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des questions, et de m’avoir convaincu que le temps passé à chercher les réponses n’est
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Chapter 1

Foreword: membrane and proteins

Life is sparse. Even in the most densely populated ecosystems, biological matter occupies
only a small fraction of the available space, and living organisms are separated by large
volumes of comparatively simple inanimate matter. Because of this, all known forms
of life from bacteria to mammals have some kind of enclosure that prevents them from
diluting away into the surrounding dead world. Although different types of living cells—a
very evocative term to designate the building block of life—have evolved different kinds
of enclosures depending on their surroundings, one ingredient of their confining structure
is universal throughout the whole biota. This ingredient is the cell membrane, a bilayer
of amphiphilic molecules tightly bound together into a flexible sheet by hydrophobic
interactions. Although the cell membrane provides an excellent confinement, no enclosure
can be expected to be perfectly hermetic. Therefore, on long enough time scales, the
membrane will let the living matter through and the organism it encircles will wither
away and die unless some pump-like mechanism compensates the losses. Moreover, no
reasonable definition of life should allow us to term “living” a purely passive compartment,
no matter how watertight: we expect biological matter to feed, grow and reproduce. These
functions are carried out by proteins, a versatile type of organic polymers that maintain
and expand the architecture of the cell by performing a variety of tasks, including the
production of other proteins—with the assistance of nucleic acids. Note however that the
delicate production and coordination of proteins can only take place in a well-controlled
closed environment, which is in turn provided by the cell membrane. These intricate
reciprocal interactions between membrane and proteins are the broad area of research
considered in this thesis. In the present chapter, we introduce some general aspects
of this field and explain why the shaping of membrane tubes is a central event of this
interplay.

The cell membrane is primarily constituted of a type of organic molecules known as
phospholipids. Perhaps the most important property of phospholipids for the cell mem-
brane is that they are amphiphilic molecules, meaning that one part of the molecule has
hydrophilic properties while the other is hydrophobic. The structure of phospholipids
comprises one hydrophilic head and two hydrophobic tails. When put in an aqueous
medium, the hydrophobic tails tend to cluster together to minimize their contact with
water. Because phospholipids have a roughly cylindrical shape, they tend to form pla-
nar aggregates, where the heads arrange into two parallel planes to shield the tails from
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6 CHAPTER 1. FOREWORD: MEMBRANE AND PROTEINS

water. These structures known as “lipid bilayers” are the prototype of cell membranes
[Fig. 1.1(a)]. Phospholipids interact mostly through hydrophobic bonds between their
tails, and are thus relatively mobile with respect to one another within the bilayer. In
many biological situations, the cell membrane actually behaves as a two-dimensional liq-
uid.

The protein-membrane interactions discussed in this thesis critically involve membrane
deformations. Such deformations have an energetic cost. In order to evaluate it, we
model the membrane as an infinitely thin liquid sheet, and consider this effective surface
on length scales much larger than the bilayer’s thickness. The first type of deformation
that we consider are bending deformations. Such deformations confer a curved shape to
the initially planar membrane. This shape is locally characterized by its two principal
radii of curvature r1 and r2, as shown in Fig. 1.1(b). For a homogeneous membrane
of fixed topology, we only need to consider the total curvature c = 1/r1 + 1/r2 of the
surface. Bending a lipid bilayer exposes the hydrophobic tails to the surrounding water,
and therefore a membrane with c 6= 0 has a higher energy than a flat one. Moreover,
if the bilayer is assumed to be symmetric with respect to its middle plane, curving it
downwards or upwards should cost the same amount of energy, meaning that the energy
of the membrane should be even in c. Therefore, for small deformations, the local cost of
bending the membrane is proportional to c2, and we denote the proportionality coefficient
by κ/2. It is also possible to deform the membrane while keeping it flat by stretching
it. In practice, it is very difficult to stretch the cell membrane and the amplitude of
such deformations is often negligible. When a cell expands some region of its membrane,
it thus imports phospholipids from the neighboring regions rather than stretching those
already there. This can be taken into account by considering that the membrane is in
contact with a reservoir of phospholipids. Unless the membrane contained in the reservoir
is extremely floppy, retrieving it from there has an energetic cost as it implies working
against the tension of the membrane reservoir. We denote the energetic cost per unit area
by σ. These two effects are described by the Helfrich Hamiltonian, which gives the free
energy of a weakly deformed, homogenous, inextensible membrane of arbitrary shape but
fixed topology put into contact with a reservoir of lipids [3]:

H =

∫∫

(κ

2
c2 + σ

)

dS. (1.1)

The coefficient κ is known as the membrane’s “bending modulus”. The first term in
the integral represents the bending energy of the membrane, and is proportional to c2

integrated over the whole surface area of the membrane. The second term is the constant
σ, known as the membrane’s “tension”. It is integrated over the surface of the membrane,
which yields a constant energetic cost per unit area as required.

Membrane deformations are very common in cells, as they often use lipid bilayers
for much more than just preventing their contents from spilling. Fig. 1.1(c) illustrates
some of the membrane trafficking eukaryotic cells set into motion to transport tightly
membrane-bound proteins, also known as “integral membrane proteins”. Throughout
these processes, membrane compartments bud out, invaginate, become severed or fuse.
All of these operations are performed by proteins, such as those indicated in color in
Fig. 1.1(c).
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Figure 1.1: Structure and function of the cell membrane. (a) Schematic cross-section
of a bilayer made up of the phospholipid phosphatidylcholine. The hydrophilic heads of
the lipids (identifiable by their oxygen—red—atoms) stick out of the bilayer and into the
water while their hydrophobic tails form the bulk of the membrane. (b) Schematic of
the local state of a curved surface (representing the membrane) showing its two princi-
pal radii of curvature r1 and r2. Figure adapted from Ref. [1]. (c) Some intracellular
transport pathways in eukaryotic cells. The outside of the cell and the subcellular com-
partments are represented in gray. The topological inside of the cell—which is known as
its “cytoplasm”—is white. All the white-gray interfaces are delimited by lipid bilayers.
Transport between them is carried out by small membrane compartments—also termed
“vesicles”—propelled by motor proteins. Integral membrane proteins are produced at the
endoplasmic reticulum (ER). They are then transported to the Golgi complex, which they
traverse until they reach the trans-Golgi network (TGN). From there, they are addressed
and sent to the region of the cell where they are needed e.g. the cell’s external membrane,
also known as “plasma membrane”. When the time comes for them to be disposed of, they
get labeled for degradation and are sent to the endosomes’ membrane. They then get con-
centrated in membrane invaginations, which pinch off the endosomal membrane to become
intralumenal vesicles (pictured as white circles inside the Late Endosome/Multivesicular
Body). The endosomes thus become multivesicular bodies. The intralumenal vesicles and
the associated integral proteins are then degraded as the multivesicular bodies become
lysosomes. Figure adapted from Ref. [2].
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Deformations of the membrane by proteins are however not unique to intracellular
transport. In many cases, proteins define the shape of the cell itself. One of the most
important proteins of this type is actin. Actin is a small soluble globular protein that can
exist either in a monomeric form, termed G-actin for “globular actin” [Fig. 1.2(a)], or in a
polymerized state, termed F-actin for “filamentous actin”. Actin polymers are relatively
rigid and give mechanical support to the cell—they are part of its “cytoskeleton”. Both
forms of actin can be associated to either adenosine triphosphate (ATP) or adenosine
diphosphate (ADP). ATP is a more energetic molecule than ADP and spontaneously
hydrolyzes into ADP, but the cell constantly spends energy restoring G-actin into its
ATP-associated state. It thereby maintains a constant ATP-associated G-actin pool in
the cytoplasm. The structure of F-actin is polar, and it continuously incorporates ATP-
associated G-actin from its so-called “barbed end”, visible at the top of Fig. 1.2(b).
The G-actin thus incorporated in the polymer hydrolyzes ATP and turns into ADP-
associated F-actin. The polymer continuously depolymerizes from its “pointed end”,
at the bottom of Fig. 1.2(b), and thus gets rid of ADP-associated actin. This has an
interesting consequence for the dynamics of the actin filaments: assume that the actin
monomers within the filament are motionless in some reference frame and that actin
polymerization balances its depolymerization. Then the filament has a constant length
and moves relative to the reference frame, as its ends are constantly changing position
because of the actin turnover. This motion of the filament’s center of mass relative to its
monomers is known as “treadmilling”. If it takes place inside a cell, the filament ends
up touching the plasma membrane. In some cases, the actin filament is not deflected by
the lipid bilayer, but other filaments bind to it and join its pushing action against the
membrane. Actin filaments thus exert a force on the membrane, a phenomenon ultimately
fueled by the active recycling of ADP-associated G-actin into ATP-associated G-actin
[4]. Under appropriate conditions (including the presence of actin-associated proteins),
the growth of actin filaments dramatically modifies the shape of the cell, often in ways
required for its function [Fig. 1.2(c)].

Having reviewed varied, yet representative examples of protein-induced membrane de-
formations, we argue that membrane tubes are central to these crucial events in the cell
cycle. We encountered such tubes in the examples presented above. Consider for instance
the proteins COPI, COPII and clathrin, represented respectively in red, blue and yellow
in Fig. 1.1(c). These proteins pinch the membrane out into spherical vesicles. At the end
of this process, these vesicles end up bound to the main membrane by small tubular necks.
Such necks need to be severed for the vesicle to detach, which allows intracellular trans-
port to proceed. Another example is the protein complex ESCRT-III, which invaginates
the membrane into multivesicular bodies to form their intralumenal vesicles. This also
leads to the formation of tubes, as represented in green in Fig. 1.1(c). Finally the pro-
trusions generated by the pushing action of actin and displayed in Fig. 1.2(c) are tubular
as well. It therefore seems reasonable to consider tubes as a generic feature of protein-
membrane interactions. Indeed, the competition between membrane tension (which keeps
membrane deformations small) and bending modulus (which keeps membrane deforma-
tions smooth) means that any pointwise modification of the membrane—be it pinching it
out, invaginating it in or exerting a point force on it—is expected to generate a cylindrical
structure.
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Figure 1.2: Actin and its role in cell deformations. (a) Structure of G-actin. The actin
monomer has a diameter of about 5.5 nm. (b) Structure of F-actin. The filament has a
helical shape, which consists of two intertwined strands. The diameter of the filament is
approximately 7 nm, and its helical period about 37 nm. Its length can be up to several
micrometers in cells. Both figures taken from Ref. [5]. (c) Actin-based cellular protrusions.
Each panel shows electron microscopy (in shades of gray) and/or fluorescence microscopy
(in color) pictures of a specific type of protrusion, as well as a schematic of the resulting
overall cell shape (where the actin is represented in red, and the cell nucleus in green).
Here we briefly introduce each of these protrusion types: Bristles are observed on the the
thorax of Drosophila melanogaster and are involved in mechanosensing. Microvilli are
involved in a wide variety of functions, including absorption, secretion, cellular adhesion,
and mechanotransduction. Stereocilia are mechanosensing organelles of hair cells, which
respond to fluid motion or fluid pressure changes in numerous types of animals for various
functions, primarily hearing. Filopodia are slender cytoplasmic projections which extend
from the leading edge of migrating cells. Figure taken from Ref. [6].

In this thesis, we approach this broad class of events not by referring to the detailed
molecular interactions involved in specific situations, but by identifying a few crucial
geometrical and thermodynamic features. The out-of-equilibrium character of these phe-
nomena is also often essential for their understanding, and we describe them in as general
theoretical terms as possible. Meanwhile, we compare our predictions to experimental
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results whenever the opportunity is present. In order to reach both of these goals, we
divide our study into three parts, each being on the one hand representative of a class
of geometrical configurations that the cell has to deal with, and on the other focused on
a characteristic example of this class. Our first part revolves around dynamin, which we
further introduce in chapter 2. Dynamin is generally used to shape tubes whose outer
surface is in contact with the cytoplasm of the cell, as when clathrin creates a membrane
bud destined to be severed off the membrane, for instance during endocytosis [Fig. 1.1(c),
yellow patches]. The first function of dynamin is to encircle the membrane and pay the
bending energy cost of shrinking it into a very narrow tube, as demonstrated in chap-
ter 3. In chapter 4, we show how an active conformational change allows dynamin to
further deform the tube, eventually leading to its breakage. In the second part of the
thesis, we tackle the topologically opposite problem, where the cell needs to create a tube
away from the cytoplasm. In chapter 5, we show that the buildup of elastic stresses
in ESCRT-III [Fig. 1.1(c), green patches] clusters allows the cell to punch holes into its
membrane. The third part focuses on tubes created not by membrane-bound proteins,
but by a force resulting from the growth of a filament. Chapter 6 demonstrates that the
mechanism by which the cell binds actin filaments together has a crucial influence on the
shape and size of actin-based protrusions such as filopodia, and in particular stereocilia
[Fig. 1.2(c)]. Finally, in chapter 7, we recapitulate our results and discuss possible future
research directions. Five appendices follow. Appendices A, B and C are dedicated to
the derivation of specific results and to the discussion of preliminary experiments, while
Appendix D reproduces publications associated with this thesis dealing with topics not
discussed in the main text. Finally, Appendix E is a summary of the thesis in French.
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Chapter 2

Membrane severing by dynamin: a
twofold problem

In order to operate efficiently, living cells must constantly maintain concentration gradi-
ents of various chemical species and isolate some of their components. One of the many
different biological processes required to maintain this traffic is membrane fission, by
which a cell membrane compartment is split into two or more topologically distinct parts.
A fundamental protein involved in most membrane fission events is dynamin, which has
been proposed to be a “universal membrane fission protein” [7].

In the human body, dynamin is present under three isoforms: dynamin I is expressed
in neurons and neuroendocrine cells, dynamin II is ubiquitous and dynamin III is strongly
expressed in the testis, but also present in heart, brain, and lung tissue [7]. Its function is
essential, and although mutations in such an important protein are often lethal, defective
dynamin or dynamin analogs have been shown to be involved in human diseases such as the
optical atrophy type 1, the Charcot-Marie-Tooth disease and the dominant centronuclear
myopathy [8, 9, 10]. In mice, a knock-out of dynamin I leads to striking defects in synapse
organization, and results in a strong dysfunction of the neuronal activity [11]. In flies, the
shibire temperature-sensitive mutant of the Drosophila dynamin analog is responsible for
a temperature-induced paralytic phenotype [12].

The structure of dynamin and its analogs is conserved throughout eukaryotic cells,
which is typical for such an important protein [Fig. 2.1(a)]. Fig. 2.1(b) presents a summary
of the many cellular processes in animals and plants where members of the dynamin
superfamily play a role. Classical dynamins are well known to be involved in the budding
of clathrin-coated vesicles at the plasma membrane, cleavage furrow, Golgi apparatus
and endosome, but also in budding events at caveolae and phagosomes where clathrin
is not involved. Related proteins assume a host of functions and are involved in the
division of organelles such as mitochondria and peroxisomes, and in the reorganization of
mitochondria (probably in mitochondrial fusion). Others confer resistance against RNA
viruses, for instance by interacting with viral ribonucleoproteins. In plants, dynamin-
related proteins assume some of the same functions as in animals, but also participate in
the formation of the cell plate or in chloroplast division.

The biological mode of action of dynamin is typified by the well-studied example of
clathrin-coated endocytosis, illustrated in Fig. 2.2. Dynamin is recruited by clathrin-
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Figure 2.1: Dynamin-related proteins are ubiquitous in animal and plant cells. (a) Simi-
larities between the structures of the members of the dynamin superfamily. All dynamins
have a GTPase domain that binds and hydrolyzes GTP, as well as a middle domain and a
GTPase effector domain (GED). These domains are involved in dynamin oligomerization
and their interactions stimulate the GTPase activity. Most dynamins also contain a do-
main for interactions with lipid membranes. In classical dynamins, this role is played by
a pleckstrin-homology (PH) domain, which displays specific interactions with the phos-
pholipid phosphatidylinositol-4,5-bisphosphate (PIP2). Their proline-rich domain (PRD)
also interacts with lipids, as well as with Src-homology-3 (SH3) domains. Dynamin has a
molecular weight of ∼ 100 kDa. (b) Such proteins play a role in a wide variety of processes
essential for the proper functioning of eukaryotic cells. Both figures taken from Ref. [7].
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Figure 2.2: The successive steps of clathrin-coated endocytosis. The clathrin coat proteins
deform the plasma membrane into a bud (a), thus forming deeply invaginated pits (b-c).
Dynamin oligomerizes into short helices around the necks of these pits (d-f) and severs
them upon GTP hydrolysis, thus releasing the endocytosis vesicle (g). Figure taken from
Ref. [20].

coated vesicles, possibly through membrane-mediated elastic interactions [13], and self-
assembles into short (a few helical repeats) helical constructs on the cell membrane necks
localized at their base [14]. These membrane necks need to be severed to complete en-
docytosis. For this to happen, however, they need to undergo substantial deformations,
which is energetically costly. Dynamin is a GTPase and therefore catalyses the hydrolysis
of guanosine triphosphate (GTP) into guanosine diphosphate (GDP) and inorganic phos-
phate (Pi). This highly exoenergetic (∼ 25 kBT per GTP molecule in a typical cellular
environment) reaction is similar to the hydrolysis of ATP, which fuels actin treadmilling,
most known molecular motors and many other cellular processes [15]. GTP hydroly-
sis could therefore be a source of energy sufficient to power membrane tube fission by
self-assembled dynamin [7, 16, 17]. This interpretation is supported by the fact that in
the presence of a GTPγS, a non-hydrolyzable analog of GTP, endocytosis is blocked at
the stage illustrated in Fig. 2.2(d-f) [18]. A similar behavior is observed with dynamin
mutants defective in GTP binding [19].

The in vivo action of dynamin can therefore be broken down into two steps: its
self-assembly into a helical polymer, and a GTP-induced severing stage. In the next two
sections, we present experiments conducted in biomimetic environments that yield insight
into each of these.

2.1 Self-assembly

The helical polymers of dynamin observed in a cellular environment [Fig. 2.2(d-f)] can
also form out of purified dynamin in a low-salt solution [21], or in a physiological salt so-
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lution in the presence of the non-hydrolyzable GDP:AlF−
4 or GTPγS [22]. Dynamin has

an affinity for negatively charged substrates, and preferentially inserts in membranes con-
taining phosphatidic acid, phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-
bisphosphate (PIP2) [23]. Consistent with this, its polymerization is most easily observed
around negatively charged templates such as microtubules, onto which dynamin was first
isolated. Purified dynamin also polymerizes in the absence of GTP or any other nucleotide
around negatively-charged lipid bilayers, either synthetic [24] or extracted from the brain
[25], thus deforming liposomes into dynamin-coated tubes, simply termed “tubes” in the
following. Moreover, dynamin has specific interactions with PIP2 through its Pleckstrin
Homology (PH) domain [see Fig. 2.1(a)], and its recruitment to the neck of endocytic
buds is dependent on the local synthesis of this lipid [26].

The tubes formed under these biomimetic conditions can be extremely long, up to tens
of micrometers, which corresponds to thousands of helical repeats. Electron micrographs
reveal their structure, as shown in Fig. 2.3(A, C, E). They suggest that the basic subunit
of the dynamin polymer is a dimer and that the tubes are hollow, i.e. filled with water
[27, 28, 29].

Although the biochemical parameters of the membrane determining the formation of
long dynamin tubes in vitro—and therefore possibly the rate of endocytosis in vivo—
have been well studied, the influence of its physical characteristics, such as curvature or
tension, are much less known. We characterize these effects in chapter 3 and argue that
they could play an important role in the recruitment of the protein in vivo.

2.2 GTPase activity

Although dynamin helices break the underlying membrane only upon GTP hydrolysis, this
step is intimately linked to the polymerization step. Indeed, self-assembly of dynamin has
been linked to a dramatic increase of its GTPase activity [30, 31, 32]. Its GTP hydrolysis
rate is also unusually high compared to other GTPases (Fig. 2.4). Unlike most of them,
the primary function of dynamin might therefore not be related to signaling.

Further evidence of this hypothesis is obtained by incubating dynamin with GTP, and
then imaging it in electron microscopy. This reveals a dramatic change of conformation
of the helix, and experiments both on normal dynamin [24] and dynamin ∆-PRD [i.e.
dynamin lacking its PRD domain—see Fig. 2.1(a)] [33] indicate that the inner radius
of the tube (lipids included) goes from 10 to 5 nm, its outer radius from 25 to 20 nm
and its pitch from 13 to 9 nm. Dynamin ∆-PRD is particularly convenient when a three-
dimensional reconstruction of the helix is intended, as it yields very ordered helices. Unlike
normal dynamin, dynamin ∆-PRD changes conformation when incubated with the non-
hydrolyzable GTP analogs GMPPCP, GMPPNP and GTPγS [27]. In this situation the
outer radius also goes from 25 to 20 nm and the pitch shrinks—although less than for
normal dynamin—from 10.6 to 9.4 nm on average (Refs. [28, 29] and Fig. 2.3). The
application of reconstruction techniques yields information about the detailed structure
of the helix, and reveals that the number of dimers per turn of the helix goes from 14.2
to 13.2. These numbers imply that the arc length between the surface of two subunits
go from 7.1 to 5.7 nm, and thus that subsequent turns of the helix do not simply slide
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Figure 2.3: Reconstruction of the structure of dynamin ∆-PRD (lacking its PRD domain)
assembled on negatively charged liposomes in its unconstricted (no nucleotides—A, C, E)
and constricted (incubated with GMPPCP—B, D, F) states from electron micrographs.
Two density thresholds are represented in blue and yellow. Green and orange represent
fits of the GTPase and PH domains respectively. The points of view in C-F are indicated
by dashed boxes and an arrow representing a rotation in A-B. Bar, 10 nm. Figure taken
from Ref. [29]
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Figure 2.4: Comparison between the GTP hydrolysis cycles of dynamin and a typical
GTPase, the small regulatory protein ras. The number given here for the GTP hydrolysis
rate of dynamin is its basal rate (i.e. the hydrolysis rate in the non-polymerized state).
Its stimulated rate (i.e. its hydrolysis rate in the polymerized state) is much higher, of
order 1-5 s−1. Figure taken from Ref. [16].

upon one another, but also that individual dimers contract, as shown by the red lines
in Fig. 2.3(C) and (D). Whether or not this is representative of the behavior of normal
dynamin upon GTP hydrolysis is not known. In another series of experiments [34, 35],
a special mixture of lipids that forms nanorods of radius ∼ 16 nm even in the absence of
dynamin was used. Unlike in Refs. [24, 33], normal dynamin was added in the presence of
various nucleotides, following which it formed helices with an outer radius ∼ 20 nm around
the nanorods. No change in the radius of the nanorods was observed. If the nucleotide
used was GDP, the pitch of the helices was approximately 20 nm. If on the other hand
GTPγS or GDP:AlF−

4 (which mimics the transition state between GTP and GDP) were
used, helices with a pitch of 11 nm were observed. When experiments with GTP were
conducted, tight helices were observed shortly after the activation of GTP hydrolysis by
MgCl2, and only loose ones were seen on longer time scales. These results suggest that
the radius of dynamin stays constant during GTP hydrolysis and that its pitch increases,
in conflict with the results of Refs. [24, 27, 28, 29, 33]. These discrepancies are discussed
in chapter 4.

Whatever the precise details of the change of conformation of dynamin, it is widely
recognized to be both linked to GTP hydrolysis (which is itself conditioned to the poly-
mer’s self-assembly) and indispensable for endocytosis [35]. Dynamin is therefore thought
to function primarily as a mechanochemical enzyme, a unique status among GTPases.
In vitro and in the absence of any other protein, its change of conformation is sufficient
to drive tube breakage when the end points of the tube are attached to a substrate [24].
However, no fission of freely floating tubes is observed [33]. More recently, optical mi-
croscopy was used to investigate the dynamics of the tube’s conformational change and
breaking [36]. In these experiments, dynamin-coated membrane tubes are grown from a
lamellar phase of brain polar lipids (or a synthetic mixture mimicking brain polar lipids)
supplemented with PIP2. GTP is then injected in the experimental chamber (typically
in a few tenths of seconds). The initially rather floppy tubes then straighten, revealing a
buildup of their tension. If one end of the tube is free to fluctuate, this tension results
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in the retraction of the tube. If both ends are attached, the tube breaks. If polystyrene
beads (radii 130-160 nm) are attached to the dynamin coat, rotation is observed after
GTP injection, showing that GTP hydrolysis induces not only tension but also torques
in the tubes. The typical time scales involved in the rotation of the beads and the break-
ing of the tubes are roughly 3 s after GTP injection. Note that the buildup of torques
is further evidenced by the formation of plectonemic supercoils, as observed in electron
microscopy [33, 36].

Although the mechanism by which dynamin breaks membrane tubules is still a much-
debated question for which several models have been proposed [16], these experimental
results point in the direction that it might critically depend on some physical parameters.
As tube breaking seems to depend on the buildup of torques and tube tension as the helix
undergoes a concerted conformational change. However, this view was recently challenged
and it has been argued that long dynamin helices disassemble very quickly when put in
the presence of GTP [37, 38, 39]. In chapter 4, we set out to develop a theoretical
framework allowing the study of concerted conformational changes in helical tubes. This
allows us to formulate general predictions and interpret unpublished experimental results
to argue strongly in favor of a concerted conformational change. We also set the path for
a systematic study of the factors inducing tube breaking.
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Chapter 3

Dynamin polymerization

In this chapter, we deal with the first step of dynamin’s action: its polymerization around
a membrane substrate. This is a very complicated problem to study in a cellular environ-
ment, because of the complex geometry and of the other proteins involved. Therefore, in
order to obtain a quantitative insight into this process, we study dynamin in an in vitro
setup using purified components. Combining the data from this well-controlled system
with a theoretical approach, we are able to extract reliable information concerning the
seeding and growth of dynamin helices. Unless stated otherwise, all the experimental
data presented in this chapter is as yet unpublished work by Aurélien Roux in the group
of Patricia Bassereau in Institut Curie.

In Sec. 3.1, we present the experimental setup with which the aforementioned data was
obtained, as well as the basic physical principles underlying its functioning. Sec. 3.2 con-
cerns the equilibrium properties of the dynamin polymer; the theoretical results obtained
in this section are supported by substantial experimental data. In the more speculative
next two sections, we try to interpret preliminary results concerning transient regimes:
Sec. 3.3 deals with the seeding of the dynamin polymer and Sec. 3.4 with its growth
dynamics. Experimental proposals are made that could lead to a better understanding
of the dynamin-membrane interactions. Finally, in Sec. 3.5, we discuss the biological
implications of our results.

3.1 Experimental setup

The setup described here allows control over a single dynamin helix. A giant unilamellar
lipid vesicle (GUV) containing biotinilated lipids as well as PIP2 is held by a micropipette
[Fig. 3.1(a)]. The pressure Pp within the pipette is imposed and is lower than the pressure
Pc in the experimental chamber. Denoting the pipette and vesicle radii by rp and rv, the
membrane tension by σ and the pressure inside the vesicle by Pv, we write Laplace’s law
at the spherical interfaces between the inside of the pipette and the vesicle and between
the vesicle and the experimental chamber, respectively:

{

Pv − Pp = 2σ/rp
Pv − Pc = 2σ/rv

⇒ σ =
rprv
2

Pc − Pp

rv − rp
. (3.1)

21
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Figure 3.1: Experimental setup. (a) Schematic, see main text for description. (b) The
membrane (labeled by GloPIP2—red channel) and dynamin (Alexa 488-labeled—green
channel) are imaged in confocal fluorescence microscopy. Inhomogeneities in the red
channel are due to bleed through from the green channel to the red. Bar, 10µm.

Therefore, assuming that the vesicle is large enough for rv to vary negligibly over the
course of the experiment, it is possible to set the tension of the vesicle by controlling Pp.
This is done throughout this chapter.

In order to create a substrate suited for dynamin polymerization, a streptavidin-coated
bead is brought into contact with the vesicle using optical tweezer (OT), allowing the
membrane to stick to the bead by the formation of biotin-streptavidin bonds. When the
bead is moved away, it remains attached to the vesicle by a thin cylindrical membrane
tubule. Such a deformation of the membrane out of its initial spherical shape has an
energetic cost, and the membrane exerts a restoring force on the bead accordingly. An easy
way to observe this pulling effect is to turn the optical tweezer off: the tubule then quickly
retracts and drags the bead back into contact with the vesicle. For small displacements of
the bead, the confinement of the optical tweezer can be described as a harmonic trap, and
the force exerted on the bead can therefore be measured by monitoring its displacement
within the trap. This displacement is much smaller than the typical length of the tubules
considered here. The optical tweezer exert a force f on the bead that balances the force
exerted by the membrane. By considering the free energy cost of deforming the membrane,
we are able to predict the value of this force. Neglecting thermal fluctuations, the energy
of the membrane is given by Eq. (1.1). Let us write the free energy of a cylindrical bare
membrane tubule of radius rb and length L in contact with a membrane tension reservoir
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(the vesicle, imposing a tension σ) and a force reservoir (the bead, imposing a force f):

Fb = 2πrb

(

κ

2r2b
+ σ

)

L− fL, (3.2)

where κ is the bending modulus of the membrane. Minimizing Fb with respect to rb and
L, we find that the radius of the tubule is set by the competition between the tension,
which tends to suck the membrane to the vesicle and therefore deplete the tubule of lipids
and make it narrower, and the bending modulus, which prevents the membrane from
becoming too curved i.e. prevents the tubule from becoming too narrow. We also obtain
the force needed to maintain a bare membrane tubule:

rb =

√

κ

2σ
, fb = 2π

√
2σκ. (3.3)

Moving away from well-established experimental procedures (for further details on
this setup, see Ref. [40]), we introduce a purified dynamin solution in the experimental
chamber. For high enough concentrations, dynamin spots appear on the tubule and
grow with time [Fig. 3.1(b)]. This is evidence of the polymerization of a dynamin helix
around the tubule, as mere adsorbed dynamin would be expected to cover the tubule
homogeneously. Moreover, if the bead is released from the optical trap after covering
the tubule with dynamin, full retraction of the tube is not observed, an indication of the
rigidity of the dynamin polymer.

3.2 Thermodynamic study

Dynamin was one of the first proteins shown to tubulate protein-free charged liposomes
[24]. At the end of this process, the tubules are encircled by dynamin helices, suggest-
ing that dynamin polymerization provides the energy needed to deform the liposome
membrane into a highly curved tubular structure. In this section, we investigate this in-
terpretation by considering only the initial and final states of the polymerization process,
thus avoiding speculations on its dynamics.

In Sec. 3.2.1, we propose a slight generalization of Eq. (3.2) allowing the description
of dynamin-covered tubes. One important parameter of this description is the free energy
associated with dynamin polymerization, which we measure in Sec. 3.2.2. In Sec. 3.2.3,
we use this result to predict the dependence of dynamin polymerization on the initial
curvature of its membrane substrate without any adjustable parameters, and confirm
these results experimentally.

3.2.1 Dynamin-coated tubes

Dynamin has a tendency to spontaneously polymerize around membrane substrates. Here
we propose an energetic description of this tendency and write the total free energy of
the tubule in contact with the dynamin solution, the vesicle and the bead as

F = µb(L− Lh) + µhLh − fL, (3.4)
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where µb =
πκ
rb

+ 2πσrb is the free energy per unit length of the bare membrane tubule,
Lh is the length of tubule covered by the helix and the free energy per unit length for the
dynamin-covered part reads

µh =
πκ

r0
+ 2πr0σ − P(c, r0). (3.5)

Since the dynamin coat is very rigid [see discussion in the next chapter, and in particular
Eq. (4.49)] and consistent with the very narrow dispersion in the radii of experimentally
observed tubes [14, 24, 33, 41], we assume that r0, the radius of the dynamin-coated
membrane, is a constant imposed by the structure of the dynamin helix. More generally,
in this section we do not take into account the energetic cost of deforming the helix, as
it is considered so stiff that its deformation, and hence this cost, is negligible. The two
first terms of the right-hand side of Eq. (3.5) obviously describe the cost of imposing the
radius r0 on the membrane while P(c, r0) is the free energy gain per unit length that we
associate with dynamin polymerization. This P includes the following effects:

• The binding energy of a dynamin dimer to an already existing helix—this quantity
might depend on the salinity of the solution.

• The energy gain of dynamin upon binding the membrane—this quantity depends
on the chemical composition of the membrane.

• The loss of entropy for dynamin dimers to leave the solution and go into the im-
mobilized polymerized state—this quantity depends on the concentration c of the
dynamin solution.

• The elastic cost of deforming the helix away from its preferred radius—this quantity
depends on the inner radius r0 of the dynamin helix.

In the hypothesis where r0 is a constant and working at constant membrane and buffer
composition, we only need to consider the dependence of P on the concentration c of
dynamin in the solution.

Minimizing F with respect to rb, we find that µb = fb and that rb has the same value
as in Eq. (3.3).

3.2.2 Measurement of the polymerization free energy

Since dynamin gains free energy upon polymerization, we expect that it should be able to
push against the bead with a force P(c), similar to microtubules growing against a wall
[42]. By pushing against the bead, it should relieve some of the pulling force exerted by
the membrane tubule. As mentioned above the force exerted on the bead is monitored
throughout the experiments, and it should therefore be possible to observe this drop
in the tubule force. Experimentally, we indeed observe such a force drop, as shown in
Fig. 3.2(a-b). Note that if the tubule is only partially covered by dynamin, the force
remains constant and equal to fb. This is expected from our theoretical description, as
can be seen by minimizing F with respect to L at fixed Lh < L—otherwise said, although
dynamin grows, it cannot exert a force on the bead without leaning on the vesicle for
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Figure 3.2: Coverage of the membrane tubule by dynamin induces a drop in the force.
(a) Progressive coverage of a tubule by a dynamin helix in the presence of a 440 nM
dynamin solution. Bd: bead, Ves: vesicle. (b) Force measurements throughout this
process (gray, raw data; red, smoothed average). The numbers refer to the successive
images of (a). The force drops when full coverage of the tubule by dynamin is achieved.
(c) Rapid coverage of the tubule by dynamin upon injection of a 12µM dynamin solution
by an auxiliary pipette (outside of the field of view). Times are indicated in s. (d) Force
measurement for two similar experiments, with two different membrane tensions. (e) De-
pendence on the membrane tension of the force associated with the dynamin-covered tube.
Bars, 10µm.

support. At full coverage, on the other hand, L = Lh and the minimization yields a force
fh = µh.

Moving to a higher dynamin concentration of 12µM, where the polymerization process
is quicker [Fig. 3.2(c)], but the force drop feature is conserved [Fig. 3.2(d)], we conduct
experiments at various membrane tensions and obtain the dependence of fh = µh on σ
[Fig. 3.2(e)]. As predicted in Eq. (3.5), this dependence is linear, confirming our assump-
tion that r0 is independent of σ. Using κ = 16±3kBT (measured before dynamin injection
following the protocol of Ref. [43]), the fit coefficients yield a new measurement of the
inner radius of the dynamin helix, r0 = 11.2 ± 0.3 nm, consistent with existing electron
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microscopy data [14, 24, 33, 41], as well as

P(12µM) = 18.1± 2 pN. (3.6)

Since the dynamin polymer grows by a = 9.3 Å upon addition of one dimer (14 dimers
per 13 nm turn), this means that the polymerization free energy of the dynamin helix
equals P(12µM) × a = 3.8kBT per dimer. This is of the same order of magnitude as
the polymerization free energies of other biopolymers: 5-10kBT for tubulin [42] and 0.5-
1.5kBT for actin [44].

3.2.3 Polymerization phase diagram

Having measured P , we are now in a position to test our thermodynamic views on dynamin
polymerization. In this picture, dynamin polymerizes around the membrane tubule if and
only if µh < µb [see Eq. (3.4)]. Formulating this criterion in terms of the bare tubule
radius yields:

r−(c) =
r0

1 +
√

r0P(c)
πκ

< rb < r+(c) =
r0

1−
√

r0P(c)
πκ

. (3.7)

In other words, a bare membrane tubule can be encircled by dynamin only if its radius
lies between the lower critical radius r− and the upper critical radius r+. Experimentally,
it is indeed observed that dynamin polymerization depends on the bare tubule radius,
as shown in Fig. 3.3(a). Note that the tubule radii accessible experimentally are always
larger then r−, so that in practice smaller tubules are always more suitable for dynamin
polymerization.

The higher the concentration of dynamin, the more efficiently it tubulates the mem-
brane. This is reflected by the dependence of P(c) on the concentration of the dynamin
solution. Assuming that dynamin is very dilute, we can describe the solution as ideal:

P(c) = P(12µM) +
kBT

a
ln

(

c

12µM

)

. (3.8)

Putting Eqs. (3.7) and (3.8) together with Eq. (3.6), we predict a phase diagram for
dynamin polymerization on membrane tubules that does not involve any adjustable pa-
rameters. In Fig. 3.3(b), we show that experiments agree with these predictions, thus
validating our picture of a competition between dynamin binding energy and membrane
elastic energy.

Under certain experimental conditions, dynamin polymerizes around initially flat
membrane substrates (as opposed to the cylindrical tubules considered until now) [36].
Theoretically, this behavior is reflected by a negative value of fh, i.e., a situation where
tubes grow unless opposed by a compressive force from the bead. This condition reads
fh = µh < 0, or

σ <
P(c)

2πr0
− κ

2r20
. (3.9)

In order to be able to plot this condition on the phase diagram of Fig. 3.3(b), we equiv-
alently express this condition on the membrane tension in terms of the bare membrane
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Figure 3.3: The initial radius of the membrane tubule determines whether dynamin
polymerizes or not. (a) Membrane tubule in a homogeneous c = 440 nM dynamin solution.
The radius of the initially wide tubule is brought down progressively by applying steps
in the aspiration [i.e. in Pp—see Eqs. (3.1) and (3.3)]. Polymerization is only observed
once the radius falls below a certain critical radius (here ≃ 11 nm), which we denote by
r+ in Eq. (3.7). Bd: bead, Ves: vesicle. (b) Theoretical prediction for the dependence
of the critical radii r± and the spontaneous tubulation radius rs on c. The up and down
triangles represent specific experiments where polymerization was respectively observed
and not observed. An overlap of up and down triangles is observed in some parameter
regimes, reflecting the imperfect reproducibility of our experiments due to fluctuations
in the local dynamin concentration and in the lipid composition of the membranes. For
c < c1, dynamin never polymerizes around membrane tubules. For c1 < c < c2, dynamin
polymerizes around wide (rb > r0) tubules only if their radius is smaller than r+(c). For
c2 < c, dynamin always polymerizes around wide tubules, and spontaneously tubulates
floppy flat membranes [i.e. those with rb > rs—see Eqs. (3.9) and (3.10)]. Bar, 10µm.

radius:
rb > rs =

r0
√

r0P(c)
πκ

− 1
. (3.10)

This threshold radius for spontaneous tubulation is not a very intuitive quantity to con-
sider and should be understood in the following way: dynamin polymerizes on a flat mem-
brane if the equilibrium radius of a hypothetical tubule extruded from this membrane is
larger than rs. Our description is thus compatible with the observation of spontaneous
flat membrane tubulation by dynamin reported e.g. in Ref. [36]. Eq. (3.10) is a prediction
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concerning the concentration and tension regimes where this should be observed experi-
mentally. As yet, this regime has not been observed in our experiments, as the dynamin
solutions we use are below c2. Note that P , and therefore c2, depend on the lipid com-
position of the membrane, which accounts for the fact that other authors working with
different lipid compositions observed the tubulation of flat membranes at concentrations
lower than the ones used here. We could nonetheless validate Eq. (3.10) using a more
concentrated dynamin solution. Doing so would prove that membrane tension alone can
control dynamin polymerization, just like the experimental data presented in Fig. 3.3(b)
shows that membrane curvature can control dynamin polymerization.

3.3 Seeding kinetics

In the previous section, we saw that at low dynamin concentrations, the initiation of
dynamin polymerization occurs through a “seeding” stage. In this phase, the polymer-
ized state of dynamin is the most favorable energetically but helices still only appear in
sparse locations and then grow from there [Fig. 3.2(a)]. This is reminiscent of nucleation
processes in first-order phase transitions, e.g. the liquefaction of water vapor. Under
certain conditions, small domains of liquid water (the thermodynamically stable phase)
are energetically disfavored and can only grow if a fluctuation of the vapor density makes
them larger than a certain critical size above which their bulk stability overcomes the
destabilizing surface effects. In the case of dynamin, the role of the metastable vapor
is played by the bare membrane tubule with dynamin adsorbed on it. Because of the
large radius of the tubule, helices have difficulties to form around it as fitting a dynamin
polymer on a large tubule requires bending the polymer and therefore costs energy. Thus
the role of surface tension (i.e. the energetic barrier) in the nucleation example is played
by the energetic cost of locally taking the radius of the tubule down to r0.

In this section, we speculate about the way dynamin crosses this energetic barrier,
therefore making predictions about the kinetics of the seeding process. Although several
effects are likely to play a role in practice, we somewhat artificially separate two extreme
cases: in Sec. 3.3.1, we consider the case where the length and bending fluctuations of
small dynamin oligomers account for the crossing of the barrier, whereas in Sec. 3.3.2 we
assume that the thermal fluctuations of the membrane play a dominant role (Fig. 3.4).
Because of the experimental difficulty to access the details of phenomena happening on
such small length and time scales, we do not look for exact solutions of models involving
straightforwardly measurable parameters. Rather, we focus on signatures of the two
effects in terms of the scaling of the (experimentally observable) helix seeding rate as a
function of (the experimentally tunable) c and σ.

3.3.1 Soft dynamin, stiff membrane

In this first model, we consider that the assembly of dynamin provides the energy necessary
to create a pinch in the membrane of the type represented in Fig. 3.4(d). We therefore
propose the simplified picture that dynamin first assembles into a small oligomer with a
radius of curvature rb =

√

κ
2σ

[Fig. 3.4(b)]. Let n denote its length (counted in number
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Figure 3.4: Schematics of the metastable (a) and stable (d) states of the dynamin-
membrane system. (b) and (c) represent the two reaction intermediates considered here
for the system to get out of the former and into the latter. (e) Simplified energy landscape
for the “stiff dynamin, soft membrane” model.

of dynamin dimers). Since dynamin helices have a preferred radius r0 < rb, an elastic
energy

Eoligo = neoligo =
nkoligo

2

(

1

rb
− 1

r0

)2

(3.11)

is accumulated during the growth of such an underbent oligomer. This equation means
that we express Eoligo as the bending energy of a worm-like chain with spontaneous cur-
vature r−1

0 and persistence length koligo/(kBT × size of a dimer). Note that short, non-
helical oligomers of dynamin might be much more flexible than a dynamin helix. Thus,
even though we assumed in Sec. 3.2.1 that dynamin helices are extremely stiff and can-
not accommodate a radius larger than r0, small oligomers might be able to. Finally, we
formulate the criterion that as soon as the accumulated energy Eoligo matches the energy
≈ κ necessary to create a pinch in the tubule [45], the oligomer collapses into a stable
helix and growth is able to proceed [Fig. 3.4(d)]. This is of course a simplified represen-
tation of the actual situation, where the deformation of the membrane is progressive as
the oligomer builds up. The equality of these two energies defines the critical oligomer
size required for seeding

n∗ ≈ κ

eoligo
≈ κ

koligo
(

r−1
b − r−1

0

)2 . (3.12)

In order to understand the kinetics of seeding in this model, we therefore need to look
at the aggregation dynamics of dynamin dimers on the surface of the bare tubule. We
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are interested in the time it takes for the first oligomer of size n∗ to appear. The change
in free energy associated to the formation of a dimer-dimer bond reads:

ebond = e0 + eoligo, (3.13)

where e0 is the bonding free energy on a tubule of radius rd and is negative when poly-
merization is energetically favored on such a tubule. Infinitely strong bonds correspond
to e0 → −∞. We model the aggregation process in the following way: for times t < 0,
N dynamin dimers are adsorbed on the tubule (this hypothesis is discussed further in
Sec. 3.4.2). Providing that the dimer density on the tubule is not to high, N is propor-
tional to the concentration c of the dynamin solution and to the length L of the tubule.
The aggregation process is turned on at time t = 0, for instance by decreasing the value
of rb as in Fig. 3.3(a), thus making the formation of bonds more favorable energetically
according to Eqs. (3.11) and (3.13). We assume that dynamin dimers form linear poly-
mers, i.e. that they have two reaction sites that bond with other dimers’ reaction sites
with a rate constant kagg. Note that kagg can depend on the radius of the tubule, and
therefore on σ, as well as on the temperature. Assuming fast diffusion and normalizing
time by kagg, we define the following reaction-limited aggregation process:

dNn

dt
=

1

2

∑

l+m=n

[

(2Nl)(2Nm)

N
− 2e

ebond
kBT Nn

]

−
+∞
∑

m=0

[

(2Nm)(2Nn)

N
− 2e

ebond
kBT Nm+n

]

, (3.14)

where Nn is the number of aggregates containing n dimers. In the right-hand side of
this equation, terms quadratic in Nn account for aggregation events. Here we ignore
circular oligomers, hence the factors 2 in these terms, corresponding to the fact that each
aggregate has two dangling ends, hence two potential reaction sites. The terms linear in
Nn, on the other hand, represent the fragmentation events. The reaction constants in
front of them are proportional to exp (ebond/kBT ), which is required to satisfy detailed
balance. The factors of 2 in front of these fragmentation terms originate from the fact
that there are two ways to break a n-mer into two pieces of prescribed size l and m such
that l + m = n: either as a l-mer plus an m-mer, or as an m-mer plus a l-mer. We
make the approximation that N =

∑

n nNn is conserved (which is a good approximation
if exchanges with the solution are slow or if most dimers stay in a non-oligomerized state)
and start from N1(t = 0) = N .

This process corresponds to the special case RA2 of the class of models introduced in
Ref. [46]. Here we present some results from this reference. Let us define the “extent of
reaction” δ(t) as the fraction of the reaction sites having reacted at time t. This quantity
is sometimes also referred to as the “reaction rate”. We can express the probability that
a dimer selected at random is part of a n-mer in two ways:

1. as nNn/N .

2. as the product of the following terms: the probability δn−1 that n − 1 sites have
reacted with some site on some other dimer; the probability (1 − δ)2 that the two
sites at the dangling ends have not reacted; and a factor n representing our freedom
to select any one of the dimers within the oligomer.



3.3. SEEDING KINETICS 31

Equating those two expressions, we find the number of n-mers:

Nn = Nδn−1(1− δ)2. (3.15)

We also write the rate equation for the chemical reactions between sites:

dδ

dt
= 2(1− δ)2 − e

ebond
kBT δ, (3.16)

where the first term describes bonding reactions between two sites and the second breakage
of bonds. The solution of this equation is

δ(t) = δ0
1− e−∆t

1− δ20e
−∆t

, (3.17)

where the stationary solution is given by

δ0 = 1 +
e

ebond
kBT −∆

4
with ∆ =

√

e
2ebond
kBT + 8e

ebond
kBT . (3.18)

Combining Eq. (3.15) with Eq. (3.18), we find that at equilibrium Nn is an increasing
function of n if and only if ebond < 0. This corresponds to a situation where long filaments
are more stable than isolated dimers even on a tubule of radius rb, and therefore to a case
where the energy barrier considered here vanishes. The analog of this in the frame of first-
order transition would be a situation where spinodal decomposition occurs. In this section,
we focus on the case ebond > 0, and try to assess the time it takes for the first seed to
appear. Rather than solving the full first-passage process it involves, we use the heuristic
criterion that in large systems, the first seed appears for tseed such that Nn∗(tseed) ≈ 1. If
the system is large enough [N → +∞, meaning N∞

n∗ = Nn∗(t = +∞) ≫ 1], this happens
for a small extent of reaction

δ(tseed) ∼
N→+∞

1

N1/(n∗−1)
→

N→+∞
0, hence tseed ∼

N→+∞

N−1/(n∗−1)

δ0∆
→

N→+∞
0. (3.19)

This equation simplifies in the small temperature/high barrier limit e
ebond
kBT ≫ 1:

tseed ∼
N→+∞
T→0

N−1/(n∗−1) ≈ (cL)−1/(n∗−1), (3.20)

This result has a rather simple interpretation: on short time scales, the number of n = 1
aggregates is roughly constant, and therefore of order cL. Thus the rate of formation
of n = 2 aggregates is of order cL also, meaning that N2 ≈ cLt. Similarly, the average
number of n∗-mers initially grows as Nn∗ ≈ cLtn

∗−1. Hence there is Nn∗ ≈ 1 aggregate of
size n∗ when t reaches the seeding time given in Eq. (3.20). Note that in this equation time
is expressed in units of k−1

agg, and that tseed can thereby depend on σ and the temperature
T . Experimentally, it should be possible to validate this mechanism by verifying that tseed
is a function of cL i.e. that it has the same dependence in c and in L. The form of this
dependence should allow for the determination of n∗. Then the dependence of n∗ on σ
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could in principle be recovered, allowing an evaluation of the persistence length of short
dynamin strands through Eq. (3.12).

In the case of a small system, the extent of reaction δ reaches its stationary value δ0
way before tseed. At any time, the average number of n∗-mers in the system is N∞

n∗ ≪ 1,
meaning that there are no n∗-mers in the system a fraction 1−N∞

n∗ of the time and one
n∗-mer a fraction N∞

n∗ of the time. Therefore to see a n∗-mer, we need to wait 1/N∞
n∗

times the typical correlation time of the n∗-mer concentration. According to Eq. (3.17),
this time is 1/∆. Therefore:

tseed ≈
N→0

(N∞
n∗∆)−1 ≈

[

Nδn
∗−1

0 (1− δ0)
2∆
]−1 ≈

N→0
T→0

(cL)−1e
(n∗−2)ebond

kBT . (3.21)

Again, the dependence of tseed in T and σ in this expression is not completely known,
as the time unit k−1

agg depends on them. However, the dependence in n∗ is completely
explicit here as k−1

agg does not depend on it. We can understand this dependence in simple
terms: we have ≈ cL particles, each of which might aggregate with others and form an
n∗-mer. Aggregation is however energetically disfavored, and the associated energetic
barrier is n∗ebond. According to Kramers’ rate theory, we expect a rate of jumping over
the barrier proportional to exp (−n∗ebond/kBT ) for each particle [47]. Therefore the rate
for any particle to cross the barrier is proportional to cL exp (−n∗ebond/kBT ). Up to a
prefactor, the tseed of Eq. (3.21) is the inverse of this rate. Given the large value of the
rightmost expression in this equation, seeding might not be observable on reasonable time
scales in the low temperature limit. Not however that at any temperature, a seeding time
proportional to (cL)−1 is a signature of the small system regime of Eq. (3.21). Observing
this dependence experimentally would be an indication that more interesting information
could be gathered by increasing N and rb (thus increasing ebond) to reach the regime of
Eq. (3.20).

It should be noted that the scaling laws presented here do not depend much on the
precise mechanism by which the oligomers grow. Expressions similar to Eqs. (3.20) and
(3.21) are recovered if dynamin is assumed to grow by addition of single dimers only,
similar to the growth mechanism of other biopolymers [42, 44].

3.3.2 Stiff dynamin, soft membrane

We now consider the opposite extreme to the model presented above, and investigate
a situation where dynamin is so stiff that it cannot oligomerize onto a substrate of ra-
dius larger than r0. In such a situation, the membrane needs to locally fluctuate to a
radius smaller than r0 for seeding to happen. When a thermally excited pinch of this
type occurs [Fig. 3.4(c)], dynamin must oligomerize around it before the fluctuation re-
laxes and dynamin assembly is made impossible again. We denote by T (c) the dynamin
concentration-dependent characteristic time required for this oligomerization. One pos-
sible interpretation for T (c) is to view it as the time it takes for a full dynamin ring
(made of 14 dimers) to form around the tubule. Once such a ring is formed, the pinch is
stabilized by a sturdy dynamin ring that further thermal fluctuations cannot break.

In a nutshell, we are interested in the rate of long (> T ) small-radius (< r0) fluctu-
ations of the tubule. Because the tubule has many fluctuating degrees of freedom, this
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problem is quite challenging in the general case. Here, we only consider a certain type of
fluctuations, namely a typical pinch of radius r. Restricting ourselves to small deforma-
tions, the energetic cost of this pinch has to be quadratic in (r − rb). Thus we can write
it as:

V (r) =
k

2
(r − rb)

2. (3.22)

Dimensionally, the stiffness k of the harmonic potential must be of order σ. In order
to tackle the relaxation dynamics of the pinch, we need to know its length ℓ, defined in
Fig. 3.4(c). Dimensionally, it must be of order rb. By analogy with the relaxation of
the peristaltic modes of a membrane tubule, we expect that the dominant dissipation
mechanism in this system is the drainage of the water inside the tubule [48]. The typical
time scale for this process is η

√

κ/σ3, where η is the viscosity of water. The deterministic
part of the pinch’s relaxation is thus described by the equation

dr

dt
= −̥(r − rb), (3.23)

with ̥ ≈
√

σ3/κ

η
.

For more clarity, we now convert these equations into a dimensionless form. We choose
kBT as our energy scale, 1/̥ as our time scale and

√

kBT/k as our length scale. We
moreover shift the origin of the position coordinate and change its sign such that in our
new units the potential energy, time and position read

V̄ =
V

kBT
, t̄ = ̥t, x =

√

k

kBT
(rb − r) (3.24)

respectively. We also define x0 =
√

k/kBT (rb−r0). In these units, the confining potential
of Eq. (3.22) reads

V̄ (x) =
x2

2
. (3.25)

and the dynamical equation Eq. (3.23) becomes

dx

dt̄
= −x. (3.26)

This simplified description therefore focuses on a section of the tubule of length ≈ rb,
whose radius (described by the variable x) undergoes thermal fluctuations in the harmonic
potential V̄ (x) [Fig. 3.4(e)]. To this level of approximation, the fluctuation dynamics of
the membrane is described by the following Fokker-Planck equation

∂t̄P (x, t̄) = ∂x [xP (x, t̄)] + ∂2xP (x, t̄) , (3.27)

where P (x, t̄) is the time-dependent probability density function for the random variable
x. In the following, we place ourselves in the low-temperature limit x0 ≫ 1 ⇔ k(rb −
r0)

2/kBT ≫ 1. Considering that (rb − r0) ≈
√

κ/σ, we have k(rb − r0)
2 ≈ κ. The low-

temperature limit is therefore reasonable as in practice κ/kBT ≃ 15. In this limit, even
if the variable x goes above x0, it is very unlikely that it will go much further. Indeed,
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since x0 ≫ 1 the restoring force in x0 is much stronger than the fluctuating force due to
thermal agitation. Thus above x0 we can safely approximate the Fokker-Planck equation
Eq. (3.27) by

∂t̄P (x, t̄) = x0∂xP (x, t̄) + ∂2xP (x, t̄) . (3.28)

We introduce a few definitions in order to make the following reasoning more transpar-
ent. We are interested in excursions above a certain threshold x0 of a brownian particle
whose position x is described by Eq. (3.27). We call “ξ-excursions” the trajectories start-
ing at position x0 + ξ and ending in x0. We furthermore define “(ξ, t̄)-excursions” as
ξ-excursions of duration t̄. Now considering the brownian motion of the particle in the
potential of Eq. (3.25) starting from x < x0 + ξ, we say that the particle enters a ξ-
excursion as soon as it reaches the position x0 + ξ. The ξ-excursion ends as soon as the
particle hits x0. If the time between those two events is equal to t̄, this excursion is
a (ξ, t̄)-excursion according to the above definition. After the excursion is finished, the
particle may enter another ξ-excursion upon hitting x0 + ξ again. In the following, we
consider small ξs—we are actually interested in the ξ → 0 limit. Therefore the motion
of the particle during an excursion is well described by Eq. (3.28). Note that according
to the discussion given in the beginning of this section, we should only be interested in
the (ξ = 0, t̄ > T̄ )-excursions. Because of the fractal structure of the brownian motion,
however, a particle in the vicinity of x0 goes above and below it infinitely many times.
If the starting point of the excursion is taken to be the same as its ending point, we will
thus have to reason on an infinite number of excursions, which is not very convenient.
Therefore, we discuss the general case ξ > 0 first, and then take the ξ → 0 limit.

We consider a very long realization of the random walk described by Eq. (3.28). By
“very long realization” we mean a realization much longer than the time between two
(ξ, t̄ > T̄ )-excursions. Denoting the total duration of this realization by T̄t, we therefore
work in the limit T̄t → +∞. For a given ξ, we define T̄e(ξ) as the time spend in ξ-
excursions of any duration. We denote by Ne(ξ) the total number of ξ-excursions1. Let
us pick an integer i at random between 1 and Ne(ξ), and consider the ith ξ-excursion.
The probability that this excursion is a (ξ, t̄i)-excursion with t̄i ∈ [t̄, t̄+dt̄] is equal to the
probability for a random walk described by Eq. (3.28) and starting in x0 + ξ to first hit
x0 after a time t̄i such that t̄i ∈ [t̄, t̄+dt̄]. For a small dt, this probability is given by [47]

dpiξ(t̄) =
ξ√
4π

exp

[

−(ξ − x0t̄)
2

4t̄

]

dt̄

t̄3/2
. (3.29)

Let us now pick a time at random among all times where the particle is in an excursion.
Since excursion i has a duration t̄i, the probability that the particle is in excursion i at
the time we picked is t̄i/T̄e(ξ). Therefore, the joint probability that the particle is in
excursion i at the time we picked and that t̄i ∈ [t̄, t̄+ dt̄] reads

dqiξ(t̄) =
t̄

T̄e(ξ)

ξ√
4π

exp

[

−(ξ − x0t̄)
2

4t̄

]

dt̄

t̄3/2
. (3.30)

1According to Eq. (3.29), ξ-excursions have a typical duration of order ξ/x0. Therefore Ne(ξ) ≈ T̄e(ξ)
ξ/x0

,

thus Ne(ξ) is finite for ξ > 0. If ξ = 0, on the other hand, Ne(ξ) diverges, which illustrates the reason
why we chose to take the limit ξ → 0 only in the end.
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Consider now the probability that the particle is in any (ξ, t̄′)-excursion such that t̄′ ∈
[t̄, t̄+ dt̄] at the time that we picked. This is equal to

dQξ(t̄) =

Ne(ξ)
∑

i=1

dqiξ(t̄)

=
Ne(ξ)

T̄e(ξ)

ξ√
4π

exp

[

−(ξ − x0t̄)
2

4t̄

]

dt̄

t̄1/2
, (3.31)

where the last equality is due to the fact that dqiξ(t̄) does not depend on i. The value of the
prefactor Ne(ξ)/T̄e(ξ) is given by the following fact: the probability that the the particle
is in any (ξ, t̄′)-excursion such that t̄′ ∈ R at the time we picked is equal to one. Indeed,
this probability is nothing but the probability that the particle is in any ξ-excursion at
the time we picked. Therefore

T̄e(ξ)

Ne(ξ)
=

∫ +∞

0

ξ√
4π

exp

[

−(ξ − x0t̄)
2

4t̄

]

dt̄

t̄1/2

∼
ξ→0

ξ

x0
exp

(

x0ξ

2

)

. (3.32)

Combining this with Eq. (3.31) yields a well-defined, normalized probability distribution
in the ξ → 0 limit

dQξ(t̄)→
ξ→0

dQ0(t̄) =
x0√
4π

exp

(

−x
2
0t̄

4

)

dt̄

t̄1/2
(3.33)

Therefore if we pick a time at random among all those where the random walk is in a
0-excursion, the probability that this time belongs to a (0, t̄′)-excursion with t̄′ ∈ [t̄, t̄+dt̄]
is equal to dQ0(t̄). Integrating over t̄, we find the probability that this time belongs to a
(0, t̄ > T̄ )-excursion:

T̄>T̄
e (0)

T̄e(0)
=

∫ +∞

T̄
dQ0(t̄) = erfc

(

x0
√
T̄

2

)

, (3.34)

where the complementary error function is defined by erfc(v) = 2√
π

∫ +∞
v

e−u2
du. Note

that being in a 0-excursion is equivalent to x being larger than x0.

We now calculate the average duration and the average square duration of a (0, t̄ > T̄ )-
excursion. Let us first write them for (ξ > 0, t̄ > T̄ )-excursions:

〈t̄ξ〉t̄>T̄ =

∫ +∞
T̄ t̄ dpiξ(t̄)
∫ +∞
T̄ dpiξ(t̄)

=
T̄>T̄
e (ξ)

N>T̄
e (ξ)

, (3.35)

〈

(t̄ξ)
2〉

t̄>T̄ =

∫ +∞
T̄ t̄2 dpiξ(t̄)
∫ +∞
T̄ dpiξ(t̄)

. (3.36)
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Both quantities have a well-defined ξ → 0 limit:

〈t̄0〉t̄>T̄ =
2

x20





1

1− x0

√
T̄

2

√
πerfc

(

x0

√
T̄

2

)

exp
(

x2
0T̄
4

) − 1



 =
T̄>T̄
e (0)

N>T̄
e (0)

, (3.37a)

〈

(t̄0)
2〉

t̄>T̄ =
4

x40





1 +
x2
0T̄
2

1− x0

√
T̄

2

√
πerfc

(

x0

√
T̄

2

)

exp
(

x2
0T̄
4

) − 1



 . (3.37b)

The quantities calculated here have to do with how the excursion time is distributed
between the various possible types of excursions.We now turn to the rest of the random
walk and relate the excursion time to the total time T̄t. Since T̄t is much longer than the
thermalization time of the particle, T̄e(0)/T̄t is the fraction of the time that the particle
spends in x > x0. According to equilibrium statistical mechanics, this is equal to

T̄e(0)

T̄t
=

∫ +∞

x0

e−V̄ (x)

√
2π

dx =
erfc

(

x0√
2

)

2
∼

x0→+∞

exp
(

−x2
0

2

)

√
2πx0

, (3.38)

where we use the low-temperature limit x0 → +∞ in the following.
Finally, we turn to the quantity of interest to us: the seeding time of the helix t̄seed.

