi···Ak···Bk xCi···Ei · · · xCk···Ek]

As usual it is enough to antisymmetrize over the
indices from each image separately. Each set
Aj · · ·BjCj · · ·Ej is any choice of up toDj + 1
indices from imagej, j = i, . . . , k.

7.6 2D Matching Constraints & Homogra-
phies

Our formalism also works for 2D projective images
of a 2D space. This case is practically important
because it applies to 2D images of a planar surface
in 3D and there are many useful plane-based vision
algorithms. The joint image of a 2D source space
is two dimensional, so the corresponding Grass-
mannian tensor has only three indices and there are
only two distinct types of matching constraint: bi-
linear and trilinear. Let indicesa andAi represent
3D space and theith image as usual, and indices
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A = 0, 1, 2 represent homogeneous coordinates on
the source plane. If the plane is given bypaxa = 0,
the three index epsilon tensor on it is proportional to
paεabcd when expressed in world coordinates, so the
Grassmann tensor becomes

I αβγ ≡ 1
3! Pα

A Pβ
B Pγ

C ε
ABC

∼ 1
4! pa Pα

b Pβ
c Pγ

d ε
abcd

This yields the following bilinear and trilinear
matching constraints with free indices respectively
C2 andC1C2C3

0 = pa
(
εA1B1C1 xA1 PB1

b PC1
c

)
·

·
(
εA2B2C2 xA2 PB2

d

)
εabcd

0 = pa
(
εA1B1C1 xA1PB1

b

)(
εA2B2C2 xA2PB2

c

)
·

·
(
εA3B3C3 xA3 PB3

d

)
εabcd

The bilinear equation says thatxA2 is
the image of the intersection of optical
ray of xA1 with the plane pa: xA2 ∼(
pa · εA1B1C1 PB1

b PC1
c ·PA2

d · εabcd
)

xA1 . In

fact it is well known that any two images of a plane
are projectively equivalent under a transformation
(homography)xA2 ∼ HA2

A1
xA1 . In our notation

the homography is just

HA2
A1
≡ pa · εA1B1C1 PB1

b PC1
c ·PA2

d · ε
abcd

The trilinear constraint says that any three image
lines through the three image pointsxA1, xA2 and
xA3 always meet in a point when pulled back to
the planepa. This implies that the optical rays of
the three points intersect at a common point on the
plane, and hence gives the obvious cyclic consis-
tency conditionHA1

A2
HA2
A3
∼ HA1

A3
(or equivalently

HA1
A2

HA2
A3

HA3
B1
∼ δA1

B1
) between the three homo-

graphies.

7.7 Matching Constraints for 1D Cameras

If some of the images are taken with one dimen-
sional ‘linear’ cameras, a similar analysis applies
but the corresponding entries in the reconstruction
equations have only two rows instead of three. Con-
straints that would require three rows from a 1D im-
age no longer exist, and the remaining constraints

lose their free indices. In particular, when all of the
cameras are 1D there are no bilinear or trilinear ten-
sors and the only irreducible matching constraint is
the quadrilinear scalar:

0 = HA1A2A3A4 xA1xA2xA3xA4

=
(
εA1B1 xA1 PB1

a

)(
εA2B2 xA2 PB2

b

)
·

·
(
εA3B3 xA3 PB3

c

)(
εA4B4 xA4 PB4

d

)
εabcd

This says that the four planes pulled back from the
four image points must meet in a 3D point. If one of
the cameras is 2D and the other two are 1D a scalar
trilinear constraint also exists.

7.8 3D to 2D Matching

It is also useful to be able to match known 3D struc-
ture to 2D image structure, for example when build-
ing a reconstruction incrementally from a sequence
of images. This case is rather trivial as the ‘con-
straint tensor’ is just the projection matrix, but for
comparison it is perhaps worth writing down the
equations. For an image pointxA projected from
a world pointxa we havexA ∼ PA

a xa and hence
the equivalent constraints

x[APB]
a xa = 0 ⇐⇒ εABCxAPB

a xa = 0

There are three bilinear equations, only two of which
are independent for any given image point. Simi-
larly, a world linel[ab] (or dually, l[ab]) and a corre-
sponding image linelA satisfy the equivalent bilin-
ear constraints

lAPA
[a lbc] = 0 ⇐⇒ lAPA

a lbc εabcd = 0

or dually

lA PA
a lab = 0

Each form contains four bilinear equations, only two
of which are linearly independent for any given im-
age line. For example, if the line is specified by giv-
ing two points on itlab ∼ x[ayb], we have the two
scalar equationslA PA

a xa = 0 andlA PA
a ya = 0.

7.9 Epipoles

There is still one aspect ofI α0···αd that we have not
yet seen: the Grassmannian tensor also directly con-
tains theepipoles. In fact, the epipoles are most
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naturally viewed as the first order term in the se-
quence of matching tensors, although they do not
themselves induce any matching constraints.

Assuming that it has rankd, thed×(d+1) projec-
tion matrix of ad−1 dimensional image ofd dimen-
sional space defines a uniquecentre of projection
eia by PAi

a eia = 0. The solution of this equation is
given (c.f. section 8) by the vector ofd × d minors
of PAi

a , i.e.

eia ∼ εAi···Ci PAi
a1
· · ·PCi

ad
εaa1···ad

The projection of a centre of projection in another
image is anepipole

eiAj ∼ εAi···Ci PAj
a0 PAi

a1
· · ·PCi

ad
εa0a1···ad

Recognizing the factor ofIAjAiBi···Ci , we can fix
the scale factors for the epipoles so that

eiAj ≡ 1
d! εAiBi···Ci IAjAiBi···Ci

IAjAiBi···Ci = eiAj εAiBi···Ci

Thed-dimensional joint image subspacePIα of Pα
passes through thed-codimensional projective sub-
spacexAi = 0 at thejoint image epipole

eiα ≡
(
eiA1 , . . . , eiAi−1 ,0, eiAi+1 , . . . , eiAm

)>
As usual, an arbitrary choice of the relative scale fac-
tors is required.

Counting up the components of the
(m

4

)
quadri-

linear, 3
(m

3

)
trilinear,

(m
2

)
bilinear andm(m − 1)

monolinear (epipole) tensors form images of a 3D
world, we find a total of(

3m
4

)
= 81 ·

(
m

4

)
+ 27 · 3

(
m

3

)
+ 9 ·

(
m

2

)
+ 3 ·m(m− 1)

linearly independent components. These are linearly
equivalent to the complete set of

(3m
4

)
linearly inde-

pendent components ofI α0···αd , so the joint image
Grassmannian tensor can be reconstructedlinearly
given the entire set of (appropriately scaled) match-
ing tensors.

8 Minimal Reconstructions and
Uniqueness

The matching constraints found above are closely
associated with a set ofminimal reconstruction
techniques that produce candidate solutionsxa

from minimal sets ofd image measurements (three
in the 3D case). Geometrically, measuring an image
coordinate restricts the corresponding world point to
a hyperplane inPa. The intersection of anyd inde-
pendent hyperplanes gives a unique solution candi-
datexa, so there is a minimal reconstruction tech-
nique based on any set ofd independent image mea-
surements. Matching is equivalent to the require-
ment that this candidate lies in the hyperplane of
each of the remaining measurements. Ifd mea-
surements are not independent the corresponding
minimal reconstruction technique will fail to give a
unique candidate, but so long as the images contain
someset ofd independent measurements at least one
of the minimal reconstructions will succeed and the
overall reconstruction solution will be unique (or fail
to exist altogether if the matching constraints are vi-
olated).

Algebraically, we can restate this as follows. Con-
sider a generalk × (k + 1) system of homogeneous
linear equations with rankk. Up to scale the sys-
tem has a unique solution given by the(k + 1)-
component vector ofk×k minors of the system ma-
trix3. Adding an extra row to the system destroys the
solution unless the new row is orthogonal to the ex-
isting minor vector: this is exactly the requirement
that the determinant of the(k+ 1)× (k+ 1) matrix
vanish so that the system still has rankk. With an
overspecified rankk system: any choice ofk rows
gives a minor vector; at least one minor vector is
nonzero by rank-k-ness; every minor vector is or-
thogonal to every row of the system matrix by non-
rank-(k + 1)-ness; and all of the minor vectors are
equal up to scale because there is only one direc-
tion orthogonal to any givenk independent rows. In
other words the existence of a solution can be ex-

3Proof: By the rankk condition the vector of minors does
not vanish. Adding any(k + 1)st row vectorv to the system
gives a(k+1)×(k+1) matrix. By the usual cofactor expansion,
the determinant of this matrix is exactly the dot product ofv
with the vector of minors. The determinant vanishes whenv is
chosen to be any of the existing rows of the matrix, so the minor
vector is orthogonal to each row.
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pressed as a set of simple orthogonality relations on
a candidate solution (minor vector) produced from
any set ofk independent rows.

We can apply this to the(d+m)×(d+m) minors
of the(D +m)× (d+m+ 1) basic reconstruction
system, or equivalently to thed × d minors of the
D × (d + 1) reduced reconstruction system. The
situation is very similar to that for matching con-
straints and a similar analysis applies. The result is
that if i, j, . . . , k is a set of2 ≤ m′ ≤ d distinct im-
ages andγ, . . . , δ is any selection ofd−m′ indices
from imagesi, j, . . . , k (at mostDi − 1 from any
one image), there is a pair of equivalent minimal re-
construction techniques forxa ∈ Pa andxα ∈ Pα:

xa ∼ Pa[BiBj ···Bkγ···δ xAixAj · · · xAk]

xα ∼ I α[BiBj ···Bkγ···δ xAixAj · · ·xAk]

where

Pa[α1···αd] ≡ 1
d! Pα1

a1
· · ·Pαd

ad
εaa1···ad

In these equations, the right hand side has tenso-
rial indices [Bi · · ·Bkγ · · · δAi · · ·Ak] in addition
to a or α, but so long as the matching constraints
hold any value of these indices gives a vector par-
allel to xa or xα (i.e. for matching image points
the tensorPa[Bi···Bkγ···δ xAi · · ·xAk] can be fac-
torized asxa T[Bi···Bkγ···δAi···Ak] for some tensors
xa and T). Again it is enough to antisymmetrize
over the indices of each image separately. For
2D images of 3D space the possible minimal re-
construction techniques arePa[B1C1B2 xA1xA2] and
Pa[B1B2B3 xA1xA2xA3] :

xa ∼
(
εA1B1C1 xA1 PB1

b PC1
c

)
·

·
(
εA2B2C2 xA2 PC2

d

)
εabcd

xa ∼
(
εA1B1C1 xA1 PC1

b

)(
εA2B2C2 xA2 PC2

c

)
·

·
(
εA3B3C3 xA3 PC2

d

)
εabcd

These correspond respectively to finding the inter-
section of the optical ray from one image and the
constraint plane from one coordinate of the second
one, and to finding the intersection of three con-
straint planes from one coordinate in each of three
images.

To recover the additional matching constraints
that apply to the minimal reconstruction solution

with indices[Bi · · ·Bkγ · · · δAi · · ·Ak], project the
solution to some imagel to get

PCl
a xa = I Cl[Bi···Bkγ···δ xAi · · ·xAk]

If the constraint is to hold, this must be propor-
tional to xCl . If l is one of the existing images (i,
say)xAl is already in the antisymmetrization, so if
we extend the antisymmetrization toCl the result
must vanish:I [ClBi···Bkγ···δ xAi · · ·xAk ] = 0. If
l is distinct from the existing images we can explic-
itly add xAl to the antisymmetrization list, to get
I [ClBi···Bkγ···δ xAi · · ·xAkxAl] = 0.

Similarly, the minimal reconstruction solution for
3D lines from two images is just the pull-back

lab ∼ lA1lA2 PA1

[a PA2

b]

or in contravariant form

lab ∼ lA1lA2 PA1
c PA2

d εabcd

This can be projected into a third image and dualized
to give the previously stated line transfer equation

lA3 ∼ lA1lA2 · εA3B3C3 PB3
a PC3

b PA1
c PA2

d εabcd

∼ lA1lA2 GA3
A1A2

More generally, the covariant form of thek-
subspace constraint equations given in section 7.5
generates basic reconstruction equations fork di-
mensional subspaces of thejth image or the world
space by dropping one indexAj from the contrac-
tion and using it as theα0 of a set ofk+1 free indices
α0 · · ·αk designating the reconstructedk-subspace
in PAj . To reconstruct thek-subspace in world co-
ordinates, the projection tensorsPαi

ai corresponding
to the free indices must also be dropped, leaving free
world indicesa0 · · · ak.

9 Grassmann Relations between
Matching Tensors

The components of any Grassmann tensor must sat-
isfy a set of quadratic ‘simplicity’ constraints called
theGrassmann relations. In our case the joint im-
age Grassmannian satisfies

0 = I α0···αd−1[β0 I β0···βd+1]

= 1
d+2

d+1∑
a=0

(−1)a I α0···αd−1βa I β0···βa−1βa+1···βd+1
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Table 1: The Grassmann identities between the matching tensors of two and three images.

0A1 = FA1A2 e1
A2 [111, 11122]

0A1A2 = FB1B2 FC1C2 ε
B1C1A1 εB2C2A2 + 2 e2

A1 e1
A2 [112, 11222]

0A3 = FA2A3 e1
A2 − εA3B3C3 e1

B3 e2
C3 [111, 22233]

0A3
A1A2

= εA2B2C2 e1
B2 GA1

C2A3 + e1
A3 FA1A2 [111, 11223]

0A1
A2A3

= εA2B2C2 e1
B2 GA3

A1C2 + εA3B3C3 e1
B3 GA2

A1C3 [111, 12233]

0A1A2A3
B2

= FB1B2 GC1
A2A3 εB1C1A1 − e1

A2 GB2
A1A3 + δB2

A2 e1
C2 GC2

A1A3 [112, 11223]

0A2B2
A1B1A3

= εA3B3C3 GA1
A2B3 GB1

B2C3 − e1
A2 εA1B1C1 GA3

C1B2 [112, 11233]

−FA1C2 ε
C2A2B2 FB1A3

0A2
A1B1

= FA1A3 GB1
A2A3 + εA1B1C1 e3

C1 e1
A2 [112, 11333]

0B1B2
A1A2A3

= εA3B3C3 GA1
B2B3GA2

B1C3 − FA1A2 GA3
B1B2 [112, 12233]

+δA2
B2 FA1C2 GA3

B1C2 + δA1
B1 e1

B2 FA2A3

0B1A2B2
A1

= GC3
B1B2 GA1

A2C3 + e3
B1 FA1C2 ε

C2A2B2 + δA1
B1 e1

A2 e3
B2 [112, 12333]

0A2
A1A3

= εA3B3C3 e2
B3 GA1

A2C3 −FA1B2FC2A3 ε
B2C2A2 [112, 22233]

0B2
A1A2

= FA2A3 GA1
B2A3 + FA1A2 e3

B2 − δA2
B2 FA1C2 e3

C2 [112, 22333]

0A1A2B2A3B3 = GB1
A2A3 GC1

B2B3 εB1C1A1 −GC2
A1A3 εC2A2B2 e1

B3 [123, 11123]

−GC3
A1A2 εC3A3B3 e1

B2

0B1B2A3B3
A1A2

= GA2
B1A3 GA1

B2A3 −GA2
B1B3 GA1

B2A3 − FA1A2 GC3
B1B2 εC3A3B3 [123, 11223]

−δA2
B2 GC2

B1A3 GA1
C2B3 + δA1

B1 GA2
C1B3 GC1

B2A3

Mechanically substituting expressions for the vari-
ous components ofI α0···αd in terms of the matching
tensors produces a long list of quadratic relations be-
tween the matching tensors. For reference, table 1
gives a (hopefully complete) list of the identities that
can be generated between the matching tensors of
two and three images ind = 3 dimensions, modulo
image permutation, traces of identities with covari-
ant and contravariant indices from the same image,
and (anti-)symmetrization operations on identities
with several covariant or contravariant indices from
the same image. (For example,FA2A3 GA1

A2A3 =
2FA1A2 e3

A2 andFA3(A1
GB1)

A2A3 = 0 follow re-
spectively from tracing[112, 22233] and symmetriz-
ing [112, 11333] ). The constraint tensors are as-

sumed to be normalized as in their above definitions,
in terms of an arbitrary choice of scale for the un-
derlying image projections. In practice, these scale
factors must often be recovered from the Grass-
mann relations themselves. Note that with these
conventions,FA1A2 = FA2A1 and GA1

A2A3 =
−GA1

A3A2 . For clarity the free indices have been
displayed on the (zero) left-hand side tensors. The
labels indicate one choice of image numbers for the
indices of the Grassmann simplicity relation that
will generate the identity (there may be others).

As an example of the use of these identities,
GA1

A2A3 follows from linearly fromFA1A2, FA1A3

and the corresponding epipolese1
A2, e3

A1 ande3
A2

by applying[112, 11333] and[112, 22333].
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10 Reconstruction in Joint Image
Space

We have argued that multi-image projective recon-
struction is essentially a matter of recovering a co-
herent set of projective scale factors for the mea-
sured image points, that it canonically takes place in
the joint image spacePα, and that reconstruction in
world coordinates is best seen as a choice of basis in
the resulting joint image subspacePIα. To empha-
size these points it is interesting to develop ‘recon-
struction’ techniques that work directly in joint im-
age space using measured image coordinates, with-
out reference toany3D world or basis.

First suppose that the complete set of matching
tensors between the images has been recovered. It
is still necessary to fix an arbitrary overall scale fac-
tor for each image. This can be done by choosing
any coherent set of relative scalings for the matching
tensors, so that they verify the Grassmann simplic-
ity relations as given above. Then, since the com-
ponents of the joint image Grassmann tensorI αβ···γ

can be recovered directly from the matching tensors,
the location of the joint imagePIα has been fixed.

Now consider a matching set of image points
{xA1 , . . . ,xAm}with arbitrary relative scalings. As
discussed in section 6, the matching constraints are
equivalent to the requirement that there be a rescal-
ing of the image points that places the joint image
space vector

∑m
i=1 λi xAi in the joint imagePIα.

Expressed in terms of the Grassmannian, this be-
comes thejoint image reconstruction system

I [αβ ··· γ ·
(

m∑
i=1

λi xAi]
)

= 0

This is a redundant set of homogeneous multilin-
ear equations in the GrassmannianI αβ···γ , the im-
age pointsxAi , and the scale factorsλi, that can
be used to ‘reconstruct’ the scale factors given the
Grassmannian and the image measurements.

These equations can be reexpressed in terms of
the matching tensors, in much the same way as the
Grassmann simplicity relations can. The types of
constraint that can arise for 2D images of 3D space
are shown in table 2. The left hand sides are zero
tensors and the labels give index image numbers
that will generate the equation. The numerical co-
efficients are valid only for correctly scaled match-
ing tensors. Permuting the images generates further

equations. Note that since the equations are alge-
braically redundant it is only necessary to apply a
subset of at leastm − 1 of them to solve for them
scale factors. The optimal choice of equations prob-
ably depends on the ease and accuracy with which
the various matching tensor components can be esti-
mated.

Recovery of the scale factors locates the recon-
structed joint image pointxα unambiguously in the
subspacePIα. Its coordinates in any chosen basis
(i.e. with respect to any given choice of the basis-
vector columns of the joint projection matrixPα

a )
can easily be obtained, if required. Although this
process is arguably too abstract to be called ‘recon-
struction’, all of the relevant structure is certainly
present in the joint image representation and can
easily be extracted from it.

Given an efficient numerical technique for the res-
olution of sets of bilinear equations and a sufficient
number of matching points, it would also be possible
to solve the above equations simultaneously for the
vector of matching tensor components and the vec-
tor of scale factors, given the measured image co-
ordinates as coefficients. Algebraic elimination of
the scale factors from these equations should ulti-
mately lead back to the various matching constraints
(modulo probably heavy use of the Grassmann rela-
tions). Elimination of the matching tensors (mod-
ulo the matching constraints viewed as constraints
on the matching tensor components) for sufficiently
many matching points would lead to (high degree!)
basic reconstruction methods for the recovery of the
scale factors directly from measured image coordi-
nates.

Geometrically, the reconstruction process can be
pictured as follows. Each image point is aDi-
codimensional subset of itsDi-dimensional image,
so under the trivial projection it can be pulled back
to aDi-codimensional subspace of the joint image
spacePα. Intersecting the subspaces pulled back
from the different images results in an(m − 1)-
dimensional projective subspace ofPα. This is pre-
cisely the set of all possible rescalings of thexAi .
The joint imagePIα intersects this subspace if and
only if the matching constraints are satisfied, and
the intersection is of course the desired reconstruc-
tion. So the problem of multi-image projective re-
construction from points can be viewed as the search
for the (d + m − 1)-dimensional subspace ofPα
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Table 2: The five basic types of reconstruction equation for a point in the joint image.

0A2 = (FA1A2 xA1)λ1 + (εA2B2C2 e1
B2 xC2)λ2 [11122]

0A2A3 = (GA1
A2A3 xA1)λ1 − (e1

A3 xA2)λ2 + (e1
A2 xA3)λ3 [11123]

0A3
A1A2

= (εA1B1C1 GA2
B1A3 xC1)λ1 + (εA2B2C2 GA1

B2A3 xC2)λ2 − (FA1A2 xA3)λ3 [11223]

0A2A3A4
A1

= (εA1B1C1 HB1A2A3A4 xC1)λ1 + (GA1
A4A3 xA2)λ2 [11234]

−(GA1
A2A4 xA3)λ3 + (GA1

A2A3 xA4)λ4

0A1A2A3A4A5 = (HA2A3A4A5 xA1)λ1 − (HA1A3A4A5 xA2)λ2 + (HA1A2A4A5 xA3)λ3 [12345]

−(HA1A2A3A5 xA4)λ4 + (HA1A2A3A4 xA5)λ5

that contains (or comes closest to containing) a given
set of (m − 1)-dimensional joint-image-point sub-
spaces, followed by an arbitrary choice (the scale
factors) of ad-dimensional subspace (the joint im-
age) of the(d+m−1)-dimensional space that meets
each joint-image-point subspace transversally. The
reconstruction of lines and higher dimensional sub-
spaces can be viewed in similarly geometric terms.

11 Perspectives

The theoretical part of the paper is now finished, but
before closing it may be worthwhile to reflect a lit-
tle on our two principal themes: projective recon-
struction and the tensor calculus. We will take it for
granted that the projective and algebraic-geometric
approaches to vision are here to stay: the ‘unrea-
sonable efficacy of mathematics in the physical sci-
ences’ can only lead to an increasing mathematiza-
tion of the field.

11.1 Matching & Reconstruction

Clearly visual scene reconstruction is a large and
complex problem that is not going to be ‘solved’ by
any one contribution, so we will restrict ourselves to
a few technical remarks. To the extent that the prob-
lem can be decomposed at all, the most difficult parts
of it will probably always be the low level feature
extraction and token matching. 3D reconstruction
seems relatively straightforward once image tokens
have been put into correspondence, although much

remains to be done on the practical aspects, particu-
larly on error models [17, 4, 20] and the recovery of
Euclidean structure [17].

Given the complexity and algebraic redundancy
of the trilinear and quadrilinear constraints it is cer-
tainly legitimate to ask whether they are actually
likely to be useful in practice. I think that the an-
swer is a clear ‘yes’ for the trilinear constraints and
the overall joint image/Grassmannian picture, but
the case for the quadrilinear constraints is still open.

The principal application of the matching tensors
must be for token matching and verification. The tri-
linear constraints can be used directly to verify the
correspondence of a triple of points or lines, or in-
directly to transfer a hypothesized feature location
to a third image given its location in two others, in
a hypothesize-and-test framework. Image synthesis
(e.g.image sequence compression and interpolation)
is likely to be another important application of trans-
fer [10].

Fundamental matrices can also be used for these
applications, but because the higher order con-
straints ‘holistically’ combine data from several im-
ages and there is built-in redundancy in the con-
straint equations, it is likely that they will prove
less prone to mismatches and numerically more sta-
ble than a sequence of applications of the epipo-
lar constraint. For example Shashua [19] has re-
ported that a single trilinear constraint gives more
reliable transfer results than two epipolar ones, and
Faugeras and Mourrain [6] have pointed out that bi-
linear constraint based transfer breaks down when
the 3D point lies in the trifocal plane or the three op-
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tical centres are aligned, whereas trilinear transfer
continues to be reasonably well conditioned.

When there are four images the quadrilinear con-
straint can also be used for point matching and trans-
fer, but the equations are highly redundant and it
seems likely that bilinear and trilinear methods will
prove adequate for the majority of applications. The
trilinear constraint is nonsingular for almost all situ-
ations involving points, provided the optical centres
do not coincide and the points avoid the lines pass-
ing between them.

The most important failure for lines is probably
that for lines lying in an epipolar plane of two of
the images. In this case the constraints mediated by
trivalent tensors are vacuous (although there is still
enough information to reconstruct the correspond-
ing 3D line unless it lies in the trifocal plane or the
optical centres are aligned) and those mediated by
quadrivalent tensors are rank deficient. But given
the linear dependence of the various line constraints
it is not clear that the quadrivalent ones have any ad-
vantage over an equivalent choice of trivalent ones.

A closely related issue is that of linear versus
higher order methods. Where possible, linear for-
mulations are usually preferred. They tend to be
simpler, faster, better understood and numerically
more stable than their nonlinear counterparts, and
they are usually much easier to adapt to redundant
data, which is common in vision and provides in-
creased accuracy and robustness. On the other hand,
nonlinear constraints can not be represented accu-
rately within a linear framework.

This is especially relevant to the estimation of
the matching tensors. We have emphasized that the
matching tensor components and constraint equa-
tions are linearly independent butquadratically
highly dependent. It is straightforward to provide
linear minimum-eigenvector methods to estimate:
the 9-component fundamental matrix from at least 8
pairs of corresponding points in two images [11, 12];
each of the three linearly independent 27-component
trilinear tensors from at least 7 triples of points in
three images; and the 81-component quadrilinear
tensor from at least 6 quadruples of corresponding
points in four images [20]. For complex applications
several of these tensors might be needed, for exam-
ple a fundamental constraint might provide initial
feature pairings that can be used to check for cor-
responding features in a third image using further

fundamental or trilinear constraints. Also, different
trilinear tensors are required for point transfer and
line transfer.

Unfortunately, it turns out that the above linear
estimation techniques (particularly that for the fun-
damental matrix) are numerically rather poorly con-
ditioned, so that the final estimates are very sensi-
tive to measurement errors and outliers. Moreover,
even in the case of a single fundamental matrix there
is a nonlinear constraint that can not be expressed
within the linear framework. The quadratic epipo-
lar relationFA1A2 e1

A2 = 0 implies the cubic con-
straint Det(F) = 0. If this constraint is ignored,
one finds that the resulting estimates ofF and the
epipoles tend to be rather inaccurate [12]. In fact,
the linear method is often used only to initialize non-
linear optimization routines that take account of the
nonlinearity and the estimated measurement errors
in the input data.

This leads to the following open question:
When several matching tensors are being esti-
mated, to what extent is it possible or necessary to
take account of the quadratic constraints between
them? The full set of quadratic relations is very
complex and it is probably not practical to account
for all of them individually: it would be much sim-
pler just to work directly in terms of the 3D joint
image geometry. Moreover, many of the relations
depend on the relative scaling of the constraint ten-
sors and the recovery of these further complicates
the issue (it is a question of exactly which combi-
nations of components need to be fixed to ensure
consistency and numerical stability). On the other
hand, experience with the fundamental matrix sug-
gests that it is dangerous to ignore the constraints
entirely. Some at least of them are likely to be im-
portant in any given situation. Our current under-
standing of these matters is very sketchy: essentially
all we have is a fewad hoccomparisons of particular
techniques.

As a final point, a few people seem to have been
hoping for some ‘magic’ reconstruction technique
that completely avoids the difficulties of image-to-
image matching, perhaps by holistically combining
data from a large number of images (or a single
dense image sequence). The fact that the matching
constraints stop at four images (or equivalently three
time derivatives) does not preclude this, but perhaps
makes it seem a little less likely. On the other hand,
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the simplicity of the joint image picture makes incre-
mental recursive reconstruction techniques that cor-
rectly handle the measurement errors and constraint
geometry seem more likely (c.f. [16]).

11.2 Tensors vs. the Rest

This paper is as much about the use of tensors as
a vehicle for mathematical vision as it is about im-
age projection geometry. Tensors have seldom been
used in vision and many people appear to be rather
tensor-phobic, so it seems appropriate to say a few
words in their favour: “Don’t panic!” [1].

First of all, what is a tensor? — It is a collec-
tion (a multidimensional array) of components that
represent a single geometric object with respect to
some system of coordinates, and that are intermixed
when the coordinate system is changed. This imme-
diately evokes the two principal concerns of tensor
calculus: (i) to perform manipulationsabstractlyat
the object level rather than explicitly at the compo-
nent level; and(ii) to ensure that all expressions are
properlycovariant(i.e. have the correct transforma-
tion laws) under changes of basis. The advantages
are rather obvious: the higher level of abstraction
brings greater compactness, clarity and insight, and
the guaranteed covariance of well-formed tensorial
expressions ensures that no hidden assumptions are
made and that the correct algebraic symmetries and
relationships between the components are automati-
cally preserved.

Vectors are the simplest type of tensor and the
familiar 3D vector calculus is a good example of
the above points: it is much simpler and less error
prone to write a single vectorx instead of three com-
ponents(x1, x2, x3) and a symbolic cross product
z = x × y instead of three equationsz1 = x2y3 −
x3y2, z2 = x3y1 − x1y3 andz3 = x1y2 − x2y1.
Unfortunately, the simple index-free matrix-vector
notation seems to be difficult to extend to higher-
order tensors with the required degree of flexibil-
ity. (Mathematicians sometimes define tensors as
multilinear functionsT(x, . . . , z) wherex, . . . , z
are vectors of some type and the result is a scalar,
but this notation becomes hopelessly clumsy when it
comes to inter-tensor contractions, antisymmetriza-
tion and so forth). In fact, the index-free notation
becomes as much a dangerous weapon as a useful
tool as soon as one steps outside the realm of sim-

ple vector calculations in a single Euclidean space.
It is only too easy to writex>x = 1 in a projective
space where no transpose (metric tensor) exists, or a
meaningless ‘epipolar equation’l>F x = 0 wherel
is actually the 3-component vector of an image line
(rather than an imagepoint) and x belongs to the
wrong image for the fundamental matrixF (which
should have been transposed in any case).

To avoid this sort of confusion, it is essential to
use a notation that clearly distinguishes the space
and covariant/contravariant type of each index. Al-
though it can not be denied that this sometimes leads
to rather baroque-looking formulae — especially
when there are many indices from many different
spaces as in this paper — it is much preferable to
the alternatives of using either no indices at all ori,
j, andk for everything, so that one can never quite
see what is supposed to be happening. It is important
not to be fooled into thinking that tensor equations
are intrinsically difficult just because they have in-
dices. For simple calculations the indexed notation
is not significantly more difficult to use than the tra-
ditional index-free one, and it becomesmuchclearer
and more powerful in complex situations. For a vi-
sually appealing (but typographically inconvenient)
pictorial notation, see the appendix of [18].

Simultaneously with the work presented in this
paper, at least two other groups independently con-
verged on parts of the constraint geometry from
component-based points of view: Faugeras & Mour-
rain [6] using the Grassmann-Cayley algebra of
skew linear forms, and Werman & Shashua [22] us-
ing Gröbner bases and algebraic elimination theory.
Both approaches make very heavy use of computer
algebra whereas all of the calculations in the present
paper were done by hand, and neither (notwithstand-
ing the considerable value of their results) succeeded
in obtaining anything like a complete picture of the
constraint geometry. My feeling is that it is per-
haps no accident that in each of the three categories:
level of geometric abstraction, efficiency of calcula-
tion, and insight gained, the relative ordering is the
same: tensor calculus> Grassmann-Cayley algebra
> elimination theory.

Elimination-theoretic approaches using resul-
tants and Gr¨obner bases seem to be intrinsically
component-based. They take no account of the
tensorial structure of the equations and therefore
make no use of the many symmetries between them,
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so even when the coordinate systems are carefully
adapted to the problem they tend to carry a signifi-
cant amount of computational redundancy. Werman
& Shashua [22] suggest that an advantage of such
approaches is the fact that very little geometric in-
sight is required. Unfortunately, one might also sug-
gest that very little geometric insight isgained: the
output is a complex set of equations with no very
clearly articulated structure.

The Grassmann-Cayley algebra [6, 2] is spiri-
tually much closer to the tensorial point of view.
Indeed, it can be viewed as a specialized index-
free notation for manipulating completely antisym-
metric covariant and contravariant tensors. It sup-
ports operations such as antisymmetrization over in-
dices from several tensors (wedge product), con-
tractions over corresponding sets of covariant and
contravariant antisymmetric indices (hook product),
and contravariant-covariant dualization (sometimes
used to identify the covariant and contravariant alge-
bras and then viewed as the identity, in which case
the hook product is replaced by the join product).
Given the connection with Grassmann coordinates,
the Grassmann-Cayley algebra can be viewed as a
calculus of intersection and union (span) for projec-
tive subspaces: clearly a powerful and highly rele-
vant concept. It is likely that this approach would
have lead fairly rapidly to the full Grassmannian
matching constraint geometry, notwithstanding the
relative opacity of the initial component-oriented
formulations.

Despite its elegance, there are two problems with
the Grassmann-Cayley algebra as a general formal-
ism. The first is that it is not actually very general:
it is good for calculations with linear or projective
subspaces, but it does not extend gracefully to more
complex situations or higher-degree objects. For ex-
ample quadric surfaces are represented bysymmet-
ric tensors which do not fit at all well into the an-
tisymmetric algebra. Tensors are much more flex-
ible in this regard. The second problem with the
Grassmann-Cayley algebra is that it is often infuri-
atingly vague about geometric (covariance) issues.
Forms of different degree with indices from differ-
ent spaces can be added formally within the algebra,
but this makes no sense at all tensorially: such ob-
jects do not transform reasonably under changes of
coordinates, and consequently do not have any clear
geometricmeaning, whatever the status of the alge-

bra. The fact that the algebra has a stratified tenso-
rial structure is usually hidden in the definitions of
the basic product operations, but it becomes a cen-
tral issue as soon as geometric invariance is called
into question.

In summary, my feeling is that the tensorial ap-
proach is ultimately the most promising. The in-
dexed notation is an extraordinarily powerful, gen-
eral and flexible tool for the algebraic manipula-
tion of geometric objects. It displays the under-
lying the structure and covariance of the equations
very clearly, and it naturally seems to work at about
the right level of abstraction for practical calcula-
tions: neither so abstract nor so detailed as to hide
the essential structure of the problem. Component-
based approaches are undoubtedly useful, but they
are probably best reserved untilafter a general ten-
sorial derivation has been made, to specialize and
simplify a set of abstract tensorial equations to the
particular application in hand.

As an example of this, ak + 1 index antisymmet-
ric tensor representing ak dimensional subspace of
a d dimensional projective space has (very na¨ıvely)
(d+ 1)k+1 components, but only

(
d+1
k+1

)
of these are

linearly independent owing to antisymmetry. The
independent components can easily be enumerated
(the indicesi0i1 · · · ik for 0 ≤ i0 < i1 < . . . <
ik ≤ d form a spanning set) and gathered into an
explicit

(d+1
k+1

)
component vector for further numer-

ical or symbolic manipulation. In fact, these com-
ponents span exactly one tensorial stratum of the
Grassmann-Cayley algebra.

It is perhaps unfortunate that current computer
algebra systems seem to have very few tools for
manipulating general tensorial expressions, as these
would greatly streamline the derivation and special-
ization processes. However, there does not appear to
be any serious obstacle to the development of such
tools and it is likely that they will become available
in the near future.

12 Summary

Given a set of perspective projections intom pro-
jective image spaces, there is a 3D subspace of
the space of combined image coordinates called the
joint image. This is a complete projective replica of
the 3D world expressed directly in terms of scaled
image coordinates. It is defined intrinsically by the
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physical situation up to an arbitrary choice of some
internal scalings. Projective reconstruction in the
joint image is a canonical process requiring only a
rescaling of the image coordinates. A choice of ba-
sis in the joint image allows the reconstruction to be
transferred to world space.

There are multilinearmatching constraints be-
tween the images that determine whether a set of im-
age points could be the projection of a single world
point. For 3D worlds only three types of constraint
exist: the epipolar constraint generated by the fun-
damental matrix between pairs of images, Shashua’s
trilinear constraints between triples of images and a
new quadrilinear constraint on sets of corresponding
points from four images.

Moreover, the entire set of constraint tensors for
all the images can be combined into a single com-
pact geometric object, the antisymmetric 4 index
joint image Grassmannian tensor. This can be re-
covered from image measurements whenever the in-
dividual constraint tensors can. It encodes precisely
the information needed for reconstruction: the lo-
cation of the joint image in the space of combined
image coordinates. It also generates the matching
constraints for images of lines and a set ofminimal
reconstruction techniquesclosely associated with
the matching constraints. Structural constraints on
the Grassmannian tensor produce quadratic identi-
ties between the various constraint tensors.
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A Mathematical Background

This appendix provides a very brief overview of the
linear algebra and projective geometry need to un-
derstand this paper, and a little background infor-

mation on our notation. For more details on using
tensor calculus for projective space see [9, 18].

A.1 Vectors and Tensors

A vector spaceHa is a space on which addition and
scaling of elements are defined:λxa +µya is inHa
for all scalarsλ andµ and elementsxa andya of
Ha. The span of a set{ea1, . . . , eak} of elements
of Ha is the vector space of linear combinations
x1ea1 + · · · + xkeak of elements of the set. A min-
imal set that spans the entire space is called abasis
and the number of elements in the set is thedimen-
sion of the space. Given a basis{ea1, . . . , ead} for a
d dimensional vector spaceHa, any elementxa of
the space can be expressed asx1ea1 + · · ·+xdead and
associated with the coordinate vector(x1, . . . , xd).

It is helpful to view the superscripta as anab-
stract index [18], i.e. an abstract label or place-
holder denoting the space the object belongs to.
However given a choice of basis it can also be
thought of as a variable indexing the coordinate vec-
tor that represents the object in that basis.

For every vector spaceHa there is a dual vector
space of linear mappings onHa, denotedHa. An
elementla of Ha acts linearly on an elementxa of
Ha to produce a scalar. This action is denoted sym-
bolically by laxa and calledcontraction. Any ba-
sis{ea1, . . . , ead} forHa defines a uniquedual basis
{e1

a, . . . , e
d
a} for Ha with eiae

a
j = δij , whereδij is

1 wheni = j and 0 otherwise. Theith coordinate
of xa in the basis{eaj} is just xi ≡ eia xa. If el-
ements ofHa are represented in the basis{eai } as
d index column vectors, elements ofHa in the dual
basis{eia} behave liked index row vectors. Con-
traction is then just the dot product of the coordinate
vectors:(u1 e1

a+ · · ·+udeda)(x1 ea1 + · · ·+xdead) =
u1 x

1 + · · · + ud x
d. Contraction involves a sum

over coordinates but we do not explicitly write the
summation signs: whenever a superscript label also
appears as a subscript a summation is implied. This
is called theEinstein summation convention. The
order of terms is unimportant:ua xa andxa ua both
denote the contraction of the dual vectorua with the
vectorxa.

Suppose we change the basis inHa according
to eai → ẽai =

∑
j eaj Λji for some matrixΛj i.

To keep the resulting abstract element ofHa the
same, coordinate vectors must transform inversely
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according toxi → x̃i =
∑

j (Λ−1)ij x
j. To pre-

serve the relations̃eia ẽaj = δij , the dual basis must

also transform aseia → ẽia =
∑

j (Λ−1)ij eja. Fi-
nally, to leave the abstract element of the dual space
the same, dual coordinate vectors must transform as
ui → ũi =

∑
j uj Λji. Because of the transfor-

mations of their coordinates under changes of basis,
vectorsxa are calledcontravariant and dual vectors
ua are calledcovariant.

An elementxa ofHa can also be viewed as a lin-
ear mapping on elements ofHa defined byuaxa, in
other words as an element of the dual of the dual of
Ha. For finite dimensional spaces every linear map-
ping onHa can be written this way, so there is a
complete symmetry betweenHa andHa: neither is
‘more primitive’.

Any nonzero element ofHa defines ad−1 dimen-
sional subspace ofHa by the equationsuaxa = 0,
and conversely anyd − 1 dimensional subspace de-
fines a unique element ofHa up to scale.

It is possible to take formal (‘tensor’ or ‘outer’)
products ofn-tuples of elements of vector spaces,
for example a formal elementTaA

α ≡ xa yA zα
can be made from elementsxa, yA, zα of vector
spacesHa, HA andHα. The vector space of linear
combinations of such objects (for different choices
of xa, yA andzα) is called the tensor product space
HaAα = Ha ⊗ HA ⊗ Hα. When there are several
distinct copies ofHa we use distinct letters to denote
them,e.g.Habc = Ha⊗Hb⊗Hc contains two copies
ofHa. Elements of a tensor product space are called
tensorsand can be thought of as multidimensional
arrays of components in some chosen set of bases.
Under changes of basis each of the indices must be
transformed individually.

There are a number of important generic opera-
tions on tensors. A set of tensors can be contracted
together over any appropriate subset of their indices,
for exampleuab xa ∈ Hb, ua TaB

c xc ∈ HB. Self
contractionsTab···

ac··· ∈ Hb···c··· are calledtraces.
A group of indices can be(anti-)symmetrized by
averaging over all possible permutations of their po-
sitions, with an additional minus sign for odd permu-
tations during antisymmetrization. On indices,(· · · )
denotes symmetrization and[· · · ] antisymmetriza-
tion. For exampleT(ab) = 1

2 (Tab + Tba) and
T[ab] = 1

2 (Tab −Tba) can be viewed as symmetric
and antisymmetric matrices, andT[abc] = 1

3!(T
abc−

Tbac + Tbca −Tcba + Tcab −Tacb) is an antisym-
metric 3 index tensor. A group of indices is(anti-
)symmetric if (anti-)symmetrization over them does
not change the tensor:(· · · ) and[· · · ] are also used

to denote this, for exampleT[ab]
(cd) ∈ H

[ab]
(cd) is an-

tisymmetric inab and symmetric incd. Permutation
of (anti-)symmetric indices changes at most the sign
of the tensor.

In d dimensions antisymmetrizations over more
than d indices vanish: in any basis each index
must take a distinct value between1 and d. Up
to scale there is a unique antisymmetricd index
tensorεa1a2···ad ∈ H[a1a2···ad]: choosingε12···d =
+1 in some basis, all other components are±1
or 0. Under a change of basis the components
of εa1···ad are rescaled by the determinant of the
transformation matrix. There is a corresponding
dual tensorεa1a2···ad ∈ H[a1a2···ad] with compo-
nents±1 or 0 in the dual basis. εa1a2···ad de-
fines a volume element onHa, giving the vol-
ume of the hyper-parallelepiped formed byd vec-
tors xa1, . . . ,x

a
d as εa1a2···ad xa1

1 · · · x
ad
d . The de-

terminant of a linear transformationTa
b onHa can

be defined as1d!εa1a2···ad Ta1
b1
· · ·Tad

bd
εb1b2···bd , and

this agrees with the determinant of the matrix of
Ta
b in any coordinate basis. A contravariant anti-

symmetrick index tensorT[a1···ak ] has a covariant
antisymmetricd − k index dual (∗T)ak+1···ad ≡
1
k! εak+1···adb1···bk Tb1···bk . ConverselyTa1···ak =

1
(d−k)! (∗T)bk+1···bd ε

bk+1···bda1···ak . A tensor and its

dual contain the same information and both have
(d
k

)
independent components.

A.2 Grassmann Coordinates

Antisymmetrization and duality are important in
the theory of linear subspaces. Consider a set
{va1 , . . . ,vak} of k independent vectors spanning ak
dimensional subspaceΣ of Ha. Given some choice
of basis the vectors can be viewed as column vec-
tors and combined into a singled × k matrix. Any
set{a1, . . . , ak} of k distinct rows of this matrix de-
fines ak×k submatrix whose determinant is ak×k
minor of the original matrix. Up to a constant scale
factor these minors are exactly the components of
the tensorΣa1···ak ≡ v[a1

1 · · · v
ak ]
k . If the original

vectors are independent thed× k matrix has rankk
and at least one of thek × k minors (and hence the
tensorΣa1···ak) will not vanish. Conversely, if the
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tensor vanishes the vectors are linearly dependent.
A vector xa lies in the subspaceΣ if and only if

all of the(k+ 1)× (k+ 1) minors of thed× (k+ 1)
matrix whose columns arexa and thevai vanish. In
tensorial terms:xa is an element ofΣ if and only
if Σ[a1···ak xa] = 0. So no two distinct subspaces
have the sameΣa1···ak . Under ak × k linear redef-
inition vai → ṽai =

∑
j Λijvaj of the spanning vec-

tors, thek × k minors are simply a constant factor
of Det(Λij) different from the old ones by the usual
determinant of a product rule. So up to scaleΣa1···ak

is independent of the set of vectors inΣ chosen to
span it.

A subspaceΣ can also be defined as the null
space of a set ofd − k independent linear forms
{uk+1

a , . . . ,uda}, i.e. as the set ofxa on which all
of theuia vanish:uia xa = 0. Theuia can be viewed
as a(d − k) × d matrix of row vectors. Arguments
analogous to those above show that the covariant
antisymmetricd − k index tensorΣak+1···ad ≡
uk+1

[ak+1
· · ·udad] is independent (up to scale) of the

{uia} chosen to characterizeΣ and definesΣ as the
set of points for whichΣak+1···ad xad = 0. We
use the same symbol forΣak+1···ad andΣa1···ak be-
cause up to scale they turn out to be mutually dual:
Σak+1···ad ∼ 1

k! εak+1···adb1···bk Σb1···bk . In particu-
lar a hypersurface can be denoted either byua or by
u[a1···ad−1].

Hence, up to scale,Σa1···ak and its dualΣak+1···ad
are intrinsic characteristics of the subspaceΣ, inde-
pendent of the bases chosen to span it and uniquely
defined by and defining it. In this sense the antisym-
metric tensors provide a sort of coordinate system on
the space of linear subspaces ofHa, calledGrass-
mann coordinates.

Unfortunately, only very special antisymmetric
tensors specify subspaces. The space ofk dimen-
sional linear subspaces of ad dimensional vector
space is onlyk (d − k) dimensional, whereas the
antisymmetrick index tensors have

(d
k

)
independent

components, so the Grassmann coordinates are mas-
sively redundant. The tensors that do define sub-
spaces are calledsimplebecause they satisfy the fol-
lowing complex quadraticGrassmann relations:

Σa1···[ak Σb1···bk ] = 0

or in terms of the dual

Σak+1···ad Σadb2···bk = 0

These relations obviously hold for any tensor of the
form v[a1

1 · · · v
ak ]
k because one of the vectors must

appear twice in an antisymmetrization. What is less
obvious is that they do not hold for any tensor that
can not be written in this form.

Although their redundancy and the complexity of
the Grassmann relations makes them rather incon-
venient for numerical work, Grassmann coordinates
are a powerful tool for the algebraization of geomet-
ric operations on subspaces. For example the union
of two independent subspaces is justΣ[a1···akΓb1···bl]

and dually the intersection of two (minimally) inter-
secting subspaces isΣ[a1···akΓb1···bl].

A.3 Projective Geometry

Given ad + 1 dimensional vector spaceHa with
nonzero elementsxa andya (a = 0, . . . , d), we will
write xa ∼ ya and say thatxa andya areequiva-
lent up to scalewhenever there is a nonzero scalar
λ such thatxa = λ ya. The d dimensionalpro-
jective spacePa is defined to be the set of nonzero
elements ofHa under equivalence up to scale. When
we write xa ∈ Pa we really mean the equivalence
class{λ xa| λ 6= 0} of xa under∼.

The span of anyk + 1 independent representa-
tives {xa0, . . . ,xak} of points inPa is a k + 1 di-
mensional vector subspace ofHa that projects to a
well-definedk dimensional projective subspace of
Pa called the subspacethrough the points. Two in-
dependent points define a one dimensional projec-
tive subspace called a projective line, three points
define a projective plane, and so forth. The vector
subspaces ofHa support notions of subspace dimen-
sion, independence, identity, containment, intersec-
tion, and union (vector space sum or smallest con-
taining subspace). All of these descend to the pro-
jective subspaces ofPa. Similarly, linear mappings
between vector spaces, kernels and images, injectiv-
ity and surjectivity, and so on all have their coun-
terparts for projective mappings between projective
spaces.

Tensors onHa also descend to projective tensors
defined up to scale onPa. Elementsua of the
projective versionPa of the dual spaceHa define
d − 1 dimensional projective hyperplanes inPa via
uaxa = 0. The duality ofHa andHa descends to
a powerful duality principle between points and hy-
perplanes onPa andPa.



Papier : The Geometry of Projective Reconstruction 43

More generally the antisymmetrick + 1 index
contravariant andd − k index covariant Grassmann
tensors onHa definek dimensional projective sub-
spaces ofPa. For example given independent points
xa, ya andza of Pa the projective tensorx[ayb] de-
fines the line throughxa andya andx[aybzc] defines
the plane throughxa, ya andza. Similarly, in 3D a
line can be represented dually as the intersection of
two hyperplanesu[avb] while a point requires three
u[avbwc]. In 2D a single hyperplaneua suffices for
a line, and two are required for a pointu[avb]. Dual-
ization gives back the contravariant representation,
e.g.xa = ubvc εabc are the coordinates of the inter-
section of the two linesua andva in 2D.

A d dimensional projective space can be thought
of as ad dimensional affine space (i.e. a Euclidean
space with points, lines, planes, and so on, but no
origin or notion of absolute distance) with a num-
ber of ideal points added ‘at infinity’. Choosing
a basis forHa, any representativexa of an ele-
mentPa with x0 6= 0 can be rescaled to the form
(1, x1, . . . , xd)>. This defines an inclusion of the
affine space(x1, . . . , xd) in Pa, but thed − 1 di-
mensional projective subspace ‘at infinity’ of ele-
ments ofPa with x0 = 0 is not represented. Un-
der this inclusion affine subspaces (lines, planes, etc)
become projective ones, and all of affine geometry
can be transferred to projective space. However pro-
jective geometry is simpler than affine geometry be-
cause projective spaces are significantly more uni-
form than affine ones — there are far fewer special
cases to consider. For example two distinct lines
always meet exactly once in the projective plane,
whereas in the affine plane they always meetexcept
when they are parallel. Similarly, there are natu-
ral transformations that preserve projective structure
(i.e. that map lines to lines, preserve intersections
and so) that are quite complicated when expressed
in affine space but very simple and natural in projec-
tive terms. The 3D→2D pinhole camera projection
is one of these, hence the importance of projective
geometry to computer vision.

B Factorization of the Fundamen-
tal Matrix

This appendix proves two claims made in section 3.
(1) Given the factorizationFAA′ = uA vA′ −

vA uA′ , the most general redefinition of theu’s and
v’s that leavesF unchanged up to scale is(

uA uA′
vA vA′

)
−→ Λ

(
uA uA′
vA vA′

)(
1/λ 0
0 1/λ′

)
whereΛ is an arbitrary nonsingular2×2 matrix and
{λ, λ′} are arbitrary nonzero relative scale factors.

SinceuA andvA are independent epipolar lines
and there is only a two parameter family of these,
any other choicẽuA, ṽA must be a nonsingular lin-
ear combination of these two, and similarly foruA′
andvA′ . Hence the only possibilities are:(

uA
vA

)
−→ Λ

(
uA
vA

)
(

uA′
vA′

)
−→ Λ′

(
uA′
vA′

)
for nonsingular2× 2 matricesΛ andΛ′. Then

FAA′ =
(

uA vA
)( 0 1
−1 0

)(
uA′
vA′

)
→

(
uA vA

)
Λ>
(

0 1
−1 0

)
Λ′
(

uA′
vA′

)
Since the covectorsuA,vA anduA′ ,vA′ are inde-
pendent, forF to remain unchanged up to scale we
must have

Λ>
(

0 1
−1 0

)
Λ′ ∼

(
0 1
−1 0

)
Using the2× 2 matrix identity

Λ = −Det (Λ)
(

0 1
−1 0

)
Λ−>

(
0 1
−1 0

)
we find thatΛ′ ∼ Λ up to scale. Definingλ′/λ to
reflect the difference in scale, the result follows.

(2) Given any factorizationFAA′ = uA vA′ −
vA uA′ defining a 4D subspaceIα ofHα via(

uA uA′
vA vA′

)(
xA

xA
′

)
= 0

and any pair{PA
a ,P

A′
a } of rank 3 projection ma-

trices with distinct centres of projection compatible
with FAA′ in the sense thatFAA′ PA

a PA′
b xaxb = 0

for all xa ∈ Ha, there is a fixed rescaling{λ, λ′}
that makesIα coincide with the image ofHa under
the joint projection(λPA

a λ′ PA′
a )>.
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If the compatibility condition holds for allxa, the
symmetric part of the quadratic formFAA′ PA

a PA′
b

must vanish. ExpandingF and for clarity defining
ua ≡ uA PA

a , u′a ≡ uA′ PA′
a , va ≡ vA PA

a , and
v′a ≡ vA′ PA′

a we find:

ua v′b + v′a ub − va u′b − u′a vb = 0

Since both projections have rank 3 none of the pulled
back covectorsua,u′a,va,v

′
a vanish, and since the

pairs uA 6∼ vA and uA′ 6∼ vA′ are independent,
ua 6∼ va andu′a 6∼ v′a are independent too. Con-
tracting with any vectorxa orthogonal to bothua
andu′a we find that

(v′a xa) ub − (va xa) u′b = 0

Either there is somexa for which one (and hence
both) of the coefficientsva xa and v′a xa are
nonzero — which implies thatua ∼ u′a — or
both coefficients vanish for all suchxa. But in
this case we could conclude thatva and v′a were
in Span(ua,u′a) and sinceva is independent of
ua and v′a of u′a that va ∼ u′a and v′a ∼ ua.
Substituting back intoF immediately shows that
λ uaub − λ′ vavb = 0 with nonzeroλ andλ′, and
hence thatua ∼ va. So this branch is not pos-
sible and we can conclude that for some nonzero
λ andλ′, λ ua + λ′ u′a = 0. Similarly, µ va +
µ′ v′a = 0 for some nonzeroµ andµ′. Substituting
back intoF gives(λ/λ′ − µ/µ′) (uavb + vaub) =
0, so up to scale{µ, µ′} ∼ {λ, λ′}. The rescal-
ing {PA

A, PA′
A } −→ {λPA

A, λ
′ PA′

A } then takes the
projection of anyxa to a vector lying inIα:(

uA uA′
vA vA′

)(
λPA

a

λ′ PA′
a

)
xa

=
(
λ ua + λ′ u′a
λ va + λ′ v′a

)
xa =

(
0
0

)
xa = 0
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Rhône-Alpes, Grenoble, France, 1993. Sub-
mitted toJournal of Artificial Intelligence.

[18] R. Penrose and W. Rindler.Spinors and space-
time. Vol. 1, Two-spinor calculus and relativis-
tic fields. Cambridge University Press, 1984.

[19] A. Shashua. Projective structure from uncal-
ibrated images: Structure from motion and
recognition. IEEE Trans. Pattern Analysis &
Machine Intelligence, 16(8), 1994.

[20] B. Triggs. Least squares estimation in projec-
tive spaces. To appear, 1995.

[21] B. Triggs. Matching constraints and the joint
image. In E. Grimson, editor,IEEE Int. Conf.
Computer Vision, pages 338–43, Cambridge,
MA, June 1995.

[22] M. Werman and A. Shashua. The study of 3D-
from-2D using elimination. In E. Grimson, ed-
itor, IEEE Int. Conf. Computer Vision, pages
473–9, Cambridge, MA, June 1995.





Optimal Estimation of Matching Constraints

Bill Triggs
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Abstract

We describe work in progress on a numerical library for estimating multi-image matching
constraints, or more precisely the multi-camera geometry underlying them. The library will
cover several variants of homographic, epipolar, and trifocal constraints, using various differ-
ent feature types. It is designed to be modular and open-ended, so that (i) new feature types
or error models, (ii ) new constraint types or parametrizations, and (iii ) new numerical reso-
lution methods, are relatively easy to add. The ultimate goal is to provide practical code for
stable, reliable, statistically optimal estimation of matching geometry under a choice of robust
error models, taking full account of any nonlinear constraints involved. More immediately,
the library will be used to study the relative performance of the various competing problem
parametrizations, error models and numerical methods. The paper focuses on the overall de-
sign, parametrization and numerical optimization issues. The methods described extend to
many other geometric estimation problems in vision,e.g.curve and surface fitting.
Keywords: Matching constraints, multi-camera geometry, geometric fitting, statistical estima-
tion, constrained optimization.

1 Introduction and Motivation

This paper describes work in progress on a numerical library for the estimation of multi-image
matching constraints. The library will cover several variants of homographic, epipolar, and trifocal
constraints, using various common feature types. It is designed to be modular and open-ended, so
that new feature types or error models, new constraint types or parametrizations, and new numerical
resolution methods are relatively easy to add. The ultimate goal is to provide practical code for
stable, reliable, statistically optimal estimation of matching geometry under a choice of robust error
models, taking full account of any nonlinear constraints involved. More immediately, the library is
being used to study the relative performance of the various competing problem parametrizations,
error models and numerical methods. Key questions include: (i) how much difference does an
accurate statistical error modelmake; (ii ) whichconstraint parametrizations, initialization methods
and numerical optimization schemesoffer the best reliability/speed/simplicity. The answers are
most interesting fornear-degenerateproblems, as these are the most difficult to handle reliably.
This paper focuses on architectural, parametrization and numerical optimization issues. I have tried
to give an overview of the relevant choices and technology, rather than going into too much detail
on any one subject. The methods described extend to many other geometric estimation problems,
such as curve and surface fitting.

After motivating the library and giving notation in this section, we develop a general statistical
framework for geometric fitting in§2 and discuss parametrization issues in§3. §4 summarizes the
library architecture and numerical techniques,§5 discusses experimental testing, and§6 concludes.

This paper appeared in SMILE’98, European Workshop on 3D Structure from Multiple Images of Large-scale Envi-
ronments, Springer LNCS, 1998. The work was supported by Esprit LTR project CUMULI .
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Why study matching constraint estimation? — Practically, matching constraints are central
to both feature grouping and 3D reconstruction, so better algorithms should immediately benefit
many geometric vision applications. But there are many variations to implement, depending on
the feature type, number of images, image projection model, camera calibration, and camera and
scene geometry. So a systematic approach seems more appropriate than anad hoccase-by-case
one. Matching constraints also have a rather delicate algebraic structure which makes them difficult
to estimate accurately. Many common camera and scene geometries correspond to degenerate cases
whose special properties need to be detected and exploited for stability. Even in stable cases it is
not yet clear how best to parametrize the constraints — usually, they belong to fairly complicated
algebraic varieties and redundant or constrained parametrizations are required. Some numerical
sophistication is needed to implement these efficiently, and the advantages of different models and
parametrizations need to be studied experimentally: the library is a vehicle for this.

