
HAL Id: tel-00541849
https://theses.hal.science/tel-00541849v1

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communication abstraction for data synchronization in
distributed virtual environments : application to

multiplayer games on mobile phones
Abdul Malik Khan

To cite this version:
Abdul Malik Khan. Communication abstraction for data synchronization in distributed virtual envi-
ronments : application to multiplayer games on mobile phones. Other [cs.OH]. Institut National des
Télécommunications, 2010. English. �NNT : 2010TELE0011�. �tel-00541849�

https://theses.hal.science/tel-00541849v1
https://hal.archives-ouvertes.fr


Thèse de doctorat de l’INSTITUT NATIONAL DES TELECOMMUNICATIONS dans le cadre

de l’école doctorale S&I en co-accréditation avec

l’Université d’Évry-Val d’Essonne

Spécialité :
Informatique

Par
M. Abdul Malik KHAN

Thèse présentée pour l’obtention du grade de Docteur
de l’INSTITUT NATIONAL DES TELECOMMUNICATIONS

Communication Abstraction for Data Synchronization in

Distributed Virtual Environments

Application to Multiplayer Games on Mobile Phones

Soutenue le 17 Juin 2010 devant le jury composé de :

Rapporteurs :
M. Salah Sadou Mâıtre de conférences (HDR), Université de Vannes
M. Eric Gressier-Soudan Professeur, CNAM, Paris

Examinateurs :
M. Mourad Oussalah Professeur, Université de Nantes
M. Guy Bernard Professeur, Télécom SudParis (Directeur de thèse)
M. Antoine Beugnard Professeur, Télécom Bretagne (co-Directeur de thèse)
Mme Sophie Chabridon Mâıtre de conférences, Télécom SudParis (Encadrante)

Thèse Numéro : 2010TELE0011





Acknowledgements

I would like to express my gratitude, appreciation and sincere thanks
to my supervisors Dr. Guy Bernard, Dr. Antoine Beugnard and Dr. So-
phie Chabridon, for their excellent guidance, helpful and useful discus-
sions, and continuous encouragement which made this work possible.
They always helped me with pleasure in the problems that I faced du-
ring this work.

I am deeply indebted to all professors and students in my team for
their support. I am especially grateful to Michel Simatic for his sup-
port both in terms of resources and encouragement.

Deep thanks to my fellow doctoral student Jérôme Sicard. I have always
benefited from him through discussion both technically and socially.
He has always encouraged me to improve my french language.

I cannot forget the constant encouragment and support of my whole
family including my brothers and sisters.

I dedicate this work to my beloved mother whose constant support
and prayers are gospel of encouragement for me to keep struggling for
ambitions.





Abstract

Multiplayer games users’ have increased since the widespread use of the internet.
With the arrival of rich portable devices and faster cellular wireless networks, the
multiplayer games on mobile phones and PDAs are becoming a reality.

For multiplayer games to be playable, they should be highly interactive, fair
and should have a consistent state for all the players. Because of the high wireless
network latency and jitters, the issue of providing interactive games with consistent
state across the network is non-trivial.

In this report, we propose different approaches for achieving consistency in
mobile multiplayer games in the face of high latency and, large and variable jitters.
Although absolute consistency is impossible to achieve because information takes
time to travel from one place to another because of the limited light speed, our
proposed approaches exploit the fact that strong consistency is not always required
in the virtual world and can be relaxed in many cases. Based on the underlying
network latency and the position of different objects in the virtual world, we decide
when to relax consistency and when to apply strong consistency mechanisms. We
evaluate our approach by implementing these algorithms in J2ME based games
played on mobile phones.

Also, the consistency resolution is dependent upon the choice of the network.
Games companies prefer client-server architecture for its control over the users
and its simplicity of consistency resolution. But such an architecture has some
disadvantages such as a limited scalability and a high latency. P2P architectures
on the other hand are open to cheating and have no central command over the game
servers. As a second contribution, we propose a hybrid architecture to achieve high
interactivity and consistency as well as game services providing companies with a
central control over the game.

The algorithms for consistency mechanism are very complex and are often in-
termixed with the game core logic’s code, which makes it hard to program a game
and to change its code over time. Our third and last contribution takes the form of
an approach to separate consistency mechanisms from the game logic and put them
in a distributed component responsible for both consistency maintenance and com-
munication over the network. We call this reusable component a ‘Synchronization
Medium’. We show the reusability of our synchronization medium by deploying
two different multiplayer games on the top of it.

Keywords: Multiplayer Games, Distributed Virtual Environments, Consis-
tency Maintenance, Architecture





Publications relevant to the thesis

• Khan, A. M., Chabridon, S., and Beugnard, A. (2007). Synchronization
medium: a consistency maintenance component for mobile multiplayer games.
In Armitage, G. J., editor, Proceedings of the 6th Workshop on Network
and System Support for Games, NETGAMES 2007, Melbourne, Australia,
September 19-20, 2007, pages 99-104. ACM.

• Khan, A. M., Chabridon, S., and Beugnard, A. (2008). A dynamic approach
to consistency management for mobile multiplayer games. In CDUR’08
Workshop of NOTERE’08, 8th International conference on New technolo-
gies in distributed systems, pages 1-6, Lyon, France, June 23, ACM.

• Khan, A. M., Arsov, I., Preda, M., Chabridon, S., and Beugnard, A. (2010).
Adaptable client-server architecture for mobile multi-player games. In DI-
SIO’10: Proceedings of the Workshop on DIstributed SImulation & Online
gaming of the SIMUTools Conference, Torremolinos, Malaga, Spain, March
15.

• Khan, A. M., Chabridon, S., and Beugnard, A. (2010). A Reusable Com-
ponent for Communication and Data Synchronization in Mobile Distributed
Interactive Applications, International Workshop on Component and Ser-
vice Interoperability (WCSI-10), in conjunction with Tools 2010 Federated
Conferences, Malaga, Spain, June 29.





Contents

Résumé long iii

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

I.1 Problématique . . . . . . . . . . . . . . . . . . . . . . . . . . iv

I.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . v

I.3 Organisation de ce résumé . . . . . . . . . . . . . . . . . . . . v

II État de l’art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

II.1 Algorithmes de maintien de la cohérence pour les environ-
nements virtuels distribués . . . . . . . . . . . . . . . . . . . v

II.2 Architectures Systèmes pour Jeux Multijoueurs . . . . . . . . vi

II.3 Séparation de la préoccupation de cohérence de la logique du
jeu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

II.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

III Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

III.1 Algorithmes de Synchronisation pour Jeux Multijoueurs sur
Téléphone Mobile . . . . . . . . . . . . . . . . . . . . . . . . ix

III.2 Architecture Système pour Jeux Multijoueurs . . . . . . . . . xiii

III.3 Un Médium de Synchronisation . . . . . . . . . . . . . . . . . xiv

IV Conclusion et Perspectives . . . . . . . . . . . . . . . . . . . . . . . . xvi

1 Introduction 1

1.1 Problem Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

I State of the art 7

2 State of the Art: Synchronization In Multiplayer Games 9

2.1 Consistency Maintenance Algorithms in Distributed Virtual Envi-
ronments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ix



x CONTENTS

2.1.1 Conservative Approach . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Optimistic Approach . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Roll Back Approach . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Analysis of Consistency Maintenance Algorithms . . . . . . . 19

2.1.5 Use of Synchronization Algorithms in Other Domains . . . . 19

2.2 System Architecture For multiplayer Games . . . . . . . . . . . . . . 21

2.2.1 Client-Server Architecture . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Distributed Architectures . . . . . . . . . . . . . . . . . . . . 23

2.3 Separation of Consistency Issues from the Game logic . . . . . . . . 25

2.3.1 Medium: A Communication Component . . . . . . . . . . . . 25

2.3.2 Plug-Replaceable Consistency Management . . . . . . . . . . 28

2.3.3 Matrix Middleware . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II Contribution 31

3 Synchronization Algorithms for Multiplayer Games on mobile phones 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 An Adaptable Approach to State Consistency in Mobile Multiplayer
Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 An Adaptable Local Lag . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Message Discarding . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Adaptable Dead Reckoning . . . . . . . . . . . . . . . . . . . 36

3.2.5 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Incorporating Obsolescence and Correlation in Dynamic Algorithms 40

3.3.1 Critical Regions and Critical Actions . . . . . . . . . . . . . . 41

3.3.2 Weak and Critical Correlation . . . . . . . . . . . . . . . . . 41

3.3.3 Relaxed Consistency . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 An Example Scenario . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Dynamic Rollbacks Reduction Algorithm . . . . . . . . . . . . . . . 43

3.5 Responsiveness vs Consistency . . . . . . . . . . . . . . . . . . . . . 44

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS xi

4 Evaluation of the Proposed Synchronization Algorithms 49

4.1 Evaluation of Adaptable Synchronization Approach . . . . . . . . . . 49

4.1.1 Adaptable Dead-Reckoning . . . . . . . . . . . . . . . . . . . 49

4.1.2 Critical Region Approach . . . . . . . . . . . . . . . . . . . . 52

4.2 Evaluation of the Critical Correlation-based Approach . . . . . . . . 53

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 System Architecture for multiplayer games 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Session Servers Architecture for 3-G mobile gaming . . . . . . . . . . 60

5.2.1 Handling Disconnections . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Other Advantages of this Architecture . . . . . . . . . . . . . 62

5.3 Consistency Mechanisms and System Architectures . . . . . . . . . . 64

5.3.1 Server Centric Approach . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Client Centric Approach . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 A Hybrid Client-Server Approach . . . . . . . . . . . . . . . . 67

5.4 Evaluating our Adaptable Approach . . . . . . . . . . . . . . . . . . 70

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Synchronization Medium Architecture 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Overview of the Medium: A Communication Component . . . . . . . 76

6.3 Synchronization Medium . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Classification of Game Applications . . . . . . . . . . . . . . . . . . . 84

6.4.1 Field Applications . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.2 Racing Games . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.3 First Person Shooters . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Components of the Synchronization Medium . . . . . . . . . . . . . 85

6.5.1 Critical Area Manager . . . . . . . . . . . . . . . . . . . . . . 85

6.5.2 Communication Manager . . . . . . . . . . . . . . . . . . . . 87

6.5.3 Synchronization Manager . . . . . . . . . . . . . . . . . . . . 87

6.5.4 Local Lag Manager . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5.5 Rollback Manager . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5.6 Overlay Manager . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xii CONTENTS

6.6.1 Message Reception . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6.2 Message Transmission . . . . . . . . . . . . . . . . . . . . . . 91

6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Synchronization Medium Evaluation 95

7.1 Implementation of the Medium . . . . . . . . . . . . . . . . . . . . . 95

7.2 Reusability of the Medium . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Case study 1 - SpaceWar Game . . . . . . . . . . . . . . . . . 98

7.2.2 Case study 2 - Tank Game . . . . . . . . . . . . . . . . . . . 100

7.3 Comparison of Development Efforts . . . . . . . . . . . . . . . . . . 105

7.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

III Conclusion 109

8 Conclusion 111

8.1 Short Term Future Work . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Long Term Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . 113



List of Figures

III.1 Modèle du Médium de Synchronisation avec Gestionnaires de Rôle . xv

2.1.1 Bucket Synchronization Approach, taken from (Gautier and Diot,
1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Trailing State Synchronization Algorithm, taken from (Cronin et al.,
2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Different architectures for multiplayer games . . . . . . . . . . . . . 22

2.3.4 Reification Process of the medium: diagram taken from (Cariou
et al., 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.5 Plug Replaceable Consistency maintenance: figure taken from (Fletcher
et al., 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Critical region example . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Different critical regions in a game . . . . . . . . . . . . . . . . . . . 38

3.3.3 Correlation of events in a game with two players . . . . . . . . . . . 43

3.5.4 Trade-off between consistency and responsiveness in different game
regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 A simple car racing game played on Nokia N93 . . . . . . . . . . . . 50

4.1.2 Adaptable vs Simple Dead-Reckoning . . . . . . . . . . . . . . . . . 51

4.1.3 Number of messages sent in dynamic and static dead-reckoning . . . 52

4.1.4 Consistency of the game using the Critical Region approach . . . . . 53

4.2.5 A game with two players . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.6 Rollbacks comparison in three different approaches . . . . . . . . . . 55

4.2.7 Comparison of events processed per rollback . . . . . . . . . . . . . . 56

4.2.8 Rollbacks comparison as a function of time elapsed . . . . . . . . . . 57

5.2.1 Session Server based Architecture for 3G mobile Gaming . . . . . . . 60

5.2.2 Client Side Modules for the Game . . . . . . . . . . . . . . . . . . . 63

xiii



xiv LIST OF FIGURES

5.2.3 Session Server Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.4 Hybrid architecture for client-server mobile multiplayer games . . . . 68

5.4.5 Dynamic adaptation of the game architecture during the runtime . . 71

5.4.6 Comparison of client and server inconsistencies with high and low
latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.1 Synchronization Medium . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Abstract specification of Synchronization Medium . . . . . . . . . . 78

6.3.3 Introduction of role managers . . . . . . . . . . . . . . . . . . . . . . 79

6.3.4 Synchronization Medium using dead-reckoning algorithm . . . . . . . 80

6.3.5 Dynamic view of message passing in case of Dead-reckoning algorithm 82

6.3.6 Synchronization Medium using PC . . . . . . . . . . . . . . . . . . . 83

6.5.7 Detailed Architecture of the Synchronization Medium . . . . . . . . 86

6.6.8 Message reception by Synchronization Medium . . . . . . . . . . . . 90

6.6.9 Message sending by Synchronization Medium . . . . . . . . . . . . . 91

6.6.10Deployment of Synchronization Medium in a client-server architecture 92

7.0.1 A Layered Approach to Synchronization Medium . . . . . . . . . . . 96

7.1.2 A Medium as used by a car racing game . . . . . . . . . . . . . . . . 97

7.2.3 SpaceWar game using the medium . . . . . . . . . . . . . . . . . . . 98

7.2.4 SpaceWar game without using any medium . . . . . . . . . . . . . . 99

7.2.5 Class diagram of a multiplayer tank game using the medium . . . . . 101

7.2.6 Position of a tank (local and distant) without any synchronization
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.7 Position of a tank (local and distant) using dead-reckoning algorithm 103

7.2.8 Position of a tank bullet (local and distant) using dead-reckoning
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4.9 Position of a tank bullet at local and remote tank . . . . . . . . . . . 107



List of Tables

II.1 Comparaison de différents algorithmes de synchronisation . . . . . . vii

II.2 Comparaison de différentes architectures pour jeux multijoueurs . . viii

2.1.1 Comparison of different Synchronization Algorithms . . . . . . . . . 20

2.2.2 Comparison of different architectures used for multiplayer games . . 25

7.3.1 Comparison of development efforts with and without a Synchroniza-
tion Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.2 Qualitative comparison between a stand-alone game and the one
using Synchronization Medium . . . . . . . . . . . . . . . . . . . . . 106

i





Résumé long

Ce résumé a pour vocation de rendre facilement appréhendable le travail réalisé au
cours de cette thèse à une personne francophone. Pour une description détaillée
des solutions proposées, la version anglaise est recommandée.

I Introduction

Depuis l’apparition du premier jeu vidéo interactif en 1958, ”Tennis for two” de
Higgingbotham, les joueurs demandent toujours plus d’immersion, de réalisme et
une forte interactivité avec d’autres joueurs. Ceci conduit les industriels (Ter-
raplay, 2000; Unreal, ) et les chercheurs à mettre en œuvre des techniques de
systèmes répartis déjà connues et de les adapter au domaine des jeux multijoueurs
(Natkin, 2003; Griwodz, 2002; Ferretti, 2005; Pellerin, 2010). Depuis quelques
années, l’explosion du marché des terminaux mobiles est une opportunité pour une
nouvelle génération de jeux multijoueurs sur mobile. Quelques jeux multijoueurs
mobiles ont été proposés tels que Pirates! (Falk et al., 2001), SpyGame, Human
Pacman (Cheok et al., 2003), AR-Soccer, mais certaines limitations techniques
freinent encore le confort de jeu et demandent à être considérées avec attention.

Le développement de jeux multijoueurs en réseau est beaucoup plus complexe
que pour les jeux fonctionnant sur une seule machine car ils font appel à des tech-
niques supplémentaires telles que la programmation réseau, l’algothmique répartie
pour la gestion de l’état global du jeu et l’administration de l’infrastructure réseau.
Cependant, plusieurs avantages en résultent :

• l’interaction d’un grand nombre de joueurs potentiellement mobiles et dis-
persés à travers le monde, utilisant des terminaux très variés;

• la maintenance d’un état persistant du jeu que les joueurs peuvent retrou-
ver après une déconnexion intempestive ou après une pause dans le jeu pour
réaliser une autre activité (Okanda and Blair, 2004). Des exemples de jeu
fournissant un état persistant sont Everquest (Everquest, ), Lineage (Lin-
eage, ) ou Ultima Online (Unreal, );

• la possibilité d’utiliser des méthodes marketing adaptées aux mobiles, telles
que la publicité par SMS selon les préférences de l’usager, pour inviter les

iii



iv CHAPTER I. RÉSUMÉ LONG

utilisateurs à participer à un jeu.

I.1 Problématique

Le confort de jeu dans un jeu multijoueur en réseau est optimal lorsque le réseau
arrive à se faire oublier et que les délais de communication entre les joueurs sont
invisibles. L’objectif poursuivi lors du développement d’un jeu en réseau est donc
de favoriser l’immersion des joueurs dans le monde virtuel comme si celui-ci n’était
pas réparti physiquement sur plusieurs machines. Un facteur clé est de permettre
une évolution en temps réel du jeu, de telle sorte que les joueurs puissent vivre une
expérience de jeu similaire à celle qu’ils auraient en étant présents ensemble dans la
vie réelle avec une interactivité directe. Par conséquent, le système doit garantir à
la fois la satisfaction de contraintes d’interaction en temps réel et le maintien d’un
état cohérent du jeu de telle sorte que les joueurs en aient tous la même vision. Ces
deux exigences d’interactivité et de cohérence sont dépendantes des caractéristiques
du réseau de communication sous-jacent et en particulier de sa latence. Dans les
jeux sur réseau filaire, des solutions existent déjà pour masquer la latence qui est
de l’ordre de quelques centaines de millisecondes. Il a été montré que pour les
jeux les plus réactifs tels que les jeux de tir, une latence supérieure à 250 ms n’est
pas tolérée par les joueurs (Pantel and Wolf, 2002) qui en viennent à rejeter le
jeu. Dans un réseau sans fil, une latence plus élevée pouvant atteindre plusieurs
secondes, le risque de déconnexions et la mobilité des utilisateurs sont autant de
contraintes supplémentaires nécessitant la mise en place de solutions nouvelles de
synchronisation pour préserver l’interactivité et la cohérence au sein du jeu.

Dans cette optique, l’un des objectifs de cette thèse est de répondre à la ques-
tion suivante : Comment maintenir la cohérence entre les différents participants
à un jeu multijoueur potentiellement mobiles avec risque de déconnexion et en
étant confronté à une forte latence réseau pouvant varier grandement ? De plus,
l’utilisation d’un terminal mobile s’accompagne de limitations en capacité de calcul
et de mémoire et également de limitations en communication en raison du coût
attaché à chaque message.

Les mécanismes de maintien de la cohérence, que nous appelons également
mécanismes de synchronisation dans cette thèse, font appel à des algorithmes com-
plexes, difficiles à programmer, à mettre au point et à faire évoluer. La préoccupation
de maintien de la cohérence peut être considérée comme une propriété extra-
fonctionnelle, puisqu’elle ne concerne pas le jeu en lui-même, et il est donc souhaitable
de séparer le code des algorithmes traitant de la cohérence de celui de la logique
du jeu. De cette manière, le développeur de jeu bénéficie d’une architecture logi-
cielle lui permettant de se concentrer sur le jeu sans avoir à traiter de la gestion
de la cohérence et de l’interactivité. De plus, cela favorise la réutilisation des algo-
rithmes de cohérence dans plusieurs applications de jeu et permet de proposer une
plate-forme intergicielle intégrant plusieurs algorithmes de cohérence adaptés à des
situations différentes.



II. ÉTAT DE L’ART v

I.2 Contributions

Nous résumons ci-dessous les trois principales contributions de cette thèse en mon-
trant leur complémentarité chacune considérant un point de vue différent.

1. Du point de vue de l’utilisateur d’un jeu multijoueur, notre contribution
permet de diminuer l’impact des délais de communication et de la mobilité
en réseau sans fil par l’utilisation des mécanismes spécifiques de maintien de
la cohérence améliorant l’immersion dans le monde virtuel.

2. Du point de vue de l’éditeur de jeu, nous proposons une infrastructure multi-
serveurs avec serveurs de session, facilement contrôlable et administrable et
financièrement attractive.

3. Pour le développeur de jeu, nous offrons une architecture logicielle lui per-
mettant de se concentrer uniquement sur la logique de jeu en déléguant la
gestion de la communication et de la cohérence à un tiers.

I.3 Organisation de ce résumé

Dans la section II.1, nous présentons une étude de l’état de l’art sur les trois
thématiques qui nous intéressent. Nous discutons tout d’abord des algorithmes
de synchronisation utilisés dans les environnements virtuels distribués, en partic-
ulier dans les jeux multijoueurs, puis nous présentons les architectures systèmes
candidates pour les jeux multijoueurs et nous terminons par une étude des archi-
tectures logicielles permettant la séparation des préocupations de synchronisation
et de jeu.

Dans la section III, nous décrivons les points importants de nos contributions
sur chacune des thématiques précédentes.

La section IV conclut ce résumé et présente des perspectives à cette thèse.

II État de l’art

II.1 Algorithmes de maintien de la cohérence pour les envi-

ronnements virtuels distribués

Les applications distribuées peuvent être classées en deux grandes catégories, les ap-
plications discrètes et les applications continues, selon la manière dont elles évoluent
au cours du temps. 1) Les applications discrètes changent d’état à des instants
précis à la suite de l’occurrence d’un événement particulier, tel que l’action d’un
utilisateur. Une base de données, qui est modifiée par des mises à jour ponctuelles,
est un exemple d’application discrète. Pour ce type d’applications, la cohérence est
généralement garantie par une approche pessimiste visant à éviter l’apparition de
divergence entre les données en maintenant le système dans un état global cohérent
à tout instant. 2) Les applications continues ont la particularité d’être modifiées
par les actions des utilisateurs mais également par le simple passage du temps.
Les jeux vidéo, où un monde virtuel évolue au cours du temps, la réalité virtuelle



vi CHAPTER I. RÉSUMÉ LONG

comme dans les simulations militaires, les performances musicales ou théâtrales,
sont des applications continues. Le fait que ces applications soient distribuées in-
troduit des contraintes supplémentaires sur les communications pour maintenir un
bon niveau d’interactivité entre les joueurs et a amené à considérer les applications
multi-utilisateurs interactives et distribuées comme un sujet d’étude et de recherche
à part entière depuis plus d’une dizaine d’années (IEEE, 1995; Gautier and Diot,
1998; Bouillot, 2006). Le maintien de la cohérence pour les applications continues
est le plus souvent géré par une approche optimiste n’imposant pas au système
d’attendre un état global cohérent mais le laissant évoluer avec le temps (Palazzi,
2006). Ce critère étant indispensable aux applications étudiées dans cette thèse,
nous nous limitons ci-après à une synthèse de l’état de l’art des méthodes optimistes
pour le maintien de la cohérence des applications distribuées interactives continues.

Le tableau II.1 présente une analyse de plusieurs algorithmes optimistes de
maintien de la cohérence. La prédiction d’état ou DR (Dead-Reckoning) (IEEE,
1995) permet de masquer la latence du réseau en faisant une prédiction de l’état
futur d’un objet du monde virtuel en fonction de sa position actuelle, de sa vitesse
et de sa direction de déplacement. DR n’implique donc pas de retour arrière mais
prévoit un algorithme de convergence pour passer de la position calculée à la po-
sition réelle reçue d’un site distant. Les algorithmes TW (Time Warp) (Jefferson,
1985; Lin and Lazowska, 1991; Mauve et al., 2004), TSS (Trailing State Synchro-
nization) (Cronin et al., 2002) et OOS (Optimistic Obsolescence-based Synchro-
nization) (Ferretti and Roccetti, 2005a) sont optimistes et effectuent des retours
en arrière en cas de divergence entre les états des participants. Ils sont utilisés
principalement avec des architectures de serveurs miroir. La synchronisation par
bucket ou seau (Steinman, 1990; Steinman, 1991; Gautier and Diot, 1998) est com-
parable à l’approche OOS car elle ignore certains événements, mais elle ne fait pas
de retour en arrière et doit être déployée sur chaque machine dans une architecture
pair-à-pair. Les approches de cohérence adaptative (Ikedo and Ishibashi, 2006) et
de cohérence relâchée (Li et al., 2004) limitent également les risques d’incohérence
en ignorant certains événements, mais ne peuvent garantir qu’un faible niveau de
cohérence. Rendezvous (Chandler et al., 2004; Chandler and Finney, 2005a; Chan-
dler and Finney, 2005b; Chandler and Finney, 2005c) propose une solution de
cohérence faible pour applications mobiles de jeux multijoueurs, mais reste com-
plexe à mettre en œuvre. Nous pouvons conclure à partir de cette synthèse qu’il
n’existe pas une approche unique capable de maintenir la cohérence pour différents
types d’applications de jeux, et qu’il faut envisager une combinaison de plusieurs
approches, voire une adaptation de l’approche utilisée en fonction des conditions
de l’environnement et de l’état du jeu.

II.2 Architectures Systèmes pour Jeux Multijoueurs

Le principal obstacle pour des interactions en temps réel dans les applications dis-
tribuées est l’inaptitude d’Internet à pouvoir garantir des communications à une
faible latence. Les jeux multijoueurs ont des exigences de cohérence forte, au
moins à certains moments du jeu. Ceci est difficilement compatible avec la la-
tence non négligeable des réseaux de communication, d’autant plus que le choix de
l’architecture système mise en place pour le support du jeu influence directement



II. ÉTAT DE L’ART vii

Table II.1: Comparaison de différents algorithmes de synchronisation

Approche Architecture Suppression

de mes-

sages

Rollbacks Déploiement Compatible

pour mobiles

Remarques

DR Pas de con-

trainte

Non Convergence Client Oui –

TW et TSS Serveur

Miroir

Non Oui game server for wired net-

works

cohérence

forte

OOS Mirrored

Server

Oui Oui game server Oui cohérence

faible

Synchronisation

par ”Bucket”

P2P Oui Non Client Réseaux

filaires

–

Approche

Adaptative

Pas de con-

trainte

Oui - Client – Cohérence

faible

”Relaxed

Consistency”

Pas de con-

trainte

Oui - – – Cohérence

faible

RendezVous Pas de con-

trainte

- Non Client Prévu pour

mobiles

Cohérence

faible

les délais pour transmettre les messages de mise à jour et donc le maintien de la
cohérence.

Dans cette section, nous présentons brièvement les architectures systèmes utilisées
le plus souvent pour les jeux multijoueurs en réseau filaire, afin de choisir une archi-
tecture compatible avec les jeux en environnement sans fil. La figure 2.2.3 présente
différents systèmes envisageables pour le déploiement de jeux multijoueurs.

II.2.1 Architecture Client-Serveur

Dans une architecture Client-Serveur, la partie cliente du jeu transmet au serveur
les touches actionnées par les joueurs. Cette architecture est montrée à la fig-
ure 2.2.3(a).

Le serveur collecte les commandes reçues de tous les clients, calcule le nouvel
état du jeu et transmet ensuite un message de mise à jour d’état aux clients. Les
applications clientes peuvent alors rafrâıchir l’écran du jeu. Dans une telle archi-
tecture centralisée, l’état du jeu est simple à maintenir, puisque l’état est géré et
mis à jour uniquement par le serveur. De plus, un fournisseur de jeu pourra plus
facilement contrôler le jeu dans une telle architecture et gérer la facturation des
joueurs. Cependant, la réactivité du jeu est faible car une commande issue d’un
client n’est prise en compte qu’après un échange de messages avec le serveur. De
plus, un serveur centralisé représente à la fois un point de défaillance unique pou-
vant paralyser le système et un goulet d’étranglement pour les communications en
raison de la largeur de bande limitée d’une machine unique, limitant le passage



viii CHAPTER I. RÉSUMÉ LONG

Table II.2: Comparaison de différentes architectures pour jeux multijoueurs

Architecture Algorithme

de

Cohérence

Contrôle du

Jeu

Triche Latence

Client-

Serveur

simple centralisé difficile élevée

Pair-à-pair complexe Distribué facile plutôt faible

Serveurs

Miroirs

relativement

simple

Distribué sur

réseau privé

relativement

difficile

plutôt faible

PP-CA relativement

simple

Distribué relativement

difficile

comparable

P2P

à l’échelle en nombre de joueurs. Les besoins en bande passante augmentent de
manière quadratique avec le nombre de joueurs (Pellegrino and Dovrolis, 2003a).

II.2.2 Architectures Distribuées

Plusieurs architectures décentralisées peuvent être envisagées pour le support des
jeux multijoueurs.