It is convenient to assume that the experimental protocol is the following: the tubule
is prepared in t̄ = 0 and immediately starts fluctuating. The brownian agitation of the
membrane quickly thermalizes. At some random time t̄d between 0 and T̄t, dynamin is
injected in the experimental chamber. According to our model, the first dynamin helix
forms during the first (0, t̄ > T̄ )-excursion following t̄d. Let i be such that this excursion
is the ith (0, t̄ > T̄ )-excursion. Note that it is extremely unlikely in the low-temperature
limit for dynamin to be injected precisely during a (0, t̄ > T̄ )-excursion. We thus neglect
this possibility and denote by t̄wi the waiting time between the (i − 1)th and the ith
(0, t̄ > T̄ )-excursion. Since dynamin can be injected at the beginning just as well as in
the end of the waiting period, we have to wait a time t̄seed = t̄wi /2 on average before
excursion i starts. Let us denote by dpjw(t̄) the probability that the jth waiting period
has a duration t̄. The probability that dynamin is injected during a waiting period of
duration t̄′ such that t̄′ ∈ [t̄, t̄+ dt̄] therefore reads

dQw(t̄) =
t̄dpjw(t̄)

∫ +∞
0

t̄dpjw(t̄)
. (3.39)

The average duration of the waiting period during which dynamin is injected is therefore

2t̄seed =

∫ +∞

0

t̄dQw(t̄) =

∫ +∞
0

t̄2dpjw(t̄)
∫ +∞
0

t̄dpjw(t̄)
=

〈

(t̄w)2
〉

t̄>T̄
〈t̄w〉t̄>T̄

. (3.40)

Since the process considered here switches back and forth between (0, t̄ > T̄ )-excursions
and waiting periods between two (0, t̄ > T̄ )-excursions, the number N>T̄

e (0) of (0, t̄ > T̄ )-
excursions is equal to the number of waiting periods2. Moreover, the total time spent in

2The number of (0, t̄ > T̄ )-excursions can actually equal to the number of waiting periods plus or
minus one. In the T̄t → +∞ limit, however, this number is very large and one unit does not matter.
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waiting periods is equal to

N>T̄
e (0)
∑

i=1

t̄wi = T̄t −
N>T̄

e (0)
∑

i=1

t̄i, (3.41)

where t̄i denotes the duration of excursion i. Dividing byN>T̄
e (0) and taking the T̄t → +∞

limit, we find

〈t̄w〉t̄>T̄ =
T̄t

N>T̄
e (0)

− 〈t̄0〉t̄>T̄ . (3.42)

Now squaring Eq. (3.41), we find

∑

i

(t̄wi )
2 + 2

∑

i<j

t̄wi t̄
w
j = T̄ 2

t − 2T̄t
∑

i

t̄i −
∑

i

(t̄i)
2 − 2

∑

i<j

t̄it̄j. (3.43)

We divide this expression by N>T̄
e (0) and take the T̄t → +∞ limit. Using Eq. (3.42) and

noting that t̄wi , t̄
w
j , t̄i, t̄j with i 6= j are independent variables yields:

〈

(t̄w)2
〉

t̄>T̄ −
[

〈t̄w〉t̄>T̄
]2

=
〈

(t̄0)
2〉

t̄>T̄ −
[

〈t̄0〉t̄>T̄
]2
. (3.44)

Combining this with Eq. (3.42) yields the seeding time defined in Eq. (3.40):

2t̄seed =

〈

(t̄0)
2〉

t̄>T̄ − 2 T̄t

N>T̄
e (0)

〈t̄0〉t̄>T̄ +
(

T̄t

N>T̄
e (0)

)2

T̄t

N>T̄
e (0)

− 〈t̄0〉t̄>T̄
. (3.45)

Combining Eqs. (3.34), (3.37a) and (3.38), we find that

T̄t

N>T̄
e (0)

=

√
2πx0 exp

(

x2
0

2

)

erfc
(

x0

√
T̄

2

) 〈t̄0〉t̄>T̄ . (3.46)

Finally, using Eqs. (3.37), (3.45) and (3.46) we can calculate a full analytical expression
for the seeding time. Since the full form of this expression is rather lengthy and not very
informative, here we give only its asymptotic behavior:

t̄seed ∼
x0

√
T̄ ≪1

1√
2πx30

exp

(

x20
2

)

(3.47a)

∼
x0

√
T̄ ≫1

πx20T̄ 3/2

2
√
2

exp

[

x20
2

(

1 +
T̄
2

)]

. (3.47b)

We return to normal units to discuss these results. In order to define the tubule-
wide seeding time, we note that the seeding time calculated above is the seeding time for
one section of tubule of length ℓ. If we consider a tubule of length L, the seeding time
is inversely proportional to the number of sections of length ℓ comprised in the tubule,
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which is equal to L/ℓ. Using the orders of magnitude ̥ ≈
(

√

σ3/κ
)

/η ≃ 1/(10 ns),

ℓ ≈ rb ≈
√

κ/σ ≃ 10 nm and k ≈ σ ≃ 10−4 N.m−1, we have the asymptotic regimes

tseed ≈
T

η
√

κ/σ3
≪ kBT

κ

η(kBT )
3/2

κ1/2σ2L
exp

[

coeff× κ

kBT

(

rb − r0
rb

)2
]

(3.48a)

≈
kBT

κ
≪ T

η
√

κ/σ3

κ5/4σ1/4T 3/2

η1/2kBTL

× exp

[

(

coeff× κ

kBT
+

coeff′ × T κ1/2σ3/2

ηkBT

)(

rb − r0
rb

)2
]

,(3.48b)

where “coeff” and “coeff′” stand for unknown numerical coefficients of order one. Since
those coefficients are in the exponentials, they have a huge influence on the value of tseed.
This and the fact that T is unknown makes it difficult to give an a priori estimate the
magnitude of the seeding rate, especially in Eq. (3.48b). We however attempt such an
estimate in the small-T regime of Eq. (3.48a): using rb − r0 ≈ r0 ≈ rb, the argument of
the exponential is ≃ coeff× κ/kBT ≃ 15× coeff. Choosing coeff = 1.5 in this expression,
we find tseed ≃ s, which is compatible with experimental observations.

Eqs. (3.48) contain a simple prediction which could allow to validate the “stiff dy-
namin, soft membrane” model and discard the “soft dynamin, stiff membrane” model of
Sec. 3.3.1. This prediction is that tseed depends on the viscosity η of the medium sur-
rounding the tube. Note that this viscosity is the viscosity inside the tubule. It could
be controlled experimentally by forming the vesicles in a buffer containing polymers, for
instance. This dependence also allows us to experimentally determine which asymptotic
regime corresponds to the experiment at hand. Indeed, the seeding time of Eq. (3.48a)
increases with increasing η with an experimentally testable power law, while that of
Eq. (3.48b) decreases with increasing η with a more complicated exponential dependence.

Let us now discuss the meaning of these two regimes. In the regime of Eq. (3.48a),
T is smaller than the typical time it takes for a particle described by Eq. (3.28) to settle
back down after an upward thermal kick of amplitude kBT . Therefore once the particle
reaches x0, it will typically remain there for a time longer than T . Thus the seeding rate
in this regime is limited mostly by the rate at which the particle visits the vicinity of
x = x0, and the expression for tseed is proportional to the first-passage time of the particle
in x0. For long times, Eq. (3.48b) applies. In this regime, T is long, and typical thermal
fluctuations above x0 relax in times shorter than T . Therefore, once the particle has
reached x0, it still needs a thermal fluctuation of extraordinary amplitude to stay there
long enough for helix seeding to occur. This is evidenced by the additional, T -dependent
exponential factor in Eq. (3.48b).

Since the main dependence on some of the experimentally tunable parameters of
Eqs. (3.48) are multiplied by a large number (of order κ/kBT ) within an exponential, ver-
ifying these laws experimentally is particularly challenging as small changes in (rb − r0),
for instance, could lead to huge changes in the seeding rate. This is reminiscent of the
behavior observed in Fig. 3.3(a), where the helix seeding rate soars as soon as (rb − r0)
goes below a certain value.
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The dependence of tseed on the dynamin concentration, on the other hand, could be
interesting to investigate. For high c, the encircling time T should vanish, placing the
system in the regime of Eq. (3.48a), where tseed does not depend on T . One should
therefore use low dynamin concentrations to study the c-dependence of T . Since the
function T (c) is not known, it is difficult to assess whether dynamin seeding is observable
on experimentally realistic time scales in this regime. Note however that the fact that the
seeding rate strongly depends on c [compare Figs. 3.2(a) and (c) for instance] therefore
indicates that the regime Eq. (3.48b) might be relevant experimentally. If this is the case,
then the function T (c) could be determined by fitting the exponential T -dependence of
Eq. (3.48b). Another possible situation is one where the low-c regime itself is not accessible
experimentally, but where part of the crossover between Eq. (3.48a) and Eq. (3.48b)
can be monitored, for instance by monitoring the modification of the η-dependence of
tseed. In this case, the σ-dependence of the crossover concentration ccross between the two
regimes could be measured. It should then be possible to infer the function T (c) from the
relation T (ccross) = ηkBT

κ1/2σ3/2 . Several types of functions T (c) are imaginable, depending
on the process by which a dynamin oligomer encircles the tubule. One possibility is that
dynamin dimers are added to the oligomer at a constant rate as long as r < r0. Another
possibility would be for the oligomer itself to require a seeding stage before it can grow
as described, the rate of which would depend nonlinearly on c. Yet another possibility
would be an aggregation process similar to that of Sec. 3.3.1. In any case, it is likely
that although challenging, a measurement of the function T (c) would yield interesting
information about the early stages of dynamin assembly.

3.4 Growth kinetics

Following the above discussion of the dynamin polymer, a simple picture of how its growth
naturally comes to our mind: new dynamin helices appear either at a constant rate per
unit length of bare tubule as in Eqs. (3.21) or (3.48), or at a rate increasing with time, as
in the limit used in Eq. (3.20) (in this limit, the number of seeds goes as Nn∗ ∝ Ltn

∗−1).
Following this seeding stage, a constant number of dynamin dimers per unit time assembles
on each helix extremity. When the helix becomes mechanically continuous, the force
exerted by the tube on the bead drops, and polymerization stops when it reaches the
value imposed by thermodynamics (Sec. 3.2).

Although this scenario accounts for many experiments quite well, deviations from it
are sometimes observed, as described in Sec. 3.4.1. Here we open the way for a more
systematic study of these effects, which could yield interesting information about the
dynamin-membrane interactions, by analyzing two complementary effects likely to ac-
count for at least some of these observations. We name these effects the “antenna” and
“bulge” hypotheses and present them in Secs. 3.4.2 and 3.4.3. In Sec. 3.4.4, we discuss the
experimental perspectives for the validation of these mechanisms and what information
could be extracted from them.
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Figure 3.5: Anomalous growth effects in c = 440 nM experiments. At this dynamin con-
centration, growth happens over several minutes. (a) Spatial organization of dynamin
seeds. Bar, 10µm. (b) Fast drop in the seeding rate. (c) Early slowing down of polymer-
ization. (d) Force drop at partial coverage.

3.4.1 Anomalous growth effects

The growth process of dynamin can deviate from the scenario sketched above in several
ways, which we present here and in Fig. 3.5 (the labeling of the subfigures parallels that
of the following items). The parameter regimes in which each of these anomalous growth
effects show up are ill-identified as yet. By proposing interpretations for their causes, we
hope to guide possible investigations on these matters.

(a) In this micrograph, taken just after the radius was ramped down as in Fig. 3.3(a), the
dynamin seeds seem to organize in a periodic array. Such well-defined patterns are
not very reproducible, but there often seems to be a characteristic separation length
scale between dynamin seeds.

(b) This so-called kymograph represents the integrated fluorescence across the tubule (z
coordinate) as a function of time (t). In these coordinates, growing dynamin domains
appear as triangles, meaning that they grow with a constant velocity. The tip of the
triangles represent seeding events. Three seeding events occur right after dynamin
injection, then only growth is observed. This is in conflict with our picture of a
constant or increasing seeding rate per unit bare tubule length.

(c) Unlike in the previous kymograph, here helix growth does not proceed at constant
velocity but slows down when full coverage of the tubule is approached.
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(d) Simultaneous inspection of the force curve presented in Fig. 3.2(b) and the corre-
sponding kymograph reveals that the force starts dropping not when dynamin fully
covers the tubule, but slightly earlier.

Each of the two hypotheses presented in the following accounts for three out of those four
effects. Depending on the experimental regime, either none, one or both of them can be
relevant to the analysis of the experimental data.

3.4.2 Antenna hypothesis

In the model presented here, we take into account the known affinity of unpolymerized
dynamin for the membrane [23] and consider the possibility that in order to assemble
into a helix, dynamin coming from the solution first has to adsorb on the bare membrane
tubule, then diffuse to the extremity of a neighboring helix. This means that we do not
consider direct exchange of dynamin between the helix and the solution, although such
transitions are possible in principle and could be included in a more elaborate model. In
this interpretation, the anomalous growth effects arise from the fact that the helix is not
in direct contact with a dynamin reservoir at constant concentration, but with a finite
pool of membrane-bound dynamin dimers, which might be depleted by the growth of the
helix. This depletion might slow the seeding and growth of dynamin down. Continuing
our analogy with first-order phase transitions, this is comparable to the fact that in
the absence of a liquid phase, water vapor can exist at a higher pressure than at the
coexistence with the liquid (the vapor is then said to be supersaturated). As soon as
the liquid phase nucleates, the vapor phase is “depleted” and its pressure drops to the
coexistence pressure.

3.4.2.1 Dynamin adsorbed on a bare tubule

Here we consider the bare membrane interval between two sections of helix [Fig. 3.6(a)].
Because we expect the diffusion coefficient of a membrane-bound protein (≃ 10−13 m2.s−1

[49]) to be much smaller than that of a protein in solution (≃ 5×10−11 m2.s−1), we consider
the bulk diffusion to be very fast and therefore treat the concentration c of the solution as
homogenous. Let us postulate that the polymer growth is much slower than the typical
time scale characterizing the exchanges between the solution and the bare sections of
the tubule, an assumption that we justify at the end of this section. On the polymer
growth time scale, the mass of adsorbed dynamin per unit tubule length ρ satisfies the
steady-state equation:

∂tρ = 0 = D∂2zρ+ lonc− loffρ, (3.49)

where D is the diffusion coefficient of the protein on the tubule and the reaction rates are
defined in Fig. 3.6(a). Imposing that the function ρ(z) is even, we only need to specify
the boundary condition at the interface z = d/2 with the helix, from which the boundary
condition in z = −d/2 follows. The dynamin current from the tubule to the helix reads:

J(d/2) = −D∂zρ(d/2) = konρ(d/2)− koff, (3.50)
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where J denotes the protein current and kon, koff are defined in Fig. 3.6(a). We introduce
the dimensionless variables:

ρ̃ =
loffρ

lonc
, z̃ =

z
√

D/loff
, k̃on =

kon√
Dloff

, k̃off =
koff
lonc

√

loff
D
, J̃ =

J

lonc

√

loff
D
. (3.51)

Here the density unit lonc/loff is the equilibrium dynamin density on a bare tubule in
contact with the solution only. The actual dynamin concentration on the tubule is actually
lower than this value because the helix grows (k̃on > k̃off) and therefore depletes the tubule
of dynamin over a characteristic distance equal to the unit length

√

D/loff. Beyond this
distance, the effect of the helix is screened by exchanges of dynamin with the solution, and
therefore the tubule does not “see” the helix. In the following, we derive these qualitative
features more rigorously. Eqs. (3.49) and (3.50) now read:

∂2z̃ ρ̃− ρ̃− 1 = 0, −∂z̃ρ̃
(

d̃/2
)

= k̃onρ̃
(

d̃/2
)

− k̃off. (3.52)

The solution reads:

ρ̃ = 1−

(

k̃on − k̃off

)

cosh(z̃)

k̃on cosh
(

d̃/2
)

+ sinh
(

d̃/2
) ⇒ J̃

(

d̃/2
)

=
k̃on − k̃off

1 + k̃on coth
(

d̃/2
) . (3.53)

Let us consider two limiting cases for these expressions:

1. Case d̃ ≫ 1 i.e. the bare tubule section is large enough (or the diffusion slow
enough) for most of the tubule to not “see” the helix. The dynamin concentration

is equal to one almost everywhere and quickly falls to
(

1 + k̃off

)

/
(

1 + k̃on

)

near

the helix:

ρ̃ = 1− k̃on − k̃off

1 + k̃on
exp

[

−
(

d̃/2− z̃
)]

(for z̃ > 0) . (3.54)

2. Case d̃ ≪ 1 i.e. The bare tubule is so short (diffusion is so fast) that the dynamin
concentration is homogeneous:

ρ̃ =
2k̃off + d̃

2k̃on + d̃
, (3.55)

meaning that the whole tubule “sees” the helix.

3.4.2.2 Helix growth

Having calculated the profile of the adsorbed dynamin dimers on the tube, we are able
to calculate the rate at which they join the helix. In other words, we can now calculate
the helix growth rate, and predict the dynamics of the experimentally observable variable
d(t). The helix growth velocity is proportional to its dynamin intake rate, which is itself
equal to the current from the bare tubule to the polymer:

d

dt
(ρhd/2) = −J(d/2), (3.56)



3.4. GROWTH KINETICS 43

Figure 3.6: Model for the antenna hypothesis. (a) Definition of the reaction rates: dy-
namin adsorbs on the tubule with a rate lonc per unit tubule length and detaches with
loffρ, where ρ is the density of dynamin adsorbed on the tubule. Exchanges with the helix
happen only at its extremities z = ±d/2, and the rates for polymerization and depoly-
merization are konρ(±d/2) and koff, respectively. (b) Growth curves for dynamin helices
with koff = 0 (consistent with the observation that dynamin hardly depolymerizes over a
few minutes even when the dynamin solution is washed away) as a function of k̃on and
starting from a gap of width d̃ = 5 between the two helices. For longer tubules, growth
proceeds at constant velocity: see Eqs. (3.60a) and (3.60b).

where ρh denotes the density of the helix. Let us scale time by the typical helix growth
time:

t̃ =

(

konlonc√
Dloff

− koff
√
loff√
D

)

t

ρh
=
k̃on − k̃off

ρ̃h
lofft. (3.57)

Using Eq. (3.53), this yields the following helix growth equation:

dd̃

dt̃
=

−2

1 + k̃on coth
(

d̃/2
) , (3.58)

which yields

d̃/2 + k̃on ln
[

sinh
(

d̃/2
)]

= constant− t̃. (3.59)

This solution is plotted in Fig. 3.6(b). Eq. (3.59) simplifies in the following limiting cases:

d̃ ∼
k̃on≪1

d̃
(

t̃ = 0
)

− 2t̃ (3.60a)

∼
k̃on≫1

d̃≫1

d̃
(

t̃ = 0
)

− 2t̃

k̃on
(3.60b)

∼
k̃on≫1

d̃≪1

2 sinh

[

d̃
(

t̃ = 0
)

2

]

e−t̃/k̃on . (3.60c)

Qualitatively, in the regime of Eq. (3.60a), chemical equilibrium is always established
between the bare tubule and the solution and ρ̃ = 1 everywhere [see Eqs. (3.54) and (3.55)
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considering 0 6 k̃off < k̃on ≪ 1]. Therefore the polymerization of dynamin from the bare
tubule to the helix is the rate-limiting factor, and proceeds at a constant rate kon

lonc
loff

−
koff, which yields a dimensionless polymerization velocity equal to one [see Eqs. (3.51)
and(3.57)]. The factor two in front of t̃ in Eq. (3.60a) is due to the fact that there are
two polymerizing helices [one on the left and one on the right: see Fig. 3.6(a)]. This
regime is illustrated by the k̃on = 10−2 curve in Fig. 3.6(b). In the regime of Eq. (3.60b),
polymerization is fast (k̃on ≫ 1) and the bare tubule is long (d̃ ≫ 1). Thus the tubule
“sees” the helix only up to a distance ≈ 1 from it, and a large fraction of the dynamin
binding in this region of the tubule is funneled to the helix, hence feeding its growth.
Therefore each helix grows at a constant velocity, since the size of the region from which
dynamin is recruited does not depend on d̃ as long as d̃≫ 1. This regime is illustrated by
the d̃≫ 1 part of the k̃on = 10 curve in Fig. 3.6(b). When k̃on ≫ 1 and d̃ is smaller than
one, the system is in the regime of Eq. (3.60c). In this regime the bare tubule is short
enough for all of it to see the helices. Therefore a large fraction of the dynamin adsorbing
on it ends up polymerizing, and the dynamin intake of the helices is proportional to the
length of the tubule. Therefore the rate of shrinkage of the tubule is proportional to its
length, meaning that this length decays exponentially as in Eq. (3.60c). This regime is
illustrated by the d̃≪ 1 part of the k̃on = 10 curve in Fig. 3.6(b).

From Eqs. (3.60), it is apparent that helix growth happens on time scales of order (in
normal units):

ρ̃h ×max
(

1, k̃on

)

(

k̃on − k̃off

)

loff
&
ρ̃h
loff
. (3.61)

We can now justify our assumption that the growth time scale is much larger than the time
scale l−1

off over which the bare membrane equilibrates with the dynamin solution. Indeed,
experimentally, the fluorescence intensity of dynamin adsorbed on the bare tubule is much
weaker than that of polymerized dynamin [see Fig. 3.1(b), for instance]. Therefore, the
density of the dynamin helix is much larger than the typical density of adsorbed dynamin.
This can be expressed as ρ̃h ≫ 1, from which the validity of our assumption follows.

3.4.2.3 Relation to anomalous growth

The antenna hypothesis might account for three out of four anomalous growth effects
presented in Sec. 3.4.1:

(a) The consumption of dynamin by the growth of the helix creates a local depletion of
dynamin over a length

√

D/loff, as visible in Eq. (3.54). Since the seeding rate of
dynamin is likely to depend on the local dynamin concentration, this might account
for the fact that dynamin seeds seem never to appear in the vicinity of another helix.

(b) In situations where the spacing between dynamin helices is smaller than the screening
length

√

D/loff, the appearance of dynamin helices on the tubule induces a drop in
the adsorbed dynamin concentration from ρ̃ = 1 to a lower value [Eq. (3.55)—see also
the supersaturated vapor discussion at the beginning of this section]. This hinders
the seeding of other dynamin helices.
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Figure 3.7: Cylindrical membrane bulge isolated from the vesicle by a single helix. In
order for the radius of the bulge to relax to rb, membrane and water have to flow through
the helix, which might take a long time.

(c) If an adsorbed dynamin dimer in the vicinity of a helix has a higher chance of poly-
merizing than of detaching from the tubule (i.e. if k̃on & 1), then the growth rate of
the helix slows down as the length of bare tubule shrinks [Eq. (3.60c)]. This is due
to an antenna effect: polymerization is limited by dynamin intake from the solution,
which is itself dependent on the length of bare tubule in contact with the solution.
As this length shortens, the growth rate should diminish.

3.4.3 Bulge hypothesis

In this second hypothesis, dynamin polymerizes on a membrane substrate with an initial
radius rb > r0. As the helix grows, the tubule is squeezed down to a radius r0, and
therefore some excess membrane and water accumulate in the bare sections of the tubule.
This creates membrane bulges similar to the one depicted in Fig. 3.7, which are isolated
from the membrane by the helix. Since the radius of this bulge is larger than prescribed
by the equilibrium equation Eq. (3.3), it tends to flatten out and to flow into the vesicle.
In this section, we study the bulge relaxation dynamics and show that these effects tend to
make the tubule force drop and can be the rate-limiting step of dynamin polymerization.

Let us denote ϕ = fh/fb and restrict ourselves to 0 < ϕ < 1, which is equivalent to
being in the “tether polymerization” region of Fig. 3.3(b). In order to keep the following
study simple, we restrict our discussion to cylindrical membrane bulges, which we show
to be rigorously valid if ϕ >

√
3/2. We denote the free energy of the bulge by

F≎ = −fL≎ + σ≎A≎ − (P≎ − Pc)V≎ + F bending
≎ , (3.62)

where σ≎, P≎, L≎, A≎, V≎ and F bending
≎ are the bulge’s membrane tension, internal pres-

sure, length, area, volume and bending free energy respectively. Let us define the dimen-

sionless pressure Π = (P≎−Pc)
√
κ

2σ3/2 and tension ς = σ≎/σ, where σ > 0 is the tension of the
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vesicle. In Appendix A, we prove that the bulge remains cylindrical as long as

ς > 0 and
Π

ς3/2
6

(

2

3

)3/2

or (3.63)

ς < 0 and
Π

(−ς)3/2 6 −2

(

2

3

)3/2

.

Qualitatively, the first condition states that if the bulge’s tension is positive, then it
stabilizes the cylindrical bulge as long as its internal pressure is below a certain threshold.
The second condition deals with ς < 0 and reveals that a cylindrical bulge can exist even
in this case, provided that the pressure inside it is negative enough to compensate for the
destabilizing effect of the negative tension. The cylindrical shape imposes

A≎ = 2πL≎rb̺ (3.64a)

V≎ = πL≎r
2
b̺

2 (3.64b)

F bending
≎ =

πκL≎

rb
̺−1, (3.64c)

where ̺ = r/rb is the scaled bulge radius.
The first dissipative phenomenon at work during bulge relaxation is related to mem-

brane exchanges between the bulge and the vesicle. When these occur, membrane flows
through the helix, and energy is dissipated through an effective friction between helix
and membrane. In order to calculate an order of magnitude for the corresponding fric-
tion coefficient, we propose an oversimplified mechanism inspired by Ref. [23], where it
is shown that dynamin inserts into the outer leaflet of the membrane bilayer. In this
naive model, we assume that the outer membrane monolayer is attached to the helix and
that the energy dissipation comes from the sliding of one monolayer against the other.
Experimentally, one measures typical friction coefficients for the relative sliding of lipid
monolayers of order β = 108 Pa/(m.s−1) [50]. In the following, we show that the time
scale associated with this helix-membrane friction is

tm =
βL2r2b
κ̺0

× 1

ϕ(1− ϕ2)
≃ 3× 103 s, (3.65)

where we used ̺0 = r0/rb ≃ 0.3, L ≃ 10µm and ϕ ≃ 0.9. This order of magnitude is
typical of our experiments, which typically happen over tens of minutes. Finally, we define
ζm, the displacement of the membrane contained inside the helix relative to the dynamin
in units of L. Alternatively, ζm can be seen as the area of bulge membrane transferred to
the vesicle in units of 2πLr0.

The second dissipative phenomenon is related to water exchange between the inside
of the bulge and the vesicle. As shown below, the time scale associated to the Poiseuille
flow inside the helix reads

tw =
ηL2rb
κ̺40

×
32

[

(

2ϕ−
√

4ϕ2 − 3
)5

− ̺0

(

2ϕ−
√

4ϕ2 − 3
)3
]

4ϕ
(

2ϕ−
√

4ϕ2 − 3
)

− 4
≃ 103 s, (3.66)
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where η ≃ 10−1 Pa.s is the viscosity of water and where the same numerical values as
above were used. We define ζw, the displacement of the water inside the helix relative to
the membrane in units of L. If the membrane is motionless, ζw is the volume of water
transferred from the inside of the bulge to the vesicle in units of πLr20. Note that tw
strongly depends on the helix radius ̺0.

Membrane and water drainage are of comparable importance (tm ≃ tw) for the exper-
imentally accessible ̺0 ≃ 0.15. Because of this, we cannot neglect one mechanism in front
of the other, and we discuss both in the following.

On top of the time scales defined in Eqs. (3.65) and (3.66), the dynamics of the
system depends on the time scale tg over which dynamin growth occurs in the absence of
membrane bulges. This is typically the type of time scale that we studied in Sec. 3.4.2
in the frame of the antenna hypothesis, or that would come about in a simpler model
where dynamin assembles directly from the solution onto the helix. In both cases, tg is
proportional both to L—and so should be much smaller than tm and tw for very long
tubules—and to c—which makes it experimentally tunable independently of tm and tw.
We denote the fraction of the tubule covered by the helix by ζg = Lh/L. As dynamin
grows, it takes membrane and water away from the bulge to form the tube of radius r0
encircled by the helix. Taking this into account along with the membrane and water flows
discussed above (parametrized by ζm and ζw), we express the conservation of length, area
and volume in our system as

L≎ = L(1− ζg), (3.67a)

A≎ = 2πLrb [1− ̺0(ζg + ζm)] , (3.67b)

V≎ = πLr2b
[

1− ̺20(ζg + ζm + ζw)
]

. (3.67c)

In Sec. 3.4.3.1, we briefly discuss the case where the bulge-related flows are not rel-
evant for the dynamics. We then turn to more interesting regimes and analyze the two
dissipative effects introduced above, separately in Secs. 3.4.3.2 and 3.4.3.3, and then si-
multaneously in Sec. 3.4.3.4.

3.4.3.1 Case tw, tm ≪ tg

In the case of rapid membrane and water exchanges, the bulge is always at equilibrium
with the vesicle and is therefore well described by Eq. (3.3). The helix therefore “sees”
the same bulge of radius rb throughout its growth. The bulge exerts a constant pulling
force fb on the dynamin-coated part of the tubule, hence the growth of the helix proceeds
at constant velocity until the bulge is small enough for it to interact with the bead. When
this happens, dynamin growth tends to push the bead away from its initial position in
the optical tweezer, which decreases the pulling force felt by the dynamin-coated portion
of the tubule. In order to fully describe the dynamics of the tubule in this regime, we
would need to introduce a relationship between the force exerted on the polymer and its
polymerization velocity. This problem has been extensively studied in the case of actin
and microtubules [51, 52, 53, 54, 55, 56]. Here we are not concerned with the details of
this process, but only state that dynamin polymerization slows down as the pulling force
is reduced, and eventually stalls for f = fh, by definition of fh (Sec. 3.2.2).
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3.4.3.2 Case tw ≪ tg ≪ tm

Here we consider the case where water exchanges between the bulge and the vesicle are
instantaneous throughout the growth process. Because of this, the pressure P≎ inside
the bulge is always equal to the pressure Pv inside the vesicle. In the limit where the
bare tubule radius is much smaller than that of the vesicle, we can use the approximation
Pv = Pc when studying the bulge [see Eq. (3.1)]. We therefore set P≎−Pc = 0. Since for a
membrane tubule without pressure the tension is given by σ≎ = κ/2r2 > 0 [see Eq. (3.3)],
the criterion Eq. (3.63) is always satisfied under these conditions. On time scales of order
tg or shorter, the helix grows without any membrane exchange between the bulge and
the vesicle (ζm = 0). Minimization of F≎ with respect to ̺ using these constraints and
Eqs. (3.64) and (3.67) yields

̺ =
1− ̺0ζg
1− ζg

and
f

fb
=

1− ζg
1− ̺0ζg

. (3.68)

In this equation, f/fb is a decreasing function of ζg. The helix therefore grows (ζg in-
creases) until the force reaches fh. The growth then stalls. The stall state is characterized
by

̺ = ̺m =
1

ϕ
and ζg = ζmg =

1− ϕ

1− ̺0ϕ
, (3.69)

which defines ̺m and ζmg .
After this rapid bulge rearrangement stage, the membrane starts to flow on time scales

t ≈ tm. The dynamics then proceeds quasi-statically at f = fh, and therefore at constant
̺ = 1/ϕ. Let us consider the mechanics of the membrane inside the helix. Applying force
balance to a cylindrical membrane element, we find that

dσ

dz
(z) = −σw→m − σh→m, (3.70)

where σ(z) is the position-dependent tension of the membrane, and σw→m and σh→m are
the stresses (forces per unit surface) exerted on the membrane by the water and the helix,
respectively. Since we neglect the dissipation due to the water here, we consider that
σw→m = 0. On the other hand, the definition of β implies

σh→m

β
= −Ldζm

dt
, (3.71)

where the right-hand side is the velocity of the membrane flow inside the helix relative
to the dynamin. We now impose that σ(z) matches the tension of the vesicle in z = 0
and that of the bulge in z = Lh. Combining the above equations with Eqs. (3.67a) and
(3.67b) as well as ̺ = 1/ϕ, we find

tm
dζg
dt

=
1

2ζg
⇒ ζg =

√

(

ζmg
)2

+
t

tm
, (3.72)

where the time of order tg needed to reach stall is much smaller than tm and is therefore
neglected in this expression.
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3.4.3.3 Case tm ≪ tg ≪ tw

Now we study the case where membrane flow is very fast, which imposes that the tension
in the vesicle and bulge are the same (ς = 1). On short time scales (t . tg), there is no
flow of water relative to the membrane (ζw = 0). Minimizing F≎ with respect to ̺ using
this and Eqs. (3.64) and (3.67), we get

̺ =
̺0
2

+

√

(̺0
2

)2

+
1− ̺0
1− ζg

, Π =

√
2

̺
−

√
2

̺2
and

f

fb
=
̺

4
+

3

4̺
. (3.73)

According to this expression, the cylinder radius is initially given by ̺(ζg = 0) = 1 and
then increases as the helix grows (as ζg increases). As long as ̺ 6

√
3, f/fb decreases

with ̺, and Π increases. If ϕ >
√
3/2, growth stalls before ̺ reaches

√
3, and the stall

state of the system is characterized by

̺ = ̺w = 2ϕ−
√

4ϕ2 − 3 and ζg = ζwg = 1− 1− ̺0

(4ϕ− ̺0)
(

2ϕ−
√

4ϕ2 − 3
)

− 3
, (3.74)

which defines ̺w and ζwg . If, on the other hand, ϕ <
√
3/2, ̺ becomes larger than

√
3,

which implies that Π increases above the threshold defined by Eq. (3.63) (note that ς = 1)
The cylinder then loses stability. In the remainder of this section, we only consider cases
where ϕ >

√
3/2.

We now consider the post-stall dynamics of the tubule (t ≈ tw), which happens at
constant f = fh and ̺ = ̺w. Let P (z) be the position-dependent pressure of water inside
the helix. Applying force balance to a slice of water encircled by dynamin, we find

dP

dz
(z) =

2

r0
σm→w, where σm→w =

4η

r0
L
dζw
dt

(3.75)

is the stress exerted by the membrane on the water and is given by the requirement that
the pressure drop P (Lh)−P (0) = P≎ −Pv throughout the dynamin-coated tube satisfies
the Hagen-Poiseuille equation. Using dimensionless units, the evolution of the system is
given by

tw
dζg
dt

=
1

2ζg
⇒ ζg =

√

(

ζwg
)2

+
t

tw
. (3.76)

This expression and Eq. (3.72) are of a form known as Washburn’s equation [57]. This
structural similarity is due to the fact that in both cases, a fluid (membrane or water) is
pushed with a constant force (related to the stalled radius ̺m or ̺w of the bulge) through
a capillary (the helix) that grows linearly with the amount of fluid evacuated (since the
helix lengthens by the same amount by which the bulge shortens).

3.4.3.4 Case tg ≪ tw, tm

If both dissipation time scales are relevant for the relaxation of the bulge, then the initial
helix growth phase (t . tg) implicates neither membrane nor water exchanges with the
vesicle (ζm = ζw = 0). Inserting these constraints into Eqs. (3.64) and (3.67), we find
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that unless the uninteresting ̺0 = 1 case is considered, they imply ζg = 0. This means
that the helix growth stalls immediately. As in the previous sections, however, the stall of
the helix implies a decrease in bulge membrane tension and an increase in bulge pressure.
Using Eqs. (3.64), we minimize F≎ with respect to ̺ under the stall condition f = fh,
which yields equations for ς and Π that remain valid throughout the dynamics of the
bulge:

ς =
4ϕ

̺
− 3

̺2
and Π =

4
√
2ϕ

̺2
− 4

√
2

̺3
. (3.77)

These equations are easily shown to imply that the condition Eq. (3.63) is satisfied for all
positive ̺s. Therefore the bulge remains cylindrical until its length becomes comparable
to its radius.

Now turning to the stalled dynamics, we find the bulge evolution equations by com-
bining Eqs. (3.70), (3.71) and (3.75) with the condition σw→m = −σm→w:

4
√
2βL2r2b
κ

dζm
dt

=
̺0Π− 2

√
2ς

ζg
, (3.78a)

16
√
2ηL2rb
κ̺20

dζw
dt

=
Π

ζg
. (3.78b)

Using the stall condition f = fh as well as Eqs. (3.64) and (3.67) and minimizing F≎ with
respect to ̺ yields expressions for ζm, ζw, ς and Π as functions of ̺ and ζg. This leads to
the bulge relaxation equations:

tm
d̺

dt
=

4µ−1̺40(1− ϕ̺) + ϕ̺ [̺3 − 4ϕ̺2 + (3 + 2ϕ̺0)̺− 2̺0]

ϕ(1− ϕ2)̺3(̺− ̺0)ζg(1− ζg)
(3.79a)

tm
dζg
dt

=
µ̺6ζ2g + 4̺0(1− ϕ̺)(2̺− ̺0) [̺

3 − 4ϕ̺2 + (3 + 2ϕ̺0)̺− 2̺0]

4ϕ(1− ϕ2)̺3(1− ϕ̺)(̺− ̺0)2ζg
,(3.79b)

where µ = η/(βrb) ∝ tw/tm. The dynamics described by Eqs. (3.79) is illustrated in
Fig. 3.8. It seems rather clear on this figure that the radius saturates at some ϕ-dependent
value. Indeed, if ̺ approaches 1/ϕ, then dζg

dt
diverges while d̺

dt
stays finite. Full coverage

is thus reached very quickly, and the radius saturates at the value

̺saturation = 1/ϕ. (3.80)

3.4.3.5 Relation to anomalous growth

The bulge hypothesis might account for three out of the four anomalous growth effects
presented in Sec. 3.4.1:

(b) In all of the above studied cases except that of Sec. 3.4.3.1, we saw that the radius of
the bulge initially increases, be it before stall is reached (Secs. 3.4.3.2 and 3.4.3.3),
or in the initial stages of growth when two dissipative mechanisms are involved
(Sec. 3.4.3.4 and in particular Fig. 3.8). As this happens, nucleation of new helices
becomes more and more difficult and the radius of the bare tubule sections (i.e.
bulges) might even end up exceeding the upper critical radius for nucleation r+
defined in Eq. (3.7). This would yield a the drop in the helix nucleation rate.
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Figure 3.8: Flow lines of the system of equations Eqs. (3.79) describing the evolution of
the bulge in the ζg, ̺ plane for various values of the parameters ̺0, ϕ and µ. For µ≪ 1,
the initial growth involves only water exchanges between the bulge and the vesicle, and
Eq. (3.72) describes the dynamics after the radius saturation. Conversely, membrane
exchanges dominate short time scales if µ≫ 1, whereas the long time relaxation satisfies
Eq. (3.76).

(c) In Secs. 3.4.3.2 and 3.4.3.3, growth happens initially on the fast time scale tg, then
slows down considerably as the stall condition Eq. (3.69) or Eq. (3.74), respectively,
is reached. In Sec. 3.4.3.4, many parameter values also yield two distinct phases of
growth, as shown in Fig. 3.8. This is in agreement with the experimentally observed
slowing down of dynamin growth before full tubule coverage.

(d) As the stall condition is reached in Secs. 3.4.3.2 and 3.4.3.3, the force drops to its
value f = fh, which is one of the anomalous growth effects we wish to account for.
Note that this happens at the very beginning of growth in the regime described
in Sec. 3.4.3.4. This last regime therefore cannot account for the observations of
Fig. 3.5(d).
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Figure 3.9: Preliminary experimental observation of membrane bulges. The vesicle is
on the left, and the bead on the right. For clarity, only the red channel is shown here.
Dynamin growth was also monitored in this experiment, and the green regions exactly
match the less bright regions of the tubule. Here growth slows down as the bulges form,
but the experiment was interrupted before their drainage could be observed. More work
is needed to show that the bulges actually cause the slowing down. Bar, 10µm.

3.4.4 Experimental perspectives

Several experiments could be conducted to validate the mechanisms investigated in
Secs. 3.4.2 and 3.4.3. Here we comment on these technical aspects, leaving the discussion
of the biological implications for the next section.

As a first approach, both effects discussed here are likely to be directly observable.
In the case of the antenna hypothesis, the density of dynamin dimers adsorbed on the
tubule could be monitored by increasing the power of the laser used to excite the dynamin-
associated fluorophore. The existence of a dynamin depletion in the vicinity of existing
helices could then be checked, as could the fact that the associated length scale

√

D/loff
does not depend on dynamin concentration. In the case of the bulge hypothesis, although
the tubules used in our experiments are too thin for their radii to be directly resolved by
optical wavelengths, they can be inferred from the fluorescence intensity along the tubule.
In Fig. 3.9, we present preliminary evidence that bulges indeed occur in our experiments.

After having established the existence of the mechanisms underlying these hypotheses,
it still remains to be proved that they are indeed responsible for the anomalous growth
effects presented in Sec. 3.4.1. In the following, we summarize a few easily testable
predictions that could be used to that effect.

Let us start by a prediction that could be useful to guide these investigations: effects
related to the antenna hypothesis are expected to be important when the inter-helix
distances are of order

√

D/loff. This length does not depend on the length of the initial
tubule, and neither does the typical relaxation time scale given in Eq. (3.57). In the
bulge hypothesis, on the contrary, stall (or, in Sec. 3.4.3.4, the transition between two
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relaxation regimes) occurs for finite values of ζg, and thus when both the bare and covered
fractions of the tubule are of order L. Moreover, the time scales involved are of order
L2 [see Eqs. (3.65) and (3.66)]. Therefore, we predict that antenna-related effects are
most apparent in short tubules while bulge-related effects dominate the relaxation of long
tubules.

Another important parameter influencing the growth of the helix is the initial radius
of the tubule. Indeed, while the antenna model depends little on the tubule radius (note
that ρ might scale linearly with rb), the bulge effect disappears completely if rb = r0.
Conversely, while the antenna effect should have little effect of the radius of the bare
sections of the tubule, this radius should increase if bulge effects are at work. This
experimentally measurable increase is expected to be more pronounced for lower values
of fh (or equivalently of ϕ), as predicted in Eqs. (3.69), (3.74) and (3.80).

The two hypotheses predict different relaxation dynamics for the gaps between two
dynamin helices: exponential for the antenna hypothesis [Eq. (3.60c)], and obeying the
Washburn equation for the bulge hypothesis [Eqs. (3.72) and (3.76)]. This could also be
tested experimentally.

Finally, we discuss our assumption that the bulge always remains cylindrical. We
found that this assumption i always justified in all cases considered, except in Sec. 3.4.3.3.
There it is rigorously true only for a large enough fh, and many practically encountered
experimental conditions do not satisfy the conditions ϕ ∈

[√
3/2, 1

]

. However, even in this
case we expect that the growth ends up being stalled by the accumulation of membrane
and water. Also, since the resistance of the helix to the membrane and water flows is
proportional to its length, it would not be surprising if we recovered a Washburn-type
dynamics in this case.

3.5 Biological implications

As its main function is to tubulate and sever the membrane, dynamin has a well-characterized
physical influence on lipid bilayers. This chapter demonstrates that the reverse influence
also exists, which opens the possibility for the cell to control endocytosis through the
characteristics of its membrane.

Here we show that the polymerization of dynamin on a membrane substrate is strongly
dependent on the membrane’s mechanical properties, such as tension, curvature and bend-
ing modulus, as well as on the concentration of the dynamin solution. This is due to a
competition between the free energy gain of dynamin upon assembly and the cost of
tubulating the membrane. Our results indicate that the dynamin polymer is much more
rigid than the membrane. Still, even though the dynamin polymer undergoes little de-
formation, and is therefore unperturbed by the membrane, in the concentration interval
comprised between c1 ≃ 280 nM and c2 ≃ 12.6µM, the following two effects take place
simultaneously [Fig. 3.3(b)]:

• the curvature of the bare membrane tubule controls dynamin polymerization (this
is especially interesting for radii larger than the preferred dynamin radius, which is
the biologically relevant regime).
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• the dynamin helix squeezes the membrane down and imposes its radius on it.

Interestingly, it is suggested in Ref. [37] that a dynamin concentration of 500 nM could be
physiological. This indicates that the regime c1 < c < c2 could be relevant in vivo, and
thus that even though polymerized dynamin is not flexible, it could function both as a
membrane curvature sensor and a curvature generator, two functions that have sometimes
been regarded as separate in previous studies.

There is experimental evidence that the curvature dependence of dynamin polymer-
ization plays a role in vivo, for instance in the regulation of the final closure of Clathrin
Coated Pits (CCPs). Indeed, treatment of cells with dynasore—a chemical inhibitor of
dynamin [58]—results in the widening of their CCP necks to a radius of roughly 20 nm
[59], suggesting that this change in curvature could be the reason why dynamin oligomer-
ization is prevented. This effect could also play a role for endophilin and amphiphysin,
two proteins that possess a curvature-sensing BAR domain [60]. Although they were not
present in the experiments described here, in vivo they might be responsible for sensing
the curvature of the CCP necks and recruiting dynamin through interactions with its SH3
domain [41].

The influence of membrane tension might also be important in cells. We predict here
that for high dynamin concentrations (c > c2), dynamin tubulates only relatively floppy
membranes. This supports the idea that recruitment of proteins to the membrane can
be controlled by tuning cellular membrane tension, and could participate in the observed
up-regulation of endocytosis when plasma membrane tension is reduced [61, 62]

The models of dynamin seeding and growth presented here open equally promising re-
search avenues. The kinetics of dynamin seeding is indeed very relevant for the regulation
of endocytosis and might well be its rate-limiting step, hence our interest in determin-
ing its mechanism and the time scales involved. The models presented in Sec. 3.3 make
concrete predictions that could be used to guide an experimental study of these points.

Although the growth of the dynamin polymer over long lengths is less directly related
to the in vivo situation of the short necks of clathrin-coated pits, biologically relevant in-
formation can also be drawn from it, and we suggest ways to gather it in Sec. 3.4. As an
illustration of this relevance, Ref. [13] suggests that the recruitment of dynamin could im-
plicate membrane-mediated elastic interactions between adsorbed dynamin dimers. This
model rests on the implicit assumption that dynamin first binds to the membrane, and
is then funneled to the CCPs from there. This is very similar to the picture presented in
Sec. 3.4.2 in the frame of our antenna hypothesis, and measurement of the rate constants
involved would allow to assess the likelihood of the hypothesis proposed in Ref. [13] and
maybe to test it experimentally. On the other hand, monitoring the drainage of mem-
brane bulges described in Sec. 3.4.3 would provide us with a direct measurement of the
helix-membrane friction coefficient, which we show in the next chapter to be crucial to
the dynamics of dynamin’s change of conformation.



Chapter 4

Mechanochemical action of dynamin

In this chapter, we turn to the second aspect of the dynamin problem and present a
theoretical model for the GTP-induced conformational change of long dynamin-coated
membrane tubes accounting for the experimental results presented in Sec. 2.2. We believe
that a quantitative description of the tube dynamics can help to understand the mech-
anisms by which dynamin severs membrane tubules. This is a much-debated question
for which several models have been proposed [16]. Since little quantitative information
about the microscopic details of the dynamin helix is available, we choose a coarse-grained
(hydrodynamic) approach. In this framework, we do not need to speculate about the un-
known microscopic details of the non-equilibrium behavior of the tube: its dynamics is
characterized by a few phenomenological transport coefficients.

In Sec. 4.1, we introduce the type of assumptions underlying our approach and discuss
its level of generality as well as its application to dynamin. In the following three sec-
tions, we present the building blocks of our formalism by decreasing order of generality.
In Sec. 4.2, we consider only the symmetries of the system and write the most gen-
eral hydrodynamic theory compatible with these symmetries. We then argue in Sec. 4.3
that one hydrodynamic mode is much slower than the others. This leads to simplified
equations describing this mode. In Sec. 4.4, we present two microscopic models of the
tube’s equilibrium properties aimed at describing two possible experimental situations.
This allows us to solve the equations of motion and make predictions about the tube
dynamics. In Sec. 4.5, we quantitatively justify some of our assumptions and give a ten-
tative account of the differences in the conformational changes of dynamin reported in
Refs. [24, 27, 28, 29, 33] on the one hand and Refs. [34, 35] on the other hand. The validity
of our approach is confirmed by experimental results presented in Sec. 4.6. Finally, we
discuss the generality of our model, its implications for membrane tubule fission and the
experimental possibilities it opens in Sec. 4.7.

4.1 Introduction to the ideas of hydrodynamics

Generalized hydrodynamics is a widespread tool to describe the collective modes of com-
plex systems. A well-known example of a hydrodynamic theory is the Navier-Stokes equa-
tion for simple fluids [63]. The generality of the ideas of this field was recognized when
more complicated systems, such as liquid crystals or superfluids, were tackled [64, 65, 66].

55
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More recently, they were put to use to describe “active” systems (i.e. systems in which
energy is continuously injected), be it rods on an vibrating plate [67] or living systems
such as bacterial cultures, bird flocks, herds of animals or the cytoskeleton [68, 69, 70].

The point of the hydrodynamic approach is that it generates relatively simple models
for systems that can be very intricate at first sight. These simplifications rest on two
fundamental assumptions:

① Only the large length and long time scales are consdered. This allows the system to
reach local equilibrium.

② The system is weakly perturbed away from a known reference state (e.g. thermo-
dynamic equilibrium).

Some further simplifications of the model are drawn from considering

③ the spatial and time-reversal symmetries of the system,

④ other possible general relations describing the system, as discussed further below.

In Sec. 4.1.1 we illustrate these four points in a simplified discussion of an obviously
very complicated system: the motion of a population of buffaloes. We then give a preview
of their application to dynamin in Sec. 4.1.2. Another good introduction to our method-
ology is given in Sec. 8.2 of Ref. [71], where a simple hydrodynamic theory is derived
following the same steps as in Sec. 4.2.

4.1.1 Buffaloes

Here we consider the spreading of a large herd of buffaloes over vast swaths of grass, with
the simplifying assumption that a buffalo does not tend to face any particular direction
in the horizontal plane, whatever the direction that its neighbors face1.

We first present a picture of the behavior considered at the level of a single buffalo
(the “microscopic” level). We then derive a hydrodynamic description of the large-scale
behavior of the herd. The emphasis is put on how little reference to the microscopic level
is needed to do so, and how some of the processes included in it become irrelevant in the
hydrodynamic description.

4.1.1.1 Microscopic picture

Consider a buffalo standing on a patch of african grassland. Being hungry, it starts
grazing. It takes the buffalo one hour to deplete the patch it is standing on of its grass.
The grass then grows back, and completely recovers in three days [Fig. 4.1(a)]. Meanwhile,
the buffalo might grow hungry again, and thus move towards greener pastures. We do
not need to specify anything about this process, but shall formulate a “fundamental law
of buffalo grazing” stating that on average, a buffalo moves up the local grass length
gradient [Fig. 4.1(b)].

1This is the fundamental difference with Ref. [69].
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Figure 4.1: Illustration of the basic ideas of generalized hydrodynamics (a) Microscopic
rules of buffalo grazing. (b) According to the fundamental law of buffalo grazing, buffaloes
tend to move up a grass length gradient—not down. (c) Initial state of the herd spreading
process. The equilibration between consumption and re-growth of the grass happens on
time scales much shorter than a year (typically 3 days). (d) Long dynamin polymer and
close-ups on its local configuration in two different locations.

4.1.1.2 Hydrodynamic description

Even though the above description of buffalo grazing might seem very sketchy, it actually
already contains more information than required for us to describe it in hydrodynamic
terms. We consider the spreading of an initially localized herd of buffaloes over a one-
dimensional Sub-Saharan Africa parametrized by the coordinate z [Fig. 4.1(c)]. We as-
sume that this area is initially covered with a uniform length of grass. Since the distances
over which our herd spreads are so large, we need to consider time scales of order no less
than say a year. This puts us in the regime described in ①. At this scale, we can consider
that the processes described in Fig. 4.1(a) instantaneously leads to a local equilibrium
between buffalo density and grass length. This consequence is mentioned in ①.

The time scales we consider are too short for the birth and death of buffaloes to
substantially affect the number of individuals in the herd. The density of buffaloes ρb
(unlike the density of grass) is therefore a conserved quantity, meaning that we can write
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the conservation law
∂tρb = −∇Jb, (4.1)

where ∇ is the gradient operator (which in our one-dimensional case denotes a differenti-
ation with respect to z) and Jb is the buffalo current. Generically, the current of buffaloes
is expected to depend on the local density of grass and its derivatives. Because a local
equilibrium is quickly reached, these are in turn imposed by the buffalo density profile.
Therefore, there should exist a set of coefficients {kn,···} such that

Jb = k0δρb + k1∇δρb + k2∇2δρb + · · ·
+k0,0δρ

2
b + k0,1δρb∇δρb + k0,2δρb∇2δρb + · · ·

+k1,1(∇δρb)2 + k1,2∇δρb∇2δρb + · · ·
+ · · ·
+k0,0,0δρ

3
b + k0,0,1δρ

2
b∇δρb + k0,0,2δρ

2
b∇2δρb + · · ·

+ · · · , (4.2)

where δρb denotes the deviation of the buffalo density from the reference state, defined
as the state where buffaloes are uniformly spread and Jb thus vanishes. Eq. (4.2) is very
complicated, but we can simplify it using ②. Indeed, if we assume that the displacement
from the reference state is small, terms of order two or more in δρb should be negligible
compared to the linear terms, and

Jb = k0δρb + k1∇δρb + k2∇2δρb + · · · . (4.3)

We now make use of the symmetries of the system, as announced in ③. Since nothing in
our microscopic description distinguishes the direction of positive zs from the direction
of negative zs, one cannot expect that an equation faithfully describes our system unless
it is invariant under the z → −z symmetry operation. In Eq. (4.3), Jb and the odd
terms of the right-hand side change sign under z-reversal, unlike the even terms of the
right-hand side. Therefore, the coefficients kn with even n vanish. This is obvious in the
case of k0: imagine that the system is displaced from the reference state by a constant
δρb. According to Eq. (4.3), this should induce a current of amplitude k0δρb. But since
we assumed that an individual buffalo has no way of telling the difference between north
and south, it seems ridiculous that an increase in the population density would drive a
northwards (or southwards) average flow of buffaloes. Thus k0δρb must be zero whatever
the value of δρb, hence k0 = 0.

The nth term of Eq. (4.3) contains the operator ∇ to the nth power. Looking at
spatial inhomogeneities over length scales comparable to the size of Africa, we estimate
that the nth term should be proportional to (size of Africa)−n. Since all the other length
scales involved in our system (e.g. the average inter-buffalo distance) are much smaller
than the size of Africa (this is assumption ①), the higher-order terms are negligible in
front of the lower-order terms. We can therefore neglect all terms except the lowest-order
non-vanishing one:

Jb = k1∇δρb. (4.4)

We have one last condition to exploit. In agreement with ④, we note that the fun-
damental law of buffalo grazing imposes that k1 < 0. Indeed, this law implies that the
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buffaloes tend to move towards areas of lower buffalo density, where grass in more abun-
dant. In thermodynamic systems, the fundamental law of buffalo grazing is replaced by
the local Gibbs relation as well as constraints imposed by the second principle of thermo-
dynamics.

Combining Eqs. (4.1) and (4.4), we obtain the equation describing the hydrodynamic
relaxation of the buffalo herd:

∂tρb = |k1|∇2ρb. (4.5)

The dynamics of the herd on long length and time scales is therefore diffusive. This
extremely simple behavior contrasts with the plethora of details that one could include in a
“realistic” microscopic description of buffalo grazing, from effective repulsive interactions
between individuals to the way the nervous system of the animal allows it to detect
and react to a grass length gradient. All these effects are relevant to the problem and
influence the way the herd spreads over Africa. At our level of description, however,
such microscopic details are enclosed in the coefficient k1 and cannot affect the form of
Eq. (4.5). Since k1 depends on very complicated processes, in a hydrodynamic description
it should be treated as a phenomenological parameter and be fitted to experimental results
rather than calculated a priori. Another spectacular feature is that although the local
state of the system is characterized by several variables (buffalo density, grass density...),
Eq. (4.5) describes the dynamics of the whole system in terms of ρb only. The reason why
only this variable is relevant on long time scales comes from the fact that it is a conserved
quantity : in order to restore a uniform buffalo concentration, one should move buffaloes
from one side of the system to the other, which takes a very long time if one considers
a very large system, as the velocity at which a buffalo moves is finite. This is in strong
contrast with the behavior of non-conserved quantities, such as grass density: since the
process of grass growth is local, if left alone it takes three days to re-grow over all of
Africa, no matter how large the continent. Hence on long time scales, the grass density
is slaved to the buffalo density, and can thus be eliminated from the equations describing
the system.

4.1.2 Dynamin

Since the dynamin-membrane tubes obtained in vitro are much longer (∼ the size of Africa)
than the radius and pitch of the helix (∼ the inter-buffalo distance), it is reasonable to
describe them using the concepts introduced here. On the time scales considered in this
chapter, the dynamin helix is in local equilibrium, but the local equilibrium state is not
necessarily the same everywhere along the z-axis [Fig. 4.1(d)]. In the following, we show
that the homogenization of the local dynamin conformation is driven by the elasticity of
the helix and membrane, and that its hydrodynamically relevant relaxation time scales
are fixed by the viscous dissipation in the surrounding water and by a friction between
the membrane and the helix. The hydrodynamic approach spares us the risky task of
modeling the details of the protein’s conformational change. Therefore, our description
does not rely on any uncertain microscopic assumption, hence its generality and likely
validity.

In this chapter, we show that on long time scales dynamin-membrane tubes have a
diffusive dynamics. Two of its relaxational eigenmodes are dominated by the hydrody-
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namic drag of the helix in the surrounding aqueous medium. For geometrical reason, the
fastest of these eigenmodes is dominated by the longitudinal drag of the tube against
water, while the slower one mostly involves rotational hydrodynamic drag. In terms of
scaling, we expect the diffusion coefficients D1 and D2 corresponding to these modes to
involve the viscosity of water η ≃ 10−3 Pa.s, a microscopic length scale of the order of the
helix radius r ≈ 10 nm, and the elasticity of the helix, characterized by the coefficient
kBTℓp, where ℓp = 37± 4µm is the persistence length of the helix [60]. This yields

D1,2 ≈
kBTℓp
ηr2

≈ 1.5× 10−6m2.s−1. (4.6)

Considering a tube of length L ≈ 50µm—which is compatible with the experiments
of Ref. [36]—we expect those modes to relax on a time scale τ1,2 ≈ L2/D1,2 ≈ 1ms.
The third eigenmode involves a different damping process: an effective helix/membrane
friction. It therefore involves the membrane viscosity ηmembrane ≃ 5 × 10−9 kg.s−1 [72]
rather than η. Since membrane relaxation requires the disentangling of the hydrophobic
tails of phospholipids, we expect this eigenmode to relax on time scales longer than τ1
and τ2. Indeed, the corresponding diffusion coefficient scales in the following way:

D3 ≈
kBTℓp

ηmembraner
≈ 3× 10−9 m2.s−1, (4.7)

which yields τ3 ≈ 1 s. This is compatible with the experimentally observed relaxation
times of dynamin.

4.2 Hydrodynamic theory

In this section, we derive equations of motion for dynamin-membrane tubes based on the
symmetries of the system. As mentioned in Sec. 4.1, we focus on the so-called hydro-
dynamic modes, which are spatially inhomogeneous excitations of the system away from
equilibrium with the following properties [65]:

1. the wave vector q and the pulsation ω(q) characterizing the spatial inhomogeneity
of the hydrodynamic mode are such that

lim
q→0

ω(q) = 0, (4.8)

2. the amplitude of these excitations are small enough for us to be able to consider
that the system is in a state of local equilibrium everywhere [63].

These two conditions parallel the assumptions ① and ② considered in Sec. 4.1.
The q → 0 limit corresponds to excitations over length scales much larger than the

microscopic length scales of the system. Typically, we consider inverse wave vectors of
the order of the tube’s length: q−1 ≈ several 10µm. This is indeed much larger than the
typical microscopic length: the tube radius r ≈ 10 nm. The hydrodynamic theory thus
involves a coarse-graining of the system at the scale of a few tens of nanometers, and so
the tube must be treated as a one-dimensional object.
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Figure 4.2: Schematics representing the geometry of the tube. (a) The tube comprises two
fluids h and m, here pictured in different colors. It is invariant under a rotation around z
by an arbitrary angle θ followed by a translation by pθ along z (we refer to this property
as helical symmetry with pitch 2πp in the text). Moreover, the system is assumed to be
invariant under a rotation of π around the x-axis (the system is non-polar). The latter
transformation is equivalent to a reversal of polar coordinates (θ, z) → (−θ,−z). The
numerical values measured in Ref. [28] for the radii and pitches in the relaxed (constricted)
states are indicated on the figure. (b) Representation of the same helix in the θ, z plane
of cylindrical coordinates with periodic boundary conditions on θ. The system clearly has
a broken translational symmetry in the direction of the translucent arrow. It is described
by a broken-symmetry variable uzθ obeying Eq. (4.17), which can be understood as a
conservation law for the number of stripes visible here. The associated reactive current is
vh/p− Ωh, the projection of the velocity of the stripes on the direction of the arrow.

Let us now state the hypotheses underlying our hydrodynamic theory. We consider a
one-dimensional system comprising two fluids which we refer to as fluids h (representing
the helix) and m (the lipid membrane). In agreement with electron microscopy data
[27, 28, 29], we assume that the system has a helical symmetry with pitch 2πp and is
non-polar, as shown on Fig. 4.2(a).

In the following, we identify the relevant variables describing this system and derive an
expression for its entropy production. Introducing an active term representing the input
of free energy in the form of GTP, we write the constitutive (flux/force) equations for the
tube. Together with conservation laws, these equations eventually yield the hydrodynamic
modes of the system.

4.2.1 Conservation laws and hydrodynamic variables

The first step in building a hydrodynamic theory relies on conservation laws.
We assume that no exchange of membrane or dynamin occur with the aqueous medium
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surrounding the tube on the time scale of the conformational change [36]. Therefore, the
masses of fluids h and m obey the following conservation equations:

∂tρh = −∇(ρhvh) (4.9a)

∂tρm = −∇(ρmvm), (4.9b)

where vh and vm are the velocities of fluids h and m respectively and ρh and ρm their
mass densities (masses per unit of z length). We now define the mass fraction of h as
Φ = ρh/ρ, the mass density of the whole tube ρ = ρh + ρm, the linear momentum density
of the tube g = ρhvh + ρmvm = ρv with v the center-of-mass velocity and the diffusion
flux of h relative to the center of mass of the tube J = ρh(vh − v). The conservation laws
expressed in Eqs. (4.9) can be re-written as

∂tρ = −∇g (4.10a)

∂tΦ = −v∇Φ− ρ−1∇J, (4.10b)

It is shown further below that the inverse relaxation times of ρ and Φ go to zero with
vanishing q, meaning that ρ and Φ are indeed hydrodynamic variables.

Let l be the angular momentum density of the tube. The conservation laws for g and
l are the force and torque balance equations. There are two contributions to the force
(resp. torque) applied to a tube element: first, the divergence of σ (resp. τ), the linear
(resp. angular) internal stress of the tube; and second, the external force (resp. torque)
due to the coupling of the helix dynamics with the hydrodynamic flow that it induces in
the surrounding aqueous medium. For simplicity, we model this “friction against water”
as a force and a torque linearly dependent on vh and on the angular velocity Ωh of fluid
h with proportionality coefficients {γij}i,j=z,θ:

∂tg = −∇σ − γzzvh − γzθΩh (4.11a)

∂tl = −∇τ − γθzvh − γθθΩh. (4.11b)

Since vh = (g + J/Φ)/ρ, we can replace vh by g + J/Φ in Eqs. (4.11) after rescaling the
friction coefficients in the following way: γzz → ργzz and γθz → ργθz. Since the friction
between the two fluids is a local phenomenon (which does not depend on the wave vector
q), the quantity Ωh − Ωm relaxes to zero in a non-hydrodynamic time [that does not
respect Eq. (4.8)]. When studying hydrodynamic time scales, we can thus replace Ωh by
Ωm or equivalently by Ω = l/I with I the tube’s density of moment of inertia. Redefining
γzθ → Iγzθ and γθθ → Iγθθ, we replace Ωh by l in Eqs. (4.11).

