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Introduction en Francais

0.1 Biologie Systémique

Le domaine de la biologie systémique a pris son essor ces dix derniéres années. Le
principal but de la biologie systémique est de comprendre ’ensemble des contributions
de chaque composant biologique d’un systéme, de maniére & pouvoir expliquer une ob-
servation expérimentale concernant un processus biologique, une population de cellules,
ou un organisme. Ce domaine innovant a besoin d’intégrer des données biologiques
A toutes les niveaux moléculaires, ainsi que la collaboration entre chercheurs de dif-
férentes disciplines. Dans les paragraphes suivants, on décrira les méthodes et questions
qui apparaissaient lorsqu’on analyse un systéme biologique, et les solutions existantes
pour les résoudre. Notre objectif est de positioner nos recherches de maniére & pouvoir
postérieurement justifier leur intérét.

0.1.1 Contexte biologique

L’expression des génes désigne le processus dans lequel une séquence d’ADN est transfor-
mée en un composant structurel et fonctionnel de la cellule: une protéine. Ce processus
a deux parties: transcription, lorsque PADN est transformé en ARNm, et traduction,
lorsque PARNm est transformé en protéine (voir Fig. 1). La transcription est réalisée
essentiellement par la molécule ARN-polymerase, et la traduction est effectuée par les
ribosomes. Il y a quinze ans, les techniques de haut débit ont été introduites en vue
de mesurer simultanément ’expression de milliers de molécules, en particulier la con-
centration en ARNm de milliers de génes [LW00]. Cette étape a motivé "apparition du
champ de la biologie systémique, ayant comme principal défi de proposer des méthodes
et concepts pour exploiter ces observations [Kit02, B06].

Les produits des génes (protéines) ont différents roles fonctionnels dans la cellule et
sont exprimés sous 'effet de différents processus de controle dans la cellule. La décision
concernant les génes qui doivent étre allumés (on) ou éteints (off ) est executée par
des facteurs de transcription (FT). Les FTs utilisent des métabolites/signaux comme
données d’entrée de I’état actuel de environnement et produisent une réponse tran-
scriptionnelle en sortie [MAJSCV06|. La régulation de I'expression génétique controle
ainsi sur la structure et la fonction des cellules. Elle est la base de la différenciation cel-
lulaire, ainsi que de la polyvalence et de I’adaptabilité de tout organisme. L’expression
géneétique peut étre régulée a plusieurs niveaux: initiation de la transcription (e.g. par
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Figure 1: Etapes de 'expression génétique. Extrait du cours "Structure 3D de Protéines" du
Master 2 en Bioinformatique & I’Université de Rennes 1 en 2006.

des protéines qui sont des inhibiteurs ou activateurs), terminaison prématurée de la
transcription, initiation de la traduction, et post-traductionnellement. Le défi dans
I’analyse de la régulation de ’expression génétique est d’étudier comment tous les élé-
ments du processus de régulation interagissent afin de réaliser des fonctions biologiques
complexes, ce qui a un impact énorme dans la médecine et la pharmacologie.

Un des types des réseaux que nous étudierons dans cette thése est principalement
lié & la régulation de l”initiation de la transcription. Pendant ce processus, une molécule
d’ARN-polymeérase s’attache a la région promotrice de la séquence ADN (génes) et com-
mence la transcription au long du brin d’ADN. La transcription de ’ARN-polymérase
peut étre régulée par des FTs qui sont des protéines ou des complexes-protéiques. Ils
peuvent étre des activateurs, qui

renforcent I'interaction entre ’ARN polymérase et un promoteur particulier en en-
courageant l'expression du géne ou des inhibiteurs, qui se lient a des séquences non
codantes sur le brin d’ADN, entravant les progrés de ARN polymérase, et empéchant
ainsi ’expression du géne. Ce type de processus de régulation peut donc étre représenté
par un réseau de régulations transcriptionelles, RRT (voir Fig. 2).

Le processus de transcription peut aussi étre régulé par d’autres facteurs tels que
les signaux et/ou des métabolites. Aprés la transcription, le processus de traduction
peut aussi étre régulé par d’autress types de phénomeénes tels que la phosphorylation
ou la séquestration. Lorsque cette information est connue, nous pouvons construire des
réseaur de signalisation.

Les réseaux de régulation, représentés par un graphe d’interactions, peuvent con-
tenir des informations & différents niveaux moléculaires. Nous avons mentionné deux
types de réseaux: de transcription et de signalisation. Ces réseaux peuvent étre de
tailles différentes en fonction de la connaissance du systéme ou de la fonction biologique
étudiée. Les travaux de cette thése sont centrés sur les RRTs a grande-échelle, qui ont un
graphe d’interactions composé de milliers des noeuds et ont une structure hiérarchique,
et sur les réseaux de signalisation & moyenne-échelle, qui sont composés de centaines de
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Figure 2: Une partie du réseau de régulations transcriptionelles des génes et protéines du
E.coli. Les noms en majuscules correspondent aux FTs (protéines): HU et CRP, qui activent
ou inhibent la transcription d’autres génes. Les flaches qui finissent par "—>" ou "—|" veulent
dire que le produit de la source active ou, respectivement, inhibe la production du produit
d’arrivée.

noeuds et présentent une forte connectivité. Les réseaux de régulation & petite-échelle,
composés par des dizaines des noeuds, sont hors du cadre d’application de ces travaux.

0.1.2 Analyse intégré des réseaux de régulation

Comme mentionné précédement, une maniére de représenter les interactions dans un
systéme biologique consiste & utiliser des réseaux de régulations transcriptionnelles.
Ces réseaux sont constitués d’interactions entre les facteurs de transcription et un en-
semble des génes cibles controlés [TB04|. Les FTs contiennent des domaines de liai-
son pour 'ADN, qui reconnaissent les séquences opérateurs des génes cibles controlés
[PS92]; on les appellera motifs de liaison de FTs (MLFTs). Dans le cas d’organismes
microbiens il existe cing plates-formes, qui stockent 'information concernant les MLFTs
prédits et validés expérimentalement [BTR09]. Ils s’agit de RegulonDB [GCJIPG108],
MtbRegList [JGCT05], PRODORIC [MHB"03], DBTBS [SMdHNO08], et CoryneReg-
Net [BWRT07]. Ces plates-formes contiennent des informations intéressantes concer-
nant la construction a grande-échelle de réseaux transcriptionnels. D’aprés les informa-
tions qu’ils contiennent, plusieurs outils et analyses ont été proposés. Certains d’entre
eux sont inclus en tant que fonctionnalités dans les plates-formes. Nous allons les clas-
sifier en trois catégories:

1. Information sur ’organisation des réseaux: cette catégorie inclut le stock-
age, par des bases des données, de toute l'information sur la régulation. On
intégre aussi dans cette catégorie des outils qui fournissent une interface Web, des
capacités de navigation, et d’applications Web pour naviguer dans l'information
génomique. Les logiciels pour la visualisation des réseaux et ’échange d’informations
sont également inclus dans cette catégorie.

2. Analyse de séquences pour découvrir des régulations: cette catégorie in-
clut des outils et des méthodologies pour I'analyse des séquences afin de mieux
représenter les connaissances de régulation. Nous incluons également les analy-
ses topologiques des réseaux de régulation. Les méthodes dans cette catégorie
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effectuent les taches suivantes:

e Prédiction des réseaux de régulation par des outils de prédiction de MLFTs,
séquence promotrices, et FTs.

e Prédiction du role d’un FT par ’exploration des sites de l'origine de la tran-
scription.

e Prédiction des opérons.
e Prédiction de génes ou protéines homologues.

e Etudes topologiques de I'organisation des réseaux de régulation. Ces études
ont développé une série de mesures statistiques de maniére a élucider, par ex-
emple, la hiérarchie ou des notions de connectivité d'un systéme [FGAPTQCV08b].
La plupart du temps, ces études n’ont besoin ni de données d’expression, ni
de notions sur le role des régulations (activations, inhibitions).

3. Analyse des réseaux de régulation et/ou puces & ADN nous incluons
ici des méthodes consacrées & 'analyse d’un réseau de régulation en utilisant
des connaissances biologiques, puces & ADN, ou tout autre type de méthodes a
haut débit. Cette catégorie de méthodes est vaste, nous pouvons, cependant, la
subdiviser par le type de résultats obtenus en:

(A) Méthodes qui formalisent les interactions du réseau en utilisant des modéles
mathématiques, et en opérant des simulation ou analyses de trajectoires.

(B) Méthodes qui intégrent des données a haut débit dans le réseaux de régula-
tion.

(C) Méthodes qui permettent de classer des données a haut débit et de 'information
sur des MLFTs. Cette classification peut se conclure par la génération des
nouvelles connaissances liées a la topologie du réseau [EBK108|. En outre,
elle peut conduire & une meilleure analyse des résultats a haut débit incertains
et fournir une meilleure interprétation biologique de ces résultats [RZDT07).

D’une maniére générale, les méthodes de (A) et (B) sont essentiellement cen-
trées sur le réseau tandis que les méthodes en (C) se concentrent sur les données.
Les méthodes dans (A) sont capables d’effectuer des simulations précises de la dy-
namique d’un réseau de régulation réel, dans la plupart des cas d’une réseau de pe-
tite échelle. Elles ne sont pas en mesure, cependant, d’utiliser la vaste gamme des
données post-génomiques. D’autre part, les méthodes en (B) relachent la stricte
formalisation du modéle de régulation pour intégrer des données génomiques a
large échelle.

Les outils et méthodes bioinformatiques sont essentiels & la conception d’une connais-
sance biologique intégrée a partir de la grande quantité des données mises & disposition
aprés l'ére de la génomique. On peut classer celles lices & I'étude des réseaux de régu-
lation dans les trois catégories précisées. Les recherches que nous présentons dans cette
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thése concernent les méthodes de la catégorie 3. Les méthodes des catégories 2 et 3
peuvent générer des hypothéses & valider dans des études expérimentales. En outre, les
résultats des approches des catégories 2 et 3 sont connectés. Par exemple, les méthodes
qui étudient des motifs de régulation dans les réseaux (catégorie 2) sont liées a I’étude
de la dynamique du systéme (catégorie 3).

Sur les cing plates-formes des réseaux transcriptionnelles microbiennes & grande
échelle, RegulonDB est celle qui contient le plus grand réseau de régulation lié a un
organisme vivant. De ce fait, de nombreuses ressources en bioinformatique sont liées a
cette plate-forme [CVSM™109]. Toutefois, une seule des cing plates-formes (CoryneReg-
Net) comprend un outil qui automatise analyse des réseaux a grande échelle et des
données issues des puces & ADN [BAO§]. C’est le premier indicateur de la difficulté
de cette tache pour des réseaux & grande échelle. En fait, la difficulté des analyses
reposent essentiellement sur deux points : (i) la difficulté du processus de reconstruc-
tion des réseaux, et (i) la difficulté du raisonnement automatique sur un modeéle de
régulations & grande échelle.

0.2 Modélisation qualitative large-échelle

Parmi les méthodes qui raisonnent sur des réseaux & large-échelle, une partie s’appuie
sur une décomposition de la structure du réseau en motifs de régulation [GRRL103,
HLPP06]. D’autres utilisent le formalisme des réseaux booléens [Kau93|, par exem-
ple [GRRL'03, CKR04], pour calculer une mesure de consistance des régulations du
réseau en accord avec les résultats expérimentaux (puces a ADN). Ils peuvent aussi
générer des prédictions in-silico sur la variation qualitative de ’expression de certains
génes du réseau. Le principal intérét de ces approches est qu’elles proposent une direc-
tion pour 'analyse des réseaux de régulation a grande-échelle. Toutefois, 'analyse de
cohérence que ces méthodes ont proposé n’est ni automatique ni globale. La généra-
tion des prédictions peut étre automatisée, cependant, elle dépendra de ’acquisition des
connaissances quantitatives trés précises sur les métabolites du systéme.

Les études qui ont proposé des méthodes pour ’analyse des réseaux & grande-échelle,
utilisent des données d’expression & I’échelle d’'un génome complet. Les approches qui
utilisent un formalisme booléen raisonnent avec régles logiques sur les variations des
molécules du réseau suite & un stress expérimental ou une perturbation génétique. L’idée
principale qui sous-entend ces approches a été de mettre en place des contraintes sur les
variations entre les différents états. Ce point de vue fournit une nouvelle application des
approches booléennes [Kau93| dans un contexte considérablement modifié qui garantit
leur validité : les variations au cours du changement d’tats plutét que la simulation
dynamique.

Sur la base de cette idée, dans [SRB106] une méthode formelle a été proposée afin
d’étudier la consistance globale d’un réseau de régulation par rapport & un jeu des
données expérimentales (& grande échelle) sur la variation de I'expression génétique.
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Une régle causale d’interaction générique a été utiliséé pour résoudre la question de
consistance.

Les travaux dans cette thése portent sur ’application biologique et extensions in-
formatiques et mathématiques de cette approche : d’abord, pour tester sa validité sur
un réseau transcriptionel bactérien & grande échelle, ensuite, pour appliquer cette ap-
proche aux réseaux eukaryotes complexes de transduction des signaux. Pendant ces
travaux, ’approche initiale a été adaptée pour traiter des interactions complexes de
régulation, surtout lorsqu’on traite des données eukaryotes. Enfin ’approche initiale a
été étendue afin de pouvoir traiter des données d’expression relatives aux génes mutés
ou sur-exprimés. Trois types de sorties ont été vérifiées en permanence, adaptées, et
améliorées dans toutes nos études:

e Consistance globale du réseau de régulation avec des jeux des données d’expression.
e Diagnostic des modules inconsistants.

e Prédictions sur la variation qualitative de ’expression de certaines molécules du
réseau.

Ces sorties ont était générées aprés l'exécution d’algorithmes performants, qui peu-
vent traiter des grandes systémes des contraintes et trouver une solution globale du
systéme. Une bibliothéque Python, Bioquali, a était utilisée pour I'implémentation des
programmes qui procédent a ’analyse de consistance. De plus, des outils bioinforma-
tiques tels qu’un site Web, un plugin Cytoscape, et un service Web, ont été développés
pendant cette thése et rendus publics.

Nos travaux viennent compléter les approches précédémment mentionnées sur les
réseaux a grande échelle car notre approche est automatique et globale, et propose fi-
nalement un outil automatique pour la correction des réseaux inconsistants. Ce faisant,
nous sommes en mesure de mettre en évidence les corrections minimales qui doivent étre
faites sur un réseau et/ou des données afin de les concilier. Contrairement aux autres
méthodes qui étudient des réseaux a grande échelle, nous ne donnons pas la priorité ni
aux régulations ni aux données, on considére que les deux sont sujettes a des erreurs.
En comparaison avec les résultats obtenus dans [CKR104], nos prédictions, sans tenir
compte de la connaissance du métabolisme du systéme, s’avérent trés précises (90%)
aprés la récupération automatique des inconsistances d’un réseau & grande-échelle avec
un jeu indépendant des données expérimentales.

Dans ’ensemble, nos résultats ont répondu a des questions biologiques pertinentes
tels que:

e Tester la consistance globale de réseaux de régulation complexes et & grande échelle
avec des données d’expression issues de puces & ADN.

e Générer manuellement et automatiquement des hypothéses pour résoudre les in-
consistances entre le réseau et données d’expression.
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e Prédire le role de régulation de facteurs de transcription comme activateurs ou
inhibiteurs.

e Raisonner globalement et de maniére étendue sur les états on/off et sur les voies
qui connectent deux sommets intéressants dans un réseau de signalisation.

Etant donné le domaine de cette thése multi-disciplinaire, les solutions et méth-
odes proposées répondent & différents niveaux des aspects méthodologiques, bioinfor-
matiques, et biologiques.
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Introduction en Francais



Chapter 1

Introduction

1.1 Systems Biology

The systems biology field is a recently established research domain where biological sys-
tems are considered as a whole. Its main interest is to understand the joint contributions
of each biological entity in order to explain an experimentally observed behavior of a
cell population or an organism. This challenging domain requires the integration of bio-
logical data at all molecular levels, as well as the collaboration among multidisciplinary
scientists. In the following paragraphs we will describe the methods and questions that
appear when analyzing a biological system and the current solutions that exist. Our
objective is to place our research in order to justify its interest.

1.1.1 Biological context

Gene expression is the process in which a DNA sequence is converted into the structures
and functions of a cell: proteins. This process has two steps: transcription, when
DNA is converted in mRNA, and translation, when mRNA is converted into a protein
(see Fig. 1.1). Transcription is carried out mainly by the molecule RNA-polymerase,
while translation is carried out by the Ribosome protein. Fifteen years ago, high-
throughput techniques were introduced in order to measure simultaneously thousands
of molecules, in particular the mRNA concentration of thousands of genes [LWO00|. This
step motivated the apparition of the systems biology field, having as a main challenge
to propose methods and concepts to exploit these observations [Kit02, B06].

Gene products (proteins) have different functional roles and are expressed under dif-
ferent stresses. The decision about which genes should be turned on or off is executed
by transcription factors (TFs). The TFs use metabolites/signals as an input informa-
tion from the environmental state and give a transcriptional response as an output
[MAJSCV06]. Regulation of gene expression gives a cell the control over its structure
and function. It is the basis for cellular differentiation, as well as for versatility and
adaptability of any organism. Gene expression can be regulated at several levels: initi-
ation of transcription (e.g. by repressor or activator proteins), premature termination
of transcription, initiation of translation, and post-translational. The challenge in the

13
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I DNA | ‘ CCTGAGCCAACTATTGATGAA

mRNA ‘CCUGAGCCAACUAUUGAUGAA

translation

Figure 1.1: Gene expression steps. Extracted from the subject "Structure 3D de Protéines"
of the Master in Bioinformatics of the University of Rennes 1 in 2006.

analysis of gene expression regulation is to study how all the components of the reg-
ulatory process interact in order to perform complex biological functions; this has an
enormous impact on medicine and pharmacology.

One of the types of networks we study in this thesis is mainly related to the regulation
of the transcription initiation. During this process a molecule RNA-polymerase attaches
to the promoter region of the DNA sequence (gene) and begins transcription along all
the DNA strand. The RNA-polymerase transcription can be regulated by TFs that are
proteins or proteins-complexes. They can be activators, which enhance the interaction
between RNA polymerase and a particular promoter encouraging the expression of the
gene, or repressors, which bind to non-coding sequences on the DNA strand impeding
the progress of RNA polymerase along the strand, thus, impeding the expression of the
gene. This type of regulatory process can therefore be represented by a transcriptional
regulatory network (TRN), as shown in Fig. 1.2.

CRP rT—
l micF
crp J_l:l_ Hu J_
hupA —
galE
ol —.
hupB

Figure 1.2: Extract of the transcriptional network of genes and proteins in E.coli. The names
in capital letters correspond to TFs (proteins): HU and CRP, that can activate or repress
other genes transcription. Arrows ending with "—>" or "—|" imply that the initial product
activates or, respectively, represses production of the product of arrival.

The transcription process can also be regulated by other factors such as signals
and/or metabolites. After transcription, the translation process can also be regulated
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by other type of phenomena such as phosphorylation, bindings, or sequestration. When
this information is known we can build signaling networks.

Regulatory networks, represented by a graph of interactions, may carry information
at different molecular levels. We mentioned two types of them: transcriptional and
signaling networks. These networks are of different sizes, depending on the knowledge
of the system or on the biological function under study. The research in this thesis is
centered on the large-scale TRNs, which graphs are composed of thousands of nodes
and have a hierarchical control structure, and on the middle-scale signaling networks,
which are composed of hundreds of nodes and hold a high connectivity between them.
Small-scale regulatory networks (composed of tens of nodes), though well studied by
different approaches, are out of the scope of this research.

1.1.2 Integrated analysis of regulatory networks

As mentioned previously, one way of representing the interactions in a biological sys-
tem is by using transcriptional regulatory networks. These networks are composed of
interactions among transcription factors and a set of controlled target genes [TBO04|.
The TFs contain DNA-binding domains that recognize the operator sequences of con-
trolled target genes [PS92]; we call them TF binding motifs (TFBMs). In the case of
microbial organisms there exists five platforms [BTR09] which store information about
predicted and experimentally validated TFBMs. They are RegulonDB [GCJJPG108],
MtbRegList [JGCT05], PRODORIC [MHB103], DBTBS [SMdHN08], and CoryneReg-
Net [BWRT07]. These platforms hold interesting information concerning large-scale
transcriptional networks reconstruction. From the information they contain, several
tools and analyses are derived. Some of them are included as functionalities in the
platforms. We may divide them in three categories:

1. Network information organization: including databases storing all the regu-
latory information. Also tools providing a web interface, navigation capabilities,
and web applications to browse in the genome information of interest (e.g. a TF
and the region in the genome where it binds to activate other genes). Software for
network visualization and exchange of information is also included in this category.

2. Sequence analysis to discover regulations: we include in this category tools
and methodologies for the analysis of sequences in order to better represent the
regulatory knowledge. We also include network structure topological analyses.
Methods in this category may perform the following tasks:

Prediction of new network regulations by using tools that can predict new
TFBMs, promoter sequences, and TFs.

Prediction of the role of a TF by exploring the transcription start sites.

Prediction of gene operons.

Prediction of homologous genes or proteins.



16 Introduction

e Topological studies of the organization of regulatory networks. These stud-
ies develop a series of statistic measures in order to elucidate, for example,
hierarchy or connectivity notions of a system [FGAPTQCV08b]. Most of the
time they do not require neither gene expression data nor notions about the
role of the regulation (activator, repressor).

3. Network and/or microarray analysis: we include here methods devoted to
the analysis of a regulatory network using biological knowledge, microarray data,
or other type of high-throughput methodologies. This category of methods is
extensive; we can, however, subdivide it by the type of results generated into:

(A) Methods that formalize the network interactions using a mathematical model,
and thus perform simulations or reasoning analyses (see Section 1.2).

(B) Methods that integrate high-throughput data into regulatory networks (see
Section 1.3).

(C) Methods that classify extensively high-throughput data and TFBMs infor-
mation. This classification may lead to generation of the new knowledge
related to the topology of the network [EBKT08]. Also, it may lead to bet-
ter analysis of the fuzzy microarray outputs and provide a better biological
interpretation of them [RZD*07].

Generally speaking, methods in (A) and (B) are mostly centered on the network,
while methods in (C) on the data. Methods in (A) are able to perform precise
simulations of the dynamics of a real regulatory network, in most of the cases
a small-scale one. They are not able, however, to use the wide range of post-
genomic data. On the other hand, methods in (B) relax the strict formalization
of the model of regulations in order to include wide genome datasets.

Bioinformatic tools and methods are essential in designing integrated biological
knowledge from the large amount of data issued after the genomics era. We can classify
those related to the study of regulatory networks in the three aforementioned categories.
The research we present in this thesis concerns methods in category 3. Methods pro-
vided in categories 2 and 3 may generate hypotheses to be validated in future wet lab
studies. In addition, the outputs of methods in category 2 and 3 are connected. For
example, methods which study specific network motifs (category 2) are related to the
study of the dynamics of the whole system (category 3).

Of the five platforms of large-scale microbial transcriptional networks, RegulonDB is
the one containing the major electronically encoded regulatory network of a free-living
organism - the E. coli bacteria. Thus, many bioinformatic resources are linked to this
platform [CVSM™09]. However, only one of the five platforms (CoryneRegNet) includes
a tool that automatizes the analysis of large-scale networks and microarray data [BA0S].
This is the first indicator of the difficulty of this task for large-scale networks. In fact, the
inconvenience has mostly two reasons: (i) the difficulty of the network reconstruction
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process, as methods of category 3 can only be applied after a regulatory model is built,
and (77) the difficulty of automatic reasoning over a large-scale regulatory model.

1.1.3 Network visualization approaches

In addition to the platforms managing information from the large transcriptional mi-
crobial networks, and to the large number of existing methodologies that formalize the
analysis of regulatory data and reason over it, there also exist some informatic solutions
destined to present network analysis in a user-friendly manner. The exchange of infor-
mation between different fields is fundamental for the progression and the coherency of
the results obtained in systems biology. Hence, all the efforts made on diffusing, in a
comprehensible way, these results are of great interest. We can cite among these efforts
the Cytoscape software package [CSCT07], which is a free and open-source software
that provides a framework for the visualization, modeling, and analysis of regulatory
networks. Many Cytoscape plugins for network analysis were proposed to this date
(see Table 1.1). As already shown, the network analysis concept is too wide. More-
over, the analysis plugins proposed, though centered mainly on the network, share very
few properties. Of the 29 analysis plugins proposed, 6 provide topological analyses of
the network without considering experimental data [RRAS08, ARST08], and 7 provide
clustering and classification of subnetworks from expression data [YWHT08, CLL*07].
Only 3 plugins propose automatizing network analysis based on a mathematical repre-
sentation of the regulatory network and experimental data [BA08, GBMSO09]; of them
only 2 provide a solution in the case of TRNSs.

In addition to Cytoscape, there also exist other informatic tools that simulate the
network dynamics. We can cite among them Cell Designer [FMKTO04|. This tool is
a diagram editor for gene regulatory and biochemical networks coded in SBML (Sys-
tems Biology Markup Language) [HFST03], a standard way of representing biological
networks.

1.2 Modeling regulatory networks - dynamics formaliza-
tion

The study of regulatory systems control benefited from the explosion of high-throughput
technologies that measure simultaneously thousands of expression levels of cell molecules,
e.g. cDNA microarrays [BB99|, oligonucleotidechips [LFGL99|, SAGE analysis [VZVK95],
and protein microarrays [MS00]. These studies intend to elucidate the dynamics of a
system or analyze the network connections by exploiting the information outputted by
the experiments or biological literature. We will review in this section the different
kinds of formalisms approached.

Notice, however, that we only consider in this review methods that study transcrip-
tional and signaling networks. The interactions in these networks represent cause-effect
relationships, i.e., the edges of the network represent effects of one molecule over the
other. There exist, however, other types of genetic regulatory structures where gene
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Table 1.1: Cytoscape plugins for network analysis, extracted from [cyt] on July 2009.

Type of analysis Number | Cytoscape Analysis Plugins
CalculateNodeDegree, CentiScaPe, CyOog [RRASO08],

Topological 6 cyto-Hubba, netMatch, NetworkAnalyzer [ARS'08]
Clustering and clusterExplorerPlugin, clusterMaker, jActiveModules,
classification 7 MCODE, TransClust, NetAtlas [YWHTO0S],

PinnacleZ [CLL107]

Mathematical model | 3 Coma [BAOQS], PerturbationAnalyzer, BioQuali [GBMS09]
Network operations 2 ShortestPath, RandomNetworks

Visualization 2 dynamicXpr, ReOrientPlugin

Validations of ~ 2 APID2NET [HTPDIR07], CABIN [SD07]

network interactions

Filtering of 2 EnhancedSearch, HiderSlider

network attributes

RDFScape (ontologies),

BLAST2SimilarityGraph (sequences),

Others 5 OmicsViz (orthologous genes),

structureViz (3D protein structure),

VistaClaraPlugin [Kin04] (multi-experiments visualization)

connections represent the presence of protein-protein interactions, or the cell viability:
synthetic-lethal genetic interactions [DTCT05], or the fact that these genes code for
enzymes that catalyze chemical reactions: metabolic networks. In this review we are
excluding methods that analyze such types of networks.

1.2.1 Bayesian models - inferring regulatory networks

In the Bayesian formalism regulatory networks are modeled by defining a probability
distribution over the expression of a gene. For each gene in the network a probability
of its expression is defined, which depends on the probability of the expression of its
predecessors in the network. Techniques for Bayesian networks [Hec98, FLNP00| allow
us to infer the network topology from a gene expression dataset, obtained for example
from microarray measurements. The reconstructed network is defined as the most
likely model given the data. Such an optimization problem is usually non-convex, and
finding a global optimum cannot be guaranteed in practice. Existing algorithms report
a local optimum which should be interpreted with care: errors can appear, and no
congsensual model may be produced. As an illustration, special attention was paid
to the reconstruction of the S. cerevisiae network from ChIP-chip data and protein-
protein interaction networks [LRRT02]. The first regulatory network was obtained
with promoter sequence analysis methods [HGLT04, MWG™06|, yet, some undetected
transcriptional regulatory motifs were proposed using non-parametric causality tests
|[XvdL05|. Bayesian analysis also identified new regulatory modules for this network
[SSRT03, NTIM05]. However, the results obtained with the different methods did not
coincide and a fully data-driven search is in general subject to over-fitting and not fully
reliable [FMST07].

One of the advantages of this formalism is that it can be easily adapted to the noise
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present in microarray measurements; however, it does not illustrate the dynamics of the
system, nor a reasoning logic confronting the regulatory network and the experimental
data.

1.2.2 Boolean networks and generalized logical networks

Boolean networks were introduced in the 70. by Kauffman [KPST69|. In this formalism
genetic regulatory networks are modeled as qualitative systems of discrete on/off vari-
ables. A Boolean network consists of binary (on/off) genes, interactions that are causal
or regulatory links between genes, and rules that specify the state at time ¢ + 1 of an
activity of a gene as a function (output) of the activities of other genes at time ¢. One
can study the dynamics of a Boolean network by following the trajectories of the on/off
values for the genes at different time points. One of the advantages of this approach is
the possibility to study network properties for large-scale regulatory systems [Kau93].
In [HSWKO02| the authors modeled real transcriptional networks with Boolean rules
extracted from experimental data, comparing their properties with respect to a model
using random Boolean rules. The authors deduced that for 150 small-scale transcrip-
tional systems, where mutational and deletion analysis were provided, eukaryotic genes
had a strong bias to be regulated with an OR Boolean function. In [KPST03] global
properties of the S. cerevisiae transcriptional network were studied, deducing also a
strong bias for OR Boolean functions, and a more stable behavior than for random net-
works. This formalism idealizes transitions between activation states as deterministic
and synchronous. The synchronicity assumption is quite strong for biological reality
because the effect of a gene resulting from the change of activity of one of its regulators
could be seen after several time points. When transitions are not simultaneous, certain
behaviors may not be predicted.

Boolean network models evolved into generalized asynchronous logical networks
[Tho91]. The concentration of a gene in the network is represented no longer as a
binary variable, but as a logical variable: a discrete value from 0 to p, where p is the
number of successors of the gene in the network. The network interactions represent
positive or negative influences labeled with a discrete value that represents the threshold
of activity of the interaction, i.e. the interaction will take place only if the concentra-
tion (logical variable) of the source gene overpasses the value of the interaction label.
In addition, a logical function, that takes as input the logical variables of the predeces-
sors of a gene, outputs the state which the gene tends to be in a future step. When
the system does not change its state, it has arrived to a steady state. Using this for-
malism, it is possible to find all the steady states of the system. Under appropriate
parametric ranges, positive circuits generate multistationarity, while negative circuits
generate homeostasis [TTK95]. By detecting the feedback circuits on the system and
analyzing its steady states, global properties of the system can be obtained, as shown in
[MTAB99] for the study of the regulatory network of Arabidopsis thaliana. More recent
applications of this approach are the analysis over the small-scale biological networks
of the the embryonic development of the drosophila [GCT08|, and the development of
the cystic fibrosis [GMBCT04].
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1.2.3 Quantitative and qualitative differential equations

Ordinary Differential Equations (ODEs) appear as an alternative to the discrete mod-
eling introduced above. In this formalism, the concentrations of the network products
are modeled by continuous time-dependant variables. Network components represent
different biomolecular components as genes, proteins, and metabolites. Gene regulation
is modeled by the rate equations expressing the rate of production of a network compo-
nent as a function of the concentrations of other components. Rate equations include
constant rates, kinetic parameters, and regulatory functions. They express a balance
between the number of molecules appearing and disappearing each time unit. The reg-
ulatory function representing the production of a gene is given by the Hill (continuous
sigmoid) curve [YYT71].

As a result, regulatory networks are modeled by a system of rate equations. The so-
lution of this system is approximated by numerical techniques that allow further analysis
and simulation. Bifurcation analysis tools [Str94| may limit the choice of parameters.
In [TCNO1| the authors applied these tools to exploit a numerical model of the cell
cycle. ODEs were also applied to model the signaling pathways of NFxB [NIE*04] and
EGF [SEJGMO02|. The advantage of this formalism is that it takes into account different
types of molecular interactions and gives very precise results on the system dynamics
when used on a known small-scale regulatory network.

However, for many biological processes detailed quantitative information is not avail-
able. Hence, qualitative formalisms appeared, which study the qualitative dynamics of
the system. Qualitative reasoning was invented by Kuipers in 1986 [Kui86] and it was
applied in medicine and physics, as well as in molecular biology. There are several tools
for simulating qualitative reasoning; one of them is QSim [Kui94], in which a model is
described in terms of at least one qualitative differential equation (QDE). Notice that
a QDE consists of a set of variables, a set of quantity spaces for each variable, a set of
constraints for the variables, and a set of transitions. Each variable has a magnitude
(numerical value) and a direction (increasing, decreasing, or zero). In [HSK98b]| the
authors used QSim to qualitatively simulate the A phage infection in F. coli. The same
authors developed BioSim [HSK98a], which is an improved simulator of qualitative rea-
soning. Genetic Network Analyzer (GNA; [dJGHPO03|) is another qualitative simulator,
applied in the simulation of the initiation of sporulation in B. subtilis. It represents reg-
ulations among genes not by using the continuous Hill functions, but by discontinuous
step functions, building in this way a system of piecewise-linear differential equations.
Recent illustrations that used GNA to simulate the qualitative dynamics of more com-
plex, but still small-scale, regulatory networks are the studies of the nutritional stress in
E. coli [BRAJT05], and of the onset of a pectinolytic bacterium [SRNO7|. Interestingly,
GNA also proposes model checking techniques to analyze the model behavior. In this
way, the analysis of regulatory networks considers not only the dynamics of a system,
but also it takes into consideration certain model properties.
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1.2.4 Rule-based formalisms - signaling networks

The analysis of regulatory networks was approached first from the dynamics simulation
perspective; afterwards, with tools as Genetic Network Analyzer, the system behavior
was also explored. The system behavior analysis can be formalized with the rule-based
approach. We will introduce this formalism, by first describing the type of regulatory
network which fits the best to this approach: signaling pathways.

Signaling pathways are a more complex type of regulatory networks. Nodes in these
networks represent proteins in different states e.g. phosphorylated, unphosphorylated,
forming a complex, efc. Interactions represent not only transcriptional regulations, but
also post-translational modifications of proteins, which in turn generate a large number
of possible molecular species that can carry the signals. Compartments and transport
phenomena may also be represented in these networks. Analyzing this type of networks
requires at first a careful understanding of the biological process, and then a mapping
of this knowledge into regulatory constraints.

Kappa |[DL04] is a formal language for molecular biology where precise rules of
post-translational regulations can be stated. Thus, biological systems can be repre-
sented using Kappa, and the properties of the program built from these rules can be
analyzed statistically [FDK'09|. By interpreting rules into ODEs, it is possible to sim-
ulate K-rules programs in order to obtain the dynamics of products in the network. In
[DFF*07] authors showed the performance of this rule-based formalism on a system of
10 components that generated 10%? possible molecular states for the network compo-
nents. Despite the number of states, they were able to generate the dynamics of the
system. The advantage of this modeling approach, with respect to the formalism of
ODEs, is that it does not assume synchronicity in cell dynamics and that it can calcu-
late the dynamics for systems with a large number of possible states of the species. A
difficulty in the ODEs simulation proposed by this approach is that it needs to fix the
rate constants of the system. As the rules are very precise, the rate constants need to
be known a priori. Besides, as we shall see in the following chapters, signaling networks
can be built precisely for 100 components. The authors of this formalism do not specify
its performance in terms of computation time when referring to middle or large-scale
signaling networks.