It is also becoming clear that in many cases no single model suffices. One should rather think
in terms of a continuum of nested models linked by specialization/generalization relations. For
example, rather than simply assuming a generic fundamental matrix, one should use inter-image
homographies for small camera motions or large flat scenes, affine fundamental matrices for small,
distant objects, essential matrices for constant intrinsic parameters, fundamental matrices for wide
views of large close objects, lens distortion corrections for real images,etc. Ideally, the model
should be chosen to maximize the statistically expected end-to-end system performance, given the
observed input data. Although there are many specific decision criteria (ML, AIC, BIC,. . . ), the
key issue is always thebias of over-restrictive models versus thevariability of over-general ones
with superfluous parameters poorly controlled by the data. Any model selection approach requires
several models to be fitted so that the best can be chosen. Some of the models must always be
inappropriate — either biased or highly variable — so fast, reliable, accurate fitting in difficult
cases is indispensable for practical model selection.

Terminology and notation: We use homogeneous coordinates throughout, with upright bold
for 3D quantities and italic bold for image ones. Image projections are described by3× 4 perspec-
tive projection matrices P , with specialized forms for calibrated or very distant cameras. Given
m images of a static scene, our goal is to recover as much information as possible about the camera
calibrations and poses, using only image measurements. We will call the recoverable information
the inter-image geometry to emphasize that no explicit 3D structure is involved. The ensemble of
projection matrices is defined only up to a 3D coordinate transformation (projectivity or similarity)
T: (P1, . . . ,Pm) → (P1T, . . . ,PmT). We call such coordinate freedomsgauge freedoms. So
our first representation of the inter-image geometry is asprojection matrices modulo a transfor-
mation group. In the uncalibrated case this gives an11m parameter representation with15 gauge
freedoms, leaving11m − 15 essential d.o.f. (= 7, 18, 29 for m = 2, 3, 4). In the calibrated case
there are6m− 7 essential degrees of freedom.

Any set of four (perhaps not distinct) projection matrices can be combined to form amatch-
ing tensor [14, 5] — a multi-image object independent of the 3D coordinates. The possible
types are:epipoleseji ; 3 × 3 fundamental matrices Fij ; 3 × 3 × 3 trifocal tensors Gjk

i ; and
3 × 3 × 3 × 3 quadrifocal tensors H ijkl. Their key property is that they are the coefficients
of inter-imagematching constraints — the consistency relations linking corresponding features
in different images.E.g., for imagesx ,x ′,x ′′ of a 3D point we have the 2-imageepipolar con-
straint x TF x ′ = 0; the 3-imagetrinocular constraint which can be written symbolically as
[ x ′ ]×(G · x ) [ x ′′ ]× = 0 where[ x ]× is the matrix generating the cross product[ x ]×y ≡ x ∧ y ;
and a 4-imagequadrinocular constraint . The matching tensors also characterize the inter-image
geometry. This is attractive because they are intimately connected to the image measurements —
it is much easier to get linearized initial estimates of matching tensors than of projection matrices.
Unfortunately, this linearity is deceptive. Matching tensors are not really linear objects: they only
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represent a valid, realizable inter-image geometry if they satisfy a set of nonlinear algebraicconsis-
tency constraints. These rapidly become intractable beyond 2–3 images, and are still only partially
understood [4, 14, 5, 9, 6]. Our second parametrization of the inter-image geometry is asmatching
tensors subject to consistency constraints.

We emphasize that camera matrices or matching tensors are only a means to an end: it is the
underlying inter-image geometry that we are really trying to estimate. Unfortunately, this is abstract
and somewhat difficult to pin down because it is anontrivial algebraic variety — thereare no
simple, minimal, global parametrizations.

2 Optimal Geometric Fitting

2.1 Direct Approach

Matching constraint estimation is an instance of anabstract geometric fitting problem which
also includes curve and surface fitting and many other geometric estimation problems: estimate the
parameters of a modelu defining implicit constraintsci(xi,u) = 0 on underlying featuresxi, from
noisy measurements of the features. More specifically we assume:

1. There are unknowntrue underlying features xi and an unknowntrue underlying model
u which exactly satisfy implicitmodel-feature consistency constraintsci(xi,u) = 0. (For
matching constraint estimation, these ‘features’ are actually ensembles of several correspond-
ing image ones).

2. Each underlying featurexi is linked to observationsxi or other prior information by an
additiveposterior statistical error measure ρi(xi) ≡ ρi(xi |xi). For example,ρi might
be (robustified, bias corrected)posterior log likelihood . There may also be amodel prior
ρprior(u). These distributions are independent.

3. The model parametrizationu may itself be complex,e.g.with internal constraintsk(u) = 0,
gauge freedoms,etc.

4. We want to findoptimal consistent point estimates(x̂i, û) of the true underlying modelu
and featuresxi

(x̂i, . . . , û) ≡ arg min

(
ρprior(u) +

∑
i

ρi(xi|xi)
∣∣∣∣ ci(xi,u) = 0, k(u) = 0

)
Consistent means that(x̂i, û) exactly satisfy all the constraints.Optimal means that they
minimize the total error over all such estimates.Point estimatemeans that we are attempting
to “summarize” the joint posterior distributionρ(xi, . . . ,u|xi, . . . ) with just the few numbers
(x̂i, . . . , û).

We call this thedirect approach to geometric fitting because it involves direct numerical optimiza-
tion over the “natural” variables(xi,u). Its most important characteristics are: (i) It gives exact,
optimal results — no approximations are involved. (ii ) It produces optimal consistent estimatesx̂i
of the underlying featuresxi. These are useful whenever the measurements need to be made coher-
ent with the model. For matching constraint estimation such feature estimates are “pre-triangulated”
or “implicitly reconstructed” in that they have already been made exactly consistent with exactly
one reconstructed 3D feature. (iii ) Natural variables are used and the error function is relatively
simple, typically just a sum of (robustified, covariance weighted) squared deviations‖xi − xi‖2.
(iv) However, a sparse constrained nonlinear optimization routine is required: the problem is large,
constrained and usually nonlinear, but the features couple only to the model, not to each other.
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As an example, for the uncalibrated epipolar geometry: the “features” are pairs of correspond-
ing underlying image points(xi,x ′i ); the “model” u is the fundamental matrixF subject to the
consistency constraintdet(F ) = 0; the “model-feature constraints” are the epipolar constraints
x T
i F x ′i = 0; and the “feature error model”ρi(xi) might be (a robustified, covariance-weighted

variant of) the squared feature-observation distance‖x − x‖2 + ‖x ′ − x ′‖2.

2.2 Reduced Approach

If explicit estimates of the underlying features are not required, one can attempt to replace step 4
above with an optimization overu alone:

4′. Find anoptimal consistent point estimateû of the true underlying modelu

û ≡ arg min

(
ρprior(u) +

∑
i

ρi(u|xi)
∣∣∣∣ k(u) = 0

)

Here, thereduced error functions ρi(u|xi) are obtained by freezingu and eliminating the
unknown features from the problem using either: (i) point estimates

xi(xi,u) ≡ arg min (ρi(xi|xi) | ci(xi,u) = 0)

of xi givenxi andu, with ρi(u|xi) ≡ ρi(xi(xi,u)|xi); or (ii ) marginalization with respect toxi:
ρi(u|xi) ≡

∫
ci(xi,u)=0 ρi(xi|xi) dxi. These two methods are not equivalent in general, although

their answers happen to agree in the linear/Gaussian limit. But both represent reasonable estimation
techniques.

We call this thereduced approach to geometric fitting, because the problem isreduced to
one involving only the model parametersu. The main advantage is that the optimization is over
relatively few variablesu. The constraintsci do not appear, so a non-sparse and (perhaps) uncon-
strained optimization routine can be used. The disadvantage is that the reduced costρ(u) is seldom
available in closed form. Usually, it can only be evaluated to first order in a linearized + central
distribution approximation. In fact, the direct method (withu frozen, and perhaps limited to a sin-
gle iteration) is often the easiest way to evaluate the point-estimate-based reduced cost. The only
real difference is that the direct method explicitly calculates and applies feature updatesdxi, while
the reduced method restarts each time fromxi ≡ xi. But the feature updates are relatively easy to
calculate given the factorizations needed for cost evaluation, so it seems a pity not to use them.

The first order reduced cost can be estimated in two ways, either (i) directly from the definition
by projectingxi Mahalanobis-orthogonally onto the local first-order constraint surfaceci + dci

dxi
·

dxi = 0; or (ii ) by treatingci ≡ ci(xi,u) as a random variable, using covariance propagation
w.r.t. xi to find its covariance, and calculating theχ2-like variablecT

iCov(ci)−1ci. In either case
we obtain thegradient weighted least squarescost function1 [13]

ρ(u) =
∑
i

cT
i

(
dci
dxi

(
d2ρi
dx2

i

)−1
dci
dxi

T
)−1

ci

∣∣∣∣
(xi,u)

This is simplest for problems with scalar constraints.E.g. for the uncalibrated epipolar constraint
we get the well-known form [10]

ρ(u) =
∑
i

(x T
i F x ′i)

2

x T
i F Cov(x ′i) F T x i + x ′i

T F T Cov(x i) F x ′i

1If any of the covariance matrices is singular (which happens for redundant constraints or homogeneous dataxi), the
matrix inverses can be replaced with pseudo-inverses.
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2.3 Robustification — Total Distribution Approach

Outliers are omnipresent in vision data and it is essential to protect against them. In general, they
are distinguished only by their failure to agree with the consensus established by the inliers, so
one should really think in terms ofinlier or coherencedetection. The hardest part is establishing
a reliable initial estimate,i.e. the combinatorial problem of finding enough inliers to estimate the
model, without being able to tell in advance that theyare inliers. Exhaustive enumeration is usually
impracticable, so one falls back on either RANSAC-like random sampling or (in low dimensions)
Hough-like voting. Initialization from an outlier-polluted linear estimate is seldom completely
reliable.

Among the many approaches to robustness, I prefer M-like estimators and particularly thetotal
distribution approach: hypothesize a parametric form for thetotal observation distribution —
i.e. including both inliers and outliers — and fit this to the data using some standard criterion,
e.g.maximum likelihood. No explicit inlier/outlier decision is needed: the correct model is located
simply because it provides an explanation more probable than randomness for the coherence of
the inliers2. The total approach is really just classical parametric statistics with a more realistic
or “robust” choice of parametric family. Any required distribution parameters can in principle be
estimated during fitting (e.g.covariances, outlier densities). For centrally peaked mixtures one can
view the total distribution as a kind of M-estimator, although it long predates these and gives a much
clearer meaning to the rather arbitrary functional forms usually adopted for them. As with other M-
like-estimators, the estimation problem is nonlinear and numerical optimization is required. With
this approach, both of the above geometric fitting methods are ‘naturally’ robust — we just need to
use an appropriate total likelihood.

Reasons for preferring M-like estimators over trimmed ones like RANSAC’s consensus and
rank-based ones like least median squares include: (i) to the extent that the total distribution is
realistic, the total approach is actually the statistically optimal one; (ii ) only M-like cost functions
are smooth and hence easy to optimize; (iii ) the ‘soft’ transitions of M-like estimators allow better
use of weak ‘near outlier’ data,e.g.points which are relatively uncertain owing to feature extraction
problems, or “false outliers” caused by misestimated covariances or a skewed, biased, or badly
initialized model; (iv) including an explicit covariance scale makes the results more reliable and
increases theexpectedbreakdown point — ‘scale free’ rank based estimators can not tell whether
the measurements they are including are “plausible” or not; (v) all of these estimators assume an
underlying ranking of errors ‘by relative size’, and none are robust against mismodelling of this
— rank based estimators only add a little extra robustness against the likelihoodvs. error size
assignment.

3 Parametrizing the Inter-image Geometry

As discussed above, what we are really trying to estimate is theinter-image geometry — the
part of the multi-camera calibration and pose that is recoverable from image measurements alone.
However, this is described by a nontrivial algebraic variety — it hasno simple, minimal, concrete,
global parametrization. For example, the uncalibrated epipolar geometry is “the variety of all ho-
mographic mappings between line pencils in the plane”, but it is unclear how best to parametrize
this. We will consider three general parametrization strategies for algebraic varieties: (i) redundant
parametrizations with internal gauge freedoms; (ii ) redundant parametrizations with internal con-
straints; (iii ) overlapping local coordinate patches.Mathematicallythese are all equivalent — they
only differ in relative convenience and numerical properties. Different methods are convenient for

2If the total distribution happens to be an inlier/outliermixture — e.g. Gaussian peak + uniform background —
posterior inlier/outlier probabilities are easily extracted as a side effect.
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different uses, so it is important to be able to convert between them. Even the numerical differences
are slight for strong geometries and careful implementations, but for weak geometries there can be
significant differences.

3.1 Redundant Parametrizations with Gauge Freedom

In many geometric problems,arbitrary choices of coordinatesare required to reduce the problem
to a concrete algebraic form. Such choices are calledgauge freedoms— ‘gauge’ just means
coordinate system. They are associated with an internalsymmetry or coordinate transformation
group and its representations. Formulae expressed in gauged coordinates reflect the symmetry by
obeying well-defined transformation rules under changes of coordinates,i.e. by belonging to well-
defined group representations. 3D Cartesian coordinates are a familiar example: the gauge group is
the group of rigid motions, and the representations are (roughly speaking) Cartesian tensors.

Common gauge freedoms include: (i) 3D projective or Euclidean coordinate freedoms in re-
construction and projection-matrix-based camera parametrizations; (ii ) arbitrary homogeneous-
projective scale factors; and (iii ) choice-of-plane freedoms inhomographic parametrizations of
the inter-image geometry. These latter represent matching tensors as products of epipoles and inter-
image homographies induced by an arbitrary 3D plane. The gauge freedom is the 3 d.o.f. choice of
plane. The fundamental matrix can be written asF ' [ e ]×H wheree is the epipole andH is
any inter-image homography [11, 3]. Redefining the 3D plane changesH to H + e a T for some
image line 3-vectora . This leavesF unchanged, as do rescalingse → λe , H → µH . So there
are3+1+1 gauge freedoms in the3+3×3 = 12 variable parametrizationF ' F (e ,H ), leaving
the correct12− 5 = 7 degrees of freedom of the uncalibrated epipolar geometry. Similarly [8], the
image(1, 2, 3) trifocal tensorG can be written in terms of the epipoles(e ′, e ′′) and inter-image
homographies(H ′,H ′′) of image 1 in images 2 and 3

G ' e ′ ⊗H ′′ −H ′ ⊗ e ′′ with freedom
(

H ′
H ′′
)
→
(

H ′
H ′′
)

+
(

e ′
e ′′
)

a T

The gauge freedom corresponds to the choice of 3D plane and 3 scale d.o.f. — the relative scaling
of (e ′,H ′) vs. (e ′′,H ′′) being significant — so the 18 d.o.f. of the uncalibrated trifocal geometry
are parametrized by3 + 3 + 9 + 9 = 24 parameters modulo3 + 1 + 1 + 1 = 6 gauge freedoms.
For calibrated cameras it is useful to place the 3D plane at infinity so that the resulting absolute
homographies are represented by3×3 rotation matrices. This gives well-known 6 and 12 parameter
representations of the calibrated epipolar and trifocal geometries, each with just one redundant scale
d.o.f.: E ' [ e ]×R, G ' e ′⊗R′′−R′⊗e ′′. All of these homography + epipole parametrizations
can also be viewed as projection matrix based ones, in a 3D frame where the first projection takes
the form(I3×3|0 ). The plane position freedoma corresponds to the 3 remaining d.o.f. of the 3D
projective frame [8]. These methods seem to be a good compromise: compared to ‘free’ projections,
they reduce the number of extraneous d.o.f. from 15 to 3. However their numerical stability does
depend on that of the key image.

Gauged parametrizations have the following advantages: (i) they are very natural when the
inter-image geometry is derived from the 3D one; (ii ) they are close to the underlying geometry,
so it is relatively easy to derive further properties from them (projection matrices, reconstruction
methods, matching tensors); (iii ) a single homogeneous coordinate system covers the whole variety;
(iv) they are numerically fairly stable. Their main disadvantage is that they include extraneous,
strictly irrelevant degrees of freedom which have no effect at all on the residual error. Hence,
gauged Jacobians are exactly rank deficient: specially stabilized numerical methods are needed to
handle them. The additional variables and stabilization also tend to make gauged parametrizations
slow.
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3.2 Constrained Parametrizations

Another way to define a variety is in terms ofconsistency constraintsthat “cut the variety out
of” a larger, usually linear space. Any coordinate system in the larger space then parametrizes
the variety, but this is an over-parametrization subject to nonlinear constraints. Points which fail
to satisfy the constraints have no meaning in terms of the variety.Matching tensors are the most
familiar example. In the 2- and 3-image cases a single fundamental matrix or trifocal tensor suffices
to characterize the inter-image geometry. But this is a linear over-parametrization, subject to the
tensor’s nonlinear consistency constraints — only so is a coherent, realizable inter-image geometry
represented. Such parametrizations are valuable because they are close to the image data, and (in-
consistent!) linear initial estimates of the tensors are easy to obtain. Their main disadvantages are:
(i) the consistency conditions rapidly become complicated and non-obvious; (ii ) the representation
is only implicit — it is not immediately obvious how to go from the tensor to other properties of
the geometry such as projection matrices. The first problem is serious and puts severe limitations
on the use of (ensembles of) matching tensors to represent camera geometries, even in transfer-type
applications where explicit projection matrices are not required. Three images seems to be about the
practical limit if a guaranteed-consistent geometry is required, although — at the peril of a build-up
of rounding error — one can chain together a series of such three image solutions [12, 15, 1].

For the fundamental matrix the codimension is 1 and the consistency constraint isdet(F ) = 0
— this is perhaps the simplest of all representations of the uncalibrated epipolar geometry. For the
essential matrixE the codimension is 3, spanned either by the requirement thatE should have two
equal (which counts for 2) and one zero singular values, or by a local choice of 3 of the 9 Demazure
constraints(EE T − 1

2 trace(EE T)) E = 0 [4]. For the uncalibrated trifocal tensorG we locally
need26− 18 = 8 linearly independent constraints. Locally (only!) these can be spanned by the 10
determinantal constraintsd

3

dx3 det(G ·x) = 0 — see [6] for several global sets. For the quadrifocal
tensorH the codimension is80 − 29 = 51 which is locally (but almost certainly not globally)
spanned by the3! · 3 · 3 = 54 determinantal constraintsdetij(H ijkl) = 0 + permutations.

Note that the redundancy and complexity of the matching tensor representation rises rapidly as
more images or calibration constraints are added. Also,constraint redundancy is common. Many
algebraic varieties require a number of generators greater than their codimension. Intersections
of the minimal number of polynomialslocally give the correct variety, but typically have other,
unwanted components elsewhere in the space. Extra polynomials must be included to suppress
these, and it rapidly becomes difficult to say which sets of polynomials are globally sufficient.

3.3 Local Coordinate Patches / Minimal Parametrizations

Both gauged and constrained parametrizations are redundant and require specialized numerical
methods. Why not simplify life by using aminimal set of independent parameters? — The
basic problem is that no such parametrization can cover the whole of a topologically nontrivial
variety without singularities. Minimal parametrizations are intrinsicallylocal: to cover the whole
variety we need several such partially overlapping ‘local coordinate patches’, and also code to select
the appropriate patch and manage any inter-patch transitions that occur. This can greatly complicate
the optimization loop.

Also, although infinitely many local parametrizations exist, they are not usually very ‘natural’
and finding one with good properties may not be easy. Basically, starting from some ‘natural’
redundant representation, we must either come up with some inspired nonlinear change of variables
which locally removes the redundancy, or algebraically eliminate variables by brute force using
consistency or gauge fixing constraints. For example, Luonget al [10] guaranteedet(F ) = 0
by writing each row of the fundamental matrix as a linear combination of the other two. Each
parametrization fails when its two rows are linearly dependent, but the three of them suffice to
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cover the whole variety. In more complicated situations, intuition fails and we have to fall back on
algebraic elimination, which rapidly leads to intractable results. Elimination-based parametrizations
are usually highly anisotropic: they do not respect the symmetries of the underlying geometry. This
tends to mean that they are messy to implement, and numerically ill-behaved, particularly near the
patch boundaries.

The above comments apply only toalgebraically derived parametrizations. Many of the nu-
merical techniques for gauged or constrained problems eliminate redundant variablesnumerically
to first order, using the constraint Jacobians. Such local parametrizations are much better behaved
because they are always used at the centre of their valid region, and because stabilizing techniques
like pivoting can be used.It is usually preferable to eliminate variables locally and numerically
rather than algebraically.

4 Library Architecture and Numerical Methods

The library is designed to be modular so that different problems and approaches are easy to im-
plement and compare. We separate: (i) the matching geometry type and parametrization; (ii ) each
contributing feature-group type, parametrization and error model; (iii ) the numerical optimization
method, and its associated linear algebra; (iv) the search controller (step acceptance and damping,
convergence tests). This decomposition puts some constraints on the types of algorithms that can
be implemented, but these do not seem to be too severe in practice. Modularization also greatly
simplifies the implementation.

Perhaps the most important assumption is the adoption throughout of a “square root” or nor-
malized residual vector based framework, and the associated use of Gauss-Newton techniques.
Normalized residual vectorsare quantitiesei for which the squared norm‖ei‖2 — or more gen-
erally a robust, nonlinear functionρi(‖ei‖2) — is a meaningful statistical error measure.E.g.

ei(xi) ≡ Cov(xi)
− 1

2 (xi − xi). This allows a nonlinear-least-squares-like approach. Whenever
possible, we work directly with the residuale and its Jacobiande

dx rather than with‖e‖2, its gra-

dient d(‖e‖2)
dx = eT de

dx and its Hessiand
2(‖e‖2)
dx2 = eT d2e

dx2 + de
dx

T de
dx . We use theGauss-Newton

approximation , i.e. we discard the second derivative termeT d2e
dx2 in the Hessian. This buys us

simplicity (no second derivatives are needed) and also numerical stability because we can use sta-
ble linear least squaresmethods for step prediction: by default we useQR decomposition with
column pivoting of de

dx , rather than Cholesky decomposition of the normal matrixde
dx

T de
dx . This is

potentially slightly slower, but for ill-conditioned Jacobians it has much better resistance to round-
ing error. (The default implementation is intended for use as a reference, so it is deliberately rather
conservative). The main disadvantage of Gauss-Newton is that convergence may be slow if the
problem has bothlarge residualandstrong nonlinearity— i.e. if the ignored Hessian termeT d2e

dx2

is large. However,geometric vision problems usually have small residuals— the noise is usually
much smaller than the scale of the geometric nonlinearities.

4.1 Numerical Methods for Gauge Freedom

The basic numerical difficulty with gauge freedom is that because gauge motions represent exact
redundancies that have no effect at all on the residual error, in a classical optimization framework
there is nothing to say what they should be: the error gradient and Hessian in a gauge direction both
vanish, so the Newton step is undefined. If left undamped, this leads tolarge gauge fluctuations
which can destabilize the rest of the system, prevent convergence tests from operating,etc. There
are two ways around this problem:
1. Gauge fixing conditionsbreak the degeneracy by addingartificial constraints . Unless we are
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clever enough to choose constraints that eliminate variables in closed form, this reduces the problem
to constrained optimization. The constraints are necessarily non-gauge-invariant,i.e. non-tensorial
under the gauge group. For example, to fix the 3D projective coordinate freedom, Hartley [8] sets
P1 ≡ (I3×3|0 ) and

∑
i e

iH i
j = 0 whereP2 = (H |e). Neither of these constraints is tensorial —

the results depend on the chosen image coordinates.
2. Free gauge methods— like photogrammetricfree bundle ones — leave the gauge free to
drift, but ensure that it does not move too far at each step. Typically, it is also monitored and
reset “by hand” when necessary to ensure good conditioning. The basic tools arerank deficient
least squaresmethods (e.g. [2]). These embody some form of damping to preclude large fluctu-
ations in near-deficient directions. The popularregularization method minimizes‖residual‖2 +
λ2‖step size‖2 for some smallλ > 0 — an approach that fits very well with Levenberg-Marquardt-
like search control schemes. Alternatively, abasic solution— a solution where certain uncontrolled
components are set to zero — can be calculated from a standard pivoted QR or Cholesky decom-
position, simply by ignoring the last few (degenerate) columns. One can also find vectors spanning
the local gauge directions and treat them as ‘virtual constraints’ with zero residual, so that the gauge
motion is locally zeroed.Householder reduction, which orthogonalizes the rows ofde

dx w.r.t. the
gauge matrix by partial QR decomposition, is a nice example of this.

4.2 Numerical Methods for Constrained Optimization

There are at least three ways to handle linear constraints numerically: (i) eliminate variables using
the constraint Jacobian; (ii ) introduceLagrange multipliers and solve for these too; (iii ) weighting
methods treat the constraints as heavily weighted residual errors. Each method has many variants,
depending on the matrix factorization used, the ordering of operations,etc. As a rough rule of
thumb, for dense problems variable elimination is the fastest and stablest method, but also the most
complex. Lagrange multipliers are slower because there are more variables. Weighting is simple,
but slow and inexact — stable orthogonal decompositions are needed as weighted problems are
ill-conditioned.

For efficiency, direct geometric fitting requires a sparse implementation — the features couple
to the model, but not to each other. The above methods all extend to sparse problems, but the
implementation complexity increases by about one order of magnitude in each case. My initial
implementation [16] used Lagrange multipliers and Cholesky decomposition, but I currently prefer
a stabler, faster ‘multifrontal QR’ elimination method. There is no space for full details here, but it
works roughly as follows (NB: the implementation orders the steps differently for efficiency): For
each constrained system, the constraint Jacobiandc

dx is factorized and the results are propagated to
the error Jacobiande

dx . This eliminates thedim(c) variables best controlled by the constraints from
de
dx , leaving a ‘reduced’dim(e) × (dim(x) − dim(c)) least squares problem. Many factorization
methods can be used for the elimination and the reduced problem. I currently use column pivoted
QR decomposition for both, which means that the elimination step is essentially Gaussian elimina-
tion. All this is done for each feature system. The elimination also carries thedc

du columns into the
reduced system. The residual error of the reduced system can not be reduced by changingx, but
it is affected by changes inu acting via these reduceddc

du columns, which thus give contributions

to an effective reduced error Jacobiande(u)
du for the modelu. (This is the reduced geometric fit-

ting method’s error function). The resulting model system is reduced against any model constraints
and factorized by pivoted QR. Back-substitution through the various stages then gives the required
model update and finally the feature updates.
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4.3 Search Control

All of the above techniques are linear. For nonlinear problems they must be used in a loop with
appropriate step damping and search control strategies. This has been an unexpectedly troublesome
part of the implementation — there seems to be a lack of efficient, reliable search control heuristics
for constrained optimization. The basic problem is that the dual goals of reducing the constraint
violation and reducing the residual error often conflict, and it is difficult to find a compromise that is
good in all circumstances. Traditionally, apenalty function [7] is used, but all such methods have a
‘stiffness’ parameter which is difficult to set — too weak and the constraints are violated, too strong
and the motion along the constraints towards the cost minimum is slowed. Currently, rather than
a strict penalty function, I use a heuristic designed to allow a reasonable amount of ‘slop’ during
motions along the constraints. The residual/constraint conflict also affectsstep damping — the
control of step length to ensure acceptable progress. The principle of atrust region — a dynamic
local region of the search space where the local function approximations are thought to hold good —
applies, but interacts badly withquadratic programming based step prediction routines which try
to satisfy the constraints exactly no matter how far away they are. Existing heuristics for this seemed
to be poor, so I have developed a new ‘dual control’ strategy which damps the towards-constraint
and along-constraint parts of the step separately using two Levenberg-Marquardt parameters linked
to the same trust region.

Another difficulty isconstraint redundancy. Many algebraic varieties require a number of
generators greater than their codimension to eliminate spurious components elsewhere in the space.
The corresponding constraint Jacobians theoretically have rank= codimension on the variety,
but usually rank> codimension away from it. Numerically, a reasonably complete and well-
conditioned set of generators is advisable to reduce the possibility of convergence to spurious solu-
tions, but the high degree of rank degeneracy on the variety, and the rank transition as we approach
it, are numerically troublesome. Currently, my only effective way to handle this is to assume known
codimensionr and numerically project out and enforce only ther strongest constraints at each it-
eration. This is straightforward to do during the constraint factorization step, oncer is known.
As examples: the trifocal point constraints[ x ′ ]×(G · x )[ x ′′ ]× = 0 have rank 4 in(x ,x ′,x ′′)
for most invalid tensors, but only rank 3 for valid ones; and the trifocal consistency constraints
d3

dx3 det(G · x ) = 0 have rank 10 for most invalid tensors, but only rank 8 for valid ones. In both
cases, overestimating the rank causes severe ill-conditioning.

4.4 Robustification

We assume that each feature has acentral robust cost functionρi(xi) ≡ ρi(‖ei(xi)‖2) defined
in terms of a covariance-weightednormalized residual error ei(xi) ≡ ei(xi|xi). This defines
the ‘granularity’ — entire ‘features’ (for matching constraints, ensembles of corresponding image
features) are robustified, not their individual components. The robust costρi is usually some M-
estimator, often a total log likelihood. For a uniform-outlier-polluted Gaussian it has the form
ρ(z) ≡ −2 log

(
e−z/2 + β

)
, whereβ is related to outlier density. Typically,ρ(z) is linear near

0, monotonic but sublinear forz > 0 and tends to a constant atz → ∞ if distant outliers have
vanishing influence. Hence,ρ′ ≡ dρ

dz decreases monotonically to0 andρ′′ ≡ d2ρ
dz2 is negative.

Robustification can lead to numerical problems, so care is needed. Firstly, since the cost is
often nonconvex for outlying points, strong regularization may be required to guarantee a positive
Hessian and hence a cost reducing step. This can slow convergence. To partially compensate for this
curvature, and to allow us to use a ‘na¨ıve’ Gauss-Newton step calculation while still accounting for
robustness, we define a weighted, rank-one-correctedeffective residual ẽ ≡

√
ρ′

1−αe andeffective

Jacobian d̃e
dx ≡

√
ρ′ (I− α

‖e‖2 e eT) de
dx whereα ≡ RootOf(1

2α
2 − α− ρ′′

ρ′ ‖e‖2). These definitions
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Figure 1: Ground feature residuals for strong and near-coplanar epipolar geometries.

ensure that to second order inρ anddx and up to an irrelevant constant, the true robust costρ(‖e +
de
dxdx‖2) is the same as the na¨ıve effective squared error‖ẽ + d̃e

dxdx‖2. I.e. the same stepdx
is generated, so if we use effective quantities, we need think no further about robustness3. Here
the
√
ρ′ weighting is the first order correction, and theα terms are the second order one. Usually

ρ′ → 0 for distant outliers. Since the whole feature system is scaled by
√
ρ′, this might cause

numerical conditioning or scaling problems in the direct method. To avoid this, we actually apply
the
√
ρ′-weighting at the last possible moment — the contribution of the feature to the model error

— and leave the feature systems themselves unweighted.

5 Measuring Performance

We currently test mainly on synthetic data, to allow systematic comparisons over a wide range of
problems. We are particularly concerned with verifying theoretical statistical performance bounds,
as these are the best guarantee that we are doing as well as could reasonably be expected. Any
tendency to return occasional outliers is suspect and needs to be investigated. Histograms of the
ground-truth-feature residual (GFR) have proven particularly useful for this. These plot fre-
quencyvs. size of the total squared deviation of theground truthvalues of the noisy features used
in the estimate, from the estimated matching relations. This measures howconsistentthe estimated
geometry is with the underlying noise-free features. For weak feature sets the geometry might still
be far from the true one, but consistency is the most we can expect given the data. In the linear
approximation the GFR isχ2

ν distributed for any sufficient model and number of features, whereν
is the number of d.o.f. of the underlying inter-image geometry. This makes GFR easy to test and
very sensitive to residual biases and oversized errors, as these are typically proportional to the num-
ber of featuresn and hence easily seen against the fixedχ2

ν background forn � ν. For example,
fig.1 shows GFR histograms for the 7 d.o.f. uncalibrated epipolar geometry for direct and reduced
F -matrix estimators and strong and weak (1% non-coplanar) feature sets. For the strong geometry
both methods agree perfectly with the theoreticalχ2

7 distribution without any sign of outliers, so
both methods do as well as could be hoped. This holds for any number of points from 9 to 1000 —
the estimated geometry (error per point) becomes more accurate, but the total GFR error stays con-
stant. For the weak geometry both methods do significantly worse than the theoretical limit — in
fact they turn out to have a small but roughly constant residual errorper pointrather than in total —
with the direct method being somewhat better than the reduced one. We are currently investigating
this: in theory it should be possible to get near the limit, even for exactly singular geometries.

3If ρ′′

ρ′ ‖e‖
2 < − 1

2
the robust Hessian has negative curvature and there is no real solution forα. In practice we limit

α < 1 − ε to prevent too much ill-conditioning. We would have had to regularize this case away anyway, so nothing is
lost.
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6 Summary

We have described work in progress on a generic, modular library for the optimal nonlinear estima-
tion of matching constraints, discussing especially the overall approach, parametrization and numer-
ical optimization issues. The library will cover many different constraint types & parametrizations
and feature types & error models in a uniform framework. It aims to be efficient and stable even
in near-degenerate cases,e.g. so that it can be used reliably for model selection. Several fairly
sophisticated numerical methods are included, including a sparse constrained optimization method
designed fordirect geometric fitting . Future work will concentrate mainly on (i) implementing and
comparing different constraint types and parametrizations, feature types, and numerical resolution
methods; and (ii ) improving the reliability of the initialization and optimization stages, especially
in near-degenerate cases.
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Abstract

We introduce a finite difference expansion for closely
spaced cameras in projective vision, and use it to derive
differential analogues of the finite-displacement projec-
tive matching tensors and constraints. The results are
simpler, more general and easier to use thanÅström &
Heyden’s time-derivative based ‘continuous time match-
ing constraints’. We suggest how to use the formalism
for ‘tensor tracking’ — propagation of matching relations
against a fixed base image along an image sequence. We
relate this to nonlinear tensor estimators and show how
‘unwrapping the optimization loop’ along the sequence
allows simple ‘linearn point’ update estimates to con-
verge rapidly to statistically near-optimal, near-consistent
tensor estimates as the sequence proceeds. We also give
guidelines as to when difference expansion is likely to be
worthwhile as compared to a discrete approach.

Keywords: Matching Constraints, Matching Tensors,
Image Sequences, Tensor Tracking, Difference Expan-
sion.

1 Introduction

This paper studiesdifferential matching con-
straints — limiting forms of ordinary multi-image
matching constraints [5, 7, 8, 12, 15], when some
of the image projections nearly coincide. We intro-
duce a finite difference based formalism that is easy
to use and covers most aspects of projective multi-
image geometry: matching constraints and tensors,
feature transfer, reconstruction. Modulo suitable im-
age rectification (fixation, dominant plane stabiliza-
tion [9, 10]), the results extend to allsmall trans-
lation geometries,i.e. whenever some of the cam-
era centres are near-coincident on the scale of the
scene. For convenience we will often express results
in terms of feature displacements (‘flow’). But this

This paper appeared in ICCV’99. The work was supported by
Esprit LTR project CUMULI. I would like to thank P. Anandan
and T. Viéville for useful discussions.

is largely cosmetic: feature positions could equally
well be used. Our method spans the gap between
infinitesimal [17, 2] and discrete approaches: only
someof the cameras need coincide and our differ-
ence expansions are short, finite polynomials not in-
finite Taylor series.

This section gives motivation and previous work,
§2 reviews discrete matching constraints,§3 reviews
and critiquesÅström & Heyden’s differential ap-
proach,§4 introduces our difference formalism and
differential matching tensors,§5 derives various dif-
ferential matching constraints, and§6 summarizes
and concludes.

Motivation: Theoretically, “nothing is gained”
by a differential approach: the same underlying ge-
ometric constraints and image error models apply
in both differential and discrete approaches. How-
ever, small displacements are practically common
(e.g. video sequences) and have special properties
that make purpose-built methods desirable:
(+) Feature correspondenceis much easier so
more data is available, especially with region based
(‘direct’, ‘least squares’, ‘intensity based’) ap-
proaches.
(+) Differential problems are oftenless nonlinear
than discrete ones, as nonlinear geometry (rotations,
calibration, matching tensor consistency) can be lo-
cally linearized and included in the initial linear es-
timation for improved stability. Simpler models can
be used, and local minima may be less of a problem.
(−) Small motion linearization is only anapprox-
imation. It has limited validity and introduces
bias/truncation error.
(−) The additional correspondences are often oflow
quality: they may add a lot of computation but rela-
tively little precision.
(−) Signal-to-noise ratiois lower with small mo-
tion, so fewer parameters can be estimated accu-
rately (e.g. SFM, perspective) and error modelling

61
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is more critical: bias, outliers, linearization error.
Given that geometric constraints are known to

improve robustness and efficiency even for small
motion (c.f. ‘Geometrically Constrained Multiphoto
Matching’ [3]), it seems worthwhile to develop the
matching constraint formalism in this direction. We
will also link our differential matching constraints
to the local linearization used in nonlinear estima-
tors for the discrete case, so a better understand-
ing of differential case may lead to better estima-
tors for the discrete one. Another motivation was to
develop routines formatching constraint tracking,
i.e.updating the matching geometry along an image
sequence from linear change estimates, rather than
wastefully recalculating it from scratch each time, or
using the image tracks only to get correspondences
between the two widely-spaced end images.

Previous Work: There are many papers on all
aspects of optical flow — see [4] for references —
but here we will focus on differential analogues of
theuncalibrateddiscrete matching constraints. The
key contributions on this are by Vi´eville & Faugeras
[16, 17] for the two image case andÅström & Hey-
den [1, 2] for the multi-image one. We will return to
the Åström-Heyden approach below. Other related
work includes [13, 6, 14].

2 Discrete Matching Constraints

In homogeneous coordinates, imagei has3× 4 pro-
jection matrixPi. The imagexi of a 3D pointX
is λi xi = Pi X. The scale factorsλi are called
projective depths. Gatherm image projections ofX
into a big3m× (4 +m) matrix [15]:

P1 x1 0 · · · 0
P2 0 x2 · · · 0
...

...
. . .

...
Pm 0 0 · · · xm




X
−λ1

...
−λm

 = 0 (1)

As there is a solution, the matrix has rank≤ 3 +m,
i.e.all of its (4 +m)× (4 +m) minors must vanish.
Expanding and simplifying gives ‘epipolar’, ‘trifo-
cal’ and ‘quadrifocal’multi-image matching con-
straints linking corresponding pointsxi in 2,3,4 im-
ages. Similar constraints exist for 3 images of a line
and for 2 images of a line plus 1 image of a point
on it. Each constraint is multilinear in the 2–4 im-
age features involved, with coefficients that are4×4

determinants built from 4 rows taken from 2–4 pro-
jection matrices. The determinants can be arranged
into 4 types ofmatching tensor1, depending on how
many rows are taken from each image. It will be
useful to view the tensors as multi-index, multilin-
ear forms in the components of 4 (possibly repeated)
projection matrices. Symbolically:

e2
1 ≡ e(1, 1, 1, 2) epipole

F12 ≡ F(1, 1, 2, 2) fundamental matrix

T 23
1 ≡ T(1, 1, 2, 3) trifocal tensor

Q1234 ≡ Q(1, 2, 3, 4) quadrifocal tensor

(2)

where,e.g.F(1, 1′, 2, 2′) stands for a3×3-matrix-
valued quadrilinear formF(P1,P′1,P2,P′2) in the
four projection matricesP1,P′1,P2,P′2, and the
fundamental matrixF12(P1,P2) is the result of sub-
stituting P′1 = P1 and P′2 = P2 into this. As
multilinear forms in four projections, the compo-
nents ofe(·),F(·),T(·) are simple, fixed linear com-
binations2 of those ofQ(·). When their arguments
are repeated as shown above,e(·),F(·),T(·) contain
exactly the same information as the corresponding
version of Q(·), in a more compact, easier-to-use
form. Even when the arguments are not repeated,
e(·),F(·),T(·) are automatically symmetric in the
arguments shown as repeated,e.g.e(1, 1′, 1′′, 2) and
F(1, 1′, 2, 2′) are symmetric under all permutations
of the threeP1’s and twoP2’s.

Given the tensors, the matching constraints we
will differentialize below can be written symboli-
cally as:

x>1 F12 x2 = 0 epipolar constraint

x2 ∧
(
T 23

1 · x1

)
∧ x3 = 0 trifocal point constraint

l>2
(
T 23

1 ∧ l1
)

l3 = 0 trifocal line constraint

l>2
(
T 23

1 · x1

)
l3 = 0 trifocal point-line const.

Here, xi (li) denote corresponding image points
1Tensorsare just multi-index arrays of components. They

are not intrinsically difficult to handle, but lie outside the usual
matrix-vector notation. For simplicity I’ll display results as ma-
trices whenever possible, and switch into indexed notation [15]
when matrix notation is too weak. For calculations I useten-
sor diagrams— ‘circuit diagrams’ that show graphically which
indices are connected.

2They are contractions ofQ(·) against imageε tensors —
e.g.FAB(1, 1′, 2, 2′) ≡ 1

4
εACD εBEF QCDEF (1, 1′, 2, 2′)

[15].
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(lines) in imagei, and ∧ or [ · ]× denotes vector-
vector or matrix-vector cross product.

Geometrically, the matching constraints express
3D incidence relations between the optical rays /
planes pulled back from corresponding image points
/ lines. The matching tensors are a nonlinear encod-
ing of the camera geometry in image coordinates.
They can be estimated “linearly” from image data
using the matching constraints, but only by: (i) using
a heuristic error model; (ii ) ignoringnonlinear self-
consistency constraintsthat guarantee that the ten-
sor(s) correspond to some underlying set of projec-
tion matrices. Examples of such constraints include
F12 e2

1 = 0, det (F12) = 0, det
(
T 23

1 · x1

)
= 0

for all x1, and many more [15]. One advantage of
the differential approach is that it often allows the
consistency constraints and the true statistical error
model to be locally linearized, so that simple linear
least squares tensor estimators can take nearly full
account of both.

3 The Åstr öm-Heyden Approach

This section summarizes and critiques̊Aström
& Heyden’s approach to differential multi-image
matching constraints [1, 2]. A moving camera
with time varying projection matrixP(t) viewing a
static scene generates image projectionsλ(t) x(t) =
P(t) X. Taylor expand att :

P(t + ∆t) = P(0) + P(1) ∆t+ P(2) (∆t)2 + . . .

whereP(k) ≡ 1
k!
dk

dtk
P, and similarly forx(t + ∆t)

andλ(t + ∆t). Substitute into the projection equa-
tions, truncate at orderm, split by powers of∆t, and
gather the resulting equations into a3(m+1)×(4+
(m+ 1)) matrix

P(0) x(0) 0 · · · 0
P(1) x(1) x(0) · · · 0

...
...

. . .
...

P(m) x(m) x(m−1) · · · x(0)




X
−λ(0)

...
−λ(m)

 = 0

As in (1), all maximal minors vanish. Expanding
gives multilineardifferential matching constraints
involving all of the point derivativesx(0), . . . , x(m).
The coefficients aredifferential matching tensors
formed from4×4 minors of 4 rows of the projection
derivativesP(0), . . . ,P(m).

This approach is certainly powerful, but I feel
that it is not “the right thing” for most applications:
(i) The constraints combine infinitely many feature
derivatives and differential matching tensors of ar-
bitrarily high orders, even though the discrete case
stops atm = 4 features and tensors. (ii ) The con-
straints areextremely complicated, even form = 3.
(iii ) It is very difficult to relate them to the discrete
case, even though their derivation is almost identi-
cal. (iv) They depend on the exact form of the cam-
era motion betweent andt + ∆t, whereas we often
know or care only about the camerapositionsat the
endpointst andt + ∆t. (v) Many things remain to
be done: lines, transfer, depth recovery, cases where
some images are from other, more widely-spaced
cameras,etc.

Note that only the geometric path of the camera
matters for the constraints, not its time parametriza-
tion. So they should really be formulated in terms of
some geometric, parametrization-invariant analogue
of differential equations such asexterior differen-
tial systems(c.f. also [13]). This was my first in-
tention, but on reflection it does not solve the main
problem, which is simply thatdifferentiation is not
the appropriate tool here.

In applications, images are alwaysfinitely (though
perhaps closely) spaced. What we measure is fea-
ture positions at these discrete times, and what we
use is matching constraints, projection matrices,
etc, again at these discrete times. Time derivatives
never explicitly appear, and if introduced, they are
serve only to re-synthesize the finite-time positions
that we actually measure or use. Finite differences
are a more appropriate tool for such discrete-time
problems. Given measurements of some quantity
x(t), x(t + ∆t), their finite difference is simply
∆x ≡ x(t + ∆t) − x(t). So we have a finite,
one term ‘expansion’x(t + ∆t) = x(t) + ∆x
rather than an infinite Taylor seriesx(t + ∆t) =
x(t) + ẋ ∆t+ 1

2 ẍ ∆t2 + . . . . If we usex(t+ ∆t) in
some polynomial expression (matching constraints,
transfer, SFM), difference expansion gives a rela-
tively simple polynomial in∆x, while Taylor expan-
sion a very complicated infinite series in∆t. The
Taylor series is ultimately more powerful in that it
implies values ofx for all ∆t. But if we measure and
usex only atone∆t as here,̇x∆t+ 1

2 ẍ∆t2 + . . . is
a very complicated way of parametrizing the simple
difference∆x.
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In summary,Åström & Heyden got an infinite se-
ries of complicated equations rather than a finite se-
ries of simple ones simply because they asked for
too much. Their results are like a series solution to a
differential equation: they imply the matching con-
straints forevery∆t with any analytic camera mo-
tion, whereas in practice we usually only want them
at the endpoints ofone particular∆t.

4 Projective Difference Expansion

Now we begin to assemble the elements of our fi-
nite difference approach to projective vision. First,
a clarification. We work with projective quantities
expressed in homogeneous coordinates,e.g. image
pointsx, projectionsP. We want to expand projec-
tive expressions inx′,P′ in terms of “nearby” base
quantitiesx,P and “projective differences”∆x =
x′−x, ∆P = P′−P. Unfortunately, homogeneous
quantities likex, x′ are only defined up to scale, so
differences likex′ − x are not well defined: as their
relative scale changes,x′ − x sweeps out the entire
projective line throughx, x′. Nevertheless, if we are
careful about scales, we can still use∆x ≡ x′ − x
to represent the displacement between two projec-
tive points. Fix the scale ofx once and for all.
Under rescalingx′ → (1 + µ)x′, ∆x changes as
∆x → ∆x + µ x′ ≈ ∆x + µ x + O (µ∆x). So
for small rescalingsµ and displacements∆x, ∆x is
only defined modulo the approximate affine freedom
∆x → ∆x + µ x. The expressions we need to ex-
pand are always separately homogeneous inx and
x′ = x + ∆x, so this freedom leads to the following
importantinvariance principle: The term of lowest
nonvanishing order in∆x is explicitly invariant un-
der shifts∆x → ∆x+µ x. We usually work only to
this order, so formulae whichuse∆x are invariant,
and formulae whichcalculate it can do so only up
to an unknown multiple ofx. For example, our for-
mulae for differential matching tensors are defined
only up to multiples of the underlying base tensor.
In practice, for input data we simply choose simi-
lar normalizations forx, x′ so thatµ is small. But
for numerically calculated∆’s we always need to
enforce some sort of normalization condition to re-
move the superfluous rescaling degree of freedom.

A related point which greatly simplifies many of
the formulae is that:Difference expansion in a vari-
able is only worthwhile if the problem is nonlinear

in that variable. One can certainly derive expan-
sions for linearly-appearing variables of the form
(A + ∆A + . . . ) · (x + ∆x) ≈ A · x + A ·∆x +
∆A ·x+O

(
∆2
)
, whereA stands for other stuff in-

dependent ofx′ = x+∆x and hence∆x. But there’s
really no point. If you already havex,∆x and are
trying to calculateA,∆A, you might as well just
usex′ in the exact expression. This is simpler, has
less truncation error, and (at least in vision) is un-
likely even to cause problems with numerical loss
of precision:∆’s usually scale roughly as measured
image differences, which have a minimum relative
size of about10−4 as differences much smaller than
a pixel or greater than the image width can not be
measured. In fact, since we are working to lowest
nonvanishing order in∆ and A is independent of
x′, invariance under∆x → ∆x + µ x implies that
A · x must actuallyvanish(at least in the zero noise
case). Conversely, if you are trying to calculate∆x
givenA,∆A, the equation is linear in either∆x or
x′ = x + ∆x, so you might as well just form the up-
date(A + ∆A + . . . ) and calculatex′ directly. This
remains true even ifA depends onx, so long as it is
independent ofx′.

For example, matching constraints and transfer
relations are usually linear in each of their image
features, so there is no real advantage in using im-
age displacements or ‘flow’ for them — one can just
as well use the underlying featuresx, x′. Arguably,
this also applies to ‘direct’ (intensity based, opti-
cal flow) approaches — one can use intensity dif-
ferences to estimate local correlation shifts just as
well as image derivatives3. Similarly, for epipoles,
homographies and trifocal tensors, some of the pro-
jection matrices appear linearly and there is no real
advantage in making a difference expansion in these.
(More precisely, there is none once the coefficients
multiplying the projection to form the epipole,etc,
have been recovered). On the other hand, for linear
tensor-based parametrizations, the consistency con-
straints are always nonlinear and hencedo benefit
from expansion.

We will sometimes need to take differences in
several images simultaneously,e.g.for eachi, if P′i
is near toPi we define∆Pi ≡ P′i − Pi. If there

3As with the Taylor series above, the derivatives are only an
indirect way of synthesizing image displacements, which could
have been produced more directly using (sub-pixel/multi-scale/
. . . ) image interpolation.
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are several projectionsP′i,P
′′
i near the same base

projectionPi, each generates its own independent
difference∆P′i,∆P′′i .

By substituting the updatesP′i = Pi + ∆Pi =
(1 + ∆)Pi into the multilinear matching forms (2)
and expanding, we can derive exact finite difference
expansions of all the matching tensors. For example,
for the 1′–2 fundamental matrix

F1′2 ≡ F(1′, 1′, 2, 2)
= F ((1 + ∆)P1, (1 + ∆)P1,P2,P2)
= F(1, 1, 2, 2) + 2 F(∆1, 1, 2, 2) + F(∆1,∆1, 2, 2)

where∆1 stands for∆P1, etc. If only one projec-
tion varies, the full list of such expansion types is:

e2
1′ = e2

1 + e2
∆1 + e2

∆21 + e2
∆31

F1′2 = F12 + F∆12 + F∆212

T 23
1′ = T 23

1 + T 23
∆1 + T 23

∆21

e2′
1 = e2

1 + e∆2
1

T 2′3
1 = T 23

1 + T ∆23
1

Q1′234 = Q1234 + Q∆1234

(3)

where we define the followingdifferential match-
ing tensorsby successively replacing projectionsP′

with projection differences∆P ≡ P′ −P:

e2
∆1 ≡ 3 e(∆1, 1, 1, 2)

F∆12 ≡ 2 F(∆1, 1, 2, 2)

T 23
∆1 ≡ 2 T(∆1, 1, 2, 3)

Q∆1234 ≡ Q(∆1, 2, 3, 4)

e∆2
1 ≡ e(1, 1, 1,∆2)

T ∆23
1 ≡ T(1, 1,∆2, 3)

e2
∆21 ≡ 3 e(∆1,∆1, 1, 2)

F∆212 ≡ F(∆1,∆1, 2, 2)

T 23
∆21 ≡ T(∆1,∆1, 2, 3)

e2
∆31 ≡ e(∆1,∆1,∆1, 2)

Very few of these are needed in any one application.
If ∆P is small, we can truncate the finite differ-
ence expansions at any desired order. The scales of
the differential tensors were chosen to make the dif-
ference expansions simple, as this is essentially the
only place they appear. The derivations use the sym-
metry of the formse(·),F(·),T(·). There are anal-
ogous expansions when several projections vary at

once. We attach primes and∆’s to indices rather
than whole tensors (e.g.F1′2, e2

∆1), because the lat-
ter becomes hopelessly confusing when several pro-
jections vary at once.

The differential tensors depend on the normal-
izations of the∆P’s, and are only defined up to
admixtures of lower order terms,e.g. F1∆2 →
F1∆2 + µF12. Saturated differential tensors have
all P’s of a certain type replaced by∆P’s. They be-
have just like ordinary matching tensors formed with
“projections” ∆P, e.g. the “fundamental matrix”
F∆212 = F(∆1,∆1, 2, 2) satisfiesdet(F1∆22) = 0
and has “epipoles”e∆1

2 ande2
∆31. But unsaturated

tensors are more common in low order expansions:
these have the same index structure but different
properties.

5 Differential Matching Con-
straints

Given these expansions, it is very straightforward
to develop differential forms of the various discrete
matching constraints, transfer relations,etc. Simply
take each discrete formula, choose the type of near-
coincidence that should occur between its projection
matrices, substitute the corresponding difference ex-
pansions (and optionally the difference expansions
of the corresponding image features), expand, and
truncate at the desired order.

Note that onlysomeof the projections need be
near coincident, unlike,e.g. [2]. In particular, we
are investigating methods formatching constraint
tracking, i.e. propagating a matching tensor against
a base image along an image sequence by small up-
dates, without having to recalculate it from scratch
at each new image. This sort of approach should
be useful for providing search constraints in geo-
metrically guided feature trackers, as a tensor is
available at each time step. And numerically it
should allow linearized approximations to nonlin-
ear error models and tensor consistency relations, so
that a linearly-estimated tensor converges to a near-
consistent, near-optimal estimate as the sequence
continues. I.e., the usual iterative refinement loop
for the tensor would be ‘unwrapped along the image
sequence’, tracking the moving tensor by a kind of
locally-linearized control law,c.f. [13].

Differential Epipolar Constraint: The simplest
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case is the epipolar constraint between a fixed cam-
eraP1 and a moving oneP2(t). We suppose that
we have already calculated the fundamental matrix
F12 6= 0, and want to update it toF12′ whereP′2 =
P2+∆P2. Using (3), and optionallyx′2 = x2 +∆x2

and the 1–2 epipolar constraintx>1 F12 x2 = 0, the
first order expansion of the 1–2′ epipolar constraint
is simply

0 = x>1 F12′ x2′ ≈ x>1 (F12 + F1∆2) x′2
≈ x>1 F12 ∆x2 + x>1 F1∆2 x2

Using either form,F1∆2 can be estimated linearly
from F12, x1, andx′2 or x2,∆x2. F12′ can be recov-
ered fromF12′ ≈ F12 +F1∆2. The advantages over
direct ‘linear 8 point’ estimation ofF12′ are: (i) we
can enforce the consistency constraintdet(F) = 0,
at least to a1st-order approximation; (ii ) because of
this, we need only 7 points; (iii ) we can useF12 to
pre-calculate approximately statistically optimal er-
ror weightings, so the initial linear estimator should
have near-optimal accuracy. The linearization of the
consistency constraintdet(F12′) = 0 is

trace ( cof(F12) F1∆2) + det(F12) = 0 (4)

wherecof(F12) ≈ e1
2 e2

1
> is the matrix of cofac-

tors of F12. Even if F12 is inconsistent, this equa-
tion enforcesdet(F12′) = 0 to first order, and hence
converges rapidly towards consistency.

As expected,F1∆2 is only defined up to multi-
ples ofF12. For example, the error termx>1 F1∆2 x2

and the linearized consistency constraint (4) have
such invariances ifx>1 F12 x2 anddet(F12) are ex-
actly 0. The exact multiple we choose is irrelevant
so long as it is small, but some choice is needed
to avoid numerical ill-conditioning. In practice, we
constrainF1∆2 to be orthogonal toF12 as a 9-vector,
i.e. trace(F>12 F1∆2) = 0. Given the above andF12,
near optimal ‘7 point’ estimation ofF1∆2 reduces to
a 9 variable linear least squares problem with 2 lin-
ear constraints. Any standard numerical method can
be used,e.g.Gauss (LU) or Householder (LQ) based
constraint elimination followed by QR decomposi-
tion to solve the reduced least squares problem. (For
7 point RANSAC, the problem becomes a simple
9× 9 linear system).

Only the 1–2 and 1–2′ epipolar constraints were
used here: the 1–2–2′ trifocal one will be considered
below.

The Optimization Point-of-View: The above
discussion should sound very familiar to anyone
who has implemented a nonlinear fundamental ma-
trix estimator. In fact, the aboveF12 → F12′ update
rule is exactly one step of a Sequential Quadratic
Programming (SQP) style refinement routine for
F12′ , started from the estimateF12. Further itera-
tions could be used to improve the accuracy, if de-
sired. The moral is that:Tensor tracking and nonlin-
ear tensor refinement are basically the same prob-
lem. So the same numerical methods can be used
for both. We also emphasize that there is really no
advantage to using ‘flow’∆x rather than position
x′, and the differential tensorF1∆2 plays exactly the
same role as a conventional first order model update
∆F. The difference expansion merely serves as a
systematic way to derive such update equations.

Differential Trifocal Constraints: First order
expansion of the 1–2′–3 and 1′–2–3 trifocal point,
line and point-line matching constraints modulo the
1–2–3 ones gives:(

x2 ∧
(
T ∆23

1 · x1

)
+ ∆x2 ∧

(
T 23

1 · x1

) )
∧ x3 ≈ 0(

l>2
(
T ∆23

1 ∧ l1
)

+ ∆l>2
(
T 23

1 ∧ l1
) )

l3 ≈ 0(
l>2
(
T ∆23

1 · x1

)
+ ∆l>2

(
T 23

1 · x1

) )
l3 ≈ 0

x2 ∧
(

T 23
∆1 · x1 + T 23

1 ·∆x1

)
∧ x3 ≈ 0

l>2
(

T 23
∆1 ∧ l1 + T 23

1 ∧∆l1
)

l3 ≈ 0

l>2
(

T 23
∆1 · x1 + T 23

1 ·∆x1

)
l3 ≈ 0

As in the two image case, the 27 components of
T ∆23

1 or T 23
∆1 can be estimated linearly from the con-

straints, modulo a multiple ofT 23
1 . However this is

a gross overparametrization as the unknown projec-
tions ∆P2′ ,∆P1′ have only 12 d.o.f. apiece. We
need to constrain the∆T’s to respect the constancy
of the constantP’s involved. This is possible using
inter-tensor consistency constraints,e.g. for T 2′3

1

use either of

TB2′ C3
A1 FB1C3 + (A1↔B1) = 0

εA3B3C3 TA2′A3
A1 TB2B3

B1 eC3
1 + (A1↔B1) = 0

where as usualT 2′3
1 ≈ T 23

1 + T ∆23
1 . But this whole

approach seems over-complicated. Given thatT 23
1

is actually linear inP2, we might as well just find a
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homography-epipole decomposition [7, 11]

T 23
1 = H 2

1 ⊗ e3
1 − e2

1 ⊗ H 3
1(

T 23
1 · x1

)
=
(
H 2

1 |e2
1

) ( 0 x1

−x>1 0

) (
H 3

1 |e3
1

)>
and work directly in terms ofPi =

(
H i

1 |ei1
)

for
i= 1, 2, 2′, 3. As always,H − e parametrization of
T (or F) is just a closet form of projective camera
reconstruction, so we might as well do things prop-
erly with a clean reconstruction method, followed
by conventional tracking of the moving projection
using the ‘linear 6 point’ DLT estimator (or better).
My experiments suggest that this is not only the eas-
iest, but also the stablest and most accurate way to
work — the tensor isonly useful for the initial re-
construction. I.e., tracking of the trifocal tensor is
certainly possible, but I have not found any advan-
tage over conventional projection matrix tracking.

