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Hubert Renevier President
Aleksandar Matic Rapporteur
Alain Mermet Rapporteur
Pierangelo Rolla Examinateur
Marie Plazanet Examinateur

Thèse préparée au sein du laboratoire:

European Synchrotron Radiation Facility - Grenoble

dans l’Ecole Doctorale de Physique du Grenoble



Vibrational properties of glasses

at the transition from microscopic

to macroscopic regime

by

Beatrice Ruta

27/09/2010

file:ruta@esrf.fr


Declaration of Authorship

I, Beatrice Ruta, declare that this thesis titled, ‘Vibrational properties of glasses
at the transition from microscopic to macroscopic regime’ and the work presented
in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research
degree at this University.

� Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

i



“Cacahué!”
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Introdution (français)

Une des questions les plus ambitieuses dans la Physique de la Matière Con-

densée concerne la compréhension des propriétés vibrationnelles des verres. Malgré

l’absence d’ordre à longue distance, cette classe de systèmes est caractérisée par

des comportements universels qui se distinguent fortement de ceux de leur cristaux

correspondants. En particulier, une anomalie présente de la densité d’états vi-

brationnels (VDOS), g(E), à des énergies de quelques meV a suscité beaucoup

d’intérêt en raison de sa présence universelle dans les verres [1]. Cette anomalie

apparâıt sous la forme d’un pic large, appelé boson peak (BP), dans la densité

réduite des états, g(E)/E2, par rapport à la prévision du continuum élastique de

Debye, dans une région d’énergies où le modèle de Debye fonctionne encore assez

bien pour les correspondants cristaux.

Bien que le BP a été découvert plus de 40 ans, aucun accord n’existe sur son origi-

ne physique et il reste encore l’objet d’un nombre croissant d’études théoriques et

expérimentales. Selon un accord général le BP est une manifestation du désordre,

mais la question de savoir si le BP est lié à un comportement particulier des excita-

tions acoustiques présent dans la région d’énergies correspondante ou à l’existence

de certains modes supplémentaires, spécifiques de l’état vitreux, est encore sans

réponse. L’absence d’un cadre théorique clair pour servir de référence et la diffi-

culté de démêler les effets spécifiques d’un système par rapport aux comportements

universels, aussi bien dans les résultats expérimentaux que dans les simulations

numériques, ralentit les progrès dans ce domaine.

Les propriétés vibrationnelles des verres semblent également être liées aux pro-

priétés visqueuses des correspondants liquides surfondus au dessus de la tempéra-

ture de la transition vitreuse, Tg, qui sont saisies à travers la valeur de la fragilité

cinétique. Ce paramètre a été introduit pour la première fois par C.A. Angell, et

il décrit avec quelle vitesse le temps de relaxation structurel, ou la viscosité, aug-

mente lorsque la température diminue à l’approche de Tg [2]. Selon cette définition,

il est possible de classer les systèmes formant des verres comme “fort” et “fragi-

le”. Les systèmes présentant un comportement super-Arrhenius de la viscosité à

l’approche de Tg sont appelés fragiles, tandis que ceux affichant une comportement

d’Arrhénius sont appelés forts.

A titre d’exemple des corrélations proposées entre les propriétés vibrationnelles et

visqueuses, Scopigno et al. ont proposé, il y a quelques années, une corrélation

1



Introdution (français) 2

entre la fragilité cinétique et le facteur de nonergodicité de l’état vitreux [3]. Cette

dernière quantité représente la limite à longs temps de la fonction de corrélation

densité-densité normalisée au facteur de structure statique dans l’état vitreux.

La dépendance en température de ce facteur dans la limite de grandes longueurs

d’onde permet d’obtenir un paramètre α qui est en corrélation avec la fragilité

cinétique des liquides surfondus pour un certain nombre de différents systèmes.

Après ce travail des nombreux progrès ont été fait pour la compréhension de cette

corrélation même si il semble qu’elle est mieux satisfaite dans les systèmes forts et

intermédiaires plutôt que dans les systèmes fragiles [4].

D’autres relations ont été proposées entre les propriétés vibrationnelles et vis-

queuses des verres et l’idée de base d’un lien entre les propriétés élastiques des

verres et la fragilité des liquides correspondants reste au moins valable qualita-

tivement, même si aucune des corrélations proposées ne semble valoir pour tous

les verres à un niveau quantitatif [4–6].

Cette thèse présente une analyse détaillée des propriétés vibrationnelles de deux

verres fragiles, sorbitol et soufre polymère, au moyen de la diffusion inélastique de

la lumière (BLS), des rayons x (IXS) et de neutrons (INS). L’utilisation combinée

de ces différentes techniques est une conditio sine qua non pour une investigation

correcte sur la nature du BP et de sa relation avec les propriétés élastiques des

verres et avec la fragilité des liquides correspondants.

Le principal échantillon étudié dans cette thèse, le sorbitol, est un système fragi-

le caractérisé par une organisation spatiale des molécules induites par des liaisons

hydrogène. Le caractère fragile du sorbitol et la valeur élevée de la position du ma-

ximum du BP rendent le sorbitol un très bon candidat pour une étude détaillée des

propriétés acoustiques dans la région du BP, en utilisant IXS, car elles compensent

en partie les difficultés dues à la résolution en énergie limitée de la technique. La

relation entre BP et les propriétés élastiques a été étudiée suivant deux approches

différentes: d’un côté la dépendance en température du BP a été comparé à celle

des propriétés élastiques mesurées à basse fréquence (GHz) avec BLS; de l’autre

côté, une étude précise de la dépendance en température des excitations acousti-

ques ayant des énergies comparables à celles de la position du BP a été réalisée.

Dans le cas de l’autre échantillon étudié dans cette thèse - soufre polymère - seule-

ment la dépendance en température de la dynamique vibrationnelle à basse et

haute fréquence (THz) a été étudiée.

Dans les deux systèmes la dépendance en température des courbes de dispersion

acoustique à haute fréquence peut être décrite avec une bonne approximation

dans un cadre quasi-harmonique, et l’atténuation acoustique correspondante est

définitivement d’origine non dynamique. En outre, dans le cas du sorbitol, la

dépendance en température du BP est entièrement décrite par les transformations

correspondantes du continuum élastique et sa forme peut être reproduite quanti-

tativement par les courbes de dispersion et par l’atténuation acoustique à haute

fréquence, ce qui suggère une forte relation entre les propriétés acoustiques dans

la région mésoscopique et le BP. Enfin, les informations collectées sur les modes
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acoustiques du soufre et du sorbitol dans une large gamme de fréquence - dans

la gamme de fréquences du GHz au moyen de BLS et dans le THz au moyen

de IXS - nous permettent aussi de tester la validité de certaines des corrélations

proposées entre les propriétés visqueuses des liquides surfondus et les propriétés

vibrationnelles des verres. Les deux systèmes étudiés ici se révelent être un défi

pour les corrélations proposées et nous permettent de mieux comprendre le sens

de ces corrélations.

La thèse a été établie selon le schéma suivant:

• Le premier chapitre est consacré à un résume des principaux concepts con-

cernant la phénoménologie de la transition vitreuse. Après avoir présenté

quelques comportements universels des liquides surfondus, le reste du cha-

pitre rapporte une brève description de l’état vitreux, avec une attention

particulière aux propriétés thermodynamiques et de transport.

• Dans le deuxième chapitre les principales caractéristiques de la dynamique

vibrationnelle dans des verres à l’échelle nanométrique sont mentionnées. Le

BP est ici introduit avec quelques-uns entre les différents modèles rapportés

dans la littérature pour expliquer son origine. Une vue d’ensemble sur les

corrélations entre les propriétés élastiques des verres et le BP est ensuite

discutée. Enfin, la dernière partie du chapitre présente un bref résumé de

certaines des relations proposées entre la dynamique lente dans la phase

liquide surfondu et la dynamique rapide des verres.

• Le troisième chapitre présente l’étude des fluctuations de la densité du sor-

bitol et du soufre mesurées au moyen de BLS. Après un bref rappel des

principes de base de la spectroscopie BLS nous introduisons les deux échan-

tillons étudiés dans cette thèse . Les propriétés élastiques de ces systèmes

dans la gamme de fréquences de GHz sont ensuite discutées en référence

aussi à quelques-unes des corrélations proposées avec les propriétés des cor-

respondants liquides visqueux.

• Le quatrième chapitre est consacré à l’étude de la dynamique à haute fré-

quence du verre de sorbitol. Les principes de base de la spectroscopie IXS

sont rappelés. Nous retrouvons des anomalies élastiques dans la courbe de

dispersion du sorbitol à l’échelle nanométrique. Une étude de la dépendance

en température de ces anomalies montre qu’elles peuvent être traitées dans

une approche quasi-harmonique, en accord avec les données à basse fréquence

discutées dans le troisième chapitre. La relation entre le paramètre de non-

ergodicité et la fragilité cinétique pour le cas du sorbitol est ensuite discutée.

• Dans le cinquième chapitre nous discutons la relation entre le BP et les pro-

priétés élastiques du sorbitol. Le BP a été mesuré l’aide d’un spectromètre de
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diffusion inélastique des neutrons de type “temps de vol”, dont les principes

de base sont signalés au début du chapitre. Les modifications du BP avec la

température sont complètement dictées par les transformations correspon-

dantes du milieu élastique macroscopique. En outre, le BP peut être quan-

titativement décrit par la dépendance en fréquence de la vitesse du son et

atténuation mesurées à haute fréquence. Enfin nous présentons une com-

paraison avec un modèle théorique récent pour le BP.

• Le sixième chapitre décrit la dynamique vibrationnelle à haute fréquence

d’un verre polymère de soufre. Les mesures IXS ont été réalisées au cours

de mon mémoire de mâıtrise en 2006 et sont ici mises en relation d’un côté

avec les résultats à basse fréquence mesurés au cours de mon travail de thèse

et rapportés dans le troisième chapitre, et de l’autre avec les informations

sur la VDOS et sur la fragilité du matériel. La dynamique à haute fréquence

du soufre ne présente aucun signe des anomalies élastiques trouvées dans

le cas du sorbitol ou d’autres systèmes. Cette incongruité apparente peut

être expliquée en regardant le BP du soufre, qui est situé à l’extérieur de la

fenêtre d’énergies qui peut être sondée par IXS.

• Dans le septième chapitre nous résumons les principaux résultats de ce tra-

vail de thèse. En particulier une comparaison avec d’autres systèmes montre

comment la présence des anomalies élastiques à l’échelle nanométrique sem-

ble être une caractéristique universelle des verres et elle est fortement liée au

BP. La dernière partie du chapitre présente un résumé des résultats sur les

corrélations entre la fragilité des liquides visqueux et les propriétés élastiques

des verres.

Enfin dans les conclusions nous signalons une vue d’ensemble sur les résultats de

cette thèse avec quelques idées sur les perspectives futures de ce type d’études.



Introduction

One of the most challenging issues in Solid State Physics concerns the understand-

ing of the vibrational properties of glasses. Despite of the lack of long range order,

this class of systems is characterized by some universal behaviors that strongly dif-

fer from those of their crystalline counterparts. In particular, an anomaly present

in the vibrational density of states (VDOS), g(E), at energies of few meV has at-

tracted much interest due to its universal occurrence in glasses [1]. This anomaly

is best evidenced as a broad bump, known as boson peak (BP), appearing in the

reduced density of states g(E)/E2 over the Debye, elastic continuum prediction in

an energy range where the Debye model still works reasonably well for the corre-

sponding crystals.

Albeit the BP was first discovered more than 40 years ago, no agreement exists on

its physical origin and it still remains the subject of an increasing number of theo-

retical and experimental works. There is a general agreement that the boson peak

is a manifestation of disorder, but the question of whether this peak is related to a

peculiar behavior of the acoustic excitations present in the corresponding energy

range or to the existence of some additional modes, specific of the glassy state, is

still unanswered. The absence of a clear theoretical frame to serve as a reference

and the difficulty of disentangling system specific effects from universal behav-

iors in both experimental and numerical simulation results makes in fact slow the

progress in the field.

The vibrational properties of glasses seem also to be related to the viscous prop-

erties of the corresponding deeply undercooled melts above the glass transition

temperature, Tg, which are grasped by the value of the kinetic fragility. This pa-

rameter was introduced for the first time by C. A. Angell, and describes how fast

the structural relaxation time, or the viscosity, increases with decreasing tempera-

ture on approaching Tg [2]. Following this definition, it is possible to classify glass

formers as ”strong” and ”fragile”. The systems showing a super-Arrhenius behav-

ior of the viscosity on approaching Tg are called fragile, while those displaying an

Arrhenius behavior are called strong.

As an example of the correlations proposed between vibrational and viscous prop-

erties, Scopigno et al. proposed some years ago a correlation between the kinetic

fragility and the nonergodicity factor in the glassy state [3]. The latter quantity

represents the long time limit of the density-density correlator in the glassy state.

5
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From the temperature dependence of this factor in the long-wavelength limit, it is

possible to extract a parameter α that correlates with the kinetic fragility in the

supercooled liquid for a number of different systems. After this work, a signifi-

cant progress in the understanding of this correlation has been achieved, though

it seems that it holds better for strong and intermediate glass-formers than for

fragile systems [4].

Other relations have been proposed as well between vibrational and viscous prop-

erties of glasses and the basic idea of a connection between elastic properties of

glasses and the fragility of the corresponding liquids remains at least qualitatively

valid, even though none of the proposed correlations seems to hold for all glasses

at a quantitative level [4–6].

This Thesis reports a detailed analysis of the vibrational properties of two frag-

ile glasses, sorbitol and polymeric sulfur, by means of inelastic light (BLS), x-ray

(IXS) and neutron (INS) scattering spectroscopies. The combined use of these

different techniques has been found to be a condicio sine qua non for a correct

investigation of the nature of the BP and of its relation with the elastic properties

of glasses and with the fragility of the corresponding melts.

The sample mostly studied in this Thesis, sorbitol, is a fragile glass-former charac-

terized by a spatial organization of the molecules induced by hydrogen bonds. Its

very fragile character together with a quite high boson peak position, make sor-

bitol a very good candidate for a detailed investigation of the acoustic properties

in the boson peak region using IXS, since they partly counterweight the difficulties

deriving from the limited energy resolution of the technique. The relation between

BP and elastic properties has been investigated following two different approaches:

from one side the temperature dependence of the boson peak has been compared

to that of the elastic properties measured at low frequency (GHz) with BLS; on

the other side, an accurate study of the temperature dependence of the acoustic

excitations at energies comparable to the boson peak position has been performed

as well. In the case of the other sample investigated in this Thesis - polymeric

sulfur - only the temperature dependence of the vibrational dynamics at low and

high frequencies (THz) has been studied.

In both systems the temperature dependence of the high frequency acoustic dis-

persion curves is found to be described to a good approximation within a quasi-

harmonic picture, and the corresponding acoustic damping is definitively non dy-

namic in origin. Moreover, in the case of sorbitol, the BP scales with the elastic

continuum and its shape can be quantitatively reproduced by the high frequency

dispersion curves and sound attenuation, suggesting a strong connection between

acoustic properties in the mesoscopic range and boson peak.

Finally, the collected information on the acoustic modes of sulfur and sorbitol

in a wide frequency range - in the GHz frequency range by means of BLS and

in the THz one by means of IXS - allows us also to test the validity of some of

the proposed correlations between viscous properties of supercooled liquids and

vibrational properties of glasses. The two systems studied here come out to be
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a challenge for the proposed correlations, and allow us to better understand the

meaning of these correlations.

The Thesis has been set out according the following scheme:

• The first Chapter is devoted to a review of the main concepts regarding the

phenomenology of the glass transition. After presenting some of the universal

behaviors of supercooled liquids, the rest of the Chapter reports a brief

description of the glassy state, with particular attention to thermodynamic

and transport properties.

• In the second Chapter the main characteristics of the vibrational dynamics

in glasses at the nanometer length scale are reported. The boson peak is here

introduced, together with some of the different models reported in literature

to explain its origin. An overview on the correlations between elastic proper-

ties of glasses and boson peak is then discussed. Finally, the last part of the

Chapter reports a brief summary of some of the proposed relations between

the slow dynamics in the supercooled liquid phase and the fast dynamics of

glasses.

• The third Chapter presents the BLS investigation of the density fluctuations

in glassy sorbitol and sulfur. After a brief summary of the basic principles of

BLS spectroscopy, a presentation of the two samples studied in this Thesis is

reported. The elastic properties of these systems in the GHz frequency range

are then discussed also with reference to some of the proposed correlations

to the properties of the corresponding viscous melt.

• The fourth Chapter is dedicated to the study of the high frequency dynamics

of the glass of sorbitol. The basic principles of the IXS spectroscopy are

recalled. Peculiar anomalies are found in the dispersion curve of sorbitol

at the nanometer length scale. A temperature dependent study of these

anomalies shows that they can be treated within a quasi-harmonic approach,

in agreement with the low frequency data discussed in the third Chapter.

The relation between the nonergodicity factor and the kinetic fragility for

the case of sorbitol is then discussed.

• In the fifth Chapter the relation between boson peak and elastic properties of

sorbitol is discussed. The boson peak has been measured using an inelastic

neutron time of flight spectrometer, whose basic principles are reported at

the beginning of the Chapter. The changes of the BP with temperature are

found to be completely dictated by the corresponding transformation of the

macroscopic elastic medium. Moreover the boson peak can be quantitatively

described by the measured frequency dependence of the high frequency sound

velocity and attenuation. Finally a comparison to a recent theoretical model

for the BP is presented.
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• The sixth Chapter is dedicated to the high frequency vibrational dynamics

of polymeric glassy sulfur. The data have been collected during my master

Thesis in 2006 and are here discussed in relation to the low frequency results

measured during my PhD work and reported in the third Chapter and to

both the BP and the fragility of the system. The high frequency dynamics

of sulfur does not display any signature of the elastic anomalies found in

sorbitol and in other systems. This apparent incongruity can be explained

looking at the BP of sulfur, which is located at energies outside the window

which can be probed by IXS.

• In the seventh Chapter the main results of this Thesis work are summarized.

In particular a comparison with other systems shows how the presence of

elastic anomalies on the nanometer length scale seems to be a universal fea-

ture of glasses and is strictly related to the boson peak. The last part of

the Chapter is instead dedicated to update our evaluation of some correla-

tions proposed between the vibrational properties of glasses and the kinetic

fragility of liquids.

Finally a general view of the results of this Thesis is reported in the Conclusions

together with some ideas on the future perspectives of this kind of studies.



Résumé du chapitre 1

La compréhension fine de l’état vitreux est encore une des questiones
fondamentales de la physique de la matière condensée aujourd’hui.
La transition vitreuse présente, en fait, une phénoménologie assez
semblable pour des systèmes extrêmement variés, malgré la présence
du désordre structurel.
La façon la plus courante pour produire un verre consiste à refroidir
un liquide suffisament rapidament pour éviter la cristallisation à sa
température de fusion Tm. Dans ces conditions, en dessous de Tm,
le liquide est alors dans un état métastable appelé liquide surfondu.
Si l’on diminue encore la température du système, sa viscosité aug-
mente très fortement et la dynamique du système ralentie jusqu’à
l’arrêt à la température de transition vitreuse Tg. En dessous de
cette température, le système est hors d’équilibre dans un état appelé
état vitreux.
Les principaux aspects de cette phase de liquide surfondu sont présen-
tés dans la première partie du chapitre. Dans le reste du chapitre, les
aspects généraux de l’état vitreux sont présentés en se référant plus
particulièrement au comportement particulier des propriétés ther-
miques du verre telles que la capacitè thermique et la conductivitè
thermique. En effet, toutes ces quantités physiques, á basse tempéra-
ture se comportent de manière inattendue si on les compare à celles
des cristaux issus de la thèorie de Debye.

9



Chapter 1

Phenomenology of glasses

Glasses are known and used by man since the Stone Age. The first manufactured
products appear to date back to the 2nd millennium BC in the Old Kingdom
Egypt and in the Eastern Mesopotamia. Despite of millenniums of history, this
class of materials persists fascinating men’s life due to the continuous discoveries
of new properties and applications.
In general a glass can be viewed as a liquid in which a huge slowing down of the
diffusive motion of the particles has destroyed its ability to flow on experimental
time scales, thus remaining frozen in a metastable state. The most common way
to produce a glass consists on cooling a liquid fast enough to avoid crystallization.
The glassy state can be obtained also through different less conventional routes
like: i) condensation of gas at low temperature; ii) application of hydrostatic pres-
sure; iii) chemical reactions, such as polymerization or condensation of chemically
reacted vapors. Therefore, the possibility to obtain a glass is not strictly related to
the material itself, but it rather depends on the available time allowed to a system
to solidify into a disordered structure [7, 8]. For this reason the glassy state can
be considered as the ”fourth state” of conventional matter: a glass is solid as in
crystalline state, but without long range order as in the liquid state [9].
The presence of coexisting liquid and solid properties, led to the formulation of
several different “glass” definitions. For the US National Research Council a glass
is ”an amorphous material which exhibits the glass transition, this being defined
as that phenomenon in which a solid amorphous phase exhibits, by changing the
temperature, a more or less abrupt change in the derivative thermodynamic prop-
erties, such as heat capacity or thermal expansivity, from crystal-like to liquid-like
values”. The region over which the change of slope occurs is termed the ”glass
transition temperature Tg”.
The behavior of glass forming systems is broadly recognized as being rich in phe-
nomenology both in the supercooled and in the glassy state. Despite of the large
efforts done in the last decades, many aspects remain poorly understood and the
understanding of the glassy state is still considered as one of the most challenging
topics in condensed matter.