Another rule-based formalism is BIOCHAM [CFS06, FSCRO04|: a language and pro-
gramming environment for precise modeling biological networks and formalizing of the
experimental knowledge as properties of the system. The provided rule-based language
allows modeling biological networks at three abstraction (semantic) levels: (1) Boolean,
where the molecules of the network are represented by their present or absent value
and the interactions are represented by a set of rules, (2) concentration, where the vari-
ables denote real values expressing the concentration of the molecules and the rules are
equipped with kinetic expressions that provide the dynamics of the system based on
ODEs, and (3) population, where the modeling object is an integer number representing
the number of molecules in the system and the rules are interpreted by Markov chains.
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The biological properties of the system are formalized using temporal logic CTL (Com-
putation Tree Logic), LTL (Linear Time Logic), and PLTL (Probabilistic LTL), used in
the three semantics respectively. The outputs of BIOCHAM are: model validation wrt
quantitative or qualitative specification, simulations for quantitative data given an ini-
tial condition, and model correction and parameter inference wrt global properties that
are given in terms of constraints representing known biological behaviors of the system.
These properties correspond to the biological experiments used to build and validate
the model. The verification of biological properties was implemented in Prolog for the
numerical LTL properties [CCRFS06], and through the NuSMV modelchecker for the
CTL properties [CCGT02]. The largest example treated with the Boolean semantics
was a middle-scale model of 800 rules and 500 variables; its performance was shown in
[CRCD'04] to be of a few tenths of seconds to compile the model and check simple
CTL formulae. One of the limits of the Boolean semantics is the high degree of non-
determinism: many paths are possible, which leads to performance problems on small
size models having a high number of parallel pathways. In the population semantics
only small-scale networks can be treated. Temporal logic is an interesting approach to
reason automatically over time on very precise signaling networks, allowing the user to
perform analyses over qualitative and quantitative data. It is fundamentally conceived
to reason over the temporal combinatorics of the system, being its main interest the
evolution of the system through time.

1.3 Confronting gene expression levels with large-scale reg-
ulatory networks

As reviewed in Section 1.2, the quantitative study of the dynamics of a regulatory
system in terms of attractors, steady states, and simulations is limited by the system
size. Larger systems require larger knowledge of them; and even in the case of QDEs,
the necessity of reviewing literature to find all the applicable thresholds of interactions
may pose a big problem when considering a network of a thousand of products. Be-
sides, as mentioned in Section 1.1.2, large-scale TRNs have already been compiled for
bacteria. In the case of eukaryotes, a reasonably complete picture of the architecture
of Saccharomyces cerevisiae TRN was proposed by [NGBBK02, TMJ*06, MMT*08].
This rises two natural questions. The first one, “How feasible can be to integrate the
large-scale compiled regulatory knowledge into a methodology or bioinformatic tool,
to simulate the network or reason over it?” The second one, “How correct a compari-
son between the outputs of such methodology with genomic datasets can be, knowing
that networks, even after being curated, are always incomplete [EBKT08|, and that
genome-wide datasets may be uncertain [GW02|?”

Recently, large-scale network analysis methods appeared to handle the complexity
of large-scale networks. These methods leave aside the study of the network dynam-
ics to analyze less precise and more abstract properties in large-scale networks. One
of the widely studied properties is the consistency of a large-scale network wrt gene
expression datasets. This property, which will be discussed through all this thesis, re-
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ports how coherent are the experimental observations wrt the network topology, that
is, wrt the causal arrows in the network. Once the consistency diagnosis performed,
one checks whether an experimental dataset fits the regulatory model or not; also, one
checks which regions of the network are incomplete wrt a specific dataset. This concept
was approached by different methods which will be discussed in the following para-
graphs. Some of them propose to decompose the large network structure into network
motifs or building blocks. Others generate qualitative computational predictions of
gene-expression. The common point between these approaches is that their reasoning
is based on the use of causal rules to represent the regulatory interactions of the network.

The work of [GRRLT03] used the Boolean networks formalism as well as a careful
review of the literature to provide a partial consistency measure for the E. coli reg-
ulatory network using microarray profiles. Its novelty resided in the ability of widely
exploit genome expression profiles to evaluate their consistency with known regulatory
structures. The authors tested the consistency between the E. coli regulatory model
proposed by RegulonDB and four microarray profiles on this organism designed by
them. The network structure was analyzed partially, considering only specific regulons
(genes that are controlled by the same TF) in which genes are expressed homogeneously
in the microarray. A regulon was marked as consistent when the on/off expressed val-
ues of its genes agreed with the role of the TF that transcribes them and its activity.
The activity of the TF was measured taking into account its DNA binding conforma-
tion, which was deduced also from the expression of the genes only regulated by it.
A disjunctive Boolean rule was used to model co-regulated groups except in the case
where literature suggested other type of Boolean regulation. The results revealed that
70 to 87% of the network regulons analyzed were consistent with the four experimental
settings. As expected, they obtained better consistency results when using the DNA
binding conformation than when not.

Following the same direction, the authors in [HLPPO06| also evaluated the consis-
tency between two network structures and a compendium of gene expression profiles.
They used the networks of E. coli [SOMMAQ2] and S. cerevisiae [NGBBKO02]. The
datasets were composed of 163 experiments for E. coli and 904 for yeast. They divided
the network regulations into five types of motifs: regulons, complex regulons (genes
receiving more than one activator or repressor), regulator-target interactions (Rls), tar-
get modules (TMs, multiple regulators acting over the same target), and feed-forward
loops. Afterwards, they evaluated the consistency of a motif in terms of how probable
was that its topology reflected a coherent gene expression tendency, when compared
to random generated motifs. For example, the genes in a regulon were supposed to
correlate in their expression profiles significantly (P-value < 0.01) wrt the expression
profiles of random generated regulons. As a result they obtained different percentage
of consistent motifs according to the motif type. In the case of regulons they obtained
that around 50% of them were significantly consistent in both yeast and E. coli. The
lowest percentage of consistency was obtained for Rls. These analyses revealed incom-
plete regions in the model. Interestingly, a different number of consistent regulons was
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obtained for regulons composed of activators than of repressors, and for TM motifs with
different number of regulators. The difference between this approach and the previous
one is that no formalism is applied over the model, and the consistency of regulatory
rules are deduced from a significant pattern of expression among the different expression
profiles. This analysis gives a strong confidence to datasets, and makes difficult to detect
experiments in which data points are ambiguous or incoherent. Also, a weakness relies
on the fact that much information is abstracted in order to generate a single measure
for consistency.

Another approach aimed to analyze large-scale networks is the work of [CKR104].
The authors applied a procedure described in [CSP01] to integrate high-throughput and
computational data to elucidate large-scale bacterial networks. The procedure was able
to predict qualitative gene expression events by using detailed metabolic information
of the model. It expanded flux-balance analysis [VP94] to include Boolean regula-
tory constraints. The presence or absence (1/0 value) of a protein in the network was
deduced from the quantitative predictions of the metabolite concentrations when the
bacteria growth was optimized. Authors could simulate the growth of the organism
by calculating, at first, the optimal metabolic flux distribution using fixed numerical
parameters and a set of values as initial condition. Then, they iteratively calculated
the next step of the system by using the resulting flux distribution and the conditions
of the system at the previous step. In this way, on/off values of proteins were obtained
for each time point, and the up-, down-regulation, or zero tendency were deduced for
all the proteins involved in the model. In [CKR'04] this method was applied to the
large-scale E. coli metabolic/regulatory network, obtaining initially a 49% of accuracy
between their gene-expression computational predictions and the mRNA measurements
during the aerobic-anaerobic shift. This percentage of accuracy was, not surprisingly,
increased to 98% when the regulatory boolean rules where modified according to the ex-
perimental outputs. The same authors recently integrated signal transduction models
into their in silico E. coli computational model in [CXCKO08|. Their integrative ap-
proach is relevant because it combines and analyzes biological regulations occurring at
different levels in an organism. This can, however, raise problems when the interactions
among the organism molecules are not precisely described. One weakness is that obtain-
ing gene expression predictions requires previous knowledge on the metabolite initial
concentrations and reactions of the organism. Additionally, to simulate different time
steps they need to know (or impose) numerical parameters on the protein transcription
and decay time, as well as maximum uptake rates for all the possible substrates. Even
though simulations are performed automatically, the authors of this approach do not
mention computation time of their procedure. In comparison with the previous stud-
ies, it can also be seen as a method that fits the regulatory rules into an specific dataset.

In this section we discussed methods that reason over large-scale regulatory net-
works. For that purpose some of them decompose the network structure into network
motifs [GRRLT03, HLPP06]. Others use the Boolean networks formalism [GRRL™03,
CKR104] to compute a consistency measure of the network regulations according to the
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experimental outputs, as well as to generate qualitative gene expression computational
predictions. The main interest of these approaches is that they proposed a direction for
analyzing large-scale regulatory networks. However, the proposed consistency analysis
was neither automatized nor global. Generating computational predictions can be au-
tomatized, yet it depends on acquiring precise quantitative metabolic knowledge of the
system.

1.4 Large-scale qualitative modeling

The studies discussed in Section 1.3 dealt with genome-scale datasets and large-scale
networks. Those that modeled the networks using the Boolean network formalism rea-
soned with logical rules on variations of products during stress experiments or gene
perturbations. The main idea underlying these approaches was to set up constraints on
variations between different states. This point of view provides a new application of the
original Boolean rules of [Kau93| in a considerably modified context that ensures their
validity: variations during shifts instead of dynamical simulation.

Based on this idea, in [SRB106] a formal method was proposed to investigate the
global consistency of a regulatory model with large-scale differential gene expression
data. A general interaction logical causal rule (near to a logical disjunction) was used
to addressed the question of consistency.

The work in this thesis concerns the biological application and computational exten-
sion of this approach: initially, to test its validity on large-scale bacterial transcriptional
networks, afterwards, to apply it to complex eukaryotic signal transduction models.
During this work, the original approach was adapted to deal with more complex regu-
latory interactions, especially when dealing with eukaryotic data. Also, it was extended
to deal with knockout and over-expression experimental datasets. Three types of output
were constantly checked, adapted, and improved in all our case studies:

e Global consistency of the regulatory network with independent gene expression
datasets.

e Diagnosis of the inconsistent modules.

e Predictions over gene expression or protein activities.

These outputs were generated after running complex algorithms, which can handle
large systems of constraints and find a global solution of the system. A Python library,
Bioquali, was used to implement the programs that perform the consistency analysis.
Also, bioinformatic tools such as a Website, a Cytoscape plugin, and a Web service
application were developed during this thesis and made publicly and freely available.
These tools were proposed to prospective biologists so that they can perform the same
type of analyses over their own data.

Our work complements previous large-scale reasoning studies since it is automatic
and global. We go one step further from the consistency analyses proposed before, as we
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provide an automatic tool for repairing inconsistent networks. By doing this we are able
to highlight the minimal corrections needed to be made on the network and/or data in
order to reconcile them. Contrary to most of the methods described in section 1.3, we
do not prioritize the dataset more than the model; we consider both of them prone to
errors. In comparison with the results obtained in [CKRT 04|, our computational pre-
dictions, without considering metabolic knowledge on the system, were highly accurate
(90%) after automatic retrieving of the inconsistencies of a large-scale transcriptional
network with independent datasets.

On the whole, our results answered to relevant biological questions such as:

e Testing the global consistency of large-scale and complex biological networks wrt
to high-throughput datasets.

e Generating manual and automatic hypotheses to solve the inconsistencies between
a network topology and experimental data.

e Inferring the role of transcription factors as activators or repressors.

e Globally and extensively reasoning over the on/off states of the paths connecting
two interesting nodes in a signaling network.

Being the domain of this thesis multi-disciplinary, the proposed solutions and meth-
ods answer at different levels methodological, bioinformatic, and biological aspects.
This thesis is divided in two parts. Part I describes the mathematical and informatic
methodology used to approach the presented problem, as well as the bioinformatic tools
proposed to diffuse this methodology. Part II presents the biological application and
validation of our results.

Part I

The approach used in this thesis to analyze large-scale regulatory networks is based on
a consistency measure of a network when confronted to an experimental dataset. Both
the network and dataset are represented in a qualitative way, that is the regulations in
the network are discretized, as well as the experimental measurements. Afterwards, this
discretized information is mapped into a mathematical model composed of qualitative
equations. The satisfiability answer of the system of qualitative equations will give
us insights about the consistency between the network topology and the experimental
data provided. Large-scale regulatory networks can be mapped into large systems of
qualitative equations, which solution can only be studied via informatic approaches. Up
to this date, two informatic approaches were proposed to deal with this problem, both
being very efficient in computation time.

Different programs can be written basing on the implementation of these approaches
in order to answer questions related to the confrontation of biological data. We pro-
posed specific programs addressed to answer the following questions: (i) consistency
check between a network and a dataset, (7) diagnosis of inconsistent network regions
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or dataset observations, (ii) TF role inference on unsigned networks, (iv) automatic
computation of all possible inconsistent regions in the network, (v) automatic minimal
repair of a network and/or a dataset, and (vi) post-consistency analysis of predictions
in order to find the origin of a molecule change under an experimental condition.
Some of these questions, specifically the consistency analysis and diagnosis, were
included into bioinformatic tools that enable the user to access and exploit them in an
easier way by using a Website, a network visualization software, or a Web service.

Chapter 2

We present in this chapter the mathematical modeling approach used in this thesis. This
approach was initially proposed in [SRB106] and [RLST06]. The mathematical model
is built from a regulatory network and an expression dataset; it contains qualitative
information of both data. The network regulations are originally discretized in {4, —, 7}
influences, expressing activations, repressions, or complex interactions, while the dataset
observations are discretized in {+, —} changes representing up- or down-regulations of
network products between two experimental conditions. The mathematical model of a
network and a dataset is expressed as a system of qualitative constraints, in which the
variables of the system are the change in variation of a non-observed network product.
Each constraint in the qualitative system relates a node in the network with its direct
predecessors using a generic consistency rule, which states the following idea: "The
variation of the concentration level of one molecule in the network must be explained
by an influence received from at least one of its predecessors, different from itself, in
the network."” If this rule appears to be valid for all the network products, the system
of constraints is said to be consistent. In this case, there exists at least one solution
for the variations of all network products. The non-observed network products will be
fixed to {+, —} values in order to satisfy all the constraints of the system. By searching
the intersection of all the system solutions we may find the necessary changes that
have to occur in order to explain the experimental dataset. This intersection is called
predictions of a consistency analysis. Also, it may happen that the qualitative system
of constraints is not consistent with a given dataset. In this case it is possible to search
for the cause of this inconsistency; generally, it is a combination of observations in some
network products and signs of some network edges. We call it inconsistent graph.

We described in a few words the standard analysis of the consistency check between
a network and a single dataset, which will be detailed further in this chapter. There we
will also discuss about new qualitative constraints that were added to the mathematical
model in order to answer other types of biological questions, as well as to relate a
network product with its direct predecessors in a different way.

Chapter 3

In this chapter we show which informatic solutions lied on many of the results of the
research presented in this thesis. Computing the satisfiability of a large system of
qualitative constraints is an NP-complete problem for even linear qualitative systems
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[Dor88|, and classic methods of resolution do not allow solving this kind of problems
[TMDO03|. Two informatic approaches propose a solution to this problem, and, conse-
quently, they provide an informatic solution to the confrontation between large-scale
regulatory networks and experimental data.

The first one is based on the ternary decision diagrams, TDDs [VBSR05, Veb07,
LBP07, Bor(9]. This approach evolved through time, and it was adapted to provide
solutions to different biological questions efficient in computation time. We proposed,
basing on the TDDs approach, programs to perform the classic consistency-check anal-
ysis. This analysis consists of the following steps: (1) finding a solution of the system of
constraints, (2) in case a solution is found (consistency), predicting a set of variations
of network products, (3) in case there is not a solution (inconsistency), isolating a set
of qualitative constraints (inconsistent graph).

From the consistency-check analysis another program was proposed to approximate
all inconsistent graphs. The TDDs approach was also used to design programs which
infer the unknown role of TFs by using multiple datasets. Furthermore, two extensions
of its implementation were proposed to deal with: (i) more complex types of regulatory
roles in the network, and (i) expression of the null-variation of a network molecule.
While the first extension was applied successfully to signaling networks, the second one
is still in its testing phase.

The second informatic approach is reasoning over a qualitative system of constraints
using Answer Set Programming (ASP, [GKNS07]). In [GST108] a program encoding
ASP rules was proposed to detect exactly all the inconsistent subgraphs of a network
when confronted with a single dataset. Currently, of the proposed programs based on
TDDs, only the consistency-check and diagnosis of all inconsistent graphs are imple-
mented and tested in ASP.

Nonetheless, different types of problems can be approached with ASP, for instance,
the minimal correction of a network/dataset when they are inconsistent. The program
containing the ASP rules to answer this question is presented in detail in this chapter.
This work was validated using the £. coli TRN and was submitted, in collaboration with
the team leaded by T. Schaub in the Potsdam University, to the “Twelfth International
Conference on the Principles of Knowledge Representation and Reasoning”, to be held
in Toronto, Canada, May 9-13, 2010.

Chapter 4

The informatic implementations used to analyze large-scale networks offer a good start-
ing point for users with specific biological questions and basic computer science knowl-
edge. Both implementations propose a framework (either by coding in Python or ASP)
in which the user can program her own applications. It may be, however, that users
are confronted with the same type of questions we were confronted with, and which
we already proposed specific programs to approach the solution for. Thus, in order to
provide a faster and easier access to this specific reasoning, we designed three bioinfor-
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matic tools. In our opinion, these tools are a way of diffusing these methodologies, by
controlling the questions that can be asked to the system and by executing remotely
the analyses in high-performance machines.

In this chapter we present these tools, developed during this thesis in order to analyze
the consistency of the large-scale regulatory networks and diagnose them wrt a single
dataset. All of them launch their analysis on the GenOuest high performance computing
facility [gen], are publicly available, well documented, and constantly maintained. They
were set up in collaboration with the GenOuest platform.

The first one consists of a Website which receives text files representing a network
and a dataset; it outputs the consistency answer, the predictions, and lists the network
regulations causing an inconsistency.

The second tool is a plugin for Cytoscape [SMO103], a software for visualizing and
analyzing regulatory networks. This plugin allows visualizing the counsistency-check
analysis, as well as the diagnosis of the inconsistencies. An automatic detection of dif-
ferent network inconsistencies is also proposed, in addition to user-friendly conversions
of network annotations and experimental results into discretized values. The work con-
cerning the Cytoscape plugin was published in “Guziolowski ef al. BioQuali Cytoscape
plugin: analysing the global consistency of regulatory networks. BMC Genomics, vol.
10, pp. 244, 2009 ”.

The third tool proposes the same consistency analysis, but this time as a Web
service. Thus, users can automate access to the consistency-check analysis from their
own informatic tools or databases. The Web service was developed in order to interact
with the CoryneRegNet platform [BWR™T07|, which is a systems biology platform to
analyze gene regulatory networks in Corynebacteria and E. coli. It could complement
existing tools of this platform, since it is able to perform global and thus more complex
analyses in reasonable computation time.

Part 11

The mathematical and informatic approaches introduced in the previous chapters were
validated using real biological data. On this account we obtained from public databases
and from the literature three large-scale regulatory networks of different organisms. In
addition to this data, we also collected experimental data of gene expression profiles on
these organisms.

The first model corresponded to the E. coli transcriptional regulatory network ob-
tained from the RegulonDB database. The second one was the S. cerevisiae transcrip-
tional network obtained from ChIP-chip data. The third one was the signaling network
of the EWS-FLI1 human oncogene. This last network was obtained from a collaboration
with the Institute Curie! [SZNT08].

We compiled our results into two chapters, 5 and 6, concerning analyses on prokary-
otic and eukaryotic data, respectively.

"http://bioinfo-out.curie.fr/projects/sitcon/
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Chapter 5

The bacterium Escherichia coli is one of the best-studied single-celled organisms. Its
genetic regulatory network was studied by a wide community, and this information was
compiled in databases such as RegulonDB. For that reason, we applied the modeling
and informatic approaches to this bacteria. We illustrate in this chapter the biological
application of the qualitative consistency analysis on this organism.

First, we validated the computational feasibility of the consistency-check analysis
on the signed E. coli TRN. Our analysis was performed in less than one minute using
programs based on the TDDs approach. As a result, we completed the network of
regulations and proposed corrections on the dataset of observations. We published this
work in “Guziolowski et al. Checking Consistency Between Expression Data and Large
Scale Regulatory Networks: A Case Study, Journal of Biological Physics and Chemistry,
vol. 7, pp. 37-43, 2007".

Afterwards, we validated the accuracy of the computational predictions by compar-
ing them to an independent microarray dataset. We detected that 80% of the com-
putational predictions were in agreement with the independent dataset observations.
We also proposed explanations of our false-positive predictions. This work was pub-
lished in "Guziolowski et al. Curating a large-scale regulatory network by evaluating its
consistency with expression datasets, CIBB’08: 5th International Conference on Bioin-
formatics and Biostatistics, Salerno, Italy 2008, Lecture Notes in Computer Science,
vol. 5488, pp. 144-155, Springer".

The E. coli TRN was also used to asses the automatic correction of inconsistencies
when using genome-wide datasets. We showed that after an automatic correction of
the inconsistencies, we can predict partial observations in these datasets with a 90% of
accuracy. Finally, we applied the TF role inference approach to the E. coli unsigned
TRN and validated our results. Using this network we also computed the theoretical
limits of the TF role inference approach.

Chapter 6

In the previous chapter we applied our modeling approach to the E. coli transcriptional
network. Although this organism is very well studied, its transcriptional regulatory ma-
chine is simplified with respect to eukaryotic organisms. One major difference between
prokaryotes and eukaryotes is the existence of the nucleus membrane, which divides the
place where transcription and translation occurs in eukaryotic cells. Another difference
is that in eukaryotic cells much more post-transcriptional processes take place after the
mRNA production. In prokaryotic cells mRNA usually stays unchanged.

In this chapter we will discuss the results obtained when dealing with two eukaryotic
regulatory network models. The first one is the transcriptional regulatory network
of S. cerevisiae. The second one is the signaling network of the EWS-FLI1 human
oncogene. We present the different analyses proposed over these more complex systems,
as well as the biological impact and validation of our results.

In our first study we show a comparison between the TF role inference approach
when applied to the S. cerevisiae eukaryotic regulatory model with respect to the E. coli
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prokaryotic model. We published this work in "Veber et al. Inferring the role of tran-
scription factors in regulatory networks, BMC Bioinformatics, vol. 9, pp. 228, 2008".

In our second study, we describe how we adapted our approach in order to consider
specific representations of post-translational phenomena in the EWS-FLI1 signaling
network. Based on this more specific modeling, we studied the pathways responsible
for the inhibition and reactivation of the cell-cycle phenotype in this network. We
submitted this work to the IEEE/ACM “Transactions on Computational Biology and
Bioinformatics” (IEEE-TCCB) journal.
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Chapter 2

Qualitative modeling approach

In this chapter we describe the mathematical formalism of regulatory networks, which
all the results of this thesis are based on. We present three different types of problems
that can be approached with it. For each problem we detail the biological data that is
accepted, as well as which type of outputs can be generated. All problems are stated by
a set of qualitative constraints, which are specific to the type of data we are treating; we
will see how we adapted our modeling to handle different levels of biological knowledge.

2.1 Mathematical formalism

2.1.1 Intuitive consistency rule

Let us first introduce intuitively the consistency criteria used in this approach. A
regulatory network is said to be consistent if the following sentence, called generic
consistency rule, holds for all the molecules in the network: "The wvariation of the
concentration level of one molecule in the network must be explained by an influence
received from at least one of its predecessors, different from itself, in the network”.

The biological intuition of the consistency rule can be viewed in Fig. 2.1. A and B
may represent two proteins that activate the transcription of gene C. The consistency
rule states that if A and B are both up-regulated (+) under certain condition, then C'
must be up-regulated, i.e. a ‘+’ prediction will be assigned to C' (Fig. 2.1a). Similarly,
the concentration change of C' will be predicted as ‘— if both, A and B, were down-
regulated.

When A is up-regulated (+) and B is down-regulated (—) the expression level of C'
cannot be predicted, as both expression levels (up/down regulated) are possible for C
and do not contradict the consistency rule (Fig. 2.1b).

A third situation may occur when all the molecules are observed, let us say, A is up-
regulated, B is up-regulated, and C'is down-regulated. The consistency rule states that
C should be up-regulated; the experiment, however, shows the contrary. Thus, we arrive
to an inconsistency between the network and the experiment, also called inconsistent
graph (Fig. 2.1c). No predictions may be generated from an inconsistent graph, yet, a
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region in the network is identified together with the expression data that created the
conflict.

Expression Data Expression Data Expression Data
Product Effect Sign Product Effect Sign Product Effect Sign
A upreg. + A upreg. + A upreg.  +
B upreg. + B downreg. - upreg. -+

B
+ " _ C downreg. -
+

+
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N [A] N [4] N1 i
© &)

C)

Prediction Prediction Prediction
Pr%duct Effect Sign Product Effect Sign INCONSISTENT
upreg. + C unknown ?
(@) (b) (c)

Figure 2.1: Examples explaining the consistency check process. (a) Expression predictions
when a consistent expression dataset is provided. (b) A consistent expression dataset may
not generate a new prediction. (c¢) An expression dataset provided was inconsistent with the
influences in the graph.

A regulatory network is consistent wrt an expression dataset if all the quali-
tative expression changes, observed in the dataset, are explained by the (consensual or
not) fluctuation of some of the nodes in the network. In Fig. 2.1 we see that depending
on the expression dataset we may obtain up to three different results: consistency and
prediction, only consistency, or inconsistency.

2.1.2 Formalization

The mathematical formalization of the consistency rule is applied on a regulatory net-
work represented in the form of an influence graph. An influence graph is a common
representation for biochemical systems where arrows show activations or inhibitions.
Basically, an arrow between A and B means that an increase of A tends to increase
or decrease the production rate of B depending on the shape of the arrow head. For
example, the influence graph of the network describing the lactose metabolism in the
bacterium E.coli (lactose operon) is shown in Fig. 2.3. Common sense and simple bio-
logical intuition can be used to state that an increase of allolactose (node A on Figure
2.3) should result in a decrease of the production rate of Lacl protein. However, if both
Lacl and cAM P-C'RP increase, then nothing can be said about the variation of LacY .

Let us now generalize the influence graph concept in the mathematical study of the
equtlibrium shift of a differential system. On that account, let us consider a network
of n interacting cellular constituents (mRNAs, proteins, or metabolites). We denote by
X; the concentration of the i*? species, and by X the vector of concentrations (which
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components are X;). We assume that the system can be adequately described by a

system of differential equations of the form % = F(X,P), where P denotes a set of

control parameters (inputs to the system). A steady state of the system is a solution of
the system of equations F(X,P) = 0 for fixed P.

A typical experiment consists of applying a perturbation (change P) to the system
in a given initial steady state condition eql, waiting long enough for a new steady state
eq2, and recording the changes of X;. Thus, we shall interpret the sign of DNA chips
differential data as the sign of the variations X% — X',

The particular form of vector function F is unknown in general, but this will not be
needed as we are interested only in the signs of the variations. Indeed, the only informa-

tion we need about F is the sign of its partial derivatives g)};; We call influence graph

the graph which nodes are the constituents {1,...,n}, and where there is an edge j — i

iff g)’% # 0 (an arrow j — ¢ means that the rate of production of ¢ depends on X;). As

soon as F is non linear, g—g may depend on the actual state X. In the following, we will

assume that the sign of 353 is constant, that is, that the influence graph is independent

of the state. This rather strong hypothesis can be replaced by a milder one speci-
fied in [RLST06, SRBT06] meaning essentially that the sign of the interactions do not
change on a path of intermediate states connecting the initial and the final steady states.

To study the equilibrium shift of a regulatory network we need two main elements:
(i) an influence graph representing the regulatory network and (%) a dataset representing
shifts of the network products between two conditions at steady state.

Influence graphs can be built using a natural passage from transcriptional regulatory
networks. This is because TRNs hold interactions of the form TF-gene, in which the
rate of production of the gene is affected by the concentration change of the TF that
transcribes it. Even so, any kind of regulatory networks may be studied as long as their
interactions can be mapped as influence relations, i.e. A influences B if increasing or
decreasing concentration of A affects the production rate of concentration of B. The
influence graph and dataset must fulfill the following conditions:

1. The edges of an influence graph must be labeled qualitatively as 4+, —, and ?,
where + represents a positive influence (e.g. activation of gene transcription,
recognition of a gene promoter region, or formation of proteins complexes), — a
negative influence (e.g. inhibition of gene transcription, inactivation of a protein),
and ? a dual or complex regulation (see Fig. 2.2). It is important that during the
shift from condition eql to condition eq2, the {+, —} labels of the network edges
remain constant.

2. The dataset must be composed of qualitative {+,—} concentration changes of
some of the molecules in the network. For example, one type of concentration
changes may be statistically significant mRNA-expression responses, described
qualitatively as: + up-regulation, — down-regulation. We may also provide other
reliable concentration changes issued from the literature or other types of stress
perturbation experiments.
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Figure 2.2: A regulatory network (A) mapped into an influence graph (B). Influences among
molecules create an influence graph. The arrows in the influence graph represent a positive (+)
or negative (—) influence.

2.1.3 (Qualitative constraints

We introduce now an equation that relates the sign of variation of a species to that of
its direct predecessors in the influence graph. To state our result with full rigor, we need
to introduce the consistency relation ‘~’ among signs (see Table 2.1). This relation is
reflexive, symmetric, but not transitive, because ? is consistent with anything.

Table 2.1: Consistency relation ~. Tt states the consistency answer of a qualitative constraint.
T stands for true, whereas F for false.

~ |4+ - 7
+| T F T
—|F T T
2?1 T T T
Let us now denote as T' a node in the influence graph, and as {S,S52,...,5,}

the p predecessors of T in the graph, different than 7. In addition, let us denote
t € {+,—} (resp. s1,s2,...,5sp) the variation of node T (resp. S1,S2, ..., S3), measured
by comparing two conditions of the cell at a steady state’. Recall that we consider
experiments that can be modeled as an equilibrium shift of a differential system under
a change of its control parameters. In this setting DNA chips outputs, for example,
may provide the signs of variation in concentration of many (but not necessarily all)
species in the network.

We can thus relate the variation of a node in the influence graph with the variation
of its predecessors with the following qualitative constraint:

t >~ Fr(s1,82, - ,5p) (2.1)

!'This notation will be kept through all the formulations in this chapter.
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where Fr : {+,—} — {4,—,?} is a qualitative function, representing the combined
influence of the predecessors of T'. Fp represents how the variations of predecessors of T'
affect ¢. In some cases this function may output a ? value, which means that ¢ cannot
be precised. The consistency relation ‘>’ is satisfied if a positive variation of a node
does not receive a combined negative influence from its predecessors, or vice versa, or
if Fp is indeterminate ‘?” (recall Table 2.1).

As we will see in the next sections, Fr can be defined in different ways. It may
be precised from the biological literature of the organism under study. Also, it can be
generalized mathematically in order to fit any type of behavior of the system under an
equilibrium shift.

~7

2.1.4 Generic qualitative constraint

The generic qualitative function Fr = GENr is a way to describe the influences of the
p predecessors of T in a generic way. It takes into account their regulation sign, that is:

t ~ GENp(s1, - ,sp) (2.2)
52
GENr(s1,--,sp) = Y. sign(S; —T)®s;, VS; # T (2.3)
jE{l,'--,p}

where sign(S; — T'), represents the sign of the edge from S; to T" in the influence graph
and it is a value in {+,—,?7}. ® and & are the sign operators introduced in Table 2.2.
These operators are used to express the total contribution of the predecessors of a node
in a graph. GE N7 represents the influences that arrive over a product 7' in a generic
way. If all the contributions sign(S; — T') ® s; targeting T' will be positive, GENrp
will be 4. It is enough that a single contribution will have an opposite sign to obtain
GENp =1

Table 2.2: Sign tables for the addition (@) and multiplication (®) used to build the generic
qualitative constraint.

o+ — 2 ® |+ — 7
+[+ 7 7 ++ - 7
—? - 7 — |- + 7
A S S ¢ (A S S

In [RLST06] the authors proved that the generic qualitative constraint ¢t ~ GENr
is valid under the following hypothesis:

e The molecule T' does not self-regulates positively. This condition is verified when
T does not activate its own production. Apart from this case, the degradation
of a molecule assures that it will self-regulate negatively. If there is a molecule
in the influence graph that receives a positive self-regulation, then the generic
qualitative constraint is not imposed over it.
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e There is not a direct influence from P (set of system inputs) over 7". This means
that T is considered as an inner molecule of the system.

e For all j € {1,---,p}, sign(S; — T) is constant in the states along the path
connecting eql and eq2. This hypothesis implies that the influences of the graph
remain constant during the experiment. This is the strongest hypothesis, since
it was shown in [ST01| that interactions among molecules may change depending
on the concentration level of the molecules influencing their targets.

Notice that the generic consistency constraint is similar to a linearization of the
system F(X,P) = 0. However, as we only consider signs and not quantities, this con-
straint is valid even for large perturbations (see [RLST06] for a complete proof).

In the Boolean networks formalism regulatory interactions in eukaryotes are mod-
eled using an OR Boolean operator, while in BIOCHAM [CFS06, FSCR04| phospho-
rylation and complex formation phenomena are represented in a constraint using an
AND Boolean operator. Remember, however, that in both cases the modeling object
is a Boolean variable in {0, 1} representing the absence or presence of a molecule in the
network at a given time (compared to the previous time step). The modeling object in
our formalism represents the qualitative variation between two experimental conditions
of a molecule in the network. We do not represent a discrete state in a time point of
the molecule, but its qualitative variation between two stable states of the cell. For
example, we represent gene up/down-regulations as {+,—} qualitative changes of the
gene concentration. Nevertheless, Boolean approaches consider up/down-regulations as
discrete {0, 1} states of a molecule. By using different modeling approaches we model
different characteristics of the same biological phenomena.

In our case, the generic consistency constraint includes part of the OR and AND
operators behaviors. However, when two or more influences carrying opposite signs
target the same node, there is not a deterministic behavior of the target node (see Fig.
2.1B). Its change will depend on the priorities of its regulators in governing its expres-
sion, which are a prior: unknown.

2.2 Analyzing a network

2.2.1 Simple example

Let us describe how to reason over a system of qualitative constraints in order to analyze
a simple influence graph. Given an influence graph, for instance the graph illustrated in
Figure 2.3, we use Equation 2.2 for each node of the graph to build a qualitative system
of constraints. The variables of this model are the signs of variation for each species.
The qualitative system associated to the lactose operon model is proposed in the right
side of Figure 2.3. In order to take into account experimental observations, measured
variables should be replaced with their sign values. A solution of the qualitative system
is defined as a valuation of its variables which does not contain any ? (otherwise, the
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constraints would have a trivial solution with all variables set to ?) and that, according
to the consistency relation ~, will satisfy all qualitative constraints in the system. If

the model is correct and if data is accurate, then the qualitative system must have at
least one solution.