5.1 Coincident Images & Degeneracy

Now we study what happens to the differential
matching constraints when more of their images are
near-coincident. When some of the cameras (or
modulo image rectification, some of their centres)
coincide, the discrete matching tensors either vanish
or degenerate to lower degree ones

e1
1 = 0

F11 = 0
T 12

1 = δ 1
1 ⊗ e2

1

T 21
1 = −e2

1 ⊗ δ 1
1

T 22
1 = FA1A2 ε

A2B2C2

Q1123 = TA2A3
A1 εA1B1C1

The corresponding matching constraints also de-
generate,e.g. the trifocal point constraintx2 ∧(
T 23

1 · x1

)
∧x3 = 0 becomes

(
x>1 F12 x2

)
[ x2 ]× = 0

for P3 → P2 and vanishes forP3 → P1. Similarly,
some the differential matching tensors degenerate to
lower degree ones when their base images coincide

−e1
∆1 = e∆1

1 = e1′
1

F1∆1 =
[

e∆1
1

]
×

=
[

e1′
1

]
×

T 1∆2
1 = δ 1

1 ⊗ e∆2
1

T 12
∆1 = δ 1

1 ⊗ e2
∆1 − T ∆12

1

Coincidence also produces redundancies between
various differential tensors,e.g. FA1 ∆A2 =

1
2! εA2B2C2 TB2 ∆C2

A1 . We will silently adopt
whichever form is the most convenient.

Differential Epipolar Constraint: If P1 andP2

coincide,F12 vanishes andF1∆2 reduces to
[

e1′
1

]
×

.
We relabel1′ → 2 for clarity, i.e. ∆P1 = P2 −P1.
Theexactexpansion ofF12 is

F12 = F11 + F1∆1 + F1∆21

= 0 +
[

e2
1

]
×

+ F1∆21

The leading term is skew so the epipolar constraint
vanishes to first order. The second order term is
Vi éville & Faugeras’‘first order’ motion equation
[16, 17] :

x>1 F (s)
12 x1 + x>1

[
e2

1

]
×

∆x1 ≈ 0 (5)

where F (s)
12 ≡ 1

2

(
F12 + F>12

)
is the symmetric

part of F12 or F1∆21. The constraint uses onlye2
1

andF (s)
12 so it has3 + 6 = 9 linearly independent

components, modulo joint overall rescaling and the
consistency constraintdet(F) = 0 which becomes

e2
1
> F (s)

12 e2
1 = 0. Like det(F12) = 0, this is cu-

bic in the unknowns. The linearization base point
F11 vanishes, so we can no longer linearize the con-
sistency constraint and error model. Hence, the dif-
ferential method has about the same degree of com-
plexity and nonlinearity as direct estimation ofF12.
Normalizing

(
F (s)

12 ,e
2
1

)
so that‖e2

1 ‖ = 1, we can
recoverF12 from

F12 = [ e]× + F (s) + e
(
F (s) e

)> − (F (s) e
)

e>

= [ e]× +
(

I + e e>
)

F (s)
(

I − e e>
)

(The second form is preferred as it automatically
projects ontoe>F (s) e = 0). In generaldet(F (s)) 6=
0: it vanishes iff the motion is planar or a parallel
twist.

I have investigated matching and depth recovery
using this differential approach, but found no prac-
tical advantage over direct ‘8 point’ estimation of
F12. The accuracy and stability are at best the same,
and become worse whenever truncation error in (5)
is above the noise level.

Trifocal Constraints: The differential trifocal
constraints remain nondegenerate when two of their
images coincide, but their coefficient tensors sim-
plify. This case is especially interesting because it
allows us to propagate matches from a base image
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plus the current one to the next image in the se-
quence. To first order in∆, both the 1–1′–2 and
1′–1–2 trifocal point, line and point-line matching
constraints reduce to

x1 ∧
(
T ∆12

1 · x1

)
∧ x2

− (x1 ∧∆x1)
(
e2

1 ∧ x2

)> ≈ 0

l>1
(
T ∆12

1 ∧ l1
)

l2 − (l1 ∧∆l1)
(

l>2 e2
1

)
≈ 0

l>1
(
T ∆12

1 · x1

)
l2 −

(
l>1 ∆x1

)(
l>2 e2

1

)
≈ 0

Similarly, the 2–1–1′ constraints become

x1 ∧
(
T ∆11

2 · x2

)
∧ x1 + (F12 x2) (x1 ∧∆x1)>

+
(

∆x>1 F12 x2

)
· [ x1 ]× ≈ 0

l>1
(
T ∆11

2 ∧ l2
)

l1 −
(
(l1 ∧∆l1)> F12

)
∧ l2 ≈ 0

l>1
(
T ∆11

2 · x2

)
l1 − (l1 ∧∆l1)> F12 x2 ≈ 0

All of these are modulo the ordinary 1–2 epipolar
constraint and maintenance of point-line incidence
∆
(
l>1 x1

)
= l>1 ∆x1 + ∆l>1 x1 = 0.

Once again, the tensor-based parameterization is
feasible but seems overly complex. A homography-
epipole one is preferable, but reduces the prob-
lem to classical reconstruction-reprojection. The
parametrization can be initialized using any homog-
raphy obtained fromF12 (e.g.H 2

1 = [ l2 ]× F21 +
e2

1 l>1 for any non-epipolar l1, l2, or H 2
1 =[

e2
1

]
×

F21 + λe2
1 e1

2
> in a well-normalized im-

age frame). The initialH − e decompositions are
then T 12

1 = δ 1
1 ⊗ e2

1 − 0 ⊗ H 2
1 and T 11

2 =
H 1

2 ⊗ e1
2 − e1

2 ⊗ H 1
2 .

If all three images nearly coincide, the trifocal
constraints degenerate further and a2nd-order 1–1′–
1′′ expansion is needed. For clarity, we rename 1′,1′′

to 2,3 and use our normalization freedom to replace
T ∆2∆3

1 with T 23
1 ≈ δ 1

1 ⊗ e3
1 − e2

1 ⊗ δ 1
1 + T ∆2∆3

1 ,
giving matching constraints:

x1 ∧
( (

T 23
1 · x1

)
+ ∆x2 e3

1
> − e2

1 ∆x>3
)
∧ x1 ≈ 0

l>1 (T (23)
1 ∧ l1) l1 + (l1∧∆l2)

(
l>1 e3

1

)
−
(

l>1 e2
1

)
(l1∧∆l3) ≈ 0

l>1 (T (23)
1 · x1) l1 −

(
∆l>2 x1

)(
l>1 e3

1

)
+
(

l>1 e2
1

)(
∆l>3 x1

)
≈ 0

Here,T (23)
1 is the 18 d.o.f. symmetric part ofT 23

1

on its two upper indices. The point equation uses 24
d.o.f. of T 23

1 plus two epipoles, so it does not seem
competitive with standard finiteT 23

1 estimation. The

line and point-line equations use onlyT (23)
1 ,e2

1 ,e
3
1

and hence have18 + 3 + 3 = 24 linear parame-
ters to estimate. The point-line equation is the basis
of Stein & Shashua’s ‘tensor brightness constraint’
[14], where the lines are local tangents to the iso-
intensity contour atx1, displaced by normal flow
into nearby images 2 and 3. But in this case the
line-based constraints are quite ill-conditioned and
they require special motion assumptions which re-
duce the problem to one considered by [6].

6 Conclusions

We have introduced a finite difference expansion
for projective vision problems with near-coincident
cameras. In contrast to̊Aström & Heyden’s time-
derivative based approach, it gives fairly manage-
able expansions for geometric vision problems like
matching tensors and constraints, transfer and recon-
struction. Here, we used it to systematically derive
various differential matching constraints. Basically,
three cases occur when difference expansion is used:
• For problems linear in the expanded variables, ex-
pansion is possible but redundant. This happens for
most feature-based calculations once the matching
tensors or homographies are known —e.g. feature
transfer or reconstruction.
• For nonlinear, non-degenerate problems, first
order difference expansion gives a useful lo-
cal linearization. Consistency-constraint-satisfying,
statistically-near-optimal tensor update becomes a
simple constrained linear least squares problem.
This is always equivalent to one step of an iterative
nonlinear estimator started from the base tensor.
• For nonlinear problems where the expansion base
case is degenerate, second (or higher) order expan-
sion gives a valid but nonlinear local parametriza-
tion. This may be simpler or less nonlinear than the
original one, but it is not clear that much is really
gained. So far none of my experiments have shown
any clear advantage for the differential approach in
this case.

Future work will include experimental studies of
constraint tracking in the 1′–2 and 1–1′–2 cases, and
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development of analogous expansions for more con-
strained problems like calibrated cameras and auto-
calibration.
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Chapitre 4

Reconstruction projective

Ce chapitre d´ecrit trois papiers sur le recouvrement `a partir de plusieurs images projectives
non-calibrées, de la g´eométrie 3D projective d’une sc`ene statique et des cam´eras. On suppose que
l’approche tensorielle d´ecrite ci-dessus pour la g´eométrie des images multiples est famili`ere au
lecteur. Sur le plan pratique, on suppose que les primitives g´eométriques 2D (pour la plupart des
points, mais aussi parfois des droites) ont d´ejà été extraites des images, et mis en correspondance
entre images.

4.1 Resuḿe de (( A Factorization-based Algorithm for Multi-image
Projective Structure and Motion )) – ECCV’96

Historique

Ce papier avec Peter STURM fut publié à ECCV’96 [ST96]. Il donne une m´ethode de recons-
truction projective multi-images qui se montre tr`es stable en pratique, et qui reste de loin ma m´e-
thode générale préférée pour ce probl`eme. Historiquement, elle est une fa¸con de coller ensemble
des reconstructions partielles 3D obtenues par les ´equations(( estimation des profondeurs projec-
tives)) décrites ci-dessus [Tri95]. Mais elle a ´eté vulgarisée comme une g´enéralisation projective de
la méthode de factorisation affine de Tomasi & Kanade [TK92].

Méthode

Supposons qu’on an points 3DX1, . . .Xn visibles dansm images projectives avec des ma-
trices de projectionP1, . . . ,Pm. Pour chaque paire, d’imagePi et de point 3DXp, on a un point
imagexip avec l’équation de projectionλip xip = Pi Xp, oùλip est la profondeur / facteur d’´echelle
projective correspondant. On peut r´eunir toutes cesmn équations dans une grande syst`eme matri-
cielle :

λ11 x11 λ12 x12 . . . λ1n x1n

λ21 x21 λ22 x22 . . . λ2n x2n
...

...
. . .

...
λm1 xm1 λm2 xm2 . . . λmn xmn


(3m)×n

=


P1

P2
...

Pm


(3m)×4

(
X1 X2 . . . Xn

)
4×n

L’essentiel de la m´ethode est que si on peut retrouver les profondeurs projectivesλip, la matrice des
λip xip serait forcément – comme le cˆoté droit – de rang 4. On peut toujours d´ecomposer num´erique-
ment une telle matrice en forme du cˆoté droit, par exemple par moyenne de la SVD (D´ecomposition
par Valeurs Singuli`eres). Il y a l’ambigu¨ıté d’une transformation lin´eaire4× 4 non-singulière dans
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cette décomposition, mais cette ambigu¨ıté ne fait que repr´esenter l’homographie4× 4 libre associ´e
au choix d’un rep`ere projectif arbitraire : toute factorisation `a rang 4 donne une reconstruction 3D
valable des cam´eras et des points, et ce dans un rep`ere projectif.

Pour retrouver lesλip, on applique les(( équations d’estimation des profondeurs projectives))

[Tri], qui lie les primitives images, leurs profondeurs / facteurs d’´echelle projectives, et les tenseurs
d’appariement. Il existe des contraintes pour tout type de tenseur, mais ici on ne se servira que de
celles de la matrice fondamentale, qui prennent la forme :

Fij (λjp xjp) = eji ∧ (λip xip)

Cetteéquation vectorielle impose que les droites ´epipôlaires des deux points correspondants co¨ın-
cident, et en plus elle relie les positions relatives de ces points le long ces droites `a leurs profondeurs
projectives relatives. Ici c’est seulement les profondeurs projectives qu’on veut, donc on peut r´e-
soudre ces ´equations au moindre carr´ees :

λip =
(eji ∧ xip) · (Fij xjp)
‖eji ∧ xip‖2

λjp

Les matrices fondamentales sont estim´eesà partir des donn´ees images. On peut fixer l’´echelleλjp
de chaque point arbitrairement en une image, puis on enchaˆıne ces ´equations pour retrouver ses
échelles correspondants dans tous les autres images. Une fois ceci fait, on construit la matrice
desλip xip, et on la factorise pour extraire la reconstruction. En pratique, c’est aussi important
d’appliquer une ´etape de renormalisation num´erique qui est d´ecrite dans le papier, afin de mieux
conditionner le mod`ele du bruit qui est implicite au syst`eme.

Perspective

Il se trouve qu’en pratique cette m´ethode fonctionne tr`es bien. Elle est certainement parmi les
méthodes les plus stables et pr´ecises pour la reconstruction projective, grˆace sans doute au fait
qu’elle intègre d’une fa¸con équilibrée toutes les donn´ees images `a la fois. (La plupart des autres
méthodes ne font qu’int´egrer les donn´ees d’un nombre fixe d’images, ou se basent sur le choix d’une
(( image de r´eférence)) qui n’est pas int´egré symétriquement aux autres). Mais cette m´ethode a aussi
une faiblesse significative qui limite son application pratique : elle exige la visibilit´e et l’extraction
de tous les pointsà reconstruire danstoutesles images `a utiliser, ce qui n’est gu`ere réaliste pour
les séquences longues. Il existe plusieurs fa¸cons de contourner cette limitation fondamentale, mais
aucune solution nette ne se d´egage pour l’instant. Le probl`eme de factorisation d’une matrice dont
certaines ´eléments sont inconnus est important aussi en statistique et en traitement du signal. Il
existe des algorithmes type optimisation non-lin´eaire [Wib76, SIR95], mais ils ont besoin d’une
initialisation approximative de la structure, ce qui n’est pas le cas pour SVD.

Un aspect surprenant de la m´ethode de factorisation projective, c’est sa stabilit´e face aux in-
certitudes des points et des tenseurs d’entr´ee. Avec la m´ethode bas´ee sur la matrice fondamentale,
on peut enchaˆıner une bonne vingtaine ou trentaine d’´equations de profondeur avant que cela nuise
à la précision des sorties 3D. Je n’ai pas de tr`es bonne explication, mais on peut noter que quand
il y a une séquence d’images avec des g´eométries épipôlaires similaires entre chaque paire, les
erreurs dans les profondeurs ont une forte tendance de s’annuler entre une image et la prochaine.
Par exemple, si un point estim´e se trouve un peu trop proche `a l’épipôle, il donne une profondeur
relative un peu trop petite dans cette image, mais du mˆeme fait une profondeur relative un peu trop
grande dans la prochaine, et les diff´erences ont tendance `a s’annuler.
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4.2 Resuḿe de (( Factorization Methods for Projective Structure &
Motion )) – CVPR’96

Ce papier fut publi´e à CVPR’96 [Tri96a]. Il donne plusieurs raffinements au papier pr´ecédent,
il y inclut une discussion pr´eliminaire des m´ethodes de factorisation acc´elérées (sp´ecialisées au cas
de bas rang) et une comparaison exp´erimentale avec plusieurs autres m´ethodes de reconstruction
projectives.

Mais sa contribution la plus importante est l’extension de la m´ethode de factorisation aux
droites. Si on pouvait repr´esenter chaque droite par deux points 3D le long de la droite, la re-
projection de ces points donnerait deux points images sur chaque droite image, les points ´etant en
correspondance entre les images. Quand on ne voit pas de tels points sp´eciaux, on peut les synth´e-
tiser : faire une choix arbitraire de deux points sur la droite dans la premi`ere image, et on coupe les
droitesépipôlaires de chacun de ces points dans les autres images par les images des droites d’ori-
gine. Ceci donne les points correspondants requis, qui peuvent ˆetre reconstruits comme des points
normaux pour reconstituer la droite m`ere 3D. En plus, un tel transfert des points donne automati-
quement les bons facteurs d’´echelle pour la reconstruction projective, sans qu’on ait `a les recouvrir
explicitement. On peut aussi utiliser le tenseur trifocal comme moteur de transfert, pour le mˆeme
effet. La méthode intègre des points et des droites dans la mˆeme factorisation. Elle marche bien
tant que les droites 3D ne passent pas trop pr`es des centres de projection, et donc forc´ement, les
droites images sont ´eloignées des droites ´epipôlaires. (Dans le cas inverse, l’image d’une droite est
très sensible aux perturbations 3D).

4.3 Resuḿe de(( Linear Projective Reconstruction from Matching Ten-
sors)) – IVC’97

Ce papier fut publi´e en(( Image & Vision Computing)) [Tri97a], après la publication d’une ver-
sion préliminaireà BMVC’96 [Tri96b]. Le talon d’Achille des m´ethodes bas´ees sur la factorisation
matricielle est qu’elles ne peuvent pas tol´erer des donn´ees manquantes. Dans notre cas,tous les
points 3Dà reconstruire doivent ˆetre visibles danstoutesles images `a utiliser ... ce qui n’est gu`ere
réaliste en pratique pour les s´equences longues. Alors qu’il existe plusieurs moyens d’esquiver ce
problème en pratique [TK92, SIR95, Jac97], on peut souhaiter des m´ethodes de reconstruction pro-
jectives qui fonctionnent mˆeme avec des donn´ees manquantes.

Cet article décrit une telle famille de m´ethodes, qui extraient des matrices de cam´era projectives
consistantes directement des tenseurs d’appariement. Les primitives image sont utilis´ees seulement
pour estimer les tenseurs, donc les donn´ees manquantes ne pr´esentent aucune difficult´e. Une fois les
matrices de projection des cam´eras obtenues, les primitives 3D peuvent ˆetre estim´ees linéairement `a
partir de leurs projections images respectives. Au coeur de la m´ethode sont les(( contraintes de cl̂o-
ture )) liant les tenseurs d’appariement et leurs matrices de projection g´enératrices. En empilant ces
contraintes (tenseurs) – et sur condition d’avoir choisi de fa¸con compatible leurs ´echelles relatives –
on crée une grande matrice dont l’espace nul est de dimension 4 et contient les 4 colonnes de toutes
les matrices de projection. Les projections elles mˆemes peuvent ˆetre obtenues par la d´ecomposition
SVD ou tout autre algorithme permettant de d´eterminer le noyau d’une application lin´eaire.

Les résultats de la m´ethode sont en pratique plus ou moins bons, mais ils ne sont pas aussi
stables que ceux de la reconstruction par factorisation. En particulier, elle ´echoue quand on inclut
seulement les matrices fondamentales dans les contrainteset tous les centres optiques sont ali-
gnés. Ceci repr´esente un ´echec fondamental de la repr´esentation de la g´eométrie multi-caméras par
matrices fondamentales, d´ejà bien connu dans d’autres circonstances (ex.[LF94]). Par contre, la re-
construction par factorisation des matrices fondamentales n’estpasmise en d´efaut par l’alignement
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des centres, car elle n’´elimine pas les coordonn´ees des points images.
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Abstract

We propose a method for the recovery of projective shape and motion from multiple images
of a scene by the factorization of a matrix containing the images of all points in all views.
This factorization is only possible when the image points are correctly scaled. The major
technical contribution of this paper is a practical method for the recovery of these scalings,
using only fundamental matrices and epipoles estimated from the image data. The resulting
projective reconstruction algorithm runs quickly and provides accurate reconstructions. Results
are presented for simulated and real images.

1 Introduction

In the last few years, the geometric and algebraic relations between uncalibrated views have found
lively interest in the computer vision community. A first key result states that, from two uncalibrated
views, one can recover the 3D structure of a scene up to an unknown projective transformation
[Fau92, HGC92]. The information one needs to do so is entirely contained in the fundamental
matrix, which represents the epipolar geometry of the 2 views.

Up to now, projective reconstruction has been investigated mainly for the case of 2 views.
Faugeras [Fau92] studied projective reconstruction using 5 reference points. Hartley [HGC92]
derives from the fundamental matrix 2 projection matrices, equal to the true ones up to an unknown
projective transformation. These are then used to perform reconstruction by triangulation[HS94].
As for multiple images, most of the current methods [MVQ93, Har93, MM95] initially privilege a
few views or points and thus do not treat all data uniformly.

Recently, multi-linear matching constraints have been discovered that extend the epipolar ge-
ometry of 2 views to 3 and 4 views. Shashua [Sha95] described the trilinear relationships between
3 views. Faugeras and Mourrain [FM95], and independently Triggs [Tri95a] have systematically
studied the relationships betweenN images. Triggs introduced a new way of thinking about pro-
jective reconstruction. The image coordinates of the projections of a 3D point are combined into
a single “joint image vector”. Then, projective reconstruction consists essentially of rescaling the
image coordinates in order to place the joint image vector in a certain 4-dimensional subspace of
the joint image space called thejoint image. This subspace is characterized by the multi-linear
matching constraints between the views.

The projective reconstruction method we propose in this paper is based on the joint image for-
malism, but it is not necessary to understand this formalism to read the paper. We show that by
∗This work was performed within a joint research programme between CNRS, INPG, INRIA, UJF.
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rescaling the image coordinates we can obtain ameasurement matrix(the combined image coor-
dinates of all the points in all the images), which is of rank 4. Projective structure and motion
can then be obtained by a singular value factorization of this matrix. So, in a sense this work can
be considered as an extension of Tomasi-Kanade’s and Poelman-Kanade’s factorization methods
[TK92, PK94] from affine to perspective projections.

The paper is organized as follows. (1) We motivate the idea of reconstruction through the
rescaling of image coordinates. Throughout this paper we will restrict attention to the case of
bilinear matching constraints (fundamental matrix), although the full theory [Tri95b] also allows
tri- and quadrilinear matching constraints to be used. (2) We discuss some numerical considerations
and describe the proposed projective reconstruction algorithm. (3) We show results that we have
obtained with real and simulated data. (4) We conclude and discuss several open issues, which will
be part of our future work.

2 Projective Reconstruction from Multiple Views

2.1 The Projective Reconstruction Problem

Suppose we have a set ofn 3D points visible inm perspective images. Our goal is to recover 3D
structure (point locations) and motion (camera locations) from the image measurements. We will
assume no camera calibration or additional 3D information, so we will only be able to reconstruct
the scene up to an overall projective transformation of the 3D space [Fau92, HGC92].

We will work in homogeneous coordinates with respect to arbitrary projective coordinate frames.
Let Qp be the unknown homogeneous coordinate vectors of the 3D points,Pi the unknown3 × 4
image projection matrices, andqip the measured homogeneous coordinate vectors of the image
points, wherep = 1, . . . , n labels points andi = 1, . . . ,m labels images. Each object is defined
only up to an arbitrary nonzero rescaling,e.g. Qp ∼ µpQp. The basic image projection equations
say that — up to a set of unknown scale factors — theqip are the projections of theQp:

λipqip = PiQp

We will call the unknown scale factorsλip projective depths1. If the Qp and theqip are chosen to
have affine normalization (‘weight’ components equal to 1) and thePi are normalized so that the
vectorial part of the ‘weight’ component row has norm 1, the projective depths become true optical
depths,i.e. true orthogonal distances from the focal plane of the camera.

The complete set of image projections can be gathered into a single3m× n matrix equation:

W ≡


λ11q11 λ12q12 · · · λ1nq1n

λ21q21 λ22q22 · · · λ2nq2n
...

...
. . .

...
λm1qm1 λm2qm2 · · · λmnqmn

 =


P1

P2
...

Pm


(

Q1 Q2 · · · Qn

)

Notice thatwith the correct projective depthsλip, the3m × n rescaled measurement matrixW
has rank at most 4. If we could recover the depths, we could apply an SVD based factorization
technique similar to that used by Tomasi and Kanade [TK92] toW, and thereby recover both 3D
structure and camera motion for the scene. The main technical advance of this paper is a practical
method for the recovery of the unknown projective depths, using fundamental matrices and epipoles
estimated from the image data.

1This is not the same notion as the “projective depth” of Shashua, which is a cross ratio of distances along epipolar
lines [Sha94]
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Taken individually, the projective depths are arbitrary because they depend on the arbitrary scale
factors chosen for thePi, theQp and theqip. However taken as a whole the rescaled measurements
W have a strong internal coherence. The overall scale of each triple of rows and each column of
W can be chosen arbitrarily (c.f. the arbitrary scales of the projectionsPi and the 3D pointsQp),
but once thesem + n overall scales have been fixed there is no further freedom of choice for the
remainingmn −m − n scale factors inλip. Hence, the projective depths really do contain useful
information.

2.2 Recovery of Projective Depths

Now we will show how the projective depths can be recovered from fundamental matrices and
epipoles, modulo overall row and column rescalings. The point projection equationλipqip = PiQp

implies that the6× 5 matrix(
Pi λipqip
Pj λjpqjp

)
=

(
Pi PiQp

Pj PjQp

)
=

(
Pi

Pj

)(
I4×4 Qp

)
has rank at most 4. Hence, all of its5 × 5 minors vanish. We can expand these by cofactors in
the last column to get homogeneous linear equations in the components ofλipqip andλjpqjp. The
coefficients are4 × 4 determinants of projection matrix rows. These turn out to be just funda-
mental matrix and epipole components [Tri95a, FM95]. In particular, ifabc anda′b′c′ are even
permutations of123 andPa

i denotes rowa of Pi, we have:

[Fij ]aa′ =

∣∣∣∣∣∣∣∣∣
Pb
i

Pc
i

Pb′
j

Pc′
j

∣∣∣∣∣∣∣∣∣ [eij ]
a =

∣∣∣∣∣∣∣∣∣
Pa
i

P1
j

P2
j

P3
j

∣∣∣∣∣∣∣∣∣ (1)

Applying these relations to the three5 × 5 determinants built from two rows of imagei and three
rows of imagej gives the following fundamental relation between epipolar lines:

(Fijqjp)λjp = (eij ∧ qip)λip (2)

This relation says two things:
• Equality up to scale: The epipolar line ofqjp in imagei is the line through the corresponding

point qip and the epipoleeij . This is just a direct re-statement of the standard epipolar constraint.
• Equality of scale factors: If the correct projective depths are used in (2), the two terms

haveexactly the same size— the equality is exact, not just up to scale. This is the new result that
allows us to recover projective depths using fundamental matrices and epipoles. Analogous results
based on higher order matching tensors can be found in [Tri95b], but in this paper we will use only
equation (2).

Our strategy for the recovery of projective depths is quite straightforward. Equation (2) relates
the projective depths of a single 3D point in two images. By estimating a sufficient number of
fundamental matrices and epipoles, we can amass a system of homogeneous linear equations that
allows the complete set of projective depths of a given point to be found, up to an arbitrary overall
scale factor. At a minimum, this can be done with any set ofm− 1 fundamental matrices that link
them images into a single connected graph. If additional fundamental matrices are available, the
equations become redundant and (hopefully) more robust. In the limit, allm(m−1)/2 fundamental
matrices and allm(m−1) equations could be used to find them unknown depths for each point, but
this would be computationally very expensive. We are currently investigating policies for choosing
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economical but robust sets of equations, but in this paper we will restrict ourselves to the simplest
possible choice: the images are taken pairwise in sequence,F12,F23, . . . ,Fm−1 m.

This is almost certainly not the most robust choice, but it (or any other minimal selection) has
the advantage that it makes the depth recovery equations trivial to solve. Solving the vector equation
(2) in least squares forλip in terms ofλjp gives:

λip =
(eij ∧ qip) · (Fijqjp)
‖eij ∧ qip‖2

λjp (3)

Such equations can be recursively chained together to give estimates for the complete set of depths
for point p, starting from some arbitrary initial value such asλ1p = 1.

However there is a flaw in the above argument: fundamental matrices and epipoles can only be
recovered up to an unknown scale factor, so we do not actually know the scale factors in equations
(1) or (2) after all! In fact this does not turn out to be a major problem. It is a non-issue if a minimal
set of depth-recovery equations is used, because the arbitrary overall scale factor for each image can
absorb the arbitrary relative scale of theF ande used to recover the projective depths for that image.
However if redundant depth-recovery equations are used it is essential to choose a self-consistent
scaling for the estimated fundamental matrices and epipoles. We will not describe this process here,
except to mention that it is based on the quadratic identities between matching tensors described in
[Tri95b].

Note that with unbalanced choices of scale for the fundamental matrices and epipoles, the av-
erage scale of the recovered depths might tend to increase or decrease exponentially during the
recursive chaining process. Theoretically this is not a problem because the overall scales are ar-
bitrary, but it could well make the factorization phase of the reconstruction algorithm numerically
ill-conditioned. To counter this we re-balance the recovered matrix of projective depths after it has
been built, by judicious overall row and column scalings.

2.3 Projective Shape and Motion by Factorization

Once we have obtained the projective depths, we can extract projective shape and motion from the
rescaled measurement matrixW.

Let
W = U diag(σ1, σ2, . . . , σs) V

be a Singular Value Decomposition (SVD) ofW, with s = min{3m,n} and singular valuesσ1 ≥
σ2 ≥ . . . ≥ σs ≥ 0. SinceW is of rank 4, theσi for i > 4 vanish. Thus, only the first 4 columns
(rows) ofU (V) contribute to this matrix product. LetU′ (V′) the matrix of the first 4 columns
(rows) ofU (V). Then,

W = U′3m×4 diag(σ1, σ2, σ3, σ4)︸ ︷︷ ︸
Σ

V′4×n = U′ Σ V′ .

Any factorization ofΣ into two4× 4 matricesΣ′ andΣ′′, Σ = Σ′Σ′′, leads to

W = U′Σ′︸ ︷︷ ︸
Û

Σ′′V′︸ ︷︷ ︸
V̂

= Û3m×4V̂4×n .

We can interpret the matrix̂U as a collection ofm (3×4) projection matriceŝPi andV̂ as collection
of n 4-vectorsQ̂p, representing 3D shape :

W = ÛV̂ =


P̂1

P̂2
...

P̂m


3m×4

(
Q̂1 Q̂2 · · · Q̂n

)
4×n

(4)
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Equation (4) shows that thêPi andQ̂p represent at least projective motion and shape, since

P̂iQ̂p = λipqip ∼ qip .

Unlike the case of orthographic projections [TK92], there are no further constraints on theP̂i or
Q̂p : we canonly recover projective shape and motion. For any non singular projective transforma-
tion T4×4, P̂iT andT−1Q̂p is an equally valid factorization of the data into projective motion and
shape :

(P̂iT)(T−1Q̂p) = P̂iQ̂p ∼ qip .

A consequence of this is that the factorization ofΣ is arbitrary. For the implementation, we chose
Σ′ = Σ′′ = Σ1/2 = diag(σ1/2

1 , σ
1/2
2 , σ

1/2
3 , σ

1/2
4 ).

3 The Algorithm

Based on the observations made above, we have developed a practical algorithm for projective
reconstruction from multiple views. Besides the major two steps, determination of the scale factors
λip and factorization of the rescaled measurement matrix, the outline of our algorithm is based on
some numerical considerations.

3.1 Normalization of Image Coordinates

To ensure good numerical conditioning of the method, we work with normalized image coordi-
nates, as described in [Har95]. This normalization consists of applying a similarity transformation
(translation and uniform scaling)Ti to each image, so that the transformed points are centered at
the origin and the mean distance from the origin is

√
2.

All of the remaining steps of the algorithm are done in normalized coordinates. Since we
actually compute projective motion and shape for the transformed image pointsTiqip, P̂iQ̂p =
λipTiqip ∼ Tiqip, the resulting projection estimateŝPi must be corrected :̂Pi

′
= T−1

i P̂i. The

P̂i
′
andQ̂p then represent projective motion and shape corresponding to the measured image points

qip.
Our results show that this simple normalization drastically improves the results of the projective

reconstruction.

3.2 Balancing the Rescaled Measurement Matrix

Consider the factorization of the rescaled measurement matrixW in projective motion and shape :

W =


λ11q11 λ12q12 · · · λ1nq1n

λ21q21 λ22q22 · · · λ2nq2n
...

...
.. .

...
λm1qm1 λm2qm2 · · · λmnqmn

 =


P̂1

P̂2
...

P̂m


(
Q̂1 Q̂2 · · · Q̂n

)

Multiplying column l of W by a non zero scalarνl corresponds to multiplyinĝQl by νl. Analo-
gously, multiplying the imagek rows(3k − 2, 3k − 1, 3k) by a non zero scalarµk corresponds to
multiplying the projection matrixP̂k byµk. Hence, point-wise and image-wise rescalings ofW do
not affect the recovered projective motion and shape.

However, these considerations are only valid in the absence of noise. In presence of noise,W
will only be approximately of rank 4, and scalar multiplications ofW as described abovewill affect
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the results. We therefore aim to improve the results of the factorization by applying appropriate
point- and image-wise rescalings toW. The goal is to ensure good numerical conditioning by
rescaling so that all rows and columns ofW have on average the same order of magnitude. To do
this we use the following iterative scheme :

1. Rescale each columnl so that
∑3m
r=1(wrl)2 = 1.

2. Rescale each triplet of rows(3k − 2, 3k − 1, 3k) so that
∑n
l=1

∑3k
i=3k−2w

2
il = 1.

3. If the entries ofW changed significantly, repeat 1 and 2.

Note that, since we work with normalized image coordinatesqip, it would be sufficient to
balance only them× n matrix (λip) instead ofW.

3.3 Outline of the Algorithm

The complete algorithm is composed of the following steps.

1. Normalize the image coordinates, by applying transformationsTi.

2. Estimate the fundamental matrices and epipoles with the method of [Har95].

3. Determine the scale factorsλip using equation (3).

4. Build the rescaled measurement matrixW.

5. BalanceW by column-wise and “triplet-of-rows”-wise scalar mutliplications.

6. Compute the SVD of the balanced matrixW.

7. From the SVD, recover projective motion and shape.

8. Adapt projective motion, to account for the normalization transformationsTi of step 1.

4 Experimental Evaluation of the Algorithm

4.1 Experiments with Simulated Images

We conducted a large number of experiments with simulated images to quantify the performance of
the algorithm. The simulations used three different configurations : lateral movement of a camera,
movement towards the scene, and a circular movement around the scene (see figure 1). In configu-
ration 2, the depths of points lying on the line joining the projection centers can not be recovered.
Reconstruction of points lying close to this line is extremely difficult, as was confirmed by the
experiments, which resulted in quite inaccurate reconstructions for this configuration.

For the circular movement, the overall trajectory of the camera formed a quarter circle, centered
on the scene. For each specific experiment, the trajectory length was the same for all three configu-
rations. Them different viewing positions were equidistantly distributed along the trajectory.

In order to simulate realistic situations, we adopted the following parameters : the camera’s cal-
ibration matrix wasdiag(1000, 1000, 1). The scene was composed of points distributed uniformly
in a sphere of radius 100. The distance between the camera and the center of the sphere was 200
(for configuration 2 this was the distance with respect to the viewm).

For each configuration, the following experiment was conducted 50 times :

1. Determine at random 50 points in the sphere.
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Figure 1:The 3 configurations for simulation. (1)Lateral movement.(2) Translation towards the
scene.(3) Circular movement.

2. Project the points into them views.

3. Add Gaussian noise of levels0.0, 0.5, . . . , 2.0 to the image coordinates.

4. Carry out projective reconstruction with our algorithm.

5. Compute the image distance error of the backprojected points (2D error) :
1
mn

∑m
i=1

∑n
p=1 ‖P̂iQ̂p − qip‖, where‖.‖ means the Euclidean vector norm.

6. Align the projective reconstruction with the Euclidean model and compute the distance error
in the Euclidean frame (3D error).

The results of these experiments were analyzed with respect to several variables, as reported in the
following subsections. All values represented in the graphs are the mean result over 50 trials. To
monitor the effect of outliers on the results, we also computed the median values. These gave graphs
similar to those for the means, which we will not show here.

2D errors are given in pixels, whereas 3D errors are given relative to the scene’s size, in percent.

4.1.1 Sensitivity to Noise

Graphs 1 and 2 show the behavior of the algorithm with respect to different noise levels for the three
configurations. For this experiment, reconstruction was done from 10 views.
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Graphs 1 and 2 : Sensitivity to noise.The 2D error curves for the configurations 1 and 3 are
nearly undistinguishable. 3D error for configuration 2 goes rapidly off scale.

The algorithm performed almost equally well for configurations 1 and 3, whereas the 3D error
for configuration 2 exceeds 100 % for 2.0 pixels noise. Considering the graphs of configuration 2,
we also see that 2D and 3D error are not always well correlated. For configurations 1 and 3, the 2D
error is of the same order as pixel noise. Note also the linear shape of the graphs.



82 Chapitre 4. Reconstruction projective

4.1.2 Number of Views

The image noise for this experiment was 1.0 pixel.
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Graphs 3 and 4 : Behavior with respect to number of views.The 2D error curves for the
configurations 1 and 3 are nearly undistinguishable. The 3D error for configuration 2 lies above 5
%. The curve is thus not visible in the graph.

The graphs show the expected behavior : when more views are used for reconstruction, the
structure is recovered more accurately. Secondly, 2D error augments with increasing number of
views, but shows a clearly asymptotic behavior. 1. Note that the use of 20 views reduces the 3D
error to 50 % of that for 2 views.

4.1.3 Importance of Normalization and Balancing

The error values in the previous graphs were obtained with the algorithm as described in subsection
3.3. To underline the importance of using normalized image coordinates, we also ran the algorithm
using unnormalized ones. The effects of not balancing the rescaled measurement matrix before
factorization were also examined.
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Graphs 5 and 6 : Influence of normalization and balancing.The results presented here were
obtained for configuration 1. The 2D error curve for “only balancing” goes off scale even for 0.5
pixels noise and the 3D curve is so steep that it is not even visible.

When the image coordinates are not normalized, the error is already off scale for 0.5 pixel noise.
An explanation for this is the bad conditioning of the rescaled measurement matrix (see also next
paragraph). As for balancing, we see that this improves 3D errors up to 20 %, and hence should
always be part of the algorithm.

4.1.4 Robustness of the Factorization

The applicability of our factorization method is based on the rank 4-ness of the rescaled measure-
ment matrixW (in the noiseless case). To test the robustness of this property, we evaluated how
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closeW is to rank 4 in practice. To be close to rank 4, the ratio of the 4th and 5th largest singular
values ,σ4 : σ5, should be large with respect to the ratio of the 1st and 4th largest,σ1 : σ4. In
the following graphs, these two ratios are represented, for configurations 1 and 2 and for 2 and 20
views. Note that the y-axes are scaled logarithmically.
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Graphs 7 and 8 : Ratios of singular values for configuration 1.The graph on the left shows
the situation for 2 views, on the right for 20 views.
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Graphs 9 and 10 : Ratios of singular values for configuration 2.The graph on the left shows
the situation for 2 views, on the right for 20 views.

We see that for configuration 1, the matrix is always very close to rank 4 :(σ1 : σ4) is lower
than 2, whereas(σ4 : σ5) lies clearly above 100. As for configuration 2, the graphs reflect the bad
performance in 3D reconstruction.(σ1 : σ4) is about 10, while for high noise levels or many views
(σ4 : σ5) is close to 1.

4.2 Evaluation with Real Images

The algorithm has also been tested on several sequences of real images. For 2 of them we show
results.

4.2.1 The House Sequence

Figure 2 shows the first and last image of a sequence of 6 images of a scene with a wooden house.
38 points were tracked over the whole sequence, but only extracted with±1 pixel accuracy.

To estimate the quality of the projective reconstruction, we aligned it with an approximate
Euclidean model of the scene obtained from calibrated views (see figure 3). Lines have been drawn
between some of the points to aid visualization.

In the side and front views we see that right angles are approximately conserved, and that the
windows are coplanar with the wall. The bumpiness on the left side of the roof is due to the fact
that the roof stands out slightly from the house’s front wall (see figure 2), thus causing occlusion in
the last view of the edge point between roof and wall.
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Figure 2:First and last image of the house sequence and one image of the castle sequence.

Figure 3:Three views of the reconstructed house. (1)“General view”. (2) Side view.(3) Front
view.

4.2.2 The Castle Sequence

28 points have been tracked through the 11 images of the scene shown in the right part of figure 2.
3D ground truth is available, and the reconstruction errors have been evaluated quantitatively. The
projective reconstruction was aligned with the Euclidean model and the resulting RMS error was
4.45 mm for an object size of about220mm×210mm×280mm. The RMS error of the reprojected
structure with respect to the measured image points was less than0.02 pixels.

We also applied a Levenberg-Marquardt nonlinear least-squares estimation algorithm, with the
results of our method as initialization. This slightly improved the 2D reprojection error, however
the 3D reconstruction error was not significantly changed.

5 Discussion and Further Work

In this paper, we have proposed a method of projective reconstruction from multiple uncalibrated
images. The method is very elegant, recovering shape and motion by factorization of one matrix,
containing all image points of all views. This factorization is only possible when the image points
are correctly scaled. We have proposed a very simple way to obtain the individual scale factors,
using only fundamental matrices and epipoles estimated from the image data.

The algorithm proves to work well with real images. Quantitative evaluation by numerical
simulations shows the robustness of the factorization and the good performance with respect to
noise. The results also show that it is essential to work with normalized image coordinates.

Some aspects of the method remain to be examined. In the current implementation, we recover
projective depths by chaining equation (2) for pairs of views(12), (23), . . . , (m− 1,m). However,
it would be worth investigating whether other kinds of chaining are not more stable. Furthermore,
uncertainty estimates on the fundamental matrices should be considered when choosing which of
the equations (2) to use. To run the algorithm in practice, it should also be able to treat points which
are not visible in all images. Finally the method could be extended to use trilinear and perhaps even
quadrilinear matching tensors.
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Abstract

This paper describes a family of factorization-based al-
gorithms that recover 3D projective structure and mo-
tion from multiple uncalibrated perspective images of 3D
points and lines. They can be viewed as generalizations
of the Tomasi-Kanade algorithm from affine to fully per-
spective cameras, and from points to lines. They make no
restrictive assumptions about scene or camera geometry,
and unlike most existing reconstruction methods they do
not rely on ‘privileged’ points or images. All of the avail-
able image data is used, and each feature in each image is
treated uniformly. The key to projective factorization is
the recovery of a consistent set ofprojective depths(scale
factors) for the image points: this is done using funda-
mental matrices and epipoles estimated from the image
data. We compare the performance of the new techniques
with several existing ones, and also describe an approx-
imate factorization method that gives similar results to
SVD-based factorization, but runs much more quickly for
large problems.

Keywords: Multi-image Structure, Projective Recon-
struction, Matrix Factorization.

1 Introduction

There has been considerable progress on scene re-
construction from multiple images in the last few
years, aimed at applications ranging from very pre-
cise industrial measurement systems with several
fixed cameras, to approximate structure and mo-
tion from real time video for active robot naviga-
tion. One can usefully begin by ignoring the is-
sues of camera calibration and metric structure, ini-
tially recovering the scene up to an overall projec-
tive transformation and only later adding metric in-

This paper appeared in CVPR’96. The work was supported by
an EC HCM grant and INRIA Rhˆone-Alpes. I would like to
thank Peter Sturm and Richard Hartley for enlightening discus-
sions.

formation if needed [5, 10, 1]. The key result is
that projective reconstruction is the best that can be
done without calibration or metric information about
the scene, and that it is possible from at least two
views of point-scenes or three views of line-scenes
[2, 3, 8, 6].

Most current reconstruction methods either work
only for the minimal number of views (typically
two), or single out a few ‘privileged’ views for ini-
tialization before bootstrapping themselves to the
multi-view case [5, 10, 9]. For robustness and ac-
curacy, there is a need for methods that uniformly
take account of all the data in all the images, without
making restrictive special assumptions or relying on
privileged features or images for initialization. The
orthographic and paraperspective structure/motion
factorization methods of Tomasi, Kanade and Poel-
man [17, 11] partially fulfill these requirements, but
they only apply when the camera projections are
well approximated by affine mappings. This hap-
pens only for cameras viewing small, distant scenes,
which is seldom the case in practice. Factorization
methods for perspective images are needed, however
it has not been clear how to find the unknown pro-
jective scale factors of the image measurements that
are required for this. (In the affine case the scales
are constant and can be eliminated).

As part of the current blossoming of interest in
multi-image reconstruction, Shashua [14] recently
extended the well-known two-image epipolar con-
straint to a trilinear constraint between matching
points in three images. Hartley [6] showed that this
constraint also applies to lines in three images, and
Faugeras & Mourrain [4] and I [18, 19] completed
that corner of the puzzle by systematically studying
the constraints for lines and points in any number
of images. A key aspect of the viewpoint presented
in [18, 19] is that projective reconstruction is essen-
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tially a matter of recovering a coherent set ofpro-
jective depths— projective scale factors that rep-
resent the depth information lost during image pro-
jection. These are exactly the missing factorization
scales mentioned above. They satisfy a set of consis-
tency conditions called ‘joint image reconstruction
equations’ [18], that link them together via the cor-
responding image point coordinates and the various
inter-image matching tensors.

In the MOVI group, we have recently been de-
veloping projective structure and motion algorithms
based on this ‘projective depth’ picture. Several of
these methods use the factorization paradigm, and
so can be viewed as generalizations of the Tomasi-
Kanade method from affine to fully perspective pro-
jections. However they also require a depth recovery
phase that is not present in the affine case. The basic
reconstruction method for point images was intro-
duced in [15]. The current paper extends this in sev-
eral directions, and presents a detailed assessment of
the performance of the new methods in comparison
to existing techniques such as Tomasi-Kanade fac-
torization and Levenberg-Marquardt nonlinear least
squares. Perhaps the most significant result in the
paper is the extension of the method to work for lines
as well as points, but I will also show how the fac-
torization can be iteratively ‘polished’ (with results
similar to nonlinear least squares iteration), and how
any factorization-based method can be speeded up
significantly for large problems, by using an approx-
imate fixed-rank factorization technique in place of
the Singular Value Decomposition.

The factorization paradigm has two key attrac-
tions that are only enhanced by moving from the
affine to the projective case:(i) All of the data in all
of the images is treated uniformly — there is no need
to single out ‘privileged’ features or images for spe-
cial treatment;(ii) No initialization is required and
convergence is virtually guaranteed by the nature of
the numerical methods used. Factorization also has
some well known disadvantages: Every primitive
must be visible in every image. This is unrealistic in
practice given occlusion and extraction and tracking
failures. It is not possible to incorporate a full statis-
tical error model for the image data, although some
sort of implicit least-squares trade-offis made. It is
not clear how to incorporate additional points or im-
ages incrementally: the whole calculation must be
redone. SVD-based factorization is slow for large

problems.
Only the speed problem will be considered here.

SVD is slow because it was designed for general,
full rank matrices. For matrices of fixed low rankr
(as here, where the rank is 3 for the affine method
or 4 for the projective one), approximate factoriza-
tions can be computed in timeO(mnr), i.e.directly
proportional to the size of the input data.

The Tomasi-Kanade ‘hallucination’ process can
be used to work around missing data [17], as in the
affine case. However this greatly complicates the
method and dilutes some of its principal benefits.
There is no obvious solution to the error modelling
problem, beyond using the factorization to initial-
ize a nonlinear least squares routine (as is done in
some of the experiments below). It would probably
be possible to develop incremental factorization up-
date methods, although there do not seem to be any
in the standard numerical algebra literature.

The rest of the paper outlines the theory of pro-
jective factorization for points and lines, describes
the final algorithms and implementation, reports on
experimental results using synthetic and real data,
and concludes with a discussion. The full theory
of projective depth recovery applies equally to two,
three and four image matching tensors, but through-
out this paper I will concentrate on the two-image
(fundamental matrix) case for simplicity. The un-
derlying theory for the higher valency cases can be
found in [18].

2 Point Reconstruction

We need to recover 3D structure (point locations)
and motion (camera calibrations and locations) from
m uncalibrated perspective images of a scene con-
taining n 3D points. Without further information
it is only possible to reconstruct the scene up to
an overall projective transformation [2, 8], so we
will work in homogeneous coordinates with respect
to arbitrary projective coordinate frames. LetXp

(p = 1, . . . , n) be the unknown homogeneous 3D
point vectors,Pi (i = 1, . . . ,m) the unknown3× 4
image projections, andxip the measured homoge-
neous image point vectors. Modulo some scale fac-
tors λip, the image points are projected from the
world points: λip xip = Pi Xp. Each object is
defined only up to rescaling. Theλ’s ‘cancel out’
the arbitrary scales of the image points, but there is
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still the freedom to: (i) arbitrarily rescale each world
point Xp and each projectionPi; (ii ) apply an arbi-
trary nonsingular4 × 4 projective deformationT:
Xp → TXp, Pi → PiT−1. Modulo changes of the
λip, the image projections are invariant under both
of these transformations.

The scale factorsλip will be called projective
depths. With correctly normalized points and pro-
jections they become true optical depths,i.e. orthog-
onal distances from the focal planes of the cameras.
(NB: this is not the same as Shashua’s ‘projective
depth’ [13]). In general,m+n−1 projective depths
can be set arbitrarily by choosing appropriate scales
for the Xp andPi. However, once this is done the
remaining(m−1)(n−1) degrees of freedom contain
real information that can be used for 3D reconstruc-
tion: taken as a whole the projective depths have a
strong internal coherence. In fact, [18, 19] argues
that just as the key to calibrated stereo reconstruc-
tion is the recovery of Euclidean depth, the essence
of projective reconstruction is precisely the recovery
of a coherent set of projective depths modulo over-
all projection and world point rescalings. Once this
is done, reconstruction reduces to choosing a pro-
jective basis for a certain abstract three dimensional
‘joint image’ subspace, and reading off point coor-
dinates with respect to it.

2.1 Factorization

Gather the point projections into a single3m × n
matrix equation:

W ≡


λ11 x11 λ12 x12 · · · λ1n x1n

λ21 x21 λ22 x22 · · · λ2n x2n
...

...
. ..

...
λm1 xm1 λm2 xm2 · · · λmn xmn



=


P1

P2
...

Pm


(

X1 X2 · · · Xn

)

Hence, with a consistent set of projective depths the
rescaled measurement matrixW has rank at most
4. Any rank 4 matrix can be factorized into some
3m × 4 matrix of ‘projections’ multiplying a4 × n
matrix of ‘points’ as shown, and any such factoriz-
ation corresponds to a valid projective reconstruc-
tion: the freedom in factorization is exactly a4 × 4

nonsingular linear transformationP → P T−1,
X → T X, which can be regarded as a projective
transformation of the reconstructed 3D space.

One practical method of factorizingW is the
Singular Value Decomposition [12]. This decom-
poses an arbitraryk × l matrix Wk×l of rank r
into a productWk×l = Uk×r Dr×r V>l×r, where the
columns ofVl×r andUk×r are orthonormal bases
for the input (co-kernel) and output (range) spaces
of Wk×l, and Dr×r is a diagonal matrix of posi-
tive decreasing ‘singular values’. The decomposi-
tion is unique when the singular values are distinct,
and can be computed stably and reliably in time
O(klmin(k, l)). The matrixD of singular values
can be absorbed into eitherU or V to give a decom-
position of the projection/point formPX. (I absorb
it into V to formX).

The SVD has been used by Tomasi, Kanade
and Poelman [17, 11] for their affine (orthographic
and paraperspective) reconstruction techniques. The
current application can be viewed as a generaliza-
tion of these methods to projective reconstruction.
The projective case leads to slightly larger matrices
(3m × n rank 4 as opposed to2m × n rank 3), but
is actually simpler than the affine case as there is no
need to subtract translation terms or apply nonlin-
ear constraints to guarantee the orthogonality of the
projection matrices.

Ideally, one would like to find re-
constructions in time O(mn) (the size
of the input data). SVD is a factor of
O(min(3m,n)) slower than this, which can be
significant if there are many points and images. Al-
though SVD is probably near-optimal for full-rank
matrices, rankr matrices can be factorized in ‘out-
put sensitive’ timeO(mnr). I have experimented
with one such ‘fixed rank’ method, and find it to be
almost as accurate as SVD and significantly faster
for large problems. The method repeatedly sweeps
the matrix, at each sweep guessing and subtracting
a column-vector that ‘explains’ as much as possible
of the residual error in the matrix columns. A
rank r matrix is factorized inr sweeps. When
the matrix is not exactly of rankr the guesses
are not quite optimal and it is useful to include
further sweeps (say2r in total) and then SVD the
matrix of extracted columns to estimate the bestr
combinations of them.
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2.2 Projective Depth Recovery

The above factorization techniques canonly be used
if a self-consistent set of projective depthsλip can
be found. The key technical advance that makes this
work possible is a practical method for estimating
these using fundamental matrices and epipoles ob-
tained from the image data. The full theory can be
found in [18], which also describes how to use triva-
lent and quadrivalent matching tensors for depth re-
covery. Here we briefly sketch the fundamental ma-
trix case. The image projectionsλip xip = Pi Xp

imply that the6× 5 matrix(
Pi λip xip

Pj λjp xjp

)
=

(
Pi

Pj

)(
I4×4 Xp

)
has rank at most 4, so all of its5 × 5 minors van-
ish. Expanding by cofactors in the last column gives
homogeneous linear equations in the components of
λip xip andλjp xjp, with coefficients that are4 × 4
determinants of projection matrix rows. These turn
out to be the expressions for the fundamental matrix
Fij and epipoleeji of cameraj in imagei in terms
of projection matrix components [19, 4]. The result
is theprojective depth recovery equation:

(Fij xjp)λjp = (eji ∧ xip)λip (1)

This says two things: (i) The epipolar line ofxjp

in imagei is the same as the line through the cor-
responding pointxip and epipoleeji (as is well
known); (ii ) With the correct projective depths and
scalings forFij andeji, the two terms have exactly
the same size. The equality is exact, not just up to
scale. This is the new result that allows us to re-
cover projective depths using fundamental matrices
and epipoles. Analogous results based on higher or-
der matching tensors can be found in [18].

It is straightforward to recover projective depths
using (1). Each instance of it linearly relates the
depths of a single 3D point in two images. By esti-
mating a sufficient number of fundamental matrices
and epipoles, we can amass a system of homoge-
neous linear equations that allows the complete set
of depths for a given point to be found, up to an arbi-
trary overall scale factor. At a minimum, this can be
done by selecting any set ofm−1 equations that link
them images into a single connected graph. With
such a non-redundant set of equations the depths for

each pointp can be found trivially by chaining to-
gether the solutions for each image, starting from
some arbitrary initial value such asλ1p = 1. Solving
the depth recovery equation in least squares gives a
simple recursion relation forλip in terms ofλjp :

λip :=
(eji ∧ xip) · (Fij xjp)
‖eji ∧ xip‖2

λjp

If additional depth recovery equations are used, this
simple recursion must be replaced by a redundant
(and hence potentially more robust) homogeneous
linear system. However, care is needed. The depth
recovery equations are sensitive to the scale factors
chosen for theF’s and e’s, and these can not be
recovered directly from the image data. This is ir-
relevant when a single chain of equations is used,
as rescalings ofF and e affect all points equally
and hence amount to rescalings of the correspond-
ing projection matrices. However with redundant
equations it is essential to choose a mutually self-
consistent set of scales for theF’s ande’s. I will
not describe this process here, except to note that
the consistency condition is the Grassmann identity
Fkjeij = eik ∧ ejk [18].

It is still unclear what the best trade-off be-
tween economy and robustness is for depth recov-
ery. This paper considers only two simple non-
redundant choices: either the images are taken pair-
wise in sequence,F21,F32, . . . ,Fm m−1, or all sub-
sequent images are scaled in parallel from the first,
F21,F31, . . . ,Fm1. It might seem that long chains
of rescalings would prove numerically unstable, but
in practice depth recovery is surprisingly well con-
ditioned. Both serial and parallel chains work very
well despite their non-redundancy and chain length
or reliance on a ‘key’ image. The two methods give
similar results except when there are many (>40)
images, when the shorter chains of the parallel sys-
tem become more robust. Both are stable even when
epipolarpoint transfer is ill-conditioned (e.g. for a
camera moving in a straight line, when the epipolar
lines of different images coincide): the image obser-
vations act as stable ‘anchors’ for the transfer pro-
cess.

Balancing: A further point is that with arbitrary
choices of scale for the fundamental matrices and
epipoles, the average size of the recovered depths
might tend to increase or decrease exponentially
during the solution-chaining process. Theoretically



Papier : Factorization Methods for Projective Structure & Motion – CVPR’96 91

this is not a problem as the overall scales are arbi-
trary, but it could easily make the factorization phase
numerically ill-conditioned. To counter this the re-
covered matrix of projective depths must be bal-
anced after it has been built, by judicious overall row
and column rescalings. The process is very simple.
The image points are normalized on input, so ide-
ally all of the scale factorsλip should have roughly
the same order of magnitude,O(1) say. For each
point the depths are estimated as above, and then:
(i) each row (image) of the estimated depth matrix is
rescaled to have length

√
n; (ii ) each column (point)

of the resulting matrix is rescaled to length
√
m.

This process is repeated until it roughly converges,
which happens very quickly (within 2–3 iterations).

3 Line Reconstruction

3D lines can also be reconstructed using the above
techniques. A lineL can be represented by any two
3D points lying on it, sayY andZ. In imagei, L
projects to some image lineli andY andZ project
to image pointsyi and zi lying on li. The points
{yi|i = 1, . . . ,m} are in epipolar correspondence,
so they can be used in the depth recovery equation
(1) to reconstructY, and similarly forZ. The repre-
sentativesY andZ can be fixed implicitly by choos-
ing y1 andz1 arbitrarily onl1 in the first image, and
using the epipolar constraint to transfer these to the
corresponding points in the remaining images:yi

lies on bothli and the epipolar line ofy1, so is lo-
cated at their intersection.

In fact, epipolar transfer and depth recovery can
be done in one step. Letyi stand for therescaled
via pointsPiY. Substitute these into equation (1),
cross-product withli, expand, and simplify usingli ·
yi = 0:

li ∧ (Fij yj) = li ∧ (eji ∧ yi)
= − (li · eji) yi + (li · yi) eji

= − (li · eji) yi (2)

Up to a factor ofli·eji, the intersectionli∧(Fij yj) of
li with the epipolar line ofyj automatically gives the
correct projective depth for reconstruction.Hence,
factorization-based line reconstruction can be imple-
mented by choosing a suitable (widely spaced) pair
of via-points on each line in the first image, and
then chaining together instances of equation (2) to

find the corresponding, correctly scaled via-points
in the other images. The required fundamental ma-
trices can not be found directly from line matches,
but they can be estimated from point matches, or
from the trilinear line matching constraints (trivalent
tensor) [6, 14, 4, 19, 18]. Alternatively, the triva-
lent tensor can be used directly: in tensorial nota-
tion [18], the trivalent via-point transfer equation is
lBk

GCj
AiBk yCj = (lBk

eBk
j )yAi .