10
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1.1 The glass transition

When a liquid is cooled below its melting temperature Tm two distinct processes
can take place: either crystallization or vitrification. The occurrence of these solid
phases can be checked by looking at the temperature dependence of extensive
thermodynamic variables such as volume, entropy or enthalpy at constant pressure.
Figure 1.1 shows a schematic drawing of a liquid’s volume or enthalpy during
cooling. The crystallization process corresponds to an abrupt jump in volume or
enthalpy at the melting temperature, while the glass formation is characterized by
a smoother decreasing behavior. In fact if the liquid is cooled below Tm rapidly
enough so that detectable nucleation and crystal growth cannot occur, it falls out
of equilibrium and becomes supercooled. Upon further cooling the viscosity of the
liquid increases until the system becomes solid-like around Tg.

Figure 1.1: Volume or enthalpy temperature dependence at constant pressure.
The glassy state is characterized by a gradual change in slope in the region
around Tg, while crystallization is signed by an abrupt decrease at Tm. Tga and
Tgb represent the effect on the glass transition of a slower or faster cooling rate,

respectively [10].

The change in slope of thermodynamic variables implies a discontinuity in the cor-
responding derivative variables, such as thermal expansion coefficient αT or heat
capacity CP . Figure 1.2 reports the temperature dependence of CP for different
glass forming systems. On crossing the glass transition temperature from the liq-
uid side, the heat capacity of the system drops abruptly in a narrow temperature
range.
At first sight the vitrification would seem similar to a second-order phase transi-
tion. In fact, following the Ehrenfest criterion, the order of a phase transition is
defined by the lowest order derivative of the Gibbs energy, G, showing a disconti-
nuity at the phase transition temperature. In the case of crystals, the solidification
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process corresponds to a jump in the volume V = (∂G/∂P )T (first order phase
transition), while in glasses the discontinuity takes place in the heat capacity
Cp = −T (∂2G/∂T 2)P .

Figure 1.2: Heat capacity CP as a function of the reduced temperature T/Tg

for different glass forming liquids. The glass transition corresponds to a discon-
tinuity in the CP temperature dependence [11].

For glasses, actually this classification scheme is not appropriate, being the glass
transition dependent on the thermal history and the cooling rate. Indeed, whether
or not a given liquid crystallizes during cooling before Tg is reached, is strictly a
kinetic problem involving the rate of nucleation and growth of the crystal on the
one hand, and the rate at which the thermal energy can be extracted from the
cooling liquid on the other [12]. The slower the cooling rate of the liquid, the larger
is the supercooled region and thus, the lower is the glass transition temperature.
This behavior is described by the two lines ”a” and ”b” in Figure 1.1: a slower
cooling rate implies a lower solidification temperature Tga.
The value of Tg depends as well on the time scale of the experiment used to observe
the process. As shown in Figure 1.1, the liquid and glassy phases are not really
distinct; the glass is solid in the sense that the characteristic time scale of diffusiv-
ity becomes so large to appear infinite with respect to any experimental time. The
slowing down of the diffusive motion of supercooled liquids is expressed through
the relaxation time τα, that represents, generally speaking, the characteristic time
on which the slowest measurable process relaxes to equilibrium. More specifically,
the supercooled phase, thus the region where Tm > T > Tg, is characterized by
more than one relaxation with a “fast” one (∼ 10−12s) related to vibrations of the
particles around the disordered instantaneous positions, and the “slow” structural
one related to the cooperative rearrangements of the disordered structure around
which the fast vibrations take place [11].
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Cooling down from the liquid phase, the system falls out of equilibrium: the slow
liquid degrees of freedom are no more able to explore the whole phase space and
the relaxation time of the under-cooled melt, or the viscosity proportional to it
through the Maxwell relation η = G∞τα

1, suddenly grows by several orders of
magnitude in a relatively small temperature interval between Tm and Tg [7]. From
these considerations, it naturally follows that the material will behave as a liquid
or solid depending on the time necessary to the system to relax into a new equi-
librium configuration with respect to the experimental time scale. This assertion
represents a clear signature of the kinetic nature of the glass transition. In partic-
ular, the vitrification takes place when the structural relaxation time, called also
α-relaxation, becomes comparable with the time necessary to perform a measure-
ment. For experimental times τexp > τα the material will appear liquid-like, while
for τexp < τα it behaves as if it were solid-like. In this way it is possible to define
Tg as the temperature where τα corresponds to a time scale of ∼ 1000 s, or where
the viscosity reaches a value of 1013 poise2.
As said above, the properties of a glass depend on the process by which it is formed.
However, the dependence of Tg on the cooling rate is weak (in some systems Tg

changes by 3/5 ◦C when the cooling rate changes by an order of magnitude), and
the transformation range is narrow, so that Tg becomes an important material
characteristic [10]. In general, the glass transition temperature is measured by
means of differential scanning calorimetry (DSC). This technique allows perform-
ing a thermal analysis of the system by monitoring the enthalpy variations on
varying the temperature across Tg. In this way it is possible to collect information
on the heat capacity, being Cp = (∂H/∂T )P . Tg is usually defined as the tempera-
ture corresponding of the change of curvature in the rise of Cp obtained by heating
the system at a constant rate of 10 K/min, from the amorphous solid state.
The mechanisms underlying the glass transition have been studied for decades
and a vast variety of theories have been proposed. Notwithstanding, the nature
of the glass and the glass transition itself remain, as Philip W. Anderson, a Nobel
Prize-winning physicist at Princeton, wrote in 1995, “the deepest and most inter-
esting unsolved problem in solid state theory” [13]. A general view of some of the
different approaches can be found in Refs. [14–17].

1.2 Potential energy landscape

In 1969 Goldstein proposed a useful topographic description of the dynamics of
deeply supercooled liquids and glass transition by looking at the evolution of the
system in the space of the configurational coordinates [18, 19]. For example, a
system with N particles is characterized by 3N coordinates. Each different config-
uration of the system is described by a point in this space and the dynamics can
be thought as the motion of this point over the potential energy landscape (PEL),

1Close to Tg the system behaves as a viscoelastic liquid where G∞ is the infinite-frequency
shear modulus (∼ 109 Pa).

210 poise = 1 Pa· s.



Chapter 1. Phenomenology of glasses 14

the surface given by the representation of the potential energy U(r1, r2, ..., r3N ) of
the system as a function of the 3N particles coordinates in a 3N + 1 dimensional
space. The probability distribution for the potential energy of a state point de-
pends on the temperature, through the Boltzmann factor.
Albeit metastable with respect to crystals, at low temperatures glasses are me-

Figure 1.3: Potential energy landscape scenario. The crystal state corre-
sponds to the absolute minimum, while the glassy state can occupy different

local minima [20].

chanically stable, and by applying a small perturbation the atoms tend to return
to their equilibrium positions. These stable configurations of the system corre-
spond to local minima of the potential energy. In general the potential energy
surface consists of an absolute minimum, associated to the crystalline state, and
a variety of local minima of different depths, always higher than the crystal one,
corresponding to particles arrangements that are completely lacking long-range
crystalline order (Figure 1.3).
The different minima in the U surface are separated by potential energy barri-
ers. At low temperatures in the supercooled liquid phase, the system can explore
the different amorphous minima through activated jumps across the barriers. As
Goldstein pointed out, “ the transition over a potential barrier in U space is in
some sense local, in the sense that in the rearrangement process leading from one
minimum to a near-by one, most atomic coordinates change very little, and only
those in a small region of the substance change by appreciable amounts”.
As reported in the next sections this scenario is able to give an intuitive description
of several phenomenological features of glass forming systems.
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1.3 The supercooled liquid phase

For what said above, it is intuitive thinking that the vitrification process should
influence the dynamics of the system more that the structure. The average dis-
tribution of particles separation is described by the static structure factor S(Q).
On crossing the glass transition temperature, the S(Q) of supercooled liquids and
that of the corresponding glasses are very similar. From the density point of view,
it is possible to see a small difference between the high temperature liquid (above
the melting temperature) and the supercooled one. The S(Q), correspondingly,
shows a small variation of the first sharp diffraction peak (FSDP) position, which
on cooling shifts toward higher wave-vectors due to the decreasing density.
On the other side, the dynamics of glass forming liquids displays an extremely
complex behavior that keeps attracting many researchers. In the following, a
brief treatment of some of the most intriguing features of the supercooled phase
is presented.

1.3.1 Relaxation processes

Beyond the α process, glass formers exhibit other secondary relaxation processes.
These subtle dynamical phenomena are commonly referred to as β relaxations
and are always at frequencies higher than the structural α relaxation. Various
systems present more secondary relaxations which are governed by different molec-
ular mechanisms. Some are trivial rotational motion of a small isolated group of
the entire molecule and others are nontrivial as in rigid molecular glass formers
or polymers that have no side group [21]. Among the different secondary relax-
ations, the most famous one is the Johari-Goldstein (JG) β relaxation, due to its
intermolecular character and presence in all types of glass formers [22, 23]. The
origin of this process is a matter of dispute and many theoretical and experimental
works have been performed on this topic. The mechanism of the interplay between
the fast β JG and the slow α relaxation process in the liquid-glass transformation
is indeed sometimes considered as the key to understand how and why a glass
forms from an equilibrium melt. According to Johari, the β JG relaxation is a
nonhomogeneous process, associated to the presence of ”islands of mobility” in the
system, due to local rearrangements of molecules. Figure 1.4 shows the relation
between the α and β JG relaxation in the case of sorbitol [24]. While the slow
process “diverges” at the glass transition temperature, the fast one persists also
in the glassy state below Tg.

The JG process can be described, both in the glassy and in the supercooled
liquid state, by an Arrhenius law τβ = τ∞exp(Ea/KBT ), thus with a Boltzmann
factor containing the activation energy of the process Ea and a high-temperature
constant τ∞, related to the vibrational dynamics. While this behavior below Tg is
commonly observed, the Arrhenius behavior above Tg is more controversial [24].
The α-process, instead, shows a different behavior as explained in the next section.
It is interesting here noting that in the case of sorbitol, reported in Figure 1.4, the
Arrhenius temperature dependence of τβ below Tg changes to a second, steeper



Chapter 1. Phenomenology of glasses 16

3.0 3.5 4.0 4.5 5.0 5.5 6.0
-8

-6

-4

-2

0

2

JG -relaxation

 

 

lo
g 10

(
) (

s)

1000/T (K-1)

Tg

-relaxation

Arrhenius behavior

sorbitol

Figure 1.4: Relaxation times of sorbitol for the α-process (full squares) and
the secondary β JG-process (open squares) as a function of the inverse temper-
ature 1000/T . The dashed red line indicates the glass transition temperature.

Adapted from [24].

(larger value of Ea) Arrhenius trend above Tg [24]. Many other systems exhibit
the same behavior and the change in slope at the glass transition temperature
has been interpreted as mimicking of the abrupt but steady change of enthalpy,
entropy, and volume when crossing Tg [25]. These evidences imply that a strong
interaction should exist between structural α and Johari-Goldstein relaxation in
a wide temperature range [26].

The relaxation time of a system at a given temperature can be measured by
means of different techniques, such as photocorrelation or dielectric spectroscopy.
In general the way in which a system relaxes after a perturbation is applied is
described by a response function, thus a function that describes the temporal or
frequency evolution of the response to the external disturbance. Figure 1.5 shows
the dielectric loss spectra of two different glass formers, diethyl phthalate (a) and
propylene carbonate (b). In both cases the peak related to the α-process is well
defined at low frequencies, while the secondary relaxation is evident only in the
case of diethyl phthalate. Nevertheless, propylene carbonate presents as well an
extra feature at higher frequency with respect to the α-peak. The appearance of
this ”excess wing” (EW) has been detected also in other systems and its nature
has been highly disputed. Some authors identified the EW as an inherent part of
the α-relaxation while recent experimental results suggest that the EW is nothing
but the high-frequency side of a JG peak masked by the structural one3 [8, 26].

3This assertion comes from the observation of the evolution of the EW into a β peak on
increasing pressure.
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Figure 1.5: Dielectric spectra of (a) diethyl phthalate [27], which has a resolved
JG-peak, and (b) propylene carbonate [28], which has an unresolved secondary
relaxation (excess wing). The green solid line in the lower graph shows the
additional power law with a weaker slope than the α-relaxation (red dash-dotted

line). Adapted from [8].

Relaxation process in supercooled liquids can be investigated also by measur-
ing at a given temperature the normalized autocorrelation function φQ(t), which
monitors the decay of density fluctuations δρ being

φQ(t) =

〈
δρ∗

Q(0)δρQ(t)
〉

〈
δρ∗

Q(0)δρQ(0)
〉 (1.1)

In the simplest case the relaxation function is exponential so that there is a unique
time τ characterizing the process. This is not the case for viscous liquids close
to Tg. In fact these systems exhibit a clear non-exponential, or multi-step decay
pattern due to the presence of secondary relaxation processes. In Figure 1.6 a
sketch of the temporal behavior of φQ(t) of a supercooled liquid close to the glass
transition is reported [29]. At short time the decay is related to the free motion
of the atoms and to their collisions. The microscopic regime is then followed by a
first step and a long time plateau. The presence of a secondary relaxation process
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Figure 1.6: Sketch of the temporal evolution of the density correlator 1.1. The
various temporal regimes are described in the text. Taken from [29].

leads to the appearance of an additional step. This situation will be treated more
detail in section 2.4. The α-relaxation occurs on a longer timescale and can be
often described by a stretched exponential, or Kohlrausch-Williams-Watts (KWW)
function

φQ(t) = exp
[
−(t/τK)βK

]
(1.2)

In this expression τK is the characteristic relaxation time and βK the stretching
parameter, with 0 < βK < 1, which quantifies the deviation from a simple expo-
nential behavior.
The microscopic dynamics close to the glass transition can be quantitatively de-
scribed by the ”Mode Coupling Theory” (MCT) [17, 30] and, in fact, the approach
to the long time plateau of φQ(T ) is often called the mode coupling (MC) β pro-
cess. Albeit the name, this process is completely distinct from the other secondary
relaxations described above. In frequency space, the MC β relaxation corresponds
to a minimum of the susceptibility instead than a loss peak as for ordinary sec-
ondary relaxation [21].
Figure 1.7 shows the self part of φQ(T ) obtained from a molecular dynamic sim-
ulation of a supercooled binary Lennard-Jones system [31]. On approaching the
vitrification, thus on lowering the temperature, the two-step shape associated to
the α and MC β process becomes clearly more marked. The rising separation
between these two processes has been often related to an increase of the nonexpo-
nentiality of the structural relaxation close to Tg (see equation 1.2), which leads
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to a decrease of the stretching parameter βK close to Tg [32, 33].
The two-step behavior of the dynamical correlation function can be described in

Figure 1.7: Temporal evolution of the self part of the density correlator 1.1
in a binary Lennard-Jones system [31]. The MC β relaxation process becomes

more visible on approaching the glass transition temperature.

the potential energy landscape framework. Indeed glass formers can be considered
as composed by small groups of particles trapped in cages formed by their neigh-
bors, in which the particles are entangled for a time that increases on decreasing
the temperature due to the raising viscosity. The MC β relaxation is related to
the particle vibrations within their local cages, while the structural relaxation time
τα associated to the α process corresponds to the time necessary for a particle to
escape the cage. This scenario has been supported by several studies on the tem-
poral evolution of the mean square displacement of the particles [31].
In Goldstein’s representation, the vibrations of the particles within their cages
correspond to vibrations around a local minimum of the potential energy surface,
whereas the jumps across different barriers represent the local decaging of some
particles. On increasing the number of activated rearrangements, thus of decaging
processes, the system decorrelates and the intermediate scattering function over-
takes the plateau, giving raise to the α relaxation [19].
The presence of a relaxation process can be observed also by looking at the fre-

quency dependence of the sound velocity and absorption of the acoustic waves.
Figure 1.8 shows a sketch of the frequency dependence of these two quantities
in the presence of the structural α relaxation process. In particular the sound
velocity exhibits a typical step behavior changing from the relaxed value v0 at
zero frequency to the fully unrelaxed value v∞ at higher frequencies. At the same
time the acoustic absorption displays a maximum when the angular frequency
ωα = 2πνα fulfills the condition ωτα = 1. From the Figure it is also evident that
on increasing the temperature, the dynamics shifts toward higher frequencies. The
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Figure 1.8: Sketch of the frequency dependence of the acoustic sound velocity
(a) and absorption (b) of glass formers.

simultaneous presence of a secondary β relaxation process leads to the appearance
of an intermediate step between v0 and v∞ in the behavior of the sound velocity
and to a secondary peak in the corresponding acoustic absorption for ωβτβ = 1
(see Figure 4.22 in section 4.4.1).

1.3.2 Strong and fragile glass forming liquids

One of the most challenging features of the glass transition phenomenology con-
cerns the behavior of the structural relaxation time, or the viscosity, on approach-
ing Tg. As previously reported, on crossing the supercooled liquid phase the vitrifi-
cation process comes with an enormous slowing down of the structural relaxation.
From the viscosity point of view, this behavior corresponds to an increase by sev-
eral order of magnitude in a narrow temperature range, from values ∼ 10−2 poise
as for a normal liquid, up to values of 1013 poise at Tg. Moreover the way in which
this raise takes place is strictly related to the nature of the system. Following
these observations, C. A. Angell first proposed a classification of supercooled liq-
uids in strong and fragile systems, depending on the temperature dependence of
the viscosity (or τα), and consequently on the sensitivity of the liquid structural
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rearrangements to temperatures changes.
Figure 1.9 represents the well-known ”Angell plot”, thus the logarithm of the
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Figure 1.9: Angell plot for several glass formers: logarithm of the shear viscos-
ity as a function of the inverse reduced temperature Tg/T , being η(Tg) = 1013

poise. The black dashed line corresponds to an Arrhenius temperature depen-
dence. The high-temperature limit is fixed at η∞ = 10−4 poise. Adapted from

[2]

viscosity η as a function of the inverse reduced temperature Tg/T for several glass
formers. All those liquids called “strong” show a weak temperature dependence
of the viscosity, that can be described by an Arrhenius law

η = ηA
0 exp(Ea/KBT ), (1.3)

with a high, but nearly constant activation energy Ea and a high-temperature limit
ηA

0 (∼ 10−4 poise) corresponding to a structural relaxation time of ∼ 10−14 s, typi-
cal of purely vibrational degrees of freedom. On the other hand, ”fragile” systems
are characterized, on approaching Tg, by a much faster temperature dependence of
the viscosity which varies in a markedly non-Arrhenius fashion. Looking at their
structure, strong materials present covalent or directionally oriented bonds, and
can form networking arrangements that strongly decrease the ability of the system
to rearrange its structure by varying temperature. SiO2 and GeO2 are prototypes
of strong systems. Differently, fragile liquids are mainly dominated by simple, non
directional Coulomb attractions or by van der Waals interactions forces. Their
microscopic structure can be easily changed close to Tg and, with a small thermal
excitation, it can be rearranged in a variety of different particle orientations [7].
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Figure 1.10: Schematic representation of the potential energy for strong (top)
and fragile (bottom) systems as a function of the configurational coordinates

[10].

Ortho-terphenyl (OTP) and polymeric materials are canonical examples of fragile
liquids.
From the potential energy landscape point of view, fragile systems are character-
ized by a high density of local minima separated by relatively low barriers, while
strong materials correspond to an energy surface with few minima and high en-
ergy walls (Figure 1.10). Hydrogen-bonded materials, such as glycerol, exhibit
instead an intermediate behavior. They are believed to be thermodynamically
fragile (with a large number of energy minima) and at the same time kinetically
strong (high energy barriers for the structural modifications).
Several empirical expressions have been proposed to describe the shape of the

viscosity close to the glass transition temperature, but no one is able to well repro-
duce the data in the whole temperature range [32]. The most used and accepted
expression is the Vogel-Tammann-Fulcher (VTF)

η = ηV F
0 exp

(
TA

T − T0

)
(1.4)

where TA and T0 are just phenomenological parameters. In the limiting case
T0 = 0, the VTF law converts into equation 1.3, instead the extrapolation of the
viscosity below Tg leads to a divergence at T = T0. In the case of polymeric systems
an equivalent relation, known as Williams-Landel-Ferry (WLF), is employed [34].
In general the stronger the non-Arrhenius behavior, the closer is the parameter T0
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to the glass transition value. In many fragile glass formers, the Vogel-Tammann-
Fulcher law reproduces reasonably well the data, at least over a limited number of
orders of magnitude in viscosity. Other expressions, containing a larger number of
parameters, can describe the behavior of fragile systems in a wider temperature
range but no one is really able to fit the increase of the viscosity from the melting
temperature up to Tg, and many of them do not rest on theoretical bases.
The strong/fragile attitude of supercooled liquids is reflected in the configurational
heat capacity. As shown in Figure 1.2, strong materials display a small jump ∆Cp

on crossing Tg, while fragile ones present a marked discontinuity. The relationship
between viscosity (or τα) and heat capacity is not strange. The configurational heat
capacity just mirrors the structural changes described by the activation energies
related to the shape of the viscosity on approaching Tg. For this reason, the jump
in the heat capacity ∆Cp is bigger in systems in which the apparent activation
energy increases (more than a factor five) between the melting point and the glass
transition [11].
The system-dependent behavior of the viscosity can be described through the
fragility parameter mA. This quantity was introduced and developed by Angell and
in its kinetic version describes how fast the viscosity or the structural relaxation
time increases with decreasing temperature on approaching the glass transition
temperature Tg, being

mA =

[
d log(η(T ))

d(Tg/T )

]

T=Tg

(1.5)

The fragility ranges from mA = 20 for strong systems such as silica, up to values
≃ 150 for fragile materials as polymers. The fragility is often, but not always,
correlated with an alternative metric,

F1/2 = 2

(
Tg

T ∗

)
− 1, (1.6)

where T ∗ is the temperature where the viscosity is half way, on a log scale, between
the value η∞ and η(Tg)

[lg(η(Tg)) + lg(η(T∞))]

2
= lg(η(T ∗)).