Dans une architecture pair-à-pair, chaque site participant maintient une copie
locale de l’état du jeu à partir des messages de mises à jour reçus des autres sites
(voir Figure 2.2.3(b)). Le passage à l’échelle est favorisé, les besoins en bande
passante augmentent effectivement de manière linéaire avec le nombre de joueurs
(Pellegrino and Dovrolis, 2003a), cependant le maintien de la cohérence est rela-
tivement complexe et sensible à l’ordre de réception des messages sur les différents
sites. La gestion des comptes des utilisateurs elle-même décentralisée est difficile,
rendant plus complexe le contrôle du jeu par les fournisseurs de jeu.

(Cronin et al., 2002) propose une architecture avec deux serveurs miroir pour
des jeux multijoueurs en ligne. Dans cette architecture (figure 2.2.3(c)), les serveurs
de jeu sont répartis géorgraphiquement et les joueurs peuvent se connecter au
serveur le plus proche. C’est donc un compromis entre une architecture client-
serveur et une architecture pair-à-pair, diminuant la latence des communications
mais impliquant une gestion complexe pour maintenir la cohérence de copies mul-
tiples

Dans l’architecture PP-CA (Pellegrino and Dovrolis, 2003b) (figure 2.2.3(d)),
les joueurs échangent des mises à jour en communiquant directement entre eux et
avec un arbitre central qui est chargé de détecter les incohérences dans l’état du
jeu. Si nécessaire, il envoie un message de synchronisation à tous les sites, qui vont
éventuellement faire un retour en arrière.

Le tableau II.2 effectue une comparaison de différentes architectures candidates
pour les jeux multijoueurs.



III. CONTRIBUTIONS ix

II.3 Séparation de la préoccupation de cohérence de la logique

du jeu

Dans la section II.1, nous avons vu qu’une seule approche ne suffit pas et que
plusieurs approches de maintien de la cohérence doivent être combinées pour at-
teindre une vue globale de l’état du jeu. Ces algorithmes sont très complexes,
et donc difficiles à programmer, à mettre au point et à maintenir. Il apparâıt
donc souhaitable de séparer le code de ces algorithmes de la logique de jeu. Nous
présentons ci-après les travaux sur une abstraction de communication (Cariou et al.,
2002) servant de base à notre contribution qui sera présentée dans la section III.3.

Le concept de composant de communication ou médium (Cariou et al., 2002)
permet de séparer la logique d’interaction du code fonctionnel d’un composant.
Un médium représente donc une réification d’un service ou protocole d’interaction,
communication ou coordination en tant que composant logiciel. L’avantage de
cette architecture est qu’un même médium peut être réutilisé dans différents types
d’applications. Le médium étant un composant logiciel, il spécifie les services qu’il
offre et ceux qu’il utilise. Le médium peut prendre différentes formes selon le niveau
auquel il est considéré. Il existe en tant que spécification pour décrire l’abstraction
de communication qu’il réifie, et aux niveaux implémentation et déploiement. Il
est ainsi possible de manipuler une abstraction de communication de haut niveau
durant toutes les étapes du cycle de vie du logiciel.

II.4 Conclusion

Nous avons présenté une brève étude de l’état de l’art sur trois aspects différents
des jeux multijoueurs : le maintien de la cohérence, les architectures systèmes et la
séparation entre la logique de jeu et la gestion de la synchronisation des joueurs. La
grande majorité des algorithmes de maintien de la cohérence considère un réseau
filaire et seuls très peu de travaux commencent à s’intéresser aux jeux multijoueurs
sur terminaux mobiles en prenant en compte une latence élevée et des risques de
déconnexion. Il en est de même pour les architectures systèmes qui sont pour
l’instant principalement dédiées aux environnements connectés. Par ailleurs, un
médium de communication peut être enrichi pour séparer les aspects de gestion de
la cohérence de ce qui concerne la logique de jeu ceci afin d’intégrer la gestion de la
cohèrence au médium. Nous présentons dans la section suivante nos contributions
sur les trois aspects considérés.

III Contributions

III.1 Algorithmes de Synchronisation pour Jeux Multijoueurs

sur Téléphone Mobile

Dans cette section, nous proposons plusieurs mécanismes pour maintenir la cohérence
dans un jeu multijoueur en présence d’un réseau sans fil à forte latence et non fiable,
sur des terminaux mobiles ayant des capacités de calcul et de mémoire limitées.



x CHAPTER I. RÉSUMÉ LONG

III.1.1 Vers une Approche Adaptative

Nous énumérons ci-après plusieurs observations motivant la proposition d’une ap-
proche adaptative.

Observation 1 Au cours d’une session de jeu en multijoueur, des incohérences
apparaissent entre les joueurs en raison des délais de communication réseau. Les
programmeurs de jeu font en général une estimation de ces délais pour compenser
les conséquences d’un message arrivant tardivement. Cependant, en raison de la
gigue dans un réseau de communication, en particulier dans un réseau sans fil, ces
délais peuvent varier grandement. La variabilité des délais de communication a un
impact direct sur l’approche de maintien de la cohérence utilisée. Les contraintes
de cohérence risquent de ne plus être vérifiées si ces variations dynamiques ne sont
pas prises en compte. Par conséquent, il est nécessaire d’observer le comportement
du réseau au cours d’une session de jeu et de compenser dynamiquement les fluc-
tuations constatées.

Observation 2 Dans un jeu multijoueur, de nombreux types d’objets évoluent
dans un monde virtuel avec des vitesses et des directions de déplacement différentes.
Ainsi, leurs besoins de cohérence sont généralement différents. Dans un jeu de ten-
nis, par exemple, la vitesse de la balle est bien supérieure à celle du déplacement
d’un joueur, et ces deux objets ne doivent donc pas être traités de la même manière.

Observation 3 Les besoins de cohérence d’un objet ne dépendent pas seulement
de sa vitesse, mais aussi de sa position dans le monde virtuel. Dans l’exemple d’un
jeu de course de voitures, la cohérence doit être gérée de manière stricte quand
les voitures sont proches les unes des autres et qu’elles arrivent près de la ligne
d’arrivée. Par contre, une cohérence relâchée est suffisante dans une autre partie
du circuit.

Ces observations indiquent qu’un algorithme de maintien de la cohérence doit
tenir compte à la fois de la latence des communications réseau et du contexte de
jeu.

Retard local adaptable À la réception d’un message contenant des informa-
tions sur un objet telles que sa position, vitesse, et direction de déplacement, cet
objet est à une certaine distance, potentiellement nulle, d’une cible ou d’une en-
tité particulière dans le monde virtuel que nous appelons pivot. La distance entre
l’objet et le pivot est essentielle pour déterminer les contraintes de cohérence et
d’interactivité à ce moment précis dans le temps.

Nous introduisons un retard local (local lag (Mauve et al., 2004)) avant la prise
en compte d’une commande locale ou distante selon les trois règles suivantes :



III. CONTRIBUTIONS xi

1. Proximité du pivot : Si l’objet pour lequel un message de mise à jour est reçu
d’un utilisateur distant se rapproche du pivot, la valeur du retard local est
diminuée. Si l’objet s’éloigne du pivot, le retard local est augmenté jusqu’à
une limite donnée par Local-lagu. Cette augmentation peut être continue en
fonction du mouvement de l’objet, ou peut être discrète et effectuée lors de
l’entrée dans une zone particulière (Santos et al., 2007). Le taux de variation
de la valeur du retard local dépend de l’application et doit être spécifié par
le programmeur lors du développement du jeu. Cela se fait au travers d’un
composant responsable de la gestion de la cohérence tel que nous le décrivons
dans le chapitre 6 de la thèse.

2. Charge réseau : La valeur du retard local varie également en fonction de
la charge du réseau. Lorsque le nombre de messages arrivant au-delà d’une
certaine limite de temps dépasse un niveau donné par Nd, le retard local est
augmenté. Cette augmentation du nombre de messages en retard peut être
due à la gigue dans les délais de communication. La valeur du retard local est
proportionnelle à la latence réseau, mais il n’est pas possible de l’augmenter
au-delà d’une certaine limite car cela affecterait la réactivité du jeu. Cette
limite dépend du rythme du jeu et peut être spécifiée par le développeur de
jeu.

3. Type d’objet : La valeur de retard local peut varier selon le type d’objet.
Par exemple dans un jeu de tennis, la balle aura un retard local associé
inférieur à celui d’un joueur afin de privilégier la réactivité du jeu pour la
prise en compte d’une action sur la balle (Zhou and Shen, 2007). Le moyen
de spécifier le retard local associé aux différents types d’objets manipulés
dans le jeu est détaillé au chapitre 6.

Prédiction d’état adaptable La prédiction d’état (IEEE, 1995) se base sur
un seuil d’erreur entre la position réelle d’un objet et la position calculée pour
déterminer si un message de notification indiquant la position réelle de l’objet
doit être émis ou non. Ce seuil d’erreur doit être dépendant de la position et
de l’environnement des objets, c’est-à-dire quel objet se trouve à quelle position.
Ainsi, les contraintes de cohérence peuvent être relâchées selon la position de l’objet
dans le jeu. Nous définissons pour ce faire la notion de régions critiques.

Région critique Une région critique est une zone dans le jeu où une cohérence
stricte est nécessaire afin que tous les joueurs aient la même vision de cette région.
Dans une région critique, une incohérence entre les joueurs peut se traduire par
une inéquité du jeu (Zhou and Shen, 2007). Dans une telle région, nous proposons
d’augmenter dynamiquement la fréquence d’émission des messages de notification
en diminuant le seuil d’erreur de la prédiction d’état. Par conséquent, il devient
possible de relâcher la cohérence en dehors des régions critiques.

De manière complémentaire à une adaptation aux régions critiques, la prédiction
d’état peut utiliser des seuils d’erreur différents selon les objets en fonction de leur
mouvement et de leur importance dans le jeu. De même que pour les valeurs du
retard local, les seuils doivent être spécifiés par le programmeur de jeu comme nous
le décrivons au chapitre 6.



xii CHAPTER I. RÉSUMÉ LONG

III.1.2 Réduction des retours en arrière

Lors de la réception d’un message en retard, c’est-à-dire ayant une estampille
inférieure à celles des messages déjà traités, il peut être nécessaire d’effectuer un
retour en arrière. Nous proposons dans cette section une approche permettant de
diminuer le nombre de retours en arrière pour améliorer le confort de jeu. Nous
nous basons sur la notion d’actions critiques qui sont des événements sensibles
impactant le résultat du jeu. Les messages de mise à jour notifiant d’une action
critique doivent absolument être pris en compte et ne peuvent être ignorés. Par
ailleurs, une annulation de ces messages par un retour en arrière peut avoir un
impact négatif sur la jouabilité. Cependant, nous montrons qu’en combinant les
notions de région critique et d’action critique, il devient possible d’ignorer certaines
actions critiques afin d’éviter un retour en arrière.

Action critique Une action critique est une action concernant une entité donnée
mais qui affecte d’autres entités dans le jeu. Par exemple, une commande de tir
peut augmenter le score du joueur ayant tiré s’il a touché la cible, mais peut en
même temps affecter l’état de la cible. La bonne livraison d’un message relatant
une action critique est primordiale pour l’état du jeu. Cependant, nous considérons
que lorsque ces actions ne se produisent pas dans une région critique, et que les
conditions réseau deviennent mauvaises (avec une latence très élevée), ignorer une
action critique arrivée en retard permet d’éviter un retour en arrière.

Corrélation faible et critique Le concept d’obsolescence (Ferretti and Roc-
cetti, 2004b) énonce qu’un événement arrivant en retard alors qu’un événement
émis après lui (i.e. ayant une estampille supérieure) a déjà été traité, est devenu
obsolète. Avant de décider si ce message peut être ignoré, il faut alors déterminer
s’il est corrélé ou non avec un message le précédant. Dans le cas où une corrélation
existe, il devient nécessaire de revenir en arrière à l’instant où ce message aurait
dû être traité, puis de prendre en compte le message tardif et enfin de re-traiter
les messages annulés. Cependant, (Ferretti and Roccetti, 2004b) ne propose pas de
mécanisme pour calculer la corrélation entre deux événements. (Xiang-bin et al.,
2007) definit deux événements comme étant corrélés s’ils sont associés avec le même
objet.

Nous proposons les deux concepts nouveaux de corrélation faible et de corrélation
critique en prenant en compte les notions de région et d’action critiques. Ainsi, un
message en retard ne peut être considéré comme obsolète que s’il ne concerne ni
une région critique ni une action critique. Dans le cas contraire, il doit toujours
être pris en compte par le jeu.

La décision d’un retour en arrière est ainsi prise pour les événements corrélés de
manière critique tandis que les événements faiblement corrélés peuvent être ignorés.

Notre contribution se présente ainsi sous la forme d’un algorithme dynamique
combinant les différents mécanismes que nous venons de décrire à savoir : retard
local adaptable, prédiction d’état adaptable et prise en compte de l’obsolescence
et du niveau de corrélation des événements obsolètes afin d’éviter les retours en
arrière. Cet algorithme est détaillé à la section 3.3.5.



III. CONTRIBUTIONS xiii

III.1.3 Évaluation des Algorithmes de Synchronisation

Nous avons évalué les algorithmes de synchronisation que nous proposons en effec-
tuant des mesures au cours de l’exécution de plusieurs jeux simples que nous avons
développés en J2ME sur la plate-forme GASP (Pellerin et al., 2005; Pellerin, 2010).
Nous avons exécuté le jeu sur des téléphones mobiles Nokia N93 communiquant sur
un réseau Wi-Fi avec le serveur GASP.

Concernant l’approche avec prédiction d’état adaptable (adaptableDR), nous
avons utilisé un jeu de course de voitures où une région critique est définie au
niveau de la ligne d’arrivée. Nous avons mesuré l’écart entre la position réelle
d’une voiture pilotée par un joueur A et sa position telle qu’elle est affichée à
distance sur l’écran du joueur B. Nous avons comparé les approches adaptableDR
et simpleDR qui utilise un seuil d’erreur fixe. Au cours des expérimentations,
nous introduisons des variations dans les délais de communication en retardant
les messages à l’émission. Les résultats d’évaluation montrent qu’en adaptant le
seuil d’erreur utilisé par la prédiction d’état, il est possible de limiter les écarts les
positions réelle et calculée. De plus, nous montrons que le nombre de messages
échangés avec l’approche adaptableDR est inférieur de plus de 20% à l’approche
simpleDR.

Pour évaluer l’impact de la prise en compte du niveau de corrélation entre un
événement obsolète et un événement déjà traité, nous avons compté le nombre
de retours en arrière nécessaire et le nombre de messages en retard. Nous avons
pour cela développé un jeu de ballon à 2 joueurs. La règle du jeu consiste soit
à mettre un but en lançant le ballon dans une zone prédéfinie, soit à toucher le
joueur adverse avec le ballon. Trois régions critiques sont ainsi délimitées : une
région rectangulaire pour la zone de but et une région circulaire autour de chaque
joueur correspondant à la zone dans laquelle le joueur peut être touché. Nous avons
comparé les approches avec corrélation critique et faible et l’approche TimeWarp
dans laquelle la corrélation entre les événements n’est pas considérée. Il apparâıt
que la prise en compte de la corrélation permet de limiter de manière très importante
le nombre de retours arrière. Moins de 20% des messages en retard induisent un
retour arrière lorsque la corrélation est prise en compte.

III.2 Architecture Système pour Jeux Multijoueurs

Nous avons discuté dans l’état de l’art, les propriétés de différentes architectures
systèmes pouvant être envisagées pour les jeux multijoueurs sur mobile. Une ar-
chitecture client-serveur a l’avantage de faciliter le contrôle et le maintien de la
cohérence du jeu, mais elle ne permet pas de passer à l’échelle et de gérer un grand
nombre de clients, de même que l’interactivité dans le jeu est limitée par les délais
de communication des réseaux sans fil. Dans un système pair-à-pair, l’interactivité
entre les joueurs est meilleure mais au détriment de la facilité de contrôle par
l’opérateur du jeu pour en particulier éviter la triche.

Nous présentons dans cette section une architecture multi-serveurs (voir Fig-
ure 5.2.1) avec plusieurs serveurs de session et un serveur d’administration du jeu
pour lever les verrous suivants liés aux jeux multijoueurs sur mobile :

1. Faible contrôlabilité des serveurs de jeux en architecture multi-serveur



xiv CHAPTER I. RÉSUMÉ LONG

2. Déconnexions fréquentes

3. Maintien simultané de la cohérence et du confort de jeu

Le serveur d’administration héberge la gestion des comptes des joueurs et de la
facturation ainsi que la partie cliente du code du jeu. La gestion des joueurs étant
centralisée, cela facilite le contrôle du jeu. Les serveurs de session, connectés en
mode pair-à-pair entre eux, et connectés chacun avec le serveur d’administration,
héberge la partie serveur du code du jeu.

Un joueur voulant jouer à un jeu à partir de son mobile se connecte au serveur
d’administration et télécharge la partie cliente du jeu. Lorsqu’il souhaite rejoindre
une session de jeu, il en demande l’autorisation au serveur d’administration. Celui-
ci choisit un serveur de session de manière à minimiser les délais de communication
pour le joueur, par exemple en raison de la proximité géographique, et l’avertit de
l’arrivée d’un nouveau joueur.

Pour permettre la continuité d’une session de jeu en cas de déconnexion, nous
proposons de mettre en place un imitateur (mimicking engine) pour reproduire le
comportement des joueurs et de le déployer côté client sur le terminal mobile et
côté serveur sur le serveur de session alloué au joueur. Lorsqu’une déconnexion est
détectée, la logique de jeu interagit avec l’imitateur pour en quelque sorte remplacer
les joueurs distants avec lesquels la connexion a été rompue. Le comportement
de l’imitateur est fonction, de l’état du jeu au moment de la déconnexion, du
comportement précédent des joueurs et de règles pour prédire les état suivants.
Ces règles sont dépendantes de l’application de jeu et doivent être définies lors
de la conception du jeu. La logique de jeu peut également prendre en compte
les événements de déconnexion en les intégrant de manière naturelle dans le jeu,
comme, par exemple, de montrer une voiture à l’arrêt aux stands dans une course
de voiture lorsque le joueur pilotant cette voiture se retrouve déconnecté.

En ce qui concerne le maintien de la cohérence entre les joueurs, mais sans que
cela se fasse au détriment du confort de jeu, nous proposons une approche hybride
partagée entre le client et le serveur et adaptable dynamiquement. En effet, la
responsabilité de la gestion de la cohérence peut migrer dynamiquement entre le
client et le serveur en fonction des conditions réseau et de l’entrée ou non dans une
région critique dans le jeu.

Nous avons évalué cette approche hybride avec un jeu de course de voitures et
nos résultats montrent qu’une meilleure cohérence, en d’autres termes une estima-
tion de la position d’une voiture par le joueur distant très proche de la position
réelle, est obtenue avec des mécanismes sur le client lorsque la latence devient
grande, à savoir supérieure à 2s. De plus, l’approche associant des mécanismes de
maintien de la cohérence à la fois du côté client et du côté serveur donne de meilleurs
résultats que l’approche uniquement sur le serveur dès que la latence devient élevée.

III.3 Un Médium de Synchronisation

Il peut être nécessaire de combiner plusieurs algorithmes de synchronisation pour
assurer la cohérence entre les joueurs. Ces algorithmes sont complexes et difficiles à
programmer. Le code de maintien de la cohérence étant souvent entremêlé avec le



III. CONTRIBUTIONS xv

GameManager

<<interface>>

IPlayerMediumServices

+updatePlayer()

+getNewPlayer()

<<interface>>

IAdminMediumServices

+monitorGame()

+chargePlayers()

<<interface>>

IPlayerCompServices

+sendUpdate()

+sendNewPlayer()

PlayerManager <<role>>

player

<<role>>

Administrator

Canvas LocalView
Interested

1 1

1

*

1
1

Figure III.1: Modèle du Médium de Synchronisation avec Gestionnaires de
Rôle

code de la logique de jeu, ce dernier devient difficile à maintenir et à faire évoluer.
Il est donc souhaitable de séparer le code des algorithmes traitant de la cohérence,
qui peut être considéré comme extra-fonctionnel, de celui de la logique du jeu
et de l’isoler dans un composant spécifique. Nous étendons ainsi le concept de
médium de communication (Cariou et al., 2002) en lui intégrant des algorithmes de
synchronisation pour en faire un médium de synchronisation.

L’objectif d’un médium de communication est de séparer pour un composant la
partie traitant des interactions avec d’autres composants de la partie fonctionnelle.
Le médium est ainsi une réification d’un protocole, service ou système d’interaction,
de communication ou de coordination. Ce principe évite l’adhérence du médium à
une application donnée et facilite donc sa réutilisation pour différentes applications.

Nous présentons sur la figure III.1 les classes et interfaces d’un médium de
synchronisation.

Le composant Player Manager représente le médium sur chaque client et of-
fre/requiert des services demandés/offerts par le client. Il constitue l’interface avec
le client résidant sur le terminal du joueur et utilise les services offerts par le médium
via l’interface IPlayerMediumServices comme l’arrivée d’un nouveau joueur ou la
réception de messages de mise à jour en provenance des autres joueurs. Ces ser-
vices sont fournis au travers des méthodes getNewPlayer() et updatePlayer(). Pour



xvi CHAPTER I. RÉSUMÉ LONG

interagir avec le client, le médium utilise les services définis dans l’interface IPlay-
erCompServices dédiée aux échanges de données avec le client.

Game Manager correspond à la partie serveur de médium traduit par le rôle
Administrator. Il utilise les services offerts par IAdminMediumServices comme par
exemple la prévention de la fraude, la facturation, etc... La classe Canvas représente
les données générales du jeu sur le serveur et la classe LocalView correspond à une
partie des données du jeu dont le joueur a besoin en local sur le client pour le faire
fonctionner correctement.

Ce médium de synchronisation est une version générique. Il peut être décliné
de différentes manières suivant les algorithmes de synchronisation que l’on veut
utiliser. Il est ainsi possible d’ajouter l’interface IDeadReckoningServices au com-
posant PlayerManager pour incorporer l’algorithme de dead-reckoning ou encore
les classes CalculateLocalLag et CalculateLocalVector pour l’algorithme de retard
local ou local lag.

L’agrégation de tous les Role Managers de tous les clients et serveurs constitue
le médium. De plus un Role Manager peut être composé de sous-composants com-
muniquant avec le jeu et responsable d’une préoccupation spécifique, telle que la
gestion des régions critiques. L’architecture présentant les sous-composants que
nous proposons est détaillée à la figure 6.5.7 dans la partie principale de la thèse.

III.3.1 Évaluation de l’Approche avec Médium de Synchronisa-
tion

Nous avons évalué l’approche par médium de synchronisation en termes d’une part
de facilité de développement et d’autre part de performances en le mettant en
œuvre pour le développement de deux jeux, un jeu de guerre de l’espace et un jeu
de bataille de tanks.

Il est à noter que le jeu de tanks a été développé par une étudiante, ne con-
naissant pas au préalable le médium de synchronisation, au cours d’un projet de
fin d’études ingénieur dans une démarche de validation externe de nos travaux.

Il est apparu qu’une fois les concepts manipulés par le médium de synchronisa-
tion appréhendés par le développeur, les efforts d’implémentation sont réduits au
niveau du nombre de classes à définir et du nombre de lignes de code à implémenter.
Par ailleurs, l’impact du médium sur les performances du jeu reste négligeable et
se limite à un surcoût de moins de 5ms par message.

IV Conclusion et Perspectives

Cette thèse présente un travail sur trois aspects complémentaires pour faciliter la
réalisation de jeux multijoueurs sur mobile.

1. Algorithmes de synchronisation : Nous avons proposé une approche adapta-
tive pour le maintien de la cohérence dans les environnements virtuels dis-
tribués tels que les jeux multijoueurs tenant compte des conditions du monde
virtuel et du réseau de communication, et permettant d’adapter les valeurs



IV. CONCLUSION ET PERSPECTIVES xvii

de seuil utilisées pour le retard local et la prédiction d’état. Nous avons in-
troduit les notions de région critique, où une cohérence forte est nécessaire,
et de corrélation faible et critique pour la gestion des événements en retard,
ce qui permet de moduler le niveau de cohérence au cours du jeu. Nous avons
mené des évaluations sur plusieurs jeux sur téléphone mobile montrant que
l’interactivité et l’équité dans le jeu étaient améliorées.

2. Architecture système : Nous avons présenté une architecture avec plusieurs
serveurs de session connectés en pair-à-pair et interagissant avec un serveur
d’administration du jeu répliqué. En cas de déconnexion, un mécanisme
d’imitation du comportement d’un joueur est mis en œuvre pour permettre
au reste des joueurs de continuer la partie.

3. Architecture logicielle : Nous avons défini un médium de synchronisation qui
est un composant réutilisable chargé de la gestion des communications et du
maintien de la cohérence. En permettant une séparation des préoccupations
entre ce qui est propre au jeu et ce qui est lié à la synchronisation, le
développement du jeu devient plus simple et sa maintenabilité et son évolutivité
en sont améliorées. Le médium a été mis en œuvre pour le développement
de trois jeux attestant de sa réutilisabilité.

Ce travail pourra être poursuivi selon plusieurs directions. À court terme, des
évaluations avec un grand nombre de joueurs permettront de mesurer le passage
à l’échelle de nos algorithmes de synchronisation et également de vérifier le bon
comportement de l’architecture système proposée. Par ailleurs, nous souhaitons
déployer plusieurs variantes du médium de synchronisation, chacune offrant une
stratégie de synchronisation particulière pouvant être sélectionnée dynamiquement
à l’exécution. Nous envisageons également de proposer un médium multi-réseau
capable de gérer les communications à travers plusieurs réseaux tels que les réseaux
WIFI, Bluetooth et 3G. Finalement, nous souhaitons généraliser notre approche
à d’autres types d’applications distribuées et interactives en offrant des interfaces
communes de communication et de synchronisation.





Chapter 1

Introduction

Since the introduction of the first computer game, called OXO, developed in 1952,
computer games have attracted millions of people throughout the years. According
to estimates (Carless, 2006), online games market will hit a record $13 billion as
compared to 3.4 billion dollars in 2005, surpassing the revenue provided by box-
office tickets. The first interactive video game, “tennis for two” by Higgingbotham
(Brookhaven National Laboratory, a US nuclear research lab in Upton, New York)
was developed in 1958. The interactive experience of that non-commercial game im-
mediately gained a vast popularity and traced the path for the horde of commercial
descendants that have invaded arcades and homes till these days. Nowadays, the
emerging game market pushes the industry and researchers to provide distributed
solutions that give users with advanced online gaming applications able to support
them during sophisticated game sessions (Natkin, 2003; Griwodz, 2002; Ferretti,
2005; Pellerin, 2010). With the feeling of immersion required by the players par-
ticipating to an online game, networked and distributed technologies now come
into the game arena. Keeping this in view, many software companies are now in-
terested in developing novel commercial software platforms to support networked
multiplayer games (Terraplay, 2000; Unreal, ).

With the increasing number, capabilities and innovative use of cell and web
phones, the mobile game industry will exploit this multi billion-dollar market to
outsell a new generation of multiplayer networked games (Akkawi et al., 2004a;
Akkawi et al., 2004b). In fact, the mobile games market is estimated to reach around
$6.8 billion by 2013 in the United States only. The mobile communications industry
is meeting game developers to devise effective strategies able to engage billions of
consumers worldwide. Already a number of new multiplayer games for portable
devices have been developed, such as Pirates! (Falk et al., 2001), SpyGame, Human
Pacman (Cheok et al., 2003), AR-Soccer etc. Now, the trend is that of providing
mobile users with complex exciting networked multiplayer games.

On the other hand, as games are becoming more and more simulation oriented,
it is easy to envisage that also other types of applications will converge to the use of
the new game technologies. Such applications that may take advantage of technical
solutions introduced by game developers and researchers include simulations related
to medical surgery, military simulations, e-commerce etc.

1



2 CHAPTER 1. INTRODUCTION

Many works have been carried out concerning, for example, new projects aimed
at developing combat video games to enhance strategic, combat, and decision-
making skills of military commanders (Rhyne, 2002a; Kumagai, 2001). Further-
more, collaborative applications’ researchers are developing augmented reality in-
terfaces and explore how immersive collaborative virtual environments might sup-
port group interaction (Billinghurst and Kato, 2002). Finally, surgery simulations
and video games share a quest for realistic object behaviour and high-quality im-
ages (Wagner et al., 2002). Summing up, more and more non-game applications
adapt and use elements of computer games to enable the creation of compelling
user experiences in several domains (Tsang et al., 2003).