As with points, redundant equations may be in-
cluded if and only if a self-consistent normalization
is chosen for the fundamental matrices and epipoles.
For numerical stability, it is essential to balance
the resulting via-points (i.e. depth estimates). This
works with the3m × 2nlines ‘W’ matrix of via-
points, iteratively rescaling all coordinates of each
image (triple of rows) and all coordinates of each
line (pair of columns) until an approximate equilib-
rium is reached, where the overall mean square size
of each coordinate isO(1) in each case. To ensure
that the via-points representing each line are on av-
erage well separated, I also orthonormalize the two
3m-component column vectors for each line with re-
spect to one another. The via-point equations (2) are
linear and hence invariant with respect to this, but it
does of course change the 3D representativesY and
Z recovered for each line.

4 Implementation

This section summarizes the complete algorithm
for factorization-based 3D projective reconstruction
from image points and lines, and discusses a few im-
portant implementation details and variants. The al-
gorithm goes as follows: Extract and match points
and lines across all images.

Standardize all image coordinates (see below).
Estimate a set of fundamental matrices and

epipoles sufficient to chain all the images together
(e.g.using point matches).

For each point, estimate the projective depths us-
ing equation (1). Build and balance the depth matrix
λip, and use it to build the rescaled point measure-
ment matrixW.

For each line choose two via-points and transfer
them to the other images using the transfer equations
(2). Build and balance the rescaled line via-point
matrix.
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Combine the line and point measurement matrices
into a 3m × (npoints + 2nlines) data matrix and fac-
torize it using either SVD or the fixed-rank method.
Recover 3D projective structure (point and via-point
coordinates) and motion (projection matrices) from
the factorization.

Un-standardize the projection matrices (see be-
low).

Complexity: The algorithm is dominated by the
O(mnmin (3m,n)) SVD step if this is used, while
if an approximate factorization is used it is propor-
tional to the input data sizeO(mn).

Standardization: To get acceptable results from
the above algorithm, it isabsolutely essentialto
work in a well-adapted image coordinate system.
The basic idea is to choose working coordinates
that reflect the least squares trade-offs implicit in
the factorization algorithm. This is standard prac-
tice in numerical analysis, but it does not seem to
have been widely known in vision until Hartley [7]
pointed out its importance for fundamental matrix
estimation. The exact scheme used is not criti-
cal, provided that the homogeneous working coor-
dinates are all of the same order of magnitude. I cur-
rently prefer to scale the image into the unit square
[−1, 1] × [−1, 1], homogenize, and then normalize
the resulting homogeneous 3-vectors to unit length
x2 + y2 + z2 = 1. This simple scheme works very
well in practice. The normalization applies to line
vectors as well as point ones, and behaves well even
for points (e.g.epipoles) near the line at infinity. Af-
ter reconstruction, the camera projections need to be
un-standardized by multiplying by the inverse trans-
formation.

4.1 Generalizations & Variants

I have implemented and experimented with a num-
ber of variants of the above algorithm, the more
promising of which are featured in the experiments
described below.
Iterative Factorization: The projective depths de-
pend on the 3D structure, which in turn derives from
the depths. The reconstruction can be iteratively im-
proved by reprojecting to refine the depth estimates
and then re-factorizing. For points one finds the
component of the reprojected 3D point vector along
each image vector, while for lines the reprojected
via-point is perturbed orthogonally to lie on the mea-

sured image line. With SVD-based factorization and
standardized image coordinates the iteration turns
out to be extremely stable, and always improves the
recovered structure slightly (often significantly for
lines). For points, one can even start with arbitrary
initial depths (say the affine onesλip = 1) and it-
erate to convergence. This requires no fundamental
matrices or depth recovery equations and converges
reliably in practice, although it can be rather slow if
started far from the true solution.
Nonlinear Least Squares: The ‘linear’
factorization-based projective reconstruction
methods described above are a suitable starting
point for more refined nonlinear least-squares
estimation. This can take account of image point
error models, camera calibrations, or Euclidean
constraints, as in the work of Szeliski and Kang
[16], Hartley [5] and Mohr, Boufama and Brand
[10]. The standard workhorse for such problems
is Levenberg-Marquardt iteration [12], so for
comparison with the linear methods I have imple-
mented simple L-M based projective reconstruction
algorithms. These can be initialized from either
fixed-rank or SVD-based factorizations. For lines
the recovered structure is often improved signifi-
cantly, while for points the improvement over the
linear methods is usually small.
Affine Factorization: To illustrate the advantages
of projective factorization over the original Tomasi-
Kanade-Poelman work [17, 11], I have also imple-
mented affine SVD-based point reconstruction. This
gives rather poor results in the below experiments
because the perspective distortions are quite large.

5 Experiments

To quantify the performance of the various algo-
rithms, I have run a large number of simulations us-
ing synthetic data, and also tested the algorithms on
manually matched primitives derived from real im-
ages. There is only space for a very brief summary
here, more details can be found in [20].

The simulations are based on trial scenes consist-
ing of random 3D points and lines in the unit cube
[−1, 1] × [−1, 1] × [−1, 1], perturbed by uniform
noise and viewed by identical perspective cameras
in various arrangements. In the graphs shown here,
the cameras are spaced uniformly along a 90 degree
arc of radius 2 in the equatorial plane of the scene,
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Figure 1: Mean 3D reconstruction error for points and lines,vs. noise, number of views and number of primitives.
Defaults:±1 pixel noise; 10 views; 50 primitives.

and are directed towards the scene centre (i.e. there
is a large baseline and significant perspective dis-
tortion). Reconstruction error is measured over 50
trials, after least-squares projective alignment with
the true 3D structure. Mean errors are reported for
points, while for lines there are always outliers so
median errors are used1.

Fundamental matrices and epipoles are estimated
using the linear least squares method with all the
available point matches, followed by a supple-
mentary SVD to project the fundamental matri-
ces to rank 2 and find the epipoles. In standard-
ized coordinates this method performs very well
[7], and it has not proved necessary to refine the
results with a nonlinear method. Unless other-
wise noted, the projective depths of points are re-
covered by chaining sequentially through the im-
ages: F12,F23, . . . ,Fm−1 m. A parallel chain
F12,F13, . . . ,F1 m usually gives similar results. For
lines in more than a few images, the parallel chain is
superior and is used by default.

Fig. 1 shows the sensitivity of various point and
line reconstruction methods to image noise, number

1The image of a line passing near the optical centre of a
camera is extremely sensitive to small 3D perturbations. Also,
if the camera centres lie in a plane (as here), all lines in that
plane have the same image, so such lines can not be uniquely
reconstructed (c.f. axial points for cameras lying in a line; in
this case, only lines skew with the axis can be reconstructed).
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Figure 2: Reconstruction errorvs.image standardization.

of views, and number of scene primitives (points or
lines). The methods shown are:points: fundamental
matrix depth recovery with SVD and fixed-rank fac-
torization, iterated SVD and nonlinear least-squares
initialized from SVD;lines: fundamental matrix and
trilinear parallel and serial via-point transfer fol-
lowed by SVD, iterated SVD, and SVD plus non-
linear least-squares.

All of the point methods are very stable. Their er-
rors vary linearly with noise and decrease as more
points or views are added. There is not much dif-
ference in precision, but generally the fixed-rank
method is slightly less accurate (but significantly
faster) than SVD. Iterating the SVD makes a small
improvement, and nonlinear least-squares is slightly
more accurate again. Serial depth recovery chains
become ill-conditioned when more than 30-40 im-
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Figure 3: Projective and affine reconstructionvs. scene
distance.

ages are chained: beyond this parallel chaining is
advised.

Line reconstruction is less stable. Only the least-
squares methods consistently give reconstruction er-
rors commensurate with the input noise. Parallel F-
matrix transfer plus factorization is a factor of 2 or
more worse than this, and serial transfer is worse
again. Iterative factorization helps a little, but the
use of a nonlinear least-squares routine is still ad-
visable. Any of these methods are accurate enough
for reliable initialization of the least-squares itera-
tion. If my implementation is correct, trilinear trans-
fer based reconstruction is too sensitive to noise to
be useful (this requires confirmation). For all of the
above methods, there are outliers corresponding to
lines that either can not be reconstructed uniquely,
or are very sensitive to small 3D perturbations.

The importance of standardization is illustrated
in fig. 2, where the image coordinates are standard-
ized toO(scale) rather thanO(1) before reconstruc-
tion. Pixel coordinates correspond to a scale of 256
and give errors hundreds of times worse than well-
standardized coordinates. The rapid increase in error
at scales below 0.1 is caused by floating-point trun-
cation error.

Fig. 3 illustrates the advantages of using perspec-
tive rather than affine reconstruction, for a camera
driving in a 90 degree arc around a scene at vari-
ous distances. Clearly, the affine approximation in-
troduces a considerable amount of systematic error
even for quite distant scenes. Projective factoriz-
ation is stable and accurate even for distant scenes:
even in these cases, the only real advantage of affine
factorization is the fact that it is 2-3 times faster.

I have also run the point-based algorithms on
several data sequences extracted from real images.
Without the ground truth it is hard to be precise, but

the final aligned reconstructions seem qualitatively
accurate and in good agreement with the results ob-
tained using synthetic data.

6 Discussion & Conclusions

Within the limitations of the factorization paradigm,
factorization-based projective reconstruction seems
quite successful. For points, the methods studied
have proved simple, stable, and surprisingly accu-
rate. For lines the situation is less clear: the methods
work, but least-squares refinement often improves
the results significantly. As with any line reconstruc-
tion, there are always outliers, especially when the
cameras are collinear or coplanar.

Fixed-rank factorization works well, although (as
might be expected) SVD always produces slightly
more accurate results. The savings in run time over
SVD probably only become significant for quite
large problems (say more than 40 images and 100
points), but in these cases they can become very sub-
stantial.

This paper presents only the first few members of
a large family of reconstruction techniques, based
on the recovery of projective depths or scale factors.
Future work will expand on this. There are anal-
ogous factorization methods using higher match-
ing tensors, and also methods that reconstruct the
projection matrices directly from matching tensors
without factorization (and hence do not require to-
kens to be tracked through every image). All of these
allow various trade-offs between redundancy, com-
putation and implementation effort. I am also in-
vestigating numerical factorization methods that can
handle missing data and incremental updates grace-
fully, and alternatives to Levenberg-Marquardt re-
finement (which I feel is not well suited to nonlinear
least-squares reconstruction).

Summary: Projective structure and motion can
be recovered from multiple perspective images of a
scene consisting of points and lines, by estimating
fundamental matrices and epipoles from the image
data, using these to rescale the image measurements,
and then factorizing the resulting rescaled measure-
ment matrix using either SVD or a fast approximate
factorization algorithm.
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Abstract

This paper describes initial work on a family of projective reconstruction techniques that com-
pute projection matrices directly and linearly from matching tensors estimated from the image
data. The approach is based on ‘joint image closure relations’ — bilinear constraints between
matching tensors and projection matrices, that express the fact that the former derive from
the latter. The simplest methods use fundamental matrices and epipoles, alternative ones use
trilinear tensors. It is possible to treat all of the image data uniformly, without reliance on ‘priv-
ileged’ images or tokens. The underlying theory is discussed, and the performance of the new
methods is quantified and compared with that of several existing ones.

Keywords: Multi-image structure, projective reconstruction, matching tensors.

1 Introduction

Traditional stereo vision systems use carefully calibrated cameras to provide metric reconstruction
from a single pair of static images. It has long been clear that the redundancy offered by fur-
ther images can significantly increase the quality and stability of visual reconstructions, as well
as extending their coverage to previously hidden parts of the scene. Furthermore, much of the 3D
structure can be recovered withoutanyprior camera calibration. Even in the extreme case of several
distinct unknown projective cameras viewing the scene from unknown positions, the entire metric
scene geometry can be recovered up to just 9 global parameters — 3 scale factors, 3 skews and
3 projective distortions1 [4, 7, 13]. Various common scene or camera constraints can be used to
further reduce this ambiguity,e.g.known vanishing points or length ratios, known skew or aspect
ratio, motion-constancy of intrinsic parameters,. . . [6]. This is especially relevant to applications
such as scene modelling for virtual reality or robot navigation, where many images are needed to
cover the scene and precise calibration is difficult owing to uncertain camera motions, changes in
internal parameters (focus, zooming) or the use of several cameras.

There is a need for visual reconstruction methods with the following characteristics:
1) Multi-image/multi-point/missing data: It is hard to match features reliably across many im-
ages, especially under large changes of viewpoint. Reconstruction methods requiring long se-
quences of matches tend to run into missing data problems. For example, factorization methods
[26, 25, 29, 24] are very stable and treat all images and points equally, but require completely filled
‘blocks’ of pointsvs.images. Traditional methods further limit these blocks to small fixed numbers

This paper was published in Image & Vision Computing. An earlier version appeared in BMVC’96. The work was
supported by INRIA Rhˆone-Alpes, the Esprit HCM network and the Esprit LTR grant CUMULI.

1If there is lens distortion, this can also (in theory) be recovered up to an unknown image homography.
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of images or points. The stability of such methods is critically dependent on the images chosen,
and since these must usually be closely-spaced to allow reliable matching, overall accuracy suffers.
It is possible to work around gaps in the data by ‘patching together’ several partial reconstructions,
but it would be useful to have methods that handled missing data naturally, without relying onad
hocpatching, key points, or key images.
2) Flexible calibration: Calibration constraints come in many forms: prior knowledge, calibration
images, scene or motion constraints, . . . It is not always obvious how to incorporate them into the
multi-image reconstruction process. Often it is simpler to ignore them at first, working projectively
and only later going back and using them to ‘straighten’ the recovered projective structure. This
‘stratification’ school [6] has its critics [32, 20]. In particular, it is felt that stability may be com-
promised by failing to enforce reasonable camera and motion models at the outset. However as far
as I know it is the only approach that has yet produced true multi-image reconstruction algorithms
for general cameras and motions [25, 29, 30, 24].
3) Precision/robustness/stability: Precisionmeans that the method gives accurate results when
it works; robustnessthat it works reliably (e.g. in the face of mismatches or initialization errors);
stability that the results are not overly sensitive to perturbations in the input data. Stability is a
precondition for precision and robustness, but is easily compromised by degeneracies in either the
viewing geometry or the algorithmic formulation used.

For the best precision there is no substitute for rigorous statistical parameter estimation,e.g.
maximum likelihood. For this, a nonlinear cost reflecting a statistical error model of the image
observations must be globally optimized over all unknown 3D structure and calibration parameters.
With Gaussian errors, this reduces to covariance-weighted nonlinear least squares. Such statistical
‘bundle adjustment’ is a truism for photogrammetrists but seems to be tacitly discouraged in com-
puter vision, where the traditional emphasis is on A.I. image understanding rather than precision
(howevercf. [17, 10, 19, 14, 9]). Efficient numerical methods exist for handling large problems,
both off-line and in a linearized recursive framework [1, 18].

Rigorous, statistically weighted least squares should not be confused with ‘unweighted’ or
‘linear least squares’ minimization ofad hoc ‘algebraic distances’ — sums of squared algebraic
constraint violations with no direct relation to measured image residuals. For example the ‘lin-
ear’ method for the fundamental matrix [12], reconstruction by affine and projective factorization
[26, 25, 29, 24], and the new ‘closure based’ methods presented here, all linearize the problem and
minimize algebraic distances using linear algebra techniques (e.g.SVD). Common characteristics
of such methods are: (i) they are linear and much simpler to implement than the corresponding sta-
tistical methods; (ii ) no prior initialization is needed; (iii ) somewhat more than the minimal amount
of data is required, to allow nonlinearities to be “linearized away”; (iv) they are sensitive to the rel-
ative weighting of different components of the error function (but the choice is not too critical once
you realize it has to be made); (v) with suitable weighting, they give results not too far from (but
still worse than) the statistical optimum. Criticisms include: (i) ignoring constraints may reduce
stability and make the results difficult to interpret; (ii ) general linear methods are often slower than
dedicated nonlinear ones, as large matrices tend to be involved; (iii ) it is difficult to detect outliers
without a clear error model.

Bundle adjustment routines provide all of the desirable features listed above, except robustness
against initialization. As they are only iterative improvement techniques, they require initial esti-
mates for all unknown parameters. In practice they are seldom robust against gross errors in these,
or even against re-parametrization (e.g.convergence tests are notoriously sensitive to this).

Hence, there is still a need for stable and relatively tractable suboptimal reconstruction methods
that require no prior initialization, take into account as many as possible of the above properties, and
can be used as input to nonlinear methods if more precision is required. Partly in response to this,
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there has recently been a significant amount of work on the theoretical foundations of multi-image
projection and reconstruction [11, 10, 19, 18, 23, 2, 22, 8, 15, 16, 31, 27, 28, 3]. The problem turns
out to have a surprisingly rich mathematical structure and several complementary approaches exist.
The field is developing rapidly and there is no space for a survey here, so I will only mention a
few isolated results. The epipolar constraint (the geometry of stereo pairs) is now well understood
(e.g. [5]). Shashua [22] and Hartley [11] developed the theory of the trivalent tensor (three view
constraint). Faugeras and Mourrain [8] and I [28] systematically studied the complete family of
multi-image constraints (only one was unknown: a quadrilinear one).

As a means to this, I developed a tensorial approach to multi-image vision [28], which nicely
unifies the geometric and algebraic aspects of the subject. This lead to thejoint image picture, in
which the combined homogeneous coordinates of all the images of a 3D point are stacked into a
single big ‘joint image’ vector. The geometry of this space can be related to that of the original
3D points via the stacked projection matrices. All of the familiar image entities — points, lines,
homographies, matching tensors,etc — fall naturally out of this picture as the joint image repre-
sentatives of the corresponding 3D objects. The approach is also ‘dual’ (in the sense of Carlsson
[3]) to Sparr’s ‘affine shape’ formalism [23, 15, 24], where coordinates are stacked by point rather
than by image.

In the MOVI group, we have recently developed several families of projective reconstruction
methods based on the joint image approach. The factorization-based ‘projective depth recovery’
methods [25, 29] use matching tensors to recover a coherent set of projective scale factors for the
image points. This gives an implicit reconstruction, which can be concretized by factorizing the
matrix of rescaled image points into projection and structure matrices by a process analogous to the
Tomasi-Kanade-Poelman method for affine structure [26, 21]. Factorization-based methods give
an implicit linear least squares fit to all of the image data. They are simple and extremely stable,
but have the serious practical disadvantage that each point must be visible in every image (modulo
‘hallucination’ [26]). This is unrealistic when there are many images covering a wide range of
viewing positions.

The current paper represents a first attempt to overcome this problem. It describes a new fam-
ily of reconstruction methods that extract projection matrices directly and linearly from estimated
matching tensors, after which the scene structure can be recovered linearly by back-projecting the
image measurements. The projections are estimated using ‘joint image closure relations’ — bi-
linear constraints between projections and their matching tensors, analogous to the depth recovery
relations used for projective factorization, but with projection matrices replacing image points.

In principle, the closure based reconstruction methods treat all of the images uniformly, so they
have the potential to be significantly more stable than the commonly used approach of initially
reconstructing from two key images, then reprojecting into the other ones to estimate the remaining
projection matrices. On the other hand, because they only use the image data indirectly via the
matching tensors, they are not as stable as factorization based methods. The suggestion is that
they will prove good replacements for the ‘stereo + reprojection’ methods (whose main application
is probably to initialize more refined nonlinear least squares iterations), but that when tokens are
visible in every image factorization will still be the best linear method.

The rest of the paper outlines the theory of the closure relations, describes the resulting re-
construction algorithms and their implementation, reports on an initial experimental study of their
performance, and ends with a short discussion.

2 Theory

This section sketches the theoretical background of multi-image reconstruction, and discusses the
‘joint image closure relations’ on which the new reconstruction methods are based. The theory is
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not difficult, but when more than two images are involved the equations are hard to express without
using tensorial notation. We will use ordinary matrix-vector notation except for a few trivalent
tensor equations, so you should be able to follow most of the paper without a knowledge of tensors.
An extremelybrief introduction to them follows — see [28, 27] for more details. All quantities are
assumed to be projective, expressed in homogeneous coordinates.

Tensorsare just multidimensional arrays of components. Vectors (1-index arrays) and matrices
(2-index arrays) are examples. Each index is associated with a specific space (the 3D world, im-
agei, . . . ), and inherits the corresponding change-of-basis law. Many common vector and matrix
operations generalize directly to tensors, provided we specify which of the many indices the op-
eration applies to. (For matrices, the index is implicit in the ‘juxtaposition = multiplication’ rule).
To keep track of the indices, we write them out explicitly:a, b, c . . . for world-space indices and
Ai, Bi, Ci . . . for imagei ones. The most common operation iscontraction — summing a corre-
sponding pair of indices over the range of their values, as in vector dot-product, matrix product or
trace. The summation signs are elided: any index that appears twice in a term is implicitly summed
over.

A further complication is that in projective geometry each space has a correspondingdual, e.g.
in each image, the space of points is dual to the space of lines (hyperplanes). This means that
every index actually comes in two varieties: point-like orcontravariant and hyperplane-like or
covariant. These havedifferent (complementary) transformation laws under changes of basis, so
they must be carefully distinguished: point indices are written as superscripts, hyperplane ones as
subscripts. Contractions are only meaningful between covariant-contravariant pairs of indices from
the same space,e.g.there isno meaningful ‘dot product’ between pairs of projective points — the
result would be completely dependent on the basis chosen.

World pointsXa project to image onesxAi by contraction with3× 4 projection matricesPAi
a :

xAi ∼ PAi
a Xa (implicit summation overa). eA2

1 denotes the epipole of camera 1 in image 2;
FA1B2 the fundamental matrix between images 1 and 2; andGA1

B2C3 the trivalent tensor between
images 2 and 3 based in image 1. (There are also corresponding trivalent tensors based in images
2 and 3). In ordinary matrix-vector notation,X stands forXa, xi for xAi , Pi for PAi

a , eij for eAji ,
andFij for FAiBj .

Consider the projectionsλipxip = PiXp of n homogeneous world pointsXp, p = 1, . . . , n,
into m images via3 × 4 perspective projection matricesPi, i = 1, . . . ,m. The resultingmn
homogeneous image pointsxip are only defined up to unknown scale factorsλip, calledprojective
depths. As eachPi andXp can be arbitrarily rescaled, there is some superficial freedom in the
choice of these scales. However there is a strong underlying coherence that embodies the projective
structure of the scene: the depthsλip really do capture the projective part of visual depth. An
algebraic result of the coherence is the low rank (four) of the rescaled data matrix: λ11x11 · · · λ1nx1n

...
. . .

...
λm1xm1 · · · λmnxmn

 =

 P1
...

Pm

( X1 · · · Xn

)

It is useful to view this column-by-column, as the projection of world pointsXp to 3m-component
joint image spacevectors via the stacked3m× 4 joint projection matrixP: λ1px1p

...
λmpxmp

 = P Xp where P ≡

 P1
...

Pm


The joint projection can be viewed as a projective injection mapping the 3D projective world bijec-
tively to the joint image — a 3D projective subspace of(3m − 1)-D projective joint image space
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[28, 27]. This is a faithful projective copy of the world expressed entirely in image coordinates.
Projection from it to the individual images is a trivial forgetting of coordinates and scale factors.
Projective reconstruction of the joint image amounts to recovering the missing depthsλip. This
is a canonical process2 up to a once-and-for-all choice of scales for the projectionsPi. The four
columns of the joint projection matrix form a spanning basis for the joint image. The coordinates
of a rescaled joint image point with respect to this basis are exactly the corresponding 3D point’s
homogeneous world coordinates. But neither the basis nor the world coordinates are canonical:
only the geometric position of the point in the joint image is recoverable from the image data.

The above geometry can be converted directly to algebra. The4 × 4 minors (submatrix de-
terminants) of the joint projection encode the location of the joint image (and hence the projective
camera geometry) in a well-defined algebraic sense: they are its ‘Grassmann-Pl¨ucker coordinates’.
Moreover, the minors turn out to be just the components of thematching tensorsbetween the
images. These generate the multilinear constraints that tokens in different images must satisfy if
they are to be the projections of a single world token. They can also be used for projective depth
recovery, and to transfer tokens between images. There are four basic types of matching tensors:
epipoleseij (tensorially: eAji ), fundamental matrices Fij (FAiBj ), trivalent tensors GAi

BjCk

andquadrivalent tensorsHAiBjCkDl . These are formed from minors with respectively 3+1, 2+2,
2+1+1, and 1+1+1+1 rows from 2, 2, 3 and 4 imagesi, j, k, l [22, 8, 28].

The ‘joint image closure relations’ that underlie the new reconstruction methods are bilinear
constraints between projection matrices and the corresponding matching tensors. They guarantee
that the projections are coherent with the joint image subspace defined by the tensors. Algebraically,
they express the four-dimensionality (“closure”) of the joint image. The simplest way to derive them
is to append any column of the3m× 4 joint projection matrix to the existing matrix, to form a rank
deficient3m × 5 matrix. The5 × 5 minors of this matrix vanish. Expand by cofactors in the
appended column. The coefficients are matching tensor components (4 × 4 minors of the original
joint projection matrix). Closer examination reveals five basic types of relation. We use only the
simplest two here3:

Fji Pi + [eij]×Pj = 0 F-e closure (1)

GBj
AiCk PBj

a + eAij PCk
a −PAi

a eCkj = 0 e-G-e closure (2)

These relations provide constraints between matching tensors (which can be estimated from the
image data) and columns of the joint projection matrix. For each column, (1) contains 3 constraints
of which 2 are linearly independent, while (2) contains3×3 = 9 constraints of which 5 are linearly
independent. By accumulating enough of these constraints, we can solve linearly for the four3m-
component joint projection columns, up to an overall4 × 4 linear transformation that amounts to
a homography of the reconstructed world space. Geometrically, the joint image (the 4D subspace
spanned by the columns of the joint projection) is the null space of the constraints. Given the
projections, the scene reconstruction can be completed by linearly back-projecting image structure
into the world space, which amounts to solving redundant linear equations

xip ∧ (PiXp) = 0 (3)

for the world pointsXp in terms of their imagesxip and the projection matricesPi.
The depth recovery relations used for projective factorization [25, 29, 27] follow directly

from the above closure constraints. Attaching a world pointXp to each projection gives bilinear
2‘Canonical’ means that it characterizes the imaging geometry and is characterized uniquely (up to the scales) by it;

it does not depend on the world or image coordinate systems used; and it is in some sense the ‘natural’ arena of action
for anyreconstruction method.

3[x]× denotes the skew3× 3 matrix giving the vector cross product:[x]×y = x ∧ y.
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constraints between the matching tensors and thecorrectly rescaledimage pointsλipxip ≡ PiXp:

Fji (λipxip) + eij ∧ (λjpxjp) = 0 (4)

GBj
AiCk (λjxBj )− (λixAi) eCkj + eAij (λkxCk) = 0 (5)

Given the matching tensors, a coherent set of projective depths for the images of each world point
can be recovered linearly using these relations. These already contain a virtual projective recon-
struction, implicit in the fact that the rescaled data matrix (2) has rank 4. The reconstruction can be
consolidated and ‘read off’ by any convenient matrix factorization algorithm [25, 29].

Another way to express (1) is to note thatFji has rank 2 and hence can be decomposed (non-
uniquely) asFji = ujv>i − vju>i . Here,ui ↔ uj andvi ↔ vj turn out to be corresponding pairs
of epipolar line-vectors (with appropriate relative scaling), and henceeij = uj ∧vj, eji = vi ∧ui.
Suitableu’s andv’s are easily obtained by rescaling the SVD basis ofFji. Since[eij ]× = ujv>j −
vju>j , the combinedF-e closure constraints from imagesi-j and j-i have rank just 2 and are
spanned by the rows of a2× 6 matrixUij :(

Fji [eij ]×
[eji]× Fij

)
=

(
−vj uj
vi −ui

)
Uij where Uij =

(
u>i u>j
v>i v>j

)

In fact, theu’s andv’s extracted from the SVD ofFji combine to form a basis of the 2D orthogonal
complement of thei-j joint image. (The space spanned by the 4 columns of thei-j joint projection

matrix
(Pi
Pj

)
, or equivalently by those of thei-j rescaled data matrix

( λi1xi1 · · · λinxin
λj1xj1 · · · λjnxjn

)
). Hence,

another way to obtain the constraint matrixUij is to use any two image reconstruction method (e.g.
factorization) and extract the left null space of the resultingi-j joint projection or rescaled data
matrix,e.g.by QR or SVD.

Similarly, thee-G-e closure constraint (2) can be written (in3 × 3 blocks) as a9 × 9 rank 5
matrix  −exkj I3×3 G•• xk eji 0 0

−eykj I3×3 G•• yk 0 eji 0
−ezkj I3×3 G•• zk 0 0 eji


 Pi

Pj

Pk

 = 0

Here, the 27 components ofGAj
BiCk are viewed as three3 × 3 matrices, forCk = x, y, z. As

before, the rank remains 5 even if further bilinear or trilinear closure constraints are added for
the same images taken in a different order (butcf. the discussion on scaling below). Any rank 5
decompositionUijk of this constraint matrix (e.g.by SVD) gives a trivalent equivalent of the above
Uij matrix. For any suchUijk, each of its 5 rows contains three 3-component row vectors which
define a matching triplet of image lines, and hence a corresponding 3D line. (If{ui,uj ,uk} is
such a triplet, the closure constraint says that the pulled-back visual planes meet in a common 3D
line: (uiPi) + (ujPj) + (ukPk) = 0). The 4D projective space of linear combinations of these
5 line-triplet vectors bijectively spans the entire 4D space (Pl¨ucker quadric) of lines in 3D,except
that the correspondence is singular for lines in the trifocal plane.

The complete closure-based reconstruction process runs roughly as follows. A very large num-
ber of closure constraints is available, relating the projections of any selection of 2, 3, or even (for
higher closure constraints) 4 or 5 images. It would be impractical to enforce all of these, but in any
case they are highly redundant and only a small subset of them need be used in practice. The choice
must depend on the correspondences and matching tensors available, convenience, and a run time
vs.redundancy trade-off. To fully constrain the projections, each image (except the first pair) must
be related toat leasttwo others. This can be done with onee-G-e constraint or twoF-e ones, in
either their full or reduced (U-matrix) versions. (The experiments below use the full versions).
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This paper considers only the simplest possible choices, based on minimal sets of constraints
for the first two types of closure relation. Each image is connected to exactly two previous ones in
a chain. The following types of chain have been considered

1

2

3

4

5

e-G-e  serial

1

2
3 4 5

1

2

3

4

5

F-e  serial F-e  parallel

Serial chains connect each image to the two immediately preceding ones, while parallel ones con-
nect each image to two ‘key frames’. For thee-G-e chains, the trivalent tensor based in (with
covariant index in) the middle image of the triplet is used,e.g., eA1

2 −GB2
A1C3 − eC3

2 for images
1-2-3. Note that the basic formulation is symmetric in that it allows any pair or triplet of images to
be incorporated. Choosing a particular constraint topology breaks this symmetry, but the choice is
at least under user control (modulo suitable estimates of the matching tensors).

Each constraint contributes several rows to a big3m-column,m image constraint matrix (un-
used elements are zero). It is essential to choose consistent relative scalings (see below), but once
this is done the constraint matrix generically has rank3m − 4. Its null space is exactly the joint
image (the 4D space spanned by the joint projection columns). Any basis for the null space provides
four 3m-component column vectors that can be regarded as the columns of a valid reconstructed
joint projection. The freedom of choice in the basis corresponds to a4 × 4 nonsingular mixing of
the columns, which amounts to a projective deformation of the reconstructed world coordinates.

The above process enforces a particular relative scaling for the projection matrices, so it is
necessary to choose coherent scalings for the overlapping constraint equations. In fact, matching
tensors inherit ‘natural’ scalings from their definitions as minors of projection matrices, but these
are lost when they are estimated from image data. The closure relations depend critically on these
scalings, so the relevant part of them must be recovered.

It turns out that the scales can be chosen arbitrarily modulo one constraint for each closed loop
in the above chains. The same constraints guarantee the existence of consistent choices of depths
in the depth recovery equations (4) or (5), and it turns out to be easiest to recover the scalings using
this. For each closed loop, scalings are chosen arbitrarily and the depths of (a selection of) measured
image points are propagated around the loop by a chain of depth recovery steps (cf. [25]). Then,
one of the tensor scales is modified to make the average ‘closed-loop gain’ unity, as it must be for
consistency. For theF-e constraint this involves 3-image loops (e.g.1 → 2 → 3 → 1), while for
thee-G-e one we multiply (5) by[e21]× so that only two terms survive, and then propagate through
just two images (e.g.2 → 3 → 2). The required epipoles are also estimated fromG and (5), by
multiplying by [x1]× or [x3]× and solving. The epipoles and scalings could also be found bilinearly
from G alone, but for maximum stability I prefer to use linear methods based on the image data.

Numerically, once the combined constraint matrix has been assembled there are several ways
to calculate its null space. The experiments reported here use the four smallest singular vectors
of the SVD, but eigendecomposition of the normal matrix gives similar results. These methods
are numerically stable and easily handle redundant constraints, but all of them are rather slow
when there are many images, as large matrices with many zeros are involved. With sparse sets
of constraints (as here), the null-space could also be estimated using various sparse or recursive
methods. These should be much faster than the full SVD, although some stability may be lost —
more investigation is needed here.

In fact, it is clear (in retrospect) from the above discussion that one can also view closure-based
reconstruction as a means of ‘gluing together’ many overlapping virtual 2 or 3 image reconstruc-
tions into a coherent multi-image whole. Each reconstruction implicitly provides a6 × 4 or 9 × 4
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joint projection matrix in some arbitrary world frame. The closure-based framework characterizes
these by their 2 or 5 dimensional left null spaces. These have the advantage of being independent
of the world frames chosen, and directly extractable from the matching tensors without passing
through an explicit intermediate reconstruction. Finally, the accumulated null space constraints are
re-inverted to give the combined joint projection matrix. In retrospect, it is unclear whether pass-
ing through a large(3m − 4)-D null space computation is an effective means of patching together
several (implicit) 4D partial reconstructions. This must rest as a subject for future work.

In practice, thee-G-e method turns out to be quite a lot slower than theF-e one, mainly because
larger matrices are involved at each step. However it is also significantly more stable. In particular,
for a camera moving in a straight line, the fundamental matrices and epipoles of different images
coincide. This is a well-known singular case for epipolar-line-based token transfer, andF-e closure
based reconstruction fails here too. The failure is intrinsic to any method based solely on epipolar
geometry (rather than image measurements). Camera zooms centred on the unique epipole leave
the epipolar geometry unchanged and hence can not be recovered. (The problem still exists for two
images, but there it can be absorbed by a 3D homography). In contrast, trivalent transfer ande-G-e
reconstruction are well behaved for aligned centres, as is reconstruction byF-e depth recovery and
factorization. Basically, some information about positions along epipolar lines is needed to stabilize
things. This can be provided by trivalent transfer, or even better by anchoring onto explicit image
correspondences.

3 Implementation

Now we summarize the reconstruction algorithms, and discuss a few important implementation
details. TheF-e closure algorithm has the following steps:
0) Extract and match features between images.
1) Standardize the image coordinates (see below).
2) Estimate fundamental matrices and epipoles connecting each image to at least two others.
3) Correct the scales of the fundamental matrices and epipoles using (4) (cf. section 2).
4) Build the constraint matrix of equations (1) and use SVD to find its 4D null space.
5) Extract the projection matrices from the null space column vectors.
6) Back-project and solve for 3D structure using (3).
7) De-standardize the projection matrices (see below).

Thee-G-e closure based method follows the same pattern, except that: (i) both point and line
features can be used to estimate the trivalent tensors; (ii ) equation 5 is used to correct the trivalent
scaling, and equation (2) to build the constraint matrix.

The current implementations use linear methods to estimate fundamental matrices and trivalent
tensors. With properly standardized coordinates these turn out to be very stable and surprisingly
accurate [12]. Using a nonlinear least squares iteration to refine the estimates marginally improves
the stability of (for example) the long serial chains of theF-e method, but not enough to change
the basic conclusions. The linear method forF includes a final3 × 3 SVD to enforce detF = 0
and calculate the epipoles. The epipoles for thee-G-e method are found linearly fromG and the
image data using (5).

For accurate results it isessentialto work in a well-adapted coordinate system. This is standard
numerical practice, but it is particularly important when there are implicit least-squares trade-offs
between redundant constraints, as here. If some components of the input vectors are typically much
larger than others — for example when homogeneous pixel coordinates(x, y, z) ∼ (256, 256, 1)
are used — some constraints have a much higher implicit weight than others and this significantly
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Figure 1: Mean reprojection and reconstruction errorvs.image coordinate standardization.

distorts the estimated solution. Hartley has underlined the importance of this for fundamental ma-
trix estimation [12], and it is equally true for reconstruction. In practice it makes little difference
which of the many possible standardization schemes is used. Here, the pixel coordinates are scaled
uniformly into the unit square[−1, 1]× [−1, 1], homogenized, and normalized as 3-vectors to norm
1. This is easy, fast, independent of the image, and works equally well for visible and off-image vir-
tual points (e.g.distant vanishing points or epipoles). Figure 1 shows the effect of standardization:
pixel coordinates (scale∼ 256) give reconstructions hundreds of times worse than well standard-
ized ones (scale∼ 1). The error rises rapidly at scales below10−1 owing to (32 bit) floating point
truncation error.

4 Experiments

To help quantify the performance of the algorithms, I have run a series of simulations using synthetic
data. The algorithms have also been tested on hand-matched points extracted from real images, and
an implementation on ‘live’ images is in progress. The simulations are based on trial scenes con-
sisting of random 3D points in the unit cube. These are viewed by identical perspective cameras
spaced evenly along a90◦ arc of radius 2, looking directly at the centre of the scene. These are
ideal conditions for accurate reconstruction, but many other configurations have also been tested,
including infinitesimal viewing angles and distant scenes with negligible perspective. When cam-
eras are added, their spacing is decreased so that the total range of viewing angles remains the same.
The positions of the projected image points are perturbed by uniform random noise. Mean-square
(and median and maximum) 2D reprojection and 3D reconstruction errors are accumulated over 50
trials. The 3D error is the residual after projective alignment of the reconstruction with the scene.
Unless otherwise stated, default values of 10 views, 50 points and±1 pixel noise are used.

Figure 2 summarizes the results, giving image reprojection and 3D reconstruction errorsvs.
image noise, number of points and number of views. The new techniques under test are serial
and parallel chainF-e closure, and serial chaine-G-e closure. For comparison, several existing
techniques are also shown.

Evidently, the most stable techniques are ‘SVD’ and ‘SVD+L-M’: SVD-based projective fac-
torization [25, 29], and a Levenberg-Marquardt-like nonlinear least squares algorithm initialized
from this. However, remember that these are only applicable when points can be matched across all
images, while the other techniques require matches across only 2-3 images4.

The ‘2 image’ methods simply reconstruct the scene from two images, and then reproject to
4To allow fair comparison, the point reconstruction step for each method has been allowed to combine data from all

the images using the recovered projections.



106 Chapitre 4. Reconstruction projective

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

2D
 e

rr
or

 (
pi

xe
l)

image noise (pixel)

Reprojection Error vs. Image Noise

serial 2 image
serial F-e

parallel 2 image
parallel F-e
serial e-G-e

SVD
SVD + L-M

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

m
ea

n 
3D

 e
rr

or
 (

%
)

image noise (pixel)

Reconstruction Error vs. Image Noise

serial 2 image
serial F-e

parallel 2 image
parallel F-e
serial e-G-e

SVD
SVD + L-M

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

8 16 32 64 128

2D
 e

rr
or

 (
pi

xe
ls

)

# points

Reprojection Error vs. # Points

serial F-e
parallel 2 image

parallel F-e
serial e-G-e

SVD
SVD + L-M

0

0.2

0.4

0.6

0.8

1

8 16 32 64 128

3D
 e

rr
or

 (
%

)
# points

Reconstruction Error vs. # Points

serial F-e
parallel 2 image

parallel F-e
serial e-G-e

SVD
SVD + L-M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 8 16 32 64

2D
 e

rr
or

 (
pi

xe
l)

# views

Reprojection Error vs. # Views

serial 2 image
serial F-e

parallel 2 image
parallel F-e
serial e-G-e

SVD
SVD + L-M

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64

m
ea

n 
3D

 e
rr

or
 (

%
)

# views

Reconstruction Error vs. # Views

serial 2 image
serial F-e

parallel 2 image
parallel F-e
serial e-G-e

SVD
SVD + L-M

Figure 2: Mean reprojection and reconstruction errorvs.noise, number of points and number of views.

estimate the projection matrices for the remaining ones. The ‘serial 2 image’ method uses only
the first two images, and hence involves a considerable amount of extrapolation. This can be very
inaccurate, but it is realistic in the sense that practical two image methods are often restricted to
nearby images when tracking is difficult. The serialF-e ande-G-e closure methods fuse a series
of small, inaccurate steps of this sort and still manage to produce significantly better results, despite
the potential for accumulation of errors.

In contrast, the ‘parallel 2 image’ method uses the first and last images of the sequence, and
hence maintains a constant baseline. The same applies to the ‘parallelF-e’ closure method, which
links each image to the two end ones. These results require unrealistically wide matching windows,
but they provide a clear indication of the “integrating power” of the closure formalism. In particular,
adding more images does continue to improve the ‘parallelF-e’ closure results, while the ‘parallel
2 image’ results stay roughly constant (as expected). However, the closure method seems to need
about 10 images just to overcome the extreme stability of the 2 image factorization method.

All of the methods scale linearly with noise and initially improve as more points are added, but
level off after about 20 points. The serial methods eventually worsen as more images are added and
their baseline decreases: the ‘2 image’ one immediately (as expected); theF-e one after about 10
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images; and thee-G-e one after about 30. In general, the trivalent methods are significantly more
stable than the fundamental matrix ones. It definitely pays to select images as widely separated
as possible for the closure constraints, even if this means having to use several ‘key’ images. The
instabilities arising from long chains seem to be far greater than any biases introduced by working
from ‘key’ images. However, tracking reliability puts strong practical limitations on the separations
that can be attained.

All of the methods are stable for both close and distant scenes (modulo straight line motion
for F-e closure), but all of them (especially the fundamental matrix ones) give very poor results
for points near the axis of fronto-parallel motion, as there is no stereo baseline there for point
reconstruction. (Surface continuity constraints are essential in this case).

One reason for the early failure ofF-e closure is the fact that it is singular whenever three
adjacent camera centres are aligned. This happens to an increasing extent as the spacing along
the circular baseline decreases, adding to the natural uncertainty associated with the short baseline
itself. For this reason, it is advisable to use thee-G-e method (or an equivalentU matrix derived
from reconstruction of at least 3 images) whenever straight line motions are involved.

The factorization method is notable for being linear yet close to optimal. It is based onF-e
depth recovery (4) — essentially the same equations as theF-e closure based method, but applied
directly to the image points rather than to the projections. Clearly, the direct use of image data
gives a significant improvement in accuracy. Unfortunately, factorization is practically limited as
it requires every token to be visible in every image: this is why the closure-based methods were
developed.

5 Summary

The closure relation based projective reconstruction techniques work reasonably well in practice,
except that theF-e method fails for aligned camera centres. If there are many images, closure is
more accurate than the common ‘reconstruct from 2 images and reproject for the other projections’
paradigm, but it can not compete with projective factorization when features can be tracked through
all the images. In principle there is no need to single out ‘privileged’ features or images. But short
chains of closure relations turn out to be significantly more stable than long ones, so in practice it is
probably best to relate all of the images to a few ‘key’ ones (or perhaps hierarchically). The trivalent
techniques are slower, but significantly more stable than the fundamental matrix based ones.

Future work will implement the methods on real images, investigate fast recursive solutions of
the reconstruction equations, study the stabilizing effects of incorporating redundant constraints,
and compare the closure-based methods with direct techniques for merging several partial recon-
structions.
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Chapitre 5

Auto-calibrage d’une caméra en
mouvement

Les travaux pr´ecédents rel`event tous de la structureprojective – ou implicite en terme de
contraintes et de tenseurs d’appariement, ou explicite en terme d’une reconstruction et des cam´eras
projectives. Cette structure contient d´ejà une description quasi-compl`ete de la sc`ene. Seulement les
valeurs de 9 param`etres manquent comme cela a d´ejà été dit plus haut: 3 pour la d´eformation projec-
tive (location du plan `a l’infini) ; 5 pour la déformation affine ; et un facteur d’´echelle global qui ne
peut jamais ˆetre retrouv´e sans informations externes. Mais la plupart des applications exigent une
structure m´etrique. Pour retrouver ces derniers 8–9 param`etres, il nous faut des contraintes qui sont
situées au del`a des images et du mod`ele projectif non-calibr´e: elles viennent ou du calibrage interne
des cam´eras, ou de leur mouvement, ou de la sc`ene elle-mˆeme. Les trois cas sont int´eressants et ont
été bienétudiés [MF92, Har93a, MBB93, Fau95, ZF96].

Ici, on se limite au cas de(( contraintes non-mesuŕees)) sur les calibrages internes – par l`a on
entend toute contrainte qui peut vraisemblablement figurer dans nos connaissances pr´ealables, sans
effectuer des mesures pr´ecises qui rel`event d’une calibrage classique. On appel(( auto-calibrage))

l’obtention des calibrages et/ou de la structure m´etrique de la sc`ene (jusqu’au facteur d’´echelle près)
à partir des contraintes non-mesur´ees. En particulier, on verra comment la simple connaissance de
constancedu calibrage interne d’une cam´era en mouvement peut suffire pour obtenir les valeurs
numériques des param`etres des cam´era ainsi que la structure 3D euclidienne.

On pourraitéventuellement autoriser `a faire varier plusieurs param`etres (ex. focale et point prin-
cipal), et consid´erer que certaines connaissances num´eriques (skew nul, rapport d’´echelleégalà un)
font partie de l’auto-calibrage, car elles sont tr`es stables et souvent connues par d´efautà précision
suffisante. Les contraintes d´ecrites ci-dessous s’adaptent facilement `a ce genre de probl`eme, mais
les articles pr´esentés se limitent au cas des param`etres internes constants et inconnus.

5.1 Resuḿe de (( Autocalibration and the Absolute Quadric )) – CV-
PR’97

Historique

Ce papier fut publi´e à CVPR’97. Il représente mon travail de base sur l’auto-calibrage.À
l’ époque, il y avait d´ejà plusieurs ´etudes, soit suivant l’approche originale de Maybank & Faugeras
[MF92] li ée aux contraintes(( de Kruppa )) entre paires d’images [FLM92, ZF96], soit fond´ee sur
l’estimation préliminaire de la structure affine (par voie ou de la homographie ou du plan `a l’infini)
[Har93a, BRZM95] – approche qui ´etait nommée plus tard(( stratification )) [Fau95]. On peut ci-
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ter aussi plusieurs travaux sur les cas particuliers (mouvements sp´ecifiques des cam´eras, calibrages
partiels, ou structures de sc`enes particuli`eres comme l’observation de parall´elogrammes rectangles)
[Har92, Har93b, HCP94, BRZM95, Har94, PGP96].

Méthode

La clé de l’auto-calibrage est la fa¸con d’implanter la g´eométrie euclidienne dans l’espace pro-
jectif. Les transformations projectives sont relativement grossi`eres – elles ne pr´eservent ni laissent
distinguer qu’une partie de la structure m´etrique. Pour retrouver la structure perdue de cette fa¸con,
on peut se pencher sur une grande vari´eté des connaissances euclidiennes : de la structure 3D ob-
servée, des mouvements, ou des calibrages des cam´eras. Ici, on prend comme base la constance
des calibrages cam´eras, et il faut se limiter aux aspects de la g´eométrie 3D euclidienne qui s’ap-
pliquent indifféremment `a toutes les sc`enes. Les diff´erences intrins`eques entre l’espace euclidien
(jusqu’à une facteur d’´echelle près) et l’espace projectif pourraient ˆetre réduites dans un seul objet
géométrique –(( la quadrique absolue duale)) – qui mesure pour l’essentiel les angles entre les
vecteurs normaux de plans 3D. Dans un rep`ere euclidien, sa forme matricielle est une matrice4× 4
symétrique de rang 3

Ω =
(

I3×3 0
0 0

)
avec pour loi de transformation sous les transformations projectivesX→ T X

Ω −→ T ΩT>

Cette matrice est invariante par toute transformation euclidienneT =
(

R t
0 1

)
, mais sous des trans-

formations projectives g´enérales elle devient une matrice g´enérale sym´etrique positive semi-d´efinie
de rang 3. Elle r´esume la structure affine – le plan `a l’infini (0 1) est son vecteur nul – et aussi la
structure m´etrique angulaire – l’angleθ entre deux plansp etq est

cos θ =
p Ω q>√

(p Ω q>) (q Ω q>)

Si on peut localiserΩ dans une reconstruction projective d’une sc`ene, il est alors facile de(( rectifier ))

l’espace pour obtenir la structure euclidienne.
La projection deΩ dans une cam´era P = K (R | t) est (( l’image de la quadrique absolue

duale))

ω ' P Ω P> = K K>

où K est la matrice de calibrage de la cam´era. Si la calibrageK est constant entre images,ω est aussi
constant, ce qui nous donne un syst`eme d’équations alg´ebriques qui lie les matrices de projection
(par exemple d’une reconstruction projective) et les matrices inconnuesΩ etω.

On montre alors que ces ´equations de projection deΩ peuventêtre résolues `a partir de 3 images.
La méthode de r´esolution préférée est l’optimisation num´erique sous contraintes par programma-
tion quadratique s´equentielle : l’erreur r´esiduelle des ´equations de projection est minimis´ee, avec
pour contrainte le fait queΩ soit de rang 3. Cette m´ethode se r´evèle en pratique tr`es stable en com-
paraison avec d’autres m´ethodes d’auto-calibrage, et semble fiable mˆeme avec une initialisation
arbitraire. Comme toujours en auto-calibration, les cam´eras doivent tourner sur deux axes signifi-
cativement non-parall`eles – sinon il y a une ambigu¨ıté dans la structure et les calibrages retrouv´ees.
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5.2 Resuḿe de(( Autocalibration from Planar Scenes)) – ECCV’98

Ce papier fut publi´e à ECCV’98. Il refond le formalisme de la quadrique absolue duale en terme
d’une base de vecteurs de directions, et de l`a il étend la th´eorie d’auto-calibrage pr´ecédente au cas
où la scène est plane.

L’apport de la base de directions est plus esth´etique que fondamental – pour les(( non-initiés))

aux tenseurs, elle est moins abstraite et plus intuitive que la quadrique absolue duale, et elle simplifie
significativement certaines d´erivations.

C’est peutêtre un peu surprenant que l’auto-calibrage `a base d’une sc`ene plane soit mˆeme
possible : dans ce cas, la structure 3D projective – point de d´epart pour la m´ethode 3D ci-dessus
– n’est plus disponible, donc l’´etape d’initialisation est nettement moins ´evident. Néanmoins, les
contraintes d’auto-calibrage sont toujours actives, et il suffit d’en empiler suffisamment pour rendre
le système bien contraint et r´esoluble. Ce n’est en effet que cela qu’on propose : on raffine l’´etape
d’initialisation, et applique les contraintes de fa¸con numérique. Un nombre relativement important
de vues différentes sont n´ecessaires, mais au niveau de sa stabilit´e numérique la méthode semble
plus ou moins satisfaisante.

Cette méthode peut ˆetre vue comme : (i) une généralisation de la m´ethode de(( caméra tour-
nante)) de Richard HARTLEY [Har94, Har97], pour le cas o`u les translations de la cam´era sont aussi
autorisées ; (ii ) une généralisation (mais qui ´etait publié avant) des m´ethodes de(( calibrage plan))
de STURM & M AYBANK [SM99] et de ZHANG [Zha98] (aussi mentionn´e par LIEBOWITZ & Z IS-
SERMAN [LZ98]), dans les cas o`u la structure du plan n’est pas connue. Ces derni`eres méthodes
sont facileà implanter et tr`es efficaces en pratique quand leurs hypoth`eses respectives sont v´erifiées.
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Abstract

We describe a new method for camera autocalibration
and scaled Euclidean structure and motion, from three
or more views taken by a moving camera with fixed but
unknown intrinsic parameters. The motion constancy of
these is used to rectify an initial projective reconstruction.
Euclidean scene structure is formulated in terms of the
absolute quadric— the singular dual 3D quadric (4× 4
rank 3 matrix) giving the Euclidean dot-product between
plane normals. This is equivalent to the traditional ab-
solute conic but simpler to use. It encodes both affine
and Euclidean structure, and projects very simply to the
dual absolute image conic which encodes camera cali-
bration. Requiring the projection to be constant gives a
bilinear constraint between the absolute quadric and im-
age conic, from which both can be recovered nonlinearly
from m ≥ 3 images, or quasi-linearly fromm ≥ 4.
Calibration and Euclidean structure follow easily. The
nonlinear method is stabler, faster, more accurate and
more general than the quasi-linear one. It is based on
a general constrained optimization technique — sequen-
tial quadratic programming — that may well be useful in
other vision problems.

Keywords: autocalibration, absolute quadric, multiple
images, Euclidean reconstruction, constrained optimiza-
tion.

1 Introduction

Camera calibration is traditionally based on explicit
3D scene or motion measurements, but even for
unknown motions in an unknown scene there are
strong rigidity constraints relating the calibration to
the image, scene and motion.Autocalibration is
the recovery of calibration and motion from an un-
known scene using rigidity. Structure follows easily

This paper appeared in CVPR’97. The work was supported
by INRIA Rhône-Alpes and Esprit LTR project CUMULI. I
would like to thank P. Sturm for useful discussions and R. Ho-
raud and G. Csurka for supplying calibration data.

from this.
With arbitrary cameras, structure can only be re-

covered up to an overall projectivity. Additional
constraints are required to ‘Euclideanize’ it. We will
focus on the traditional case of a single camera with
fixed but unknown intrinsic parameters moving ar-
bitrarily in the scene [13, 4, 7], but our formalism
easily extends to handle multiple cameras and prior
calibration, motion or scene constraints. Alterna-
tive approaches restrict the motion to a pure rotation
[8] or a plane [1]; handle zoom modulo an initial
pre-calibration [15, 16]; or assume a rigidly moving
stereo head [22]. For practical applications it is im-
portant to exploit any constraints that may be avail-
able, as this both increases stability and allows auto-
calibration from more restricted types of motion.

Used on its own, autocalibration has several no-
table weaknesses: (i) scene scale can not be re-
covered — small motions in a small scene are in-
distinguishable from large motions in a large one;
(ii ) generic motions — independent rotations and
some translation — are required for a unique (up to
scale) solution: many common types of motion are
degenerate cases; (iii ) past formulations have tended
to be complex and ill-conditioned, often adding fur-
ther degeneracies of their own; (iv) it has been hard
to incorporate additional knowledge except during a
final bundle adjustment, exacerbating the degener-
acy and ill-conditioning problems.

This paper focuses on the last two points, con-
tributing a simpler, more direct problem formulation
and a well-behaved numerical algorithm that easily
handles additional constraints.

2 The Absolute Quadric

We work in homogeneous coordinates, initially Eu-
clidean, later projective. Finite points and asymp-
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totic directions (‘points at infinity’) are given by col-
umn vectorsx = (x 1 )> andv = (v 0 )> . A row
vectorp = (n d) specifies a plane with normaln
and offset−d. x lies on p iff its signed distance
from it vanishes:p x = n · x + d = 0. Theplane
at infinity p∞ = (0 1 ) contains the infinite points
(d 0 ) and no finite ones.

Change-of-basis transformations are4 × 4 ma-
trices acting by left multiplication on points (x →
T x) and by right multiplication by theinverseon
planes (p → p T−1) so that point-plane products
are preserved:p x = (p T−1)(T x). Euclidean
transformations take the form

(
R
0

t
1

)
whereR is a

3 × 3 rotation matrix (RR> = I ) and t a transla-
tion vector.R becomes a rescaled rotation forscaled
Euclidean or similarity transformations, and an ar-
bitrary nonsingular3× 3 matrix foraffine ones. For
projective transformationsT is an arbitrary nonsin-
gular4× 4 matrix.

To distinguish their very different transformation
laws, points are calledcontravariant , and planes
covariant. Matrices and higher dimensional arrays
(tensors) have a different transformation law asso-
ciated with each index.Contraction (‘projective
dot product’ or sum over products of components)
is only meaningful between contravariant-covariant
index pairs (e.g.a point and a plane). Otherwise the
result is completely basis-dependent.

Theabsolute quadricis the symmetric4×4 rank
3 matrixΩ =

(
I
0

0
0

)
. It is defined to be contravari-

ant (point-like) in each index, soΩ → T Ω T> un-
der change-of-basis transformsx→ T x. It follows
thatΩ is invariant under Euclidean transformations,
is rescaled under similarities, takes the form

(
Q
0

0
0

)
(symmetric3 × 3 nonsingularQ) under affine ones,
and becomes an arbitrary symmetric4 × 4 rank 3
matrix under projective ones.

Being contravariant,Ω can be contracted against
plane vectors. Given a finite planep, Ω p> is
the point at infinity representing its Euclidean nor-
mal direction. The plane at infinity isΩ’s unique
null vector: Ω p>∞ = 0. The Euclidean dot prod-
uct of the normals of two finite planesp andp′ is
n · n′ = p Ω p′>, and the angle between them is
cosθ = (p Ω p′>)/

√
(p Ω p>)(p′Ω p′>). These

formulae apply in any basis provided the corre-
spondingΩ is used. SoΩ is a projective encod-
ing of both scaled Euclidean (angle between planes)

and affine (plane at infinity) structure. UsingΩ, it is
straightforward to define further Euclidean concepts
such as spheres, angles between lines and lines or
planes, relative distances, and even (fixing a scale)
absolute distances.

In contrast to planes, there is no meaningful “Eu-
clidean dot product” between finite points. How-
ever, introducing 3-component coordinates on the
plane at infinity, the dot product of two direction
vectors becomesu ·v = u>C vwhere the3×3 sym-
metric doubly covariantabsolute conicmatrixC be-
comesI in any Euclidean basis. The need for sep-
arate coordinates onp∞ is inconvenient. In world
coordinates the direction dot product can be written
u>Q v, whereQ is any doubly covariant symmet-
ric 4 × 4 matrix of the form

(
I
∗
∗
∗

)
. However there

is nocanonicalchoice ofQ: it cannotbe invariant
under translations. Only the upper3 × 3 submatrix
(the restriction ofQ to p∞) is invariant. Such aQ
converts a point at infinity (direction vector)d into
some finite planed>Q orthogonal to it, but there is
no canonical choice of such a plane.

The absolute quadric is also much simpler to
project into images than the absolute conic. Any
doubly contravariant world matrixM can be pro-
jected to a doubly contravariant image onem ac-
cording tom∼ P M P> , whereP is the usual3×4
point projectionx→ Px. This applies both to skew
Plücker line matricesL and symmetric dual quadric
matricesQ. In each case the result represents the
actual image of the 3D object (skew matrix repre-
sentation[ l ]× of image linel, and dual image conic
q representing the image of the dual quadricQ’s oc-
cluding contour).Ω’s projection ω ≡ P Ω P> is
thedual absolute image conic— a symmetric3×3
rank 3 image matrix. Using3 × 3 RQ decomposi-
tion to expand the projectionP = K R(I | − t) into
the traditional upper triangularcalibration matrix
K, rotationR and translation to the optical centret,
we find thatω = K K> is invariant under rigid mo-
tions and encodes the camera’s intrinsic parameters.
K can be recovered fromω by Choleski factoriza-
tion.