The two expressions do not give always the same results being the former sensitive
to transitions like liquid-liquid or ring-chain, while the latter, F1/2, not [35, 36].
Several fragility expressions have been proposed and they can be classified mainly
in two categories related to a kinetic (as above) or thermodynamic approach,
and a variety of relationships among these two classes have been controversially
suggested [37–39]. Martinez and Angell showed that the kinetic fragility can be
correlated to the excess entropy Sex(T ), which represents the difference in entropy
between the supercooled liquid and the corresponding stable crystalline phase [38].
This quantity, indeed, has a prominent role in the vitrification process.
The influence of entropy was first pointed out by Kauzmann in 1948, by observ-
ing that during cooling many liquids loose entropy faster with respect to their
crystalline counterparts [40, 41]. The entropy of a glass is strictly related to the
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behavior of the heat capacity on crossing Tg from the supercooled liquid phase.
Below Tg, the crystalline and glassy state present almost the same heat capacity
values, due to vibrational contributions, while the excess above the glass tran-
sition is related to the configurational degrees of freedom related to the liquid
phase. Since the rate of cooling influences the glass transition temperature, being
the slower the rate the lower Tg, there should exist a low limiting value of Tg below
which the supercooled liquid phase cannot exist. If it did, the total entropy of the
liquid would fall below that of the crystal. To avoid this paradox it should ex-
ist an ideal glassy state possessing zero residual entropy, characterized by a glass
transition temperature TK where Sliq.(TK) = Scryst.(TK).
As previously reported, it is possible to define a thermodynamic fragility through
the excess entropy. In fact, by looking at the quantity Sex(Tg)/Sex(T ) as a func-
tion of the inverse rescaled temperature Tg/T , one obtains a plot very similar to
the well-known Angell one, where the different systems stand in the same order4

[38]. From this observation and following equation 1.6, it comes natural to define
a thermodynamic fragility as

F3/4 = 2

(
Tg

T ∗

)
− 1 (1.7)

where T ∗ is given by
Sex(Tg)

Sex(T ∗)
=

3

4

In this case, the value 3/4, and not 1/2, has been chosen because of the difficulties
associated on determining the excess entropy at low Tg/T in strong liquids. F3/4

has been found strictly related to the corresponding dynamic one F1/2 [38]. Owing
the limited available data for the excess entropy, this relation cannot be checked
in many systems and, consequently, its validity is not supported by the whole
scientific community.
Wang and coworkers suggested another relation by defining the thermodynamic
fragility through the formula

mT =
∆Cp(Tg)

∆Sm

(1.8)

where ∆Sm is the entropy of fusion at the melting temperature

∆Sm =
∆Hm

Tm

=

∫ Tm

TK

C liquid
p (T ) − Ccrystal

p (T )

T
dT, (1.9)

and ∆Cp(Tg) = [C liquid
p (Tg) − Cglass

p (Tg)] [42, 43]. Moreover the authors found a
phenomenological relationship mA = 40mT between these two fragility definitions,
which is followed by a great variety of non-polymeric systems5.
In the last years several works have been done to connect the rapid increase of the
α-relaxation time, expressed by the different fragility metrics, to other properties

4This statement is not valid in the case of vitreous silica.
5In the case of polymeric systems the situation is more complicated being the fragility de-

pendent from other factors as well, such as the molecular weight.
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of glass formers in both the liquid and glassy phase. In particular, the discovery of
a link between the slowing down of the diffusive motion in the supercooled liquid
phase and the vibrational dynamics in the deep glassy phase has intrigued many
researchers [3–6, 44–46]. This relation would imply, in principle, the possibility
to get kinetic information on τα (or on the viscosity η) above Tg by studying the
acoustic properties well below Tg, and this would correspond to the existence of a
signature of the glassy properties in the liquid phase.
Despite of the great amount of work done in this direction, the origin of these
correlations is still not completely understood and their validity is no longer unan-
imously accepted [47]. This subject will be treated in more detail in the next
chapter where the vibrational properties of glasses will be discussed.

1.3.3 Dynamic heterogeneities

Figure 1.11: Schematic representation of the homogeneous and heterogeneous
approach on describing the supercooled dynamics [48].

The increase of the nonexponential behavior of the relaxation function described in
section 1.3.1 has been often attributed to dynamical heterogeneities that come out
with the vitrification process. In general two different approaches could describe
the observed deviations from a simple exponential decay: the spatially dynamical
homogeneous scenario and the heterogeneous one [48]. This is schematically de-
scribed in Figure 1.11. In the first case (left column), the stretched character of
the intermediate scattering function φ(t) (Equation 1.2) is an intrinsic property
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of the system in the sense that the relaxation is equally nonexponential in the
whole material, and the local dynamics is the same as the ensemble-averaged one.
In the dynamical heterogeneous approach (right column), instead, the relaxation
of the entire system is nonexponential because different regions have significantly
different relaxation times, each one described by a single pure exponential decay,
that together with the other processes gives rise to the observed nonexponentiality.
This scenario would imply the existence in the system of groups of slow or fast
particles displaced in different regions.
Several simulations and experiments have directly established that the dynam-
ical slowing down encountered in glassy materials is accompanied by the exis-
tence of a growing correlation length scale over which local dynamics is spa-
tially correlated, thus supporting the heterogeneous scenario [49, 50]. The de-
tection of these spatial correlations of the dynamics requires the study of a ”four-
point” dynamic susceptibility χ4(t), which quantifies the amplitude of sponta-
neous fluctuations around the average dynamics. This quantity can be mea-
sured through the determination of the time-dependent autocorrelation function
F (t) = 〈δA(t)δA(0)〉 of the spontaneous fluctuations of an observable A(t), such
as the density, from its ensemble average 〈A〉. F (t) is the average of a two-
point quantity C(t, 0) = δA(t)δA(0). The presence of dynamic correlation leads
to large fluctuations of C(t), whose amplitude gives information on χ4(t), being
χ4(t) = N 〈δC(t, 0)2〉, where δC(t, 0) = C(t, 0) − F (t), and N the number of par-
ticles in the system.
In general χ4(t) can be directly accessed in simulations while its experimental
determination can be achieved through the evaluation of a three-point dynamic
susceptibility, χx(t) = ∂F (t)/∂x, defined as the response of a two point correla-
tor to a perturbing field x. In particular, the temperature three-point dynamic
susceptibility, χT (t), allows the experimental determination of the temperature
evolution of the number of molecules Ncorr that are dynamically correlated during
the structural relaxation process. A recent study shows that on approaching the
glass transition temperature, Ncorr systematically grows confirming the heteroge-
neous scenario [50].

1.4 The glassy state

As reported in the previous section, the dynamics of glass forming materials is
characterized by many distinguishing behaviors on approaching the glass transi-
tion from the liquid phase. Below Tg liquids solidify into a disordered structure,
which lacks the long range order typical of crystalline samples. For this reason, it
should be natural to think of glasses as of a class of systems showing the same dy-
namical properties of crystals for wavelengths large enough that the microscopic
details are negligible, and with marked system-dependent behaviors on length
scales of the order of the interatomic distances. Actually this is not the case. As
it will be shown in the following and in the whole thesis, glasses display several
universal behaviors on different length scales, which make the study of glasses
extremely challenging.
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Despite of the presence of structural disorder, the low temperature thermal proper-
ties of glasses, such as heat capacity and thermal conductivity, exhibit an unusual
universal behavior that strongly differs from that of the crystalline counterparts.
The main differences with respect to the corresponding ordered systems appear
at low temperatures, thus in a range where the thermally populated acoustic vi-
brations of the solid have wavelengths much larger that the atomic length scale.
Being dependent on these collective excitations, the thermal properties should not
be sensible to the internal structure and should present the same behavior for both
crystals and glasses. Surprisingly different behaviors were however discovered first
by Zeller and Pohl in 1971 [51] and they attracted immediately the interest of
the scientific community being related to a very intriguing feature of glasses, the
boson peak, as explained in the next chapter.

1.4.1 Classical elasticity and Debye model

The low temperature thermal properties of crystals are well described by the fa-
mous Debye’s model that is strictly connected with the classical theory of elastic-
ity. In order to understand the glassy phase, a good knowledge of such theories is
mandatory. Indeed saying that glasses show different behaviors in the low temper-
ature thermal proprieties with respect to crystals, means that they show a strong
departure from Debye’s predictions. In the following a brief summary of the Debye
model and classical elasticity theory are presented.

Continuum theory of elasticity

The continuum theory of elasticity describes the elastic behavior of a solid on a
macroscopic length scale through the behavior of an infinitesimal element of vol-
ume interacting with short range forces: it ignores the microscopic atomic struc-
ture of the solid, and treats it as a continuum [52]. A general deformation of the
system can be described through a continuous displacement field u(r), specifying
the vector displacement of the part of the solid that in equilibrium occupies the
position r. The fundamental assumption of the theory is that the contribution to
the energy density of the solid at the point r depends only on the value of u(r)
in the immediate vicinity of r, or, more precisely, only on the first derivatives of
u(r) at the point r.
In general the deformation of a solid can be described through a stress tensor σij

and a strain tensor ǫkl. The relation among these two quantities, called Hooke’s
law, is given by [53]:

σij =
∑

kl

Cijklǫkl (1.10)

where i, j, k, l = 1, 2, 3. In the previous relation, the stress tensor is defined in
terms of a force in the i direction acting on a surface element dAj with the normal
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vector in the j direction by

dFi =
∑

j

σijdAj (1.11)

while the strain tensor is defined in terms of the infinitesimal displacement u(r)
at r by

ǫij =
1

2

(
∂uj

∂ui

+
∂ui

∂uj

)
(1.12)

In the case of isotropic materials, the Hooke tensor Cijkl depends only on two
independent elastic constants, the Lamé coefficients λ and µ, through the relation

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (1.13)

The Lamé coefficient µ is equivalent to the shear modulus G, while the combination
of the two values gives information on the bulk and longitudinal modulus K and
M through the relations:

K = λ +
2

3
µ (1.14)

M = λ + 2µ = K +
4

3
G (1.15)

The propagation of elastic waves in an elastic and isotropic medium in absence of
external forces, is given by:

ρ
∂2ui

∂t2
=

3∑

l=1

Ailul (1.16)

with
Ail = λ∂i∂l + µ

(
∂l∂i + ∇2δil

)

By considering plane wave solutions u(r, t) = uei[kr−ωt], the equation of motion
1.16 becomes

ω2ui =
∑

l

Dilul (1.17)

where Dil is the dynamical matrix

Dil =
1

ρ

[
(λ + µ) kikl + µk2δil

]
(1.18)

This means that the equation of motion is reduced to find the eigenvalues of the
dynamical matrix. This can be simplified by choosing the direction of the wave-
vector k on the z axis. In this case Dil reduces to

D =
1

ρ




µk2 0 0
0 µk2 0
0 0 (λ + 2µ) k2



 (1.19)

There are three independent sound waves, two transverse ones (u⊥k) with sound
velocity cT =

√
G/ρ =

√
µ/ρ, and a longitudinal acoustic wave (u‖k) with sound
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speed cL =
√

M/ρ =
√

(λ + 2µ) /ρ. The Lamé coefficients assume always posi-
tive values and, as a consequence of the previous relations, the longitudinal sound
velocity in an elastic isotropic solid is always larger than the transverse one.

Connection with classical harmonic theory

The continuum theory of elasticity can be derived also from the long wavelength
limit of the harmonic theory for lattice vibrations [54]. In general, the theory of the
dynamical properties of a solid can be easily treated by recurring to the adiabatic
and the harmonic approximation. The first approximation is based on the fact that
typical electronic velocities are much greater than typical ionic velocities. For this
reason the electronic dynamics can be disentangled from the corresponding nuclear
one and at any moments the electrons can be assumed to be in their ground state
for that particular ionic configurations. The harmonic approximation is instead
based on the expectation that the atoms will not deviate substantially from their
equilibrium positions with respect to the interatomic distance.
Considering a system composed of N particles, the deviation from the average
equilibrium position, R, can be written as r(R) = R+u(R), where the term u(R)
contains the temporal evolution of the system. The interaction among the particles
can be described by a pair potential, Φ, and the sum over the all contributions gives
the potential energy of the system U = 1

2

∑
R,R’

Φ(r(R)−r(R’)) = 1
2

∑
R,R’

Φ(R−
R’ + u(R) − u(R’)).
In the harmonic approximation the deviations u(R) are small and the potential
energy can be expanded in Taylor series about its equilibrium position leading to

U =
N

2

∑
Φ(R) +

1

2

∑

R,R’

(u(R) − u(R’)) · ∇Φ(R − R’) (1.20)

+
1

4

∑

R,R’

[(u(R) − u(R’)) · ∇]2 Φ(R − R’) + ...

The linear term vanishes because there are no forces between the particles at equi-
librium. As a consequence, the first non vanishing correction to the equilibrium
potential energy U eq = N

2

∑
Φ(R) is given by the harmonic quadratic term, which

can be expressed as:

Uharm =
1

4

∑

R,R’
µ,ν=x,y,z

[(uµ(R) − uµ(R’))] Φµν(R − R’) [(uν(R) − uν(R’))] , (1.21)

being

Φµν(r) =
∂2Φ(r)

∂rµ∂rν

Since the equilibrium term U eq is just a constant, the dynamics of the system
is completely described by the harmonic term, which can be written in a more



Chapter 1. Phenomenology of glasses 30

general form as

Uharm =
1

2

∑

R,R’
µ,ν

uµ(R)Mµν(R − R’)uν(R’) (1.22)

by defining the dynamical matrix Mµν(R − R’) = δR,R’

∑
R”

Φµν(R − R”) −
Φµν(R” − R’).
The dynamical matrix fulfills the symmetric property:

Mµν(R − R’) = Mνµ(R’ − R) (1.23)

The 3N equations of motion (one for each of the three components of the displace-
ment of the N particles) are given by:

ρüµ(R) = −∂Uharm

∂uµ(R)
= −

∑

R’ν

Mµν(R − R’)uν(R’) (1.24)

or, in matrix notation,

ρü(R) = −
∑

R’

M(R − R’)u(R’) (1.25)

Equation 1.24 is the equivalent of the equation of motion 1.16 found within the elas-
tic theory. By considering plane waves solutions, the problem can be re-conducted
to the search of the eigenvalues of the dynamical matrix of the harmonic vibrations.

Debye’s model

At the beginning of last century, Einstein proposed a model for describing the
vibrations in a solid, by considering the system as a collection of 3N independent
oscillators, all with the same frequency, characterized by a set of discrete allowed
energies values. Despite of the success in describing the temperature dependence
of heat capacity, this model was clearly deficient at very low temperatures.
In 1912, Peter Debye introduced a quantum mechanical model which provided a
good approximation to the observed heat capacity for solids in a wide tempera-
ture range. Debye’s model ignores the details of the atomic structure and treats
the solid as a continuous elastic medium [55, 56]. The lattice vibrations are de-
scribed as collective atomic vibrations or elastic waves, which move through the
solid with the speed of sound. They may be polarized either longitudinally or
transversally, and travel with velocity cL or cT respectively. In general a sound
wave is described by its frequency, ω, and its wave-vector k. The latter defines
the direction of the propagation of the sound wave and its modulus is k = 2π/λ,
where λ is the wavelength of the sound wave. Longitudinal sound waves corre-
spond to waves oscillating along the propagation direction, while transverse waves
vibrate perpendicular to that direction. Moreover, an isotropic continuum medium
is characterized by only one longitudinal and two transverse branches, the latter
being degenerate.
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In general the sound velocity has a different values for each polarization. As it
would be for a classical elastic continuum, the frequency ω and the wave-vector k
are related by the sound velocities values through linear dispersion relations:

ω = cLk ω = cT k (1.26)

Debye imposed that the number of vibrational modes is fixed to the numbers of
atoms. This consideration together with the continuum approximation yields to a
wave-vector cutoff kD, being

3N =
∑

k
|k|<kD

=
V

(2π)3

∫

|k|<kD

d3k =
V

2π2

∫ kD

0

dkk2 =
V

6π2
k3

D (1.27)

In general kD corresponds to the typical inverse inter-particle separation in the
material.
Many thermodynamic properties of a solid can be described through the evaluation
of the vibrational density of states DOS g(ω), which is usually expressed as

g(ω) =
1

3N

∑

λ

∑

k

δ(ω − ωλ(k)) (1.28)

where λ is the polarization index.
The quantity g(ω)dω represents the number of modes with frequencies in the
infinitesimal range between ω and ω + dω. By using the linear relations 1.26, and
the cutoff wave-vector kD, one obtains the Debye density of states:

gD(ω) =
1

3N

V ω2

2π2

(
1

c3
L

+
2

c3
T

)
=

3ω2

ω3
D

(1.29)

The Debye frequency ωD introduced in the last equality, is achieved from the
relation ωD = vDkD, where vD is the Debye sound velocity given by

vD =

[
1

3

(
1

c3
L

+
2

c3
T

)]−1/3

(1.30)

This description of the vibrational density of states allows for a correct evaluation
of the heat capacity, being

CDebye = 3NkB

∫ ωD

0

g(ω)

(
~ω

kBT

)2
e(~ω/kBT )

[e(~ω/kBT ) − 1]2
dω (1.31)

At high temperatures the model gives the temperature independent Dulong-Petit
value, while in the low temperature limit the heat capacity follows a ∼ T 3 tem-
perature behavior

CDebye =
2π2

15

k4
B

~3

(
1

c3
L

+
2

c3
T

)
T 3 (1.32)

This approximation holds rigorously for any insulating crystalline material while,
as shown in the next section, it is not able to describe the heat capacity of glasses.
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1.4.2 Thermal anomalies in glasses

The low frequency part of the vibrational spectrum of glasses is generally acknowl-
edged to be one of the major unsolved problems in solid state physics [56]. In this
context, low frequency means lower than fews THz. According to quantum me-
chanics, a vibration of that frequency contributes only a little to the heat capacity
or the thermal conductivity until the temperature gets to about 10 K. This means
that the vibrations with frequencies ≤ 1 THz dominate the low-temperature ther-
mal properties of insulator glasses. These vibrations correspond to wavelengths
so long that the system would be expected to appear as a continuum and, as a
consequence, the thermal properties should behave in the same way independently
of whether the system is a glass or a crystal. In the light of such argument, it was
particularly surprising that quantities such as the specific heat and the thermal
conductivity exhibited strong departures from the Debye continuum approxima-
tion theory.
Moreover, this discovery is even more surprising considering that in glasses there
are well-defined sound waves, following the linear dispersion relations 1.26, up to
at least fews THz [57].

Heat capacity

Figure 1.12 (a) shows the temperature behavior of the heat capacity Cp for vitreous
and crystalline silica, measured by Zeller and Pohl [51]. The two systems display a
markedly different behavior in the low temperature range. In particular, the heat
capacity of vitreous silica decreases much more slowly with temperature. This
behavior has been found in all glasses.
As reported above, in crystalline materials such as α-quartz, Cp is well described by
the Debye model and follows a ∼ T 3 temperature dependence at low temperatures.
The heat capacity of glasses, instead, deviates strikingly from Debye predictions
and can be described adding a linear term, being:

Cp ∼ aT + bT 3 (1.33)

Below 1 K, the heat capacity is essentially linear in temperature, indicating a
more or less constant density of states in addition to the density of states of the
sound waves, which increases with the frequency squared. Above 1 K, Cp starts to
deviate from this quasilinear temperature behavior and, at about ∼ 10 K shows
a “bump” with respect to the cubic temperature dependence predicted by Debye
(Figure 1.12 (b)).

The very low linear temperature behavior can be described by the two level
system model (TLS)[56]. This model assumes the existence of local structural
instabilities of the glass, capable of tunneling among different configurations of
the system. This means that the anomalous behavior below 1 K is not due to the
sound waves themselves, but rather to additional excitations, the tunneling states,
which scatter the sound waves.
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Figure 1.12: Temperature dependence of the heat capacity Cp (a) and reduced
heat capacity Cp/T 3 (b) for vitreous silica (blue symbols) and α-quartz (orange

symbols), reported in log-log scale. Adapted from [51].

While the TLS model is generally accepted by the scientific community, the ex-
cess of heat capacity at higher temperatures represents a strongly controversial
topic. As shown in Figure 1.12 (b), the “bump” in Cp/T

3 is present in crystalline
α-quartz as well. In this case, however, this excess appears at higher temperatures
and is usually related to the effect of transverse acoustic vibrational excitations
near the boundary of the first Brillouin zone.
The increase in the heat capacity with respect to the Debye prediction at ∼ 10
K has been widely investigated but its origin is still poor understood. Moreover
this feature comes out in the same range where the thermal conductivity displays
a peculiar behavior as well.

Thermal conductivity

In crystals heat is carried by phonons, which represent the quantum description
of the ionic displacement field. In particular acoustic phonons correspond to the
quantum description of elastic waves. The thermal conductivity of a system can
be described by:

k =
1

3

3∑

λ=1

∫ ωm

0

Cλ(ω)vλ(ω)lλ(ω)dω (1.34)

where the sum is over all phonon branches λ, vλ(ω) and lλ(ω) are the sound velocity
and the mean free path respectively, Cλ(ω) the contribution to the heat capacity
of phonons of the λth branch, and ωm is the highest excited mode.
Debye described the thermal conductivity of dielectric solids following the result

of the kinetic theory of gases [55]. In this case the previous expression reduces to:

k =
1

3
CDebyevDl (1.35)
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Figure 1.13: Temperature dependence of thermal conductivity of amorphous
silica (blue symbols) and α-quartz (orange symbols), reported in log-log scale.