Le
- Lacl ~ —-A
/ \ A ~ LacZ
Li Lacl cAMP-CRP LacZ =~ cAMP — Lacl
\ / [ Li ~ Le+ LacY — LacZ
LacZ G ~ Li+ LacZ
/ - A cAMP ~ -G
G LacY ~ cAMP — Lacl

Figure 2.3: Influence graph for the lactose operon and its associated qualitative system. In the
graph, arrows ending with "—>" or "—|" imply that the initial product activates or represses
the production of the product of arrival, respectively. The names of the products correspond
indeed to their sign variation between two steady states.

An analysis that can be done is to check the self-consistency of the graph, that is
to find if the qualitative system without observations has at least one solution. For the
lactose operon model the set of all possible variations for its variables takes 2% values in
{+,—}. Of them, only 18 satisfy the qualitative system of constraints (see Table 2.3);
this set corresponds to the solutions of the system of constraints.

Table 2.3: 18 consistent variations wrt the influence graph model of the lactose operon.

Le Lacl A LacZ Li G cAMP LacY Le Lacl A LacZ Li G cAMP LacY
- - + + +  + - + + - + + - = + +
- - + + -+ - + + - + + +  + - +
- - + + -+ - - + - + + -+ - -
- - + + - = + + + - + + +  + - -
- + — — + + - + - + + -+ - +
- + - - + = + + + + - - + = + -
- + - - - = + - + + — - + - + +
- + - - — + + + + - - - = + -
— + — — + + — — + + — — +  + — —

Checking the consistency of an influence graph wrt a dataset of experimental
measurements boils down to instantiate the measured variables with their experimen-
tal value, and to see if the resulting system still has a solution. If this is the case,
then it is possible to determine if the model predicts some variations. For example,
we can say that the lactose operon model is consistent with the set of observations
{Le: +, Lacl : —, A : +}, but not with the set {Le : +, Lacl : +, A : +}.

It happens that a given variable has the same value in all solutions of the system.
We call such variable a hard component. The values of the hard components are the
predictions of the model.
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Whenever the system has no solution, a simple strategy to diagnose the problem
is to isolate a minimal set of inconsistent equations. Note that in our setting isolating a
subset of the equations is equivalent to isolating a subgraph of the influence graph. The
combination of the diagnosis algorithm and a visualization tool is particularly useful for
model refinement as we shall see in Chapter 4.

The resolution of qualitative systems of constraints is a difficult problem, in infor-
matic language it is called an NP-complete problem. It means that the time for solving
this problem grows exponentially wrt to its size. In Chapter 3 we describe how efficient
representations of qualitative systems of constraints, leading to effective algorithms,
were used to get further insights into the model under study. We shall see that these
algorithms are able to deal with large-scale networks.

2.2.2 Main concepts of the consistency analysis

As we saw in the previous example, the analysis of a regulatory network, by studying
its qualitative system of constraints, is composed of specific elements. We will describe
them in detail in the following paragraphs. The ability to extract these elements from
a biological problematic will allow us to analyze large-scale regulatory networks wrt
experimental measurements using this approach. As we will discuss in the next sections,
several types of analyses can be proposed by specifying these elements differently.

I. Influence graph and experimental measurements. These objects correspond
to the biological information we initially have of the organism under study. This infor-
mation need to be represented qualitatively. For this reason we need to identify:

(1) the {+,—,?} signs of the edges in the graph, using the influence graph information,
and

(2) the {4, —} variations of the nodes of the graph, using the experimental measure-
ments information.

In most of the cases we cannot precise this information thoroughly. Thus, we can
only provide partial values for the variations of the nodes and/or signs of the edges.
The non-observed signs (of edges and nodes) will correspond to the variables of the
qualitative system of constraints.

In a first step of the analysis, either the signs of the edges or the signs of the nodes
may be fixed. The further analysis of the qualitative system of constraints will provide
new values for the non-observed signs.

II. Qualitative constraints. A qualitative constraint relates the qualitative informa-
tion of the influence graph and experimental measurements. Specifically, it relates the
variation of a network node with the influences it receives from its direct predecessors
in the influence graph, as shown in Equation 2.1.

The way we define Frp in this relation depends, once more, on the biological infor-
mation of the organism under study. In Section 2.1.4 we showed a generic consistency
constraint composed by the GENp qualitative function.
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As a general rule, it is difficult to determine the priority or weight of biological
regulations. In these cases, imposing the generic qualitative constraint suits the best.
However, in some cases it is possible to model Fr precisely by using biological informa-
tion. Notice that if Fp is known precisely, the signs of the edges connecting T' with its
predecessors do not need to be specified.

Once the qualitative functions are chosen, the qualitative system of constraints for
an influence graph can be generated automatically by the informatic tools proposed in
Chapter 3.

III. Solving a qualitative system of constraints. The solution of a system of
qualitative constraints contains interesting information concerning the confrontation
with the biological data. The research of this solution outputs three main results that
will be recurrently used during this thesis.

1. Consistency: as seen in Section 2.2.1, the solution of a system of qualitative
constraints is reached when a {4, —} valuation of all the variables of the system
exists. This valuation must satisfy all of the system constraints. The consistency
answer is given as a Boolean true or false value.

2. Hard components - predictions: when the system of constraint is consistent,
at least one solution of the system exists. This means that the variables of our
system are assigned either ‘4’ or ‘—’ values. Let us say, for example, that in
all the proposed solutions the sign value of the molecule Lacl is fixed to ‘+’.
Then, Lacl will be considered as a hard component of the system of constraints.
Hard components are also called predictions, since these values correspond to the
explanations of our initial qualitative observations.

3. Inconsistent subgraph: when the system of constraints is inconsistent we can
find the minimal set of constraints responsible for the inconsistency. This set of
constraints can correspond, for example, to a subgraph of the network in which
the signs of the edges do not explain the variations of the nodes observed in the
experimental measurements.

Notice that for finding the predictions of the system we need to analyze the solution
of the system of constraints. However, for finding the inconsistent subgraph we need
to analyze the system of constraints. For small and simple networks this reasoning can
even appear natural. The difficulty is to detect these concepts when studying large-
scale regulatory networks, as well as genome-wide measurements. In Chapter 3 we will
discuss the considered informatic approaches to compute the consistency, predictions,
and inconsistencies of the large-scale networks.

Elements contained in points I and 1I can be considered as input of our reasoning,
while elements in III can be the output. The mapping of biological data into qualitative
information as well as the constraints choice are the steps that have to be performed
before the consistency analysis. While these steps may require biological expertise,
obtaining the results shown in III only requires informatic skills.
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2.2.3 Analyzing large-scale signed transcriptional networks

The analysis of the large-scale TRNs has as an objective to confront a large-scale known
(signed) influence graph, issued from a TRN, wrt a single dataset containing genes
differential expression between two conditions. Once this confrontation is made two
possible alternatives appear: (1) we may predict variations of the network products
when a network and a single dataset are consistent, or (2) we may generate inconsistent
graphs, including the hypothesis of the inconsistency origins.

In what follows we will describe which type of biological data is required, which type
of constraints we need to impose over this data, and the logical steps needed to achieve
the expected results. The algorithms performing these steps will be detailed in Chapter
3.

2.2.3.1 Biological data input

The input data required for the analysis is a regulatory network and a single dataset.
Regulatory networks should have a known topology and a partial labeling of their edges,
that is, the sign and the direction of the interaction among two network products have
to be known. The network can be composed of molecular elements such as genes,
proteins, protein-complexes, and active proteins. The interactions among products rep-
resent causal relationships; a natural example of this type of interactions is a TF-gene
relation. The edges of an influence graph are labeled qualitatively as +, —, and 7,
where + represents a positive influence, — a negative influence, and ? a dual or complex
regulation.

We also require a dataset of differential molecules expression issued from perturba-
tion steady state experiments. This dataset must be composed of qualitative {+,—}
concentration changes of some of the molecules in the network. One type of concen-
tration changes may be statistically significant mRNA-expression responses, described
qualitatively as: + up-regulation, — down-regulation. We may also provide other reli-
able concentration changes issued from the literature or other types of stress perturba-
tion experiments.

2.2.3.2 Mathematical constraints

The system of qualitative constraints for this problem is built by imposing the generic
constraint t ~ GENp (equation 2.2) over each inner product 7' of the network, such
that T" does not self-regulate positively, that is:

o
t~ Z sign(S; — T) ® sj, VS; #T (2.4)
jE{l,---,p}

In this equation, sign(S; — T') is fixed to {+, —, 7} values obtained from the signed
influence graph. The values for ¢ (resp. s;) will be partially fixed by the variations of
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network products reported in the dataset. The network products that were not observed
in the dataset will correspond to the variables of the system.

Notice that by identifying the variables in the system of constraints, we identify
which type of predictions we may obtain. In the case our qualitative system of con-
straints is consistent, the predictions obtained will correspond to the non-observed net-
work products. That is, we will predict the {4, —} change in expression of some network
nodes.

2.2.3.3 Steps of the analysis

In the following we list the steps of the consistency analysis of large-scale signed tran-
scriptional networks:

1. Build a signed influence graph from the TRN.
2. Collect the variations of the nodes from an experimental dataset.

3. From elements in points 1 and 2 build the system of qualitative constraints using
Equation 2.4.

4. Compute the consistency answer of the system of qualitative constraints:

e If the system is consistent, generate predictions over the non-observed vari-
ations of the nodes.

e [f the system is inconsistent, detect the inconsistent graph.

The predictions generated in Step 4 can be afterwards validated with wet lab studies.
Recall that not only genes but also proteins could compose the network. The computa-
tional predictions can be afterwards compared wrt RNA microarray measurements. In
the case of contradictory results between the RNA measured expression and prediction
of a gene, we could generate hypothesis on the post-transcriptional regulations targeting
this gene under the studied experimental condition.

The inconsistencies generated in Step 4 can highlight the nodes and edges associated
with a subnetwork. This could question: (i) the completeness of the network, (ii) the
accuracy of an observed data point in the dataset, or (i) the accuracy of the proposed
edge labeling of the network.

In Fig. 2.4 we illustrate the flow-chart of the complete consistency check process for
this analysis.

In order to analyze large-scale networks using this approach we require qualitative
information on network regulations as well as on expression variations of the molecules.
In Chapter 3 we describe how a large system of constraints can be computationally
solved in a reasonable time. An efficient data structure together with well performing
algorithms were included into a library named Bioquali; using this library we generated
the program instructions used to compute the automatic steps shown in Fig. 2.4. This
analysis was the most tested during this thesis. In Chapters 5 and 6 we will show the
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Figure 2.4: Consistency check process for a network modeled using only generic qualitative
constraints. (1) We build a system of constraints from an influence graph (network) with a
dataset of concentration changes, (2) we check the consistency of the system, and (3) if it is
consistent and an initial dataset was provided, we may predict new concentration changes of
the molecules in the network. These predictions can be compared with real measurements and
question the original dataset and model. If it is not consistent, we report the inconsistent region
in order to correct the network or initial dataset. Note, that for the sake of figure clarity the
arrow from Diagnosis to Dataset is not shown. The shaded blocks represent the automatic
generated outputs from our analysis.

Signed
network

results obtained for the large-scale network of E. coli and for the signaling network
of the EWS-FLI1 human oncogene. In addition to the possibility of computing this
analysis automatically using the Bioquali library, we also developed bioinformatic tools
that accessed this reasoning via a Website, a Cytoscape plugin, and a Web service (see
Chapter 4).

2.3 Analyzing networks including post-translational regu-
lations: looking for the origin of causes

In Section 2.1.4 we modeled the total contribution of the influences targeting a node T’
in the network, using the generic function GEN7p. In this section we propose new ways
to model Frr that precise the relation of T' with its predecessors. The precise modeling
of Fr searches to expand the range of regulatory networks that can be analyzed with
our approach. In particular, we search to analyze regulatory interactions representing
post-translational effects, which appear commonly in signaling networks.

In addition, by manipulating the regulations targeting a node in the network, we
can investigate the origin of the causes of its observed change in experimental measure-
ments. We will detail these ideas in the following paragraphs.

We begin by presenting which new ways of modeling Fp were proposed and their
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justification, following by how to investigate the causes of an observed change of a
network product.

2.3.1 Protein complex constraint

In this section we propose a qualitative constraint used to describe the qualitative varia-
tion of a protein complex. It describes the variation of a protein complex concentration
by taking into account the RNA concentration of its subunits. This rule can be intu-
itively expressed as the weakest takes it all, for it states that the complex concentration
at steady state follows the concentration of the subunit with the lowest concentration.
The same rule was used elsewhere [RZL07] to obtain dominant simplifications (called
min-funnel) of signal transduction models.

2.3.1.1 Mathematical justification

Figure 2.5: Representation of the different processes affecting the formation of an heterodimeric
protein complex.

We assume that A and B are the two subunits of the protein complex AB. The
components of our model are: A, B, AB, and the RNA precursors of A and B, namely
Arna and Brya. This model is depicted in Fig. 2.5. We use a mass action kinetic
law to describe the formation of the complex. We thus introduce rates associated to
the different reactions:

o kgeg is the constitutive degradation rate of proteins A, B, and the AB complex;
® kiqq 1S the translational production rate of proteins A and B;
o ke, is the rate of formation of the complex AB; and

e kgiss 18 the rate of dissociation of the complex AB.
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Proposition 2.3.1 (the weakest takes it all). Assume that

ktradkcplx
kdeg(kdeg + kdiss)

[Brvale — [Arnale| >> 1.

Then the concentration of the complex [AB] at steady state is proportional to the
smallest of the two concentrations of the RN As:

k ra .
[AB]. =~ td Y min([Arnale; [Bryale)-
eg

We now include the system depicted in Fig. 2.5 in a larger system that can be
perturbed, implying that the RNA concentrations can slowly change to induce a shift
of equilibrium of the small system. Using the relations described above it becomes
possible to predict the qualitative behavior of the system.

Proposition 2.3.2. Assume that the system depicted in Fig. 2.5 is a part of a larger
system that is slowly perturbed from a steady state el to a steady state e2. Assume that
the concentration of Bry a is always smaller that the concentration of Arna during the
experimentation.

Then the variation of the complex concentration AB between the two steady states
have the same sign as the variation of the RNA of the protein with the lowest quantity:

[Apn4a] > [Bryva] = sign([AB]e2 — [AB]e1) = sign([Bryale2 — [BrnAet)-

The proofs of the propositions mentioned in this section are given in the supplemen-
tary material of [GGRS09|, at http://www.irisa.fr/symbiose/networks/consistency.
html.

Qualitative constraint for a protein complex

We introduce now the qualitative constraint over the variation sign of a node 7', when
T is a protein-complex formed by proteins 57 and Ss:

t ~ minimum(Sy, S2) (2.5)

where ¢ represents the {+, —} variation of molecule T, and minimum(Sy, S2) outputs
s1 (resp. s2), the {+,—} variation of molecule S; (resp. S2), depending on:

51 if [S59%] > [S¢%%] and

S1 had the smallest concentration during the experiment.
so if [S57%] < [S¢9°] and

S2 had the smallest concentration during the experiment.

minimum(St, S2) =

Notice that in order to apply this constraint, we need to have quantitative informa-
tion about the molecules forming the complex.
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2.3.1.2 Applying the protein complex constraint

We applied the protein complex constraint to the IHF protein complex, an important
E. coli transcription factor. The integration host factor (IHF) is an heterodimeric pro-
tein complex formed by two polypeptides « and (3, transcribed by genes ihfA and ¢hfB.
The experimentation we considered consists of a growth shift from exponential phase
to stationary phase of E. coli cells. At complex-formation timescales both can be con-
sidered to be steady states of the system.

The rate condition given in Prop. 2.3.1 is satisfied since: (i) IHF is a metabolically
stable dimer [GN93|, meaning that the complex formation rate ke, is high, and (i)
at least one of the proteins ThfA, ThfB, or the IHF complex is present in the system, as
changes in their targets are observed [AHL103].

The variation condition given in Prop. 2.3.2 is satisfied because the RNA concentra-
tion of shfB during the exponential growth phase (condition el) is observed in a lower
quantity than the RNA concentration of ihfA (Affymetrix dataset from [AHLT03]).
Once we move to the stationary phase (condition e2), the RNA concentration of ihfB
decreases, whereas the RNA concentration of iffA increases (see Fig. 2.6).

IHF genes expression

10000

8000 —

6000 —

late exponential phase

N

o

o

o
|

Expression value

stationary phase

minutes

Figure 2.6: Expression levels of the genes coding for the protein subunits of the IHF complex
extracted from [AHLT03]. The green box refers to the change in RNA level of the limiting
subunit (ThfB) during the transition from exponential phase to stationary phase.

Prop. 2.3.2 then applies. We deduce that the concentration of the IHF protein
complex decreases when comparing cells in a stationary phase with cells in a late ex-
ponential phase. Notice that this result holds independently from the behavior of ihfA,
which is far from being regular; the only information we use from ihfA is that its RNA
concentration is always larger than the RNA concentration of ihfB. We can, therefore,
state the following constraint over THF:

sign(IHF') ~ sign(ihfB)

and by replacing the known concentration change of ihfB we deduce that:
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[IHF] Log—phase > [IHF]Stat—phase

that is, ‘sign(IHF) = —’. In Chapter 5 we will see how the application of this new
constraint influenced our prediction results when analyzing the transcriptional F.coli
network.

2.3.2 Specific qualitative constraints

In the previous subsection we saw how to precise the modeling of Fr by using quanti-
tative information of the system. In this section we illustrate some biological examples
where we propose new ways to model Fp. These regulatory functions were proposed
using the qualitative information as well as the biological literature of the system under
study.

Adding specificity to the generic qualitative constraint has an interest regarding the
number of known behaviors of the system. In Chapter 6 we show how, by adding more
precise modeling into the system, we can affect the number of total predictions. We
were also able to reduce the probability of generating the same predictions with random
data.

2.3.2.1 Boolean sign operators

As a general rule, it is difficult to determine the priority or weight of biological regu-
lations. However, in some cases it is possible to model Fr precisely. On that account,
we introduced the regulatory functions AND and OR, that may be used to represent
accurately a regulation in the network. These functions are defined as:

ANDrp(s1,82,--,8p) = S1AS2A...ASp (2.6)
ORr(s1,82, - ,8p) = s1VsaV...Vs, (2.7)
where {s1,...,s,} represent the variations of the p predecessors of T', and the A and V

sign operators are described in Table 2.4. The — operator was also added to output the
opposite sign of a variation, i.e. -t =t ® —.

Table 2.4: A and V sign operators.

| |>
< | 4|+
|
|| <
+ o+ |+
<+
o s | s

2.3.2.2 Examples of specific qualitative functions

The sign operators described in Table 2.4 are used to represent more complex regulatory
phenomena. For example, in the study of the signaling network of the EWS-FLI1 human
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oncogene, we detected three mechanisms that deserved to be modeled in a different way
than by using the generic qualitative function GEN:

Strong inhibitor The RB protein family are canonical members of tumor-suppressors.
They act as default inhibitors of E2F protein family, which are transcription factors im-
plied in cell cycle progression. According to [DeG02|, RB proteins act by sequestrating
E2F. When RB proteins are phosphorylated, E2F are released. The releasing triggers
cell division, in particular transition to S phase. An illustration of these regulations is
given in Fig. 2.7A, where the valuations of E2F, RB, and cell cycle S are consistent
with respect to the literature. Consequently, the inhibition of E2F by RB was modeled
using a Strong-inhibitor function, Equation 2.8, adapted to all default inhibitors.

Complex inactivation Most of the protein complex formation in our networks are
modeled using the GEN function. However, some proteins can hamper the protein com-
plex formation. As discussed in [OS02], this is the case for the complex CCNE-CDK2:
WEET1 phosphorylates CDK2 on tyrosine and threonine residues, causing the complex
inactivation. In Fig. 2.7B we illustrate this case and we model it using the Complez-
tnactivation function shown in Equation 2.9.

Complex inactivation-reactivation In some cases a protein complex may be under
an inactivation influence that is itself inhibited. For example, as shown in [PRKG199],
CCNA forms a complex with CDK2, which is inhibited by cycline-dependent-kinase-
inhibitor CDKN1A. This inhibition is reverted by CCND-CDK4-a, the active complex
formed by Cycline D and cycline-dependent-kinase CDK4. This situation is illustrated
In Fig. 2.7C. We model it using the Complez-inactivation-reactivation function shown
in Equation 2.10.
The three qualitative functions added to model these situations are listed below:

Fcell_cycle_S = e2f A-rbl (28)
Fcone cpxa2 = —weel A (cene @ cdk2) .
Feena_cpk2 = (cena @ cdk2) N (—edknla V cend _cdk4d a) (2.10)

In Chapter 6 we will describe in detail the results obtained by using these new
qualitative functions in the system of constraints of the EWS-FLI1 signaling network.

2.3.3 Analyzing regulatory networks including specific rules

The analysis steps of a system of qualitative constraints that includes precise modeling
of the Fr function are similar to the analysis of transcriptional networks (Section 2.2.3).
However, two additional steps were added:

1. Build a signed influence graph from the regulatory network.

2. Collect the variations of the nodes from an experimental dataset.
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Figure 2.7: Regulations from the EWS-FLI1 network modeled using complex functions. In
each table we show all the possible {4, —} variations of the predecessors of a node, so that the
node will be predicted to a {4+, —} value. The * symbol refers to either ‘4’ or ‘—’ variation.

3. For the network nodes where biological knowledge precise the regulations they
receive, add new specific rules to model Fp. For the others, use the generic
qualitative rule GE Nr.

4. From elements in points 1, 2, and 3 build the system of constraints.
5. Compute the consistency answer of the qualitative system of constraints:

e If the system is consistent, generate predictions over the non-observed vari-
ations of the nodes.

e If the system is inconsistent, detect the inconsistent graph.

6. If the system was consistent, analyze once more the set of predictions in order to
explain the causes of some observed products.

In step 6 the qualitative functions AND and OR (see Equations 2.6 and 2.7) are
used to provide automatic explanations of the predicted sign of a network component.
Thus, we can answer to the questions: Which are the molecules responsible of a change
in the network? Which molecules need to be switched on/off to obtain a specific change?
The algorithms used to answer these questions, as well as the results obtained for the
EWS-FLIT signaling model, will be given in chapters 3 and 6 respectively.
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In Fig. 2.8 we provide a flow-chart including the new inputs and outputs of this
analysis. We can see that the flow-chart proposed previously in Fig. 2.4 was extended.
Two functionalities were added: (i) the possibility to add new qualitative regulatory
functions Fr, and (i) by using the AND and OR qualitative functions, we can reason
over the causes that explain some observations in the dataset. The functionality (4i)
takes advantage of the larger number of predictions generated when using a more specific
modeling.

add data . validate Explaining
Dataset Experiments o
predictions

AN R validate \
s
__,| System of Yes | Nodes’ signs
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model correction . .
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Figure 2.8: Consistency check process for a signaling network modeled using more specific rules
of regulations in addition to the generic rule. The steps are the same as those presented in Fig.
2.4. In addition, we are able to add new rules describing the regulations targeting a node in the
network in more detail. Also, we are able to perform a post-analysis of the predictions obtained
in order to search for the origin of a network product variation, observed in the dataset. The
red blocks are the new functionalities added wrt the consistency process based only on the
generic qualitative constraints. Again, for the sake of figure clarity the arrow from Diagnosis
to Dataset is not shown.
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2.4 Analyzing unsigned regulatory networks

We are interested now on determining the regulatory role of a TF on its target genes
given a set of expression profiles. In the previous sections we approached the analysis
of a regulatory network in terms of finding the variations of network molecules between
two steady states. The variables of the system of constraints were the sign variations of
the non-observed nodes. In this new problem, the variables of our system of constraints
will be the signs of the edges.

2.4.1 Biological data input

To solve this problem we require a regulatory network with a known topology, however,
the signs of its edges may stay unknown. Its influence graph is either given by a regula-
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tory network to be validated, or built from chIP-chip data and TF binding site search
in promoter sequences. Thus, as soon as a TF j binds to the promoter sequence of gene
i, j is assumed to regulate ¢. This is represented by an arrow j — ¢ in the influence
graph.

In addition, we require multiple expression profiles issued from different pertur-
bation experiments. Previously, we considered only stress perturbation experiments.
In this new problem, in addition to stress perturbation experiments we consider ge-
netic perturbation experiments, where a gene of the cell is either knocked-out or over-
expressed, and where perturbed cells are compared to the reference. Thus, expression
profiles provide the sign of variation of the gene expression for a set of r steady-state
perturbation, mutant, or over-expression experiments.

2.4.2 Mathematical constraints

The system of qualitative constraints for this problem is built by imposing the generic
constraint ¢ ~ GENr (equation 2.2) over each inner product 7' of the network, such
that T does not self-regulate positively, that is:

D
t~ Y sign(S; > T)®@sj, ¥S; £ T (2.11)
je{l,p}

When the experiment is a genetic perturbation, the same equation holds for every
node that was not genetically perturbed during the experiment and such that all its
predecessors were not genetically perturbed. If the predecessor S, of T" was knocked-
out, the equation becomes:

o
t ~ —sign(Sy, — 1) ® Z sign(S; — T) @ s; (2.12)
Je{l, .phi#m
The same holds with +sign(S,, — T') when the predecessor S,, was over-expressed.
There is no equation for the genetically perturbed node.

To infer the regulatory role of the TFs we assume that the regulatory role of a
TF j on a gene i (as inducer or repressor) is represented by the variable Sj;, which
is constrained by Equations 2.11 and 2.12. In the following, Xf will stand for the
sign of the observed variation of gene ¢ in experiment k, and r for the total number
of experiments we have. Our inference problem can now be stated as finding values in
{4, —} for Sj;, subject to the constraints:

for all (1 <i<mn), (1<k<r),s.t.inot genetically perturbed in the k"experiment
Xik ~ Zjepred(i> Sii ® XJ’?, if all predecessors j are not genetically perturbed
Xk —Smi ® Zjepmd(i)’#m Sji ® Xjk, if m is knocked-out

k Smi ® Zjepred(z‘),j;ém Sji @ X]’-“, if m is over-expressed.

7

12

12

(2.13)
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The variables of this system of constraints are the signs of the edges S;;. The signs
of the nodes X are given by the datasets. Therefore, if the system of constraints is
consistent, the predictions will be associated to the signs of the edges, that is, the role
of the TFs over their target genes.

2.4.3 Steps of the analysis

The TF role inference problem has more constraints than the analysis proposed in
Section 2.2.3. Thus, it requires a longer computation time (see Chapter 3). The steps
of this analysis are:

1. Build an unsigned influence graph from an unsigned regulatory network.
2. Collect the variations of the nodes from many experimental datasets.

3. Apply the constraints 2.13 to the gathered qualitative biological data.

4. Compute the consistency answer of the qualitative systems of constraints:

e If the system is consistent, generate predictions over the non-observed signs
of the network edges.

e [f the system is inconsistent, detect the inconsistent graph.

The inferred TF roles (signs of the edges) on Step 4 could also be validated with
biological experiments; this validation could afterwards help to update the model of
regulations. The inconsistencies reported on Step 4 may highlight: (i) two different
roles for a TF under different experimental conditions, (i7) missing regulations in the
model; or (7ii) errors in data points of certain datasets.

Let us illustrate this analysis on a very simple (yet informative) example. Suppose
that we have a system of three genes A, B, and C', where B and C' influence A. Let us
say that for this influence graph we obtained six experiments, and that in each of them
the variation of all products in the graph was observed (Table 2.5). Using some or all
of the experiments provided will lead us to different qualitative constraint systems, as
shown in Table 2.6, hence to different inference results.

In Chapter 3 we detail how the Bioquali library was used to obtain automatically
this analysis. We applied this process on the transcriptional regulatory networks of
E. coli and S. cerevisiae; in Chapters 5 and 6 we detail our results.

2.5 Synthesis

In Table 2.7 we summarize the different types of modeling proposed to approach different
biological questions.
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Table 2.5: Influence graph of three genes A, B, and C, where their change in expression was
observed by six stress perturbation experiments.

Stress p(?rturbatlon X4 Xp Xe
B expression profile
€1 + + +
~ A €2 + + -
€3 -+ —
/ . ——
C (] — —+
€6 + -  +

Table 2.6: TF role inference process. The variables of the system of constraints are the signs
of the network edges. Variations of the species in the graph are obtained from six experiments
(Table 2.5). Using different profiles we can infer different roles of regulation. Using {e1, ea, €3},
we obtain a system with three qualitative constrains; not all valuations of variables S and
Sca satisfy this system according to the sign algebra rules. When we obtain unique values
for these variables in the solution of the system, we consider them predicted. FExp. refers to
experiments, and Const. to constraints.

Exp. Const. Consistent
Replacing values from experiments solutions Prediction
used for
(Spa,Sca)
(++)
{er} X4 (+) = Spa® (+) ® Sca ® (+) E+,_§ 0
77+
X (+) >~ Spa®(+) B Sca®(+) (+,+) _
fe,ea} Xé: (+) = Spa® (+) D Sca ® (—) (+,—) {Spa=+}
XA (1) =SpA® (1) ®Sca® (1)
{e1,e2,e3} Xé (+) > Spa®(+) @ Sca®(—) (+,+) {Spa =+, Sca = +}
XA (7) 2SBA®(“!’)€9$CA®(7)
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Table 2.7: Summary to the modeling applied to answer to different biological questions. The
Network column refers to the type of regulatory network on which the analysis was applied.
The Constraints column refers to the type of constraints used to build the qualitative system
of constraints (QSC). Process refers to the analyses performed over the QSC in order to answer

the biological questions.

‘ Biological question ‘ Network ‘ Constraints ‘ Process
Does it exist at least one Transcriptional | ¢ GENp (Eq. 2.2) Asking whether the
explanation of the and signaling e precise Fr (Eq. 2.1) | QSC is consistent.
variations obtained from networks Consistency-check
the influences that a processes (Figs. 2.4, 2.8).
molecule receives?
Which variations of the molecules | Transcriptional | ¢ GENyp (Eq. 2.2) Predictions of a
can be deduced from partial and signaling e precise Fr (Eq. 2.1) | consistent QSC.
observations and from the networks Consistency-check
network structure? processes (Figs. 2.4, 2.8)
Which network interactions Transcriptional | ¢ GENp (Eq. 2.2) Inconsistent
and/or dataset observations and signaling e precise Fr (Eq. 2.1) | constraints of a QSC.
must be modified to explain networks Consistency-check
the variations of the molecules? processes (Figs. 2.4, 2.8)
Which regulatory roles must Unsigned e TF inference Predictions of the QSC.
be used to explain multiple transcriptional constraints (Eq. 2.13) | TF role inference
stresses observations? networks analysis (Section 2.4)
Which molecules can be Signaling e GENr (Eq. 2.2) Post-analysis of the
responsible for a network networks e precise Fr (Eq. 2.1) | QSC predictions.

product {+, —} observed
change?

e ANDr (Eg. 2.6)
e ORy (Eq. 2.7)

Consistency-check
process (Fig. 2.8)
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Chapter 3

Algorithms to analyze large-scale
networks

In this chapter we show on which informatic solutions lied many of the results of the
research presented in this thesis. Two informatic approaches were proposed to deal
with the consistency analysis of the large-scale regulatory networks. The first, based on
ternary decision diagrams (TDDs), evolved through time and it was adapted to solve
new questions and problems we were confronted with. The second, uses Answer Set
Programming (ASP) to approach the same problematic. The objective of our research
was to test, correct, and use these efficient implementations in order to analyze large-
scale and complex biological networks. It is not our intention to go in the deep details
of the implementation of these approaches, but to present the programs we proposed
(based on these approaches), to answer many questions concerning the confrontation of
qualitative large-scale biological data.

3.1 Using decision diagrams to solve qualitative constraints

3.1.1 Main concepts

In Chapter 2 we defined the qualitative system of constraints as the mathematical
formalization of a regulatory network. This system of constraints was composed of
variables that could take three values: {+,—,?}. Computing the satisfiability of a large
system of qualitative constraints is an NP-complete problem for even linear qualitative
systems [Dor88| and classic methods of resolution do not allow to solve this kind of
problems [TMDO03|.

In [MBLBLGOO| polynomial functions on Z/37Z were represented using a ternary
decision diagram (TDD) data structure, which is an extension of the BDDs (binary de-
cision diagrams) used in [Bry86] to code polynomial functions with hundred of variables.
TDDs were proposed and applied for the verification of signal processing programs using
a program named SIGALI.

The interest of TDDs is that they can represent polynomial functions on Z/3Z in

57
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a compact way. The starting point of this idea is the Shanon decomposition for logical
functions, given by the following expression:

p(X1, X) = (1= X7)pix, =0 (X) + X1 (= X1 — X7)ppx, =1)(X) — X1 (X1 — XP)ppx,=—1(X) (3.1)

where p(X) is a polynomial function with n variables. Hence, this polynomial function
can be recursively represented by a tree: the variable X; is the root and has three
children. Each children is obtained by instantiating X; to 0, 1, or —1 in p(X;, X). This
representation is exponential in the number of variables (3"). In [Bry86] it was observed
that many of the sub-trees of this initial tree were identical, and thus its representation
can be simplified. If the identical sub-trees are represented only once, then the tree
representation is transformed into a direct acyclic graph forming a TDD. This TDD
will represent the same polynomial function, but in a compact manner (see Fig. 3.1).
Its size will depend on the order of the variables.

Figure 3.1: Tree representation (left) of the polynomial function X?(Y +1). It has two identical
sub-trees, thus this representation can be reduced to a TDD structure (right). Extracted and
adapted from [VBSRO5].

Following this direction, in order to implement efficient computations on sign alge-
bra, the authors of [LBP07| coded the sign variables and algebra into a Z/3Z field as
{1,—1,0} (see Table 3.1), and added several algorithms to SIGALI to answer questions
of biological interest [VBSRO05|. The first approach used to solve a qualitative system
of constraints was detailed in [LBPO07], [VBSRO05|, and [Veb07]. It can be summarized
in the following steps:

1. Reduce the influence graph so that it preserves the system satisfiability. This step
is achieved by iteratively removing the nodes of the influence graph that are not
observed and have no successors in the graph. The result of this procedure is a
subgraph such that any node is either on a cycle, or has a cycle downstream. This
subgraph will be represented afterwards as a qualitative system of constraints.
In [VBSRO05] it was shown that the global consistency of the whole network is
equivalent to the consistency of its reduced subgraph. The reduced subgraph is
also called the core of the network.

2. Transform qualitative constraints in sign algebra into a polynomial function with
multiple variables to be solved over the finite field 7./37. A natural mapping from
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the sign algebra to this field allows us to interpret the consistency relation ~ as a
simple Z/3Z relation (see Table 3.1). In this field, every constraint appears to be
a polynomial function, and the zeros of a system of constraints are, equivalently,
the zeros of a unique function.