The above considerations explain the importance of devising new software so-
lutions that provide support to networked multiplayer games. In essence, this
emerging game market is characterized by a growing demand for scalable respon-
sive strategies able to provide players with the feeling of full immersion into the
virtual game world during the game evolution. The point is that the development
of networked multiplayer games is more complex than classic stand alone games, as
they require a significant level of network programming, state maintenance and ad-
ministration of a network infrastructure to support online gaming sessions (Kawa-
hara et al., 2004). Several advantages may derive from such kind of networked
multiplayer games including, for example:

• the possibility to enable a large amount of dispersed players to interact with
each other, also by means of a plethora of portable devices, such as laptops,
cell phones, PDAs or game consoles;

• the possibility to maintain a persistent state of the game even when users ex-
perience high latency and jitters, disconnect because of a temporary network
failure or want to perform other activities (Okanda and Blair, 2004); exam-
ples of games that already provide persistent virtual worlds are Everquest
(Everquest, ), Lineage (Lineage, ) and Ultima Online (Unreal, );

• the possibility of enabling proactive advertising/advising software mecha-
nisms employed to inviting users to play the game.

Keeping in view the above discussion, we now present the problems dealt with
in this thesis.

1.1 Problem Presentation

The main objective to pursue when developing a networked multiplayer game is
that of offering the players a more realistic representation of the virtual world. The
idea is to have the real player immersed into the virtual world as if this virtual world
is not distributed physically. To achieve this objective, a dominant factor is that of
ensuring a real-time evolution of the game, so that players may enjoy a game expe-
rience which is similar to real-life gaming. This factor provides remote users with



1.1. PROBLEM PRESENTATION 3

full interactivity. In short, the system must be able to guarantee the satisfaction
of real-time requirements, also ensuring that the consistency of the game state is
maintained. These two requirements, i.e. interactivity and consistency, are depen-
dent on the underlying network latency. In wired-networks, where latency ranges
between 100-300 milliseconds, the issues of consistency and interactivity have been
discussed and worked upon for quite some time.

With the arrival of wireless telecommunication data networks such as GPRS
and 3G, and with the increase of the use of mobile phones, game users have steadily
started playing on their mobile terminals which give them more freedom in terms
of mobility and location. In wireless networks, because of the higher latency, the
frequent disconnections and the mobility of the user(s), the issues of consistency
and interactivity become more crucial as compared to the wired networks. The
GPRS network suffers from high latency for data transmission (1000-2700ms round
trip time (McCaffery and Finney, 2004)), making timely real-time communications
between collaborative gamers close to impossible within the scope of any real-time
game. While the emerging 3G networks are much improved (400-800ms (Frécon
and Stenius, 1998)), it still remains above the tolerance of typical real-time mul-
tiplayer games which is below 250 ms (Pantel and Wolf, 2002). Although, 4G
networks promise to provide much more faster communication than the current 2.5
and 3G networks (Balakrishnan and Sadasivan, 2007), it is yet to be world-wide
implemented and tested for real-life virtual environments. Even with fast devel-
opment of communication technologies, the network latency cannot be avoided as
the information cannot flow at a speed more than that of light. Thus, the issues of
consistency and interactivity still remain a bottleneck for wired multiplayer games
in general and mobile multiplayer games in particular.

Keeping in view the high latency of wireless networks, as discussed above, one
of the objectives of this thesis is to focus on the following question: How to main-
tain the consistency among different mobile multiplayer games’ players in the face of
high network latency and user’s mobility when frequent disconnections and network
jitters may occur. With this problem, also come the limited resources of portable
terminals such as limited memory and processing power. Apart from this, a player,
while playing on a mobile phone, may have to pay for each message he/she shares
with other remote players in the game. This in mind, in this thesis report, we focus
our attention on finding viable ways to maintain consistency among mobile players
playing a multiplayer game with limited resources and a costly, high latency and
unreliable network. Based upon the knowledge of the requirements of the game and
the network conditions, we propose a consistency maintenance approach adaptable
to high latency and jitters, to achieve consistency in multiplayer mobile games. A
consistency maintenance mechanism is also referred to as a synchronization mecha-
nism; therefore, in this document, we will use the terms consistency maintenance
and synchronization interchangeably.

The network architecture and the infrastructure upon which the game is de-
ployed directly influence the consistency and the interactivity of the game because
1) the latency varies from architecture to architecture as it is dependent upon how
many nodes a message has to pass before arriving at its destination, 2) there is
a difference whether the consistency is resolved at a central place where this can



4 CHAPTER 1. INTRODUCTION

be managed more simply or the consistency resolution is distributed and solved in
a more complex manner. Hence, the choice of the network architecture directly
impacts the consistency maintenance within a multiplayer game. Also it also con-
ditions the way the game companies control the game. Game companies prefer
a platform that gives them more control over the game. We, therefore, in this
report also discuss different architectures for multiplayer games and how they are
related to consistency maintenance approaches. We propose an architecture for
multiplayer games on mobile phones using cellular networks which could provide
state consistency as well as control over the game.

The mechanisms for consistency maintenance use algorithms that are very com-
plex and are, therefore, hard to program. Also because of their complexity, the
evolution of the game code becomes difficult during the course of time. It is thus
desirable to separate the code of these algorithms from the game logic. The objec-
tives are to be able to re-use these algorithms when developing a new game and to
provide a middleware platform which can offer many different algorithms suitable
to different situations. In separating the game logic from the consistency mainte-
nance algorithms, the focus is to have an architecture where the developer(s) of
the game concentrate(s) only on the game logic, and is/are not bothered by the
consistency and interactivity issues. The point here is that latency is basically a
network problem and is not related to the game logic and hence should be handled
separately. As a third contribution, we propose an architecture for separating the
game logic from the consistency algorithms.

Hence our contributions cover three different but interrelated points of views of
the game.

1. From the point of view of a multiplayer game user, we contribute to lessen the
efforts of maintaining a consistent multiplayer game state for a fair gameplay
so that players can really immerse in the virtual world.

2. From the game provider’s point of view, we propose a multiplayer platform
that is more profitable, controllable and attractive.

3. From the game developer’s angle, we propose a software architecture that
lets the developer(s) to focus on the core logic of the game only and leaves
the communication and synchronization aspects to a third party.

1.2 Organization of the Thesis

The first part of the thesis is dedicated to a study of the state of the art on the syn-
chronization aspect in multiplayer games. In the chapter 2, we present a literature
survey related to the above three requirements. In section 2.1, we discuss differ-
ent synchronization algorithms used in distributed virtual environments, especially
multiplayer games. Then, in section 2.2, we discuss different system architectures
used for multiplayer games. In section 2.3 we present a literature study on candi-
date software architectures for the separation of synchronization algorithms from
the core application logic.

The part 2 of this thesis report presents our contribution.



1.2. ORGANIZATION OF THE THESIS 5

Chapter 3 describes our first contribution. We discuss our observations for
synchronization in multiplayer games. Based upon these observations, we propose a
dynamic approach suitable for multiplayer games in high latency networks. We then
build on this dynamic approach and propose an algorithm to reduce the number of
rollbacks in case of a high and varying network latency.

In chapter 4, we present the results of our experimental evaluation of the ap-
proaches we propose in chapter 3.

Chapter 5 is related to our second contribution. In this chapter we present our
study of the network architectures used for multiplayer games. Based upon our
observations, we propose a distributed multi-servers architecture for mobile multi-
player games. We call this architecture session server architecture. Because of the
high latency of wireless networks, the application of synchronization mechanisms
only at the game server is not sufficient (as is done by many approaches), so in this
chapter we present an adaptable consistency mechanism which switches between
client and server sides depending upon the need of the situation. We present our
evaluation of this approach in the same chapter.

In chapter 6, we present our third and final contribution. We propose an ap-
proach for the separation of synchronization algorithms from the core application
logic and their insertion into a reusable communication component. We call this
component the synchronization Medium.

Chapter 7 presents our evaluation of the synchronization medium from perfor-
mance as well as re-usability points of view.

In the last part of the thesis, the chapter 8 concludes this report and presents
an overview of our future perspectives.



6 CHAPTER 1. INTRODUCTION



Part I

State of the art

7





Chapter 2

State of the Art:

Synchronization In

Multiplayer Games

In this chapter we first discuss the state of the art for the research on synchro-
nization algorithms used in interactive distributed applications such as multiplayer
games and military simulations. Then in section 2, we make a study of different
system architectures used by networked multiplayer games. In section 3, we discuss
works related to the separation and re-usability of synchronization algorithms in
multiplayer games.

2.1 Consistency Maintenance Algorithms in Dis-

tributed Virtual Environments

In this section, we discuss a literature study related to different consistency main-
tenance algorithms used in distributed applications. From the consistency mainte-
nance point of view, distributed systems can be divided into discrete and continuous
systems. 1) Discrete systems are where the state of a system changes in discrete
steps after an event (such as a user action) has occurred and where the time has
no impact upon the state of the system. Distributed databases is an example of
discrete systems. In this type of systems, conservative approaches for consistency
maintenance can be used in which the system advances only after ensuring a global
consistent state. 2) Continuous systems, such as multiplayer games, are those where
the state of a system changes not only with the users’ actions, but also evolves with
the passage time. For maintaining consistency in such type of systems, an opti-
mistic approach can be used where the system does not have to wait for achieving
a consistent global state, but is evolving with time.

As in this report we are dealing with continuous applications, particularly mul-
tiplayer games, in the next section we give just a very brief overview of the con-

9



10
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

servative approach and then in section 2.1.2 we discuss, in detail, the optimistic
approach which can be used in distributed continuous virtual environments.

2.1.1 Conservative Approach

The conservative approach is a first attempt to solve the consistency problem in dis-
tributed systems. In conservative algorithms such as the Lockstep Synchronization
algorithm (Funkhouser, 1995), no member is allowed to advance its simulation clock
until all the other members have acknowledged that they are done with the com-
putation for the current time period. This prevents out of order events from being
generated. It is impossible for inconsistencies to occur since no member performs
calculations until it has the exact same information as everyone else. Unfortunately,
this scheme also means that it is impossible to guarantee any relationship between
simulation time (game time) and wall-clock time. Also if one node in the system
fails, then all the others may wait indefinitely before receiving updates from that
node and impeding any progress in the game evolution (Palazzi, 2006).

This type of approach is suitable for discrete applications but not for distributed
continuous applications such as multiplayer games because this approach does not
guarantee that the application will advance at a regular rate, an essential require-
ment for continuous applications. In continuous distributed applications, the state
of the application not only changes with users’ interactions, but also with time.
Hence conservative algorithms are very rarely used for game state synchronization.

2.1.2 Optimistic Approach

2.1.2.1 Prediction Based Approach

In continuous distributed applications such as distributed virtual environments and
multiplayer games, remote sites interact with each other via a network. Because the
update messages from remote sites may reach the other sites after some significant
delay, a mechanism is needed to hide this delay so that messages that arrive from a
remote user to a local user are not in the “past” but are updated to the “present”
clock time.

A very first approach to hide this latency and make the data consistent on
remote terminals is the prediction of the positions of remote objects. This is called
Dead-Reckoning named after the naval approach of finding the position of a ship in
the sea at a certain time. Dead-Reckoning (IEEE, 1995) is used to reduce bandwidth
consumption and hide network latencies. It consists in sending update messages
less frequently and estimating the state information between the updates using the
already received information such as position, velocity and/or acceleration of the
object. The predicted value can be different from the actual one, which is received
through the update message. In this case, some convergence method can be used to
reach the actual value (Palant et al., 2006). The importance of dead-reckoning in
mobile games is that it permits a mobile terminal not to be blocked and to continue
even if it is not receiving the data in case of a short term disconnection, for instance.
The convergence method must fuse the actual value and the predicted value in a
smooth way, so that there are no abrupt effects on the game user. (Singhal and



2.1. CONSISTENCY MAINTENANCE ALGORITHMS IN
DISTRIBUTED VIRTUAL ENVIRONMENTS 11

Cheriton, 1994) proposes a dead-reckoning protocol based on the position history
of the object being dead-reckoned. It makes sense to use the simple dead-reckoning
algorithm when the path is smooth and straight such as in car race games, and to
use the position-based history protocol when the path is not smooth but follows a
certain pattern during its motion.

The pre-reckoning algorithm (Duncan and Gračanin, 2003) is proposed as a
“variation of the standard Dead Reckoning algorithm to decrease prediction errors
without significantly increasing network traffic”. This algorithm anticipates the
possibility of reaching the error threshold during the prediction and sends a sta-
tus update message immediately without waiting for the threshold to be violated.
Although it can result in the increase of update packets being sent unnecessarily,
the objective of this algorithm is to eliminate foreseeable errors with a negligible
increase in update packets. Different experiments on the pre-reckoning algorithm
demonstrate its potential to outperform the standard Dead-Reckoning algorithm
as shown in (Zhang et al., 2004).

To synchronize data between remote players, prediction is not enough in the
face of high delays because prediction for such a long time is error prone and also
because the users continuously interact with the application and change the trajec-
tory of the objects. Although update messages can be predicted to a certain de-
gree, other types of stand alone command messages, for example a shoot message,
if lost, cannot be predicted. The problem of prediction becomes worse in wireless
networks because of their higher delays as compared to wired networks. Therefore,
other consistency mechanisms are required to synchronize the data among different
participants of a distributed and mobile continuous application.

We now discuss such consistency maintenance approaches that are proposed in
the literature for distributed continuous applications.

2.1.2.2 Bucket Synchronization

The Time Bucket Synchronization Mechanism (Steinman, 1990; Steinman, 1991)
uses cycles of times to allow different nodes to synchronize with each other. At the
end of every cycle, each node increments its simulation time in unison by a certain
amount T . A variation of the Time Bucket Synchronization was implemented in a
distributed game called Mimaze (Gautier and Diot, 1998). In this synchronization
mechanism, the game time is divided into fixed time intervals with associated buffers
called buckets. Messages received from remote players with their time stamps
are stored in their corresponding buckets, i.e. each time-stamp has an associated
bucket. To deliver a global state, the messages in the current bucket are processed
to compute the current global state.

To synchronize the remote messages with the local messages, the local messages
are delayed and stored in later buckets (in terms of time) so that remote messages
issued at that time can arrive. All messages arriving later than their bucket time are
simply discarded. The advantage of this approach is that in case of small delays, we
could buffer the local message to wait for remote messages without compromising
interactivity. However, in case of higher network delays, this approach can result in



12
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

Figure 2.1.1: Bucket Synchronization Approach, taken from (Gautier and
Diot, 1998)

discarding lots of messages thus producing inconsistencies. Also for mobile multi-
player games, a complex problem is that of fitting the bucket size with the unstable
conditions of wireless networks having large and variable jitters.

The bucket synchronization approach is shown in figure 2.1.1. Without any
synchronization, the local ADU (Application Data Unit or message) issued at time
t3 would be processed together with the ADU issued at t1 from another location
(but received at t2, which is in the same state processing interval than t3). Bucket
synchronization allows information received at t0 to be delayed in the bucket d
(that will be processed at td) in order to be synchronized with the ADU issued at
t1 by another participant.

A variation of bucket synchronization, called Locked Bucket-Synchronization
Algorithm (LBSA), is proposed in (Moon et al., 2006). LBSA adopts the method
of the lockstep algorithm which is a send-and-wait mechanism. In this algorithm,
each site moves forward only when the frame corresponding bucket is filled with
packets of all the players. “When the delayed packet arrives, it is stored in the
corresponding bucket” and the player’s game process moves forward again. The
problem with this approach is its pessimism as the game cannot move forward
unless a player’s bucket is filled. This type of approach is not suitable to fast paced
games such as car racing games or first person shooter games.

For fast paced games, we cannot wait for the messages that are delayed more
than the players reaction time, and therefore we need optimistic techniques where
the game application moves forward without waiting too much for the delayed
messages. The definition of “too much” is game dependent and can be in the range
of 100 to 300 milliseconds (Pantel and Wolf, 2002; Khan et al., 2007).



2.1. CONSISTENCY MAINTENANCE ALGORITHMS IN
DISTRIBUTED VIRTUAL ENVIRONMENTS 13

2.1.3 Roll Back Approach

Time Warp Time Warp (Jefferson, 1985; Lin and Lazowska, 1991; Mauve et al.,
2004) is a synchronization mechanism for parallel/distributed simulations. It allows
logical processes to execute events without the guarantee of a causally consistent
execution. Upon the detection of a causality violation, rollback procedures recover
the state of the simulation to a correct value. Two problems occur with this method
when using it in networked multiplayer games. First, it requires to store previous
states, for which memory is needed. Second, rollbacks demand processing power
which can be a costly resource on some limited power terminals. (Mauve et al.,
2004) proposes to combine the use of local lag and time warp to improve consis-
tency and decrease the number of rollbacks in a mirrored server architecture.

(Liang and Boustead, 2006) combines local lag and time warp in the Quake
3 Arena game 1 to demonstrate how the two approaches can be used to optimize
the playability of real life network games. With the combination of these two
approaches and with a network lag of 200 milliseconds, their results showed that
performance doubled as compared to just using local lag to achieve consistency.
When using Time Warp on mobile terminals connected via a wireless network, the
number of rollbacks can significantly increase because of the late arriving messages
thus requiring additional processing power and memory space for the rollbacks. As
computing and memory resources can be very limited on mobile terminals, some
other techniques that reduce the number of rollbacks are required to be able to play
a multiplayer game on mobile terminals in a consistent way without being irritated
by the network latency.

Trailing State Synchronization (TSS) TSS (Cronin et al., 2002) also
executes a rollback when an inconsistency is detected. However, it implements
rollback intelligently to avoid high memory and processor overheads demanded by
Time Warp Synchronization. As shown in figure 2.1.2, instead of keeping snapshots
of every command as in Time Warp, TSS keeps two copies of the same game world,
each at a different simulation time separated by some synchronization delay. The
most recent one in the time domain is called the leading state. The other is called
the trailing state. When an inconsistency is detected in the leading state and
rollback is required, instead of re-processing all the states for each snapshot as TW
does, TSS just simply copies the game status from the trailing state to the leading
state, and then performs all commands between the inconsistency point and the
present point again. TSS does not actually solve the rollback problem originated
from TW, but it will have better performance when the following two situations are
present. First, the game state is large and it is expensive to store the snapshots.
Second, the delay between states is small. In order to rollback, copies of the past
checkpoints are required. It is still a challenge to do it with less memory and
processing speed in case of playing a game on mobile phones.

1http://www.idsoftware.com/games/quake/quake3-arena/



14
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

Figure 2.1.2: Trailing State Synchronization Algorithm, taken from (Cronin
et al., 2002)

2.1.3.1 Obsolescence-based Synchronization

Before discussing the obsolescence-based synchronization scheme, we discuss the
properties of correlation and obsolescence. Correlation (Ferretti and Roccetti,
2004b) among game events may be characterized as a property which states that
two game events ei and ej are correlated if different execution orders of the two
game events lead to different game states. Examples of correlated game events
typically involve game events, possibly generated by different players, which act on
the same game elements. Independent movements of different virtual characters,
instead, are examples of non-correlated game events. (Ferretti and Roccetti, 2004b),
however, does not define any mechanism to calculate the correlation between any
two events. (Xiang-bin et al., 2007) defines two events to be correlated if they
are associated with a single object. Hence, to provide players with a uniform
evolution of the game, it is enough that correlated game events are processed by all
players respecting their correct timestamps order. Instead, no ordering guarantee
is needed to process different players’ events that do not alter the game state. Such
correlation-based order has the main advantage of reducing the synchronization
overheads by reducing the number of rollbacks.

We now discuss the notion of obsolescence (Ferretti and Roccetti, 2004b).
Given two subsequent game events ei, ej with time stamps T (ei), T (ej) respec-
tively such that (T (ej) > T (ei)) it may be the case when processing ej without ei

leads to the same final state that would be reached if both events were processed
in the correct order (i.e. ei becomes obsolete). Recent studies demonstrated that
by exploiting the semantics of the game, there exist many situations where fresher
game events cancel the importance of previous events. For example, knowing the
position of a character at a given time may be no longer important after a certain



2.1. CONSISTENCY MAINTENANCE ALGORITHMS IN
DISTRIBUTED VIRTUAL ENVIRONMENTS 15

time period, if the position of the character has changed. It is also worth noticing
that the notion of obsolescence cannot be applied to ej and ei when other events
correlated to ei have been generated within the time interval [T (ej), T (ei) ]. These
game events may alter the evolution of the game state thus making inapplicable
the notion of obsolescence.

Waiting Obsolescence-based Scheme In this approach (Ferretti and Roc-
cetti, 2004b), the notions of correlation and obsolescence are used. This scheme has
two requirements. 1) Correlated events must be processed in the same order by all
the participants and 2) Persistent events must always be processed. Non correlated,
non-persistent late arriving messages can be discarded. Persistent events are those
events that must be eventually delivered irrespectively of their delivery time, such
as the shooting of another object. The problem with this scheme is that for corre-
lated events to be processed in the same order, the system must wait for all of them
before processing them. This is somewhat similar to the Bucket synchronization
scheme (Gautier and Diot, 1998). The problem with the bucket synchronization
scheme is that it discards late arriving events irrespective of their importance in
the application. Instead, this approach only discards obsolete events. Note that
no roll-backs are required for this scheme as opposed to Time Warp because of its
wait for correlated events.

Optimistic Obsolescence-based Synchronization As in Waiting obsolescence-
based scheme, the optimistic approach (Ferretti and Roccetti, 2005a) also uses the
concept of correlation and obsolescence. According to Optimistic Obsolescence-
based scheme, each receiving player verifies if a given event e may be already
identified as obsolete. In this case, e is dropped. Otherwise, a check is carried
out to control whether any game events ei, correlated to e and generated after e,
have been already processed. If this check succeeds, then a rollback procedure is
performed (which is based on a standard incremental state saving technique such as
(Fujimoto, 1999) where all events ei are rolled back). At this point, e is processed
followed by the execution of all those rolled back events which are not obsolete. In
fact, obsolete events are discarded during the rollback process. If the check fail that
determines that a rollback procedure is needed, e is directly processed. It is easy to
observe that this OOS scheme respects the correlaction-based order and guarantees
that only useless (obsolete) game events are eventually dropped by some player.
An important point is that OOS guarantees the game state consistency among all
players. The final game state computed by OOS scheme is not altered while an
augmented interactivity is achieved by dropping obsolete events and permitting
different processing orders for non-correlated events.
(Ferretti and Roccetti, 2004b) also presents a scheme similar to the above, but
without the notion of obsolescence and it processes only correlated events in the
same order.

2.1.3.2 Perceptive Consistency

Perceptive Consistency (PC) (Bouillot, 2005) provides an ordering of updates and
avoids potential conflicts. Before discussing Perceptive Consistency, two terms need



16
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

to be defined. The property of legality requires that the latency for a given media
instance between two remote processes must be kept constant. For example, in the
case of a car racing game, the legality property is respected if the time between
two successive positions of a given car is the same for the two users, and hence the
speed is also respected. The simultaneity property states that the physical time
between the playouts of two updates is the same for all users. For the car racing
game, the simultaneity property is hold if in the case of a collision between two
cars, the two cars are considered to be at the same place at the same given time
by all the users. For a system to be perceptive consistent (Bouillot, 2005), it must
satisfy both properties of simultaneity and legality.

The algorithm implementing PC has three phases. In the first phase, the algo-
rithm calculates, for a given player, the maximum communication delay between
this local player and all the remote players. Then, in the second phase, the algo-
rithm calculates the local lag to be introduced locally to order the events before
the playout of a media instance. In the third phase, the message is played out. In
the case of mobile games, as network delays can be quite longer, the local lag in-
troduced by PC can have bad effects on the players. Hence, dead-reckoning can be
combined with PC to hide the effect of local lag by adding predicted intermediate
states.

2.1.3.3 Rendez-Vous

The Rendez-vous platform (Chandler et al., 2004; Chandler and Finney, 2005a;
Chandler and Finney, 2005b; Chandler and Finney, 2005c) is intended as an al-
ternative to rollback based consistency methods. This is particularly true in high
latency networks where under normal circumstances rollback mechanisms would
prove insufficient.

Unlike rollback techniques, the Rendezvous solution copes with inconsistency by
accepting a degree of inconsistency as inevitable before gradually trying to converge
the inconsistent states forward to a single consistent state in the future. “When
using the Rendezvous system, each independent player will see a slightly different
view of the game action, reflected by when they received certain state information
and what actions they performed themselves”. The separate game universes ob-
served by each of the players to form the Rendezvous multi-verse, slowly become
increasingly similar over time as Rendezvous calculates the means for the game
states to converge by manipulating game rules and begins to act on those calcu-
lations, providing a managed inconsistency. Although, inevitably, the players will
continue to develop new inconsistencies. However, the system efforts to keep the
inconsistencies to a minimum, without significantly affecting the game play or the
fairness of the results will provide enough consistency so that separated players can
play a multiplayer games across the network.

In order to successfully recover from an inconsistency, it is essential that the
Rendezvous mechanism maintains a degree of semantic understanding of the un-
derlying application. As the game continues around the convergence process, Ren-
dezvous makes use of a series of game rules, provided explicitly by the game, to
manipulate each independent game reality from their inconsistent states back to an



2.1. CONSISTENCY MAINTENANCE ALGORITHMS IN
DISTRIBUTED VIRTUAL ENVIRONMENTS 17

acceptable convergent reality called a target.

2.1.3.4 Adaptive Schemes

In adaptive schemes, the synchronization approach is adapted according to the
situation such as network latency. In (Ikedo and Ishibashi, 2006), the authors
propose an adaptive scheme for consistency among players in networked racing
games. In this scheme each terminal inputs the positional information about the
player’s car at regular intervals (every 33 ms in their experimental system) and
sends the information with its time stamp, which denotes the generation time of
the information, as a computer data media unit (MU). In the proposed scheme,
the adaptive ∆-Causality control is exerted for conservation of causality. Under
the adaptive ∆-causality control, when each terminal receives an MU, the terminal
saves the MU in the terminal’s buffer until the generation time of the MU plus ∆
seconds (∆ ≥ 0). If MU is received after the time limit, it is discarded. However,
owing to discarding MUs, the positions of cars may be output incorrectly. To
suppress the influence of network latency (i.e. to output the positions of cars as
correctly as possible), the proposed scheme uses a prediction technique when the
network load is light. In the prediction technique, when no MU for output exists,
the current position of the car is predicted by using the latest two output MUs.
However, when the network load is heavy, a dead-reckoning technique instead of
the prediction technique is used to suppress the amount of computer data traffic.

In the dead-reckoning technique, at each terminal, the current position of each
of the other players’ cars is predicted by the latest two received (transmitted) MUs.
Then the predicted position is compared with the actual position. If the difference
between the predicted position and the actual position (i.e. the prediction error) is
larger than a threshold value Tdr (> 0), the information about the actual position is
transmitted as an MU. Otherwise, no MU is transmitted. When a MU is received,
it corrects the position over several times in order to correct it gradually until the
difference becomes less than Tdr.

“When the dead-reckoning technique is used in the proposed scheme, if an MU
is received within the time limit (i.e. its generation time plus ∆ seconds) of the
MU at each terminal, the MU is saved in the terminal’s buffer until the time limit;
then, the position is predicted and corrected. Otherwise, the MU can be used only
to predict the position of the car at the next output time.”

In the proposed scheme, the network load is estimated from the value of ∆.
The reason is that the value of ∆ is dynamically changed according to the network
load under the adaptive ∆-causality control. The value of ∆ is changed so as to
satisfy the following relation: ∆L ≤ ∆ ≤ ∆H , where ∆L(> 0) and ∆H(> 0) are the
minimum and maximum values, respectively, of ∆. The value of ∆ is increased by
∆I(> 0) when the number of MUs which are received continuously after their time
limits reaches Na(≥ 1). On the other hand, when Nb(≥ 1) MUs arrive continuously
before their time limits, the value of ∆ is decreased by ∆D(> 0). The initial value
of ∆ is set to ∆L. In the proposed scheme, the prediction technique is used when
∆ is smaller than ∆H , and when ∆ is equal to ∆H , the dead-reckoning technique



18
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

is employed.

2.1.3.5 Relaxed Consistency

(Li et al., 2004) proposes relaxed consistency by allowing inconsistencies to occur
for a short period of time. In their approach, the game runs on a server while a sim-
ulation of the player’s avatars run on the clients. During the time of inconsistencies,
the clients gradually synchronize themselves to the server to achieve consistency.
They use a parameter ǫ to denote the limit of inconsistency between two different
sites, and when ǫ becomes zero, the relaxed consistency becomes strict consistency.

(Zhou and Shen, 2007) presents a consistency model for Multiplayer Online
Games (MPOGs). Based on their observations, they argue that the first consis-
tency requirement for MPOGs is the expectation presentation requirement which
is delay-induced. For example, a player shoots another player at one site, but this
‘shoot’ command does not arrive at the other site, and the remote site avatar sends
an update message showing that its avatar is still alive. The second consistency re-
quirement is that all sites maintain the same positions of the moving entities at the
same wall-clock time. If this requirement is satisfied, the game state as perceived
by a player will be consistent with other players’ expectations, thus the game is fair
for all players - this is called fairness requirement.

Hence an MPOG is said to be consistent if it satisfies the fairness require-
ment. The fairness requirement is not achievable given the high network latency.
Therefore some relaxation is needed. But how much and how ? Again based on
observations, a minimum time is required to see the visual effect of an entity. This
time is denoted by σ and is around 0.1 to 0.2 seconds. Based on this observation, if
a spatial representation X is produced at a site i at time t, and is reached at a site j
at time t′, if t < t′ < t+σ, then the game is consistent. If the transmission delay is
greater than σ, then this requirement may not be achievable and consistency needs
to be further relaxed.