The dual and non-dual absolute image conicsω
andω−1 encode the 3D angular structure implicit
in the image measurements. The 3D angle be-
tween the visual planes of image linesl and m is
cosθ = (l ωm>)/

√
(l ω l>)(mωm>), while that

between the visual rays of image pointsx andy is
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Figure 1: The absolute quadricΩ is a very flat dual
quadric “squashed onto” the plane at infinity, whose rim
is the absolute conicC.

cosθ = (xω−1y>)/
√

(xω−1x>)(yω−1y>).

The above algebra is all we will need to useΩ, but
a geometric picture may help intuition. Temporarily
allow x to be complex. Then a symmetric covari-
ant matrixQ uniquely defines a non-emptyquadric:
a quadratic hypersurface (ellipsoid, hyperboloid,. . . )
given by homogeneous equationsx>Q x = 0. The
plane x>Q is called thedual planeof x in Q. x lies
onQ iff it lies in its own dual plane:(x>Q) x = 0.
This happens iffx>Q is tangent to the quadric atx.
Thedual of Q is the quadricp Q−1p> = 0 in the
projective space of all planes. The ‘points’ ofQ−1

are exactly the tangent planes ofQ, as is easily seen
by replacingp↔ x>Q.

For regularQ the duality relation is symmetric.
For singularQ the point quadric ‘stretches out’ to
a cone then a plane pair, while in dual-space the
quadric collapses onto a plane then a line until only
its ‘rim’ remains (i.e. it becomes a dual-space plane
conic curve or a point pair). The cone vertex and its
dual space supporting plane correspond to the kernel
of Q.

Dually, a singular dual quadric Q−1 defines
a dual-space cone and a point-space conic curve
whose dual-space vertex or point-space supporting
plane is the null space ofQ−1. This is the case
with the absolute quadricΩ: it is the degenerate
dual-space quadric whose ‘rim’ is the absolute conic
C in p∞ (see fig. 1). Dual quadric projection
Q → P Q P> is also easy to picture: an image
line l is tangent to the image conic iff the pulled
back visual planel P is tangent to the 3D quadric:

l (P Q P>) l> = (l P) Q (lP)> = 0 (c.f. fig. 1).

3 Autocalibration

There are essentially three current approaches to au-
tocalibration, all based on the motion constancy of
ω. Multilinear matching constraints exist relat-
ing 2–10 images of any dual quadric, includingΩ.
TheKruppa constraint is the two image case, orig-
inally used to find epipolar geometry for relative
orientation fromknown calibration. It essentially
says that since epipolar lines correspond via epipolar
planes, the above angle-between-visual-planes for-
mula must give the same result for corresponding
epipolar lines in either image. A compact deriva-
tion applies theclosure identity [19] F21 P1 ∼
[e12]×P2 to either side ofΩ to derive the quadric
matching constraintF21 ω F>21 ∼ [e12]×ω [e12]>×.
Allowing for symmetry and rank deficiency, this
amounts to3 linearly or (cross multiplying to elim-
inate the unknown scale)2 algebraically indepen-
dent equations.ω has 5 d.o.f. so at least 3 im-
ages are required. Various resolution procedures ex-
ist. Maybank, Faugeras & Luong [13, 4] use alge-
braic elimination in well-chosen coordinates, Zeller
& Faugeras [21] apply least squares optimization
over many images, and Hartley (reported in [14])
uses a preliminary SVD based simplification.

The second approachstratifies [12, 3] the prob-
lem into affine and Euclidean parts. Affine struc-
ture is encoded inp∞ or theabsolute homography
H∞— the inter-image mapping defined by project-
ing pixels up ontop∞. For fixed calibration,H∞ =
K R K−1 is conjugate to a rotation andω turns out
to be invariant: H∞ωH>∞ ∼ ω (with equality if
det(H∞) = 1). This gives a linear constraint on the
“Kruppa matrix”ω, sometimes also (misleadingly)
called the Kruppa constraint. SinceH∞ fixes the
directiond of the rotation axis,ω + λd d> also sat-
isfies the constraint for anyλ. So two rotations with
different axes are needed to solve forω.

If there is negligible translation compared to a
visible ‘background’,H∞ is an observable inter-
image homography so autocalibration is straightfor-
ward (but not structure!) [8].H∞ can also be found
from known vanishing points or 3D parallelism [3].
But for pure autocalibration on finite points, the only
constraints onp∞ andH∞ are their relations toΩ,
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ω, andK. Given a plane(n d) and an image pro-
jectionP = A (I | − t), the image-to-plane homog-

raphy is
(

(n·t+d) I−t n
−n

)
A−1. Specializing to coordi-

natesP = (I |0) and projecting into another image
A′ (I | − t′) gives a homographyH = A′ (d I + t′ n).
If (n d) representsp∞ in some projective frame,
applying this toω ∼ H∞ωH>∞ gives equations
relating the unknowns(n d) andω. These can be
solved iteratively given a reasonable initial guess for
p∞ or K.

Hartley pioneered this sort of approach using
bounds onp∞ [7]. Most other authors start from
an approximate prior calibration [12, 10]. Hey-
den & Åström’s formulation [10] also partially
(but independently) foreshadows ours given below.
The modulus constraint [12, 15] — thatH∞ =
K R K−1 being conjugate to a rotation matrix must
have the same unit modulus eigenvalues — focuses
on (n d) by implicitly eliminating ω or K. Arm-
stronget. al. [1] take a more eclectic approach, re-
stricting attention to planar motion and using both
parallelism to constrainH∞ and the motion con-
stancy of the circular points (the 1D analogue ofω).

The Kruppa (epipolar constraint) approach avoids
the need to deduceH∞ indirectly from the con-
straints, but it can not distinguishΩ from any other
quadric with constant image: planarity (rankΩ = 3)
is not directly enforced.

3.1 Absolute Quadric Method

This paper introduces a third approach to autocali-
bration, which explicitly locates the absolute quadric
in an initial projective reconstruction and uses it to
‘straighten’ the projective structure.Ω is recov-
ered using the motion constancy of its projection
ω ∼ Pi Ω P>i , wherePi ∼ K Ri (I | − ti) T−1

for fixed unknown3 × 3 and 4 × 4 transforma-
tions K andT and normalized rotationsRi. If we
knew the correct relative scaling for the projections,
ω = Pi Ω P>i would be linear in the unknownsω
and Ω and could be solved trivially. Instead, we
eliminate the unknown scale by taking ratios of com-
ponents and cross-multiplying, in much the same
way as the point projectionx ∼ P x can be rewritten
asx ∧ (P x) = 0 :

ωAB (Pi Ω P>i )CD − ωCD (Pi Ω P>i )AB = 0

This absolute quadric projection constraint is the
basis of our autocalibration method. The antisym-
metrization interchangesboth indicesAB andCD
of the 3 × 3 symmetric matricesω and Pi Ω P>i .
Viewing these as abstract 6D vectors, we will write
this symbolically as

ω ∧ (Pi Ω P>i ) = 0

For each image, this amounts to
(6
2

)
= 15 bilinear

equations (5 linearly independent) in the10+6 = 16
independent components ofΩ andω, with coeffi-
cients quadratic in the image’s reconstructed projec-
tion matrix. It can also be written as 9 bilinear equa-
tions inΩ andω−1 (8 linearly independent):

ω−1 Pi Ω P>i = 1
3 trace(ω−1 Pi Ω P>i ) · I

The constraint says that angles between visual
planes measured usingΩ must agree with those
measured from the corresponding image lines us-
ing ω. Roughly speaking, the Kruppa constraint
is the projection of the restriction of this to epipo-
lar planes, while the homography constraintω ∧
(H∞ωH>∞) = 0 is the projection of the rotational
part of it. At least3 images are required for a unique
solution. For maximum stability it is advisable to
include further images, and to enforce rank(Ω) = 3
(i.e. det(Ω) = 0) and any known scene or calibra-
tion constraints.

We will describe two methods of resolving the ab-
solute quadric projection constraints. Both use all
15m equations fromm images and solve the system
in algebraic least squares. Thenonlinear method
uses constrained numerical optimization onm ≥ 3
images, while thequasi-linear method uses SVD
based factorization onm ≥ 4. Only the nonlinear
method directly enforces det(Ω) = 0. It requires a
(very approximate) initialization, but turns out to be
more accurate, stabler, faster and simpler than the
quasi-linear method.

OnceΩ andω are known, the camera calibra-
tion K is easily found by Choleski decomposition
of ω = K K> . Similarly, a Euclideanizing homog-
raphyx→ T−1 x, P→ P T can be found from the
eigen-decompositionE Λ E> of Ω ∼ T

(
I
0

0
0

)
T>

by setting T ∼ E Λ1/2 (with the 0 eigenvalue
in Λ replaced by1). The columns ofT are an
absolute Euclidean basis in projective coordinates
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(i.e. 3 orthogonal directions and an origin). If re-
quired, the rotational part of each rectified projec-
tion K−1 Pi T ∼ Ri (I | − ti) can be perturbed to
be precisely orthonormal (e.g.using quaternions and
SVD [11]). As always, a final, close-lying-outlier-
insensitive bundle adjustment over all parameters is
recommended for precise work.

3.2 Degeneracy

Autocalibration has some intrinsic limitations that
apply uniformly to all algorithms. In particular,
if the axes of all the camera rotations are parallel
(say, vertical), the horizontal-to-vertical aspect ratio
of neither the camera nor the scene can be recov-
ered. Intuitively, a narrow scene taken with a wide
aspect ratio lens is indistinguishable from a wide
scene taken with a narrow lens. This is unfortunate
as many real image sequences do preserve a verti-
cal. To avoid this problem, one must either include
images with 3 substantially different tilts or cyclo-
torsions, or rely on prior scene, motion or camera
knowledge (e.g. aspect ratios).90◦ rotations pro-
vide the maximum stability, but feature extraction
and matching limitations mean that these are usually
only possible with pure cyclotorsion.

Formally, if d = (d 0 )> is the 3D direction
(common point at infinity) of the rotation axes and
Pi d = K Ri d = K d (independent ofi) is the corre-
sponding image point, adding any multiple ofdd>

to Ω and the same multiple of(Pd)(Pd)> to ω
maintains bothω ∼ P Ω P> and det(Ω) = 0, so
it gives another feasible solution. This corresponds
to a vertical stretching of bothK and the scene.

Pure translation is an even more degenerate case
as it fixesall points at infinity: affine structure fol-
lows easily, butΩ is essentially arbitrary so autocal-
ibration is impossible. Various other types of mo-
tion lead to further degeneracies: Sturm [17] gives
a detailed catalog. Such ambiguities must typically
be handled by imposing further constraints (known
skew, aspect ratio, motion. . . ). This can be difficult
with algebraic approaches, but is very easy in our
numerical formalism below.

Euclidean structure and motion follow directly
from autocalibration, provided only that there
is sufficient translation to give a stereo base-
line. Translation-neutral internal calibration meth-
ods would be useful: Hartley’s method [8] requires

zero translation, while reconstruction based methods
require fairly substantial ones and nonplanar scenes.

3.3 Nonlinear Solution

Now consider how to solve the quadric projection
constraintsω ∧ (Pi Ω P>i ) = 0 for Ω and ω,
with det(Ω) = 0. By far the most effective ap-
proach turns out to be direct constrained numeri-
cal optimization. Numerical approaches are some-
times undervalued in the vision community. Empir-
ically, algebraic elimination on coordinate expres-
sions provides valuable theoretical insight but al-
most inevitably leads to poor numerical condition-
ing, while numerical resolution based directly on the
original, physically meaningful variables tends to be
significantly more stable in practical applications,
but too ‘opaque’ to provide much theoretical insight.
At present it is hard to relate the two approaches,
but progress in tensorial and Grassmann-Cayley-like
formalisms [19, 5] and computational nonlinear al-
gebra (e.g.[2]) may soon make this much easier.

Many constrained optimization schemes exist [6].
I will give a brief outline of the simple one used
here, as I think that it has considerable potential
for other constrained problems in vision.Sequen-
tial Quadratic Programming [6] is a general nu-
merical scheme for optimizing smooth non-linear
cost functions under smooth non-linear constraints.
It is Newton-like in that it requires second deriva-
tives of the cost function and potentially provides
quadratic convergence. The version presented be-
low is trivial to implement and adequate for our
needs. More elaborate versions provide inequality
constraints, stabilization and step control schemes.

The goal is to extremize a scalar cost function
f(x) subject to a vector of constraintsc(x) = 0.
Lagrange multipliersz give an implicit solution:

∇f + z · ∇c = 0 with c(x) = 0

Resolve this iteratively starting from some initial
guessx0. Approximate the cost to second order and
the constraint to first order atx0, giving a quadratic
optimization subproblem with linear constraints:

min
δx

(
∇f · δx +

1
2
δx> · ∇2f · δx

)∣∣∣
c+∇c·δx=0

This subproblem has an exact linear solution:(
∇2f ∇c>

∇c 0

)(
δx
z

)
= −

(
∇f
c

)
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Solve forδx, updatex0 to x1 = x0+δx, re-estimate
derivatives, and iterate to convergence.

In the current application,x contains the10+6 =
16 components ofΩ andω. The cost function is
the sum of squared violations of the projection con-
straints

∑
i ‖ω ∧ (Pi Ω P>i )‖2. The constraint vec-

tor c enforces rank-3-ness det(Ω) = 0 and normal-
ization ‖ω‖2 = ‖Ω‖2 = 3. Further knowledge or
constraints are easily added (e.g. known skew, as-
pect ratio, principal point,. . . ). A Gauss-Newton
approximation (ignoring second derivatives of the
quadric projection constraints) was used for the Hes-
sian∇2f .

Initial guessesΩ0 andω0 are required. Using
ω0 ∧ (P Ω0P>) = 0, Ω0 can be estimated in
linear least squares from an approximate calibration
ω0 = K0 K>0 , or ω0 by projecting an estimatedΩ0

derived from approximate scene constraints. In fact,
for m ≥ 4 images and reasonably well placed cam-
eras (i.e. several independent rotations and transla-
tions), spurious solutions seem to be rare and any
initialization will do. The choicesω0 = I and
Ω0 = I or

(
I
0

0
0

)
often suffice, although for3 im-

ages, long focal lengths or highly constrained mo-
tions they can sometimes lead to local minima.

Convergence is rapid (4–10 iterations) unless the
problem is degenerate, and even then failure to con-
verge tosomefeasible solution is rare. It is worth
using a fairly accurate (e.g.nonlinear least squares)
projective reconstruction, especially in the unstable
3 image case. Omitting the det(Ω) = 0 constraint
significantly reduces both accuracy and stability.

3.4 Quasi-Linear Approach

It is also possible to solve the quadric projection
constraints using a “quasi-linear” approach. No
initialization is required, but at least4 images are
needed and the method is slower, less stable and less
accurate than SQP.

The basic idea is to write the independent com-
ponents ofΩ andω as vectors and work with the
10× 6 = 60 components of their outer product ma-
trix. The absolute quadric projection constraints are
linear and have rank 15 in these variables, so the ma-
trix can be recovered linearly fromm ≥ d59

15e = 4
images. A10 × 6 SVD projects the result to rank
1 and factorizes it into vectorsΩ andω. Finally, Ω
(rewritten as a matrix) is projected to rank 3 by an-
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Figure 2: Mean 3D reconstruction errorvs. image noise,
number of images and angular spread of cameras for
quasi-linear Euclidean, nonlinear Euclidean and projec-
tive reconstructions of point clouds.

nulling its smallest eigenvalue, and the method pro-
ceeds withΩ andω as above.

Since it only enforces the rank 1 and det(Ω) = 0
constraints indirectly, the quasi-linear method intro-
duces degeneracies that are not intrinsic to the un-
derlying problem. In particular, it fails whenever
any point — even a finite one — is fixed in all im-
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ages (e.g.a fixating camera).

4 Algorithm

The full algorithm for autocalibration and scaled Eu-
clidean reconstruction is as follows:
1) Standardize all image coordinates.
2) Find the projectionsPi by projective reconstruc-
tion.
3) Find the absolute quadricΩ and image conic
ω by solving15m bilinear quadric projection con-
straintsω ∧ (Pi Ω P>i ) = 0 (nonlinear and quasi-
linear methods).
4) Recover the camera calibrationK by Choleski
decomposition ofω = K K> .
5) Find a4 × 4 Euclideanizing homographyT by
eigen-decomposition ofΩ.
6) PerturbK−1 Pi T−1 ∼ Ri(I | − ti) to be exactly
Euclidean.
7) Recover Euclidean structure byx → T x or
back-projecting with the corrected projections.
8) Optional bundle adjustment.

Standardization rescales image pixel coordinates
to lie in the unit box[−1, 1] × [−1, 1]. It is abso-
lutely indispensable. Otherwise, different equations
of ‖ω ∧ (Pi Ω P>i )‖2 ≈ 0 have a difference in scale
of (say)2566 ≈ 1014. Their numerical conditioning
is terrible and severe floating point truncation error
leads to further loss of precision. This is perhaps
the major reason for the observed instability of some
previous autocalibration approaches. Standardiza-
tion (‘preconditioning’) isessentialwhenever there
is an implicit least squares trade-off (as here), par-
ticularly with equations of high degree. It is dis-
cussed in every text on numerical methods, but does
not seem to have been widely known in vision be-
fore Hartley made the point for fundamental matrix
estimation [9].

5 Experiments

To give a rough idea of the performance of the
algorithm, we briefly report on numerical experi-
ments with synthetic data. Images of random point
clouds were taken with identical wide-angle cam-
eras placed randomly within a fixed cone of view-
ing angles, approximately on a sphere surrounding

the scene. Several other configurations have also
been tried with success. Uniform random noise was
added to the image points. The initial projective
reconstruction was projective factorization [18, 20]
followed by projective bundle adjustment (not in-
dispensable). The nonlinear method was initialized
with a calibration wrong by about50%. Mean 3D
reconstruction error over 10 trials was estimated by
projective least squares alignment for projective re-
constructions and scaled Euclidean alignment for
Euclidean ones. There was no final Euclidean bun-
dle adjustment, although this is recommended for
real applications. Default values were±1 pixel
noise, 6 views, 50 points, with a wide (±30◦) range
of viewing directions and cyclotorsions.

Figure 2(a) shows that all errors scale linearly
with noise, and that the un-adjusted nonlinear Eu-
clidean reconstruction (with3 + 3 + 1 = 7 free
parameters) is very nearly as good as the underly-
ing projective one (with15). Figure 2(b) suggests
that this applies for any number of images, while the
quasi-linear method is somewhat less stable. Fig-
ure 2(c) shows that the error scales smoothly as the
viewing angles are decreased.

In an informal test on real images of a calibra-
tion grid, we compared un-bundle-adjusted autocal-
ibration with the scatter of results from conventional
calibration using known 3D point positions. It was
within: 0.1% (0.3σ) onαu andαv ; 0.01% (1.5σ) on
αu/αv; and 5 pixels (∼1–2σ) on u0 andv0 (theσ
estimates here are very imprecise).

6 Discussion & Conclusions

We have described a new method for autocalibrat-
ing a moving camera with fixed but unknown intrin-
sic parameters, moving arbitrarily in an unknown
scene. An initial projective reconstruction is recti-
fied to give calibration and scaled Euclidean struc-
ture and motion. The method is based on a new
projective encoding of metric structure: theabso-
lute quadric. This is equivalent to the absolute
conic, but considerably easier to use. It projects
very simply to the dual absolute image conic which
encodes camera calibration. The absolute quadric
and conic are recovered simultaneously using an ef-
ficient constrained nonlinear optimization technique
(sequential quadratic programming) or a quasi-
linear method. The results are stable and accurate



122 Chapitre 5. Auto-calibrage d’une camra en mouvement

for generic camera motions, and the formalism clari-
fies the reasons for autocalibration’s intrinsic degen-
eracies. A major practical advantage of the nonlin-
ear approach is the ease with which it incorporates
any further constraints that may be available, poten-
tially significantly reducing the problems of degen-
eracy.

Future work will examine several topics. In the
one camera case, priorities are techniques to de-
tect and handle degeneracy, and a study of the ad-
vantages of incorporating various additional con-
straints. Problems with several cameras (i.e. sev-
eralω’s) are easily handled, as are rigidly moving
stereo heads (ω is replaced by a ‘local’Ω in the head
frame, invariant under motion induced4 × 4 homo-
graphies). Non-reconstruction based autocalibration
techniques that work whether or not the translations
are zero would be useful. Finally, SQP is being suc-
cessfully applied to several other constrained statis-
tical fitting problems in vision.
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Abstract

This paper describes a theory and a practical algorithm for the autocalibration of a moving projective camera,
fromm ≥ 5 views of aplanarscene. The unknown camera calibration, and (up to scale) the unknown scene
geometry and camera motion are recovered from the hypothesis that the camera’s internal parameters remain
constant during the motion. This work extends the various existing methods for non-planar autocalibration
to a practically common situation in which it is not possible to bootstrap the calibration from an intermediate
projective reconstruction. It also extends Hartley’s method for the internal calibration of a rotating camera,
to allow camera translation and to provide 3D as well as calibration information. The basic constraint is that
the projections of orthogonal direction vectors (points at infinity) in the plane must be orthogonal in the cal-
ibrated camera frame of each image. Abstractly, since the two circular points of the 3D plane (representing
its Euclidean structure) lie on the 3D absolute conic, their projections into each image must lie on the abso-
lute conic’s image (representing the camera calibration). The resulting numerical algorithm optimizes this
constraint over all circular points and projective calibration parameters, using the inter-image homographies
as a projective scene representation.
Keywords: Autocalibration, Euclidean structure, Absolute Conic & Quadric, Planar Scenes.

1 Introduction

This paper describes a method of autocalibrating a moving projective camera with general, unknown
motion and unknown intrinsic parameters, fromm ≥ 5 views of aplanar scene. Autocalibration
is the recovery of metric information — for example the internal and external calibration parame-
ters of a moving projective camera — from non-metric information and (metric) self-consistency
constraints — for example the knowledge that the camera’s internal parameters are constant during
the motion, and the inter-image consistency constraints that this entails. Since the seminal work of
Maybank & Faugeras [14, 3], a number of different approaches to autocalibration have been devel-
oped [5, 6, 1, 27, 26, 2, 13, 9, 16, 15, 21, 10]. For the ‘classical’ problem of a single perspective
camera with constant but unknown internal parameters moving with a general but unknown motion
in a 3D scene, the original Kruppa equation based approach [14] seems to be being displaced by ap-
proaches based on the ‘rectification’ of an intermediate projective reconstruction [5, 9, 15, 21, 10].
More specialized methods exist for particular types of motion and simplified calibration models
[6, 24, 1, 16]. Stereo heads can also be autocalibrated [27, 11]. Solutions are still — in theory
— possible if some of the intrinsic parameters are allowed to vary [9, 15]. Hartley [6] has given
a particularly simple internal calibration method for the case of a single camera whose translation
is known to be negligible compared to the distances of some identifiable (real or synthetic) points

This revised version of my ECCV’98 paper [23] contains an additional paragraph on the Kruppa instability and an
appendix describing an unused (but potentially useful) factorization method for homographies betweenm ≥ 2 images.
The work was supported by Esprit LTR project CUMULI. I would like to thank P. Sturm and the reviewers for comments,
G. Csurka and A. Ruf for the test data, and C. Gramkow for pointing out some missing constants in eqns. (11) and (12).
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in the scene, and Faugeras [2] has elaborated a ‘stratification’ paradigm for autocalibration based
on this. The numerical conditioning of classical autocalibration is historically delicate, although
recent algorithms have improved the situation significantly [9, 15, 21]. The main problem is that
classical autocalibration has some restrictive intrinsic degeneracies — classes of motion for which
no algorithm can recover a full unique solution. Sturm [18, 19] has given a catalogue of these. In
particular, at least 3 views, some translation and some rotation about at least two non-aligned axes
are required.

Planar Autocalibration: All of the existing approaches to classical autocalibration rely on
information equivalent to a 3D projective reconstruction of the scene. In the Kruppa approach
this is the fundamental matrices and epipoles, while for most other methods it is an explicit 3D
reconstruction. For some applications (especially in man-made environments) this is potentially
a problem, because planar or near-planar scenes sometimes occur for which stable 3D projective
reconstructions (or fundamental matrices,etc.) can not be calculated. This well-known failing of
projective reconstruction is something of an embarrassment: thecalibratedreconstruction of planar
scenes is not difficult, so it is exactly in this case when autocalibration fails that it would be most
useful. The current paper aims to rectify this by providing autocalibration methods that work in the
planar case, by ‘rectifying’ the inter-image homographies induced by the plane. In the longer term,
we would like to find ways around the ill-conditioning of projective reconstruction for near-planar
scenes, and also to develop ‘structure-free’ internal calibration methods similar to Hartley’s zero-
translation one [6], but which work for non-zero translations. The hope is that planar methods may
offer one way to attack these problems.

Planar autocalibration has other potential advantages. Planes are very common in man-made
environments, and often easily identifiable and rather accurately planar. They are simple to pro-
cess and allow very reliable and precise feature-based or intensity-based matching, by fitting the
homographies between image pairs. They are also naturally well adapted to the calibration of lens
distortion as some of the subtleties of 3D geometry are avoided1.

The maindisadvantage of planar autocalibration (besides the need for a nice, flat, textured
plane) seems to be the number of images required. Generically,m ≥ dn+4

2 e images are needed for
an internal camera model withn free parameters,e.g.m ≥ 5 for the classical 5 parameter projective
model (focal length, aspect ratio, skew, principal point), orm ≥ 3 if only focal length is estimated.
However for good accuracy and reliability, at least 8–10 images are recommended in practice. Also,
almost any attempt at algebraic elimination across so many images rapidly leads to a combinatorial
explosion. Hence, the approach is resolutely numerical, and it seems impracticable to initialize the
optimization from a minimal algebraic solution. Although for the most part the numerical domain
of convergence seems to be sufficient to allow moderately reliable convergence from a fixed default
initialization, and we have also developed a numerical initialization search which may be useful in
some cases, occasional convergence to false minima remains a problem.

Organization: Section 2 gives a direction-vector based formulation of the theory of autocal-
ibration, and discusses how both non-planar and planar autocalibration can be approached within
this framework. Section 3 describes the statistically-motivated cost function we optimize. Section 4
discusses the numerical algorithm, and the method used to initialize it. Section 5 gives experimental
results on synthetic and real images, and section 6 concludes the paper.

Notation will be introduced as required. Briefly we use bold uprightx for homogeneous 3D (4
component) vectors and matrices; bold italicx for 3 component ones (homogeneous image, inho-
mogeneous 3D, 3-component parts of homogeneous 4-component objects);P for image projections

1We will ignore lens distortion throughout this paper. If necessary it can be corrected by a nominal model, or —
at least in theory — estimated up to an overall3 × 3 projectivity by a bundled adjustment over all the inter-image
homographies. (The pixel-pixel mapping induced by geometric homographyHi is DHiD−1 whereD is the distortion
model).
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andH for inter-image homographies;K, C = K−1 for upper triangular camera calibration and in-
verse calibration matrices;Ω andΩ∗ for the absolute (hyperplane) quadric and (direction) conic;
andω = K K> = PΩ P> andω−1 = C>C for their images.[ · ]× denotes the matrix generating
the cross product:[ x ]×y = x ∧ y.

2 Euclidean Structure and Autocalibration

To recover the metric information implicit in projective images, we need a projective encoding of
Euclidean structure. The key to Euclidean structure is the dot product between direction vectors
(“points at infinity”), or dually the dot product between (normals to) hyperplanes. The former leads
to the stratified “hyperplane at infinity + absolute (direction) conic” formulation (affine + metric
structure) [17], the latter to the “absolute (hyperplane) quadric” one [21]. These are just dual ways
of saying the same thing. The hyperplane formalism is preferable for ‘pure’ autocalibration where
there is noa priori decomposition into affine and metric strata, while the point one is simpler if
such a stratification is given.

Generalities: Considerk-dimensional Euclidean space. We will need the casesk = 2 (the pla-
nar scene and its 2D images) andk = 3 (ordinary 3D space). Introducing homogeneous Euclidean
coordinates, points, displacement vectors and hyperplanes are encoded respectively as homoge-
neousk + 1 component column vectorsx = (x, 1)> , t = (t, 0)> and row vectorsp = (n, d). Here
x, t andn are the usualk-D coordinate vectors of the point, the displacement, and the hyperplane
normal, andd is the hyperplane offset. Points and displacements on the plane satisfy respectively
p · x = n · x + d = 0 andp · t = n · t = 0. Displacement directions can be appended to the point
space, as ahyperplane at infinity p∞ of points at infinity or vanishing points. Projectively,p∞
behaves much like any other hyperplane. In Euclidean coordinates,p∞ = (0, 1) so thatp∞ ·t = 0
for any displacementt = (t, 0). Projective transformations mix finite and infinite points. Under
a projective transformation encoded by an arbitrary nonsingular(k+ 1)× (k+ 1) matrixT, points
and directions (column vectors) transformcontravariantly , i.e. by T acting on the left:x → T x,
v→ T v. To preserve the point-on-plane relationp · x = n · x + d = 0, hyperplanes (row vectors)
transformcovariantly, i.e. by T−1 acting on the right:p→ p T−1.

Absolute Quadric & Conic: The usual Euclidean dot product between hyperplane normals is
n1 · n2 = p1 Ω p>2 where the symmetric, rankk, positive semidefinite matrix

Ω =
(

Ik×k 0
0 0

)
is called theabsolute (hyperplane) quadric2. Ω encodes the Euclidean structure in projective
coordinates. Under projective transformations it transforms contravariantly (i.e. like a point) in each
of its two indices so that the dot product between plane normals is invariant:Ω → T Ω T> and
pi → pi T−1, sop1 Ωp>2 = n1 ·n2 is constant.Ω is invariant under Euclidean transformations, but
in a general projective frame it loses its diagonal form and becomes an arbitrary symmetric positive
semidefinite rankk matrix. In any frame, the Euclidean angle between two hyperplanes is cosθ =
(p Ω p′>)/

√
(p Ω p>)(p′Ω p′>), and the plane at infinity isΩ’s unique null vector:p∞Ω = 0.

When restricted to coordinates onp∞, Ω becomes nonsingular and can be dualized (inverted)
to give thek × k symmetric positive definiteabsolute (direction) conicΩ∗. This measures dot
products between displacement vectors, just asΩ measures them between hyperplane normals.Ω∗

is definedonly on direction vectors, not on finite points, and unlikeΩ it has no unique canonical
2Abstractly,Ω can be viewed as a cone (degenerate quadric hypersurface) with no real points in complex projective

hyperplane space. But it is usually simpler just to think of it concretely as a symmetric matrix with certain properties.



126 Chapitre 5. Auto-calibrage d’une camra en mouvement

form in terms of theunrestricted coordinates. (Anything of the form
(

I x
x> y

)
can be used, for

arbitraryx, y).

Direction bases:In Euclidean coordinates,Ω can be decomposed as a sum of outer products of
any orthonormal (in terms ofΩ∗) basis of displacement vectors:Ω =

∑k
i=1 xi x>i wherexi Ω∗ xj =

δij . For example in 2DΩ =
(

I2×2 0
0 0

)
= x̂ x̂>+ŷ ŷ> wherex̂ = (1, 0, 0), ŷ = (0, 1, 0), are the usual

unit direction vectors. Gathering the basis vectors into the columns of a(k + 1) × k orthonormal
rankk matrix U we haveΩ = U U> , p∞U = 0 andU>Ω∗U = Ik×k. The columns ofU span
p∞. All of these relations remain valid in an arbitrary projective frameT and with an arbitrary
choice of representative forΩ∗, except thatU→ T U ceases to be orthonormal.

U is defined only up to an arbitraryk× k orthogonal mixing of its columns (redefinition of the
direction basis)U → U Rk×k. Even in a projective frame whereU itself is not orthonormal, this
mixing freedom remains orthogonal. In a Euclidean frameU =

(
V
0

)
for somek×k rotation matrix

V, so the effect of a Euclidean space transformation isU→
(

R t
0 1

)
U = U R′ whereR′ = V>RV is

the conjugate rotation: Euclidean transformations of direction bases (i.e. on the left) are equivalent
to orthogonal re-mixings of them (i.e. on the right). This remains true in an arbitrary projective
frame, even thoughU and the transformation no longerlook Euclidean. This mixing freedom can
be used to choose a direction basis in whichU is orthonormal up to a diagonal rescaling: simply
take the SVDU′ D V> of U and discard the mixing rotationV> . Equivalently, the eigenvectors
and square roots of eigenvalues ofΩ can be used. Such orthogonal parametrizations ofU make
good numerical sense, and we will use them below.

Circular points: Given any two orthonormal direction vectorsx,y, the complex conjugate
vectorsx± ≡ 1√

2
(x ± iy) satisfyx±Ω∗ x>± = 0. Abstractly, these complex directions “lie on

the absolute conic”, and it is easy to check that any complex projective point which does so can
be decomposed into two orthogonal direction vectors, its real and imaginary parts. In the 2D case
there is only one such conjugate pair up to complex phase, and thesecircular points characterize
the Euclidean structure of the plane. However for numerical purposes, it is usually easier to avoid
complex numbers by using the real and imaginary partsx andy rather thanx±. The phase freedom
in x± corresponds to the2× 2 orthogonal mixing freedom ofx andy.

Theoretically, the above parametrizations of Euclidean structure are equivalent. Which is practi-
cally best depends on the problem.Ω is easy to use, except that constrained optimization is required
to handle the rankk constraintdet Ω = 0. Direction basesU eliminate this constraint at the cost of
numerical code to handle theirk× k orthogonal gauge freedom. The absolute conicΩ∗ has neither
constraint nor gauge freedom, but has significantly more complicated image projection properties
and can only be defined once the plane at infinityp∞ is known and a projective coordinate system
on it has been chosen (e.g.by induction from one of the images). It is also possible to parametrize
Euclidean structure by non-orthogonal Choleski-like decompositionsΩ = L L> (i.e. the L part of
the LQ decomposition ofU), but this introduces singularities at maximally non-Euclidean frames
unless pivoting is also used.

Image Projections: Since the columns of a 3D direction basis matrixU are bona fide3D
direction vectors, its image projection is simplyPU, whereP is the usual3 × 4 point projection
matrix. Hence, the projection ofΩ = U U> is the3× 3 symmetric positive definite contravariant
image matrixω = PΩ P> . Abstractly, this is the image line quadric dual to the image of the
absolute conic. Concretely, given any two image linesl1, l2, ω encodes the 3D dot product between
their 3D visual planespi = li P: p1 Ω p>2 = l1 PΩ P> l>2 = l1 ω l>2 . With the traditional Euclidean
decompositionK R( I | − t) of P into an upper triangularinternal calibration matrix K, a 3 × 3
camera orientation (rotation) R and anoptical centre t, ω becomes simplyK K> . SinceΩ is
invariant under Euclidean motions,ω is invariant under camera displacements so long asK remains
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constant. K can be recovered fromω by Choleski decomposition, and similarly the Euclidean
scene structure (in the form of a ‘rectifying’ projective transformation) can be recovered fromΩ.
The upper triangularinverse calibration matrix C = K−1 converts homogeneous pixel coordinates
to optical ray directions in the Euclidean camera frame.ω−1 = C>C is the image of the absolute
conic.

Autocalibration: Given several images taken with projection matricesPi = Ki Ri(I | − ti), and
(in the same Euclidean frame) a orthogonal direction basisU =

(
V
0

)
, we find that

Ci Pi U = R′i (1)

whereCi = K−1

i andR′i = Ri V is a rotation matrix depending on the camera pose. This is perhaps
the most basic form of the autocalibration constraint. It says that the calibrated images (i.e. 3D
directions in the camera frame) of an orthogonal direction basis must remain orthogonal. It remains
true in arbitrary projective 3D and image frames, as the projective deformations ofU vs.Pi and
Pi vs.Ci cancel each other out. However, it is not usually possible to choose the scale factors of
projectively reconstructed projectionsa priori, in a manner consistent with those of their unknown
Euclidean parents. So in practice this constraint can only be applied up to an unknown scale factor
for each image:Ci PiU ∼ R′i. As always, the direction basisU is defined only up to an arbitrary
3× 3 orthogonal mixingU→ U R.

2.1 Autocalibration for Non-Planar Scenes

The simplest approaches to autocalibration for non-planar scenes are based on the consistency equa-
tion (1), an intermediate projective reconstructionPi, and some sort of knowledge about theCi (e.g.
classically that they are all the same:Ci = C for some unknownC). Nonlinear optimization or
algebraic elimination are used to estimate the Euclidean structureΩ or U, and the free parameters
of theCi. Multiplying (1) either on the left or on the right by its transpose to eliminate the unknown
rotation, and optionally moving theC’s to the right hand side, gives several equivalent symmetric
3× 3 constraints linkingΩ or U toωi, Ki or Ci

U> P>i ω
−1

i Pi U ∼ I3×3 (2)

Ci Pi Ω P>i C>i ∼ I3×3 (3)

Pi Ω P>i ∼ ωi = Ki K>i (4)

In each case there are 5 independent constraints per image on the 8 non-Euclidean d.o.f. of the 3D
projective structure3 and the 5 (or fewer) d.o.f. of the internal calibration. For example, three images
in general position suffice for classical constant-C autocalibration. In each case, the unknown scale
factors can be eliminated by treating the symmetric3 × 3 left and right hand side matrices as
3 · 4/2 = 6 component vectors, and either (i) projecting (say) the left hand sides orthogonally to
the right hand ones (hence deleting the proportional components and focusing on the constraint-

3These can be counted as follows: 15 for a 3D projective transformation modulo 7 for a scaled Euclidean one; or
12 for a4 × 3 U matrix modulo 1 scale and 3 d.o.f. for a3 × 3 orthogonal mixing; or4 · 5/2 = 10 d.o.f. for a4 × 4
symmetric quadric matrixΩ modulo 1 scale and 1 d.o.f. for the rank 3 constraintdet Ω = 0; or 3 d.o.f. forp∞ and 5
for the3 · 4/2 = 6 components ofΩ∗ modulo 1 scale.
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violating non-proportional ones), or (ii ) cross-multiplying in the usual way:

ui · vi = ui ·wi = vi ·wi = 0

‖ui‖2 = ‖vi‖2 = ‖wi‖2
where (ui,vi,wi) ≡ Ci Pi U (5)

(Ci Pi Ω P>i C>i )AA = (Ci Pi Ω P>i C>i )BB

(Ci Pi Ω P>i C>i )AB = 0
where A < B = 1 . . . 3 (6)

(Pi Ω P>i )AB (ω)CD = (ω)AB (Pi Ω P>i )CD where A ≤ B,C ≤ D = 1 . . . 3 (7)

Several recent autocalibration methods for 3D scenes (e.g. [21, 9]) are based implicitly on these
constraints, parametrized byK or ω and by something equivalent4 to Ω or U. All of these meth-
ods seem to work well provided the intrinsic degeneracies of the autocalibration problem [18] are
avoided.

In contrast, methods based on the Kruppa equations [14, 3, 26] can not be recommended for
general use, because they add a serious additional singularity to the already-restrictive ones intrinsic
to the problem. If any 3D point projects to the same pixel and is viewed from the same distance in
each image, a ‘zoom’ parameter can not be recovered from the Kruppa equations. In particular, for
a camera moving around an origin and fixating it at the image centre, the focal length can not be
recovered5. Sturm [19] gives a geometric argument for this, but it is also easy to see algebraically.
Let x be the fixed image point,F the fundamental matrix between images 1 and 2,e the epipole of
image 2 in image 1, andω the constant dual absolute image quadric. Choosing appropriate scale
factors fore andF, the Kruppa constraint can be written asF ω F> = [ e]×ω [ e]>×. Sincex is
fixed,x>F x = 0 and by the projective depth recovery relations [20]F x = λ [ e]×x whereλ is the
relative projective depth (projective scale factor) ofx in the two images. HenceF(ω+µ x x>)F> =
[ e]×(ω + µλ x x>)[ e]>×. With these normalizations ofe andF, λ = 1 iff the Euclideandepth
of x is the same in each image. If this is the case for all of the images we see that ifω is a
solution of the Kruppa equations, so isω + µ x x> for anyµ. This means that the calibration can
only be recovered up to a zoom centred onx. Numerical experience suggests that Kruppa-based
autocalibration remains ill-conditioned even quite far from this singularity. This is hardly surprising
given that in any case the distinction between zooms and closes depends on fairly subtle2nd-order
perspective effects, so that the recovery of focal lengths is never simple. (Conversely, the effects of
an inaccurate zoom-close calibration on image measurements or local object-centred 3D ones are
relatively minor).

2.2 Autocalibration from Planar Scenes

Now consider autocalibration fromplanar scenes. Everything above remains valid, except that no
intermediate 3D projective reconstruction is available from which to bootstrap the process. However
we will see that by using the inter-image homographies, autocalibration is still possible.

The Euclidean structure of the scene plane is given by any one of (i) a3×3 rank 2 absolute line
quadricQ; (ii ) a 3 component line at infinityl∞ and its associated2× 2 absolute (direction) conic
matrix; (iii ) a 3 × 2 direction basis matrixU = (x y); (iv) two complex conjugate circular points
x± = 1√

2
(x ± iy) which are also the two roots of the absolute conic onl∞ and the factors of the

4If the first camera projection is taken to be( I |0) [5, 9], U can be chosen to have the form
(

I
−p>

)
K where

p∞ ∼ (p>, 1), whenceΩ ∼
(

ω −ω p

−p>ω p>ω p

)
and

(
C 0

p> 1

)
is a Euclideanizing projectivity.

5For most other autocalibration methods, this case is ambiguous only if the fixed point is at infinity (rotation about a
fixed axis + arbitrary translation).
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absolute line quadricQ = x x> + y y> = x+x>− + x−x>+. In each case the structure is the natural
restriction of the corresponding 3D one, re-expressed in the planar coordinate system. In each case
it projects isomorphically into each image, either by the usual3 × 4 3D projection matrix (using
3D coordinates), or by the corresponding3× 3 world-plane to image homographyH (using scene
plane coordinates). Hence, each image inherits a pair of circular pointsHi x± and the corresponding
direction basisHi (x y), line at infinity l∞ H−1

i and3× 3 rank 2 absolute line quadricHi Q H>i . As
the columns of the planarU matrix representbona fide3D direction vectors (albeit expressed in the
planar coordinate system), their images still satisfy the autocalibration constraints (1):

Ci Hi U ∼ R3×2 (8)

whereR3×2 contains the first two columns of a3× 3 rotation matrix. Multiplying on the left by the
transpose to eliminate the unknown rotation coefficients gives (c.f. (2)):

U> H>i ω
−1

i Hi U ∼ I2×2 (9)

Splitting this into components gives the form of the constraints used by our planar autocalibration
algorithm:

‖ui‖2 = ‖vi‖2, 2 ui · vi = 0 where (ui, vi) ≡ Ci Hi (x, y) (10)

These constraints say that any two orthonormal direction vectors in the world plane project under
the calibrated world-plane to image homographyCi Hi to two orthonormal vectors in the camera
frame. Equivalently, the (calibrated) images of the circular pointsx± = 1√

2
(x± iy) lie on the image

of the (calibrated) absolute conic:

(Hi x±)> ω−1 (Hi x±) = ‖ui±‖2 = 0 where ui± ≡ Ci Hi x± (11)

All of the above constraints are valid in arbitrary projective image and world-plane frames, except
that (x, y) are no longer orthonormal. As always,(x, y) are defined only up to a2 × 2 orthogonal
mixing, and we can use this gauge freedom to require thatx · y = 0.

Our planar autocalibration method is based on direct numerical minimization of the residual
error in the constraints (10) from several images, over the unknown direction basis(x, y) and any
combination of the five intrinsic calibration parametersf , a, s, u0 andv0. The input data is the
set of world plane to image homographiesHi for the images, expressed with respect to an arbitrary
projective frame for the world plane. In particular, if the plane is coordinatized by its projection
into some key image (say image 1), the inter-image homographiesHi1 can be used as input.

Four independent parameters are required to specify the Euclidean structure of a projective
plane: the 6 components of(x, y) modulo scale and the single d.o.f. of a2 × 2 rotation; or the
3 · 4/2 = 6 components of a3 × 3 absolute line quadricQ modulo scale and the rank 2 constraint
det Q = 0; or the 2 d.o.f. of the plane’s line at infinity, plus the 2 d.o.f. of two circular points on
it. Since equations (9), (10) or (11) give two independent constraints for each image,dn+4

2 e images
are required to estimate the Euclidean structure of the plane andn intrinsic calibration parameters.
Two images suffice to recover the structure if the calibration is known, three are required if the
focal length is also estimated, four for the perspectivef, u0, v0 model, and five if all 5 intrinsic
parameters are unknown.

2.3 Camera Parametrization

We have not yet made the camera parametrization explicit, beyond saying that it is given by the
upper triangular matricesK or C = K−1. For autocalibration methods which fix some parameters
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while varying others, it makes a difference which parametrization is used. I prefer the following
form motivated by a zoom lens followed by an affine image-plane coordinatization:

K =

f f s u0

0 f a v0

0 0 1

 C = K−1 =
1
f a

a −s s v0 − au0

0 1 −v0

0 0 f a


Here, if standard pixel coordinates are used,f = αu is the focal length inu-pixels,s = − tan θskew

is the dimensionless geometric skew,a = αv/(αu cos θskew) is the dimensionlessv : u aspect ratio,
and (u0, v0) are the pixel coordinates of the principal point. However pixel coordinates arenot
used in the optimization routine below. Instead, a nominal calibration is used to standardize the
parameters to nominal valuesf = a = 1, s = u0 = v0 = 0, and all subsequent fitting is done using
the above model with respect to these values.

3 Algebraic vs.Statistical Error

Many vision problems reduce to minimizing the residual violation of some vector of nonlinear con-
straintse(x,µ) ≈ 0 over parametersµ, given fixed noisy measurementsx with known covariance
Vx. Often, heuristic error metrics such as thealgebraic error ‖e(x,µ)‖2 are taken as the target for
minimization. However, such approaches are statistically sub-optimal and if used uncritically can
lead to (i) very significant bias in the results and (ii ) severe constriction of the domain of conver-
gence of the optimization method. Appropriatebalancing or preconditioning (numerical scaling
of the variables and constraints,e.g.as advocated in [7, 8] or any numerical optimization text) is the
first step towards eliminating such problems, but it is not the whole story. In any case it begs the
question of whatis “balanced”. It isnotalways appropriate to scale all variables toO(1). In fact, in
the context of parameter estimation, “balanced” simply means “close to the underlyingstatistical
error measure”6

χ2
e ≈ e>V−1

e e where Ve ≈ De
Dx Vx

De
Dx

>
is the covariance ofe

Ideally one would like to optimize the statistical cost (i.e. log likelihood). Unfortunately, this is
often rather complicated owing to the matrix products and (pseudo-)inverse, and simplifying as-
sumptions are often in order. I feel that this pragmatic approach is theonly acceptable way to
introduce algebraic error measures — as explicit, controlled approximations to the underlying sta-
tistical metric. Given that the extra computation required for a suitable approximation is usually
minimal, while the results can be substantially more accurate, it makes little sense to iteratively
minimize an algebraic error without such a validation step.

One very useful simplification is to ignore the dependence ofV−1
e onµ in cost function deriva-

tives. This givesself-consistentor iterative re-weighting schemes (e.g. [12]), whereVe is treated
as a constant within each optimization step, but updated at the end of it. One can show that the
missing terms effectively displace the cost derivative evaluation point from the measuredx to a first
order estimate of the true underlying valuex0 [22]. For the most part this makes little difference
unless the constraints are strongly curved on the scale ofVx.

For our autocalibration method, the statistical error splits into independent terms for each im-
age7. For want of a more specific error model, we assume that the components of the datax (here,

6e is a random variable through its dependence onx. Assuming that the uncertainty is small enough to allow lin-
earization and thatx is centred on some underlyingx0 satisfyinge(x0,µ0) = 0 for some parameter valueµ0, e(x,µ0)
has mean0 and the above covariance. It follows thate>V−1

e e is approximately aχ2
rank(e) variable nearµ0, which can

be minimized to find a maximum likelihood estimate ofµ.
7We (perhaps unwisely) ignore the fact that theHi are correlated through their mutual dependence on the base image.

The base image is treated just like any other in the sum.
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theHi in nominally calibrated coordinates) are i.i.d.:E
[
∆HA

B ∆HC
D

]
≈ ε · δACδBD whereε is a

noise level8. From here it is straightforward to find and invert the constraint covariance. For the
planar autocalibration constraint (10), and assuming that we have enforced the gauge constraint
x · y = 0, the constraint covariance is

4ε ·
(

x2 a2
i + y2 b2

i (x2 − y2) ai · bi
(x2 − y2) ai · bi x2 b2

i + y2 a2
i

)
where (ai,bi) ≡ C>i (ui, vi) = ω−1

i Hi (x, y)

In this case, numerical experience indicates that the off-diagonal term is seldom more than a few
percent of the diagonal ones, which themselves are approximately equal for each image, but differ
by as much as a factor of 2–3 between images9. Hence, we drop the off-diagonal term to give an
autocalibration method based on self-consistent optimization of the diagonal cost function

m∑
i=1

(
(‖ui‖2 − ‖vi‖2)2/4

x2 ‖C>i ui‖2 + y2 ‖C>i vi‖2
+

(ui · vi)2

x2 ‖C>i vi‖2 + y2 ‖C>i ui‖2
)

where (ui, vi) ≡ Ci Hi (x, y)

(12)

In our synthetic experiments, this statistically motivated cost function uniformly reduced the ground-
truth standard deviation of the final estimates by about 10% as compared to the best carefully nor-
malized algebraic error measures. This is a modest but useful improvement, obtained without any
measurable increase in run time. The improvement would have been much larger if the error model
had been less uniform in the standardized coordinates. Perhaps most importantly, the statistical
cost is almost completely immune to mis-scaling of the variables, which is certainlynot true of the
algebraic ones which deteriorated very rapidly for mis-scaling factors greater than about 3.

4 Planar Autocalibration Algorithm

Numerical Method: Our planar autocalibration algorithm is based on direct numerical minimiza-
tion of them-image cost function (12), with respect to the direction basis{x, y} and any subset
of the 5 internal calibration parameters focal lengthf , aspect ratioa, skews, and principal point
(u0, v0). There are 4 d.o.f. in{x, y}— 6 components defined up to an overall mutual rescaling and
a 2× 2 orthogonal mixing — so the optimization is over 5–9 parameters in all. Numerically, the 6
component(x, y) vector is locally projected onto the subspace orthogonal to its current scaling and
mixing d.o.f. by Householder reduction (i.e. effectively a mini QR decomposition). As mentioned
in section 2, the mixing freedom allows us to enforce the gauge conditionx · y = 0. Although
not essential, this costs very little (one Jacobi rotation) and we do it at each iteration as an aid to
numerical stability.

A fairly conventional nonlinear least squares optimization method is used: Gauss-Newton iter-
ation based on Choleski decomposition of the normal equations. As always, forming the normal
equations gives a fast, relatively simple method but effectively squares the condition number of the
constraint Jacobian. This is not a problem so long as intermediate results are stored at sufficiently
high precision: double precision has proved more than adequate for this application.

8This model is undoubtedly over-simplistic. Balancing should make their variances similar, but in reality the compo-
nents are most unlikely to be independent. We should at very least subtract a diagonal termHA

BHC
D/‖HA

B‖2, as variations
proportional toH make no projective difference. However this makes no difference here, as when contracted with∇e’s
it just gives backe(x0)’s which vanish. Thishad to happen: correctly weighted error terms must be insensitive to
projective scale factors, and hence have total homogeneity 0 in their projective-homogeneous variables.

9This was to be expected, since we chose everything to be well-scaled except that theH normalizations may differ
somewhat from their ‘correct’ Euclidean ones, and our noise model is uniform in an approximately calibrated frame. If
any of these conditions were violated the differences would bemuchgreater.
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As with any numerical method, care is needed to ensure stability should the numerical condi-
tioning become poor. Our parametrization of the problem guarantees that all variables are ofO(1)
and fairly well decoupled, so preconditioning is not necessary. The Choleski routine uses diagonal
pivoting and Gill & Murray’s [4] minimum-diagonal-value regularization to provide local stability.
The regularizer is also manipulated in much the same way as a Levenberg-Marquardt parameter
to ensure that each step actually reduces the cost function. We also limit the maximum step size
for each variable, relatively for the positive, multiplicative parametersf anda and absolutely for
the others. Both the regularizer and the step size limits are activated fairly often in practice, the
regularizer at any time, and the step limit usually only during the first 1–2 iterations. The method
terminates when the step size converges to zero, with additional heuristics to detect thrashing. Con-
vergence within 5–10 iterations is typical.

Prior over Calibrations: We also allow for a simple user-defined prior distribution on the
calibration parameters. Even if there is no very strong prior knowledge, it is often advisable to
include a weak prior in statistical estimation problems as a form of regularization. If there are
unobservable parameter combinations (i.e. that make little or no difference to the fit), optimal,
unbiased estimates of these are almost always extremely sensitive to noise. Adding a weak prior
makes little difference to strong estimates, but significantly reduces the variability of weak ones
by biasing them towards reasonable default values. A desire to “keep the results unbiased” is
understandable, but limiting the impact of large fluctuations on the rest of the system may be more
important in practice.

Default priors are also useful to ensure that parameters retain physically meaningful values. For
example, we use heuristic priors of the form(x/x0 − x0/x)2 for f anda, to ensure that they stay
within their physically meaningful range(0,∞). This is particularly important for autocalibration
problems, where degenerate motions occur frequently. In such cases the calibration can not be
recovered uniquely. Instead there is a one or more parameter family of possible solutions, usually
including physically unrealizable ones. A numerical method (if it converges at all) will converge to
an arbitrary one of these solutions, and for sanity it pays to ensure that this is a physically feasible
one not too far from the plausible range of values. A weak default prior is an effective means of
achieving this, and seems no more unprincipled than any other method. This is not to say that such
degeneracies should be left unflagged, but simply that whatever cleaning up needs to be done will
be easier if it starts from reasonable default values.

Initialization: The domain of convergence of the numerical optimization is reasonably large
and for many applications it will probably be sufficient to initialize it from fixed default values. The
most critical parameters are the focal lengthf and the number and angular spread of the views. For
example, iff can only be guessed within a factor of 2 and all 5 parametersf, a, s, u0, v0 are left free,
about 9–10 images spread by more than about 10◦ seem to be required for reliable convergence to
the true solution. Indeed, with 5 free parameters and the theoretical minimum of only 5–6 images,
even anexact initialization is not always sufficient to eliminate false solutions (i.e. with slightly
smaller residuals than the true one).

These figures assume that the direction basisx, y is completely unknown. Information about
this is potentially very valuable and should be used if available. Knowledge of the world-plane’s
horizon (line at infinity) removes 2 d.o.f. fromx, y and hence reduces the number of images required
by one, and knowledge of its Euclidean structure (but not the positions of points on it) eliminates
another image. Even if not directly visible, horizons can be recovered from known 3D parallelism
or texture gradients, or bounded by the fact that visible points on the plane must lie inside them. We
will not consider these types of constraints further here.

If a default initialization is insufficient to guarantee convergence, several strategies are possible.
One quite effective technique is simply to use a preliminary optimization overx, y or x, y, f to
initialize a full one over all parameters. More generally, some sort of initialization search over
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f , x and y is required. Perhaps the easiest way to approach this is to fix nominal values for all
the calibration parameters exceptf , and to recover estimates forx, y as a function off from a
single pair of images asf varies. These values can then be substituted into the autocalibration
constraints for the other images, and the overall most consistent set of values chosen to initialize
the optimization routine. The estimation ofx(f), y(f) reduces to the classical photogrammetric
problem of the relative orientation of two calibrated cameras from a planar scene, as the Euclidean
structure is easily recovered once the camera poses are known. In theory this problem could be
solved in closed form (the most difficult step being a3 × 3 eigendecomposition) and optimized
overf analytically. But in practice this would be rather messy and I have preferred to implement
a coarse numerical search overf . The search uses a new SVD-based planar relative orientation
method (see appendix 1) related to Wunderlich’s eigendecomposition approach [25]. The camera
pose and planar structure are recovered directly from the SVD of the inter-image homography.
As always with planar relative orientation, there is a two-fold ambiguity in the solution, so both
solutions are tested. In the implemented routine, the solutions for each image against the first one,
and for eachf in a geometric progression, are substituted into the constraints from all the other
images, and the most consistent overall values are chosen.

If the full 5 parameter camera model is to be fitted, Hartley’s ‘rotating camera’ method [6]
can also be used for initialization. It works wellprovided(i) the camera translations are smaller
than or comparable to the distance to the plane; (ii ) no point on the plane is nearly fixated from a
constant distance. (For such a pointx, ω + µxx> is an approximate solution of Hartley’s equation
HωH> = ω for anyµ, i.e.ω can not be estimated uniquely, even for small translations).

5 Experiments

Synthetic data: The method has been implemented in C and tested on both real and synthetic
images. For the synthetic experiments, the camera roughly fixates a point on the plane from a
constant distance, from randomly generated orientations varying by (by default)±30◦ in each of
the three axes. The camera calibration varies randomly about a nominal focal length of 1024 pixels
and unit aspect ratio, by±30% in focal lengthf , ±10% in aspect ratioa, ±0.01 in dimensionless
skews, and±50 pixels in principal point(u0, v0). (These values are standard deviations of log-
normal distributions forf , a and normal ones fors, u0, v0). The scene plane contains by default
40 visible points, projected into the512 × 512 images with a Gaussian noise of±1 pixel. Before
the homographies are estimated and the method is run, the pixel coordinates are centred and scaled
to a nominal focal length of1: (u, v) → (u − 256, v − 256)/1024. The output is classed as a
‘success’ or ‘failure’ according to fixed thresholds on the size of its deviation from the true value.
Only successes count towards the accuracy estimates. The usual mode of failure is convergence to
a false solution with extremely short focal length (say< 50 pixels). However when the angular
spread of the views is small or there are only a few images, random fluctuations sometimes take
a “correct” but highly variable solution outside the (generously set) thresholds. Conversely, there
is occasionally convergence to a false solution within the threshold. Thus, when the failure rate is
high, neither it nor the corresponding error measure (nor, for that matter, the results!) are accurate.
The optimization typically converges within 5–10 iterations, although more may be needed for
degenerate problems. The run time is negligible: on a Pentium 133, about 0.5 milliseconds per
image if the default initialization is used, or 2.0 with a fairly fine initialization search overf .