3. Efficiently represent the qualitative system of constraints. As we saw at the begin-
ning of this section, the TDDs offer an optimal structure to represent polynomial
functions in a compact way. Once the system of qualitative constraints was re-
duced, all the qualitative constraints, written as Z/37Z relations, are represented
using a TDD. In this decision diagram, each node represents a variable of the
system of constraints, and the arrows outputting from a node correspond to the
two possible values {+, —}. These values were chosen because a variable can take
them in order to be a solution of the system. The terminal nodes in the decision
diagram take the values 0 or 1. If the path describing an instantiation of the
variables ends in 0, then the system of constraints is consistent with the given
instantiation of the variables. If the path ends in 1, the system of constraints is
inconsistent. Notice that after building the TDD describing a qualitative system
of constraints, computing its satisfiability or consistency is straightforward.

4. Efficient analysis. Efficient algorithms that cover the decision diagram were de-
veloped in order to find the predictions of a consistent system of constraints, as
well as to perform diagnosis in case of inconsistency.

Table 3.1: This table specifies how the sign algebra in {+,—,?} was mapped into the Galois
field Z/37Z. Extracted from [VBSRO05].

Sign algebra (e) 7./37 (e) Sign algebra 7/37
+ — 1 e1 @ e —  —e1.e.(e1 +€3)
- — -1 e1 ® e — er.ex
? — 0 €] >~ ey — ejes(eg—e3)=0

This first approach, based on SIGALI, was able to map a regulatory network and a
expression dataset file into a qualitative system of constraints, and then compute the
Yes or No answer concerning the consistency of the system. Also, it could compute
the predictions of the system in the case of consistency. The inconsistency diagnosis,
however, did not handle a system with a hundred variables |[Guz06]. In [VBSRO05| they
applied this informatic approach to a small scale model related to lipid metabolism
(14 nodes). Afterwards, we applied this approach at large-scale considering the E. coli
transcriptional network (1529 nodes, 3883 edges), extracted from RegulonDB on March
2006. We reported an inconsistency and, after corrections, a set of predictions (the
details of these results are presented in Chapter 5). However, the diagnostic step was
not an easy task, it was not totally automatized and resulted from parsing the file
describing the system of constraints mapped into Z/3Z. In addition, SIGALI was not
supporting simple programming functions as to iterate over an instruction. Accessing
the algorithms of SIGALI was not an easy task for a prospective user.
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To solve this problem, in [LBP07] the same algorithms were implemented as a library
written in C programming language. Python bindings were also available providing
easy access to these algorithms, and a Python package named Bioquali was proposed.
This package was composed of Python modules and a module (pyquali) dedicated for
intensive computation in qualitative algebra.

3.1.1.1 Functions to analyze signed TRNs

The methods of Bioquali aimed to confront a signed large-scale transcriptional network
wrt one experimental dataset, were corrected and adapted to our problems. Before
describing them let us introduce the following notation to represent a network and
dataset:

e Let us denote N = (V, E, o), the oriented and signed network to be analyzed,
where V' is the set of nodes, E the set of edges, and o : E — {+, —} a labeling of
the edges in the network.

o Let p={(n,s) |neV,se {+,—}} represent the dataset of partial significant
variations of the nodes in N.

Based on this notation the most important functions of the Bioquali library were:

1. BQ.core(N,u) returns a subgraph of N that does not include non-observed nodes
without predecessors.

2. BQ.consistency (N ,u) returns true if the network is consistent with the dataset,
or false if not.

3. BQ.predictions(N,u) = {(n,s) | n € V \ dom(p), s € {+,—}}, is the set of pre-
dictions generated when A is consistent with pu.

4. BQ.inconsistentSubgraph(N ) outputs a minimal inconsistent subgraph Z = (V, Ey, 07),
where V; C V|, Er C E, and Vi Ndom(u) # ¢. Its nodes and edges explain the
origin of the inconsistency.

The Python module that contains the four functions described above is called
Igraph. We used these methods to construct programs that analyze signed or un-
signed regulatory networks wrt to one or multiple gene expression profiles.

3.1.1.2 Functions to analyze unsigned TRNs

In order to analyze unsigned transcriptional networks, we added to the Bioquali package
two new functions that build the system of constraints and reason over it when the
variables of the system corresponded to the sign of the edges in the network. These
functions used the following input information:

e An unsigned network, denoted as N’ = (V, E, o), where V is the set of nodes, E
the set of edges, and o : E — {X} is not known.



Using decision diagrams to solve qualitative constraints 61

e Multiple datasets, denoted as M = {u1,u2,...,un}; where pp € M is of the
form pi = {(n,s) | n € V,s € {+,—}} and will contain partial observations of the
variations of the network product in the &' experiment.

Based on this notation, we added two functions to the Bioquali library in order to
reason over this data:

e BQ.edgeConsistency(N,M) returns true if the network is consistent with all the
datasets in M, or false if not.

e BQ.edgePredictions(N,M) = {(a,b,s) | (a,b) € E, s € {+,—}}, is the set of pre-
dictions generated when A is consistent with all uy € M.

3.1.1.3 Using dependency graphs to analyze signaling networks

The Igraph Python module was performing well for transcriptional networks that had
a core of less than 100 nodes. However, when dealing with more complex types of net-
works, such as signaling networks, the computational time of the consistency analysis
was unbearable. Therefore, a new strategy to compute the satisfiability of a system of
constrains was proposed in [Bor09], in which a family of decision algorithms was pre-
sented taking advantage of the few variables shared among qualitative constraints. In
this strategy the resolution of the set of constraints is based on the construction of a de-
pendency graph as well as of a covering tree for it. Thus, the TDD structure is only used
to represent a single counstraint, i.e. the one relating a node with its direct predecessors
in the network. The dependency graph is a bipartite graph which nodes represent vari-
ables and constraints; there is an edge between a variable x and a constraint f if z is a
variable of f. The covering tree provides an order that combines conjunction operations
and variable elimination, minimizing the complexity of each step. Using this optimal
order, we were able to determine the consistency, diagnose the inconsistent constraints,
and compute the predictions of larger and more complex systems in a reasonable time.
The Python module containing the dependency graph representation is called Dgraph,
and it can be found in the Bioquali Python package at http://genowebl.irisa.fr/
Serveur-GP0O/outils/help/datafiles_test/BioPyquali.tgz.

Moreover, in order to analyze the precise rules of regulations present in signaling
networks (see Section 2.3), the Bioquali library was extended with a better parser that
allows to handle a wider range of influence types. Previously, there were only three possi-
ble influence types: 4+, —, and ?. In the newest version of the Bioquali package it is possi-
ble to represent regulations with the following syntax: “STRONG-INHIBITOR(A,B) -> C7,
which may mean that C has two regulators, and that under some {+, —} variations of A
or B we can define a priority rule which tell us which one regulates C. The graph object
representing the influence graph is built from this syntax, and a system of constraints
is generated and analyzed in the same way as in the case of transcriptional networks.
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3.1.2 Programs to study the consistency of large-scale networks
3.1.2.1 Consistency analysis of signed TRNs

Using the Bioquali functionalities described in Section 3.1.1.1 we designed the classic
program shown in Algorithm 1 to analyze the consistency of a regulatory network wrt
an experimental dataset as illustrated in the flow-chart of Fig. 2.4. We used this
program to generate the results presented in |[GGRS09|, in which we (3) computed the
consistency and (71) predicted the qualitative variation of several network products for
a larger version of the E. coli network (1915 nodes and 5140 edges; version of 2008 in
RegulonDB) wrt to a dataset composed of 45 observations. The computation time of
this analysis in case of consistency (resp. inconsistency) was of 10.8 s' (resp. 6.6 s).
The details of our results are given in Chapter 5.

Algorithm 1 Consistency check process
Require: N = (V,E,0); u={(n,s) |neV,s e {+,—}}
Ensure: pred, a set of predictions in case of consistency, or I, an inconsistent, graph
h < BQ.core(N,u)
if BQ.consistency(h,u) is true then
pred < BQ.predictions(N,u)
return pred
else
I < BQ.inconsistentSubgraph(h,u)
return [
end if

We designed a second program that approximated? all the inconsistent graphs in a
network in order to predict the variations of network products over a consistent region of
it (see Algorithm 2). The objective of this program was to propose an automatic guid-
ance of the diagnostic when many inconsistent subgraphs were found. This program
proposes automatic corrections, which depend on the order of the reported inconsis-
tencies, which in their turn depend on the order of the variables in the TDD. In this
solution we prioritize the dataset of observations over the signs in the graph. We will
see in Section 3.2 other more equitable, though costly in time, solutions. We applied
Algorithm 2 to the E. coli network mentioned previously wrt a microarray dataset com-
posed of 255 observations, the results were published in [GBMS09|. The computation
time was of 877 s (~ 14 min).

The Bioquali Python package containing these programs is publicly available at
http://genowebl.irisa.fr/Serveur-GP0/outils/help/datafiles_test/BioPyquali.
tgz.

'All CPU times indicated in Section 3.1 were obtained on a Linux PC equipped with Intel Core2
2.16GHZ processor and 2GB of main memory.
2See Section 3.2 to find exactly all the inconsistencies.
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Algorithm 2 Approximate all inconsistent subgraphs
Require: N = (V,E,0); u={(n,s)|neV,se{+,—}}
Ensure: pred, a set of predictions after removing the inconsistencies, and incE, a set of all
the inconsistent edges reported
h < BQ.core(N,u)
while BQ.consistency(h,u) is false do
I < BQ.inconsistentSubgraph(h,u)
for (a,b) € I.edges() do
N .edgeSign(a,b) < 7
incE < incE U {(a,b)}
end for
h < BQ.core(N,u)
end while
pred < BQ.predictions(N,u)
return (pred,incE)

3.1.2.2 Inferring the TF roles in unsigned TRNs

A second problem approached using the Igraph Python module of the Bioquali pack-
age was the TF role inference problem. To solve it we built a qualitative system of
constraints from the biological data as explained in Section 2.4. There are two main
differences wrt the previous analysis that influence computation time: (i) the number of
variables, and thus the size of the TDD), is given by the number of unknown edges in the
graph and (7)) there is not a reduction technique to cut the number of edge variables.
This means that for inferring the roles of the interactions of the E. coli network shown
in Section 3.1.2.1, the system of constraints will have around 5000 variables. In our
previous analysis our system of constraints had 82 variables, which was the number of
non-observed nodes after the reduction technique. For that reason, the analysis had to
be simplified to overcome the memory complexity. These simplifications implied that
not all of the role predictions could be reported.

In Algorithm 3 we show the steps to automatically infer the roles of TFs in an
unsigned network by using the Bioquali functionalities described in Section 3.1.1.2. In
order to handle the large number of variables we divided the graph into motifs and
checked the edge consistency of each motif separately. In this analysis, inconsistent
edges are isolated (labeled as ?), and are not used to compute the predictions. This
correction step is a way to deal with inconsistencies automatically, in which priority is
given to the datasets of observations. After running this program we may stay with a
set of predictions of the roles of the network interactions. This set can be afterwards
ranked according to the number of datasets that allowed us to infer an interaction role.
In this way we can assign a weight to each prediction. Furthermore, we also obtain a
list of inconsistencies after confronting the network topology with multiple datasets.

In [VGLBT08| we applied Algorithm 3 to the transcriptional networks of E. coli
(1415 nodes, 2899 edges) and S. cerevisiae (2419 nodes, and 4344 edges); initially, with
all their interactions unsigned. The results of this analysis will be shown in Chapters
5 and 6. The time performance was of 801 s (= 13 min) and 4335 s (= 72 min)
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Algorithm 3 Infer the TF roles of an unsigned network

Require: N = (V| E,0), an unsigned network; M a set of datasets.
Ensure: predFE, a set of predicted interaction roles; and incE a set of inconsistent edges.
nck <= ¢
repeat
numPredE < 0; N2 = N
for alln € V do
S < N .subgraph(n N .predecessors(n))
if BQ.edgeCounsistency(S,M) is true then
predE < BQ.edgePredictions(S,M)
for (a,b,s) € predE do
N2.edgeSign(a,b) < s
numPredE < numPredE + 1
end for
else
for (a,b) € S.edges() do
N2.edgeSign(a,b) < ?
incE < incE U {(a,b)}
end for
end if
end for
for all 4 € M do
(pred,inc) < Algorithm2(/N2,u)
for (a,b) € inc do
N2.edgeSign(a,b) < ?
end for
inck < incE Uinc
<= U pred
end for
N <= N2
until numPredE is 0
predE < ¢
for (a,b) € N.edges() do
s < N .edgeSign(a, b)
if s € {+,—} then
predE < predE U {(a,b, s)}
end if
end for
return (predE incE)

for the F. coli and S. cerevisiae networks, respectively. The Bioquali Python package
with the TF role inference functionality is publicly available at http://www.irisa.fr/
symbiose/interactionNetworks/data/src/Bioquali_TFrole_Inf.tgz.

3.1.2.3 Consistency analysis of signed signaling networks

Algorithms 1 and 2, implemented using the Igraph Python module of Bioquali, can
analyze hierarchical large-scale transcriptional gene networks, such as E. coli, in a rea-
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sonable time. This is because the global topology of this network can be reduced to a
small system of around 100 variables. Indeed, empirical data indicate that transcrip-
tional networks are sparsely connected, being the number of TF regulators over a gene
on average two, while theoretical results show that selection for robust gene networks
favors minimally complex and sparsely connected networks |Lec08]. However, using a
different level of molecular abstraction, regulatory networks can be represented by more
complex systems composed of causal relationships that are not only transcriptional.
The signaling network of the human EWS-FLI1 oncogene is a clear example. The com-
putation time of the consistency analysis (Algorithm 1) in this network took more than
7 days using the Igraph Python module. The size of this network, though smaller than
E. coli, was only reduced to a system of 266 nodes and 596 edges, and had two times
more variables than the E. coli system. Hence, Algorithms 1 and 2 were reprogrammed
using the Dgraph Python module (¢f. Section 3.1.1.3) in order to analyze signaling
networks in a reasonable time.

Taking advantage of the more specific type of representation of regulatory inter-
actions implemented in Bioquali (¢f. Section 3.1.1.3), we propose two methods that
reason over the obtained predictions, as it was shown in the red block of the flowchart
in Fig. 2.8.

How to explain a known {+, —} variation of a network product? As seen in the
first chapter, collecting regulatory network information is a difficult task, which involves
sequence treatment, databases analyses, and literature searching among others steps.
Once the roles of TFs are known, it may occur that many regulations arrive to a node of
interest. It frequently happens that the most important node in the regulatory model
will receive more influences, as more articles, experiments, or sequence analyses were
considered around this particular node. A natural question in this type of situation is
to know by which pathway an observed node was activated or inhibited. We propose a
program to answer to this question that provides an explanation to an observed variation
of a network product. It performs a post-analysis of the predictions obtained after the
consistency analysis, which allows to backtrack in the network until the possible origins
of an observed change. In this way we can discover which of the multiple pathways
arriving to a node agree or disagree with its observed variation.

In Algorithm 4 we provide the steps implemented in this program. All the Bio-
quali functionalities are the same as used in Algorithms 1 and 2, implemented using
the Dgraph Python module. The new step in this analysis, that takes advantage of
the extension of the generic rule, is addFuncPredec(N',n,GEN). This function adds a
temporary layer between the node n and its direct predecessors, modeling the new in-
fluences coming from this layer to n with the generic function GEN,, (recall Equation
2.4). This will be used to easily identify which influences were predicted to change in
the same (or opposite) direction as the node of interest.

We tested Algorithm 4 on the signaling network of the EWS-FLI1 human oncogene
(296 nodes — 36 receiving a non-generic rule, 430 {4, —} edges) with a dataset of 61
observations. The computation time, using the Dgraph Python module of the Bioquali
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library, was of 86 s. The obtained results will be presented in Chapter 6.

Algorithm 4 Find the minimal subgraph that explains the {4, —} sign of a node in
the network
Require: N = (V,E,0): an oriented graph with V vertexes, E edges, and
o={Fp|T €V} as the set of combined influences for each network node
pw=A{(n,s) | neV,se{+,—}}: apartial valuation of the nodes of N/
n € V: a node of interest
BQ.consistency (N ,u) is true
Ensure: T = (VT,ET), VrCcV,Er CE
T<< ¢
N2 < addFuncPredec(N, n,GEN)
fized < BQ.predictions(N2,u)
for p in N2.predecessors(n) do
if p € dom(fized) then
B < p; fi(p) < ~fized(p)
i < BQ.inconsistentSubgraph (N2 1)
T.add (1)
end if
end for

Which nodes to fix to explain a known {+, —} variation of a network product?
In some cases, after applying Algorithm 4, we may obtain an empty graph; thus, it is not
possible to conclude which dataset of observations could explain the observed variation
of our node of interest, nor by which pathways this influence arrives to our node of
interest. This can be a consequence of a generic model, which does not allow to predict
the fluctuation of a node when opposite-sign influences arrive to it.

To overcome this problem we propose a second method that answers to the following
question: Which network (non-observed, non-predicted) product has to be fixed to
provide a path of influences that explains a known variation of a node of interest without
contradicting the known observations? This method is detailed in Algorithm 5. The
function addFuncPredec(N,n, AN D/OR) is similar to the one applied in Algorithm 4:
it adds a temporary layer between the node n and its direct predecessors, modeling the
new influences coming from this layer to n with the functions AND,, or OR,, (recall
Equations 2.6 and 2.7).

We tested Algorithm 5 on the same EWS-FLII signaling network as previously, but
with a different dataset composed of 61 observations. The computation time, using the
Dgraph Python module of the Bioquali library, was of 103 s. The obtained results will
be presented in Chapter 6.
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Algorithm 5 Find a list of pairs {(m,s) | m € V,s € {+,—}} that explain a fixed
{+, —} variation of a node of interest n. Find the subgraph T connecting each node in
the list to n
Require: N = (V,E,0): an oriented graph with V vertexes, E edges, and
o ={Fr|T €V}, the set of combined influences for each network node
pw=A{(n,s) | neV,se{+,—}}: apartial valuation of the nodes of N/
n € V: a node of interest
sign € {+,—}: the sign of n to be explained
BQ.consistency(N ) is true
Algorithm4((N,u,n) is ¢
Ensure: {(m,s)}, T = (Vp,Er),Vr CV,Er CE
(o)} =: T <o
predl < BQ.predictions(N,u)
if sign is '+’ then
N2 < addFuncPredec(N,n,AND)
else
N2 < addFuncPredec(N,n,0R)
end if
p2 <= p1; pa(n) <= sign
pred2 < BQ.predictions(N2,us)
{(m,s)} < pred2 \ predl
for (m,s) in {(m,s)} do
p3 <= p2; pz(M) < s
i < BQ.inconsistentSubgraph(N2,u3)
T.add(7)
end for
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3.1.3 Computational time synthesis
3.1.3.1 Igraph

In Table 3.2 we present the summary of computation time of the three analyses pro-
posed using Algorithms 1, 2, and 3 implemented using the Igraph Python module of
the Bioquali package. In all the cases we deal with large-scale networks, being the con-
sistency check process the fastest. The computation time of Algorithms 2 and 3 will
depend on the number of inconsistencies found.

Table 3.2: Computation time for Algorithms 1, 2, and 3 using different biological data. All
the analyses were performed on a Linux PC equipped with Intel Core2 2.16GGHZ processor and
2GB of main memory. All networks are provided with their number of nodes (n) and edges (e).

Network Dataset(s) Analysis Time (sec.)
1915Er; —C()E’)li40e 1 dataset of 45 obs. Consistel]ljci};glllloescilz (Alg. 1) 7
191£i ‘ 05li4Oe 1 dataset of 45 obs. ConSiSt?:gdfiigis(Alg' Y 1
1915§i ‘ Ogi4Oe 1 dataset of 255 obs. mcoifﬁgﬁiﬁ?fﬁg 2) 871
1415% : 021299e 9(;10?)???;1?;; Infer TF roles (Alg. 3) 801
S| I et | e gy |

3.1.3.2 Dgraph vs. Igraph

In Table 3.3 we show a comparison between the analyses programmed using Igraph
and Dgraph. We see that for the E. coli transcriptional network the computation time
differs but remains bearable, while for the EWS-FLI1 signaling network the difference
in computation time increases considerably.

A web form is publicly available at http://www.irisa.fr/symbiose/bioquali/.
It uses the implementation of Bioquali based on dependency graphs to compute the
congsistency check process. We made available this tool in order to encourage prospective
users from other disciplines to perform their analyses in a more constrained but easier
environment. In addition, Algorithms 1 and 2 (based on Dgraph) are also included in
a Cytoscape plugin named BioQualiPlugin and as a Web service. In Chapter 4 we will
give more insights on these bioinformatic tools.

3.2 Using ASP to solve qualitative constraints

Reasoning with Answer Set Programming (ASP) appeared to be an interesting alterna-
tive to implement the consistency check analysis of large-scale networks. This strategy
does not study (nor represent in memory) the set of all solutions, but applies search
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Table 3.3: Computation time for Algorithms 1 and 2 programmed using the Igraph and
Dgraph Python modules. The analyses were performed on a Linux PC equipped with Intel
Core2 2.16GHZ processor and 2GB of main memory. The networks, as well as their cores, are
provided with their number of nodes (n) and edges (e).

Network Dataset Core Analysis Igraph (s.) | Dgraph (s.)
E. coli Alg. 1
1915n - 5140e | 2P OPs- | 12T -402e by osis 7 3
E. coli Alg. 1
19150 - 5140 | D OPs | 12Tm-402e | b gittions 11 3
B. coli 255 obs. | 359n - 984 Alg. 2 877 140
1915n - 5140e oPs- 1o IeRe &
EWS FLIL Alg. 1
9871 - GAde 61 obs. | 266n - 596e Diagnosis > 7 days 26
EWS FLIL Alg. 1
9871 - 644e 61 obs. | 266n - 596e Prediction > 7 days 10

to decide whether there exists at least one. In this section we will give details on
which problems, concerning the confrontation between large-scale networks and high-
throughput data, were approached with ASP and how.

3.2.1 ASP logic

ASP [Bar03] provides a leading declarative language for knowledge representation, rea-
soning, and declarative problem solving. It results from the combination of a rich mod-
eling language of logic programming with respect to the answer set semantics [SNS02],
and efficient inference engines based on Boolean constraint solving technology, such as
clasp [GKNS07]. Some of its advantages wrt other (semi-)declarative languages like
Prolog are that it allows disjunctions in the head of rules, and that the order of the
rules, body literals, and queries does not matter. The way Prolog uses negation as fail-
ure to refute a query may cause it to get into infinite loops; ASP, in contrast, does not
have this risk as it does not deduce proofs. This difference causes ASP not to get into
infinite loops, however, it is not suitable for generating a proof of a property of a model
as BIOCHAM [CFS06| does. Nevertheless, different types of complex calculations can
be performed, and it suits very well the consistency analysis proposed in Chapter 2.

The idea of ASP is to encode a problem as a set of rules and then find its solution
by obtaining the answer sets of the program. In the following we will elaborate more
this idea. An ASP program is a collection of rules of the form:

Loor... or Ly < Lgy1,..., Lip,not Lyiq,...,n0t Ly, (3.2)

where each L; is an atom, ‘or’ stands for the logical V symbol, and *,” stands for A.
The strict meaning of ‘or’, however, differs from that of V. This rule means that if

Lyiq,..., Ly are true and if Ly,41,..., Ly, can be assumed false, then at least one of
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Lo, ..., Ly must be true. The parts on the left (resp. right) of ‘«—" are called head (resp.
body) of the rule. A rule with an empty body and a single disjunct in the head (k = 0)
is called a fact, while a rule with an empty head is called an integrity constraint.

An atom is of the form p(t1,...,t,), where p is the predicate and each t; is either a
variable, a constant, or an n-ary function. We will say that an atom is ground, if there
is no variable in it. An interpretation (S) of a program P is any set of ground atoms. S
is said to satisfy the ASP rule (3.2) if:

(i) when the rule head is empty: {Lgt1,..., L} € S or {Lmy1,..., Ly} NS # ¢, or

(ii) when the rule head is not empty: {Lgt1,..., L} € Sand {Lyt1,..., Lo }NS = ¢
implies that {Lg,..., Lk} NS # ¢.

A model of P is an interpretation that satisfies all the rules in P. Answer sets of
a program P are particular models of P satisfying an additional criterion, which will
be explained in the following lines. Given a set S of ground atoms of P, let P° be the
reduct program of P obtained by deleting:

(i) each rule that has an atom not L in its body with L € S, and

(ii) each atom not L in the bodies of the remaining rules.

S will be an answer set of program P, iff S is minimal among all the models of
PS. Answer sets are defined on ground programs; however, ASP modeling language
allows for non-ground problems encodings. Grounders, like gringo |GST07| and lparse
[Syr], are capable of combining a problem encoding and ground facts into an equivalent
ground program, processed by some ASP solver.

In [GST 08| Gebser and colleagues approached the consistency analysis using ASP.
They proposed ASP rules that could decide if a network was consistent or not wrt a
dataset, as well as rules to compute all inconsistent subgraphs. Another question that
was approached with ASP is how to minimally correct an inconsistent network wrt a
dataset. In the next sections we will show part of the ASP encodings proposed for these
analyses.

3.2.2 Consistency check and diagnosis

The consistency check of a network N wrt to a dataset p was analyzed in [GSTT08]
in terms of finding the answer set that satisfies a set of rules of type 3.2. If no answer
set was found, then N was inconsistent wrt u. Let us recall our previous network and
dataset notations:

e Let us denote N = (V, E,0), the oriented and signed network to be analyzed,
where V' is the set of nodes, E the set of edges, and ¢ : E — {+,—}, a labeling
of the edges in the network.
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o Let p={(n,s) |neV,se {+,—}} represent the dataset of partial significant
variations of the nodes in N.

The ASP rules proposed in [GSTT08] to determine the consistency of a network A/
wrt a single dataset p were divided in three parts:

Problem Instance. These rules were ground facts built from the information contained
in A and p, that is:

e Network facts: for each ¢ € V a fact of the form ‘vertex(i)’ is added, for
each edge (i,7) € E the fact ‘edge(i,j)’ is added, and for each labeled edge
o(i,j) = s the fact ‘obsE(i,j,s)’ is added. If i is a node without predecessors
in the network, then the fact ‘input(i)’ is added.

e Dataset facts: for each (i,s) € p the fact ‘obsV(i,s)’ is added.

Generating solution candidates. Let us briefly go back to solving the qualitative
system of constraints representing a network A and a dataset u. In Section 2.2 we
explained that the qualitative system will be consistent if there exists at least one
{+, —} valuation of all the nodes in the network such that all constraints in the system
are satisfied. Thus, in order to derive all the solution candidates with ASP, it was
necessary to derive all the possible {+,—} valuations of all the network nodes (and
edges). This was done by adding the following rules to the program.

labelV (V,+) or labelV (V,—) < vertex(V).
label E(U,V,+) or label E(U,V,—) «— edge(U, V).
labelV (V, S) « obsV (V,5).

label E(U,V,S) «— obsE(U,V,S).

Note that if the dataset is composed of the observation p(i) = +, the minimal
criteria of the answer set computed following the rules in (3.3) will only include the
atom ‘labelV(i,+)’. This happens because an instantiation including both atoms
‘{labelV(i,+),labelV(i,-)}’ will be redundant. This is a way of fixing the observa-
tion values; the same applies to edge labels.

(3.3)

Testing solution candidates. The consistency rule proposed in Chapter 2 stated
that: The variation of the concentration level of one molecule in the network must be
explained by an influence received from at least one of its predecessors, different from
itself, in the network. In [GSTT08] the authors proposed an analogous definition of
consistency, which was: given N and u, for every non-input vertex i € V., the sign u(i)
of i is consistent if there is some edge (j,i) € E such that (i) = p(j) ® o(j,1).

Following this definition, in order to decide if a set of facts representing the network
and dataset was consistent, three more rules were added. The first two derived the
atom ‘receive(i,s)’ if node ¢ received an influence of sign s:

receive(V,+) < label E(U, V., S), labelV (U, S).

receive(V, —) « label E(U,V, S), labelV (U, T),S # T. (3-4)
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The last rule eliminated all solution candidates that were not inputs and did not
receive an influence of the same sign.

— labelV (V,S),not receive(V,S), not input(V). (3.5)
If there is at least one answer set of this program, then N is consistent wrt pu.

Another set of rules was proposed in order to perform the diagnosis step and to find
exactly all the minimal inconsistent subgraphs. The encodings and examples of these
analyses are given in [GSTT08]. Also, they provided a web site [asp| from which both
analyses can be launched on-line on their machines. In [GST108] the authors applied
this analysis to the TRN of S. cerevisiae [INGBBKO02| (491 nodes and 909 edges) wrt
a dataset of 20 observations, obtaining all the inconsistent subgraphs in 218 s. We
also applied this approach to the transcriptional E. coli network (1915 nodes and 5140
edges) wrt a dataset of 255 observations. The computation time of finding exactly
all the inconsistent subgraphs was longer, however, this analysis provided interesting
results and they will be presented in Chapter 5.

3.2.3 Minimal network/dataset repairs

We address now a new problem, which is to repair large-scale biological networks and
corresponding, yet often discrepant, measurements in order to predict unobserved vari-
ations. To this end, we proposed a range of different operations for altering the ex-
perimental dataset and/or the biological network in order to re-establish their mutual
consistency. We submitted part of this work, in collaboration with the team leaded by
T. Schaub in the Potsdam University, to the “T'welfth International Conference on the
Principles of Knowledge Representation and Reasoning”, to be held in Toronto, Canada,
May 9-13, 2010.

This framework was validated by an empirical study on the E. coli TRN (1915 nodes
and 5140 edges) wrt two datasets: Exponential-Stationary growth shift [BMAT07]| and
Heatshock [AHLT03], composed of 850 significant observations. We randomly selected
samples of size corresponding to 3%, 6%, 9%, 12%, and 15% of the whole data, and used
them for testing both our repair modes as well as prediction (of omitted data). The ASP
encodings proposed to solve this problem, as well as the computation time to perform
the repair and prediction analyses, will be presented in the following subsections. The
validation of the predictions obtained will be presented afterwards in Chapter 5.

3.2.3.1 Problem instance

The network and dataset are encoded as ground facts with the same rules used for the
consistency check analysis (¢f. Section 3.2.2). However, to ease the rules formulation,
the signs in network N and dataset u are given by {1,—1} values instead of {+,—}.
Let us show an example of how a network and dataset are coded into ASP rules.
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Figure 3.2: An influence graph (left) along with one experimental dataset (right), in which
increases (decreases) were observed for vertexes colored green (red), and vertex d is an input.
Green (red) edges in the graph represent activations (inhibitions).

Example 1. The facts describing the influence graph (I1,) and the experimental dataset
(1L, ), shown in Figure 3.2, are as follows:

vertex(a).  wertex(b).  wertex(c). wertex(d).  wvertex(e).
edge(a,b). obsE(a, b 1) edge(c,e).  obsE(c,e,—1).
o - edge(a,d). obsE(a,d,—1). edge(d,b). obsE(d,b,1). (3.6)
g edge(a,e). obsE(a,e,—1). edge(d,c). obsE(d,c,1). '
edge(b,a). obsE(b,a, 1) edge(d,e). obsE(d,e,1).
edge(b,c). obsE(b,c,1). ]
II,, = {input(d).obsV(d,1).0bsV (c,—1).0bsV (a,1).} (3.7)

Note that experimental profile py (cf. right in Figure 3.2) is inconsistent with the given
influence graph. It necessitates labeling vertex b with —1 in order to explain the observed
decrease of c. In p1 such a decrease of b is unexplained. &

3.2.3.2 Repair operations

These rules state the conditions necessary to be fulfilled in order to apply a specific
repair. Before introducing them, we describe in Table 3.4 the provided possible repairs.

Table 3.4: Network and dataset repairs proposed in order to reestablish their mutual consis-
tency.

’ Term H Target | Meaning

add_e(U,V) network | Introduce an edge from U to V

flip_e(U,V,S) || network | Flip the sign S of the existing edge from U to V/
inp_v(V) network | Treat vertex V as an input

flip_v(V,S) dataset | Flip the sign S of vertex V

These repair operations are inspired by existing biological use cases. To repair a
model by adding new edges makes sense when the model is incomplete (which is often
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the case in practice). Flipping the sign of an edge is a way to curate the model; it
means that in some experiment the effect of a regulator (activator or inhibitor) should
be corrected. Turning a vertex into an input can be used to indicate missing (unknown)
regulations or oscillations of regulators. Revising experimental observations puts the
dataset into question and may help to identify aberrant measurements (frequent in
microarray data).

The following rules were used to define admissible repair operations:

rep(add_e(U,V)) <« rep_a,vertex(U), vertex(V),U # V,not edge(U, V).
rep(flip_e(U,V,S)) « rep e, edge(U, V), 0bsE(U,V,S).
rep(inp _v(V)) — rep_i,vertex(V),not input(V).

rep(flip_v(V,S)) <« rep_v,vertex(V), obsV(V,S). (3.8)

Observe that particular operations are identified with function terms inside of pred-
icate rep, which enables us to deal with repairs in a general way whenever knowing
particular types is unnecessary.

Which repair operations ought to be permitted or omitted requires background
knowledge about the model and data at hand. By offering a variety of operations,
our framework is flexible and may be adjusted to particular situations. In (3.8) the
declaration of admissible repair operations is governed by atoms rep a,...,7ep v.
Depending on the requested repair types, such atoms are to be provided as facts. It
would also be possible to restrict repair operations to particular edges or vertexes,
respectively, based on the availability of biological expert knowledge.

Finally, note that the rules in (3.8) filter some redundant repairs. An edge between
distinct vertexes can be introduced only if there is none in the model. Flipping signs
of edges or vertexes is possible only if a sign is provided in the model or the data,
respectively. Making a vertex an input requires it not to already be defined as an input.

3.2.3.3 Repair encoding
With admissible repairs at hand, the following rules encode the choice of operations to
apply:

app(R) — rep(R), not app(R). app(R) — rep(R),not app(R). (3.9)

The rest of the repair encoding is about identifying witnesses for the consistency of
the repaired network/dataset. We first declare available signs and their relationships:

sig(1).  sig(—1). opp(S, —S) «— sig(9). (3.10)

The rules presented below take care of labeling edges and also incorporate repairs
on them:

label E(U,V, S) < edge(U,V), 0bsE(U,V,S),not app(flip_e(U,V,95)).

label E(U,V,T) — app(flip_e(U,V,S)), opp(S,T).

label E(U,V,S) «— app(add_e(U,V)), opp(S,T),not label E(U,V,T).

label E(U,V, S) «— edge(U, V), opp(S,T),not label E(U,V,T). (3.11)
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The first rule is to preserve (known) signs of edges if not flipped by a repair; other-
wise, the second rule is used to derive the opposite sign instead. For edges introduced
by repairs and unlabeled edges in the model, respectively, the last two rules encode the
choice of a sign, making sure that any answer set comprises a total edge labeling, given
by ground atoms over predicate label E.

Using the same methodology as with edges, but now relative to experimental profiles,
the following rules deal with vertex labels and repairs on them:

label V(V,S) «— vertex(V'), obs V(V, S),not app(flip_v(V,5)).
label V(V,T) «— app(flip_v(V,S)), opp(S,T).
label V(V,S) «— vertex(V'), opp(S,T), not label V(V,T). (3.12)

Again, the first rule maintains signs given in an experimental dataset, while the
second rule applies repairs flipping such signs. Ground instances of the third rule permit
choosing signs of unobserved vertexes, not yet handled by either the first or the second
rule. As a consequence, the instances of labelV in an answer set provide a total vertex
labeling.