As a further observation, if the spatial distance between two objects is too small,
it is hard for a human to clearly discern the relative position of the two objects.
This minimum distance is denoted by ǫ. Let Xi(t) be the visual representation of
an entity at site i at time t, and |Xi(t)−Xj(t)| < ǫ, then the two players at sites i
and j will not have different perceptions because this difference is too small. Only
when |Xi(t) − Xj(t)| > ǫ and when this situation has been lasting for a period
longer than σ, we would expect that two players do not have a consistent view of
the game. Based on the above observation, the consistency criterion is defined as
follows:
Let v and Td denote the moving speed of an object and the average network delay
respectively. If Td−ǫ/(v) < σ then the game is said to be consistent. ǫ/v means that
it takes ǫ/v time for visual effect at two different sites to exceed ǫ and Td − ǫ/(v)
is the time that this situation lasts. Note that the consistency criteria may be
satisfied even when Td > σ depending on the value of ǫ and v.

Also the consistency requirement may further be relaxed if the moving objects
are not in some critical region e.g. near the base line in a tennis game. Note that



2.1. CONSISTENCY MAINTENANCE ALGORITHMS IN
DISTRIBUTED VIRTUAL ENVIRONMENTS 19

according to the above requirement v < ǫ/(Td − σ), it means that we have put an
upper limit on the speed of an object. However, this can be relaxed if the game is
not in a critical region. There must be some mechanism to slow down the speed of
the object when it is entering the critical region.

(Zhou and Shen, 2007) relies on loose consistency when strict consistency re-
quirements are difficult to achieve in high latency networks, especially wireless
networks. It does not define a consistency maintenance algorithm but just a con-
sistency model based on relaxed consistency.

(Schloss et al., 2008) gives a model of elastic consistency where the consistency
requirements vary between a strong consistency and a loose consistency for different
types of distributed virtual applications. This work, however, does not describe any
specific algorithm for consistency maintenance.

2.1.4 Analysis of Consistency Maintenance Algorithms

Table 2.1.1 presents an analysis of consistency maintenance algorithms. TW and
correlation-based algorithms are highly optimistic and they apply rollbacks when
needed. They are mainly used for mirrored server architectures. Bucket synchro-
nization is similar to the correlation approach in dropping events, but does not have
any rollback mechanism and is implemented on client side in peer-to-peer architec-
ture. Adaptive and relaxed consistency approaches also drop events and provide
a loose consistency. Rendezvous is mainly targeted at mobile multiplayer games
and exploits the game semantics to provide a loose consistency. This approach is,
however, difficult to implement. We can conclude from the table that no single con-
sistency maintenance approach provides a comprehensive mechanism for different
games.

2.1.5 Use of Synchronization Algorithms in Other Domains

Distributed Cyber Drama: Distributed Cyber Drama, also known as dis-
tributed story telling, is a type of literature in which different participants (through
the use of their virtual characters) remotely participate and play different roles in
the story. This kind of distributed computer-based entertainment is making sig-
nificant advances in the entertainment world thereby “becoming an interesting al-
ternative to the tradition linear narratives of TV, radio, movies and magazines”
(Mateas and Sengers, 1999; Cavazza et al., 2002; Ferretti et al., 2004; Ferretti and
Roccetti, 2004a). (Ferretti et al., 2004; Ferretti and Roccetti, 2004a), through the
implementation of game synchronization algorithms, show that consistency main-
tenance algorithms used in multiplayer games can also be applied to Distributed
Cyber Drama application. In essence, the interaction between different participants
from the point of view of the exchange of update messages is the same for both
multiplayer games and Distributed Cyber Drama, except for the fact, that in a
multiplayer games, the participants want to compete out the others, while in cyber
dramas, they cooperate with each other in completing the story.

Distributed Virtual Concerts: In a distributed virtual concert, different
actors of the concert such as the musicians, the sound engineers and the audience



20
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

Table 2.1.1: Comparison of different Synchronization Algorithms

Approach Architecture Message

Discard-

ing

Rollbacks Location Suitability

for mobiles

comments

DR any no Convergence Client yes –

TW and TSS Mirrored

Server

no yes game server for wired net-

works

strong

consis-

tency

OOS Mirrored

Server

yes yes game server yes loose con-

sistency

Bucket Syn-

chronization

P2P yes no Client for wired net-

works

–

Adaptive

Approach

any yes NR Client – loose con-

sistency

Relaxed

Consistency

any yes NR – – loose con-

sistency

RendezVous any NR no Client specifically

for mobile

games

–

are geographically distributed and interact through the Internet by communicat-
ing using real-audio streams. However, auditory inconsistencies can arise among
musicians due to delays in real-time streams, which can hinder the collective music
practice. Consistency algorithms are needed to solve these auditory inconsistencies.
It has been shown that such algorithms can also be applied to multiplayer games
(Bouillot and Gressier-Soudan, 2004; Bouillot, 2004; Bouillot, 2005).

Distributed Military Simulations: Distributed Military Simulations such
as fighter planes simulations or battle tank simulations have similar consistency
requirements to multiplayer games. In fact, the dead-reckoning algorithm, a fun-
damental feature of the IEEE DIS (Distributed Interactive Simulation) standard
(IEEE, 1995) was first developed for military simulations. Because of the close
similarity of distributed military simulations and networked multiplayer games, the
synchronization approaches used in one domain can also benefit to the other domain
(Ferretti, 2005; Rhyne, 2002b).

Multimedia whiteboards: Another potential application for consistency main-
tenance algorithms is Multimedia Lecture Boards (MLB), a sort of shared white-
boards, where participants interact simultaneously to achieve a good approximation
of regular face-to-face lectures (Vogel and Mauve, 2001). MLB has a replicated ar-
chitecture where each user runs an instance of the application and hence consistency
control mechanisms are required to keep the replicated application data synchro-



2.2. SYSTEM ARCHITECTURE FOR MULTIPLAYER GAMES 21

nized. (Vogel and Mauve, 2001) has shown the combine use of “local lag” and
“timewarp” to maintain the consistency between distributed users of a multimedia
lecture board.

2.2 System Architecture For multiplayer Games

The main obstacle to real-time interactions in distributed applications is the In-
ternet’s inability to provide low-latency guarantees. Multiplayer player games
have strong consistency requirements, but the combination of consistency and low-
latency is difficult to achieve as messages may be delayed indefinitely in the network.
The choice of an architecture can greatly affect delays in update messages and also
the way, consistency maintenance is performed.

In this section, we briefly discuss different network system architectures used
in multiplayer games. We also discuss the bandwidth requirements for each type
of architecture and give an overview of the consistency maintenance mechanisms
that are used while a game is deployed on a given architecture. First we discuss
the centralized client server architecture and then in the next section, we discuss a
distributed approach where game state can be distributed at more than one nodes.

2.2.1 Client-Server Architecture

In a Client-Server Architecture, clients input key presses from the users and send
them to the server. This architecture is shown in the figure 2.2.3(a).

The server collects commands from all of the clients, computes the new game
state, and sends state updates to the clients. The clients then render the new state.
In a Client-Server Architecture, the game state consistency is simple to maintain,
since there is only one copy of the game state maintained by the server. But a
Client-Server architecture suffers from high latency because the messages travel
from the clients to a potentially distant server, and then the resulting game state
updates propagate back from the server to the clients adding up to the travel time.

Another problem with this architecture is the single point failure represented by
the server. Also the scalability of the architecture becomes an issue in case a large
number of clients are connected to the server since the bandwidth at the server side
is limited and may result in a bottleneck. However there are some advantages of
this architecture that is why it is still being used by many game service providers.
One of the main advantages of the Client-Server approach, and one of the reasons
why most gaming companies prefer it, is its administrative control such as players’
payment for their participation in the game, as the data is centralized on one server.
Also cheating becomes difficult since all the data passes through the server and can
be centrally monitored. As far the mobile multiplayer games are concerned, a
potential disadvantage of client-server approach in this case is the high latency of
wireless network and frequent disconnections. Also it is difficult to use the interest
management technique, which ensures that game entity information is only made
available to other entities that are capable of perceiving that information within
the game. In this technique, the client side processing is required to calculate the



22
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

a) Client Server Architecture b) Peer to Peer architecture

c) Mirrored-servers architecture d) Peer-to-Peer with central arbiter

central arbiter

Figure 2.2.3: Different architectures for multiplayer games

information to be made available to the interest zone. In a mobile environment, the
clients may not have sufficient processing capability (McCaffery and Finney, 2004).

Bandwidth requirement for CS architecture (Pellegrino and Dovrolis,
2003a) compares the bandwidth requirements of different architectures. Let TU be
the duration of the execution of the game loop including reading the inputs of the
local player, receiving updates from remote players, computing the new local state,
and rendering the graphical view of the player’s world. Let the size of the update
be LU bytes. A client sends a player update to the server in every game loop
period, and so the client bandwidth requirement for sending data is LU/TU . The
server replies to each player with a global state message, which represents the new
state of each of the N players. The size of the global state message is LG = NLU

bytes. So the client bandwidth requirement for receiving data is LG/TU . Hence,
the aggregate bandwidth requirement for a client in a CS architecture is:
(LG + LU )/TU = ((N + 1)LU )/TU

which scales linearly with N .

Similarly if we calculate the aggregate bandwidth requirement at the server
side, it turns out to be
(N(N + 1)LU )/TU

which scales quadratically with the number of players N .



2.2. SYSTEM ARCHITECTURE FOR MULTIPLAYER GAMES 23

2.2.2 Distributed Architectures

In this section, we discuss different architectures where the game state is distributed
across the network.

2.2.2.1 Peer-to-Peer Architecture

In a Peer-to-Peer architecture, there is no central repository of the game state.
Instead, each client maintains its own copy of the game state based on the received
messages from all the other clients. This architecture is shown in figure 2.2.3(b).
The primary advantage of the P2P architecture is its scalability. The problem of
bandwidth bottleneck at the server in the CS architecture is solved, although the
bandwidth requirement at the clients increases. Moreover, message latency can be
possibly reduced when there is a direct connection between peers as messages travel
directly from one client to another (Cronin et al., 2002).

In a P2P architecture, there are multiple copies of game state. If messages are
lost, or arrive at different times, inconsistencies can arise. Due to packet replication
(McCaffery and Finney, 2004), it is more difficult in P2P to minimize bandwidth
utilisation. Bandwidth utilisation can be minimized by using interest management
and relevance filtering techniques. Administrative control in P2P is difficult to
achieve as most of the code and data is distributed among many clients, where
they are vulnerable to hackers. As far mobile multiplayer games are concerned,
IP multicast for mobile phones is yet to be widely established, although in future
it may become quite common (Bakhuizen and Horn, 2005). Also, as there is no
centralized control of the game, the game service providers generally do not choose
this kind of architecture.

Bandwidth requirement for P2P architecture In a P2P architecture,
all the players send update messages to each player and receive update messages
from each player, so sending and receiving bandwidth requirements are the same i.e.
(N−1)LU/TU (Pellegrino and Dovrolis, 2003a). The aggregate bandwidth require-
ment is 2(N − 1)LU/TU ≈ 2NLU/TU which is twice the bandwidth requirement
for a player in CS architecture. Anyhow, it scales linearly with N thus removing
the server’s bandwidth bottleneck of a CS architecture. Interest filtering can also
be used to reduce the bandwidth requirement further.

2.2.2.2 Mirrored-Server Architecture

(Cronin et al., 2002) proposed a Mirror-Server architecture for multiplayer games
on the Internet. In this architecture (figure 2.2.3(c)), game server mirrors are topo-
logically distributed across the Internet and clients connect to the closest mirror.
It is a tradeoff between Client-Server and P2P architectures. “As in Client-Server,
Mirrored Servers can be placed under a central administrative control. Like P2P,
messages do not have to pay the latency cost of travelling to a centralized server.
Mirrored-Server systems must still cope with multiple copies of the game state”.
This problem can be solved with the trailing state synchronisation mechanism.
The bandwidth requirement of the servers is reduced as they receive messages from



24
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

only a subset of all the clients and only a few servers, rather than all players when
connected in a P2P manner.

2.2.2.3 Peer-to-Peer with Central Arbiter architecture (PP-CA)

In PP-CA (Pellegrino and Dovrolis, 2003b) (figure 2.2.3(d)), players exchange up-
dates communicating directly with each other, just as in the Peer-to-Peer model.
This minimizes the communication delays between players. Each player sends its
updates not only to all other players, but also to the central arbiter. The central ar-
biter listens to all player updates, simulate the global state of the game, and detect
inconsistencies. In the absence of inconsistency, the central arbiter remains silent,
without sending any message to the players. When an inconsistency is detected
however, the central arbiter will resolve it, create a corrected update, and transmit
that update to all the players. The corrected players will then be rollbacked to the
previous accepted state.

Bandwidth Requirements for PP-CA In PP-CA (Pellegrino and Dovro-
lis, 2003a), each player sends updates to all other players (N − 1) as well as to the
single central arbiter. So the sending data bandwidth requirement of each player
is NLU/TU . Similarly each player receives updates messages from all other play-
ers (N-1 players) and from the central arbiter in case of inconsistency (worst case
scenario). The receiving data bandwidth requirement for each player is therefore
NLU/TU . Hence the total bandwidth requirement for a player in case of PP-CA is
2NLU/TU which is linear.

2.2.2.4 Clustered-Server Architecture

(Hsu et al., 2003) proposes a clustered-server architecture to make the client-server
approach more scalable. By contrast to a mirrored-server architecture, each server
in the clustered-server has a partial game world and provides a consistent world-
view for that part of the system. The game world is divided into regions that have
their own multicast group. All players related to a given region send updates to the
corresponding server. “When an object crosses the boundary of a region”, a com-
mon region is defined along the boundary of the two concerned regions. All servers
adjacent to the common regions keep the copies of the object. When the object
leaves a common region and enters a region solely owned by a server, the other
server(s) disown(s) the object thereby reducing the network traffic. The cluster-
server is more scalable and synchronization can be achieved efficiently because there
are no multiple copies to be synchronized as in mirrored-server architecture.

Table 2.2.2 presents a comparison of different architectures for multiplayer
games.



2.3. SEPARATION OF CONSISTENCY ISSUES FROM THE GAME
LOGIC 25

Table 2.2.2: Comparison of different architectures used for multiplayer
games

Architecture Consistency

Algorithms

Game Con-

trol

Cheating Delay

Client Server algorithms

are simple

Central difficult

to cheat

long (via

server)

Peer to Peer non-trivial

because

peers are

distributed

Distributed easy to

cheat

relatively

small

Mirrored

Server

relatively

simple

Distributed

over Private

Network

relatively

difficult

relatively

small

PP-CA relatively

simple

Distributed relatively

difficult

same as P2P

2.3 Separation of Consistency Issues from the Game

logic

In section 1.1, we discussed different consistency maintenance algorithms for the
state synchronization in distributed virtual environments such as multiplayer games.
We saw that a combination of these algorithms can be used to reach a possible global
consistency. These algorithms are very complex and are, therefore, hard to pro-
gram. It is thus desirable to separate the code of these algorithms from the game
logic. To our knowledge, very little work has been carried out for the separation
of the synchronization concern from the game logic. In this section, we discuss a
communication component, called Medium that has been earlier proposed in (Car-
iou et al., 2002), for the separation of communication concerns from the core logic
of distributed applications.

2.3.1 Medium: A Communication Component

In this section we discuss a communication component called medium. We also
discuss our inspiration from this approach to apply it in the multiplayer games
domain. When different components of a system communicate between them di-
rectly, they have to handle two different things. 1) Their own functionality and 2)
interaction details. These two aspects are completely different from one another
and mixing the code for them in a single component can lead to problems, such
as the difficulty in the evolution of a component’s code over time. Presented in
(Cariou et al., 2002), the concept of communication component or medium is to
separate interactional details from the functional details of a component. These
interactional details can be handled separately by the medium. Hence a medium is



26
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

the reification of an interaction, communication or coordination system, protocol or
service in a software component. This architecture has the advantage that the same
medium or interaction component can be reused for different types of application.
An interaction component specifies the services it offers and those it requires.
A medium, like any software component, can take different shapes according to the
level at which it is considered. It exists as a specification describing the communi-
cation abstraction that it reifies, but also at implementation and deployment levels.
It is indeed possible to manipulate a high level communication abstraction at all
stages of the software development cycle.

Methodology of specification of the Medium in UML At the speci-
fication level, a medium is specified by a collaboration using a UML class diagram.
All this information can be described in a contract. This contract must include the
list of services offered and required by the medium and also specify the semantics
and dynamic behaviour of each of these services and the medium. A UML collab-
oration can be reified into a medium at the implementation level, ensuring a good
traceability from the interaction specification to its implementation.

A medium is specified with the help of three views of UML: 1) Collaboration
Diagram, 2) OCL (Object Constraint Language) constraints which allows to specify
the properties of the medium such as semantics of the services and 3) State diagrams
to manage the temporal constraints

Reification Process of the Medium A refinement process transforms this
specification into a low-level implementation design. This refinement process is
carried out in three phases. In the first phase, for each component interacting with
the medium a class called Role Manager is produced. This class is responsible for
all the interactions with its corresponding component. A medium is an aggregate of
these role managers. This phase corresponds to the choice of platform dependency.
In the second phase, the class representing the medium is removed, and only the
role managers are left interacting with their corresponding components and with
each other. Depending on the non-functional constraints, this phase can lead to
many design choices (Cariou et al., 2002). The third and final phase defines, for
each design specification in the preceding phase, one or more deployment diagrams,
describing how different role managers and components are distributed and grouped
at the time of the deployment of a medium. The reification process of the medium
is shown in the diagram of figure 2.3.4.

Deployment of interaction Component In an architecture, where com-
munication is represented by a medium, the components do not interact directly,
but through the medium. Therefore a component does not need to know the where-
abouts of the other components to which it wants to communicate. This localisation
issue is handled by the interaction component (medium). To be capable to offer a
local service to a component, the medium must consist of many elements (called
Role Manager fulfilling a role). Components are categorised by Roles they play from
the point of views of the services of a medium) each one locally present associated
with a component connected with the medium. These role managers must be con-
nected together through a network infrastructure. The set of these role managers



2.3. SEPARATION OF CONSISTENCY ISSUES FROM THE GAME
LOGIC 27

Figure 2.3.4: Reification Process of the medium: diagram taken from (Car-
iou et al., 2002)



28
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES

Figure 2.3.5: Plug Replaceable Consistency maintenance: figure taken from
(Fletcher et al., 2006)

constitute a medium. Thus from the point of view of deployment, each medium is
deployed on many sides fulfilling a role there and offering/requiring a service locally
from/to a medium.

2.3.2 Plug-Replaceable Consistency Management

(Fletcher et al., 2006) presents an approach which separates game logic from consis-
tency maintenance code through the use of reusable, plug-replaceable concurrency
control and consistency maintenance (CCCM) modules. Using plug replaceable
consistency maintenance strategies also permits rapid comparisons of multiple ap-
proaches, which facilitates experimentation. This approach is based on Workspace
Architectural Model (Phillips et al., 2005). This model provides three advantages
over hand-coding of replica consistency maintenance. First, the programming of
consistency maintenance is separated from the game application itself, simplifying
the main application code. Second, multiple plug-replaceable consistency mainte-
nance schemes can be used in the same application, facilitating experimentation.
Finally, consistency maintenance algorithms can be collected and reused in future
applications. The idea is shown in figure 2.3.5. In the figure, the CCCM compo-
nents are inserted into the game client and server, and they synchronize the data
between the two. The Villagers Data represent the players’ state on the server and
on the client side.



2.4. CONCLUDING REMARKS 29

2.3.3 Matrix Middleware

The Matrix middleware (Krishna Balan et al., 2005) is a distributed middleware
for massively multiplayer games. Matrix provides multiplayer games’ developers
with an infrastructure offering low latency and consistency maintenance. The two
main criteria of the Matrix middleware are 1) to provide an attractive and easy
to use game middleware so as to allow games developers to concentrate on the
game core logic, and delegate the issue of scalability and communication infras-
tructure to Matrix and 2) to support the performance requirements of massively
multiplayer games. To fulfill the first criterion, Matrix provides games companies
preferred client-server architecture allowing developers to use the existing security
mechanisms. It also handles “the distributed aspects of the game such as consis-
tency, scalability, resource provisioning and fault-tolerance, leaving the multiplayer
games’ developer to focus on the core game logic”. To meet the second criterion,
Matrix offers localized consistency by dynamically handling an area of interest
(AOI) approach, and provides low latency by avoiding unnecessary buffering of the
packets. One of the disadvantages of Matrix is that the games developers must
use the Matrix fixed APIs with the specified infrastructure. They, for example,
cannot choose a point-to-point connection to reduce latency so as to achieve strong
consistency when required. Also they assume that the game’s virtual world can be
divided into equal fixed static regions, which is not always possible.

2.4 Concluding Remarks

In this chapter, we presented a literature review related to three different aspects
of multiplayer games i.e. consistency maintenance, system architectures and the
separation of synchronization concerns from the game logic. We saw that the ma-
jority of these algorithms are proposed for wired networks and very little work has
been carried out on multiplayer games on mobile terminals, where the network la-
tency is comparatively high and frequent disconnections may occur. Also very little
work has been carried out related to the system architecture for mobile multiplayer
games. Besides, we believe that the medium approach i.e. separating the func-
tional aspects of a component from the communication aspects can be enriched by
separating the consistency aspects from the game logic and making them become
part of the medium.

In the next chapters, we discuss our contribution to these three issues. We
first start with the issue of consistency maintenance in the chapter 4. The system
architecture and the separation of the synchronization concerns are then discussed
in chapters 5 and 6 respectively.



30
CHAPTER 2. STATE OF THE ART: SYNCHRONIZATION IN

MULTIPLAYER GAMES



Part II

Contribution

31





Chapter 3

Synchronization Algorithms

for Multiplayer Games on

mobile phones

3.1 Introduction

In the previous chapter, we discussed different synchronization algorithms used for
consistency maintenance in multiplayer games. The approaches proposed in the
literature mainly target the networked multiplayer games for wired networks. A
very little comprehensive work has been carried out on consistency maintenance
in mobile multiplayer games. In this chapter, we propose different mechanisms to
handle consistency maintenance in the face of unreliable and high latency wireless
networks while playing a game on low memory and processing power terminals. In
section 2, we discuss our observation of the consistency requirements in multiplayer
games. Then in the remaining parts of the section, we discuss our approach and
an algorithm. In section 3, we incorporate the proposal of section 2 to synchronize
events from different players by maintaining the causality relationship between
them.

3.2 An Adaptable Approach to State Consistency

in Mobile Multiplayer Games

Because of the rollbacks and re-processing of commands, TSS (Cronin et al., 2002)
and Time Warp (Mauve et al., 2004) are very costly in terms of memory and pro-
cessor usage and hence are not very suitable to mobile games. Also, the important
jitters of the communication delays in wireless networks can cause a large number of
messages to arrive late, thereby increasing the number of rollbacks and decreasing
the playability of the game. The local lag approach, combined with dead-reckoning
is suitable for high latency networks. But because of changing delays and jitters
in wireless networks, a fixed local lag can also cause inconsistencies in the game

33



34
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

state across different nodes. Furthermore, we believe that the message discarding
approach presented in (Ishibashi et al., 2001) can be interesting to combine with
local-lag. This approach allows to discard the messages which arrive late due to
the network jitter as they may cause inconsistencies.

In this section, we present a dynamic approach in which the consistency main-
tenance algorithm changes its parameters according to different factors of the envi-
ronment, e.g. network load, type of object in the virtual environment, location of
an object in the virtual world etc. We first discuss the conditions under which these
different parameters are dynamically changed and then we combine these different
approaches in the form of an algorithm.

3.2.1 Observations

Observation 1 While playing a multiplayer game, the inconsistencies occur
due to communication delays across the network. The game programmers estimate
these delays in order to compensate for the late arriving messages from remote
users. However, because of the jitters in the communication delays, especially in
wireless networks, these delays may vary greatly. Changes in the network latency
have a direct impact upon the consistency maintenance approach being used, and
consistency requirements can be violated if these dynamic changes in the network
latency during the game session are not handled. Therefore, it is necessary to ob-
serve the network load during the game session and compensate for these delays
accordingly on the fly.

Observation 2 In a rich multiplayer game, there are many types of objects in
the virtual environment. The velocities and directions of these objects vary ac-
cording to their nature. For example, in a tennis game, the speed of the tennis
ball is greater than the speed of the players. Also a player has to react sharply
to the movement of a ball. Therefore, these different types of objects in the game
world have different types of consistency requirement. The algorithms responsible
for consistency management have to react not only to the varying latencies of the
underlying network infrastructure, but also have to deal differently with different
types of objects of the game.

Observation 3 We also observe that the consistency requirement of an object
not only depends upon its speed, but also upon its position/location in the virtual
world. For example, in a car racing game, we need strict consistency management
when two cars are very close to each other and that they both are very near to the
finishing line. In a football game, a strict consistency maintenance is needed when
a player along with the ball enters the goal-area. However, if the play is in the
middle of the field with no opponent players near him/her, then the consistency
requirement can be relaxed. Hence the location of an object must be taken into
account while maintaining its global state.



3.2. AN ADAPTABLE APPROACH TO STATE CONSISTENCY IN
MOBILE MULTIPLAYER GAMES 35

With respect to these observations, we believe that a consistency maintenance
algorithm must take into account the context of the game along with the network
latency. In the next section, we discuss how we propose to dynamically vary the
values of different parameters for consistency maintenance.

3.2.2 An Adaptable Local Lag

When a message (containing information about the object such as its speed, direc-
tion, position, and the time stamp etc.) about an object is received from a remote
user, this object has a certain distance, possibly zero, with another object, destina-
tion, or any other important entity in the game world, called pivot. This distance
between the objet and the pivot is essential in determining the consistency and in-
teractivity requirements at that point in time. For example, in a cricket or baseball
match, when the ball is approaching the bat, the need for high responsiveness from
the system increases.

We change the value of the local lag according to three factors:

1. If the object whose message we have received from the remote user is coming
closer towards the pivot, we reduce the value of the local lag. If the object
is going away from the pivot, we increase the value of the local lag up to a
certain limit called Local-lagu. This increase can be continuous with respect
to the motion of the object, or can be discrete based on zones as in (Santos
et al., 2007). The rate of the change of the value of the local lag is application
dependent, and the programmer must specify it during the development of
the game. In chapter 6, we discuss how a programmer can specify these values
to a communication component responsible for consistency management.

2. The value of the local lag also changes according to the load on the network.
When the number of messages arriving later than a certain wait time increases
of a certain amount Nd, we increase the value of the local lag. This increase
in the number of messages arriving late can be due to jitters in the network
communication delays. Note that the value of the local lag is proportional to
the network latency, but we cannot increase this value more than a certain
limit because it will have a bad effect on the responsiveness. This upper
limit is dependent on the pace of the game and can be specified by the game
developer.

3. We can set different local lag values for different types of objects according
to their importance in the game. For example, we can have a smaller value
of local lag for the ball and a higher value for the players in a tennis game
because the responsiveness of the ball must be high to satisfy the expecta-
tion requirement as in (Zhou and Shen, 2007). Again, we need an interface
provided by the component implementing the algorithm so that the game
developer can specify the relative values of local lags for different objects in
the virtual environment.



36
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

d

l

v
b

v
p

The area around the base line constitutes a critical region in a Tennis
game.

Figure 3.2.1: Critical region example

3.2.3 Message Discarding

As proposed in (Ishibashi et al., 1999), messages arriving later than a certain time
limit, because of the network jitters, can cause inconsistencies in the game and
hence it is better to discard them. In (Ishibashi et al., 2001), the authors propose
to vary the value of the causality interval, i.e. ‘the time threshold for discarding
a message’, according to the network load so as to keep the number of discarded
messages under a certain limit. As in a virtual environment all the objects do not
behave in the same way, we believe that different classes of objects can be assigned
a different value of delta according to their properties. For example, in a tennis
game, the position of the ball coming towards a player is more important than the
position of his opponent player, and thus the value of delta must not be very large
so that the position of the ball becomes more dependent on the prediction than
on the real value. We believe that combining the local lag approach with message
discarding can yield better results.

3.2.4 Adaptable Dead Reckoning

The value of the dead-reckoning threshold should be dependent on the situation
and environment of the objects, that is, which object is positioned at which place.
Sometimes, the consistency requirements for an object must be high, but if that
object is not at a certain position at a given point in time, then its consistency
requirements can be relaxed. Keeping this idea in mind, we propose to rely on
critical regions for adaptable consistency maintenance.



3.2. AN ADAPTABLE APPROACH TO STATE CONSISTENCY IN
MOBILE MULTIPLAYER GAMES 37

3.2.4.1 Critical Regions

We define a Critical Region as a region in the game, where we need strict consistency
so that all the players have a consistent view of the game in that region. A critical
region is the one in which inconsistencies can violate the fairness requirement (Zhou
and Shen, 2007) of the game or can annoy the player because his expectations are
violated. Therefore we propose to increase the transmission of real update messages,
i.e. change the dead-reckoning threshold on the fly, so that prediction errors, while
calculating the future positions, remain very low in these regions.