Figure 1 gives some illustrative accuracy and reliability results, concentrating on the estimation
of focal lengthf . First consider the plots where all 5 calibration parameters are estimated. The
error scales roughly linearly with noise and inversely with the angular spread of the views. It drops
rapidly as the first few images are added, but levels off after about 10 images. The failure rate
increases rapidly for more than about 2–3 pixels noise, and is also unacceptably high for near-
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Figure 1: Error in estimated focal lengthf and failure ratevs. image noise, number of images and angular
spread of cameras. Each value is the average of 1000 trials. The aspect ratioa, skews, and principal
point (u0, v0) are either fixed at their nominal values, or allowed to vary freely, as indicated. The method is
initialized from the nominal calibration, except that in the failurevs.images plot we also show the results for
initialization by numerical search overf , and by a preliminary fit overf alone (‘2-phase’).

minimal numbers of images (within 1–2 of the minimum) and small angular spreads (less than
about 10◦). however, it decreases rapidly as each of these variables is increased. It seems to be
difficult to get much below about 1% failure rate with the current setup. Some of these failures
are probably the result of degeneracies in the randomly generated problems, but most of them are
caused by convergence to a false solution with implausible parameters, either very smallf (less
than about 50) ora far from 1. The initialization method has little impact on the reliability. In fact,
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Figure 2: Several images from our calibration sequence.

in these experiments the default initialization proved more reliable than either numerical search
overf , or an initial optimization overf alone. The reason is simply that we do not assume prior
knowledge ofanyof the calibration parameters. An initialization search overf must fixa, s, u0, v0

at their inaccurate nominal values, and this is sometimes enough to make it miss the true solution
entirely. This also explains the poor performance of the methods which holda, s, u0, v0 fixed and
estimatef alone. As the graphs of errorvs.noise and number of images show, errors ina, s, u0, v0

lead to a significant bias inf , but most of this can be eliminated by estimatinga as well asf . The
initialization search overf also becomes much more reliable (e.g.0.05% failure rate for 10 images,
30◦ spread and 1 pixel noise) ifa ands are accurate to within a few percent. Here and elsewhere,
it is only worthwhile to fix parameters if they are reliably known to an accuracy better than their
measured variabilities,e.g.here for 1 pixel noise and 10 images, to about0.003 for a, s or 20 pixels
for u0, v0.

For conventional calibration,f is often said the most difficult parameter to estimate, and also
the least likely to be knowna priori. In contrast,a ands are said to be estimated quite accurately,
while u0 and v0 — although variable — are felt to have little effect on the overall results. A
more critical, quantitative view is to compare therelative accuracy|∆f/f | to the dimensionless
quantities|∆a|, |∆s|, |∆u0/f | and|∆v0/f |. Errors in these contribute about equally to the overall
geometric accuracy (e.g.reconstruction errors of 3D visual ray directions). Conversely, other things
being equal, geometric constraints such as the autocalibration ones typically constrain each of these
quantities to about the same extent. Hence a good rule of thumb is that for autocalibration (and many
other types of calibration)|∆u0/f | and |∆v0/f | are of the same order of magnitude as|∆f/f |,
while |∆a| and |∆s| are usually somewhat smaller if there is cyclotorsion or other aspect ratio
constraints, but larger if there are none (e.g.if the rotation axis direction is almost constant). These
rules are well borne out in all the experiments reported here: we always find|∆u0| ≈ |∆v0| ≈ |∆f |,
while |∆a| and |∆s| are respectively about one fifth, one half, and one tenth of|∆f/f | for the
synthetic experiments, the real experiments below, and the Faugeras-Toscani calibration used in the
real experiments.

Real data: We have run the method on several non-overlapping segments of a sequence of about
40 real images of a calibration grid (see fig. 2). Only the 49 (at most) points on the base plane of the
grid are used. (It would be straightforward to extend the algorithm to handle several planes, but there
seems little point as a non-planar autocalibration method could be used in this case). The motion
was intended to be general within the limits of the 5 d.o.f. robot used to produce it, but is fairly
uniform within each subsequence. Visibility considerations limited the total angular displacement
to about40◦, and significantly less within each subsequence. The sample means and standard
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deviations over a few non-overlapping subsequences for (i) f alone, and (ii ) all 5 parameters, are as
follows (the errors are observed sample scatters,not estimates of absolute accuracy):

f only f a s u0 v0

calibration - 1515 ± 4 0.9968 ± 0.0002 - 271± 3 264± 4
6 images 1584 ± 63 1595 ± 63 0.9934 ± 0.0055 0.000 ± 0.001 268 ± 10 271 ± 22
8 images 1619 ± 25 1614 ± 42 0.9890 ± 0.0058 −0.005 ± 0.005 289± 3 320 ± 26
10 images 1612 ± 19 1565 ± 41 1.0159 ± 0.0518 −0.004 ± 0.006 273± 5 286 ± 27

The ‘calibrated’ values are the averaged results of several single-image Faugeras-Toscani calibra-
tions using all visible points on the grid. Looking at the table, the results of the autocalibration
method seem usable but not quite as good as I would have expected on the basis of the synthetic
experiments. This may just be the effect of the small angular range within each subsequence, but
the estimates off seem suspiciously high and it may be that some small systematic error has oc-
curred during the processing. Further work is required to check this. Note that in this case, fixing
a, s, u0, v0 appears to have the desired effect of decreasing the variability of the estimatedf without
perturbing its value very much.

6 Summary

In summary, we have shown how autocalibration problems can be approached using a projective
representation of orthogonal 3D direction frames, and used this to derive a practical numerical
algorithm for the autocalibration of a moving projective camera viewing a planar scene. The method
is based on the ‘rectification’ of inter-image homographies. It requires a minimum of 3 images if
only the focal length is estimated, or 5 for all five internal parameters. Adding further images
significantly increases both the reliability and the accuracy, up to a total of about 9–10. An angular
spread between the cameras of at least 10–20◦ is recommended.

The priorities for future work are the initialization problem and the detection of false solutions
(or possibly the production of multiple ones). Although the current numerical method is stable even
for degenerate motions (and hence givesa possible solution), it does not attempt to detect and flag
the degeneracy. This could be done,e.g. by extracting the null space of the estimated covariance
matrix. It would also be useful to have autocalibration methods that could estimate lens distortion.
This should be relatively simple in the planar case, as distortion can be handled during homography
estimation.

Appendix: Homography Factorization

Our planar autocalibration approach is based on scene plane to image homographiesHi. In practice
we can not estimate these directly, only the inter-image homographiesHij = HiH

−1

j induced by
them. In theory this is not a problem as the formalism is invariant to projective deformations of
the input frame, so we can choose scene plane coordinates derived from a key image (say image
1) and use theHi1 in place of theHi (i.e. the unknown direction vectorsx, y are parametrized by
their coordinates in the key image). This works reasonably well in practice, but there is a risk that
inaccurate measurements or poor conditioning in the key image will have an undue influence on the
overall numerical accuracy or stability of the method, since they potentially contribute coherently
to all theH ’s. It would be useful to find a homography representation that does not single out a
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specific key image, but instead averages the uncertainty over all of them. This can be achieved by a
factorization method analogous to factorization-based projective structure and motion [20, 21]10.

This appendix describes the homography factorization algorithm. However note that it isnot
used in the final planar autocalibration routine as it turns out to give slightlyworseresults in practice.
I am not sure why this happens. It may be that the scaling required for the homographies induces
less than ideal error averaging, or that the resulting frame is in some way less well adapted to the
calibration problem. In any case, it suggests that the use of a key image does not introduce too
much bias in the calibration. Despite this, I have included a description of the factorization method
here as I still think it is potentially useful for other applications.

Suppose we have estimated inter-image homographiesHij between each pair ofm images of a
plane. In terms of some coordinate system on the plane which induces plane to image homographies
Hi we haveλijHij ≈ HiH

−1

j + noise, where theλij are unknown scale factors. Write this as a big
(3m)× (3m) rank 3 matrix equation

λ11H11 λ12H12 · · · λ1mH1m

λ21H21 λ22H22 · · · λ2mH2m
...

...
. . .

...
λm1Hm1 λm2Hm2 · · · λmmHmm

 ≈


H1

H2
...

Hm

(H−1

1 H−1

2 · · · H−1
m

)
+ noise

As in the projective structure case, if we can recover a self-consistent set of scale factorsλij , the
left hand side can be factorized to rank 3 using (e.g.) SVD or a fixed-rank power iteration method:
H3m×3m = U3m×3V3×3m. Any such rank 3 factorization has the required noise-averaging prop-
erties and represents some ‘numerically reasonable’ choice of projective coordinates on the plane.
For our purposes we need not insist that the3×3 submatrices ofU are exactly the inverses of those
of V, although — given thatHii = I — the inverse property is always approximately satisfied up
to scale.

A suitable set of scale factorsλij can be found very simply by choosing a key image 1 and noting
that up to scaleHij ≈ Hi1H1j. Resolving this approximate matrix proportionality by projecting it
alongHij, we find that the quantities

λij ≡
Trace

(
(Hi1H1j) · H>ij

)
Trace(Hij · H>ij)

are an approximately self-consistent set of scale factors. As in the projective structure case, the
matrix of scale factorsλij is only defined up to independent overall rescalings of each row and each
column. Numerically, it is highly advisable to balance the matrix so that all its elements are of order
O(1) before applying it to theHij ’s and factorizing. Our balancing algorithm proceeds by alternate
row and column normalizations as in the projective structure case [20], and converges within 2-3
iterations.

It may seem that using a key image to find the scale factors is likely to spoil the noise aver-
aging properties of the factorization, but this is not so. Perturbations of the scales ofHi1 andH1j

introduce no inconsistency, while other perturbations of orderO(ε) introduce errors only atO(ε2)
in the projection ofHi1H1j alongHij — and hence in the scale factors — as these matrices are
proportional up to noise. At normal noise levelsε � 1

m , these errors are swamped by theO(ε)
ones arising from the explicitHi1 andH1j terms in the factorization, so each image has roughly the
same total influence on the result (providedtheλij have been balanced appropriately). The same
phenomenon is observed in the projective structure method: errors in the fundamental matrices and
epipoles used to estimate the scales have very little effect.

10Analogous methods also exist for 3D homographies (projective structure alignment, rank=4) and, more interestingly,
for finding coherent sets of fundamental matrices or line projections (rank=6).
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Chapitre 6

Perspectives et probl̀emes ouverts

If the fool would persist in his folly
he would become wise.

William BLAKE

The Marriage of Heaven and Hell

La recherche – et toute particuli`erement une th`ese –étant une exemplaire hors pair de la persis-
tance en sa folie, il faut `a l’occasion se demander si on est d´ejà devenu sage ... et sinon, combien de
temps et comment persister? – Cette chapitre propose, sous la forme de probl`emes ouverts, quelques
perspectives sur la vision g´eométrique engendr´e par nos travaux pendant la periode de cette th`ese.

Considérons d’abord quelques probl`emes techniques de la vision g´eométrique.

Reconstruction des sc̀enes complexes : Malgré tous nos efforts, la reconstruction visuelle de
scènes complexes repr´esente toujours un d´efi majeur. La mise en correspondance est loin d’ˆetre
résolue, particuli`erement quand les prises de vue des images sont tr`es écartées [SMB98, PZ98,
TGDK99]. Le choix d’une param´etrisation et son initialisation automatique ne sont pas plus ´evi-
dentes, quand les primitives et les contraintes sont complexes. Enfin l’ajustement de faisceaux pour
de grands mod`eles reste tr`es coûteux, en particulier pour des sc`enes dynamiques, o`u l’existence de
paramètres de mouvements ind´ependants `a chaque image de la s´equence peut augmenter ´enormé-
ment le nombre de param`etresà estimer.

Concernant l’ajustement de faisceaux, nos experiences initiales semblent indiquer que dans un
cas réaliste o`u chaque primitive n’est vue que par un nombre constant de images (donc le nombre de
primitives augmente lin´eairement avec le nombre d’imagesn), toutes les m´ethodes connues risquent
d’êtreà peu près de l’ordreO

(
n3
)
. Ceci en d´epit de tout effort de prendre en compte l’aspect tr`es

creux du syst`eme, ou encore de le r´esoudre par des m´ethodes it´eratives (qui sont de l’ordreO (n)
ou O

(
n2
)

par itération, mais qui semblent prendre un nombre exorbitant d’it´erations quandn
augmente). Des meilleures m´ethodes num´eriques pour r´esoudre ce probl`eme d’optimisation sont
à mettre au point – ou des m´ethodes directes qui g`erent de fa¸con plus efficace l’aspect creux du
système, ou encore des m´ethodes it´eratives qui prennent mieux en compte sa structure enchaˆınée
...caméra–primitive–cam´era...

Méthodes d’initialisation fiables : Si on commence `a maˆıtriser l’étape d’optimisation pour la
plupart de nos probl`emes, trouver une solution approximative initiale reste difficile, et plus particu-
li èrement quand le conditionnement g´eométrique est d´elicat et/ou il y a un grand nombre de valeurs
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aberrantes dans les donn´ees. On ne demande pas que l’initialisation soit parfaite, mais seulement
qu’elle tombe avec consistance dans la zone o`u l’algorithme d’optimisation converge vers la so-
lution optimale du probl`eme, et non vers un autre minimum local, ou dans une zone qui est inad-
missible.À présent, dans les cas o`u il manque des valeurs par d´efaut qui suffiront `a l’initialisation,
on cherche souvent `a initialiser par une solution quasi-lin´eaire (c.-à-d., qui ne prend pas en compte
quelques contraintes nonlin´eaires qui auraient normalement dˆu être impos´ees), bas´ee sur un mod`ele
d’erreur algébrique ou linéarisé. On sait convertir (par exemple) un syst`eme général de polynˆomes
dans une telle forme, mais : (i) le résultat risque d’ˆetre lourd ; (ii ) le modèle d’erreur approch´e qui
est implicit en la construction peut ˆetre très biaisé, et ceci et l’élision de contraintes nonlin´eaires
engendrent souvent une initialisation impr´ecise voire mˆeme fausse ; (iii ) il y a toujours des singula-
rités, qui correspondent tr`es souvent aux cas o`u on voudrait appliquer l’algorithme. Des m´ethodes
de réduction plus fiables et plus l´egères seraient bienvenues pour l’initialisation, particuli`erement si
elles peuvent prendre en compte le mod`ele d’erreur statistique et les zones de convergence de la m´e-
thode d’optimisation nonlin´eaire. Dans le cas o`u les minima locaux du probl`eme ont une structure
typique (ce qui est peut ˆetre le cas pour la reconstruction), ce serait aussi int´eressant de d´evelopper
des heuristiques pour(( sauter)) d’un minimumà (la zone d’attraction d’)un autre, afin de trouver le
minimum global.

Un autre aspect de l’initialisation est l’utilisation de m´ethodes d’´echantillonnage al´eatoire comme
RANSAC [FB81] pour contourner le probl`eme de valeurs aberrantes. Avec de telles valeurs, l’es-
sence est de trouver unecoh́erence– un sous-ensemble des donn´ees qui soient coh´erentes avec le
même mod`ele, et qui ne le seraient que tr`es rarement par hasard, si elles ne correspondent pas r´eel-
lementà un tel mod`ele. RANSAC et ses cousins nous semblent des m´ethodes effectives, mais assez
primaires pour ce type de travail. Il doit y avoir des m´ethodes moins coˆuteuses et plus sˆures pour
trouver la coh´erence, mais de toute fa¸con unéchantillonnage enti`erement al´eatoire nous semble
trop simpliste, particuli`erement si la dimension ou la probabilit´e d’aberrance sont grandes, ou si
plusieurs mod`eles différents sont n´ecessaires pour d´ecrire la sc`ene. Il serait int´eressant de d´eve-
lopper des m´ethodes de tirage qui prennaient mieux en compte les informations pr´ealables sur la
distribution de primitives, y inclut les principes de support local, et d’exclusion dans le cas o`u plu-
sieurs correspondances sont possibles. La recherche de correspondence / coh´erence g´eométrique a
un aspect optimisation combinatoire qui est loin d’ˆetreépuisé.

Une exemple notable d’initialisation est la reconstruction par factorisation. La factorisation
(SVD ou autre) trouve automatiquement(( par magie)) les caméras et la structure 3D – sans aucune
étape d’initialisation explicite, et sans probl`emes apparents de minima locaux ou de convergences
fausses.(( C’est plus fiable que l’optimisation)) ... mais en effet, au coeur de la SVD il y a pr´e-
cisément une m´ethode d’optimisation it´erative, relativement d´elicate – en effet, il a fallu 30 ans
d’expérience pour la perfectionner – et avec sa propre ´etape d’initialisation interne. On appel de
telles méthodes(( directes)) – elles sont it´eratives et en principe faillibles, mais en pratique si sˆures
et de convergence si r´egulière que on les consid`ere égales aux m´ethodes finies comme l’´elimina-
tion gaussienne. Nous sommes convaincus que des m´ethodes d’initialisation d’une fiabilit´e pareille
sont possibles en vision, par exemple pour la factorisation avec des donn´ees manquantes, mais aussi
pour bien d’autres probl`emes. Seulement, la m´ethode de r´eduction matricielle qui donne la premi`ere
étape de la SVD semble difficilement g´enéralisable aux donn´ees manquantes, donc il faut chercher
une autre fa¸con de proc´eder.

L’auto-calibrage depuis trois images : Un problème ouvert notable est de trouver les contraintes
d’appariement entre les trois images d’une quadrique. Ce probl`eme est important principalement par
son apport `a l’auto-calibrage – de telles contraintes appliqu´eesà la quadrique absolue duale seraient
l’analogue en 3 images des contraintes de Kruppa [MF92] pour le cas de 2 images. En principe le
problème est simple : la m´ethode de d´erivation des contraintes d’appariement des points s’applique
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directement aux quadriques, avec des matrices6 × 10 de projection qui sont quadratiques aux
entrées des matrices ordinaires3× 4. Seulement, les tenseurs d’appariement quadriques sont issue
des déterminants10×10, et les récrire en terme de tenseurs standards (voir mˆeme les d´evelopper tels
quels), est un probl`eme fort lourd. Nous l’avons attaqu´e de plusieurs fa¸cons età plusieurs reprises
pendant la p´eriode de cette th`ese, sans jamais aboutir, mais sans tomber tr`es loin non plus. Nous
allons poursuivre, bien qu’il ne soit pas clair que la r´esolution doit mener `a une méthode pratique,
car les contraintes risquent d’ˆetre elles mˆemes fort complexes.

Une autre fa¸con d’aborder le mˆeme sujet serait d’´etudier le tenseur trifocal calibr´e – l’analogue
en 3 images de la matrice essentielle en 2, et qui a la repr´esentationR⊗ e′ − e⊗ R′, où R,R′ sont
des matrices3× 3 de rotation.

L’alg èbre ǵeométrique multi-images : Alors que de nombreux chercheurs en vision ont ´etu-
dié intensivement la vision g´eométrique, aucun d’eux n’´etait expert en g´eomètrie algébrique mo-
derne de par sa formation. Pour l’instant il semble que nous avons pouss´e les outils plus classiques
presque aussi loin que possible, avec de bons r´esultats, mais toujours avec une explosion de com-
plexité qui en limite l’horizon. Cependant, il nous semble que les rares exploration de la vision par
les géomètres alg´ebriques professionnels [Dem88, Buc92] ont promis des avances th´eoriques si-
gnificatives, si toutefois ils l’´etudieraient plus syst´ematiquement avec des outils abstraits modernes
((co)homologie, r´esolutions libres, classes caract´eristiques, outils de d´enouement de singularit´es ...).
Surtout, et en dehors de son int´erêt théorique, une telle ´etude pourrait apporter sur les probl`emes
d’initialisation, des minima locaux, de param´etrisation effective de la g´eométrie multi-caméras, et
des singularit´es de la reconstruction et l’auto-calibrage.

Tournons maintenant vers des perspectives plus larges. Il nous semble que – quoique le filon
de la géométrie pure qui a tant apport´e récemment soit bien loin d’ˆetreépuisé comme certains le
prédisent – la recherche en vision entre maintenant une p´eriode plus synth´etique et applicative, o`u
l’ingénierie et l’interdisciplinarit´e vont présider. C’est `a dire, il va falloir que ceux qui travaillent
sur la reconstruction deviennent un peu photogramm`etres1, et ceux qui travaillent aux applications
en synthèse d’images deviennent un peu plus graphistes.

Les deux domaines suivants nous semblent particuli`erement susceptibles de subir un progr`es
significatif pour les ann´ees qui viennent :

Reconstruction de mod̀eles effectifs de rendu graphique : La géométrie n’est qu’une partie
d’un modèle de sc`ene graphique g´enérative. Il faut y ajouter [FvDFH91, WW92] des mod`eles d’illu-
mination et de r´eflectance (mat´eriel, BRDF), d’ombres, de transparence et d’effets atmosph´eriques
pour permettre un rendu de qualit´e, et des partitions g´eométriques et des ´echelles multiples pour
l’accélérer ... Dans ce genre d’application, tout est permis pourvu que les images de sortie soient
convaincantes, l´egèresà générer, et facile `a manier ou `a modifier. Le mod`ele peutêtre un mélange
de sous-mod`eles physiques, heuristiques, locaux, en 3D ou 2D ; la g´eométrie peutêtre imprécise,
simplifiée, implicite ou mˆeme inexistante ; tous les raccourcis sont autoris´es – imposteurs, couches,
bump maps, carrelages, textures stochastiques. Il faut bien sˆur commencer avec des choses simples,
mais les environnements `a reconstruire –(( imiter vraisemblablement `a base d’images)) serait peut
être une description plus pr´ecise – peuvent au fur et `a mesure devenir tr`es complexes, avec g´eomé-
trie et photom´etrie détaillées, mouvement, mat´eriaux non-rigides ...

Certes on fait d´ejà l’affichage de cartes de texture sur des facettes planes, ce qui donne des
résultats plus ou moins bons. Mais les transitions entre facettes et les bords d’objets restent particu-

1. L’ignorance quasi-totale en vision des ´eléments de base de la photogramm´etrie nous semble inadmissible, mais ˆetre
mauvais ing´enieur, et red´ecouvrir les d´ebuts des m´ethodes d´ejà bien connues et d´eveloppées d’ailleurs, semble toujours
presque un point de fiert´e chez de nombreux visionneurs ...
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li èrement difficiles `a rendre correctement, et de tels mod`eles ont en g´enéral une apparence(( plate))

... comme les images affich´ees sur les plans. Pour cr´eer des mod`eles qui soient visuellement plus
(( vifs )), il va falloir aussi capter les micro-effets de la surface – l’interaction de la texture 3D et
des petits reliefs, avec l’illumination locale, les ombres et les reflets, et les micro-parallaxes. Tous
ces effets nous donnent d’importants indices perceptuels, mais qui sont marginaux par rapport `a la
géométrie globale de la sc`ene.

En effet, la géométrie classique de points, droites, facettes planes isol´es n’est pas toujours suf-
fisante pour le graphisme. Mˆeme dans les environnements rectilin´eaires, il faut souvent ajouter des
couches multi-´echelles ou de partitionnement spatial afin d’acc´elérer le rendu. Dans les environne-
ments plus naturels, il faut consid´erer des mod`eles de g´eométrie (ou de photom´etrie) plus flexibles :
des surfaces splines ou implicites ; des mod`eles génératifs stochastiques, fractals ou d’ondelettes
pour les arbres, l’herbe, les surfaces textur´ees. Tout mod`ele graphique ´etant par d´efinition un mo-
dèle génératif, on peut esp´erer optimiser un tel mod`ele depuis une estimation initiale, en minimisant
itérativement les diff´erences entre l’ensemble d’images observ´ees et les mˆemes images synth´etisées.
Mais les mod`eles réalistes ont tant de param`etres –à la fois discrets et continus – que la param´e-
trisation, l’initialisation et l’optimisation d’un tel mod`ele risquent d’ˆetre extrêmement complexes.
Il y aura certainement un grand nombre de param`etres qui sont difficilement estimables, et pour
lesquels l’information pr´ealable, la r´egularisation, et les approximations joueraient un rˆole critique.
En plus, la mesure `a optimiser est la similarit´e perceptive, ce qui n’est pas ´evident, surtout pour
les modèles génératifs ou effectifs qui ne peuvent pas esp´ererà reproduire l’image en d´etail, mais
seulement son apparence g´enérale.

Compréhension de sc̀ene : On dispose `a présent des technologies de structuration d’information
et d’apprentissage (c’est `a dire, estimation) statistique qui n’´etait que naissantes il y a 10 ans. De
plus, on a la puissance de calcul qu’il faut pour alimenter de telles m´ethodes pour des images. Il
nous semble que ces m´ethodes, genre r´eseaux bayesiens et mod`eles de markov implicites (HMM)
[Per88, Lau96, CDLS99, RJ86], vont catalyser pendant les 10 ou 20 ans qui viennent un chan-
gement profond dans nos capacit´es de mod´eliser et de manier la r´ealité visuelle (changement qui
était prédite il y a quelques ann´ees dans la communaut´e de(( vision active)) [BY92, Alo93], mais
qui n’est pas encore l`a ...). Cette r´evolution va se produire d’abord par des syst`emes qui observent
en continu un environnement ou une classe d’activit´es (par voie de descripteurs 2D ou 3D adap-
tées, extrait des images en temps r´eel), et qui apprennent plus ou moins automatiquement (mais
selon une architecture pr´eprogramm´ee) une r´eponse d´esiré auxévénements qui ont lieu. Les m´e-
thodes d’échantillonnage al´eatoire (RANSAC, MCMC, Condensation) vont jouer un rˆole ici, mais
au centre seront les repr´esentations probabilistesstructuŕees. C’est la structuration et la modulari-
sation intensive `a tous les niveaux qui rendraient possible l’´elaboration de tels(( systèmes experts
de vision)), et l’apprentissage des milliers de param`etres nécessaires `a leur bonne fonctionnement.
Sur le plan des r´eseaux probabilistes, la modularit´e, l’apprentissage d’un grand nombre de para-
mètres, et l’interop´erabilité entre les repr´esentations g´eométriques–continues et les repr´esentations
sémantiques–discr`etes restent difficiles mais vont ´emerger. Sur le plan vision, les aspects de moyen
niveau (le couplage entre les descripteurs d’image de bas niveau et la repr´esentation plus s´eman-
tique de réseau probabiliste) ne sont toujours pas ´evidents, mais ils sont susceptibles d’ˆetre attaqu´e
par la même méthode de r´eseaux probabilistes.
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Annexe A

Autres papiers

Cette appendice regroupe plusieurs autres travaux qui n’ont pas ´eté inclus dans le corps du
texte, car s’´eloignant un peu de l’axe d´efini pour cette th`ese, ou ´etant plus marginaux par rapport
aux références principales cit´ees.

A.1 Resuḿe de(( Matching Constraints and the Joint Image)) – ICCV’95

Ce papier est la version courte de(( )) dans le corps du texte. J’inclus cette version ici seulement
pour référence – il est notamment plus compact `a lire, et il reste `a ce jour la seule version publi´ee
de ce travail (dans ICCV’95 [Tri95]).

A.2 Resuḿe de (( A Fully Projective Error Model for Visual Recon-
struction ))

Ce papier – un essai pour un mod`ele projectif d’erreurs, qui est analogue `a la Gaussienne dans le
cas affine – fut ´ecrit en 1995, mais n’a pas encore ´eté publié (il était soumis au workshop ICCV’95
(( Representations of Visual Scenes)) à l’époque). Le travail fut commenc´e il y a longtemps, en 1992
quand Kenichi KANATANI était en sabbatique en Oxford (o`u j’ étais roboticien) et ´ecrivait son livre
(( Geometric Computation for Machine Vision)) [Kan93]. Il a donné un cours sur quelques chapitres
de son ouvrage et auquel j’ai assist´e. Nous avons discut´e ensemble les mod`eles d’erreurs. Je n’ai
pasété convaincu qu’une forme affine des erreurs images ´etait toujours et strictement(( la chose
correcte)) pour un processus essentiellement projectif comme la formation des images. J’ai voulu
créer un mod`ele (( projectif de base)), où les choses projectives auraient la forme simple et inva-
riante sous les transformations et les projections projectives. La forme de base de la distribution aux
points projectifs fut vite trouv´ee, mais l’avancement de l’id´eeétait très lent car il fallait rechercher :
(i) une forme analytique ou une approximation convenable pour exprimer les r´esultats d probabi-
listes ; (ii ) une généralisation de la th´eorie des points `a d’autres sous-espace lin´eaires, th´eorie qui
engloberait et g´enéraliserait les alg`ebres Grassmann-Cayley au cas incertain1.

L’article référencée ci-dessous ne montre qu’une partie assez r´eduite de cette programme am-
bitieux. Il évite les questions analytiques (o`u j’ai des résultats partiels mais pas satisfaisants) et se

1. Seitz & Anandan ont r´ecemment publi´e un autre tentative de mod`ele des sous-espaces affines [SA99] incertains,
où une Gaussienne (dans l’espace des positions des points) est ajust´ee sur l’ensemble des points mesur´es, et ses axes
principaux les plus grands d´efinissent le sous-espace(( optimal)). A mon avis ce mod`ele (que j’avais consid´eré et rejeté à
l’ époque) est trop simpliste. Il ne reproduit pas l’ajustement standard moindre carr´es d’un sous-espace sur une ensemble
des points Gaussiens, et il repr´esente un mod`ele réduit d’incertitude, ayant seulement( n2 ) paramètres de covariance au
place de

(
(n−k)k

2

)
(n,k = dimension de l’espace, sous-espace).
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focalise sur la forme alg´ebrique du mod`ele, et ce pour les points et pour les sous-espaces lin´eaires
de plus haute dimension. Les aspects Grassmann-Cayley – intersection et union des sous-espace,
ajustement de sous-espace sur des points – ne sont pas abord´es.

L’essentiel consiste `a introduire, en contrepartie de la forme quadratique de la log-vraisemblance
Gaussienne standard, un d´enominateur de la mˆeme forme. Donc le mod`ele de distribution de proba-
bilit é devient l’exponentiel d’une forme quadratique rationnelle homog`ene. Le fait que il soit ration-
nel homogène donne une invariance de forme sous les transformations projectives, et aussi permet le
début d’une g´enéralisation aux sous-espaces lin´eaires g´enéraux. Le nombre de param`etres libres est
en principe multiplié par deux par cette homog´enéisation. La forme en(( cloche elliptique)) d’une
Gaussienne compacte peut ˆetre maintenue quasi-globalement, mais d’autres formes deviennent pos-
sibles, notamment la(( cloche× cône)) des pré-images possibles d’un point image incertain. Les
distributions aux d´enominateurs diff´erentes peuvent localement ˆetre recombin´ees, mais pas globa-
lement de fa¸con aussi simple qu’avec les Gaussiennes. La loi devient l’exponentiel d’unesomme
de termes quadratiques rationnels incombinables, ce qui est plus difficile `a manipuler (`a intégrer,à
maximiser) qu’une seule quadratique. Donc mˆeme si on a r´eussià créer une forme de distribution
qui est invariante sous les transformations projectives, les calculs pratiques ont tendance `a générer
des sommes de distributions incombinables, et il faut assez tˆot passer de l’analytique au num´erique.

A.3 Resuḿe de (( Critical Motions in Euclidian Structure from Mo-
tion )) – CVPR’99

Ce papier avec Frederik KAHL, doctorant `a Lund en Su`ede, fut publié en CVPR’99 [KT99].
Il fut écrit lors de son s´ejour chez nous en automne 1998, dans le cadre de notre projet europ´een
commun ESPRIT LTR 21914 CUMULI . Le but général du programme est de caract´eriser rigoureu-
sement les cas o`u l’auto-calibrage faillit. Peter STURM avait déjà publié une excellente ´etude de
ces cas pour l’auto-calibrage aux param`etres internes constants inconnus [Stu97a, Stu97b]. Fredrik
a voulu étendre l’étude aux autres cas, ou avec connaissances pr´ealables sur certains param`etres
(skew, rapport d’´echelle), ou avec d’autres param`etres variables (focale). Il existait d´ejà des al-
gorithmes pratiques pour plusieurs de ces cas, par exemple pour l’estimation des deux longueurs
focalesà partir d’une matrice fondamentale [Har92, Har93b, NHBP96, Bou98]. Mais toutes ces
méthodes ont des singularit´es qui se montrent souvent gˆenantes en pratique, et on a voulu caract´e-
riser lesquelles ´etaient intrins`eques au probl`eme, et lesquelles seraient ´evitables par des meilleures
formulations.

Les preuves(( intuitives-géométriques)) de Sturm semblaient `a l’époque difficilement g´enéra-
lisablesà ces cas parfois(( plus simples)) mais toujours moins sym´etriques, donc nous avons pris
une route plus alg´ebrique, fond´ee sur la g´eométrie algébrique effective. En principe, on travaille
dans l’espace de cam´eras (poses et calibrages) et des structures euclidiennes 3D possibles – espace
qui peutêtre param´etré de plusieurs fa¸cons. L’essentiel, c’est que dans cet espace, chaque suite de
contraintes d’auto-calibrage d´ecoupe la vari´eté algébrique de cam´eras/structures qui les v´erifient.
On suppose que ces contraintes sont notre seul moyen de d´eceler la vraie calibrage/structure face `a
des solutions alternatives fausses. Donc le probl`eme d’auto-calibrage ne peut ˆetre résolu de fa¸con
unique que si cette vari´eté est réduite à un seul point,i.e. que si il n’existe pas d’autres cam´e-
ras/structures qui v´erifient les contraintes. On ´etude la vari´eté par voie de(( l’ideal )) (ensemble de
tous les polynˆomes) engendr´ee par les contraintes. Chaque ideal peut – et pour les calculs effectifs,
souvent doit – ˆetre caract´erisé par certains sous-ensembles(( exhaustifs)) dit (( bases de Gr̈obner )).

En principe ces calculs sont(( standards)), mais en pratique ils ont une forte tendance `a explo-
ser de fa¸con incontrôlable. Dans ce premier article on n’a abord´e que des situations relativement
simples, mais d´ejà les calculs ont ´eté assez lourds, mˆeme pour des outils de calcul de base de Gr¨ob-



A.4. Resum´e : Camera Pose and Calibration from 4 or 5 Known 3D Points – ICCV’99 147

ner récents comme MACAULAY 2 et SINGULAR. Donc toute l’astuce consiste `a trouver une bonne
paramétrisation, ce qui rel`eve encore de l’intuition g´eométrique ...

A.4 Resuḿe de (( Camera Pose and Calibration from 4 or 5 Known
3D Points)) – ICCV’99

Ce papier fut publi´e à ICCV’99. Il décrit encore un travail fait pour notre projet europ´een CU-
MULI , en ce cas sur l’initialisation des cam´eras. Il donne plusieurs m´ethodes permettant de retrouver
la pose (position et orientation) et quelques param`etres internes d’une cam´era,à partir d’une seule
image d’un minimum de 4 ou 5 points 3D connus. Toutes ces m´ethodes sont bas´ees sur les matrices
multiresultantes – fa¸con de résoudre un syst`eme de polynˆomes redondante avec l’alg`ebre linéaire.
Leur avantage est que – comme la(( transformée directe lińeaire)) classique pour 6 points – elles
sont quasi-lin´eaires, donc relativement facile `a implanter et donnent une solution unique.

Le papier raconte aussi la th´eorie de base des multiresultants dans une forme concr`ete et appli-
cable aux calculs num´eriques – chose rare dans la litt´erature, o`u l’accent est toujours mis sur les
aspects formels qui n’ont qu’un impact tr`es relatif sur la construction des matrices multiresultantes
compactes et stables.
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Abstract

This paper studies the geometry of multi-image perspec-
tive projection and thematching constraintsthat this in-
duces on image measurements. The combined image pro-
jections define a 3Djoint image subspaceof the space
of combined homogeneous image coordinates. This is
a complete projective replica of the 3D world in image
coordinates. Its location encodes the imaging geometry
and is captured by the 4 indexjoint image Grassman-
nian tensor. Projective reconstruction in the joint image
is a canonical process requiring only a simple rescaling
of image coordinates. Reconstruction in world coordi-
nates amounts to a choice of basis in the joint image. The
matching constraints are multilinear tensorial equations
in image coordinates that tell whether tokens in differ-
ent images could be the projections of a single world to-
ken. For 2D images of 3D points there are exactly three
basic types: the epipolar constraint, Shashua’s trilinear
one, and a new quadrilinear 4 image one. For images of
lines Hartley’s trilinear constraint is the only type. The
coefficients of the matching constraints are tensors built
directly from the joint image Grassmannian. Their com-
plex algebraic interdependency is captured by quadratic
structural simplicity constraints on the Grassmannian.

Keywords: multi-image stereo, projective reconstruc-
tion, matching constraints, tensor calculus, geometric in-
variants.

1 Introduction

Multi-image reconstruction is currently a topic of
lively interest in the vision community. This pa-
per uncovers some rather beautiful geometric struc-
ture that underlies multi-image projection, and ap-
plies it to the problem of projective reconstruction.
There is only space for a brief sketch of the theory

This paper appeared in ICCV’95. The work was supported by
the European Community through Esprit programs HCM and
SECOND.

here: more detail can be found in [8]. The mathe-
matics and notation may be a little unfamiliar, but
the main conclusions are fairly straightforward: The
homogeneous coordinates for all the images can be
gathered into a single vector and viewed as a point
in an abstract projective space calledjoint image
space. The combined projection matrices define a
3D projective subspace of joint image space called
the joint image. This is an exact projective replica
of the 3D world in image coordinates. Up to an arbi-
trary choice of scale factors its position encodes the
imaging geometry. The combined projection matri-
ces can be viewed either as a set of image projections
or as a projective basis for the joint image. Alge-
braically, the location of the joint image is encoded
by the antisymmetric four indexjoint image Grass-
mannian tensor, whose components are4 × 4 mi-
nors built from projection matrix rows. Projective
scene reconstruction is a canonical process only in
the joint image, where it reduces to a simple rescal-
ing of image coordinates. World-space reconstruc-
tion amounts to the choice of a projective basis for
the joint image. The essence of reconstruction is the
recovery of a coherent set of scalings for the image
coordinates of different tokens, modulo a single ar-
bitrary overall choice of scale factors. The multi-
linear tensorialmatching constraints tell whether
tokens in different images could possibly be the pro-
jections of a single world token. For 2D images of
3D points there are exactly three basic types: the
bilinear epipolar constraint; Shashua’s trilinear one
[7]; and a new quadrilinear four image one. The
sequence stops at four because homogenized 3D
space has four dimensions. For images of lines the
only type of matching constraint is Hartley’s trilin-
ear one [4]. The matching constraints are a direct
algebraic reflection of the location of the joint im-
age. Their coefficients are tensors built from com-

149
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ponents of the joint image Grassmannian. Up to a
choice of scale factors the Grassmannian is linearly
equivalent to the matching tensors. The matching
tensors and constraints are linearly independent but
algebraically highly redundant. The redundancy is
encapsulated by a set of ‘structural simplicity’ con-
straints on the Grassmannian, that induce a large set
of quadratic identities among the matching tensors.
For m 2D images of 3D space there are

(3m
4

)
lin-

early independent matching tensor components, but
only 11m − 15 of these are algebraically indepen-
dent. We introduce an ‘industrial strength’ tenso-
rial notation that (even though it may seem a little
opaque at first sight) makes these and many other
complex vision calculationsmucheasier. The tradi-
tional matrix-vector notation is simply not powerful
enough to express most of the concepts described
here.

The geometry of the joint image was suggested
by the original projective reconstruction papers of
Faugeras, Luong & Maybank [1, 2], but its alge-
braic expression was only provoked by the recent
work of Shashua [7] and Hartley [4] on the trilinear
constraint and Luong & Vi´eville on canonic decom-
positions [5]. Independently of the current work,
Faugeras & Mourrain [3] and Werman & Shashua
[10] also discovered the quadrilinear constraint and
some of the related structure (but not the ‘big pic-
ture’ — the full joint image geometry). The tensorial
notation and the general spirit of the approach owe a
very deep debt to the Oxford mathematical physics
research group led by Roger Penrose [6].

2 Conventions & Notation

We will assume an uncalibrated perspective (pinhole
camera) imaging model and work projectively in ho-
mogeneous coordinates. The development will be
purely theoretical: there will be ‘too many equa-
tions, no algorithms and no images’. Divine inter-
vention (or more likely a graduate student with a
mouse) will be invoked for low-level token extrac-
tion and matching. Measurement uncertainty will
be ignored (butc.f. [9]).

Fully tensorial notation will be used, with all in-
dices written out explicitly [6]. Writing out indices
is tedious for simple expressions but makes com-
plicated onesmuchclearer. Many equations apply

only up to scale, denoted “∼”. Different types of
index denote different spaces:a, b, . . . = 0, . . . , d
andAi, Bi, . . . = 0, . . . ,Di respectively denote ho-
mogeneous coordinates in thed-dimensional pro-
jective world spacePa and theDi-dimensional
ith image PAi . Usually, d = 3 and Di = 2
but other cases do have applications.i, j, . . . =
1, . . . ,m are non-tensorial image labels. Section 3
introduces a(D + m − 1)-dimensional projective
joint image spacePα that combines the homoge-
neous coordinates of all of the images, indexed by
Greek indicesα, β, . . . = 01, . . . ,Di, 0i+1, . . . ,Dm

(D ≡ ∑m
i=1Di). Index 0 is used for homoge-

nization, so the default inclusion of an affine vector
(x1, . . . , xd)> in projective space is(1, x1, . . . , xd).

Superscripts denote contravariant (point) indices
and subscripts covariant (hyperplane) ones. These
transform inversely under changes of basis, so that
the contraction (dot product or sum over all val-
ues) of a covariant-contravariant pair is invariant.
We adopt theEinstein summation convention in
which indices repeated in covariant and contravari-
ant positions denote contractions (implicit summa-
tions). The same base symbol is used for analo-
gous things in different spaces, withx,y, . . . stand-
ing for points andP for projection matrices. For
examplexAi ∼ PAi

a xa represents the the projec-
tion up to scale of a world pointxa to the corre-
spondingith image pointxAi via the matrix-vector
product

∑d
a=0 PAi

a xa with the ith projection matrix
PAi
a . Since the indices themselves give the contrac-

tion, the order of factors is irrelevant.
T[ab...c] denotes the antisymmetrization of

Tab...c over all permutations of the indicesab . . . c,
with a minus sign for odd permutations,e.g.
T[ab] ≡ 1

2!(T
ab − Tba). In a d-dimensional

projective space there is a unique-up-to-scaled + 1
index antisymmetric tensorε[a0a1···ad] and its dual
ε[a0a1···ad]. Up to scale, these have components
±1 and 0 asa0a1 . . . ad is respectively an even or
odd permutation of01 . . . d, or not a permutation at
all. Any antisymmetrick + 1 index contravariant
tensor T[a0...ak] can bedualized to an antisym-
metric d − k index covariant one(∗T)ak+1···ad ≡

1
(k+1)! εak+1···adb0···bkT

b0...bk , and vice versa

Ta0...ak = 1
(d−k)! (∗T)bk+1···bd ε

bk+1···bda0···ak ,
without losing information. This is effectively just
a reshuffling of components: both forms have

(d+1
k+1

)
linearly independent components.
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Later we will need to characterize the location of
a projectived-dimensional subspace algebraically,
without reference to a particular choice of basis
in the subspace. This can be done by specifying
an antisymmetric(d+ 1)-indexGrassmann tensor
whose components are theGrassmann coordinates
of the subspace. These generalize the Pl¨ucker coor-
dinates of a 3D line to arbitrary subspaces. An ap-
pendix sketches the details.

3 The Joint Image

The basic idea of the joint image is very simple.
Suppose we are givenm homogeneous projection
matricesPAi

a from ad-dimensional world spacePa
tom Di-dimensional imagesPAi . The matrices can
be stacked into a big(D+m)× (d+1) dimensional
joint projection matrix (D =

∑
iDi)

Pα
a ≡

PA1
a
...

PAm
a

 xα ≡

 xA1

...
xAm


This maps world pointsxa to (D + m)-component
homogeneous vectorsxα. These can be viewed as
elements of an abstract(D + m − 1)-dimensional
projectivejoint image spacePα. Joint image space
points can be projected into the images by trivial co-
ordinate selection, and conversely any set of homo-
geneous image vectors (one from each image) deter-
mines a unique point in joint image space.

The joint projection matrix can be viewed as a
projective mapping from world space to joint image
space, which composes with the trivial projections
to give back the original projection matricesPAi

a . It
mapsPa onto a projective subspace ofPα that we
will call the joint image PIα. If the joint projec-
tion mapping is singular, different world points map
to the same point in joint image space and there-
fore in the individual images, and unique reconstruc-
tion from image measurements is impossible. So
from now on we will assume that the joint projec-
tion matrix Pα

a has full rank (d + 1). In this case
the joint image is a faithful projective replica of the
d-dimensional world in image coordinates.

The joint image is defined canonically by the
imaging geometry, up to an arbitrary choice of
scale factors for the underlying projection matrices.

The truly canonical structure is the set of equiva-
lence classes of joint image space points under arbi-
trary rescalings, but that has a complicated stratified
structure that makes it difficult to handle. So from
now on we will assume that some choice of scalings
has been made and work with the joint image.

The joint projection matrix can be viewed in two
ways: (i) as a set ofm world-to-image projection
matrices;(ii) as a set ofd+ 1 (D +m)-component
column vectors that specify a projective basis for the
joint image subspacePIα in Pα. Hence, a coor-
dinate vector(x0, . . . , xd) can be viewed either as
the coordinates of a world pointxa or as the coordi-
nates of a joint image point with respect to the basis
{Pα

a |a = 0, . . . , d}. Any reconstruction in world co-
ordinates can equally be viewed as a reconstruction
in the joint image. However, modulo a once-and-for-
all choice of the overall scale factors,reconstruction
in the joint image is a canonical geometric process
requiring only a simple rescaling of image coordi-
nates. Them-tuples of image points that correspond
to some world point are exactly those thatcan be
rescaled to lie in the joint image [8]. No choice of
basis is needed and there is no arbitrariness apart
from the overall scale factors. A basis is needed
only to transfer the final results from the joint im-
age to world space. In fact, the portion of the world
that can be recovered from image measurements is
exactlythe abstract joint image geometry.

Since the joint image is ad dimensional projective
subspace its location can be specified algebraically
by giving its (d + 1)-index Grassmann coordinate
tensor, thejoint image Grassmannian. This is an
intrinsic property of the joint image geometry inde-
pendent of any choice of coordinates, but in terms of
the projection matrices it becomes

I α0···αd ≡ 1
(d+1)!P

α0
a0
· · ·Pαd

ad
εa0···ad ∼ P[α0

0 · · ·Pαd]
d

Here eachαi runs through the combined coordinates
of all the images, and the components of the tensor
are just the(d + 1) × (d + 1) minors of the(D +
m) × (d + 1) joint projection matrixPα

a . We will
see that these are equivalent to the complete set of
matching tensor components.

As a simple example of joint image geometry [8],
for two 2D images of 3D space the fundamental ma-
trix FA1A2 has rank 2 and can therefore be decom-
posed asuA1vA2 − vA1uA2 whereuA1 ↔ uA2 and
uA1 ↔ uA2 turn out to be corresponding pairs of
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independent epipolar lines. Combining these into
joint image space row vectorsuα ≡ (uA1 uA2)
and vα ≡ (vA1 vA2), the constraintsuαxα =
0 = vαxα define a 3D projective subspace of the
5D joint image space that turns out to be exactly
the joint image. All joint image points satisfy the
epipolar constraintFA1A2x

A1xA2 = 0, and all im-
age points that satisfy the epipolar constraint can be
rescaled to lie in the joint image.

4 Basic Reconstruction Equations

Given m imagesxAi ∼ PAi
a xa of an unknown

point xa, we can introduce variablesλi to represent
the unknown scale factors and combine the result-
ing equationsPAi

a xa − λixAi = 0 into a single
(D+m)× (d+1+m) homogeneous linear system,
thebasic reconstruction equations:

Pα
a

xA1 0 · · · 0
0 xA2 · · · 0
...

...
. . .

...
0 0 · · · xAm




xa

−λ1

−λ2
...
−λm

 = 0

Any nonzero solution of these equations gives a re-
constructed world point consistent with the image
measurements, and also provides the unknown scale
factorsλi.

Alternatively, assuming (or relabelling so that)
x0i 6= 0 we can use the0th components to elim-
inate theλ’s and combine the remaining equations
into a compactD× (d+ 1) homogeneous system of
reduced reconstruction equations: x01 PA1

a − xA1 P01
a

...
x0m PAm

a − xAm P0m
a

xa = 0

(Ai=1,...,Di)

The basic and reduced systems are ultimately equiv-
alent, but we will work with the basic one as its
greater symmetry simplifies many derivations.

In either case, if there are more measurements
than world dimensions (D > d) the system is usu-
ally overspecified and a solution exists only when
certain constraints between the projection matrices
PAi
a and the image measurementsxAi are satisfied.

We will call these relationsmatching constraints
and the inter-image tensors they generatematching

tensors. The simplest example is the epipolar con-
straint.

On the other hand, ifD < d there will be at least
two more free variables than equations and the solu-
tion (if it exists) will not be unique. Similarly, if the
joint projection matrixPα

a has rank less thand + 1
the solution will not be unique because any vector in
the kernel ofPα

a can be added to a solution without
changing the projections at all. So from now on we
will requireD ≥ d andRank(Pα

a ) = d + 1. These
conditions are necessary but not generally sufficient.
However in the usual 3D to 2D case where the3× 4
rank 3 projection matrices have 1D kernels (the cen-
tres of projection),Rank(Pα

a ) = 4 implies that there
are at least two distinct centres of projection and is
alsosufficientfor a unique reconstruction.

Recalling that the joint projection columnsPα
a

(a = 0, . . . , d) form a basis for the joint im-
age PIα and treating thexAi as vectors inPα
whose other components vanish, we can interpret the
reconstruction equations as the geometrical state-
ment that the space spanned by the image vectors
{xAi | i = 1, . . . ,m} in Pα must intersectPIα. At
the intersection there is a point ofPα that can be
expressed:(i) as a rescaling of the image measure-
ments

∑
i λi x

Ai ; (ii) as a point ofPIα with coordi-
natesxa in the basis{Pα

a | a = 0, . . . , d}; (iii) as the
projection intoPIα of a world pointxa underPα

a .
This construction is important because although nei-
ther the coordinate system inPa nor the columns of
Pα
a can be recovered from image measurements, the

joint imagePIα can be recovered (up to a relative
rescaling). In fact the content of the matching con-
straints ispreciselythe location of the joint image in
Pα. This gives a completely geometric and almost
canonical projective reconstruction technique inPα
that requires only the rescaling of image measure-
ments. A choice of basis inPIα is necessary only
to map the construction back into world coordinates.

5 Matching Constraints

Now we briefly sketch the derivation [8] of the
matching constraints from the basic reconstruction
equations. We assume that there are redundant mea-
surementsD > d and that the combined projec-
tion matrix Pα

a has full rank (d + 1). The equa-
tions have a nonzero solution if and only if the
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(D + m) × (d + m + 1) coefficient matrix is rank
deficient, which happens if and only if all of its
(d + m + 1) × (d + m + 1) minors vanish. The
matching constraints are precisely the conditions for
this to happen.

Each minor involves an antisymmetrization over
every column of the system matrix, so the minors
are homogeneous multilinear functions linear in
eachxAi , with coefficients that are antisymmetrized
products of projection matrix elements of the form
P[α0

0 Pα1
1 · · ·P

αd]
d for some choice ofα0 . . . αd. This

implies thatthe final matching constraint equations
will be linear tensorial equations in the coordinates
of each image that appears in them, with coefficient
tensors that are exactly the Grassmann coordinates
I α0···αd of the joint image subspace inPα. This
is no accident: the Grassmann coordinates are the
only quantities thatcouldhave appeared if the equa-
tions were to be properly invariant under projective
changes of basis in world space.

Each minor involves allm images, but the system
matrix is rather sparse and there are many degen-
eracies. In fact, any minor that involves only a sin-
gle rowAi from imagei simply contains a constant
overall factor ofxAi . These factors can be elimi-
nated to reduce the system to irreducible factors in-
volving at least two rows from each of between2 and
d+ 1 images. For 2D images of 3D space the possi-
bilities are as follows (i 6= j 6= k 6= l = 1, . . . ,m):

0 = I [AiBiAjBj xCixCj ]

0 = I [AiBiAjAk xCixBjxBk ]

0 = I [AiAjAkAl xBixBjxBkxBl]

These represent respectively the bilinear epipolar
constraint, Shashua’s trilinear one [7] and a new
quadrilinear four image one. Here,xAi represents
aPα vector whose non-image-i components vanish,
so it is enough to antisymmetrize over the indices
from each image separately. Each constraint is dis-
cussed in detail below. Recall that the Grassmannian
can be expressed asI αβγδ ≡ 1

4! Pα
aPβ

bPγ
cP

δ
d ε

abcd.

5.1 Bilinear Constraints

The epipolar constraint corresponds to a6 × 6 mi-
nor containing three rows each from two images and
(antisymmetrizing separately over each image) can
be writtenx[A1 IB1C1][B2C2 xA2] = 0. Dualiz-
ing both sets of skew indices by contracting with

εA1B1C1 εA2B2C2 gives the equivalent but more fa-
miliar form

0 = FA1A2 xA1xA2

= 1
4·4!

(
εA1B1C1P

A1
a PB1

b xC1

)
·

·
(
εA2B2C2P

A2
c PB2

d xC2

)
εabcd

where the3 × 3 = 9 component bilinear constraint
tensor orfundamental matrix FA1A2 is defined by

FA1A2 ≡ 1
4 εA1B1C1 εA2B2C2 IB1C1B2C2

= 1
4·4!

(
εA1B1C1P

B1
a PC1

b

)
·

·
(
εA2B2C2P

B2
c PC2

d

)
εabcd

IB1C1B2C2 = FA1A2 ε
A1B1C1 εA2B2C2

The constraint can be viewed geometrically as fol-
lows. An image pointxA can be dualized to
εABC xC . Roughly speaking, this represents the
point as the pencil of lines through it: for any two
lines lA andmA throughxA, the tensorl[AmB] is
proportional toεABC xC . Any covariant image ten-
sor can be ‘pulled back’ through the projectionPA

a

to a covariant tensor in 3D space. An image linelA
pulls back to the 3D planela = lAPA

a through the
projection centre that projects to the line. The tensor
εABC xC pulls back to the 2 index covariant tensor
x[ab] ≡ εABC PA

a PB
b xC . This is the covariant rep-

resentation of a line in 3D: the optical ray through
xA. The requirement that two 3D linesx[ab] and
y[ab] intersect can be writtenxab ycd εabcd = 0. So
the bilinear constraint reallyis the standard epipolar
one, i.e. the requirement that the optical rays of the
two image points intersect.

5.2 Trilinear Constraints

The trilinear constraintsI [B1C1B2B3 xA1xA2xA3] =
0 correspond to7 × 7 basic reconstruction minors
formed by selecting all three rows from one im-
age and two each from two others. Dualizing with
εA1B1C1 gives the equivalent constraint

xA1x[A2 GA1
B2][B3 xA3] = 0

where the3×3×3 = 27 component trilinear tensor
is

GA1
A2A3 ≡ 1

2 εA1B1C1 IB1C1A2A3

= 1
2·4!

(
εA1B1C1P

B1
a PC1

b

)
PA2
c PA3

d εabcd

IA1B1A2A3 = GC1
A2A3 εC1A1B1
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Dualizing the image 2 and 3 indices re-expresses the
constraint as

0 = εA2B2C2 εA3B3C3 ·GA1
B2B3 · xA1xC2xC3

= 1
2.4!

(
εA1B1C1 PA1

a PB1
b xC1

)
·

·
(
εA2B2C2 PB2

c xC2

)(
εA3B3C3 PB3

d xC3

)
εabcd

These equations hold for all3 × 3 = 9 values of
the free indicesA2 andA3. However whenA2 is
projected along thexA2 direction orA3 is projected
along thexA3 direction the equations are tautolog-
ical because, for example,x[A2xB2] ≡ 0. So for
any particular vectorsxA2 andxA3 there are actu-
ally only 2× 2 = 4 linearly independent scalar con-
straints among the3× 3 = 9 equations, correspond-
ing to the two image 2 directions ‘orthogonal’ toxA2

and the two image 3 directions ‘orthogonal’ toxA3 .
The trilinear constraint can also be written in matrix
notation (c.f. [7]) as

[x2]× [G x1] [x3]× = 0{3×3}

Here, [x]× is the usual ‘cross product’ representa-
tion of a 3-component vectorx as a skew-symmetric
matrix, and the contractionxA1GA1

A2A3 is viewed
as a3 × 3 matrix [G x1]. The projections alongx>2
(on the left) andx3 (on the right) vanish identically,
so again there are only 4 linearly independent equa-
tions.

Two index antisymmetrizations (‘cross products’)
vanish only for parallel vectors, so the trilinear con-
straintxA1x[A2 GA1

B2][B3 xA3] = 0 also implies
that for all values of the free indices[A2B2]

xA3 ∼ xA1x[A2 GA1
B2]A3

(More precisely, formatching xA1 and xA2 the
quantity xA1x[A2 GA1

B2]A3 can always be factor-
ized asT[A2B2] xA3 for somexAi-dependent tensor
T[A2B2]). By fixing suitable values of[A2B2], these
equations can be used totransfer points from im-
ages 1 and 2 to image 3,i.e. to directly predict the
projection in image 3 of a 3D point whose projec-
tions in images 1 and 2 are known, without any in-
termediate 3D reconstruction step.

Geometrically, the trilinear constraints can be in-
terpreted as follows. As above,εABC PA

a PB
b xC

is the optical ray throughxA in covariant 3D coor-
dinates. For anyyA the quantityεABC PA

a xByC

defines the 3D plane through the optical centre that
projects to the image line throughxA andyA. All
such planes contain the optical ray ofxA, and asyA

varies the entire pencil of planes through this line
is traced out. The constraint then says that for any
plane through the optical ray ofxA2 and any other
plane through the optical ray ofxA3 , the 3D line of
intersection of these planes meets the optical ray of
xA1 . A little geometry shows that this implies that
all three of the optical rays meet in a point, so the
three pairwise epipolar constraints between the im-
ages follow from the trilinear one.

The constraint tensor GA1
A2A3 ≡

εA1B1C1 IB1C1A2A3 treats image 1 specially
and there are analogous image 2 and image 3
tensorsGA2

A3A1 and GA3
A1A2. These turn out

to be linearly independent ofGA1
A2A3 and give

further linearly independent trilinear constraints on
xA1xA2xA3. Together, the 3 constraint tensors con-
tain 3 × 27 = 81 linearly independent components
(including 3 arbitrary scale factors) and na¨ıvely give
3 × 9 = 27 scalar trilinear constraint equations, of
which 3 × 4 = 12 are linearly independent for any
given triplexA1xA2xA3 .

However, although there are nolinear relations
between the81 trilinear and3 × 9 = 27 bilinear
matching tensor components for the three images,
the tensors are certainly notalgebraically indepen-
dent of each other. There are manyquadratic re-
lations between them inherited from the structural
simplicity constraints on the joint image Grassman-
nian tensorI α0···α3 . In fact, the number of al-
gebraically independent degrees of freedom in the(3m

4

)
-component Grassmann tensor (and therefore

in the complete set of matching tensor coefficients)
is only 11m − 15 (i.e. 18 for m = 3). Similarly,
there are only2m − 3 = 3 algebraically indepen-
dent scalar constraint equations among thelinearly
independent3 × 4 = 12 trilinear and3 × 1 = 3 bi-
linear constraints on each matching triple of points.

One of the main advantages of the Grassmann for-
malism is the extent to which it clarifies the rich al-
gebraic structure of this matching constraint system.
The constraint tensors are essentially just the Grass-
mann coordinates of the joint image, and Grass-
mann coordinates are always linearly independent
but quadratically redundant. Generically, three bi-
linear constraints or any three components of a trilin-
ear one are enough to imply all of the remaining con-
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straints for three images, although numerically and
for degenerate imaging situations it turns out that the
trilinear constraints are somewhat more robust than
the bilinear ones [7, 3].