Finally, we need to check whether the variations of all non-input vertexes are ex-
plained by the influences of their regulators. This is accomplished as follows:

receive(V, SxT') — label E(U,V,S), label V(U,T).
— label V(V, S),not receive(V,S),
not input(V'), not app(inp _v(V)). (3.13)

First, observe that the influence of a regulator U on V is simply the product of the signs
of the edge and of U. Based on this, the integrity constraint denies cases where a non-
input vertex, neither a given input nor made input by any repair, receives no influence
compatible with its variation S. That is, a non-input vertex must not be unexplained
in the dataset. Conversely, any answer set comprises consistent total vertex and edge
labellings wrt the repaired network /dataset.

3.2.3.4 Minimal repairs

Typically, plenty of repairs are possible, in particular, if several repair operations are
admitted by adding multiple control atoms rep a,...,rep v as facts. However, one
usually is only interested in repairs that make few changes on the model and/or data.

Repairs that achieve consistency by applying a minimal number of operations can
easily be selected among the candidate repairs using the #minimize directive available
in Iparse’s and gringo’s input languages. The respective statement is as follows:

#minimize{app(R) : rep(R)}. (3.14)

It means that the number of instances of predicate app in answer sets, with argument R
ranging over the ground instances of “domain predicate” rep, is subject to minimiza-
tion. Note that (3.14) does not explicitly refer to the types of repair operations to be
minimized.
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Using the E. coli network and the two datasets, we tested the feasibility of our repair
modes on consistent as well as inconsistent samples (depending on the random selection).
Table 3.5 provides average run-times and numbers of timeouts in parentheses over 200
samples per percentage of preassigned measurements; timeouts are included as 600 s in
average run-times. We ran experiments admitting the following repair operations and
combinations thereof: flipping edge labels denoted by ‘e’ (flip _e), making vertexes input
denoted by ‘i’ (inp _v), and flipping preassigned variations denoted by ‘v’ (flip _v).

We do not include results on the adding edges repair (add _e), where the bottleneck
lies in grounding since permitting the addition of arbitrary edges turns the influence
graph into a large clique at the encoding level. To avoid this, the edges that can possibly
be added by repairs should be restricted to a (smaller) set of reasonable ones, which
requires biological knowledge, e.g., regulations known for organisms related to the one
under consideration.

Table 3.5: Computation times for minimal repairs tested on the E. coli TRN (1915 nodes
and 5140 edges) wrt two datasets composed of 850 significant observations. 200 samples of size
corresponding to 3%, 6%, 9%, 12%, and 15% of the whole data were randomly selected for
the experiments. The analysis was run with grounder gringo (2.0.3) and solver clasp (1.2.1)
on a Linux PC equipped with AthMP+1900 processor and 4GB of main memory, imposing a
maximum time of 600 seconds per run. The numbers in parentheses represent the number of
timeouts.

Exponential vs Stationary Heatshock
Repair 3% 6% 9% 12% 15% 3% 6% 9% 12% 15%
e 6.58(0)| 8.44 (0)| 11.60 (0)| 14.88 (0)| 26.20 (0)|| 25.54 (4)| 42.76 (8)| 50.46 (5)| 69.23 (6)| 84.77 (6)

i 2.18(0)| 2.15 (0)| 2.21 (0)| 2.23 (0)| 2.21 (0)|| 2.10 (0)| 2.13 (0)| 2.13 (0)| 2.05 (0)| 2.08 (0)
v 1.41(0)| 1.40 (0)| 1.40 (0)| 1.41 (0)| 1.37 (0)|| 1.41 (0)| 1.47 (0)| 1.42 (0)| 1.37 (0)| 1.39 (0)

ei 73.16(6) [202.66(23) [392.97 (87)[518.50(143)|574.85(179)||120.91(21)|374.69 (91)[553.00(169)|593.20(197)|595.99(198)
e v || 28.53(0)| 85.17 (0)[189.27 (12)]327.98 (33)]470.48 (88)|| 67.92 (3)[236.05 (31)]465.92(107)|579.88(179)|596.17(197)
iv 2.09(0)| 2.14 (0)| 2.45 (0)| 3.08 (0)| 6.06 (0)|| 2.27 (0)| 4.94 (0)| 60.63 (8)|257.68 (56)|418.93(123)

ei v [[133.84(8)(391.60(76)[538.93(151)|593.33(193)|600.00(200) || 232.29(26) | 542.48(152) | 593.88(195) |600.00(200) | 600.00(200)

3.2.3.5 Prediction under repairs

The last step of our analysis was to provide {1, —1} predictions for some network nodes
after the network and dataset were corrected performing minimal repairs. In the ASP
framework, enumerating all consistent total labellings in order to do prediction is un-
necessary. In fact, given a program II, the intersection of all (optimal) answer sets of IT
can be computed using Algorithm 63.

When a node of the network ¢ is predicted to a value —1, all the answer sets of
II will contain the labeling ‘1labelV(i,-1)’. However, when a node is not predicted,
only some answer sets will contain the labeling ‘1abelV(i,-1)’, while others will contain
‘labelV(i,1)’. Thus, non of these labellings will belong to the intersection of all answer

3The Herbrand Base of a program II is the set of all its ground atoms.
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Algorithm 6 Computing the intersection of all optimal answer sets of a program II
Require: II, a set of ASP rules
Ensure: C| intersection of all optimal answer sets of II

C < Herbrand Base of II

while there is an answer set X of ITU {« C.} do

C<=C0nX
end while
return C

sets. Observe that, due to intersecting C' with an answer set X in Algorithm 6, the
contents of C' is monotonically decreasing over iterations. Furthermore, augmenting I1
with integrity constraint < C. makes sure that any remaining answer set X exclude
some atom common to all previously computed answer sets.

For prediction, an input program II is composed of an instance (cf. Section 3.2.3.1), a
definition of admissible repair operations (c¢f. Section 3.2.3.2), the basic repair encoding
(¢f. Section 3.2.3.3), and the #minimize statement in Section 3.2.3.4. Predicted signs for
vertexes are then simply read off from instances of predicates labelV in the intersection C
(Alg. 6) of all optimal answer sets of II.

The computation time for the prediction under repair is given in Table 3.6. We
observe that the run-times for prediction are in line with the ones for computing a
cardinality-minimal repair, and maximum time is only rarely exceeded on the samples
with known optimum. This shows that prediction is successfully applicable if computing
a cardinality-minimal repair is feasible.

Table 3.6: Computation times for prediction under repairs tested on the E. coli TRN (1915
nodes and 5140 edges) wrt two datasets composed of 850 significant observations. 200 samples
of size corresponding to 3%, 6%, 9%, 12%, and 15% of the whole data were randomly selected
for the experiments. The analysis was run with grounder gringo (2.0.3) and solver clasp (1.2.1)
on a Linux PC equipped with AthMP+1900 processor and 4GB of main memory, imposing a
maximum time of 600 seconds per run. The numbers in parentheses represent the number of
timeouts.

Exponential vs Stationary Heatshock
Repair 3% 6% 9% 12% 15% 3% 6% 9% 12% 15%
e 13.27(0)| 12.19(0)| 14.76(0)| 15.34 (0)| 25.90 (1)|| 25.77(0)| 37.18(0)| 29.09(0)| 36.23(0)| 41.88(0)

i 6.18(0)| 5.26(0)| 4.77(0)| 4.60 (0)| 4.42 (0)|| 6.57(0)| 5.93(0)| 5.17(0)| 4.86(0)| 4.54(0)
v || 4.64(0)| 4.45(0)| 4.39(0)| 4.40 (0)| 4.30 (0)|| 4.86(0)| 5.06(0)| 5.34(0)| 5.42(0)| 5.52(0)
ei 35.25(0)| 97.66(1)(293.80(3) |456.55 (3)|550.33 (1)|| 85.47(0)|293.28(1)|524.19(3)|591.81(0)|594.74(0)
e v ||14.35(0)| 26.17(0)| 90.17(3)[200.25(13)|363.36(16)|| 23.32(0)[111.99(0)[338.95(0)|545.56(2)|591.23(0)
i v|| 6.43(0)| 5.75(0)| 6.27(0)| 6.69 (0)| 8.61 (0)|| 6.91(0)| 6.63(0)| 30.33(0)|176.14(1)|371.95(0)
ei v [[42.51(0)[248.30(1)[468.71(2)|579.58 (0) — (0)|]101.82(1) |466.91(0) | 585.64(0) —(0) —(0)
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3.2.3.6 Discussion

To our knowledge, this work provides the first approach to automatically and globally
reason over whole biological networks in order to identify minimal repairs on the network
and/or datasets. This approach is fully declarative so that its intended results are
independent of computations. This assigns a clear semantics to (minimal) repairs and
prediction, and the explicit representation of repair operations allows for reasoning over
corrections on either of or both of data and model. The latter distinguishes our approach
to repair from the one applied in the area of databases [ABC99|, which is limited to
data repair. Importantly, available biological knowledge can be incorporated in our
framework to improve both the validity of results and computational efficiency.

3.3 Comparing TDDs with ASP

The TDDs and ASP approaches are complementary. Their main difference is how they
approach the problem of consistency. The TDDs provide an efficient representation
in memory of all the space of solutions of a qualitative system of constraints. By
efficiently covering this structure, the predictions and inconsistencies of the system
can be obtained. Using the TDDs approach, methods can be proposed to quantify
the number of consistent solutions; and thus to generate relative predictions over a
node. For example, computing the percentage of solutions in which a network node
was predicted to a + value. Contrary to this approach, ASP does not represent all
the space of solutions in memory, but it generates a model and then asks existential
questions over it. By asking particular questions, it could be possible to generate all the
space of solutions with ASP. However, this analysis may take longer computation time.
Nevertheless, ASP programs are capable of dealing problems of larger size (without
considering a reduction step). This idea enlarges the number of questions that can be
asked, in particular in the experimental plan design.

Since ASP is a declarative language, programs can be represented (and solved) in
an easier way. For example coding a new variation value for a node, such as the null-
variation, can be done by adding new rules into the program. In the TDDs approach,
this extension required to modify several parts of its implementation, which is not
a trivial task for a new user. There are some problems, like the computation of all
inconsistent subgraphs, that can only be approached with ASP. On the other hand,
current analyses concerning the consistency of influence graphs, where influences can
be also represented using Boolean functions, were approached only by programs based
on TDDs.

Both, TDDs and ASP, offer a programing language in which the user can define her
specific analyses. In this chapter we presented publicly available programs that use both
approaches in order to answer our specific problematics concerning the consistency check
between large-scale regulatory networks and wide experimental datasets. However, the
programs designed under TDDs and ASP can be extended endlessly, as long as the
biological questions concerning large-scale data persist. The choice of using one of
these approaches will depend on the type of questions and problematics that we will
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be confronted with. In Table 3.7 we show a summary of the different functionalities
provided by existing programs based on TDDs and/or ASP.

Table 3.7: Functionalities provided by existing programs based on TDDs and/or ASP.

Functionality

TDDs ‘ ASP ‘ Comment

Consistency check

Prediction under consistency

Finding a minimal
inconsistent subgraph

Approximating all
inconsistent subgraphs

Finding exactly all
inconsistent subgraphs

Costly in computation time for networks
with more than 1000 nodes.

Inferring TF roles in
unsigned networks

Although implemented by both approaches, only
ASP can predict exactly all the TF roles. However,
the current ASP implementation requires a
pre-step computed using TDDs.

Coding influences
as Boolean functions

Reasoning over the
generated predictions

Prediction under
minimal repairs

Web service

They provide consistency check, a diagnosis, and
approximating all inconsistent subgraphs. The ASP
Web service also provides finding exactly all
inconsistent subgraphs.

Analysis visualization

It provides consistency check, a diagnosis, and
approximating all inconsistent subgraphs.
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Chapter 4

Bioinformatic software

Many efforts were done in order to provide the computationally powerful methodologies,
detailed in Chapter 3, as publicly available and user-friendly bioinformatic tools. In
this chapter we will present three bioinformatic tools that were developed during this
thesis using programs based on the TDD approach. These tools are an on-line Website
to perform consistency analyses, a Cytoscape plugin to visualize analyses, and a Web
service to integrate our analysis into other bioinformatic tools. All three of them use the
GenOuest [gen| high performance computing facility. The biggest effort in the informatic
design of these tools was the setting up of the Cytoscape plugin, functionalities of which
we will describe in this chapter; we published the complete work in [GBMS09].

4.1 Website

The first bioinformatic tool proposed was an on-line Website available at www.irisa.fr/
symbiose/bioquali/. This Website accepts as input a network and a dataset coded as
text files. The network file is composed of lines in the format ‘A -> B [+]|-|?7]’, with one
line per network regulation, which expresses that a network product A regulates B as an
activator, repressor, or in a complex manner, respectively. The dataset file is composed
of lines in the format ‘A = [+]-]’, with one line per observation, which expresses that a
network product A was observed to be up- or down-regulated, respectively. The types
of results displayed are:

e Consistency check of the network with or without an experimental dataset.
e First diagnose, when inconsistent.

e Prediction of the variation of some network products, when consistent.

These results are obtained by running the program presented in Algorithm 1, im-
plemented using the Dgraph Python module. The on-line web form is located on the
GenOuest Web server [gen]|. The programs checking the consistency are run on the
GenOuest high performance computing facility. In Fig. 4.1 we illustrate an example of
its usage.
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Figure 4.1: A usage example of the Bioquali on-line web form. The left screenshot shows
the data initialization. Once the computation is finished the consistency results will appear as
shown in the upper-right image. In this example the network itself was consistent, while it was
inconsistent wrt the dataset provided. The inconsistent region is shown as a line representing
a network regulation. Once the network regulations are corrected, we can launch once more
this analysis obtaining this time the results displayed in the bottom-right image, in which both
data are consistent and a set of variations of some network products (predictions) is listed.

4.2 Cytoscape plugin

In order to provide a wider range of user interactions with the consistency analysis, we
developed a plugin for the Cytoscape environment [SMOT03], designed to facilitate au-
tomatic reasoning on regulatory networks. The BioQuali plugin enhances user-friendly
conversions of regulatory networks (including reference databases) into signed directed
graphs. BioQuali performs automatic global reasoning in order to decide which products
in the network need to be up or down regulated (active or inactive) to globally explain
experimental data. It highlights incomplete regions in the network, meaning that gene
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expression levels do not globally correlate with existing knowledge on regulation carried
by the topology of the network. The BioQuali plugin facilitates in silico exploration of
large-scale regulatory networks by combining the user-friendly tools of the Cytoscape
environment with high-performance automatic reasoning algorithms. As a main fea-
ture, the plugin guides further investigation regarding a system by highlighting regions
in the network that are not accurately described and merit specific study.

4.2.1 Implementation

The BioQuali plugin is implemented in Java, based on the Cytoscape API, and uses the
REST architectural style. By default, the client component uses an unauthenticated
HTTP connection to communicate with the GenOuest Web server |gen|. This enables
fast remote execution of the algorithm underlying the BioQuali plugin on the GenOuest
high performance computing facility. The GenOuest computing infrastructure consists
of 32 AMD Opteron bi-processor nodes (Sun V20Z) with 4GB of main memory each
and a job submission server, SGE, which manages access and computation.

The plugin is available to download from the Cytoscape plugin website, under
the Plugin/Analysis section. It is packaged as a jar file which must be placed in
the Cytoscape plugins directory. It is compiled with the latest Cytoscape API (ver-
sion 2.6). It can also be installed using the Cytoscape plugin management system,
selecting "BioQualiPlugin v.1.1" from the Analysis section. Alternatively, the Bio-
Quali plugin is available via Java Web Start (see [bio]). Documentation and tutorial
examples of this plugin are provided at http://www.irisa.fr/symbiose/projects/
bioqualiCytoscapePlugin/.

4.2.2 BioQuali plugin functionalities
Input

The BioQuali plugin receives two types of input: an experimental dataset and a regula-
tory network. BioQuali is able to handle large-scale networks, for example, the bacte-
rial transcriptional regulatory networks of E. coli [SGCPGal.06] and Corynebacterium
[NBA107]. However, any type of regulatory network is accepted provided that an anno-
tation file with labeled interactions is first imported to Cytoscape. The plugin provides
a user-friendly annotation interface for classifying interaction labels as {+, —, &, 7} reg-
ulation types. This classification will then be used to perform automatic reasoning on
behaviors. The {4, —} types represent positive and negative influences among network
products, the '&" is a Boolean AND among signs (the variation of a product is positive
only when all the influences it receives are positive), and the '?" represents interactions
with unclassifiable effects (either unknown or context-dependent sign).

Thanks to the annotation functionality, the plugin is compatible with other network
import plugins: the user may use regulatory networks obtained using the CoryneRegNet
Cytoscape plugin [BAOS] or automatically import the latest update of the RegulonDB
database [SGCPGal.06] in order to retrieve the F. coli transcriptional network.
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The experimental dataset, resulting from the comparison of gene or protein expres-
sion levels between two conditions, can be provided as raw numbers representing the
relative gene expression levels. A functionality of the plugin enables the user to clas-
sify these observations as up- or down-regulated {+, —} using a chosen threshold. The
dataset can also be imported as a Cytoscape node attributes file (.NA) in which certain
network products are annotated as + or —, depending on their expression change.

Output

The plugin outputs one of the three types of the results after checking for consistency:
a list of local inconsistencies (LI), a list of global inconsistencies (GI), or a list of pre-
dictions. The first result (LI) is outputted when the network presents inconsistencies
of the form: “A is the only activator of B, A increases but B decreases”. The second
type of inconsistency (GI), much more difficult to detect, is a global one: it is shown
as a subgraph in which the sign of its nodes or edges contradicts the flow of events at
certain steps (see the example in the next section and illustrated in Fig. 4.2B). The
plugin automatically retrieves all the subnetworks of a model that are inconsistent with
a certain dataset (iteratively, all the interactions of a GI are fixed to '?" and a next
GI is computed). For the third type of result, the plugin outputs a list of predictions
when a network is consistent with experimental data: it shows fluctuations in the net-
work products inferred as increasing or decreasing in order to consistently explain the
experimental data.

4.2.3 The consistency criteria

The central functionality of the BioQuali plugin is to automatically and visually illus-
trate the user how to explain her experimental observations regarding the regulatory
model. This task is accomplished by using the consistency-check reasoning introduced
in Chapter 2 and solved using the TDDs representation described in Chapter 3. In
Fig. 4.2 we recall the automatic reasoning underlying the BioQuali plugin. Given a
known (signed and oriented) regulatory network in which some products are observed,
the plugin reasons over the whole network in order to determine its consistency. In
Fig. 4.2A we describe a small regulatory network. Let us say, for example, that rpsP
and rpmC' are observed as down-regulated; we then deduce that, as fnr is the only
inhibitor of rpsP, fnr should be up-regulated. If this is the case, following a similar
reasoning, we conclude that arcA should be down-regulated. To conclude our analysis,
we observe rpmC' as down-regulated, however, its inhibitor is down-regulated and its
activator is up-regulated; we should conclude that rpmC' is up-regulated, yet its ob-
served change tells us opposite; therefore, we find an inconsistency between model and
data (Fig. 4.2B). Using the same network but changing the observed data, i.e. rpsP
up-regulated and rpmC down-regulated, leads us through another deduction path, in
the case of which it is possible to assign a unique {+, —} change value to fnr and arcA
that explains the observed data consistently. This unique deduction is called prediction
(Fig. 4.2C).
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Figure 4.2: Visualizing the consistency criteria. A. Signed and oriented regulatory network.
Arrows ending with ‘—>’ or ‘—|’ represent activations or inhibitions, respectively. B. Detection
of a global inconsistency when rpsP and rpmC' are both observed to be down-regulated. Step
1, rpsP’s negative change implies that its only inhibitor has to be up-regulated (fnr = +); Step
2, fnr’s positive change implies that its only inhibitor has to be down-regulated (arcA = —);
Step 3, these deductions cannot explain rpm(C’s down-regulation, since its activator (fnr) is
up-regulated and its inhibitor (arcA) is down-regulated. C. Prediction when rpsP is observed
to be up-regulated and rpmC, down-regulated. rpsP’s inhibitor (fnr) is fixed to ‘—’ to explain
the observed value of rpsP. In a similar manner, arcA is fixed to ‘+’. With this unique
configuration we obtain a consistent system where fnr = — and arcA = + are the predictions

4.2.4 Case study — E. coli: large-scale transcriptional network

The E. coli TRN was obtained from the RegulonDB database [SGCPGal.06] on Novem-
ber 2008. It consisted of 3250 TF-gene regulations classified according to three types:
activation, repression, and context-dependent effect; we assigned +, —, and 7 signs
respectively to these three types of regulation. Using the BioQuali plugin, we visualized
a region where this network was inconsistent, see Fig. 4.3A. In order to correct this
inconsistency we added the Sigma-gene regulations (all as positive influences), resulting
in a network of 5140 regulations. This larger network was globally consistent, meaning
that it may entail stable behaviors when experimental data is added to it.

We compared the globally consistent regulatory network with a small literature
dataset obtained from RegulonDB in which 45 proteins/genes were carefully verified as
activating (+4) or repressing (—) during exponential-stationary growth shift; it was a
heterogeneous dataset since the changes were reported at different time-points. This
dataset of observations was initially inconsistent with the regulatory model (see Fig.
4.3B). We corrected it by adding two positive regulations from the sigma factor RpoD
to ihfA and ihfB according to a recent publication on F. coli functional regulations
[FGAPTQCVO08a|. This network correction explained the observed repressed (—) effect
of ihfA. The consistency of the corrected model with the small dataset reflected 498
positive and negative fluctuations in the network molecules (see Fig. 4.4).
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Figure 4.3: List of inconsistencies detected in the E. coli transcriptional network. A. The
inconsistency appears because no possible stable behavior may be obtained using this network
as ihfA and ihfB genes code for the protein complex IHF, which deregulates the transcription
of these genes. B. This inconsistency was found after confronting the network with 45 literature-
curated expression changes during the exponential-stationary growth shift. The nodes with red
and green borders refer to + and — observations. The problem appears since no possible
explanation exists for the negative shift observed in the ihfA expression: ihfA is activated
by RpoS and repressed by IHF; the change in expression of RpoS was inferred to be positive
(because of fic), and the change in expression of IHF was inferred to be negative (because of
thfA and ihfB); consequently, these influences cannot explain the down-regulation of ihfA.

4.3 'Web service

The CoryneRegNet platform [BWR'07| provides interesting information concerning
the construction of bacterial regulatory networks at large-scale, and includes different
types of regulatory network analyses ready to be launched on the users data. Currently,
there is only one tool, COMA [BAO0S|, that automatizes the confrontation of large-scale
regulatory networks and experimental datasets. One of the motivation we had to make
BioQuali reasoning available as a Web service, was to include it in a future time in
the CoryneRegNet platform. It could complement the existing tool, since it is able to
perform global and, thus, more complex analyses in reasonable computation time.

The BioQuali Web service makes the BioQuali functionalities accessible via SOAP
requests. By using it, users can automate access to BioQuali from their own tools or
databases. All requests are run on the GenQOuest high performance computing facility
|gen|. The output of the web service is: (1) a list of Predictions, when the network
and dataset are consistent, (2) a list of local inconsistencies, algorithmically easy-to-
detect network regions inconsistent with the dataset observations, (3) a list of global
inconsistencies, more complex inconsistent subgraphs, (4) the core of the network, a
reduction of the graph, and (5) a list of multiple inconsistencies, a reasonable-time-
computing approximation of all the inconsistencies of the graph wrt a dataset.

All the documentation of the BioQuali Web service can be found at: http://
genoweb2.irisa.fr/claroline/index.php?category=NETWORKS; also, an on-line ac-
cess to it is provided at: http://mobyle.genouest.org/cgi-bin/Mobyle/portal.py?
form=bioquali.
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Figure 4.4: The predictions shown by the plugin in the E. coli network. The cyan colored nodes
correspond to network products inferred as {+, —} in order to explain the 45 gene expression
observations initially provided. The plugin lists 498 predicted changes in the Results Panel;
it is possible to select and visualize them in detail in the Data Panel and compare them, as
shown in this image, with other experimental observations. In the bottom right corner we see
the BioQuali plugin window with all the analysis options that it provides.
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Chapter 5

Application to Bacterial networks

The bacterium FEscherichia coli is one of the best-studied single-celled organisms. Its
genetic regulatory network was studied by a wide community, and this information was
compiled in databases such as RegulonDB. For that reason, we applied the modeling
and informatic approaches proposed in Chapters 2 and 3 to this bacteria. We illustrate
in this chapter the biological output obtained after applying the qualitative consistency
analysis on this organism. We published part of the results presented in this chapter in
[GVBT07], [VGLB'08], and [GGRS09].

5.1 Constructing the E. coli signed influence graph

The information on mechanisms of regulation for the FE. coli bacteria gathered in
the databases of EcoCyc [KCVGCT05] and RegulonDB [SGCPGal.06] is currently
the largest known for a bacterial cell. The regulatory information contained in both
databases is well known to be synchronized since 2005. It is presented by RegulonDB
as plain text files that contain all the set of documented interactions that take place
in the E. coli regulatory process. The information used to build the E. coli influence
graph was obtained from two files of the RegulonDB Website:

e RegulonDB-EcoCyc interactions. This file contains a set, of regulatory interactions
at the level of transcription initiation. Each line in this file contains: (i) the name
of the transcription factor protein, (ii) the regulatory gene(s), (i) the regulated
gene, and (iv) the regulatory role of the TF over the regulated gene: activator,
repressor, or both. These interactions show the proteins that regulate a gene, and
the gene that synthesizes the regulatory protein.

e (lenes transcribed by sigma-factors. This file contains interactions between the
sigma-factors of £. coli and their corresponding transcribed genes. Sigma-factors
associate with the Prokaryotic RNA polymerase, and provide it the function of
promoter recognition. Each o-factor has its own specificity, allowing the initiation
of transcription of different subsets of genes. In Table 5.1 we list the seven o-factors
of the E. coli bacteria. Expression of o-factors in bacteria is also regulated and
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some of them receive post-translational regulations. Different conditions of the
cell, such as starvation, and in some cases environmental signals, such as extreme
heat, can trigger the production of o-factors.

Table 5.1: Sigma (o-)factors present in the E. coli bacteria

Protein | Gene | Function
o0 rpoD | Transcribes most genes in growing cells
38 rpoS | The starvation/stationary phase sigma-factor
28 rpoF | The flagellar sigma-factor
32 rpoH | The heat shock sigma-factor
o2 rpoE | The extracytoplasmic stress sigma-factor
54 rpoN | The nitrogen-limitation sigma-factor
19 fecl The ferric citrate sigma-factor

Only the E. coli genes, for which exist literature evidence confirming their interaction
with other genes, are present in the interaction files of RegulonDB. In the following
sections we show how we built the influence graph for the E. coli bacteria using the
information gathered in RegulonDB.

5.1.1 E. coli influence graph - only transcriptional regulations

From the file RegulonDB-EcoCyc interactions we built the influence graph of the E. coli
network as the set of regulations of the form ‘A — B sign’. The value sign is the role
of the TF regulating the gene. Its value is in {+,—,?} meaning: activator, repressor,
or dual or complex effect. A and B can be considered as genes or proteins, depending
on the following situations:

e The relation ‘genA — genB sign’ was created when protein A, synthesized by
genA, was the transcription factor regulating genB. The regulatory role of the
transcription factor is given by sign, which value is in {+, —, 7} (see Fig. 5.1A).

e The relation ‘T'F — genB sign’ was created when TF was an heterodimer protein-
complex regulating genB. The regulatory role of TF is given by sign, which value
is in {+,—,?} (see Fig. 5.1B). There were four protein-complexes in the E. coli
TRN obtained from RegulonDB: THF, HU, RcsB, and GatR.

e The relation ‘genA — TF 4’ was created when TF was an heterodimer protein-
complex synthesized by genA (see Fig. 5.1B).

The influence graph for E. coli is only built from transcriptional information. The
metabolites and signals were not taken into consideration for the construction of this
graph. The first resultant influence graph, compiled on March 2006, had 1258 nodes
(genes and protein-complexes) and 2526 interactions. In Figs. 5.2 and 5.3 we illustrate
a partial and global view of this graph.
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Figure 5.1: Influence graph representing the E. coli genetic interactions. A. Negative regu-
lation (repression) of gene fiu by the transcription factor Fur represented as ‘fur — fiu —’
in the influence graph. B. Biological interaction of genes ihfA and ihfB forming the protein-
complex ITHF represented as ‘thfA — [HF + and ‘thfB — IHF +’. Positive regulation of
gene aceA by the protein complex THF represented by ‘I HF — aceA +’ in the influence graph.

Figure 5.2: Partial view of the E. coli influence graph associated to its TRN. Regulated genes
are shown as blue ovals, TFs as green ovals, and global TFs as yellow rectangles. Green (resp.
red) edges represent activations (resp. repressions); blue arrows represent dual or complex
interactions.

The E. coli TRN is well known for its hierarchical structure [MKD'04, MACVO03].
In Fig. 5.4 we show a comparison between the number of predecessors and successors
by gene that appear in this network. 87% of the total number of nodes is regulated
by the 23% that remains, that is, the network holds a power-law distribution. Among
this 23% there are seven regulatory proteins that directly regulate more than 80 genes
each one. These proteins are known as global factors and are: CRP, FNR, THF, FIS,
ArcA, NarL, and Lrp. Another characteristic of this network is that it contains certain
network motifs [SOMMAO2], such as feed-forward loops and regulons.

Notice that the RegulonDB database is constantly being updated, thus, new regu-
latory interactions appear each year. We have presented the 2006 version of the E. coli
TRN. We have, however, built two more E. coli influence graphs following the same
steps described in this section. These graphs were built using the available information
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Figure 5.3: Global view of a the E. coli influence graph. This network was obtained from
RegulonDB on March 2006. It consisted of 1258 nodes and 2526 edges. Regulated genes are
shown as blue ovals, TFs as yellow ovals, and global TFs as red squares. Green (resp. red)
edges represent activations (resp. repressions).
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Figure 5.4: Charts illustrating the distribution of number of genes in the E. coli TRN (Y axis),
controlling (left) or being controlled (right) by groups of genes of different sizes (X axis).

of RegulonDB in 2007 and 2008. We can see their number of nodes and edges in Table
5.2. We will use these three graphs in the different analyses presented in this chapter.

5.1.2 Adding sigma factors to obtain self-consistency

Using the analysis described in Section 2.2.3 we built the qualitative system of con-
straints for the E. coli influence graph (compiled in 2006). Afterwards, we used the
Bioquali Python package described in Section 3.1 to decide the consistency of this system
of constraints. The system was found self-inconsistent. Thus, we applied the Bioquali
functionality to isolate a minimal inconsistent subgraph (see Figure 5.5). A careful
reading of the available literature led us to consider the regulations involving sigma-
factors which were initially absent in the influence graph. These new regulations were
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taken from the Genes transcribed by sigma-factors file in RegulonDB. They were added
in the influence graph as a list of positive regulations of the form ‘o-factor — gene +’,
since sigma-factors are well known to enhance the transcription of genes. Once they
were added to complete the network, we obtained a network of 3802 interactions and
1529 components (genes, protein-complexes, and sigma-factors). This final network was
found to be self-consistent.

We also computed the self-consistency of the influence graphs compiled in 2007 and
2008 composed only of TF-gene regulations. As result, we obtained that they were
self-inconsistent. Thus, they were extended using the o-factors regulations currently
available on that years. Two larger influence graphs were compiled; both were self-
consistent. See their number of nodes and edges in Table 5.2.

-
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Figure 5.5: (Left) A minimal inconsistent subgraph, isolated from the E. coli influence graph
using the Bioquali package functionalities. (Right) Correction proposed after careful reading of
the available literature on ihfA and ihfB regulation.

Table 5.2: Sizes of three influence graphs built using the RegulonDB information available
in 2006, 2007, and 2008. Graphs composed only of TF-gene regulations were self-inconsistent;
while those composed of TF- and o-regulations were self-consistent.

Year TF-gene regulations TF-gene and o-gene regulations
2006 | 1258 nodes - 2526 edges 1529 nodes - 3802 edges
2007 | 1415 nodes - 2899 edges 1763 nodes - 4491 edges
2008 | 1499 nodes - 3250 edges 1915 nodes - 5140 edges

Biological interpretation of the results 5.1. Transcriptional regulations are not
enough to explain by themselves the variations of any product of the system. The sigma-
factors interactions cannot be omitted in the construction process of the final model for
E. colu.

5.1.3 Core of an influence graph

Obviously, not all interactions play the same role in the network. The core is a subnet-
work that naturally appears for computational purpose and plays an important role in
the system. It consists of all oriented loops and of all oriented chains leading to loops.
All oriented chains leaving the core without returning are discarded when reducing the
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network to its core. Acyclic graphs and, in particular, trees have no core. The main
property of the core is that if a system of qualitative equations has no solution, neither
has the reduced system built from its core. Hence it corresponds to the most difficult
part of the constraints to solve. It is obtained by reduction techniques explained in
Chapter 3. As an example, the core of the E. coli influence graph obtained from Regu-
lonDB in 2006 and composed of TF- and o-gene regulations had only 28 nodes and 57
edges (see Fig. 5.6).

Figure 5.6: Core of the E. coli influence graph obtained from RegulonDB in 2006, composed
of TF- plus o-gene regulations.

5.2 Network consistency wrt a single dataset

5.2.1 Dataset used in the consistency analysis

Our goal was to confront the self-consistent influence graph of E. coli to a stress-
perturbation experimental condition. Thus, we compared two conditions of the cell
at steady state: (i) exponential growth, and (i) stationary growth. These conditions
were compared to study the exponential-stationary growth shift in the E. coli bacteria.
The dataset, composed of differential observations of some E. coli genes affected during
this growth shift, was collected from the literature based on initial information provided
in RegulonDB. These observations were supported by a precise evidence and literature
citation, and were classified as induced or repressed.

We processed this information in order to assign qualitative {4+, —} changes to some
nodes of the influence graph. Thus, we compiled a set of observations of the form
‘gene = sign’, where sign was set to ‘+’ or ‘—’ depending if the gene was expressed or,
respectively, repressed under this condition. In Table 5.3 we show the processed dataset
corresponding to the qualitative changes of 45 E. coli genes during the exponential-
stationary growth shift.
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Table 5.3: 45 gene expression changes observed in E. coli during the exponential to station-
ary growth shift. This dataset was collected from the literature, based on initial information
provided in RegulonDB. The Locus column corresponds to the Blattner numbers [BrPB*97].
Notice that for thfA RegulonDB proposes a ‘—’ sign. We corrected this sign as it is incom-
patible with both our consistency analysis and the literature provided (see next section for
details).