Adapted from [51].

where CDebye is given by 1.31, vD is the Debye sound velocity 1.30 and l is an
average mean free path.
For crystals, the mean free path is constant at low temperatures and the thermal
conductivity is completely governed by the ∼ T 3 temperature dependence of the
heat capacity (orange symbols in Figure 1.13). On increasing the temperature,
k reaches a maximum when the scattering length becomes equal to the sample
dimensions and then it decreases due to the increasing Umklapp processes.
The thermal conductivity of glasses is completely different (blue symbols Figure
1.13). Firstly it is several orders of magnitude smaller with respect to that of the
corresponding crystals. Secondly it displays a peculiar temperature behavior rep-
resented mainly by the presence of a plateau in correspondence of the maximum
of k in crystals (at about ∼ 10 K), and by a quadratic temperature dependence
of the thermal conductivity below 1 K.
As for the heat capacity, the very low temperature behavior can be justified in
terms of the two level system model, while the constant regime at higher tempera-
tures is still matter of debate. Indeed, the plateau in k always appears in the same
temperature range where the heat capacity of glasses shows an excess with respect
to the Debye expectation (Figure 1.12 (b)). These peculiarities are universal in
glasses and they can be related to the presence of vibrational modes in excess with
respect to the Debye density of states 1.29. As it will be explained in the next
chapter, the nature of this excess of modes represents a challenging topic in solid
state physics as it is believed to represent the key to understand the vibrational
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spectrum in glasses.



Résumé du chapitre 2

Les comportements anomaux des propriétés thermiques des verres à
basse température, comme la capacitè thermique et la conductivitè
thermique, rapportés dans le premier chapitre sembleraient être liés
à un excès dans la densité d’états vibrationnels, surnommé “Boson
Peak” (BP), par rapport à la valeur prédite par le modéle de Debye.
L’origine de cette caractéristique spécifique des verres, et son rap-
port avec la dynamique vibrationnelle est aujourd’hui un intéressant
problème de la physique des solides.
En particulier, la nature des excitations avec une énergie compara-
ble à celle du Boson Peak (1-10 meV) est largement débattue. Le
probléme principal est que ces modes correspondent á des régions de
fréquence qui est dans le THz, où la longueur d’onde est comparable
avec la distance moyenne entre deux particules, et donc leur carac-
tère est affecté par le désordre structurel.
Dans la première partie du chapitre on fournira un bref aperçu de
quelques modèles qui décrivent cette caractéristique vibrationnelle du
verre. Dans le reste du chapitre, on présentera les aspects généraux
de la dynamique à haute fréquence (dans la région de fréquence de
THz), tandis que dans la dernière partie la corrélation entre le BP
et les propriétés élastiques de verres sont discutés.
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Chapter 2

Acoustic dynamics in the
mesoscopic range

The failure of Debye’s model to describe the thermal properties of glasses in the
∼ 10 K temperature range is related to an anomalous feature in the low energy
part of the vibrational density of states g(ω). In the previous chapter, it has been
shown that both the heat capacity and the thermal conductivity of a material can
be estimated from g(ω) through the relations 1.31 and 1.34. For this reason, it
is natural to think of the presence of a signature in the VDOS corresponding to
the low temperature anomalies of glasses. In fact this is the case: both the excess
of CP with respect to the ∼ T 3 Debye-law, and the corresponding plateau in the
thermal conductivity are related to the ubiquitous existence at frequencies of ∼ 1
THz of an excess of modes in the g(ω) over the ∼ ω2 Debye-model prediction 1.29.
This enhancement of vibrational states, called “Boson Peak” (BP), is universal

in glasses and appears as a characteristic broad asymmetric peak when plotting
the reduced density of states g(ω)/ω2 as a function of the excitations energy [58].
Figure 2.1 shows the density of states and the boson peak of glassy sorbitol, the
main system studied in this work, as a function of energy. Beyond its universal
occurrence in glasses, the boson peak always appears in the same energy range of
fews millielectronvolts (∼ 1 − 10 meV), thus in a range where the wavelength of
the atomic vibrations is still larger than the interatomic distances, and thus where
the continuum elastic medium approximation, described by Debye’s model, should
work.
The boson peak can be detected using different techniques; the most used are
inelastic neutron and light scattering spectroscopies, but it can be measured as
well by means of nuclear inelastic scattering experiments [1, 58, 59].
Albeit the BP was first discovered more than 40 years ago, no agreement exists
on its physical origin and it still remains the subject of an increasing number of
theoretical and experimental works. Its understanding, indeed, represents an im-
portant step for the general comprehension of the vibrational dynamics of glasses
in the crucial energy range where it starts to behave distinctly different from De-
bye’s predictions.
Several theoretical models are able to justify a peak in the reduced density of
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Figure 2.1: Left panel: density of states of glassy sorbitol measured with in-
elastic neutron scattering (see section 5.2) together with the Debye’s prediction
(red line). Right panel: reduced VDOS of sorbitol. The red dash-dotted line
represents the value predicted by Debye’s model, while the black arrow indicates

the intensity of the boson peak.

states, however an agreed upon solution is still lacking. The main difficulty on
approaching this subject resides in the rough knowledge of the nature of the high
frequency acoustic modes present in the energy range of the boson peak. In fact,
the BP models can be classified mainly in two categories depending on an acoustic
or non-acoustic nature of the modes contributing to the BP. As a consequence, the
most intuitive way to discriminate among these different theoretical approaches
consists in the study of the relation between the reduced VDOS and the acoustic
properties. For such purpose, a deep knowledge of the nature of the high frequency
collective excitations in glasses is fundamental.
The BP seems to be correlated to several properties of glass-formers as well. For
instance, in the last years it has been proposed a direct link between the excess
of vibrational modes and the fragility of the corresponding supercooled liquid. In
particular, it seems that the stronger the melt, the higher is the intensity of the
peak in the reduced VDOS [60]. Furthermore in some strong systems, such as
B2O3, the boson peak is still well evident in the molten phase above Tg.
In the next section an overview of the most widely diffused BP models is presented,
while in the rest of the chapter the state of the art of the high-frequency dynamics
of glasses and its relation with the boson peak will be discussed.
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2.1 Boson peak models

There is a general agreement that the boson peak is a manifestation of disorder,
but, as reported above, the main question of whether this peak depends on a
peculiar behavior of the acoustic excitations present in the corresponding energy
range or on the existence of some additional modes, proper to the glassy state, is
still unanswered.
Three main different scenarios have been proposed to explore the origin of the
boson peak. One assumes the existence of additional quasilocal modes, which co-
exist and hybridize with the sound waves at the boson peak energy (Soft potential
model) [61–63]; another ascribes the non-Debye-like excess of modes to the effect
of disorder on the sound wave excitations (strong scattering of sound waves from
disorder) [64–68], while the third one attributes the boson peak to inhomogeneities
of the elastic response of glasses on the nanometric length scale (vibrational het-
erogeneities on the nanometric scale) [69–74].
Albeit based on very distinct assumptions, these various models are all qualita-
tively compatible with the measured vibrational properties of glasses. From the
experimental point of view is therefore extremely difficult to make a clear distinc-
tion between the different existing theories.

Soft potential model

The Soft Potential Model (SPM) assumes the existence of additional quasi-local
vibrations (QLV) that interact with the sound waves, giving rise to the boson peak.
This model can be considered as an extension at higher temperature of the two
level system model (TLS), describing the thermal anomalies of glasses below 1 K
(see section 1.4.2). In fact the SPM predicts that in addition to two-level systems
there are soft modes in glasses which are responsible for their universal behavior,
especially at higher temperatures. These excitations are intimately related as they
can be described by an unique anharmonic soft atomic potential [61].
The physical origin of these low frequency local vibrations of small groups of atoms
can be traced to local defects of the amorphous structure, or to low-lying optical
modes in parental crystals. In the last case, the disorder in amorphous materials
would destroy the long range coherence of the optical modes, making them prac-
tically indistinguishable from quasilocal modes.
The additional QLV can be described as low frequency harmonic oscillators (HO),
which weakly couple to the sound waves of the elastic continuum medium. This
coupling in turn leads to a dipole-dipole interaction between different HO, which
destabilizes the quasilocalized harmonic modes. The vibrational instability is con-
trolled, under a certain frequency ωc << ωDebye, by the anharmonicity and creates
a new stable universal spectrum of harmonic vibrations with a boson peak feature
and an asymmetric double-well potential, where the latter is typical of the TLS
tunneling modes [62]. In the SPM, the boson peak energy depends on the interac-
tion strength among the different HO. The stronger the interaction, the higher is
the energy of the boson peak maximum. In this way the model is able to explain
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the large variety of BP parameters found in experiments.
The SPM allows the use of a single theory describing the universal anomalous
behavior of glasses in the whole low temperature range. Moreover, a recent work
pointed out a direct link between boson peak and two-level systems: the raising
of a peak in the reduced vibrational density of states seems to inevitably lead to
the creation of two-level systems and vice versa [63].

Strong scattering of sound waves from disorder

Models based on purely harmonic modes in glasses, are also able to describe the
vibrational and thermal properties of disordered solids.
In the model proposed by Taraskin and coworkers [64] the atoms occupy ideal
crystalline positions and the system can be described as composed by coupled
harmonic oscillators interacting through random independent elastic force con-
stants Kij, whose strengths are controlled by a certain probability distribution,
P (Kij). This scenario corresponds to the simplest type of disorder and allows for
a well-developed analytical approach.
On increasing the width of the distribution P (Kij), the system becomes unstable,
thus with negative force constants Kij, and this instability gives rise to the well-
know excess of modes in the vibrational density of state. This model shows that
it is not necessary to postulate the existence of localized states or strongly anhar-
monic effects, as in the soft potential model, to obtain an excess contribution in
the reduced VDOS. More precisely, the enhancement in the reduced VDOS is here
associated with the lowest van Hove singularity in the spectrum of the reference
crystalline system, pushed down in frequency by disorder-induced level-repelling
and hybridization effects [64].
In the force constants disorder model, moreover, the types of vibrational modes
(acoustic/optic, transverse/longitudinal) present in the boson-peak region are also
dictated by the types of phonons responsible for the lowest van Hove singularity
in the corresponding crystalline counterpart, though they generally seem to be
related to transverse branches.
Parisi and coworkers proposed a different microscopic harmonic approach based on
topological disorder of the atoms [65, 66]. This model supports the idea that the
boson peak marks the transition between acoustic-like excitations and a disorder-
dominated regime for the vibrational spectrum.
A more recent model, based on a macroscopic tensorial elastic and lattice-independent
approach, has recently been proposed by Schirmacher and coworkers [67]. In this
model the system is considered as an elastic continuum in which the transverse
elastic constant is assumed to vary randomly in space. On increasing the degree of
disorder the boson peak position shifts toward lower frequencies and its intensity
increases. The model predicts also a strict correlation between the excess in the
vibrational density of states and the sound damping of the acoustic waves present
in the corresponding energy range [68]. A more detailed description of this model
is reported in section 5.3.2 together with an evaluation of the proposed correlation
in the case of glassy sorbitol.
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Vibrational heterogeneities on the nanometric scale

Another approach consists on ascribing the BP to the inhomogeneous cohesion
of glasses at the nanometric scale [69, 70]. In this case the system is assumed to
be inhomogeneous, consisting of an aggregate of “regions” with different elastic
constants with respect to the matrix. The materials are, consequently, charac-
terized by more cohesive domains separated by softer interdomain zones on the
nanometric spatial range and the boson peak arises from vibrational modes spa-
tially localized in such regions.
The presence of elastic inhomogeneities in the mesoscopic spatial range does not
imply automatically the existence of visible static density inhomogeneities as well
[70]. A fluctuation of elasticity can in fact correspond to a negligible density fluc-
tuation.
In the model reported in Ref. [70], the excess of modes in the VDOS is viewed
as the signature of the hybridization of acoustic modes with modes of localized
nature, inherent to the elastic heterogeneities.
A correlation between the size of these elastic heterogeneities and the fragility of
the different materials has been proposed as well. The idea is that stronger glasses
would display a more inhomogeneous elastic response with respect to fragile sys-
tems. This situation would explain why the amplitude of the boson peak is higher
in strong materials. In the case of fragile systems, instead, the excess of modes
would become broader and less intense due to the disappearance of the elastic
heterogeneities.
The heterogeneous elastic response at the nano-scale can possibly be related to
the existence of dynamical heterogeneities observed in supercooled liquids above
the glass transition (see section 1.3.3). In this sense, it is likely that the glass
transition preserves the memory of these dynamical heterogeneities, so that cohe-
sion heterogeneities in glasses originate from the mobility heterogeneities in the
supercooled state. This idea would imply that the spatially correlated dynamics
of the molecules in the melt is somehow “frozen in” at the glass transition, and
leads to the creation of softer and harder zones in the glassy phase.
The existence of such vibrational, elastic heterogeneities has been recently con-
firmed in several numerical simulations [71–74].
In the case of a monatomic glass, whose atoms interact trough the Lennard-Jones
potential, the existence of rigid zones has been found within which strongly cor-
related atoms show small displacements in harmonic vibrations, and soft zones
where correlated atoms show large displacements [71]. Similar results have been
found in silica and in some fragile systems as well [72–74]. In these works, the
authors studied the response of the system to an elastic affine, thus linear, defor-
mation. The classical elasticity implies that if the system is uniformly strained
at large scales, e.g. by compressing or shearing a rectangular simulation box, the
strain is uniform at all scales, so that the atomic displacement field should be
affine with respect to the macroscopic deformation. In the case of glasses, instead,
this assertion fails on the nanometric length scale, where the system behaves in a
strong nonaffine way. This means that after applying a uniform macroscopic strain
and keeping the shape of the simulation box constant, the system relaxes to the
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Figure 2.2: Snapshot of the nonaffine displacement field in a 3D Lennard-
Jones amorphous system undergoing uniaxial macroscopical extension [75].

nearest energy minimum releasing about half of the elastic energy gained from the
initial deformation. The difference between the initial, i.e. after the strain is ap-
plied, and the final, i.e. after the relaxation, atoms positions defines the nonaffine
displacement of the particles reported in Figure 2.2 a). In this scenario, the boson
peak appears exactly at the edge of the characteristic length scale of the nonaffine
displacement field and can be viewed as a consequence of the inapplicability of the
continuum theory on shorter wavelengths [73].

2.2 High frequency vibrational modes

Vibrational excitations are related to microscopic thermal motions; they depend
on the interactions or forces between neighboring atoms and determine the ther-
mal properties of the system (see section 1.4). A large number of scientific works
have been devoted to understand the differences between vibrational excitations
in glasses and crystals. Several questions were raised, like up to what point the
structural disorder influences the spatial extent of vibrational modes or whether
the concept of a phonon remains appropriate in disordered media.
At low frequencies (up to ∼ 300 GHz), thus in the long wavelengths limit, a glass
appears as a continuum elastic medium and the disorder does not affect the vi-
brational dynamics. If anharmonicity can be neglected, the acoustic modes can
be described in terms of plane waves, as in the crystalline case, with well defined
dispersion curves, which give information on the sound velocity in the material
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(eq. 1.26).
At sufficiently high frequencies (∼ THz), thus for wavelengths of the order of fews
nanometers, the lack of periodicity does not allow for a plane waves description of
the collective excitations and the wavevector Q cannot be considered any longer
a well defined quantum number. However, the presence of propagating acoustic
phonon-like excitations in glasses down to wavelengths comparable to the interpar-
ticle distance has been observed [57]. On decreasing further the wavelength, the
structure becomes more and more important and the collective modes convert in
a more complex pattern of atomic motions, loosing completely their propagating
character.
The vibrational excitations can be studied experimentally by various techniques
such as Brillouin light scattering (BLS) at low frequencies, or inelastic scattering
of x-rays (IXS) and neutrons (INS) at higher frequencies. These techniques allow
for the measurement of the dynamical structure factor S(Q,ω), which represents
the space and time Fourier transform of the density-density correlation function

S(Q,ω) = S(Q)

∫ +∞

−∞

dte−iωtΦQ(t) (2.1)

where S(Q) =
〈
δρ∗

Q(0)δρQ(0)
〉

is the static structure factor and ΦQ(t) is the density
correlator defined in equation 1.1. At high frequencies (thus in the meV energy
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Figure 2.3: Sketch of the typical dynamic structure factor S(Q, ~ω) of a glass
(full areas) and of a crystal (filled line) measured in the mesoscopic region.

range) the disorder induces essentially a broadening of the spectral features related
to the vibrational modes observed in crystals. A typical example is reported
in Figure 2.3. The dynamic structure factor of glasses is characterized by an
elastic peak and two inelastic features shifted symmetrically with respect to the
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elastic line. The central peak arises from density fluctuations related to the α
structural relaxation that are frozen in the glassy state. Its width is due to the
finite value of the energy resolution of the technique. The two spectral inelastic
peaks are the Stokes and anti-Stokes components of the Brillouin doublet (see
section 4.1.2). They correspond to the collective excitations and the experimental
determination of their position and width yields information on the sound velocity
and attenuation in the material [76].
In order to clarify the role of the high frequency excitations in the appearance
of the boson peak, a clear knowledge of their nature is mandatory. The point
of the controversy is to determine whether the excess of modes has an acoustic
nature or is due to different kind of excitations, such as soft modes. Furthermore
the existence itself of collective propagating modes at frequencies corresponding
to the boson peak has been extremely debated in the last years.
The main difficulty of dealing with these problems comes from the experimental
limitations of the available techniques. In many systems, indeed, the modes present
in the fews meV energy range of the BP can be investigated only by means of IXS
and they correspond to a (Q, ~ω) range at the edge of the capacities of such
spectroscopy. Up to now IXS experiments are currently limited to Q ≥ 1 nm−1

with an energy resolution of ∼ 1 meV.
Despite of such difficulties, there are some features of the high frequency modes

that are commonly accepted. In particular the dispersion curve of glasses, thus
the function that describes the dependence of the energy of the excitation on the
wave-vector Q, displays a strict resemblance to that of polycrystalline samples
[77, 78]. Figure 2.4 A reports the dispersion curve of glycerol glass measured with
IXS [57]. The Brillouin position values exhibit an almost linear behavior, up to a
value Qm that corresponds to energy excitations of about ∼ 10 meV, and thus well
above the energy of the boson peak (4 meV, black arrow in the Figure). Beyond
Qm, the Brillouin peaks in the S(Q, ~ω) become overdamped; their energy is no
more well defined and the modes loose their propagating character. In general, the
shape of the dispersion curve measured with IXS, allows to define the first pseudo
Brillouin zone in glasses, marked as well by the Q value that corresponds to half
of the first maximum in the static structure factor.
The shape of the dispersion curve gives information on the apparent sound velocity
of the material v(Q) = Ω/Q [79, 80]. In several experiments the sound speed has
been found to be almost constant in the low Q region of fews nm−1, and equal to
the elastic macroscopic value, measured with BLS at lower frequencies.
Another debated issue on the high frequency vibrational dynamics regards the
limiting value Qm, beyond which the modes loose their propagating character.
There are glasses showing well defined acoustic-like excitations up to energies
corresponding to Q values of the order of several inverse nanometers (Figure 2.4 A)
[81, 82], while in other systems the modes display already a more non-propagating
character at lower Q values [83–85]. In the first case, the acoustic-like behavior
persists well above the boson peak energy, while in the second one the modes loose
their acoustic nature at energies close to that of the BP maximum. This non-
propagating behavior, moreover, can suggest the existence of some hybridization
or interaction of the high frequency collective interactions with the modes giving
rise to the boson peak.
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the low Q linear and quadratic behavior of the Brillouin position and width

respectively. Adapted from [57].

In general the dynamic structure factor is related to the longitudinal current

J(Q, ~ω) =
(~ω)2

Q2
S(Q, ~ω) (2.2)

and gives informations on the longitudinal modes in the system [76]. The trans-
verse modes cannot be experimentally measured with IXS or INS because of the
lack of a reciprocal lattice: there is no way for the density fluctuations to cou-
ple with transverse modes. However, the absence of order leads sometimes to
a mixing of modes polarization and it is possible to observe of a second peak
in the S(Q, ~ω) due to transverse excitations. These modes have been observed
experimentally in the case of vitreous silica and glycerol and as well in molec-
ular dynamics simulations [79, 86]. In these systems, the high-frequency upper
limit of this non-dispersive branch has been considered as a possible cause of the
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Figure 2.5: Q dependence of the acoustic attenuation in a Li2O-2B2O3 glass
measured at T = 573 K with IXS. Adapted from [91].

enhancement in the vibrational density of states at the boson peak.

2.2.1 Acoustic attenuation

At low frequencies, the acoustic sound attenuation is dominated by dynamical,
anharmonicity-dependent, processes, like the Akhiezer mechanism [87, 88]. These
processes rule the sound damping for wave-vectors up to ∼ 0.05 nm−1; they can be
studied looking at the Q-dependence of the broadening ~Γ of the Brillouin peaks,
which is in turn proportional to the sound attenuation coefficient α being

α = l−1 = Γ/v (2.3)

where l is the mean free path and v is the sound velocity. When it is dominated by
anharmonicity, the width of the Brillouin peaks displays a quadratic ~Γ = A(T )Q2

behavior, where the coefficient A(t) is strongly affected by temperature.
At higher frequencies, the mechanism underlying the sound attenuation is still
unclear. In several glasses, the damping follows a ∼ Q2 (or ∼ ~

2ω2) power law
dependence, whose nature has be ascribed to the structural disorder (see Figure
2.4 B) [57, 89, 90].