5.3 Quadrilinear Constraints

Finally, the quadrilinear, four image Grassmannian
constraintI [A1A2A3A4 xB1xB2xB3xB4] = 0 corre-
sponds to an8×8 basic reconstruction minor select-
ing two rows from each of four images. In this case
the simplest form of the constraint tensor is just a di-
rect selection of34 = 81 components of the Grass-
mannian itself

HA1A2A3A4 ≡ IA1A2A3A4

= 1
4! PA1

a PA2
b PA3

c PA4
d εabcd

Dualizing the indices from each image separately
gives the quadrilinear constraint

0 = εA1B1C1
εA2B2C2

εA3B3C3
εA4B4C4

·

· HB1B2B3B4 xC1xC2xC3xC4

= 1
4!

(
εA1B1C1P

B1
a xC1

) (
εA2B2C2P

B2
b xC2

)
·

·
(
εA3B3C3P

B3
c xC3

) (
εA4B4C4P

B4
d xC4

)
εabcd

This must hold for each of the34 = 81 values of
A1A2A3A4 . Again the constraints withAi along the
directionxAi for anyi = 1, . . . , 4 vanish identically,
so for any given quadruple of points there are only
24 = 16 linearly independent constraints among the
34 = 81 equations.

Together, these constraints say that for every pos-
sible choice of four planes, one through the optical
ray of xAi for eachi = 1, . . . , 4, the planes meet in
a point. By fixing three of the planes and varying the
fourth we immediately find that each of the optical
rays passes through the point, and hence that they all
meet. This brings us back to the two and three image
sub-cases.

Again, there is nothing algebraically new here.
The 34 = 81 components of the quadrilinear con-
straint tensor arelinearly independent of each other
and of the4×3×27 = 324 trilinear and6×9 = 54
bilinear tensor components; and the24 = 16 lin-
early independent quadrilinear scalar constraints are
linearly independent of each other and of the lin-
early independent4 × 3 × 4 = 48 trilinear and

6 × 1 = 6 bilinear constraints. However there are
only 11m − 15 = 29 algebraically independent
tensor components in total, which give2m − 3 =
5 algebraically independent constraints on each 4-
tuple of points. The quadrilinear constraint is al-
gebraically equivalent to various different combina-
tions of two and three image constraints, and vice
versa.

5.4 Further Results

The Grassmann tensor also contains theepipolesin
the form

eiAj ≡ 1
d! εAiBiCi IAjAiBiCi

IAjAiBiCi = eiAj εAiBiCi

This exhausts the
(3m

4

)
components of the Grass-

mannian, so modulo a choice of scalings the Grass-
mannian can be reconstructed linearly from the com-
plete set of matching tensors and epipoles.

The Grassmann structural simplicity relations
I α0α1α2[β0 I β1β2β3β4] = 0 induce a rich set of
quadratic identities between the matching tensors of
up to8 images. The simplest is justFA1A2e1

A2 = 0.
Many more are listed in [8].

The formalism also extends to lines and other
types of subspace. For any number of 2D images
of 3D lines the only type of matching constraint is
Hartley’s trilinear one [4]. The relationships be-
tween trilinear line and point constraints emerge
very clearly from this approach. One can also de-
rive the theory of homographic images of planes
(2D worlds) and matching constraints for 1D (lin-
ear) cameras in this way.

Matching constraints are closely associated with
minimal reconstruction techniques that recon-
struct world objects from the absolute minimum
amount of image data. In 3D there are bilinear
and trilinear minimal reconstruction techniques for
points and bilinear ones for lines. Reprojection
of the reconstructions gives matching tensor based
methods for thetransfer of structure between im-
ages.

Finally, given a sufficient set of matching ten-
sors one can exhibit ‘reconstruction’ techniques that
work directly in the joint image without reference
to any world space or basis. The ‘reconstructions’
are somewhat implicit, but they really do contain all
of the relevant structure and with a choice of basis
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they reduce to more familiar coordinate-based tech-
niques.

6 Summary

The combined homogeneous coordinates of a set of
m perspective images of a 3D scene define an ab-
stract projectivejoint image spacecontaining a 3D
projective subspace called thejoint image. This is a
faithful projective replica of the scene in image co-
ordinates defined intrinsically by the imaging geom-
etry. Projective reconstruction is a canonical geo-
metric process in the joint image, requiring only a
rescaling of image coordinates. A choice of basis in
the joint image allows the reconstruction to be trans-
ferred to world space.

There are multilinearmatching constraints be-
tween the images that determine whether a set of im-
age points could be the projection of a single world
point. For images of 3D points only three types of
constraint exist: the bilinear epipolar one, Shashua’s
trilinear three-image one and a new quadrilinear
four-image one. For 3D lines the only type of con-
straint is Hartley’s trilinear three-image one.

All of the constraints fit into a single geometric
object, the 4 indexjoint image Grassmannianten-
sor. This is an algebraic encoding of the location
of the joint image. The matching constraints are
linearly independent but algebraically dependent:
structural constraints on the Grassmannian tensor in-
duce a rich family of quadratic identities between
them.

Appendix: Grassmann Coordinates

A k dimensional projective subspace ind-dimensions
can be specified by choosing ak + 1 element basis
{uai |i = 0, . . . , k} of vectors that span it, or dually by
giving ad− k element basis{wi

a|i = k + 1, . . . , d+ 1}
of linear forms orthogonal to it (i.e. the subspace is
{xa|wi

ax
a = 0, i = k + 1, . . . , d+ 1}). Given a choice

of basis for the embedding space, theu’s can be thought
of as the columns of a(d + 1)× (k + 1) rankk + 1 ma-
trix U and thew’s as the rows of a(d − k) × (d + 1)
rankd− k matrixW. Up to scale, the(k + 1)× (k + 1)
minors ofU are exactly the components of the antisym-
metricGrassmann tensorua0···ak ≡ u[a0

0 · · ·u
ak]
k . Sim-

ilarly, the (d − k) × (d − k) minors ofW are the com-
ponents of thedual Grassmann tensorwak+1···ad+1 ≡
wk+1

[ak+1
· · ·wd+1

ad+1]. By the rank conditions onU andW,

neither of these tensors vanish. The usual determinant-
of-a-product rule implies that under a(k + 1) × (k + 1)
linear redefinitionuai →

∑k
j=0 uajΛji of the spanning ba-

sisuai , the components ofua0···ak are simply rescaled by
Det(Λ). Similarly, wak+1···ad+1 is invariant up to scale
under(d− k)× (d − k) redefinitions ofwi

a. A pointxa

lies in the subspace if and only if the(k + 2) × (d + 1)
matrix formed by appending the column vector ofxa to
U is rank deficient,i.e. if and only if u[a0···ak xak+1] = 0.
Dually, xa lies in the subspace if and only ifwi

ax
a = 0

for all i = k + 1, . . . , d+ 1 and this is equivalent to
wak+1···adb xb = 0. Finally, it turns out that up to scale
ua0···ak andwak+1···ad+1 are tensor duals of one another.

In summary,up to scale the antisymmetric Grassmann
tensorua0···ak (or dually wak+1···ad+1) uniquely char-
acterizes the subspace and is characterized by it, inde-
pendent of the basis chosen to span the subspace.This
can be used to algebraize projective geometric relation-
ships. For example the union (span) of two noninter-
secting subspaces is justu[a0···ak vb0···bl] and dually the
intersection of two minimally intersecting subspaces is
w[ak+1···ad+1 xbl+1···bd+1].

However, although each subspace specifies a unique
antisymmetric tensor, very few tensors specify subspaces.
Those that do are calledsimple because they can be fac-
torized in the formu[a0

0 · · ·u
ak]
k for some set ofuai . This

occurs exactly when either of the following equivalent
quadraticGrassmann simplicity relationsare satisfied

ua0···[ak ub0···bk] = 0
(∗u)ak+1···adc ucb1···bk = 0

These structural relations obviously hold for any simple
tensor because some vector always appears twice in an
antisymmetrization. One can also show that they do not
hold for any non-simple one. They restrict the

(
d+1
k+1

)
-

dimensional space of(k + 1)-index skew tensors to a
(k + 1)(d− k) dimensional quadratic subvariety that ex-
actly parameterizes the possible subspaces.Grassmann
coordinates are linearly independent but quadratically
highly redundant.
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Abstract

Measurement uncertainty is a recurrent concern in visual
reconstruction. Image formation and 3D structure recov-
ery are essentially projective processes that do not quite
fit into the classical framework of affine least squares,
so intrinsically projective error models must be devel-
oped. This paper describes initial theoretical work on
a fully projective generalization of affine least squares.
The result is simple and projectively natural and works
for a wide variety of projective objects (points, lines, hy-
perplanes, and so on). The affine theory is contained
as a special case, and there is also a canonical prob-
abilistic interpretation along the lines of the classical
least-squares/Gaussian/approximate log-likelihood con-
nection. Standard linear algebra often suffices for prac-
tical calculations.

1 Introduction

For reliable reconstruction of 3D geometry from im-
age measurements it is essential to take account of
measurement uncertainties. Image formation and re-
construction are essentially projective processes and
the errors they generate do not quite fit into the clas-
sical linear framework of error models such as affine
least squares. In the absence of fully projective er-
ror models, uncertainty is currently handled on a
ratherad hocbasis, often by simply feeding quasi-
linear phenomenological error estimates into a gen-
eral nonlinear least squares routine. This produces
numerical answers, but it obscures the underlying
geometric structure of the problem and makes fur-
ther theoretical (i.e. algebraic) development impos-
sible.

This unpublished paper dates from 1995. The work was sup-
ported by the European Community projects Second and HCM.

This paper describes initial work on a fully pro-
jective generalization of affine least squares. The
resulting theory is relatively simple and projec-
tively natural, and it extends to a wide variety of
projective objects: points, lines, hyperplanes and
so forth. Given a choice of ‘plane at infinity’,
the classical affine theory is contained as a spe-
cial case. There is a canonical probabilistic in-
terpretation along the lines of the potent least-
squares/Gaussian/approximate log-likelihood con-
nection, and standard linear algebra often suffices
for practical calculations.

The notion that projective geometry should be
‘simpler’ than affine geometry is central to this
work. Several aspects of projective naturality played
key rôles in the development of the theory:

• It should look simple and natural in homoge-
neous coordinates and work equally well at all
points of a projectivized space, from the origin
right out to the hyperplane at infinity.

• It should generalize easily from points to hy-
perplanes, lines and other projective subspaces,
and perhaps even to higher-degree projective
varieties like quadrics and cubics.

• For projective subspaces, it should be simply
expressible in terms of Grassmann coordinates
(i.e. ‘the natural parameterization’).

• It should behave naturally under
point/hyperplane — and hence Grass-
mann/dual Grassmann — duality, and also
under projective transformations.

We will use tensorial notation with all indices
written out explicitly, as in [7, 9]. Most of the de-
velopment will apply to general projective spaces,
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but when we refer to the computer vision case of 2D
projective images of a 3D projective world we will
use indicesa = 0, . . . , 3 for homogeneous world
vectors andA = 0, 1, 2 for homogeneous image
vectors. The Einstein summation convention ap-
plies to corresponding covariant/contravariant index
pairs, so for exampleTa

b xb stands for matrix-vector
multiplication

∑
b Ta

b xb.
Probability densities will be denoted

dp(xa|Evidence) to emphasize that they are
densities inxa rather than functions. Arelative
likelihood is a function defined by dividing a
probability density by a (sometimes implicit) prior
dp(xa) or volume form (‘uniform prior’) dV.
Log-unlikelihood means−2 times the logarithm
of a relative likelihood, defined up to an additive
constant.χ2 variables are log-unlikelihoods.

Although many specific error models have ap-
peared in the literature there have been very few at-
tempts to unify different aspects of the field. Zhang
& Faugeras [10, 1] and Luonget al [3] respectively
provide linearized least squares models for 3D point
and line reconstruction and fundamental matrix es-
timation. Mohret al [5] formulate multi-image re-
construction as a batch-mode nonlinear least squares
problem, and more recently McLauchlan & Murray
[4] describe a suboptimal but practically efficient
linearized incremental framework for several types
of reconstruction.

2 Homogenized Affine Least
Squares

To motivate the projective model we will re-express
classical least squares for affine points in homo-
geneous coordinates. Consider a random vector
x = (x1, . . . , xd)> in a d-dimensional affine space,
subject to some probability distribution with mean
x̄ and covariance matrixX. We can homogenize
x and embed it ind dimensional projective space
by adding an extra componentx0 ≡ 1 to make
a d + 1 component homogeneous vectorxa =
(1, x1, . . . , xd)>. The mean and covariance are

neatly contained in the expectation value
〈
xaxb

〉
:

〈(
1
x

)(
1 x>

)〉
=

(
1
x̄

)(
1 x̄>

)
+

(
0 0
0 X

)

=

(
1 x̄>

x̄ x̄x̄> + X

)
Inverting this homogenized covariance matrix
gives an equally simplehomogenized information
matrix :(

1 x̄>

x̄ x̄x̄> + X

)−1

=

(
1 + x̄>X−1x̄ −x̄>X−1

−X−1x̄ X−1

)
Finally, contracting the information matrix with
xa and xb gives (up to an additive constant) the
chi-squared/Mahalanobis distance/Gaussian expo-
nent/approximate log-unlikelihood ofx with respect
to x̄ andX:

1 + χ2(x|x̄,X) = 1 + (x− x̄)>X−1(x− x̄)

=
(

1 x>
)(1 + x̄>X−1x̄ −x̄>X−1

−X−1x̄ X−1

)(
1
x

)
The determinants of the homogenized covariance
and information matrices are simplyDet(X) and
Det(X−1).

The moral is that homogenization makes many
Gaussian and affine least squares notions even sim-
pler and more uniform. In fact, it is a nice way to
work even when there is no question of projective
space, because the parameters of the Gaussian are
all kept together in one matrix. Derivations and cod-
ing become easier because equations for means fall
out of those for covariances.

3 Projective Point Distributions

Now we briefly sketch the key elements of the pro-
jective least squares error model for a single projec-
tive point. For a more complete development of the
theory see [8].

Consider an arbitrary probability densitydp(xa)
for an uncertain point in ad dimensional projective
spacePa. To be projectively well defined, the den-
sity must bescale invariant: dp(xa) = dp(λxa)
for all xa and allλ 6= 0. Integration againstdp(·)
induces a linear expectation value operator〈·〉 on the
scale-invariant functions onPa:

〈f〉 ≡
∫
Pa
f(xa) dp(xa)

The homogenized affine analysis given above
suggests that we should try to evaluate ahomoge-

neous covariance tensorXab ∼
〈
xaxb

〉
, invert
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it to produce ahomogeneous information tensor
Mab ≡ (X−1)ab, and then take1 + χ2(xa|Xab) ∼
Mabxaxb as a measure of normalized squared er-
ror or approximate log-unlikelihood. Unfortunately,
this can not quite work as it stands because〈·〉 is
only defined forscale invariantfunctions ofxa and
the moment monomialsxa1 · · ·xak all depend on
the scale ofxa. On a general projective space there
is no canonical way to fix this scale, so classical
means and covariances are simply not defined.

This problem can be resolved by introduc-
ing an auxiliary normalization tensorNab and
homogenizing with respect to it, so that quan-
tities of the form

(
Mabxaxb

)
are replaced

by homogeneous scale invariant quantities(
Mabxaxb

)
/
(
Ncdxcxd

)
. We will call such

functions biquadrics because their level surfaces
are quadric:

(
Mabxaxb

)
/
(
Ncdxcxd

)
= λ

implies (Mab − λNab) xaxb = 0. As an
example, the affine normalization condition
x0 = 1 can be relaxed if we divide through
by Naff

ab xaxb = (p∞a xa)2 = (x0)2, where
Naff
ab ≡ p∞a p∞b =

(1 0
0 0

)
and p∞a = (1 0 . . . 0)

is the plane at infinity, At first sight the normalizer
simply provides a fiducial scalingNabxaxb = 1
with respect to which the error model can be
defined, but ultimatelyN is on a par withM and
tends to play an equally active rˆole in the theory.

3.1 Basic Equations

Given a projective probability distributiondp(xa)
and an arbitrary symmetric positive semidefinite
normalization tensor Nab on a projective space
Pa, we can define thehomogeneous covariance
tensor

Xab ≡
〈

xaxb

Ncdxcxd

〉

Note thatX is symmetric, positive semidefinite and
independent of the scale ofxa, but it does depend
on the value and scale ofN. If N has null directions
it should be compatible withdp(·) in the sense that
the above expectation value is finite,i.e. the distribu-
tion should not have too much weight in the vicinity
of the null space ofN. Since〈·〉 is linear, ifdp(·) is
correctly normalized we have the followingcovari-

ance normalization consistency conditiononX

NabXab =

〈
Nabxaxb

Ncdxcxd

〉
= 〈1〉 = 1

Viewing X andN as matrices, this can be written
Trace(NX) = 1. If dp(·) is not correctly nor-
malized, we can normalize by dividing through by
NabXab = 〈1〉 6= 1. The normalized covariance
tensor is then〈

xaxb

Ncdxcxd

〉
/ 〈1〉 =

Xab

NcdXcd

Usually, one can arrange to work with normalized
quantities and ignore the scale factor,i.e.NabXab =
1.

By analogy with the homogenized affine case and
assuming for the moment thatX is nonsingular, we
can invert it to produce ahomogeneous informa-
tion tensor Mab ≡ (X−1)ab and define a corre-
spondinghomogeneous1 + χ2 function

1 + χ2(xa|X,N) ≡ Mabxaxb

Ncdxcxd

It is not immediately obvious that these definitions
make sense, but one can argue [8] that they do in
fact lead to a coherent theory of approximate least
squares estimation. Two key approximations are re-
quired, both of which areexactin the affine case and
generally accurate whenever the uncertainty is small
compared to the scale of projective space. (And it is
only in the limit of small uncertainty thatany least
squares technique becomes a good approximation to
the more rigorous maximum relative likelihood the-
ory).

As in the affine case, it is often useful to regard
the information as the primitive quantity and derive
the covariance from it. The quadratic (Gaussian) ex-
ponentχ2(x|x̄,X) = (x − x̄)>X−1(x − x̄) is the
keystone of affine estimation theory because it is the
leading term in thecentral moment expansionof
an arbitrary distribution. Thecentral limit theorem
(which guarantees the asymptotic dominance of this
term given ‘reasonable’ behaviour of the underlying
distributions) is the ultimate probabilistic justifica-
tion for affine least squares techniques.

Similarly, biquadric exponents 1 +
χ2(xa|X,N) ≡

(
Mabxaxb

)
/
(
Ncdxcxd

)
lie at

the heart of projective least squares. In particular,



162 Annexe A. Autres papiers

they are likely to be good asymptotic approxi-
mations to arbitrary projective log-unlikelihood
functions, so that estimation theory based on them
should ‘work’ in much the same way that conven-
tional least squares ‘works’ in affine space. Given
this, the uncertainties of projective points can be
modelled withbiquadric probability distributions

dp(xa) ∼ exp

(
−1

2
Mabxaxb

Ncdxcxd

)
dV

much as affine uncertainties can be modelled with
Gaussians.

Several approximations are required here. Firstly,
there is no canonical volume formdV on projec-
tive space, so it is necessary to make an ‘arbitrary
but reasonable’ choice of this ‘uniform prior’. This
is annoying, but it is not specifically a problem with
projective least squares: implicitly or explicitly,ev-
ery least squares theory makes such choices. The
mere existence of a uniform volume form on affine
space does not make it a universally acceptable prior.

Secondly, biquadric distributions are somewhat
less tractable than Gaussian ones and (except in the
limit of affine normalization) there does not seem to
be a closed form for their integrals. This means that
we do not know the exact functional form of the re-
lation X = X(M,N) between the covariance and
the information and normalization. However with
an appropriate choice of projective basis the inte-
gral can be approximated by a Gaussian [8], with the
result thatfor properly normalized distributionsthe
‘classical’ homogenized affine formulaX ≈ M−1

is still approximately valid. Here properly normal-
ized means that the covariance normalization condi-
tion NabXab = 1 holds forX ≡ M−1, so that the
distribution inM andN is approximately normal-
ized in the sense that〈1〉 ≈ 1.

It is often necessary to normalize an unnormal-
ized biquadric distribution. Rescaling the density
function amounts toshifting the informationM by
a multiple ofN: M → M − λN. We will say that
M is correctly shifted if M−1 has the correct nor-
malization to be a covariance:Nab(M−1)ab = 1.
The correct shift factor can be found by solving the
nonlinearnormalizing shift equation

Nab

(
(M− λN)−1

)ab
= 1

This amounts to a polynomial of degreeRank(N)
in λ, linear in the case of affine normalization. The

desired solution is the smallest real root, which can
be roughly approximated by theapproximate shift
solution

λ ≈
(
Nab(M−1)ab

)−1
− 1

The two main approximations required to make
projective least squares ‘work’ are the covariance
estimateX ≈ M−1 and the approximate shift so-
lution. Both areexactfor affine normalization and
generally accurate for small uncertainties, but nei-
ther is very good for distributions that spread across
the entire width of projective space. However, least
squares is not really suitable for weak evidence
(wide distributions) in any event. It makes too many
assumptions about the uniformity of priors and the
asymptotic shapes of distributions to be competitive
with the more rigorous maximum relative likelihood
theory in this case. Its main strengths are simplicity
and asymptotic correctness in the limit where many
moderate pieces of evidence combine to make a sin-
gle strong one. And it is in exactly this limit that the
additional approximations made by projective least
squares become accurate.

To define a meaningful distribution,M and N
need to benon-negative, but it is practically useful
to allow them to have null directions. To guarantee
the normalization conditionNab(M−1)ab = 1, we
will impose anull space compatibility condition:
the null space ofM must be contained in that ofN.
This ensures that any pseudo-inverse of a singular
M can be used to evaluateNab(M−1)ab (it makes
no difference which). However, the covariance ten-
sorX ≈M−1 is only defined for nonsingularM.

3.2 Normalizations

If we takeN to be theaffine normalization Naff
ab ≡

p∞a p∞b =
(1 0
0 0

)
wherep∞a = (1 0 . . . 0) is the

hyperplane at infinity, the biquadric distribution re-
duces to the homogenized affine case we started
from. In this case the covariance normalization con-
dition is simplyX00 = Naff

ab Xab = 1 and (to the ex-
tent that the underlying distribution is well modelled
by a Gaussian) the homogeneous1 +χ2 function is
one plus a genuine classicalχ2 variable.

On the other hand, ifN is taken to be the identity
matrix in some projective basis we have aspher-
ical normalization Nabxaxb =

∑d
a=0(xa)2 = 1

and the error model reduces to a spherical analogue
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of linear least squares, with ‘distances’ measured by
sines of angles on the unit sphere. The two normal-
izations coincide for points near the origin but dif-
fer significantly near the hyperplane at infinity. The
affine normalization vanishes on the plane at infinity
and points there are infinitely improbable, whereas
the spherical normalization is regular and well be-
haved for all points, including those at infinity.

These are just two of the infinitely many possible
choices forN. There is no universally ‘correct’ or
‘canonical’ normalizer. Ideally,N should be chosen
to reflect the mechanism that generates the experi-
mental uncertainty, although in practice numerical
expediency is also a factor.

With the spherical normalization it is natural to
take an eigenvalue expansion ofX in an ‘orthonor-
mal’ projective basis. The mode (maximum like-
lihood value) of the distribution is the maximum-
eigenvalue eigenvector ofX and the remaining
eigenvectors give the principal axes of the uncer-
tainty ellipsoids. Small eigenvalues correspond to
directions with little uncertainty, while for large ones
(those near the modal eigenvalue) the distribution
spreads across the entire width of projective space.
For the ‘uniform’ distribution,X = 1

d+1I.

More generally, given anyM andN there is al-
ways some projective basis in which they are in
canonical form, i.e. simultaneously diagonal with
N having entries+1 or 0. In this basis the global
minimum of 1 + χ2 is at the minimum eigenvalue
eigenvector ofM along a ‘1’ direction of N, and a
correctly normalized distribution has

∑
1/λi = 1

where the sum is over the inverse eigenvalues ofM
along ‘1’ directions ofN.

3.3 Homogeneous Chi-Squared

Except in the case of affine normalization and an un-
derlying Gaussian distribution, the homogeneousχ2

variable is unlikely to have a classicalχ2 distribu-
tion. However, the “χ2 ” variables used in statistics
seldomdo have exactχ2 distributions and that does
not stop them being useful error measures. Several
familiar properties of the traditionalχ2 do continue
to hold. Ourχ2 is nonnegative (1+χ2 ≥ 1), and for
nonsingularM its expectation value is the number
of independent degrees of freedom,i.e. the dimen-

siond of the projective space:

〈
1 + χ2(xa)

〉
= Mab

〈
xaxb

Ncdxcxd

〉
= X−1

ab Xab = d+ 1

Moreover, we have already seen that — in analogy
to the error ellipsoids of the classicalχ2 — the level
surfaces of1 +χ2 are always quadric. Near a mini-
mum of1+χ2 these surfaces will be ellipsoidal, but
further away they may cut the plane at infinity and
hence appear hyperboloidal rather than ellipsoidal.

3.4 Homogeneous Taylor Approximation

To get an idea of why biquadric functions should ap-
pear in projective least squares, consider an arbitrary
smooth scale invariant function on projective space:
f(xa) = f(λxa). f(·) can be approximated with
a conventional Taylor series at a point, but this is
not very satisfactory as the resulting truncated Tay-
lor polynomials are not exactly scale invariant and
depend on the scale of the homogeneous vector at
which the derivatives are evaluated. What is needed
is aprojectively invariantanalogue of the Taylor se-
ries. Once again homogenization with respect to a
normalizerNab makes this possible.

Consider the scale-invariant function

f(xa) =
Ma1a2···a2k

xa1xa2 · · ·xa2k

(Nabxaxb)k

whereM and N are arbitrary symmetric tensors.
Multiplying out and differentiating2k times using
the usual iterated chain rule gives

Ma1a2···a2k
=

1
(2k)!

∂2k
[
(Nabxaxb)k · f(xa)

]
∂xa1 · · · ∂xa2k

=
2k∑
j=0

∂jf

∂x(a1 · · · ∂xaj
· ∂

2k−j(Nabxaxb)k

∂xaj+1 · · · ∂xa2k)

Here,(a1 · · · a2k) means ‘take the symmetric part’.
The factorial weights of the familiar iterated chain
rule are subsumed by this symmetrization.

This formula givesM in terms of N and the
first 2k derivatives off(·). Now choose anyN
and let f(·) stand for an arbitrary scale-invariant
function. The resultingM defines a function
(Ma1···a2k

xa1 · · ·xa2k )/(Nabxaxb)k that is guaran-
teed to agree withf(·) to order2k at xa. We will
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say thatM and N define a(2k)th-order homoge-
neous Taylor approximation to f(·) at xa. The
‘Taylor coefficients’ pack neatly into the single ho-
mogeneous tensorMa1···a2k

. For example adding
a constant tof(·) amounts to adding a multiple of
N(a1a2

· · ·Na2k−1a2k) to M. With affine normal-
ization N ≡ Naff , the homogeneous Taylor series
reduces to the usual inhomogeneous affine one at
x = 0.

In the present case we are mainly interested in ap-
proximating projective log-unlikelihood functions to
second order near their peaks, by analogy with the
Gaussian approximation to the peak of an affine dis-
tribution. The second order homogeneous Taylor ap-
proximation is a biquadric with

Mab =
1
2
· (Ncdxcxd) ·

∂2f

∂xa∂xb

+
∂f

∂xa
·Nbcx

c +
∂f

∂xb
·Nacx

c + Nab · f

4 Projective Least Squares for
Points

We are finally ready to describe how projective least
squares can be used to estimate the position of an un-
certain projective point. Suppose we have collected
several independent estimates of the point’s position
that can be summarized by a set of biquadric distri-
butions

1+χ2(xa |Evidencei) =
M(i)

abx
axb

N(i)
cdxcxd

i = 1, . . . , k

Just as one might summarize the uncertainty of an
experimental measurement in affine space by spec-
ifying its mean and covariance, the uncertainty of a
projective measurement can be summarized by a ho-
mogeneous information tensorM (or alternatively
by the covarianceX = M−1). The corresponding
normalization tensorN should be chosen to reflect
the source of the uncertainty. For example, in com-
puter vision a spherical normalization might be ap-
propriate for uncertainty in the 3D angular position
of an incoming visual ray relative to the camera,
whereas affine normalization would probably be a
better model for errors due mainly to uncertainty in
the measured projection of the ray on the flat image
plane (e.g. quantization error). However when the

uncertainty is small the choice of normalization is
not too critical.

Since the biquadric1 + χ2 functions represent
log-unlikelihoods, the proper way to combine them
into a single estimate of the position ofxa is to add
them and then correct the constant offset term to nor-
malize the combined distribution. First consider the
commensurablecase in which all of the normal-
izationsN(i) = N are identical. The sum of log-
unlikelihoods reduces to a sum of information ten-
sors, as in the affine theory:

1 +
k∑
i=1

χ2(xa |Evidencei) =
Mabxaxb

Ncdxcxd

where

Mab ≡
k∑
i=1

M(i)
ab − (k − 1) Nab

The term(k − 1) N prevents the ‘1’s of the1 + χ2

terms from accumulating, but a further correction to
the shift ofM is still needed. This can be found by
solving the normalizing shift equation either exactly
or approximately. The shiftedM then defines a cor-
rectly normalized posterior distribution forxa given
all the evidence, and its inverseX = M−1 gives the
covariance in the usual way. The mode (maximum
likelihood estimate) forxa is the global minimum
of the biquadric,i.e. the minimum eigenvalue eigen-
vector ofM along a non-null direction ofN. The
shift correction step is dispensable if only the mode
is required.

Now consider theincommensurable case in
which all of the normalizersN(i) are different. This
case is much less tractable. In general the combined
log-unlikelihood is a complicated rational function
and analytical or numerical approximations are re-
quired.

Many nonlinear optimization techniques can be
used to find the mode. One possible way to pro-
ceed is to make a commensurable reapproximation
of the combined distribution by choosing some suit-
able common normalizationN and approximating
each log-unlikelihood to second order with a bi-
quadric in N. This is straightforward except for
the choice of the point(s) at which the approxima-
tions are to be based. To ensure self-consistency, the
log-unlikelihoods should ideally be expanded about
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the true mode of the combined distribution. Since
this is not known until the end of the calculation,
it is necessary to start with approximations based at
some sensible estimate of the mode (or perhaps at
the mode of each distribution), find the resulting ap-
proximate combined mode, and if necessary iterate,
at each step basing a new approximation at the lat-
est mode estimate. Each iteration must accumulate
a new approximate unshifted information tensorM
from the component distributions and find its min-
imum eigenvalue eigenvector (the updated estimate
of the combined mode). There is no need adjust the
shift of M until the end of the calculation. Once
the mode has been found, a second order biquadric
reapproximation gives an estimate of the combined
information and covariance.

There is no guarantee that this nonlinear pro-
cedure will converge correctly. Indeed, combina-
tions of incommensurable distributions are often
multi-modal, although the secondary peaks are usu-
ally negligible unless there is strongly conflicting
evidence. However preliminary experiments sug-
gest that convergence is reasonable in some real-
istic cases. A possible explanation for this is the
fact that biquadrics are typically convex within quite
a wide radius of their global minimum. They be-
come non-convex near their non-minimal eigenvec-
tors, but these critical points are usually far from the
minimum in the standard projective basis unlessN
is particularly ‘squashed’.

It might be suggested that the need to resort to ap-
proximations in the incommensurable case is a flaw
of the projective least squares method, but that is not
quite fair. It arises because the biquadric form is
significantly richer than the Gaussian one, and even
‘linear’ least squares produces nonlinear equations
in all but the simplest situations (e.g.orthogonal re-
gression,c.f.section 6). In fact, except for problems
with the nonlinear normalizing shift equation, the
projective model is not significantly less tractable
than the affine one. And even for incommensu-
rable distributions, projective least squares provides
an attractive intermediate analytical form for prob-
lems that might otherwise have produced completely
‘opaque’ end-to-end numerical formulations.

5 Behaviour under Projections

Now we discuss the behaviour of projective least
squares under projective mappings. First consider
a general situation in which some eventx ‘causes’
an eventy in the sense thaty = f(x) for some func-
tion f(·), andy in turn gives rise to some measured
evidenceE. The conditional independence ofE on
x giveny results in the classical Bayesian formula

dp(x |E)
dp(x)

=
dp(y |E)

dp(y)

∣∣∣∣
y=f(x)

which says thatE augments the prior likelihood
dp(x) of x to the same degree that it enhances that
of y = f(x). In other words, the relative likelihood
function ony-space simply pulls back to the correct
relative likelihood function onx-space underf(·).
If severalx are mapped to the samey, their relative
weightings are determined by the priordp(x).

If f(·) has unknown internal parametersµ, i.e.
y = f(x, µ), the data spacex can be extended to in-
clude these and the abovedp(x | ·) factors become
dp(x, µ | ·). Integrating over all possible values of
x and applying the conditional probability definition
dp(x, µ) = dp(x |µ) · dp(µ) gives

dp(µ |E)
dp(µ)

=
∫

x

dp(x, µ |E)
dp(µ)

=
∫

x
dp(x |µ) · dp(x, µ |E)

dp(x, µ)

=
∫

x
dp(x |µ) · dp(y |E)

dp(y)

∣∣∣∣y = f(x, µ)

This says that the posterior likelihood forµ is pro-
portional to the total probability foranycorrespond-
ing x to give the observation viay = f(x, µ).
In other words the log-unlikelihood ofµ given E
is proportional to the logarithmic ‘shift factor’ re-
quired to normalize the distribution ofx givenµ and
E.

The above analysis applies directly to a projec-
tive mappingxa → yA = PA

a xa between projec-
tive spacesPa andPA. If we assume that the rel-
ative likelihood onPA can be approximated by a
biquadric{MAB ,NAB} and that the prior onPa is
sufficiently ‘uniform’, the pulled back density onPa
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is the biquadric

dp(x |Evidence)

≈ exp

(
−1

2
(MAB PA

a PB
b ) xa xb

(NCD PC
c PD

d ) xc xd

)
dV

In matrix notation, the informationM and normal-
ization N are pulled back respectively toP>MP
andP>NP. The preservation of the biquadric func-
tional form under projective transformations im-
plies that image space error models are directly
pulled back to source space ones. However it
should also be clear that there is little hope of ob-
taining commensurable distributions when combin-
ing observations pulled back from distinct image
spacesPA1 , . . . ,PAk : the pulled-back normaliza-
tionsNAiBiP

Ai
a PBi

b will usually all be different.
In general the pulled-backM needs to be shifted

by a multiple of the pulled-backN to produce a cor-
rectly normalized probability density onPa. The
shift required is proportional to the logarithm of the
total probability foranypoint inPa to project to the
observation, and hence depends onPA

a . As men-
tioned above, if the transformation is uncertain the
posterior log-unlikelihood for a particular valuePA

a

given the observation{MAB ,NAB} is proportional
to the shiftλ(PA

a ) required to normalize the pulled-
back distribution. In the next section we will use this
to derive estimation techniques for uncertain projec-
tive subspaces, but for the remainder of this section
we assume thatPA

a is a fixed known transformation.

Now let us examine the characteristics of the
pulled-back distributions a little more closely. IfPA

a

is a projective isomorphism — a nonsingular map-
ping between spaces of the same dimension, possi-
bly from Pa to itself — its effect is analogous to
that of a projective change of basis and there are no
essentially new features.

If PA
a is a nonsingularinjection — i.e. a one-to-

one mapping ofPa onto a projective subspace of
PA — the pulled-back likelihood is isomorphic to
the restriction of the parent likelihood to the range
subspace inPA. The only new feature is that the
injected subspace may happen to ‘miss’ the mode
of the parent distribution by a substantial margin, so
that the pulled back likelihood has a shape and range
of values much attenuated compared to those of the
parent function onPA.

Finally, consider the case wherePA
a is a singular

surjection onto a projective space of lower dimen-
sion. In this case each point ofPA has a nontrivial
‘preimage’ inPa (i.e. the projective subspace ofPa
that projects onto it), andPa also necessarily con-
tains a null subspace of points that project to noth-
ing at all: PA

a xa = 0. The pulled-back likelihood is
constant on each preimage space but is undefined on
the null space as the pulled backM andN both van-
ish there. The pulled back equi-probability surfaces
are degenerate quadrics with singularities on the null
space, and generally look more like elliptical cones
than ellipsoids.

The singular surjective situation occurs for the
usual 3D→2D perspective projection in computer
vision. In that case the null space is the centre
of projection, the preimage spaces are the optical
rays, and the equi-probability surfaces — the sets of
world points that are equally likely to have produced
the given image measurement — are elliptical cones
centred on the centre of projection and generated by
the optical rays, that project to the experimental er-
ror ellipses in the image plane. The considerable
representative power of the projective least squares
framework is illustrated by its ability to deal with
error models for perspective projection out-of-hand.

It was to accommodate surjective projections that
we insisted on allowingM to besemi-definite. Note
that the null space compatibility condition is main-
tained: if the null space ofMAB is a subset of that
of NAB , the same is true of the pulled-back tensors
MABPA

a PB
b andNABPA

a PB
b . The normalization

condition NAB(M−1)AB = 1 (with M−1 inter-
preted as a pseudo-inverse) is also preserved under
surjective pull-backs, so the shift factor ofM does
not usually need to be corrected in this case.

6 Subspace Estimation

The results of the previous section can be used to
develop projective least squares error models for
projective subspaces. Given a number of uncertain
points, we are interested in ‘fitting’ a projective sub-
space to them and estimating its uncertainty.

Suppose we have measured a single pointxa,
whose uncertainty is characterized by a biquadric
distribution inMab andNab. A k dimensional pro-
jective subspace ind dimensions can be specified
by choosing a set ofk + 1 independent points that
span it, i.e. by giving a (d + 1) × (k + 1) rank
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k + 1 matrixUa
A whose columns span the subspace

(A = 0, . . . , k). Ua
A can be thought of as a non-

singular projective injection from an abstractk di-
mensional projective spacePA toPa. As discussed
in the previous section, ifU is uncertain its relative
likelihood given the observation{M,N} is propor-
tional to the total probability in the subspace it gen-
erates, and hence to the total probability in the pulled
back distribution onPA. In fact, up to an additive
constant the log-unlikelihood ofU given {M,N}
is precisely the shift factorλ(U>MU,U>NU)
required to normalize the pulled back distribution
{U>MU,U>NU} :

1 +χ2(U |M,N)
+const≈ 1 + λ(U>MU,U>NU)

At this point our approximate shift solution1 +
λ(M,N) ≈ Trace−1(NM−1) comes into its
own. Without a tractable analytic approximation to
λ(U>MU,U>NU) it would be impossible to de-
velop explicit methods for the least squares fitting of
subspaces. The abstract theory would still exist, but
there would be no closed-form formulae. Adopting
this approximation we have the remarkably simple
estimate

1 + χ2(U |M,N)
+const≈ Trace−1

(
U>NU · (U>MU)−1

)
= Trace−1

(
N ·U(U>MU)−1U>

)
Note the invariance of this formula under redefini-
tions U → UA of the spanning basis of the sub-
space, whereA is any nonsingular(k+ 1)× (k+ 1)
matrix.

Dually, a subspace can be specified as the inter-
section ofd−k hyperplanes,i.e.by a(d−k)×(d+1)
rank d − k matrix WC

a that determines a set of
d − k independent homogeneous linear equations
WC

a xa = 0 (C = k + 1, . . . , d+ 1). W and U
specify the same subspace if and only ifWU = 0
and the(d + 1)× (d + 1) matrix

(U>
W

)
is nonsingu-

lar. For any such pair{U,W} and any nonsingular
symmetric(d+ 1)× (d+ 1) matrix X we have the
standard decomposition

X = U
(
U>X−1U

)−1
U>

+ XW>
(
WXW>

)−1
WX

Applying this at the covarianceX ≡ M−1 gives
the approximate log-unlikelihood of the subspace in
terms of dual coordinates

1 + χ2(W |X,N)
+const≈

Trace−1
[
N ·

(
X−XW>(WXW>)−1WX

)]
SinceX = M−1 is normalized, the leading term is
just Trace(N ·X) = 1.

6.1 Affine Limit

In the affine case the approximate shift formula is
exact and the biquadric distributions become Gaus-
sians, so the projective error model reduces to the
standard affine one. Making the standard decompo-
sitions

M ≡
(

1 + x̄>X−1x̄ −x̄>X−1

−X−1x̄ X−1

)
, N ≡

(
1 0
0 0

)

and(
1
x

)
= U

(
1
y

)
=

(
1

Ay + b

)
, U ≡

(
1 0

b> A

)

we have

U>MU =(
1+(x̄−b)>X−1(x̄−b) −(x̄−b)>X−1A

A>X−1(x̄− b) A>X−1A

)

U>NU =

(
1 0
0 0

)

Using the fact that an incorrectly shifted affine in-
formation tensor has an inverse with00 coefficient
1/(1 + λ) :(

1 + λ+ x̄>X−1x̄ −x̄>X−1

−X−1x̄ X−1

)−1

=
1

1 + λ

(
1
x̄

)(
1 x̄>

)
+

(
0 0
0 X

)

a short calculation gives

χ2(U |X, x̄) +const= (x̄−b)>·

·
(
X−1 −X−1A(A>X−1A)−1A>X−1

)
(x̄−b)

This is the standard affine formula for the log-
unlikelihood of an affine subspaceAy + b given
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an uncertain observation of a point on it. The matrix
vanishes on vectorsAy in the subspace and hence
measures the ‘orthogonal Mahalanobis distance’ of
the mean̄x from the subspace.

In terms of dual coordinates the affine subspace is

W

(
1
x

)
= Dx + c = 0 W ≡

(
c D

)
whereDA = 0 and c = −Db. In this case the
affine log-unlikelihood is simply

χ2(W |X, x̄)+const= (Dx̄+c)>
(
DXD>

)−1
(Dx̄+c)

This is easily verified from the non-dual-form
affine log-unlikelihood given above, or with a lit-
tle more effort from the projective dual-form log-
unlikelihood. Basically, it says that the information
in constraint violation space is measured by the in-
verse of the classical constraint covariance matrix.

6.2 Grassmann Coordinates

We promised that projective least squares would
look natural in Grassmann coordinates, and now we
verify this. Thek dimensional projective subspace
spanned by the column vectors ofUa

A has Grass-
mann coordinates [2, 7]

u[a0···ak] ∼ Ua0
A0
· · ·Uak

Ak
εA0···Ak

Alternatively, ak dimensional subspace can be spec-
ified by d − k linear constraintsWC

a xa = 0
(the rows of the matrixW, labelled byC =
k + 1, . . . , d+ 1) to give dual Grassmann coordi-
nates

w[ak+1···ad] ∼ εCk+1···Cd WCk+1
ak+1 · · ·WCd

ad

Here, ua0···ak and wak+1···ad are respectively the
(k+1)×(k+1) minors ofU and the(d−k)×(d−k)
minors ofW. They are only defined up to scale, and
if U andW specify the same subspace they are ten-
sor duals of one another.

The subspace log-unlikelihood

1 + χ2(U |M,N)

≈ Trace−1
(
N ·U(U>MU)−1U>

)
can be rewritten in terms of the Grassmann coordi-
natesua0···ak by expanding the inverse(U>MU)−1

by cofactors and rearranging. The result is

1 + χ2(u |M,N)
+const≈

Ma0b0 · · ·Makbk · ua0···ak ub0···bk

(k + 1) Nc0d0Mc1d1 · · ·Mckdk · uc0c1···ck ud0d1···dk

Once again we recognize the familiar form of the
biquadric, this time in the Grassmann coordinates
ua0···ak rather than the point coordinatesxa, with
information1 M[[a0b0 · · ·Makbk]] and normalization
(k + 1) ·N[[a0b0Ma1b1 · · ·Makbk]]. If k = 0 we get
back the original point distribution, as would be ex-
pected.

The space ofk dimensional projective subspaces
in d dimensions is locally parameterized by(d−k)×
(k + 1) matrices and therefore has dimension(d −
k)(k+ 1). The Grassmann coordinatization embeds
it as a projective subvariety of the

(d+1
k+1

)
dimensional

homogeneous spaceP [a0···ak ] of k + 1 index skew
tensors. The constraint equations that determine this
subvariety are the quadraticGrassmann simplicity
constraints

ua0···ak−1[akub0···bk] = 0

Hence, although the Grassmann coordinatesua0···ak

are linearly independent, they are quadratically
highly redundant.

The subspace information and normalization ten-
sors can be viewed as symmetric matrices on the
large

(d+1
k+1

)
dimensional spaceP [a0···ak]. They are

nonsingular whenever the underlyingMab andNab

are, however there are linear (non-matricial) re-
lations among their components that enforce the
Grassmann simplicity constraints. Any product of
symmetric tensors of the form

T[a0a1···ak]·[b0b1···bk] ≡ M[[a0b0
0 Ma1b1

1 · · ·Makbk ]]
k

is ‘simple’ in the sense thatTa0···ak−1[ak · b0···bk] = 0
because the antisymmetrization always includes a
pair of symmetric indices. A biquadric built with
such ‘simple’ Grassmann tensors “projects on to the
simple part ofua0···ak ” in the sense that it is insensi-
tive to the ‘non-simple part’ua0···ak−1[akub0···bk ] 6=
0.

1For convenience we introduce the notation
[[a0b0a1b1 · · · akbk]] to denote [a0a1 · · · ak][b0b1 · · · bk]
on the index pairsaibi of a set of 2 index tensors,i.e. antisym-
metrize separately over the first indices and the second indices
of the pairs.
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A similar process can be applied to the dual-
form matricial log-unlikelihood1 + χ2(W |X,N)
given above, to derive the dual Grassmann log-
unlikelihood

1 + χ2(w |X,N)
+const≈

Xak+1bk+1 · · ·Xadbd ·wak+1···ad wbk+1···bd
(X− (d− k)XNX)ck+1dk+1 Xck+2dk+2 · · ·Xcddd ·

·wck+1···cd wdk+1···dd

whereX ≡M−1 andNabXab = 1. Once again the
log-unlikelihood has the biquadric form, this time
in the dual coordinateswak+1···ad . The information
and normalization tensors are again ‘simple’ in the
Grassmann sense. This can also be derived by tensor
dualization of the contravariant Grassmann formula.
Note that in the affine caseXNX =

(1
x̄

)
(1 x̄>).

6.3 Hyperplanes

Hyperplanes (codimension one subspaces) are a par-
ticularly important special case of the above. The
log-unlikelihood for the location of a hyperplane
waxa = 0 given an uncertain point on it follows
immediately from the above dual-form matrix or
Grassmann formulae:

1 +χ2(wa |X,N)
+const≈ Xab wawb

(X−XNX)cdwcwd

Dually to the point case, the log-unlikelihood is a bi-
quadric in the hyperplane coordinates. For an affine
distribution this becomes

χ2(wa |X,N) +const=

(
d>x̄ + c

)2

d>X̄d

wherewa is (c d>), andx̄ andX̄ are the classical
mean and covariance.

The denominator plays a much more active rˆole
in hyperplane andk-subspace estimation than it did
in the point fitting problem. Let us examine the hy-
perplane case a little more closely to find out why.

First of all, there is nothing intrinsically wrong
with hyperplane distributions with ‘simple’ normal-

izersNab
. It is just that in the case of point-plane

fitting the correct answer can not be quite so simple.
Consider a hyperplane distribution with a ‘slowly

varying’ denominatorNabwawb. For example,Nab

could be the(d+1)×(d+1) unit matrix in some ba-
sis, or the affine hyperplane normalizer

(0 0
0 I

)
, where

I is thed × d unit matrix2. If the plane passes ex-
actly through the mode of the point distribution, we
would expect its likelihood to depend only weakly
on its orientation: any plane passing right through
the observation should be about equally good as far
as the least squares error is concerned. Since the
denominator was chosen to be almost independent
of orientation, the numerator must also depend only
weakly on orientation. But this implies that the rate
of decay of the likelihood as the plane moves away
from the point isalsoindependent of orientation: the
only remaining parameter is a direction-independent
scalar peak width. However in general the point dis-
tribution is not spherically symmetric and the rate of
decay of the plane distribution ought to be different
in different directions. In summary, it is not possible
to have all three of:(i) an isotropic likelihoodat the
observation;(ii) an anisotropic decayaway fromthe
observation;(iii) an isotropic normalizerNab

. The
first two are essential to represent the data correctly,
so we are forced to deal with non-isotropic normal-
izersNab and hence (if the plane is being fitted to
several points) incommensurable distributions. This
is not simply a problem with the projective theory:
classical affine least squares also gives incommensu-
rable distributions for subspace fitting (e.g.orthogo-
nal regression). In fact, the projective point of view
makes the situation clearer by unifying the classi-
cally separate theories of point and plane fitting.

6.4 Normalization & Covariance

The above formulae for subspace log-unlikelihoods
are only correct up to an additive constant. The
modes (maximum likelihood values) of the subspace
distributions can be found directly from the un-
shifted information tensors, but if subspace covari-
ances are required the correct shift factors must be
estimated.

In fact, it is straightforward to show that the nor-
malization sumTrace(N ·M−1) for the subspace-
fitted-to-point distributions is always

(d
k

)
instead of

1. The reason is simply that even when the point dis-
tribution is narrow the resulting subspace distribu-
tion always has a

(d
k

)
dimensional modal (i.e. maxi-

mum likelihood) subspace inP [a0···ak ], correspond-
ing to the

(d
k

)
different ‘directions’ in which thek-

2This gives the conventional normalization for Euclidean
hyperplanes, with a constant offset and a unit direction vector.
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subspace can pass right through the centre of the
point distribution3.

SinceTrace(N ·M−1) =
(d
k

)
for the

(d+1
k+1

)
di-

mensional subspace information tensor, the approx-
imate shift equation predicts a normalizing shift of
M → M + (

(d
k

)
− 1) · N. However this approxi-

mation is not recommended as it is likely to be quite
inaccurate for such large shift factors. On the other
hand, whenever subspace-through-point likelihoods
from several points are combined, the resulting dis-
tribution tends to be much better localized because
the null directions from different points tend to can-
cel each other out, leaving a single reasonably well
defined mode. In this case (and modulo the usual
correction for the accumulation of the ‘1’s in the
(1 + χ2)’s) the shift factor required to normalize
the combined subspace distribution tends to be much
smaller.

The
(d+1
k+1

)
dimensional Grassmann parameteriza-

tion is global but redundant and it is often con-
venient to re-express the mode and covariance in
terms of some minimal local parameterization, say
zα whereα = 1, . . . , (d− k)(k + 1). Given Grass-
mann information and normalization matricesM
and N, the Grassmann mode can be found by the
usual minimum eigenvector procedure. The ex-
pressionua0···ak(zα) for the Grassmann parame-
terization in terms ofzα must then be inverted at
the Grassmann mode to find thezα-space mode.
(This may require the solution of nonlinear equa-
tions). Finally, thezα-space information matrix can
be found by evaluating the second derivatives of
1 +χ2 (ua0···ak(zα) |M,N) at thezα-space mode.

7 Fundamental Matrix Estimation

As another example of the use of projective least
squares, consider the problem [3, 1] of estimating
the fundamental matrix between two images from
a set of corresponding point pairs. Given any two
2D projective imagesPA andPA′ of a 3D scene

3The ‘directions’ of the modal subspace are generated by
the
(
d
k

)
choices ofk directionsua1 , . . . ,u

a
k among thed in any

hyperplane not passing through the point modex̂a. The cor-
respondingk-subspace is the span̂x[a0ua1

1 · · ·u
ak]
k . The

(
d
k

)
dimensional modal subspace intersects the(d − k)(k − 1) di-
mensional Grassmann variety ofk-subspaces (i.e. simple ten-
sors) in the(d− k)(k − 2) dimensional variety ofk-subspaces
throughx̂a.

taken from different positions, a pair{xA,xA′} of
image points corresponds to some 3D point if and
only if the epipolar constraint FAA′ xAxA

′
= 0

is satisfied, whereFAA′ is the3 × 3 rank 2funda-
mental matrix . The pointxA gives rise to a cor-
respondingepipolar line FAA′xA in the opposite
imagePA′ and all potentially matchingxA

′
lie on

this line. The epipolar lines all pass through a point
called theepipoleeA

′
. This is the image of the pro-

jection centre of the opposite camera and satisfies
FAA′eA

′
= 0. Similarly for xA

′
, FAA′xA

′
andeA.

We can estimateF from a set of correspond-
ing uncertain point pairs by viewing the epipolar
constraint from each pair as a single linear con-
straint onF. Intuitively, the smaller the deviations
|FAA′xAxA

′ | are, the better the fit will be, but we
want to make this into a more rigorous approximate
maximum likelihood estimate. The situation is anal-
ogous to that of hyperplane estimation:FAA′ can
be viewed as defining a projective hyperplane in the
3 × 3 − 1 = 8 dimensional projective space of ten-
sorsPAA′ , and the data can be mapped bilinearly
into this space via{xA,xA′} → xAxA

′
. In fact,

it turns out that we can re-use our projective least
squares equations for hyperplanes.

Suppose that the uncertainties in the positions
of xA and xA

′
can be modelled by independent

normalized biquadric distributions{MAB ,NAB}
and {MA′B′ ,NA′B′} with covariancesXAB =
(M−1)AB andXA′B′ = (M−1)A

′B′ . Since the dis-
tributions are independent their moments can be fac-
torized. In particular〈

(xAxA
′
)(xBxB

′
)

(NCDNC′D′)(xCxC′)(xDxD′)

〉

=

〈
xAxB

NCDxCxD
· xA

′
xB
′

NC′D′xC
′xD′

〉

=

〈
xAxB

NCDxCxD

〉
·
〈

xA
′
xB
′

NC′D′xC
′xD′

〉

= XAB XA′B′

Viewing MABMA′B′ , NABNA′B′ andXABXA′B′

as 9 × 9 homogeneous symmetric matrices on
the 8 dimensional projective spacePAA′ , we
have NABNA′B′ · XABXA′B′ = 1 and (since
XABXA′B′ ·MBCMB′C′ = δACδ

A′
C′ is the identity

operator onPAA′) XABXA′B′ = (MABMA′B′)−1.
So rather remarkably,MABMA′B′ andNABNA′B′
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define a correctly shifted biquadric distribution with
covariance XABXA′B′ on PAA′ , that correctly
models the uncertainty of the tensor-product image
point xAxA

′
to second order. This is notwithstand-

ing the fact that the space of all possiblexAxA
′

is
only a 4 dimensional quadratic subvariety of the 8
dimensional projective tensor spacePAA′ . Since
the epipolar constraintFAA′xAxA

′
= 0 defines a

projective hyperplane inPAA′ and we know how to
fit projective hyperplanes to points, we can immedi-
ately write down the log-unlikelihood ofF givenxA

andxA
′
:

1 + χ2(FAA′ |xA,xA
′
)

+const≈

XABXA′B′ FAA′FBB′(
XCDXC′D′ − (XNX)CD(X′N′X′)C

′D′
)
·

·FCC′FDD′

Writing the information and normalization tensors
as 9 × 9 symmetric matrices on the 9 dimen-
sional space of components ofF, the biquadric log-
unlikelihoods for different point pairs can be com-
bined in the usual way. As in the hyperplane case,
they are always incommensurable so nonlinear tech-
niques are required.

If both of the points have affine distributions, con-
verting to 3 × 3 matrix notation and denoting the
homogeneous mean

(1
x̄

)
by x̂ and the homogeneous

affine covariance
(0 0
0 X̄

)
by X̂, we can re-express this

as follows:

χ2(F | x̂, X̂, x̂′, X̂′) +const=

(x̂>Fx̂′)2

x̂>FX̂′F>x̂ + x̂′>F>X̂Fx′ + Trace(FX̂′F>X̂)

This formula can also be derived by classi-
cal maximum likelihood calculations. The term
Trace

(
FX̂′F>X̂

)
is second order in the uncer-

tainty and is often ignored relative to the first or-
der terms: with this approximation the formula has
been used for nonlinear estimation of the fundamen-
tal matrix with good results [3]. Roughly, it says that
the ‘primitive’ error measure(x̂′>Fx̂)2 needs to be
normalized by dividing by the sum of the variance
of each measured point orthogonal to the opposite
epipolar line. When one or both of the measured
points lie near an epipole, the second order trace
term is sometimes significant relative to the other
terms and tends to have a stabilizing effect on the fit,

so it should probably not be omitted if the epipoles
lie within the images (e.g.frontal motion).

8 Discussion & Future Work

The results we have presented are obviously still
at the theoretical level and it remains to be seen
how useful projective least squares will turn out to
be in practice. However, it is becoming clear that
error modelling will become a central issue in vi-
sual reconstruction, not only to ensure the accuracy
of the final results, but also because the efficiency
of intermediate stages such as correspondence and
database indexing depends critically on the uncer-
tainties involved. Given that projective least squares
is both ‘projectively correct’ and relatively tractable
(notwithstanding the length of some of the equations
we have written), it seems likely that it will have a
part to play in all this.

On the technical level there are still many loose
ends. Analytical work is needed to clarify the sta-
tus of the two approximations made in deriving
the basic error model, and the development of a
‘central moment expansion’ based on the homoge-
neous Taylor series could be mathematically fruitful.
More practically it would be useful to have projec-
tive least squares methods for quadrics and higher
order projective varieties, and for further types of
subspace-subspace intersection and union (e.g. in-
tersection of subspaces at a point). It is also unclear
how to extend the fundamental matrix estimation
model to the trilinear and quadrilinear constraints
that exist when there are additional images [6, 7, 9].
Although the relation between the multilinear data
tensorsxAixAj · · · xAk and the corresponding con-
straint tensor is still linear, it is no longer a simple
scalar and it is not yet clear how to capture it cor-
rectly in a projective least squares error model.
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Abstract

We investigate the motions that lead to ambiguous Eu-
clidean scene reconstructions under several common cali-
bration constraints, giving a complete description of such
critical motionsfor: (i) internally calibrated orthographic
and perspective cameras; (ii ) in two images, for cam-
eras with unknown focal lengths, either different or equal.
One aim of the work was to evaluate the potential of mod-
ern algebraic geometry tools for rigorously proving prop-
erties of vision algorithms, so we use ideal-theoretic cal-
culations as well as classical algebra and geometry. We
also present numerical experiments showing the effects
of near-critical configurations for the varying and fixed
focal length methods.
Keywords: structure from motion, critical motions, au-
tocalibration, algebraic geometry.

1 Introduction

‘Structure from Motion’ (SFM) is the problem of
recovering 3D scene geometry from several im-
ages. Using projective image measurements, it is
only possible to recover structure, camera poses
(‘motion’) and camera internal parameters (‘calibra-
tions’) up to an unknown 3D projectivity [8, 5]. With
additional scene, motion or calibration constraints,
one can reduce the ambiguity to a Euclidean simi-
larity [13, 4, 12, 7].Autocalibration is the recovery
of Euclidean structure, motion and calibration us-
ing partial (often qualitative) constraints on the cam-
era calibrations,e.g.vanishing skew or equal focal
lengths between images. It is useful because cam-
eras often obey such constraints rather well, whereas

This paper appeared in CVPR’99. The work was supported by
Esprit LTR project CUMULI.