It is now apparent in Eqs. (4.11) that in the presence of friction against water, g and
l relax to the solutions of the following equations:

γzz

(

g +
J

Φ

)

+ γzθl = −∇σ (4.12a)

γθz

(

g +
J

Φ

)

+ γθθl = −∇τ. (4.12b)

This relaxation occurs over times of order 1/γij. Since the γijs do not depend on q, these
times are not hydrodynamic times (they do not go to infinity when q vanishes). The
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linear and angular momentum densities g and l are therefore not hydrodynamic variables
and are given by Eqs. (4.12), which are the force and torque balance equations in the
overdamped regime.

The conservation of energy reads:

∂tε+∇jε = v

[

−γzz
(

g +
J

Φ

)

− γzθl

]

+ Ω

[

−γθz
(

g +
J

Φ

)

− γθθl

]

, (4.13)

where ε is the energy density and jε the current of energy. The right-hand side accounts
for energy dissipation by friction.

Although no other conservation law than Eqs. (4.10), (4.12) and (4.13) exist in the
system, its hydrodynamic description is still incomplete. Indeed, the system has a broken
continuous symmetry similar to that of smectic-A liquid crystal phases [Fig. 4.2(b)]. Just
as in the case of liquid crystals [64], we use a strain tensor component uzθ to describe
this symmetry breaking. We define uzθ in the following way: let θ(z, t) be the angular
displacement of the intersection of the helix with the plane located at altitude z at time
t (therefore θ is a eulerian coordinate). The strain is then defined as:

uzθ(z, t) =
∂θ

∂z
(z, t). (4.14)

As any broken-symmetry variable, uzθ obeys a relation similar to a conservation law. To
show this, we first note that in a fully reversible situation

∂tθ(z, t) = Ωh −
vh
p
. (4.15)

Differentiating this equation with respect to z, we find

∂tuzθ = −∇
(

vh
p

− Ωh

)

, (4.16)

where vh/p − Ωh is the reactive current of uzθ [see also Fig. 4.2(b)]. In the presence of
dissipation, one must add a dissipative part X to this current [71], hence

∂tuzθ = −∇X −∇
(

vh
p

− Ωh

)

= −∇
(

X +
g + J/Φ

ρp
− l

I

)

. (4.17)

4.2.2 Entropy production

As mentioned above, the great simplicity of hydrodynamic theories can be tracked back
to the fact that in the long-time limit, one locally describes the state of a potentially very
complex system using only a few conserved quantities. Indeed, on time scales going to
infinity with the size of the system, all the microscopic (fast) degrees of freedom have
relaxed and the system is locally in a state of thermal equilibrium in the thermodynamic
ensemble defined by the conserved quantities.
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Let us apply this idea to the tube in the general case where friction against water is
not necessarily present (i.e. the γijs can be zero, in which case g and l are hydrodynamic
variables). The state of local thermal equilibrium is entirely characterized by the six
quantities g, l, ρ, Φ, uzθ and ε. Equivalently, we can consider a homogeneous tube
of length V and study it in the thermodynamic ensemble (P,L,M,Φ, uzθ, T, V ), where
P = V g, L = V l and M = V ρ are the total linear momentum, angular momentum and
mass of the tube; T denotes temperature. The total differential of the free energy of the
tube reads:

dF = vdP + ΩdL+ µdM +MµedΦ +Hduzθ − SdT − pdV. (4.18)

This equation defines the total and exchange chemical potentials µ and µe, the reactive
stress h = H/V (which can be simply understood as the reactive part of the torque at a
given point of the tube), the entropy S = V s and the equilibrium pressure p. Note that
the velocity v is thermodynamically conjugated to P and the angular velocity Ω to L.
This implicitly assumes that the free energy is the sum of a kinetic energy and a static
contribution:

F = V

(

ρv2

2
+
IΩ2

2

)

+ Fs(M,Φ, uzθ, T, V ), (4.19)

where the free energy of the tube in its rest frame can also be written as

Fs(M,Φ, uzθ, T, V ) = V fs(ρ,Φ, uzθ, T ). (4.20)

Using an extensivity argument, we show the relation

p = vg + Ωl + µρ+ Ts− ε (4.21)

and prove the local form of the fundamental equilibrium thermodynamic relation:

Tds = −vdg − Ωdl − µdρ− ρµedΦ− hduzθ + dε. (4.22)

Inserting the conservation equations Eqs. (4.10), (4.11), (4.13) and (4.17) into (4.22)
and using (4.21), one finds the following form for the local entropy production of the
system [71]:

T

[

∂s

∂t
+∇

(

vs+
Q

T

)]

= −
(

σ − p− h

p

)

∇v − (τ + h)∇Ω

− J∇µe −
(

X +
J

ρΦp

)

∇h−Q
∇T
T
, (4.23)

where Q is the heat current in the z direction and where higher-order terms in the dis-
placement from equilibrium have been dropped.

4.2.3 Constitutive equations

The right-hand side of Eq. (4.23) is the sum of five terms, each of which is the product
of a flux and a force as displayed in Table 4.1. These fluxes and forces vanish at thermal
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Table 4.1: The fluxes, forces and signature of the forces under two symmetry operations:
“time symmetry” denotes the time-reversal symmetry and “spatial symmetry” refers to
the reversal of the polar coordinates (θ, z) → (−θ,−z) defined in Fig. 4.2(a).

Flux Force time symmetry spatial symmetry
σ − p− h/p ∇v - +

τ + h ∇Ω - +
J ∇µe + -

X + J/(ρΦp) ∇h + -
Q ∇T/T + -

∆µ + +

equilibrium. Also, according to the second law of thermodynamics, entropy production
is always positive. Therefore, close to the equilibrium state, the fluxes depend linearly
on the forces through a positive definite matrix. In addition to this positivity condition,
other constraints exist on the relationships between fluxes and forces:

First, entropy production is invariant under spatial symmetry operations that leave
the system unchanged. Therefore, fluxes and forces of opposite signature under the spatial
symmetry (θ, z) → (−θ,−z) defined in Fig. 4.2(a) cannot be coupled. This property is
a special case of the Curie principle, which states that in an isotropic system, couplings
between fluxes and forces of different tensorial characters are forbidden. In this context,
the quantities displayed in Table 4.1 that are odd under the transformation (θ, z) →
(−θ,−z) are analogous to vectors and those that are even are scalars or second-rank
tensors [63].

Time-reversal symmetry imposes another set of constraints. Each flux can be written
as the sum of a dissipative part, which has the same time symmetry as the conjugate
force, and a reactive part with the opposite symmetry. Dissipative couplings occur be-
tween fluxes and forces having the same time-reversal symmetry. Conversely, reactive
couplings relate fluxes and forces of opposite symmetries. According to Onsager’s rela-
tions, the matrix of dissipative couplings is symmetric and the matrix of reactive couplings
antisymmetric [73].

While deriving Eq. (4.23), we have made sure that its right-hand side involves only
entropy production terms, and no entropy exchange or energetic effects. Therefore, the
fluxes in this equation are dissipative and have a vanishing reactive part. Taking into
account the symmetry constraints discussed above, we obtain the following set of consti-
tutive equations:

σ − p− h/p = −ηz∇v − a∇Ω, (4.24a)

τ + h = −a∇v − ηθ∇Ω, (4.24b)

J = −λ∇µe − b1∇h− b2∇T/T, (4.24c)

X + J/(ρΦp) = −b1∇µe − λ̃∇h− b3∇T/T, (4.24d)

Q = −b2∇µe − b3∇h− κ̃∇T/T. (4.24e)
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The coefficients in front of the forces are so-called phenomenological transport coefficients.
They are a priori unknown coefficients that depend on the microscopic details of the
problem.

4.2.4 Discussion of the phenomenological coefficients

In the spirit of the present chapter, those phenomenological coefficients that are relevant
to the relaxation of the system should be determined experimentally. The only way to
calculate them a priori would be to use a detailed microscopic model, which would require
a better knowledge of dynamin than we have. However, in the next few paragraphs, we
try to interpret the origin and give typical orders of magnitude of these phenomenological
coefficients.

The coefficient ηz > 0 can be identified as a length× surface viscosity, where “length”
denotes a typical microscopic length of the tube, for instance its inner radius r ≈ 10 nm.
Similarly, ηθ > 0 is a (length)3 × surface viscosity. Assuming that the effective charac-
teristic surface viscosity of the tube is close to that of a lipid bilayer, namely of order
5× 10−9 kg.s−1 [74], we estimate that ηz ≃ 10−16 kg.m.s−1 and ηθ ≃ 10−32 kg.m3.s−1.

The momentum transfer from translational to rotational degrees of freedom is de-
scribed by a. This transfer is allowed since the tube is chiral. The amplitude of these
effects is constrained by the positivity of the matrix of phenomenological coefficients,
which imposes |a| < √

ηzηθ.
The coefficient λ > 0 relates a gradient of chemical potential to a diffusion flux. By

analogy to Fick’s law, we expect it to be proportional to a diffusion coefficient. To better
interpret λ, let us set all other phenomenological coefficients to zero. The hydrodynamic
dissipation then comes only from the homogenization of the helix mass fraction Φ at fixed
mass density ρ, and therefore involves a relative flow between the two fluids h and m. In
this scenario, the source of dissipation is obviously the friction between the two fluids.
One can therefore interpret λ as the inverse of a helix/membrane friction coefficient. As
in the previous chapter, we assimilate helix/membrane friction to a relative sliding of the
two lipid monolayers, characterized by the coefficient β = 108 Pa/(m.s−1) [50]. Let us
consider a motionless isothermal (∇T = 0) cylinder of membrane of length L surrounded
by an undeformed (h = 0) helix of dynamin moving at velocity vh under the influence of a
chemical potential gradient difference µe = L∇µe between the extremities of the cylinder.
The mass flow of helix in such a system is ρhvh = ρΦvh, hence the tube receives a net
power P = µeρΦvh from the reservoirs located at each end of the cylinder. Eq. (4.24c) and
J = ρv = ρΦ(1−Φ)vh entailP/L = ρ2Φ2(1−Φ)v2h/λ. Assuming that this power is entirely
dissipated by the friction between the membrane and the helix implies P/L = 2πrβv2h
and eventually

λ =
Φ2(1− Φ)

2π

ρ2

rβ
≃ 1.1× 10−26 kg.m−1.s, (4.25)

where the values at equilibrium ρh0 = ρ0Φ0 ≃ 3.7× 10−13 kg.m−1 and ρm0 = ρ0(1−Φ0) ≃
3.8×10−13 kg.m−1 are calculated from the molecular mass of dynamin [16] and the number
of dynamin monomers per helix turn [28] on the one hand, and from the typical mass per
unit area of a lipid bilayer [75] on the other hand. Here Φ0 denotes the mass fraction of
h at equilibrium.
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The coefficient λ̃ > 0 has properties similar to those of λ but only exists if the system
has a broken-symmetry variable. If the system under study were a crystal, we would
interpret this coefficient as related to the phenomenon of vacancy diffusion, i.e., the dis-
placement of mass without change in the periodic lattice. In our system, unlike in a
crystal, there can be two independent diffusion coefficients ∝ λ and ∝ λ̃ even if the cre-
ation of vacancies (and therefore possibly the breaking of the helix) is forbidden. Indeed,
one does not need to create holes in the helix to displace mass without disturbing the
periodic lattice of Fig. 4.2(b): this can be done by changing the radius of the helix. As far
as orders of magnitude are concerned, we only assume in the following that the transport
phenomena associated with λ̃ are not much faster than the ones associated with λ.

In the following, we consider the system as isothermal. This condition can be enforced
by letting the thermal conductivity κ̃ > 0 go to infinity, which implies that any thermal
gradient relaxes instantaneously. In this κ̃→ ∞ limit, we can drop Eq. (4.24e) as well as
the last terms of Eqs. (4.24c) and (4.24d).

Finally, b1, b2 and b3 describe couplings between the three diffusion phenomena de-
scribed above. Such cross-effects give rise for instance to the so-called Soret and Dufour
effects. As in the case of a, the positivity of the matrix of phenomenological coefficients
sets upper bounds on their values.

4.2.5 Coupling of GTP hydrolysis or binding to the dynamics

We have now developed a complete formalism for the dynamics of a passive, non-polar,
diphasic helix submitted to external friction. However, the system considered in this
chapter is not passive since nucleotide (i.e. GTP or GTP analog in this context) hydrolysis
by dynamin or at least binding to dynamin is required for conformational change. In the
following, we introduce this external free energy source using arguments similar to those of
Ref. [70]: instead of deriving a whole new formalism taking into account the conservation
of GTP, GDP and Pi and all the chemical reactions involving them, we model the presence
of GTP in the experimental chamber by a spatially homogeneous “chemical force” ∆µ,
where ∆µ stands for the free energy provided by the hydrolysis (or, arguably, binding) of
one GTP molecule.

From Table 4.1, we see that the spatial symmetry of ∆µ only allows it to couple to
Eqs. (4.24a) and (4.24b). We also note that time-reversal symmetry imposes that these
couplings are reactive. Neglecting thermal diffusion as discussed in Sec. 4.2.4, we obtain
a modified set of constitutive equations:

σ − p− h/p = −ηz∇v − a∇Ω + ξz∆µ, (4.26a)

τ + h = −a∇v − ηθ∇Ω + ξθ∆µ, (4.26b)

J = −λ∇µe − b1∇h, (4.26c)

X + J/ρΦp = −b1∇µe − λ̃∇h. (4.26d)

4.2.6 Hydrodynamic modes

The hydrodynamic relaxation modes are studied by linearizing the equations of motion
around the state of thermal equilibrium. By definition, all thermodynamic forces vanish
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at thermal equilibrium, and in particular ∆µ = 0. Let δρ = ρ − ρ0 and δΦ = Φ −
Φ0 be the deviations of the mass density and of the mass fraction of fluid h from this
state. Combining the conservation equations of Sec. 4.2.1 with the constitutive equations
Eqs. (4.26) yields dynamical equations relating δρ, uzθ and δΦ with g, l and the reactive
(equilibrium) forces p, h and µe:

∂t





δρ
uzθ
δΦ



 = Ar∇
(

g
l

)

+ Ad∇2





p

h
µe



 , (4.27)

∂t

(

g
l

)

= −γ
(

g
l

)

+

[

Br + γ

(

0 0 ρ
Φ

0 0 0

)

Ad

]

∇





p

h
µe



+Bd∇2

(

g
l

)

, (4.28)

where the superscripts “r” and “d” denote matrices of reactive and dissipative couplings
respectively. These matrices read

Ar =





−1 0
− 1

ρp
1
I

0 0



 , Ad =





0 0 0

0 λ̃ b1
0 b1

ρ
λ
ρ



 , γ =

(

γzz γzθ
γθz γθθ

)

, (4.29)

Br =

( −1 −1
p

0

0 1 0

)

, Bd =

( ηz
ρ

a
I

a
ρ

ηθ
I

)

. (4.30)

We now consider Eqs. (4.18), (4.19) and (4.20), which describe the equilibrium thermo-
dynamics of the system. They imply that

p = ρ2
∂ (fs/ρ)

∂ρ

∣

∣

∣

∣

Φ,uzθ

, h =
∂fs
∂uzθ

∣

∣

∣

∣

ρ,Φ

, µe =
1

ρ

∂fs
∂Φ

∣

∣

∣

∣

ρ,uzθ

, (4.31)

where the temperature T is considered constant. The fields p, h, µe are therefore functions
of δρ, uzθ, and δΦ only. Close to equilibrium, this dependence can be linearized, and we
define the susceptibility matrix χ by:





p

h
µe



 = χ





δρ
uzθ
δΦ



 = χx. (4.32)

Using this definition, we now derive a closed equation for the hydrodynamic variables.
From Eq. (4.28), it is obvious that in the presence of friction against water (i.e. if γ
is positive definite), g and l are irrelevant in the hydrodynamic limit, as shown when
going from Eqs. (4.11) to Eqs. (4.12). They can thus be eliminated from the dynamics.
In Fourier space and to leading order in the wave vector q, the linearized dynamical
equation for x reads

iωx = −q2
(

Arγ−1Br + Ãd
)

χx, (4.33)

where

Ãd =





0 − b1
Φ

− λ
Φ

0 λ̃− b1
ρΦp

b1 − λ
ρΦp

0 b1
ρ

λ
ρ



 . (4.34)

According to Eq. (4.33), the system has three diffusive hydrodynamic modes.
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4.3 Very long time dynamics

The results of Section 4.2 allow for a full description of the hydrodynamic behavior of
the dynamin-membrane tube. For instance, to predict the relaxation of a helix with some
known initial and boundary conditions on the hydrodynamic variables (δρ, uzθ, δΦ), one
should diagonalize the matrix

M =
(

Arγ−1Br + Ãd
)

χ (4.35)

and solve three diffusion equations along the directions defined by its eigenvectors. The
eigenvalues of M are the diffusion coefficients introduced in Sec. 4.1.2, and we label them
in such a way that D1 > D2 > D3. Unfortunately, this diagonalization yields very lengthy
expressions from which no intuitive picture of the dynamics can be deduced. Nevertheless,
we show in this section that all experimentally observable features of the tube’s dynamics
can be faithfully described by more convenient simplified equations.

The matrix M is the sum of two terms. This reflects the fact that the dynamics of
the tube involves two sources of damping: Arγ−1Brχ describes the friction against the
outer water and Ãdχ is associated with dissipation mechanisms internal to the tube, such
as the helix/membrane friction. We now make an estimate of the orders of magnitude of
these two effects. Assuming that the friction of the tube against water is that of a rigid
rod of radius re (defined as the external radius of the dynamin coat) and length L yields2

[76]

γzz ≃
2πηρ−1

ln
(

L
re

)

− 0.72
, γzθ = γθz = 0, γθθ ≃

4πηr2e
I

. (4.36)

We evaluate the coefficients of Arγ−1Br from these expressions. Section 4.2.4 provide a
similar estimate of Ãd (which is consistent with experiments as shown in Sec. 4.5.3), and
the coefficients of Arγ−1Br are found to be at least four orders of magnitude larger than
those of Ãd. We can therefore diagonalize M perturbatively in Ãdχ, a slight general-
ization of first-order quantum mechanical perturbation theory to non-hermitian matrices
[77]. The important point is that the unperturbed matrix Arγ−1Brχ has one vanishing
eigenvalue D0

3 = 0. Indeed, the definitions of Ar and Br imply that

Arγ−1Br =





? ? 0
? ? 0
0 0 0



 , (4.37)

where the question marks stand for non-zero coefficients. Clearly, the vector

x3 = χ−1





0
0
1



 (4.38)

2Note that as far as Eq. (4.41) is concerned, the exact values of the coefficients of γ−1 do not matter as
long as they are large. Therefore, there would be little point in trying to improve Eq. (4.36), by including
hydrodynamic interactions for instance.
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is an eigenvector of M associated with D0
3. To lowest order in Ãdχ, D3 is given by

D3 =
λ

ρ

det(χ)
∣

∣

∣

∣

χ1,1 χ1,2

χ2,1 χ2,2

∣

∣

∣

∣

, (4.39)

where the denominator of the right-hand side is the (3,3) cofactor of matrix χ, and x3 is
the associated eigenvector. Note that D3, being of order Ãdχ, is much smaller than D1

and D2.
This slow mode can be interpreted as follows. The orders of magnitude calculations

given above show that γ−1 is large, meaning that the friction of water against the tube
is very weak. Therefore, according to Eqs. (4.12) the tube quickly (although in hydrody-
namic times ∝ q−2) relaxes to a state of constant tension and torque ∇σ = 0, ∇τ = 0.
Anticipating on the results of Sec. 4.5.3, we estimate that this regime is reached in a
few tens of milliseconds for a tube of 10µm. In experimental situations close to that of
Ref. [36], this relaxation is much faster even than the injection of GTP in the experimental
chamber. Therefore, when interested in observable time scales, one should consider that
the two fast modes of Eq. (4.33) are always at equilibrium. Using Eqs. (4.26a), (4.26b),
we deduce that p and h have the following spatially homogeneous values:

p = σ +
τ

p
−
(

ξz +
ξθ
p

)

∆µ, (4.40a)

h = −τ + ξθ∆µ, (4.40b)

where σ and τ are independent of z and are fixed by the boundary conditions imposed
on the tube. Note that introducing GTP in the system, thus changing the value of ∆µ,
is equivalent to applying a force −ξz∆µ and a torque −ξθ∆µ to the tube.

If the two fastest modes are considered at equilibrium, the tube dynamics can be
described by the evolution equation of the projection of the state of the system onto the
third (“very slow”) mode. In our approximation, this projection is δΦ/ (χ−1)3,3. The
equations of motion of the system therefore reduce to a single diffusion equation whose
diffusion coefficient is the smallest eigenvalue of M :

∂tδΦ = D3∇2δΦ. (4.41)

4.4 Susceptibility matrices

Although this is already true in the general case of Eq. (4.33), it appears even more clearly
in the simplified Eqs. (4.38) and (4.39) that a full understanding of the dynamics requires
an expression of the susceptibility matrix χ. Before proposing such expressions, we would
like to comment on the nature of the assumptions they imply. Unlike in the previous
sections, where only well-controlled approximations based on orders of magnitude and
the symmetries of the system are used, the calculation of χ requires an explicit expression
for the free energy of the tube. As emphasized in the beginning of this chapter, such
a microscopic description is difficult given our limited knowledge of the mechanics of
dynamin. Nevertheless, since the models that we develop in this section are equilibrium
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models of the tube, all the information about the non-equilibrium behavior of the system is
still being captured by the phenomenological coefficients introduced in Section 4.2.3. This
means that we do not make any assumptions on the microscopic details of the dissipation
mechanisms.

In the following, we first define a microscopic parametrization of the dynamin-membrane
tube. Then we propose three equilibrium models of the tube, aimed at describing the ex-
perimental situations of Refs. [34, 35] and [24, 27, 28, 29, 33], where different types of
lipids were used as templates for dynamin assembly.

4.4.1 Microscopic parametrization

For the sake of simplicity, let us start by idealizing the geometry. We first assume that the
membrane is infinitely thin. It is confined to a roughly cylindrical shape by the dynamin
helix but small deviations from this shape are allowed in the following. The energy cost
of such deformations is fixed by the membrane’s stretching and bending moduli ks and κ.
The detailed calculation of the membrane’s bending energy in the geometry considered
here is presented in Sec. B.1 of the appendix. We furthermore consider the helix as an
infinitely thin inextensible elastic rod with spontaneous curvature and torsion, such that
its equilibrium shape is a helix of radius r = r0 and pitch 2πp = 2παr0. Its elasticity is
described as that of a classical spring and is parametrized by its curvature and torsional
rigidities kc and kt [78]. All relevant details are presented in Sec. B.2 of the appendix.

The assumption of inextensibility of the rod forming the helix is the most speculative
point of this section. As mentioned in chapter 2 electron micrographs of dynamin helices
treated with the non-hydrolyzable GTP analog GMPPCP suggest that the number of
dynamin subunits per unit of helix length could change upon GTP binding [28, 29]. This
is apparent in Fig. 2.3(C-D), where a red line highlights the conformational change that
occurs in the middle radial density of the helix upon GMPPCP binding. The fact that this
line becomes wavy could correspond to a contraction of each dynamin subunit. We still
use the inextensibility assumption for simplicity and by lack of a satisfactory alternative
hypothesis.

In the remainder of this chapter and unless otherwise stated, we express all quantities
in units of the helix’ spontaneous radius r0, the mass per unit length ρ0 and the typical
force needed to stretch the helix K ≃ 2.2×10−8 N (see Sec. B.3 of the appendix). In these
units, we define the deviations of the radius and pitch of the helix from their spontaneous
values by r = 1 + δr and p = α(1 + δp).

Let A be the area per polar head of lipids and A0 its value at equilibrium. We define
the relative deviation of A as a = A−A0

A0
. Eventually, and although the confinement by

the protein imposes an overall cylindrical shape on the membrane, we allow it to bend as
long as it retains its helical symmetry. We parametrize this deformation by a number u
such that the intersection of the membrane with the x > 0, y = 0 half-plane is the curve
(see Fig. 4.3):

x = r{1 + u[cos(z/p)− 1]}. (4.42)

This approach is similar to that of Ref. [79]. Details are given in Sec B.1 of the appendix.
The elastic properties of the membrane and the helix are such that when assembled

together, they tend to deform each other: the equilibrium configuration of the tube is
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Figure 4.3: Sinusoidal deformations of the membrane out of its cylindrical shape are
allowed in our model. The wavy black line materializes the intersection of the membrane
with the x > 0, y = 0 half-plane. The equation of this line is given by Eq. (4.42). Note
that it is constrained to touch the helix at each period of the tube.

different from the spontaneous shapes of the helix and membrane taken separately. How-
ever, we show in the following that these are small effects in the sense that at equilibrium,
δr ≃ δp ≃ a ≃ u ≃ 0 to a good approximation. Therefore, at equilibrium, all the mass of
the tube is concentrated at a radius r0, hence I = ρ0r

2
0 = 1.

4.4.2 Rigid membrane model

In the experiments of Refs. [34, 35], dynamin is assembled on a mixture of non-hydroxylated
fatty-acid galactoceramides, phosphatidylcholine, cholesterol, and PIP2. The proportions
of these lipids are such that even in the absence of dynamin, they spontaneously form
nanorods with a diameter comparable to that observed for dynamin-coated tubes. Here
we investigate a suggestion made in Ref. [36], namely that these lipid nanorods are very
stiff. Consequently, we model them as rigid cylinders (u = 0) of fixed radius and area per
polar head. The last two conditions are imposed by writing the free energy of the tube as

fs = fh +
k∞
2
δr2 +

k′∞
2
a2, (4.43)

where fh is the elastic energy of the helix, as calculated in Sec. B.2 of the appendix. The
assumptions δr = 0, a = 0 are enforced by taking the limit k∞, k

′
∞ → ∞. Using the

expression Eq. (B.13) for fh and in the limit k∞, k
′
∞ → ∞, we induce no change in the

dynamics by replacing Eq. (4.43) by

fs(δr, δp, a) =
k∞
2
δr2 +

kpp
2
δp2 +

k′∞
2
a2. (4.44)
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Since the rod forming the helix is inextensible, its mass density is proportional to the
rod length per unit length of the tube. The membrane’s mass density, on the other hand,
is proportional to the radius of the membrane cylinder and inversely proportional to the
stretching rate of the membrane:

ρh = Φ0
α
√

r2 + p2

p
√
1 + α2

(4.45a)

ρm = (1− Φ0)
r

1 + a
. (4.45b)

Combining these equations, we obtain expressions for δρ and δΦ. We also notice that
uzθ = 1/p− 1/α, hence the first-order expressions:

δρ =

(

1− α2Φ0

1 + α2

)

δr − Φ0δp

1 + α2
− (1− Φ0)a (4.46a)

uzθ = −δp
α

(4.46b)

δΦ = Φ0(1− Φ0)

(

− α2δr

1 + α2
− δp

1 + α2
+ a

)

. (4.46c)

Combining Eqs. (4.44) and (4.46) yields the function fs(δρ, uzθ, δΦ). The susceptibility
matrix is essentially the matrix of second derivatives of this function [see Eqs. (4.31) for
a more rigorous statement]. Taking the limit k∞, k

′
∞ → ∞, we finally find:

lim
k∞→∞
k′∞→∞

χ−1
rm =

1

kpp









Φ2
0

(1+α2)2
Φ0

α(1+α2)

Φ2
0(1−Φ0)

(1+α2)2

Φ0

α(1+α2)
1
α2

Φ0(1−Φ0)
α(1+α2)

Φ2
0(1−Φ0)

(1+α2)2
Φ0(1−Φ0)
α(1+α2)

Φ2
0(1−Φ0)2

(1+α2)2









. (4.47)

4.4.3 Soft membrane models

In many in vitro experiments, dynamin is assembled on lipid bilayers containing no choles-
terol and which spontaneously form lamellar phases or vesicles in the absence of dynamin
[24, 27, 28, 29, 33]. From these two observations, we can presume that they are much
softer than the lipids studied above and that their spontaneous curvature is zero or at
least negligible compared to the curvature imposed by the dynamin coat (≃ 108 m−1). For
these lipids, the microscopic variables δr, δp, a and u can thus all take non-zero values.
The free energy of the tube is therefore the sum of three terms: the spring elastic energy
of Eq. (B.13), a simple quadratic membrane stretching energy with stretching constant
ks and the membrane bending energy of Eq. (B.8). To second order:

fs = (krr + 2πκ)
δr2

2
+ krpδr δp+ kpp

δp2

2

+2πks
a2

2
+ πκ(−δr u) + kuu

u2

2
+πκ(−δr + u). (4.48)
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Minimizing the tube’s free energy with respect to δr, δp and u, we find that at equilibrium

δreq ≈ δpeq ≈
κ

Kr0
≃ 2× 10−4 ≪ 1 (4.49)

ueq ≈
κ

kuu
≈ α4 ≃ 2× 10−3 ≪ 1, (4.50)

where we have made use of the fact that krr, krp, kpp ≈ kc, kt ≈ K in dimensionless units
[see Eqs. (B.12)]. We have considered a typical bending modulus κ ≃ 10 kBT [80] and
estimated α ≃ 0.2 from Ref. [33]. These orders of magnitude show that the linear terms
in fs are very small and therefore we neglect the last term of Eq. (4.48) in the following.
In other words, we use the approximation that at equilibrium the spring assumes its
spontaneous radius and pitch req = 1, peq = α and that the membrane is an unstretched
cylinder of radius 1 [since aeq = 0 from Eq. (4.48) and ueq = 0].

As above, we want to express fs (now a function of the microscopic variables δr, δp,
a and u) as a function of the hydrodynamic variables δρ, uzθ, δΦ. Since there are four
microscopic and three hydrodynamic variables, finding a unique relationship between the
two sets of variables seems impossible at first sight. However, there exist constraints on the
microscopic variables that have not yet been expressed. To understand these constraints,
let us calculate two quantities to first order with the help of Eqs. (B.5) and (B.6): the
mass density of lipids, which is the ratio of the surface area covered by the lipids to their
area per unit mass:

ρlipids ∝
s

1 + a
= 2π(1 + δr − a− u) (4.51)

and the volume of water enclosed by the tube:

v = π(1 + 2δr − 2u). (4.52)

If all four microscopic variables were independent, ρlipids and v would be independent as
well. However, since the membrane tube is filled with water, allowing for a change of v
at constant ρlipids implies a flow of the water inside the tube relative to the lipids. We
estimate the typical time scale associated to this flow to be that of a Poiseuille flow inside
a tube of radius r0 driven by a pressure difference K/r20 and over a distance L = 10µm:

tPoiseuille =
8η(πr20L)

πr40

L

K/r20
≃ 40µs. (4.53)

Therefore, on time scales t ≪ tPoiseuille, the relative flow of membrane and inner water
is insignificant. Consequently, the ratio of mass density of membrane to mass density of
inner water ρlipids/(vρw) has to be a constant. Conversely, on time scales t ≫ tPoiseuille,
we can consider that the flow of water inside the tube has relaxed, hence ρlipids and v are
independent variables. On time scales t ≈ tPoiseuille, the situation is more complex and a
correct hydrodynamic theory would involve not two, but three different fluids: the helix,
the membrane and the inner water. Such a treatment would obviously be quite heavy and
relevant only on experimentally unobservable time scales. In the following, we therefore
only calculate χ in the two limiting cases t≪ tPoiseuille and t≫ tPoiseuille.
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4.4.3.1 Short time scales: t≪ tPoiseuille

In this limit, no relative flow of membrane and inner water is possible and the ratio
ρlipids/(vρw) is a constant (ρw = 103 kg.m−3—the mass per unit volume of water—is
considered a constant). Using Eqs. (4.51) and (4.52), this yields to first order:

δr + a− u = 0. (4.54)

On top of this constraint, we can write three equations relating the microscopic variables
to the hydrodynamic variables. Since the inner water and membrane cannot flow relative
to each other, we treat them as a single fluid, which we label “fluid m”, hence ρm =
ρlipids + vρw. Similarly to Eqs. (4.45) and using Eqs. (4.51), (4.52) and (4.54), we can
write to first order:

ρh = Φ0
α
√

r2 + p2

p
√
1 + α2

(4.55a)

ρm = (1− Φ0)(1 + δr − a− u). (4.55b)

Moreover, one still has uzθ = 1/p− 1/α, hence to first order

δρ =

(

1− α2Φ0

1 + α2

)

δr − Φ0δp

1 + α2

−(1− Φ0)a− (1− Φ0)u (4.56a)

uzθ = −δp
α

(4.56b)

δΦ = Φ0(1− Φ0)

(

− α2δr

1 + α2
− δp

1 + α2
+ a+ u

)

. (4.56c)

Combining these and Eq. (4.54) yields a unique relation between the microscopic and
hydrodynamic variables. We express the free energy of Eq. (4.48) as a function of the
latter and differentiate it, which yields an expression for χt≪

sm . More details are given in
Sec. B.4 of the appendix.

4.4.3.2 Long time scales: t≫ tPoiseuille

In this limit, the flow of water inside the tube has already relaxed and therefore ρlipids and
v are independent variables. Consistent with the hydrodynamic approach used in this
chapter, we consider that the microscopic state of the system has the lowest free energy
compatible with the values of the hydrodynamic variables. This yields the following
constraint:

∂f

∂u

∣

∣

∣

∣

δρ, uzθ, δΦ

= 0 ⇔ u =
πκ

kuu
δr +

2πks
kuu

a. (4.57)

As above, this constraint yields a unique relationship between the hydrodynamic and
microscopic variables. Fluid m now represents only the membrane: ρm = ρlipids. However
Eqs. (4.55b) and (4.56) remain valid. As above, χt≫

sm is obtained by combining them with
the constraint Eq. (4.57) and the second derivatives of fs. See Sec. B.4 of the appendix
for more details.
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4.5 Predicting dynamin’s conformational change

In this section we use electron microscopy data to evaluate the active force and torque
generated by the tube when supplied with GTP. Using these results, we show that the
conformational change of dynamin is expected to depend strongly on whether it is assem-
bled on a soft or rigid membrane tube, which could account for seemingly contradictory
experimental results. We then turn to the tube dynamics and make quantitative pre-
dictions concerning the conformational change of the tube and the time scales involved.
Some of these are compared to experimental data in the next section.

The numerical estimates of this section are based on the typical values κ ≃ 10 kBT ≃
4 × 10−20 J [80] and ks ≃ 0.25N.m−1 [75]. η = 9 × 10−4 Pa.s, and measurements show
r0 ≃ 10 nm, α ≃ 0.2, re ≃ 25 nm [33] and K ≃ 2.2 × 10−8 N (see Sec. B.3.4 of the
appendix). The water friction and helix elastic constants are calculated from Eqs. (4.36)
and (B.12). We also use ρ0 ≃ 7.5× 10−13 kg.m−1 and Φ0 ≃ 0.5 (see Sec. 4.2.4).

4.5.1 Determination of the active terms

According to the symmetry arguments developed in Sec. 4.2.5, exposing the tube to GTP
yields the same deformation as applying a force −ξz∆µ and a torque −ξθ∆µ to it. Making
an analogy with a spring submitted to a force and torque, we expect a uniform change of
radius and pitch for a dynamin helix incubated with GTP for a very long time. Ignoring
fluctuations, this is consistent with experimental data [24, 27, 28, 29, 33, 34, 35].

Let us first turn to Ref. [33], where the nucleotide used is GTP. As discussed is
Sec. 4.4.3, this system is described by χt≫

sm on long time scales. In those experiments, the
changes of pitch and radius of the dynamin helix are measured to be

∆r = lim
t→∞

δr ≃ −0.5, ∆p = lim
t→∞

δp ≃ −0.31, (4.58)

which is compatible with the results of Refs. [24, 27, 28, 29]. Here we use our knowledge
of χt≫

sm , ∆r and ∆p to deduce the amplitude of the active terms ξz∆µ and ξθ∆µ, just like
the force and torque exerted on a spring can be deduced from its elastic moduli and the
amplitude of its deformation.

We consider that no external force or torque are exerted on the tube (σ = 0, τ = 0)
and assume that the tube is connected to a membrane reservoir, which at equilibrium
fixes the membrane’s chemical potential µm = µ−Φµe throughout the tube, independent
of the presence or absence of GTP. Our reference state is a tube in the absence of GTP,
which therefore has p = 0, h = 0, µe = 0. Eqs. (4.40) yield the values of p and h in the
presence of GTP. In order to calculate the value of µe in this situation, we first write the
Gibbs-Duhem relation for the tube:

dµ =
dp

ρ
+ µedΦ +

h

ρ
duzθ. (4.59)

Since µe and h both vanish in the tube’s reference state, this equation can be simplified
by keeping only the first order terms in the displacement around the reference state:

dµ =
dp

ρ0
. (4.60)
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The membrane reservoir’s chemical potential is defined up to a constant. In the following,
we use this indeterminacy to impose µm = 0, which yields

µ = p, (4.61)

where we use the fact that ρ0 = 1 in dimensionless units. To first order, this yields

µm = p− Φ0µe, (4.62)

Since µm is independent of the presence or absence of GTP, it must remain equal to zero
even in the presence of GTP. Combining Eqs. (4.40) and (4.62), we show that in the
presence of GTP

µe = −ξz∆µ
Φ0

− ξθ∆µ

αΦ0

. (4.63)

We finally combine Eqs. (4.32), (4.40) and (4.63) to find





∆ρ
∆uzθ
∆Φ



 =
(

χt≫
sm

)−1





−ξz∆µ− ξθ∆µ/α
ξθ∆µ

−ξz∆µ/Φ0 − ξθ∆µ/αΦ0



 . (4.64)

Moreover, according to Sec. B.4 of the appendix, the left-hand side of this equation is a
known function of ∆r, ∆p and ∆a = limt→∞ a. We solve Eq. (4.64) in ξz∆µ, ξθ∆µ and
∆a and obtain

ξz∆µ ≃ −3.5× 10−11 N, ξθ∆µ ≃ 2.6× 10−17 N.m, ∆a ≃ −1.6× 10−15. (4.65)

4.5.2 Variability of the conformation after GTP hydrolysis

In contrast with the results presented above, Refs. [34, 35] report that the radius of the
dynamin helix does not change upon incubation with GTP analogs and that its pitch does
not decrease but increases, yielding ∆r′ ≃ 0, ∆p′ ≃ 0.7 (in the following, the primes denote
the deformations associated with these references). Although there are several biochemical
differences between these experiments and those reported in Refs. [24, 27, 28, 29, 33], such
as the presence or absence of the PRD domain of dynamin and the type of nucleotides
used (see Sec. 2.2), we show here that it is possible to account for those apparently
contradictory results only by the mechanical properties of the lipids.

We describe the equilibrium properties of the tubes used in these experiments by χrm,
as discussed in Sec. 4.4.2. Assuming that the biochemistry of the tubes considered here
is the same as in Refs. [24, 27, 28, 29, 33] implies that the active terms have the values
given in Eq. (4.65). Again assuming that µm is held constant by a membrane reservoir,
we combine Eqs. (4.32) and (4.40) to find





∆ρ′

∆u′zθ
∆Φ′



 = (χrm)
−1





−ξz∆µ− ξθ∆µ/α
ξθ∆µ

−ξz∆µ/Φ0 − ξθ∆µ/αΦ0



 . (4.66)
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It is clear from the assumptions of Sec. 4.4.2 that combining this equation with Eqs. (4.46)
and (4.47) yields ∆r′ = ∆a′ = 0. More interestingly,

∆p′ = −αuzθ
=

[

ξz +

(

1− 1 + α2

Φ0

)

ξθ
α

]

Φ0∆µ

(1 + α2)kpp

= ∆p+
2(1− α2)(kc − kt)

4kcα2 + kt(1− α2)2
∆r. (4.67)

Therefore, we predict that the pitch increases (∆p′ > 0) if and only if

kt
kc
>

2(1− α2)∆r + 4α2∆p

2(1− α2)∆r − (1− α2)2∆p
≃ 1.5. (4.68)

This condition is not satisfied by the cylindrical rod model leading to Eq. (B.12). One
should however temper this result by considering the crudeness of this model, the limited
applicability of our small deformation formalism to the high nucleotide concentration
experiments considered in this section, as well as the rather large uncertainty on several
numerical values used here. We therefore consider Eq. (4.67) as a proof of principle that
a radius shrinkage on a soft membrane is compatible with a radius increase on a rigid
membrane.

4.5.3 Time scales

Turning to the dynamics of the tube as described in Ref. [36], we apply the perturbation
scheme of Sec. 4.3 to χt≫

sm using the typical numerical values presented throughout this
chapter. We furthermore assume that the size and boundary conditions of the system
are such that the smallest wave vector allowed is qmin = 1/(30µm) [81]. Eq. (4.33)
implies that the deformations characterized by qmin dominate the long-time relaxation
of each of the three hydrodynamic modes of the system, yielding three relaxation times
τi = 2π/Diq

2
min, i = 1, 2, 3. For simplicity and without loss of generality, we discuss only

these deformations in the following. Finally, we assume that one end of the tube is in
contact with a membrane reservoir imposing the boundary condition µm(z = 0) = 0.
The relaxation time scales are found to be well-separated: τ1 ≃ 181µs, τ2 ≃ 59ms and
τ3 ≃ 4.1 s. This retrospectively validates the perturbative approach of Sec. 4.3.

Comparing τ1 to tPoiseuille [Eq. (4.53)], we find that χt≫
sm is probably not a good de-

scription of the tube on this time scale and that some intermediate matrix between χt≪
sm

and χt≫
sm should be used. Looking at Fig. 4.4, however, we realize that the dynamics

generated by the two matrices are not very different and that using one or the other does
not make much difference at our level of description. On the other hand, it is clear that
the transformations characterized by τ2 and τ3 must be described using χt≫

sm .
In agreement with Sec. 4.3, τ1 and τ2 are smaller than the time needed to inject

GTP in the experimental chamber (typically a few tenths of seconds) and are therefore
experimentally unobservable: the approximate Eq. (4.41) is sufficient to describe current
experiments.
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Figure 4.4: Illustration of the dynamics of the tube generated by the susceptibility matri-
ces χt≪

sm and χt≫
sm . Note that to a good approximation, the field of deformation of the tube

is independent of z during the lag phases between the relaxation of the chronologically
well-separated hydrodynamic modes. The amplitude of the deformations are calculated
from Eq. (4.65). The transparency of the membrane illustrate its stretching and is pro-
portional to 1+a. The thick black arrows represent the expected changes of conformation
based on the comparison of the τis with tPoiseuille (see text).

4.6 Experimental observation of the hydrodynamic

behavior

In this section, we present and discuss recent experimental results obtained by Sandrine
Morlot and Aurélien Roux in the group of Patricia Bassereau at Institut Curie that confirm
the validity of our hydrodynamic approach.

The basic procedure used in these experiments is described in Ref. [36]. Biotinilated
dynamin and streptavidin-coated polystyrene beads (radius rbead = 130 nm) are added
to a lamellar phase made of a mixture of pure lipids mimicking brain polar lipids and
containing 5% PIP2. This generates long (several tens of micrometers) dynamin-coated
membrane tubes with beads attached to them by biotin-streptavidin bonds. When GTP
is injected in the experimental chamber, the tubes become more tense and the beads
start rotating, revealing the dynamics of the helix’ conformational change [Fig. 4.5(a)].
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Figure 4.5: Real-time observation of dynamin’s conformational change. (a) Rotation
of a polystyrene bead bound to the tube observed in differential interference contrast
microscopy. Scale bar, 1µm. (b) Tracking of the bead’s position in the direction perpen-
dicular to the tube. The arrowhead denotes the beginning of the injection of a 1000µM
GTP solution into the experimental chamber. After a delay due to the injection proce-
dure, the rotation of the bead is recorded as an oscillation in its position. In this particular
experiment, the tube broke before the rotation stopped completely. Figure taken from
Ref. [36].

Unless mentioned otherwise, GTP is injected at a concentration 100µM in all experiments
presented here. By using a large quantity of beads, one can label each tube by multiple
beads, and thus monitor the strain of the helix both as a function of space and of time.

These experiments are monitored in optical microscopy, which means that their reso-
lution is imposed by the diffraction limit. We thus have access to the dynamics of the tube
on length scales of order one micrometer, which is much larger than the typical micro-
scopic length scale of the problem r ≈ 10 nm. Hence we expect any behavior observed by
this technique to fall within the domain of applicability of our hydrodynamic formalism.
Also, the time resolution of these experiments is typically of the order of 100ms. Consid-
ering the time scales calculated in Sec. 4.5.3, this means that only the longest-lived mode
of the tube is observed, and the dynamics should thus be well described by Eq. (4.41).

4.6.1 Exponential relaxation on long time scales

On long time scales, Eq. (4.41) predicts an exponential relaxation of the helix with a
longest relaxation time

τ3 =
1

D3q2min

≈ ρ

χsmλq2min

, (4.69)

where the order-of-magnitude equality comes from Eq. (4.39). This is indeed observed
experimentally, as seen on Fig. 4.6(a). In this figure, the rotation rate dθ/dt of the
bead is plotted against the total amount of rotation θ of the bead since GTP injection.
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After a transient stage (due to the non-ideality of the GTP injection procedure and
to the relaxation of shorter-lived modes), a linear relationship between dθ/dt and θ is
observed (solid line), indeed confirming our prediction of a single exponential relaxation.
The slope of the curve is equal to −1/τ3, and the fit yields τ3 = 3.4 s. This is in good
agreement with the value τ3 = 4.1 s predicted in Sec. 4.5.3 considering the fact that the
value qmin = 1/(30µm) that we use is only an estimate. Also, since we do not know the
coefficients of χsm very accurately, further measurements are required to obtain a precise
value of λ. Still, even only an order-of-magnitude agreement between the experimental and
a priori determined value of τ3 suggests that both the picture of the long-time dynamics
of the tube as dominated by the friction between helix and membrane (Sec. 4.2.4) and
our description of χsm are essentially correct.

By taking into account not only the longest-lived mode of the tube, but also Fourier
modes with a shorter wavelength, it is possible to give a good description of the transient,
non-exponential regime observed for small values of θ in Fig. 4.6(a). This more complex
description involves one more adjustable coefficient compared to the linear fit presented
above: the position of the bead on the tube. Assuming that the tube has its z = 0
end bound to the experimental chamber [θ(z = 0) = 0] and the one in z = L free
[∂zθ(z = 0) = 0], the best fit to the data is found by placing the bead in z = 0.62× L.

4.6.2 GTP hydrolysis induces a homogeneous strain

In our formalism, nucleotide addition is equivalent to exerting a force and a torque on
the tube. Hence, after relaxation of the transient regime, incubation with GTP should
induce a homogeneous strain of the dynamin helix. Therefore, two beads separated by
a certain distance should rotate relative to each other a number of times proportional
to this distance. Let us consider a tube attached in z = 0. Denoting by ∆θ the total
rotation angle of a bead located at the altitude z between GTP injection and the end of
its motion, we expect that

∆θ ∝ z. (4.70)

This proportionality is verified experimentally, as shown in Fig. 4.6(b). In practice, the
proportionality coefficient implicit in Eq. (4.70) depends on the tube considered, and we
have to scale the two data sets presented in Fig. 4.6(b) in order to collapse them onto the
same line. This is not a priori expected from the theory, but can easily be accounted for
by the limited reproducibility of the experiments. Indeed, experimental parameters such
as the composition of the lipid bilayer inside the tube or the concentration of the GTP
solution after injection (and therefore dilution) in the experimental chamber are not very
well controlled and could vary from experiment to experiment, thus inducing variations
in χsm, ∆µ and the dissipative coefficients considered in this chapter.

This result is intimately linked to the assumption of non-polarity of the dynamin
helix. Indeed, without it, couplings between the force ∆µ and the flux J would have been
allowed in Eq. (4.26c). In that case, ∆θ would have been not proportional to z only, but
a linear combination of z and z2. Since the points presented in Fig. 4.6(b) are very well
aligned, it seems that this coupling is either very weak, or indeed forbidden for symmetry
reasons. This suggests that the subunits of the dynamin helix themselves are apolar, as
suggested by electron microscopy studies [27, 28, 29].
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Figure 4.6: Experimental justification of our hydrodynamic approach. (a) Relaxation of
the bead visualized in Fig. 4.5 after injection of a 1000µM solution of GTP. Solid line:
fit to an exponential relaxation. Dashed line: all-Fourier-modes fit. Data taken from
Ref. [36]. (b) Total amount of rotation between GTP injection and the end of the motion
as a function of the coordinate z for two tubes (open and filled circles, respectively)
attached at one end only. The data for the two tubes was collapsed by multiplying the
∆θs of each tube by an adjustable factor. (c) Long-time angular velocity profile along
two tubes (open and close circles, respectively) attached at their two ends. Both the zs
and dθ/dts of each tube were multiplied by an adjustable factor. (d) Relaxation time as
a function of the smallest wave vector compatible with the boundary conditions on the
tube. Unpublished experimental data courtesy of Sandrine Morlot and Aurélien Roux.

4.6.3 The longest-lived mode has a sinusoidal shape

According to Eq. (4.41), the tube’s relaxation dynamics is diffusive. This implies that
its longest-lived mode should be the broadest sinusoid compatible with the boundary
conditions imposed on the tube. Experimentally, one often encounters tubes that are
bound to the glass wall of the experimental chamber in two well-identified points. This
imposes that the rotation velocity of the helix be zero at those two points. Therefore, we
predict that the velocity profile has the sinusoidal shape plotted as a line in Fig. 4.6(c).
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In order to verify this prediction, the velocity profile along two such tubes is measured
at a given time chosen such that the dynamics is into the single-exponential regime pic-
tured in Fig. 4.6(a). This indicates that the amplitude of the shortest-lived hydrodynamic
modes should be negligible. A good agreement with our prediction is observed, as shown
in Fig. 4.6(c). In this figure, the coordinate z was scaled to impose that the sinusoid
crossed the horizontal axis in the two locations identified as the attachment points be-
tween the helix and the glass. The vertical axis also had to be scaled for the same reasons
as in Sec. 4.6.2.

4.6.4 Scaling of the relaxation time with the wave vector

According to Eq. (4.69) the dominant relaxation time τ3 should scale with the inverse
square of qmin:

1/τ3 = D3q
2
min (4.71)

as the size of the tube (and therefore qmin) is varied. Using the experimental protocol
described above, tubes of a wide variety of lengths form spontaneously, and one has no
control over how and where they attach to the glass. Exploiting data similar to that
displayed in Fig. 4.6(c), we estimate that a tube bound to the glass in z satisfies the no-
slip boundary condition θ(z) = 0, whereas if it has a free end in z it satisfies a zero-stress
boundary condition ∇θ(z) = 0. Therefore for a tube of length L, the smallest wave vector
satisfying the boundary conditions is given by qmin = π/L if both its ends are attached
and by qmin = π/2L if one end is attached and the other is free.

Selecting tubes of various lengths with experimentally apparent boundary conditions
yields the results of Fig. 4.6(d). In this figure, each circle corresponds to one tube and
the error bars represent the uncertainty over the slope τ3 stemming from the fit procedure
described in Sec. 4.6.1. Note that this is far from being the only source of uncertainty in
this system, and that the data presented here is less reliable than the error bars suggest.
First of all, as mentioned in Sec. 4.6.2 the variability of the experimental conditions
imply that the diffusion coefficient D3 [which is given by Eq. (4.39)] is likely to vary
from experiment to experiment, thus compromising our chances to see the data points
of Fig. 4.6(d) align in a parabola as required by Eq. (4.71). Second, one might also
consider the possibility that the hydrodynamic drag on the beads attached to the tube
might modify its hydrodynamics. However, comparing a typical value for these torques
τbead = 14πr3beadηθ̇ ≃ 5 × 10−21 N.m [82] to our estimate ξθ∆µ ≃ 1.3 × 10−18 N.m of
the typical torque driving the dynamics of the tube, we find that this effect should be
negligible. It should still be noted that the numerical values used here are only rough
estimates deduced from data obtained in a variety of experimental conditions. It would
thus be interesting to reconsider this question in the light of forthcoming direct torque
measurements. Third, it is apparent in Fig. 4.6(d) that the convexity of the law Eq. (4.71)
is not seen in the data points. This might be due to a systematic bias in the evaluation of
the lengths of the tubes used in these experiments. Indeed, not all helices formed around
the membrane are continuous over tens of micrometers, and longer helices obviously tend
to have more breaks than short ones. What appears to be long helices experimentally
might thus be several shorter helices, meaning that we underestimate the qmin for the
smallest values of qmin. This might account for why the data of Fig. 4.6(d) seems to align
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in a concave rather than convex curve. More light could be shed on these matters thanks
to better-controlled experiments, as discussed in the next section.

Finally, however, it is very clear from Fig. 4.6(d) that the longest relaxation time of
the tube strongly depends on its length and is larger for longer tubes. This is experi-
mental evidence that the fundamental assumption of hydrodynamics Eq. (4.8) applies to
the experimentally observable relaxation modes of dynamin-coated membrane tubes, and
therefore a confirmation of the validity of our theoretical approach.

4.7 Discussion

In this chapter we describe the dynamics of long dynamin-coated membrane tubes typi-
cally used in in vitro, cell-free experiments. This work is therefore relevant to the biolog-
ical membrane severing function of dynamin insofar as we assume that the tube breaking
mechanisms are similar in those two cases. This last section summarizes and discusses
our results in this perspective.

Our formalism describes several previously unaccounted for experimental results. Con-
cerning the statics of dynamin, we suggest an explanation for the variability in the con-
formational changes obtained by different experimental groups. Moreover, it is reported
in Refs. [33, 36] that long tubes incubated with GTP tend to form plectonemic super-
coils, which is consistent with our findings. Indeed, in our description, tubes held fixed
at both ends and provided with GTP are analogous to rods with persistence length ℓp
under a torque ξθ∆µ and a compressive force ξz∆µ. Therefore, creating a circular coil of
radius R has a bending energetic cost of 2πkBTℓp/R, and a cost associated with working
against the force to shorten the tube equal to 2πR × ξz∆µ. Meanwhile, it allows the
helix to give in one turn to the applied torque, thus lowering the system’s free energy
by a quantity 2πξθ∆µ. Minimizing the coiled tube’s free energy with respect to R, we
expect the free energy difference between the coiled and straight configuration to be equal
to 2π

(

−ξθ∆µ+ 2
√

−ξz∆µkBTℓp
)

≃ −1.3 × 10−16 J. Since this numerical value is nega-

tive, we expect tubes to form supercoils with a radius R =
√

−kBTℓp/ξz∆µ ≃ 65 nm.
This number is consistent with the experimental observation of tightly wound supercoiled
tubes [36]. Moving on to the dynamics of the tube, we show that the longest-lived and
only experimentally observable internal relaxation phenomenon of the tube is an effective
friction mechanism between dynamin helix and lipids. From this we conclude that the
internal dynamics of the tube can be approximated by a single diffusion equation.

This very simple form for the tube’s dynamics implies robust features that are observed
experimentally: first, the relaxation of the tube’s dynamics is exponential on long time
scales [36]; second, on long time scales, the rotation frequency of the tube has a sinusoidal
dependence in z, which is the shape of the slowest eigenmode of the diffusion equation.
Finally, the dominant relaxation time of the tube appears to go to infinity as the tube
length diverges, which is the signature of a hydrodynamic behavior. All those results
are indications that our hydrodynamic approach is valid, meaning that the tubes change
conformation in a concerted way, rather than the dynamin depolymerizing upon GTP
addition as suggested in Refs. [37, 38].

Because it relies heavily on the symmetries of the system studied, the hydrodynamic
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approach also yields some insight into the structure of the dynamin helix. Indeed, we
predict that for an apolar polymer, the presence of GTP should be equivalent to applying
a force and torque on the tube. Experiments support that conclusion, thus bringing
evidence of the non-polarity of the dynamin helix in a very independent way to previously
available electron microscopy data [27, 28, 29].

We now discuss the assumptions used to derive our formalism. The most important of
these is our use of the large-system limit L ≫ r0. The hydrodynamic behavior observed
for the tube is only expected in this limit, meaning that this assumption is justified in
the in vitro, cell-free experiments considered in this work. Unfortunately, dynamin collars
observed in vivo are much shorter—typically two to three helical repeats [12]. However,
we believe that our concepts of friction between helix and membrane and GTP-induced
force and torque can be readily transposed to short tubes. One could also be concerned
that on small length scales, non-hydrodynamic relaxation phenomena occur on the same
time scales as the relaxation phenomena we discuss here and therefore interfere with our
picture of the relaxation of the tube. To address this point, we note that according to
Ref. [36], breaking long (≈ µm) tubes takes seconds, which is much longer than any
reasonable non-hydrodynamic relaxation time for this system. Equivalently, we can say
that the tube does not break in short (non-hydrodynamic) times, from which we conclude
that non-hydrodynamic internal relaxation phenomena should not be essential to tube
breaking. Therefore, although the in vivo situation is undoubtedly more complex than
that considered here, we argue that our description of the internal dynamics of the tube
is sufficient to study its tube-severing function.

By writing constitutive equations for the tube, we assumed it to be weakly out of
equilibrium. Concerning the friction and viscosity-related phenomenological coefficients
[those of Eqs. (4.24)], experience shows that this requirement is not very stringent [63],
and our constitutive equations are likely to give a good description of the system in most
situations. Chemical systems, on the other hand, typically operate far from equilibrium.
In this regime, writing the active forces of Sec. 4.2.5 as ∆µ does not yield the correct
dependence on the GTP concentration. Better results would probably be obtained by
using instead 1− e−∆µ/kBT , which is characteristic of molecular motors [83]. Forthcoming
experiments involving low levels of GTP are expected to better fall in the domain of
applicability of our theory.

Assumptions of small deviations of the tube from its initial state are also used when
deriving the susceptibility matrices χ. Again, these are formally correct at small concen-
trations of GTP. However, given the fact that those matrices involve uncertain micro-
scopic assumptions, we regard them as nothing more than reasonable examples anyway.
Therefore, we do not expect them to yield quantitative results. More reliable information
about the characteristics of these matrices could be extracted from micromechanical ex-
periments on dynamin-coated tubes. Such experiments are however difficult and might
lead to ambiguous results, as exampled in Sec. B.5 of the appendix.

We now turn to dynamin-induced tube breaking models from the literature. We do
not discuss the purely biochemical model of dynamin as a regulatory GTPase—which
has consistently been regarded as unlikely over the past few years [7, 16, 17]—and rather
concentrate on the mechanochemical models. Depending on authors, the critical feature
leading to tube breaking by dynamin has alternately been proposed to be a change of
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radius [21], of pitch [34], or membrane bending [79]. As can be seen from Sec. 4.4.3, all of
these deformations fit very naturally in our theoretical framework. Our formalism more-
over takes into account the fact that dynamin’s conformational change could stretch the
membrane. We would therefore like to attract attention on this fourth type of deformation
of the tube, which might play an important role in tube breaking. It should also been
kept in mind that external factors, such as the actin cytoskeleton, could play a role in
the tube breaking mechanism. Actin has indeed been shown to colocalize with dynamin
during clathrin-coated endocytosis events [84], possibly because of cortactin-mediated in-
teractions [85]. Its role could be to maintain the tube under tension [86], an effect that
our mechanics-based framework accommodates very easily.

Unlike previous models, the present work does not rely on detailed assumptions about
the tube’s conformational changes. Instead, we predict them by optimally exploiting the
experimental data in the light of thermodynamic considerations, conservation laws and
symmetry arguments.

Several models have also been proposed for the coupling of GTP to dynamin activity:
GTP hydrolysis could induce a concerted conformational change [35], while some results
suggest that the crucial step is the binding of GTP to dynamin [87] and others point to
a ratchet-like mechanism for its constriction [88]. Since in our framework the coupling
of the energy source to the dynamics is deduced from symmetry considerations only, our
theory is equally valid in each of these cases.

In addition to including most features previously discussed in the literature, our for-
malism yields novel quantitative insight into the mechanism of tube breaking. It would
be interesting to further discuss Refs. [79, 86], where it is assumed that lipids cannot flow
through the dynamin-coated region of the tube, in parallel with Ref. [89], where this flow
is on the contrary considered as instantaneous, in the light of our new knowledge of the
helix/membrane friction coefficient λ.

Furthermore, our hydrodynamic point of view could account for some discrepancies
between existing models and experiments. Adopting the classification given in Ref. [16]
and reproduced in Fig. 4.7, we consider models of the “Molecular Garrote” class—where
the reduction of the dynamin radius pinches the membrane tube to its breaking—and of
the “Rigid helix/Elastic membrane” class—where the tube breaks because its walls are
brought together by a sudden deformation of the helix [Fig. 4.7(a) and (c)]. If taken at face
value and applied to a long tube, these local models predict a uniform density of tube
breaks, since what is expected to happen at the neck of a clathrin-coated endocytosis
vesicle should happen at every point of the long helix. Experimentally, however, no
breaking is observed in such tubes unless their ends are firmly attached to a fixed substrate
[33]. Moreover, attached tubes are observed to straighten upon GTP injection and then
break not at several but at a single point [36]. This sensitivity to distant boundary
conditions and spatially inhomogeneous behavior of the tube motivate our description of
long-range interactions mediated by tube elasticity and of the z-dependence of the tube
deformation, which could account for the existence of a preferred point of breaking.

In the “Molecular Spring” model [34] as well as in Ref. [86], breaking only occurs
at the interface between a dynamin-coated and a bare region of the membrane tubule
[Fig. 4.7(c)]. We can imagine that in long tubes, such defects in the dynamin coat either
appear during polymerization or that the initially homogeneous dynamin coat breaks
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Figure 4.7: Schematics representing the possible modes of membrane tubule breaking by
dynamin described in the main text. Figure taken from Ref. [16].

upon GTP injection. It is however very unlikely that the dynamin coats of Ref. [36] have
systematically exactly one defect3, which would account for the fact that they break at
most once. Instead, the tube probably often starts with either many or no defects. In
the former case, we have to account for the fact that only one of the defects evolves into
a full breaking of the tube. In the latter case, we must explain the creation of a defect
in the dynamin coat. It is undoubtedly important to consider the space dependence of
the stresses in the tube to answer either of these questions. A mechanism of lipid phase
separation similar to that of Ref. [45] could also help a defect evolve into a full tube
break. Indeed, dynamin is known to strongly bind PIP2 [90], and could therefore deplete
the bare membrane regions in this lipid. Also, depending on the membrane flow through
the dynamin-coated regions of the tube and on the dynamics of their conformational
change, a bare region might be under more or less stress and therefore break more or less
easily.