This non-dynamic, temperature independent behavior cannot be extrapolated
from the low frequency one and, as a consequence, requires the existence of an in-
termediate regime between the low and high frequency sound attenuation. Several
models for vibrations in disordered systems suggest the presence of an intermedi-
ate Rayleigh-like scattering process from point-like defects in the elastic medium.
This mechanism corresponds to a strong increase in the damping, which should
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follow a ∼ Q4 (or ∼ ~
4ω4) power law dependence. Such behavior, moreover, is

necessary in order to explain the plateau observed in the low temperature ther-
mal conductivity in glasses and related to the excess of modes in the VDOS with
respect to the Debye level (see section 1.4.2) [51, 68, 92, 93].
Unfortunately, the range between the few nanometers scale and hundreds of nanome-
ter scale is not accessible to both experimental and numerical techniques, leading
to controversial discussions on where in frequency the Rayleigh scattering should
appear.
In a recent inelastic ultraviolet scattering (IUVS) work the dynamic structure fac-
tor of vitreous silica was measured in an extended Q-region, up to 0.013 nm−1,
thus partially covering a previously unexplored range [94]. These measurements
revealed the existence of a Rayleigh-like damping regime for frequencies at about
150 GHz, thus well below the boson peak. This results would exclude the exis-
tence of any connection between such strong attenuation and the plateau in the
thermal conductivity. However this result is widely debated. A more recent work
reports a contrasting result, showing that the sound damping of vitreous silica is
compatible with the low frequency anharmonic dependence, up to frequencies of
about 300 GHz [95].
Evidences of Rayleigh-like growth of the sound attenuation have also been found
also in few other intermediate and strong glasses by means of IXS [85, 91, 96]. In
these systems the strong damping takes place in a frequency range just below the
boson peak position (see Figure 2.5), suggesting a strict connection between the
acoustic damping and the excess in the VDOS.
The experimental difficulties to explore the vibrational excitations with energies
just below the boson peak maximum, do not permit an in depth investigation of
many systems, and makes the information on sound attenuation at high frequen-
cies extremely scattered. As reported in the following, the intense development
of the inelastic x-ray scattering technique during the last years, has allowed the
observation of peculiar features of the high frequency modes, which could give
important informations on the nature of the boson peak as well [96].

2.2.2 Breakdown of the Debye continuum approximation

The high frequency vibrational dynamics of glycerol glass has been recently mea-
sured with unprecedented accuracy by Monaco and Giordano [96]. The analysis of
the data has revealed the existence of elastic anomalies in the mesoscopic spatial
range of fews nanometers that were not previously observed (Figure 2.4) [57].
In particular, despite the presence of an almost linear dispersion curve at low Q
values, such as in Figure 2.4 A, the acoustic-like modes exhibit a clear departure
from Debye’s prediction. This anomalous behavior is well evident looking at the
apparent sound velocity reported in the top panel of Figure 2.6. Debye’s theory
predicts a linear dispersion of the acoustic waves with a consequent constant sound
velocity equal to the macroscopic value measured at lower frequencies. Instead, the
sound velocity of glycerol abruptly decreases in a narrow Q range, before showing
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Figure 2.6: Q-dependence of the sound velocity (top panel) and attenuation
(bottom panel) of a glycerol glass at T = 150.1 K. Top panel: the red dashed line
represents the macroscopic limit taken from Brillouin light scattering. Bottom
panel: the red lines correspond to the best Q4 and Q2 functions fitting the low

and the high Q portion of the IXS data, respectively. Adapted from [96].

the typical sine-like behavior observed at high Q. This softening of the acoustic-
like modes has been revealed thanks to technical improvements of the technique
and to the choice of measuring a thinner grid in Q with respect to the previous
experiments.
The negative dispersion comes out together with a strong, Rayleigh-like, regime
for the sound attenuation (lower panel Figure 2.6), in correspondence to the boson
peak energy. This phenomenology has been recently confirmed by experiment and
molecular dynamics simulations [97, 98] and, as it will be shown in the following
chapters, seems to be universal in glasses.
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2.3 Boson peak and elasticity in glasses

Despite of the active research on the vibrational properties of glasses, the absence
of a clear theoretical frame to serve as a reference and the difficulty of disentan-
gling system specific effects from universal behaviors in both experimental and
numerical simulation results makes in fact slow the progress in the field.
As previously reported, the study of the nature of the collective excitations in the
THz frequency range is fundamental in order to clarify their role in the appear-
ance of the boson peak. Their properties, like absorption and velocity, can be
then compared to the predictions of different available models in order to perform
a more stringent test. Another approach consists, instead, on comparing the de-
pendence of the boson peak on a control parameter, such as pressure [99–101] or
temperature [102, 103], to the corresponding dependence of the sound velocities
in order to investigate the connection between boson peak and elastic properties.
In the experimentally measured VDOS, the Debye level is never clearly reached

due to the presence of broadening of the elastic line in the INS data, which masks
the low energy side of the boson peak [103]. For this reason the comparison to
the macroscopic elastic properties, thus with the Debye level (eq. 1.29), needs the
combination of independent measurements of vibrational density of states with
measurements of sound velocities, the latter ones being usually obtained by means
of ultrasonic or Brillouin light scattering techniques in the MHz or GHz frequency
range, respectively.
For the time being, the available results are still scarce and do not lead to a clear
picture. However there exist some common features. In particular on increasing
the pressure, and thus the density of the system, the boson peak shifts towards
higher energies and becomes less intense (see Figure 2.7, 2.8 and 2.9). Moreover
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the shape of the boson peak remains in general the same: spectra corresponding
to different densities collapse in a single master curve if plotted as a function of
the rescaled energy E/EBP , where EBP corresponds to the boson peak maximum.
Notwithstanding, different systems behave differently when compared with the

Figure 2.8: Upper panels: reduced density of states of glassy 2DSLS for
different fragility values (left panel) and for different pressures in the case of a
strong system (right panel). The insert in the right panel reports the reduced
VDOS for P =0.5 compared to the Debye value (horizontal solid line) calculated
from longitudinal and transverse sound velocities. Lower panels: same data as

above after rescaling to Debye units [104].

continuum properties. In some cases the boson peak follows the corresponding
transformation of the elastic medium. The left panel of Figure 2.7 shows the bo-
son peak of a Na2FeSi3O8 glass measured as a function of pressure using nuclear
inelastic scattering [99]. In order to check whether a connection between the excess
in the vibrational density of states and the macroscopic properties of the system
exist, the VDOS of the glass should be compared to the Debye level (eq. 1.29).
This comparison is reported in the right panel of Figure 2.7 as a function of the
rescaled energy E/ED, being ED the Debye energy. In this sodium-silicate glass
all the curves collapse in a single master curve, after rescaling in Debye units (right
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Figure 2.9: Left panel: reduced density of states of poly(isobutylene) at dif-
ferent pressures: atmospheric pressure (•), 0.4 ( H), 0.8 (�), and 1.4 GPa (�).
Right panel: relative shift in energy as a function of pressure. Boson peak
(�), BLS longitudinal modes ( ◭), BLS transverse modes (•), IXS longitudinal
modes (�). The solid line represents a P 1/3 fit of the higher pressure values of
the boson peak energy and the dashed line the corresponding changes with P

of EDebye [100].

panel). The spectrum measured at ambient pressure does not rescale on the top
of the others due to the presence of structural changes on increasing pressure from
0 to 1 GPa. This means that in absence of local structural transformations, the
Debye level and the excess of vibrational states above it have the same dependence
on density, and the evolution of the VDOS is fully described by the transformation
of the elastic medium.
The previous result is confirmed by a recent molecular dynamic study on a 2D
spin liquid system (2DSLS) performed by Shintani and Tanaka [104]. They in-
vestigated the evolution of the VDOS by varying both the fragility of the system
and by changing the pressure in the case of a strong glass (upper panels in Figure
2.8). The fragile character has been changed by varying the degree of frustration
∆ of the system. In these systems the fragility plays the same role as the density
variations: on increasing the fragile character of the glass-formers, thus on decreas-
ing ∆, the boson peak shifts towards higher energies and its intensity decreases.
Moreover in both cases, thus on changing pressure or fragility, the VDOS rescales
to a single curve once the Debye contribution is taken into account (lower panels
in Figure 2.8). This behavior confirms the direct link between BP variations and
elastic deformations of the systems.
As reported at the beginning of the section, there are systems, such as polymeric

glasses, which do not follow this Debye-like scaling law [100, 101]. In the case, for
instance, of poly(isobutylene) (PIB) the boson peak is affected by pressure more
than the continuum medium properties are [100]. The absence of a Debye scal-
ing behavior is well evident looking at right panel of the Figure 2.9. This Figure
reports the relative shift in energy as a function of pressure, with respect to ambi-
ent pressure, for both the boson peak maximum and the low and high frequency
acoustic modes energies. The maximum in the reduced VDOS clearly increases
more strongly than the sound velocities. This result implies that it cannot be
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Figure 2.10: Elastic properties of 60SiO2 − 40Na2O glass. Left column:
VDOS in Debye units, where the Debye energy is determined starting from
the low frequency BLS sound velocity values (A) and starting from the high
frequency IXS data (B). Right column: Temperature dependence of the longi-
tudinal, vL, and transverse, vT , sound velocity: BLS data (open circles), IXS
data (full diamonds). The high-frequency transverse sound velocity (open dia-
monds) is determined from a Cauchy-like relation for isotropic solids [105, 106].
The dashed lines correspond to the best fitted longitudinal and transverse sound

velocities in the high frequency limit [103].

described by a simple elastic continuum deformation. The stronger effect of pres-
sure on the BP maximum comes together with an increase of its intensity relative
to the Debye level [100]. Such a behavior suggests that while in the previously
described cases the scaling of the VDOS with the elastic transformations hints to
an acoustic origin of the boson peak, the results on polymeric glasses, like PIB,
arise from extra non-acoustic modes in the vibrational density of states.

A recent study of the temperature dependent of the VDOS of a silicate glass,
60SiO2 − 40Na2O, reports as well deviations from a simple elastic scaling law
(Figure 2.10 A) [103]. However, here the non-Debye transformations are ascribed
to the presence of anharmonic or relaxational processes in the macroscopic con-
tinuum range.
In general, the Debye level is determined from the low frequency sound veloc-
ity values measured with Brillouin light scattering. Nevertheless the presence of
anharmonicity in the GHz frequency range can affect the sound speed, which be-
comes frequency dependent and does no more correspond to the fully unrelaxed
frequency limit needed to characterize the elastic properties of the medium. If this
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Figure 2.11: Elastic properties of vitreous silica. Left panel: Temperature
dependence of the VDOS of vitreous silica after subtraction of the Debye level.
The inset shows the VDOS in Debye units. Right panel: Same data scaled with

exponents α = 1 and β = −4/3 [107]. See text for details.

is the case, sound velocity corresponding to higher frequencies should be used to
estimate correctly the elastic level.
Figure 2.10 B clearly shows that the BP scales with the Debye level when the
high-frequency, IXS values of the sound velocity are used. These, indeed, are the
correct values for the sound velocity to be considered, since the Debye approxima-
tion rests on the idea of an elastic continuum.
The presence of anharmonic contributions at low frequency in 60SiO2 − 40Na2O
glass, is confirmed by the strong temperature dependence of the BLS data with
respect to the almost temperature independence of the high frequency IXS ones (
Figure 2.10 C).
A more recent study on vitreous silica points out the importance of the bulk

sound velocity in the scaling of the vibrational density of states [107]. The left
panel of Figure 2.11 reports the temperature dependence of the excess I(ν) =
(g(ν) − gD(ν))/ν2, obtained by subtracting from the VDOS the Debye level. In
this case the Debye scaling does not lead to a satisfactory master curve, not so
much because of the poor scaling of the intensities, but mainly because the BP
positions do not superimpose. The authors relate the observed temperature de-
pendence to a progressive polyamorphic transformation of the system.
The structural evolution of silica with temperature can then be better described
by considering the temperature evolution of the BP maximum, νBP (T ) and its
intensity, IBP (T ), as a function of the infinite frequency bulk velocity defined by
the relation (vK

∞)2 = (vLA
∞ )2 − 4

3
(vTA

∞ )2, being LA and TA related to the longitudi-
nal and transverse acoustic modes respectively. In fact, both νBP (T ) and IBP (T )
can be well described by a simple power law ∼ [vK

∞]α,β, where the exponent α = 1
reproduces the BP maximum behavior while the exponent β = 4/3 describes the
BP intensity evolution. By rescaling the VDOS with these power law dependence,
all the curves collapse into a single master curve (right panel Figure 2.11). In
the Figure the data have been reported as a function of the reduced unrelaxed
bulk velocity vK

∞(T )/vK
∞(51K), where vK

∞(51K) corresponds to the lowest mea-
sured temperature.
In this case, the scaling exponents α and β are found to be in good agreement with
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the prediction of the soft potential model, suggesting the existence of quasilocal
vibrations in the BP range.

2.4 Fragility of supercooled liquids and elastic

properties of glasses
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Figure 2.12: Example of the S(Q, ~ω) (red line) predicted by the model func-
tion used in the data analysis of the IXS spectra (see section 4.2.1). The noner-
godicity factor fQ can be estimated through the ratio of the elastic (green area)

to total ( green and blue areas) integrated intensity of the S(Q, ~ω).

An interesting open question in the physics of disordered systems is whether there
exists a connection between the high-frequency elastic properties of glasses and
the viscous properties of the corresponding deeply undercooled melts above the
glass transition temperature, Tg. The latter ones are commonly considered to be
efficiently grasped by the kinetic fragility of the melt (see section 1.3.2).
For example, as it has been previously reported, the boson peak of strong systems
is more intense and located at higher energies with respect to that one of fragile
materials [60]. It is obvious to expect that this is not the only observed relation.
Some years ago Scopigno et al. proposed a correlation between the kinetic fragility,
mA, and a parameter α that describes the temperature dependence of the long-
wavelength limit of the non-ergodicity factor, f(Q, T ), in the glassy state [3]. The
latter quantity represents the long time limit of the density correlator φQ(t) (see
equation 1.1); that is, the density-density correlation function F (Q, t), normalized
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to the static structure factor S(Q):

f(Q, T ) = lim
t→∞

φQ(t) = lim
t→∞

F (Q, t)

S(Q)
(2.4)

f(Q, T ) corresponds, thus, to the long time plateau of ΦQ(t) in the glassy limit
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Figure 2.13: Values of fQ(T )−1 for Q = 2 nm−1 as a function of the rescaled
temperature T/Tg. The dashed lines represent the best fit line shapes obtained

using equation 2.5. Adapted from [3].

(see Figure 1.7). The quantity 1− f(Q, T ) represents the amount of decorrelation
introduced by the vibrational dynamics, and it depends on both the (T-dependent)
amplitude of the vibrations and the degree of disorder of the glassy structure.
The non-ergodicity factor can be experimentally measured using the inelastic to
total integrated intensity ratio in the IXS spectra (see Figure 2.12). At low Q,
the system is homogeneous for what concerns its density and the S(Q) is flat. In
this range and at low temperatures, the temperature dependence of f(Q, T ) can
be described by a simple linear relation:

f(Q → 0, T ) =
1

1 + α T
Tg

(2.5)

Figure 2.13 shows the temperature dependence of the quantity 1/f(Q, T ) for three
different kind of glasses: silica (strong), glycerol (intermediate) and OTP (fragile).
This representation strongly remembers the famous Angell plot for supercooled liq-
uids (see Figure 1.9). In this case, the more fragile is the system, the higher is the
parameter α in the relation 2.5.
Within the harmonic approximation, the parameter α only depends on the vibra-
tional properties of the system in its inherent structure. Looking at the behavior in
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Figure 2.13, Scopigno and coworkers found a direct link between the α parameter,
and thus the vibrational properties of glasses and the fragility of the corresponding
melts, being:

mA = 135α (2.6)

As shown in Figure 2.14 the correlation among α and mA seems to be fulfilled for
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Figure 2.14: Relation between the kinetic fragility mA and the α parame-
ter obtained from equation 2.5 for different systems. The two quantities are
proportional through the relation mA = 135α (dashed line). Adapted from [3].

several systems.
After this work, a few glasses that do not follow the proposed linear relation have
been identified [6, 46]; however, the basic idea of a correlation between elastic prop-
erties and fragility remains at least qualitatively valid [4–6, 45, 46], even though
none of the proposed correlations seems to hold for all glasses at a quantitative
level.
Recently Scopigno and coworkers proposed an explanation for the observed fail-

ure of relation 2.6 in several systems [29]. The idea is that this relation is valid
only for that systems in which the dynamics is mainly governed by the structural
relaxation process, which is therefore dominating the nonergodicity factor. If the
systems are characterized by the presence of secondary relaxations almost as large
as the structural process, the nonergodicity factor does no more correspond to the
elastic to total integrated intensity ratio in the IXS spectra and equation 2.5 leads
to an incorrect value of the α parameter. This is more clear looking at temporal
evolution of the density correlator φQ(t) reported in Figure 1.6. In this case the
vibrational contribution accessible to IXS differs from the value of the plateau
associated to the nonergodicity factor. Consequently, the corresponding S(Q, ~ω)
measured with IXS (see Figure 2.15) contains an additional contribution related
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Figure 2.15: Sketch of the S(Q, ~ω) (red line) predicted by the model function
used in the data analysis of the IXS spectra (see section 4.2.1) in presence of a
relevant secondary relaxation process (magenta dashed line). The blue dashed
line represents the contribution due to the structural relaxation while the green

one corresponds to the Brillouin doublet. Adapted from [29].

to the secondary relaxation (magenta dashed line) that should be properly taken
into account in order to estimate the correct value of the nonergodicity factor.
Moreover relation 2.6 is not valid mainly in fragile systems, such as polymeric
glass formers, thus in systems where the dynamics is usually characterized by the
presence of additional fast relaxation processes. The authors suggest a way to
quantify the effect of these “extra” processes through the evaluation of their con-
tribution to the excess entropy at the glass transition temperature, leading to a
partial reconciliation with the previous results [29].



Résumé du chapitre 3

L’ étude des excitations à haute fréquence et de la relation entre
élasticité et densité des états vibrationnels dans les verres demande la
connaissance des propriétés macroscopiques du système. En général
ces propriétés peuvent être étudiées grâce au comportement des on-
des acoustiques dans la limite des grandes longueurs d’onde et donc
pour des fréquences jusqu’à 300 GHz. La dynamique des verres dans
cette gamme de fréquence peut, par exemple, être étudiée au moyen
de la spectroscopie Brilluoin de diffusion de la lumière qui permet
de mesurer la vitesse du son et l’atténuation des ondes acoustiques
longitudinales et transversales.
Dans la première partie de ce chapitre nous reportons un résumé des
aspects théoriques et expérimentaux de BLS. Le reste du chapitre
présente les mesures BLS de deux verres différents. En premier lieu
on discute la dynamique de basse fréquence de sorbitol. Comme on
démontrera le sorbitol est caractérisé par des propriétés élastiques
similaires à celles des verres intermédiaires alors que son comporte-
ment de la diffusion dans la phase liquide est celui des systèmes fra-
giles.
Dans la dernière partie du chapitre nous présentons la dynamique
d’un verre de soufre. Malgré sa simplicité, le soufre existe en plu-
sieurs formes et il devient un verre singulier grâce à un processus de
polymérisation qui a lieu dans la phase liquide.
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Chapter 3

Brillouin light scattering studies

The investigation of both the high frequency excitations and the relation among
elasticity and vibrational density of states in glasses, requires first the knowledge of
the macroscopic properties of the system. As previously reported, these properties
can be studied through the behavior of the acoustic waves in the long wavelength
limit, thus for frequencies up to ∼ 300 GHz. The dynamics of glasses in this
frequency range can for example be studied by means of Brilluoin light scattering
spectroscopy, which allows to measure the sound velocity and attenuation of both
longitudinal and transverse acoustic waves.
In the first section of this chapter a brief summary of the theoretical and exper-
imental basis of BLS is reported. In order to get information on the continuum
properties of glasses, a quantum mechanical description of the radiation-matter
interaction is not necessary. The light scattering process can be considered as a
result of local fluctuations of the dielectric constant of the medium, and as a con-
sequence, the theory will be treated in the classical electromagnetism framework.
The rest of the chapter reports BLS measurements of two different glasses. First,
the low frequency dynamics of sorbitol is discussed. As it will be shown, this
hydrogen-bond molecular system displays elastic properties similar to those of in-
termediate glasses, while its diffusion behavior in the liquid phase is typical of that
of fragile materials.
In the last section the dynamics of a glass of sulfur is reported. Despite of the
simplicity of the material, sulfur exhibits several different forms and becomes a pe-
culiar glass, thanks to a polymerization process that takes place in the liquid phase.