Locus Gene Sign || Locus Gene Sign ||Locus Gene Sign ||Locus Gene Sign ||Locus Gene Sign
b0464 acrR + b0978 appC + bl1241 adhE + bl814 sdaA — b2663 gabP +
b2163 yeilL  + |[|b0979 appB + ||bl732 katE + ||bl197 treA + ||bl712 ihfA +
b0564 appY + |[|b3855 rrfA — ||b4149 blc + || b4233 mpl + |[|b0912 iAfB —
b2679 proX «+ b3701 dnaN + b3500  gor + b2552 hmp + b1897 otsB +
b4396  rob + b0054 imp + b1482 osmC + b3517 gadA + b0435 bolA +
b1276 acnA + ||b2579 yfiD + |[|bl283 osmB + |[|bl493 gadB 4+ ||b0972 hyeA +
b4376 osmY 4+ ||b3361 fic + [|bl739 osmE + ||bl492 gadC + ||b3544 dppA +
b0463 acrA 4+ b1272 sohB — b3863 polA + b0899 Irp + b3700 recF 4+
b1896 otsA + b4111 proP + b0880 cspD + b2535 csiE + b1237  hns +

5.2.2 Feasibility of the consistency-check

In 2006, a first consistency analysis was performed using the 2006 version of the F. coli
TRN (composed of TF- and o-gene regulations) and the exponential-stationary dataset.
Our goal was to test the feasibility of our approach on a large-scale regulatory network.
The results obtained were published in [GVBT07]. We summarize the main results in
the following lines:

1. Consistency answer. The qualitative changes reported by the exponential-
stationary dataset were inconsistent with the F. coli influence graph.

2. Diagnose of the inconsistency. The dataset of observations proposed by Reg-
ulonDB assigned the ihfA gene a ‘—’ change during this condition. Thus, in this
first analysis we detected an inconsistency (see explanation in Fig. 5.7).

We corrected the ihfA observed value setting its variation to ‘+’, as shown in
Table 5.3. This correction was done on the basis of the studies reported in
[AAINT91, AGST94]|, which agree that the transcription of ihf A increases during
stationary phase. After correcting this dataset observation, the F. coli influence
graph was consistent with the exponential-stationary dataset.

3. Predictions. Once the E. coli influence graph was consistent with the dataset,
we explored the solutions of the qualitative system. There were about 2,66 - 10'6
solutions consistent with the observations of the exponential-stationary growth
shift. In them, 381 variables of the system were always fixed to the same value,
and thus corresponded to the predictions.

Biological interpretation of the results 5.2. The E. coli influence graph composed
of TF- plus o-gene regulations obtained from RegulonDB in 2006 was inconsistent with
the hfA = —’ observation provided in the dataset of the transition from exponential
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Figure 5.7: Inconsistent graph obtained with the data available in RegulonDB in 2006. Nodes
with a green (resp. red) border correspond to ‘+’ (resp. ‘—’) observations in the exponential-
stationary growth shift dataset. The green (resp. red) arrows correspond to activations (resp.
inhibitions). Explanation: (1) Since ¢hfA and ihfB are observed to be down-regulated (—),
then IHF will be fixed to ‘—’. (2) If this is the case, then the dppA gene ‘+’ observation must be
explained by RpoD’s change, that will be fixed to ‘4. (3) The inconsistency appears because
the ‘—’ observation of ihfA is not explained neither by RpoD (set to ‘4’ in step 2), nor by
RpoS (set to ‘+’ because of blc’s observation).

to stationary growth of the cell. We corrected the observed value for the ihfA gene in
agreement with the studies reported in [AAIN'T 91, AGST 94].

5.2.3 Validation of the consistency-check

In 2007, we compiled a second influence graph for the E. coli TRN using the regulatory
information available in RegulonDB to that date. The interactions in the influence
graph represented transcriptional, complex formation, and sigma-gene regulations. The
products of the network were genes, active proteins, and protein-complexes. The E. coli
influence graph was composed of 1763 products and 4491 interactions.

Our objective was to validate our approach by comparing our computational predic-
tions with respect to an independent dataset of transcriptional data. Thus, we tested
the consistency of this graph using the exponential-stationary growth shift condition (cf.
Table 5.3) in order to evaluate the biological impact of our results. The exponential-
stationary dataset had the corrected observation for ihfA (‘ihfA = +’). We published
this work in [GGRS09]; in this section we describe our main results.

Consistency test and diagnose

We started our analysis by constructing a system of qualitative constraints as explained
in Section 2.2.3 from the E. coli influence graph (obtained in 2007) and the exponential-
stationary growth shift dataset. Then, we computed its consistency by using the Bio-
quali Python package. The first result obtained was an inconsistency between the net-
work and the experimental dataset. This inconsistency corresponded to a newly added
transcriptional interaction (‘hns -> appY -’) that appeared in RegulonDB in 2007.
The inconsistent region, highlighted by the methods in Bioquali, is shown in Fig. 5.8A.
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It represents the inhibition of transcription of the appY gene by the H-NS protein. No
other transcriptional regulation of the appY gene was found in the RegulonDB database.
These products (appY, hns, and therefore H-NS) are, however, shown to increase their
levels in the exponential-stationary growth shift of the cell [DSB93, ASOB96]. Hence,
the source of the conflict may be in the model.

Expression Data
Locus Gene Effect A p
b1237 hns +
b0564 appY +

A B

Figure 5.8: Diagnosis when an inconsistency between the model and data is found. A. The
inhibition of gene appY by the hns product causes an inconsistency with the expression data
related to the exponential-stationary growth shift. B. Correction of the inconsistency by adding
a positive regulation from ArcA-P (phosphorylated protein ArcA) to appY’; this regulation
occurs in the absence of oxygen.

Searching in the primary literature we found that the appY gene is induced during
entry into stationary phase, and that during oxygen-limiting conditions the stationary-
phase induction is partially dependent on ArcA [BA96|. The protein ArcA is acti-
vated via phosphorylation by the ArcB sensor under conditions of reduced respiration
[ICF*90]. The signal which leads to the activation of ArcA during entry into stationary
phase may be the deprivation of oxygen caused by an increase in cell density [BA96|.
Based on these studies we corrected our influence graph adding new interactions (see
Fig. 5.8B), obtaining an influence graph consistent with the experimental data.

Biological interpretation of the results 5.3. The E. coli influence graph, composed
of TF- plus o-gene requlations, obtained from RegqulonDB in 2007, was inconsistent with
the following observations: ‘hns = +’ and ‘appY = 4+’ obtained from the exponential-
stationary growth shift dataset. These observations are correctly validated in the liter-
ature. Thus, we added one requlation into the model ‘Arcd-P -> appY’ in agreement
with the studies reported in [BA96].

Computational predictions and validation

Once our network was consistent with the expression data provided for the exponential-
stationary growth shift, we generated the computational predictions. From the 45 gene
expression changes reported by the dataset, we obtained 20 predictions (1% of the total
network nodes). Our system of qualitative constraints was built by using the generic
qualitative function GEN (¢f. Equation 2.2) to model the regulations arriving to a
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node in the network. In Section 2.3.1 we proposed a new qualitative constraint to
model precisely the protein-complex formation (¢f. Equation 2.5). By applying this
rule to the IHF protein-complex, our prediction results changed considerably.

The new set of predictions obtained was composed of 502 changes in network com-
ponents (30% of the total network nodes). We characterized these predictions into
12 functional groups (see Table 5.4) using the DAVIS software [DSHT03]. To vali-
date our computational predictions, we obtained from the Many Microbe Microarray
Database [FDF107] a dataset of differentially expressed genes after 720 minutes of
growth (stationary phase) in a rich medium [AHL"03]. This dataset was compared to
our predictions (see Figs. 5.9 and 5.10).

Table 5.4: 12 functional groups into which the computational predicted network products were
classified.

ID Description Description

ID
A Amino acids metabolism and biosynthesis R Regulatory function
C Carbohydrates metabolism and biosynthesis S Cell structure
E Energy metabolism SI Signal peptides
G Glucose catabolism T Transport
L Lipid metabolism and biosynthesis \% Vitamin metabolism and biosynthesis
N Nucleic acids metabolism U Unassigned

Expression profiling of the microarray dataset identified 926 genes that changed
significantly (2-fold) in transcription in response to the growth shift from exponential
to stationary phase. The 502 products, computationally predicted, could be classified
into four categories: 130 agreed with significant expression changes, 32 had a predicted
expression change in a direction opposite to that of the experimental data, 306 had
a predicted expression change that was not found to be statistically significant in the
experimental data, and for 34 products there was no expression data available (some
products of the network were protein complexes and could not be compared to mRNA
expression). Thus, of the 162 (=130+32) significant differentially expressed genes that
could be compared between the computational predictions and the experiment, 130 (or
80% consensus) agreed. Only the 32% (coverage) of our predictions could be compared
with 2-fold expression changes. Therefore, we performed the same analysis choosing dif-
ferent thresholds (1.5-fold, 0 fold). In this way, new consensus and coverage percentages
were calculated showing that the higher the threshold is, the better is the consensus
and — as expected — the worse is the coverage of the predicted data (Fig. 5.11).

Biological interpretation of the results 5.4. The percentage of gene expression
predictions obtained when confronting the E. coli influence graph wrt 45 observations of
the exponential-stationary growth shift increased in 30 % when modeling the IHF complex
formation using quantitative data related to the expressions of ihfA and ihfB.

Biological interpretation of the results 5.5. 80% of our computational gene ex-
pression predictions were in agreement with the mRNA measurements of an independent
microarray study on the exponential-stationary growth shift.
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Figure 5.9: Table of microarray-observed vs. predicted gene-expression responses in the E. coli
network under the exponential-stationary growth shift condition. The locus numbers, gene
names, and the logs ratio (L2R) of gene expression (exponential to stationary) are shown for
some of the 502 predicted expression changes (+,—). Genes were divided in 12 functional groups
(Table 5.4). The L2R is shaded depending on the magnitude of the expression shift. Filled and
open symbols indicate computational predictions and experimental data, respectively, squares
indicate no change in gene expression, and triangles indicate a change in expression, as well as
the direction of change (up-regulated or down-regulated).
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Threshold 2-fold 1.5-fold
Exp. total 926 1757
Pred. total 502 502
AN 01 VY 130 195
AV or VA 32 62
AO orvQd 306 211
No possible comparison
Ax O Vi 34 34
N AV 458 1289

Figure 5.10: Comparison between predicted and microarray-observed expression changes. An
* symbol indicates either that our model did not predict a gene expression or that no expression
data related to a gene in our model was found. Filled and open symbols indicate computational
predictions and experimental data, respectively, squares indicate no change in gene expression,
and triangles indicate a change in expression, as well as the direction of change (up-regulated
or down-regulated).

Correction:
- E. coli network:
1763 products consistency Prediction:
4492 > - 502
INcon: stencyinteractions phenotypes
- Expression: S : N
45 phenotypes 2_fold data: validation =
" ! 0 fold change
Initial Data: - 80% ' .
- E. coli network: (130/162) v dater
1.5-fold data: |- 64% (317/494)
1763 products consensus 6% consensus
i i - 32% - 0
4491 1nt.eract10ns () (197/259) - 98% (494/502)
- Expression: (162/502)
consensus coverage
45 phenotypes coverage
- 51%
(259/502)
coverage

Figure 5.11: Results of the consistency check process applied to the E. coli transcriptional
network using 45 phenotypes related to the exponential-stationary growth shift. We validated
our computational predictions using the observations in a microarray dataset filtered with three
thresholds. Consensus refers to the percentage of validated model predictions, and coverage
indicates the percentage of compared predictions.

5.2.4 Discussion

We illustrated in the previous sections the results obtained with the consistency-check
process applied to the large-scale E. coli TRN. This analysis searched: (i) to confront
existing biological data, (i1) to highlight the inconsistencies between a regulatory net-
work and a experimental dataset, and (#i) to predict non-observed qualitative changes
in some network molecules, which explain the dataset observations.

By applying our analysis, we proposed corrections to the regulatory information
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given by RegulonDB. First, we highlighted an inconsistency in the dataset (change of
ihfA). Second, we highlighted a missing regulation in the RegulonDB E. coli TRN. Both
corrections were made based on studies reported in the literature.

In addition, we evaluated the validity of our computational predictions by comparing
them to an independent microarray study. The microarray dataset corresponded also
to the exponential-stationary growth shift in E. coli cells. In this condition appear
three important phases: exponential, early stationary-phase, and late stationary-phase.
During the shift among these phases many molecules in the cell change their behavior
considerably. In our study we only compared the first and last phases. We believe
that these two conditions represent instants in the cell where the genes and proteins
do not significantly change their concentration. Nevertheless, the 45 observations may
correspond to slightly different time points of the exponential phase and thus induce
divergences in our computational predictions. In spite of this, a high percentage of
our predictions (80%) was validated when compared with the microarray data. This
percentage is comparable to the one obtained by other methods working on a more
complex and precise E. coli regulatory model [CKR104, CP02, EP00].

After the comparison of our computational predictions with microarray measure-
ments, some disagreements were detected. A reasonable explanation for these diver-
gences resides on our previously made assumption that some level of correlation exists
between the transcription factor protein and the target gene expression without con-
sidering in detail the post-transcriptional effects. This problem was also reported in
[HCPO03]. An example of this case of disagreement is illustrated in Fig. 5.12. This
type of errors in our predictions can be useful to complete the regulatory model with
post-transcriptional regulations.

We have built the qualitative system of constraints to model the E. coli regulatory
data, using the generic qualitative function. We also used quantitative data of ihfA
and ¢hfB expression to model the THF complex-formation. Based on this information,
we applied the consistency-check process described in Section 2.2.3. Our analyses were
computed using the Bioquali package; specifically, by running the program described
in Algorithm 1. The computational time of the consistency-check analysis took less
than one minute. Our results not only proved the feasibility of a global and automatic
analysis of large-scale TRNs. They also reflected important global configurations in a
regulatory network that can be practically used to diagnose models and predict expected
behaviors of the system.

5.3 Network consistency wrt wide-genome datasets

In the previous section, we described the results obtained when a large-scale TRN was
confronted to a small dataset (45 observations) obtained from the literature. In that
case it was feasible to correct the punctual reported inconsistencies by preforming an
extensive search in the literature.

The regulatory information gathered by RegulonDB for the F. coli bacteria is far
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Figure 5.12: Consistency check process for 8 products of the E. coli regulatory network under
the exponential-stationary growth shift. All transcriptional influences that each product receives
appear in the network. The gray-red intensity of each product reflects the experimentally
observed change in mRNA expression (logs ratio) during the studied condition. Products with
a green border refer to those present in the initial dataset obtained from the literature, whereas
products with a blue border refer to our computational predictions. Experimentally observed
mRNA-expression changes agree with the computational predictions except for RpoD, where
the predicted changes correspond to variations on the active protein and cannot be observed
on mRNA expression levels. The decrease of the active protein RpoD was reported in [JI98].

from being complete [EBKT08|. Thus, when testing its consistency wrt larger exper-
imental datasets, the number of inconsistencies will naturally increase. The manual
correction of multiple inconsistencies is unbearable. Therefore, another type of diag-
nosis in the consistency analysis was proposed. In Chapter 3 we presented a couple of
programs, implemented using either TDDs or ASP that performed automatic correc-
tions when a network and dataset hold many inconsistencies. In this section we present
and validate the results obtained by using these programs with the F. coli TRN and
genome-wide microarray measurements. For this purpose, we used the self-consistent
E. coli influence graph built in 2008, which was composed of 1915 nodes and 5140
edges. We submitted, in collaboration with the team leaded by T. Schaub in the Pots-
dam University, part of the work presented in this section to the “Twelfth International
Conference on the Principles of Knowledge Representation and Reasoning”, to be held
in Toronto, Canada, May 9-13, 2010.

5.3.1 Genome-wide datasets used in the consistency analysis

We collected two genome-scale datasets by confronting two different . coli Affymetrix
expression compendium [FHTT07]. These datasets corresponded to two different con-
ditions:

(A) Stationary vs. exponential growth shift. This dataset was composed of 4298 {+, —}
gene expression changes, obtained by comparing the stationary growth phase with
the early-log growth phase in the E. coli K12 strain [BMA107]. From this large
dataset we extracted two subsets of observations. The first one corresponded
to significant 3-fold changes and consisted of 255 observations. The second one
corresponded to 2-fold changes and consisted of 855 observations.



Network consistency wrt wide-genome datasets 103

(B) Heat shock vs. control. This dataset was composed of 4298 {+, —} gene expression
changes, obtained by comparing F. coli wild-type cells under heat-shock stress
with non-stressed cells [AHL103|. From this large dataset we extracted a subset
of 2-fold significant observations. It consisted of 879 observations.

5.3.2 Finding all inconsistent subgraphs in the network

In Chapter 3 we presented two programs to find the inconsistent subgraphs in the
network. The first one, based on TDDs and described in Algorithm 2, does not find
exactly all inconsistent graphs, but approximates them. The second one, based on
ASP and proposed in [GSTT08], finds exactly all the inconsistent subgraphs. While
the second approach produces better results, the authors are still investigating how to
increase its computation time when confronted with large-scale networks.

The difference between the ASP method and the one using TDDs is that with ASP
we completely explore all the possible inconsistencies. Recall that the program based
on TDDs (cf. Alg. 2) cannot afford exploring all inconsistencies. Instead, as soon as it
finds an inconsistent subgraph it deletes it from the graph. This deletion implies loosing
edges in the network that could lead us to another inconsistency.

We applied both programs to the E. coli influence graph obtained in 2008 and
composed of TF- and o-gene regulations. The results are detailed below.

Approximating inconsistent subgraphs - TDDs

We checked the consistency of the E. coli influence graph wrt 3-fold changes of dataset
A (cf. Section 5.3.1). The dataset composed of 3-fold changes had 255 observations.
Applying the program described in Algorithm 2 (¢f. Section 3.1.2.1) we obtained 16
inconsistent subgraphs. These subgraphs were merged into a single graph of 44 nodes
and 40 edges. In Fig. 5.13 we see all the inconsistencies found; we show them wrt the
whole dataset of gene expression measurements. The computation time of this analysis
was of 140 s.

Finding exactly all inconsistent subgraphs - ASP

We applied the ASP program proposed in [GSTT08] to compute all the inconsistencies
between the F. coli influence graph and the dataset of 255 observations. While using
the same data as the previous method, the obtained results were considerably different
(see Fig. 5.14). As expected, by computing exactly all the inconsistencies we built a
larger graph of 134 nodes and 219 edges.

The graph, built from all the inconsistencies, obtained using ASP is more connected
than the graph shown in Fig. 5.13. The execution of the ASP encodings, however, are
costly in computation time. By waiting long enough we could obtain the results shown
in Fig. 5.14. This difficulty needs to be improved in order to diffuse this method via
bioinformatic tools.

The graph shown in Fig. 5.14 does not mean that all its edges and observations
are incorrect. It provides a complete view of the inconsistencies in order to propose
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Figure 5.13: Inconsistent graphs detected when confronting the large-scale E. coli TRN with
255 (3-fold significant) gene expression changes of the exponential-stationary growth shift. The
green /red border color of the nodes represents the +/— changes in the 3-fold significant dataset.
The gene expression changes reported by the whole dataset (4298 observations) appear colored
in a black-white scale, the background color represents no change.

intelligent automatic corrections. In Section 3.2.3 we proposed an ASP program to au-
tomatically correct an inconsistent graph. This program finds out the minimal changes
to make in the network and/or dataset in order to reestablish their consistency. We
applied this method to the E. colt TRN and the 255 exponential-stationary microarray
observations. We obtained that to reestablish the consistency between them, we needed
to shift the sign of 11 network products (see Table 5.5). These products appear colored
in yellow in Fig. 5.14.

Table 5.5: 11 E. coli products, which observation change (reported in the 255 microarray
observations) needs to be changed in order to reestablish the consistency of the whole E. coli
network and dataset.

Locus  Gene Observed sign Locus  Gene Observed sign
b4408  csrB + b1399  paaX +
b1400  paaY + b3936  rpmFE —
b1927  amyA + b2414  cysK +
b1563  relE + b0419  yajO +
b1564  relB + b0880  cspD +
b3862  yihG —

This is a very interesting result that can be applied to complete a regulatory network.
Indeed, the proposed changes in the signs of the 11 observations reported in Table 5.5
may mean that these products receive an unknown regulation. In many cases they
appear to be co-regulated with other genes, which change in expression corresponds to
that of the regulatory TF.

Let us take as an example the case of the yihG gene. This gene forms part of a
regulon regulated by RpoS. RpoS is well known to be the o-factor that up-regulates
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Figure 5.14: Exactly all the inconsistent graphs detected when confronting the large-scale
E. coli TRN with 255 (3-fold significant) gene expression changes of the exponential-stationary
growth shift.

during the exponential-stationary transition. All the genes in the RpoS regulon are
observed in the microarray to be up-regulated except for yihG. Instead of questioning the
observed sign of all the rest of genes targeted only by RpoS, by minimizing the repairs
we highlight the sign of only one gene. This automatic discovery of inconsistencies
could thus appear to be significant if we consider that both the model and dataset
should express topological and gene expression coherency.

Biological interpretation of the results 5.6. If we consider that the topological
structure of the E. coli influence graph is highly consistent with the 3-fold significant
mRNA expression changes reported by the exponential-stationary growth shift microar-
ray dataset, then the 11 products reported in Table 5.5 could be potential candidates
for further TFBMs exploration or literature search in order to complete the regulatory
knowledge in databases such as RegulonDB.

5.3.3 Prediction after automatic correction of inconsistencies

In Section 5.3.2 we presented two ways to automatically correct an inconsistency. The
first one, implemented on TDDs, consists of deleting iteratively the edges of the incon-
sistent graph found. The second one, implemented on ASP, finds the minimum of all
possible corrections that can be applied either to the network or dataset. By correcting
our network/dataset using one of these methods, we end with a consistent regulatory
network wrt a large dataset. From a consistent qualitative system of constraints it is
possible to generate predictions of new {+, —} changes of some network products.

Our objective now is to validate the automatic correction approaches. Recall that
in the previous section we reported that even if the global set of inconsistencies between
the network and dataset was large, by correcting only 11 observed network products we
could conciliate the whole data. Now, we search to validate this result by comparing



106 chapter5

the obtained predictions when minimizing the inconsistencies, with the measurements
reported in the dataset.

On that account, we validated the accuracy of the predictions generated after ap-
plying the two methods proposed in Section 5.3.2. For this we used two larger datasets.
The first one consisted of 2-fold significant changes of dataset A (¢f. 5.3.1), it had 855
observations; we will refer to it from now on as dataset A2. The second, consisted of
2-fold significant changes of dataset B (¢f. 5.3.1), it had 879 observations; we will refer
to it as dataset B. As before, we will use the large-scale E. coli influence graph extracted
in 2008 and composed of TF- and o-gene regulations.

In order to validate the predictions generated after automatically correcting the
network and/or dataset, we performed the steps described in Algorithm 7. The function
extractSample (p, u) randomly chooses observations from p, and outputs a subset of
observations of size px |u|. The function agreement (pred, X) compares two datasets of
observations and outputs the percentage of agreement, 4.e. in how many cases variations
available in the whole dataset (X) were predicted.

Algorithm 7 Prediction validation
Require: N = (V,E,0); p={(n,s) | n€V,s € {-+,—}}; p, a fraction of the dataset used to
test the consistency
Ensure: avgAcc, the average of the accuracy of the predictions obtained in all tests
acc <=0
for ¢ in {1...200} do
T < extractSample(p, p)
if BQ.consistency (N ,J1) is false then
(pred,inc) < Alg2(N Q)
else
pred < BQ.predictions(N i)
end if
acc <= acc+ agreement(pred, p \ i)
end for
avgAce < ace/200
return avgAcc

Alg. 7 uses the Bioquali package to validate the predictions. We applied this pro-
gram to the E. coli influence graph and the datasets A2 and B. The results are shown in
Table 5.6. The same steps were applied to the ASP program, but the instruction Alg2
was replaced by the ASP program with its different repair operations. The results of
the ASP validation are also shown in Table 5.6. Recall that the ASP method proposed
different types of repairs that could be applied either on the network or dataset: ‘e’
stands for flipping edge signs, ‘i’ stands for making vertexes as inputs, and ‘v’ stands

for flipping observation signs.

Regarding prediction accuracies, shown in Table 5.6, they are consistently higher
than 90 percent for ASP, meaning that predicted variations and experimental observa-
tions correspond in most of the cases. Predictions accuracies for Bioquali exhibit lower
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Table 5.6: Prediction accuracy on Exponential-Stationary growth shift and Heatshock data us-
ing two methods for automatic correction of inconsistencies. One based on TDDs, implemented
using Bioquali. The second based on ASP.

Prediction accuracy

Exponential vs Stationary Heatshock
Repair 3%| 6% 9% | 12%| 15% 3%| 6%| 9% | 12%| 15%
e 90.93 | 91.98 |1 92.42 [ 92.70 | 92.81 || 91.87 [ 92.93 | 92.92 | 92.83 | 92.71
i 90.9391.98 |92.42|92.70 | 92.81 || 91.93 | 92.90 | 92.94 | 92.87 | 92.76
ASP v [190.99|92.05|92.44 | 92.73 | 92.89 || 92.29 | 93.27 | 93.88 | 94.27 | 94.36
e i 91.0991.90 | 92.57 {93.03 [ 93.19(/91.99 [ 92.49 | 91.16 | 93.62 | 94.44
v |190.99|92.03 | 92.50 | 92.82 | 92.94 || 92.30 | 93.37 | 93.66 | 94.36 | 94.35

i v |[90.99]92.03|92.42|92.71 |92.87 || 92.24 | 93.34 | 93.90 | 94.26 | 94.38
e i v [[91.35/92.29]92.52|93.04 — 11 92.26 | 93.04 | 91.78 — —
Bioquali — 65 70 72 73 73 76 80 78 7 76

percentage (on average 74%), this is expected since Bioquali removes all the inconsis-
tent edges without a global optimization. ASP accuracies increase with sample size,
while the choice of admissible repair operations does not exhibit much impact. Despite
of this, we still observe that individual operation ‘v’ yields higher accuracy than ‘e’
and ‘i’. Interestingly, this gap is greatest for the larger samples of Heatshock, where ‘v’
also has a lower prediction rate.

The observation that repair operation ‘v’ yields better prediction accuracy than ‘e’
(flipping edge labels) or ‘i’ (making vertexes input), particularly with Heatshock, sug-
gests that repairing the data is more appropriate than repairing the model wrt the
datasets we consider. In fact, operations ‘e’ and ‘i’ here correspond to network correc-
tions, aiming at heterogeneous or missing regulations, respectively.

Biological interpretation of the results 5.7. The high percentage of accuracy (90%)
obtained from the prediction after correcting the minimal number of inconsistencies using
ASP, confirms the relevance of the 11 minimal corrections (cf. Table 5.5) needed to
conciliate the E. coli influence graph with the exponential-stationary microarray dataset.

Biological interpretation of the results 5.8. It is known that edge labels (activation
or inhibition) are well-curated in RegulonDB, while the completeness of the network was
questioned [EBKT 08]. Nonetheless, the prediction accuracies we obtained indicate that
the E. coli network model may not be perfect but still more reliable than experimental
data, which is prone to be noisy.

5.3.4 Discussion

We showed in the last sections how to deal with multiple inconsistencies, which are
generally found when confronting large-scale regulatory data wrt genome-wide datasets.
In Chapter 3 we proposed two methods for automatic correcting the network/dataset
inconsistencies. In the last sections we showed and validated their results on a real
biological example.
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In Section 3.2.3 we introduced repair-based reasoning techniques for computing min-
imal modifications of biological networks and experimental profiles to make them mutu-
ally consistent. As a final application, we provided an approach to predict unobserved
data even in case of inconsistency. In the last sections, we evaluated this approach on
real biological examples and showed that predictions on the basis of cardinality-minimal
repairs were highly accurate. This is of practical relevance because genetic profiles from
DNA microarrays tend to be noisy and available biological networks far from being com-
plete. It proposes an automatic framework that can be used as a start point to perform
biological manipulations or research in order to complete the regulatory information
available in databases such as RegulonDB.

5.4 Inferring the roles of TFs in the unsigned E. coli net-
work

In this section we show the results obtained after applying the TF role inference ap-
proach to the unsigned FE. coli influence graph. On that account, we removed the edge
signs from the E. coli influence graph, and we collected two types of datasets: (i)
computationally generated and (i) multiple real datasets of E. coli genes expression.
Afterwards, we applied to the unsigned E. coli topology and to the multiple collected
datasets the TF role inference program in order to predict the missing signs of the
edges. The TF role inference program was based on TDDs (¢f. Alg. 3) and ASP. Our
predictions on the signs of the network edges were compared to the edge signs reported
in RegulonDB. We published part of this work in [VGLBT08].

5.4.1 Multiple datasets used in TF role inference analysis

For predicting unknown TF roles in an influence graph we require multiple datasets.
Thus, we generated/collected the following datasets of E. coli gene variations:

(A) Complete expression profiles. This compendium was generated computationally.
We used the signed E. coli influence graph extracted from RegulonDB in 2006,
composed of TF- and o-gene regulations (1529 nodes, 3802 edges). We simulated
the effect of all possible consistent perturbations. More precisely, a perturba-
tion experiment is represented by a set of gene expression variations {X;}, where
i represents the i network product and goes from {1,...,1529}. This set of
observations is not entirely random, for its observations are constrained by the
consistency equations of the TF role inference problem (c¢f. Equation 2.13).

(B) Real compendium. We collected a compendium of expression profiles publicly
available in [FHT107, CHGT06]. Several datasets were available, including a
reference condition. When datasets were time series, we considered that each time
series ends with steady state and we used the last state in the time series. Then,
we sorted the measured genes in four classes: 2-fold up-regulated, 2-fold down-
regulated, non-observed, and zero variation. We considered only the two first
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classes and mapped them into {+,—} changes. For some network edges, neither
the input nor the output may be observed in some experiments. Altogether, we
gathered 61 different experiments corresponding to over-expression, gene-deletion,
and stress perturbation conditions. We verified, for all the experiments, that
they correspond to the comparison between one perturbed condition against a
control condition with identical levels in all chemical components except for the
one altered in the perturbed condition.

5.4.2 Stress perturbation experiments: how many do you need?

For any given network topology, even when considering all possible experimental profiles,
there are edge signs that cannot be determined. The TF role inference has thus a
theoretical limit, referred here as theoretical percentage of recovered edge signs, that
is unique for a given network topology. If only some perturbation experiments are
available, and/or data is missing, the percentage of inferred edge signs will be lower.
For a given number IV of available expression profiles, the average percentage of recovered
edge signs is defined over all sets of N different expression profiles consistent with the
qualitative constraints of the unsigned influence graph (c¢f. Equation 2.13).

In this section we present the results obtained for the calculation of the theoret-
ical and the average percentages of recovered signs for the unsigned E. coli influence
graph, extracted from RegulonDB in 2006 consisting of TF- and o-gene regulations
(1529 nodes, 3802 edges).

The theoretical mazimum percentage of inference is given by the number of signs
that can be recovered using the complete expression profiles (¢f. compendium A in
Section 5.4.1). We computed this maximum percentage using first TDDs (¢f. Alg. 3)
to find most (if not all) of the predicted sings of edges. Then, ASP was used to find
exactly all the remaining signs of edges. We found that at most 40.8% of the signs in
the network edges can be predicted, corresponding to 1551 edges (Mnqz)-

However, this maximum can be obtained only if all conceivable (more than 250)
perturbation experiments are done, which is in practice not possible. We performed
computations to understand the influence of the number of experiments (N) on the
inference. For each value of N (from 5 to 200), we generated 100 sets of N complete
random expression profiles and performed our algorithm for each set. Then, the per-
centage of inference was calculated as a function of N. The resulting statistics are
shown in Fig. 5.15.

We can obtain a theoretical formula explaining the saturation aspect of the curve
in Fig. 5.15. Let us suppose that the network contains M; single incoming regulations.
These can be inferred with probability one from only one experiment. Let us suppose a
second category of interactions, which signs are inferred with probability p (0 < p < 1)
on average, per experiment. This implies that the average number of inferred signs
for one experiment is M (1) = M) + pMas, where My is the number of interactions in
the second category. Supposing now that inference failures are independent for differ-
ent experiments, we obtain the average number of inferred signs for N experiments:
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Figure 5.15: (Both) Statistics of the TF role inference process on the unsigned E. coli influ-
ence graph using N complete expression profiles (cf. compendium A). The Y-axis refers to the
percentage of recovered edge signs. The continuous line corresponds to the theoretical formula
Y = My + Ma(1 — (1 — p)™); My denotes the number of single incoming regulations inferred with prob-
ability one from any complete profile, and Ms denotes the number of signs inferred with a probability
p (0 < p < 1) per experiment.

(Left) Statistics using the whole E. coli regulatory network. We estimated that at most 37.3% of the
network edges can be inferred from a limited number of different complete profiles. Among the in-
ferred regulations, we estimated to M; = 609 the number of signs inferred with probability one from
any complete expression profile. The remaining M> = 811 signs are inferred with a probability which
average is p = 0.049 per experiment. Hence, 30 perturbation experiments are enough to infer 33% of
the network. (Right) Statistics using only the core of the former graph. We estimated M; = 18 and
M, = 9, implying that the maximum rate of inference is 47,4%. Since p = 0.0011, the number of
expression profiles required to obtain a given percentage of inference is greater than in the case using
the whole network (N = 100 to infer 33% of the network).

M(N) = My + My(1 — (1 — p)). In general, we have My + My < E (E is the total
number of edges), meaning that there are edges which signs cannot be inferred.

For the whole E. coli network it appears that a few expression profiles are enough
to infer a significant percentage of the network. More precisely, 30 different expression
profiles may be enough to infer one third of the network (1267 regulatory roles). Adding
more expression profiles continuously increases the percentage of inferred signs. For
N > 100 we are practically on the plateau close to 37.3% (this corresponds to M = 1420
signed regulations).

According to our estimates the position of the plateau is M = My + My = 1420
which is smaller than the theoretical maximum M < M,4,. The difference, although
negligible in practice (to obtain M, one has to perform N > 2°0 experiments), sug-
gests that the plateau has a very weak slope. This means that contributions of different
experiments to sign inference are weakly dependent. The values of M;, My, and p
estimate the efficiency of our method: large p, M, and My mean small number of
expression profiles needed for inference.

Biological interpretation of the results 5.9. To recover one third of the edge signs
of the K. coli influence graph, composed of TF- and o-gene interactions, it is needed 30
different expression profiles. These profiles must correspond to consistent observations
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of all the network products.

5.4.3 Inferring the TF roles of the network core

The core of the E. coli influence graph used in our previous calculation had 28 nodes
and 57 edges (¢f. Section 5.1.3). In the previous section we showed the TF role inference
results for this smaller graph. Not surprisingly, we noticed a rather different behavior
when inferring signs on a core graph than on a whole graph as demonstrated in Fig.
5.15. In the former case, we needed much more experiments for the inference since the
sets of expression profiles contained from N = 50 to 2000 random profiles.

Two observations may be concluded. First, a greater number of experiments is
required to reach a comparable percentage of inference; the value of p is smaller than
for the whole network. This confirms that the core is more difficult to infer than the
rest of the network. Second, Fig. 5.15 displays a much less continuous behavior for
the core. More precisely, when using the core, different perturbation experiments have
strongly variable impact on sign inference. For instance, the experimental maximum
percentage of inference (27 signs over 57) can be obtained already from about 400
expression profiles, yet, most of the datasets with 400 profiles infer only 22 signs.

This suggests that not only the core of the network is more difficult to infer, but
also that a brute force approach (multiplying the number of experiments) may fail
as well. This situation encourage us to apply experiment design and planning, that
is, computational methods to minimize the number of perturbation experiments while
inferring a maximal number of regulatory roles.