Further experimental studies are currently under way in the group of Patricia Bassereau
and Aurélien Roux in Institut Curie. Their main focus is on monitoring the conforma-
tional changes of helices polymerized under the conditions considered in chapter 3. This
configuration enables control over and monitoring of the tension of the membrane, the
longitudinal force applied to the tube, the tube’s length and its boundary conditions.
Also, labeling of the tubes by quantum dots should eliminate the uncertainties related
to the hydrodynamic drag on the polystyrene beads used in previous experiments. More
generally, this setup yields much cleaner data than that presented in Sec. 4.6, and al-
lows for a more thorough discussion of the validity of our hydrodynamic approach, as
well as possible deviations from our predictions. Such fine experiments could be used to
characterize the precise conditions under which GTP hydrolysis by dynamin induces tube
breaking. The formalism developed in this chapter is essential for the interpretation of
these experiments. Indeed, the setup described here provides information on the state of
the helix mostly at its end points. Therefore in order to know the state of the tube at the
point and on the instant of breaking, one needs to be able to interpolate this information
to regions not observed directly. This could allow for the formulation of a heuristic crite-
rion for helix breaking—e.g. a critical membrane tension, or a critical helix strain—and
thus provide a much more solid footing for the microscopic interpretation of the dynamical
phenomenon of membrane severing by dynamin than the currently available data.

In conclusion, we developed a complete theoretical framework suited for the analysis of
the statics and dynamics of long dynamin-coated membrane tubes. We make several pre-

3Indeed, chapter 3 shows that dynamin polymerization typically starts in either zero or a few
locations—it is rare for exactly two dynamin seeds to appear on a membrane tubule.
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dictions concerning the space and time dependence of forces, torques, membrane tension,
membrane stretching and helix deformations. We hope that our theory will facilitate the
interpretation of forthcoming experimental results and help generate and quantitatively
test novel hypotheses on the biological mode of action of dynamin.
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Chapter 5

Membrane buckling induced by
curved filaments

5.1 Introduction

Eukaryotic cells are highly compartmentalized, and many of their confining structures
are made of lipid bilayers. In order to maintain the exchanges essential for their proper
functioning, these cells thus need tools that modulate the membrane’s shape and topology.
In the first part of this thesis, we focused on one such tool—the dynamin protein—
which self-assembles to form tubes in solution [21] and can impose this intrinsic tubular
shape on membranes (see chapter 3). In the present chapter, we consider physically
more complicated systems where the structure of the protein does not suggest an obvious
tubulation mechanism.

In particular, we develop an approach suited for the description of the Endosomal
Sorting Complex Required for Transport III (ESCRT-III). The three ESCRT complexes,
ESCRT-I, -II and -III, were initially identified for their involvement in protein sorting
at the surface of vacuoles, a yeast organelle devoted to the degradation of the cell’s
waste and the functional equivalent of the mammalian lysosomes. Among all ESCRTs,
only ESCRT-III is believed to take part into the mechanical deformation of the vacuolar
membrane, a function that we focus on in the present study [91]. This protein complex is
known to be implicated in the formation of multivesicular bodies [92, 93, 94], the budding
of HIV and other enveloped viruses [95] and cytokinesis [96, 97], three processes which
involve deforming the membrane into a bud and/or severing off the resulting membrane
protrusion from the inside.

Deep-etch electron micrographs of COS-7 cells overexpressing hSnf-7, one of the con-
stitutive proteins of ESCRT-III, reveal circular arrays of curved hSnf-7 polymers under
the plasma membrane [Fig. 5.1(a)] [98]. This is evidence of the known strong affinity of
these filaments for the membrane [99] and for each other [100], as well as of their intrinsic
curvature. When an ATP-hydrolysis deficient mutant of VPS4—an ATPase involved in
the disassembly of ESCRT-III filaments [100, 101]—is present, long membrane-covered
tubes of hSnf-7 filaments are observed [Fig. 5.1(b-c)]. Similar structures appear in in
vitro systems using purified proteins [102]. This suggests that tubes always form in vivo,
but that in the presence of normal VPS4 alone they are immediately cut off the mem-
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brane to form vesicles. Moreover, as shown in Fig. 5.1(d), cells expressing this VPS4
mutant but having only endogenous levels of ESCRT-III proteins show similar features
to those observed in Fig. 5.1(c), suggesting that the tubulation mechanism is relevant for
the function of normal cells.

In this chapter, we propose that this flat-to-tubular transition is a physical effect and
a general feature of systems where curved filaments with attractive interactions bind to a
membrane. Fig. 5.2 illustrates this mechanism akin to the buckling of a rod. In Sec. 5.2,
we start by presenting our model of membrane/curved polymers interactions. It yields flat
arrays of filaments similar to those of Fig. 5.1(a), and the relation between the parameters
of the model and their experimentally observed radius is derived in Sec. 5.3. In Sec. 5.4
we study the linear stability of the filament-dressed flat membrane with respect to verti-
cal deformations and calculate a buckling threshold beyond which membrane protrusions
should appear. The stability of very tall protrusions is investigated in Sec. 5.5, and it
is found that under some experimentally reasonable parameter values the flat configura-
tion can be at the same time linearly stable and less stable than these tall protrusions.
Calculating the energy barrier separating the flat configuration from the protruded state
requires studying the full nonlinear shape equations for the dressed membrane, which
we derive in Sec. 5.6. We solve them numerically in Sec. 5.7. Finally, in Sec. 5.8, we
discuss the assumptions underlying our model as well as the biological implications of the
results presented here, and propose an experiment to validate our mechanism in the case
of ESCRT-III.

5.2 Model

We consider an infinite, initially flat lipid bilayer parametrized by its radial coordinate r.
A subdomain ri < r < re of this surface is bound to an array of filaments (Fig. 5.2). The
dressed membrane is put into contact with the cytoplasm, which acts as a reservoir of
filaments. In the following, we assume that the dressed membrane is very thin and consider
only axisymmetric configurations. Note that the tubes shown in Fig. 5.1 probably have
a helical structure [101]. Since their pitch is much smaller than their radius, however,
this does not affect the conclusions of this work. We write the free energy of the dressed
membrane as:

F =

∫

r∈R+

(κ

2
c2 + σ

)

dA+ 2πγ(ri + re) +

∫

r∈[ri,re]

[

k

2

(

1

r
− 1

r0

)2

− µ

]

dA. (5.1)

The first term is the Helfrich free energy of the membrane, with bending modulus κ, local
total curvature c and tension σ [Eq. (1.1)]. The second term represents the attractive
interactions between filaments, characterized by a line tension γ. We assume that the
filaments are closely packed; their surface density is thus constant throughout the array.
The last term represents the free energy of the filaments. They have a preferred curvature
r−1
0 , and due to the cylindrical symmetry their actual curvature is r−1. A Taylor expansion
about r−1

0 to second order yields the filament stiffness k. Finally, we represent the affinity
of the filaments for the membrane by µ, the chemical potential difference between hSnf-7
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Figure 5.1: 3D stereoscopic micrographs (anaglyphs) of the plasma membrane of COS-7
cells (a) overexpressing hSnf-7 and seen from the inside of the cell. Top panel: low mag-
nification. Bottom panels: high magnification. The hSnf-7 filaments self-organize into
circular arrays. (b) overexpressing hSnf-7, expressing the ATP hydrolysis-deficient, GFP-
labeled mutant of VPS4 VPS4B(E235Q)-GFP and seen from the outside. Tubular struc-
tures stick out of the cell. Much longer tubes are sometimes observed [98]. Spontaneous
tears in the membrane can be seen here, revealing the underlying circular hSnf-7 array
and how it forms a scaffold supporting the tubular structures. (c) overexpressing hSnf-7,
expressing VPS4B(E235Q)-GFP and seen from the inside. The circular hSnf-7 structures
are heavily decorated with VPS4B(E235Q)-GFP and have a central hole, presumably
corresponding to a tube sticking out of the cell. (d) expressing only endogenous levels of
ESCRT-III proteins as well as VPS4B(E235Q)-GFP. Top panel: low magnification. The
yellow dots outline 18-nm gold particles immunodecorating VPS4B(E235Q)-GFP. Bottom
panels: higher magnification. Circular structures and holes similar to those of (a) and
(c) are observed. Bars, 100 nm except for the top panel of (d), 500 nm. All micrographs
taken from Ref. [98].
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Figure 5.2: Illustration of the proposed buckling mechanism. Overbent filaments are
represented in blue, underbent filaments in red and the membrane in yellow. Wedges of
the membrane are removed for visualization. (a) Curved filaments with an affinity for
each other and the membrane form membrane-bound circular arrays. The tension and
bending modulus of the membrane tend to stabilize flat arrays. (b) Buckling, on the other
hand, allows the binding of more filaments and the relaxation of those already bound to
their preferred (yellow) radius. These stabilizing and destabilizing effects balance at the
buckling threshold. (c) The formation of long tubes allows the binding of an arbitrarily
large number of filaments close to their preferred radius.

in the cytoplasm and bound to the membrane. Note that µ is expressed as an energy per
unit surface area.

In the following, we consider that µ is constant throughout the filament array. One
might object that this assumption does not take into account the fact that depending
on the radius considered, filaments of different lengths are required to form the circular
shapes pictured in Fig. 5.2(a). Then if short filaments were for instance more scarce than
long ones, µ would be smaller at the center of the array than at its edges. Going back
to Fig. 5.1(a), however, one sees that the circular filaments pictured in Fig. 5.2 are not
actually continuous and can be made of several consecutive shorter filaments. It is also
possible that the hSnf-7 filaments are “living” polymers and exchange monomers with
the cytoplasm. Therefore we consider that filaments of any length are always available,
and that their chemical potential per monomer does not depend on their length, hence a
uniform µ.

In Eq. (5.1), we also ignore holes in the array resulting from thermal fluctuation,
which is correct in the limit of large binding energies. We believe that such fluctuations
are unlikely to be essential to the budding of ESCRT-III. Note that the holes visible in
Fig. 5.1(a) are most likely due to the treatment of the membrane preliminary to elec-
tron microscopy and do not yield any reliable information on the importance of thermal
fluctuations.

Finally, it should be noted that even though the filaments we consider are curved,
assuming cylindrical symmetry implies that any individual filament always lies in an hor-
izontal plane, even in a buckled configuration [Fig. 5.2(b-c)]. Therefore, they do not



5.3. FLAT ARRAYS OF FILAMENTS 95

induce an intrinsic curvature in the dressed membrane, which would be an obvious way of
giving rise to membrane budding. This is an essential difference between the novel mech-
anism presented here and previous studies [89, 103, 104]. This is also related to the fact
that Eq. (5.1) ignores the up-down asymmetry of the dressed membrane, a simplification
discussed in Sec. 5.8.

5.3 Flat arrays of filaments

We first consider the stability of flat arrays of filaments [Fig. 5.2(a)]. In Fig. 5.1(a), it
seems that these arrays have a finite, rather well-defined external radius re. We attribute
this feature to a chemical equilibrium between hSnf-7 in the array and in solution.

Assuming a flat dressed membrane (c = 0 and dA = 2πr dr), the free energy reads

F =
k

2
ln

(

re
ri

)

+

(

γ − k

r0

)

re +

(

γ +
k

r0

)

ri +

(

k

2r20
− µ

)

r2e − r2i
2

. (5.2)

Minimizing this expression with respect to re for a flat membrane, one finds that the array
has a finite external equilibrium radius only if k/2r20 > µ, i.e. only if it is more favorable
for a filament to be in solution than bound to the rim of a very large (re → +∞) array.
On the other hand, line tension will shrink the array and make re vanish unless

γ <
k

r0

(

1−
√

1− 2µr20
k

)

. (5.3)

For our calculations to be consistent with Fig. 5.1(a), one thus needs to make both these
assumptions. In that case, we always have 0 < ri < re and

re
r0

=
k − r0γ

k − 2r20µ
+

√

(

k − r0γ

k − 2r20µ

)2

− k

k − 2r20µ
, (5.4)

which we note for later use.

5.4 Linear stability of the flat dressed membrane

We now discuss the buckling of filament-dressed membranes [Fig. 5.2(b)]. Experimentally,
it is observed that the typical radius of a hSnf-7 protrusion is much larger than ri and
smaller than re [98]. We therefore assume for simplicity that ri = 0 and re → +∞. We
describe the dressed membrane by its altitude z(r). In this parametrization, the total
curvature and the element area read

c =
d2z
dr2

[

1 +
(

dz
dr

)2
]3/2

+
dz
dr

r
[

1 +
(

dz
dr

)2
]1/2

, dA =

√

1 +

(

dz

dr

)2

dr. (5.5)

The equilibrium states are the solutions of the force balance equation

δF
δz(r)

= 0, (5.6)
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where δ
δz(r)

denotes the functional derivative. The solution must also satisfy the boundary
conditions

dz

dr
(0) = 0 and

dz

dr
(+∞) = 0. (5.7)

Since both F and the boundary conditions depend only on derivatives of the altitude,
z(r) is defined up to an arbitrary additive constant.

As in the case of a buckling rod [105], the buckling threshold is the set of parameters
where non-zero solutions of the linearized force balance equation satisfying the boundary
conditions exist. Defining the scaled filament stiffness K = k/κ and membrane tension
Σ = (σ − µ)r20/κ+ k/(2κ), this equation reads:

z′′′ +
z′′

R
−
(

1

4
− 1 +

√
4 + 2K + 2ν

2R
+

2 +K

2R2

)

z′ = 0, (5.8)

where the primes denote differentiation with respect to the scaled radius R = r/u, and

u =
r0

2
√
Σ
, ν =

K

2
√
Σ

−
√

1 +
K

2
− 1

2
. (5.9)

The general solution of Eq. (5.8) reads z′(R) = c1f1(R) + c2f2(R), where c1 and c2 are
arbitrary constants and

f1(R) = e−R/2R
√

1+K/2U
(

−ν, 1 +
√
4 + 2K,R

)

,

f2(R) = e−R/2R
√

1+K/2M
(

−ν, 1 +
√
4 + 2K,R

)

. (5.10)

The confluent hypergeometric functions of the second kind U and M are defined in
Ref. [106]. Non-zero solutions of this form satisfying the boundary conditions only ex-
ist for certain values of the parameters, thereby defining the buckling threshold. Two
parameter regimes must be distinguished:

• For ν not a natural integer (ν /∈ N), we have the following asymptotic behaviors:

f1(R) ∼
R→0

Γ
(√

4 + 2K
)

Γ(−ν) R−
√

1+K/2,

f2(R) ∼
R→+∞

Γ
(

1 +
√
4 + 2K

)

Γ(−ν) R−1−ν−
√

1+K/2eR/2. (5.11)

Thus f1 diverges as R → 0 while Eq. (5.10) implies f2(0) = 0. Hence the boundary
condition z′(0) = 0 imposes c1 = 0. Similarly, f2(R) diverges as R → +∞, thus
z′(+∞) = 0 yields c2 = 0. Therefore there is no non-zero solution to the linearized
buckling problem.

• For ν natural integer (ν = n ∈ N), the singular terms of Eq. (5.11) vanish and f1
and f2 are both proportional to the generalized Laguerre polynomials L

(α)
n (R) [106].

Hence Eq. (5.8) has a unique solution, up to an arbitrary amplitude C:

z′n(R) = Ce−R/2R
√

1+K/2L
(
√
4+2K)

n (R) . (5.12)
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Figure 5.3: Normal modes zn(R) of the dressed membrane. (a) Spatial structure of the
first four normal modes at their respective buckling thresholds for K = 2.5. (b) Thin
black lines: buckling thresholds as a function of n, K and Σ. Thick red line: stability
limit of long, cylindrical dressed membrane tubes. Protrusions are obviously more stable
at small Σ, where the destabilizing influence of the filaments overrides the stabilizing
effect of the membrane. Therefore the nth normal mode of the flat dressed membrane is
linearly unstable for parameter regimes located under the nth thin black line and long
tubes exist only under the thick red line. Thin cyan line: parameter regimes compatible
with the experimental data of Ref. [98]. Symbols are referred to in the main text.

Since L
(α)
n (R) is a polynomial of degree n in R, zn satisfies the boundary conditions

for any n.

Therefore, there is an infinity of buckling thresholds, one per integer ν = n. This is
again reminiscent of the buckling rod problem, as each normal mode zn of the dressed
membrane has its own instability threshold. These are illustrated in Fig. 5.3. Physically,
the interface is linearly stable if and only if all of its normal modes are stable. Thus in
the following we need only consider the most unstable mode n = 0.

5.5 Large deformations and metastable regime

We now study strongly deformed dressed membranes [Fig. 5.2(c)]. We first check that
our model accounts for the existence of long dressed membrane tubes similar to those
observed in Fig. 5.1(b) and in Refs. [98, 101, 102]. For a cylindrical protrusion of radius
rt and length ℓ≫ rt and to dominant order in ℓ/rt, the rounded tip and base of the tube
can be neglected and the free energy reads

F = 2πrtℓ

[

κ

2r2t
+ σ +

k

2

(

1

rt
− 1

r0

)2

− µ

]

+ Fflat dressed membrane. (5.13)
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Introducing a fictitious vertical point force f pulling the membrane up at r = 0, we
minimize the free energy G = F − fℓ with respect to rt and ℓ and find

rt = r0

√

1 +K

2Σ
, ft =

2πκ

r0

[

√

2(1 +K)Σ−K
]

. (5.14)

Consider an equilibrium situation in which a long dressed membrane tube is held at a
constant length by a force f = ft. The force is then suddenly set to zero. In the case
of an upward initial force ft > 0, the tube tends to retract. If ft < 0, on the contrary,
ℓ increases and the dressed membrane spontaneously tubulates. This corresponds to the
region of Fig. 5.3(b) located under the thick red line. Interestingly, long tubes are always
stable when the flat dressed membrane is linearly unstable, but the reverse is not true.
Thus there exists a regime, located between the thick red line and the n = 0 line of
Fig. 5.3(b), where the flat dressed membrane is metastable.

This metastable regime is compatible with biologically reasonable parameter values.
Indeed, combining Eqs. (5.4) and (5.14), we find:

Σ =
2(κrert)

2K2(1 +K)

[κr2e + 2(γ − σre)rer2t + κ(r2e + r2t )K]
2 . (5.15)

The micrographs presented in Ref. [98], among which those reproduced in Fig. 5.1, consis-
tently indicate that rt ≃ 70 nm and re ≃ 200 nm. Inserting these values and the estimates
κ = 20kBT , σ = 10−5 N.m−1 [107] and γ = 1 pN in Eq. (5.15), we obtain a numerical
relation between the scaled tension and filament stiffness characterizing the experiments
of Ref. [98]. We plot this condition as a thin cyan line on Fig. 5.3(b). This line traverses
both the metastable and unstable regions, making it possible that the experiments of
Ref. [98] reflect either regime.

5.6 Full shape equations for the dressed membrane

In the next two sections, we consider the possibility that the flat dressed membranes
observed in Fig. 5.1(a) are indeed metastable. In this hypothesis, an important quantity
is the energy barrier ∆F separating the flat state from the more stable, tubulated state.
To compute ∆F , we need to solve the full nonlinear shape equations of the tube, which
we derive here.

Using Z = z/u, we define S as the arc length along the dressed membrane in the
(R,Z) plane with R(S = 0) = 0. We parametrize the dressed membrane by R(S) and
the angle ψ(S) defined by

Ṙ(S) = cosψ(S), (5.16a)

Ż(S) = − sinψ(S), (5.16b)

where the dot denotes the differentiation with respect to S [Fig. 5.4(a)]. In this parametriza-
tion, the free energy of a finite region 0 < R < Rmax of the dressed membrane subjected
to a force f reads

GRmax

2πκ
=

∫ Smax

0

L
(

ψ, ψ̇, R, Ṙ, λ
)

dS, (5.17)
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Figure 5.4: Numerically computed mechanical properties of strongly deformed dressed
membranes for K = 2.5. (a) Parametrization and profiles. (b) Force-extension curves
(L = ℓ/u). (c) Black lines: bifurcation diagram for the F = 0 problem. Cyan lines:
changes induced by a weak asymmetry of the dressed membrane. In both cases, thick
(thin) lines represent stable (unstable) solutions. (d) Activation energy ∆F a flat dressed
membrane needs to reach the ℓ = +∞ buckled solution.

where we introduce the Lagrangian L defined by:

L
(

ψ, ψ̇, R, Ṙ, λ
)

=
ψ̇2R

2
+ ψ̇ sinψ +

sin2 ψ

2R
− F sinψ +

R

4
+
K

2R

+λ
(

Ṙ− cosψ
)

− 1 +
√
4 + 2K + 2ν

2
. (5.18)

Here F = fu/(2πκ), Smax is defined by Rmax = R(Smax) and λ is a Lagrange multiplier
imposing the constraint Eq. (5.16a).

Minimizing the free energy of the dressed membrane with respect to ψ(S) and R(S)
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under the constraint Eq. (5.16a) implies satisfying the Euler-Lagrange equations

∂L
∂ψ

=
d

dS

(

∂L
∂ψ̇

)

⇔ ψ̈R + ψ̇Ṙ =
cosψ sinψ

R
− F cosψ + λ sinψ,

∂L
∂R

=
d

dS

(

∂L
∂Ṙ

)

⇔ λ̇ =
ψ̇2

2
+

1

4
− K + sin2 ψ

2R2
, (5.19)

∂L
∂λ

=
d

dS

(

∂L
∂λ̇

)

⇔ Ṙ = cosψ

for any S. Eliminating λ from these equations, we get the shape equations for the dressed
membrane

...
ψ = −2ψ̈ cosψ

R
− ψ̇3

2
+

3ψ̇2 sinψ

2R
+
ψ̇

4
− 1 +

√
4 + 2K + 2ν

2R
ψ̇

+
ψ̇

2R2

(

2 +K − 3 sin2 ψ
)

+
sinψ

4R
+

sinψ

2R3

(

sin2 ψ − 2−K
)

, (5.20)

Ṙ = cosψ.

We are in presence of one third-order equation and one first-order equation, and there-
fore need four boundary conditions to have a complete set. The definition of S and the
fact that the membrane cannot have a singularity in S = 0 impose two of these:

R(0) = 0, ψ(0) = 0. (5.21)

The other two are found by minimizing GRmax with respect to ψmax = ψ(Smax) and with
respect to Smax at fixed Rmax. These respectively yield the following two conditions:

∂L
∂ψ̇

(Smax) = ψ̇(Smax)Rmax + sinψ(Smax) = 0, (5.22)

(

L − ∂L
∂ψ̇

ψ̇ − ∂L
∂Ṙ

Ṙ− ∂L
∂λ̇

λ̇

)

(Smax) = 0. (5.23)

Since the Lagrangian L is autonomous (i.e. ∂L/∂S = 0), the Hamiltonian

H = L − ∂L
∂ψ̇

ψ̇ − ∂L
∂Ṙ

Ṙ− ∂L
∂λ̇

λ̇

is a constant. Moreover, Eq. (5.23) imposes that this constant is equal to zero. Combining
this with Eqs. (5.19) yields a simplified (third-order) system of shape equations for the
dressed membrane:

ψ̈ =

(

1

4
− 1 +

√
4 + 2K + 2ν

2R
+

cos2 ψ + 1 +K

2R2

)

tanψ

− ψ̇
2 tanψ

2
− ψ̇ cosψ

R
− F

R cosψ
, (5.24)

Ṙ = cosψ,
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with boundary conditions:

R(0) = 0,

ψ(0) = 0, (5.25)

ψ̇(Smax) = −sinψ(Smax)

Rmax

.

In the small ψ, infinite Rmax limit, these equations are identical to those solved in Sec. 5.4.
In the absence of protein (k = 0, µ = 0), they go to the bare membrane tube shape
equations of Refs. [108, 109].

5.7 Numerical computation of the energy barrier

The nonlinear equations derived in the previous section are much too complicated to be
solved analytically. In order to calculate ∆F , we thus resort to numerical methods.

For practical reasons, we define X = Smax−S and translate the above system of equa-
tions in this new parametrization. We use the following new set of boundary conditions:

dψ

dX
(X = 0) =

sinψ(X = 0)

Rmax

,

R(X = 0) = Rmax (5.26)

ψ = 0 when R = 0.

Note that the boundary conditions Eqs. (5.26) are expressed in two different locations
X = 0 andR = 0. Such a situation is commonly referred to as a “boundary value” problem
and is often tackled with the “shooting method” [110], which we use here. It consists in
breaking the boundary value problem down into a (simpler) initial value problem and a
root finding problem.

In our case, we start by picking an arbitrary value ψ0 for the slope of the dressed
membrane in X = 0 (R = Rmax). We then evolve Eqs. (5.24) using a fourth-order
Runge-Kutta routine [110] starting from the initial conditions

ψ(X = 0) = ψ0,
dψ

dX
(X = 0) =

sinψ0

Rmax

, R(X = 0) = Rmax. (5.27)

We stop the routine as soon as R hits zero (actually, when it becomes smaller than some
small number), and record the value ψc of ψ at this location. For an arbitrary ψ0, there
is no reason to expect that ψc is equal to zero as required by our physical problem. Still,
the procedure described here defines a function

gF : ψ0 7→ ψc, (5.28)

where the superscript “F” signals that the function gF depends on the force. By finding
the roots of this function numerically, we find a ψ0 such that ψc vanishes (becomes smaller
than some small number), and thus generate a trajectory satisfying the equations of
Sec. 5.6.
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For the particular equations used here, however, the function gF usually has many
roots, most of them unphysical (typically with a dressed membrane that intersects itself).
Since the algorithm used to find the roots of the equation gF (ψ0) = 0 requires to be
initialized by inputting a certain initial value ψinitial

0 of ψ0, it typically converges to the
root of gF that is closest to ψinitial

0 . In order to select the physically interesting root, we
start from a situation where we know a physically correct solution: a flat membrane under
zero force. Note that even though that solution might be mechanically unstable under
some conditions (see Sec. 5.4), it is always numerically stable, meaning that starting a
trajectory from ψ0 = 0 always yields ψc = 0 for reasonably small numerical noise. We then
increase the force by a small amount δF . As we do this, the physical ψ0 also changes, but
only by a small amount and it thus remains close to zero. By solving gδF (ψ0) = 0 starting
from ψinitial

0 = 0, we thus converge to the nearby physical ψ0. By gradually changing F
by small increments, we are thus able to follow the physical ψ0 into strongly deformed
regimes.

Let us now discuss the results obtained with this procedure. We use Rmax = 25,
which is large enough to be considered quasi-infinite, and tackle only the specific example
K = 2.5. We however believe that other values of K yield a similar behavior. We first
comment on the three regimes presented in Fig. 5.4(a-b). For Σ = 1.1 [indicated by
△ in Fig. 5.3(b)], tubes always retract in the absence of an external force, as shown in
Fig. 5.4(b). Lowering the surface tension to Σ = 0.89 (�), we reach the boundary of the
metastable region. For 0.39 < Σ < 0.89, a positive force is required to extract short tubes,
but long tubes grow spontaneously unless opposed by a negative F . At Σ = 0.39 (©) and
lower, even short tubes grow spontaneously and can only be maintained at a finite length
by a negative force. In Fig. 5.4(b), crossings of the horizontal axis by the force-extension
curves denote solutions of the biologically relevant, F = 0 problem, the stability of which
is indicated by the sign of the curve’s slope. Plotting the lengths of these protrusions
as a function of Σ, we obtain the diagram Fig. 5.4(c), where we observe that the loss of
stability of the n = 0 mode studied above yields a subcritical bifurcation. Focusing on
the metastable regime (0.39 < Σ < 0.89), we note that forming an infinitely long tube
requires first extruding a short tube from the dressed membrane, which is energetically
unfavorable. The associated energy barrier ∆F is given by the free energy of the unstable
solutions represented by the main thin branch of Fig. 5.4(c). Integrating force-extension
curves similar to those of Fig. 5.4(b), we calculate the work required to reach these
solutions from the stable, flat state and plot the results on Fig. 5.4(d). Under the effect
of thermal fluctuations, an energy barrier of height ∆F is crossed at a rate τ−1e−∆F/kBT ,
where τ ∼ ns is the characteristic relaxation time scale of the system. When ∆F is of
the order of a few kBT , thermal fluctuations are sufficient to ensure the buckling of the
dressed membrane within experimentally observable time scales. This is however not the
case here, and the large energy barrier makes thermally activated ESCRT-III-mediated
budding extremely unlikely in most of the metastable regime.
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5.8 Discussion and experimental perspectives

This chapter presents a novel buckling mechanism relevant for a wide range of systems
involving interacting membranes and curved filaments. Here we first discuss two approx-
imations made here, then discuss the biological implications of our model and finish by
proposing an experiment to validate it.

Throughout this work, we first assume that the interactions between filaments and
between filament and membrane are independent of the slope of the dressed membrane
(i.e. of whether the filaments lie in the same plane or are stacked one upon another). For
small slopes, this dependence can be expanded as µ(∇z) = µ0 + µ2(∇z)2/2 + O [(∇z)4]
and yields the same linear stability analysis as above provided we redefine Σ = (σ −
µ0 − µ2)r

2
0/κ + k/(2κ). Second, we ignore in Eq. (5.1) any terms violating the z → −z

spatial symmetry. These terms are allowed in general since the dressed membrane is not
up-down symmetric, and might be responsible for the fact that in ESCRT-III, buckling
systematically occurs toward the outside of the cytoplasm [see Ref. [98] and the tubes of
Fig. 5.1(b-d)]. Formally, such an asymmetry destroys the bifurcation studied here. If it
is weak, however, a stable, almost flat configuration still exists for high tensions and loses
stability close to the predicted Σ = 0.39 threshold, as illustrated in Fig. 5.4(c).

One important focus of the present chapter is the relevance of the proposed buckling
mechanism for membrane budding in eukaryotic cells by ESCRT-III. Another model that
has been proposed for this phenomenon is the “purse string” model illustrated in Fig. 5.5,
over which our mechanism has several advantages. In the purse string model, the defor-
mation of the membrane is induced by the buildup of a flat array of ESCRT-III filaments,
and only the membrane is deformed out of the horizontal plane. Unlike our model, it
thus fails to account for the scaffold of filaments underlying the tubular structures of
Fig. 5.1(b). Furthermore, it is quite obvious that the amount of membrane in a bud is
limited to the amount initially circled by the ESCRT-III heteropolymer, thus forbidding
the formation of the long tubes of Ref. [98] and Fig. 5.1(b). Finally, the purse string model
raises questions regarding the interactions between the membrane and ESCRT-III. In par-
ticular, the fact that the cell membrane is liquid would suggest that the forming bud of
the top and right panels of Fig. 5.5 should flow back into a flat state. In order to account
for it not doing so, one should introduce extra elements in this model, such as a model
of the friction between the protein with the membrane. Our buckling mechanism, on the
other hand, does not require such detailed—and thus potentially arbitrary—assumptions
and its physical consistency is thus easy to establish, as shown in this chapter.

Beyond the simple linear stability criterion associated with any buckling phenomenon,
our study predicts the existence of a metastable regime for the flat dressed membrane. It is
interesting to consider the possibility that cells function in this regime. Indeed, metastable
flat dressed membranes could then coexist with long tubes for extended (i.e. experimen-
tally observable) periods of time, and thus account for some observations presented in
Ref. [98]. We show in Sec. 5.7 that the height of the free energy barrier separating the flat
state from the tubulated state most likely rules out a thermal activation of the buckling
of metastable membranes. Therefore, in vivo, ESCRT-III-mediated budding either takes
place only in (or close to) the regime where the flat dressed membrane is linearly unstable,
or is assisted by some unknown active process. A possible process of this kind is actin
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Figure 5.5: In the “purse string” model, the ESCRT-III protein VPS20 initiates an het-
eropolymer around a region of the membrane that needs to be deformed into a vesicle
(e.g. a region where some cargo is concentrated—see top panel). The polymer grows by
addition of hSnf-7 (here termed Snf7), thus deforming the membrane into a bud (here
pictured as a grey sphere below the membrane). VPS24 and VPS2 terminate the polymer
and detach the vesicle. Then VPS4 recycles the proteins by disassembling the construct
upon ATP hydrolysis. Note that the mechanism proposed in this chapter is only con-
cerned by the first step illustrated here, namely the deformation of the membrane by
hSnf-7. Figure adapted from Ref. [102].

polymerization [see chapter 1], which is regulated by the ESCRT-associated protein Alix
[111]. If such an active trigger were indeed used in vivo, cells might first allow for the
formation of complete ESCRT-III arrays, then could activate their rapid budding into
potentially large structures by stimulating them at a moment suited for their biological
function. Finally, the long tubes observed in some of the micrographs of Ref. [98] do
not seem to be length-regulated, in agreement with our predictions for a regime situated
under the stability limit of long tubes [thick red line of Fig. 5.3(b)].

We believe that convincing evidence for our description of ESCRT-III budding could be
gained by performing a simple in vitro experiment where no active processes are present.
If the experiment were performed in a cellular environment, such active processes could
favor just as well as hinder buckling, thus making the results very difficult to interpret.
We propose a biomimetic setup where an aspiration pipette is used to control the tension
σ of a giant unilamellar vesicle [112]. This is similar to the setup presented in Fig. 3.1(a)
without the optical tweezer. Injecting fluorescent ESCRT-III proteins in the surrounding
solution at a known concentration (and therefore at known µ) [102], the formation of
tubular structures could be monitored using confocal fluorescence microscopy. By starting
at high Σ and then ramping Σ down through σ, one could thus witness the crossing of the
linear stability threshold (i.e. the metastability limit) through the appearance of long,
hSnf-7-rich tubes. This measurement of the buckling threshold and its dependence on
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µ could then be compared to our predictions. Finally, when ramping Σ back up from
a buckled configuration, we predict that the tubes would only retract when the limit of
stability of long tubes is reached, thus giving rise to an as of yet unexpected hysteresis
phenomenon.
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Chapter 6

Shaping of actin bundles by
cross-linkers

6.1 Introduction

Maybe the most spectacular feature of our hearing is its exquisite frequency sensitivity.
We human beings are able to discriminate sounds with frequencies different by less than
0.2% over a range of three decades [113]. This extraordinary precision finds its root in
the physical structure of the auditory system. After entering the ear, sound propagates
through the outer and middle ear, pictured in Fig. 6.1(a), with only moderate frequency
distortion. It then travels through the inner ear and excites the organ of hearing: the
cochlea. Not all regions of the cochlea vibrate in the same way when excited by a given
sound, as the stiffness of its so-called basilar membrane is not homogenous. Only the
regions tuned to the incoming sound resonate, which is the first stage of the ear’s frequency
selectivity. On a smaller scale, these vibrations excite cells specialized in the transduction
of the mechanical sound stimulus into a nervous signal. These cells are known as “hair
cells”, after their “hair bundle” [Fig. 6.1(b)], a specialized structure made of rod-like
“stereocilia” [Fig. 6.1(c)], which pivot around their ankle upon mechanical stimulation
[Fig. 6.1(d)]. The relative motion of the stereocilia causes the opening of ion channels,
which induces a depolarization of the membrane that results in the propagation of a
nervous signal. In parallel, the influx of ions triggers a sophisticated active feedback
machinery that enhances the mechanical resonance of the stereocilia in order to gain
better frequency sensitivity [114]. Of crucial importance to this process are the mechanical
characteristics of the stereocilia, which are in turn linked to their structure. This role of
the form of stereocilia for hearing is evidenced by the fact that their length and shape
vary in a very well controlled way both within a single hair bundle and across the whole
cochlea.

Stereocilia are primarily made of a hexagonal actin paracrystal enclosed by the cell
membrane, as shown in Fig. 6.1(e). Within it, the actin filaments are densely packed,
with a lateral spacing of about 10 nm, close to the filament diameter [120]. The filaments
are in register, meaning that their helical periods are perfectly aligned in the vertical
direction. Their barbed (polymerizing) ends point towards to tip of the stereocilium and
their pointed (depolymerizing) ends point towards the cell body. The filaments insert
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Figure 6.1: Stereocilia and their situation within the ear. (a) Structure of the human ear
with indications of the resonant regions of the cochlea for three different stimulus frequen-
cies (red annotations). Green: outer ear; red: middle ear; purple: inner ear. Figure taken
from Ref. [115]. (b) Scanning electron micrograph of a chicken’s auditory sensory epithe-
lium, located at the core of the cochlea. Individual stereocilia are visible within each hair
bundle. Figure taken from Ref. [116]. (c) Transmission electron micrograph through three
guinea pig stereocilia. The diameter of the tallest stereocilium is about 250 nm. Figure
taken from Ref. [114]. (d) Schematic of the relative motion of stereocilia upon mechanical
stimulation. The extension of the spring-like “tip link” induces the opening of an ion
channel. Stereocilia pivot around their base, whose elastic properties are therefore very
relevant to the tuning of the hair cell [117]. Figure taken from Ref. [116]. (e) Transverse
cross-section of a stereocilium, showing the close packing and hexagonal arrangement of
the actin filaments (appearing as black circles). Arrows indicate cross-bridges between the
actin filaments. Bar, 20 nm. Figure taken from Ref. [118]. (f) Confocal (fluorescence) mi-
crographs of rat hair bundles at various times after transfection with β actin-GFP (green).
The non-fluorescent actin (i.e. incorporated in the stereocilium before transfection took
place) appears red due to treatment with rhodamine/phalloidin. The growth of the green
part at the expense of the red is evidence of the actin treadmill. The bottom panel shows
a transfected next to a non-transfected cell. Bar, 2.5µm. Figure taken from Ref. [119].
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into the cytoplasm of the underlying hair cell [121], forming a so-called “rootlet” easily
visualized in Fig. 6.1(c) because of its dark color upon osmium staining (which probably
indicates a dense concentration of proteins). Stereocilia can have over 200 filaments
[122] and their length can vary from 1 to 120µm depending on the animal and on the
region of the inner ear considered, meaning that each actin filament within them contains
thousands of monomers [123]. Although stereocilia are maintained throughout the life
span of an individual, they are dynamic structures that are constantly renewed through
actin treadmilling1. During this process, actin is continuously incorporated at the tip of
the stereocilium and depolymerized at its base [124], as shown in Fig. 6.1(f). Interestingly,
the actin treadmilling velocity is proportional to the height of the stereocilium, so that
the time necessary to fully renew any rat auditory stereocilium is always 48 h.

Recently, a stereocilium model accounting for this observation has been proposed [125].
In this description, actin is incorporated at the stereocilium tip at a rate dependent on
the normal stresses exerted by the membrane on the actin bundle (the more compressed
the bundle, the more difficult the incorporation of new actin monomers). These stresses
are determined by the radius of the stereocilium, which is itself fixed by an unspecified
biological mechanism (possibly the activity of the numerous regulatory proteins found
at the stereocilium tip [118, 126, 127, 128]). The treadmilling velocity does not explic-
itly depend on the height of the stereocilium, and is not limited by the actin supply to
the tip, consistent with the experimental observation that actin overexpression does not
influence the treadmilling velocity [119]. The central feature imposing the length of the
stereocilium in Ref. [125] is that the depolymerization of the actin filaments happens inde-
pendently of polymerization or of any mechanical influence of the surroundings. Instead,
the depolymerization time of an actin filament is fixed by some “internal clock”, which (if
set to 48 h) allows the authors to recover the proportionality between stereocilium length
and treadmilling velocity. Ref. [125] proposes two possible origins for this characteristic
time inherent to the actin: first, it considers the stochastic dynamics of an actin filament
polymerizing at a rate kp at one end, and depolymerizing at kd > kp at the other. The
inverse depolymerization rate 1/kd is the first of the two time scales. In the limit of
long stereocilia, this dynamics can be mapped onto the biased diffusion of a particle and
yields an exponential distribution of the filament size with a characteristic length scale
ℓp/d =

kd+kp
2(kd−kp)

×monomer size. Second, the authors consider the dynamics of a hypothet-

ical actin pointed end capping protein that would prevent filament depolymerization and
detach at a rate ku, which yields the second characteristic time scale, 1/ku. Through this
mechanism, a capped filament would extend on average by ℓu = kp

ku
× monomer size be-

fore uncapping occurs. If those two length scales are matched very precisely, the authors
recover reasonable elongated stereocilia shapes.

Here we argue that although it is essentially adequate to describe the shape of stere-
ocilia, the formalism of Ref. [125] misidentifies the internal clock at work in the actin
bundle. A first indication of this flaw is that obtaining acceptable shapes within this
framework requires a fine tuning of ℓp/d to ℓu. If the shape of the stereocilium were indeed
very dependent on the tuning of two such parameters in vivo, this would mean that it
would be very sensitive to an accidental change of either of them. Therefore, this model

1See chapter 1 for a definition of treadmilling.
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does not yield robust stereocilia, which is in contradiction with experiments indicating
that the shape of stereocilia is very well defined. As far as stereocilium shapes are con-
cerned, those calculated from this model have a tapered profile for reasonable values of
the parameters as expected from the electron micrographs of Fig. 6.1(c). Indeed, the au-
thors point out that their description yields shapes similar to those represented in Fig. 6C
of Ref. [119]. Unfortunately, the stereocilium represented in this figure is from a deaf
shaker 2J mutant rat, and the model fails to account for healthy profiles. In the present
chapter, we propose another origin for the characteristic depolymerization time based on
an experimentally well-characterized protein, that Ref. [125] incorrectly suggests could be
modeled as an actin pointed-end capping protein. This protein is espin, a cross-linker of
actin filaments.

It was already noticed in the early days of the study of the structure of stereocilia that
the actin filaments they contain are not simply in contact, but are connected by cross-
bridges [121] such as the ones indicated by arrows in Fig. 6.1(e). It was later discovered
that these cross-bridges are in fact two actin cross-linking proteins, fimbrin [129] and espin
[130]. The cross-bridges are arranged periodically with a period 12.5 nm along the actin
filaments. This indicates that they could be responsible for the filaments being in register,
due to the fact that they can bind only if correctly aligned with the periodicity of the
actin helix [131]. In this chapter we focus on espin, as it is thought to provide sturdier
cross-linking than fimbrin. Indeed, unlike fimbrin it binds actin in a Ca2+-resistant way
[132], which is crucial as the mechanism of hearing implies calcium ions penetrating into
the stereocilium [122]. Also, its binding affinity for actin is 10-100 fold higher than that
of other actin cross-linkers [133]. Note however that our theoretical study applies equally
to any kind of actin cross-linker, and is a first step towards the study of situations where
several different types of cross-linkers are simultaneously involved.

Although the tertiary structure of espin has not yet been resolved, it is known to
be an anisotropic protein with a Stokes radius of 3.4 nm [134]. It exists under various
isoforms with masses ranging from 25 to 110 kDa [132], all having two or three F-actin
binding sites and one G-actin binding site. In vitro, espin bundles actin filaments within a
large range of concentrations, yielding an average inter-filament spacing of 12.6 nm [135].
If targeted to a specific cellular location, it causes the de novo assembly of large actin
bundles (both the G-actin and two F-actin binding sites are required for this) [136]. When
transfected into CL4 cells, they cause an average 6-fold elongation of microvilli, a type
of stereocilia-related protrusions presented in Fig. 1.2(c) [137]. One likely cause of this
elongation is the experimentally observed slowing down of actin depolymerization upon
cross-linking by espin [138]. Also, cross-linkers are known to slow down the disassembly
of actin bundles during the disassembly of the Drosophila bristle [Fig. 1.2(c)] [139]. Note
that such an actin depolymerization inhibitor seems to be necessary to account for actin
dynamics in stereocilia, as the actin depolymerization rate there (≃ 0.004-0.04 s−1 [119])
is much smaller than that of F-actin in vitro (≃ 1 s−1 [140]). The idea that espin cross-
linking has an influence on the lifetime of stereociliary filaments is supported by the fact
that it is incorporated at its tip and treadmills down simultaneously with actin [119]. Its
role is probably at least as crucial as that of actin for the length control of stereocilia.
Indeed, espin—but not actin—overexpression induces their lengthening and a mutation
resulting in espin underexpression causes their shortening [126]. Even under normal in
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vivo conditions, the variability in the length of stereocilia throughout the cochlea as
well as within a single hair bundle is correlated with the espin expression level [138].
During development, espin expression levels correlate with stereociliary elongation and
maturation in chicken [141], and so does the sequence in which various espin isoforms are
expressed as a function of the location of the stereocilium in the inner ear [142]. Finally,
two recessive and four dominant mutations of espin are responsible for deafness in human
[132]. Out of the four dominant ones, three induce less microvilli lengthening than wild
type espin when transfected into CL4 cells [137].

In this chapter, we focus on the role of espin in stereocilia. It should be noted that it
also plays a role in several other actin bundle-based protrusions such as the microvilli of
hair cells2, vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells,
and Merkel cells [143]. Actin turnover in microvilli and in the related filopodia [Fig. 1.2(c)]
is however very quick and their shapes are rather ill-defined, which is why we choose to
study stereocilia [123]. Note also that espin could regulate actin polymerization and
depolymerization by other mechanisms besides cross-linking [122].

In Sec. 6.2, we present a model for the coupled dynamics of espin cross-linking and
actin depolymerization, thus proposing an “internal clock” devoid of the drawbacks of the
ones proposed in Ref. [125]. Solving the simple case where espin is incorporated into the
actin bundle only at the tip of stereocilia, we show in Sec. 6.3 that our model yields ro-
bust stereocilia shapes with only one adjustable parameter and accounts for experimental
results not previously discussed in the theoretical literature. We show the modifications
induced by espin reattachment during the course of treadmilling by discussing a simpli-
fied situation involving only one filament. In Sec. 6.4, we treat this single-filament case
far away from the polymerizing end of the filament and in Sec. 6.5 we deal with the
filament’s stationary profile. Sec. 6.6 then focuses on the lateral correlations that espin
reattachment induces in a multi-filament bundle, and we discuss our results in Sec. 6.7.

6.2 Model for the actin and cross-linker dynamics

Consistent with the experimental data presented in the previous section, here we consider
the coupling of the actin bundle’s polymerization dynamics to that of espin.

In our model, presented in Fig. 6.2(a), maximally cross-linked actin is continuously
produced at a location ℓ = 0 at an externally imposed treadmilling velocity v. The poly-
merization dynamics of the actin bundle is thus assumed to be deterministic. In practice,
this polymerization is highly regulated by several proteins comprised in the electron-dense
“tip complex” located at the stereocilium tip [Appearing darker in Fig. 6.1(c)—see also
Refs. [118, 126, 127, 128]]. Here we do not speculate about the fluctuations induced by
this complicated and still poorly understood dynamics, but note that since the filaments
across the bundle are cross-linked, they move together at a velocity equal to the average
polymerization rate of the filaments. This velocity is almost constant: indeed, consider-
ing as a first approximation that the fluctuations in the polymerization rates of different
filaments are independent, we conclude from the central limit theorem that the amplitude

2The microvilli of hair cells are much shorter than their stereocilia. Some are visible in Fig. 6.1(b),
where they coincide with the boundary between different cells.
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Figure 6.2: Illustration of our model. (a) Cross-linked actin is produced in ℓ = 0 and
treadmills down with a velocity v. Meanwhile, espins are exchanged with the surrounding
solution with rates kon and koff. An actin filament not held by a cross-linker at its pointed
end immediately depolymerizes to the next espin. (b) Membrane tension tends to make
the radius of the protrusion shrink, and thus pushes the filaments together into a tapered
shape. We respectively denote by rt, rt − δrt and ℓt the largest radius, smallest radius
and length of the tapered end. The membrane is represented in cyan.

of the fluctuations in the treadmilling velocity of the whole bundle are proportional to
N−1/2, where N is the number of filaments in the bundle. In the limit of large bundles,
we are thus justified in neglecting these fluctuations.

As the actin moves down, espin is exchanged with the surrounding medium. This
represents the attachment/detachment dynamics of the cross-linker as well as its possible
degradation. Considering that the typical time for the depolymerization dynamics is
≃ 1000 s (the time required to depolymerize one helical period of the actin filament
according to Ref. [119]) and assuming a diffusion constant of 60µm2.s−1 (estimated from
the Stokes radius of espin [134]), we estimate that the unbound espin concentration is
homogeneous over length scales of order at least 250µm, i.e. larger than the size of the
stereocilium. We thus consider that the espin attachment and detachment rates kon and
koff are constant throughout the stereocilium. Note that this reasoning would not hold if
espin were actively localized in some regions of the stereocilia, or if the diffusion of espin
were slowed down considerably, for instance by crowding effects. It is however not known
how much the actin bundle slows the diffusion of espin down, and we assume throughout
this chapter that this effect is not sufficient to induce significant espin density gradients.
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The opposite hypothesis is considered in Ref. [144], which we further discuss in Sec. 6.7.
A similar discussion applies to the supply of actin to the tip of the stereocilium, which
we consider to always be sufficient to maintain the treadmilling velocity v. Finally, espin
attachment at the altitude ℓ is only possible between two neighboring filaments of length
equal to or larger than ℓ (indeed, espin obviously cannot reattach if there are no actin
filaments).

We consider as a simplifying hypothesis that actin filaments can only depolymerize
from their pointed ends. In agreement with the experimental results presented in the pre-
vious section, we assume that espin prevents the depolymerization of the actin filaments it
cross-links. We furthermore assume that actin depolymerization happens on much shorter
time scales (≃ 1 s) than the espin attachment dynamics (the bundle treadmilling time is
≃ 48 h). Hence on the time scales relevant for the morphogenesis of stereocilia, actin fila-
ments depolymerize instantaneously up to the next point where they are cross-linked, and
are then stalled until the cross-linker detaches, which it does with a rate koff. We denote
by a the spacing between two actin cross-linkers. A filament cannot depolymerize further
than ℓ = 0—this means that we consider that a filament of vanishing length does not
disappear, but is immediately re-nucleated by the tip complex so that the total number
N of filaments is conserved.

From the model described here, we expect the lower end of the actin bundle to
have a very irregular shape due to the stochastic character of the espin detachment
and subsequent actin depolymerization [as in Fig. 6.2(a) for example]. At first sight,
this does not seem consistent with the smooth tapered end observed experimentally
[Fig. 6.1(c)]. The two behaviors are however compatible if one takes into account the
influence of the membrane. Using the results of Sec. 3.1, we note that since the ra-
dius of the stereocilium (≃ 200 nm) is larger than the natural membrane tether radius
[

(κ/2σ)1/2 ≃ a few tens of nm
]

, the dominant influence of the membrane is that of its
tension σ, which tends to shrink the tube and therefore push the irregularly distributed
filaments together, as illustrated in Fig. 6.2(b). In doing so, the membrane lowers its
surface tension energy by an amount ≈ σℓtδrt, and a number ≈ 100 of actin fila-
ments are bent with a radius of curvature ≈ ℓ2t/δrt over a length ≈ ℓt, hence a cost
≈ 100kBTℓp × ℓt × (δrt/ℓ

2
t )

2 in bending energy, where ℓp is the persistence length of
actin and the other lengths are defined in Fig. 6.2(b). Using σ ≃ 10−5 N.m−1, ℓt ≃ 10µm,
δrt ≃ 100 nm and ℓp ≃ 10µm, we find that the tension energy gain ≈ 10−17 J upon pushing
the filaments into a tapered shape exceeds the filament bending energy cost ≈ 4×10−23 J
by far, thus validating our picture. Indeed, experimentally, actin filaments are observed to
be packed together throughout the stereocilium [121]. Because of this packing mechanism,
actin filaments that are not neighbors in ℓ = 0 might come into contact. Here we neglect
the possibility that such accidental neighbors become cross-linked by espin. Therefore,
we take into account the spatial structure of the bundle in the horizontal direction only
through the notion of nearest neighbor in the initial (ℓ = 0) paracrystal.

Since espin is in principle able to bind the membrane [132] and it has been shown
experimentally that cross-linkers-mediated contact with the membrane stabilizes actin
bundles during Drosophila bristle disassembly [139], the membrane surrounding the actin
bundle might to some extent be able to stabilize an actin filament through cross-linking
in a similar way that a neighboring filament does. The question of the influence of the
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lateral boundary conditions on the stereocilium shape is further discussed in Sec. 6.6.4.
In the remainder of this chapter, we express lengths in units of the distance a between

espin sites and times in units of the average lifetime k−1
off of a cross-linker unless otherwise

specified. We denote the dimensionless polymerization velocity v/(akoff) simply by v, and
define k = kon/koff.

6.3 Stereocilium shape without espin reattachment

In this section we solve the model presented above in the case where espin is incorporated
in the actin bundle only at the stereocilium tip, meaning that k = 0. In this situation, the
problem simplifies considerably as the probability of presence of an espin cross-linker at
any potential espin cross-linking site is independent of the dynamics of the surrounding
actin filaments and of the other cross-linkers. Indeed, the site located at a distance ℓ from
the polymerization front is occupied if and only if an espin has been incorporated when
this site was located at the polymerization front and has then survived detachment for a
time ℓ/v. Since the detachment process is analogous to a radioactive decay-like stochastic
process with rate 1, the site in question is occupied with probability

Pon(ℓ) = P0e
−ℓ/v, (6.1)

where Pon(0) = P0 is the probability with which an espin cross-linker is incorporated at
ℓ = 0. For a maximally cross-linked bundle, P0 = 1. Now considering not one espin site,
but a full espin column [see definition in Fig. 6.2(a)], we ask for the probability that the
last espin of the column is located at an distance ℓ or smaller from the polymerization
front. This probability is given by the infinite product

P6
c (ℓ) = [1− Pon(ℓ+ 1)]× [1− Pon(ℓ+ 2)]× [1− Pon(ℓ+ 3)]× . . . , (6.2)

where ℓ 6 0. Now turning to the actin filaments, we see that an actin filament has a
length smaller or equal to ℓ if and only if all neighboring espin columns have their last
espin in ℓ or above. Denoting by n the number of neighbors of an actin filament [n = 6
in stereocilia—see Fig. 6.1(e); n = 2 in Fig. 6.2(a)], the probability for a filament to have
a length smaller or equal to ℓ in the absence of espin reattachment reads

P6
f (ℓ) = P6

c (ℓ)
n =

+∞
∏

i=1

[

1− P0e
−(ℓ+i)/v

]n
. (6.3)

Indeed, the filament is shorter than ℓ if and only if none of the neighboring espin columns
contain any cross-linker below ℓ.

We now discuss this result and compare it to experimental data. For more clarity, we
temporarily go back to non-scaled units. Qualitatively, P6

f (ℓ) is equal to zero for small
ℓs, and to one for large ℓs. If a large number of filaments are present, the number of
filaments of length larger than ℓ is proportional to P>

f (ℓ) = 1 − P6
f (ℓ). According to

the discussion of Sec. 6.2, the section π[r(ℓ)]2 of the stereocilium is proportional to the
number of filaments longer than ℓ, so that

r(ℓ) = r(0)
√

1− P6
f (ℓ). (6.4)
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Here we do not specify the physical processes fixing r(0), the radius at the polymerizing
end of the actin bundle. For relatively short-lived actin-based protrusion, r(0) could be
fixed by dynamical effects operating during the initial actin bundling phase [145]. In
stereocilia, mechanical regulation within the tip complex might lead to its continuous
regulation [125]. Since the length of the stereocilia (≃ 5µm) is much larger than that
the distance between two cross-linking sites (≃ 10 nm), we can use the continuum limit
of Eq. (6.3):

P6
f (ℓ) ∼

v/(akoff)≫1
exp

[

−e−(ℓ−ℓs)koff/v
]

, (6.5)

where

ℓs =
v

koff
ln

(

nvP0

akoff

)

. (6.6)

Equivalently, the probability density for the filament end to be in ℓ reads

Pf (ℓ) ∼
v/(akoff)≫1

koff
v

exp

[

−(ℓ− ℓs)koff
v

− e−(ℓ−ℓs)koff/v

]

. (6.7)

Note that in the discrete case, this probability density is related to the cumulative prob-
ability P6

f by

P6
f (ℓ) =

∑

ℓ′6ℓ

Pf (ℓ
′). (6.8)

Therefore, in the continuum limit

Pf (ℓ) = −
dP6

f

dℓ
(ℓ). (6.9)

A more rigorous definition of what we mean by “continuum limit” is given in Sec. 6.5.3.
For small values of ℓ, this equation yields a cylindrical profile with a characteristic length
ℓs given by Eq. (6.6). The cylinder then tapers over a length v/koff. These predictions are
plotted and compared to experimentally observed stereocilia shapes in Fig. 6.3. Several
parameters involved in our theoretical shapes are well known experimentally. Up to
six espins can bind to each helical period of the actin filament, which yields a/n =
(37/6)µm [131]. The actin of the part of the stereocilium that sticks out of the cell is
completely renewed by treadmilling in 48 h = ℓs/v [119], which imposes a different value
of v depending on the length of the stereocilium. In agreement with electron microscopy
studies, we assume that the actin bundle is heavily cross-linked by espin, so that P0 = 1.
This leaves only one free parameter koff. Since the three stereocilia of Fig. 6.3 belong to
the same cell, we furthermore impose that they are all described by the same value of koff.
Taking koff = 0.14 h−1 yields a good fit for all three stereocilia.

More quantitative experimental results are also accounted for by our model. As men-
tioned earlier, Ref. [119] indicates that the treadmilling velocity of a stereocilium is pro-
portional to its length. One might thus be worried that Eq. (6.6) predicts a nonlinear
relationship between those two quantities. The non-linearity is however weak as it is
due to a logarithm, and we show in Fig. 6.4(a) that the velocity-length relationship pre-
dicted there is compatible with experimental observations. Here the value of koff is the
same as the one determined in Fig. 6.3, meaning that no adjustable parameter is used in
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Figure 6.3: Comparison between our predictions [Eq. (6.4)—plotted as thick black lines],
and the micrographs of healthy, wild-type guinea pig stereocilia presented in Fig. 6.1(c)
and taken from Ref. [114]. The stereocilia are presented in decreasing order of size and
with different magnifications. The left ends of the lines indicate the reference ℓ = 0
corresponding to the position of the polymerization front.

Fig. 6.4(a). In Fig. 6.4(b), we compare the experimentally measured [128] density pro-
file of one specific type of espin, espin 1, along three stereocilia belonging to the same
vestibular hair cell3 to an exponential, as the espin density is expected to be proportional
to the probability Pon defined in Eq. (6.1). The decay length of the experimental curves
increases with stereocilium length (and therefore treadmilling velocity) as predicted by
this equation. Consequently, three different stereocilia of the same cell are again well
described by using one common value of koff. Note however that although espin 1 does
bind actin, its main role could be the regulation of actin polymerization, while other es-
pins might be responsible for most of the cross-linking [146]. Another interesting result is
presented in Ref. [138]. In this study, CL4 cells were transfected with espin, which caused
the elongation of the cells’ microvilli. The average elongation was measured and corre-
lated to the level of expression of espin. Assuming that espin is incorporated at the tip
of the protrusion at a rate proportional to its level of expression ce, we can consider that
P0 is proportional to ce. Following this, Eq. (6.6) yields a prediction for the dependence
of ℓs on ce, which we show in Fig. 6.4(c). We used two new adjustable parameters, as
these experiments deal with a different cell type and different protrusions the the ones
presented above (in particular, the renewal time of microvilli is much shorter than that of
stereocilia). The best fit is found for v/koff = 1.5µm. The value of the other parameter,

d
(

nvP0

akoff

)

/dce does not contain any exploitable information as only relative values of ce

are known experimentally.

Overall, we find that the simple case where espin does not reattach to actin yields
good agreement with experimental data, while relying on only one adjustable parameter.
Note also that the stereocilium length given by Eq. (6.6) has a smooth dependence on

3The actin bundle renewal time in vestibular hair cells is 72 h [119].
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Figure 6.4: Dependence of the protrusion length on various parameters predicted by
Eq. (6.6) and determined from experiments. (a) Measured treadmilling velocity versus
length in the stereocilia of the rat cochlea. In mammals, cochlear stereocilia are arranged
into three rows of graded height, as illustrated in Fig. 6.1(c). Experimental data for each
of these rows (denoted by “tall”, “middle” and “short” in the figure) are indicated by
different symbols, and the best linear fits for each subgroup are given as thin lines. The
thick line is the plot of Eq. (6.6), using the same value koff = 0.14 h−1 as in Fig. 6.3.
Experimental data taken from Ref. [119]. (b) Espin 1 density as a function of ℓ in the
vestibular stereocilia of guinea pigs. The three curves correspond to three stereocilia of
the same hair cell with different lengths (T ≃ 35µm, M ≃ 20µm, S ≃ 10µm). Agreement
with Eq. (6.1) is found for koff = 0.35 h−1, which is of the same order of magnitude as
the value deduced from the fit of Fig. 6.3. Experimental data taken from Ref. [128].
(c) Dependence of the length of microvilli of CL4 cells on the espin overexpression level.
Experimental data taken from Ref. [138].

both v
koff

and nvP0

akoff
, as illustrated by Fig. 6.4(a) and (c). This makes the stereocilium

robust with respect to perturbations of the cellular conditions, which is expected for such
a well-regulated structure.

6.4 Single-filament dynamics with reattachment

Although the results presented above give a good description of the shape of experimen-
tally observed stereocilia, it is interesting to study the effects of espin reattachment on
our model. We might indeed have to take this effect into account in more detailed studies
of stereocilia or when interested in other types of cellular protrusions. In actual stere-
ocilia, cross-linkers detaching from the actin filaments might diffuse for a while, and then
reattach somewhere else in the actin bundle. If diffusion is considered fast in the sense
of Sec. 6.2, this is equivalent to putting the filament in contact with a reservoir of cross-
linkers, represented by the attachment rate k. In this configuration, the espin dynamics
influences actin depolymerization in the same way as above, but the reverse becomes also
true, as espin can only reattach at a given site only if this site is surrounded by two actin
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Figure 6.5: Schematics of the single-filament problem. (a) Single filament bound to a
single wall and the coordinate system used in Sec. 6.4. (b) Single filament bound to n = 3
walls.

filaments. In contrast to the previous section, the actin is not slaved to the espin anymore,
which makes the problem more complicated.

In the present section, we consider only the simplified case of a single filament cross-
linked to a wall, as shown in Fig. 6.5(a). In Sec. 6.4.1, we write a master equation for
the stochastic dynamics of this problem. The espin variables can be eliminated from this
equation, as shown in Sec. 6.4.2. Far away from the polymerization front, a chemical
equilibrium between bound and unbound espins is reached and the problem can be solved
exactly, which we do in Sec. 6.4.3.