3.1 Brillouin Light Scattering

Electromagnetic radiation is one of the most important probes of the structure
and dynamics of matter. When light impinges on a solid, the electric field of the
light induces an oscillating polarization of the electrons in the molecules. The
molecules then act as secondary sources of light. The frequency spectrum of the
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scattered radiation is determined by the molecular interactions in the scattering
medium and gives information on the vibrational modes of the entire system [108].
In a light scattering experiment a monochromatic beam of light impinges on a

Figure 3.1: Scheme of a light scattering experiment. The incident light im-
pinges on the sample and, by means of a filter, only the scattered light of

wavevector kf and polarization nf arrives at the detector.

sample and is scattered into a detector placed at an angle 2θ with respect to the
transmitted beam (Figure 3.1). The incident electromagnetic field exerts a force
on the charges in the sample, that accelerate and radiate light. The scattered light
field at the detector at a given time is the sum of all the electric fields radiated
from all the charges in the medium. The incident electric field can be described
in a plane wave form as

Ei(r, t) = niE0e
i(ki·r−ωit) (3.1)

where ni is the polarization of the incident wave, E0 the field amplitude, ωi the
angular frequency and ki the wave vector.
The illuminated medium can be described by a local dielectric constant ǫ(r, t) =
ǫ0I + δǫ(r, t), where ǫ0 is the average dielectric constant, δǫ(r, t) is the dielectric
constant fluctuation tensor at position r and time t, and I indicates the unit
tensor.
The radiated electric field at a large distance R from the scattering volume, V , is
given by [108]

Es(r, t) =
E0

4πRǫ0

eikf R

∫

V

d3rei(q·r−ωf t) [nf · [kf × (kf × (δǫ(r, t) · nf ))]] (3.2)

where nf is the polarization of the field, kf the wavenumber vector and ωf the an-
gular frequency of the scattered radiation. The vector q is defined by the scattering
geometry as q = ki − kf and its magnitude is given by

q = 2kisin

(
2θ

2

)
=

(
4πn

λ

)
sin

(
2θ

2

)
, (3.3)

being λ the wavelength of the incident laser light and n the refractive index of the
medium (n =

√
ǫ0)

1.
The quantity measured in a light scattering experiment is the spectral density

1In the scattering process the wavelength of the incident light is changed very little so that
|ki| ∼= |kf |.
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of the radiation scattered into the detector, thus the Fourier transform of the
autocorrelation function of the electric field

Iif (q, ω, R) =
1

2π

∫ ∞

−∞

dte−iωt 〈E∗
s (R, 0)Es(R, t)〉 =

[
k4

fE
2
0

16π2R2ǫ2
0

]
1

2π

∫ ∞

−∞

dt
〈
δǫ∗if (q, 0)δǫif (q, t)

〉
e−iωt

(3.4)

In the previous expression δǫif (q, t) ≡ nf ·δǫ(q, t) ·ni, where δǫ(q, t) is the Fourier
transform of the dielectric fluctuations and ω ≡ ωi − ωf .
The scattering process can be viewed in terms of momentum and energy conserva-
tion. The interaction with the matter gives to a “photon-in/photon-out” process,
where an incident photon of energy ~ωi and momentum ~ki impinges on the matter
and a photon with energy ~ωf and momentum ~kf is scattered into the detector,
thereby creating (or annihilating) an excitation in the medium of energy ~ω and
momentum ~q.
Generally, the incident light weakly interacts with matter so that the system can
be assumed to respond linearly to it. As a consequence, the response to an ex-
ternal disturbance is equal to the one to the spontaneous microscopic thermal
fluctuations that always occur in a system at finite temperature.
The local dielectric fluctuations can be expressed in terms of density, ρ, and tem-
perature, T , variations as

δǫ(r, t) =

(
∂ǫ

∂ρ

)

T

δρ(r, t) +

(
∂ǫ

∂T

)

ρ

δT (r, t) (3.5)

In practice, the thermal variations of the dielectric constant are much smaller
than the ones due to density fluctuations and can be neglected. Consequently,
the response of the system to an external perturbation is completely governed by
local density fluctuations and gives, then, information on the acoustic vibrational
properties of the medium.
The expression 3.4 can be also formulated in molecular terms through the polariz-
ability tensor α. In fact, from macroscopic electrodynamics this quantity can be
related to the dielectric tensor by

ǫ = 1 + 4πα (3.6)

In this way the spectral density of the scattered field is proportional to

Iα
if (q, ω) =

1

2π

∫ ∞

−∞

dte−iωt
〈
δα∗

if (q, 0)δαif (q, t)
〉

(3.7)

where

δαif (q, t) =

N∑′

j=1

αj
if (t)exp(iq · rj(t)) (3.8)
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is the Fourier component of the polarizability density2. In the above expres-
sion αj

ij(t) represents the projection of the molecular polarizability tensor αj of
molecule j onto the initial and final polarization directions of the light wave ni

and nf .
The polarizability (or dielectric) fluctuations depend on the polarization direction
of the incoming and final wave vectors. By considering the scattering geometry

Figure 3.2: Scheme of the Brillouin light scattering geometry. The XY plane
is the scattering plane. ki and kf are the incoming and the final wave vectors,

respectively, and 2θ is the scattering angle.

reported in Figure 3.2 it is possible to define two main configurations: the vertical-
vertical polarized configuration (VV), defined by ni = nf = ẑ, and the vertical-
horizontal fully depolarized configuration (VH), where ni = ẑ and nf = ŷ. In
these cases the polarizability fluctuations are given by

δαV V (q, t) = δαzz(q, t) (3.9)

and
δαV H(q, t) = δαzy(q, t) (3.10)

It is clear, then, that the scattered intensity will give different information depend-
ing on the scattering angle and the polarization directions. In good approximation,
the polarizability tensor can be divided in an isotropic and an anisotropic part.
The isotropic part is independent of the molecular orientation and gives rise to
an isotropic scattering contribution Iiso(q, t), which in turn is proportional to the
dynamic structure factor of the system and gives, thus, information on the lon-
gitudinal waves. Moreover this term does not appear in the fully depolarized
configuration (VH).
Differently, the fluctuations of the anisotropic part of the polarizability depend
both on the translational and rotational motion of the molecules. In the case of
glasses and supercooled liquids by considering the correlation between the rota-
tional motions of different molecules, the intensity of the depolarized spectrum

2The prime on the sum indicates that the sum is only over molecules in the scattering volume.
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contains two contributions and can be written as [109]

IV H(q, ω) =
I0

ω
Im

[
R(ω) + R1(q, ω)cos2

(
2θ

2

)]
(3.11)

The first term does not depend on the momentum transfer and corresponds to the
spectrum detected in the backscattering geometry. It describes the orientational
fluctuations dynamics of the molecules. The second term is instead q-dependent
and reflects the transverse dynamics in the system. It is in fact usually expressed
through the frequency dependent shear viscosity, the rotation-translation coupling
function and the rotational friction force [109]. In the high frequency limit, thus
in the case of glasses, equation 3.11 becomes

IV H(q, ω) = I0
γq2v2

T

(ω2 − q2v2
T )2 + (ωγ)2

cos2

(
2θ

2

)
(3.12)

where I0 is a constant, γ is the linewidth of transverse Brillouin peaks, and vT is
the transverse sound velocity.
The second term in the previous expression is forbidden by a selection rule in the
polarized spectrum and its intensity depends on the scattering angle, being zero in
the backscattering configuration (2θ = 180◦) [110]. In conclusion it is then possi-
ble to measure the longitudinal modes by working in backscattering configuration,
and the transverse ones by using a depolarized 90◦ scattering geometry.

3.1.1 Experimental setup

Figure 3.3: Experimental set up for Brillouin light scattering measurements.
The green line represents the laser path for both the backscattering geometry

(full line) and the 90◦ degree configuration (dotted line).
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Brillouin Light Scattering measurements have been performed in collaboration
with the group of Prof. D. Fioretto in his laboratory at the Department of Physics
of Perugia. The experimental set-up used for the measurements is reported in Fig-
ure 3.3. It consists of a laser (A), a Fabry-Perot interferometer (H) and of optical
elements (B-F) used to focus the light on the sample (G) and to collect the scat-
tered radiation.
The incident beam comes from a diode pumped solid state laser, which produces a
coherent radiation with a wavelength of 532 nm, vertically polarized with respect
to the scattering plane. The light scattered from the sample is analyzed by means
of a Sandercock type (3+3)-pass tandem Fabry-Perot interferometer. This device
consists of two Fabry-Perot interferometers. The scattered radiation goes three
times through each interferometer and then is collected by a photomultiplier and
visualized as a function of the frequency via an acquisition system. Each interfer-
ometer works as a resonant cavity. It consists of a couple of mirrors, which works
as a filter by transmitting only light with frequencies ωnc = nωc that are multiples
of a characteristic frequency ωc = nπc

L
. In this expression c is the speed of the light

and L represents the distance between the mirrors. The two interferometers are
rotated of a fixed angle of ∼ 20◦ one with respect to the other, and the distance
between the mirrors of each couple is slightly different. This condition is necessary
to produce the tandem effect: the coupling of the two filters allows only a single
mode to be transmitted without loosing intensity. The second cavity is, in fact,
tuned in order to accept only one mode from the first one and suppresses the
remaining ones.
The two couples of mirrors are installed on the same support and the distance
between the mirrors is changed by means of a piezo-electric crystal. In this way,
a variation of the distance L in the first filter implies the same variation on the
second one, without affecting the tandem operation.
The distance between two consecutive modes defines the Free Spectral Range
(FSR) δν = c/2L of the instrument. By changing L from ∼ 0.1 mm to ∼ 25
mm it is possible to span a frequency range from 1 GHz to hundreds GHz around
the incident frequency. The frequency scan is performed by changing the distance
between the mirrors, and can cover a range of one or more FSR.
The performance of the (3 + 3)-pass tandem Fabry-Perot interferometer is largely
described by two parameters: the “finesse” and the “contrast”. The first one is
defined as the ratio between the FSR and the linewidth of a single mode, thus the
instrumental resolution of the interferometer. The frequency resolution depends
on the quality of the mirrors, the level of vibrations in the system and it increases
on increasing the distance between the mirrors. The contrast, instead, is related
to the intensity of the radiation transmitted, IT , through the interferometer and
is higher than 109. In general IT can be written as

IT =
I0

1 +
(

4F 2

π

)
sin2(2πL

λ
)

(3.13)

where I0 is the maximum transmission of the two Fabry-Perot interferometers and
F is the finesse. The contrast represents the ratio between the maximum (for all
the even multiples of L = λ/4) and the minimum (for all the odd multiples of
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L = λ/4) of the intensity of the transmitted radiation.
The external optical elements allow measuring BLS spectra for different scattering
geometries. In Figure 3.3 a scheme is reported of the path of the light in the case
of the backscattering geometry (full green line), and in the case of a 2θ = 90◦ con-
figuration (dotted green line). In general, the light produced by the laser impinges
on a beamsplitter (B), which sends a part of the beam directly into the interfer-
ometer (H). This secondary light acts as a reference beam in order to check the
parallelism between the mirrors of the two Fabry-Perot. The rest of the incident
light goes instead to another mirror (C), which is used to select the 2θ = 180◦ or
2θ = 90◦ geometry.
In the backscattering configuration, the light is reflected then by a cylindrical mir-
ror (E) and impinges on the sample (G) after being focused by a lens in front of it
(F). The backscattered radiation is then collected by the same lens (F) and guided
then into the interferometer through another couple of mirrors (I). The radiation
coming into the interferometer is controlled by a pinhole placed at its entrance
(H).
In the case of the 2θ = 90◦ geometry, the incident light selected from the beam-
splitter is reflected by a mirror (D) into another focusing lens, placed just before
the sample (hidden by the sample in the Figure). The radiation scattered in the
perpendicular direction (thus at 90◦) with respect to the incident beam, follows
then the same path as in the backscattering configuration.

3.2 Sorbitol

Among the different kind of glasses, the added complexity of associated liquids
makes them especially interesting. In general, associated liquids are characterized
by hydrogen bonding, which is an especially strong kind of attraction between a
hydrogen atom with an electronegative atom, like nitrogen, oxygen or fluorine.
The hydrogen bond is stronger than a van der Waals interaction, but weaker than
a covalent bond. Polyhydric alcohols, such as glycerol, are typical examples of
hydrogen bonding glass formers. In the “Angell plot” classification, they usually
occupy an intermediate position, with a more or less Arrhenius-like behavior of
the structural relaxation (see section 1.3.2).
In associated liquids, the number of hydrogen bonds can vary with temperature

and pressure. Temperature is usually the control variable. In fact, the structural
relaxation in associated liquids is less sensitive to pressure (the value of Tg is not
too sensitive to pressure variations), while the structural relaxation time in the
supercooled regime is strongly affected by temperature [8].
Sorbitol (C6H8(OH)6, Figure 3.4) is a peculiar hydrogen bonded glass former. It
is very fragile (i.e., the relaxation time exhibits a super-Arrhenius temperature
dependence) and yet is chemically very similar to glycerol, which is among the
strongest molecular liquids (i.e., exhibits a more nearly Arrhenius temperature
dependence).
Consistent with its large fragility value (m∼ 107 [42]), the structural relaxation
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Figure 3.4: Scheme of the structure of sorbitol.

peak in the dielectric loss spectra is quite broad as observed in numerous studies
using dielectric spectroscopy [111]. In particular, sorbitol is considered a perfect
system to investigate the relation between the α and the JG β relaxation processes,
being the JG β process well evident both below and above the glass transition tem-
perature (see section 1.3.1 and Figure 1.4).
Sorbitol vitrifies close to ambient temperature (Tg = 267 K [112]) and has a sta-
ble supercooled liquid phase. The glassy state can be easily obtained by quick
quenching the liquid phase from above the melting temperature Tm = 368 K.
Inelastic neutron scattering measurements on polyhydric alcohols have suggested
the existence of a systematic relation among the boson peak energy, the boson
peak intensity and the hydrogen-bond density, where the latter is defined as the
ratio of the number of hydroxyl groups to that of carbon atoms (NOH/NC)[113].
Beyond this correlation the authors of Ref. [113] found also that in systems char-
acterized by the same NOH/NC ratio, the boson peak position decreases and its
intensity increases upon decreasing the hydrogen-bonds (NOH) (see first three sys-
tems in Table 3.1). Albeit sorbitol was not included in this work, the previous
result suggests the presence in this system of a higher boson peak energy with
respect to the one of the other glasses studied in Ref. [113].
Preliminary measurements on glassy sorbitol have confirmed the general trend ob-
served in Ref. [113]: the boson peak in sorbitol is located at about 4.5 meV [114],
thus at energies higher with respect to those of other stronger polyhydric alcohols,
such as glycerol (EBP ∼ 4 meV [115]) having the same NOH/NC ratio. Table 3.1
reports the values of Tg, the kinetic fragility and the energy of the boson peak
maximum for several polyhydric alcohols, including sorbitol. It is interesting to
note that all the quantities increase on increasing the hydrogen-bond number.

The high BP value makes of sorbitol an ideal candidate for the investigation
of the relation between boson peak and elasticity, giving the possibility to access
experimentally the energy region both below and above the boson peak maximum.
In fact usually fragile systems display a lower EBP value (∼ 1 − 2 meV) than
strong materials. As a consequence, the acoustic excitations in the corresponding
energy range are outside the experimental window accessible with IXS and cannot
be studied. For this reason it is extremely difficult to investigate the high fre-
quency dynamics of fragile glasses in the crucial energy range close to the boson
peak maximum.
It is interesting to observe that the very fragile character of sorbitol is typically
only found in polymeric systems. This class of materials usually does not follow
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system formula Tg [K] mA EBP [meV]

Ethylene
glycol

C2H4(OH)2 151 50 3.3

Glycerol C3H5(OH)3 184 53 4.0
Threitol C4H6(OH)4 229 79 4.4
Sorbitol C6H8(OH)6 266 107 4.5

Table 3.1: Glass transition temperature, kinetic fragility and boson peak max-
imum energy of different polyhydric alcohols. All the quantities increase on
increasing the number of hydrogen bonds. The values of Tg and mA are taken
from Ref. [42] for ethylene glycol, glycerol and sorbitol, and from Ref. [116] for
thereitol. The value of EBP are all taken from Ref. [113] for all the systems

with the exception of sorbitol [114].

the correlations between fragility and elastic properties of glasses presented in sec-
tion 2.4. For this reason sorbitol is as well an excellent molecular candidate to test
the validity of these correlations.

Sorbitol has been widely studied in the last years. The possibility to get in-

T ρ χT CP

[K] [g/cm3] [104 MPa−1] [J/gK]

267 1.466 1.57 ± 0.05 2.40
256 1.467 0.77 ± 0.14 1.41
246 1.469 0.77 ± 0.14 1.34
220 1.472 0.76 ± 0.14 1.20
150 1.480 0.73 ± 0.13 0.80
80 1.488 0.71 ± 0.13 0.41

Table 3.2: Density, isothermal compressibility and constant pressure heat
capacity of sorbitol at different temperatures. The data are taken from Ref.

[117] except the CP data that are taken from Ref. [118].

formation on both thermodynamic [117] and calorimetric [118] data, allows us
to estimate several relations between macroscopic and microscopic properties of
glasses. Table 3.2 reports the density ρ, the isothermal compressibility χT , and
the constant pressure heat capacity CP at some representative temperatures. The
errorbar for ρ and CP is not indicated being less than 0.05% and 0.7%, respectively.
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3.3 Low frequency dynamics in sorbitol

3.3.1 Experimental details

Sorbitol of ∼ 99% purity was purchased from Sigma-Aldrich Chemicals and kept
for two days under vacuum at about 383 K to obtain a homogeneous and well
transparent liquid, free from gas content. Two samples were prepared. The first
one was obtained from a liquid sorbitol 80 µm thick film placed into a container
with an optically polished silicon plate at the bottom and closed with a quartz
window on top. The sample glass was prepared by quenching the liquid film in
mixed ice and salt (T∼ 255 K). The sample preparation was carried out in a ni-
trogen atmosphere to avoid contamination with water. The second glass sample
was prepared as the first one but using this time as holder a silicate glass tube
with an inner diameter of 2 mm and an outer diameter of 6 mm.
Brillouin spectra were collected in the temperature range 20–294 K, and a Cry-
omech ST405 cryostat was used to regulate the temperature. The measurements
were taken both on cooling and on heating the sample, without any polarization
analysis (VU configuration) for several scattering configurations, while for the 90◦

one both a vertical (VV) and a horizontal (HV) polarization analysis has been
performed.
A first set of measurements was performed using the sorbitol film as sample and
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Figure 3.5: BLS spectrum of glassy sorbitol at T=281 K. The elastic line,
that can be considered to a good approximation as the instrumental function,
is here presented on a y-scale different from that corresponding to the inelastic
signal. Two Brillouin doublets are present, corresponding to the two different
scattering angles 2θ probed at the same time as schematically shown on the
right. The incident and scattered beams are represented by the arrows ~ki and

~kf for 2θ=180◦, and by ~k
′

i and ~kf for 2θ=90◦.

using a distance of L = 5 mm between the mirrors in the interferometer in order to
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obtain a good luminosity while keeping the instrumental resolution to a still rea-
sonably good level (≈380 MHz FWHM). The choice of the experimental setup was
determined by the interest to measure the momentum transferred in the scattering
process (Eq. 3.3). In fact, to the best of our knowledge no published data of the
refractive index of glassy sorbitol were available. As shown schematically on the
right panel of Figure 3.5, putting the sample at 45◦ with respect to the incident
beam and measuring the backscattered radiation it is possible to simultaneously
probe two scattering geometries [119]: (i) the backscattering geometry (blue vec-

tors in the Figure), with transferred momentum qback =| ~kf − ~ki |= 4πn/λ, and
(ii) the 90◦ scattering angle geometry (red vectors), allowed by the fact that the
beam reflected by the mirror behind the sample acts as a secondary incident beam

with wavenumber ~k
′

i. In this second case, the momentum transfered is given by
qγ = (4πn/λ)sin(γ/2). However, by using the Snell law,

sin(γ/2) =
1

n
sin(2θ/2) =

1

n

√
2

2
(3.14)

the exchanged momentum becomes q90◦ =| ~kf − ~k
′

i |= 4π/(λ
√

2), and thus it is
the same as in a scattering process at an angle 2θ in air.
An example of a spectrum obtained with this configuration is shown in Figure
3.5. If we assume that no dispersion in the sound velocity takes place between the
two probed q values, the ratio of the frequency positions ν of the two Stokes or
anti-Stokes peaks directly gives the refractive index:

n =
νback

ν2θ=90◦

√
2

2
. (3.15)

This scattering configuration was used in the temperature range 150-294 K to
obtain the refractive index of glassy sorbitol. At temperatures lower than about
150 K, the sample cracked, thus leading to a large increase in stray light that
made the measurements of the refractive index impossible. A second set of mea-
surements was then performed in the 20-294 K temperature range using only the
standard backscattering configuration on both the prepared samples, in order to
accurately measure the position and the width of the Brillouin peaks. In this case
a distance of L = 17 mm between the mirrors in the interferometer was employed
to obtain an instrumental resolution of ≈140 MHz. For each temperature various
measurements were taken on both heating and cooling the sample to check the
reproducibility of the data. No differences were found neither among the different
sets of data nor between the two samples.
A third set of measurements was performed using the second sample in a 90◦ scat-
tering geometry (see Figure 3.3). This set-up was necessary in order to measure
the transverse sound waves. Due to the low intensity of these modes, a distance
L = 4 mm between the mirrors in the interferometers was employed. It implies a
large instrumental resolution, which allows only for a reliable measurement of the
peaks position and not of the linewidth.
The transverse modes were measured only at five temperatures in the 235 − 281
K range. At lower temperatures the intensity of the inelastic peaks was too low,
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while close to room temperature the modes quickly disappeared under the tails of
the structural relaxation process.

3.3.2 BLS results

Longitudinal acoustic modes

From the first set of measurements we obtained for the refractive index n the
value 1.52±0.01, basically constant in the 150-294 K temperature range. In order
to evaluate the temperature dependence of n down to the lowest temperatures
investigated in the second set of measurements, we made use of the Clausius-
Mossotti relation [54]

n2(T ) − 1

n2(T ) + 2
=

4πNAα

3v(T )
(3.16)

where v(T ) the specific volume of the system, NA is the Avogadro’s number and
α is the optical polarizability. The temperature dependence of the specific vol-
ume has been derived from available pressure-volume-temperature (PVT) data
reported in Ref. [117] (see table 3.2). The optical polarizability has been instead
calculated by inverting relation 3.16 and using the experimental data for n ob-
tained from relation 3.15 at different temperatures and reported in the left panel
of Figure 3.6. The resulting values of α are reported in the right panel of the same
Figure. We find an average effective optical polarizability α = 29.7 ± 0.2 Å3.