This also illustrates why our approach is complementary to dynamical modeling.
In the case of large scale networks, when an interaction stands outside the core of the
graph, an inference approach is suitable to infer the sign of the interaction. However,
when an interaction belongs to the core of the network, more complex behaviors occur
(e.g. influences that depend on activation thresholds), thus, a precise modeling of the
dynamical behavior of this part of the network should be performed [DJ02].

Biological interpretation of the results 5.10. The number of inferred edge signs
depends on the topology of the network. For a more connected topology, such as the core
of the E. coli network, more experiments are needed to infer the sign of its edges.

5.4.4 Influence of missing data

In the previous sections we assumed that all products in the network were observed.
That is, in each experiment each node is assigned a value in {+,—}. However, in real
measurement devices, such as expression profiles, a part of the values is discarded due
to technical reasons. A practical method for network inference should cope with missing
data.

We studied the impact of missing values on the percentage of inference. For this,
we considered a fixed number of expression profiles (N = 30 for the whole E. coli
network, N = 30 and N = 200 for its core). Then, we randomly discarded a growing
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percentage of observed products in the profiles, and computed the percentage of inferred
regulations. The resulting statistics are shown in Fig. 5.16.
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Figure 5.16: (All) Statistics of the TF role inference process on the E. coli influence graph (1529
nodes, 3802 edges) from partial expression profiles. In these experiments, the number of experiments
N is fixed. The continuous line corresponds to the theoretical prediction M; = M;"** — d x f * Miotal,
where M;"“" is the number of inferred edge signs from complete expression profiles, d is the number of
interaction signs no longer inferred when a node is not observed, f is the fraction of unobserved nodes,
and Miotq is the total number of nodes.

(Left) Statistics for the whole network. We used 30 sets of artificial expression profiles (N = 30). We
estimated d = 0.14, meaning that on average we lose one interaction sign for about 7 missing values in
the profiles. (Middle) Statistics for the core network (N = 30). We estimated d = 0.21. The core of the
network, however, is more sensitive to missing data. (Right) Statistics for the core network (N = 200).
We estimated d = 0.36. Hence, increasing the number of expression profiles increases the sensitivity to
missing data.

In both cases (whole network and core) the dependency between the average per-
centage of inference and the percentage of missing values is qualitatively linear. Simple
arguments allow us to find an analytic dependency. If not observing one node of the
network implies losing information on d interaction signs, we are able to obtain the
following linear dependency M; = M — d x f * Myotq;, where M™** is the number
of inferred interactions for complete expression profiles (no missing values), f is the
fraction of unobserved nodes, and M,y is the total number of nodes. In order to
keep M; non negative, d must decrease with f. Our numerical results imply that the
constancy of d and the linearity of the above dependency extend to rather large values
of f. This indicates that our qualitative inference method is robust enough for prac-
tical use. For the whole network we estimated d = 0.14, meaning that on average we
lose one interaction sign for about 7 missing values. However, for the same number of
expression profiles, the core of the network is more sensitive to missing data (the value
of d is larger, it corresponds to lose one sign for about 4.8 missing values). For the
core, increasing the number of expression profiles increases d and hence the sensitivity
to missing data.

Biological interpretation of the results 5.11. When studying the influence of miss-
ing observations on the datasets, we concluded that for the E. coli influence graph we
miss one edge sign prediction for about 7 missing observed values on average.
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5.4.5 TF role inference with a real compendium of expression profiles

For this analysis we used the E. coli influence graph obtained from RegulonDB in 2007
(1415 nodes, 2899 edges). This graph was composed only of TF-gene regulations. We
used a real compendium of E. coli gene expression profiles composed of 61 datasets (cf.
compendium B in Section 5.4.1).

We applied the TF role inference program based on TDDs (¢f. Alg 3) to the unsigned
E. coli influence graph with the 61 datasets. In these datasets, 12.9% of the network
products were observed on average. When summing all the observations, 17.2% (497) of
the network edges (input and output) were observed in at least one expression profile.
We predicted 152 edge signs in the network (30% of the edges observed at least once).
We compared the predictions to the known interaction signs: 28.3% of the predictions
were false predictions. Sources of errors may lie on non-modeled interactions (possibly
effects of absent sigma-factors), or in using experiments on different £. coli strains.

We filtered our predictions according to their reliability. On that account, we used
a filtering parameter, which is a positive integer k representing the number of different
experiments with which the predicted edge sign is consistent. For a filtering value k,
all the predictions that are consistent with less than k profiles are rejected. We used
values for the filtering parameter £ = {1,---,5}. Filtering improves our prediction
quality allowing us to retain only reliable predictions. Thus, for £ = 5, we predicted 41
edge signs, of them, only 1 was an incorrect prediction (2.5% of false prediction). We
conclude that filtering is a good way to strengthen our predictions even when the model
is not precise enough. We illustrated the effect of the filtering process in Fig. 5.17A.
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Figure 5.17: A. Results of the inference algorithm applied to E. coli network with a com-
pendium of 61 experiments. The dark and light regions of the bars correspond to false positive
and validated predictions, respectively. Without filtering, there are 28.3% of false positives.
With filtering — keeping only the sign predictions confirmed by k different experiments — the
rate of false positives decreases to 2.5%. B. Ambiguous E. coli interactions with the 61 datasets.
For each interaction there exist at least two datasets that do not predict the same sign on the
interaction.

Our algorithm also detected seven inconsistent graphs in the network (see Fig.
5.17B). A list of experimental assays that yield inconsistencies on each interaction
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is given in the Supplementary Web site of [VGLBT08] at: http://www.irisa.fr/
symbiose/interactionNetworks/supplementaryInference.html. This analysis shows
that there exist non-modeled interactions that balance the effects on the targets in the
detected inconsistent graphs.

Biological interpretation of the results 5.12. We inferred 30% of the E. coli edge
signs which input and output are simultaneously observed in at least one erperiment,
using 61 real expression profiles. 71% of these edge predictions were in agreement with
the edge signs reported in RegulonDB.

5.4.6 Discussion

In principle, inferring the functional effect of regulations could be done using gen-
eral reconstruction methods. The most outstanding approaches in this domain include
Bayesian networks [FLNP00], linear ordinary differential equations (ODE) [DBTG™'05,
BDGdABO06] and correlation/causal networks [NTIMO05, XvdL05, MNBT 06| (see [BBAIdBO07]
for a review and a comparison on several datasets). These are quantitative methods
which are carefully designed to cope with the high level of noise that is generally observed
in expression data. They rely either on an explicit parametric modeling of noise distri-
bution (like in Bayesian networks), or on robust statistical estimators for the network
and its kinetic parameters. The main limitation of these approaches is the number
of independent samples they require in order to be properly used. It is often stated
[BBAIdBO7, MNB™'06] that a minimum of 100 to 300 expression profiles are needed
for the estimation procedure. While there exists a couple of datasets of such size, the
usual number of available profiles for a given biological system is much smaller. Our
approach is meant to be used when the number of profiles ranges from 1 to a couple of
hundreds, and should thus be seen as complementary to quantitative methods. Indeed
our simulations on the E. coli network showed that one can characterize about 30% of
the regulations from 30 expression profiles. We additionally showed that this is close to
the theoretical limit of our approach. This result was confirmed using real expression
data on the same network: we inferred 30% of the regulations which input and out-
put are simultaneously observed in at least one experiment, using 61 expression profiles.

Using simulations, we evaluated the dependence between the number of available
expression profiles and the number of signs that can be inferred from them. Not sur-
prisingly, we noticed that the topology of the regulatory network has a strong influence
on the estimated relationship. This was illustrated by computing statistics on both a
complete regulatory network and its core. The complete network is characterized by an
over-representation of feedback-free regulatory cascades, which are controlled by a small
number of TFs. In this setting, the number of inferred signs grows almost continuously
with the number of observations. In contrast, the core network does not obey the sim-
ple law “the more you observe, the better”, some expression profiles being clearly more
informative than others. Additionally, in these core networks an unfeasible number of
experiments is necessary to infer a small number of signs with high probability. For
these core networks, two different strategies may be adopted. First, to build a more
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accurate model for these restricted subnetworks using dynamic modeling techniques
[DJ02|. Second, to develop experiment planning in our qualitative framework.
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Chapter 6

Application to Eukaryote networks

In the previous chapter we applied our modeling approach to the E. coli transcriptional
network. Although this organism is very well studied, its transcriptional regulatory ma-
chine is simplified with respect to eukaryotic organisms. One major difference between
prokaryotes and eukaryotes is the existence of the nucleus membrane, which divides the
place where transcription and translation occurs in eukaryotic cells. Another difference
is that in eukaryotic cells much more post-transcriptional processes take place after the
mRNA production. In prokaryotic cells mRNA usually stays unchanged.

In this chapter we will discuss the results obtained when dealing with two eukaryotic
regulatory network models. The first one is the transcriptional regulatory network
of S. cerevisiae. The second one is the signaling network of the EWS-FLI1 human
oncogene. We present the different analyses proposed over these more complex systems,
as well as the biological impact and validation of our results. In our first study we show
a comparison between the TF role inference approach when applied to the S. cerevisiae
eukaryotic regulatory model with respect to the F. coli prokaryotic model; part of the
results of this work were published in [VGLBT08]|. In our second study, we describe
how we adapted our approach in order to consider specific representations of post-
translational phenomena.

6.1 S. cerevisiae transcriptional network

The budding yeast S. cerevisiae is one of the most intensively studied eukaryotic model
organisms in molecular and cell biology. On that account we used its transcriptional
regulatory network for validating our TF role inference approach. In this section we
present the obtained results; we published them in [VGLB'08].

6.1.1 Constructing the S. cerevisiae unsigned influence graphs

In the following, we will briefly review the available sources that were used to build the
unsigned S. cerevisiae influence graph. The experimental dataset proposed in [LRR102]
is widely used in the network reconstruction literature. It is a study conducted under
nutrient rich conditions, and it consists of an extensive ChIP-chip screening of 106

117
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TFs. Estimations regarding the number of yeast TFs that are likely to regulate specific
groups of genes by direct binding to the DNA vary from 141 to 209, depending on
the selection criteria. In follow-up papers of this work, the ChIP-chip analysis was
extended to 203 yeast TFs in rich media conditions and 84 of these regulators in at
least one environmental perturbation [HGLT04]. Analysis methods were refined in
2005 by Maclsaac and colleagues [MWGT06]. Other studies continued to work on
this network using different approaches [XvdL05, SSR*03, NTIM05, BBAIdBO07]. Here
we selected two of these sources ([JLRRT02] and [MWGT06]) to build four influence
graphs for S. cerevisiae. The complete list of interactions of these networks is provided
in the Supplementary Web site of [VGLBT08] available at: http://www.irisa.fr/
symbiose/interactionNetworks/supplementaryInference.html. The four influence
graphs built for our analysis were:

(A) The first influence graph consists of the core of the transcriptional ChIP-chip
regulatory network produced in [LRR102]. Starting from the full network with a
P-value of 0.005, we reduced it to the set of nodes that have at least one output
edge. This network was already studied in [KPST03]. It contains 31 nodes and
52 interactions.

(B) The second influence graph contains all the transcriptional interactions between
TFs shown by [LRRT02] with a P-value below 0.001. It contains 70 nodes and 96
interactions.

(C) The third influence graph is the set of interactions among TFs as inferred in
[MWG™T06] from sequence comparisons. We considered the network corresponding
to a P-value of 0.001 and 2 bindings. It contains 83 nodes and 131 interactions.

(D) The last influence graph contains all the transcriptional interactions among genes
and regulators shown by [LRRT02] with a P-value below 0.001. Tt contains 2419
nodes and 4344 interactions.

6.1.2 Multiple datasets used in the TF role inference process

The following sets of gene expression profiles were used in the S. cerevisiae TF role
inference process:

(P1) Gene-deletion profiles. We collected 210 gene-deletion experiments available in
[HMJ*00].

(P2) Stress perturbation profiles. This data corresponds to curated information avail-
able in the Saccharomyces Genome Database (SGD, [HBC101]). When time series
profiles were available, we selected the last time expression array. Therefore, we
collected and treated 15 experiments described in Table 6.1. For each expression
array we sorted the measured genes in four classes: 2-fold up-regulated, 2-fold
down-regulated, non-observed, and null-variation.
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Table 6.1: List of genome expression experiments on S. cerevisiae used in the sign inference
process. All experiments contain information on steady state shift and their curated data is
available in the Saccharomyces Genome Database.

Experiment ID  Description Reference
El Diauxic Shift [DIB97]
E2 Sporulation [CDE198]
E3 Expression analysis of Snf2 mutant [SIBWOO0]
E4 Expression analysis of Swil mutant [SIBWO0O]
E5 Pho metabolism [ODBOO]
E6 Nitrogen Depletion [GSKT00]
E7 Stationary Phase [GSKT00]
E8 Heat Shock from 21°C to 37°C [GSK*00]
E9 Heat Shock from 17°C to 37°C [GSKT00]
E10 Wild type response to DNA-damaging agents [GHMT01]
E11 Mecl mutant response to DNA-damaging agents [GHM™01]
E12 Glycosylation defects on gene expression [CSGT04]
E13 Cells grown to early log-phase in YPE [RHO6]
E14 Cells grown to early log-phase in YPG [RHO6]
E15 Titratable promoter alleles - Erol mutant [MDH'04]

6.1.3 Inference process with gene-deletion expression profiles

We applied the TF role inference program based on TDDs (¢f. Alg. 3) to the S. cerevisiae
influence graph D, composed of 2419 nodes and 4344 edges. We used the panel of ex-
pression profiles P1 (210 experiments). The information given by this panel is quite
small, since 1.6% of all the products in the network were observed on average, and 12%
of the edges (input and output) of the network were observed in at least one expression
profile. Using this data we inferred 162 edge signs. We validated our prediction with a
literature-curated network on Yeast [INGBBKO02|. We found that among the 162 sign-
predictions, 12 were referenced with a known interaction in the database, and 9 with a
good sign.

Gene-deletion expression profiles were used in order to compare our results with the
path analysis methods [Y1J04, YMM™05], since the latter can only be applied to knock-
out data. Other sign-regulation inference methods needed either other sources of gene-
regulatory information (promoter binding information, protein-protein information), or

time-series data to be performed [SSRT03, SE05, BBAIdBOT|.

We compared the inference results for both methods, our approach and the path
analysis method, obtaining in the latter that 234 roles of widely connected paths were
inferred, whereas with our method 162 roles were inferred, mainly localized in the
branches of the network. Both results intersected on 17 interactions and no contradiction
in the inferred role was reported. This suggests that our approach is complementary
to the path analysis methods. Our explanation is as follows: in [YIJ04, YMM™05]
network inference algorithms identify probable paths of physical interactions connecting
a gene knock-out to genes that are differentially expressed as a result of that knock-out.
This leads to a search for the smallest number of interactions that carry the largest
information in the network. Hence, inferred interactions are located near the core of



120 chapter6

the network, but not exactly in the core. On the contrary, as we already mentioned,
the combinatorics of interactions in the core of the network are too intricate to be
determined from a few hundreds of expression profiles with our algorithm, thus, we
concentrate on interactions around the core.

Biological interpretation of the results 6.1. After applying the TF role infer-
ence approach to the S. cerevisiae network containing all the transcriptional interactions
(2419 nodes and 4344 interactions) using 210 experiments, we inferred 162 edge predic-
tions. Path analysis methods inferred on the same data 234 TF roles. Our predictions
are complementary with this study, since they are located in different network regions.

6.1.4 Inference with stress perturbation expression profiles

In order to overcome the problem exposed using the small amount of information of the
P1 profiles, we used stress perturbation experiments. This data corresponds to the panel
of expression profiles P2 (15 experiments). We executed our TF role inference program
on the four S. cerevisige influence graphs described in Section 6.1.1. We identified
inconsistent graphs, as well as predicted edge signs. For the influence graph D, we
filtered the edge predictions using £ = 3. In Table 6.2 we illustrate our results. The
total inference rate was obtained by adding the number of predicted edge signs to the
number of non-repeated interactions in the inconsistent graphs detected, and dividing it
by the total number of edges in the network. Depending on the network, the inference
rate varies from 19% to 37%. Thus, they are similar to the theoretical rates obtained
for the E. coli network (¢f. Section 5.4.2) even with a small number of perturbation
experiments.

Table 6.2: TF role inference process applied to four S. cerevisiae influence graphs. 2-fold significant
observations of 15 experiments were used for the inference. The In/Out observed simultaneously rate
refers to the sign inference rate if all observations of the in/out nodes of one edge lead to predictions.
The Inferred signs are the number of signs fixed in an unique {+, —} way by all the experiments.

Influence Average In/Out Inferred {+,—} Number of Total
graph Nodes Edges observed observed edge signs inconsistent  Inference
nodes simultan. edges
(A) 31 52 28% 88% 11 3 26.8%
(B) 70 96 26% 72% 29 7 37.4%
(9] 83 131 33% 69% 21 4 19%
(D) 2419 4344 30% 52% no filter: 631 682 32%

filter k = 3: 198

We validated the inferred interactions, for the case of the S. cerevisiae influence
graph D, by comparing them with the literature-curated network published in [NGBBKO02].
Of the 631 {+, —} signs of edges predicted when no filtering was applied, 23 were refer-
enced with a known interaction in the database, and 16 with a good sign. Furthermore,
of the 198 interactions predicted with a filter parameter k = 3, 19 were referenced with
a known interaction in the database, and 18 with a good sign. As in the case of F. coli,
we conclude that filtering is a good way to strengthen our predictions. In Fig. 6.1 we
illustrate the inferred interactions for Network B.
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Figure 6.1: S. cerevisiae influence graph B. Only interactions among TFs were considered. A
total of 29 interactions were inferred. Green and red arrows correspond to inferred activations
and repressions, respectively. Blue arrows correspond to the inconsistencies detected.

As already mentioned, the TF role inference algorithm identified a large number
of ambiguities. The inconsistent edges found for the influence graphs A, B, and C
are shown in Table 6.3. These inconsistencies refer to edges which sign is set to ‘+’
by one experiment and ‘—’ by another. The exhaustive list of the inconsistencies for
the influence graph D is given in the Supplementary Website of [VGLB108]. For each
inconsistency a precise biological study of the species should allow to understand the
origin of the ambiguity: erroneous expression data, missing interactions in the model,
or context-dependent regulations.

Biological interpretation of the results 6.2. The TF role inference results, ob-
tained when using a smaller number of expression profiles (15), shows a higher rate of
predicted edge signs in the S. cerevisiae influence graph. This is because the small set
of expression profiles was more complete. The inference rate varied from 19% to 37%.
We obtained a 69% of accuracy for the larger influence graph of S. cerevisiae. However,
the reference network we compared with contained very few interactions. This result is
biologically relevant because for S. cerevisiae it does not exist so well curated databases
as RegulonDB, where the signs of the interactions are available.

Biological interpretation of the results 6.3. The number of inconsistencies found
after applying the TF role inference process to the S. cerevisiae influence graph was
higher than in the case of E. coli. Even if in both approaches 2-fold significant ob-
servations were used. We justify this difference because in eukaryotic organisms more
post-transcriptional interactions are present. Hence, conciliating mRNA measurements
for S. cerevisiae is a more difficult task than for E. coli if we only consider a network
with transcriptional interactions.
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Table 6.3: Inconsistent interactions found for three influence graphs of S. cerevisiae. For each
inconsistent edge we list two experiments that infer a different role of regulation for it.

Influence Actor Target  Experiment 1 Experiment 2
graph

YAP6 CIN5  Sporulation [CDE198] Stationary Phase [GSK100]

(A) GRF10 MBP1  Stationary Phase [GSK100] Mecl mutant [GHM101]
PDH1 MSN4  Nitrogen Depletion [GSKT00] Heat shock 21°C to 37°C [GSK100]
YAP6 CIN5S Sporulation [CDET 98] Stationary Phase [GSKT00]
RAP1 SIP4 Sporulation [CDET98] Diauxic shift [DIB97]
SKN7 NRG1 Stationary Phase [GSKt00] Diauxic shift [DIB97]

(B) PHD1 SOK2  Heat shock 21°C to 37°C [GSKT00] Stationary Phase [GSKT00]
RAP1  RCSK1 Wild type + Heat [GHM101] Respiratory growth [RHO6]
PHD1 MSN4  Nitrogen Depletion [GSKT00] Heat shock 21°C to 37°C [GSK100]
HAP4 PUT3  Diauxic shift [DIB97] Snf2 mutant, YPD [SIBWQO]
SWI5 ASH1 PHO pathway [ODB00] Stationary Phase [GSKT00]

© SKN7  NRG1  Stationary Phase [GSKT00] Nitrogen Depletion [GSKT00]
NRG1 YAP7  PHO pathway [ODB00] Respiratory growth |[RHO06]
NRG1 GAT3  Glycosylation [CSG104] Respiratory growth [RHO6]

6.1.5 Discussion

The problem of inferring functional effects of transcription factors was specifically ad-
dressed by Yeang and colleagues [YIJ04, YMM™05], using a probabilistic discrete model.
In this approach, one identifies probable paths of physical interactions connecting a gene
knock-out to genes that are differentially expressed as a result of that knock-out. Predic-
tions correspond to the signs found in models of maximum likelihood. More generally,
most reconstruction methods are based on computing an "optimal" model with respect
to the data. This raises two main issues. First, the underlying optimization problems
are often non-convex, and finding a global optimum is a very difficult computational
task. In practice, most algorithms only guarantee to find a local optimum, which should
be cautiously examined before being reported as a prediction. Second, even if a global
optimum is found, it is important (but computationally difficult) to check that there is
no slightly sub-optimal model that yields very different predictions. In other terms, it is
necessary to evaluate the robustness of the predictions. In our approach, we describe the
(possibly huge) set of models that are consistent with the data, then look for invariants
in this set. This means that our predictions are compatible with all feasible models.
In order to cope with experimental noise, we combine this strategy with a filtering
procedure, which selects predictions that agree with a minimal number of expression
profiles. This led us to very accurate predictions, as it was shown on yeast data. We
compared our inference approach to the path analysis method by Yeang and colleagues
[YIJ04, YMM™"05] and found that both algorithms infer a similar number of regula-
tions, and that the predictions coincide. We noticed that the predictions are located in
different parts of the network, depending on the algorithm: path analysis tends to infer
signs in highly connected regions, while our approach infer signs on regulations acting
on small in-degree nodes. Another difference is that path analysis requires expression
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profiles from gene-deletion experiments, whereas our method gives better results with
stress perturbation experiments (though it can be applied to both types of experiments).

6.2 EWS-FLI1 signaling network

In this section we present the results obtained after applying the consistency-check pro-
cess to the influence graph of the EWS-FLI1 signaling network. This network describes
the effects of a fusion oncogene EWS-FLI1 on cell cycle, inducing young adult cancers
[DZPT92]. Time series data and annotated gene regulatory network were produced at
the Institute Curie! [SZNT08]. We submitted this work to the IEEE/ACM “Transac-
tions on Computational Biology and Bioinformatics” (IEEE-TCCB) journal.

6.2.1 Constructing the EWS-FLI1 influence graphs

The signaling network of EWS-FLI1 is a very well annotated regulatory model, which
contains precise information about the types of network interactions. Using this infor-
mation we built two influence graphs. In the first one, called generic, the influences
arriving to a node were modeled using the generic qualitative constraint: ¢ ~ GENp
(¢f. Equation 2.2). In the second one, called refined, we precised the qualitative func-
tion Fr for certain nodes in the network. In addition, in the refined influence graph we
introduced a precise modeling of the phosphorylated molecules.

Generic influence graph — native

In an independent work, an annotated gene regulatory and signaling model involv-
ing 130 genes, including EWS-FLI1, was designed from the genes that responded to
EWS-FLI1 as follows. Using information from TRANSPATH and literature, interac-
tions were selected to describe signal pathways that regulate key functions involved in
tumor progression (cell cycle phase transitions, apoptosis, and cell migration) [SZNT08|.

From this native model we designed an influence graph. In order to capture the
effect of post-translational regulations, each node of the native model was divided into
two molecular species: mRNA nodes and active protein nodes. Influences between
nodes were set according to the nature of each interaction (transcriptional or post-
translational) provided by the annotation of the native model. This annotation was also
used to assign {+, —} values to all the graph edges. In this influence graph the variation
of a network product was modeled using the generic qualitative constraint t ~ GENrp.
The resulting influence graph contained 287 nodes and 644 signed edges. The nodes
in this graph corresponded to: mRNAs, active-proteins, active-protein-complexes, and
phenotypes as ‘cell cycle’ and ‘apoptosis’.

"http://bioinfo-out.curie.fr/projects/sitcon/
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Refined influence graph — after adding precise qualitative functions

In order to constrain more the behavior of the system, we designed a new influence
graph based on the generic influence graph provided above. This new graph had the
following characteristics:

e The phosphorylated proteins were modeled according to their change in state after
the phosphorylation. That is, if A is a protein that becomes active when phos-
phorylated by B, we added in our influence graph the interaction ‘B — A% '
In the opposite case, we added the interaction ‘B — A% —. Recall that our
influence graph was composed only of mRNA and active-protein nodes.

e The variation of 36 network products was modeled using an specific (non-generic)
qualitative function. In Table 6.4 we show a summary of the four qualitative
functions introduced in the system of constraints. For more details regarding the
modeling choice of these functions refer to Section 2.3.2.2.

e The nodes that were neither phosphorylated proteins nor receiving a specific qual-
itative function, were modeled using the generic constraint.

Notice that instead of the generic function GEN that is always satisfied, the new
functions that we introduced are designed according to the biological literature on the
products implied in the network that we are currently considering. Some rules may
be quite generic and used in other contexts, but this deserves a specific mathematical
study which is not our purpose presently. The refined influence graph of the EWS-FLI1
network had 296 nodes (36 received a non-generic qualitative function), and 430 {+, —}
edges.

Table 6.4: Non-generic qualitative functions added to the refined influence graph of the EWS-
FLI1 signaling network.

Qualitative

Example Description Reference
function
(1) Protein complex FoceNDpD—cpKk = cend Cdks are constitutively [0S02]
formation expressed and present
in excess to D-type cyclins
(2) Strong inhibitor Feetl_cycle_s = e2f A-rbl Sequestration [DeG02]
(3) Complex inactivation Foenp_opia = ~weelA Proteins may hamper [0S02]
(cene @ cdk2) complex formation
(4) Complex inactivation- Foconva cpiz = (ccna @ cdk2)A A protein-complex may be [PRKG199]
reactivation (medknla V cend cdk4 a) under an inactivation influence

that is itself inhibited

6.2.2 Datasets used in the analysis

We describe in the following the experimental steps considered to obtain the qualitative
dataset of observations used in the consistency analysis. The A673 cell line derived
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from an Ewing tumor was modified as follows: after induction by doxocyclin, a sh-RNA
targeting EWS-FLI1 is produced, inactivating EWS-FLI1. This stops cell division. The
gene response to EWS-FLI1 inactivation was investigated by using an Affymetrix HG-
U133 Plus 2.0 microarray during 17 days on two independent clones. At day 11, cells
from one clone were washed and harvested in a solution without doxocyclin. When
EWS-FLI1 is reactivated, the cell division restarts. The gene response to EWS-FLI1
reactivation was investigated by using the same microarray between day 11 and day 17.

The time series data on Ewing inducible cell lines were analyzed to select genes
which show a significant response on both inhibition and reactivation of EWS-FLI1. If
a gene is inhibited upon the EWS-FLI1 inhibition (Day0-Dayll) and reactivated with
reactivation of the oncogene, and if these responses are significant, then we consider
this gene to correlate with EWS-FLI1 behavior. Likewise, if a gene is up-regulated
at EWS-FLI1 inhibition and down-regulated with EWS-FLI1 reactivation, showing the
significant variation of its response, such gene is considered as anti-correlated with
the oncogene. With the correlated and anti-correlated measured mRNAs we built two
datasets of observations:

(A) EWS-FLI1 inhibition. This dataset corresponded to the measured variations of
the mRNAs during the EWS-FLI1 inhibition. It was built by classifying as ‘+’
the correlated mRNAs, and as ‘—’ the anti-correlated mRNAs. It consisted of 54
{+,—} variations of the mRNAs present in the EWS-FLI1 signaling network.

(B) EWS-FLII reactivation. This dataset represented the qualitative change in time
of the mRNAs when the EWS-FLI1 oncogene was reactivated. It was obtained
by reverting the signs of dataset A.

6.2.3 Studying the impact of a precise modeling on predictions

We applied the consistency-check process described in Sections 2.2.3 and 2.3 to the
generic and refined influence graphs of EWS-FLI1. In our analyses we used datasets A
and B (¢f Section 6.2.2). Both influence graphs were found to be consistent with both
datasets.

Afterwards, we computed the predictions of both graphs using only dataset A. 37
nodes were predicted using the generic influence graph, while 55 were predicted using
the refined influence graph. In the first case 2 mRNA nodes, 2 protein-complexes,
and 33 protein activities were predicted. In the second case 6 mRNA nodes, 13 protein-
complexes, and 36 protein activities were predicted. The list of new predictions obtained
using the refined influence graph is shown in Table 6.5.

All predictions obtained using the generic influence graph but one (RBL1) were also
predicted by using the refined influence graph. The RBL1 protein was modeled in the
generic influence graph without taking into account the influences that phosphorylate
it, thus its activity was easy to predict as it received only one transcriptional influence.
In the refined graph, however, the active protein RBL1 received also phosphorylation
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Table 6.5: New predictions obtained using the refined influence graph. The Prediction proba-
bility column states how relevant is our prediction wrt random data (it will be detailed in the
next section). The third column specifies which nodes were modeled using a complex qualitative
function.

. Refined Model Complex
Predicted node Prediction Prob. Function

CCNA2_CDC2_act  —  — 0,187 X
CCNAl1 CDC2 act — — 0,181 X
CCNB1_CDC2_act —  — 0,17 X
CCND3 CDK4 act — — 0,144 X
CCND3 CDK6 act — — 0,144 X
CCNAl CDK2 act — — 0,142 X
CCNA2 CDK2 act — — 0,139 X
F2F2 - 0,127 X
CCND2 CDK4 act — — 0,086 X
CCND2_CDK6_act — — 0,086 X
E2F3 o = 0,077 X
CCNB1 CDC?2 - - 0,077 X
F2F5 . 0,072 X
CCND1 CDK6 act — — 0,069 X
CCND1_CDK4 act — — 0,069 X
mRNA TP73 - - 0,002

mRNA_APAF1 - 0,002
mRNA_CDKN2A  — — 0,001

mRNA_RB1 -~ 0

influences; it was not possible to predict a definite change for RBL1 from the values of
these influences.

Biological interpretation of the results 6.4. Designing specific logical rules to de-
scribe the effects of post-translational interactions significantly increased the number of
predictions (+ 44.7%). Additionally, most of the new predictions were over protein or
protein-complex nodes.

6.2.4 Estimating the specificity of consistency and prediction

In order to evaluate the specificity of a consistency diagnosis or a prediction on a given
node, we introduce indicators based on the predictions obtained from random datasets.
The EWS-FLII influence graphs (c¢f. Section 6.2.1) were composed of a set of nodes
V', that could be divided into three subsets: V = Spume U Sp U So, where Spna
denotes the set of mRNA nodes, which variations can be observed from the time-series
analyses, Sr denotes a set of fixed phenotypes, and Sp denotes the active proteins or
protein-complexes. Following this partition, a set of partial observations p also splits
into three subsets: t = tmrna U bF U to. In our case the dataset of observations p was
only obtained from mRNA measurements and phenotypical observations; u, was empty.

Investigating the specificity of consistency and prediction requires to generate ran-
dom datasets of observations. From an initial set of observations p, m new random
datasets Rand;(N,pn) = random(Smrnas bmrna) U pF are produced as follows: the
random function outputs a dataset of observations by randomly selecting |fmrnq| nodes
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in Sprnae and assigning them {+, —} variations preserving the sign distribution in ft;rnq-
The total set of random samples will be:

Rand(N, p) = {Rand;(N,pu) |i=1...m}

It is possible now to evaluate the specificity of a consistency diagnostic. Let Cons C Rand
denote the subset of random datasets that are consistent with the network A'. The Con-
sistency P-value of a network N wrt p is given by: peonsistent (N, 1) = M#‘Ol(@\sfw)'

The P-value gives hints about how a consistency diagnostic is significant. It quanti-
fies the way the topology of the network constrains the whole set of observations. The
smaller this probability is, the more distant an observation dataset will be from random
with respect to the network. Notice that the consistency P-value is highly dependent
on the cardinality of the initial dataset p: if the initial dataset contains few products
(even if accurately chosen with respect to biological insights), the random function will
give rise to random datasets containing products that have no biological interest and
provide no constraint to the network.

This default can be overcome by investigating the specificity of each prediction
instead of the full consistency diagnosis. To that purpose, by using the function
BQ.predictions(N,u) introduced Section 3.1.2.1, we define the Prediction probability
Pyred(n, s) of a node n in NV, predicted with a s € {4+, —} value, as follows:

1
Ppred(na S,N, M) = WW#) Z f./\/,,u,,Consi (n, S),

where Cons; represents one consistent random dataset, i.e. Cons = |JCons;, and
TN pcons; (1, 8) evaluates if a prediction (n,s) from a real dataset p is predicted with
the same sign when N is confronted to Cons;:

1 if (n,s) € BQ.predictions(N, 1) N BQ.predictions(N,Cons;)
0 otherwise.

f./\f,,u,Consi (Tl, 5) = {

In other words, the prediction probability indicates whether a given prediction on
a node can be obtained in a random way or if it is a consequence of the observation
dataset. With this point of view, predictions with a small prediction probability shall
be considered as the more informative of the model and have the top priority to be
experimentally confirmed.

Application to the EWS-FLI1 signaling network

We applied the mathematical framework explained above on both EWS-FLI1 influence
graphs considering only dataset A. This dataset had 54 observations on mRNA-nodes
(denoted by fimrne). Knowledge on Ewing tumour phenotypes set up 7 phenotypical
nodes (Sr) to {+,—} changes (denoted by pr). For both graphs, generic and refined,
a set Rand(N, ) of m = 1000 random datasets was generated to represent the range
of possible mRNA fluctuations consistent with the EWS-FLI1 perturbation.
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From our analyses we can see that when using the generic influence graph we ob-
tained a consistency P-value of 52.4% (524 random consistent datasets over 1000),
whereas with the refined graph we obtained a consistency P-value of 31.2% (312 ran-
dom consistent datasets). This confirms that the generic constraint used to model
the generic influence graph does not constrain enough gene fluctuations. Furthermore,
adding logical rules only on 36 nodes (10% of the total number of nodes) of biological
interest, highly reduces the range of possible observations compatible with the topology
of the model. In other words, the refined influence graph is more specific than the
generic.

Finally, we computed the prediction probabilities, that is the chance of obtaining the
same predictions when the models are confronted with random datasets (see Table 6.6).
The prediction probability was 16.3% on average with the generic influence graph. It
decreased to 9.9% with the refined graph. The nodes with low prediction probability
express that their {4+, —} value is not easy to predict by chance, being specific to the
EWS-FLI1 signals.

Biological interpretation of the results 6.5. Designing logical rules allows us to
significantly reduce the range of possible observations that are consistent with the initial
observation dataset. Also, it generates non-trivial predictions with low prediction prob-
ability. The prediction probabilities are in the trivial case reduced to the probability of
choosing an specific mRNA by chance. This is the case of all the predictions obtained
with the generic influence graph. By adding logical rules in the model, we modify the
distribution of their prediction probabilities as shown in Table 6.6.