6.4.1 Master equation

Unlike in the previous section, here we consider the altitude in the reference frame of the
filament, not of the polymerization front. We assume that the polymerization front is at
altitude zero at time t = 0. Since it moves with a velocity v in the reference frame of
the filament, it is at altitude vt at time t. Thus the altitude z = vt − ℓ of the pointed
end of the filament is an integer smaller or equal to the altitude vt of the polymerization
front [Fig. 6.5(a)]. We denote by {ei = 0 or 1} the variables representing the state of the
potential espin-binding sites, with ei = 0 (ei = 1) denoting an empty (occupied) site at
position i.

Let Z be an integer smaller than vt and {Ei} a set of numbers equal to either 0 or 1.
The master equation describes the evolution of

P
[

{ei = Ei}i∈E(Z,t) , z = Z; t
]

, (6.10)

i.e. of the probability that the filament altitude z is equal to the integer Z and the espin
variables ei are equal to the Eis at time t. Note that the probability of Eq. (6.10) is a
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function of the Eis with indices such that

i ∈ E(Z, t), (6.11)

where E(Z, t) is the set of active espin sites at time t for a filament with its pointed end
in Z. The condition Eq. (6.11) means that i is an integer satisfying the two following
conditions:

• i > Z + 1. Indeed, all espins lower than the tip of the filament (i < Z) have to
be off, as there is no actin filament for them to attach to. On the other hand, the
espin in i = Z must be on, otherwise the filament end cannot be in z = Z (it
would immediately depolymerize) and the probability of Eq. (6.10) vanishes. As
a consequence of this, we consider that the detachment of the espin in z and the
instantaneous depolymerization of the filament to the next occupied espin site are
one and the same event.

• i 6 vt, as we do not consider what happens above the polymerization front. In
the following, we consider a situation analogous to the case P0 = 1 of the previous
section, meaning that any espin at altitude i = vt has a probability one of being on.
Its subsequent evolution is described by the master equation.

Following this, the master equation for the probability of Eq. (6.10) is concerned only
with espin detachment/attachment events.

If Z 6 vt− 1, the master equation reads

∂tP
[

{ei = Ei}i∈E(Z,t) , z = Z; t
]

= −P
[

{ei = Ei}i∈E(Z,t) , z = Z; t
]

+Kb+Ku+D. (6.12)

The first term of the right-hand side of this equation is the probability current away from
the ({Ei}, Z) state due to the detachment of the espin holding the filament’s pointed end
at the altitude Z, which induces a depolymerization event. The term Kb is the probability
current due to espin binding events. It reads

Kb = k
∑

j∈E1({Ei},Z,t)
P
[

{. . . , ej−1 = Ej−1, ej = 0, ej+1 = Ej+1, . . .}i∈E(Z,t) , z = Z; t
]

−k
∑

j∈E0({Ei},Z,t)
P
[

{. . . , ej−1 = Ej−1, ej = 0, ej+1 = Ej+1, . . .}i∈E(Z,t) , z = Z; t
]

,

where E0
[

{Ei}i∈E(Z,t), Z, t
]

and E1
[

{Ei}i∈E(Z,t), Z, t
]

are the complementary subsets of
E(Z, t) containing all indices j such that Ej = 0 and Ej = 1, respectively. Both terms
of Kb implicate the probabilities of states with the espin site j unoccupied, meaning that
an espin is susceptible to bind in j. The first term represent binding events to sites such
that Ej = 1 and therefore represents a probability influx to the ({Ei}, Z) state. The
second term, on the other hand, represents events where an espin binds to a site j such
that Ej = 0 and thus represents a probability flux away from the ({Ei}, Z) state. The
term Ku is the probability current due to espin unbinding events that do not induce any



122 CHAPTER 6. SHAPING OF ACTIN BUNDLES BY CROSS-LINKERS

depolymerization (i.e. occurring at altitude Z + 1 or higher). It reads

Ku =
∑

j∈E0({Ei},Z,t)
P
[

{. . . , ej−1 = Ej−1, ej = 1, ej+1 = Ej+1, . . .}i∈E(Z,t) , z = Z; t
]

−
∑

j∈E1({Ei},Z,t)
P
[

{. . . , ej−1 = Ej−1, ej = 1, ej+1 = Ej+1, . . .}i∈E(Z,t) , z = Z; t
]

,

which has a similar interpretation to Kb. The term D stands for the probability current
to the ({Ei}, Z) state due to depolymerization events. It reads

D =
Z−1
∑

Z′=−∞
P
[

{eZ′+1 = 0, . . . , eZ−1 = 0, eZ = 1, eZ+1 = EZ+1, . . .}i∈E(Z′,t) , z = Z ′; t
]

,

meaning that the depolymerization of a filament with its pointed end located at the
altitude Z ′ results in an increase of the probability of the ({Ei}, Z) state if and only if
all espins between Z ′ and Z are off (i.e. the filament immediately depolymerizes to the
position Z) and the espin is Z is on (i.e. depolymerization stops in Z).

We now turn to the boundary condition at the polymerization front, i.e. to the mas-
ter equation for vt − 1 < Z 6 vt. At this location, none of the three first terms of the
right-hand side of Eq. (6.12) exist. Indeed, the filament is not allowed to depolymerize
further than the polymerization front and there are no espin sites undergoing attach-
ment/detachment events except for the one in Z. Denoting by ⌊x⌋ the integral part (or
floor) of any real number x, the master equation for the site closest to the polymerization
front reads

∂tP
[

{ei = Ei}i∈E(⌊vt⌋,t) , z = ⌊vt⌋; t
]

= ∂tP [z = ⌊vt⌋; t] = D′. (6.13)

In this equation, the first equality reflects the fact that there are no active espin sites
above z = ⌊vt⌋—otherwise said E(⌊vt⌋, t) = ∅. The term D′ is a modified depolymeriza-
tion current taking into account the fact that filaments cannot depolymerize beyond the
polymerization front:

D′ =

⌊vt⌋−1
∑

Z′=−∞
P
[

{

eZ′+1 = 0, . . . , e⌊vt⌋−1 = 0
}

i∈E(Z′,t)
, z = Z ′; t

]

=

⌊vt⌋−1
∑

Z′=−∞
P
[

{

eZ′+1 = 0, . . . , e⌊vt⌋−1 = 0, e⌊vt⌋ = 0
}

i∈E(Z′,t)
, z = Z ′; t

]

+P
[

{

eZ′+1 = 0, . . . , e⌊vt⌋−1 = 0, e⌊vt⌋ = 1
}

i∈E(Z′,t)
, z = Z ′; t

]

.

This probability has exactly the same interpretation as D, except that depolymerization
cannot continue beyond Z = ⌊vt⌋ and stops there whatever the state of the espin site i.e.
whatever the value of e⌊vt⌋.

The master equation is now completely specified, but the initial state of the system
is not. In the following, we consider situations where the system is prepared at t = 0
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in a superposition of states where the position Z0 6 0 of its tip is well-defined, and the
probabilities for the espin sites between Z0+1 and 0 to be occupied are arbitrary, although
independent from one another. Here we denote the initial probability for the espin site in
i to be on by k+δ0(i)

1+k
, where the {δ0(i)}i∈{Z0+1 ..−1} are arbitrary numbers to be specified

depending on the particular problem at hand and δ0(0) = 1, meaning that the espin site
located at the polymerization front is occupied. Here the notation {i .. j} with (i, j) ∈ N2

stands for the integer interval comprising i, j and all integers in between. Leaving the
filament dynamics aside for an instant, it is fairly obvious that the probability for an
espin site to be occupied when at equilibrium with the espin reservoir is k

1+k
. Therefore

δ0(i) represents the deviation of the state of site i away from equilibrium. Following this
discussion, the initial state is given by

P
[

{ei = Ei}i∈E(Z,t) , z = Z; t = 0
]

=





∏

j∈E0({Ei},Z,0)

1− δ0(j)

1 + k









∏

j∈E1({Ei},Z,0)

k + δ0(j)

1 + k



 δZ,Z0 , (6.14)

where the symbol δZ,Z0 denotes the Kronecker delta.

6.4.2 Simplifying espin out of the master equation

The problem specified in the previous section is at first sight a very complicated one, since
it deals with a system whose state is specified by a large number of variables: the filament
end position z, and ⌊vt− z⌋ additional espin variables. In this section, we show that if an
initial condition of the form of Eq. (6.14) is used, this dynamics simplifies considerably
and it is possible to write an effective master equation in a closed form for the filament
height probability

P (Z, t) =
∑

{Ei=0,1}i∈E(Z,t)

P
[

{ej = Ej}j∈E(Z,t) , z = Z; t
]

, (6.15)

where the sum is over all possible values of the espin variables.
In order to prove this, we introduce the quantity

Q
[

{Ei}i∈E(Z,t) , Z; t
]

=





∏

j∈E0({Ei},Z,t)

1− δ(j, t)

1 + k









∏

j∈E1({Ei},Z,t)

k + δ(j, t)

1 + k



P (Z, t), (6.16)

with δ(i, t) = δ0(i)e
−(1+k)t. Here the {δ0(i)}i∈{Z0+1 .. 0} are the same as the numbers defined

in Eq. (6.14). The {δ0(i)}i∈N∗ , on the other hand, are new constants, the value of which
we discuss in the following. The factor e−(1+k)t by which the δ0(i)s are multiplied reflect
the exponential relaxation of the espin sites towards a chemical equilibrium with the
espin reservoir. Here we show that Q is a solution of the master equation provided that
the {δ0(i)}i∈N are chosen properly and that P (Z, t) obeys a system of equations to be
specified.
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There are two boundary conditions to be considered on top of Eq. (6.12). The first
one concerns the espin variables and stipulates that if vt is an integer, the probability
that the espin site located at the altitude i = vt is equal to one. This condition reads

P(ei = 1; t = i/v) =
∑

{Ej=0,1}j<i

i
∑

Z=−∞
P
[

{el = El}l∈E(Z,t) , z = Z; t = i/v
]

= 1. (6.17)

Using Eq. (6.16) and the normalization condition

∑

Z6vt

P (Z, t) = 1, (6.18)

we find that Q satisfies Eq. (6.17) if and only if

∀i ∈ N δ(i, i/v) = 1 ⇔ ∀i ∈ N δ0(i) = e(1+k)i/v. (6.19)

In the following, we use this condition as the definition of the {δ0(i)}i∈N. This implies

∀i ∈ N ∀t ∈ R
+ δ(i, t) = exp

[

−(1 + k)

(

t− i

v

)]

. (6.20)

The second boundary condition is Eq. (6.13), which Q satisfies if and only if

∂tP (⌊vt⌋, t) =
⌊vt⌋−1
∑

Z′=−∞





⌊vt⌋−1
∏

i=Z′+1

1− δ(i, t)

1 + k



P (Z ′, t). (6.21)

We now consider the initial condition. It is obvious that Q satisfies Eq. (6.14) at t = 0
if and only if

P (Z, t = 0) = δZ,Z0 . (6.22)

Finally, we consider the master equation Eq. (6.12) for a generic filament length Z 6

vt− 1. Inserting Q into Eq. (6.12), we find that the time derivatives of the two products
in Q simplify with Kb and Ku. We are thus left with the condition

∀Z ∈ {Z0 .. ⌊vt−1⌋} ∂tP (Z, t) = −P (Z, t)+k + δ(Z, t)

1 + k

Z−1
∑

Z′=−∞

[

Z−1
∏

i=Z′+1

1− δ(i, t)

1 + k

]

P (Z ′, t).

(6.23)
The interpretation of this equation is fairly straightforward. The first term of its right-
hand side is the probability current away from the (Z) state (i.e. the state where the
pointed end of the filament is in Z). The rate of escaping this state is 1, which is the
detachment rate of the espin holding the filament in Z. The second term represents the
probability influx to the (Z) state. This influx is due to filaments depolymerizing from
any altitude Z ′ < Z to the altitude Z, which is reflected by the sum over Z ′. Just like
a filament in Z, a filament in Z ′ has a rate 1 of depolymerizing, which is the off rate of
the espin located at altitude Z ′. Whether it is going to depolymerize all the way to the
altitude Z depends on the state of the espins located between Z ′ and Z. Let us consider a
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filament with its pointed end in Z ′ that starts depolymerizing. It contributes to ∂tP (Z, t)
under two conditions. First, all espins between Z ′ and Z have to be off, which happens
with probability

1− δ(Z ′ + 1, t)

1 + k
× 1− δ(Z ′ + 2, t)

1 + k
× . . .× 1− δ(Z − 1, t)

1 + k
. (6.24)

Second, the espin in Z has to be on, which happens with probability k+δ(Z,t)
1+k

. Assuming
that the espins above the pointed end of the filament behave independently from each
other—which we show in the next paragraph—we just have to multiply these probabilities
to account for the form of Eq. (6.23).

Let us now prove more rigorously that P (Z, t) is indeed the probability of finding the
pointed end of the filament in Z at time t. The problem defined in Sec. 6.4.1 has a unique
solution. On the other hand, the function Q defined in Eqs. (6.16) and (6.20) is a solution
of this problem if and only if P (Z, t) satisfies the system constituted of Eqs. (6.21), (6.22)
and (6.23). Therefore, Q is the unique solution of the problem defined in Sec. 6.4.1 if and
only if the system Eqs. (6.21), (6.22) and (6.23) has a solution that is normalized to one.
This is true because of the following three reasons: this system is linear; P (Z, t = 0) is
normalized to one; and Eqs. (6.21) and (6.23) conserve probability. Thus we proved that
Q always exists, and is therefore the unique solution of the problem studied here.

In conclusion, solving the master equation of the one-filament problem is equivalent to
solving the system of equations Eqs. (6.21), (6.22) and (6.23). In Sec. C.1 of the appendix,
we show that the distribution given in Eq. (6.3) is the stationary solution of the special
case k = 0. In Secs. 6.4.3 and 6.5, we focus on deriving solutions valid for k 6= 0.

Before moving on to this study, however, we pause to reflect on the meaning of
Eq. (6.16). Using this equation, we find the conditional probability for the ith espin
to be on assuming the filament tip is in Z (i ∈ {Z + 1 .. ⌊vt⌋}):

P(ei = 1|z = Z; t) =
P(ei = 1, z = Z; t)

P (Z, t)
=
k + δ(i, t)

1 + k
, (6.25)

meaning that the state of the espin site in i is independent of the altitude z of the
filament’s pointed end as long as z < i. This is the key to the simple form of Q: in
the process described here, all espins above the altitude of the filament’s pointed end
attach and detach independently from each other and from the filament dynamics. On
the other hand, if the filament end is assumed to be at altitude Z, then the espin in Z
is on with probability one, meaning that it is completely correlated with the filament,
although uncorrelated with the other espins. Although this fact might seem obvious
at first sight, one should note that this is only true in the special case considered here
where the depolymerization rate of the filament is infinite. In the generic situation where
depolymerization happens on a time scale comparable to that of the espin dynamics,
the correlations between filaments and espin are not confined to the very last espin site
anymore, but penetrate into the following sites. This situation is studied numerically in
Ref. [147], and we propose that the case of large but finite depolymerization rates could
be tackled by a perturbation scheme around the analytical results presented here.
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6.4.3 Exact solution at chemical equilibrium

According to Eq. (6.25), the probability for the espin site located at altitude i > z to

be occupied is equal to k+δ(i,t)
1+k

. This allows us to extend our interpretation of δ0(i) to
δ(i, t), which we can now interpret as the deviation of the espin density at site i from the
steady-state density k

1+k
corresponding to a situation where site i is in equilibrium with

the espin reservoir. Depending on the value of i, this imbalance can have two distinct
origins. For i ∈ {Z0 + 1 .. − 1}, it originates in the arbitrarily chosen initial state of the
espin site, which is reflected by our choice of the {δ0(i)}i∈{Z0+1 ..−1}. For i > 0, it comes
from the fact that espin sites are always occupied at the polymerization front (they are
incorporated into the actin bundle with probability one). With time, however, espin sites
lose the memory of their initial conditions, and relax back to an equilibrium with the
espin reservoir. This is reflected by the fact that for i < 0, δ(i, t) = δ0(i)e

−(1+k)t relaxes
to zero at large times and that for i > 0, δ(i, t) vanishes far away from the polymerization
front [i.e. for vt− z ≫ v/(1 + k)—see Eq. (6.20)].

In this section, we tackle the effective dynamics of the filament’s pointed end in a
situation where all espins are in chemical equilibrium with the bulk, which is valid for
long times and far away from the polymerization front. Let us define Q by

P (Z, t) =
Q(Z, t)e−t

(1 + k)Z0−Z
. (6.26)

Here the boundary condition Eq. (6.21) need not be considered as the polymerization
front is assumed to be far away. Thus we only need to solve the system constituted by
Eqs. (6.22) and (6.23), which now read

Qe(Z, t = 0) = δZ,Z0 (6.27a)

∂tQe(Z, t) = k
Z−1
∑

Z′=−∞
Qe(Z

′, t), (6.27b)

where the index e denotes the fact that the espins are at equilibrium with the reservoir.
We solve this system in Sec. C.2 of the appendix and find

Pe(Z0, t) = e−t (6.28a)

Pe(Z, t) =
e−t

(1 + k)Z0−Z

Z−Z0
∑

i=1

(Z − Z0 − 1)!

(i− 1)!(Z − Z0 − i)!

(kt)i

i!
, (6.28b)

where it is understood in Eq. (6.28b) that Z > Z0 [note that P (Z, t) = 0 for Z < Z0].
Eq. (6.28) describes the depolymerization dynamics of the filament. Since Eq. (6.27b)

is invariant by both time and space translations, we expect that depolymerization takes
place at a constant average velocity. Also, since depolymerization is a stochastic process,
the initially peaked altitude distribution Eq. (6.27a) broadens as time increases. These
features are indeed observed of Fig. 6.6(a), where we plot the probability distribution Pe

derived here. From an analytical point of view, the dynamics of the filament’s pointed end
is expected to be diffusive on long length and time scales. We show this by considering
the t → +∞ limit, where Stirling’s approximation can be applied to the factorials of
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Figure 6.6: Probability distribution for the depolymerization of a filament cross-linked
by espins at equilibrium with a reservoir characterized by k = 0.2. Here we denote by P d

e

the exact discrete solution given in Eqs. (6.28) and by P c
e the continuum approximation

Eq. (6.29). (a) Discrete solution plotted as a function of time and space. (b) Relative
error (P c

e − P d
e )/P

d
e . Large values of the relative error are observed in regions where the

probability is very small (i.e. in unimportant regions). (c) Absolute error P c
e −P d

e , where
these seemingly large errors do not appear.

Eq. (6.28) and the discrete sum can be replaced by an integral. Expanding the resulting
expression to lowest order in 1/t in the scaling region defined by 〈Z − Z0〉 (t) = O(t) and
〈[(Z − Z0)− 〈Z − Z0〉]2〉 (t) = O(t) yields a gaussian integral, which we compute to find

Pe(Z, t) ∝
t→+∞

exp

{

− k2

2(1 + k)(2 + k)t

[

Z − Z0 −
(1 + k)t

k

]2
}

, (6.29)

which is characteristic of a biased diffusion with diffusion coefficient Dd =
(1+k)(2+k)

2k2
and

average depolymerization velocity vd =
1+k
k
. Interestingly enough, this depolymerization

velocity can be recovered from the following very simple argument: consider a filament
cross-linked to the wall at its pointed end. Since the cross-link detaches with a rate
1, the average waiting time for the filament to unpin is τ = 1. Once the filament is
released, it quickly depolymerizes to the next cross-linker, and then becomes pinned again.
Since the espins are at equilibrium with the reservoir, the average cross-linker density is
ρ = k

1+k
, meaning that the filament depolymerizes over an average distance d = 1/ρ before

becoming pinned again. Therefore, the average depolymerization velocity of the filament
is vd = d/τ = 1+k

k
.

The asymptotic expression Eq. (6.29) is in good agreement with the full solution for
long times, as shown in Fig. 6.6(b-c).

6.5 Long stationary filament with reattachment

Here we continue studying the single-filament master equation derived in the previous
section. Although the study of Sec. 6.4.3 yields an exact analytical solution, it is unlikely
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to be of interest in the case of stereocilia. Indeed, as mentioned above, stereocilia are
maintained in hair cells over extended periods of time, and should therefore be described
as stationary solutions of our master equation. In the following, we show that this implies
that we cannot ignore the interactions between the depolymerizing end of the filament
and the polymerization front anymore. In order to tackle this extra level of complexity,
we restrict ourselves to long filaments (i.e. much longer than the spacing between two
cross-linking sites).

In Sec. 6.5.1 we discuss the qualitative features of the stationary state considered here
and show that it cannot be mapped onto a Fokker-Planck equation in the continuum limit.
Some elements of this discussion allow us to extend the master equation derived in the
previous section to cases where a single filament is bound to several walls, which we do
in Sec. 6.5.2. In Sec. 6.5.3, we derive an appropriate continuum limit for this generalized
master equation. The stationary solution of this problem is given in Sec. 6.5.4.

6.5.1 Discussion of the stationary state

Starting from the situation considered in Sec. 6.4.3, we can distinguish between two
regimes:

If the depolymerization velocity is smaller than the polymerization velocity (vd < v),
then the pointed end of the filament never catches up on the polymerization front, and
Eqs. (6.28) are a good approximation of its dynamics. In this case, the filament length—
which is equal to the distance between polymerization front and pointed end—grows
indefinitely at velocity v − vd and the filament has no stationary state. In order to
favor this regime, one should cross-link the actin as heavily as possible, so as to slow
depolymerization down as much as possible. It is worth noting, however, that vd cannot
be smaller than 1, which corresponds to a maximally cross-linked situation (i.e. to jumps
of size 1 at a rate 1). Therefore, if v < 1, the regime described here can never be reached.

If, on the other hand, the depolymerization velocity is larger than the polymerization
velocity (vd > v), the pointed end moves closer and closer to the polymerization front.
Thus the length of the filament is bounded in this regime. We hereafter call the threshold
v = vd the growth transition. As it comes closer to the polymerization front, the pointed
end of the filament penetrates into regions where the cross-links have not yet lost the
memory of their incorporation into the bundle, and are therefore more dense than at
equilibrium. More specifically, their average density is given by Eq. (6.25) and reads

ρ(ℓ) =
k + e−

1+k
v

ℓ

1 + k
, (6.30)

where ℓ = vt − z is the length of the filament. Using the same argument as in the
previous section, the depolymerization velocity of a filament of length ℓ is equal to 1/ρ(ℓ).
A stationary filament length is obtained when this velocity matches the polymerization
velocity. This approximative reasoning yields a value of the stationary length ℓs:

v =
1

ρ(ℓs)
⇔ ℓs =

v

1 + k
ln





1

(1 + k)
(

1
v
− 1

vd

)



 , (6.31)
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where vd = 1+k
k
. Eq. (6.31) matches Eq. (6.6) for k = 0, P0 = 1 and n = 1. In vivo,

stereocilia are much longer than the spacing between two cross-linkers, meaning that we
are interested in the regime ℓs ≫ 1. There are two ways to enter this regime. One is
for the logarithm in Eq. (6.31) to be very large, which can only be achieved if 1

v
− 1

vd
is very small. This happens when the polymerization and equilibrium depolymerization
velocities are very well matched. As discussed in Sec. 6.1, this is not reasonable from a
biological point of view. Indeed, stereocilia shapes relying on fine tuning are not robust
as we demand. Therefore, we discard this first way of obtaining ℓs ≫ 1 and turn to the
second one, which is v

1+k
≫ 1. In this case, since v < vd

1 ≪ v

1 + k
<

vd
1 + k

=
1

k
⇒ k ≪ 1. (6.32)

This result has two interesting consequences for our study, which we discuss in the re-
mainder of this section.

First, Eq. (6.32) implies that we do not need to consider the depolymerization problem
in all its generality, but only the small-k, large-v case, which is simpler. Let

α = kv. (6.33)

Multiplying Eq. (6.32) by k, we note that below the growth transition

0 6 α < 1. (6.34)

Therefore, in the v → +∞ limit the growth transition occurs for α = 1 (or equivalently
v = vd = 1+k

k
, which is its definition). The interesting regimes to consider are therefore

those where α is finite, and in the following we take the v → +∞ limit at finite α.
Second, it was mentioned in Sec. 6.3 that the v → +∞ limit means that the stere-

ocilium shape is smooth, and therefore that it can be treated in some continuum limit.
Sec. 6.4.3 demonstrates that on large length scales, the behavior of the pointed end of the
depolymerizing filament can be assimilated to a particle diffusing in a locally homogeneous
environment. It is tempting to extrapolate this result to the regions where espins are not
in equilibrium with the reservoir. Doing so is actually a very common continuum ap-
proximation for one-dimensional stochastic processes, and is equivalent to approximating
the master equation of Sec. 6.4.1 by a Fokker-Planck equation (i.e. a diffusion equation
with position-dependent drift and diffusion coefficient) [47]. From the considerations of
the present section, we however see that such an approximation is not valid. In order to
understand this, we remind ourselves that there are two conditions of applicability of the
Fokker-Planck approximation. The first one is that the scale over which the environment
is inhomogeneous (in this case, the decay length v

1+k
of the espin density) must be much

larger than the distance between two sites. This is the case as v
1+k

≫ 1. But there is
also a second one, which states that the size of the particle’s jumps must be much smaller
than the scale over which the environment is inhomogeneous. In our case, the jump size
is the typical length d over which the filament depolymerizes in a single depolymerization
event. Comparing it to v

1+k
and using Eqs. (6.31) and (6.32), we find

d(ℓs)

v/(1 + k)
=

1 + k

vρ(ℓs)
= 1 + k ≃ 1. (6.35)
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Thus the jumps size is of the order of the length of the whole filament, and the Fokker-
Planck approximation does not apply.

6.5.2 Master equation with several walls for large v

Here we extend Eq. (6.23) to the case where the filament is bound not to one, but to n
walls, a situation pictured in Fig. 6.5(b). We do this in the limit v → +∞ with α = kv
fixed, as discussed in the previous section.

Building from our experience of stereocilia shapes acquired in the k = 0 case (Sec. 6.3)
and noting that we are studying the case P0 = 1, we are able to speculate that the upper
section of the stereocilium is cylindrical over a length v ln v, followed by a transition region
(corresponding to the tapered region of the stereocilium) with a size of order v, which is
the non-trivial part. In this region, z ≈ v ln v ⇒ δ(z, t) ≈ e−(v ln v)/v ≈ v−1. This implies
that the probability for an espin site located in the transition region to be occupied is of
order k+e− ln v

1+k
= O(v−1). In other words, espins are scarce in the transition region.

Let us consider a filament with its pointed end at the altitude z belonging to the
transition region and in contact with several walls, as illustrated in Fig. 6.5(b). The
probability for at least one of the n espin sites located at altitude z to be occupied is
equal to one, otherwise the filament would not be there. Because espins are scarce in
the transition region, the probability to have two or more sites occupied in Z is smaller
than that of having only one by a factor ≈ v−1. To lowest order in v−1, we can therefore
consider that the pointed end of the filament is held at the altitude z by exactly one espin.

Under this assumption, we can derive a master equation similar to Eq. (6.23) using the
same arguments as in Sec. 6.4.2. Here we present a qualitative justification for its form.
Let P (Z, t) be the probability that the pointed end of the filament is held in Z by any
one of the espin sites located at this altitude. Like previously, the filament depolymerizes
from this site with a rate 1. This means that the first term of Eq. (6.23) is unchanged.
If a filament is initially located in Z ′ < Z, it goes to Z upon detachment of the espin
holding it in Z ′ on two conditions. First, all espin sites between Z ′ and Z need to be
empty, which happens with probability

[

1− δ(Z ′ + 1, t)

1 + k

]n

×
[

1− δ(Z ′ + 2, t)

1 + k

]n

× . . .×
[

1− δ(Z − 1, t)

1 + k

]n

. (6.36)

Second, at least one out of n espin sites in Z has to be occupied. This happens with
probability

1−
[

1− δ(Z, t)

1 + k

]n

. (6.37)

Following these arguments, the master equation for a filament bound to n walls for
v ≫ 1 and in the transition region reads:

∂tP (Z, t) = −P (Z, t) +
{

1−
[

1− δ(Z, t)

1 + k

]n} Z−1
∑

Z′=−∞

{

Z−1
∏

i=Z′+1

[

1− δ(i, t)

1 + k

]n
}

P (Z ′, t).

(6.38)
Note that the approach of this section is valid only in the transition region, which is very
far away (≈ v ln v) from the polymerization front in the v → +∞ limit. Therefore the
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boundary condition Eq. (6.21) is irrelevant here. In the v → +∞ limit, δ(Z, t) ≈ δ(i, t) ≈
k ≈ v−1. Using the same level of approximation that we used when reasoning on the
scarcity of espins, we expand the master equation to lowest order in v−1:

∂tP (Z, t) = −P (Z, t) + n [k + δ(Z, t)]
Z−1
∑

Z′=−∞

{

Z−1
∏

i=Z′+1

[1− nδ(i, t)− nk]

}

P (Z ′, t). (6.39)

6.5.3 Continuum limit for the master equation

According to the arguments of Sec. 6.5.1, the limit v → +∞ with α = kv fixed can also
be understood as the continuum limit for the master equation Eq. (6.39). This means
that we are studying a situation where the typical decay length of the espin probability
of presence is much larger than the distance between two cross-linkers, i.e. v ≫ 1. In the
stationary regime, the filament tip probability distribution depends only on the coordinate
ℓ = vt− Z. We define the coordinate ξ by

ℓ = vt− Z = v ln v + vξ. (6.40)

Since we are considering the transition region of the filament, i.e. a region of size ≈ v
located at ℓ ≈ v ln v, we consider only the region where ξ is of order 1. In the v → +∞
limit, we should thus be able to derive a v-independent shape equation for the transition
region as a function of ξ. We therefore write the stationary filament length probability
distribution as P (ξ) = P (Z, t). According to Eq. (6.40), ∂tP (Z, t) = dP (ξ)/dξ, and the
prefactor of the last term of Eq. (6.39) has the following asymptotic behavior

n [k + δ(Z, t)] ∼
v→+∞

nv
(

α + e−ξ
)

. (6.41)

Meanwhile, the sum behaves as

Z−1
∑

Z′=−∞
∼

v→+∞

∫ +∞

ξ

dξ′

v
. (6.42)

We also note that the product of Eq. (6.39) has a finite limit:

Z−1
∏

i=Z′+1

[1− nδ(i, t)− nk] = exp

{

Z−1
∑

i=Z′+1

ln
[

1− ne−(1+α/v)(t−i/v) − nα

v

]

}

= exp

{

∫ vξ′

vξ

[

ln

(

1− ne−y/v

v
− nα

v

)

+O(v−2)

]

dy +O(v−1)

}

=
exp

(

nαξ − ne−ξ
)

exp (nαξ′ − ne−ξ′)

[

1 +O(v−1)
]

, (6.43)

where vt − Z ′ = v ln v + vξ′. Finally, we are able to write the v → +∞ continuum limit
of the master equation Eq. (6.39):

dP

dξ
(ξ) = −P (ξ) + n

(

α + e−ξ
)

exp
(

nαξ − ne−ξ
)

∫ +∞

ξ

P (ξ′)

exp (nαξ′ − ne−ξ′)
dξ′. (6.44)
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6.5.4 Continuum solution for the stationary state

In this section we fully solve Eq. (6.44), and show that it has a unique normalized solution.
We define the function f(ξ) by

P (ξ) = f(ξ)× exp
[

−(1− nα)ξ − ne−ξ
]

. (6.45)

We divide Eq. (6.44) by n
(

α + e−ξ
)

exp
(

nαξ − ne−ξ
)

, differentiate with respect to ξ and
make the change of variable x = e−ξ. This yields

x(x+ α)f ′′(x)−
[

x− 2(x+ α) + n(x+ α)2
]

f ′(x) = 0. (6.46)

This second order linear differential equation has two linearly independent solutions, one
of which is obviously a constant. Integration of the fraction f ′′(x)/f ′(x) yields the second
one. This finally yields

P (x) = c1x
1−nαe−nx + c2

[

−α + x1−nαe−nx

∫ x
(

unα−1enu
)

du

]

, (6.47)

where c1 and c2 are arbitrary constants to be determined. Note that choosing the lower
bound in this equation is equivalent to modifying the value of c1.

Since ℓ > 0, the variable ξ is defined on the interval ξ ∈ [− ln v,+∞[. As ln v → +∞
in the limit considered here, the normalization condition for the probability distribution
reads:

∫ +∞

−∞
P (ξ) dξ = 1. (6.48)

Meanwhile, Eq. (6.47) implies

P (ξ) →
ξ→+∞

− αc2, (6.49)

meaning that the normalization condition Eq. (6.48) can only be fulfilled if α = 0 or
c2 = 0. If α = 0 then

P (ξ) = exp
(

−ξ − ne−ξ
)

[

c1 + c2

∫ e−ξ

e−nu

u
du

]

. (6.50)

The asymptotic behavior of the integral in this expression is given by

∫ x e−nu

u
du ∼

x→+∞

e−nx

nx
. (6.51)

Therefore if α = 0 the probability density function has the following finite limit

P (ξ) →
ξ→−∞

c2
n
, (6.52)

which prevents normalization unless c2 = 0. Therefore c2 always vanishes whatever the
value of α.



6.5. LONG STATIONARY FILAMENT WITH REATTACHMENT 133

Determining c1 from the normalization condition Eq. (6.48), the filament length dis-
tribution reads

P (ξ) =
n1−nα

Γ(1− nα)
exp

[

−(1− nα)ξ − ne−ξ
]

, (6.53)

where

Γ(b) =

∫ +∞

0

(

ub−1e−u
)

du (6.54)

is the Gamma function. Qualitatively, the filament profiles described by Eq. (6.53) are
quite similar to those obtained in the absence of espin reattachment and discussed in
Sec. 6.3. Indeed, P (ξ) decays extremely quickly (superexponentially) for negative ξs,
while it decays as e−(1−nα)ξ for ξ → +∞. By comparison, the distribution of Eq. (6.7)
decays as e−ξ.

Eq. (6.4) relates the radius of the stereocilium to the probability that the filament is
shorter than ξ. It is therefore interesting to write the cumulative probability distribution:

P6(ξ) =
Γ
(

1− nα, ne−ξ
)

Γ (1− nα)
, (6.55)

where the incomplete Gamma function is defined as

Γ(b, x) =

∫ +∞

x

(

ub−1e−u
)

du. (6.56)

Plots representing P6 as a function of ℓ are presented as red lines in Fig. 6.10. The
average filament length is given by

〈ξ〉 = lnn− ψ(1− nα) ⇔ 〈ℓ〉 = v ln(nv)− vψ(1− nkv), (6.57)

where the digamma function and its behavior in 0 and 1 are given by

ψ(z) =
d [ln Γ(z)]

dz
(6.58a)

=
z→0+

−1

z
− γ +O(z) (6.58b)

→
z→1

−γ, (6.58c)

where γ ≃ 0.577216 is the Euler constant. Similarly to the situation of Sec. 6.3, the
transition region is at a distance v ln(nv) away from the polymerization front. Note that
for k = 0 ⇔ α = 0, Eq. (6.55) goes to the distribution given in Eq. (6.5).

Differences with the k = 0 case are observed when considering the width of the transi-
tion region, which is equal to −vψ(1−nkv). According to Eq. (6.58b) this width diverges
as

〈ℓ〉 ∼
k→k−c

v

1− nkv
∝ 1

|k − kc|
(6.59)

when k approaches the critical value

kc =
1

nv
. (6.60)
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Therefore, for a large enough espin reattachment rate, a stationary filament profile ceases
to exist. This is the n-walls generalization of the growth transition discussed in Sec. 6.5.1.
Indeed, for k > kc, espin slows the depolymerization down so much that the pointed end
can never catch up on the polymerization front.

6.6 Coupling between filaments

Here we use numerical simulations—which we describe in Sec. 6.6.1—to study the effect
of espin reattachment in the biologically relevant situation of a stereocilium composed
of several filaments. Unlike in the previous sections, filaments are now bound to each
other and not to walls. Their espin environment thus depends on their altitude and
on the state of their neighbors. It is therefore unclear what form the growth transition
introduced in Sec. 6.5.1 takes. We study this question in Sec. 6.6.2, and find a new critical
value of k corresponding to an effective number of neighbors neff = 2.5. This anomalous
behavior arises for the following reasons: in the k = 0, multi-filament case, the stochastic
dynamics of each actin cross-linker is completely independent of the rest of the system,
as shown in Sec. 6.3. The actin filaments are slaved to the espins, and their dynamics
is very simple. Therefore, correlations between the lengths of actin filaments are limited
to nearest neighbors, since only filaments with a common actin cross-linker are coupled.
In the case studied in Secs. 6.4 and 6.5 (a single filament with espin reattachment), on
the other hand, the length of the filament influences the espin sites, as it determines
whether a cross-linker can reattach or not. In the situation considered in the present
section, we expect filaments to be correlated over relatively long distances, as similar
mutual correlations between filaments and espins mean that the state of a filament can
now influence the neighboring espin column, which influences the next filament, and so
on. In Sec. 6.6.3, we show that these correlations do indeed extend beyond the nearest
neighbors, but present an argument suggesting that they are not sufficient to yield a self-
affine interface. Finally, in Sec. 6.6.4 we compare the stereocilium shapes obtained from
numerical simulations to those derived from a one-filament calculation.

6.6.1 Numerical simulations

In order to implement the stereocilium dynamics as described in Sec. 6.2, we design a
Monte-Carlo simulation based on the Gillespie algorithm [148]. We simulate a square
array of L× L filaments and denote the coordinates of a filament in the horizontal plane
by (X, Y ). Each filament (X, Y ) is connected to each of its four neighbors (X ± 1, Y ),
(X, Y ± 1) by an espin column.

The altitude of the pointed end of filament (X, Y ) is initially Z0(X, Y ) = 0, and is
subsequently allowed to take any positive integer value smaller than vt, where t is the time
elapsed since the beginning of the simulation. For each couple of neighboring filaments
{(X, Y ), (X + 1, Y )} (or any other possible combination) and for each integer altitude i
such that

max[z(X, Y ), z(X + 1, Y )] 6 i 6 vt, (6.61)

there is an espin site [(X, Y ), (X+1, Y ), i], which can be either occupied or empty. Espins
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Figure 6.7: Profiles of two filament bundles obtained from the simulations described in
the main text. The vertical axis represents the length ℓ = vt − z of the filaments, and
was shrunk for easier visualization. In actual biological situations, we expect the longest
filaments to be brought together by the membrane as illustrated in Fig. 6.2(b). (a) 32×32
bundle with a circular support and k = 0. (b) 16 × 16 bundle with periodic boundary
conditions and k = 0.015—which we shown below to be a substantial reattachment rate,
although below the growth transition. Both bundles are in their stationary state.

are incorporated with probability P0 = 1 in i = vt. A filament with its pointed end in
z(X, Y ) cannot depolymerize if there is an espin in at least one of the four following espin
sites: [(X, Y ), (X ± 1, Y ), z(X, Y )], [(X, Y ), (X, Y ± 1), z(X, Y )]. Unlike in the model
presented in Sec. 6.2, if all those four sites are empty, the filament does not depolymerize
instantaneously but does so with a finite rate kd. In practice we set kd to a very large
value (105 × koff or larger), therefore the simulation should yield the same results as the
model presented in Sec. 6.2.

In the following we focus on long stereocilia, for which we expect the continuum
approach introduced in Sec. 6.5 to apply. This approach is valid for v ≫ 1. Since
simulating long bundles is time-consuming, we use v = 20 throughout this section, which
represents a good compromise.

Two types of boundary conditions are used in our simulations. The first one is a
periodic array of filaments, which is convenient when numerical simulations are used to
investigate the L→ +∞ limit. The second one is a circular array, where we impose that
all filaments whose coordinates do not satisfy (X − L/2)2 + (Y − L/2)2 < (L/2)2 are
maximally depolymerized, and therefore that their pointed ends are always in z = vt.
This allows us to simulate actual stereocilia more realistically. Example profiles from the
simulations are shown in Fig. 6.7.
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Figure 6.8: Growth transition for multi-filament bundles with reattachment. (a) Average
length as a function of k below the transition and comparison with Eq. (6.57) for n = 2.5
(line). Open circles: 8× 8 periodic arrays. Crosses: 16× 16 periodic arrays, showing that
the lengths do not depend much on L. Error bars represent the height fluctuations in the
steady state. Inset: log-log representation of the same 〈ℓ〉 data from 8 × 8 arrays as a
function of the distance kc − k to the growth transition threshold. Solid line: Eq. (6.57)
as in the main figure. Dotted line: power law fit as in Eqs. (6.62) and (6.63). (b) Growth
velocity of the bundle as a function of k above the growth transition for 8 × 8 periodic
arrays (open circles) and comparison to the generalization of the one-filament theory given
in Eqs. (6.64) and (6.65) for n = 2.5 (line).

6.6.2 Couplings modify the growth transition

In order to investigate whether multi-filament bundles have a growth transition, we sim-
ulate several 8 × 8 periodic filament bundles for various value of the espin reattachment
rate k.

We first focus on the values of k where stationary stereocilium profiles exist and
monitor the average filament length, as shown in Fig. 6.8(a). At k = kc = 0.02, the
average filament length diverges, showing that coupled filaments do undergo a growth
transition. This value of kc matches the threshold of Eq. (6.60) if n is set to neff = 2.5. This
effective n can be viewed as the average number of neighbors available for each filament
to cross-link at each given instant, i.e. of neighbors longer than the filament. This view
of the multi-filament growth transition is however only approximate. In Fig. 6.8(a), we
fit a power law to the divergence of the stereocilium length and show that

〈ℓ〉 ∝
k→k−c

1

|k − kc|β
(6.62)

with a multi-filament divergence exponent

β ≃ 0.33, (6.63)

which is different from the exponent β1 = 1 characterizing the divergence in the single
filament case [Eq. (6.59)].
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Now considering values of k above the growth transition puts us in the phase where
the stereocilium grows indefinitely and at constant velocity. In Fig. 6.8(b), we plot the
stereocilium’s growth velocity as a function of k. As k is reduced, the pointed ends of the
filaments depolymerize more and more quickly and catch up to the polymerization front
for kc = 0.02, which is consistent with the threshold determined in Fig. 6.8(a). At steady
state, the stereocilium lengthening velocity is the difference between its polymerization
velocity and its depolymerization velocity far from the polymerization front:

dℓ

dt
= v − vd. (6.64)

This growth velocity vanishes at the growth transition. While v is imposed in our simu-
lations, vd depends on k and n. We can calculate its value for a single filament bound to
n walls by generalizing the discussion given at the end of Sec. 6.4.3. Far away from the
polymerization front, the probability for an espin to be on is k

1+k
. In the cases considered

here k ≪ 1, meaning that espins are scarce far from the polymerization front. Other-
wise said, the probability for a filament to be bound to several cross-linkers at one given
altitude is negligible. This puts us exactly in the situation considered in Sec. 6.4.3: the
filament is bound to cross-linkers with an average density ρ, and cannot be bound to more
than one cross-linker at any given altitude. Compared to the discussion of Sec. 6.4.3, the
density of the cross-linkers in the case considered here is n times larger, since there are n
walls instead of one. To lowest order in k, this yields

vd =
1

nk
. (6.65)

This single-filament result is compared to the multi-filament simulations in Fig. 6.8(b)
using n = neff, and the two are found to be in very good agreement. Note that we expect
the function vd(k) to diverge in 0 but be a smooth function of k for k > 0. In particular,
vd(k) has no reason to have a singularity in k = kc: indeed, kc is defined by vd(kc) = v,
and vd does not depend on v. Thus k = kc is a generic point of the function vd(k).
Therefore at the transition the following generic crossing scenario applies whether or not
the filaments are coupled:

dℓ

dt
(k) ∝

k→k+c

(k − kc). (6.66)

6.6.3 Correlations between filaments and interface width

The results of the previous section show that the behavior of coupled filaments below the
growth transition is rather different from that of a single filament bound to several walls,
even if the number of walls is chosen to represent an effective number of longer neighbors.
That such discrepancies exist is not very surprising, as the dynamics of coupled filaments
are interdependent, which cannot be represented by static walls. In the present section,
we study these correlations further.

Let us define the two-dimensional interface width function of the bundle as

w(X, Y ) =
√

〈

[ℓ(X, Y )− ℓ(0, 0)]2
〉

. (6.67)
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Figure 6.9: Normalized width functionsW (X, Y ) for periodic filament bundles, as defined
in Eq. (6.68). (a) Two-dimensional normalized width function for a 8× 8 periodic bundle
with k = 0.01875. (b) Normalized width function plotted as a function of the distance R
for 8×8 periodic bundles and for various values of k. The width function vanishes forR = 0
(not shown) by definition. For k = 0, the width is different from its asymptotic value only
for R = 1, meaning that only nearest neighbors are correlated. For k = 0.0196875, the
width of the interface never reaches 1 because correlations extend over the whole bundle,
thus calling for simulations with a larger L.

This function reflects the amount of correlations between the heights of the filaments
located in (0, 0) and in (X, Y ). It is equal to 0 in the limit where the filaments are
infinitely correlated, or if X = Y = 0. If the interface as a whole has a finite width
√

〈ℓ2〉 − 〈ℓ〉2, then w(X, Y )/
√
2 goes to this value in the limit where the filaments are

completely uncorrelated. Finally, w(X, Y ) >
√
2
√

〈ℓ2〉 − 〈ℓ〉2 represents a situation where
the filaments are anticorrelated.

In Fig. 6.9(a), we present the normalized width function of a weakly cross-linked 32×32
filament bundle, which we define as

W (X, Y ) =
1√
2

w(X, Y )
√

〈ℓ2〉 − 〈ℓ〉2
. (6.68)

The closer to one W (X, Y ) is, the less correlated the filaments are. Here the averages are
over all the filaments of the bundle and over ≃ 100 time points of the bundle dynamics.
The time between two time points is chosen to be larger than the time over which the
length of the filaments are correlated. In other words, our time points can be considered
as independent samples. We also make sure that all time points are taken after the bundle
reaches its stationary state.

In Fig. 6.9(b), we collapse the data of this plot into a function of R =
√
X2 + Y 2

and compare it with similar ones obtained for other values of k. We observe that the
correlations between filaments decay as R increases. The precise functional form of this
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decay (e.g. is it exponential for large R?) is difficult to assess from the data presented
here, although a more thorough study could yield more information. Another related
question is whether there is a well-defined correlation length associated with this decay,
and how it behaves at the growth transition. For instance, one might venture that the
correlation length could diverge as k → k−c , similarly to what happens in second-order
phase transitions. In the following we give a few scaling comments on the morphology
of the interface, which allows us to return to these questions at the end of the present
section.

It is well known that out-of-equilibrium surface growth problems similar to the one
studied here can lead to rough interfaces. During the past two decades, extensive efforts
have gone into characterizing this roughness in terms of the self-affine geometry of the
interface [149, 150]. In terms of the width function defined here, the self-affinity property
means that when R is large, w(R) grows as a well-defined power law

w(R) ∝
R→+∞

Rζ , (6.69)

which defines the roughness exponent ζ > 0. Determining ζ—among other exponents—
allows to define universality classes among out-of-equilibrium growth processes. Another
type of behavior that can be characterized using the function w(R) is the roughening
transition of crystals [151]. This transition proceed as follows. Consider a periodically
pinned interface, for instance the surface of a crystal (where the crystal layers are discrete
and therefore the height of the interface can only take discrete values). For low tempera-
tures, w(R) goes to a constant for R → +∞, and the crystal is said to be facetted. As the
temperature is increased above the so-called roughening temperature (which can be lower
than the melting temperature of the crystal), the interface becomes “rough”, meaning
that its width diverges as

w(R) ∝
R→+∞

lnR. (6.70)

Here we discuss whether laws of the type of Eqs. (6.69) or (6.70) could apply to our
stereocilium model for k < kc. At first sight, the interface defined by the lengths of the
filaments as a function of X and Y has similarities with both types of models, as it is
both out-of-equilibrium and as its altitude can take only discrete values determined by the
periodic arrangement of the cross-linkers in the vertical direction. We note however that
two phenomena limit the divergence of the interface width expressed in Eqs. (6.69) and
(6.70). First, the finite size of the bundle means that R cannot be larger than L. Second,
even for L→ +∞ the interfaces presented here have a finite width of order

√

〈ℓ2〉 − 〈ℓ〉2.
Indeed, the polymerization front traps them in the ℓ > 0 half-space, and long filaments
always tend to depolymerize if k < kc, which keeps their lengths finite, although they
might fluctuate to large values. The only way for us to apply the concepts presented in
Eqs. (6.69) and (6.70) to stationary stereocilia is therefore to consider systems where L
and

√

〈ℓ2〉 − 〈ℓ〉2 are large (i.e. large bundles with k close to kc) and study the shape of

the interface in the domain where 1 ≪ R ≪ L and 1 ≪ w(R) ≪
√

〈ℓ2〉 − 〈ℓ〉2. In other
words, we are wondering whether we can make a statement about width functions of the

type of those presented in Fig. 6.9(b) in the intermediate region where (〈ℓ2〉 − 〈ℓ〉2)−1/2 ≪
W (R) ≪ 1. Here we prove by contradiction that no such region exists. Assume that there



140 CHAPTER 6. SHAPING OF ACTIN BUNDLES BY CROSS-LINKERS

is a typical R scale, which we denote by R0, that has the properties

1 ≪ R0 ≪ L and 1 ≪ w(R0) ≪
√

〈ℓ2〉 − 〈ℓ〉2. (6.71)

Moreover, we expect w(R) to be an increasing function of R, as neighboring filaments
should have more strongly correlated lengths than filaments far apart. Let (X, Y ) and
(X + 1, Y ) be two neighboring filaments with initially very similar heights z(X, Y ) ≃
z(X + 1, Y ). Now consider that (X, Y ) undergoes a depolymerization event. We saw
in Eq. (6.35) that the typical depolymerization length is 〈ℓ〉, meaning that after the
depolymerization event z(X + 1, Y )− z(X, Y ) ≈ 〈ℓ〉. This kind of event is very common
in our system, which implies that since w(1) ≈ z(X + 1, Y )− z(X, Y ), we typically have
w(1) ≈ 〈ℓ〉. Since w(R) is an increasing function of R, we have w(R0) & 〈ℓ〉. From the
previous sections we expect that 〈ℓ〉 should be of order v ln v and

√

〈ℓ2〉 − 〈ℓ〉2 of order v.
Thus in the continuum limit v → +∞ considered here

√

〈ℓ2〉 − 〈ℓ〉2 < 〈ℓ〉. Therefore, we
finally find that w(R0) >

√

〈ℓ2〉 − 〈ℓ〉2, which is in contradiction with Eq. (6.71).
In conclusion, in long stationary bundles of coupled filaments the interface reaches its

maximum width
√

〈ℓ2〉 − 〈ℓ〉2 over distances of order a few filaments, which means that
it is impossible to define a mesoscopic scale where properties of the type described in
Eqs. (6.69) and (6.70) could be observed. This accounts for the very spiky appearance
of the profiles presented in Fig. 6.7. This also means that the width functions presented
in Fig. 6.9(b) decay to a value very close to one on short length scales [R = O(1)]. This
argument seems to indicate that correlations between the filaments are smeared out by
the large depolymerization jump sizes on length scales much smaller than the size of the
system. It is therefore not obvious whether correlations could span the whole system,
although Fig. 6.9(b) does seem to indicate that the typical correlation range grows as the
growth transition is approached.

6.6.4 Multi-filament stereocilium profiles

In this last section we return to the question of the shape of stereocilia. In Fig. 6.10,
we compare the shapes obtained from the simulations with theoretical expectations from
the single-filament theory. For each value of k, the theoretical curve Eq. (6.55) is plotted
using the effective number of neighbors neff = 2.5 defined in Sec. 6.6.2. As k is increased,
the description of the bundle by the single-filament theory becomes worse and worse, as
expected from Fig. 6.8(a).

Another theoretical result our simulations should be compared with is Eq. (6.55)
using the actual number of neighbors n = 4. Note however that this is only possible for k
smaller than 0.0125, which is the growth transition threshold for n = 4. Consistent with
this, we plot the n = 4 theoretical curve only in Fig. 6.10(a), where k = 0. Excellent
agreement with the numerical simulations is found. This is expected, as when espins are
not allowed to reattach Eq. (6.55) is identical to Eq. (6.5), which is the exact solution of
the multi-filament problem for k = 0.

In Fig. 6.10(b), we illustrate the dependence of the bundle shape on the number of fil-
aments included in the simulations. No change in the shape is observed when multiplying
the number of filaments by four, but the amplitude of the fluctuations is reduced. This
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Figure 6.10: Profiles of multi-filament bundles for various values of k. Red lines represent
P> = 1 − P6, with P6 given by the single-filament theory Eq. (6.55) scaled to the
number of filaments in the bundle with n = 2.5. Black lines represent the average number
of filaments longer than ℓ for numerical 8 × 8 bundles. The gray area represents the
standard deviation of the steady-state fluctuations around this average. The cyan lines
have different meanings depending on the figure considered: (a) n = 4 single filament
theory; (b) Average number of filaments longer than ℓ and fluctuations for a 16 × 16
bundle—data normalized to match the black line in ℓ = 0; (c) Average number of filaments
longer than ℓ and fluctuations for a circular bundle (32 filaments—data normalized to
match the black line in ℓ = 0). Note the dilated ℓ scale in (d).

suggests that in this regime at least, the average profile given by our L = 8 simulations
is a good assessment of the L→ +∞ limit.

In Fig. 6.10(c), we illustrate the dependence of the bundle shape on the boundary
conditions of the bundle. It is found that the circular bundle [see illustration in Fig. 6.7(a)]
is markedly shorter than the one with periodic boundary conditions. This is due to the fact
that its outer filaments tend to depolymerize more quickly, as they have less neighbors. In
the parameter regime presented here, this is sufficient to significantly reduce the average
length of the bundle. This effect becomes negligible for small k and large L, i.e. if the
filaments are correlated over a length much shorter than the radius of the bundle.

Finally, in Fig. 6.10(d) we note that as the growth transition is approached, the ampli-
tude of the bundle’s fluctuations increases dramatically. This is due to the fact that as the
depolymerization velocity becomes very close to the polymerization velocity, the filament
are more and more loosely confined to a finite length. Similarly to what happens for e.g.
a brownian particle in a harmonic potential, a looser confinement means fluctuations of
a larger amplitude.
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6.7 Discussion

This chapter presents a simple physical model for the morphogenesis of stereocilia, whose
very well-regulated shapes are crucial for the frequency selectivity of hearing in a wide
range of animals. Our model is to be understood in the framework of Ref. [125], where
the shape of stereocilia is attributed to an “internal clock” of the actin bundle. Here we
propose that the “internal clock” is provided by the stochastic attachment-detachment
dynamics of the well-characterized protein espin, or some other actin cross-linker. Many
other known proteins, and probably unknown ones as well, play a role in the shaping of
stereocilia. However most of them are localized in a precise region of the stereocilium—e.g.
its tip—and therefore might not have access to any information about the overall length
of the stereocilium, which would mean that they cannot be involved in its regulation. For
this reason, we believe that the shape and size of stereocilia can be described by taking
into account the dynamics of only a few crucial proteins, namely actin cross-linkers.

Although the emphasis of this chapter is on stereocilia, the simplicity of our model
makes it general enough to describe several other biological length-regulation processes.
The most obvious of these are of course other cellular protrusions, such as filopodia, mi-
crovilli and Drosophila bristles, where actin filaments are also coupled by cross-linkers.
In addition, our approach is relevant to single-filament problems where each monomer
stochastically switches between two states, which have different properties with respect
to depolymerization. An example is the depolymerization of a single actin filament, where
each monomer can be associated to either ATP or ADP as mentioned in chapter 1, and
where the two states have different depolymerization rates [140]. Similarly, the tubu-
lin monomers constituting microtubules—another type of cytoskeletal filament—can be
associated to GTP or GDP. If the end of the filament is GTP-associated, it is stable
and the microtubule grows. If it is GDP-associated, very fast depolymerization ensues.
GTP-associated regions might however exist further down the microtubule, and stop the
microtubule depolymerization, similarly to what espin does for actin in our model [152].
Conversely, some microtubule-associated proteins make the filament more susceptible to
depolymerization, which could also be described with our approach [153].

We solve our model analytically in three simplified situations, and study it numeri-
cally in the general case. First, we tackle the situation where espins do not reattach to
actin below the polymerization front. This problem is simple and we calculate the exact
probability distribution for the lengths of coupled filaments. We then turn to the dy-
namics of a single filament in the case where espin is allowed to reattach. We completely
solve this problem far away from the polymerization front. Close to the polymerization
front, we calculate its steady-state solution in a suitably defined continuum limit. This
analytical study reveals that finite-length filaments cease to exist above a critical value of
the espin reattachment rate, and we term this change of behavior the “growth transition”
of the system. We then go on to numerically study this transition in a multi-filament
system. We find that when approaching the transition from above, the bundle dynamics
is well described by a mean-field approach consisting in approximating the environment
of each filament by a constant effective number of longer neighbors. When approaching
the transition from the finite-length phase, on the other hand, the bundle length has a
power law divergence as expected from the mean-field theory, but with an anomalous ex-
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ponent. Numerical evidence points towards an increase of the correlation length between
the filaments near the transition, but we argue that the bundle surface is unlikely to have
so strong correlations as to become self-affine close to the critical reattachment rate.

On the biological side, stereocilia models have been proposed in the literature that
yield good agreement with electron micrographs of stereocilia. The approach of Ref. [125]
was described in the introduction of this chapter and forms the basis of the proposal
made here. It however raises three serious concerns, which do not arise in our descrip-
tion: First, this reference depends partly on a hypothetical actin pointed end capping
protein, whereas we only assume well-identified proteins; Second, it reproduces the shape
of the stereocilia of deaf shaker 2J mutants, and we account for those of healthy animals;
Third, its stereocilia shapes, unlike ours, rely on the fine tuning of some parameters,
which is not consistent with the biological robustness of the well-controlled stereocilia
shapes. Another quite different model was proposed in Ref. [144]. It is based on the fact
that actin-polymerizing and actin-depolymerizing proteins could be actively localized at
the stereocilium base, e.g. by molecular motors. Should the stereocilium accidentally
elongate, actin-polymerizing proteins would become more scarce at its tip, thus polymer-
ization would slow down and the stereocilium would shrinks back to its steady-state shape.
Actin-depolymerizing proteins localized at its base drive the narrowing of the actin bundle
there. This model offers an interesting insight into the possible roles of the experimen-
tally well-documented active transport within the stereocilium. It is however difficult to
assess its validity quantitatively as it hypothesizes several experimentally uncharacterized
protein-protein interactions, and has an accordingly large number of adjustable parame-
ters. Another problem is that localization in stereocilia has been experimentally observed
to take place over length scales significantly shorter than the stereocilium (roughly 1µm
versus 10µm). If this is the case, the actin-polymerizing proteins concentration at the tip
depends only very weakly on the length of the stereocilium. Therefore for the stereocilium
length to be well-controlled, the actin polymerization velocity must be very sensitive to
the concentration of these proteins, which makes the length of the stereocilium extremely
sensitive e.g. on the efficiency of the localization process. As in the previous model,
this seems incompatible with the expected robustness of this structure. Finally, although
this model accounts for the shape of reptile and bird stereocilia, it does not predict the
existence of the rootlet, which is observed in mammals.

The model presented in this chapter is in qualitative agreement with several experi-
ments showing the importance of espin in stereocilium length regulation. Our theoretical
study allows us to predict that the reattachment rate of espin to actin must be much
smaller then its detachment rate (k ≈ v−1 ≪ 1), or the actin bundle does not reach a
stationary profile. This is consistent with the observation made in Ref. [119] that espin
in the stereocilium seems to treadmill along with actin—in other word, that espin is es-
sentially incorporated at the tip of the stereocilium and not so much exchanged with the
solution in the bulk of the actin bundle. More quantitatively, we are able to reproduce
the shape of several stereocilia within the same hair bundle with only one common fit
parameter. In these fits we use k = 0. The reason for this is that the espin reattachment
rate must be small enough for the system to be far from the growth transition. Indeed,
close to the transition the stereocilium length strongly depends on k [Fig. 6.8(a)], and
the stereocilium is not robust as we require. If on the contrary k is substantially smaller
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than kc, then the length of the bundle only weakly depends on k, and our choice to use
k = 0 does not have much influence on the stereocilium’s shape. We also account for
the apparent proportionality between stereocilium length and turnover time. Finally, our
approach faithfully captures the quantitatively measured relationship between microvillus
length and espin expression.

Although our model yields biologically satisfactory stereociliary shapes by taking into
account only espin exchanges between the actin bundle and a homogeneous espin reser-
voir, other related phenomena might play an important role in the shaping of actin-based
cellular protrusions, and these effects deserve further investigations. First, it could be
interesting to consider the case where the cross-linker does not diffuse instantaneously
throughout the actin bundle. Indeed, in stereocilia its escape is hindered by the surround-
ing dense actin paracrystal, which might trap espin in the middle of the stereocilium and
make its reattachment rate larger there than in the periphery. This might induce more
elongated shapes than the ones calculated here. In other actin-based protrusion, this
effect is even more likely to play a role as the actin turnover time is smaller, meaning
that diffusion is comparatively slower. Second, we mentioned in the introduction that
more than one type of actin cross-linkers are involved in several instances of actin-based
protrusions. This effect might also significantly affect the shapes calculated here. Finally,
in microvilli and filopodia the time scales involved in actin turnover could be small enough
for the actin depolymerization dynamics to happen on the same time scales as the cross-
linker dynamics. A first approach to this problem could be to perform a perturbation
analysis of the results presented above by making the actin depolymerization rate is very
large, rather than infinite as was done in this chapter.

Even within the framework of the model presented here, several questions remain
open. The coupling of the dynamics of depolymerizing filaments, in particular, yields
dramatic effects that are still poorly understood. In this chapter, we presented these
effect by comparing the coupled filaments case with a single-filament system bound to
an effective number of walls. As observed in Fig. 6.8, this description yields very good
results above the growth transition, which we have yet to justify. It should also be
checked whether this effective number of neighbors depends on v. Below the transition,
our approach is significantly less successful, and a first step in improving it could be a
better mean-field approach where the effective number of neighbors of each filament could
be a function of its length and/or be determined self-consistently rather than fitted to
numerical results. The range of the length correlations between filaments is another topic
deserving attention, and is likely to be highly relevant to those questions. In particular,
we would like to understand how this range behaves at the growth transition. Finally, the
fact that the filament length diverges at this transition with a power law very different
from that predicted by mean-field theory suggests that interesting non-trivial collective
effects remain to be studied in this system.



Chapter 7

Conclusion

The present thesis deals with membrane-based tubular structures found in cells. Through-
out the life of the cell, matter is sorted within its cytoplasm and exchanged with the out-
side. Membrane tubes appear very generically during such trafficking events. Our study
focuses on three significantly different systems.