— especially for hand-held cameras viewing un-
known scenes — motion or structure assumptions
are often rather dubious. Unfortunately, most au-
tocalibration methods have situations in which they
fail or are exceptionally weak. Practically, it is im-
portant to characterize and avoid thesecritical sets.
Criticality is often independent of the specific cam-
era calibrations, in which case we speak ofcritical
motions.

‘Classical’ autocalibration assumes a moving pro-
jective camera with constant but unknown intrin-
sic parameters [4, 18, 1, 23, 17]. Sturm [19, 20]
categorizes both the intrinsic and some algorithm-
specific critical motions for this. The uniformity
of the constraints makes this case relatively sim-
ple to analyze. But it is also somewhat unrealistic:
it is often reasonable,e.g. to assume that the con-
stant skew actually vanishes (a stronger constraint),
whereas focal length often varies between images (a
weaker constraint). Also, although he characterizes
the degeneracies fully, Sturm only manages to give a
rather implicit description of the corresponding crit-
ical motions. For practical purposes a more explicit
description would be useful.

This paper derives explicit critical motions for Eu-
clidean SFM under several simple two image ‘un-
known focal length’ calibration constraints [6, 16,
24, 2, 9]. However, we start by giving a complete
description of criticality forknowncalibrations, for
both perspective and orthographic cameras in mul-
tiple images. Although this analysis does not result
in any new ambiguities, it rules out the possibility of
any further unknown ones.

A second goal of our work — one aspect of our
European project CUMULI — was to investigate the
use of formal algebraic reasoning tools to deduce
rigorous properties of vision algorithms. Sturm [19]
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relies mainly on geometric intuition. This is un-
reliable in our less symmetrical situation and we
have used a mixture of geometry, classical algebra,
and ideal-theoretic algebraic geometry calculations
(Gröbner bases, ideal quotient, radical and decom-
position) in MAPLE and MACAULAY 2. However
we will focus on giving geometric interpretations of
our algebraic results whenever possible.

We consider only autocalibration degeneracies:
scene and motion constraints are explicitly excluded
from consideration. Also, for both projective and
Euclidean reconstruction there are certain scene ge-
ometries for which SFM is inherently ambiguous
[12, 15, 11, 10]. We exclude suchcritical sur-
facesby assuming that the scene is generic enough
to allow unambiguous recovery of projective struc-
ture. Hence,criticality occurs iff the calibration
constraints admit alternative Euclidean ‘interpreta-
tions’ of the given projective structure.

2 Background

Image projection: We assume familiarity with the
modern projective formulation of vision geometry
[3, 12, 23]. A perspective (pinhole) camerais
modeled in homogeneous coordinates by the projec-
tion equationx ' PX whereX = (X,Y,Z,W)> is a
3D world point,x = (x,y,z)> is its 2D image andP is
the 3×4 cameraprojection matrix . In a Euclidean
frameP can be decomposed

P = K R(I3×3|− t) K =
(

f f s u0
0 f a v0
0 0 1

)
into a rotationR and translationt encoding the cam-
era’s 3D pose (extrinsic parameters), and a 3× 3
upper triangularcalibration matrix K encoding its
internal geometry. Here,f is thefocal length, a the
aspect ratio, s the skew and(u0,v0) the principal
point.

Absolute Conic: Projective geometry encodes
only collinearity and incidence. Affine structure
(parallelism) is encoded projectively by singling out
a plane at infinity Π∞ of direction vectors or
points at infinity , and Euclidean (similarity) struc-
ture by a proper virtual conic onΠ∞. This abso-
lute conic Ω∞ gives dot products between direction
vectors. Its dual, thedual absolute conicΩ∗∞, gives
those between plane normals.Ω∗∞ is a 4×4 symmet-
ric rank 3 positive semidefinite contravariant matrix.

Ω∗∞ = diag(1,1,1,0) in any Euclidean frame.Π∞
is Ω∗∞’s unique null vector:Ω∗∞ Π∞ = 0. Ω∗∞’s im-
age projection isω∗∞ ≡ PΩ∗∞ P> = K K>, a dual im-
age conic that encodes the camera calibration.K is
recoverable fromω∗∞ or its dual image point conic
ω∞ = ω∗∞

−1 by Cholesky factorization.ω∗∞ andω∞
are proper virtual (positive definite) so long as the
camera centre is finite. In calibrated image coordi-
natesK = I , ω∗∞ = ω∞ = I . We often use the abbrevi-
ations (D)(I)AC for (Dual)(Image)AbsoluteConic.

False absolute conics: Given only a 3D pro-
jective reconstruction derived from uncalibrated im-
ages, the true absolute conicΩ∞ is not distinguished
in any way from any other proper virtual planar
conic in projective space. In fact, given any such
conic Ω∗, it is easy to find a ‘rectifying’ projective
transformation that converts it to the Euclidean DAC
form Ω∗∞ = diag(1,1,1,0) and hence defines a false
Euclidean structure. To recover the true structure,
we need constraints that single out the trueΩ∞ and
Π∞ from all possible ‘false’ ones. In this paper we
will constrain only the camera intrinsic parameters
Ki, or equivalently the images of the true absolute
conicω∗∞ i = Ki K>i . The constraints may apply to in-
dividual image conics (e.g.vanishing skews = 0),
or link them as a group (e.g.equal but unknown fo-
cal lengthsfi = f for all i). Ambiguity arises only if
some non-absolute conic and its images satisfy the
constraints. We call such conicspotential or false
absolute conics. They correspond one-to-one with
possible false Euclidean structures for the scene.Ω
denotes a potential 3D absolute conic,Ω∗ its dual,
ω its image andω∗ its dual image. True absolute
conics are denotedΩ∞,Ω∗∞,ω∞,ω∗∞.

Affine camera: A camera whose optical plane
coincides withΠ∞ is affine [14]. This is a good
approximation for distant (and therefore large focal
length) cameras viewing small objects. All visual
rays except those onΠ∞ become parallel and the
dual image absolute conicω∗∞ degenerates to rank
2. An orthographic camera is a calibrated affine
one and hasω∗∞ = diag(1,1,0).

Kruppa constraints: Given image conics in sev-
eral images, there may or may not be a 3D quadric
having them as image projections. Constraints
which guarantee this in two images are called
Kruppa constraints. Any proper image conic is
tangent to exactly two epipolar lines (possibly com-
plex and/or coincident). It turns out [12, 3, 24] that
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Figure 1: Intersecting the visual cones of two image con-
ics satisfying the Kruppa constraints generates a pair of
3D conics.

there is a corresponding 3D quadric iff the tangent
lines in the two images are in epipolar correspon-
dence (see fig. 1). In fact, for non-coincident im-
age centres and proper image conics satisfying the
Kruppa constraints, there is always a linear one pa-
rameter family of 3D dual quadrics with these im-
ages. This family contains exactly two planar (rank
3) dual quadrics, and also the rank 2 one defined
by (the symmetric outer product of) the two camera
centres. If the image conics are virtual, the planar
3D quadrics are too and hence can serve as potential
absolute conics. Thus:In two images with distinct fi-
nite centres, a pair of proper virtual conics defines a
potential 3D absolute conic iff it satisfies the Kruppa
constraints, and in this case it always defines exactly
two potential 3D absolute conics1.

The Kruppa constraints have several algebraic
formulations [12, 3, 24]. Below we will use the fol-
lowing 3×3 symmetric rank 2 matrix version link-
ing the two dual image conics, the fundamental ma-
trix and one epipole:

F>ω∗2 F ' [e]×ω∗1 [e]>×

This vanishes when dotted with the epipole and only
holds up to scale, so it gives only two independent
constraints.

1With more than two images the situation is more delicate
and the pairwise Kruppa constraints arenot always sufficient to
guarantee the existence of a corresponding 3D quadric.

3 Approach

We want to explicitly characterize thecritical mo-
tions (relative camera placements) for which par-
ticular calibration constraints are insufficient to
uniquely determine Euclidean 3D structure. We as-
sume that projective structure is available. Alter-
native Euclidean structures correspond one-to-one
with possible locations for the absolute conic in the
projective reconstruction. Any proper virtual pro-
jective plane conic is potentially absolute, so we
look for such conicsΩ whose images also satisfy
the given calibration constraints. There is ambiguity
iff more than one such conic exists. We wantEu-
clideancritical motions, so we work in a Euclidean
frame where the true absolute conicΩ∞ has its stan-
dard coordinates.

Several general properties help to simplify the
problem:
Calibration invariance: The calibration constraints
we use assert either equality between images, or
that certain parameters have their ‘calibrated’ val-
ues( f ,a,s,u,v) = (1,1,0,0,0). They are satisfied
for a set of cameras iff they are also satisfied when
each image is premultiplied by its true inverse cal-
ibration K−1

i . Hence, we are free to assume that
each camera is actually calibrated,Ki = I . The only
difference from the fully calibrated case is that our
weaker knowledge does not allow every false conic
with ω∗i 6= I to be excluded outright.
Rotation invariance: For known-calibrated cam-
erasω∗∞ = I , the image of any false AC must be iden-
tical to the image of the true one which is invariant to
camera rotations. Hence,criticality depends only on
the camera centres, not on their orientations. More
generally, any camera rotation that leaves the cali-
bration constraints intact is irrelevant. For example,
arbitrary rotations about the optical axis and 180◦

flips about any axis in the optical plane are irrelevant
if (a,s) is either(1,0) or unconstrained, and(u0,v0)
is either(0,0) or unconstrained.
Translation invariance: For true or false absolute
conics on the plane at infinity, translations are irrel-
evant so criticality depends only on camera orienta-
tion.

In essence, Euclidean structure recovery in pro-
jective space is a matter of parametrizing all of
the possible proper virtual plane conics, then using
the calibration constraints on their images to alge-
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braically eliminate parameters until only the unique
true absolute conic remains. More abstractly, ifC
parametrizes the possible conics andX the camera
geometries, the constraints cut out some algebraic
variety in(C,X) space. A constraint set is useful for
Euclidean SFM only if this variety generically inter-
sects the subspacesX = X0 in one (or at most a few)
points(C,X0), as each such intersection represents
an alternative Euclidean structure for the reconstruc-
tion from that camera geometry. A set of camera
posesX is critical for the constraints if it has excep-
tionally (e.g.infinitely) many intersections.

For elimination calculations, algebraic varieties
are described byideals (the sets of polynomi-
als that vanish on them), which in turn are char-
acterized by certain ‘exhaustive’ polynomial sets
called Gröbner bases. Varieties can also bede-
composedinto irreducible components — a gen-
eralization of polynomial factorization that we of-
ten use as an aid to interpreting results. These
are all ‘standard’ algebraic geometry calculations
available in specialized tools like MACAULAY 2
(http://www.math.uiuc.edu/Macaulay2/) and SIN-
GULAR, and in slightly less powerful form in general
systems like MAPLE.

Potential absolute conics can be represented in
several ways. The following parametrizations have
all proven relatively tractable:
(i) Choose a Euclidean frame in whichΩ∗ is diago-
nal, and express all camera poses w.r.t. this [19, 20].
This is symmetrical w.r.t. all the images and usu-
ally gives the simplest equations, but in a frame
that changes asΩ∗ does. To find explicit criti-
cal motions, one must revert to camera-based co-
ordinates which is sometimes delicate. The finite
and Π∞ cases must also be treated separately,e.g.
Ω∗ = diag(c1,c2,c3,c4) with eitherc3 or c4 zero.
(ii ) Work in the first camera frame, encodingΩ∗
by its first imageω∗1 and supporting plane(n>,1).
Subsequent imagesω∗i ' H i ω∗1 H>i are given by
the inter-image homographiesH i = Ri + ti n> where
(Ri|− ti) is theith camera pose. The output is in the
first camera frame and remains well-defined even if
the conic tends to infinity, but the algebra required is
significantly heavier.
(iii ) ParametrizeΩ∗ implicitly by two imagesω∗1, ω∗2
subject to the Kruppa constraints. In the 2 image
case this approach is both relatively simple and rig-
orous — as above, two proper virtual dual image

conics satisfy the Kruppa constraints iff they define
a (pair of) corresponding 3D potential absolute con-
ics — but it does not extend so easily to multiple
images.

4 Calibrated Cameras

We start with fully calibrated perspective cameras:

Theorem 4.1 Given projective structure and cali-
brated perspective cameras at m≥ 3 distinct finite
camera centres, Euclidean structure can always be
recovered uniquely. With m= 2distinct centres there
is always exactly a 2-fold ambiguity corresponding
to a ‘twisted pair’.

Proof: The camera orientations are irrelevant be-
cause any false absolute conic has the same rota-
tion invariant images as the true one. Assuming that
K = I does not change the critical motions. Cal-
ibrated cameras never admit false absolute conics
on Π∞, as the (known) visual cone of each cam-
era intersectsΠ∞ in a unique conic, which is the
true AC. Given a finite false AC, work in a frame
in which it is diagonal and supported on thez =
0 plane: Ω∗ ≡ diag(c1,c2,0,c4). Since the cam-
eras are calibrated and their orientations are irrele-
vant, the conic projection in each camera becomes
(I |− t)Ω∗ (I |− t)> ' I . It is easy to show that the
only solutions to this areΩ∗ ' diag(1,1,0,1/z2) and
t± = (0,0,±z)> for somez> 0. Hence, ambiguity
implies that there are at most two camera centres,
and the false AC is a circle of imaginary radiusiz,
centred in the plane bisecting the two centres.

This two-fold ambiguity corresponds exactly to
the well-knowntwisted pair duality [11, 10, 15],
where one of the cameras is rotated by 180◦ around
the axis joining their two centres. The improper self-
inverse projective transformation

T =

(
1 0 0 0
0 1 0 0
0 0 0 z
0 0 1/z 0

)

interchanges the true and false DACsT Ω∗T> 'Ω∗∞
and takes the projection matricesP± = R± (I |− t±)
to P−T−1 = P− and P+T−1 = −P+U whereU =
diag(−1,−1,1,1) is a 180◦ twisted pair rotation
about thez axis. The ‘twist’ T represents a very
strong projective deformation which cuts the scene
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in half, moving the plane between the cameras to in-
finity. By considering twistedvs.non-twisted optical
ray intersections, one can also show that it reverses
the relative signs of the projective depths [21] of
each correspondence,e.g.as recovered by the equa-
tion λ1 Fx1 = λ2(e∧x2). Moreover,anyproper vir-
tual Kruppa geometry (fig. 1) has such a ‘twisted
pair’ projective involution symmetry, socalibrated
or not, two image Euclidean structures always oc-
cur in twisted pairs. However the twist is a simple
180◦ rotation only for axisymmetric DIACs.

Theorem 4.2 Given projective structure and m≥ 3
scaled orthographic cameras with distinct projec-
tive centres (i.e. viewing directions, with diametri-
cally opposite ones identified), Euclidean structure
can always be recovered uniquely. With only m= 2
distinct centres there is a one parameter family of
possible structures corresponding to the bas relief
ambiguity [11, 10, 15, 22].

Proof: Choose coordinates in which camera 1 has
orientationR1 = I . Orthographic and affine cam-
eras haveΠ∞ as their optical planes, soΠ∞ is known
and any potential AC must lie on it. Potential DACs
have the formΩ∗ =

( C 0
0> 0

)
for symmetric 3× 3

C. The orthographic calibration constraint is that
UCU> ' diag(1,1) whereU is the first two rows
of R. In image 1 this givesC11−C22 = C12 = 0 and
two analogous constraints in image 2. Representing
R2 by a quaternionq and eliminatingC11 between
these constraints gives

((q0q1 + q2q3)C13+ (q0q2−q1q3)C23) ·
· (q2

0 + q2
3)(q2

1 + q2
2) = 0

This must hold for any motion satisfying the con-
straints. The first two terms correspond to opti-
cal axis rotations and 180◦ flips that leave the op-
tical centre fixed, and are therefore excluded by
the statement. Solving forC in terms of q us-
ing the final term gives a linear family of solutions
C'α I +β(o1 o>2 +o2 o>1 ) whereo1 = (0,0,1)> and
o2 = (the third row ofR) are the optical centres, and
(α,β) are arbitrary parameters. GivenI and any
false DAC C 6' I , we can uniquely recover the fam-
ily and its two camera centres (the three rank 2 mem-
bers of the family each decompose into point pairs,
but only one of these is real). Since each family en-
codes its centres, families with distinct centres never

coincide. By linearity, they therefore intersect in at
most one conic. All families intersect in the true
DAC C = I , so no other intersection is possible.I.e.
false structures are impossible for orthographic im-
ages from≥ 3 distinct centres. That the one param-
eter ambiguity for two cameras corresponds to the
bas relief ‘flattening’ is well known [11, 10, 15, 22].

Two image orthographic absolute conic geome-
try is easily understood in terms of the Kruppa con-
straints. These are well behaved as the cameras tend
to infinity, and hence still define a one parameter
family of dual quadrics. However as the cameras
recede and their focal length increases, their DIACs
become progressively flatter and this constrains the
3D family to be flatter too, until in the limit all mem-
bers of the family become infinitely flat rank 3 disk
quadrics squashed ontoΠ∞.

5 Focal Lengths from 2 Images

For two cameras, projective geometry is encapsu-
lated in the 7 d.o.f. fundamental matrix, and Eu-
clidean geometry in the 5 d.o.f. essential matrix.
Hence, from 2 projective images we might hope to
estimate Euclidean structure plus two additional cal-
ibration parameters. Hartley [6] gave a method for
the case where the only unknown calibration pa-
rameters are the focal lengths of the two cameras.
This was later elaborated by Newsamet.al.[16], and
Zeller & Faugeras and Bougnoux [24, 2]. Hippisley-
Cox & Porrill [9] give a related method for equal
but unknown focal lengths and aspect ratios. All
of these methods are Kruppa-based. We will give
a unified presentation and derive the critical motions
for the Hartley-Newsam-Bougnoux (unequalf ) and
Newsam (equalf ) case.

Suppose that we can write all pairs of dual im-
age conics satisfying the calibration constraints as a
parametric family(ω∗1(λ), ω∗2(λ)). As they already
obey the calibration constraints, pairs of nonsingu-
lar conics in this family represent possible 3D ab-
solute conics iff they also satisfy the Kruppa con-
straints, F>ω∗2(λ)F = µ[e]×ω∗1(λ) [e]>× for some
scalarµ. Solving these equations forλ,µ gives the
possible image DIACs and hence 3D absolute con-
ics. If ω∗i (λ) are linear in their parametersλ, the
system is bilinear inλ,µ. In particular, for zero skew
and known principal pointpi , ω∗i (λ) is linear in f 2

i
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and(ai fi)2. For knownai and unconstrainedfi , this
gives fully linear equations inµ f2

1 , µ and f 2
2 :

F>
(

f 2
2 D + p2p>2

)
F

= [e]×
(

(µ f2
2 )D + µp1p>1

)
[e]>×

whereD ≡ diag(1,1,0). Writing the 3×3 symmet-
ric rank 2 matricesF>DF , . . . , [e]× p1 p>1 [e]>× as
6 vectors gives a 6× 4 rank 3 homogeneous linear
systemM6×4( f 2

2 , 1, µ f2
1 , µ)> = 0. This can easily

be solved forµ, f1, f2. There are multiple solutions
for fi — and hence ambiguous Euclidean structures
— iff the coefficient matrixM6×4 has rank≤ 2. We
will study this case below. Newsamet.al. [16] use
the SVD ofF to project 3 independent rows out of
this system. Bougnoux [2] uses properties of funda-
mental matrices to solve it in closed form:

f 2
2 = −(p>2 FD [e]×p1) (p>2 Fp1)

p>1 F>DFD [e]×p1

If the focal lengths are known to be equal,f1 =
f2 = f , the system takes the formM6×2(µ)

(
f 2

1

)
= 0

where M6×2(µ) is linear in µ and generically has
rank 2. This system has a nontrivial solution iff all
of its 2×2 minors vanish — a set of quadratic con-
straints onµ. If the focal lengths really are equal,
at most two of these quadratics are linearly indepen-
dent and we can generically eliminate theµ2 term
between them, solve linearly forµ, substitute into
M6×2 (which then has rank 1) and solve uniquely for
f 2. This fails iff all of the quadratics are: (i) propor-
tional — in which case the single quadratic gives ex-
actly two possible solutions forµ and f ; (ii ) zero —
in which caseM6×2 = 0 and anyf is possible. We
will return to these cases below. Finally (c.f. [9]),
equal but unknown aspect ratios and focal lengths
a1 = a2 = a, f1 = f2 = f , give a 6×3 rank 3 system
M6×3(µ)( f 2,(a f)2,1)> = 0, which has a solution
iff the determinant of any of its nontrivial 3×3 mi-
nors vanishes — a single cubic inµ, giving at most
3 solutions forµ, f , a.

Now consider the critical motions of the above
methods. Assume finitea, f andt 6= 0.

Theorem 5.1 For the known a, unequal f problem,
the critical motions for the Hartley, Newsam and
Bougnoux methods are all identical and intrinsic to
any method for this problem. In fact, they are exactly

the two evident singularities of Bougnoux’ equa-
tions: (i) p>2 Fp1 = 0 and (ii ) p>2 FD [e]×p1 = 0.

Case (i) occurs when the principal points are in
epipolar correspondence,i.e. the optical axes inter-
sect. (ii ) occurs whenever the pointD [e]×p1 on the
line at infinity in the first camera lies on the epipolar
line F>p2 of the other principal point. This con-
dition is actually symmetric between the images. If
p1 = p2 = (0,0,1)>, (ii ) occurs wheneverF>p2 con-
tains the direction orthogonal to the epipolar line
[e]×p1, i.e. whenever the epipolar plane of optical
axisp1 is orthogonalto that of axisp2 [16]. If either
principal point coincides with an epipole, both (i)
and (ii ) apply and a second order singularity occurs.

Theorem 5.2 For the known a equal f problem,
there is a unique solution for f everywhere outside
the critical variety of the unequal f method. On
this variety there are generically exactly two solu-
tions corresponding to the two roots of the single
surviving quadratic in µ. Both solutions may be
real, or one may be imaginary ( f2 < 0). There
are more than two real solutions (in fact any f is
possible) only on the following subvarieties of the
corresponding-principal-point varietyp>2 Fp1 = 0,
where (R(q), t) is the relative pose of the second
camera with quaternionq:
(i) t3q2− t2q3 + t1q0 = 0 and t3q1− t1q3− t2q0 = 0
(ii ) t1q1 + t2q2 + t3q3 = 0 and t2q1− t1q2 + t3q0 = 0
(iii ) q1 = 0 and q2 = 0
(iv) q3 = 0 and q0 = 0

Each of these subvarieties has codimension 2 in the
space of all motions, and codimension 1 in the cor-
responding principal point variety. (iii ) and (iv) cor-
respond to parallel optical axes (axis rotations, and
180◦ flips about any axis in the optical plane, plus
arbitrary translation). (ii ) requires both planar mo-
tion q · t = 0 and corresponding principal points. The
intersection of these two varieties has two compo-
nents: (a) arbitrary planar motions when the optical
axes lie in the plane (e.g.a driving car with forwards-
pointing camera), and (b) ‘turntable rotations’ about
the intersection point of the two optical axes, when
these do not lie in the plane. Subvariety (ii ) corre-
sponds to case (b). Case (a) has two solutions forf
but is generically nonsingular.

The above results are straightforward but fairly
heavy to prove using the automated algebraic tools
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Figure 2: Relative errors in quasi-linearf and bundle-
based 3D structurevs.camera elevation, for unequal and
equal f methods.

we are studying here. (Newsamet.al. [16] — a ref-
erence we were unaware of while completing this
work — give a fairly simple SVD-based proof for
their unequal f method, but an incomplete result
for the equalf one). Since we were initially scep-
tical that the general Kruppa approach and Boug-
noux’ detailed manipulations [2] introduced no spu-
rious ambiguities, we proved the results twice: once
in a fundamental matrix / Kruppa constraint based
parametrization, and once in an image conic / plane
homography based one. In each case, given the
parametrization we can more or less mechanically
calculate and decompose the variety on which the
constraints degenerate using MACAULAY 2. The
calculations are ‘routine’, although the homography
based ones are near the limits of the current system.

6 Experiments

We have performed some synthetic experiments to
evaluate the effects of critical motions. We will fo-
cus on the question of how far from critical two
cameras must be to get reasonable estimates of fo-
cal length and Euclidean 3D structure. The first ex-
periment studies the unequalf case, the second the
equal f one. For both experiments, two unit fo-
cal length perspective cameras view 25 points dis-
tributed uniformly within the unit sphere. Gaus-
sian noise of 1 pixel standard deviation was added
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Figure 3: Errors in quasi-linear and bundle-basedf , and
3D structure with unknown and knownf , for equal f
methods.

to the 512× 512 images. For each pose, an opti-
mal projective structure and fundamental matrix is
estimated by projective bundle adjustment, the fo-
cal length(s) are estimated quasi-linearly as above,
Euclidean bundle adjustment is applied to get Eu-
clidean structure, and the resulting 3D error is calcu-
lated by Euclidean alignment. Means over 100 trials
are shown. The Bougnoux and Newsam unequalf
methods give essentially identical results: only the
latter is plotted.

In the first experiment, cameras at(−2,−2,0) and
(2,−2,0) focus on the origin. Their elevation an-
gles are then varied, upwards for the left camera
and downwards for the right one, so that their op-
tical axes are skewed and no longer meet. Quasi-
linear focal lengths and bundle adjusted Euclidean
structures are estimated, both with and without the
equal f constraint. Fig. 2 shows the resulting RMS
errors as a function of elevation angle. At zero el-
evation, the optical axes intersect and the cameras
are equidistant from this intersection, so both equal
and unequalf methods are critical. This can be seen
clearly in the graphs. The unequalf method also
breaks down when the epipolar planes of the optical
axes become orthogonal at around 35◦ elevation —
the second component of the unequalf critical va-
riety, but non-critical for the equalf method. For
geometries more than about 5-10◦ from criticality,
the unequal and equalf bundles both give results
very similar to the optimal 3D structure obtained



180 Annexe A. Autres papiers

with knowncalibration.
In the second experiment, cameras at(−1,−2,0)

and(1,−2,0) focus on the origin, then the left cam-
era is rotated so that its optical axis sweeps the world
planez = 0. This is always critical for the unequal
f method and the equalf one always gives two pos-
sible solutions. But in these trials, one is always
tiny or imaginary and can safely be discarded. In
fig. 3, the upper graph compares the quasi-linear
equal f result with that obtained after optimal equal
f bundle adjustment. The lower graph compares
the structures obtained with equalf and known-
calibration bundle adjustments. At rotation angles
of around−27◦ the camera axes are parallel, and at
around+27◦ their intersection is equidistant from
both cameras. These are intrinsic equalf degen-
eracies, clearly visible in the graphs. Moving about
5-10◦ from criticality suffices to ensure reasonably
accurate focal lengths and Euclidean structure.

7 Conclusions

We have explicitly described the critical motions for
a number of simple calibration constraints, ranging
from unknown focal lengths to fully calibrated cam-
eras. Numerical experiments studying the effects of
near-critical configurations were also presented.

One of our aims was to see what could be
achieved in vision with formal ideal-theoretic cal-
culations. It is clear that although automated tools
for this (MACAULAY 2, SINGULAR, COCOA) have
progressed significantly in recent years, they can not
yet replace geometric intuition. Even when a cal-
culation terminates — and the ‘ceiling’ for this is
still frustratingly low — the geometric interpreta-
tion of the results remains a difficult ‘inverse prob-
lem’. However when it comes to rigorously proving
formal properties of systems of equations we have
found these tools a powerful computational aid and
a good deal more reliable than ‘proof by intuition’.
Hence, we feel that these methods do have a place
in vision, particularly for studying singularities of
simple algebraic (auto)calibration and camera pose
methods.

We are currently investigating critical motions
where even less is known about the calibration,e.g.
cameras having zero skew and unit aspect ratio, but
with the other parameters unknown and possibly
varying.
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Abstract

We describe two direct quasilinear methods for camera
pose (absolute orientation) and calibration from a single
image of 4 or 5 known 3D points. They generalize the 6
point ‘Direct Linear Transform’ method by incorporating
partial prior camera knowledge, while still allowing some
unknown calibration parameters to be recovered. Only
linear algebra is required, the solution is unique in non-
degenerate cases, and additional points can be included
for improved stability. Both methods fail for coplanar
points, but we give an experimental eigendecomposition
based one that handles both planar and nonplanar cases.
Our methods use recent polynomial solving technology,
and we give a brief summary of this. One of our aims was
to try to understand the numerical behaviour of modern
polynomial solvers on some relatively simple test cases,
with a view to other vision applications.

Keywords: Camera Pose & Calibration, Direct Linear
Transform, Polynomial Solving, Multiresultants, Eigen-
systems.

1 Introduction

This paper describes two quasilinear methods for
camera pose (absolute orientation) and calibration
from a single image of 4 or 5 known 3D points. The
methods are ‘direct’ (non-iterative) and quasilinear,
so: (i) only linear algebra is required; (ii ) they give
a unique solution in non-degenerate cases; (iii ) ad-
ditional points are easily included to improve stabil-
ity; and (iv) all points are on an equal footing. The
classical ‘Direct Linear Transform’ (DLT) [1, 16]
recovers the 5 internal and 6 pose parameters of a
fully projective camera from the images of 6 known
3D points. The new methods are analogous to the
DLT, but adopt more restrictive calibration models
so that: (i) the minimum number of points required

This paper appeared in ICCV’99. The work was supported by
Esprit LTR project CUMULI. I would like to thank Peter Sturm
for comments.

is reduced to 4 or 5; (ii ) the results for a given num-
ber of points are (at least potentially) more stable,
as there is more prior knowledge and hence fewer
unknowns to estimate from the input data. The im-
plemented ‘4 point’ method assumes that the focal
length f is the only unknown calibration parame-
ter, the ‘5 point’ one that the unknowns are focal
lengthf and principal point(u0, v0). Other one (4
point) or three (5 point) parameter linear calibration
models could easily be implemented using the same
techniques. There are also associated multi-solution
methods capable of handling one additional calibra-
tion parameter apiece: at most24 = 16 solutions
for pose plus 2 calibration parameters in the 4 point
case,42 = 16 for 4 in the 5 point one. We will
not consider these here as they yield too many solu-
tions to be practically useful, and numerical stability
is likely to be poor. However wewill consider a re-
lated modification of the quasilinear 4 point method,
which has fewer degeneracies but which may return
2 or at most 4 solutions.

Notation: X denotes 3D points andx image ones.
We use homogeneous coordinates and the full pro-
jective camera modelP = K R(I | − t) where: P
is the camera’s3× 4 projection matrix; the rotation
R and translationt give its orientation and position;

andK =
(
a s u0
0 1 v0

0 0 1/f

)
is its internal calibration ma-

trix. The calibration parametersf, a, s, (u0, v0) are
calledeffective focal length, aspect ratio, skewand
normalized principal point. Numerically, we will
assume well-normalized image coordinates based
on some nominal focal length and principal point
(e.g. the image centre). Fixed parameters are as-
sumed to have their nominal values(a, s, u0, v0) =
(1, 0, 0, 0).

Rationale & Existing Work: Our methods use
some prior calibration knowledge, and are best seen
as intermediate between classical 3–4 point pose-

183
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with-known-calibration algorithms [16, 8, 15], and
≥ 6 point DLT-like ones which assume completely
unknown calibration [1, 16]. They were motivated
mainly by the need for approximate camera pose +
calibration to initialize bundle adjustment in close
range industrial photogrammetry problems. User
convenience dictates the use of as few reference
points as possible: accurate 3D references are trou-
blesome and expensive to acquire and maintain, and
application constraints often mean that only a few
points are visible from any given location. As the
bundle adjustment can correct quite a lot of residual
error, stability is more important than high precision.
This suggests the use of simple approximate camera
models with minimal free parameters. Aspect ratio
a and skews are both stable and easily measured, so
they can usually be pre-calibrated. In contrast, the
‘optical scale’ parameters focal lengthf and princi-
pal point(u0, v0) are difficult to pre-calibrate. Even
with a fixed lens they vary slightly with focus, aper-
ture, mechanical/thermal motion of the lens mount,
and (with lens distortion) image position. Radial
lens distortion is also significant in many close range
applications, but we will not consider it here as it is
difficult to handle in our DLT-like framework. See
[16, 2] for extensions of the DLT which partially ac-
count for lens distortion.

Degeneracy is a significant problem for all cali-
bration methods using near-minimal data: for cer-
tain relative positionings of the points and camera,
there are infinitely many solutions and the method
fails. Coplanar reference objects are especially easy
to manufacture and measure. But all 6 point DLT-
like methods fail for planar scenes, andanymethod
with free focal length (including all of ours) fails
for frontoparallel planes, as forward motion is in-
distinguishable from zoom. This is problematic as
near-planarity and frontoparallelism are common in
practice. A planar scene gives only two constraints
on the calibration (“the images of the plane’s two
circular points must lie on the image of the abso-
lute conic” [20, 11, 18, 22]). As there are 5 cali-
bration parameters, at least 3 prior constraints are
required to recover from planarity. Our 5 point
method has only 2 prior constraints, so it must
(and does) fail for planes. The 4 point quasilinear
method should do better, but in fact it also fails ow-
ing to an algorithm-specific rank deficiency. In con-
trast, relatively simple homography-based methods

[21, 10, 18, 22]1 solve the 4 point planar pose + fo-
cal length problem rather stably (barring fronto- and
other axis parallelisms). Unfortunately, these meth-
ods fail for more than about 5% non-coplanarity,
so it would be useful to develop algorithms for the
difficult (but practically common) near-planar case.
I will describe a preliminary version of such a 4
point method below, which uses recent eigenvector-
based polynomial solving technology to separate the
true root from the false ones. The underlying tech-
nique is worth knowing about as it potentially ap-
plies to many other vision problems with degenera-
cies and/or multiple roots.

Contents: §2 outlines our general approach,§3
covers the necessary material on polynomial solv-
ing, §4 summarizes the algorithms and gives imple-
mentation details,§5 describes experimental tests,
and§6 concludes.

2 Approach

Each image of a known 3D point gives two linear
constraints on the projection matrixP, or equiva-
lently two nonlinear ones on the camera pose and
calibration. So fromn ≥ 3 points we can estimate
at most the 6 pose parameters and2n − 6 calibra-
tion ones. These minimal cases lead to polynomial
systems with multiple solutions. But we will see
that by estimating one fewer parameter, we can con-
vert such problems to linear null space computations
which generically yield a unique solution. Hence,
we can estimate pose plus2n − 7 = 1, 3, 5 cali-
bration parameters quasilinearly from4, 5, 6 points.
6 points is the standard DLT, so we focus on the 4
and 5 point cases. For 4 points we develop meth-
ods for pose + focal lengthf ; for 5 points, pose
+ f + principal point(u0, v0). Other selections of
1–3 of the 5 linear camera parametersf, a, s, u0, v0

can be handled analogously. The basic idea is to
enforce the constraint that the remaining entries of
(a, s, u0, v0) have their default values(1, 0, 0, 0). ‘4’
and ‘5 point’ really denote the calibration model as-
sumed, not just the minimum number of points re-
quired. All of our methods can incorporate further
points on an equal footing, if available.

1For full 5 parameter calibration from several known planes,
[18], [22] and (slightly later) I myself all independently de-
veloped essentially the same method, which is highly recom-
mended.
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Direct formulations in terms of camera calibration
K and (i) pose(R, t) (usinge.g.quaternions forR),
or (ii ) the camera-point distances (c.f. [8, 15]), are
possible, but seem to lead to rather unwieldy ma-
trices. Instead, we proceed indirectly as follows:
(i) find the linear space of3× 4 projection matrices
consistent with the given points; (ii ) recover the es-
timated projection matrixP quasilinearly from this
subspace using the calibration constraints; (iii ) ex-
tract the calibration and poseK,R, t from P in the
usual way. We focus mainly on step (ii ) which is the
novel contribution.

Step 1is very similar to the standard 6 point DLT
[1, 16]. Given a 3D pointX and its imageλ x =
P X, eliminate the unknown depthλ by forming the
cross-productx ∧ (P X) = 0, and select two inde-
pendent homogeneous linear constraints onP from
this. (In fact, I projectP X orthogonal tox using
x’s 3×3 Householder matrix. This is slightly differ-
ent, but the overall effect is similar). The constraints
from n points can be assembled into a2n × 12 ma-
trix which generically has rankmin(2n, 11). With
the standard DLT,n ≥ 6, the rank is generically
11, and the 12 components of the unique null vec-
tor directly give the corresponding projection ma-
trix P. For n = 4, 5 the rank is generically 8,10
leaving ad = 4, 2 dimensional null space. In the
noiseless case, this still contains the true projection:
P = P(µ) ≡

∑d
i=1 µi Pi where thePi are3 × 4

projections corresponding to thed vectors of a null
space basis, andµi are unknown parameters. The
null space is calculated numerically by SVD. Even
if n > 4, 5 and the rank is clearly greater than 8,10,
we still take thed = 4, 2 smallest singular vectors to
span the spaceP(µ) used in the next step.

Step 2recoversP(µ) from thePi by estimating
µ using the calibration constraints. By the decom-
position P ' K R(I | − t), the 4 × 4 Euclidean
invariantabsolute dual quadricmatrix Ω ≡

(
I 0
0 0

)
projects to thedual image of the absolute quadric
(DIAC) [19, 9, 13]

ω ≡ P Ω P> ' K K> (1)

We use this to convert constraints on the calibration
K into ones on candidate projectionsP(µ) or their
associated DIAC’sω = ω(µ) ≡ P(µ) Ω P(µ)>.
For the 4 point method the only unknown calibra-
tion parameter isf . The remaining parameters take
their default valuesa = 1, s = u0 = v0 = 0 so

K = diag(f, f, 1), K K> = diag(f2, f2, 1) and the
constraints (1) become

ω11 = ω22 ω12 = ω13 = ω23 = 0 (2)

This overconstrained system of 4 homogeneous
quadratics in 4 variablesµ1, . . . , µ4 generically has
at most one solution. We will see below how to con-
vert such a system into a rectangular multiresultant
matrix R whose unique null vector encodes the so-
lution. We can then estimate the null vector numeri-
cally (e.g.using SVD), extract the correspondingµ,
substitute intoP(µ) to obtainP, and decomposeP
to obtain full camera pose + calibration. In this case
the resultant matrix turns out to be80× 56 — large,
but still tractable.

The 5 point method is similar. It recovers(µ1, µ2)
using the calibration constraintsa = 1, s = 0.
These are no longer linear in the entries ofK K>,
but fortunately theyare linear in those ofω−1 '
(K K>)−1, whose upper2 × 2 submatrix is propor-

tional to
(

1 −s
−s a2+s2

)
. ω−1 is proportional to the

matrix of cofactors ofω, and hence quadratic in
ω = ω(µ) or quartic inµ. The systema = 1, s = 0
or ω−1

11 = ω−1
22 , ω−1

12 = 0 becomes

ω22 ω33 − ω2
23 = ω11 ω33 − ω2

13

ω21 ω33 − ω23 ω31 = 0
(3)

This overconstrained system of two homogeneous
quartics in(µ1, µ2) yields an8×8 (Sylvester) resul-
tant matrix whose null vector again gives the solu-
tion quasilinearly.

Notes:The globally optimalP lies somewhere in
the nonlinear variety of projection matrix space cut
out by thed calibration constraints. It has low er-
ror so it is usually not far from the space spanned
by the smallest few singular vectors of the DLT con-
straint matrixA. This motivates the choice of the
subspaceP(µ). But with noisy dataP(µ) rarely
contains the exact global optimum. In fact, the cal-
ibration system has 1 redundant d.o.f. onP(µ), so
it seldom hasany exact solution there, let alone an
optimal one. Worst still, step 2 finds its “unique”
near-solution by roughly minimizing some highly
twisted heuristic form of the constraint residual,re-
gardless of the resulting image error. The measured
data points contributeonly to the estimation of the
“null” spaceP(µ) in step 1. This is fine for mini-
mal point sets whereP(µ) is the true null space of
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the DLT constraints. But for noisy, non-minimal,
well-conditioned dataP(µ) generally contains sev-
eral far-from-null directions and there is a risk that
step 2 will return a solution with quite large resid-
ual. In summary, the multiresultant solution neither
exactly satisfies the constraints, nor minimizes the
fitting error even within theP(µ) subspace, let alone
outside it. Experimentally this is verified: (i) non-
linear refinement significantly reduces the residual
of the multiresultant solutions; (ii ) the multiresul-
tant methods are most suited to near-minimal data
— as more data is added their performance improves
comparatively little, so for well-conditioned high-
redundancy data the 6 point DLT is preferable.

3 Solving Polynomial Systems

This section briefly sketches the multiresultant the-
ory required to understand our algorithms. Part of
this material is classical, but it has seen a significant
revival lately and we will use some recent results.
There is no space for details here, but the material
deserves to be better known in the vision commu-
nity as large-scale polynomial solving is rapidly be-
coming a feasible proposition. See,e.g. [4, 14] for
references and further reading.

A polynomial p(x) =
∑
pα xα in variables

x = (x1, . . . , xn) is a finite sum ofcoefficientspα
times monomials xα ≡

∏n
i=1 x

αi
i , with integer

exponentsα = (α1, . . . , αn) ∈ Zn. For homo-
geneouspolynomials, all exponents have the same
degree|α| ≡

∑
i αi. Any polynomial can beho-

mogenizedby including an extra variablex0 at a
suitable power in each term, and de-homogenized
by settingx0 = 1. The product of polynomialsp,q
is (p q)(x) =

∑
α

(∑
β pα−β qβ

)
xα. By choosing

some sufficiently large list of working exponentsA
(to be specified below), we can represent polynomi-
als as row vectorspA ≡ (. . . pα . . . ) and mono-
mials as columnsxA ≡ (. . . xα . . . )>, so that
p(x) = pA · xA is the usual row-column dot prod-
uct. All of the nonlinearity is hidden in the “sim-
ple” monomial evaluation mappingx → xA. Poly-
nomial multiplication can be represented by matri-
cesMA(q) acting on the right on row vectorsp:
(p q)A = pAMA(q). Rowα of MA(q) contains
the row vector ofxα q(x), i.e. the coefficients ofq
‘shifted along’ byα. Coefficients shifted outside of

A are truncated, but we will use only untruncated
rows.

We want to find the roots of a polynomial system
{p1(x), . . . ,pm(x)}, i.e. the pointsx at which all
pi(x) = 0. It follows that

∑
i pi(x) qi(x) also van-

ishes at all rootsx, for any other polynomialsqi(x).
As row vectors, such sums are linear combinations
of rows xα pi(x) from the multiplication matrices
MA(pi). Gather the (untruncated) rows of these
into a big ‘multiresultant’ matrixR. The vanishing
of xα pi at roots implies that the monomial vector
xA of any root isorthogonalto all rows ofR: The
linear subspace of monomial vectors spanned by the
root vectorsxA is contained in the right null space
of R. It turns out that by makingA larger, this null
space can often be made to ‘close in’ on the space
spanned by the roots, until they eventually coincide.
If there is only one rootx, xA can then be recovered
(modulo scale) as the unique null vector ofR. x
then follows easily by taking suitable ratios of com-
ponents, with at most some trivial root extractions.
For numerical accuracy, large-modulus components
of xA should be selected for these ratios.

For homogeneous polynomials, roots are
counted projectively in the homogeneous variables
(x0, . . . , xn). Bezout’s theorem says that a system
of n such polynomials of degreesdi has either
exactly

∏n
i=1 di such complex roots (counted with

appropriate multiplicities), or (non-generically) an
infinite number. Adding further polynomials gives
an overconstrained system that generically has no
roots at all. But if it does have one it is generi-
cally unique and can be recovered by the above
construction. In particular, fordensehomogeneous
polynomials (ones whose coefficients of the given
degrees are all nonzero and generic), Macaulay’s
classical multiresultant [12] choosesA to contain
all monomials of degreeD = 1 +

∑n+1
i=1 (di − 1).

Taking all untruncated rows of the multiplication
matrices as above generally gives a rectangular ma-
trix R. Macaulay gave a prescription for choosing
a minimal set of rows (a squareR) that (generi-
cally) suffices to generate the null space. This is use-
ful for theory and most current multiresultant codes
adopt it. But numerically it is ill-advised as noth-
ing says that the selected rows are particularly well-
conditioned. I prefer to include all available rows
and use a stable numerical null space routine, either
pivoting to select suitable rows, or using an orthogo-
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nal decomposition like QR or SVD that averages er-
rors over all of them. This also allows any available
additional polynomials to be included on an equal
footing for better stability and/or reduced degener-
acy, simply by adding the appropriate rows of their
multiplication matrices toR. If some of the polyno-
mial coefficients vanish the Macaulay construction
may fail. Sparse ‘Newton’ multiresultants are avail-
able in such cases [7, 6, 4].

The above is all we need for the quasilinear 4
and 5 point methods, as thePi and hence (2), (3)
are usually dense. However, as mentioned above,
the 4 point method fails unnecessarily for copla-
nar points. R develops 3 additional null vectors
in this case, corresponding roughly to infinite and
zero focal lengths (though not necessarily to coher-
ent roots). The true root monomial still lies in this
4D null space, but it is no longer isolated by the
null space computation alone. This failure is an-
noying, as coplanarity is not actually an intrinsic
degeneracy of the 4 point problem. Indeed, sta-
ble specialized methods exist for the planar case
[21, 10, 18, 22]. Unfortunately, these fail even for
mildly non-coplanar scenes. It would be useful to
develop a method that handled both cases simulta-
neously, and in particular the difficult near-planar re-
gion. To do this we need some more theory.

The columns of the resultant matrixR are la-
belled by the exponent setA. If we partitionA into
subsetsA1 +A0, R can be partitioned conformably
(after column permutation) asR = (R1 |R0).
Choose the partition so that: (i) R1 has full col-
umn rankN1 = |A1|; (ii ) A0 is relatively small
and compact in the sense given below. For any left
pseudoinverse2 R†1 of R1, the column span of the

N × N0 matrix U =
(
−R†1 R0

I

)
contains the null

space of the columns ofR. In fact, U regenerates
null vectorsv from theirA0 components:R v =
R1 v1+R0 v0 = 0 impliesU v0 =

(
−R†1 R0 v0

v0

)
=(

R†1 R1 v1
v0

)
= ( v1

v0 ) = v.

Now choose a non-constant polynomialq(x)
such that the row vectorsxα q are untruncated inA
for all α ∈ A0. (It is to avoid truncation here thatA0

needs to be small and compact.q can have negative
exponents if necessary). Assemble theseA0 rows of

2I.e. , R†1 R1 = IN1×N1 . SuchR†1 are easily calculated
from most numerical decompositions ofR1.

MA(q) into anN0 × N matrix M = (M1 |M0),
and form theN0 ×N0 reduced multiplication ma-
trix

MA0(q |p1 . . .pm) ≡ M U = M0 −M1 R†1 R0

What is happening here is that the polynomials
xβ pi (the rows ofR, acting viaR†1) have been used
to eliminate theA1 exponents of the polynomials
xα q, leaving a matrix on the reduced exponent set
A0 representingmultiplication byq followed by re-
duction modulo (multiples of) thepi. The reduction
leaves the value ofq unchanged at all rootsx of the
pi, as multiples ofpi(x) = 0 are added to it. Hence,
using the above regeneration property,for any root
x of the system{p1 . . .pm}, the monomial vector
xA0 is an eigenvector ofMA0(q) with eigenvalue
q(x) :

MA0(q) xA0 = M xA = q(x) xA0

Even if we can’t reduce the null space ofR to
a single vector owing to multiple roots, ill condi-
tioning, etc, we can still obtain roots by solving a
nonsymmetric eigenvalue problem. GivenxA0 we
can recoverx as before, if necessary regenerating
xA = U xA0 to do so. Possible problems with this
construction are: (i) it may be impossible to find
anA0 with well-conditionedR†1 and non-constant,
untruncatedq; (ii ) if the chosenq takes similar val-
ues at several roots, the eigenvalue routine may fail
to separate the corresponding eigenspaces cleanly,
leading to inaccurate results; (iii ) post-processing is
required, as some of the recovered eigenvectors may
be garbage (i.e.vectors that define valid linear forms
on polynomials, but whose components do not cor-
respond to the monomials of any root). Beware that
nonsymmetric eigenproblems are intrinsically rather
delicate, and in this application can become spectac-
ularly unstable for ill-conditionedR1 or ill-chosen
q. This isnot immediately obvious from the recov-
ered eigenvalues or eigenvectors. However the con-
dition number of the eigenvector matrix is a fairly
reliable indicator.

This multiplication matrix approach to numerical
root-finding is quite recent [17, 14, 4], although its
roots go back a century. So far as I know, the ob-
servation that it continues to work whenA0 andU
span more than the null space ofR is new. This
is numerically useful, as it allows eigensystem size
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to be traded against elimination stability. This ap-
proach can be used to find all of Bezout’s projective
roots of a densen polynomial system by building
a Macaulay matrix withD = 1 +

∑n
i=1(di − 1)

and choosingA0 to contain all monomialsxα with
0 ≤ αi < di. Here,R1 generically spans the col-
umn space ofR, so there are no extraneous eigen-
values. Sparse analogues also exist.

We will use the eigenvector method to stabi-
lize the 4 point quasilinear one against near-planar
scenes. Coplanarity increases the null space dimen-
sion of the 4 point multiresultantR from 1 to 4.
So we need to choose four exponents ofA for the
reduced exponent setA0, and the routine will re-
turn at most four potential roots. Currently I use the
four lowest degree exponents(µ1, µ2, µ3, 1) (where
µ4 = 1 is the homogenizing variable). This choice
parametrizes the true root and at least one false null
vector stably, but it is not ideal as the remaining 1–2
false null vectors are mainly supported on ‘high’ ex-
ponents deep withinA1. I know of no way around
this dilemma: the supports of the null vectors are too
widely separated to gather into anA0 supporting an
untruncatedq, even if we could isolate which ex-
ponents were needed. With the heuristics discussed
below, the modified 4 point routine performs tolera-
bly well despite the fact that bothR†1 and the eigen-
value problem are often fairly ill-conditioned, but a
cleaner solution would be desirable.

4 Implementation

The steps of the new pose + calibration algorithms
are as follows, whered = 4, 2 for the 4,5 point
method:

1. Use SVD to estimate thed-D null space
P(µ) =

∑d
i=1 µi Pi of the DLT constraints

x ∧ (P X) = 0.

2. SubstituteP(µ) into the 4 quadratic calibration
constraints (2) (4 point) or 2 quartic ones (3) (5
point).

3. Form the rectangular multiresultant matrixR
of the resulting polynomials, use SVD to re-
cover its unique null vectorµA, and extractµ.
For the eigenvector method, choose a splitting
A0 and a compatible random polynomialq(µ),

useR†1 to form q’s reduced multiplication ma-
trix, extract eigenvectorsµA0 , and recover the
solutionsµ.

4. (Optional) Refine the recovered rootsµ by
Newton iteration against the original calibra-
tion constraints.

5. Calculate the camera projection matrixP(µ)
and decompose it as usual to get pose + cali-
bration.

The routines have been implemented in OC-
TAVE/MATLAB . The necessary multiresultant ma-
trices were calculated using a MAPLE routine sim-
ilar to [14] (available from the author). The null
space methods are straightforward to implement, but
the eigenvector one requires some care. The choice
of the ‘pivoting’ exponent setA0 is critical, and I
am not happy with the current heuristic. In fact, I
have tried only theµ4-based exponent set, but varied
which of the projection matricesPi (thed smallest
right singular vectors of the DLT equations) is as-
signed toµ4. I tried various permutations and also
random orthogonal mixings. None are wholly sat-
isfactory and a more effective pivoting strategy is
clearly required before the eigenvalue approach can
be routinely used to rescue resultants from multi-
root degeneracies. For 4 points and near-planar
scenes, makingP4 correspond to thegreatestof
the 4 singular values is by far the best choice. But
it performs erratically for non-coplanar scenes and
n > 4 points. Changing strategies makes enormous
differences to the conditioning ofR1, but does not
necessarily stop the routine from working. Slight
(O(10−10)) damping of the pseudoinverse is also es-
sential with the currentA0, asR1 actually becomes
singular for coplanar points.

Another issue for the eigenvector method is the
choice of multiplier polynomialq(x). For simplic-
ity I have used a linearq, although anything up to
4th order could be handled. For maximum stability,
it is important thatq should take well-separated val-
ues at different roots. In practice, I randomly choose
a fewq’s and take the one that gives the best condi-
tioned eigensystem. The cost is negligible compared
to the calculation ofR†1.

The current implementations use SVD for all null
space computations. This is perhaps overkill, but
it guarantees the stablest possible results. Speed is
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Figure 1: Left: Focal length & rotation errorvs.noise, for each method’s minimal point number and preferred scene
flatness.Middle: Error vs. number of points for 0.5 pixels noise.Right: Error vs. scene flatness for minimal point
numbers.

adequate (< 1 second), but might become an issue if
the 4 point methods were used in a RANSAC loop.

The rootsµ are recovered by selecting suitable
large-modulus components ofµA and taking their
ratios. Optionally, they may then be ‘refined’ by
a simple Newton iteration that minimizes the error
in the calibration polynomials (2),(3) overµ. For
the best results the original calibration constraints
should be used, not their resultant matrixR. Full
Newton rather than Gauss-Newton iteration is ad-
visable here, owing to the nonlinearity of the con-
straints.

5 Experiments

The graphs show some simple experimental tests on
synthetic data. The 3D test points are well spread
and by default non-coplanar. They are viewed from
about 5 scene diameters by a512×512 camera with
f ≈ 1000± 400 and a default Gaussian noise of 0.5
pixels (which is easily obtainable with marked target
points). Median errors over 300 trials are reported.
For flat scenes, the plane is viewed at about30±15◦

from normal to avoid the frontoparallel degeneracy,
which all of the algorithms here suffer from.

The graphs show that all methods are quite sen-
sitive to noise, but all scale linearly with it up to at
least 50% relative error. The planar 4 pointf -only
method [21, 10, 18, 22] is both simpler and intrin-
sically stabler than the 3D ones, but it can not tol-
erate more than about 5% non-coplanarity. Plane +
parallax might be an interesting approach for pose
+ calibration from flat scenes. The 5 and 6 point
DLT’s fail for scenes within about 20% of planarity,
whereas the 4 point DLT one (whose failure is al-
gorithmic not intrinsic) continues to work down to
around 10%. The 4 point eigenvector method works
even for planar scenes, but overall it is somewhat
erratic. (E.g. it gives better results for near-planar
scenes, and for 4 points rather thann > 4). As
above, this is due to the lack of a good policy for
the choice of the residual exponent setA0.

The performance of the 5 point DLT is somewhat
disappointing. The traditional 6 point DLT is al-
ways preferable when there aren ≥ 6 points, and
for n ≥ 10 even beats the 4 point DLT onf (but
not on orientation). In general the relative rankings
depend somewhat on the error measure chosen. The
fact that the 6 point DLT does better than the 4–5
point ones for large numbers of points is annoying
but not unexpected. As discussed in section 2, it
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happens because the multiresultant step blindly min-
imizes some sort of twisted constraint residual over
the subspaceP(µ), without any consideration of the
image errors produced. For redundant dataP(µ)
usually contains projections with significant image
error, hence the problem. I am currently working on
this, but for now the 4 and 5 point methods are most
useful for minimal and near-minimal data.

The ‘4pt DLT refined’ method runs Newton’s
method on the output of the linear 4 point one,
to minimize the RMS error of the calibration con-
straints. Such nonlinear refinement is highly recom-
mended, as it reduces the overall residual error by
a factor of 2–5. A mini bundle adjustment over the
resulting pose estimate would do even better, as it
would not be restricted to thed-D ‘null space’ of
the DLT constraints. The large reduction in residual
suggests that there is considerable scope for improv-
ing the heuristic least squares error function embod-
ied in the multiresultant root estimate. However, ex-
cept for the initial DLT step, simple rescaling has
little effect: the multiresultant is insensitive to the
scaling of its input data over a range of at least10±2.

Use of the rectangular multiresultant is recom-
mended, as it makes the results significantly more
consistent, allows additional points to be incorpo-
rated, and reduces errors by 20–40% compared to
the square Macaulay resultant.

All of the methods give more accurate relative re-
sults asf grows larger and the camera recedes, sim-
ply because a larger magnification camera with the
same pixel noise is a more accurate angle measurer.
Conversely, for smallf angular errors and perspec-
tive become large and the problem becomes very
nonlinear: spurious roots nearf ≈ 0 are common
in (auto-)calibration problems. This makes it clear
that1/f is a natural expansion parameter, and sug-
gests that pseudo-affine initialization may be a good
implementation strategy for pose + calibration meth-
ods,c.f. [5, 3].

6 Summary and Conclusions

The 4 point quasilinear pose method performs rea-
sonably well considering how much information it
extracts from such a small amount of input data.
The 5 point method is less good and is probably
best reserved for special situations. Both methods
are most useful for minimal or near-minimal data.

Neither competes with the traditional 6 point DLT
when there are≥ 6 well-spaced points, and hence
neither realizes my hopes that calibration constraints
could be used to stabilize the 6 point method. The
reason is basically the splitting of the problem into
‘DLT’ and ‘multiresultant’ parts with different, in-
compatible error metrics. This sort of subdivision is
commonplace in vision geometry, but it is clear that
it prevents the data and constraints from being com-
bined very effectively. I am currently reflecting on
better ways to handle this. Also, the whole issue of
scaling, pivoting, and the effective error metric used
by polynomial methods like multiresultants remains
very unclear. But the numerical side of this field is
very recent, and significant improvements are to be
expected over the next few years.

The use of oversized, rectangular multiresultant
matricesR improves the numerical conditioning
and also allows redundant data to be included, so it
should help to make polynomial-based initialization
of many vision optimization problems more feasi-
ble. For more difficult cases where there are mul-
tiple near-roots and other degeneracies, the eigen-
vector method has considerable potential. However,
if my current experience with the 4 point eigen-
vector method is any guide, more work on pivot-
ing/exponent choice strategies is essential to make
numerically trustworthy.
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Annexe B

Autres activit és scientifiques

Ici je regroupe bri`evement quelques autres indications de mes activit´es scientifiques r´ecentes :

– conférencier invité à :

– MICROSOFTRESEARCH, Seattle (2 fois) ;

– workshop CVPR’99(( MView’99 – Multi-View Modeling and Analysis of Visual Scenes)),
Fort Collins, Colorado ;

– workshop(( J.-O Eklundh)) en honneur du 60e anniversaire de Jan-Olof EKLUNDH,
Stockholm, Su`ede ;

– animateur du workshop majeur(( Vision Algorithms : Theory and Practice)) à ICCV’99, avec
Andrew ZISSERMAN et Richard SZELISKI ;

– responsable d´eputé de (et collaborateur scientifique sur) le projet Esprit LTR 21914 CUMULI ;

– membre du comit´e de programme des conf´erences internationaux CVPR et ECCV et de divers
workshops ;

– relecteur pour plusieurs journaux et autres conf´erences internationales (IJRR, IJCV, PAMI,
CVGIP, ICCV, SIGGRAPH, RFIA).
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