For example in the case of a tennis match, if the ball hit by one player is touching
the ground near the base line on the other side of the court, and the opponent player
is quite far from the ball, we increase the message sending frequency and stop the
dead-reckoning so as to increase the fairness between players. The ball will touch
the ground only when the original message is received and hence the result of the
score will be correct. The calculation of the decision whether to use dead-reckoning
or not can normally be done through some easy arithmetics. For example, in figure
3.2.1, let vb and vp be the current speed of the ball and the maximum speed of the
opponent player respectively. Let l be the distance covered by the ball from the
centre of the court to the point where it touches the ground and d be the distance
of the player from that point. The ball will reach the ground in l/vb time units and
during that time the player can cover a distance of vp ∗ l/vb distance units. So, if
d > vp ∗ l/vb, then the player cannot reach the ball, and we stop dead-reckoning
from near the net where we did the calculation. Of course, the ball will stop and
jump in the air for a short period of time near the centre of the court but it will
not affect the playability and the fairness of the game because we know that the
opponent ,ould not reach the ball in any case. Note that, if we do not use the
idea of critical region and continue with dead-reckoning, we may predict a wrong
position with the ball touching the ground near the base line. Hence, that wrong
decision may cause one player to loose a point which he otherwise would have won.
However, the consistency requirements can be relaxed outside the critical region.

As we will show in the next section, by relaxing the consistency outside of the
critical region, we can reduce the number of rollbacks required in case of late arriving
messages thus improving the playability and the responsiveness of the game. Also,
with this relaxation, we can increase the dead-reckoning threshold while sending
the messages, thereby decreasing the total number of messages sent. This will not
only help in reducing the congestion in the network, but also the cost of playing
the game on wireless networks where each message sent has a cost associated to it.
Figure 3.2.2 gives an overview of different critical regions in a game.

Figures 3.2.2.a) and 3.2.2.b) represent critical regions around an object which is
moving.Figure 3.2.2.c) represents one object entering the critical region of another
object thus asking for a stronger consistency approach. Figure 3.2.2.d) represents a
fixed critical region near the goal post in a football game. It must be noted that the
concepts of area of interest and sphere of visibility are different from the notion of
critical regions with respect to state consistency maintenance. The former concepts
are primarily used for message filtering so as to send messages only to those players
in which one is interested. By contrast, the critical region concept is used for
consistency maintenance and for calculating a fair final state.



38
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

goal

post

a)
b)

c)

d)

Figure 3.2.2: Different critical regions in a game

(Zhou and Shen, 2007) discusses the critical region concept and proposes to
slow down the movement of the object while entering the critical region. The
authors put an upper limit on the velocity of an object due to which it does not
look like a real world one. Instead, in our approach, we use the critical region
just to calculate whether we need to perform dead-reckoning or not. Later in this
chapter, we use this concept to reduce the number of rollbacks by exploiting the
consistency requirements of different regions in the game, by determining whether
we need a strong consistency or a relaxed one in a given region.

(Santos et al., 2007) discusses about the distance between objects and an ob-
ject’s distance from a pivot, which can be an object, destination or any other
important entity in the game world. This paper proposes to set different degrees of
consistency for different objects according to their distance from the pivot. How-
ever, they do not deal with changing the value of the parameters dynamically during
the execution of the game. Apart from critical regions, dead-reckoning is also de-
pendent on the network load and on the nature of the object. For example, we
can have different dead-reckoning thresholds for different objects according to their
movement and importance in the game world. These thresholds must be specified
by the game developer to the component responsible for consistency maintenance,
as we discuss later in this report.



3.2. AN ADAPTABLE APPROACH TO STATE CONSISTENCY IN
MOBILE MULTIPLAYER GAMES 39

3.2.5 The Algorithm

In this section, we combine the ideas discussed above in the form of an algorithm.
The algorithm is shown in Algorithm 1. The game program assigns local lag values
at the start of the game (line 1). This is done separately for different classes of
objects and according to the network conditions. Whenever a message arrives from
a remote player or is transmitted to the network, the network conditions and the
location of the object in the virtual game are checked, and the program decides if
there is a need to change the value of the local lag (line 2). The message is stored
for a duration corresponding to the local lag value (line 3). Any message which has
taken more than its local lag value time is discarded (line 4). Note that we suppose
that all the clocks are synchronized, and hence it becomes possible to measure how
much late a message has arrived. If the number of discarded messages (line 5)
increases more than a certain threshold for that class of objects, then the value of
the local lag is adjusted so that the number of discarded messages is decreased (lines
6, 7 and 8). The dead reckoning algorithm is applied on the stored message after its
local lag time (during which it is stored) expires to predict its current position and is
displayed (line 9). At line 10, the value of the dead-reckoning threshold is adjusted
according to the network conditions and the objects position and/or velocity. The
algorithm from line 2 onward is repeated throughout the game session.

Algorithm 1 Adaptive Consistency Algorithm

1: Calculate the local lag at the beginning of the game for each class of
objects according to network latency and responsiveness requirement of
the object(s).

2: Change the local lag if the network load has changed or the location of
an object is changed

3: Buffer the messages according to their local lag value before playing out
4: Discard the messages if they are arriving late
5: Calculate the number of discarded messages
6: if the number of discarded messages exceed a certain threshold for that

class of objects then
7: re-adjust the value of local lag.
8: end if
9: apply DR

10: Change the threshold value for DR if

• the object has entered the critical region

• the network load has changed

Although dynamic dead reckoning and local lag can help us hide the varying
network latency, it is still possible that messages arrive out of order arising the need
for rollbacks. When the number of out of order messages increases, it also increases
the number of rollbacks which can disturb the playability of the game. Also for



40
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

rolling back the out of order messages, we need to store a large number of already
processed messages, which demands a lot of memory space, which is always limited
in handheld terminals. In the next section, we discuss how our dynamic approach
combined with the notion of critical region can reduce the number of rollbacks.

3.3 Incorporating Obsolescence and Correlation in

Dynamic Algorithms

In networked multiplayer games, all the messages from remote players should arrive
at a local player in the same causal order so that the calculated state at a certain
player is consistent with the global state of the game (Cheriton and Skeen, 1993).
However, satisfying the causal order for all the messages in the game would degrade
the performance of the game (Défago et al., 2004). Because of the of unordered
delivery of events through unreliable protocols, the game state, because of network
delays, at different players can be inconsistent at different points in time. To ad-
dress this issue, synchronization algorithms are used to reach a consistent state at
all the players. In an optimistic synchronization approach, the participants pro-
cess events without waiting for the arrival of late events and repair any potential
inconsistency when it actually occurs. This approach is suitable for continuous in-
teractive applications. Different solutions (Mauve et al., 2004; Cronin et al., 2002;
Ferretti and Roccetti, 2004b; Ferretti and Roccetti, 2005a; Xiang-bin et al., 2007)
can be used to repair inconsistencies resulting from relying on an optimistic ap-
proach. A rollback mechanism allows repair the inconsistencies that occur because
of the late arriving messages due to an unreliable network protocol. These rollback
mechanisms rely on fixed parameters to solve inconsistencies without keeping in
view the changes in the network and game environment. In wireless networks, the
delays are higher as compared to wired networks and also jitter can occur varying
the network delays. Also, we believe that in a multiplayer game, different objects
and regions in the game have different consistency requirements that vary during
the game session as discussed in (Khan et al., 2008).

In this section, we propose an optimistic approach based on rollback mecha-
nisms which adapts its behaviour according to the changes in the network condi-
tions and the consistency requirements of the game at a particular time. The aim
is to considerably reduce the number of rollbacks and improve the playability of
the game while using a wireless network. Furthermore, we introduce the idea of
critical actions to denote highly sensitive events in the game which impact the
outcome of the game. The update messages representing these actions cannot be
discarded and must be eventually delivered. Also a rollback of these messages can
have an adverse effect on the result and the usability of game. However, combined
with the notion of critical region, there can be situations where we can discard
even critical actions to reduce the number of rollbacks.



3.3. INCORPORATING OBSOLESCENCE AND CORRELATION IN
DYNAMIC ALGORITHMS 41

3.3.1 Critical Regions and Critical Actions

We have already defined the concept of critical regions in multiplayer games. We
now introduce the concept of critical actions.

We define critical actions or events as commands in the game, that unlike
position update messages, affect the result of the game for other objects. For
example, a shoot command can increase the score of a player and can kill or reduce
the moving ability of another player. Hence, we consider the shooting command
as a critical action. The delivery of critical actions is highly essential. However,
according to our observations, there are times when dropping such events does not
violate the outcome of the game, as we will discuss shortly. Also, the rollback
of a critical action can cause a user to quit the game because of the violation of
their expectation (Zhou and Shen, 2007) as there is difference between state that
he/she could achieve because of his/her own actions and the resultant state after
the rollback. Therefore, efforts must be made to deliver the critical actions before
users’ expectations are violated and rollbacks of critical actions should be avoided
whenever possible. We argue that in certain cases, such as very high latency and
when the action is not taking place in a critical region, the critical action message
can eventually be dropped if arriving very late. The definition of very depends on
the nature of the game, the value of the network latency and the local lag at that
time.

3.3.2 Weak and Critical Correlation

Introduced in (Ferretti and Roccetti, 2004b), the concept of obsolescence states
that an event that arrives late at a recipient and some event that was issued after
this event (i.e. having greater time stamp) has already been processed, is obsolete
and must be discarded. Additionally, the concept of correlation states that if this
obsolete message is correlated to an earlier processed event, then all the events
till that correlated event must be rollbacked and reprocessed along with this new
arriving message. (Ferretti and Roccetti, 2004b), however, does not define any
mechanism to calculate the correlation between any two events. (Xiang-bin et al.,
2007) defines two events to be correlated if they are associated with a single object.
We introduce here a new concept of weak correlation and critical correlation by
incorporating the notions of critical regions and critical actions. We propose that
any late arriving event should be considered obsolete if it is neither in a critical
region nor is a critical action. A critical action in a critical region should never be
considered obsolete and must be eventually delivered.

We now give the definitions 1 of weak and critical correlations.

Property1 : weak correlation χw,
Given two critical events eci and ecj ∈ Ec, where Ec is the set of all critical events
that are related to oi and oj ǫ O, the set of all objects, with time stamps Ti and

1We adopt a simplified version of a syntax based on a Plotkin-style operational seman-
tics (Plotkin 1981 (Plotkin, 1981)). In particular, (ei; ej, s) → s* denotes an initial game
state s from which final game state s* is reached through two subsequent events, namely
ei and ej.



42
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

Tj , such that Ti < Tj , then,
eci χw ecj iff
(eci; ecj , s) → s1 ∧ (ecj ; eci, s) → s2 ∧ s1 6= s2 ∧ oi and oj lie outside any critical
region. s1,s2 ∈ S, the set of all states.
All non-critical events are weakly correlated.

Property2 : critical correlation χc,
Given two critical events eci and ecj ∈ Ec, where Ec is the set of all critical events
that are related to oi and oj ǫ O, the set of all objects, with time stamps Ti and
Tj , such that Ti < Tj , then,
eci χc ecj iff
(eci; ecj , s ) → s1 ∧ (ecj ; eci, s) → s2 ∧ s1 6= s2 ∧ oi and oj lie in any critical
region. s1,s2 ∈ S, the set of all states

3.3.3 Relaxed Consistency

In our definition of relaxed consistency, when the number of late arriving messages
increases above a certain threshold, thereby indicating a high network latency, we
roll back only those events that are critically correlated and we discard weakly
correlated events. We also increase the local lag value for critical events so as to
further decrease the number of rollbacks and increase the user expectations of the
game. Whenever the number of late arriving messages decreases below a certain
threshold, then we stop the discarding of weakly correlated events. This is because
the number of rollbacks has already decreased with the decrease in the network
latency, so processing weakly correlated events will not increase the number of
rollbacks beyond a certain limit. Also we decrease the value of local lag to increase
the interactivity for the users. For all other events that are not correlated and
are not critical, we discard them when arriving late, because it will not affect the
playability of the game and will unnecessarily increase the number of rollbacks
thereby wasting mobile terminals limited resources such as processing power and
memory space.

3.3.4 An Example Scenario

In figure 3.3.3 we show a game scenario example in which a character hits a moving
target (an animal in the figure) with its gun shots. To hit the target, the shooter
first sends a warning (or ready) sign before shooting it. Without a warning sign,
it cannot shoot the target. In the figure, a circle around the animal character
denotes a critical region where a gun shot can hit the character. Suppose that the
warning sign w2 arrives later than the actual shot s2. Since s2 hits an area that
is outside of the critical region, we do not need to perform any rollback when w2
arrives since it will not affect the outcome of the game. We say that s2 and w2
are weakly correlated. In the case that w1 arrives later than s1, then we have
to apply a rollback. Indeed we cannot discard w1 as this would violate the game
rule requiring to send a warn sign before shooting. We say that w1 and s1 are
critically correlated. If we have already experienced a large number of rollbacks
thus suggesting a high network latency, we increase the value of the local lag so as



3.4. DYNAMIC ROLLBACKS REDUCTION ALGORITHM 43

s1
w1

s2

warning

.

shooting

w2

warning

shooting

Animal

critical region

Figure 3.3.3: Correlation of events in a game with two players

to give more time to late arriving messages and hence to decrease the number of
rollbacks in the critical region.

3.4 Dynamic Rollbacks Reduction Algorithm

In this section we present a dynamically adaptable synchronization algorithm based
upon the concept of obsolescence and critical correlation using the optimistic ap-
proach as already discussed in the previous sections. In our algorithm, we propose
to minimize the number of rollbacks using a dynamic approach. If the number of
rollbacks reaches a certain limit, we increase the local lag value, so that more and
more messages could arrive on time. However, when a player enters a critical region
and the latency is not very high, we reduce the value of the local lag and increase
the frequency of message sending to achieve high interactivity. When the number
of required rollbacks increases in the critical region, then, instead of doing rollbacks
for all the arriving events, we discard weakly correlated events and increase the
frequency of messages to minimize the dependency, i.e. correlation, on a single late
arriving message.

The pseudo code for the algorithm is given in Algorithm 2. Lines 10 to 15 are
the most important ones as far as the concept of critical correlation and obsolescence
and the avoidance of rollbacks are concerned.



44
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

We discard any message that arrives late (becoming obsolete) and is not corre-
lated with any previous message(s) (lines 7 and 8). Otherwise, if a message arrives
late and is correlated to any previous message ec and if the number of rollbacks
is less than a certain threshold, we apply a rollback on all the messages processed
before ec, including ec itself, and re-process them in the correct order (line 11).
In line 14, we rollback only critically correlated events as now the latency is very
high and the number of rollbacks has reached the threshold. In lines 17 to 19, we
increase the value of the local lag if the number of rollbacks increases over the limit
so as to avoid processing related messages in an incorrect order. This will also
decrease the number of obsolete discarded messages which could be related to any
future message(s).

There is no doubt that the interactivity will be lessened at the benefit of the
consistency and the correctness of the results. We discuss the issue of the trade-
off between interactivity and consistency in the next section. We can have an
interactivity threshold which would avoid increasing the value of the local lag more
than a certain level. We keep a different value for the rollback threshold in critical
regions and change the values of the local lag and dead-reckoning thresholds in these
regions if the number of rollbacks reaches a certain limit (lines 24 and 25). Lines 2
through 25 are repeated in a loop throughout the execution of a game session.

3.5 Responsiveness vs Consistency

By waiting for the late arriving messages through an increase of the local lag value,
the consistency is improved, but it means that even local actions (and those remote
events that arrived earlier because of the difference of network latency) must be
delayed before being played out. Thus it lessens the responsiveness (or interactivity)
of the game. If a game requires high responsiveness, then we need to reduce the
value of the local lag which can disturb the causal order of events (and increase the
need for rollbacks), thus compromising the consistency of the system. Hence there
is a trade-off between these two properties of a distributed interactive application.

We propose to apply different degrees of interactivity and responsiveness for
different situations and/or regions of a game. For example, if a player has to shoot
a static target, we need high consistency but low responsiveness. Since the target
is static and as long as the bullet hits (or misses) the target, we do not need
high interactivity from the system but rather a fair result. By applying a suitable
value of the local lag, the shooting player will observe that his shooting action has
taken place at a slow pace, but will get the true results. However, we need high
responsiveness from the system in some other cases, such as hitting a ball coming
towards a player in a baseball game.

The trade-off between responsiveness and consistency is shown in figure 3.5.4.
Although we have shown consistency (and responsiveness) on a scale from 0 to 1,
where 1 means absolute consistency, absolute consistency is never achieved in dis-
tributed virtual environments with non-zero communication delays and optimistic
synchronization and hence consistency should be compromised for the sake of high
responsiveness.



3.5. RESPONSIVENESS VS CONSISTENCY 45

Algorithm 2 Correlation and Obsolescence based adaptive Algorithm

1: Calculate the local lag at the beginning of the game for each class of
objects according to the network latency and responsiveness requirement
of the object(s).

2: Change the local lag if the network load has changed or the location of
an object has changed

3: if the message arrives during its local-lag specified time then
4: Buffer the message according to its local lag value before playing out
5: GOTO line 20 (apply DR)
6: end if
7: if the message is obsolete (not arriving in its specified local-lag time)

and not correlated with events already processed during time of local
lag then

8: Discard the message
9: else

10: if the number of rollbacks is less than a certain threshold then
11: rollback the messages and process this message then all others
12: end if
13: else
14: rollback only critically correlated events and discard all others (we

reach when the number of rollbacks is greater than a certain threshold)
15: end if
16: Calculate the number of rollbacks
17: if the number of rollbacks reaches a certain limit then
18: increase the value of local lag.
19: end if
20: apply DR
21: if the object has entered the critical region and/or the network load has

changed then
22: Change the threshold value for DR for that object
23: end if
24: if the rollback reaches a certain limit in the critical region then
25: decrease the value of DR threshold and increase local lag value
26: end if



46
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES

responsiveness

consistency

high consistency

      region

highly interactive

       region

0

1

Figure 3.5.4: Trade-off between consistency and responsiveness in different
game regions



3.6. CONCLUDING REMARKS 47

3.6 Concluding Remarks

The reason for proposing a dynamic and adaptable approach for synchronization
in mobile multiplayer games is that the latency of wireless networks is highly un-
predictable impeding to apply a static approach. Apart from this, in First Person
Shooter games, there are objects in the game world whose pace is fast as compared
to other objects in the same game. By having different values of the thresholds
for local lag and dead reckoning for different objects, we can reduce the number of
update messages for slow moving objects. This creates a space for an increase of
the number of messages for fast moving objects in order to increase consistency and
responsiveness. Also, the consistency requirement varies according to the position
of the game objects in the virtual world. There are areas in the game where we can
relax the consistency without having a bad effect on responsiveness and fairness,
and there are other critical regions where strict consistency needs to be main-
tained. We believe that identifying these regions during the game development and
specifying them to the synchronization medium (chapter 6) will greatly simplify
the problem of consistency maintenance.



48
CHAPTER 3. SYNCHRONIZATION ALGORITHMS FOR

MULTIPLAYER GAMES ON MOBILE PHONES



Chapter 4

Evaluation of the Proposed

Synchronization Algorithms

In this chapter, we present the experimental results of the consistency maintenance
approach we have proposed in the previous chapter.

4.1 Evaluation of Adaptable Synchronization Ap-

proach

We evaluated our proposed approach using a car racing game that we developed
for this purpose. The game was developed in J2ME, on the top of the GASP
platform (Pellerin et al., 2005; Pellerin, 2010) and can be played on all mobile
phones supporting Java. We have already tested it on Nokia N93 mobile devices
connected to a GASP server via a Wi-Fi network. The game can also be played
over a cellular network. A picture of the game being played on Nokia N93 is shown
in figure 4.1.1. The GASP server was deployed in a Tomcat servlet running on
an intel machine with 2.5 Ghz processor and 3.5 Giga Byte RAM. The operating
system used was Microsoft Windows XP. Each experience was run at least ten times
and the average values were calculated which were used to show the results of our
algorithms.

4.1.1 Adaptable Dead-Reckoning

Figure 4.1.2 shows the results of our evaluation comparing dynamic and static dead-
reckoning. The positions of a remotely displayed car at different times during the
game session for the static and dynamic approaches are compared to the original
position of the car. From the figure, it is clear that adaptable dead-reckoning pre-
diction errors are smaller than with the simple dead-reckoning. Note that during
the experiments, we varied the latency of the network (by keeping the messages
waiting at the server side before being executed by the receiving player’s termi-
nal). Because of these changes in the network delays during the game session, our

49



50
CHAPTER 4. EVALUATION OF THE PROPOSED

SYNCHRONIZATION ALGORITHMS

Figure 4.1.1: A simple car racing game played on Nokia N93



4.1. EVALUATION OF ADAPTABLE SYNCHRONIZATION
APPROACH 51

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  2000  4000  6000  8000  10000  12000

D
if
fe

re
n

c
e

 i
n

 P
ix

e
ls

Time Elapsed

Original Position
Adaptable DR

Simple DR

Figure 4.1.2: Adaptable vs Simple Dead-Reckoning

adaptable approach performs better as it adjusts itself on the fly to variations in
the network latency. On the other hand, the simple dead-reckoning approach uses
the same threshold for sending messages irrespective of changes in the network la-
tency during the execution of the game and hence suffers from greater prediction
errors. Had the network latency not changed during the game session, the results
with both simple dead-reckoning and adaptable dead-reckoning would have been
the same.

In the figure 4.1.3, we compare the static and adaptable dead-reckoning ap-
proaches in terms of the number of update messages sent to the server during the
course of the game execution. In case of playing games on mobile phones using
a cellular network, the users may have to pay for each message that they send.
Therefore, it is very important to reduce the number of update messages from the
client’s mobile to be sent to remote participating players. In the figure, it appears
that our adaptable approach allows to decrease the number of exchanged messages
for more than 20% compared to the static approach.



52
CHAPTER 4. EVALUATION OF THE PROPOSED

SYNCHRONIZATION ALGORITHMS

Figure 4.1.3: Number of messages sent in dynamic and static dead-reckoning

This is because in the static approach, which uses at the local player a fixed error
threshold to decide when to send update messages, the chances of a prediction error
to occur increase. Indeed for each prediction error that passes the error threshold,
the local player has to send an update message. In the adaptable approach, the
error threshold also varies according to the network and game conditions. It is then
less likely that the prediction error will surpass the error threshold and hence the
number of messages sent is lesser than in the case of simple static dead-reckoning.

4.1.2 Critical Region Approach

When we apply the critical region approach in those regions where the result of
the game matters, we observe an improvement in the game state consistency. The
result is shown in 4.1.4. As we can see from the diagram, when the remote car is
approaching the finishing line (corresponding to an elapsed time of 9000 millisec-
onds), our result shows that the position of the car displayed on a remote terminal



4.2. EVALUATION OF THE CRITICAL CORRELATION-BASED
APPROACH 53

-20

-10

 0

 10

 20

 0  2000  4000  6000  8000  10000  12000

D
if
fe

re
n

c
e

 i
n

 P
ix

e
ls

Time Elapsed

original position
remotely displayed

Figure 4.1.4: Consistency of the game using the Critical Region approach

is quite close to the original position of the car. This is because we increase the
message sending frequency of the sender and also increase the local lag value for the
sender. This is intended to leave some time to messages to reach their destination
before displaying them locally.

4.2 Evaluation of the Critical Correlation-based

Approach

In the evaluation of the critical correlation-based approach, we are interested in the
measurement of two items.

1. the number of rollbacks;

2. the amount of dropped events;



54
CHAPTER 4. EVALUATION OF THE PROPOSED

SYNCHRONIZATION ALGORITHMS

critical region

critical regions

Figure 4.2.5: A game with two players

For our evaluation, we have developed a simple mobile game using J2ME and
the Java Servlet technology. The game logic resides on a mobile phone and different
players interact with each other via a server which is a simple message queue Servlet.
In the game, we have characters representing different players and a goal post, which
represents a critical region. Each player has a circle of specific radius representing
the critical region around them. A player can earn points by either hitting another
player or the goal post with a ball. The rules of the game allow the player to be
hit only in the critical region shown by the circular shape. The game is shown in
the figure 4.2.5.

On the server side, we randomly select messages to be delayed and deliberately
delay them by storing them for some time before the clients can receive these mes-
sages. When a delayed message arrives at the client, the client calculates whether
this message is correlated with another message or not. In our game semantics, a
message is correlated with another message if it belongs to a ball (critical action) or
if a player entered a critical region. In case of a very high consistency, we can drop
even the hit message because it will have no effect on the result since our game rules
allow a player to be hit only in a critical region. If the message is not correlated,
we simply drop it, otherwise we apply a roll-back mechanism and reprocess all the
already processed messages. We continuously calculate the number of roll-backs
and apply our dynamically adaptable algorithms by changing the Dead-Reckoning
and Local Lag thresholds to control the number of roll-backs.



4.2. EVALUATION OF THE CRITICAL CORRELATION-BASED
APPROACH 55

Figure 4.2.6: Rollbacks comparison in three different approaches

In essence, we measure the number of roll-backs in the critical regions and
outside of the critical region, the number of messages discarded while the players
are in a critical region and outside of it. We also compare these results with the
fixed-correlation based approach and the time warp algorithm, where there is no
concept of obsolescence and correlation. The results are shown in figure 4.2.6.

From the figure, it is clear that the number of rollbacks required for time warp
is higher than for the other two approaches. This was expected, since time warp
does not drop any message and applies rollbacks for all late arriving messages.
Less than 20% of the late messages imply a rollback when correlation is taken into
account. The result of our approach is better than for the fixed-correlation based
approach, because we rollback only those messages which are critically important,
and discard non-critical messages in case of high delays.

Figure 4.2.7 compares the number of messages re-processed per rollback as a
function of their correlation probability. In case of low probability of correlation
(high No-Correlation probability on the x-axis), our Critical Correlation based ap-



56
CHAPTER 4. EVALUATION OF THE PROPOSED

SYNCHRONIZATION ALGORITHMS

Figure 4.2.7: Comparison of events processed per rollback

proach re-processes a smaller number of messages as compared to the Time Warp
and Simple Correlation based approaches. This is because in case of lesser corre-
lation probability, there are even lesser chances that the messages will be critically
correlated and hence they are discarded without affecting the outcome of the game.
However, in case of high correlation (low No-Correlation probability percentage),
our result approaches that of TW and CRL. This happens only when almost all
messages are critically correlated. This is very rare in real game scenario, where
players enter and exit the critical regions and only a few of their actions are critical.

Figure 4.2.8 compares the increase in the total number of rollbacks as a function
of the time elapsed during the game session. Note that on the Y-axis, we show the
number of rollbacks required as a whole i.e. when the rollback mechanism has to
be applied, and not the number of messages to be rollbacked which can be mani-
fold higher than these numbers. For obvious reasons as discussed in the previous
paragraph, our approach performs better than simple correlation. The increase



4.2. EVALUATION OF THE CRITICAL CORRELATION-BASED
APPROACH 57

Figure 4.2.8: Rollbacks comparison as a function of time elapsed

in the number of required rollbacks is linear in case of simple correlation because
we periodically delay only correlated update messages at regular intervals. In the
figure, for the critical correlation-based approach, the increase in the number of
rollbacks is not uniform (the graph is not straight). This is because even if we de-
lay messages periodically at regular intervals, they may not be critically correlated
at that junction of time and hence are discarded without the need for applying
the rollback mechanism. It must be noted here that our approach is dependent
upon the strategy of the players that play the game as when and where they send
critically correlated messages. In the worst case scenario, when all the messages
received are critically correlated, our mechanism is equal to the simple correlation
mechanism.



58
CHAPTER 4. EVALUATION OF THE PROPOSED

SYNCHRONIZATION ALGORITHMS

4.3 Concluding Remarks

In this chapter, we have shown our experimental results of the approaches presented
in chapter 3. We have seen that adapting the consistency mechanism according to
the situation helps in improving the overall consistency of the system. We have also
shown that in some areas of the game, we can relax the consistency requirement
without disturbing the playability and the fairness of the game.



Chapter 5

System Architecture for

multiplayer games

5.1 Introduction

In chapter 2, we discussed different system architectures used for multiplayer games.
The client-server architecture is the preferred one because of its central control and
simplicity of consistency maintenance. But it suffers from the issues of scalability
and high latency between two clients communicating via a server. In P2P systems,
the communication can be point to point with possibly low latency (Cronin et al.,
2002), however there is no centralized control and a risk exists of cheating from
player’s side. Also, game companies do not prefer this architecture because they
cannot oblige players to pay for the game because of the lack of a central admin-
istrative control over the game. P2P also increases the bandwidth requirement at
the client side.