The first of these systems is dynamin, a protein specialized in polymerizing around
short membrane tubes, and then severing them. In close connection with experiments,
we show that the physical properties of the membrane, its curvature in particular, control
the recruitment of dynamin to the membrane and could be important players for the
regulation of endocytosis in vivo. We then pave the way for a more detailed understanding
of this regulation by proposing two hypotheses about the mechanism of helix seeding,
representing two limiting cases: First we consider the case where dynamin oligomers are
much softer than the membrane and initially accommodate a high curvature; then we
study the case where the membrane is much softer than dynamin oligomers and has to
fluctuate down to a small radius for a helix to form. We propose experimental tests
to discriminate between these two hypotheses. We also find that current helix growth
experiments might involve non-trivial effects due to dynamin binding and diffusion, as
well as interesting membrane and water flow patterns. Analyzing them could reveal novel
information about dynamin-membrane interactions.

Once polymerized, dynamin changes conformation upon GTP hydrolysis and may or
may not rupture the membrane depending on its mechanical environment. Again com-
bining theory and experiments, we show that this conformational change is concerted,
meaning that a long dynamin helix changes shape as one continuous body, i.e. does not
break immediately. We uncover the forces at work during this process and show that the
energy released by GTP hydrolysis—which drives the conformational change—is mainly
used to squeeze the membrane out of the region encircled by dynamin. We develop a ver-
satile theoretical formalism to analyze the mechanics of this composite process involving a
mixture of twisting, elongation and constriction, and demonstrate its relevance by unifying
seemingly contradictory experimental results through simple mechanical arguments.

Further developments of our approach to dynamin are closely tied to experimental
progress. Regarding polymerization, we show here that several equally reasonable hy-
potheses about dynamin’s seeding rate and growth kinetics can only be discerned ex-
perimentally. As far as its conformational change is concerned, any purely theoretical
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approach is fated to rely on somewhat arbitrary assumptions. In this perspective, our
hydrodynamic formalism has the advantage of enclosing all the unknown details of the
system in a few well-identified phenomenological coefficients. We are currently designing
a joint theoretical and experimental approach to monitor the rupture of dynamin-coated
tubes under well-controlled mechanical conditions. Our approach is to first characterize
the external conditions inducing tube breaking experimentally, and then infer the local
state of the membrane at the breaking point from theoretical arguments. This method
should enable us to formulate a heuristic criterion for membrane severing, which could
then be used to guide more detailed microscopic modeling of the membrane’s rupture.
Another interesting direction where experiments could be a driving force is the study of
the supercoiling of dynamin-coated tubes. More precise measurements of the conditions
under which supercoils form could motivate a covariant version of the formalism presented
in chapter 4, which would describe the coupling between flows of conserved quantities and
the geometry of the tube. This in turn would help characterize the mechanics of dynamin
in a detailed manner.

In vivo, several proteins assist dynamin in its severing action, although the experi-
mental data discussed in chapter 4 shows that they are not absolutely necessary to get
membrane fission. For instance, amphiphysin co-polymerizes with dynamin and facili-
tates its recruitment and that of clathrin to liposomes [41]. Endophilin might have a
similar role [154]. Finally, actin colocalizes with dynamin shortly before vesicle detach-
ment, which suggests that it is also involved in dynamin-mediated endocytosis [84]. It is
probably not possible to obtain a complete picture of the action of dynamin without a
better understanding of these interactions, and possibly of other relevant ones.

More generally, studying dynamin’s conformational change could yield a broader per-
spective on membrane breaking in cells. It is interesting to note for instance that vesicle
formation by clathrin on the one hand and by COPI and COPII on the other implicate
very similar protein-membrane configurations [see Fig. 1.1(c)]. However, the former uses
dynamin to sever the membrane neck it generates, while the latter does not. From an
evolutionary perspective, the fact that the cell has come up with two very different solu-
tions to a seemingly unique membrane-severing problem is intriguing. By understanding
those mechanisms, we might uncover significant functional differences between these two
pathways and therefore gain a deeper insight into intracellular traffic.

In a second part, we theoretically demonstrate a novel mechanism for membrane defor-
mation by curved filaments. This mechanism is based on a buckling-like instability that
naturally arises as soon as such filaments adhere to the membrane and to each other. A
simple model yields a phase diagram with three regions: one where flat filament-dressed
membranes are stable, one where they are unstable and immediately form long membrane
tubes, and a metastable region. Metastable flat dressed membranes could be an interest-
ing means of quickly generating long membrane tubes following a gentle push provided
by some active cell machinery.

We propose that this buckling mechanism could account for membrane budding events
mediated by the protein complex ESCRT-III, which induces long dressed membrane tubes
under certain experimental conditions. This complex is known to deform the membrane at
the very end of cell division, during virus release by the cell and in the early stages of the
recycling of phospholipids and integral membrane proteins. We propose an experimental
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test to validate our hypothesis. Other biological instances of this type of behavior might
also exist, and it could be interesting to identify them.

In a third part, we propose a general mechanism for the shaping of actin-based cellular
protrusions. We focus more specifically on stereocilia, a key element of the auditory
system whose proper shape and size regulation is crucial to hearing. Our model puts
forward the regulation of actin depolymerization by the well-characterized cross-linker
espin as a robust way to control the structure of stereocilia. We find a good agreement
with experimental shapes using only one adjustable parameter. We also account for the
experimentally observed relationships between protrusion length and actin treadmilling
velocity in stereocilia on the one hand, and between protrusion length and espin expression
level in the related microvilli on the other.

This biological problem leads us to formulate a physically interesting interface growth
model which, to the best of our knowledge, was never studied before. We are able to solve
it exactly in the simple case where espins only detach from the actin filaments. We also
solve the single-filament problem in the general case, which might prove useful to study
several other biopolymer problems. Turning to the full, multi-filament growth process
in the presence of espin reattachment, we find that it is quite different from the smooth,
translation-invariant interfaces previously studied in the light of their self-affine properties.
Our interface undergoes a “growth transition” during which it loses its stationary profile.
Numerical results indicate that correlations between filaments yield strong modifications
of the single-filament theory close to this transition, which requires further theoretical
investigations.

Although studying the depolymerization dynamics of the stereocilium and its length
control mechanism theoretically yields interesting insights, biological investigations are
likely to be the most productive approach to some other crucial features. This is probably
the case of the dynamics of the actin polymerization front, where many regulatory proteins
play a role. These might impose the radius of the filament’s tip, which is undetermined
in our approach.

On a broader level, the dynamics of the cell’s cytoskeleton implicates many out-of-
equilibrium surface growth processes. Besides tube-like protrusions, one could quote the
dynamics of the cell cortex, a layer of actin underlying the plasma membrane. Cortical
actin undergoes polymerization and depolymerization as well as transient cross-linking,
similarly to the system studied in chapter 6. On top of that, its dynamics involves actin
filament branching and barbed end capping, as well as binding molecular motors that
make it contractile. Another similarly complicated system is the lamellipodium, a thin
sheet of actin that some cell types (e.g. keratocytes) extend in front of them while moving,
for instance towards a chemical attractant. The precise interplay between all the sources
of activity in these processes is not well understood. The study of chapter 6 could be a first
step towards the formulation of criteria that would allow one to identify the dominant
mechanisms underlying each of these growing interfaces by analyzing their shape and
dynamics. Indeed, our study of stereocilia suggests that each possible growth model
is characterized by a few features (e.g. a length divergence exponent, or a self-similar
interface) that do not depend on the microscopic parameters of the system studied (e.g.
the cross-linker reattachment rate). By identifying those features and recognizing them
in actual cellular systems, we should be able to use them as signatures of the underlying
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interface-shaping phenomena, and therefore show which mechanism dominates which type
of interface.

Throughout this thesis, biological systems are approached with a twofold focus. First,
we attempt to ground our theoretical considerations in experimental observations, and
propose experiments whenever possible. Second, we make an effort towards generality
and formulate the simplest possible models compatible with the symmetries and the es-
sential features of the systems studied. By doing this, we keep the number of adjustable
parameters in our models to a minimum and formulate conclusions that are valid for a
range of systems rather than in just one particular case. We believe that this is a fruitful
approach when studying biology, as the detailed parameters of the problems it involves
are rarely well known in vitro, let alone in vivo. Because of this, we are hopeful that the
work contained in this thesis could be relevant for many cellular mechanisms.
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Appendix A

Stability of a membrane tubule

Here we consider the stability of an initially cylindrical membrane tubule of volume V ,
area A, and fixed length L much larger than its radius. We write its free energy as

F = −PV + σA+

∫

κc2

2
dA, (A.1)

where P is the pressure difference between the inside and the outside of the tubule, σ is
the tension of the membrane, κ > 0 its bending modulus and c the local total curvature.
The integral runs over the surface of the membrane. If P = 0, the tubule has a cylindrical
shape imposed by the balance between the tension, which tends to shrink the tubule,
and the bending modulus, which tends to increase its radius. This situation is discussed
in Sec. 3.1. Let us now consider an increase in P , which also tends to make the tubule
swell up. As P increases, the radius of the tubule also increases, its bending energy tends
to zero and the swelling effect due to the bending modulus becomes negligible compared
that due to the pressure. When this is the case, the tubule becomes similar to a soap
bubble of fixed length, as its local shape is imposed by the balance between pressure
and surface tension only—the competition between the two defines the Laplace radius
rl = 2σ/P , which is the radius of a spherical soap bubble. Soap bubbles rarely have
a cylindrical shape. Therefore, we expect that there should be a transition between a
cylindrical regime where the bending modulus dominates and a more complicated one
where pressure does. In this appendix, we show that cylindrical tubules are linearly
unstable unless the following condition is satisfied:

σ > 0 and
P
√
κ√
σ3

6

(

2

3

)3/2

or (A.2)

σ < 0 and
P
√
κ√

−σ3
6 −2

(

2

3

)3/2

.

While the σ > 0 condition corresponds to the qualitative picture discussed above, if
σ < 0 the tubule is not stable for P = 0. Indeed, in this case both its tension and bending
modulus have a swelling effect and nothing stabilizes the radius of the tubule. What the
above σ < 0 condition tells us is that these swelling effects can be stabilized by a negative
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internal pressure of the tubule. Note that the ratio P
√

κ/σ3 appearing in Eq. (A.2) is
proportional to the ratio rb/rl between the bare tubule radius defined in Eq. (3.3) and
the Laplace radius.

This appendix focuses on the local stability a cylindrical tubule in the ensemble where
P , σ and L are fixed. Since we are dealing with a thermodynamic system, our results
remain valid when P and σ are determined self-consistently to satisfy volume and area
conservation, and when the force conjugate to L is imposed, as in Sec. 3.4.3. In Sec. A.1,
we calculate the radius of the cylinder. In Sec. A.2, we derive a formalism allowing for
the study of perturbations away from the cylindrical shape. In Sec. A.3, we consider the
stability of the cylinder under an arbitrary infinitesimal perturbation. Finally, in Sec. A.4
, we regroup these results and derive Eq. (A.2).

A.1 Cylindrical configuration

Here we assume that the tubule has a cylindrical shape. Neglecting the ends of the
cylinder and denoting its radius by r, we write V = πLr2 and A = 2πLr. This yields the
free energy

F = −PπLr2 + σ2πLr +
κπL

r
. (A.3)

We differentiate F with respect to r to obtain the radial force balance equation, then
multiply by r2, which yields:

f(r) = −1 with f(r) =
2P

κ
r3 − 2σ

κ
r2. (A.4)

Here we show that depending on the values of P and σ, Eq. (A.4) has at most one stable
solution, which we denote by r∗. Four cases must be distinguished:

• If P > 0 and σ > 0, f(r) decreases from f(0) = 0 to f(2σ/3P ) = −8σ3/(27κP 2),
then increases to f(+∞) = +∞. If f(2σ/3P ) is larger than −1, Eq. (A.4) has no
solution. If f(2σ/3P ) is smaller than −1, it has two solutions. The one with the
smallest radius is stable under a small change of r, and the one with the largest
radius is unstable. Therefore in the cases where r∗ exists, r∗ 6 2σ/3P .

• If P > 0 and σ < 0, f(r) is always positive for r > 0, thus Eq. (A.4) has no solution.

• If P < 0 and σ > 0, f(r) decreases from f(0) = 0 to f(+∞) = −∞. Thus Eq. (A.4)
has one solution, which is stable under a change of r.

• If P < 0 and σ < 0, f(r) increases from f(0) = 0 to f(2σ/3P ) = 8σ3/(27κP 2), then
decreases to f(+∞) = −∞. This yields one solution, which stable under a change
of r. In this case, r∗ > 2σ/3P .
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The case P = 0 is not included here, as it is treated in Sec. 3.1. Eq. (A.4) therefore has
a solution in the two following cases

σ > 0 and
P
√
κ√
σ3

6

(

2

3

)3/2

or (A.5)

σ < 0 and P < 0.

In the following, we ask whether these cylindrical solutions are stable not only under a
uniform change of r, but under any perturbation. In the remainder of this appendix, we
consider only the cases where a stable solution of Eq. (A.4) exists. We express all lengths
in units of r∗ and all energies in units of κ. In these units, Eq. (A.4) reads:

σ = P +
1

2
. (A.6)

A.2 Energetic cost of perturbations

Here we consider a cylinder satisfying Eq. (A.4). The z-axis is defined as the axis of
symmetry of the cylinder, and x, y are two directions such that (x, y, z) is an orthogonal
coordinate system. If φ is the angle in the (x, y) plane and the tubule is weakly deformed
from its cylindrical shape, we can write its radius as

r(φ, z) = 1 + δ(φ, z), (A.7)

with δ ≪ 1. In the following, we calculate the free energy of the tubule using some notions
of differential geometry introduced e.g. in Ref. [155]. The position vector on the tubule
is r = [1 + δ(φ, z)] er + zez, where eX is the unit vector in the direction X. The tangent
and normal vectors read

tφ = ∂φr = ∂φδ er + (1 + δ)eφ (A.8a)

tz = ∂zr = ∂zδ er + ez (A.8b)

n =
tz × tφ

√

(tz × tφ)2

= −
[

1− (∂φδ)
2 + (∂zδ)

2

2

]

er + ∂φδ(1− δ)eφ + ∂zδ ez +O
(

δ3
)

. (A.8c)

In order to write F as a function of δ, we express the volume and surface elements

dV = (1 + δ) dφ dz (A.9a)

dA =
√

(tz × tφ)2 dφ dz

=

[

1 + δ +
(∂φδ)

2 + (∂zδ)
2

2
+O

(

δ3
)

]

dφ dz. (A.9b)
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The metric on the surface of the tubule reads

gφφ = 1− 2δ + 3δ2 − (∂φδ)
2 +O

(

δ3
)

(A.10a)

gφz = −∂φδ × ∂zδ +O
(

δ3
)

(A.10b)

gzφ = gφz (A.10c)

gzz = 1− (∂zδ)
2 +O

(

δ3
)

. (A.10d)

The extrinsic curvature tensor Kij = −n · (∂itj) is given by

Kφφ = −1− δ + ∂2φδ −
3

2
(∂φδ)

2 +
1

2
(∂zδ)

2 +O
(

δ3
)

(A.11a)

Kφz = ∂φ∂zδ − ∂φδ × ∂zδ +O
(

δ3
)

(A.11b)

Kzφ = Kφz (A.11c)

Kzz = ∂2zδ +O
(

δ3
)

. (A.11d)

The total curvature c is obtained by contracting this tensor by the metric (i.e. c is the
trace of this tensor). Using summation over repeated indices:

c = gijKij

= −1 + δ + ∂2φδ + ∂2zδ − 2δ × ∂2φδ − δ2 − 1

2
(∂φδ)

2 +
1

2
(∂zδ)

2 +O
(

δ3
)

. (A.12)

Finally, inserting Eqs. (A.9) and (A.12) into Eq. (A.1) and using Eq. (A.6) to eliminate
σ, the free energy of the tubule to second order in δ reads

F =
1

2

∫ L/2

−L/2

dz

∫ π

−π

dφ
[

− 2
(

∂2φδ + ∂2zδ
)

+ (1− P )δ2

+ (P − 2)(∂φδ)
2 + P (∂zδ)

2 +
(

∂2φδ + ∂2zδ
)2
]

. (A.13)

A.3 Linear stability

In this section, we consider a tubule with periodic boundary conditions in z = ±L/2. We
decompose the perturbation of the radius introduced in Eq. (A.7) into Fourier modes:

δ(φ, z) =
+∞
∑

m,n=−∞
δ̂m,ne

ı(mφ+nqz), (A.14)

where q = 2π/L goes to 0 as L goes to infinity, which is the case considered here (the
tubule is much longer than its radius). In this limit, qn can take a value arbitrarily close
to any real number and can therefore be treated as a continuous variable. The free energy
Eq. (A.13) can be rewritten as

F =
+∞
∑

m,n=−∞

Kmn

2

∣

∣

∣
δ̂m,n

∣

∣

∣

2

, (A.15)
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where we note that the terms linear in δ in Eq. (A.13) have a zero integral over the surface
of the tubule. The cylinder is stable under any small perturbation if and only if the elastic
constants Kmn associated with the Fourier modes (m,n) are all positive. They read

Kmn =
(2π)2

q

{

(1− P ) + (P − 2)m2 + P (qn)2 + [m2 + (qn)2]2
}

, (A.16)

The modes m = ±1, n = 0 corresponds to a translation of the tubule and therefore have
a zero energy associated to them. This expression is identical to the expression given in
Ref. [156] for P = 0. As expected from this reference, the modes with m = ±1 and fixed
n become infinitely soft in the L→ +∞ limit. In the following, we study the sign of Kmn,
distinguishing three cases depending on the value of P .

A.3.1 Case P < −2

If P < −2, the cylinder is unstable. We show this by considering the m = ±1 modes.
Their elastic constants factorize into

K±1n =
(2π)2

q
(qn)2

[

(qn)2 − (−P − 2)
]

. (A.17)

Therefore all m = ±1 modes such that 0 < qn <
√
−P − 2 are unstable. There always

are such modes, since P < −2 ⇒
√
−P − 2 ∈ R and since qn can be arbitrarily small in

the L→ +∞ limit.

A.3.2 Case −2 6 P 6 1

The cylinder is linearly stable in this case. We prove this by first showing that the m = 0
modes are not unstable, and then proving the same thing for |m| > 1.

• For m = 0, the elastic constant reads

K0n =
(2π)2

q

[

(qn)4 + P (qn)2 + 1− P
]

. (A.18)

Considering this expression as a quadratic polynomial in (qn)2, we find that its
discriminant is ∆ = (P + 2)2 − 8. For P < 2

(√
2− 1

)

, ∆ is negative and K0n is

always positive. For 2
(√

2− 1
)

6 P 6 1, K0n is negative in the range

−P −
√
∆

2
< (qn)2 <

−P +
√
∆

2
. (A.19)

However, P 6 1 implies −P +
√
∆ 6 0, therefore K0n is never negative since (qn)2

is always positive. Therefore the m = 0 modes are stable in the range of pressures
considered here.
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• For |m| > 1, we see that Kmn is an increasing function of (qn)2 by rewriting
Eq. (A.16) in the following form:

Kmn =
(2π)2

q

[

(qn)4 + (2m2 + P )(qn)2 + (m2 − 1)(m2 − 1− P )
]

. (A.20)

Therefore proving that Km0 is positive for |m| > 1 is sufficient to prove that all
|m| > 1 modes are stable. This is obviously the case since |m| > 1 implies both
m2 − 1 > 0 and m2 − 1− P > 0 in the range of pressures considered here.

A.3.3 Case 1 < P

If P > 1, then K00 = 1 − P < 0 and the m = 0, n = 0 mode is unstable. Therefore the
cylinder is unstable.

A.4 Non-scaled units

Going back to normal units, we put reformulate the stability criteria of Sec. A.3 as

P (r∗)3

κ
> −2

and (A.21)

P (r∗)3

κ
6 1,

where it is assumed that r∗ is well-defined and positive, i.e. that the criterion Eq. (A.5)
is fulfilled.

Let us first consider the first inequality of Eq. (A.21). If P > 0, it is automatically
satisfied. If P < 0, then it is equivalent to

(r∗)3 6
2κ

|P |

⇔ f(r∗) > f

[

(

2κ

|P |

)1/3
]

⇔ −1 > −4− 25/3σ

κ1/3|P |2/3

⇔











σ > 0

or

σ < 0 and P
√

−κ/σ3 6 −25/23−3/2

. (A.22)

Thus the first inequality of Eq. (A.21) can be reformulated as

σ > 0

or (A.23)

σ < 0 and
P
√
κ√

−σ3
/∈
]

−2

(

2

3

)3/2

, 0

[

.
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The second inequality of Eq. (A.21) is automatically satisfied if P < 0. If P > 0 then
σ > 0 (otherwise r∗ would not exist) and the inequality is equivalent to

(r∗)3 6
κ

P

⇔
( κ

P

)1/3

6
2σ

3P
and f(r∗) > f

[

( κ

P

)1/3
]

⇔ P
√
κ√
σ3

6

(

2

3

)3/2

and − 1 6 2− 2σ

κ1/3P 2/3
. (A.24)

Thus the second inequality of Eq. (A.21) can be reformulated as

P
√
κ√
σ3

6

(

2

3

)3/2

. (A.25)

Finally, we put together all the conditions derived in this appendix and require that
Eqs. (A.5), (A.23) and (A.25) are all satisfied simultaneously. This yields the criterion
Eq. (A.2). Therefore if we conduct an experiment with an initially cylindrical membrane
tubule, make sure that it always satisfies Eq. (A.2) and assume that it is only subjected to
small fluctuations of its shape, then this tubule always remains cylindrical. Note that the
criterion Eq. (A.2) does not make a difference between a linearly stable and a marginally
stable tubule. This subtlety only concerns singular values of the parameters and therefore
is not relevant for the usage of the present appendix made in Sec. 3.4.3.
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Appendix B

Dynamin mechanics

B.1 Membrane geometry and bending energy

The calculations of this section are inspired by those of Ref. [79]. Here we calculate the
bending energy of an infinitely thin membrane with no spontaneous curvature surrounded
by a helical scaffold of radius r and pitch 2πp. We assume that this scaffold imposes two
constraints on the membrane: first, the membrane has the same helical symmetry as the
scaffold; and second, the membrane is attached to the scaffold and must therefore touch
it at every point. Under these constraints, the membrane radius as a function of the angle
θ ∈ [−∞,∞] of cylindrical coordinates and the elevation ζ ∈ [0, 2πp] from the scaffold
reads (see Fig. B.1):

rm(θ, ζ) = r[1 + ǫ(ζ)], (B.1)

where ǫ(0) = ǫ(2πp) = 0. It can be shown that in the ǫ ≪ 1 regime, approximating ǫ by
its first Fourier component changes all results presented in chapter 4 by less than 1%. We
therefore use this approximation throughout:

rm(θ, ζ) = r{1 + u[cos(ζ/p)− 1]}. (B.2)

The bending free energy of the membrane is given by Eq. (1.1) and reads

Fm =

∫∫

(κ

2
c2
)

dS, (B.3)

where c is the total curvature of the membrane and κ its bending modulus. The integration
runs over the surface of the membrane. For the configurations considered in chapter 4,
the dependence of κ on the area per polar head of lipids can be neglected [157]. We now
calculate Fm as a function of r, p and ǫ using differential geometry [155]. To second order
in ǫ, the surface element of the membrane reads

dS =

[

1 + ǫ+
1

2

(

1 +
p2

r2

)

r2(∂ζǫ)
2

]

r dθ dζ. (B.4)

Integrating this surface element and using Eq. (B.2), we calculate s, the membrane area
per unit of z-length of the tube to first order in u:

s = 2πr (1− u) . (B.5)

159



160 APPENDIX B. DYNAMIN MECHANICS

Figure B.1: Parametrization of a surface confined by a helical scaffold. Any point whose
cylindrical coordinates (rm, θm, zm) can be written as rm = r [1 + ǫ(ζ)], θm = θ, zm = pθ+ζ
with θ ∈ [−∞,∞], ζ ∈ [0, 2πp] belongs to the membrane.

Similarly, to first order in u the volume enclosed by the membrane by unit of z-length is

v = πr2 (1− 2u) . (B.6)

To second order in ǫ, The total curvature of the membrane reads

c = −1

r
(1− ǫ) +

(

1 +
p2

r2

)

r(∂2ζ ǫ)−
ǫ2

r
− 2

p2

r
ǫ(∂2ζ ǫ) +

1

2

(

1− p2

r2

)

r(∂ζǫ)
2. (B.7)

Performing the integration of Eq. (B.3) using Eqs. (B.2), (B.4) and (B.7), we find the
membrane’s bending energy per unit of z-length

fm =
πκ

r

[

1 + u+

(

3

2
+

3α−2

2
+ α−4

)

u2

2

]

=
1

r

[

πκ(1 + u) + kuu
u2

2

]

. (B.8)

This last equality defines kuu.
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B.2 Elastic properties of the helix

We describe the elasticity of the dynamin helix as that of a simple rod with constant
spontaneous curvature and torsion [78]. Its elastic energy therefore reads

Fh =

∫ {

kc
2
[c(ℓ)− c0]

2 +
kt
2
[t(ℓ)− t0]

2

}

dℓ (B.9)

=

∫

{

√

r2 + p2

p

[

kc
2

(

r

r2 + p2
− r0
r20 + (αr0)2

)2

+
kt
2

(

p

r2 + p2
− αr0
r20 + (αr0)2

)2
]}

dz, (B.10)

where the first integral is calculated over the arc length of the rod and the second one
over the z-coordinate (see Fig. 4.2(a)). In the second expression we replace the curvature
c(ℓ) and torsion t(ℓ) by their values for a spring of radius r and pitch 2πp. We also choose
the spontaneous curvature c0 and torsion t0 such that the ground state of the rod is a
helical spring of radius r0 and pitch 2παr0.

The dynamin helix binds to the membrane through a specific domain, the PH domain.
Let u(ℓ) be the unitary vector field defined on the helix that always points in the direction
of the PH domain. Since the PH domain always faces the membrane, u(ℓ) always faces the
inside of the helix. Hence u(ℓ) = N(ℓ), the normal to the helix. Consequently, according
to Ref. [158], the twist density of the helix is exactly equal to its torsion, which allows us
to write Fh as a function of c(ℓ) and t(ℓ) only.

B.2.1 Curvature and torsion coefficients of a rod.

In order to calculate the curvature and torsion moduli of the rod, we consider it as a rod

of cross-section π
(

re−r0
2

)2
, where re is the outer radius of the dynamin coat. We first

define the typical force needed to deform the helix

K =
πE
(

re−r0
2

)4

r20
, (B.11)

where E is the Young modulus of the rod. Assuming that the Poisson ratio of the rod is
1/2, its curvature and torsion elastic moduli read [105]

kc =
πE
(

re−r0
2

)4

4
=

1

4
(B.12a)

kt =
πE
(

re−r0
2

)4

6
=

1

6
, (B.12b)

where the equalities on the right are valid if all quantities are expressed in units of r0, ρ0,
K. We use these scaled units in the rest of this section.
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B.2.2 Elastic energy of a rectilinear spring

Writing r = 1+ δr and p = α(1 + δp), the integrand of Eq. (B.10) (i.e. the elastic energy
per unit z-length) reads to second order in δr, δp

fh =
α

(1 + α2)7/2
×
{

[

α−2(1− α2)2kc + 4kt
] δr2

2

+2
(

1− α2
)

(kc − kt)δrδp+
[

4α2kc + (1− α2)2kt
] δp2

2

}

= krr
δr2

2
+ krpδr δp+ kpp

δp2

2
. (B.13)

This equality defines krr, krp and kpp.

B.3 Helix persistence length

B.3.1 Definition of the persistence length

We now consider the possibility for the central axis of the helix to bend with a radius
of curvature R ≫ r, p (Fig. B.2). For simplicity, we assume in this section that r, the
radius of both the deformed membrane and the helix, is uniform. Therefore the membrane
has a toroidal shape (i.e. deformations of the type of those studied in Sec. B.1 are not
considered). Since the tube is bent, the pitch on the inside of the tube and on the outside
are different and we let p denote the average pitch of the helix. The persistence length of
the tube can be defined by expanding its elastic energy in powers of R−1:

F (R)− F (R = +∞) = kBT

∫ L

0

ℓp
2R2

d(Rφ), (B.14)

where Rφ is equal to the coordinate z defined in Fig. 4.2 in the limit R → +∞. There
are two contributions to F : the free energies Fm and Fh of the membrane and helix. Since
we are considering a more complicated geometry than in the two previous sections, we
need to use the general expressions Eqs. (B.3) and (B.9) for these two quantities. All our
calculations are be made to the lowest non-trivial order in ι = r/R.

B.3.2 Membrane energy

At any point of the torus, the two radii of curvature of the membrane are equal to r and
cos θ/R+O(ι). Here θ is the angle in the R, Z plane, which is the same as the definition
given in Fig. 4.2 in the limit R → +∞. Integrating over θ, one uses Eq. (B.3) to find the
free energy of the membrane per unit of tube length:

Fm

2πR =
πκ

r

(

1 +
ι2

2

)

. (B.15)
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Figure B.2: Parametrization of the helix and membrane in a torus configuration. The
unit vectors in the R, φ and Z directions are denoted eR, eφ and eZ respectively.

B.3.3 Helix energy

Although we use the simplifying assumption that the helix is always on the surface of a
perfect torus (i.e. has a constant radius), it is always possible for the pitch of the helix
to vary as a function of θ in order to minimize the elastic energy. Here we calculate this
effect to lowest order in ι. We treat θ and φ as functions of the arc length ℓ along the
helix and define the scaled variable:

ℓ̄ =
ℓ

r
√

1 + (p/r)2
. (B.16)

Let us begin by expressing the coordinates θ and φ as functions of ℓ̄. The definition
Eq. (B.16) is such that when R = +∞, we have θ = ℓ̄. To first order, we describe the
modulation of the helix’ pitch by a function h

(

ℓ̄
)

defined by

θ = ℓ̄+ ιh
(

ℓ̄
)

. (B.17)

Since the lowest energy state of the helix on the torus is obviously periodic, h must be a
2π-periodic function of θ, and thus of ℓ̄ to lowest order in ι. We can thus expand h as a
Fourier series:

h
(

ℓ̄
)

=
+∞
∑

n=1

an sinnℓ̄, (B.18)

where we left all even terms out because they do not respect the (θ, φ) → (−θ,−φ)
symmetry of the problem (Figs. 4.2 and B.2). Let us now write

φ = ιA. (B.19)
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This defines the variable A which is of the same order as θ and ℓ̄. The position vector of
the point of the helix with coordinate θ reads

r = (R+ r cos θ)eR + r sin θ eZ , (B.20)

where eR and eZ are defined in Fig. B.2. Differentiating this relation, we find

dℓ2 = (R+ r cos θ)2dφ2 + r2dθ2. (B.21)

Combining this with Eqs. (B.16), (B.17) and (B.19) yields

A =
p

r

{

ℓ̄− ι

[

h

(p/r)2
+ sin ℓ̄

]}

+O(ι2). (B.22)

We now combine Eqs. (B.17), (B.20) and (B.22) to express f = r/R as a function of
ℓ̄ and calculate the curvature c

(

ℓ̄
)

and torsion t
(

ℓ̄
)

of the helix, which are defined by

t =
∂r

∂ℓ
=

∂ℓ̄f
√

1 + (p/r)2
ι−1 (B.23)

c
(

ℓ̄
)

n =
∂t

∂ℓ
=

∂2
ℓ̄
f

r[1 + (p/r)2]
ι−1 (B.24)

c
(

ℓ̄
)

b = t× c
(

ℓ̄
)

n =
∂ℓ̄f × ∂2

ℓ̄
f

r[1 + (p/r)2]3/2
ι−2 (B.25)

t
(

ℓ̄
)

n = −∂b
∂ℓ

=
b · ∂ℓ̄

[

c
(

ℓ̄
)

n
]

r
√

1 + (p/r)2
. (B.26)

Here the vectors t, n et b are called the tangent, normal and binormal to the helix [158].
This yields:

c
(

ℓ̄
)

=
1 + ι

[

(p/r)2 cos ℓ̄+ 2h′
]

r[1 + (p/r)2]
+O

(

ι2

r

)

, (B.27)

t
(

ℓ̄
)

= − p

r2
× 1− ι

{

[(r/p)2 + 1]h′′′ + [(r/p)2 − 1]h′ + [(p/r)2 + 2] cos ℓ̄
}

1 + (p/r)2
+O

(

ι2

r

)

,

(B.28)
where the primes denote the differentiation with respect to ℓ̄. The following notations
make the ι-expansion explicit:

c
(

ℓ̄
)

= c0 + c̄+ ιc1
(

ℓ̄
)

+O
(

ι2

r

)

, (B.29)

t
(

ℓ̄
)

= t0 + t̄+ ιt1
(

ℓ̄
)

+O
(

ι2

r

)

, (B.30)

where c0, t0 are the quantities introduced in Sec. B.2 and c̄, t̄ characterize homogeneous
deviations of order δr, δp from these values (therefore c̄ ≪ 1/r, t̄ ≪ 1/r). The free energy
Eq. (B.9) of the helix thus has the following ι-expansion:

Fh =

∫ [(

kt
2
t̄2 +

kc
2
c̄2
)

+ ι (ktt1t̄+ kcc1c̄) + ι2
(

kt
2
t21 +

kc
2
c21

)

+O
(

kcc̄ι
2

r

)

+O
(

kct̄ι
2

r

)

+O
(

kc,tι
3

r2

)]

dℓ.
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By noting that c1 and t1 are linear in h and that h and its derivatives average to zero over
a turn of the helix, we find that Fh decomposes into the sum of two terms:

Fh =

∫ [

kt
2
t̄2 +

kc
2
c̄2
]

dℓ+ ι2
∫ [

kt
2
t21 +

kc
2
c21 +O

(

ι2
kt
r2
, ι2

kc
r2

)

+O
(

kt̄t

r
,
kcc̄

r

)]

dℓ.

(B.31)
The first term of this sum is exactly the free energy calculated in Eq. (B.10). It is
independent of h and represents the energy cost of changing the radius and average pitch
of the helix. To lowest order in c̄, t̄, we can replace r, p in the second term by their
equilibrium values r0, αr0. In order to find the free energy cost of a bend in the tube, one
must find the minimum of Fh with respect to h. It is reached when

a1 =
α2

2

(2 + α2)kt − kc
α2kt + kc

and an>2 = 0. (B.32)

Injecting this into Fh and using Eqs. (B.12), (B.14), (B.15) and (B.18) yields the persis-
tence length of the tube:

ℓp =
2α

√
1 + α2

kBT

ktkc
α2kt + kc

+
πrκ

kBT
=

Kα
√
1 + α2

kBT (3 + 2α2)
+
πrκ

kBT
. (B.33)

B.3.4 Experimental determination of K
In Ref. [60], the persistence length of a tube of brain polar lipids and PIP2 coated with
rat brain dynamin is measured to be ℓp = 37 ± 4µm. Since πrκ/kBT ≃ 300 nm, the
contribution of the membrane to the elastic energy is negligible1 and Eq. (B.33) yields

K =
3 + 2α2

α
√
1 + α2

kBTℓp
r20

≃ 2.2× 10−8 N. (B.34)

Using Eq. (B.11), we estimate E ≃ 220MPa, a value of the same order of magnitude as
the typical Young modulus of proteins E = 2GPa [159].

B.4 Soft membrane susceptibility matrices

For clarity’s sake, we regroup some expressions associated with the models of Sec. 4.4.3
here. In both limits discussed in Sec. 4.4.3 (short and long time), one combines the
relations Eqs. (4.56) between the three hydrodynamic and four microscopic variables with
a constraint [Eqs. (4.54) and (4.57) respectively] to find a unique linear relation between
the hydrodynamic and microscopic variables, which we write:





δρ
uzθ
δΦ



 = Qsm





δr
δp
a



 . (B.35)

1Note that since the contribution of the membrane to the persistence length is negligible, allowing the
membrane to depart from its torus shape in the model of Sec. B.3.3 would not change our results much.
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In a unit system such that ρ0 = 1, Eqs. (4.31) and (4.32) imply that χ is the matrix of
second derivatives of the free energy of Eq. (4.48) as a function of (δρ, uzθ, δΦ). Hence

χsm =
[

(Qsm)
−1]T Ksm (Qsm)

−1 . (B.36)

Here Ksm is the matrix of second derivatives of the free energy of Eq. (4.48) as a function
of (δr, δp, a), where the dependence in u is eliminated using the constraints Eq. (4.54) or
Eq. (4.57) The expressions for the matrices implicated in this formula depend on the time
scale considered. They read

Kt≪
sm =





krr + kuu krp kuu − πκ
krp kpp 0

kuu − πκ 0 2πks + kuu



 , (B.37)

Qt≪
sm =





Φ0

1+α2 − Φ0

1+α2 −2(1− Φ0)

0 − 1
α

0
Φ0(1−Φ0)

1+α2 −Φ0(1−Φ0)
1+α2 2Φ0(1− Φ0)



 , (B.38)

Kt≫
sm =







krr − 2πκ+ (πκ)2

kuu
krp 0

krp kpp 0

0 0 2πks

(

1 + 2πks
kuu

)






, (B.39)

Qt≫
sm =









1− α2Φ0

1+α2 − πκ(1−Φ0)
kuu

− Φ0

1+α2 −(1− Φ0)
(

1 + 2πks
kuu

)

0 − 1
α

0

Φ0(1− Φ0)
(

− α2

1+α2 +
πκ
kuu

)

−Φ0(1−Φ0)
1+α2 Φ0(1− Φ0)

(

1 + 2πks
kuu

)









. (B.40)

Neither χt≪
sm nor χt≫

sm have compact explicit expressions.

B.5 Comment on dynamin compressibility experiments

As emphasized in chapter 4, the change of conformation of dynamin is related to its me-
chanical properties, which we analyze throughout the present appendix. In this section,
we discuss a micromechanical experiment aimed at providing a direct measurement of
these properties, and express a concern that it might unfortunately not yield much in-
formation about the dynamin helix. We use the notations of chapter 3 throughout this
section.

The setup used here is that of Fig. 3.1, except that the pipette is not held fixed relative
to the bead, but is successively brought closer to and further form it at constant velocity,
as shown in Fig. B.3(a-b). The force on the bead is monitored throughout the experiment.
When the vesicle and bead are further apart than the equilibrium length of the dynamin
helix, the force plateaus at the value fb defined in Eq. (3.3). When they are taken too close
together, the helix buckles and the force vanishes. Between those two regimes, however,
the force depends linearly on the displacement δL of the pipette:

f = KδL. (B.41)
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Figure B.3: Dynamin compression experiment. (a) Sequence of images showing the
triangular-wave displacement of the pipette/vesicle and the resulting compression of the
dynamin-coated tube. Note the phases during which the helix covers only part of the
tubule and those during which it buckles. Scale bar, 10µm. (b) Force (red) and displace-
ment (blue) curves corresponding to this experiment. The slopes in the phase where the
force depends linearly on the displacement yield the spring constant K. (c) Experimental
test of the relationship K = kh/Lh. The fit yields kh = 7.2× 10−11 N. (d) Illustration of
the weak dependence of kv [as given in Eq. (B.50)] on x in the experimentally relevant
regime (note the logarithmic scale in the horizontal axis). (e) Experimental test of the
relationship K = kvσ. The values of σ were inferred from bare tubule force measurements

through the relation σ = 1
2κ

(

fb
2π

)2
and the error bars reflect the experimental uncertainty

on κ. The fit yields kv = 3.4× 10−2. All experimental data courtesy of Aurélien Roux.

A possible interpretation of this result is that as the pipette and bead are brought
closer to each other, the helix is compressed, so that the spring constant K = Kh would
reflect the compressibility of the dynamin helix. In this case, one would expect that
Kh = kh/Lh, where Lh is the length of the helix, and kh is an intrinsic rigidity of dynamin.
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Dimensionally2,

kh ≃ K ≃ 2.2× 10−8 N. (B.42)

We confront these predictions with data from five experiments in Fig. B.3(c). Two
difficulties arise: first, the experimental data does not reflect the proportionality between
K and L−1

h ; second, the value of kh is smaller than the expected value by more than two
orders of magnitude.

Here we propose another interpretation of these results. As the pipette and the bead
are brought closer to each other, it is not only a spring of rigidity Kh corresponding to the
helix that is compressed, but two springs Kh and Kv put in series, where Kv corresponds
to the vesicle. Thus

1

K
=

1

Kh

+
1

Kv

, (B.43)

and if the vesicle is much softer than the helix, it dominates the compressibility of the
whole.

In the following we calculate a theoretical expression for the spring constant Kv of
the vesicle. Setting Lh to a constant and approximating the initial shape of the vesicle
to a sphere, we can assimilate δL to the variation of the distance between the poles of
the sphere. For small displacement, we can describe the surface of the vesicle in terms
of the spherical harmonics Yl,m. Restricting ourselves to axisymmetric configurations and
denoting by Ω the solid angle on the sphere, we write the local radius as

rv(Ω) = r0v

[

1 +
+∞
∑

l=0

ulYl,0(Ω)

]

, (B.44)

where r0v is the same as the radius rv defined in Sec. 3.1 and the uls are real numbers
much smaller than one. Let σ be the tension of the membrane. The free energy of the
vesicle, not including the membrane cylinder that is sucked into the pipette, reads (up to
a constant):

Fv = −(Pv − Pc)δV + σδA− fδL+ δEbending. (B.45)

Indeed, for this system, the membrane cylinder sucked into the pipette acts as a reservoir
of membrane at tension σ and a reservoir of water at pressure Pv. Moreover, in order to
expand, the vesicle has to work against the pressure Pc in the chamber. To second order
in ul, the deviations of volume, surface area, height and bending energy away from the

2It would in principle be possible to derive a precise relation between kh and K in the framework of
Sec. B.2. However, this would require a few uncertain assumptions, e.g. about whether or not some
amount of unwinding of the helix is allowed on the timescales considered, and would thus end up yielding
no more than a reasonable order of magnitude for kh.
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spherical shape are given by [160]

δV

(r0v)
3

=
√
4πu0 + u20 +

+∞
∑

l=1

u2l , (B.46a)

δA

(r0v)
2

= 4
√
πu0 + u20 +

+∞
∑

l=1

u2l

[

1 +
l(l + 1)

2

]

, (B.46b)

δL

r0v
=

+∞
∑

l=0

ul

√

2l + 1

π
, (B.46c)

δEbending

κ
=

+∞
∑

l=0

u2l
(l − 1)l(l + 1)(l + 2)

2
. (B.46d)

We now make the assumptions that the membrane is inextensible, and the water incom-
pressible. Therefore the only way for the vesicle to change its volume or surface area is
to flow into the pipette. Since the pipette forces the membrane to assume a cylindrical
shape of radius rp, those changes must satisfy the constraint

δV =
rp
2
δA. (B.47)

It is worth noting that the left-hand side of this equation is of order (r0v)
3 while the right-

hand side is of order rp(r
0
v)

2. In the simplifying limit where the pipette is much smaller
than the vesicle(rp ≪ r0v), we can thus write

δV = O
[

rp(r
0
v)

2
]

⇒ u0 = − 1√
4π

+∞
∑

l=1

u2l +O
[

(ul>0)
3
]

+O
(

rp
r0v

)

. (B.48)

Using Eq. (3.1), the first term in the free energy of Eq. (B.45) can be written 2σ
r0v
δV =

rp
r0v
σδA≪ σδA and is thus negligible compared to the second term. The volume variation

δV can thus be set to zero everywhere. Minimizing Fv under this constraint, we find that
for l > 0

u2l =

√
4l + 1

2
√
π(l + 1)(2l − 1)

[

1 + 2κl(2l+1)
σ(r0v)

2

]

f

σr0v
and u2l+1 = 0. (B.49)

Therefore

kv =
Kv

σ
=

f

σδL
=

{

+∞
∑

l=1

4l + 1

2π(l + 1)(2l − 1) [1 + 2xl(2l + 1)]

}−1

, (B.50)

where x = κ/σ(r0v)
2. Note that if κ = 0, the sum in this expression diverges, yielding a

vanishing spring constant. This is related to the fact that the fluctuations of a membrane
with a zero bending modulus diverge at small wavelength. Putting κ 6= 0 thus has a similar
effect to introducing an ultraviolet cutoff at wave vector

√

σ/κ. Since the divergence is
logarithmic, however, kv depends only weakly on the exact value of the cutoff parameter



170 APPENDIX B. DYNAMIN MECHANICS

x, as shown in Fig. B.3(d), and can therefore be treated as a constant of order unity for
all relevant parameter regimes.

We compare the predictions of this second interpretation with experiments in Fig. B.3(e).
Again, the precision is not sufficient to detect the linear dependence of Kv on σ, and the
measured dimensionless spring constant is significantly smaller than the value kv ≃ 2.3
expected from the theory for an experimentally reasonable x = 6× 10−2.

In conclusion, evaluations of the expected spring constants of the helix and the vesi-
cle suggest that they are both too rigid to account for the experimental measurements
presented here. One possible explanation would be for them to be in series with an even
weaker spring, for instance a very floppy membrane bulge of the type studied in Sec. 3.4.3.
It could also be that the dynamin helix is much softer than the approximate Eq. (B.42)
suggests. Such a claim should however be supported by further experimental verifications,
e.g. of the relation Kh ∝ L−1

h .



Appendix C

Solutions of the discrete filament
profile equation

C.1 Steady state, no reattachment

Here we show that the probability distribution of Eq. (6.3) is a stationary solution of
the problem specified by Eqs. (6.21) and (6.23) for n = 1 (single filament case), k = 0
(no espin reattachment) and P0 = 1 (all espin sites are occupied at the polymerization
front). Note that the initial condition Eq. (6.22) need not be considered as it is irrelevant
in the stationary state. In the coordinate system defined in Fig. 6.5, Eq. (6.3) yields the
following probability for the altitude of the filament’s pointed end to be at altitude Z or
larger

P>
f (Z, t) =

+∞
∏

i=1

[

1− e−(t−
Z
v
+ i

v )
]

=

⌊vt⌋
∑

Z′=Z

Pf (Z
′, t). (C.1)

In Sec. C.1.1 we show that this probability distribution satisfies the bulk master equation
Eq. (6.23), then in Sec. C.1.2 we show that it satisfies the boundary condition Eq. (6.21).

C.1.1 Bulk equation: satisfying Eq. (6.23)

According to Eq. (C.1), the probability for the filament’s pointed end to be exactly in
Z < ⌊vt⌋ reads

Pf (Z, t) = P>
f (Z, t)− P>

f (Z + 1, t) = e−(t−Z/v)P>
f (Z, t). (C.2)

The left-hand side of Eq. (6.23) is the time derivative of Pf (Z, t), which reads:

∂tPf (Z, t) = Pf (Z, t)

{

−1 +
+∞
∑

i=1

exp
[

−
(

t− Z
v
+ i

v

)]

1− exp
[

−
(

t− Z
v
+ i

v

)]

}

. (C.3)

The product in Eq. (6.23) can be expressed in terms of P>
f (Z, t). The right-hand side
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of this equation thus reads

−Pf (Z, t) + e−(t−Z/v)

Z−1
∑

Z′=−∞

{

Z−1
∏

i=Z′+1

[

1− e−(t−i/v)
]

}

Pf (Z
′, t)

= −Pf (Z, t) + e−(t−Z/v)

Z−1
∑

Z′=−∞

∏Z−1
i=−∞

[

1− e−(t−i/v)
]

∏Z′

i=−∞ [1− e−(t−i/v)]
Pf (Z

′, t)

= −Pf (Z, t) + e−(t−Z/v)

Z−1
∑

Z′=−∞

P>
f (Z, t)

P>
f (Z

′ + 1, t)
Pf (Z

′, t)

= −Pf (Z, t) + Pf (Z, t)
Z−1
∑

Z′=−∞

exp
[

−
(

t− Z′

v

)]

1− exp
[

−
(

t− Z′

v

)] . (C.4)

This expression is equal to that of Eq. (C.3), thus proving that the probability distribution
of Eq. (6.3) is a stationary solution of Eq. (6.23).

C.1.2 Boundary condition: satisfying Eq. (6.21)

According to Eq. (C.1), the probability for the filament’s pointed end to be exactly in
z = ⌊vt⌋ is

Pf (⌊vt⌋, t) = P>
f (⌊vt⌋, t) =

+∞
∏

i=1

[

1− e−(t−
⌊vt⌋
v

+ i
v )
]

, (C.5)

where the first equality is due to the fact that the filament’s pointed end cannot be any
higher than ⌊vt⌋.

The left-hand side of Eq. (6.21) reads:

∂tPf (⌊vt⌋, t) = Pf (⌊vt⌋, t)
+∞
∑

i=1

exp
[

−
(

t− ⌊vt⌋
v

+ i
v

)]

1− exp
[

−
(

t− ⌊vt⌋
v

+ i
v

)] . (C.6)

Using Eqs. (C.2) and (C.5) we can express the right-hand side of Eq. (6.21) in a similar
way to what was done in Eq. (C.4):

⌊vt⌋−1
∑

Z′=−∞







⌊vt⌋−1
∏

i=Z′+1

[

1− e−(t−i/v)
]







Pf (Z
′, t)

=

⌊vt⌋−1
∑

Z′=−∞

P>
f (⌊vt⌋, t)

P>
f (Z

′ + 1, t)
Pf (Z

′, t)

= Pf (⌊vt⌋, t)
⌊vt⌋−1
∑

Z′=−∞

exp
[

−
(

t− Z′

v

)]

1− exp
[

−
(

t− Z′

v

)] . (C.7)

This expression is equal to that of Eq. (C.6), thus proving that the probability distribution
of Eq. (6.3) is a stationary solution of the system of equations Eqs. (6.21) and (6.23), and
therefore of the full problem formulated in Sec. 6.4.2.
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C.2 Far away from the polymerization front

Here we prove Eq. (6.28). In Sec. C.2.1 we establish a preliminary result necessary for
our demonstration, then we conclude in Sec. C.2.2.

C.2.1 Preliminary result

Let (A, i) ∈ N∗2 with i < A. Here we prove the relationship

A−i
∑

j=1

i(A− j − 1)!

(A− j − i)!
=

(A− 1)!

(A− i− 1)!
(C.8)

by recursion over A.

C.2.1.1 Base case

Let A = i+ 1. In this case, Eq. (C.8) reads

1
∑

j=1

i(i+ 1− j − 1)!

(i+ 1− j − i)!
=

(i+ 1− 1)!

(i+ 1− i− 1)!
, (C.9)

which is true as both sides of the equation are equal to i!.

C.2.1.2 Recursion

Assuming that the relationship Eq. (C.8) is true for A, we establish it for A + 1. Incre-
menting A by one unit, the left-hand side of Eq. (C.8) reads

A+1−i
∑

j=1

i(A− j)!

(A+ 1− j − i)!
=

A−i
∑

j′=0

i(A− j′ − 1)!

(A− j′ − i)!
=
i(A− 1)!

(A− i)!
+

A−i
∑

j′=1

i(A− j′ − 1)!

(A− j′ − i)!
, (C.10)

where we made the change of dummy variable j′ = j−1. The right-hand side of Eq. (C.8),
on the other hand, reads

A!

(A− i)!
= i

(A− 1)!

(A− i)!
+ (A− i)

(A− 1)!

(A− i)!
=
i(A− 1)!

(A− i)!
+

(A− 1)!

(A− i− 1)!
. (C.11)

Using the recursion hypothesis shows that the last terms of Eqs. (C.10) and (C.11) are
equal, thus establishing Eq. (C.8) for all As.

C.2.2 Full solution

Eqs. (6.28) is equivalent to

Qe(Z0, t) = 1 (C.12a)

Qe(Z, t) =

Z−Z0
∑

i=1

(Z − Z0 − 1)!

(i− 1)!(Z − Z0 − i)!

(kt)i

i!
, (C.12b)
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which obviously satisfy Eqs. (6.27) for Z = Z0, as well as for t = 0. Injecting Eq. (C.12b)
in Eq. (6.27b), redefining i → i + 1 in the left-hand side and permuting sums in the
right-hand side with i = Z − Z ′, we find that the probability distribution of Eqs. (6.28)
is a solution of Eqs. (6.27) if and only if

k + k

Z−Z0−1
∑

i=1

(kt)i

(i!)2
(Z − Z0 − 1)!

(Z − Z0 − i− 1)!
= k

Z−Z0−1
∑

i=1

(kt)i

(i!)2

Z−Z0−i
∑

j=1

i(Z − Z0 − j − 1)!

(Z − Z0 − j − i)!
+ k.

(C.13)
This equality is proved by using Eq. (C.8) with A = Z − Z0.



Appendix D

Non tube-related articles

Although the work on the shape of tubes in eukaryotic cells described in the main text
of the present volume is the main focus of this thesis, it also involves contributions to
several unrelated projects. In this appendix we present one article and one manuscript
scheduled for publication stemming from these collaborations, corresponding to items 3.
and 6. of the publication list presented in page 2.
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Red blood cells are amazingly deformable structures able to re-

cover their initial shape even after large deformations as when

passing through tight blood capillaries. The reason for this excep-

tional property is found in the composition of the membrane and

the membrane-cytoskeleton interaction. We investigate the me-

chanics and the dynamics of RBCs by a unique noninvasive tech-

nique, using weak optical tweezers to measure membrane fluctu-

ation amplitudes with �s temporal and sub nm spatial resolution.

This enhanced edge detection method allows to span over >4

orders of magnitude in frequency. Hence, we can simultaneously

measure red blood cell membrane mechanical properties such as

bending modulus � � 2.8 � 0.3 � 10�19J � 67.6 � 7.2 kBT, tension

� � 6.5 � 2.1 � 10�7N/m, and an effective viscosity �eff � 81 �

3.7 � 10�3 Pa s that suggests unknown dissipative processes. We

furthermore show that cell mechanics highly depends on the

membrane-spectrin interaction mediated by the phosphorylation

of the interconnection protein 4.1R. Inhibition and activation of

this phosphorylation significantly affects tension and effective

viscosity. Our results show that on short time scales (slower than

100 ms) the membrane fluctuates as in thermodynamic equilib-

rium. At time scales longer than 100 ms, the equilibrium description

breaks down and fluctuation amplitudes are higher by 40% than

predicted by the membrane equilibrium theory. Possible explana-

tions for this discrepancy are influences of the spectrin that is not

included in the membrane theory or nonequilibrium fluctuations

that can be accounted for by defining a nonthermal effective

energy of up to Eeff � 1.4 � 0.1 kBT, that corresponds to an actively

increased effective temperature.

erythrocyte � membrane fluctuations � nonequilibrium �

optical tweezer � spectrin

The extraordinary deformability of RBCs is vital for their
proper function, as it enables the cells to be elongated by

more than twice their size when passing through �m-sized
capillaries. The elastic properties of RBCs are dominated by the
interaction between the cell membrane and the underlying
cytoskeleton, mainly consisting of spectrin, a long heterodimer
that aligns tail to tail forming a 200-nm-long tetramer. Each
spectrin filament interconnects to up to 5 other spectrins and is
bound to the cell membrane via a protein complex consisting of
protein 4.1R, actin, and glycophorin C (1). The plasma mem-
brane fluctuations are related to RBCs’ mechanical properties
that have been extensively studied over the past three decades
(2–6). It is well known that fluctuations of the membrane depend
on its bending rigidity � and its membrane tension � (7).
Furthermore, RBCs gain their elasticity from the elastic shear
modulus of the cytoskeletal spectrin network (8, 9). Recent
theoretical analysis (10) suggest that the spectrin cytoskeleton
acts as a steric barrier restricting membrane undulations toward
the network.

Experiments by Tuvia and coworkers showed an ATP depen-
dent effect by monitoring the static f luctuation amplitude of
RBCs under normal and ATP-depletion conditions (11). In
these measurements, the fluctuation amplitude (the root mean
square displacement; rmsd), was found to decrease substantially
under ATP depletion. This was interpreted as a sign for activity-
dependent fluctuations. However, a recent report did not con-
firm this decrease (6), arguing that the fluctuations are purely

thermally driven. Additionally to the fluctuation decrease under
ATP depletion, Tuvia et al. found a fluctuation decrease upon
increase of the external medium viscosity, in disagreement with
thermodynamics, which predicts that all equilibrium quantities
are independent of transport coefficients such as the viscosity.
This suggested an active, energy-consuming process, depending
on phosphorylation of the 4.1R protein or erythrocyte myosin
motors. Subsequent theoretical studies argue that the viscosity
dependence of static f luctuations could be explained by the
ATP-dependent phosphorylation of the 4.1R protein (12), which
controls the spectrin-membrane connection (1). This phosphor-
ylation is catalyzed by protein kinase C (PKC) (13), which
disassembles the 4.1R/spectrin/actin trimer, thus leading to a
decreased overall stability of the RBC membrane.

Previous measurements to determine membrane fluctuations
suffer from the restricted time resolution of camera acquisition
(6), or can only detect relative and uncalibrated fluctuation
amplitudes (5, 11). To overcome both limitations we used a
unique approach to monitor the time-dependent fluctuation of
the RBC membrane at a single point with sub nm spatial and �s
time resolution (14). Our measurements are in excellent agree-
ment with the theory of fluctuating membranes at frequencies
�10Hz and enable us to simultaneously measure the membrane
bending modulus �, the tension �, and an effective viscosity �eff

of RBCs, thereby showing that the external viscosity has no
effect on the time averaged fluctuation amplitudes.

Results

Interferometric Fluctuation Detection. The method used to measure
RBC membrane fluctuations is an extension of well-known inter-
ferometric particle detection using optical tweezers (15). However,
the laser is operated at minuscule powers (�50 �W) at the sample,
too small to create a trapping potential. In the experiments, a
volume of 15 �L of a RBC suspension was sealed between two
coverslips, and cells were allowed to weakly attach on the substrate
for 30 min. Only discocyte-shaped RBCs with diameters varying
from 6 to 8 �m were used. Weak attachment of the RBCs to the
coverslip was checked by reflection interference contrast micros-
copy (RICM) (SI Appendix and Fig. S1). The infra-red (� � 1064
nm) laser was positioned at the edge of the cell, and a calibration
curve (line scan) was acquired by moving the RBC through the laser
with a step size of 4 nm using a piezoelectric stage and recording
the signal with a quadrant photodiode (QPD) at the condenser‘s
back focal plane as shown in Fig. 1. The method is based on a
difference in refractive index, thus detecting the plasma membrane
at the interface between the cell and the medium. Each data point
of the calibration curve represents an average of 500 recordings
taken at a sampling rate of 100 kHz. The acquired calibration curve
shows a linear regime, which was used to convert between QPD
voltage and edge position in nm by determining the slope. To
record the fluctuations, the edge of the RBC was positioned at the
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center of the linear regime (called the working point WP, Fig. 1).
To measure the membrane fluctuations, the QPD voltage was
recorded in 10 subsequent measurements of 10 seconds each and
converted to nm using the previously determined linear slope of the
calibration curve. After each recording, the line scan was repeated
to ensure that the cell’s properties and position did not change
during the experiment. From each time series, the power spectral
density (PSD) was calculated (see SI Appendix) and filtered using
log binning. For further evaluation of the data, the mean PSD of the
10 recordings was used. To ensure that the laser did not interfere
with the measurements, we recorded the PSD as a function of the
applied power and found no dependence for laser powers smaller
than 1 mW (see Fig. S1), thus confirming that the used power of 50
�W does not influence the measurement.

Mechanics of Normal RBCs. The PSD in Fig. 2 represents mean and
standard error (n � 210) of 21 normal RBCs. A theoretical
description of the PSD has been established previously (16) (SI
Appendix, Calculations). In the limit of a flat membrane the PSD
decays at high frequencies with a theoretical predicted power law
of PSDHF � f�5/3, illustrated by the dashed line in Fig. 2. At low
frequency the curve levels off because of the finite size of the
RBC and membrane tension. The theoretical description (SI
Appendix, Calculations) provides an excellent fit in both regimes
(Fig. 2) (r2 � 1�� (PSDexp�PSDmodel)2/� PSDmodel

2 � 0.98),
which allows us to measure the RBCs mechanical properties of
bending rigidity �dy � 2.8 � 0.3 � 10�19J, surface tension � �
6.5 � 2.1 � 10�7N/m, and effective viscosity �eff � 81 � 3.7 �
10�3Pa s (Table 1). The used fit function has three independent
parameters, each changing the curve in a characteristic way,

which ensures that all parameters can be determined simulta-
neously. The bending modulus and the tension are both consis-
tent with literature values that have been measured with other
methods (3–6).

Furthermore, for a consistency check, we determined the
mechanics of hypertonic swollen cells (see Fig. S2) and found an
increase in tension and a decrease in viscosity as expected (6).
Previous work estimated � by measuring the rmsd of edge
fluctuations (4, 6), which is equivalent to the standard deviation
of the Gaussian distributed histogram of the fluctuation ampli-
tude (Fig. 2, Insets). For normal RBCs we find a rmsd value of
	h � 33.0 � 1.3 nm, consistent with literature (4, 14, 17). The
rmsd is a static measurement that averages the fluctuation
amplitudes over time and is independent of the viscosity in
equilibrium systems. Its measurement enables us to crosscheck
our results in two ways. First, we can show the consistency of the
measured rmsd with the theoretical static f luctuation amplitude

Fig. 1. Schematics of the setup used to detect the RBC edge fluctuations.

Infra-red (� � 1064 nm) laser light is emitted from a fiber laser and intensity-

controlled using an acousto-optical modulator (AOM). Five percent of the

light is projected on a photodiode (PD) as intensity reference. A 10� telescope

increases the beam diameter to 14 mm. The beam is coupled in the optical path

of an inverted microscope using a dichroic mirror and focused on the sample

by a water-immersion objective (O). At the sample the light is partially

scattered off the cell edge. Scattered and unscattered light are collected by a

water-immersion condenser (C) and imaged on a QPD. Before digitalization

(DAQ), the data are amplified and filtered using custom made low-noise

hardware (AMPL). Round Inset 1 shows a detailed view of the experiment. Part

of the laser interacts with the cell by light scattering, which is monitored by the

QPD. A calibration curve is recorded by moving the RBC through the laser focus

using a 3D piezoelectric stage (3D-PZ) and determining a linear regime as

shown in the plot. The center of this linear regime is used as the working point

(WP) of the experiment. A camera images the position of the cell using white

light (WL). Round Inset 2 sketches the interaction between the membrane and

the spectrin network, which is maintained by the protein 4.1 forming a trimer

with spectrin and a short actin filament.

Fig. 2. Fluctuation spectra of normal RBC under various medium viscosities.