6.2.5 Studying the correlation between the cell cycle S-phase progres-
sion and the EWS-FLI1 activation

The new qualitative functions added into the model increased the number of {+,—}
predictions on the network nodes. This opened the way to investigate which signaling
pathways can explain an observed phenotype. In Section 3.1.2.3 we proposed two pro-
grams that, when given a network N and a dataset p of observations, obtain a subset
of interactions of ANV and a subset of observations of u that minimally explain a known
fact. In our case we were interested on uderstanding:

(i) the arrest of cell cycle when EWS-FLI1 is inactivated, and

(#) the restarting of cell cycle when EWS-FLI1 is reactivated.

On that account we confronted the refined influence graph with datasets A and B.
The output of both programs, shown as a graph, represents a cascade of interactions
originated by a small set of genes. The combined behavior of these genes explained the
known variation of the cell cycle progression.
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Table 6.6: Probabilities of the predictions calculated using the generic and refined influence graphs.
The predicted nodes are listed in descending order according to the prediction probabilities obtained
with the refined model. The Complezr Function column specifies which nodes were modeled using a
complex regulatory function. The two last columns describe the topological degree of the predictions:
Regulators lists how many and which type of regulators had the predicted node, while Targets how
many and which type of the unique targets had the predicted node. By unique we refer to those targets

having as only predecessor the predicted node. The ‘*’ symbol means multiple.
. Generic Model Refined Model [ Complex Targets
Predicted node Prediction Prob. | Prediction Prob. Func};)ion Regulators (only regulator)
ANAPCIT_ANAPC2Z CDC20 — — 52,3 31,1 * T(Sr)
TGFB - ot 52,3 31,1 * 1 (Sp)
ANAPC11 _ANAPC2 FZR1 — — 52,3 31,1 * 1 (Sp)
E2F8 - - — — 24,9 14,4 1 (mRNA)
E2F1 — — 24,9 14,4 1 (mRNA)
E2F6 — — 24,9 14,4 1 (mRNA)
CCND3 — — 24,9 14,4 X 1 (mRNA)
mRNA E2F6 - — 15,2 9,5 1 (protein)
JUN -+ 11,4 9 * 1 (mRNA)
mRNA E2F8 - — 15,1 9 1 (protein)
CCNDZ - 12.3 8,6 X 1 (mRNA)
MYC — — 12,3 8,6 * 1 (mRNA)
ODC2 o 13 8.3 1 (mRNA)
PTPN11 - — 11,3 8,1 1 (mRNA)
TNFSF18 ot 12,9 1 (mRNA)
IER3 -+ 10 7.9 1 (mRNA)
CCNB1 - 11,6 7.7 1 (mRNA)
TNFAIP3 -+ 10,4 7.5 1 (mRNA)
TNFSF15 — + 11 7,5 1 (mRNA)
CDKN2C - — 10,4 7.5 X 1 (mRNA)
CDK6 ot 11,9 7.4 1 (mRNA)
CDK2 - 11,3 7.3 1 (mRNA)
RASAL ot 10,2 7.2 X 1 (mRNA)
CCNA2 — = 14,1 7,2 X 1 (mRNA)
MYCBP o 10,4 7.1 1 (mRNA)
SKP2 — — 13,2 7,1 1 (mRNA)
PDGFB ot 11.6 7 1 (mRNA)
CCND1 - — 13,2 6,9 X 1 (mRNA)
ECM o 10,4 6,9 X 1 (mRNA)
PRKCBI1 - — 12,9 6,6 X 1 (mRNA)
CFLAR -+ 10,3 6.5 1 (mRNA)
NFKB -+ 10,3 6.5 * 1 (mRNA)
BTRC - — 12,8 6,2 1 (mRNA)
CCNH - - 12,7 6 X 1 (mRNA)
CDK4 —— 12,9 5,8 1 (mRNA)
RBL1 — — 0,11 no prediction *
CCNA2 CDC2 _ act — —| no prediction 0,187 X *
CCNA1_CDC2 act — —| no prediction 0,181 X *
CCNB1_CDC2  a — —| no prediction 0,17 X *
CCND3_ CDK4 _a — —| no prediction 0,144 X *
CCND3_ CDK6 ™ a — —| no prediction 0,144 X *
CCNA1_CDK2 act — —| no prediction 0,142 X *
CCNA2_ CDK2 ™ act — —| no prediction 0,139 X *
E2F2 - — —| no prediction 0,127 X 1 (mRNA)
CCND2 CDK4 a — —| no prediction 0,086 X *
CCND2 CDK6 ™ a — —| no prediction 0,086 X *
E2F3 - — —| no prediction 0,077 X 1 (mRNA)
CCNB1 CDC2 — —| no prediction 0,077 X *
E2F5 — —| no prediction 0,072 X 1 (mRNA)
CCND1_ CDK6 a — —| no prediction 0,069 X *
CCND1_CDK4 a — —| no prediction 0,069 X *
mRNA TP73 — —| no prediction 0,002 2 (proteins)
mRNA_APAF1 — —| no prediction 0,002 2 (proteins)
mRNA~ CDKN2A — —| no prediction 0,001 2 (proteins)
mRNA~ RB1 — —| no prediction 0 2 (proteins)

Phenotype I: the cell cycle S progression decreases when EWS-FLI1 is in-
hibited (dataset A)

The cell cycle S-phase progression (‘ccS’) node receives 9 influences in the refined in-
fluence graph of the EWS-FLI1 signaling network. We may shortly describe them as
follows:

- Three influences are issued from the competition between proteins E2F1,2,3 and
RB1. RBI1 is a member of the pocket protein family known to sequestrate E2F1,2,3
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when active and thus preventing the E2F1,2,3 normally transcription of genes
important to the S-phase progression [DeG02].

- One influence is triggered by the CCNE-CDK2 active protein complex [OS02].

- Three influences are coming from E2F6,7,8, which were reported to inactivate the
transcription of genes responsible for the S-phase progression [DJ06].

- Two influences are triggered from the complex formed by proteins E2F4.5 with
pocket proteins RBL2,1, respectively [DeG02, OS02].

The ‘ccS’ node is modeled using the generic influence constraint (GEN,.g), since
we did not established the priority order of the ‘ccS’ regulators. However, experiments
show that ‘ccS’ is inhibited when EWS-FLI1 is. In addition, in dataset A 54 network
mRNA nodes were measured to change significantly due to EWS-FLI1 inhibition.

Our objective was to explain an important effect of the EWS-FLI1 inhibition: the
decreasing in cell cycle S phase transition. In symbolic language, this can be viewed
as extracting the subgraph linking observed mRNA signs with the ‘ccS’ node coded as
‘—’. We used the program described in Algorithm 4 to recover the subgraph depicted
in Fig. 6.2. The results of this first analysis show that 3 of the 9 influences that ‘ccS’
receives are ‘—’, 3 are ‘4’ (thus contrary to the ‘ccS’ observation), and 3 are not fixed,
that is, they may be ‘+’ or ‘—’ without representing a contradiction between the model
and the dataset.

nRNA_E2§2 nRNA_E2§3 k

Figure 6.2: EWS-FLI1 network subgraph describing some of the influences that the cell cycle
node (‘ccS’) receives. Arrows ending in ‘—>’ or ‘~|’ refer to activations or inhibitions, green/red
nodes represent up/down-regulated products, and octagonal nodes are those modeled using
non-generic constraints. The depicted ‘ccS’ influences (nodes 1-6) were predicted during the
EWS-FLI1 inhibition. The observations in dataset A causing these fixed influences were tracked
down (rectangular nodes).

In Fig. 6.2 we describe the three inhibited pathways when EWS-FLI1 is inhibited.
Notice that there is not a direct connexion between EWS-FLI1 and the ‘ccS’ inhibition.
Hence, the propagation of EWS-FLI1 inhibition can be tracked down. Its effect on
cell cycle S transition is mediated via the negative fluctuation of three of the nodes
in the network: F2F2mENA - pop3mBNA and COND3™ENA | Interestingly, the first
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two nodes do not receive other influences in the network. The three influences that
contradict the sense of fluctuation of the S-phase progression are also depicted in Fig.
6.2. One of them comes from the protein complex formed by E2F5 and RBL1, which
is reviewed to inactivate the S-phase progression in [DeG02|. In this review they also
illustrate a case were E2F5 -/- Mefs mutant cells show cell cycle arrest, even after
the E2F5-RBL1 complex is not formed. We arrive to a similar conclusion since the
influence coming from E2F5-RBL1 complex does not impact the arrest of the cell cycle
progression. The other two influences come from E2F6 and E2F8. Literature is still
elusive on the role of those genes. In the absence of further knowledge, these results
suggest that in the case of A673 cell lines, those influences are not enough to promote
the cell cycle progression.

Biological interpretation of the results 6.6. E2F2 and E2F3 transcriptions may
be requlated directly or indirectly by EWS-FLI1. This regulation may be enough to stop
A673 cells in G1 phase.

Phenotype II: the cell cycle S progression activates when EWS-FLI1 reacti-
vates (dataset B)

We showed that the specific rules introduced into the model were able to explain the
‘ccS’ inactivation when EWS-FLI1 is inhibited. However, when applying Algorithm 4
to the dataset B, it was not possible to conclude which influence could explain the cell
cycle progression (‘ccS’ node observed as ‘+7). This is a consequence of our generic
modeling, which does not allow us to predict the fluctuation of a node when opposite-
signed influences arrive to it.

To overcome this problem we used the method described in Algorithm 5, that an-
swers to the following question: Which network (non-observed, non-predicted) product
has to be fixed to provide a path of influences that explains a positive change of the
‘ccS’ node without contradicting the known observations in dataset B? The subgraph
outputted from Algorithm 5 is shown in Fig. 6.3. The new nodes predicted to have
a {+,—} variation in order to explain the ‘4’ variation of the ‘ccS’ node are shown in
Fig. 6.3 in dark green/red colors.

We extracted a subset of these new predictions composed of nodes which variation is
enough to explain at least one of the influences over ‘ccS’. These nodes are: (RB1,—),
(RBL1,2,—), (E2F7™ENA ) and (CONE™RNA 1) As a further step, we applied
Algorithm 4 to these nodes, to check if the {4, —} predicted value could have an ori-
gin in some of their observed predecessors. The results are shown in Table 6.7. The
E2F7"ENA jllustrates a clear example of priority order. In order to provide a positive
influence over the ‘ccS’ node, E2F7™ENA needs to be repressed by E2F4. The sec-
ond influence E2F7™ENA receives, coming from E2F1, should be absent or not strong
enough.

Biological interpretation of the results 6.7. The pocket family proteins (RBI,
RBL1, RBL2) should be inactivated in order to explain the ‘ccS’ node as activated (+).
The RBL1 mRNA is observed as 4’ in dataset B, while the mRNAs of the remaining
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Figure 6.3: Predicted {4, —} variations (green/red colors) in order to provide 7 positive in-
fluences over the ‘ccS’ node. Arrows ending in ‘—>’ or ‘—| refer to activations or inhibitions,
octagonal-shaped nodes are those modeled using logical functions. The impact of the dataset
B observations (rectangular nodes) on the pathways controlling the ‘ccS’ node is given by the
light-green colored nodes. This impact cannot predict as ‘+’ any of the 7 influences that the
‘ccS’ receives. By adding the AND,.s function into the model, new predictions (red/dark
green nodes) were generated consistent with the dataset. These new predictions justified the
‘+’ change of the ‘ccS’ node. A blue-bordered node is enough to explain at least one influence
over the ‘ccS’ (nodes 1-7) as ‘4.

Table 6.7: Initially non-observed /non-predicted products that, if fixed to a specific sign (in
parenthesis), explain at least one positive influence over ‘ccS’ as ‘+’. The upper ‘e’ in the
name of the product specifies its mRNA variation. NR is the number of regulators of the
product, E vs. O shows how many regulators explain the sign of the product (E) vs. how many
the opposite sign (0), and Origin E/O is the set of mRNA observations in the dataset that
explain/contradict the sign of the product. When only one origin is found, we list in addition
the name and role of the regulator that propagated the effect over the product.

Product NR |E vs. O Origin E Origin O
CCND1,2,3 (
PRKCB (
CDK4 (
CCNH (
CCND1,2,3 (
(
(
(

RBI (=) | 11| 7vs. 0

RBL1,2 (—) | 10 | 6vs. 0 |CDK4
CCNH
E2F4 CCND3 (+)
E2F4 E2F1 >
E2F2,3 ()| CCND3 ™ (1)
CCNE® (+) | 7 | 5vs. 1 |CCND2,3 (+)|E2F8  -|
EWS-FLI1 (+)

)
)
)
)
)
)
)
)

E2F7¢ (=) | 2 | 1vs. 1

+
+
+
+
+
+
+
+
-]

+
+
+

pocket proteins are predicted also to 4. This means that during the EWS-FLI1 reac-
tivation the mRNA of the pocket proteins increase. Therefore, these proteins should be
nactivated due to post-translational phosphorylations coming from any of the products
listed in the column "Origin E" in Table 6.7.
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Biological interpretation of the results 6.8. One possible pathway that activates the
cell cycle S-phase may come from the CCNE™ENA node. This node has 7 requlators
in the network; 5 of them provide an explanation for a 4’ change over it, including
EWS-FLI1. Only one of its requlators contradicts this change, E2F8, which also in Fig.
6.2 appeared to contradict the ‘ccS’ expected behavior.

6.2.6 Discussion

We showed in these last sections how we conceived and tested new qualitative functions
to model the effect of complex regulatory influences on steady state changes in a sig-
naling network. Based on a combination of the generic function GEN and of Boolean
operators among signs V and A, we designed functions to model the global response
to a stress of various macromolecular interactions such as competitions, sequestration
and releasing, and complex inactivation-reactivation. In comparison with a model that
does not implement such functions, we show that the prediction number is significantly
increased, both on experimental data and on random datasets. Experimentalists can
have more confidence in those predictions: using new functions decrease significantly
the probability to obtain them on random datasets. Moreover, our predictions concern
active proteins, difficult to be widely measured by high-throughput methodologies.

We proposed a methodology that exploits those new functions to study the impact
of targeted manipulations on key nodes in the network. Biologically, these in silico
manipulations can simulate the effect of a manipulation on target genes, using inhibitors
(drugs or shRNA) or enhancers (e.g. strong promoters). Doing this we assume that the
globally observed variations on the network nodes remain stable when one manipulates
specific molecules. With the methodology proposed one can work on networks relatively
large (hundreds of products), for which one cannot manage to reason in an intuitive
way.

The presented methods generate new hypotheses that suggest new experiments.
First, on the experimental dataset we were able to make predictions on the behavior
of specific nodes such as E2F5, IER3, or the PDGF pathway; these predictions should
be confirmed experimentally. Second, the in silico manipulation of nodes influencing
the cell cycle transition to phase S suggests that E2F2 3 are direct or indirect targets
of EWS-FLI1; also, a list of variations of some network nodes is predicted to be at the
origin of the cell cycle reactivation. Our analysis points out different network nodes
important in the cell cycle S phase transition, that could be interesting targets for
biologists in order to better understand the correlation between EWS-FLI1 and the cell
cycle.
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Conclusion

The work in this thesis was centered on the study of large-scale biological regulatory
networks. Having in mind that these systems are composed of thousands of regulations,
we used a qualitative approach in which a regulatory network was represented as a set of
qualitative constraints. Afterwards, we reasoned over the steady state equilibrium shifts
of the network molecules by checking for each network component a generic consistency
rule. This intuitive reasoning is relevant and different from other approaches because it
is automatic and global: it is computed over the whole network topology.

Efficient algorithms were developed to propose an informatic solution of this problem
in reasonable computational time. Using them, we presented in this thesis programs
implemented in Python and ASP, as well as bioinformatic tools, such as a Website, a
visualization tool, and a Web service, which automatize the consistency analysis and
are publicly available to be tested on different type of biological data.

The consistency analysis proposed needs as biological data input a regulatory net-
work and a dataset of qualitative shifts of network molecules. We acquired this data from
public databases, literature, and from the collaboration with other research projects. In
all the cases a post-modeling of the proposed network was performed. In the simplest
case we filtered the original interactions with a threshold. In the more complex cases,
we added new regulatory rules into the model by a careful reading of the literature.
The expression datasets were also treated in order to be analyzed using the qualitative
approach.

The results of this thesis concern firstly the biological validation of the consistency
approach, and secondly the mathematical and informatic extension of this approach in
order to broaden the types of experimental datasets considered and to represent more
specific regulatory interactions. We will summarize the contributions of this thesis, and
give a final perspective of this work in the following sections.

Consistency-check of signed transcriptional networks

The consistency-check analysis is a process aimed to confront a regulatory network and
a dataset of observations. Three steps are always performed to compute this analysis:

1. Check the consistency answer of the confrontation between regulatory and expres-
sion data.
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2. If the data is not consistent, diagnose the network regulations and dataset obser-
vations involved in the inconsistency.

3. If the data is consistent, predict the qualitative shift of some network molecules.

We applied this process to the E. coli TRN (extracted from RegulonDB) wrt a small
dataset of reliable but heterogeneous E. coli observations on the exponential-stationary
growth shift. Initially both data were inconsistent. The inconsistencies highlighted in
the diagnosis step, together with a careful review of the literature on the nodes and
regulations involved in the incousistencies, revealed that:

e The sigma-factors regulations needed to be added to the transcriptional E. coli
regulations in order to obtain a model that reflects equilibrium shifts.

e The ‘ihfA = —’ observation, reported by the literature-curated dataset of the
exponential-stationary growth shift that appears in RegulonDB, is inconsistent
with the transcriptional and sigma-factors regulations.

e The regulation ‘ArcA -> appY’ was missing in the transcriptional plus sigma-
factors model proposed by RegulonDB.

Once we obtained a consistent regulatory model with the experimental dataset,
we predicted the variation of some network molecules. We noticed that by adding an
additional constraint into the model, obtained from quantitative information related
to the formation of the IHF protein-complex, we increased significantly our prediction
rate by 30%. After validating the predicted values by using a genome-wide dataset of
mRNA measurements, we obtained an 80% of accuracy. This percentage is comparable
to the one obtained by other methods working on a metabolic and more complex F.coli
regulatory model [CKR104, CP02, EP00.

Our results also suggested that the E. coli TRN can be completed with post-
translational interactions by a careful (literature or experimental) study of the non-
validated predictions. We illustrated this idea in the prediction of the RpoD protein.
We verified in the literature that its predicted value referred to the active protein, and
thus it did not correlate with its mRNA level reported in the genome-wide dataset.

The E. coli TRN was also confronted wrt genome-wide datasets. In this case, as
the number of inconsistencies reported is higher, we cannot afford checking all of them
manually. Nevertheless, global properties of these datasets can be proposed, according
to the number of recovered predictions after an automatic repair.

We studied two genome-wide datasets related to the exponential-stationary growth
shift of E. coli genes and to the Heatshock stress perturbation. The predictions of
these datasets, after minimal correction of the inconsistencies, were highly accurate
(90%). This implies that the minimal nodes in the network to be corrected may be
strong candidates for experimental validations. We computed these candidates for the
growth shift dataset obtaining 11 molecules, which observed value in the dataset or
input regulations needed to be corrected in order to reconcile the network and dataset.
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TF role inference on unsigned transcriptional networks

The TF role inference approach consists of predicting the {+, —} role of a transcription
factor over a gene based on a consensus of observations reported by multiple gene
expression profiles. This consensus should be consistent with the network topology. We
tested this approach on the E. coli and S. cerevisiae TRNs.

Based on the unsigned E. coli TRN we simulated random consistent datasets. These
simulations allowed us to explore how many experiments were needed to infer all the
regulatory roles. Our results revealed that the number of predicted roles were dependant
on the network topology. For highly connected networks, such as the core of a network,
we predicted less regulatory roles, even when observing all the network molecules arti-
ficially. Our simulations showed that one can characterize about 30% of the regulations
from 30 expression profiles. We additionally showed that this is close to the theoretical
limit of our approach.

After applying the inference approach on real biological data, we obtained much less
number of inconsistencies when using the E. coli regulatory model. The causes of this
difference may be the higher number of non-modeled post-transcriptional interactions
present in eukaryotic networks. A second cause is that the RegulonDB regulatory model
of E. coli is better curated and more reliable than the model obtained from ChIP-chip
data of S. cerevisiae.

We compared our inference approach to the path analysis method of Yeang and
colleagues [Y1J04, YMM™05] and found that both algorithms infer a similar number of
regulations, and that the common predictions agreed. We noticed that the predictions
are located in different parts of the network, depending on the algorithm: path analysis
tends to infer signs in highly connected regions, while our approach infer signs on
regulations acting on small in-degree nodes. Another difference is that path analysis
requires expression profiles from gene-deletion experiments, whereas our method gives
better results with stress perturbation experiments (though it can be applied to both
types of experiments).

The TF role predictions obtained from E. coli (using 61 datasets) and S. cerevisiae
(using 15 datasets) were validated using literature curated signed regulatory models.
The prediction rate for E. coli was of 30%, and 71% of them were accurate. The
prediction rate for the largest S. cerevisiae model was of 61%, and 69% of them were
accurate. Nevertheless, only 23 of the 631 predicted roles for S. cerevisiae could be
validated, since the only source of comparison found was a small-scale signed regulatory
network.

Consistency-check on signed signaling networks

To model the post-translational phenomena present in the signaling network of the
EWS-FLI1 oncogene, we added specific qualitative constraints in the model. These
constraints were built according to the biological literature by using a combination of
the Boolean operators V and A among {+,—} signs. Hence, the mathematical and



138 Conclusion

informatic approaches needed to be adapted to reason over this new qualitative system
of constraints.

We validated the new logical rules added into the model by comparing a network
modeled with specific logical rules wrt a network modeled with only generic constraints.
Our results revealed that the rate of predictions was increased by 44.7% owing to the
additional specific rules. Also, the predictions generated with the more specific model
were more significant, that is, it was less probable to obtain these predictions from a
random dataset.

Using the EWS-FLI1 signaling network we went one step further from our previous
analyses. We performed a post-analysis of the predictions obtained in order to find
the origin of observed phenotypes. In the EWS-FLI1 signaling network, EWS-FLI1 is
known to correlate with the cell-cycle activation. Thus, we studied which nodes in the
network may be responsible for the cell-cycle inhibition and reactivation. We obtained
three interesting hypothesis to be validated with further experimental manipulations:

(i) Completing the signaling network. E2F2 and E2F3 transcriptions may be regu-
lated directly or indirectly by EWS-FLI1. These regulations may be enough to
stop the Ewing tumour A673 cell line in G1 phase.

(ii) Ezplaining the cell-cycle reactivation. The pocket family proteins (RB1, RBLI1,
RBL2) should be inactivated in order to explain the reactivation of the cell-cycle.
The mRNA of RBL1 is observed in the dataset to increase, and the others are
predicted also to increase. Thus, these proteins should be inactivated due to post-
translational phosphorylations. We reported the list of products responsible of
these phosphorylations.

(iii) Ezplaining the cell-cycle reactivation. Another cause of the cell-cycle reactivation
lies on the increase in expression of the CCNE mRNA. The causes of this increase
are the shift in expression of five network molecules.

Perspectives

Refining and Curating a model of regulations

The approach proposed in this thesis can be applied to construct or validate regulatory
models for organisms whose regulatory map is not yet built. Let us take for example
the work with the Acidithiobacillus ferroozidans bacteria [RGKS03]. Even though the
complete genome of this bacteria was sequenced, the information of its genome is still
not complete. In addition, it is difficult to generate a regulatory model for it from
mutants data because this bacteria is highly resistant to experimental alterations of its
genome. Nomnetheless, the following data is available:

e Regulatory data. This data includes the complete annotation of the bacteria
genome, a list of important transcription factors in this bacteria, and a com-
pilation of possible TFs that share a binding site up-stream all the bacteria genes.
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e Fxperimental data. 13 genome-wide microarray measurements on this bacteria
under different stresses.

By using different filters of the regulatory data, we may build several putative models
of regulation. Thus, we could iteratively test the consistency of these models wrt all the
experimental profiles, in order to obtain a closer map of the transcriptional regulations
of this organism. A ranking of the putative networks could also be computed by finding
the number of minimal repairs of the networks wrt all the experimental datasets.

Distance between a network and genome-wide datasets

The notion of a distance between experimental and regulatory data is another interesting
direction of this work. We arrived very close to it by using the minimal automatic
correction programs in ASP. Nevertheless, the biological impact of this work could
be better achieved by proposing a number that measures the degree of consistency of
different genome-wide datasets wrt the same regulatory model. This idea is connected
with the example given for the Acidithiobacillus ferroozridans regulatory network and it
may have an interesting impact in the correction and validation of regulatory models.

In a previous work using the E. colt network and three genome-wide datasets, we
classified small sets of molecules of this network into two groups. These groups were
obtained by randomly observing small sets of genes in the network. The first group of
genes led to a high prediction rate, whereas the other to a low prediction rate. It should
be interesting to go further in this direction and study the notion of consistency from
a topological point of view. We already know that not all the nodes in the network
have the same relevance. However, the simulation of random groups of observed genes
may give us insights on the key groups of genes essential to control the cell response of
many others. It may be possible that other TFs, different from the global factors, are
responsible of this high control.

The advantage of applying the distance notion to analyze wide-genome datasets is
that the informatic tools are already available. It just requires a further research on the
steps of this analysis, as well as an interpretation of the obtained results.

Further improvements of the consistency analysis

The Bioquali library was extended in order to represent the null-variation of some
network products. In general terms, it is done by splitting all the nodes of the graph in
two values (presence,variation): presence, is a Boolean value in {0, 1} that indicates
the absence or presence of a molecule, while variation indicates the {4, —, 7} variation
of a molecule. If a molecule is represented as (0,7), it means that it has not changed
between the two experimental conditions we compare; if it is represented as (1,+), then
it was up-regulated. Consequently, the @& and ® sign operators, used to compute the
consistency of a constraint with the generic rule, evolve as shown in Table 6.8.

The drawback of this improvement of the Bioquali library is that each time a con-
sistency analysis is launched, the variables of the system are doubled. Thus, the com-
putation time of an automatic consistency analysis is unbearable in its actual state.
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Table 6.8: Consistency relation ~ and sign tables for the addition (&) and multiplication
(®) extended taking into account the null-variation (0 change) of a product. The =~ relation
states the consistency answer of each constraint, T stands for true, whereas F for false. The 'x’
represents that this never happens.
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Validating the impact of the null-variation over the prediction rate or accuracy could
be another nice direction to pursue this work. This will require improving the exist-
ing Bioquali methods, as well as a careful modeling study of the significance of the
null-variation in terms of an equilibrium shift. The ASP approach can also be easily
extended in this direction, however, before implementing it, it is important to impose
a correct modeling of the null-variation.

A recurrent idea in the consistency analysis process is the experimental planning
design, for example, controlling the network of interactions in a way to predict a {+,—}
change by switching off or on only few molecules in the network. As we showed with the
EWS-FLI1 signaling network, this result is strictly related to the number of fixed (pre-
dicted) network molecules and the generic consistency rule may cause ambiguities when
a node has more than one regulator. This direction is promising and very interesting
from the mathematical, informatics, and biological perspectives. It is crucial, however,
that methodological changes are made in close collaboration with experimentalists and
biologists. The validation of the computational output needs to be considered by a
biological laboratory working on the same problematic. If not, we risk to make inter-
esting (and costly) contributions in the informatics and mathematics fields without any
application in the biological side.

The Systems Biology field is a research domain with extraordinary directions. It is
impressing to see how by mathematically and computationally analyzing high-throughput
data, small models of regulatory interactions can be elucidated which reflect experi-
mental observations. The idea of predicting the behavior of biological cell processes
is promising. However, most of these researches are centered on small regulatory net-
works, connecting either very well studied transcription factors or top-ranked measured
molecules. It is a promising direction to study and elucidate properties in network
models of hundreds or thousands of interactions, since this means getting closer to the
biological reality. Biological organisms are too complex and have evolved in a so large
time scale, that even their basic processes have to be composed of plenty intra-molecular
messages. Moreover, nowadays when experimental technology allows us to explore thou-
sands of molecules at once, and the informatic facilities are able to process large amount
of information, it seems reasonable (but still challenging) to explore the large-scale di-
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rection concerning network regulatory models. With tools as the consistency analysis
presented in this thesis we did our small contribution to the research in this direction.
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was found after confronting the network with 45 literature-curated expression
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5.15 (Both) Statistics of the TF role inference process on the unsigned E. coli influence
graph using N complete expression profiles (c¢f. compendium A). The Y-axis refers
to the percentage of recovered edge signs. The continuous line corresponds to the
theoretical formula Y = M; 4+ Ma(1 — (1 — p)*); My denotes the number of single
incoming regulations inferred with probability one from any complete profile, and M,
denotes the number of signs inferred with a probability p (0 < p < 1) per experiment.
(Left) Statistics using the whole E. coli regulatory network. We estimated that at most
37.3% of the network edges can be inferred from a limited number of different complete
profiles. Among the inferred regulations, we estimated to M; = 609 the number
of signs inferred with probability one from any complete expression profile. The
remaining M, = 811 signs are inferred with a probability which average is p = 0.049
per experiment. Hence, 30 perturbation experiments are enough to infer 33% of the
network. (Right) Statistics using only the core of the former graph. We estimated
M; = 18 and M; = 9, implying that the maximum rate of inference is 47,4%. Since
p = 0.0011, the number of expression profiles required to obtain a given percentage of
inference is greater than in the case using the whole network (N = 100 to infer 33%
of the network). . . . . . . . ..o Lo e 110

5.16 (All) Statistics of the TF role inference process on the E. coli influence graph (1529
nodes, 3802 edges) from partial expression profiles. In these experiments, the number
of experiments N is fixed. The continuous line corresponds to the theoretical predic-
tion M; = M —d* f* Miotar, where M;"*? is the number of inferred edge signs from
complete expression profiles, d is the number of interaction signs no longer inferred
when a node is not observed, f is the fraction of unobserved nodes, and M;otq: is the
total number of nodes.

(Left) Statistics for the whole network. We used 30 sets of artificial expression profiles
(N = 30). We estimated d = 0.14, meaning that on average we lose one interaction
sign for about 7 missing values in the profiles. (Middle) Statistics for the core network
(N = 30). We estimated d = 0.21. The core of the network, however, is more sensitive
to missing data. (Right) Statistics for the core network (N = 200). We estimated
d = 0.36. Hence, increasing the number of expression profiles increases the sensitivity
tomissing data. . . . . . .. L L 0oL oL 112

5.17 A. Results of the inference algorithm applied to E. coli network with a com-
pendium of 61 experiments. The dark and light regions of the bars correspond
to false positive and validated predictions, respectively. Without filtering, there
are 28.3% of false positives. With filtering — keeping only the sign predictions
confirmed by k different experiments — the rate of false positives decreases to
2.5%. B. Ambiguous E. coli interactions with the 61 datasets. For each inter-
action there exist at least two datasets that do not predict the same sign on the
interaction. . . . . . ... Lo 113

6.1 S. cerevisiae influence graph B. Only interactions among TFs were considered.
A total of 29 interactions were inferred. Green and red arrows correspond to
inferred activations and repressions, respectively. Blue arrows correspond to
the inconsistencies detected. . . . . . . . . .. ..o 121
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6.3

EWS-FLI1 network subgraph describing some of the influences that the cell
cycle node (‘ccS’) receives. Arrows ending in ‘~>’ or “—|” refer to activations
or inhibitions, green/red nodes represent up/down-regulated products, and oc-
tagonal nodes are those modeled using non-generic constraints. The depicted
‘ccS’ influences (nodes 1-6) were predicted during the EWS-FLI1 inhibition.
The observations in dataset A causing these fixed influences were tracked down
(rectangular nodes). . . . ... ..ol L L
Predicted {+, —} variations (green/red colors) in order to provide 7 positive in-
fluences over the ‘ccS’ node. Arrows ending in ‘—>’ or ‘—|’ refer to activations or
inhibitions, octagonal-shaped nodes are those modeled using logical functions.
The impact of the dataset B observations (rectangular nodes) on the pathways
controlling the ‘ccS’ node is given by the light-green colored nodes. This impact
cannot predict as ‘+’ any of the 7 influences that the ‘ccS’ receives. By adding
the AND,.s function into the model, new predictions (red/dark green nodes)
were generated consistent with the dataset. These new predictions justified the
‘+’ change of the ‘ccS’ node. A blue-bordered node is enough to explain at least
one influence over the ‘ccS’ (nodes 1-7) as ‘“+’. . . . . ... ...
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Résumé

Il existe plusieurs approches qui modélisent des réseaux de régulation génétiques afin
d’élucider la dynamique d’un systéme biologique. Cependant, ces approches concernent
des modéles a petite-échelle. Dans cette thése nous utilisons un approche formelle sur
les réseaux de régulation a grande-échelle qui modélise les variations des concentrations
des molécules d’une cellule entre deux états stationnaires. On teste la cohérence entre la
topologie du réseau et des données d’expression génétique en utilisant une régle causale
de consistance. Les résultats de cette approche sont : test de la consistance entre les
données et un réseau, diagnostic des régions du réseau inconsistantes avec les données
expérimentales, et inférence des variations des éléments du réseau. Notre méthode
raisonne sur la topologie globale du réseau en utilisant des algorithmes efficaces basés
sur des diagrammes de décision, des graphes de dépendance, ou la programmation par
ensemble réponse. Nous avons proposé des programmes et des outils bioinformatiques
basés sur ces algorithmes qui automatisent ces raisonnements. On a validé cette ap-
proche en utilisant des réseau transcriptionels des espéces E. coli et S. cerevisiae, et le
réseau de signalisation de 'oncogéne EWS-FLI1. Nos résultats principaux sont: (1) un
pourcentage élevé de validation des prédiction sur la variation des molécules du réseau,
(2) des corrections manuelles et automatiques efficaces du modeéle et/ou données, (3)
I'inférence automatique des roles des facteurs de transcription, et (4) raisonnement au-
tomatique sur les causes qui influencent des phénotypes importants dans des réseaux
de signalisation.

Abstract

To this date many approaches exist that model a genetic regulatory network in order
to elucidate the dynamics of the system. These methods focus, however, mainly on
small-scale regulatory models. In this thesis we use a formal approach over qualitative
large-scale regulatory networks, that models the equilibrium shift of the cell molecules
between two steady states. We test the coherency between the network topology and
gene expression data, by using a general interaction logical causal rule. The outputs of
our approach are to measure the consistency of our data, diagnose inconsistent regions
of the network with respect to the experimental data, and infer the qualitative variation
of new network molecules. Our method reasons over the whole network of interactions
using efficient algorithms based either on decision diagrams, dependency graphs, or
answer set programming. We proposed programs and bioinformatic tools that, based on
these efficient implementations, automatize this reasoning. We validated this approach
using the transcriptional networks of F. coli and S. cerevisiae, and the signaling network
of the EWS-FLI1 human oncogene. Our main results were: (1) high prediction accuracy
of the shifts of the network molecules, (2) effective manual and automatic corrections
of the model and/or data, (3) automatic inference of the role of transcription factors,
and (4) automatic reasoning over the causes that influence important phenotypes on a
signaling network. All in all, we provided a methodology that can be applied to complete
regulatory networks built at different molecular levels, by exploiting the constantly
increasing high-throughput outputs.