(Pellegrino and Dovrolis, 2003b) tries to solve the bandwidth problem by ap-
plying a central arbiter, responsible only for consistency maintenance. In this case,
the bandwidth requirement at the client side is reduced in case of absence of in-
consistencies. (Yang and Sutinrerk, 2007) gives the idea of mirrored-arbiters in
place of a single arbiter. Both approaches do not solve the issues of the com-
plexity of consistency maintenance and of the loss of central command in case of
P2P. Mirrored-server architecture lies between Peer-to-Peer and client-server, and
is both scalable and providing low consistency between players. However, it still
suffers from consistency issues in case players are geographically distributed over
long distances across the globe. These different types of architecture target mainly
the distributed virtual environment (DVE) applications executed on wired net-
works. However, there is very little work in terms of architecture for multiplayer
games on wireless networks. Wireless networks have some special characteristics
which require them to be treated differently. These include frequent disconnec-
tions, mobility, limited processor, memory and power resources. (Cacciaguerra
and D’Angelo, 2008) proposes a model for running mobile multiplayer games with
enhanced playability and capable of controlling communications between mobile
devices and the game infrastructure. In the case of network failures, the game

59



60
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

Game Administrative Server

Backup Server

Base Station

Base Station

Base Station

Session Server

Session Server

Session Server

Figure 5.2.1: Session Server based Architecture for 3G mobile Gaming

behaviour is produced locally based on the previous behaviours until the commu-
nication channel is restored. This work, however, does not suggest neither central
nor distributed control over the game, does not consider the scalability issue and
does not provide any synchronization mechanism. In the next section, we propose a
game infrastructure capable of handling issues that are specific to wireless networks
such as varying latency, mobility and frequent disconnections.

5.2 Session Servers Architecture for 3-G mobile

gaming

In this section, we propose a new architecture for 3-G mobile gaming keeping in
view the following problems faced while playing a multiplayer game on wireless
networks.

1. Frequent Disconnection

2. Loose control over the game servers in case of many Mirrored Servers

Our new architecture is shown in figure 5.2.1. The architecture consists of
a single game administrator server. This server contains the management of the



5.2. SESSION SERVERS ARCHITECTURE FOR 3-G MOBILE
GAMING 61

accounts of the players and their billing issue as well as the executable code for the
game client’s terminals. This server is backed by another secondary server in case
this server is down because of some problem(s). The real game server related to the
game’s logic is executed by session servers which are connected to the administrator
server and also between them in a peer-to-peer manner.

When a player wants to play a game through his/her PDA or mobile phone,
he/she connects to the administrative server through a 3G network to download
the executable files of the game. When the player wants to join a session, he/she
requests the administrator server to grant him/her a session. The administrator
server grants a session server to this player and informs the granted session server
that a new player is going to join it. The player is granted the nearest geographical
session server. Depending upon the logic of the game and/or the underlying mid-
dleware, a session server can handle many sessions each having a limited number of
players. The idea of sessions is important because with the limited display screen,
the number of players playing a multiplayer game on mobile phone is limited for a
given session of the game, although the total number of players playing the game
in different sessions may be quite large. Note that a single session can be replicated
in two or more session servers in case players from different geographical areas are
playing the same session. In this case it resembles the Mirrored-Server architecture
except that a game session is not replicated on all the servers, but only on those
whose players are participating in that session.

The session servers, periodically (but not too frequently), send information
about the disconnected players to the administrator server so that the later can
delete its corresponding data from the database. Also, in case of long distance
mobility, the administrator server can disconnect the player from one session server
and migrate his/her state to another session server near to this player.

5.2.1 Handling Disconnections

Because of frequent disconnections, a player can loose a game session which can
make this player as well as his/her opponent quitting the game in the middle of the
session. To avoid this, we propose to have a mimicking engine on the game client
as shown in the figure 5.2.2. The client module contains a game’s client logic which
receives update message from remote players in the session. Based upon of the game
logic, this component informs the rendering engine to display the local player as
well as the remote players. The network manager is responsible for communication
as well as anticipating the disconnections. Whenever the network manager senses a
disconnection, the game logic component requests the mimicking engine to mimic
the remote players. This can be based upon the current game state as well as the
previous behaviour of the game stored by the game logic component. For example
in case of a car racing game, a reasonable expectation from the mimicking engine
can be to display the remote cars with the same old speeds and directions. This
way, the local player is unaware about the disconnection and plays the game as if
the remote players are still connected.

On the server side, as shown in figure 5.2.3, whenever the session server sees a
disconnection, it initializes a client mimicking controller component to mimic that



62
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

disconnected player and shares the updated messages with other players in the
same session based upon the logic in the mimicking controller. However when the
connection resumes, the state of the remote players on the session server must be
copied to the previously disconnected client to replace the states of remote players
as predicted by the mimicking engine. This synchronization must be smooth so that
the player is not annoyed due to abrupt changes in the remote player’s behaviour
and positions. The same must be done in copying the state of local player to the
server. In case of permanent disconnection (after a certain time has passed and
the player has not been reconnected), the mimicking controller at the server should
remove this player from the game session in a smooth way. For example, in a car
racing game, the mimicking controller can show the disconnected player as stopped
at the road side and signalling the other players that he/she cannot continue the
play because of some problem in his/her car.

5.2.2 Other Advantages of this Architecture

In the previous section, we saw that the main advantage of our architecture is
handling disconnections. In this section, we discuss other advantages of our archi-
tecture.

• Single Point of game management: With a single point of administrative
control, the game company can have full control over the game in terms
of players’ accounts and billing. With a backup administrative server, the
issue of ‘single point of failure’ can be easily solved. The scalability is not
an issue, as it may appear at first, since the administrator server does not
send/received data frequently, but only in case players join/leave the game.

• Because of the clock time difference across the globe, it is possible that players
from a certain geographical area will play at the same time while the other will
not. For example, at the afternoon time in Europe, there are lesser chances
that Australian people will participate in a session. In case the session is
limited to a single geographical area, the session will not be replicated at
other session servers and hence all the messages received by the session server
will be sent to players in that geographical area playing that session without
the data being synchronized with other session servers. This can greatly
reduce the delay time between two clients. In this case, to avoid single
point failure for a session server, a cluster of session servers can be used in
a single geographical area or the session can be replicated on at least two
geographically distinct session servers even if the second session server does
not have local players connected to it.

• Also with each session being handled differently, the area of interest filtering
(Morse et al., 2000) can easily be implemented at the session servers.



5.2. SESSION SERVERS ARCHITECTURE FOR 3-G MOBILE
GAMING 63

Network Manager

Game Client Logic

Rendering Engine

Mimicking Engine

Figure 5.2.2: Client Side Modules for the Game

Game Server Logic

Client Mimicking

 Controller

Figure 5.2.3: Session Server Modules



64
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

5.3 Consistency Mechanisms and System Archi-

tectures

We have discussed different consistency mechanisms in chapter 3 and, in the pre-
vious sections, we discussed different architectures. We have seen that the game
logic resides on a server in both client-server and mirrored server architectures. Al-
though different proposals given in the literature discuss consistency mechanisms,
there is very little work on where to apply these mechanisms at the implementa-
tion level in the game infrastructure. (Cronin et al., 2002; Ferretti and Roccetti,
2005b) and many others suggest to synchronize data at the game server. However,
in a wireless network, there is still a delay between an access point and the mobile
device, leading to the possibility that messages arrive in a different order. Hence,
we need a consistency mechanism both at the server and client sides. In this sec-
tion, we first discuss consistency maintenance from the point of view of network
architectures. Then, in the next section, we discuss server centric and client centric
consistency maintenance approaches. We then propose a protocol to dynamically
switch between client and server side consistency maintenance depending upon the
conditions and the needs of the game environment.

In a Client-Server Architecture, consistency management is comparatively sim-
ple as the data is centralized and the messages from different clients can be ordered
using different mechanisms (Bouillot, 2005). Also, interest management techniques
(Morse, 1996; Morse et al., 2000) are easier to implement as compared to what
should be done in a P2P architecture. A P2P architecture suffers from bandwidth
limitations at the client side as well as from the large number of disordered mes-
sages arriving from so many different clients each having a different delay with this
local client. (McCaffery and Finney, 2004; Hsu et al., 2003; Smed et al., 2002)
discuss consistency management in P2P using interest management. Consistency
support is based on two components. “Firstly, it relies on the interest management
mechanism to identify which state needs to be kept consistent among the number
of nodes that share a subset of the same interest. Secondly, it relies on partitioning
(the game arena is partitioned among different clients) to allow one authoritative
owner of that state who may actively manipulate that state or delegate control of
it to another player”. The interest management mechanism can be used to detect
a player’s ability to interact with other entities, and this information can be used
to determine if consistency of state between particular nodes needs to be managed.
(McCaffery and Finney, 2004) does not detail any particular methods of consis-
tency mechanisms. In Mirrored-Server Architecture, we have both a client-server
approach (between a mirrored server and players connected to it) and a peer-to-
peer approach (between different mirrored servers). Trailing State Synchronization
(Cronin et al., 2002) and Time Warp with local lag (Mauve et al., 2004) are the
proposed consistency management in mirrored-server architecture.

When mobile clients are connected to a server through a wireless network,
the network delays can vary considerably and jitters can occur. As the game logic
executes on the server which normally has some game consistency maintenance and
event ordering mechanisms, the update events can reach different players at different
points in time because of the variation of the network latency. This can cause
inconsistencies between different clients. Also, the server must send the update
messages frequently enough so that a consistent virtual world can be displayed on



5.3. CONSISTENCY MECHANISMS AND SYSTEM
ARCHITECTURES 65

the client’s mobile terminal. This can increase the bandwidth requirement of the
server considerably.
In this part of our thesis, we propose an adaptive protocol for hybrid consistency
maintenance (i.e. both at server and client), which adapts itself to the varying
network latency and to the changing game consistency requirements to achieve
consistency among different players. This adaptation takes place at run time and
decides whether a consistency mechanism is required on the mobile client’s side or
not.

5.3.1 Server Centric Approach

As discussed before, two main categories of requirements driving the developments
in proposing the client-server architecture are:

• For game creators, the deployment of a game on a large category of terminals
should not conduct to additional development costs,

• For players, the game experience (mainly measured in the game reactivity
and loading times) should be similar or better compared with a locally in-
stalled and executed game.

The main idea is mainly to execute all the game logic on the server while the
clients should only execute graphical interface related components.
In the case of multiplayer gaming, synchronization between different players is
directly ensured by the server by controlling at each step the scene graph of each
terminal. It means that all players will always see the game in the same state.
Therefore, the use of techniques for synchronization between the clients is not
needed. The main drawback of the proposed method is the sensibility to the network
latency. Big latencies can cause different players to view the game in different states
at the same time. This can cause disadvantages (in terms of fairness) for the players
that see the state later than the other players (Zander et al., 2005). To solve this
synchronization problem, it is necessary to have a thin layer of the game logic on
the client side itself for consistency maintenance. In the next section, we discuss
the client side consistency maintenance approach.

5.3.2 Client Centric Approach

In this section, we discuss how consistency is maintained in a client-server architec-
ture when the logic of the game resides on the client side. In this case, the game
logic is totally on the client side and the server performs only message passing and
some administrative works such as maintaining a database of players, their accounts
etc.
We consider the clients to be playing on mobile devices such as mobile phones,
PDAs, and laptops. The heavy-client approach, as we call it, gives the player more
control over the game and reduces the bandwidth requirements on the server side.



66
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

This approach has the following advantages over a thin-client approach:

• With the deployment of all the game logic on the client side, we do not need
high capacity servers or mirrored servers dedicated to execute the game logic
(Cronin et al., 2002).

• Because all the logic is on the client side, the clients now need to send mes-
sages to other clients through the server less frequently and only when re-
quired, using dead-reckoning algorithms (IEEE, 1995). This resolves the
bandwidth issue which could be a bottleneck in case the server has to send
messages for displaying on the clients at the frame rate.

This approach has some disadvantages:

• Because of the heterogeneity of mobile devices, it is difficult to develop a game
that runs on so many different devices which have different memory capac-
ities, different screen resolutions and are connected to the server through
different networks such as WIFI, Bluetooth and/or GPRS.

• Because of the player’s complete control over the game, he can add cheating
mechanism thereby changing the end game results.

• As the game logic resides on the client side, the total delay is equivalent to
client-to-client delay which could be approximately double that of server-to-
client delay. In case of high network latency, the resolution of state inconsis-
tencies becomes even more difficult.

In chapter 3, we discussed a dynamic consistency maintenance mechanism for
high latency mobile multiplayer games (Khan et al., 2008). In this approach, we
combine two different synchronization schemes namely dead-reckoning (IEEE, 1995)
and local-lag (Mauve et al., 2004). In case of dead-reckoning, there is a prediction
model at the sender’s side to predict the position of this local player as displayed
by the remote player. When the error between the predicted model and the real
position exceeds some threshold error value, the player sends an update message to
the remote players. Normally this threshold error is fixed for the entire duration of
the game and for all objects. In the local-lag approach, we delay the display of local
messages for a certain time, hoping that during this lag time the update message
from a local player will have reached a remote player and hence consistency will be
maintained. This local-lag value is fixed and is the same for all objects and for the
whole duration of the game. A more flexible and adaptive approach is therefore
needed.



5.3. CONSISTENCY MECHANISMS AND SYSTEM
ARCHITECTURES 67

5.3.3 A Hybrid Client-Server Approach

From the above discussions, it becomes clear that both server-centric and client-
centric approaches have advantages and disadvantages. For this reason, we propose
a hybrid approach combining thin and heavy client architectures (Khan et al.,
2010). This combination is made adaptive in that the system can decide at run-
time according to the game and context requirements what part of the game logic
is executed on the client side. In the case of a high latency and when the game re-
quires strong consistency, a significant part of the game logic has to be executed on
the client side in order to apply consistency mechanisms to reach the same state at
different terminals. With low network latency, and when the virtual world objects
are at a position/speed where small inconsistencies can be tolerated and/or when
the capacities of the client’s terminal are limited, the client terminal only uses some
display mechanism to show the messages directly arriving from the game server.
This hybrid and adaptive approach works well when we have a complex game with
a variety of objects with different paces and a network where delays can vary con-
siderably.
A game can be divided into different regions which will have different consistency
requirements. In some regions, for example when a player is far away from other
players and his movement is considerably slow, it is not necessary to have tight
consistency maintenance and only server updates can suffice. On other complex
regions where we have many objects near each other with different speed vectors, a
stronger consistency maintenance is needed, which can only be done on the client
side.
We recommend initializing and dynamically changing the values of dead-reckoning
threshold and local lag according to three criteria:

1. When the network conditions change. For example, when the delay increases
because of a sudden heavy traffic in the network or when some jitters occur.

2. When a player enters a critical region (Khan et al., 2008) in the game’s vir-
tual world, we change the values of dead-reckoning threshold and local lag so
that we send messages frequently and do not delay messages for a long time
to achieve strong consistency in these critical regions.

3. To fix the values of these two parameters according to the requirements of
different objects. For example, to have different values for fast moving ob-
jects and slow moving objects in the game world.

We now present an adaptive communication protocol to allow client-server mech-
anisms to change dynamically their behaviour according to the above mentioned
criteria.

5.3.3.1 Server Side Protocol

As shown in Figure 5.3.4, a server has two main components: a Game Logic compo-
nent and a Communication Controller. The game logic is further divided into differ-



68
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

Figure 5.3.4: Hybrid architecture for client-server mobile multiplayer games



5.3. CONSISTENCY MECHANISMS AND SYSTEM
ARCHITECTURES 69

ent units necessary for the successful execution of the game world. The Server Com-
munication Controller is responsible for the communication with different clients
(players) playing this game. While communicating with different clients, it sends
the messages to the clients according to three criteria:

1. If a client, to whom the server is sending the message, is having limited
memory, processing speed or screen resolution, it sends only scene graphs
to be displayed directly by the limited capacity device. In the message, it
signals to the client that no game logic processing is required on the client
side. This information is stored in the terminal profile which registers the
capacities of different clients before the game starts.

2. In case the network latency is very high, or there are jitters on the communi-
cation delay with a certain client, the server informs the corresponding client
about the high latency/jitters. Because of high latency, inconsistencies can
occur at different clients. These clients, with the feedback from the server,
have to apply the necessary consistency mechanisms which we explain in the
next section. The information about the network conditions is stored in the
network profile and the server checks it before sending messages to the clients.

3. The consistency requirements of a game depend upon different parameters of
a player or object such as position, direction and speed in the virtual world.
For example, if an object is solitary in the virtual world and its speed is
not very high, it may not need a strongly consistent view of others. The
information about different game zones, e.g. a circle around a player, is
stored in the game profile for each player. If a player has no other player in
their critical zone, there is no need for strong consistency on the client side.
Hence, in this case, the server should signal the corresponding client that
it does not need to apply any consistency maintenance mechanism and that
only the scene graph should be updated and be displayed by the rendering
engine.

5.3.3.2 Client Side Protocol

On the client side, there is a Communication Manager component, a Game Logic
component, and a Rendering Engine for displaying the game world. The game
logic on the server side is only a subset of the game, that is M < N in the diagram.
The game logic contains only those components which are necessary for consistency
maintenance. For example, to use dead-reckoning algorithm for consistency main-
tenance on the client side in case of a car racing game, it is necessary for the client
to have a car track component and some other components to do the necessary pre-
dictions on the client’s side. The communication manager is the component which
receives messages from the server and decides according to the signals/information
for the server whether to do some necessary consistency maintenance or not. As
mentioned above, the client needs consistency maintenance on its side according to
three criteria: Terminal capacity, network conditions and the player’s position and
speed in the game world.
If consistency maintenance is required on the client side, the communication man-
ager first sends the message to the game logic which processes the message and



70
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

applies the necessary consistency maintenance algorithms. After that, the message
is used to update the scene graph to be displayed by the rendering engine. If no
consistency is required, the communication manager sends the message directly to
update the scene graph and renders it.

5.4 Evaluating our Adaptable Approach

We have done a first evaluation of the hybrid and adaptive approach we propose.
We evaluated our approach using a car racing game that we developed for this
purpose. The game was developed in J2ME, on the top of the GASP platform
(Pellerin et al., 2005) and can be played on all mobile phones supporting Java. We
have already tested it on Nokia N93 mobile devices connected to a GASP server
via a Wi-Fi network. The game can also be played over a cellular network. The
GASP server was deployed in tomcat running on an intel machine with 2.5 GHz
processor and 3.5 GB RAM. The operating system used was Microsoft Windows
XP. Each experience was run at least ten times and average values were calculated
which were used to show the results of our algorithms.

We have evaluated the client and server side consistencies in case of high and
low latencies. Figure 5.4.5 shows the dynamic switching of the game architecture
from thin-client to heavy-client mode and vice versa. In the Figure, at time t0, when
the latency is low, the game logic and consistency maintenance algorithms run on
the server side as represented by the empty wheel and the client only displays the
messages through its rendering engine. At time t1, when the latency is high, the
client executes some part of the game logic necessary for consistency maintenance,
represented by the crossed wheel, to hide the high latency from the user.

At time t2 the latency is again low and the system switches to thin-client
mode. At time t3, the player has entered the critical region e.g. the player’s car
is approaching the finishing line. Hence, although the latency is low, the system
switches to the heavy-client mode to achieve strong consistency in this critical
region. Figure 5.4.6 shows our evaluation for three different scenarios for a car
racing game using only two cars.

The ’Original Position’ curve shows the actual positions of a local player on
the system on which the game logic is running. The positions values, in pixels,
are drawn on the Y-axis against the time shown on the X-axis. Time value 0
denotes the start of the game. As the car starts moving towards the left of the
screen on a mobile phone, the values of Y (position in pixels) decreases until it
reaches zero which denotes the finishing line. The ”RemoteWithlowLatency” curve
shows the positions of the car on the remote client, when the latency between
the client and the server is very low and all the messages coming from the server
are shown directly on the client screen, i.e. without applying any algorithm and
without utilising any game logic on the client side. In this case, the difference
between the actual car positions and the displayed car is minimal. In the case of a
high network latency (between 1000 and 2000 milliseconds in our implementation),
the difference between the actual car positions and the displayed car on the client
side becomes quite visible when no client side mechanism is applied, as shown by
the ”HighLatencyWithNoClientConsistency” curve. In case of high latency and/or



5.4. EVALUATING OUR ADAPTABLE APPROACH 71

Figure 5.4.5: Dynamic adaptation of the game architecture during the run-
time



72
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES

-50

 0

 50

 100

 150

 200

 250

 0  2000  4000  6000  8000  10000  12000  14000

P
o

s
it
io

n
s
 i
n

 P
ix

e
ls

Time Elapsed in milliseconds

Original Position
remoteWithLowLatency

HighLatencyWithNoClientConsistency
HighLatencyWithClientSideConsistency

Figure 5.4.6: Comparison of client and server inconsistencies with high and
low latency



5.5. CONCLUDING REMARKS 73

high speed of the car, we need to apply some client side consistency maintenance
to synchronize the data between the server and the client. This result is shown
by the ”highLatencyWithClientSideConsistency” curve. This curve is closer to the
’Original Position’ curve than the one in which the latency is high and no client-
server consistency maintenance algorithm is used. This curve is not as straight
as the others because when applying prediction algorithms, prediction errors can
occur, which need some recovery time to arrive at the correct position.

From the figure, we can safely argue that in case of very low latencies and
when the objects move at a slow pace, messages coming from the server can be
displayed directly on the client screen without the fear of high inconsistencies. On
the contrary, in case of fast-moving objects and high network latency, we need some
mechanism on the client side to do the necessary consistency maintenance for which
some part of the game logic must reside on the client terminal.

5.5 Concluding Remarks

In this chapter, we first discussed different architectures and proposed a scalable
system architecture for mobile multiplayer games. We then proposed a protocol
for maintaining consistency between game states on clients and servers by dynami-
cally switching to client side consistency when necessary. We evaluated our results
with a multiplayer game and showed that better consistency can be achieved by
applying mechanisms at clients’ terminals in case of high latency and/or high game
consistency requirement at that point in time. We showed that both the client and
server side consistency maintenance approaches result in better consistency than
the simple server side consistency mechanism in case of high network latencies.

In the future, we would like to experiment with our session server architecture
and compare it against other architectures such as the mirrored server architecture
used for distributed virtual environments.



74
CHAPTER 5. SYSTEM ARCHITECTURE FOR MULTIPLAYER

GAMES



Chapter 6

Synchronization Medium

Architecture

6.1 Introduction

In chapters 2 and 3, we discussed different consistency maintenance algorithms
for state synchronization in distributed virtual environments such as multiplayer
games. We saw that a combination of these algorithms can be used to possibly
reach global consistency. These algorithms are very complex and are, therefore,
hard to program. The intermixing of the synchronization code with the game logic
code makes the evolution of the game code difficult over time. It is thus desirable
to separate the code of these algorithms from the game logic and to isolate it in a
specific module. In the section 3 of chapter 2, we discussed the concept of Medium,
which is a communication component, recently proposed (Cariou et al., 2002) to
deal with interaction and distribution as non-functional aspects. In this chapter, we
extend this concept by inserting prediction and synchronization algorithms into this
communication component and we call this component a Synchronization Medium.

By using a Synchronization Medium, a game programmer can concentrate on
the game logic, and is relieved from having to deal with the synchronization and
communication concerns. We also observe that synchronization is an off-shoot of
the communication delays and hence it is better to deal with it as a communication
concern rather than as a game problem.

Apart from handling consistency management, another advantage of a Synchro-
nization Medium is its reusability. It offers generic interfaces that do not change
when replacing a synchronization algorithm by another one inside the medium. A
same medium can thus be used by different game applications; the application code
is not impacted even if a different synchronization algorithm that best suits the ap-
plications needs has to be plugged into the medium. This is an important property
of the medium that can be used for dynamically adapting applications. With mech-
anisms for dynamic adaptability inserted inside the medium, it can adapt itself by
using different algorithms according to the context of the game. As we saw in the
previous section, there are different types of network infrastructure employed by

75



76 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

the game companies, each having different types of communication protocols and
consistency maintenance requirements. We believe that by having different Syn-
chronization Mediums for different types of architectures can facilitate the reuse of
the same game code over different platforms.

In this chapter, we discuss the separation of the code of the consistency al-
gorithms from the game logic and their insertion into Synchronization Medium,
a distributed communication component responsible for non-functional, non-game
issues. We present the design of such a communication component integrating dif-
ferent synchronization algorithms. We first give an overview of the medium as a
communication component.

6.2 Overview of the Medium: A Communication

Component

Presented in (Cariou et al., 2002), the concept of communication component or
medium is to separate interactional details from the functional details of a compo-
nent. These interactional details can be handled separately by the medium. Hence a
medium is the reification of an interaction, communication or coordination system,
protocol or service in a software component. This architecture has the advantage
that the medium can be reused for different types of application.

A medium, like any software component, can take different shapes according to
the level at which it is considered. It exists as a specification describing the com-
munication abstraction that it reifies, but also at implementation and deployment
levels. It is indeed possible to manipulate a high level communication abstraction
at all the stages of the software development cycle. At the specification level, a
medium is specified using a UML class diagram. Then a refinement process trans-
forms this specification into a low-level implementation design. This refinement
process is carried out in three phases. In the first phase, for each component in-
teracting with the medium a class called Role Manager is produced. This class is
responsible for all the interactions with its corresponding component. A medium
is an aggregate of these role managers. In the second phase, the class representing
the medium is removed, and only the role managers are left interacting with their
corresponding components and with each other. Depending on the non-functional
constraints, this phase can lead to many design choices (Cariou et al., 2002). The
third and final phase defines, for each design specification in the preceding phase,
one or more deployment diagrams, describing how different role managers and com-
ponents are distributed and grouped at the time of the deployment of a medium.

In the next section, we discuss the insertion of synchronization algorithms in
the medium.

6.3 Synchronization Medium

We consider that synchronization is a non-functional issue which arises due to com-
munication delays, and hence it would be better to deal with it separately from
the game logic. We present in this section the design of the medium which handles



6.3. SYNCHRONIZATION MEDIUM 77

Figure 6.3.1: Synchronization Medium

synchronization as well as communication aspects of the distributed virtual envi-
ronment. We call this medium a Synchronization Medium (Khan et al., 2007). It
allows to hide from the game clients, the latency compensation and synchronization
mechanisms. Thus a Synchronization Medium is an abstraction of the communica-
tion for data consistency across a network. This has the advantage to offer game
developers a synchronization tool that can be picked up and used directly. Handling
latency hiding and synchronization in a medium has the advantage that the client
will see as if the remote clients are available locally through interfaces unaware of
the network latency and its variation in the form of jitters, and of the complex issue
of consistency maintenance.

This idea is shown in Figure 6.3.1 in the case of a deployment on heterogeneous
devices. The Synchronization Medium is logically a single component which is dis-
tributed physically across the network offering services required by the components
interacting with it and requiring services offered by the interacting components. A
two-way interaction actually takes place between the Synchronization Medium and
application components.

An abstract specification of a Synchronization Medium is given in figure 6.3.2.
Two components with the Player and Administrator roles interact with the medium.
The Player role corresponds to the game client residing on the mobile terminal and
uses the “IplayerMediumServices” services offered by the medium. The “IPlayer-
MediumServices” interface offers services like provision of information regarding a
new player as soon as it joins the game session and the reception of update mes-
sages from the remote players. These services are implemented through functions
such as getNewPlayer() and updatePlayer(). The Administrator role is the game
server which uses the “IAdminMediumServices” services offered by the medium.
These may include administrative services such as monitoring the game to prevent
cheating and to charge fees from the users. The medium may need some services to



78 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

<<interface>>

IAdminMediumServices

+monitorGame()

+chargePlayers()

<<interface>>

IPlayerMediumServices

+updatePlayer()

+getNewPlayer()

<<Medium>>

SynchronizationMedium

<<interface>>

IPlayerCompServices

+sendUpdate()

+sendNewPlayer()

<<role>>

player

<<role>>

Administrator

Canvas LocalView 1

Interested

*

1

1 *

Figure 6.3.2: Abstract specification of Synchronization Medium

interact with the player. These services are offered by the “IplayerComponentSer-
vices” interface of the Player role. The Canvas class represents the overall game
data, while the LocalView class corresponds to the part of the game data that the
player is supposed to receive. A player may, indeed, not be interested in all the
game data but only in a subset of the canvas such as through the use of interest
management.

As mentioned in the previous section, in the second phase of the reification
process, the medium is represented as an aggregate of role managers. This is shown
in figure 6.3.3. There are two role managers namely “Player Manager” and “Game
Manager”. The “Player Manager” is the representative of the medium on each
game client and offers/requires services offered/required by the game client. In the
case of a client-server game, the two role managers may communicate through a
middleware. The set of all role managers on all nodes constitute the Synchronization
Medium

Synchronization algorithms are then integrated into the medium as internal
services which will be invoked by the medium transparently to the player.

We now discuss the design of a Synchronization Medium with different choices
of synchronization algorithms.