(A) Mean PSD of 21 normal RBCs. The presented error (at the center of the

diamond data) is the standard error for the 210 individual PSDs. The fit

provides an excellent explanation for the data over four decades. The theo-

retical slope of (-5/3) is shown presented as an eye-guide (dashed line). (Inset)

Static fluctuations histogram of a normal RBC. (B) PSD of RBCs immersed in

media of increasing viscosities, and the corresponding fluctuation histogram

in the Inset. Although the PSD differ significantly, the fluctuation histogram

remains almost independent of the viscosity.
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rmsdth � 36 � 11 nm, which is calculated using the mechanical
parameters determined from the dynamic measurements (Table
1). Additionally, in the literature the rmsd has been used to
determine the bending stiffness by assuming a tensionless limit
and accounting for the shear modulus on the first f luctuation
mode. Strey, Peterson, and Sackmann (SPS) established an
approximation to calculate a bending modulus from the rmsd
(4): �stat

SPS � (6 � 10�6)kBT R2/(	hl � 1)2 � 2.8 � 0.2 � 10�19J,
where R denotes the cell radius, and kB the Boltzmann constant.
This approximative static bending modulus is an alternative
method, and in the case of normal RBCs it agrees well with the
dynamic bending modulus obtained from the PSD (see Table 1).
We furthermore checked the dependence of the fluctuation on
the viscosity of the external medium. We increased the medium
viscosity by the addition of 75 mg/mL (�75 � 2.4 � 0.1 � 10�3Pa
s), 135 mg/ml (�135 � 4.4 � 0.2 � 10�3Pa s), and 200 mg/mL (�200

� 10.9 � 0.9 � 10�3Pa s) of Dextran 41000. In all cases
fluctuation histograms were well Gaussian distributed, but did
not depend on the external viscosity (Fig. 2B), as expected from
equilibrium statistical mechanics. Furthermore, we used the
PSD of RBC immersed in solvents of different viscosities to
determine the effective viscosity as a function of external
viscosity. The resulting dependence (SI Appendix and Fig. S3)
can be well fitted with a linear function �eff � a��ext
b, yielding
fit parameters of a � 8.3 � 2.3 and b � 53 � 11 � 10�3Pa s.

PSD of ATP-Depleted Cells. To investigate the effect of ATP on
membrane mechanics, we removed ATP from the RBCs by
applying an ATP depletion medium for 3 h and then measured
the resulting PSD. As presented in Fig. 3A (green, n � 200, fit
quality: r2 � 0.85) the fluctuation amplitude was significantly
smaller than for the normal RBCs over the full frequency
spectrum, showing a strong dependence of the membrane fluc-
tuations on ATP. We measured a slightly increased bending
rigidity, and dynamic measurements showed that the effective
viscosity was also increased by �50% (Table 1). The effect of
ATP-depletion was additionally reflected in the static measure-
ment of the rmsd, which was strongly decreased compared with
normal cells (Table 1). Interestingly, removing ATP led to a
strong increase of tension, which explains the discrepancy be-
tween the dynamic bending modulus presented in this work and
the static bending modulus which assumes a vanishing tension
(4) (Table 1).

PSD of PKC-Activated Cells. The fluctuation decrease in ATP-
depleted cells might be because of an inhibition of the phosphor-
ylation of the 4.1R protein, which connects the spectrin to the
membrane in its unphosphorylated state (13). To investigate the
influence of this connection we activated PKC, an enzyme that had
been shown to phosphorylate 4.1R, thus resulting in an increased
dissociation of the spectrin network and unbinding of spectrin from
the membrane (13). The resulting PSD of 21 PKC activated cells is

presented in Fig. 3A (red, n � 210, fit quality: r2 � 0.97). Fluctu-
ations increased over the accessible frequency range compared with
the normal RBCs. The analysis of the data yields static and dynamic
bending rigidities consistent with the bending rigidity measured on
normal RBCs (Table 1). However, our results showed that over-
activation of PKC decreases membrane tension by �50% and
resulted in a slight decrease of the effective viscosity (Table 1).
DMSO control experiments showed no difference with the normal
cells. Additionally, we checked the effect of cells treated with the
actin depolymerizing drug latrunculin A (SI Appendix and Fig. S4).
The data are similar to the PKC activated cells (SI Appendix and
Fig. S5), however, our controls show that F-actin in RBCs was not
affected by latrunculin A (SI Appendix and Fig. S6), which indicates
that there is no actin dynamics in RBCs. Our experiments suggest
a yet unknown effect of LA on the cytoskeleton membrane
interaction.

Relative Fluctuation Amplitudes. To investigate the effect of non-
thermal contributions, we normalized the fluctuations of normal
and PKC-activated cells by the PSD of ATP-depleted cells (Fig.
3B). A striking result of this normalization arose at frequencies
�10Hz, where all relative amplitudes level off to plateaus. Here,
the fluctuations for PKC-activated cells level to a value of
approximately twice the fluctuation of ATP-depleted cells, and
the amplitude of normal cells was �30% higher than in ATP-

Fig. 3. Absolute and normalized fluctuation spectra. (A) Mean PSD of 21

normal RBCs (n � 210, black) and 20 ATP-depleted (n � 200, green) and 21

PKC-activated (n � 210, red). The solid lines show the fit. (Inset) Semilog plot

of the same data for the marked frequency range showing that the ATP-

depleted cells have the smallest amplitude. (B) Semi logarithmic representa-

tion of the fluctuation amplitudes normalized by the ATP-depleted PSD,

which can be considered to be a purely thermally driven system because of the

lack of the energy source ATP.

Table 1. Collection of mechanical parameters of RBCs under

various conditions, compared with previous findings by Evans et

al. (6) and Strey et al. (4)

Normal ATP-depl. PKC

rmsdex [nm] 33.0 � 1.3 22.3 � 0.6 36.7 � 2.8

rmsdth [nm] 36.3 � 12 24.0 � 9.0 47.2 � 13

�SPS
stat [10�19J] 2.8 � 0.2 6.1 � 0.3 2.3 � 0.4

�dyn [10�19J] 2.8 � 0.3 3.9 � 0.3 2.6 � 0.2

� [10�7 N/m] 6.5 � 2.1 19 � 1 2.7 � 1.1

�eff [10�3Pa s] 81 � 3.7 118 � 11.8 57 � 2.4

rmsdEvans [nm] 23.6 � 0.6 22.8 � 1.0 —

rmsdStrey [nm] 30.0 � 5 — —
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depleted cells. However, �10 Hz we found relative amplitudes
peaking at 6.5 � 0.3 (PKC-activated) and 3.6 � 0.2 (normal
cells), all in arbitrary units.

Discussion

The presented results allow us to investigate membrane dynam-
ics with millisecond time and sub nm spatial resolution, using a
standard optical tweezers setup equipped with a QPD. In
contrast to previous fluctuation analysis which mostly used video
microscopy, our method provides great advantages in terms of
spatial and temporal resolution, which is not restricted by camera
properties and image analysis. In contrast, the presented method
is easy to implement, only limited by fundamental signal to noise
ratio and does not require complex image analysis. Using the
theory of membrane fluctuations, we can extract the mechanical
parameters of RBCs under various conditions. The high repro-
ducibility of the experiments and the data quality also allow us
to explore the limitations of the applied equilibrium model.

RBC Viscosity. As presented in Table 1, we discover surprisingly
high values for the effective viscosity (�100 � 10�3 Pa s)
compared with literature values for RBC viscosity, which was
reported to be approximately �RBC �10 � 10�3 Pa s (18). Such
an increase of the effective viscosity at the membrane was
predicted to be a confinement effect caused by close association
of the spectrin to the membrane, providing a steric obstacle for
the fluid flow (19). Hence, our measurements confirm these
predictions. To gain further insight into the effective viscosity,
we varied the external viscosity as presented in the results
section: The effective viscosity depends linearly on the external
viscosity, with a slope of a � 8.3 � 2.3 (SI Appendix and Fig. S3).
This phenomenological dependence can be used to extract a
RBC viscosity of �RBC � 6.4 � 1.9 Pa s (see SI Appendix), which
is consistent with previously reported values (18).

Comparison with the Literature. Our results confirm previous
reports by Tuvia et al. (11) of decreased static f luctuation
amplitudes under ATP-depletion conditions that were put into
question recently by Evans et al. (6) (see Table 1). Because the
rmsd presents the integral over the PSD, it is dominated by the
low frequency domain. The low frequency part depends on
tension, whereas the high frequency part is dominated by the
bending modulus. This allows us to give a mechanical reason for
the fluctuation decrease in ATP-depleted cell, which is more
pronounced in the low frequency part (see Fig. 3). We identify
an increase in tension as reason for these decreased fluctuations,
as discussed in the next paragraph (see also Table 1). It should
be mentioned that our measurements of the rmsd is consistent
with several previous reports (4, 14, 17), but not with Evans et
al. A possible explanation for the difference is the duration of
drug application. Evans et al. reported having applied the
ATP-depletion medium for 1 h. Although we can measure
already a slight decrease in the rmsd after 1 h, we found that
the rmsd stabilized to a lower value only after 3 h (see Fig. S7
and Fig. S8).

Besides the effect of ATP-depletion Tuvia et al. (11) also
report a decreased static f luctuation amplitude if the external
viscosity is increased. However, our measurements do not
confirm this (Fig. 2B), as we see no dependence of the static
f luctuation amplitudes for external viscosities in the range of
1�10 � 10�3 Pa s. This lack of viscosity dependence has been
predicted to happen if the characteristic time of membrane
relaxation on length scales of the spectrin-membrane connec-
tions (�0.1 � 1 ms) is faster than the timescale of activity (�100
ms) (12), as observed in this work. Furthermore, we tested recent
theoretical considerations predicting an additional spring like
interaction between the spectrin cytoskeleton and the membrane
(10). Including the respective term in our fit function hardly

altered the other fit parameters, which remained essentially
constant (SI Appendix and Table S1). Hence, our data can be well
explained without these additional terms.

ATP-Depletion Effects. Our measurements can give insight into the
longstanding question why ATP depletion has such a strong
effect on RBC fluctuation histograms. We can identify a partial
mechanical reason for these reduced membrane fluctuations
because we measure an increase in membrane bending modulus
and surface tension, which decreases the rmsd of the measured
histograms. We can explain these findings by a stronger associ-
ation between the spectrin and the membrane, as ATP depletion
prevents the phosphorylation of the 4.1R protein. In its unphos-
phorylated state, the 4.1R protein strongly couples the spectrin
to the membrane, which has important implications for mem-
brane fluctuations. As the persistence length of spectrin is short
compared with its contour length and end-to-end distance, the
spectrin should be considered to be an entropic spring under
tension even in the relaxed state of the RBCs (12, 20). Hence,
the measured tension in normal and ATP-depleted cells might
be mostly because of the underlying spectrin cytoskeleton. As the
presented measurements cannot distinguish between membrane
and spectrin tension, we suspect that we effectively detect
spectrin tension, which is in turn related to an effective shear
modulus (9). The fact that the shear modulus of the spectrin
network might show up as an additional tension was recently
proposed theoretically by Auth et al. (10). We furthermore
attribute the increased effective viscosity in the ATP-depleted
cells to the same stronger spectrin-membrane interaction. As
suggested, the effective viscosity might be dominated by a yet
unknown mechanism, and the continuous association and dis-
sociation of the spectrin under shear could be a molecular reason
for an additional dissipative process.

Decreasing the Spectrin-Membrane Interaction. In contrast to ATP
depletion, PKC activation is believed to weaken the spectrin-
membrane interaction, as PKC phosphorylates the 4.1R protein
(13), thereby dissolving the binding complex. This detachment of
the spectrin from the membrane can account for the measured
decrease in tension, whereas the bending modulus remains
almost unaffected. Furthermore, the decrease of the effective
viscosity is consistent with the idea that an additional and
dominating dissipative process depends on the spectrin-
membrane interaction. In fact, after the model proposed by
Gov et al. (12) for the nonequilibrium energy production via
the phosphorylation of the 4.1R protein, activation of PKC
should not only detach the membrane from the spectrin but
also increase the amount of chemical energy used to drive
the membrane fluctuations. Because PKC activation implies
higher energy consumption, the increase in fluctuations at
small frequencies might be because of active ATP-dependent
energy injection.

Limitations of the Equilibrium Membrane Description. Let us analyze
the higher relative fluctuation amplitudes in the low frequency
regime as shown in (Fig. 3B). The low frequency part of the
spectrum is dominated by tension, which varies considerably
between the different conditions (Table 1). Because we have
used a passive membrane theory, the ratio:

Eeff (f)

kBT
�

PSDN,P

PSDATP-D

�
gATP-D(�, �, �; f)

gN,P�� , � , � ; f
[1]

is equal to one if Eeff � kBT, which we expect for a purely passive
system. Here, the membrane mechanics is completely described
by the g function (defined in SI Appendix Calculations, N:
Normal, P:PKC), which depends on the mechanical parameters
(�, �, �) and the frequency f. Experimentally, this ratio equals
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one for the high frequency domain (f �10Hz) in all RBC
conditions. Hence, in this regime the passive equilibrium mem-
brane theory seems to be a correct description. However, we
observe for the low frequency part a deviation from one, leaving
up to 40% of the fluctuations unaccounted for (Fig. 4A). This
discrepancy can be potentially explained in two ways. First, at low
frequency the simple membrane description of the complex RBC
membrane yielding the function g might break down. Hence, it
would be necessary to extend the model, for example to com-
posite membrane systems explicitly including the spectrin. A
second possible explanation is the breakdown of the equilibrium
description, leading to a frequency-dependent effective energy
Eeff( f ) that becomes important at frequencies �10Hz. This
energy term corresponds to a frequency-dependent ‘‘effective
temperature’’ Teff( f ) � Eeff( f )/kB. At high frequencies (�10Hz)
Teff �300K, whereas at low frequencies Teff � 300K, indicating
that the system behaves as if its temperature was increased. Such
frequency dependence resembles the results of recent experi-
ments on the nonequilibrium behavior of cytoskeleton-
motor systems (21) and the oscillation of hair cells (22), where
at high frequency equilibrium thermodynamics dominates
whereas at frequencies �10Hz, the nonequilibrium effects be-
come apparent.

Our finding is of great importance for the theoretical description
of RBCs, because our results define a regime in which it is
reasonable to apply standard thermodynamics of a single mem-
brane, and one where either out-of-equilibrium phenomena must
be taken into account or an extended description of the composite
membrane has to be developed. In previous experiments on RBCs
such observations were experimentally inaccessible, because their
detection requires the knowledge of the full mechanics and access
to high-frequency fluctuations, which is generally restricted by the

camera acquisition rate of usually 25Hz. However, it should be
noted that the current analysis only shows that a passive membrane
model does not explain the behavior at low frequencies, and further
experiments are required to prove whether this is because of an
active process or requires a more complex description of the
composite membrane.

Model. A possible model accounting for the data are sketched in
Fig. 4B (17). Note that the presented data reflect the fluctuation
of the membrane but does not give direct information about the
cytoskeleton, which consists of the floppy spectrin network. This
model is based on theoretical suggestions by Gov et al. (12, 23).
We attribute the physical origin of the drug dependence to the
dissociation of the spectrin-membrane connection. In the con-
text of the 4.1R/spectrin binding, this means that depleting the
ATP pool forces the 4.1R protein to be in the unphosphorylated
state, which favors the 4.1R/spectrin/actin binding (13, 24). If
bound to the membrane, the spectrin cytoskeleton acts like a
network of entropic springs, thus imposing a tension that par-
tially compresses the membrane (Fig. 4B) (23). Upon phosphor-
ylation of the 4.1R the spectrin-membrane connection is re-
leased and the compressed membrane can relax. The schematics
can explain the measured tensions by changes in the spectrin
network integrity and variations in the spectrin-membrane in-
teractions, thus leading to modified shear of the spectrin network
upon membrane fluctuations. The tension of the spectrin net-
work depends strongly on the network integrity and its associ-
ation with the membrane. It was already predicted theoretically
that at the percolation transition a strong change in tension
should be observed (12, 23), which our measurements confirm
when modifying the spectrin network by PKC activation or ATP
depletion. Increasing the spectrin-membrane connection for
ATP-depleted cells leads to an increase in tension, whereas
weakening the connection alters the network integrity and hence
results in a decrease of tension in PKC-activated cells. As the
membrane bending modulus is unaffected by the drugs used, the
proposed model predicts that the membrane bending modulus
stays constant, as confirmed in our measurements. An additional
consequence of the presented model is a nonlinear response to
strong deformations caused by a breakdown of the spectrin
cytoskeleton at large strains, previously proposed by several
authors (25, 26).

The continuous phosphorylation and dephosphorylation of
the 4.1R protein is believed to inject mechanical energy in the
system. The time scales involved in this binding/unbinding have
not yet been determined, but our results indicate that this cycling
is slower than 100 ms. In the case of PKC-activation the
phosphorylation is favored, however, the cyclic binding/
unbinding is not affected, hence energy injection is not perturbed
and we measure approximately the same effective energy. The
suggested additional dissipative process because of the spectrin-
membrane binding might also explain the found increase of
effective viscosity in ATP-depleted cells, and its decrease in
PKC-activated cells.

Conclusion

In this article we report on a unique, efficient, and fast mea-
surement to detect RBC viscosity, membrane tension, and
membrane bending modulus. We confirm theoretical predic-
tions for membrane fluctuations over a wide range of frequen-
cies. The application of ATP-depletion medium and PKC-
activation drugs clearly confirms the ATP-dependence of the
membrane fluctuations and suggests that the fluctuations might
be partially nonthermal in the low frequency domain (f �10Hz)
or that an alternative more complex composite membrane model
should be developed for this regime. At high frequencies the
system is well described by an equilibrium single membrane
theory. Depending on the applied drug, we detect changes in

Fig. 4. Effective energy and membrane model. (A) Frequency-dependent

energy for the various cells. At high frequencies, the fluctuations are driven by

thermal activation shown by the value of 1 kBT, whereas for low frequencies

the maximal effective energy is, EN
max � 1.43 � 0.09 kBT for normal cells and

EP
max � 1.32 � 0.08 kBT for the PKC-activated cells. (B) Model to explain the

measured mechanical differences (17). The fluctuations depend on the mem-

brane properties and on the integrity of the underlying spectrin cytoskeleton,

connected to the membrane by actin, glycophorin C (GPC), and protein 4.1R.

In normal cells, a continuous de-and reattachment of the spectrin results in a

certain net tension. ATP depletion increases the spectrin-membrane connec-

tion and the integrity of the spectrin network, leading to an increased tension.

In contrast, disrupting the spectrin-membrane interaction by PKC activation

weakens the spectrin network and hence decreases the measured tension.
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tension, which we attribute to the coupling of the membrane to
the tense spectrin cytoskeleton. The changes in tension might
have a role in unfolding the spectrin to expose hidden binding
sites in the spectrin which could act as mechanosensors (27). The
presented results are also important in the context of other cell
organelles, because the spectrin network can be found to be
attached to most cell membrane systems, like Golgi membranes,
lysosomal membranes, and intracellular vesicles in cerebella
neurons, as well as on the plasma membrane (28). Based on
previous work by Gov et al. (12), we suggest a model in which the
effective energy is provided by a continuous phosphorylation/
dephosphorylation of the 4.1R protein, which also alters the
spectrin network. The current data does not allow us to decide
whether RBC fluctuations are active processes or should be
described by a more refined membrane-spectrin interaction. It is
also possible that both explanations are required for a full
understanding of the RBCs fluctuations.

Materials and Methods

Preparation of RBCs. Human RBCs were freshly prepared before each experi-

ment by finger pricking of a healthy donor. Twenty microliters of blood were

diluted in 250 �L of a PBS solution containing 130 mM NaCl, 20 mM K/Na

phosphate buffer, 10 mM glucose, and 1 mg/mL BSA. RBCs were washed twice

in the described PBS buffer by centrifugation (2 min, 200 g) and aspiration of

the supernatant. Cells were diluted 1:12 in the final experimental buffers.

Before the experiment was started, the slight attachment of the cells was

checked by RICM microscopy. If not stated otherwise, all materials were

purchased at Sigma–Aldrich, France.

Drug Application. We tested RBCs under ATP depletion, PKC activation and LA.

ATP depletion was performed by incubating the cells for 3 h at 37 °C in a PBS

solution deficient, of Glucose containing 6 mM iodoacetamide and 10 mM

inosine, as described previously (11). We found that only 1 h incubation under

this condition was not sufficient to significantly reduce the fluctuation am-

plitudes. Cells were stored in the ATP depletion medium during the experi-

ments. PKC activation was achieved as described previously (13). Briefly, cells

were incubate for 30 min at 37 °C with 0.02 �M calyculin A solved in DMSO

(0.2% final concentration) and subsequently for 90 min at 37 °C with 2 �M

phorbol 12-myristate 13-acetate (PMA). LA was applied at a concentration of

20 �M LA for 30 min at 37 °C. In the control experiment 0.4% DMSO was

applied for 1 h at 37 °C.

Experimental Setup. To measure the fluctuation amplitude of the RBCs edge,

we use a technique recently described (14), and summarized in Fig. 1. Laser

light from a 1 Watt Ytterbium fiber laser (YLM-1–1064-LP, IPG Photonics,

Germany) with a wavelength of 1064 nm is collimated and subsequently

intensity controlled by a acousto optical modulator (MT80-A1,5–1064 nm, AA

Opto Electronic, France), to reduce the power to 50�W at the sample. Up to

laser powers of 1mW, no effect of trapping the RBC was observed (SI Appendix

and Fig. S1). A 10� telescope increases the diameter of the beam to 14 mm

before it is introduced in the beam path of the microscope with an dichroic

mirror. The laser is focused in the sample by a 60� water objective (UPLSAPO

60XW/IR, NA 1.2). To control the focus and the imaging position the samples

are mounted on a 3D piezoelectric stage (Tritor 102 SG, Piezosystem-Jena,

Germany). The scattered light is collected by a long distance water-immersion

objective (U LUMPL FL 60XW/IR NA 0.9), and projected on a InGaAs QPD

(G6849, Hamamatsu, France) by imaging the back focal aperture of the

collecting objective on the QPD. The signal was preamplified and finally

amplified and anti-alias filtered by a custom made amplification and filtering

electronics (Oeffner Electronics, Germany). The signal was digitized at 100 kHz

with a 16 bit AD converter card (PCIE-6259, National Instruments, France), and

analyzed using LabView (National Instruments) and Matlab (Mathworks,

France).

If operated with higher laser power (5 mW), the setup can also be used as

an optical tweezer. By trapping 1 �m beads and recording the PSD of the

bead’s position we determined the friction coefficient, which is proportional

to the medium viscosity (29). For the different media prepared with Dextran

41000 concentrations of 75 mg/mL, 135 mg/mL, and 200 mg/mL we measured

the viscosities to be 2.4 � 0.1 � 10�3Pa s, 4.4 � 0.2 � 10�3Pa s, and 10.9 � 0.9 �

10�3 Pa s, respectively.
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Fig. S1. PSD at 10 Hz as a function of the laser power. Up to 1 mW, the variation in the PSD is within the error, and is hence not significant. At �1 mW, the

pulling force of the laser becomes important, which is reflected in the plot as a strong decrease of the signal, because of the increase of membrane tension

whereas pulling of the RBC. (Inset) RICM image of a RBC showing a slight attachment, without a change of the biconcave shape. (Scale bar, 5 �m.)
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Fig. S2. To confirm the expected change of the PSD in osmotically swollen RBC, we merged the cells in a hypotonic medium with an osmolality of 160 mOsm/kg.

In the osmotically swollen cells, the tension increased from normal tension: �N � 6.5 � 2.1 � 10�7N/m to swollen tension: �s � 24.2 � 4.2 � 10�7N/m. The internal

viscosity was decreased from �N � 81 � 3.7 � 10�3 Pa s to �s � 42 � 1.7 � 10�3 Pa s consistent with the influx of water. The bending rigidity was almost unchanged

between the normal cells �N � 2.8 � 0.3 � 10�19J and the swollen cells �s � 2.4 � 0.3 � 10�19J. These results further support our analysis method, as they yield

the expected results of osmotic swelling.
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Fig. S3. Measured effective viscosity �eff plotted as a function of the external viscosity �ext. This phenomenological plot can be fitted by a simple linear function

�eff � a � �ext � b, yielding fit parameters of a � 8.3 � 2.3 and b � 53 � 11 � 10�3Pa s.
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Fig. S4. Fluctuation amplitude histograms of normal (black), ATP-depleted (green), PKC-activated (red) and latrunculin A (blue)-treated cells. Straight lines

present Gaussian fits of the respective histogram. The data shows that ATP-depleted cells have a significantly smaller fluctuation amplitude, whereas the

fluctuations of PKC and LA-treated cells are similar.
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Fig. S5. Plots of the PDS as shown in Fig. 3 A and B and Fig. 4A, but including the data for the latrunculin A treated cells.
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Fig. S6. (A) Fluorescence image of an F-actin stained normal RBCs. The radial intensity line as presented in the plot is averaged �100 center edge intensities.

The contrast is determined by c � M�m/(M � m), where M and m are the peak intensity at the rim and the minimal intensity in the cell, respectively. (B) Same

as A, but for an ATP-depleted cell. (C) Same as A, but for a LA-treated cell. (D) Resulting contrast values for each 20 cells, giving a significantly reduced contrast

in the ATP-depleted cells.
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Fig. S7. Kinetic study of ATP-depletion effect. Rmsd as a function of the time during which the ATP-depletion buffer is applied. Each datapoint represents �50

experiments on usually 10 different cells. It should be noted that after 1 h the cells start to slowly deviate from the circular geometry, and after 6 h, most cells

have turned into echinocytes. For the data acquisition, round and slightly deformed cells were mixed, but echinocytes were excluded. We record already after

1 h a significant reduction in fluctuation amplitude measured by the rmsd. After 3 h this reduction levels out, and after 6 h the measurement becomes impossible

because almost all cells have deformed into echinocytes.
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Fig. S8. Histogram of the edge fluctuation for the each ATP-depletion buffer application time. The figure overlays five time points, showing a steady decrease

in fluctuation amplitude over time. All histograms represent the overlay of the �50 experiment at the given time of incubation (see legend). The histograms

are well fitted by a Gaussian distribution.
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Other Supporting Information Files

SI Appendix (PDF)

Table S1. Collection of mechanical parameters of RBCs under various conditions, including the gamma term in the fit function

Normal ATP-depl. PKC LA

rmsdex [nm] 33.0 � 1.3 22.3 � 0.6 36.7 � 2.8 32.8 � 2.2

� stat [10�19J] 2.8 � 0.3 6.1 � 0.6 2.3 � 0.2 2.8 � 0.3

� dyn [10�19J] 2.9 � 0.3 3.9 � 0.3 2.6 � 0.2 2.7 � 0.2

� [10�7 N/m] 6.5 � 2.1 19 � 1 2.7 � 1.1 4.7 � 1.0

� eff [10�3Pa s] 81 � 3.7 118 � 11.7 57 � 2.4 55 � 4.0

� [10�8Jm�4] 0.06 � 0.04 4.9 � 2 5.2 � 2.0 6.6 � 5.9

Betz et al. www.pnas.org/cgi/content/short/0904614106 9 of 9
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Supplementary Information

1 Supplemental Information: Calculations

The power spectral density (PSD) was computed using Matlab as the square of the Fast Fourier Transform
(FFT) of the recorded time series y:

Y = FFT (y) (1)

PSD =
Y × Y ∗

ps
. (2)

Here, Y ∗ denotes the complex conjugate of Y , p is the number of data points in y, and s is the sampling
rate of y in Hz. Each value of the PSD corresponds to a frequency f spanning from 0 to the Nyquist
frequency s/2 with an increment of ∆f = s/p.

To extract the mechanical parameters, the recorded PSDs were fitted by a theoretical expression that
is based on the classical Helfrich analysis (1). In the present study we extended previous results from flat
membranes (2; 3) to spherical harmonics using expressions derived by Safran and Milner (4).

Plane Membranes The energy of a plane membrane fluctuation is described by a free energy functional:

F =

∫

dA

[

1

2
κ
(

∇2h
)2

+
1

2
σ(∇h)2

]

, (3)

where h is the extension of the membrane from its equilibrium position and the integral sums over the
whole surface. Using the equipartition theorem the correlation function for the fluctuation reads:

〈hqhq′〉 = kBT

κq4 + σq2
(2π)2δ(q+ q′), (4)

A fluctuations of wavelength q relaxes at a rate ω(q) = (κq4 + σq2)/(4ηq) for a impermeable membrane
(5; 6), where η is the mean viscosity of the two fluids separated by the membrane. This yield the time
dependent correlation function:

〈hq(t)hq′(0)〉 = (2π)2δ(q+ q′)〈hqhq′〉 exp[−ω(q)t]. (5)

Taking the Fourier transform and integrating over all q modes yields the PSD for a flat membrane:

PSD =

∫

d2q

(2π)2

−∞
∫

∞

〈hq(t)h−q(0)〉 exp(iωt)dt (6)

=
1

π

−∞
∫

0

qdq〈hqh−q〉
ω(q)

ω(q)2 + ω2
(7)

=
4ηkBT

π

∫

dq

(κq3 + σq)2 + (4ηω)2
. (8)

1
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In the limiting cases of high and low frequency we find PSD =
ω→∞

kBT
12π(2η2κ)1/3ω5/3 and PSD =

ω→0

kBT
4σω . It was

suggested in Ref. (3) to include an additional term that reflects an elastic coupling between the membrane
and the spectrin network , that extends Eq 3 as:

F =

∫

dA

[

1

2
κ
(

∇2h
)2

+
1

2
σ(∇h)2 +

1

2
γh2

]

, (9)

where γ is harmonic coupling constant. This additional term changes the PSD expression to (3):

PSD =
4ηkBT

π

−∞
∫

0

dq

(κq3 + σq + γ/q)2 + (4ηω)2
. (10)

Spherical harmonics description The integral [8] is divergent in ω → 0. This is due to the fact that
a flat membrane has fluctuations divergent in its size. In practice, this is limited by the finite size of the
RBC which we take into account using spherical harmonics. This is an extension of previous work (4):

r(Ω) = R(1 +
∑

l,m

ulmYlm(Ω)), (11)

where Ω is the solid angle, R is the mean radius of the sphere and Ylm are the spherical harmonics (4).
This expression leads to the mean squared amplitude for each fluctuation mode:

〈|ulm|2〉 = kBT

κ(l + 2)(l − 1)l(l + 1) + σR2(l + 2)(l − 1)
. (12)

As before we write the autocorrelation function:

〈ulm(t)ul′m′(0)〉 = δl,l′δm,m′〈|ulm|2〉 exp(−ωlt), (13)

where:

ωl =
κ(l + 2)(l − 1)l(l + 1) + σR2(l + 2)(l − 1)

ηR3Z(l)
, (14)

with Z(l) = (2l+1)(2l2+2l−1)
l(l+1) . Similar to the case of plane membranes, the Fourier transform of Eq. [13]

yields the PSD as:

PSD =

∫

dt
∑

l=2,m=−l

〈|ulm|2〉 exp(−ωlt) exp(iωt) (15)

=
∑

l=2

〈|ulm|2〉 ωl

ω2
l + ω2

2l + 1

2π
. (16)

This expression was used to fit the measured data in order to get the mechanical parameters κ and σ.
The radius R is the average radius of all cells represented in the experimental data set, and the sum was
evaluated numerically.

As used for the rescaling in the main text, we separate this expression into the energy source exiting
the fluctuations (which we call effective energy Eeff (f) in the general case). For the ATP-depleted cells
we know that the system is purely passive, and hence we can identify EATP−D

eff = kBT . We write the PSD
as product of the energy driving the fluctuations and a term describing the mechanics of the RBC:

PSD = Eeff × g(σ, κ, η; f), (17)
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where:

g(σ, κ, η; f) =
∑

l=2

1

κ(l + 2)(l − 1)l(l + 1) + σR2(l + 2)(l − 1)

× ωl

ω2
l + ω2

2l + 1

2π
. (18)

We rescale the relative amplitude implying the full measured mechanics, thus collapsing all curves onto
a master curve. This can be understood by expressing the relative PSDs analytically, where in the passive
ATP depleted case, the effective energy is known to be kBT :

PSDN,P,L

PSDATP−D
=

Eeff (f)

kBT
× gATP−D(σ, κ, η; f)

gN,P,L(σ, κ, η; f)
, (19)

where the membrane mechanics are collected in the sum of function g. Hence, the frequency dependent
effective energy Eeff (f) in units of kBT :

Eeff (f)

kBT
=

PSDN,P,L

PSDATP−D
× gN,P,L(σ, κ, η; f)

gATP−D(σ, κ, η; f)
. (20)

As in the case of the infinite plane membrane, we extend the spherical harmonics expression of the PSD to
include the harmonic membrane-spectrin interaction introduced in Ref. (3). This changes 〈|ulm|2〉 to:

〈|ulm|2〉 = kBT

κ(l + 2)(l − 1)l(l + 1) + σR2(l + 2)(l − 1) + γR4
(21)

and the decay frequency ωl:

ωl =
κ(l + 2)(l − 1)l(l + 1) + σR2(l + 2)(l − 1) + γR4

ηR3Z(l)
. (22)

2 Supplemental Information: Viscosity correction

Since theory predicts that the effective viscosity should be the average of the internal and external viscosities

ηeff = 1/2(ηRBC + ηext) (23)

we varied the external viscosity as presented in the results section. According to theory, ηeff should linearly
increase with a slope of 1/2 if plotted over the external viscosity ηext. Our data, however, shows a slope of
a = 8.3 ± 2.3 (SI-Fig S2) if fitted by a linear function. This experimental observation is thus inconsistent
with the theory. From an phenomenological point of view, one may fix this by introducing a prefactor
α = 16.6± 4.6 which modifies the expression of the effective viscosity to:

ηeff = α/2(ηRBC + ηext). (24)

Interestingly, applying this ad hoc modification allows to extract a corrected RBC viscosity ηαRBC = 6.4±1.9
Pa s, which is consistent with previous measured values (7).
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ABSTRACT Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state

upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane

E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and

reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of

the role of cytoplasmic b-catenin and a-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell

contact the concentration ina-catenindimers increases, inhibiting actin branching and thereby reducing cellularmotility andexpan-

sionpressure. Thismodel providesamechanism for contact inhibition that couldexplainpreviously unrelatedexperimental findings

on the role played by E-cadherin, b-catenin, and a-catenin in the cellular phenotype and in tumorigenesis. In particular, we address

theeffect of a knockout of theadenomatouspolyposis coli tumor suppressor gene.Potential direct tests of ourmodel are discussed.

INTRODUCTION

Before the establishment of cell-cell contacts, epithelial cells

are in a motile and growing state. The polymerizing actin

filaments create forces on the membrane that are responsible

for the formation of lamellipodia and filopodia (1,2). More-

over, the actin filaments undergo continuous branching and

growth resulting in dynamic extensions of the membrane

(3). When cells are scarce and do not contact each other,

E-cadherins are found both on the plasma membrane and

in membrane vesicles within the cytoplasm, but their role

is minimal: when located on the membrane, they quickly

get endocytosed into cytoplasmic vesicles (4). After they

have grown enough to cover the substrate in a confluent

layer, epithelial cells become polarized perpendicular to

the substrate. At this point, they no longer produce lamelli-

podia and filopodia, but instead reorganize their actin into

a belt located near their apical side (see Fig. 1 A) (5). Simul-

taneously, the E-cadherins located in the plasma membrane

link their extracellular domains with the cadherins of the

neighboring cells and colocalize with the actin belt, forming

what is known as the adhesion zone. The linkage of E-cad-

herins stabilizes their localization on the plasma membrane,

effectively depleting them from the cytoplasm (4,6).

The reorientation of the actin filaments upon cell-cell

contact indicates a reduced activity of branching proteins

such as Actin-related proteins 2 and 3 (Arp2/3) and an

increased activity of bundling proteins such as a-catenin

dimers (see Fig. 1 B). When oriented parallel to it, the

growing actin filaments no longer exert a force on the plasma

membrane. Therefore, the cell downregulates both its

motility and expansion pressure in response to reaching

confluence, a process referred to as contact inhibition.

In 2005, Drees et al. (7) challenged the textbook view

that a-catenin mechanically links the adhesion complex to

the underlying actin cytoskeleton. They showed that a-cate-

nin exists either as a monomer or as a dimer, and that the

domain on an a-catenin monomer that binds to b-catenin

overlaps with the domain that binds to another a-catenin

monomer. Therefore, the formations of a-catenin dimers

and a-catenin-b-catenin complexes are mutually exclusive

(8). Dimeric a-catenin can bundle actin filaments and

competes for actin binding sites with Arp2/3. According to

these findings, a high concentration of a-catenin dimers

therefore suppresses actin branching, growth, and expansion

pressure (see reviews (9,10) and Fig. 1 B).

A loss of contact inhibition via epithelial-mesenchymal

transition is an essential step for tumorigenesis (11). It has

recently been proposed that an excess expansion pressure

could be a characteristic trait of neoplastic tissues (12).

A breakdown of the regulation mechanism discussed above

might therefore lead to tumorigenesis. It is indeed well-

known that the E-cadherin-b-catenin-a-catenin adhesion

complex plays an important role in carcinomas (13,14).

A reduced expression of E-cadherins—for example, due to

DNA hypermethylation—is associated with a loss of cellular

polarity and the acquisition of invasive characteristics (15).

However, it has been shown that overexpression and reduced

degradation of b-catenins also leads to cellular transforma-

tions that result in the cell’s ability to grow in soft agarose

gels and to overproliferate at high cell densities (16). Along

the same lines, in cells that have undergone the epithelial-

mesenchymal transition, E-cadherin expression is downre-

gulated, whereas the production of b-catenin is increased

(17). It has also been shown that the growth-inhibiting

activity of E-cadherin is counteracted by an increased b-cat-

enin activity (18). Finally, the concentration of b-catenins is

regulated by the adenomatous polyposis coli (APC) protein,
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a tumor suppressor protein that is known to label b-catenin

for degradation (19). On the other hand, b-catenin-null cells

show an unaffected or even decreased rate of expansion and

proliferation (20,21). The important role of E-cadherin and

b-catenin in the progression of cancer has been well studied,

and several articles report that loss of a-catenin is an impor-

tant prognostic factor for cancer, as reviewed in Benjamin

and Nelson (22). For example, the ablation of a-catenin in

the skin causes cellular hyperproliferation, occurrence of

mitoses away from the basal layer, and defects in epithelial

polarity (23). These phenotypes are remarkably similar to

those obtained with a modified expression level of E-cad-

herin or b-catenin proteins.

Although there are strong indications that the influence of

a-catenin on actin polymerization plays a role in contact inhi-

bition, the functional details of this mechanism remain

unclear. Important progress has been made in this direction

by Drees and co-workers (7,8), who propose a picture in

which cell-cell contact leads to an accumulation of E-cad-

herin-b-catenin-a-catenin complexes at the adhesion sites.

They propose that the release of a-catenin monomers from

these complexes into the cytoplasm provides an increase in

a-catenin dimer concentration, favoring actin bundling and

downregulating actin assembly and branching. In this work,

we propose a model for the E-cadherin-b-catenin-a-catenin

function that is based on a reaction-diffusion system. We

show that the interplay between these three proteins results

in a pathway for contact inhibition that downregulates actin

polymerization in response to cell-cell contact.

Our mechanism relies on the fact that the binding of

b-catenin to a-catenin limits a-catenin dimerization in the

cytosol. When b-catenin-E-cadherin complexes are recruited

to the cell membrane due to cell-cell contact, the cytosolic

concentration of b-catenin drops, and a-catenin dimerization

can take place. According to the work by the Nelson and

Weis group (7), this in turn prevents Arp2/3-based actin

branching and causes the cell to enter a quiescent state.

Using the framework of our physical model, we investigate

the effect of disruptions of this pathway and obtain results

that are consistent with experimentally observed cellular

transformations that lead to tumorigenesis.

RESULTS

Description

The mechanism of the pathway we propose is schematically

illustrated in Fig. 2. Its main feature is that a-catenin-b-cat-

enin binding competes with a-catenin dimerization: At high

cytosolic concentrations of b-catenins, the majority of a-cat-

enins enter a-catenin-b-catenin complexes. At low cytosolic

FIGURE 1 (A) Schematic illustration of the

establishment of the epithelial cell-cell adhesion

zone. After cells have spread via protrusions along

the substrate and become confluent, they start

growing upward and colocalize their actin belt

while forming the adhesion zone. (B) Different

organizations of cortical actin, a-catenin, and b-cat-

enin-related complexes in epithelial cells during

their spreading (left) and after the mature epithelial

sheet is formed (right). Before cell-cell contact,

b-catenin-E-cadherin complexes are present in the

cytoplasm and therefore recruit a-catenin proteins

before they can form dimers, which allows Arp2/

3 complexes to branch the actin network. In the

presence of a neighboring cell, however, b-cate-

nin-E-cadherin complexes are mostly found at the

cell membrane, a situation that favors the formation

of a-catenin dimers in the cytoplasm. These dimers

further bind strongly to actin, effectively excluding

Arp2/3 complexes from the actin network and

favoring parallel bundling.
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concentrations of b-catenins, however, a-catenins form

dimers almost exclusively (7). Therefore, the organization

and activity of the actin cortex of the cell depends on the

presence of a neighboring cell according to the following

mechanism. It is known that b-catenin quickly binds to

E-cadherin after production at the Golgi apparatus of the

cell (24). When the cell is in its growth phase, E-cadherin-

b-catenin complexes are mostly found in vesicles in the

cytoplasm (4), effectively creating a large concentration of

b-catenin complexes in the cytosol. These complexes further

recruit most of the a-catenin monomers that are present in

the cytoplasm, leaving actin binding sites free for Arp2/3

complexes to bind. The structure of the actin cortex is there-

fore branched, and its activity is high. In contrast, when

contact with a neighboring cell is established, the E-cadher-

ins bind to the neighboring cell and accumulate at the

membrane, effectively lowering their concentration in the

cytosol (25). Since a large fraction of E-cadherins is bound

to b-catenins, the establishment of cell-cell contacts also

induces a redistribution of b-catenins to the plasma

membrane. Indeed, the potent ability of E-cadherin to recruit

b-catenin to the cell membrane has been observed in vivo

(26). This b-catenin redistribution to the plasma membrane

in turn favors the formation of a-catenin dimers in the

cytosol, which further favors actin bundling rather than actin

branching and polymerization. Note that other protein

complexes could play a role similar to that of E-cadherins

and transport b-catenin proteins to the cell membrane upon

cell-cell contact, as proposed recently (27). In any case, the

cell switches from an active state with high actin branching

and polymerization activity when there is no cell-cell contact

to a passive state characterized by reduced actin activity after

cell-cell contact has been established.

Model equations

To model the cadherin-catenin system described above in a

quantitative manner, we write a system of reaction-diffusion

equations for the cytosolic concentrations of the different

proteins involved. (Note that although active transport of

these proteins may be involved, we do not expect the mech-

anism presented in this article to depend crucially on this

aspect.) In this model, we treat all protein bindings as irre-

versible because binding affinities are high (typically with

energies of many kBT (28)). Assuming that the protein

production rates and the configuration of neighboring cells

are constant in time, we can focus on the steady-state

dynamics of the system, which for the cytosol of the cell

can be written as

DaV
2Ca � kabCaCb � 2 kaaC

2
a � raCa ¼ 0 (1a)

DbV
2Cb � kabCaCb � rbCb ¼ 0 (1b)

DaaV
2Caa þ kaaC

2
a �

�

raa þ ~raa
�

Caa ¼ 0 (1c)

DabV
2Cab þ kabCaCb � rabCab ¼ 0: (1d)

These equations describe the diffusion dynamics of a-cat-

enin, b-catenin, a-catenin dimers, and a-catenin-b-catenin

complexes, respectively, in the cytoplasm. Here, Ca, Cb,

Caa, and Cab are the cytoplasmic protein concentrations

of a-catenin monomers, b-catenin monomers (bound to

cytosolic E-cadherins), a-catenin dimers, and a-catenin-

b-catenin complexes (bound to cytosolic E-cadherins),

respectively; Da, Db, Daa, and Dab are the associated dif-

fusion constants and ra, rb, raa, and rab the associated

degradation rates; kaa and kab are the rates of a-catenin

dimerization and a-catenin-to-b-catenin binding, respec-

tively; and ~raa is the rate of reaction of a-catenin dimers

with actin. Note that since most b-catenins bind to E-cadher-

ins immediately after production (24), we do not explicitly

model the reaction-diffusion dynamics of E-cadherins but

instead account for its important effect on the redistribution

of b-catenin-E-cadherin complexes in the boundary condi-

tions at the plasma membrane, as shown below. Modeling

the diffusion and reactions of E-cadherins and b-catenins

separately adds another layer of complexity to our model

but would not qualitatively change our main results. There-

fore, when we refer to b-catenin in our model, we mean the

E-cadherin-b-catenin complex. Note also that the effect of

the Wnt signaling pathway on b-catenin is taken into account

effectively in the bulk degradation rate of this protein.

cell membranecell bulk

cell-cell contact

actin-generated

           force

 α-catenin

(unbound)

β-catenin β-catenin

 α-catenin

     dimer

   Arp2/3 

branching

APC

+

+

_

_

_

+ +

_

+ +

_

_

_

+

+

FIGURE 2 Schematic illustration of the proposed cadherin-catenin

pathway for contact inhibition, as well as possible disruptions of the

pathway. Arrows and T-bars between the different genes, proteins, or cell

states of the diagram indicate induction and repression, respectively. Minus

and plus signs of different colors illustrate how various events can lead to

a breakdown of this pathway: reduced expression of E-cadherins (red, upper

signs), mutation of the APC tumor suppressor gene (orange, middle signs),

and reduced expression or mutations of a-catenin (yellow, lower signs).

Minus signs indicate either decreased concentrations or complete impair-

ment of the associated proteins, and plus signs indicate increased concentra-

tions compared with the healthy cell state.
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Production of these proteins in the vicinity of the cell

nucleus, as well as their interactions with the plasma

membrane, needs to be accounted for using appropriate

boundary conditions. The production of a-catenin and b-cat-

enin in the Golgi apparatus of the cell is taken into account

by fixed influxes of proteins into the cytoplasm, denoted

by j0a and j0b, respectively. On the membrane, the concentra-

tions of protein complexes are C
m;d
b , C

m;a
b , C

m;d
ab , C

m;a
ab —all

bound to E-cadherin proteins—which can be either detached

or attached to an adjacent cell via E-cadherin-E-cadherin

homophilic binding, as indicated by superscripts d and a.

Cytoplasmic concentrations at the membrane, denoted by

Cb
b, C

b
a, and C

b
ab, correspond to the respective concentrations

introduced in Eq. 1 at this particular location. b-catenin and

a-catenin-b-catenin complexes—both bound to E-cadherin

proteins—can go to the plasma membrane of the cell, where

they are then in the detached state. We denote by konb and koffb
�

konab and koffab

�

the rates at which the protein complex b-cat-

enin-E-cadherin (a-catenin-b-catenin-E-cadherin) goes to

the plasma membrane of the cell, and note that only

complexes in the detached state can move from the

membrane to the cytoplasm. The two fluxes, jb and jab, of

b-catenin and a-catenin-b-catenin complexes from the cyto-

plasm to the plasma membrane of the cell then read

jb ¼ konb Cb
b � koffb Cm; d

b ; (2a)

jab ¼ konabC
b
ab � koffabC

m; d
ab : (2b)

Monomeric a-catenins can only go to the plasma

membrane by forming a-catenin-b-catenin complexes via

a reaction with b-catenin complexes that are already located

on the membrane (either in the attached or detached state).

The rates of these reactions are denoted by k
m; a
ab and k

m; d
ab ,

respectively. Once formed, these complexes do not release

pure a-catenins anymore. a-catenin dimeric complexes, on

the other hand, cannot go to the membrane, since they do

not attach directly to E-cadherins, nor can they bind b-cate-

nin-E-cadherin complexes, because to do so they need to be

in their monomeric form. Their flux therefore vanishes. We

finally get

ja ¼ km;d
ab C

m;d
b Cb

a þ km;a
ab C

m;a
b Cb

a; (3a)

jaa ¼ 0: (3b)

To solve our system of equations, we must combine these

boundary conditions with the cytosolic protein diffusion

equations (Eqs. 1a–1d), which we can do thanks to the defi-

nition of diffusive fluxes (jA ¼ �DAVCA). To do so, we need

to eliminate the membrane protein concentrations from our

system of equations. This is done by writing the balance of

protein complexes located on the plasma membrane of the

cell. In addition to the reaction rates introduced above, we

introduce the rate kEEA�B for a given complex A linked to an

E-cadherin molecule to attach to another complex B of the

adjacent cell via cross-membrane E-cadherin homophilic

binding. Also, all complexes are degraded with their specific

rates, r
m; d
A and r

m; a
A , on the membrane. For simplicity, we

assume a completely symmetric, identical configuration of

the neighboring cell, and thus identical protein concentra-

tions on the membrane of the adjacent cell. Taking all of

this into account, the protein concentrations on the cell

membrane are determined by the following steady-state

equations, a schematic representation of which is presented

in Fig. 3:

konb Cb
b � koffb Cm; d

b � km; d
ab Cm; d

b Cb
a � kEEb�b

�

Cm; d
b

�2

� kEEab�bC
m; d
b Cm; d

ab � rm; d
b Cm; d

b ¼ 0;
(4a)

konabC
b
ab � koffabC

m; d
ab þ km; d

ab Cm; d
b Cb

a � kEEab�ab

�

Cm; d
ab

�2

� kEEab�bC
m; d
b Cm; d

ab � rm; d
ab Cm; d

ab ¼ 0;
(4b)

� km; a
ab Cm; a

b Cb
a þ kEEb�b

�

Cm; d
b

�2
þ kEEab�bC

m; d
b Cm; d

ab

� rm; a
b Cm; a

b ¼ 0;
(4c)

km; a
ab Cm; a

b Cb
a þ kEEab�ab

�

Cm; d
ab

�2

þ kEEab�bC
m; d
b Cm; d

ab � rm; a
ab Cm; a

ab ¼ 0:
(4d)

β β

β β α

α

α

α

β β

β βα

α

β

βα

αβ

βα

FIGURE 3 Schematic illustration of the reactions occurring at the cell

membrane and leading to Eq. 4. E-cadherin vesicles, either bound to b-cat-

enins alone or to a-catenin-b-catenin complexes, can merge with the

membrane or be endocytosed. The two associated light gray arrows corre-

spond to the four on and off rates in Eq. 4. In the presence of cell-cell

contact, the E-cadherins on the membrane can bind to E-cadherins on the

membrane of the adjacent cell, which is represented by the black arrows

for b-catenin-associated complexes, and by the dark gray arrows for a-cat-

enin-b-catenin-associated complexes. These correspond to all the reactions

that have rates with an EE superscript in Eq. 4. In addition, a-catenin mono-

mers can bind to E-cadherin-b-catenin complexes present on the membrane,

whether or not they are bound to E-cadherins from the adjacent cell. This is

represented by the blue vertical arrows and corresponds to the terms in Eq. 4

whose rates have an m,d or m,a superscript. Finally, all protein complexes

located on the membrane can be degraded, which is taken into account by

the rates labeled with the letter r in Eq. 4 (not represented). We assume

a symmetric configuration of the adjacent cell.
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Here, the first two equations describe the balance of b-cat-

enin and a-catenin-b-catenin complexes, respectively, on the

plasmamembrane of the cell that are detached from the neigh-

boring cell, and the last two equations do the same for the

attached protein complexes. For example, in the first equation,

b-catenin-E-cadherin complexes in the detached state can—

in the order of the terms present in the equation—be replen-

ished via attachment of b-catenin-E-cadherin complexes

from the cytoplasm, disappear via endocytosis of b-catenin-

E-cadherin complexes, form a-catenin-b-catenin-E-cadherin

complexes, attach with other b-catenin-E-cadherin or

a-catenin-b-catenin-E-cadherin complexes from the neigh-

boring cell via cross-membrane E-cadherin-E-cadherin

homophilic binding, and, finally, disappear via degradation.

The terms in the second equation are of similar origin. The

third and fourth equations for the attached states resemble

the first two, except that there is no exchange of proteins

directly with the cytoplasm in these cases.

Steady-state concentration profiles

To solve Eqs. 1–4, we now separate the two cases of the

presence and absence of contact with a neighboring cell,

for which we can separately eliminate the membrane concen-

trations from the boundary conditions given by Eqs. 2 and 3

thanks to Eq. 4. In the absence of cell-cell contact, the

different rates kEEA�B vanish and all the proteins on the

membrane are in the detached state. In this case, Eqs. 4c

and 4d become irrelevant, and Eqs. 4a and 4b become

konb Cb
b � koffb Cm; d

b � km; d
ab Cm; d

b Cb
a � rm; d

b Cm; d
b ¼ 0; (5a)

and

konabC
b
ab � koffabC

m; d
ab þ km; d

ab Cm; d
b Cb

a � rm; d
ab Cm; d

ab ¼ 0: (5b)

The first equation makes it possible to solve for C
m; d
b and

then express ja and jb as a function of the cytosolic concen-

trations of a-catenin and b-catenin complexes only. Thus,

we get a closed set of equations for these two quantities, in

which we find the cytosolic equations (Eqs. 1a and 1b), as

well as the expressions for the fluxes at the boundaries of

the system, namely, the imposed fluxes j0a and j
0
b at the Golgi

apparatus of the cell and the two fluxes at the cell membrane,

jb ¼
rm;d
b þ km;d

ab C
b
a

rm;d
b þ koffb þ km;d

ab C
b
a

konb Cb
b; (6a)

ja ¼
km;d
ab Cb

a

rm;d
b þ koffb þ km;d

ab C
b
a

konb Cb
b: (6b)

This system can be solved independently and then used

to solve for the concentrations of a-catenin-b-catenin and

a-catenin dimeric complexes in a second step, using the

remaining equations.

In the presence of cell-cell contact, we assume, for

simplicity, kEE/N, meaning that all protein complexes

on the membrane instantaneously bind to the neighboring

cell. Therefore, the concentrations of unbound proteins on

the membrane, C
m; d
b and C

m; d
ab , vanish. Similar to the

previous case, the dynamics for a-catenin and b-catenin

complexes decouples from the rest of the system, and the

fluxes can be obtained from Eqs. 2. and 3 after we have

solved for C
m; a
b using Eqs. 4a and 4c:

jb ¼ konb Cb
b; (7a)

ja ¼
km;a
ab C

b
a

rm;a
b þ km;a

ab C
b
a

konb Cb
b: (7b)

The system of equations derived above can now be solved

independently in the two configurations of the cell numeri-

cally, namely, in the presence or absence of contact with a

neighboring cell. It consists of Eqs. 1a and 1b together

with one of the boundary conditions (Eq. 6 or Eq. 7) at the

plasma membrane and a constant protein influx given by j0a
and j0b at the Golgi apparatus of the cell. We solve this system

for the case of a spherical cell of radius R, whose Golgi

apparatus is modeled as a sphere of radius r0. In Fig. 4, we

illustrate the difference in the concentrations of a-catenin,

b-catenin, and a-catenin dimers with and without cell-cell

contact. We see in Fig. 4 C that the overall concentration

of a-catenin dimers presents a significant increase in the

case of cell-cell contact, as compared to the case without

contact, which provides an efficient switch between the

two phenotypic states of the cell. Note that in both cases,

there is a drop in the concentration of a-dimers away from

the nucleus. If the diffusion constant is small enough (i.e.,

if Daa=½R
2ðraa þ ~raaÞ � 1� ), this concentration drop is

significant and could be relevant for the spatial organization

of polymerized actin within the cell.

Scaling analysis

Let us now perform a scaling analysis of the total number of

a-catenin dimers in the system as given by our model,

comparing the two cases with and without cell-cell contact.

In asymptotic limits in which the involved lengthscales

separate, it is possible to solve our system of equations

analytically. We thereby obtain a better physical under-

standing of the contact inhibition mechanism proposed in

this article. We also derive a simple expression for the

change in the total amount of a-catenin dimers, Naa, in

the cell between the contact and no-contact states, which

dictates the amplitude of the switch. This final expression

is given by Eq. 19, and one may want to skip to this equation

and its associated comments directly. Later, this derivation

also helps us to see in which biological conditions our mech-

anism can function, and to investigate the various possibili-

ties that can lead to its breakdown. This is done in the next

section.

We first identify the different characteristic lengths over

which the concentrations of the different proteins vary as
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each of the reactions is considered separately. For a given

protein, the shortest of the characteristic lengths of the

different reactions it enters determines its dominant reaction

pathway. The characteristic length for the change in

monomeric a-catenin concentration due to a-catenin dimer

formation (a-catenin-to-b-catenin binding) is given by

laaa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Da=ðkaaCaÞ
p

�

laab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Da=ðkabCbÞ
p �

. In a similar

way, the change in b-catenin concentration due to a-cate-

nin-to-b-catenin binding is given by lbab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Db=ðkabCaÞ
p

.

Finally, the characteristic length due to monomeric a-catenin

degradation (b-catenin degradation) is la ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Da=ra
p

�

lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

Db=rb
p �

.

We first look at the case where laab is the shortest of the

lengthscales given above. As shown below, such a condition

is realized as soon as the production of b-catenin at the Golgi

apparatus of the cell is large enough, such that reactions with

monomeric b-catenin proteins (bound to E-cadherins) are

fast. In this case, a-catenin-to-b-catenin binding is dominant

over a-catenin dimerization in the absence of cell-cell

contact, such that our mechanism can be efficient. (Other

limits are studied below.) The concentration of a-catenin at

the cell membrane is always very low and the change in

the steady-state concentration of a-catenin with and without

cell-cell contact results from a redistribution of b-catenin

inside the cell.

Within this limit, we can assume a quasiconstant concen-

tration of b catenin in a region of length laab around its

source, which allows us to find analytical expressions for

the reaction-diffusion system in a one-dimensional geometry

with coordinate x, the protein source being at x ¼ r0 and the

cell membrane at x ¼ R. The solution for the a-catenin

concentration is given by

CaxC0
aexp

�

� ðx � r0Þ=l
a
ab

�

; (8)

with C0
a ¼ laab j

0
a=Da ¼ j0a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kabC
0
bDa

q

, and where C0
a and

C0
b are the concentrations of a-catenin and b-catenin

complexes, respectively, at x ¼ r0. The solution for the

b-catenin concentration is given by

CbxC0
bcoshððx � r0Þ=lbÞ �

j0b � j0a
ffiffiffiffiffiffiffiffiffiffi

Dbrb
p sinhððx � r0Þ=lbÞ (9)

From the boundary conditions, we can determine the

expression for C0
b:

C0
bxf

j0b � j0a
ffiffiffiffiffiffiffiffiffiffi

Dbrb
p ; (10)

where

µr  [    m]     

µr  [    m]     

µr  [    m]     

C
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µ

M
]

α
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FIGURE 4 Cytosolic concentration profiles of b-catenin (A), a-catenin

(B), and a-catenin dimers (C) resulting from the reaction-diffusion system

described by Eqs. 1a–1d, with the boundary conditions without cell-cell

contact (Eq. 6) or with cell-cell contact (Eq. 7), as functions of the distance

from the center of a cell with spherical symmetry. The different parameters

are as follows. The Golgi apparatus of the cell is located at r0 ¼ 1 mm

and the total radius of the cell is R ¼ 10 mm. The b-catenin influx is j0b ¼

5.0 mm mM s�1. The diffusion constants of a- and b-catenin are equal to

1 mm2 s�1, and the one for a-catenin dimers is 0.5 mm2 s�1 (30). In these

plots, the reaction rate of a-catenin with b-catenin is 0.01 mM�1 s�1, and

that of a-catenin with itself is 0.005 mM�1 s�1 (31). The protein degradation

rates of a-catenin and b-catenin are equal to 10�3 s�1, and the consumption

and degradation rates of a-catenin dimers are 0.5 � 10�3 s�1. Finally, the

membrane binding and unbinding rates, konb and koffb, of the b-catenin protein

complex are equal to 1 mm s�1 and 1 s�1, respectively.
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f ¼
1þ g tanhðR=lbÞ

tanhðR=lbÞ þ g
and g ¼

rm;d
b

koffb þ rm;d
b

konb
ffiffiffiffiffiffiffiffiffiffi

Dbrb
p : (11)

It is now possible to translate our initial assumptions on

the different characteristic reaction lengths into conditions

directly on the concentration C0
b of b-catenin at x ¼ r0. For

the three characteristic lengths li¼ la, lb, and R, the condition

laab � li reads

C0
b[

Da

kab

1

l2i
; (12)

whereas the conditions laab � lbab and laab � laaa, respec-

tively, read

C0
b[

"

Da

kab

�

j0a
Db

�2
#1=3

; (13)

and

C0
b[

�

2kaaj
0
a

�2=3

kabðDaÞ
1=3

: (14)

Finally, there is an additional condition stating that the

concentration of b-catenin is quasiconstant in a region of

length laab around the protein source:

C0
b[

Darb

kabDb

1

f 2
: (15)

Since C0
b f j0b � j0a, all of these conditions are satisfied

for a sufficiently large influx, j0b, of b-catenins at the Golgi

apparatus of the cell.

The amplitude of the switch is given by the change in the

total amount of a-catenin dimers, Naa, in the cell between the

contact and no-contact states. The concentration in a-catenin

dimers is given simply by

Caa ¼
kaa

raa þ ~raa
C2

a (16)

if laab is much smaller than the two other lengthscales given

by Eq. 1c, namely ~l
a

aa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DaaCaa=ðkaaC2
aÞ

p

and

laa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Daa=ðraa þ ~raaÞ
p

. Integrating the a-catenin dimer

concentration over the size of the whole cell under this

hypothesis, we obtain

Naax

kaa
�

j0a
�2

2raaðkabÞ
3=2ðDaÞ

1=2

�

C0
b

��3=2

(17)

as a formal expression. The consistency check for this

expression gives the following condition for C0
b:

C0
b[

Dakab

Daaðraa þ ~raaÞ
; (18)

which again is satisfied for a sufficiently large influx, j0b, of

b-catenins at the Golgi apparatus of the cell. The results in

the presence and absence of cell-cell contact can be obtained

by switching the rates for detached membrane proteins with

those for attached ones. In particular, the off-rate of b-catenin

from the membrane, koffb , must be set to 0 in the case where

there is contact with a neighboring cell. If all the other rates

stay the same, we obtain a simple expression for the ratio of

the total amounts of a-catenin dimers with and without

cell-cell contact:

Ncon
aa

Nnocon
aa

x

 

1 þ
koff;noconb

rm;d
b

!3=2

; (19)

which comes from the dependence of Naa on C0
b, and where

k
off; nocon
b is the off rate of b-catenin from the membrane

when there is no cell-cell contact. Hence, for a protein degra-

dation rate, r
m; d
b , much smaller than the off rate, koffb , we

expect a significant switch in the total amount of a-catenin

dimers produced and, thus, a functional contact inhibition

mechanism.