Figure 3.7 shows some examples of BLS spectra of sorbitol collected in the
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Figure 3.6: Right panel: experimental refractive index n of sorbitol obtained
from relation 3.15. Right panel: optical polarizability of sorbitol obtained from

the inversion of relation 3.16 using the data reported in the left panel.

backscattering geometry (second set of measurements) for different temperatures
above and below the glass transition temperature. For all spectra the Brillouin
doublet corresponding to the longitudinal acoustic modes is shown. Two features
are immediately evident: the rapid decrease of the width of the Brillouin peaks
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and the clear shift of their position toward higher frequencies on decreasing the
temperature.
To determine the frequency position Ω and the full width at half maximum Γ
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Figure 3.7: Brillouin light scattering spectra of sorbitol at the indicated tem-
peratures collected in the backscattering configuration. The red lines corre-
sponds to the best fitting lineshape obtained from the model of equation 3.17

convoluted to the instrumental resolution.

of the longitudinal acoustic modes, the spectra were fitted in a narrow frequency
range around the Brillouin peak using a damped harmonic oscillator model func-
tion

I(Q,ω) = I0
ΓΩ2

(ω2 − Ω2)2 + (Γω)2
(3.17)

convoluted to the instrumental resolution (red line in Figure 3.7). The values of
Ω and Γ obtained by this fitting procedure are reported in Figure 3.8. There
is a clear change of slope in the temperature dependence of the Brillouin peak
position that comes together with a rapid increase of the linewidth when crossing
Tg. Such features are typically found in glass-formers; in particular, the second
one is due to the structural relaxation entering, above Tg, the frequency window
explored by BLS. From the linear behavior of Ω close to Tg (both in the glass and
in the undercooled liquid) it is possible to estimate the Grüneisen parameter for
the longitudinal acoustic modes. The Grüneisen parameter of a material reflects
the role played by the anharmonicity of the interatomic potential on the acoustic
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frequencies and is generally defined in terms of thermodynamic parameters as

γth =
αP V

χT CV

=
αP V

χSCP

(3.18)

where V is the volume, αP = (∂ln(v(T ))/∂T )P the isobaric thermal expansion
coefficient, χT and χS the isothermal and isentropic compressibilities, and CV

and CP the isochoric and isobaric heat capacities [120]. In the quasi-harmonic
approximation the anharmonicity is considered as a weak effect that induces a
temperature dependence of the vibrational frequencies following the dependence
of density on temperature. In this case, the Grüneisen parameter can be also
expressed as the weighted average of generalized parameters γi

γth =
∑

i

γici/
∑

i

ci (3.19)

where
γi = −(∂ ln(Ωi)/∂ ln(V )) = −(1/αP )(∂ ln(Ωi)/∂T )|V (3.20)

describes the volume dependence of the vibrational frequency for a mode i, while
ci represents the heat capacity associated with that mode. Each mode is char-
acterized by a different value of γi that can be either positive or negative. As a
consequence, |γth| is usually smaller than the absolute value for a single vibrational
mode.
In the case of sorbitol we estimated the mode Grüneisen parameter of the lon-

gitudinal acoustic modes in the GHz frequency range, using the isobaric thermal
expansion coefficient that we derived from the available PVT data [117]. γLA

comes out to be equal to 3.6±1.1 in the glass and to 4.7±0.3 in the liquid phase.
It is interesting to observe that these two values are basically compatible within
errorbars, thus indicating that in good approximation the change of slope observed
in the temperature dependence of the Brillouin frequency in Fig. 3.8 directly re-
flects the corresponding change in the slope of the temperature dependence of the
density.
The Grüneisen parameter plays a role in the description of the sound attenuation
of the longitudinal modes. In fact, for large wavelengths the observed damping
can be expressed through the Akhiezer model of anharmonicity. In this model the
sound waves cause a disturbance of the thermally excited modes present in the
system and the equilibrium is re-established by energy dissipation leading to the
absorption of sound at finite temperatures [87, 121, 122]. After the perturbation
of the thermal vibrations by the acoustic waves, the system returns to the equilib-
rium situation in an average relaxation time τth. In the glassy phase, τth turns out
to be almost temperature independent close to the glass transition temperature,
while its value changes at low temperatures due to the corresponding variation of
the Grüneisen parameter [120].
In the simple Akhiezer model of anharmonicity the Grüneisen parameter enters
in the description of the linewidth of the longitudinal acoustic waves through the
relation [87, 121]:

Γ = γ2
LA

cV TvLA

2v3
D

Ω2τth (3.21)
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Figure 3.8: Temperature dependence of the frequency shift Ω/2π (top panel)
and of the linewidth Γ/2π (bottom panel) of the longitudinal acoustic modes.

The dashed line indicates Tg = 266 K.

where cV is the constant volume specific heat, vLA the longitudinal sound velocity
and vD the Debye velocity. The thermodynamic quantities present in this equation
have been taken from Refs. [117, 118], while the Debye sound velocity has been
calculated using the transverse sound velocity data as explained later in the text.
Eq. 3.21 can be used to calculate the relaxation time τth which turns out to be
almost temperature independent close to Tg with an average value of τth = 0.09 ps.
This value is similar to that estimated in other systems such as OTP and SiO2

[87, 123].
The frequency position and the linewidth of the Brillouin peaks can be used

to obtain the real part (M ′) and imaginary part (M ′′) of the longitudinal elastic
modulus M , through the relations M ′(Ω) = Ω2ρ/q2 and M ′′(Ω) = ΓΩρ/q2, where
ρ is the density. Alternatively, the same information can be reported in terms of
the sound velocity vLA =

√
M ′/ρ = Ω/q and of the mean free path l = vLA/Γ of

the longitudinal acoustic excitations, as shown in figure 3.9 (a) and (b), respec-
tively. In the glassy phase the longitudinal sound velocity reaches values higher
than ∼ 4000 m/s that are quite exceptional for a fragile system such as sorbitol.
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Figure 3.9: Temperature dependence of the sound velocity vLA (a) and of the
mean free path l (b) of the longitudinal acoustic modes in sorbitol. The dashed

line indicates Tg = 266 K

Transverse acoustic modes

As previously reported, the transverse sound modes were measured on the second
sample by using a 90◦ scattering configuration. The shape of the glass tube used
as sample holder can produce an error on the nominal scattering angle. For this
reason the data have been corrected by multiplying the transverse frequencies
for a factor C obtained from the comparison of the longitudinal modes measured
in this configuration to those collected in backscattering. The frequency of the
longitudinal modes measured at 90◦ should then correspond to

νLA,90◦expected = νLA,backsin(45◦) = νLA,back

√
2

2
(3.22)

The ratio between the measured and the expected frequency of the longitudinal
modes gives the correction factor C

C =
νLA,90◦expected

νLA,90◦measured

(3.23)
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Figure 3.10: Left panel: Temperature dependence of the frequency shift
ΩTA/2π of the transverse sound waves. The dashed line represents Tg. Right
panel: Cauchy-like relation between longitudinal and transverse acoustic modes.
The dashed line corresponds to the best fit lineshape described by equation 3.24.

We found an error of ∼ 0.6% on the expected frequencies corresponding to a less
than 1◦ error on the scattering angle.
The left panel of Figure 3.10 reports the temperature dependence of the frequency
of the transverse acoustic waves. Using the refractive index we can calculate the
corresponding sound velocity vTA =

√
G′/ρ, where G′ is the shear modulus being

vTA = 2πΩTA/q90◦ and q90◦ = (4πn/λ)
√

2/2.
The values of the transverse sound velocity at temperatures outside the probed
range can be obtained through a Cauchy-like relation for isotropic solids [105, 106]

v2
LA = A + 3v2

TA (3.24)

where A is a material dependent but temperature independent parameter.
This relation works very well in many glasses and polymers. It implies that the
longitudinal and transverse sound velocities are directly related at any temperature
and allows us to estimate the Debye sound velocities at low temperatures even if
only longitudinal sound velocities are known, as it is often the case.
In the right panel of Figure 3.10 the square of the sound velocities is reported
together with the best fit lineshape obtained from equation 3.24. In the case of
sorbitol we found A = 3.34 ± 0.09 km2/s2.
From the longitudinal modes we can alternatively estimate the transverse sound
velocity using thermodynamic data. In general in a glass G′ is given by G′ =
3
4
[M ′ − B′] where B′ is the real part of the bulk modulus. The bulk modulus,

in turn, can be calculated from the available PVT and calorimetric literature
data [117, 118], being B′ = 1/χS∞, where χS∞ is the high-frequency adiabatic
compressibility

χS∞ = χT∞ − Tα2
P

ρcP

=
χT∞

γ
(3.25)

In this expression γ = cP /cV is the constant pressure to constant volume spe-
cific heat ratio and χT∞ is the high frequency isothermal compressibility. From
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these relations we calculate a transverse sound velocity of 2300 ± 400 m/s at
Tg. Such a value is higher but compatible than the corresponding measured ones,
vBLS

T = 2055±15 m/s. This difference is likely due to the approximations adopted
to calculate χT∞ from the Tait equation describing the PVT data in the glassy
state [117], which in fact lead to an uncertainty on χT∞ of ∼ 18% (see table 3.2).

3.3.3 On the connection between microscopic and macro-
scopic properties
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Figure 3.11: Correlation of kinetic fragility, mA, with the ratio of the bulk
and shear modulus B′/G′. The straight line shows the relation described by Eq.

3.26. Adapted from [5].

The knowledge of the elastic moduli of glassy sorbitol can be used to test some
of the proposed correlations between elastic properties of glasses and fragility
(see sections 2.4). For example, Novikov and coworkers found that the weaker a
glass resists to shear stress in comparison to bulk one (higher B′/G′ ratio), the
more fragile is the behavior of the corresponding melt [5, 6]. This correlation is
quantified by the relation

mA = 29(B′/G′ − 0.41), (3.26)
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where B′/G′ = (vLA/vTA)2 − 4/3. This correlation is reported in Figure 3.11. In
the case of glassy sorbitol B′/G′ = 2.44 ± 0.07, which would lead to mA = 59 ± 2
according to the previous relation. This value has been obtained from the BLS
data and is in clear disagreement with the one obtained using dielectric mea-
surements in the supercooled liquid (mA ∼ 107) [42]. The existence of systems
showing strong deviations from the previously recalled simple linear relation was
underlined already in Refs. [5, 6], such for instance polystyrene. Novikov and
coworkers suggested that the systems showing such deviations might be those who
do not follow the relation between the kinetic and the thermodynamic fragility
(see section 1.3.2). In fact, in the case of polystyrene the correlation between elas-
tic moduli and fragility seems to be recovered once the thermodynamic fragility is
considered [5, 6]. However, this explanation does not seem to hold for the case of
glassy sorbitol where the two fragilities were found to be very similar [42]. In other
words, sorbitol really seems to be a peculiar system: from the elasticity point of
view it shows a behavior similar to that of intermediate glasses, with high elastic
moduli values, while it presents at the same time features of fragile systems, i.e.
a strong departure of the structural relaxation time from the Arrhenius behavior
above Tg.
Following Buchenau and Wischnewski [4] we can introduce a vibrational com-
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guide for the eye.

pressibility χv = 1/M ′ and we can estimate the ratio αχ between the vibrational
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and relaxational compressibility:

αχ(Tg) =
χv(Tg)

χT (Tg) − χv(Tg)
(3.27)

where χT is the isothermal compressibility measured in the liquid phase close to
Tg (see table 3.2). As far as the harmonic approximation holds to calculate the
nonergodicity factor up to Tg, this ratio coincides with the α parameter introduced
by Scopigno et al. [3] and which was proposed to be simply proportional to the
kinetic fragility through the relation mA = 135α (see section 2.4). In the present
case, using the PVT data for χ(Tg) [117] , we find αχ = 0.365 ± 0.016, which –
given the known fragility of sorbitol – is a value too low to fulfill the linear re-
lation proposed by Scopigno et al., being the estimated fragility equal to 49 ± 2.
In any event, it is of some interest to add the αχ vs. mA value of sorbitol to the
compilation reported in Ref. [4], as shown in Fig. 3.12. The point corresponding
to sorbitol agrees with the general trend shown by Buchenau and Wischnewski,
suggesting that while a general correlation between α and mA seems to hold, the
data of αχ flatten out to become basically fragility independent for systems with
high fragility [46].

3.4 Sulfur

Sulfur has unique physical properties which have puzzled scientists and engi-
neers for more than 100 years and which have no parallel in any other substance
[124, 125]. Despite of the apparent simplicity of the system, it shows an extremely
complex behavior in both liquid and solid phases and is the element displaying
the largest number of allotropes.

At ambient conditions sulfur is a pale yellow solid. It melts at about 392 K
to form a molecular low-viscosity liquid composed of eight-membered rings (S8).
Upon increasing the temperature, the shear viscosity η of the system decreases
like in simple liquids and it reaches a minimum value of ∼ 0.07 poise at 430 K
(see Figure 3.13). On crossing the temperature Tλ=432 K, η abruptly increases by
more than four orders of magnitude in the small temperature range of 428 - 463 K.
The viscosity reaches a maximum of 932 poise at 460 K and then it decreases again
and reaches a simple liquid-like value of ∼ 0.01 poise at the boiling temperature
Tb = 718 K [126]. This phenomenology represents the signature of the so-called
λ-transition, a thermo-reversible process which is fascinating researchers since sev-
eral decades. Many other physical properties display an anomalous behavior on
crossing the transition temperature, such as the specific heat, the refractive index
and the density [127–131]. The name λ transition comes from the shape of the
specific heat which remembers the greek letter. Figure 3.14 shows a photo of liq-
uid sulfur below and and above the λ transition. The color of the liquid changes
reversibly from honey-yellow in the low viscosity phase below 432 K to dark red-
brown in the extremely viscous phase.
All these temperature-related changes of the physical properties are completely
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Figure 3.13: Viscosity of liquid sulfur as a function of temperature. On
crossing the λ transition, the viscosity increases by several orders of magnitude

in a narrow temperature range. Adapted from [126].

reversible if the melt is cooled down slowly and are due to internal structural
changes. The transition is in fact due to a reversible polymerization process in
which a fraction of S8 rings coverts in long polymeric chains. Above Tλ, the sys-
tem is composed of monomers and polymers in equilibrium polymerization, i.e. in
a process of polymerization without termination in which the liquid is composed
of a mixture of cycloocta rings and long chains in equilibrium [132]. The chains
formation is responsible of the huge increase in the viscosity at Tλ (Figure 3.13).
On increasing further the temperature, the kinetic energy of the polymeric chains
increases as well. Consequently the chains break leading again to a low, normal
liquid-like, value of the viscosity.
Several theories have been developed to explain the mechanism underlying this

peculiar transition, but no one is still able to well reproduce the experimental data
[133, 134].
The polymer content present in the liquid phase above the λ transition can be
isolated and measured by quenching the high temperature melt at very low tem-
peratures, and by dissolving the resultant material in carbon disulfide at 20◦ C
[135]. Figure 3.15 reports the temperature dependence of the polymer weight
fraction φ(T ): for T < Tλ the liquid is composed only by monomers, while on in-
creasing the temperature, the polymer weight fraction increases steadily and then
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Figure 3.14: Liquid sulfur below (left one) and above (right one) the λ tran-
sition.

it reaches a constant value at about 300 K. Several techniques are able to give
information on φ(T ). Albeit they agree close to the polymerization transition,
distinct results have been found at higher temperatures [136, 137].
Recently, the polymeric phase has been investigated by means of inelastic x-ray
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Figure 3.15: Temperature dependence of the polymer concentration Φ(T ) in
liquid sulfur. Adapted from [135].

scattering (IXS) and Brillouin light scattering (BLS) techniques and by infrared
photon correlation spectroscopy (PCS) [138–140]. A strong relaxation is clearly
present in the longitudinal modulus between the GHz frequency range and the
THz range, at temperatures both below and above the λ transition threshold (see
Figure 6.12). It corresponds to the main structural relaxation, which moreover,
results to be slightly affected by the polymerization transition [139]. The huge
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increase in the viscosity at Tλ appears instead to be related to the presence of a
secondary slow relaxation process in the millisecond time scale (thus in the kHz
frequency region).
The existence of a very low-frequency relaxation, suggested first from BLS and
IXS results [138, 139], was demonstrated by means of PCS spectroscopy [140].
This process is typical of concentrated solutions of linear uncross-linked polymers
and can be related to the entanglement of the chains in the melt. As for concen-
trated polymer solutions, if liquid sulfur is rapidly quenched from above Tλ, it is
possible to freeze the equilibrium situation present at higher temperatures into a
glassy phase. When crossing the glass transition temperature Tg=243 K (−30◦ C)
[141] on increasing the temperature, the shear modulus shows a peculiar behavior
typical of a polymer (Figure 3.16). There is a glassy region characterized by elas-

Figure 3.16: Temperature dependence of the shear modulus 3G of elastic
sulfur and pure polymeric sulfur (crystex) [142].

tic moduli with typical solid-like values of about 109 Pa followed, just above Tg,
by a transition region and a rubbery plateau [142]. The presence of this plateau
together with that of the relaxation in the millisecond time scale have lead to a
re-evaluation of the dynamics of liquid sulfur in the framework of a viscoelastic
model [138, 140]: the increase of the shear viscosity at the λ transition is simply
marking the onset of this rubber-like dynamics, and is quantitatively given by the
product of the rubber shear modulus and of the characteristic time of the slow
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relaxation, i.e. by the usual Maxwell relation. Thus, the presence of two relax-
ation process can be described by the relation η = (G∞ − Gc)τα + Gcτc where Gc

and τc are the shear modulus and the relaxation time of the slow process. As for
any other viscoelastic system, this scenario implies that the transport properties
of the high temperature liquid can be predicted from the knowledge of the elastic
properties in the low temperature phase.
In order to shed light on the complex behavior around the λ transition, several
experiments have been performed on elastic sulfur, thus on the amorphous solid
above Tg. For example, it is known that the monomers present above the λ tran-
sition act as a plasticiser lowering the glass transition temperature from 368 K,
the value characteristic of pure polymeric liquid sulfur (crystex in Figure 3.16),
down to 243 K. The glassy phase, instead, has been poorly investigated. Only few
neutron diffraction and Raman scattering studies have been carried out on this
disordered state [136, 143–145]. For example, by comparing the static structure
factor of the high temperature polymeric liquid and the low temperature glass,
the similarity of these two phases comes out very clearly [143, 144].
The study of the vibrational dynamics of glassy sulfur in different frequency ranges
will allow us to get further insight into the connection between the glass and the
high-temperature liquid above Tλ. Moreover, due to its peculiar semi-polymeric
nature, sulfur is as well an interesting candidate for the investigation of the pro-
posed universal properties of glasses.

3.4.1 The fragility of polymeric sulfur

To the best of our knowledge no information on the kinetic fragility of polymeric
sulfur is available in the literature. As reported in section 1.3.2 the fragility de-
scribes the behavior of the α structural relaxation process in the supercooled liquid
phase on approaching Tg. In the case of polymeric sulfur the fragility cannot be
directly estimated from the behavior of the viscosity (or the structural relaxation
time) due to the presence of a secondary relaxation mechanism with comparable
relaxation times [146]. This secondary relaxation mechanism, called χ process,
has been studied in Ref. [146] and corresponds to bond S-S interchange in small
segments of the polymeric chains. As a consequence the viscosity of the system
contains an additional contribution with respect to that related to the simple
molecular flow, and can be written as [146]

1

η
=

1

ηα

+
1

ηχ

, (3.28)

where 1
ηα

and 1
ηχ

are the viscosities due to the α process and to the additional

χ relaxation mechanism, respectively. Figure 3.18 reports the measured viscosity
together with the value estimated in Ref. [146] for 1

ηα
and 1

ηχ
as a function of

T − Tg.
It is important to note that the secondary χ process becomes more and more

important on approaching Tg, and becomes dominant close to Tg. We used these
information to estimate the kinetic fragility mA of polymeric sulfur. It is clear,
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Figure 3.17: The total viscosity (dots) and the calculated viscosities due to
the α (dashed-dotted-dotted line) and χ (dashed line) relaxation mechanisms

for polymeric sulfur [146].

indeed, that it cannot be directly calculated from the experimental data reported
in Figure 3.17, which in fact lead to a very low value of mA = 28± 2 very unusual
for a polymeric system. A correct value of mA should be related in fact only to
the α relaxation mechanism. Figure 3.18 reports the logarithm of ηα as a function
of the rescaled temperature Tg/T . As reported in section 1.3.2, in the case of
polymeric systems, such as sulfur, the viscosity is well described by the Williams-
Landel-Ferry (WLF) equation [34]

log(ηα) = A + C1
T − Tg

C2 + T − Tg

, (3.29)

where A, C1 and C2 are fitting parameters. In general A = 13 is related to the
value of the viscosity at Tg, being A = log(ηα(Tg)). The best fit line shape of
ηα using equation 3.29 and Tg = 243 K is reported in Figure 3.18. The obtained
parameters are reported in table 3.3. The value of A is in clear disagreement with
the WLF equation model, being almost three times larger than the expected value
of 13.
We can also estimate the kinetic fragility of sulfur. Following the definition 1.5,
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Figure 3.18: Estimated ηα component of the viscosity taken from Ref. [146]
as a function of the rescaled temperature Tg/T . The red line is the best fit line
shape of the WLF equation 3.29 used to determined the ideal glass transition

temperature related to the α process as explained in the text.