6.3. SYNCHRONIZATION MEDIUM 79

GameManager

<<interface>>

IPlayerMediumServices

+updatePlayer()

+getNewPlayer()

<<interface>>

IAdminMediumServices

+monitorGame()

+chargePlayers()

<<interface>>

IPlayerCompServices

+sendUpdate()

+sendNewPlayer()

PlayerManager <<role>>

player

<<role>>

Administrator

Canvas LocalView
Interested

1 1

1

*

1
1

Figure 6.3.3: Introduction of role managers



80 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

<<internal−services>>

IDeadReckoningServices

+treatReceivedPDU()

+predictNewPosition()

+checkErrorThreshold()
...

<<interface>>

IAdminMediumServices

+monitorGame()

+chargePlayers()

<<interface>>

IPlayerMediumServices

+updatePlayer()

+getNewPlayer()
...

<<interface>>

IPlayerCompServices

+sendUpdate()

+sendNewPlayer()

GameManager PlayerManager

...

<<role>>

player

Canvas

<<role>>

Administrator

LocalView

* pass PDU

1

Interested

1

1

1

1

Figure 6.3.4: Synchronization Medium using dead-reckoning algorithm



6.3. SYNCHRONIZATION MEDIUM 81

Figure 6.3.4 shows a class diagram for a medium using a dead-reckoning algo-
rithm. The medium receives from a remote player a Protocol Data Unit (PDU)
concerning a remote object. The PDU contains information that uniquely identi-
fies an entity, such as its position and velocity. The PDU may contain an identifier
telling which dead-reckoning algorithm to use. The Player Manager passes this
PDU to the “IDeadReckoningServices” interface of the medium. This interface is
an internal interface of the medium because it is not used directly by any component
interacting with the medium. This service predicts the new position of the entity
using its predictNewPosition function and passes it back to the Player Manager.
This updated position is then passed to the player via the “IPlayerMediumServices”
interface.

In the case of a PDU emitted by the local player, it is first passed to the local
Player Manager which, in turn, sends it to the remote players. Before passing a
PDU to the remote Player Manager, the checkErrorThreshold() function is called
to check whether the predicted value is different from the actual value by a certain
margin (this is called dead reckoning threshold). A PDU is passed to a remote
Player Manager only when the checkErrorThreshold returns true.

Note that a PDU passed by a player is received by a remote Player Manager and
not the remote player itself. Hence, the process is hidden from the player compo-
nent in the game logic. A collaboration diagram showing the dynamic view of how
the messages are passed during the dead-reckoning process between a player and
the medium is shown in figure 6.3.5. The interface connecting a role manager and
a player is an external interface represented by a small black rectangle, while the
interface between the local and the remote role managers is an internal interface of
the medium represented by a small white rectangle. Similiarly, DeadReckoningSer-
vices is an internal service of the synchronization medium and hence its interface
is internal as indicated by the two small white rectangles.

Another choice could be to use the Perceptive Consistency algorithm (Bouillot,
2005) within the medium for maintaining the consistency between different play-
ers. A diagram showing the Synchronization Medium using the PC algorithm is
presented in figure 6.3.6. A player passes an artificial message (u, t(u)), u being
an artificial update issued at time t. The Player Manager receives such an artificial
message from the remote players and passes it to the “ICalculateLocalVector” ser-
vices of the medium. As discussed in “Perceptive Consistency” part of chapter 2,
this process calculates the latency between the local player and all remote players.
This service returns a vector containing these delays. The player manager then
passes this vector to the “ICalculateLocalLag” service, which calculates, through
its CalculateLocalLag function, the local lag to be introduced locally, and returns it
to the “PlayerManager” via its returnAdjust function. The adjust factor is passed
to the player through the “IPlayerMediumServices” interface of the medium.

The basic difference between the two mediums, one using dead-reckoning and
the other one using PC, lies in their internal services. The interfaces with the
outside components remain the same. Thus, for example, the code for the game
client almost remains the same except for the small changes for the type of message
to be passed to the Synchronization Medium.



82 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

Figure 6.3.5: Dynamic view of message passing in case of Dead-reckoning
algorithm



6.3. SYNCHRONIZATION MEDIUM 83

<<interface>>

IAdminMediumServices

<<interface>>

IPlayerMediumServices

<<internal−service>>

CalculateLocalVector

+calculate_vector( u, t )

+vector :return_vector()

<<internal−service>>

calculateLocalLag

+calculate−local−lag( vector )

+adjust : return_adjust()

<<interface>>

IPlayerCompServices

GameManager PlayerManager

+update()

<<role>>

Administrator

<<role>>

player

Canvas LocalView

(u, t(u))

pass (u, t(u))

+adjust

1

*

Interested

1

1

1

Figure 6.3.6: Synchronization Medium using PC



84 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

Note that it is possible for a medium to use a combination of synchronization
algorithms for the same game. For example, Perceptive Consistency can be com-
bined with dead-reckoning to compensate for high latencies in mobile networks.
Dead-reckoning can help to provide predicted intermediate states during the local
lag period introduced in PC.

Also variations of the same algorithm can be used for the same application de-
pending on the context. For example, a dead-reckoning algorithm using position-
based history can be used when the motion of an object is not smooth, but pre-
dictable over a certain pattern, and a single update based dead-reckoning can be
used when the motion of the object being predicted is smooth.

A Synchronization Medium has different responsibilities as we saw in this sec-
tion. We believe that a Synchronization Medium can be a composite component
each having distinct responsibilities. Before going into the detailed architecture
of a Synchronization Medium, we first give a classification of multiplayer games
according to their consistency requirements.

6.4 Classification of Game Applications

In this section, we classify different types of games according to their consistency
requirements. We believe that this classification of game types is necessary so as
to have different re-usable Synchronization Mediums for different types of games.
A Synchronization Medium has interfaces (offered and required) which are used
by the game application. As each class of games share common synchronization
approaches, this classification can help us define common interfaces for Synchro-
nization Mediums used by each category. Hence the Synchronization Medium for a
given category becomes re-usable for all the applications offering general interfaces
irrespective of the internal synchronization mechanisms. Also by this classifica-
tion, a game developer will be able to better select a Synchronization Medium for
their game plugged with a particular consistency approach better suited to the game
he/she is developing and configure it to his/her own consistency requirements. This
classification is also necessary because, as we will see in the next section, we have
to inform the medium about different regions in the game, and the coordinates &
orientation of these games depend upon the type of the game. This classification
does not include certain interactive applications such as turn based games, shared
white boards etc, because their synchronization techniques are different from con-
tinuous applications such as multiplayer games and military warfare simulation and
hence they are out of the scope of this report.

6.4.1 Field Applications

In Field Applications, the players play on a specific field. This field is fixed and
does not change its location. Instead, players move from one position to another
in the field in order to play the game. Examples are Football, Hockey, Tennis
games etc. In Field Applications, there are some regions in the field where we need
strong consistency because an error of judgement during prediction in these areas
can result in an incorrect state from the point of view of different players and can



6.5. COMPONENTS OF THE SYNCHRONIZATION MEDIUM 85

affect the result of the game. We categorize these regions as critical regions that
we proposed earlier (Khan et al., 2008). For example, in tennis game, the area near
the base line is a critical region. When a ball coming from the opposite side, lands
near the base line, an error in prediction can cause display a ball as landing outside
that could have actually landed inside and vice versa. The two players can disagree
about the results and hence the game play will not be fair.

6.4.2 Racing Games

Racing games form a subclass of Field Applications. In this type of game, there is
a fixed track and the players’ avatars or other objects move on the track to reach
to the end of the track. In racing games, the end of the track is a critical region
because it is here that decision about the winner of the game will be taken.

6.4.3 First Person Shooters

In first person shooter games, there are different objects and targets which can
be fixed or movable. Because of the complexity of this type of games, there are
many fixed and movable critical regions. Because of the high variety in this type of
games, it is difficult for a Synchronization Medium designer to provide a medium
with already defined critical regions. Hence through a Synchronization Medium
interface, the game developer has to inform the medium about the coordinates of
critical region(s) in his/her game.

6.5 Components of the Synchronization Medium

A Synchronization Medium is a composite component containing subcomponents.
It interacts with the game application by offering some services through its inter-
faces, and also requests services from the game by using the game services through
the game interface. The part of the Synchronization Medium residing on a client
side is called the Player Manager. The set of all the player managers on all the
clients playing a game forms the Synchronization Medium.

Each player manager is a composite component containing different Managers.
Figure 6.5.7 shows the internal structure of the medium and its interaction with
the game application. In this section we discuss different managers of the Synchro-
nization Medium, how they interact with each other, and how they communicate
with the game application and the underlying network infrastructure.

6.5.1 Critical Area Manager

The Critical Area Manager (CAM) is responsible for the processing of all infor-
mation related to the critical area(s) in a game. As we discussed in (Khan et al.,
2008), a critical region is a region in the virtual environment of the game where
strict consistency mechanisms are needed to achieve better results. The CAM takes



86 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

Figure 6.5.7: Detailed Architecture of the Synchronization Medium



6.5. COMPONENTS OF THE SYNCHRONIZATION MEDIUM 87

information about the critical region from the game and uses this information dur-
ing the consistency management process. The CAM offers its services through its
“IMediumCriticalAreaServices” interface. This interface is used by the game ap-
plication to send information about the critical area to the CAM. This information
can be the coordinates of the critical area such as area around the base line in a
tennis game or it can be the center of a circle of a certain radius around a player.
In the latter case, the critical area is not fixed, but instead moves along with the
player.

In the critical regions we need to change our technique of synchronization be-
cause we need strong consistency in these areas instead of loose consistency as can
be tolerated in some other less important areas of the game environment. When
a player enters a critical region, the CAM informs the Synchronization Managers
(section 6.5.3) about the players ID and its motion (speed, direction etc). It is then
the responsibility of the Synchronization Manager to take the necessary actions so
as to achieve strong consistency in that area.

6.5.2 Communication Manager

The Communication Manager (ComManager in the figure) is responsible for the
communication of general services between the application logic on one client and
the rest of the clients through an underlying middleware or network infrastructure.
This includes, for example, the starting and stopping of the game application. It
offers services to the underlying game middleware to communicate information with
other remote game clients. This manager also adds a time stamp to each emitted
message that is being sent to the remote clients so that the remote clients could
process the arriving messages in temporal order. We suppose that all clocks are syn-
chronized using some clock synchronization mechanism such as the Network Time
Protocol (NTP) (Mills, 1989) or through the Global Positioning System (GPS)
(Sterzbach, 1997)

6.5.3 Synchronization Manager

The Synchronization Manager (SynchManager in the figure) is the part of the
medium which is responsible for synchronization of game information and state
consistency management. A first hand separation of the synchronization concern is
the calculation of network delays. We think that this should be the responsibility
of the Synchronization Medium and not the game itself to calculate the network
delays. The Synchronization Manager is the medium component that calculates
network latency. Based upon these latencies, the Synchronization Manager takes
different actions such as prediction according to a certain Dead-reckoning algo-
rithm. As we have shown in (Khan et al., 2008), the network delays may change
during the game play because of the network load. Therefore, the Synchronization
Manager calculates the network latency not only at the start of the game, but also
during the game session. This re-calculation of delays can be periodical or it can be
reactive to certain network conditions such as an increase in the network load etc.
If the Synchronization Medium is aware of the game map, such as the racing track
shared with it by the game application, it can do the necessary prediction and then



88 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

pass the predicted message to the game application. If the prediction is not possible
in the Synchronization Medium, because of insufficient game canvas information on
the part of the medium, then it is the responsibility of the game application to do
the predictions there. The game application uses the “IPlayerMediumSynchSer-
vices” interface of the Synchronization Manager to use the services offered by the
medium for the purpose of synchronization.

6.5.4 Local Lag Manager

The Local Lag Manager is responsible for taking the decision about the local lag
to be produced locally before the playout of commands (Mauve et al., 2004). As
we have proposed the idea of adaptable local lag in (Khan et al., 2008), where
the value of local lag depends upon the network and game condition, it is the
responsibility of Local lag Manager to fix a value for the local lag and decide when
to change this value. As the value of local lag depends upon the object about which
the information is being received or displayed, hence it is the responsibility of the
game application to inform the Synchronization Medium about the initial value
of local lag for that object. Note that different objects in the game world can be
assigned different local lag values according to their synchronization needs as we
have discussed in (Khan et al., 2008). The value of the local lag is also dependent
on whether the object in question is in a critical region of the game or not. If the
object is in a critical region, then decreasing the local lag value means using more
real-time messages thus reducing the inconsistencies in the outcome of the game in
that area.

6.5.5 Rollback Manager

The Rollback Manager component of the Synchronization Medium has the respon-
sibility of keeping the receiving messages in temporal order. It observes all the
incoming messages, and if a message m arrives late, then it informs the game
through its “IPlayerCompServices” to rollback all those messages that have time
stamps greater than that of m i.e. those messages which were issued after m
by the emitting node(s) but arrived earlier than m as m was late because of the
non-uniform network latency. This rollback can follow the time warp mechanism
(Jefferson, 1985) or any other approach such as the correlation based approach
(Ferretti and Roccetti, 2005b) to reduce the number of rollbacks on the receiving
side. Note that the Rollback Manager does not offer any service to the game but
uses game services for rollbacks.

6.5.6 Overlay Manager

The Overlay Manager is the component of the Synchronization Medium responsible
for taking those network related decisions which can affect the synchronization.
When exchanging messages during the game session, players need to synchronize
themselves according to the global state of the game. Based upon their position in
the game, different players have different requirements. For example, in a football
game, the consistency requirement for the players in the D-area (a critical region)



6.6. COMMUNICATION 89

is stronger than outside the D-area. So there is a need to exchange information
quickly between those players which are in D-area as compared to those who are
not in D-area.

When exchanging messages during the game, the player sends information
about PlayerIDs which are in a critical region. So this information should be
sent only to the related players. This can be sent directly (to avoid any delay)
or through a server. In case, the IP address of the remote terminal is known, a
direct pair-to-pair connection is possible without passing through the server. As
an example, in case of playing a soccer game on mobile phones, the Bluetooth
technology could be used to communicate with nearby physical players if they are
also close to each other in the virtual world. This change of network configuration
for the sake of strong consistency during the game play is the responsibility of the
Overlay Manager. For the medium to be able to do this, it should collect some
information at the start of the game. This information includes remote terminals’
IP addresses, whether that terminal is equipped with a GPS, its memory size and
processor power.

In case the remote terminal and the local terminal are both equipped with GPSs,
the Overlay Manager can be used to synchronize their clocks through these GPSs
so that the Synchronization Manager calculates the latency time between them by
passing the time stamp in their message exchanges. Thus an Overlay Manager
is responsible for taking network related decision during the game play thereby
improving the overall performance of the game. The Overlay Manager can also
decide to switch from one network to another during the game play. This decision
can be based on different factors. For example, switching from a slower network
to a faster one, or from a costlier one to a cheaper, etc. As another example, if a
player’s terminal detects that another player has come in its vicinity, it can connect
with that player through Wi-Fi or Bluetooth to decrease communication costs and
network latency.

6.6 Communication

6.6.1 Message Reception

Figure 6.6.8 shows how remote messages are received by the Synchronization Medium.
All the messages received from a remote client are passed through the Synchroniza-
tion Medium. The Synchronization medium receives PDU (protocol data unit)
from the underlying network or middleware. This PDU contains information about
the remote player’s ID, its position, direction speed and the sender’s local time at
which this message was transmitted, called time stamp. The message is received
by the Communication Manager of the medium. This Manager calculates the de-
lay either from the time stamp of the message in case the clocks are synchronized
or through some other means at the start of the game or periodically during the
game. This message along with the network latency is sent to the Local Lag Man-
ager. The Local Lag Manager calculates the necessary local lag to be introduced
locally before sending the message to the Critical Region Manager which decides
whether a switch to strong consistency is necessary or not. The message is then
passed to the RollBack Manager to decide if a rollback is required depending upon



90 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

Figure 6.6.8: Message reception by Synchronization Medium



6.6. COMMUNICATION 91

Figure 6.6.9: Message sending by Synchronization Medium

whether the message was received on time or late. The message is then passed to
the Synchronization Manager to apply the prediction algorithm before passing to
the game canvas.

6.6.2 Message Transmission

All the messages sent by the game client to the remote players are passed through
the Synchronization Medium as shown in figure 6.6.9. The message is first passed
to the Synchronization Manager to apply local prediction. This local prediction is
necessary because it is based on this calculation that the client will decide when to
send the next message. The local client sends a message only when a local prediction
error reaches a certain threshold, and hence the message sending frequency depends
upon this calculation. The message is then passed to the Critical Region Manager
which sees if the player is in the critical area or not so that the Overlay Manager can
decide if a direct connection, such as through Bluetooth is necessary or not when
it is physically possible. The Communication Manager then sends the message to
the remote players through the network.

A deployment diagram of a deployment example of a Synchronization Medium
in a client-server architecture is shown in figure 6.6.10. The playerManager resides



92 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE

Server

Mobile Device

PlayerManager

GameManager

Administrator

Canvas

player

middleware

*

Figure 6.6.10: Deployment of Synchronization Medium in a client-server
architecture

on the mobile device while the gameManager resides on the server. Depending on
the deployment constraints, one can have many deployment choices.

With many deployment variants, a multiplayer game application can adapt at
run time when the context of the game changes, thereby using a different syn-
chronization algorithm suitable in that context using the approach in (Phung-Khac
et al., 2008). In this approach, many variants of the role managers at the deploy-
ment level are integrated into the target adaptive application (a multiplayer game
in our case) that can dynamically select the running variant in order to adapt to the
changing context. With the help of an adaptation guide generated by the transfor-
mation process, the adaptive application can coordinate distributed applications to
transfer data of the replaced variant to new one and to maintain the architectural
coherence between distributed parts of the application. Hence, a multiplayer game
application can correctly adapt at runtime by switching to a new synchronization
algorithm without loss of data.

6.7 Concluding Remarks

The primary advantage of the approach we proposed is its reusability. A given Syn-
chronization Medium with a specific synchronization algorithm can be reused many
times by different applications. We also believe that separating the synchroniza-
tion concern from the game logic, and putting it in a communication component,
will facilitate game development by letting the developers concentrate on the game
logic only. Programmers will not be concerned by synchronization issues. They can
use an off-the-shelf medium with a given synchronization technique by looking at



6.7. CONCLUDING REMARKS 93

its specification. Hence, the evolution of the game program will be made simpler
during the course of time.

Furthermore, the Synchronization Medium will facilitate the experimentation
of different synchronization algorithms. Having different synchronization mediums
with different algorithms available, one can use them in the same game and compare
and analyze the results. Dynamic adaptability mechanisms can also be inserted
in the medium thus allowing to have more than one algorithm in the medium
and use these algorithms according to the context of the game. For example, a
measure of the mobile network latency can help in the choice of the most appropriate
algorithm. When the latency is below some threshold but still noticeable by the
player, the Perceptive Consistency algorithm can give good results. When the
latency increases, PC can be combined with a dead-reckoning algorithm by adding
predicted intermediate states during the local lag period introduced by PC.



94 CHAPTER 6. SYNCHRONIZATION MEDIUM ARCHITECTURE



Chapter 7

Synchronization Medium

Evaluation

In the previous chapter, we discussed an approach for separating consistency and
communication concerns from the game logic code and inserting them into a syn-
chronization component called Synchronization Medium. In this chapter, we present
the evaluation of our work carried out on the Synchronization Medium. We evalu-
ate our Synchronization Medium according to the following steps:

• the implementation of a game using the medium

• showing the reusability of the Synchronization Medium by implementing an-
other game on the top of it

• showing the advantages of the Synchronization Medium in terms of ease of
development

• and finally, performance evaluation.

As in figure 7.0.1, we show three different layers, representing respectively the game
layer, the medium layer and the network layer.

The game layer represents the logic of the game which uses the underlying
medium layer for communication as well as consistency maintenance. The medium
either uses the network infrastructure directly or through an underlying middle-
ware to communicate with other remote players. In the next section, we show the
implementation of our Synchronization Medium.

7.1 Implementation of the Medium

In this section, we show the implementation of our Synchronization Medium and its
use by a car racing game which executes on the top of the Synchronization Medium.

95



96 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION

Game Canvas Local Player RepresentationRemote Player Representation

PlayerManager

Communication Infrastructure

DeadReckoningManager LocalLagManagerCriticalRegionManager

Game Components

Medium Components

Communication Infrastructure

Figure 7.0.1: A Layered Approach to Synchronization Medium

The architecture of the Synchronization Medium is shown in the class diagram of
figure 7.1.2

In figure 7.1.2, the medium is formed of four classes: The PlayerManager
class is the core medium class and is responsible for coordination amongst the
rest of the medium classes and also with the game classes. It is responsible for
message reception from the remote players as well as message transmission to the
network infrastructure. Note that to communicate through the underlying network
infrastructure, we use the services of the GASP middleware (Pellerin et al., 2005;
Pellerin, 2010). The DeadReckoningManager class is responsible for applying
the dead-reckoning algorithms and specifying their thresholds. Although dead-
reckoning is dependent on the game player’s direction, speeds and the terrain in
general, we can provide a Synchronization Medium with a dead-reckoning Manager
for all the games in a certain class of games thanks to the classification presented
in section 6.4. The CriticalRegionManager class and the LocalLagManager class
are responsible for managing critical regions and the local lag usage in the game
respectively.

7.2 Reusability of the Medium

In this section, we argue that the architecture we proposed is re-usable without
modifying the underlying medium architecture. In the previous section, we showed
an example of a car racing game using the medium. In this section, we show the
re-usability of our Medium by deploying two different multiplayer games, a Space
War game and a multiplayer battle tank game, on the top of it without modifying
the underlying Medium and middleware code.



7.2. REUSABILITY OF THE MEDIUM 97

CarGameCanvas

PlayerManager

+SendMessages()

+ReceiveMessages()

DeadReckoningManager

+setDeadReckoningThreshold(obj:Object,value:INT)

+calcFuturePosition(currentX:int,currenty:int,

                    x:INT,y:INT,dir:INT,Speed:INT)

CriticalZoneManager

+setCRegionCoordinates()

LocalLagManager

+SetLocalLagValue(object:Object,value:INT)

GASP Middleware

  LocalCar
RemoteCar

Figure 7.1.2: A Medium as used by a car racing game



98 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION

        SpaceWarCanvas

PlayerManager

+SendMessages()

+ReceiveMessages()

DeadReckoningManager

+setDeadReckoningThreshold(obj:Object,value:INT)

+calcFuturePosition(currentX:int,currenty:int,

                    x:INT,y:INT,dir:INT,Speed:INT)

CriticalZoneManager

+setCRegionCoordinates()

LocalLagManager

+SetLocalLagValue(object:Object,value:INT)

GASP Middleware

Figure 7.2.3: SpaceWar game using the medium

7.2.1 Case study 1 - SpaceWar Game

For the medium to be reused by the game developers, it must provide some general
consistency services through interfaces. In the diagram of figure 7.2.3, we show how
an existing medium can be re-used by a game developer. The game we re-used,
called Space War, is a multiplayer game that can be downloaded from 1 (Powers,
2006).

In the figure, we show the game classes interacting with the medium using its
interfaces. In the real implementation, this game has more than one class, but
for the sake of simplicity we only show the main canvas class which interacts with
the medium. As shown in chapter 6, the medium is represented by a set of Man-
agers. The set of all the managers on all the clients constitutes the Synchronization
Medium.

In figure 7.2.4, we show the spaceWar game without any medium. The original
game had nine classes representing three different building blocks of the game: 1)
the midlet 2) the game 3) the communication part. In the diagram, the whole game
classes are represented by the SpaceCanvas class. The midlet class is responsible for
initializing the game and doing the necessary administration tasks such as managing
user accounts and passwords before starting the game. The communication part is

1http://developers.sun.com/mobility/midp/articles/gamepart2/



7.2. REUSABILITY OF THE MEDIUM 99

SpaceCanvas

Synchronizer

MidletClass

Figure 7.2.4: SpaceWar game without using any medium

represented by the synchronizer class responsible for the communication aspects as
well as some part of the consistency maintenance.

When using the medium, the midlet part of the game is not required as it is
the medium which is responsible for initializing and starting the game by calling
the midlet’s startApp() method (Wells, 2004). The communication part is the re-
sponsibility of the Synchronization Medium and the underlying middleware. Hence
the developer is relieved from developing this part of the game when using the
Synchronization Medium. The only part of the game that the developer must con-
centrate upon is the game itself. Therefore, the development of the game in figure
7.2.3 comes down to only concentrating on the game part itself, the remaining parts
being handled by the medium.

In the original game code, the code for synchronization and consistency mainte-
nance is embedded into different classes depending upon the developer’s approach.
If we have to change the code in the future for further enhancements or to use
another consistency maintenance algorithm, we have to change a lot of synchro-
nization related code weaved into the game logic thus costing up lots of resources.
On the other hand, when using the Synchronization Medium, we write the code in
a class which is not part of the game logic and which could be re-used in the future.

The space canvas represents the set of classes containing the necessary game
logic. Whenever a message is received by the underlying infrastructure, it is ac-
cepted by the medium’s PlayerManager class. This class calculates the time this
message has taken from its delivery at the sender’s terminal till its reception by this
class. We suppose that the clocks of all the players are synchronized using some
clocks method such as Network Time Protocol (NTP) (Mills, 1989), GPS-based
(Sterzbach, 1997) or any other method (Diamond, 2006; Elson et al., 2002).
The medium buffers the message for a specific time corresponding to the local lag
threshold value. This threshold value is provided by the developer of the game
by implementing the setLocalLagValue() abstract method of the LocalLagManager
class of the synchronization Medium. The message is then sent to the game canvas



100 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION

class of the game. The game canvas calls the calcFuturePosition() method of the
DeadReckoningManager class to apply the dead-reckoning algorithm for the calcu-
lation of the correction of the future position corresponding to this update message.
This is necessary, because the message belongs to the past and now the sender of
the message has moved to a new place depending upon its speed, direction and
previous positions.

The CriticalRegionManager is responsible for defining the critical regions in the
game. The critical regions are defined for each object (such as a circle around an
object for example) and for the game terrain. The critical region around an object
is mobile while the terrain critical regions have fixed coordinates. These regions are
defined by the SetCRegionCoordinates() method of the Critical Region Manager.

In our first implementation of the Synchronization Medium with a car racing
game, we have a single critical region and that is an area of the track just before
the arrival line. When a car enters that region, the game canvas signals it to
the player manager which then changes the values of the dead-reckoning and local
lag thresholds accordingly to achieve a strong consistency. Through the interface
provided by the medium for a specific genre of games, the game developer must
provide the coordinates of the critical regions to the medium.

The local lag manager is responsible for setting the local lag value for each class
of objects and changing it dynamically according to the objects pace and position
in the game. In our implementation of the car racing game with just two cars,
we kept this value equal to the maximum network delay between the two players.
It was 500 milliseconds and 1000 milliseconds in two different experiments. This
value is set by the developer of the game by implementing the setLocalLagValue()
method of the LocalLag Manager. As this is an abstract method, the developer has
to implement it.

7.2.2 Case study 2 - Tank Game

In order to confirm the reusability of our approach, we proposed a project to a
student not familiar with synchronization or mediums. Jeanne-Marie Lavergne, a
3rd year engineering student at Telecom Bretagne realized the experiment. She
transformed a single player battle tank game into a multiplayer game reusing the
Synchronization Medium architecture (Laverge, 2010). A class diagram of the
multiplayer version of the battle tank game using the synchronization medium is
shown in figure 7.2.5.

In the game, each player owns a tank and tries to explode the tank of an op-
ponent by targeting it with tank bullets. The main game logic classes of the battle
tank game are Tank, RemoteTank, HeroTank, Bullet and Explosion. They use
different managers of the synchronization medium to communicate and synchro-
nize with remote players. The student eventually realized different versions of the
multiplayer games with different synchronization strategies : no synchronization, a
version using dead-reckoning for the tank and bullet positions, and local lag (for the
bullet). Figure 7.2.6 shows the results of a version without using any synchroniza-
tion algorithm and without any medium, comparing the positions of a tank locally
and the ones displayed on the remote mobile terminal. We see that the divergence



7.2. REUSABILITY OF THE MEDIUM 101

Figure 7.2.5: Class diagram of a multiplayer tank game using the medium

between both x and y positions for a local tank and its display on the remote mobile
corresponds to a time period of 400ms i.e. the position is displayed on the remote
player after a delay of 400 ms. Also, there is no smoothness in the motion of the
tank (not shown in the figure). Figures 7.2.7 and 7.2.8 show the results when using
dead-reckoning algorithms for calculating the movement of a tank and its bullet
respectively. We see an improvement by decreasing the difference of the positions
between the local player and its display on the remote player.

This project gives us confidence in the reusability and modularity of our ap-
proach. The deployment of three multiplayer games (car racing, space war and
battle tank) on the top of the synchronization medium confirms its reusability.