We now look at two cases where laab may not necessarily

be the smallest characteristic length in the system. First, it is

possible that when there is cell-cell contact, laaa becomes the

shortest characteristic length, instead of laab in the absence of

contact. Indeed, when there is cell-cell contact, b-catenin

proteins could be sufficiently depleted from the cell that

most of the a-catenins form homodimeric complexes before

reacting with b-catenins. In this case, the contact inhibition

switch remains intact, and the previous ratio still scales as

stated in Eq. 19.

Another limit corresponds to the case where the cell

radius, R, is the shortest lengthscale in the system. In this

case, the system of reaction diffusion equations—together

with the corresponding boundary conditions—can be treated

as a system without spatial extension. A substantial change

in the b-catenin concentration between the two states of

the cell can be achieved in this limit if the degradation rate

of b-catenin in the cytosol, rb, is much smaller than its degra-

dation rate on the membrane, r
m; d
b . The numerical solutions

that correspond to this limit are shown in Fig. 5. In particular,

Fig. 5 B shows that the switch is controlled by the ratio

rb/r
m; d
b . As an alternative, the reaction rate k

m; a
ab of

membrane-bound b-catenin with a-catenin could be smaller

than the corresponding reaction rate in the cytosol kab. This

would also yield a functioning contact inhibition switch.

Breakdown of contact inhibition

Let us now investigate the various possibilities that, accord-

ing to our model, can lead to a breakdown of the contact

inhibition pathway. To investigate what affects the produc-

tion of a-catenin dimers, let us look at the total number of

a-catenin dimers in the cell calculated from a numerical solu-

tion of our whole system of equations (Eqs. 1a–1d) together

with the boundary conditions described by Eqs. 6 and 7, for

the contact-free and contact-inhibited states (see Fig. 6). We

first show the dependence on j0a (Fig. 6 A), which is

Biophysical Journal 98(12) 2770–2779

2776 Basan et al.



proportional to the total production of a-catenin in the cell

Golgi apparatus. As discussed above, many cancerous cells

show mutations that impair the function or production of

a-catenin proteins. From Eq. 17, we see that the total number

of a-catenin dimers scales like (j0a)
2, which is consistent with

these experimental observations. For low values of j0a, the

difference between the contact-free and contact-inhibited

state disappears, as has been observed experimentally (23).

Next, we consider the effect of a knockout of the APC

protein, which is known to label the b-catenin in the cytosol

for degradation. From Eqs. 10, 11, and 17, we see that for

a fast b-catenin degradation, the total amount of a-catenin

dimers scales like (rb)
3/4. Hence, contact inhibition becomes

less effective for a lower cytosolic b-catenin degradation

rate, as has been observed in experiments (19). As can be

seen in Fig. 6 B, a low degradation rate of b-catenin—which

corresponds to a knockout of APC—leads to a total concen-

tration of a-catenin dimers in the cell that is low, even when

there is cell-cell contact. Other defects frequently encoun-

tered for cancerous cells are downregulation or mutations

of E-cadherins (15). In our picture, a malfunction of E-cad-

herins due to mutations corresponds to a less effective

binding of E-cadherins to neighboring cells, and thereby

a less efficient trapping of E-cadherins and b-catenins to

the plasma membrane. Fig. 6 C shows that an increased off

rate, koffb , in both states again leads to a failure of contact

inhibition, since the difference between the contact and no-

contact states disappears for large values of koffb in the contact

state. Finally, a lower expression of E-cadherin results in

a less effective binding of b-catenin to the plasma membrane,

which can be modeled by a decreased on rate, konb , as shown

in Fig. 6 D. Similar results are obtained when R is the short-

est lengthscale in the system. In this case, the solution of the

system of equations is plotted in Fig. 5 as a function of the

model parameters that simulate a breakdown of the contact

inhibition mechanism. The breakdown of the switch is

similar to the one discussed above.

DISCUSSION

In this article, we have proposed a reaction-diffusion model

of the cadherin-catenin system in which the concentration of

A B

C D

FIGURE 5 Numerical solutions for the total

number of a-catenin dimers in the cell as a function

of different parameters when the cadherin-catenin

system is treated as a zero-dimensional reaction

system. In this limit, the contact inhibition mecha-

nism is based on a larger degradation rate on the

membrane (r
m; d
b ¼ 10�2 s�1) than in the cytosol

(rb ¼ 10�3 s�1). The a-catenin degradation rate,

ra, is also assumed to be small (10�3 s�1). The total

production rates of a-catenin and b-catenin are

equal to 7.5 � 103 s�1 and 14 � 103 s�1.

Protein-protein reaction rates are 10�3 s�1, and

on and off rates of the b-catenin protein complex

to the cell membrane are konb ¼ koffb ¼ 0.1 s�1.

Note that for rb > r
m; d
b , the switch is reversed.

A B

C D

FIGURE 6 Integrated a-catenin dimer concentration over the cell volume

from the numerical solution of the whole model. This quantity is plotted as

a function of the a-catenin influx j0a (A), the b-catenin degradation rate in the

cytoplasm, rb (B), and the rates of unbinding, k
off
b (C), and binding , konb (D),

of the b-catenin protein complex from and to the membrane. The same

constants are used as in Fig. 4. In B, rm, d
b ¼ rb is assumed. Contact inhibi-

tion occurs when the concentration of a-catenin dimers, Caa, is large.

The contact inhibition breaks down for low production, j0a, of a-catenin

(A) and for an increased degradation of b-catenin (B). It also breaks down

for an increased membrane off rate (C), which corresponds to mutations

of E-cadherins leading to less efficient formation of cell-cell E-cadherin

bonds. This results in an insufficient trapping of b-catenins on the membrane

in the presence of cell-cell contact. Finally, contact inhibition breaks down

for small values of konb (D), which could correspond to a less efficient

binding of b-catenin to the membrane due to a decreased expression of

E-cadherins.
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a-catenin dimers increases in a confluent cell as compared to

a cell without contact. We propose that this switch is due to a

competition between mutually exclusive a-catenin dimeriza-

tion and a-catenin-to-b-catenin binding in the cytosol of

the cell. In the presence of cell-cell contact, intercellular

E-cadherin bonds prevent endocytosis of E-cadherin

complexes. This leads to a redistribution of unbound b-cate-

nins to the cell membrane and thereby a significant increase

in the amount of a-catenin dimerization. Hence, the cell

shifts between an active state, combining high cellular

expansion pressure with high cellular motility, to a quiescent

state, where actin branching is inhibited.

From our analysis, we expect the contact-inhibition switch

to function efficiently if b-catenin is sufficiently abundant in

the cell to effectively compete with a-catenin dimerization.

Therefore, there are three distinct possibilities that can lead

to a functioning contact inhibition mechanism. First, the

protein reaction rates could be sufficiently fast compared

with protein diffusion to effectively separate two distinct

pools of b-catenin proteins, cytosolic and membrane-bound

b-catenins (both linked to E-cadherin proteins), respectively.

Although b-catenins in the cytosol compete with a-catenin

dimerization, b-catenins on the membrane cannot react

with a-catenins anymore, because all a-catenins either

bind b-catenins or form dimers before they get a chance to

arrive at the membrane. In that case, the contact inhibition

switch comes from a redistribution of b-catenin-E-cadherin

complexes from the cytosol toward the cell membrane as

a response to contact with a neighboring cell, effectively

letting a-catenin dimers form in the cytosol before reaching

the cell membrane, where a high concentration of b-catenin

proteins is found. Second, the contact-inhibition switch

could arise from depletion of b-catenins from the entire

cell in the state with contact as compared to the state without

contact. This is the case, for example, if the degradation rate

of b-catenin is much larger on the membrane than it is in the

cytosol, which is possible, since b-catenin degradation takes

place via two distinct pathways in the cytosol and on the

membrane of the cell. In this case, the mechanism works

even for very slow reaction rates and fast protein diffusion,

and the spatial structure of the cell can then be ignored or

be treated as a zero-dimensional system. This case is illus-

trated in Fig. 5. Third, the switch could arise from a reaction

of membrane-bound b-catenin with a-catenin that is much

slower than the corresponding reaction rate in the cytosol.

Depending on the state of the cell, b-catenin proteins are

indeed located primarily either on the plasma membrane or

in the cytosol, allowing a-catenin proteins to dimerize or

not. This case also does not rely on slow diffusion and can

be treated as a zero-dimensional system.

In addition to providing a mechanism for contact inhibi-

tion, the model qualitatively reproduces the effect of several

mutations that are known to cause the breakdown of this

mechanism and result in tumorlike phenotypes. As can be

seen in Figs. 5 and 6, the model agrees with experimental

observations in which the expression levels or the degrada-

tion rates of E-cadherin, b-catenin, or a-catenin are modified.

These findings explain why a broad range of mutations leads

to similar cancerous phenotypes. In particular, the effects of

an increased b-catenin concentration on contact inhibition

are explained by this model without implicating the Wnt-

signaling pathway (18).

Although this work shows that the cadherin-catenin

reaction-diffusion system could play the role of a contact-

inhibition switch, it is impossible to determine whether it

is the most relevant effect without further experimental

studies. Experiments that would directly test this pathway

are possible. We have already discussed how the cadherin-

catenin mechanism reproduces the observed effects of a

change in the production and degradation rates of different

proteins. However, it might also be possible to inhibit only

the interaction of any given pair of these proteins by phos-

phorylation of specific residues, and thereby to investigate

directly every step in the proposed mechanism without inter-

fering with other pathways like the Wnt-signaling pathway

(18,29). For example, one experiment of particular interest

would be to knock out b-catenin-to-a-catenin binding by

phosphorylation without changing the level of expression

of these proteins. This would distinguish our model from

the picture proposed by Nelson et al. (7,8): indeed, within

the reaction-diffusion model presented here, such a treatment

would result in an increased concentration of a-catenin

dimers, the inhibition of actin branching, and, thus, the

contact-inhibited cell state even in the absence of a neigh-

boring cell. In contrast, in the picture proposed by Nelson

et al., failure of b-catenin to bind to a-catenin would lead

to a disruption of the localization of a-catenin to the adhe-

sion sites, and thereby to actin branching and polymerization

even at confluence.

If the model presented here were to be confirmed experi-

mentally, it could potentially ground the idea that different

homeostatic growth pressures between neoplastic and

healthy tissues are responsible for tumor growth (12). In

particular, one could then test whether different disruptions

of the cadherin-catenin pathway that are known to lead to

tumorigenesis would affect the homeostatic pressures of

the tissues under study. Such an observation could poten-

tially give a direct explanation of the observed link between

the cadherin-catenin system and neoplastic phenotypes.
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Appendix E

Résumé de la thèse en français

Les cellules sont des structures d’une complexité remarquable, et il est essentiel pour leur
survie que la matière vivante qu’elles contiennent soit confinée en leur sein. Pour cette
raison, elles sont entourées d’une bicouche lipidique appelée membrane plasmique. Au
cours de la vie de la cellule, cette membrane est sans cesse remodelée, notamment par des
protéines, pour permettre les échanges au sein de la cellule et avec l’extérieur.

La présente thèse traite d’un type de structure impliqué dans un large éventail de sit-
uations où les protéines interagissent avec la membrane. Il s’agit des tubes de membrane,
qui apparaissent à la base de vésicules en formation, d’invaginations de la membrane ou
lorsque le cytosquelette exerce une force ponctuelle sur le bord de la cellule, ce qui résulte
en une protrusion enveloppée de membrane. Notre travail est divisé en trois parties, qui
traitent de trois géométries d’interactions protéines-membranes très répandues au sein de
la cellule. Chacune de ces parties est construite autour d’un exemple concret de protéine
participant à la déformation de la membrane, ce qui nous permet de systématiquement
comparer nos résultats à des données expérimentales. Le premier de ces exemples est la
dynamine, une protéine qui enveloppe la membrane et la contraint à adopter une forme
tubulaire, puis la rompt grâce à l’énergie fournie par l’hydrolyse du GTP. Notre second
exemple est le complexe protéique ESCRT-III, qui a un rôle similaire à celui de la dy-
namine à une différence notable près : il ne s’assemble pas autour des tubes de membrane,
mais à l’intérieur. Enfin, nous nous intéressons aux stéréocils, qui sont des protrusions
tubulaires que la cellule étend vers le monde qui l’entoure en poussant sa membrane vers
l’extérieur au moyen de filaments d’actine.

E.1 Dynamine

La dynamine et ses analogues sont présents dans de nombreuses cellules eucaryotes, où
ils participent au trafic intracellulaire. Plus spécifiquement, ils sont utilisées dans une
large gamme d’événements de fission membranaire, au cours desquels deux compartiments
membranaires distincts sont formés à partir d’un seul. Chez l’homme, des mutations liées
à la dynamine ou à ses analogues sont à la source de maladies neurologiques, de myopathies
et de déficiences visuelles.

Le mode d’opération de la dynamine est illustré dans la Fig. 2.2, qui présente son action
lors de la fermeture des puits de clathrine. La clathrine est une protéine qui forme un
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manteau courbé autour de la membrane, la contraignant à adopter une forme sphérique.
Une fois la clathrine assemblée [Fig. 2.2(c)], il reste à couper le cou de membrane qui
relie la vésicule à la membrane plasmique. Cette opération est coûteuse énergétiquement,
car elle nécessite de courber la membrane fortement. C’est là qu’intervient la dynamine.
La dynamine polymérise en forme d’hélice autour de la membrane [Fig. 2.2(d-f)], puis
hydrolyse un carburant moléculaire, le GTP, une opération qui fournit l’énergie nécessaire
à la rupture de la membrane [Fig. 2.2(g)].

Plusieurs travaux expérimentaux portant sur des systèmes in vitro mettant en jeu
des protéines purifiées permettent de mieux comprendre l’action de la dynamine. En
ajoutant de la dynamine seule à des vésicules ou à une phase lamellaire de membrane,
on peut obtenir sa polymérisation autour de la membrane, à condition que cette dernière
soit négativement chargée ou contienne le lipide PIP2. Cette polymérisation résulte en
la formation de longs (plusieurs milliers de tours d’hélice, soit quelques dizaines de mi-
cromètres) tubes, dont la structure et les dimensions sont représentées en Fig. 2.3. Du
GTP peut maintenant être ajouté à ces tubes. Si ces tubes sont libres de se mouvoir
en solution, la dynamine change de conformation (le rayon et le pas de l’hélice de dy-
namine diminuent), mais le tube ne casse pas. Si au contraire les tubes sont tenus par
leurs extrémités, par exemple parce qu’ils sont adsorbés sur la surface d’une lamelle de
microscope, on observe qu’ils deviennent très tendus lorsque du GTP est introduit, puis
cassent en un point unique. Par ailleurs, il est possible d’attacher une bille de polystyrène
à l’hélice de dynamine. Lors de l’introduction du GTP, on observe alors la rotation de la
bille, ce qui prouve que l’hydrolyse du GTP par la dynamine engendre des couples en plus
d’engendrer des forces. C’est l’action conjuguée de ces couples et forces qui provoque la
rupture du tube.

Notre étude de la dynamine est divisée en deux chapitres, correspondant aux deux
étapes de l’action de la dynamine : polymérisation et changement de conformation.

E.1.1 Polymérisation de la dynamine

Notre étude théorique de la polymérisation de la dynamine est réalisée en proche collabo-
ration avec Aurélien Roux et Patricia Bassereau à l’Institut Curie. Nous commençons par
présenter le dispositif expérimental utilisé, puis présentons une étude thermodynamique
étayée par des résultats expérimentaux. Nous proposons ensuite des voies de recherche
concernant la cinétique de nucléation du polymère de dynamine, ainsi que sa cinétique de
croissance.

E.1.1.1 Montage expérimental

Les expériences présentées ici sont réalisées dans le cadre du dispositif représenté en
Fig. 3.1. Une vésicule unilamellaire géante est maintenue en place par une pipette
d’aspiration, qui permet de contrôler la tension de sa membrane. Une pince optique
est également employée, qui permet d’approcher une bille recouverte de streptavidine de
la vésicule. La membrane contient des lipides biotinylés, et adhère donc à la bille en raison
de la formation de liens biotine-streptavidine. La bille est ensuite éloignée de la vésicule,
ce qui résulte en la formation d’un tube de membrane reliant la vésicule à la bille. Au
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cours de l’expérience, le tube de membrane peut être observé par microscopie confocale.
Il contient en effet des lipides PIP2 marqués par un fluorophore rouge.

Le rayon du tube ainsi formé est déterminé par la compétition entre deux effets. D’une
part, la membrane a une certaine élasticité, caractérisée par son module de courbure,
qui tend à lui faire adopter une configuration aussi plane que possible, et donc à faire
augmenter le rayon du tube de membrane. D’autre part, la vésicule a une certaine tension
imposée par la pipette d’aspiration. La conséquence en est que la membrane contenue
dans le tube est tirée vers la vésicule. Cet effet tend à réduire le rayon du tube. Puisque
nous contrôlons la tension de la membrane via l’intensité de l’aspiration exercée par la
pipette, nous en contrôlons aussi le rayon, dans une gamme allant typiquement de 10 à
100 nm. De plus, la traction exercée par la vésicule sur le tube de membrane se répercute
sur la bille, et tend à la déplacer du centre du piège optique dans lequel elle est maintenue.
Ce déplacement est de faible amplitude devant la longueur du tube, mais peut être résolu
optiquement. Ainsi, en observant le déplacement de la bille, nous pouvons inférer la force
que le tube exerce sur elle. Dans le cas d’un tube de membrane seule, cette force est reliée
à la tension de la membrane.

Le tube de membrane que nous tirons de la vésicule sert de substrat à la polymérisation
de la dynamine. La dynamine peut être introduite dans le dispositif expérimental de deux
manières différentes. Pour les faible concentrations de dynamine (440 nM ou moins), celle-
ci est incorporée dans la solution de vésicules avant son introduction dans le microscope.
Lorque des concentrations élevées sont employées (12µM), une solution de dynamine est
injectée en cours d’expérience par une pipette auxiliaire.

E.1.1.2 Étude thermodynamique

La première partie de notre étude consiste à déterminer dans quelles conditions la solution
de dynamine forme une hélice autour du tube. La formation d’une telle hélice n’est pas
anodine pour la membrane. En effet, elle voit au cours de ce processus sa courbure
augmenter très significativement, car l’hélice de dynamine (qui est très rigide) impose
à la membrane son rayon de courbure, égal à 10 nm. La membrane s’oppose à cette
déformation, qui ne peut donc se produire que si le gain d’énergie lié à la formation de
l’hélice est assez important. Nous adoptons ici ce point de vue énergétique et comparons
l’énergie du tube de membrane nu et à celle du tube entouré d’une hélice pour conclure sur
l’existence ou non de telles hélices. Dans cette approche thermodynamique initiale, nous
ne nous soucions donc pas de l’existence d’éventuelles barrières cinétiques à la formation
du polymère de dynamine.

Plusieurs effets ont une influence sur la stabilité de l’assemblage dynamine-membrane :
l’affinité de la dynamine pour la membrane, le gain énergétique lié à la formation de
liaisons chimiques lors de la polymérisation, l’abondance de la dynamine dans la solution,
l’énergie de la membrane contrainte par l’hélice (qui est notamment liée à la tension de
la membrane dans la vésicule, et donc au rayon du tube de membrane initial). Parmi
ces facteurs, les plus faciles à contrôler sont la concentration de la solution de dynamine
et la tension de la membrane. L’énergie de l’assemblage dynamine-membrane doit être
comparée à celle du tube de membrane nu. Celle-ci dépend de la courbure de la membrane
(en raison de son module de courbure) et de sa surface (en raison de la tension de la
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vésicule). Ainsi que nous l’avons vu plus haut, l’une comme l’autre sont reliées au rayon
du tube nu. Grossièrement parlant, un tube de grand rayon a une énergie plus basse
qu’un tube de faible rayon. Si nous formons un tube de faible rayon, son énergie initiale
est donc relativement élevée et la dynamine n’aura donc pas besoin de payer beaucoup
plus d’énergie pour finir de le déformer.

Parmi les facteurs énumérés ci-dessus, ceux liés à la mécanique de la membrane ainsi
qu’à la concentration de la solution sont bien connus, et nous pouvons sans peine évaluer
l’énergie qui leur est associée. Par contre, ceux liés à l’énergie de polymérisation de la dy-
namine sont mal connus. Notre première expérience a pour but de déterminer l’amplitude
de ces derniers. Nous nous plaçons dans un cas où la dynamine polymérise spontanément
autour de la membrane. Une fois le tube complètement recouvert de dynamine, la crois-
sance de celle-ci est bloquée par la bille maintenue dans le piège optique. En raison de
sa tendance à polymériser, cependant, la dynamine est capable de déplacer la bille de
sa position d’équilibre afin de libérer un peu d’espace de polymérisation supplémentaire.
Nous pouvons formuler cette observation en termes de forces et dire que la polymérisation
de la dynamine exerce une force au même titre que celle de l’actine ou des microtubules.
Comme nous l’avons évoqué plus haut, notre montage de pinces optiques nous permet de
mesurer cette force. Nous pouvons donc mesurer le gain d’énergie de la dynamine lors de
sa polymérisation. La dynamine est un polymère de dimères, et ce gain s’élève à 3.8kBT
par dimère lorsqu’une solution de dynamine de 12µM est utilisée.

Nous sommes donc maintenant en possession d’informations quantitatives sur tous les
effets déterminant la stabilité de l’hélice de dynamine. Nous pouvons les comparer et
prédire pour quelles valeurs du rayon initial du tube de membrane et de la concentration
de la solution la dynamine polymérisera. Cette prédiction est tracée sous la forme d’un
diagramme de phases en Fig. 3.3(b), et nous la vérifions expérimentalement. Le bon
accord entre expérience et théorie confirme notre image de compétition entre énergie de
polymérisation de la dynamine et énergie de courbure de la membrane, et démontre donc
que la polymérisation de la dynamine peut être contrôlée par la courbure initiale de la
membrane. Cette observation a des conséquences intéressantes pour le rôle biologique de
la dynamine, car elle suggère que le recrutement de la dynamine à la base des puits de
clathrine est dépendant de leur courbure, ce qui est en accord avec plusieurs observations
expérimentales. Qui plus est, le mécanisme décrit ici est assez général pour s’appliquer à
d’autres protéines sensibles à la courbure de la membrane, et pourrait donc constituer un
moyen générique pour la cellule de contrôler les interactions protéines-membranes.

E.1.1.3 Cinétique de nucléation

Lorsque des expériences de polymérisation décrites plus haut sont réalisées à faible concen-
tration de dynamine (typiquement 440 nM), de courtes hélices de dynamine se forment sur
le tube de membrane, puis croissent lentement jusqu’à le recouvrir. Ces noyaux d’hélice
sont peu nombreux (quelques unités par tube), ce qui suggère que la nucléation d’une
hélice de dynamine est un événement rare. Dans cette seconde partie de notre étude,
nous nous intéressons aux causes de cette rareté et étudions les barrières cinétiques à la
polymérisation de la dynamine. Nous formulons deux hypothèses quant à leur origine,
dont découlent des prédictions pour la dépendance du taux de nucléation en la con-
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centration de la solution et en la tension de la membrane. Ces deux hypothèses sont
schématisées en Fig. 3.4. La validation de l’un de ces mécanismes (ou la preuve que les
deux mécanismes ont un rôle à jouer) fournirait des informations intéressantes sur les
détails microscopiques des interactions dynamine-membrane. Dans les deux cas, nous
nous demandons avec quelle fréquence la dynamine est capable de former un oligomère
encerclant la membrane et à partir duquel la croissance d’un long polymère peut débuter.

Notre première hypothèse [Fig. 3.4(b)] consiste à considérer que la membrane est beau-
coup plus rigide que la dynamine1. Dans ce cas-là, les dimères de dynamine s’aggrègent
aléatoirement à la surface d’un tube de courbure constante. Les oligomères qu’ils forment
sont frustrés (et ont donc une énergie élevée), car leur rayon naturel est 10 nm, beaucoup
plus petit que celui du tube. Lorsqu’au hasard du processus d’aggrégation de grands
oligomères de dynamine se forment, l’énergie emmagasinée est telle qu’elle leur permet
de courber la membrane et de former une hélice. Dans le cadre de cette hypothèse, la
cinétique de nucléation de la dynamine est donc contrôlée par la cinétique d’aggrégation
des dimères.

La seconde hypothèse est à l’extrême opposé de la première. Dans ce cas, les oligomères
de dynamine sont beaucoup plus rigides que la membrane. Il ne pourront donc jamais
polymériser sur un substrat ayant un rayon supérieure à 10 nm. Le seul moyen d’initier la
polymérisation est donc que le rayon du tube de membrane soit abaissé jusqu’à atteindre la
valeur requise. Au sein du système décrit ci-dessus, le seul type de déformations auxquelles
est soumise la membrane provient de ses fluctuations thermiques. Nous assimilons donc le
taux de nucléation des polymères de dynamine au taux de fluctuations du rayon du tube
de membrane abaissant son rayon au-dessous de 10 nm assez longtemps pour permettre à
la dynamine de l’encercler, et calculons ce taux.

E.1.1.4 Cinétique de croissance

Une étude approfondie de la croissance du polymère de dynamine après sa nucléation
révèle plusieurs effets inattendus. Nous proposons deux origines possibles pour ces ef-
fets, et présentons des prédictions impliquant certaines caractéristiques microscopiques de
l’assemblage dynamine-membrane, telles que les constantes d’adsorption, de désorption
et de polymérisation de la dynamine, ou encore une friction effective caractérisant la
dynamique des interactions dynamine-membrane. Ici encore, la vérification de nos pré-
dictions permettrait une meilleure compréhension qualitative et quantitative des interac-
tions dynamine-membrane.

Les effets inattendus mentionnés ci-dessus sont illustrés en Fig. 3.5. Premièrement, il
est observé que les noyaux de dynamine mentionnés précédemment ne sont pas répartis
au hasard sur le tube de membrane, mais tendent à être séparés par une distance car-
actéristique, si ce n’est à être agencés périodiquement. Deuxièmement, ces noyaux n’ap-
paraissent qu’au début des expériences, puis ne font que crôıtre sans qu’aucun nouvel
événement de nucléation ne soit observé. Troisièmement, ces noyaux croissent initiale-
ment à vitesse constante, mais dans certaines expériences leur croissance semble ralentir
lorsque le taux de couverture de la membrane par l’hélice s’approche de 1. Quatrièmement,

1Il est impossible de savoir si cette hypothèse est justifiée a priori, car les propriétés mécaniques des
petits oligomères de dynamine, au contraire de celles des longs polymères, n’ont jamais été caractérisées.
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il est parfois observé que la force mesurée par la pince optique diminue avant que l’hélice
ne recouvre complètement le tube, ce qui suggère que l’hélice est capable d’exercer à
distance une force sur la bille.

Notre première hypothèse permet d’expliquer les trois premiers effets. Elle consiste
à supposer que la dynamine ne passe pas directement de la solution à l’état polymérisé,
mais doit d’abord s’adsorber sur une partie du tube non recouverte par l’hélice. Dans
ce cas-là, la formation d’un court polymère tend à appauvrir son voisinage en dynamine
adsorbée, ce qui explique que d’autres noyaux ne peuvent pas se former à proximité.
Cet appauvrissement peut s’étendre au tube tout entier, ce qui défavorise la nucléation
de nouvelles hélices dès lors que quelques-unes sont déjà présentes. Enfin, si deux hélices
croissent en direction l’une de l’autre, leur taux de croissance dépend du taux d’adsorption
de la dynamine de la solution sur la section de membrane nue qui les sépare. Au fur et à
mesure que la taille de cette section diminue, l’apport de dynamine depuis la solution est
de plus en plus réduit et la croissance des hélices ralentit.

La seconde hypothèse est complémentaire de la première et rend compte des trois
derniers effets. Elle consiste à remarquer que puisque le tube de membrane initial est plus
large que celui enserré par l’hélice, la polymérisation de la dynamine dégage un excès de
membrane, ainsi que d’eau contenue à l’intérieur de celle-ci. Dans le cas hypothétique
où la dynamine commencerait à polymériser depuis la bille, ces excès n’influenceraient
pas la dynamique de polymérisation car ils s’écouleraient rapidement en direction de la
vésicule, où ils seraient absorbés. Imaginons maintenant qu’une autre hélice de dynamine
se trouve sur leur chemin. En raison de son faible rayon et des interactions de l’hélice avec
la membrane, celle-ci s’oppose à l’écoulement de l’eau et de la membrane. Ce phénomène
peut être modélisé par une friction effective entre l’hélice et la membrane, et une autre
entre la membrane et l’eau. Celles-ci s’accumulent donc, et le rayon des sections libres du
tube augmente au fur et à mesure de la croissance des hélices. Il se peut ainsi qu’après une
courte période de croissance des hélices, les sections libres du tube deviennent impropres
à la nucléation de nouvelles hélices, ce qui constitue le second effet décrit plus haut.
L’accumulation de membrane est évidemment défavorable à la croissance du polymère, ce
qui explique que celle-ci ralentisse. Enfin, un excès de membrane induit une chute de sa
tension, ce dont découle une décroissance de la force mesurée par la pince optique.

E.1.2 Action mécanochimique de la dynamine

La principale motivation de la plupart des études portant sur la dynamine est la compré-
hension de son rôle dans la rupture de tubes de membrane. Celle-ci se produit lorsque la
dynamine est alimentée en GTP, ce qui engendre un changement de sa conformation. Dans
le chapitre 4 de cette thèse, nous proposons une description théorique très générale de ce
changement de conformation. Cette approche se fonde sur l’hydrodynamique généralisée,
qui décrit le comportement aux longues échelles de temps de systèmes thermodynamiques
faiblement hors d’équilibre de grande étendue spatiale.
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E.1.2.1 Formalisme hydrodynamique pour la dynamine

L’hydrodynamique généralisée offre une description simple mais rigoureuse de systèmes
potentiellement très compliqués. L’origine de cette grande simplicité est le fait qu’aux
longues échelles de temps, il est légitime de ne prendre en compte la dynamique que des
seules quantités conservées (c’est-à-dire soumises à une loi de conservation) du système.
En effet, si le système est très étendu, sa relaxation aux longues échelles de temps sera
dominée par le transport de la quantité conservée (par exemple le nombre de particules
de soluté diffusant dans un solvant) d’une extrémité à l’autre du système. Ainsi que nous
l’illustrons pour un exemple simple en Sec. 4.1, les symétries du système imposent alors
la forme des équations du mouvement.

Dans le cadre de notre étude de la dynamine, il nous faut donc tout d’abord iden-
tifier les quantités conservées. Nous envisageons un long tube de membrane couvert de
dynamine du type de ceux rencontrés dans les expériences in vitro décrites plus haut.
Nous avons donc affaire à un sytème unidimensionnel avec une structure périodique due à
l’empilement des tours d’hélice de la dynamine. Les quantités conservées dans le système
sont la masse de dynamine et la masse de membrane (nous envisageons en effet des échelles
de temps auxquelles aucun échange avec la solution environnante ne se produit), les den-
sités de quantité de mouvement et de moment cinétique, et enfin un paramètre de symétrie
brisée correspondant à la structure périodique de l’hélice.

Une fois identifiées ces quantités conservées, il nous est possible d’écrire la production
d’entropie au sein d’un système faiblement hors d’équilibre. En appliquant des contraintes
géométriques et thermodynamiques fondamentales telles que la positivité de la production
d’entropie, nous pouvons en déduire les relations flux-forces décrivant la relaxation du
tube.

Si les contraintes imposées par les lois de la physique nous permettent de dériver
la forme des équations décrivant notre système, ces contraintes ne nous permettent pas
de calculer la valeur des coefficients qu’elles font intervenir. Afin de mieux comprendre
les équations que nous venons de formuler, ainsi que d’en acquérir une compréhension
intuitive, nous discutons ces coefficients phénoménologiques et en donnons des estimations
quantitatives. En particulier, l’un de ces coefficients décrit une friction effective entre
l’hélice et la membrane. Cette friction est identique à celle évoquée lors de notre étude
de la polymérisation de la dynamine.

En plus des effets liés à la relaxation passive de notre système décrits ci-dessus, il nous
faut encore prendre en compte les effets de l’hydrolyse du GTP sur le changement de
conformation de l’hélice. D’après les images de microscopie électronique de la dynamine,
il est peu probable que l’hélice de dynamine soit polaire. De plus, l’injection d’une solution
de GTP homogène ne peut pas briser cette symétrie. Il est donc nécessaire que l’hydrolyse
du GTP se couple à nos relations flux-forces de façon non-polaire. Dans le cadre de
nos résultats précédents, nous en déduisons que mettre le tube en présence de GTP est
équivalent à exercer un couple et une force sur lui.

Enfin, nous regroupons les équations de conservation avec les relations flux-forces
décrivant notre système, ce qui nous permet d’obtenir les équations du mouvement com-
plètes. Dans le cas (toujours réalisé expérimentalement) où le tube est immergé dans
un milieu aqueux, un transfert de quantité de mouvement et de moment cinétique est
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possible entre ce milieu et le tube, ce qui implique que ces deux quantités ne sont pas
conservées. Il reste donc trois quantités conservées, ce qui implique que la dynamique
du tube peut être décomposée sur une base de trois modes hydrodynamiques. Tous trois
sont de type diffusif.

E.1.2.2 Dynamique aux temps très longs

Grâce à notre étude quantitative des coefficients phénoménologiques impliqués dans la
dynamique du tube, nous pouvons estimer les échelles de temps impliquées dans la relax-
ation de ces trois modes hydrodynamiques. Les deux premiers sont dominés par la friction
de la dynamine contre l’eau environnante, et relaxent beaucoup plus vite que le troisième,
qui implique la friction de l’hélice contre la membrane. Nous sommes donc en mesure
d’écrire une théorie de perturbation prenant en compte le taux de relaxation du troisième
mode comme un petit paramètre. Aux échelles de temps expérimentalement observables,
qui sont beaucoup plus longues que les temps de relaxation des deux premiers modes,
nous pouvons réduire les équations décrivant la dynamique du tube à une équation de
diffusion unique [Éq. (4.41)] ne mettant en jeu que la seule dissipation provenant de la
friction discutée plus haut, ainsi qu’une matrice de susceptibilité caractérisant l’élasticité
de l’assemblage dynamine-membrane.

E.1.2.3 Description élastique de la dynamine

Ainsi, une fois estimé le coefficient de friction de la dynamine contre la membrane, il
est donc possible de décrire la dynamique complète du tube à condition de connâıtre ses
propriétés élastiques. Cette information est en principe accessible expérimentalement par
des expériences de micromanipulation qui consisteraient à comprimer et tordre le tube de
manière contrôlée, ainsi qu’à changer la tension de la membrane, et à observer combien
ces opérations influencent la forme de l’hélice et de la membrane. Ces expériences sont
malheureusement techniquement difficiles. Afin de contourner cette difficulté, nous pro-
posons un modèle microscopique partiel du tube. Ce modèle ne concerne que les propriétés
d’équilibre de la dynamine, et nous permet donc encore de tirer profit de notre description
hydrodynamique concernant ses propriétés hors d’équilibre, dont la modélisation micro-
scopique serait considérablement plus compliquée.

Notre modèle consiste à prendre la dynamine en compte comme un ressort, c’est-à-dire
comme une hélice constituée d’un matériau homogène avec un certain module d’Young.
Il nous est possible d’inférer la valeur de ce module d’Young à partir d’une mesure de la
longueur de persistence de la dynamine. La membrane, d’autre part, est contrainte par
l’hélice à adopter une forme approximativement cylindrique. Nous l’autorisons cepen-
dant à se courber entre deux tours d’hélice (cette déformation est illustrée en Fig. 4.3,
et fait intervenir le module de courbure de la membrane), et prenons en compte son
extensibilité. Le module de courbure de la membrane et son extensibilité étant bien car-
actérisés dans la littérature, nous pouvons donc calculer la matrice de susceptibilité du
tube dans le cadre de ce modèle. Nous montrons à cette occasion que les écoulements
d’eau à l’intérieur du tube sont une source de dissipation négligeable aux échelles de temps
accessibles expérimentalement.
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E.1.2.4 Prédictions concernant le changement de conformation

Maintenant que nous disposons des équations du mouvement décrivant la relaxation du
tube sous l’effet d’une force et d’un couple, il nous faut déterminer les valeurs de la force
et du couple équivalents décrivant l’introduction de GTP. Des données de microscopie
électronique indiquant l’amplitude du changement de conformation de l’hélice nous per-
mettent de les déterminer. En effet, connaissant l’élasticité de l’hélice, nous pouvons
inférer les forces qui lui sont appliquées de l’ampleur de sa déformation. Nous exposons
ces valeurs dans l’Éq. (4.65).

Grâce à ce résultat et à celui de la section précédente, nous sommes en mesure de faire
la différence entre les effets mécaniques liés à l’hydrolyse du GTP par la dynamine et à
son élasticité, et ceux liés à l’élasticité de la membrane. Nous pouvons ainsi modifier notre
modèle de la membrane pour représenter non pas une membrane flexible, mais un bâtonnet
solide sur lequel la dynamine viendrait s’assembler. Ce modèle pourrait rendre compte
de certaines expériences sur le changement de conformation de la dynamine indiquant
une augmentation du pas de l’hélice à rayon constant au lieu de la diminution de pas
et de rayon présentée en Fig. 2.3. Moyennant que le module de torsion du filament
hélicoidal de dynamine soit plus grand qu’une fois et demie son module de courbure, nous
démontrons que les deux types de changement de conformation peuvent être obtenus dans
des conditions expérimentales utilisant une dynamine et des nucléotides identiques, mais
des membranes de rigidités différentes.

Enfin, nous regroupons nos résultats pour prédire le changement de conformation
complet de la dynamine. En accord avec les évaluations réalisées plus haut, nous trou-
vons que les trois modes hydrodynamiques du tube relaxent à des échelles de temps très
différentes. Seul le plus long (celui qui est dominé par la friction hélice-membrane) est ob-
servable expérimentalement. Nous n’en représentons pas moins nos prédictions théoriques
pour la dynamique complète en Fig. 4.4.

E.1.2.5 Observation expérimentale du comportement hydrodynamique

Notre collaboration avec Patricia Bassereau et Aurélien Roux, ainsi qu’avec Sandrine Mor-
lot de l’Institut Curie nous permet de comparer nos prédictions théoriques à des résultats
expérimentaux. Les expériences en question mettent en jeu un système reconstitué im-
pliquant une phase lamellaire de membrane, à laquelle est ajoutée de la dynamine, ce qui
induit la formation de tubes. De multiples billes de polystyrène sont fixées à ces tubes,
ce qui permet de visualiser la dynamique du changement de conformation de la dynamine
non seulement en fonction du temps, mais aussi en fonction de la position de la bille
sur le tube. L’expérience est observée en microscopie optique au moyen d’une caméra
ordinaire et l’injection du GTP (qui déclenche le changement de conformation) prend
quelques dixièmes de secondes, ce qui signifie que nous ne pouvons observer la relaxation
que du mode de relaxation le plus long du tube. Notre formalisme nous permet de faire
plusieurs prédictions dans ce domaine.

Premièrement, nous prédisons que le mode de plus grande longueur d’onde autorisé
par les conditions aux limites voit son amplitude décrôıtre exponentiellement au cours
du temps. Puisque ce mode a également le temps de relaxation le plus long, nous nous
attendons à ce que la relaxation de la rotation des billes portées par le tube aux temps
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longs soit exponentielle. Cette prédiction est confirmée par les données de la Fig. 4.6(a).

Deuxièmement, l’effet du GTP est d’après notre formalisme identique à l’application
d’une force et d’un couple sur le tube. À l’équilibre, nous nous attendons donc à ce que
le tube se déforme de manière homogène, et donc à ce que le nombre de tours effectué
par une bille fixée au tube dépende linéairement de sa distance au point d’attachement
du tube, ce que nous montrons expérimentalement en Fig. 4.6(b).

Enfin, nous prédisons que la relaxation du tube est de type diffusif. Cela implique que
le profil de vitesse le long du tube est sinusöıdal aux temps longs, ce que nous vérifions
en Fig. 4.6(c). Le temps de relaxation le plus long du tube devrait de plus crôıtre comme
le carré de la taille du tube. Nous observons en effet en Fig. 4.6(d) que ce temps est
une fonction croissante de la longueur, mais ne sommes pas capables de confirmer la
dépendance parabolique. Plus d’expériences sont nécessaires pour juger de l’accord ou du
désaccord de la théorie avec les expériences.

Bien qu’ils ne permettent pas de confirmer avec certitude toutes nos prédictions,
ces résultats expérimentaux indiquent que notre approche hydrodynamique est justifiée.
Cette approche hydrodynamique est à son tour intimement liée à l’idée que l’hélice garde
sa cohésion lors de son changement de conformation. Réaliser des expériences similaires
à celles-ci dans le cadre d’un montage de pinces optiques tel que celui de la Fig. 3.1 nous
permettrait de clarifier certains de nos résultats et d’en apprendre plus sur le mécanisme
de cassure du tube par la dynamine. En effet, ce nouveau montage permet de contrôler
un grand nombre de paramètres de l’expérience, et notre formalisme permet d’inférer
l’état local du tube à tout moment de la dynamique. En combinant ces outils théoriques
et expérimentaux, il devrait donc être possible de formuler un critère heuristique (par
exemple une tension critique de la membrane induisant la rupture) qui nous permettrait
de mieux comprendre le phénomène déclencheur de la fission membranaire médiée par la
dynamine.

E.2 ESCRT-III

Notre second sujet d’étude est un complexe proteique impliqué dans la formation des
corps multi-vésiculaires, dans le bourgeonnement de certains virus enveloppés et agissant
lors de la cytocinèse. Tous ces processus ont en commun qu’ils impliquent la formation
et/ou la rupture de tubes de membrane dans une géométrie différente de celle envisagée
lors de notre étude de la dynamine. En effet, dans chacun de ces cas les protéines ont
accès à l’intérieur du tube de membrane, et non pas à l’extérieur comme précédemment.

Ici nous nous intéressons au rôle d’ESCRT-III dans la déformation de la membrane
menant à la formation de tubes. Il est observé expérimentalement que l’une des protéines
constitutives d’ESCRT-III, hSnf-7, forme des polymères courbés. Lorsque hSnf-7 est sur-
exprimée dans des cellules COS-7, on observe qu’elle se lie à la membrane plasmique
et forme des réseaux de forme circulaire [Fig. 5.1(a)]. Ces réseaux changent d’aspect
lorsqu’une autre protéine d’ESCRT-III, VPS4, est modifiée. VPS4 est connue pour en-
gendrer le désassemblage des filaments de protéines d’ESCRT-III et est une ATPase. La
modification de VPS4 en question ici est une surexpression d’une forme de VPS4 déficiente
dans l’hydrolyse de l’ATP. Lorsque cette protéine est surexprimée, les réseaux circulaires
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de hSnf-7 ne sont plus plans comme précédemment, mais forment des tubes qui protrudent
vers l’extérieur de la cellule [Fig. 5.1(b-c)]. Ici, nous supposons que de tels tubes se for-
ment toujours, mais sont immédiatement coupés quand seul le VPS4 endogène à la cellule
est présent. Nous concentrons notre attention sur la formation de ces tubes et proposons
de décrire ce processus comme un phénomène physique apparenté au flambage d’une tige.
Nous proposons également une expérience permettant de valider notre approche.

E.2.1 Description du processus de flambage

Notre proposition de mécanisme de flambage se fonde sur des considérations énergétiques
simples, dont nous dérivons l’énergie libre présentée dans l’Éq. (5.1). Premièrement,
nous décrivons la mécanique de la membrane par son module de courbure et sa tension.
Nous introduisons également une énergie pour décrire les interactions attractives entre la
membrane et les filaments de hSnf-7, ainsi qu’entre filaments de hSnf-7. Nous décrivons
les polymères de hSnf-7 comme des filaments élastiques ayant une courbure spontanée, ce
qui mène à leur assemblage sous forme de réseaux circulaires.

Ces ingrédients simples permettent de comprendre le mécanisme de flambage illustré
en Fig. 5.2. Dans un réseau plan de filaments, les filaments intérieurs sont sur-courbés
et ceux de l’extérieur sont sous-courbés. Si la membrane s’incurve vers le haut ou vers
le bas, les filaments de l’intérieur peuvent relaxer en s’élargissant et ceux de l’extérieur
peuvent se contracter. Une autre source de gain énergétique dans cette situation est le
fait qu’un nombre plus important de filaments peut se lier à la membrane. D’un autre
côté, la déformation de la membrane coûte de l’énergie de tension et de courbure. Selon
la valeur des paramètres, soit le gain soit le coût énergétique sera plus important, ce qui
déterminera la stabilité de la membrane habillée par des réseaux de hSnf-7.

E.2.2 Réseaux plans de filaments

Le premier phénomène que nous pouvons décrire à l’aide de notre modèle est la forma-
tion de réseaux plans de hSnf-7. Les clichés de microscopie électronique présentés en
Fig. 5.1(a) suggèrent que leur rayon est bien défini. Notre modèle permet d’interpréter
cette observation : imaginons un réseau circulaire de hSnf-7 de petite taille. De nou-
veaux filaments ont tendance à s’aggréger à sa périphérie en raison du gain énergétique
associé aux interactions avec la membrane et avec les filaments déjà en place. Au fur et à
mesure que le réseau s’élargit, cependant, le rayon de courbure des filaments nouvellement
ajoutés devient de plus en plus grand, ce qui est défavorable énergétiquement. Le rayon
d’équilibre des réseaux observés expérimentalement reflète une situation où ces deux effets
se compensent.

E.2.3 Établissement d’un diagramme de stabilité

Nous envisageons maintenant la stabilité du réseau vis-à-vis de perturbations perpen-
diculaires au plan de la membrane. La forme de l’énergie libre introduite plus haut
permet de dériver une équation décrivant l’équilibre des forces pour une membrane faible-
ment déformée (nous effectuons une analyse de stabilité linéaire). Des solutions de



216 APPENDIX E. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

cette équation obéissant aux conditions au bord n’existent que pour certaines valeurs
des paramètres, définissant un seuil auquel la membrane devient instable.

D’un autre côté, nous pouvons envisager la stabilité de longs tubes de membrane
cylindriques, qui permettent à tous les filaments de hSnf-7 qu’ils contiennent d’adopter
une courbure proche de leur courbure spontanée. Nous trouvons que ces tubes sont stables
pour toutes les valeurs des paramètres où la membrane est linéairement instable, ainsi que
dans une partie de la région où la membrane est linéairement stable. Dans ce dernier cas,
la membrane habillée de hSnf-7 est donc métastable, car elle est stable vis-à-vis de petites
perturbations mais tombe dans un puits énergétique lorsqu’elle est fortement déformée.

En utilisant les valeurs expérimentalement observées du rayon des réseaux de hSnf-
7 plans et des longs tubes de hSnf-7, nous estimons qu’il est possible que les cellules
présentées en Fig. 5.1 soient soit dans le régime instable, soit dans le régime métastable.

E.2.4 Métastabilité et barrière énergétique

Nous continuons notre étude par une analyse plus poussée du régime métastable. Une
question intéressante concerne la hauteur de la barrière énergétique séparant un réseau
plan métastable de son état de long tube stable. Cette question implique de résoudre les
équations mécaniques de la membrane habillée dans le régime fortement déformé. Ces
équations sont donc non-linéaires, et nous ne pouvons les résoudre que numériquement.
Nous déduisons du résultat de cette opération que si la membrane est métastable in vivo,
la barrière énergétique la séparant de son état de long tube est beaucoup trop haute pour
être traversée sous l’effet des seules fluctuations thermiques. Dans ce cas, le phénomène
de déformation de la membrane par ESCRT-III doit être activé par un processus actif,
par exemple la polymérisation de l’actine.

E.2.5 Proposition d’expérience

Au cours de cette étude nous avons montré que la seule aggrégation de filaments courbés
interagissant entre eux et avec la membrane est susceptible d’engendrer la tubulation de
celle-ci, et calculé la dépendance du seuil de tubulation en la tension de la membrane
et le potentiel chimique d’hSnf-7 en solution. Des expériences où ces deux paramètres
sont contrôlés sont relativement faciles à réaliser, par exemple au moyen d’une vésicule
unilamellaire géante et d’un dispositif d’aspiration. Étant donné qu’il a récemment été
démontré expérimentalement qu’hSnf-7 et quelques protéines associées sont suffisantes
pour tubuler la membrane in vitro, les perspectives de vérification quantitative de notre
modèle sont prometteuses.

E.3 Stéréocils

La troisième et dernière partie de cette thèse porte sur la morphogénèse des protrusions
cellulaires à base d’actine, et en particulier sur les stéréocils. Les stéréocils sont des
faisceaux de filaments d’actine enveloppés par la membrane plasmique qui émergent des
cellules ciliées et forment des touffes ciliaires à leur surface [Fig. 6.1(b)]. Les cellules
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ciliées sont localisées dans la cochlée, au coeur de l’oreille interne, et sont des composants
essentiels du mécanisme de l’audition. En effet, le stimulus sonore se propage au travers
des différentes régions de l’oreille sous la forme d’une onde mécanique [Fig. 6.1(a)] jusqu’à
faire vibrer les touffes ciliaires des cellules ciliées, qui traduisent l’information sonore en
un signal nerveux. Selon la hauteur du son, différentes régions de la cochlée entrent en
résonance. De plus, la touffe ciliaire se comporte comme un composant actif et amplifie
préférentiellement certaines fréquences, ce qui améliore considérablement la sensibilité
fréquencielle de notre audition. Ce mécanisme d’amplification met en jeu de manière
essentielle les propriétés mécaniques des stéréocils, car ces derniers pivotent autour de
leur base lors de la vibration de la touffe ciliaire [Fig. 6.1(d)]. Dans ce chapitre, nous
nous intéressons aux facteurs déterminant la forme, et donc les propriétés mécaniques,
des stéréocils.

La structure interne des stéréocils est très ordonnée, et les filaments d’actine qu’ils con-
tiennent sont si densément empaquetés qu’ils forment un paracristal hexagonal [Fig. 6.1(e)].
Dans cette étude, nous nous concentrons sur un facteur jusque-là négligé ou mal pris
en compte dans la littérature théorique, mais cependant essentiel pour la cohésion des
stéréocils : les liens transversaux entre filaments d’actine voisins, et en particulier ceux
procurés par la protéine espine. Notons que cette protéine et d’autres liens transversaux
sont présents dans d’autres protrusions à base d’actine, telles que les filopodes ou les
microvillosités. Plusieurs études expérimentales ont montré qu’une modification de ces
liens, qui sont indiqués par des flèches sur la Fig. 6.1(e), peut induire des changements
de forme significatifs des stéréocils ainsi que la surdité chez la souris. Il convient enfin de
noter que les stéréocils sont des structures éminemment dynamiques. En effet, l’actine
et l’espine sont incorporées à leur extrémité supérieure, puis se déplacent vers le bas du
stéréocil au fur et à mesure de sa croissance. Enfin, l’actine dépolymérise à la base du
stéréocil [Fig. 6.1(f)].

E.3.1 Modèle

Nous étudions ici les effets sur la forme du stéréocil de la dynamique de polymérisation-
dépolymérisation de l’actine et de son couplage avec la dynamique d’attachement-détache-
ment de l’espine. En effet, nous remarquons que la tension de la membrane enveloppant
les stéréocils est assez élevée pour enserrer les filaments et les mettre au contact les
uns des autres. Ainsi, la surface de la section du stéréocil à une certaine distance de
son extémité supérieure est toujours proportionnelle au nombre de filaments plus longs
que cette distance. Nous notons de plus qu’aux échelles de temps pertinentes pour la
morphogénèse des stéréocils, la diffusion de l’actine et de l’espine est très rapide et ne
devrait donc pas jouer de rôle important.

Nous supposons que l’actine est polymérisée à vitesse constante à l’extrémité du
stéréocil (le front de polymérisation) et que les espines y sont intégrées avec une proba-
bilité donnée. Tant qu’elle est entourée de filaments d’actine, une espine peut se détacher
et se rattacher stochastiquement. La dépolymérisation des filaments d’actine est supposée
très rapide. Cependant, un filament d’actine lié à une espine ne peut dépolymériser au-
dessus de cette espine tant qu’elle ne s’est pas détachée d’elle-même. Notre modèle est
schématisé en Fig. 6.2.
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E.3.2 Forme du stéréocil en l’absence de réattachement

Nous étudions tout d’abord le problème dans le cas où l’espine n’est incorporée qu’à
l’extrémité du stéréocil. En d’autres termes, en-dessous du front de polymérisation l’espine
ne peut que se détacher, pas se réattacher. Le problème est très simple dans ce cas, car il
suffit de décrire la dynamique de détachement de l’espine sans se soucier de l’actine dans
un premier temps. La dynamique de l’actine peut ensuite être déduite de cette étude, car
elle est asservie à celle de l’espine.

Nous comparons les formes calculées dans ce cas aux formes de stéréocils observées
en microscopie électronique. Nous sommes en mesure de reproduire la forme de trois
stéréocils de la même touffe ciliaire en n’utilisant qu’un seul paramètre ajustable commun
(Fig. 6.3). Notre modèle est en accord quantitatif avec des données expérimentales indi-
quant que la vitesse de polymérisation de l’actine est à peu près proportionnelle à la taille
du stéréocil [Fig. 6.4(a)]. Enfin, nous rendons quantativement compte de l’allongement
des microvillosités de cellules CL4 surexprimant l’espine [Fig. 6.4(b)].

E.3.3 Filament unique en présence de réattachement

Nous nous intéressons maintenant aux effets du réattachement de l’espine sur la forme
du faisceau d’actine. Nous commençons par étudier un cas simplifié, celui d’un fila-
ment unique lié à un mur par des espines. Étant donné que les espines sont incorporées
préférentiellement à l’extrémité du stéréocil, l’actine est plus densément liée à cet endroit.
Lorsque l’on s’éloigne du front de polymérisation, l’espine est échangée avec le milieu en-
vironnant et tend vers une densité d’équilibre imposée par l’égalité des flux d’attachement
et de détachement.

Nous formulons tout d’abord ce problème de filament unique sous la forme d’une
équation mâıtresse. Cette équation porte sur les probabilités que le système total soit
dans une configuration du filament et de toutes les espines donnée. Nous montrons que
la dynamique des espines situées au-delà de l’extrémité du filament se découple de la
dynamique de dépolymérisation. Le problème peut donc être considérablement simplifié
et transformé en un problème ne portant que sur la probabilité que le filament ait une
longueur donnée.

Nous nous intéressons ensuite à la dynamique du filament dans la région où l’équilibre
chimique entre les espines liées au filament et celles en solution est établi. Dans cette
région, le problème spécifié ci-dessus peut être résolu exactement. Aux longues échelles
de temps, l’extrémité du filament a une dynamique assimilable à une diffusion biaisée.
Un argument simple permet de retrouver la vitesse moyenne de dépolymérisation.

E.3.4 Long filament stationnaire en présence de réattachement

Lorsque l’espine se réattache au filament avec un taux élevé, la dépolymérisation du
filament est considérablement ralentie et son extrémité dépolymérisante ne rattrape jamais
le front de polymérisation. Dans ce cas, le filament ne cesse de s’allonger, ou en d’autres
termes a une longueur non-bornée. Lorsque l’espine se réattache au filament avec un
taux faible, la concentration d’espine pour les filaments évoqués ci-dessus diminue et la
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vitesse moyenne de dépolymérisation augmente. Si le filament dépolymérise plus vite
qu’il ne polymérise, son extrémité dépolymérisante rattrape l’extrémité polymérisante.
Lorsque le filament devient assez court, la concentration d’espine au niveau de l’extrémité
dépolymérisante redevient élevée et la dépolymérisation ralentit. Le filament est donc
stabilisé à une longueur finie. Nous appelons la transition d’un état de longueur non-
bornée à un état de longueur finie la transition d’allongement.

Dans le reste de ce travail nous nous concentrons sur les filaments de longueur finie
dont la longueur est grande devant l’espacement entre deux espines. Nous montrons que
la vitesse de polymérisation doit être beaucoup plus grande que l’espacement entre deux
espines fois la constante de détachement de l’espine pour obtenir de tels filaments. Dans
ce cas, la valeur du taux de réattachement à la transition d’allongement est beaucoup
plus faible que celle du taux de détachement.

Dans le cadre de longs filaments de ce type, nous pouvons utiliser une approxima-
tion continue soigneusement choisie pour représenter l’état stationnaire du processus de
polymérisation-dépolymérisation. Nous appliquons cette approche à une forme généralisée
de l’équation mâıtresse dérivée plus haut permettant de décrire un filament lié à un nom-
bre arbitraire de murs. La solution analytique de ce problème est présentée en Éq. (6.55).

E.3.5 Couplage entre filaments

Finalement, nous retournons au problème à plusieurs filaments, cette fois-ci en prenant
en compte le réattachement des espines. L’abord de ce problème est difficile du point de
vue analytique, et nous nous reposons donc sur des simulations numériques Monte-Carlo.

Notre premier résultat concerne l’existence d’une transition d’allongement dans le cas
à plusieurs filaments. Le seuil de la transition correspond à celui attendu pour un filament
unique lié à 2,5 murs. Ce nombre qui joue le rôle d’un nombre de voisins effectifs vu par
chaque filament dans le cas à plusieurs filaments. Au-dessus de la transition, ce point de
vue d’un nombre de voisins effectif rend très bien compte de la dépendance de la vitesse
d’allongement du filament en fonction du taux de réattachement de l’espine [Fig. 6.8(b)].
En-dessous de la transition, l’accord est nettement moins bon [Fig. 6.8(a)]. En particulier,
dans le cadre de la théorie à un seul filament la longueur stationnaire du filament diverge
à la transition d’allongement comme l’inverse de la distance au seuil. Cette divergence
existe également dans le cas de filaments couplés, mais une loi de puissance différente est
observée [Éqs. (6.62) et (6.63)]. Il n’est pas évident à ce stade si cet exposant pourrait
être décrit par une théorie de champ moyen plus raffinée que la description en termes de
nombre de voisins effectifs ou si elle nécessite une approche plus élaborée.

Les résultats présentés ci-dessus suggèrent que les interactions entre filaments jouent
un rôle important en-dessous de la transition d’allongement. Nous focalisons donc notre
attention sur une description de ces interactions en termes des corrélations qu’elles in-
duisent entre la longueur des filaments. Bien que la portée de ces corrélations aug-
mente avec le taux de réattachement de l’espine, nous ne sommes pas encore en mesure
d’affirmer qu’elle diverge à la transition d’allongement. Un argument d’échelle nous per-
met néanmoins d’écarter l’hypothèse selon laquelle l’interface aurait une géométrie auto-
affine à la transition, ou encore une transition rugueuse.

Finalement, nous comparons les formes stationnaires de stéréocils obtenus grâce à
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nos simulations numériques à celles déduites d’une théorie de filament unique. Les deux
approches donnent des résultats identiques en l’absence de réattachement des espines
et lorsque le nombre réel de voisins est utilisé, en accord avec notre solution exacte
du problème sans réattachement. Lorsque le réattachement est introduit, cependant,
la théorie de filament unique avec nombre de voisins réel subit rapidement une transi-
tion d’allongement, et une théorie de nombre de voisins effectifs semble plus appropriée.
L’accord entre les formes numériques et celles tirées de la théorie de filament unique
est cependant mauvais, ce à quoi notre étude précédente concernant la divergence de
la longueur du stéréocil à la transition permettait de s’attendre. Nous confirmons donc
par ce résultat que des efforts analytiques supplémentaires sont nécessaires pour mieux
comprendre le problème multi-filament en présence de réattachement de l’espine.
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Abstract

Membrane remodeling events are essential for the life of the cell, and involve membrane
tubes shaped by proteins. We study three different configurations where such tubes ap-
pear. We first focus on the helical dynamin polymer, which encircles membrane tubes
and severs them upon GTP hydrolysis. Dynamin recruitment is shown to depend on
the membrane’s curvature. We formulate hypotheses and propose experiments to under-
stand the nucleation of the dynamin polymer and its interactions with the membrane.
Dynamin’s GTP-induced concerted conformational change is described using generalized
hydrodynamics and seemingly contradictory experimental results are reconciled through
mechanical arguments. The long-time dynamics of the dynamin-membrane tube is dif-
fusive and dominated by an effective dynamin/membrane friction, which experiments
confirm. Our second topic is the ESCRT-III complex, which tubulates flat membranes
and assembles inside of them. We account for this deformation with a novel buckling
instability arising when sticky curved filaments bind to the membrane. This hypothesis
could be verified experimentally. A metastable regime for the flat membrane is uncovered,
which the cell could use to quickly generate tubes. Thirdly, we turn to stereocilia, which
are actin-based cellular protrusions essential for hearing. We predict their shape from
the detachment dynamics of actin cross-linkers, which accounts for experimental data. If
the cross-linkers are allowed to reattach, our model yields a dynamical phase transition
towards unbounded growth and numerical simulations suggest an anomalous power-law
divergence of the protrusion length.

Résumé

La cellule remodèle sa membrane en permanence, ce qui entrâıne la formation de tubes
de membrane façonnés par des protéines. Nous étudions trois cas impliquant de tels
tubes. Le premier est le polymère hélicöıdal de dynamine, qui enveloppe les tubes de
membrane puis les coupe en hydrolysant le GTP. Nous montrons que le recrutement de
la dynamine dépend de la courbure de la membrane. Nous formulons des hypothèses
et proposons des expériences pour comprendre la nucléation du polymère de dynamine
et ses interactions avec la membrane. Nous donnons une description hydrodynamique
généralisée du changement de conformation coopératif de la dynamine induit par le GTP
et réconcilions des résultats expérimentaux apparemment contradictoires par des argu-
ments mécaniques. La dynamique aux temps longs de l’assemblage dynamine-membrane
est diffusive et dominée par une friction effective entre dynamine et membrane, ce qui est
confirmé expérimentalement. Notre second sujet est le complexe ESCRT-III, qui tubule
les membranes planes de l’intérieur. Nous expliquons cette déformation par une instabilité
de flambage inédite se produisant lorsque des filaments courbés qui s’attirent se lient à la
membrane. Cette hypothèse peut être vérifiée expérimentalement. Un régime métastable
pour la membrane plane est mis en évidence, et pourrait être utilisé par la cellule pour
former des tubes rapidement. Troisièment, nous nous tournons vers les stéréocils, des
protrusions cellulaires à base d’actine essentielles pour l’audition. Nous expliquons leur
forme par la dynamique de détachement de protéines liant l’actine, et rendons compte de
résultats expérimentaux. Si ces protéines sont autorisées à se réattacher, notre modèle
prévoit une transition de phase dynamique vers un état de croissance non-bornée, et
des simulations numériques suggèrent que la longueur des protrusions diverge en loi de
puissance avec un exposant anormal.
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