102 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION

Figure 7.2.6: Position of a tank (local and distant) without any synchro-
nization algorithm



7.2. REUSABILITY OF THE MEDIUM 103

Figure 7.2.7: Position of a tank (local and distant) using dead-reckoning
algorithm



104 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION

Figure 7.2.8: Position of a tank bullet (local and distant) using dead-
reckoning algorithm



7.3. COMPARISON OF DEVELOPMENT EFFORTS 105

Table 7.3.1: Comparison of development efforts with and without a Syn-
chronization Medium

Game Existing Status Game Logic
Classes Using
Medium

Reused Code
(Medium Classes)

Car Racing Developed 6 4

Space War Existed with 9
classes

7 4

Battle Tank Existed as Mono-
Player game

8 4

7.3 Comparison of Development Efforts

In this section, we compare, quantitatively, the implementation efforts of game with
and without medium. We argue that the architecture we proposed facilitates the
development efforts in terms of the number of classes and lines of codes.
Table 7.3.1 shows a comparison of the development efforts when using the game
on the top of the Synchronization Medium. As can be seen, the number of core
game logic classes when using the Synchronization Medium is less than when game
is deployed without a Synchronization Medium (in case of Space War game). The
medium classes (related to synchronization and communication) are reused by the
game. Hence the programmer is relieved from writing the lines of code respon-
sible for consistency maintenance and this part of the code is re-used as a part
implemented by the medium.

7.4 Performance Evaluation

In this section, we show that the insertion of a new consistency layer below the
game logic classes does not introduce any untoward inconsistency, for example, due
to an increase of the message processing time. Table 7.4.2 shows a comparison of
the delay of the message processing with and without a Synchronization Medium.
For an average network delay of 500 ms to 1000 ms, the average time for message
processing is 0-5 ms when using the medium as compared to 0-2 milliseconds when
the game is not using a Synchronization Medium. It means that, for an average
delay of 500 milliseconds, the additional processing time is only one percent at
maximum as compared to non-medium game where additional processing time is
about 0.4 percent of the network delay. This is not a significant delay as compared
to its advantages in terms of game architecture and development time.

In figure 7.4.9, we compare the positions of the bullets launched from a battle
tank (as discussed in the previous section) locally and when displayed at the remote
player using a certain local lag value (Laverge, 2010). The average difference, in



106 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION

Table 7.4.2: Qualitative comparison between a stand-alone game and the
one using Synchronization Medium

Network Delay Stand-alone Game mes-
sage processing time

Processing time for
message when game is
using Synchronization
Medium

500ms 0-2ms 0-5ms

1000ms 0-2ms 0-5ms

terms of display time, between the bullet positions locally and when displayed on
the remote site is 21,5ms which is well in the acceptable range of human perception.
Hence, the insertion of a medium layer into the game logic code does not introduce
performance degradation.

7.5 Concluding Remarks

In this chapter, we showed the reusability of the Synchronization Medium on dif-
ferent games of the same category. We also showed that the insertion of this con-
sistency layer between the game application and the communication infrastructure
does not affect the overall latency between two game applications. However, we
believe that a comprehensive evaluation is still needed. For example, we could
implement different Synchronization Mediums for different underlying infrastruc-
tures and used by the same game’s client code. This will allow developers to re-use
their game code without being worried about the network architecture, latency and
bandwidth issues.



7.5. CONCLUDING REMARKS 107

Figure 7.4.9: Position of a tank bullet at local and remote tank



108 CHAPTER 7. SYNCHRONIZATION MEDIUM EVALUATION



Part III

Conclusion

109





Chapter 8

Conclusion

In this thesis, we have worked on three different aspects, i.e algorithmic, system
architecture and software design, of multiplayer games on mobile phones in order
to improve the state synchronization between remote players playing a game on
high latency networks.

1. We proposed an adaptive approach to consistency maintenance in distributed
virtual environments, especially multiplayer games, keeping in view the vir-
tual world conditions as well as that of the underlying network. Based upon
the conditions of the network and the game’s virtual world, we proposed to
have adaptable threshold values for dead reckoning and local lag keeping in
view the latency in the network and the position of the game’s objects at
a particular time. We introduced the notion of critical regions to denote
those areas in the game’s world where strong consistency is needed. We also
proposed an event synchronization mechanism that reduces the number of
rollbacks in the face of high and varying latency thus maintaining the re-
quired responsiveness from the system. The key concept of our approach is
to consider both networks conditions and game event semantics. This ap-
proach enables to vary the consistency degree between strong and relaxed
depending upon the need of the situation. We evaluated our approach with
multiplayer mobiles games executed in different conditions. The results show
that our approach performs better in both low and high latency networks.
The results also show that interactivity and fairness in the game can be ob-
tained by dropping events that have no effect upon the final outcome of the
game.

2. Based upon the mirrored server architecture, we presented a session-server
architecture for wireless networks. In this architecture, different players
(clients) playing a game on mobile phones are connected to the nearest session
server. Session servers themselves are connected in a peer to peer manner. In
case of disconnections, a mimicking mechanism, both on the client as well as
on the session server sides, tries to mimic the game state until the connection
is re-established. In case of a permanent or long duration disconnection, the
player is removed gracefully from the virtual world. We believe that this
approach helps game developers to have more control over the game so that

111



112 CHAPTER 8. CONCLUSION

they can really benefit from the game they have deployed. This approach
also tackles the issues of mobility and frequent short time disconnections. It
remains to evaluate the proposed approach on a real testbed platform. We
leave it as future work.

We also elaborated a protocol for maintaining consistency between game
states on the clients and the server, in a client-server architecture, by dy-
namically switching to client side consistency when necessary. We evaluated
our results with a multiplayer game and showed that better consistency can
be achieved by applying mechanisms at clients’ terminals in case of high la-
tency and/or high game consistency requirement at that point in time. We
showed that the client and server sides consistency maintenance approach re-
sults in better consistency than the server side consistency mechanism alone
in case of high network latencies.

3. As a third contribution, we designed a software architecture for game devel-
opment from the developer’s point of view. We propose that the consistency
maintenance as well as the communication issues are separate concerns from
the game core logic and hence could be treated more appropriately. We in-
troduce the idea of Synchronization Medium, a re-usable software component
for consistency maintenance and communication. The advantage of such a
component is that the development of the game code is simplified by letting
the software developer concentrate on the logic of the game. Thanks to this
separation of concerns, the evolution of the game code in the future is facil-
itated. Besides, the same game code can be re-used by picking a different
synchronization medium for a different underlying platform. Also, the same
synchronization medium can be re-used by the same category of games hav-
ing similiar consistency requirements. We implemented our architecture on
three different games and showed that the same synchronization medium be
can reused by different multiplayer games. We also showed that the efforts in
the development of the game logic code become easy and that the number of
lines of code is reduced when using the synchronization medium. Moreover,
the performance evaluation of the synchronization medium shows that this
new layer does not introduce any significant performance degradation from
the consistency maintenance point of view.

8.1 Short Term Future Work

In the near future, we would like to carry more experiments of our synchronization
algorithms with different parameters and would like to apply our mechanism to a
very large game with many more players.

Also, we have evaluated different synchronization algorithms supposing that the
clocks of the remote clients were synchronized through some clock synchronization
protocol. We plan to remove this assumption and implement some clock synchro-
nization techniques to synchronize the remote mobile clocks in our experiments on
different multiplayer games.

We would like to evaluate the session server approach by deploying a mobile
multiplayer game. This evaluation should be from the points of view of efficiency
in consistency maintenance, handling mobility and frequent disconnections.



8.2. LONG TERM FUTURE PLANS 113

For the synchronization medium, in the future, we would like to implement
different synchronization mediums for different platforms, such as P2P, Mirrored-
Server and Client-Server and then use these synchronization mediums for a same
game application. This means that we would be able to re-use the same game code
deployed on different platforms (with different bandwidths, latencies and control),
without changing the game logic. Furthermore, we would like to evolve this syn-
chronization medium into a middleware for multiplayer mobiles dealing with other
issues apart from consistency and communications, such as managing players’ ses-
sions, defining roles like player or spectator etc.

It would also be interesting to have different variants of the synchronization
medium deployed, and to select, at run time, the one whose algorithm is better
suited at that particular time. This auto-adaptation, inspired from the (Phung-
Khac et al., 2008) approach, would help in incorporating different synchronization
schemes in the same game and in using the most suitable one, according to the
context of the situation.

8.2 Long Term Future Plans

Multiplayer games represent a subset of the distributed virtual environments (DVE).
Continuous applications such as distributed military simulations, distributed story-
telling, distributed virtual concerts etc. have similar requirements from the consis-
tency maintenance point of view. In the future, we would like to extend our ideas to
these types of applications to see if we could conceive a common consistency model
for these different types of distributed applications. Additionally, the concept of
synchronization medium can be extended to these types of applications by identify-
ing and developing common interfaces relating to consistency and communication
for all these types of distributed applications.

Also, for the medium part, a multi-networks medium can be proposed mixing
the IP, Bluetooth and 3G networks etc., so that the switching between different
networks according to the needs of the situation can be carried out smoothly by
the synchronization medium.

At the end, I will reproduce a quote from one of the greatest scientists, Isaac
Newton, to show what I have learned during my PhD studies.

“After all these years, I do not know what I may appear to the world, but to
myself, I seem to have been only a boy playing on the sea-shore and diverting myself
in, now and then, finding a smoother pebble or a prettier shell than ordinary whilst
the great ocean of truth lay all undiscovered before me.” Isaac Newton



114 CHAPTER 8. CONCLUSION



Bibliography

Akkawi, A., Schaller, S., Wellnitz, O., and Wolf, L. (2004a). A mobile gaming
platform for the IMS. In NetGames ’04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games, pages 77–84, New York,
NY, USA. ACM.

Akkawi, A., Schaller, S., Wellnitz, O., and Wolf, L. C. (2004b). Networked mobile
gaming for 3G-networks. In Rauterberg, M., editor, Entertainment Computing
- ICEC 2004, Third International Conference, Eindhoven, The Netherlands,
September 1-3, 2004, Proceedings, volume 3166 of Lecture Notes in Computer
Science, pages 457–467. Springer.

Bakhuizen, M. and Horn, U. (2005). Mobile broadcast/multicast in mobile net-
works. Erricsson Review 2005, (1).

Balakrishnan, M. and Sadasivan, M. (2007). Mobile interactive game interwork-
ing in ims. In IP Multimedia Subsystem Architecture and Applications, 2007
International Conference on, pages 1–5.

Billinghurst, M. and Kato, H. (2002). Collaborative augmented reality. Communi-
cations of the ACM, 45(7):64–70.

Bouillot, N. (2004). The auditory consistency in distributed music performance:
a conductor based synchronization. ISDM (Information Science for Decision
Making), (13):129–137.

Bouillot, N. (2005). Fast event ordering and perceptive consistency in time sensitive
distribued multiplayer games. In 7th International Conference on Computer
Games (CGAMES’2005), pages 146–152.

Bouillot, N. (2006). La Cohérence Dans les Applications Multimédia Interactives :
du concert réparti sur Internet aux jeux multi-joueurs en réseau . Rapport de
thèse.

Bouillot, N. and Gressier-Soudan, E. (2004). Consistency models for distributed
interactive multimedia applications. Operating Systems Review, 38(4):20–32.

Cacciaguerra, S. and D’Angelo, G. (2008). The playing session: enhanced playabil-
ity for mobile gamers in massive metaverses. Int. J. Comput. Games Technol.,
2008:1–9.

Cariou, E., Beugnard, A., and Jézéquel, J.-M. (2002). An archictecture and a
process for implementing distributed collaborations. In The 6th IEEE Inter-
national Enterprise Distributed Object Computing Conference (EDOC 2002),
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

115



116 BIBLIOGRAPHY

Carless, S. (2006). Analyst: Online game market $ 13 billion by 2011. http:

//www.gamasutra.com/php-bin/news_index.php?story=9610.

Cavazza, M., Charles, F., and Mead, S. J. (2002). Emergent situations in interactive
storytelling. In SAC ’02: Proceedings of the 2002 ACM symposium on Applied
computing, pages 1080–1085, New York, NY, USA. ACM.

Chandler, A. and Finney, J. (2005a). On the effects of loose causal consistency
in mobile multiplayer games. In NetGames ’05: Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for games, pages 1–11,
New York, NY, USA. ACM.

Chandler, A. and Finney, J. (2005b). Rendezvous: an alternative approach to
conflict resolution for real time multi-user applications. In Parallel, Distributed
and Network-Based Processing, 2005. PDP 2005. 13th Euromicro Conference
on, pages 160–167.

Chandler, A. and Finney, J. (2005c). Rendezvous: supporting real-time collabora-
tive mobile gaming in high latency environments. In ACE ’05: Proceedings
of the 2005 ACM SIGCHI International Conference on Advances in computer
entertainment technology, pages 310–313, New York, NY, USA. ACM.

Chandler, A., McCaffery, D., and Finney, J. (2004). Rendezvous: The case for a
highly optimistic real-time consistency mechanism. In IEEE WACERTS’04
Proceedings, Lisbonne, Portugal.

Cheok, A. D., Fong, S. W., Goh, K. H., Yang, X., Liu, W., and Farzbiz, F. (2003).
Human pacman: a sensing-based mobile entertainment system with ubiquitous
computing and tangible interaction. In NetGames ’03: Proceedings of the 2nd
workshop on Network and system support for games, pages 106–117, New York,
NY, USA. ACM.

Cheriton, D. R. and Skeen, D. (1993). Understanding the limitations of causally
and totally ordered communication. SIGOPS Oper. Syst. Rev., 27(5):44–57.

Cronin, E., Filstrup, B., Kurc, A. R., and Jamin, S. (2002). An efficient syn-
chronization mechanism for mirrored game architectures. In NetGames ’02:
Proceedings of the 1st workshop on Network and system support for games,
pages 67–73, New York, NY, USA. ACM Press.

Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421.

Diamond, P. (2006). Synchronization for future mobile networks. Website. http:

//www.openbasestation.org/Newsletters/February2008/semtech.htm.

Duncan, T. P. and Gračanin, D. (2003). Algorithms and analyses: pre-reckoning
algorithm for distributed virtual environments. In WSC ’03: Proceedings of
the 35th conference on Winter simulation, pages 1086–1093. Winter Simulation
Conference.

Elson, J., Girod, L., and Estrin, D. (2002). Fine-grained network time synchroniza-
tion using reference broadcasts. SIGOPS Oper. Syst. Rev., 36(SI):147–163.

Everquest. Everquest’s website. http://www.everquest.com.



BIBLIOGRAPHY 117

Falk, J., Ljungstrand, P., Bjork, S., and Hansson, R. (2001). Pirates: proximity-
triggered interaction in a multi-player game. In Proceedings of ACM CHI 2001
Conference on Human Factors in Computing Systems, volume 2 of Interactive
posters: mobility, pages 119–120.

Ferretti, S. (2005). Interactivity maintenance for event synchronization in massive
multiplayer online games. Technical report, UBLCS-2005-05.

Ferretti, S. and Roccetti, M. (2004a). Event synchronization for interactive cy-
berdrama generation on the web: a distributed approach. In Feldman, S. I.,
Uretsky, M., Najork, M., and Wills, C. E., editors, WWW (Alternate Track
Papers & Posters), pages 226–227. ACM.

Ferretti, S. and Roccetti, M. (2004b). A novel obsolescence-based approach to
event delivery synchronization in multiplayer games. Int. J. Intell. Games &
Simulation, 3(1):7–19.

Ferretti, S. and Roccetti, M. (2005a). Fast delivery of game events with an op-
timistic synchronization mechanism in massive multiplayer online games. In
ACE ’05: Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology, pages 405–412, New York,
NY, USA. ACM.

Ferretti, S. and Roccetti, M. (2005b). Fast delivery of game events with an op-
timistic synchronization mechanism in massive multiplayer online games. In
ACE ’05: Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology, pages 405–412, New York,
NY, USA. ACM.

Ferretti, S., Roccetti, M., and Cacciaguerra, S. (2004). On distributing interactive
storytelling: Issues of event synchronization and a solution. In Göbel, S.,
Spierling, U., Hoffmann, A., Iurgel, I., Schneider, O., Dechau, J., and Feix,
A., editors, TIDSE, volume 3105 of Lecture Notes in Computer Science, pages
219–231. Springer.

Fletcher, R. D. S., Graham, T. C. N., and Wolfe, C. (2006). Plug-replaceable
consistency maintenance for multiplayer games. In NetGames ’06: Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for games,
page 34, New York, NY, USA. ACM Press.

Frécon, E. and Stenius, M. (1998). DIVE: a scaleable network architecture for
distributed virtual environments. Distributed Systems Engineering, 5(3):91–
100.

Fujimoto, R. (1999). Parallel and distributed simulation. In Winter Simulation
Conference, pages 122–131.

Funkhouser, T. A. (1995). RING: A client-server system for multi-user virtual
environments. In 1995 Symposium on Interactive 3D Graphics, pages 85–92.

Gautier, L. and Diot, C. (1998). Design and evaluation of mimaze, a multi-player
game on the internet. In ICMCS ’98: Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, page 233, Washington,
DC, USA. IEEE Computer Society.



118 BIBLIOGRAPHY

Griwodz, C. (2002). State replication for multiplayer games. In NetGames ’02:
Proceedings of the 1st workshop on Network and system support for games,
pages 29–35, New York, NY, USA. ACM.

Hsu, C., Ling, J., Li, Q., and c. Jay Kuo, C. (2003). The design of multiplayer online
video game systems. In Multimedia Systems and Applications VI. Edited by
Tescher, Andrew G.; Vasudev, Bhaskaran; Bove, V. Michael, Jr.; Divakaran,
Ajay. Proceedings of the SPIE, Volume 5241, pages 180–191.

IEEE, S. (1995). Application protocols. In IEEE Standard for Distributed interac-
tive Simulation. IEEE Std 1278.1-1995.

Ikedo, T. and Ishibashi, Y. (2006). An adaptive scheme for consistency among
players in networked racing games. In MDM ’06: Proceedings of the 7th In-
ternational Conference on Mobile Data Management, page 116, Washington,
DC, USA. IEEE Computer Society.

Ishibashi, Y., Tasaka, S., and Tachibana, Y. (1999). A media synchronization
scheme with causality control in network environments. In Annual IEEE Con-
ference on Local Computer Networks, pages 232–241.

Ishibashi, Y., Tasaka, S., and Tachibana, Y. (2001). Adaptive causality and me-
dia synchronization control for networked multimedia applications. In IEE
International Conference on Communications, pages 232–241.

Jefferson, D. R. (1985). Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–
425.

Kawahara, Y., Aoyama, T., and Morikawa, H. (2004). A peer-to-peer message
exchange scheme for large-scale networked virtual environments. Telecommu-
nication Systems, 25(3-4):353–370.

Khan, A. M., Arsov, I., Preda, M., Chabridon, S., and Beugnard, A. (2010). Adapt-
able client-server architecture for mobile multi-player games. In DISIO’10:
Proceedings of the Workshop on DIstributed SImulation & Online gaming,
Torremolinos, Malaga, Spain, 15 March.

Khan, A. M., Chabridon, S., and Beugnard, A. (2007). Synchronization medium:
a consistency maintenance component for mobile multiplayer games. In Ar-
mitage, G. J., editor, Proceedings of the 6th Workshop on Network and System
Support for Games, NETGAMES 2007, Melbourne, Australia, September 19-
20, 2007, pages 99–104. ACM.

Khan, A. M., Chabridon, S., and Beugnard, A. (2008). A dynamic approach to
consistency management for mobile multiplayer games. In NOTERE ’08: Pro-
ceedings of the 8th international conference on New technologies in distributed
systems, pages 1–6, New York, NY, USA. ACM.

Krishna Balan, R., Ebling, M., Castro, P., and Misra, A. (2005). Matrix: adaptive
middleware for distributed multiplayer games. In Middleware ’05: Proceedings
of the ACM/IFIP/USENIX 2005 International Conference on Middleware,
pages 390–400, New York, NY, USA. Springer-Verlag New York, Inc.

Kumagai, J. (2001). Fighting in the streets. IEEE Spectrum, 38(2):68–71.



BIBLIOGRAPHY 119

Laverge, J.-M. (2010). Development of a multiplayer game on mobile phone: Re-
search on improving the synchronization (in french). Technical report, Fi-
nal Project for Engineering studies, TELECOM Bretagne, Brest France, 17
March.

Li, F. W., Li, L. W., and Lau, R. W. (2004). Supporting continuous consistency
in multiplayer online games. In MULTIMEDIA ’04: Proceedings of the 12th
annual ACM international conference on Multimedia, pages 388–391, New
York, NY, USA. ACM.

Liang, D. and Boustead, P. (2006). Using local lag and timewarp to improve perfor-
mance for real life multi-player online games. In NetGames ’06: Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for games,
page 37, New York, NY, USA. ACM.

Lin, Y.-B. and Lazowska, E. D. (1991). A study of time warp rollback mechanisms.
ACM Trans. Model. Comput. Simul., 1(1):51–72.

Lineage. Lineage’s website. http://www.lineage-us.com.

Mateas, M. and Sengers, P. (1999). Narrative intelligence. In Fall Symposium on
Narrative Intelligence. American Associatin for Artificial Intelligence.

Mauve, M., Vogel, J., Hilt, V., and Effelsberg, W. (2004). Local-lag and Time-
warp: Providing Consistency for Replicated Continuous Applications. IEEE
Transactions on Multimedia, 6(1):47–57.

McCaffery, D. J. and Finney, J. (2004). The need for real time consistency man-
agement in p2p mobile gaming environments. In ACE ’04: Proceedings of
the 2004 ACM SIGCHI International Conference on Advances in computer
entertainment technology, pages 203–211, New York, NY, USA. ACM Press.

Mills, D. L. (1989). Internet time synchronization: The network time protocol.
Network Working Group Request for Comments (RFC1129).

Moon, K. S., Muthukkumarasamy, V., and anh Nguyen, A. T. (2006). Reducing
network latency on consistency maintenance algorithms in distributed net-
work games. In Proceedings of the IADIS International Conference: Applied
Computing 2006. IADIS Press.

Morse, K. L. (1996). Interest management in large-scale distributed simulations.
Technical Report ICS-TR-96-27, University of California, Irvine, Department
of Information and Computer Science.

Morse, K. L., Bic, L., and Dillencourt, M. (2000). Interest management in large-
scale virtual environments. Presence: Teleoper. Virtual Environ., 9(1):52–68.

Natkin, S. (2003). Computer games: A paradigm for new media and arts in the xxi
century. In Mehdi, Q. H., Gough, N. E., and Natkine, S., editors, GAME-ON,
pages 13–19. EUROSIS.

Okanda, P. and Blair, G. S. (2004). OpenPING: a reflective middleware for the
construction of adaptive networked game applications. In chang Feng, W.,
editor, Proceedings of the 3rd Workshop on Network and System Support for
Games, NETGAMES 2004, Portland, Oregon, USA, August 30, 2004, pages
111–115. ACM.



120 BIBLIOGRAPHY

Palant, W., Griwodz, C., and Halvorsen, P. (2006). Evaluating dead reckoning
variations with a multi-player game simulator. In NOSSDAV ’06: Proceedings
of the 2006 international workshop on Network and operating systems support
for digital audio and video, pages 1–6, New York, NY, USA. ACM.

Palazzi, C. E. (2006). Fast and Fair Event Delivery in Large Scale Online Games
over Heterogeneous Networks. PhD thesis, Department of Computer Science,
University of Bologna.

Pantel, L. and Wolf, L. C. (2002). On the impact of delay on real-time multiplayer
games. In NOSSDAV ’02: Proceedings of the 12th international workshop
on Network and operating systems support for digital audio and video, pages
23–29, New York, NY, USA. ACM Press.

Pellegrino, J. D. and Dovrolis, C. (2003a). Bandwidth requirement and state consis-
tency in three multiplayer game architectures. In NetGames ’03: Proceedings
of the 2nd workshop on Network and system support for games, pages 52–59,
New York, NY, USA. ACM.

Pellegrino, J. D. and Dovrolis, C. (2003b). Bandwidth requirement and state consis-
tency in three multiplayer game architectures. In NetGames ’03: Proceedings
of the 2nd workshop on Network and system support for games, pages 52–59,
New York, NY, USA. ACM Press.

Pellerin, R. (2010). Contribution à l’ingénierie des jeux multijoueurs ubiquitaires.
PhD thesis, CEDRIC, CNAM, Paris, sept. 2009, updated in 2010.

Pellerin, R., Delpiano, F., Gressier-Soudan, E., and Simatic, M. (2005). Gasp: A
middleware for multiplayer games in mobile phone networks (in french). In
UbiMob ’05: Proceedings of the 2nd French-speaking conference on Mobility
and uibquity computing, pages 61–64, New York, NY, USA. ACM Press.

Phillips, W. G., Graham, T. C. N., and Wolfe, C. (2005). A calculus for the refine-
ment and evolution of multi-user mobile applications. In Gilroy, S. W. and
Harrison, M. D., editors, DSV-IS, volume 3941 of Lecture Notes in Computer
Science, pages 137–148. Springer.

Phung-Khac, A., Beugnard, A., Gilliot, J.-M., and Segarra, M.-T. (2008). Model-
driven development of component-based adaptive distributed applications. In
SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
pages 2186–2191, New York, NY, USA. ACM.

Plotkin, G. D. (1981). A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, University of Aarhus.

Powers, M. (2006). Mobile multiplayer gaming, part 2: Applied theory. http:

//developers.sun.com/mobility/midp/articles/gamepart2.

Rhyne, T.-M. (2002a). Computer games and scientific visualization. Commun.
ACM, 45(7):40–44.

Rhyne, T.-M. (2002b). Computer games and scientific visualization. Commun.
ACM, 45(7):40–44.



BIBLIOGRAPHY 121

Santos, N., Veiga, L., and Ferreira, P. (2007). Vector-field consistency for ad-hoc
gaming. In Middleware ’07: Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware, pages 80–100, New York, NY, USA.
Springer-Verlag New York, Inc.

Schloss, H., Botev, J., Esch, M., Höhfeld, A., Scholtes, I., and Sturm, P. (2008).
Elastic consistency in decentralized distributed virtual environments. In
AXMEDIS ’08: Proceedings of the 2008 International Conference on Au-
tomated solutions for Cross Media Content and Multi-channel Distribution,
pages 249–252, Washington, DC, USA. IEEE Computer Society.

Singhal, S. K. and Cheriton, D. R. (1994). Using a position history-based pro-
tocol for distributed object visualization. Technical Report CS-TR-94-1505,
Stanford University, Stanford, CA, USA.

Smed, J., Kaukoranta, T., and Hakonen, H. (2002). A review on networking and
multiplayer computer games. Technical Report 454, Turku Centre for Com-
puter Science.

Steinman, J. S. (1990). Multi-Node Test Bed: A Distributed Emulation of Space
Communication for the Strategic Defense system. In Proceedings of the
Twenty-First Annual Pittsburgh Conference on Modelling an Simulation, vol-
ume 21, pages 1111–1115.

Steinman, J. S. (1991). SPEEDES: Synchronous parallel environment for emulation
and discrete event simulation. In Proceedings of the SCS Multiconference on
Advances in Parallel and Distributed Simulation, pages 95–101.

Sterzbach, B. (1997). Gps-based clock synchronization in a mobile, distributed
real-time system. Real-Time Syst., 12(1):63–75.

Terraplay (2000). Terraplay systems. http://www.terraplay.com.

Tsang, M., Fitzmaurice, G., Kurtenbach, G., and Khan, A. (2003). Game-like
navigation and responsiveness in non-game applications. Communications of
the ACM, 46(7):56–61.

Unreal. Unreal technology. http://www.epicgames.com.

Vogel, J. and Mauve, M. (2001). Consistency control for distributed interactive
media. In MULTIMEDIA ’01: Proceedings of the ninth ACM international
conference on Multimedia, pages 221–230, New York, NY, USA. ACM.

Wagner, C., Schill, M., and Männer, R. (2002). Intraocular surgery on a virtual
eye. Communications of the ACM, 45(7):45–49.

Wells, M. J. (2004). J2ME GAME PROGRAMMING. Premier Press.

Xiang-bin, S., Fang, L., Ling, D., and Xing-hai, Z. (2007). An event correlation
synchronization algorithm for mmog. In Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007.
Eighth ACIS International Conference on, volume 1, pages 746–751.

Yang, L. and Sutinrerk, P. (2007). Mirrored arbiter architecture: a network archi-
tecture for large scale multiplayer games. In SCSC: Proceedings of the 2007
summer computer simulation conference, pages 709–716, San Diego, CA, USA.
Society for Computer Simulation International.



122 BIBLIOGRAPHY

Zander, S., Leeder, I., and Armitage, G. (2005). Achieving fairness in multiplayer
network games through automated latency balancing. In ACE ’05: Proceedings
of the 2005 ACM SIGCHI International Conference on Advances in computer
entertainment technology, pages 117–124, New York, NY, USA. ACM.

Zhang, X., Gracanin, D., and Duncan, T. P. (2004). Evaluation of a pre-reckoning
algorithm for distributed virtual environments. In ICPADS ’04: Proceedings
of the Parallel and Distributed Systems, Tenth International Conference, page
445, Washington, DC, USA. IEEE Computer Society.

Zhou, S. and Shen, H. (2007). A consistency model for highly interactive multi-
player online games. In ANSS ’07: Proceedings of the 40th Annual Simulation
Symposium, pages 318–323, Washington, DC, USA. IEEE Computer Society.