A C1 C2

34 ± 1 −35 ± 1 19 ± 1

Table 3.3: Parameters of the best fit line shape of ηα with equation 3.29,
reported in Figure 3.18.

mA can be written as

mA =

(
−C1C2

Tg

(C2x
Tg

+ 1 − x)2

)

x=1

(3.30)

with x = Tg/T . Using the values reported in table 3.3 we find mA = 453, a
value clearly very high. This apparent incongruity can be explained looking at the
definition of the glass transition temperature. As usually, the value of Tg (246 K
in Ref. [146]) is taken from calorimetric measurements of polymeric sulfur. Due to
the presence of the strong secondary relaxation mechanism close to Tg, this value
does not correspond to the condition ηα(Tg) = 1013 poise. The fragility should
instead be estimated with respect to the ideal glass transition temperature Tg,α

related to the structural relaxation process from the condition log(ηα(Tg,α)) = 13
(dashed-dotted-dotted line in Figure 3.18). Using Tg,α = 276 K (and thus x =
0.892) relation 3.30 gives mA = 86±7. This estimation, typical of fragile systems,
can be considered as a reference value for the fragility of polymeric sulfur.
Using the correct limit log(ηα(Tg,α)) = 13 and the estimated value for Tg,α the
parameters of the WLF equation 3.29 become C1 = −13.5 ± 0.5 and C2 = 48.1 ±
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Figure 3.19: Left panel: Angell plot for several glass formers. The data of
sulfur correspond to the total measured viscosity η (blue dots) and are reported
as a function of the rescaled temperature Tg/T , by using the calorimetric glass
transition temperature. Right panel: same data as for the left panel except
for sulfur. In this case only the α component of the viscosity is reported (blue
line) as a function of the rescaled temperature Tg/T , by using the ideal glass
transition temperature Tg = Tg,α as explained in the text. All the values for

sulfur are taken from Ref. [146].

0.2. These values are in agreement with those of other glass-forming systems and
represent thus a confirmation of the validity of the whole procedure [34].
The above observations are summarized in Figure 3.19, which adds sulfur to the
Angell plot. In particular, the left panel shows the measured total viscosity η
of sulfur as a function of the rescaled temperature Tg/T , using the calorimetric
Tg, while in the right panel only the ηα contribution is reported by rescaling the
temperature with Tg,α. Including the secondary χ relaxation process, the η data
are clearly shifted toward too high temperatures, leading thus to an “illusory”
strong character of polymeric sulfur (left panel).
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3.5 Low frequency dynamics in sulfur

3.5.1 Experimental details

The glass of sulfur has been obtained starting from a highly purified powder in
order to avoid the presence of organic contaminations that could alter the struc-
ture. The sulfur purification process is relatively complex and has been carried
out through multiple distillations in vacuum as described in Ref. [147]. The final
product, characterized by a 99.999% purity, was put in a rectangular container
12x8 mm2 in size and 200 µm in thickness, sandwiched between a quartz window
and an optically polished silicon plate (acting as a mirror). The sample and the
container were first heated up to 473 K and then quick quenched in liquid air. A
translucent glass was obtained.
As in the case of sorbitol, the choice of the sample holder was dictated by the ne-
cessity to measure also the refractive index. In order to reduce the local heating of
the sample, a neutral filter was used to keep the laser power on the sample below
13 mW. This value of incident power was checked to produce power-independent
light scattering spectra of still good enough quality.
Brillouin spectra were collected in the temperature range 80−236 K, and a cryo-

Figure 3.20: Brillouin light scattering spectrum of glassy sulfur at T=220 K,
measured using a distance L = 6 mm between the mirrors in the interferom-
eter. Two Brillouin doublets are present, corresponding to the two different
scattering angles 2θ probed at the same time as schematically shown in the
inset. The incident and scattered beams are represented by the arrows ~ki and

~kf for 2θ=180◦, and by ~k
′

i and ~kf for 2θext=90◦.

stat was used to regulate the temperature. The data were taken using mainly a
distance L=12.59 mm between the mirrors in the interferometer, which allowed us
to obtain a sufficient good counting rate while keeping the instrumental resolution
at a reasonably good level (160 MHz). The measurements were performed without
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Figure 3.21: Left panel: dependence of the momentum transfer q on the
frequency position of the Brillouin peaks corresponding to 2θext = 90◦, 45◦ and
30◦ scattering angles, together with the linear best fit (red line). The slope of
the line corresponds to the inverse of the longitudinal sound velocity. Right

panel: refractive index of sulfur obtained from relation 3.15.

any polarization analysis of the scattered light (VU configuration), and on both
heating and cooling the sample. No differences were found among the different sets
of data. In order to measure both the refractive index n of the sample and the longi-
tudinal acoustic modes at the same time, the sample was aligned at 45◦ (2θext=90◦)
with respect to the incident laser beam in the whole temperature range, while for
T = 200 K, the geometries corresponding to 2θext=30◦ and 45◦ have been used too.
Figure 3.20 shows an example of a spectrum measured with the sample aligned at
45◦ with respect to the incident laser beam. This scattering configuration was used
in the temperature range 150 - 236 K to obtain the refractive index of glassy sor-
bitol. At temperatures lower than about 150 K, the sample cracked, thus leading
to a large increase in the stray light that made the measurements of the refrac-
tive index impossible. As for the sorbitol, the ratio of the positions Ω/2π of the
Brillouin peaks corresponding to the two scattering angles gives information on
the refractive index via the relation n = (Ω180◦/Ω2θext

)sin(θext). Using the data
collected in the backscattering and in the 90◦ scattering geometries, and thus re-
lation 3.15, we found a basically temperature-independent refractive index value
of n = 2.11 ± 0.02 (see the right panel of Figure 3.21). The lack of information
on the temperature dependence of the density of glassy sulfur does not allow the
determination of the temperature dependence of the refractive index through the
Clausius-Mossotti relation 3.16. For this reason n has been taken constant in the
whole investigated temperature range.
As previously reported, the used relation is correct under the assumption that the
sound velocity of the longitudinal modes is frequency independent in the corre-
sponding frequency range. Such assumption has been directly checked at T=200 K
measuring Brillouin spectra corresponding to the sample aligned at 45, 22.5 and
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Figure 3.22: Brillouin light scattering spectra of sulfur at the indicated tem-
peratures collected in backscattering configuration. The red lines correspond to
the best fitting lineshape obtained from the model of equation 3.17 convoluted

with the instrumental resolution.

15◦. Figure 3.21 reports the the exchanged momentum q as a function of the
position of the corresponding Brillouin peaks. Indeed, as explained in section
3.3.1, those Brillouin peaks can be viewed as due to a scattering process with
an exchanged wave-vector given by q = (4π/λ) sin(θext) and thus independent
of the refractive index n. Therefore, the slope Ω/q of the data in Figure 3.21
corresponds directly to the inverse of the sound velocity, vLA, of the longitudinal
acoustic modes. The linear behavior observed in Figure 3.21 confirms then the fre-
quency independence, within the experimental uncertainty, of the sound velocity
in the frequency range covered here, and thus the validity of the expression used
above to derive n. From the knowledge of the sound velocity and the frequency
position of the Brillouin peaks corresponding to the backscattering configuration,
we can obtain another estimation for the refractive index at 200 K from the re-
lation n = λν180◦/2vLA. We find n = 2.11 ± 0.04, in nice agreement with the
previously determined value. It is interesting to observe that this value is quite
close to the one measured in the liquid phase above Tλ, reflecting the polymeric
character of the system (nliquid ∼ 1.93)[148].
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Figure 3.23: Temperature dependence of the frequency shift Ω/(2π) (top
panel) and of the linewidth Γ/(2π) (bottom panel) of the longitudinal acoustic
modes probed in the backscattering configuration. The dashed line indicates

Tg=236 K.

3.5.2 BLS results

Figure 3.22 shows a subset of BLS spectra collected for different temperatures in
the backscattering geometry. In all the spectra the Brillouin doublet is well visi-
ble at frequencies around 17 GHz, and is due to the longitudinal acoustic modes
propagating in the glass.
To determine the frequency position Ω and the full width at half maximum Γ
of the longitudinal acoustic modes, the spectra have been fitted in a narrow fre-
quency range around the Brillouin peaks using the damped harmonic oscillator
model function described in equation 3.17. This function has been convoluted
to the instrumental resolution before being fitted to the experimental data. The
values of Ω and Γ are reported in Figure 3.23. Due to the presence of cracks in the
sample for temperatures lower than about 150 K, the linewidth of the longitudi-
nal modes could be reliably obtained only at higher temperatures. The Brillouin
linewidth shows a rapid increase and the Brillouin peak position a slight decrease
on approaching Tg from the glassy phase, as expected in glasses. In particular, the
Brillouin broadening shows a sudden increase at the highest measured tempera-
ture that we attribute to the structural relaxation entering the frequency window
explored by BLS. This abrupt increase of the peak broadening at T ∼ 236 K sug-
gests the possibility that the glass transition temperature is lower than its nominal
value of 243 K [141]. As previously recalled, Tg is strictly related to the fraction
of monomers presents in the liquid phase above the λ transition, which increases
on increasing the temperature (see Figure 3.15). In fact, the value of Tg = 243
K has been found after quenching the polymeric liquid from T = 523 K, where
the fraction of monomers is almost ∼ 50 % [135]. The glass reported here has
been prepared heating the liquid up to 473 K, where a higher concentrations of
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monomers should be present (∼ 65 %), and this is compatible with the glass tran-
sition temperature being shifted to lower values.
The frequency position and the linewidth of the Brillouin peaks can be used to
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Figure 3.24: Temperature dependence of the sound velocity vLA (top panel)
and of the mean free path l (bottom panel) of the longitudinal acoustic modes.

The dashed line indicates Tg = 236 K.

obtain information on the sound velocity vLA =
√

M ′/ρ = Ω/q and on the mean
free path l = vl/Γ of the longitudinal acoustic excitations, as shown in Figure 3.24.
We can observe that the mean free path is of the order of 400 nm at Tg, about one
order of magnitude less than what typically observed in organic glass-formers, e.g.
in sorbitol (see Figure 3.9). This suggests that the sulfur glass is characterized
by strong anharmonic or relaxation effects that strongly damp the propagating
acoustic waves.
From the behavior of the shear modulus (Figure 3.16) and of the density of glassy
sulfur reported in Ref. [141] we can estimate the value of the transverse sound
velocity at the glass transition temperature vTA =

√
G′/ρ. At Tg, using G′ = 1

GPa and ρ = 1.92 g/cm3, we find vTA = 721 m/s. Such a low value is similar to
that of very fragile systems, such as glassy selenium and polycarbonate (BPA-PC)
[4]. By using the relation 3.26 between the shear and the bulk modulus we find
mS = 210±8, a very high value indeed with respect to that estimated from viscos-
ity measurements (see section 3.4.1). However as shown in the case of sorbitol, the
validity of the relation proposed by Sokolov and coworkers is not always correct,
especially in polymeric systems [6].



Résumé du chapitre 4

Dans le deuxième chapitre nous avons discuté l’importance de la dif-
fusion inélastique des rayons X pour l’étude des excitations à haute
fréquence dans la région mésoscopique de quelques nanomètres. Dans
la première partie du présent chapitre nous présentons un bref résumé
de la théorie générale de IXS et de l’équipement expérimental utilisé
pour nos mesures. Dans la deuxième partie du chapitre nous dis-
cuterons la dynamique à haute fréquence d’un verre de sorbitol. Ce
système est, en effet, un candidat idéal pour l’étude des propriétés
vibrationnelles des verres dans la région de quelques nanomètres.
Le caractère fragile du sorbitol et la valeur élevée de la position du
maximum du BP nous a permis d’effectuer une étude précise de la
dynamique à haute fréquence aussi bien pour des énergies inférieures
que supérieures de celle du maximum du BP. Dans le chapitre nous
présentons une analyse détaillée de la nature des excitations à haute
fréquence mesurée à différentes températures. Comme nous mon-
trerons, les excitations acoustiques longitudinales démontrent des a-
nomalies élastiques qui ne peuvent pas être attribuées à des fluctu-
ations de densité statique. En outre ces anomalies ont lieu dans la
même gamme d’énergie du BP, ce qui suggère l’existence d’une forte
corrélation entre BP et élasticité. Dans la dernière section de ce
chapitre nous présentons une analyse détaillée de la dépendance en
température des anomalies élastiques à haute fréquence.
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Chapter 4

High frequency dynamics of
sorbitol

In the second chapter we have discussed the importance of Inelastic X-ray Scatter-
ing for the investigation of the high frequency collective excitations in the meso-
scopic spatial range of fews nanometers. In the first part of this Chapter, a brief
summary on the general theory of IXS and of the experimental set-up used for
our measurements is presented. The second part of the Chapter will deal with
the high frequency dynamics of a glass of sorbitol. As reported in section 3.2 this
system is an ideal candidate for the investigation of the vibrational properties of
glasses in the crucial spatial range of fews nanometers. The fragile character of
sorbitol together with a high boson peak energy maximum allow for an accurate
study of the high frequency dynamics both below and above the excess in the
reduced vibrational density of states. Section 4.3 reports a detailed analysis of
the character of the high frequency excitations measured at the lowest investigate
temperature. As it will be shown there, the longitudinal acoustic-like excitations
display some elastic anomalies that cannot be attributed to static density fluctua-
tions. Moreover these anomalies take place in the same energy range of the boson
peak, suggesting the existence of a strong correlation between them. The high
frequency dynamics has been studied also as a function of temperature, ranging
from the deep glassy phase up to the glass transition temperature. A detailed
analysis of the temperature dependence of the high frequency elastic anomalies
is reported in last section of this Chapter, while a deeper investigation of their
relation with the excess of modes in the vibrational density of state will be the
argument of the next one.
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4.1 Inelastic X-ray Scattering

The first part of this section reports the theory of Inelastic X-ray Scattering. In
particular a description of the IXS cross section and the determination of the dy-
namic structure factor of the system under investigation is discussed. In the second
part, instead, the basic working principles of an IXS spectrometer are illustrated,
with reference to beamline ID16 at the European Synchrotron Radiation Facility
(ESRF).

4.1.1 IXS cross section

The IXS spectrum provides a direct determination of the coherent dynamic struc-
ture factor, S(Q,ω), whenever the listed hypotheses hold [149, 150]:

• The scattering process is dominated by the Thomson term and both the
resonant and the spin-dependent contributions to the electron-photon inter-
action can be neglected.

• The center of mass of the electron cloud follows without delay the nuclear
motion, i.e. the adiabatic approximation is valid.

• There are no electronic excitations in the considered energy transfer range.

The kinematics of the scattering experiment is the same as for the BLS measure-
ments and is reported in Figure 4.1 for clarity. Here, and in the following, the
suffixes i and f refer to the incident and scattered photon, respectively. As for
BLS the incoming photon is characterized by an energy, ~ωi, wave-vector, ~ki, and
polarization, ε̂i. It is scattered by the sample and collected at an angle 2θ within
a solid angle dΩ. The scattered photon energy, wave-vector and polarization is
denoted by: ~ωf , ~kf and ε̂f , respectively. According to energy and momentum
conservation laws the momentum and energy transfer to the sample are:

~ω ≡ ~(ωf − ωi) and ~Q ≡ ~ (kf − ki) (4.1)

In the limit ω ≪ ωi, which is the case of IXS, the modulus of ki and kf are basically
the same, and the modulus of the exchanged momentum is entirely determined by
the scattering angle 2θ:

|Q| = 2|ki|sin(2θ/2) (4.2)

The double differential cross section, ∂2σ/∂Ω∂ωf , representing the fraction of pho-
tons having frequency ωf±dωf , scattered into a solid angle dΩ around the direction
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Figure 4.1: Kinematics of a scattering experiment.

defined by ~kf , can be calculated within the frame of linear response theory assum-
ing a weak coupling between the probe and the system. In this approximation the
double differential cross section can be regarded as an intrinsic property of the un-
perturbed sample, being independent of the incident photon flux. Neglecting the
interaction of the photon electromagnetic field with the nuclei, the probe-system
interaction, in the weak relativistic limit, is described by the photon-electron in-
teraction Hamiltonian, Hint. It consists of four different terms [151]:

Hint = H1 + H2 + H3 + H4

where

H1 =
e2

2mec2

∑

j

(A(rj, t) · A∗(rj, t)) (4.3)

H2 = +
e

2mec

∑

j

(A(rj, t) · pj) (4.4)

H3 = − e

mec

∑

j

sj · (∇× A(rj, t)) (4.5)

H4 = − e2

2m2
ec

4

∑

j

sj · (Ȧ(rj, t) × A(rj, t)) (4.6)

The sum extends over all the electrons in the system. Here me and e are the elec-
tron mass and charge respectively, while c is the speed of light. Finally A(rj, t) is
the electromagnetic field vector potential at rj, coordinate of the j − th electron
which has momentum pj and spin sj. In the quantum electrodynamics repre-
sentation with the gauge ∇ · A(rj, t) = 0, the vector potential of the photon
electromagnetic field can be written in terms of plane waves as:

A(rj, t) = (
4πc2

V
)1/2

∑

λ

[aλǫ̂λe
i(Qλ·rj) + a∗

λǫ̂λe
−i(Qλ·rj)], (4.7)

where aλ and a∗
λ are the λ− th component of the photon annihilation and creation

operator, and ǫ̂λ is the polarization of the electromagnetic field.
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In a first order perturbation treatment, the first two terms 4.3 and 4.4 of the inter-
action Hamiltonian describe respectively the scattering of the photon electric field
from the electron charge (Thomson scattering) and the processes in which photon
quanta are fully absorbed or emitted by the electron system (photoelectric absorp-
tion). The other two terms are considerably smaller and describe the magnetic
coupling between the electron system and the electromagnetic field. In fact, for
photon energies of the order of 20 keV (i.e. ≪ mc2, m being the rest mass of the
electron) the magnetic terms are by a factor 10−2 smaller than the first two terms,
and can therefore be neglected in the following. Furthermore, the paramagnetic
contribution 4.4 can be neglected if we consider photons with energies away from
any absorption resonance. This condition is always satisfied in an IXS experiment
and therefore the interaction Hamiltonian reduces to the Thomson contribution:

Hint =
e2

2mc2

∑

j

A(rj, t) · A∗(rj, t) (4.8)

The double-differential cross-section can be determined in the framework of first
order perturbation theory, making use of the Fermi golden rule [152]. Considering
the initial and final photon states, |I〉 and |F 〉 as plane waves the double-differential
cross-section can be written as:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)
(ε̂f · ε̂i)

2
∑

I,F

PI

∣∣∣∣∣

〈
F

∣∣∣∣∣
∑

j

eiQ · rj

∣∣∣∣∣ I
〉∣∣∣∣∣

2

δ(~(ω−ωF +ωI)) (4.9)

where r0 = e2/mc2 is the classical electron radius and PI is the statistical weight,
i.e. the equilibrium population, of the initial states.
Within the validity of the adiabatic approximation, the atomic quantum state, |S〉,
can be factorized into its electronic, |Se〉, and nuclear, |Sn〉, part. This approxima-
tion is particularly good for exchanged energies that are small with respect to the
electronic excitations energies. In this case the contribution to the total scattering
coming from the valence electrons close to the Fermi level is small compared to the
contribution coming from the core electrons. Consequently, the difference between
the initial and final state is substantially due to excitations of the ion system. The
double differential cross section, under these hypotheses, can be written as:

∂2σ

∂Ω∂ωf

= r2
0

(
kf

ki

)
(ǫ̂f ·ǫ̂i)

2
∑

In,Fn

PIn

∣∣∣∣∣

〈
Fn

∣∣∣∣∣
∑

j

fj(Q) eiQ · Rj

∣∣∣∣∣ In

〉∣∣∣∣∣

2

δ(~(ω−ωF +ωI))

(4.10)

where fj(Q) is the atomic form factor of the jth atom with position vector Rj,
while the suffix n refers to the nuclear states. Now the sum extends over all the
atoms of the system. Assuming that all the scattering units in the system are
equal, this expression can be further simplified by the factorization of the form
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factor. In the limit Q → 0, f(Q) is equal to the number of electrons in the
atom. For increasing values of Q the form factor decays almost exponentially,
with a decay constant determined by the radial distribution of the electrons in
the atomic shells of the considered atom. Using the Van Hove pair correlation
function, the S(Q,ω) can be formally introduced as [153]:

S(Q, ω) =
1

2π~N

∫ +∞

−∞

eiωt〈
∑

jk

eiQ·Rj(t)e−iQ·Rk(0)〉dt (4.11)

where N is the number of particles in the system. Combining equations 4.11 and
4.10 one obtains:

∂2σ

∂Ω∂ωf

= r2
0(

kf

ki

)(ǫ̂f · ǫ̂i)
2|f(Q)|2S(Q, ω) (4.12)

This derivation is strictly valid for monatomic systems. In the case of non-
crystalline samples with different atoms the procedure to determine the scattering
cross section is more complicated but it can be easily generalized to molecular
systems with several atomic species by replacing the atomic form factor with the
molecular one. In this case the cross section splits into two components: a coher-
ent and an incoherent term. The latter is associated with fluctuations of the form
factor while the former is proportional, through the mean value of the form factor,
to S(Q, ω) [150]:

∂2σ

∂Ω∂ωf

= r2
0(

kf

ki

)(ǫ̂f · ǫ̂i)
2[〈f(Q)〉2S(Q, ω) + 〈δf(Q)2〉Ss(Q, ω)] (4.13)

Here 〈f(Q)〉2 is the average value of the form factor over the whole system while
〈δf(Q)2〉 is the average of its fluctuation squared. The incoherent part of the cross
section is given by Ss(Q,ω) which describes the single particle dynamics rather
than the collective behavior.
Besides the cross-section, the realization of an IXS experiment requires also the
knowledge of the scattered signal. In order to derive the effective intensity of the
collected radiation, absorption processes have to be considered as well. In fact,
the number of photons (N) that, per unit time, are scattered into the solid angle
(dΩ) and in the frequency interval (dω) is given by [150]:

N = N0
∂2σ

∂Ω∂ω
dΩdωρLe−µL (4.14)

where N0 is the number of incident photons per second, ρ is the density of the
scattering sample, L is its length along the scattering path and µ is the total
absorption coefficient. The maximum IXS signal is achieved for L = 1/µ, and
consequently N ∝ 1/µ. Considering X-ray energies of ≈ 20 keV and Z > 3, µ
is almost completely determined by the photoelectric absorption process. In this
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process µ ∝ Z4, with important modifications at energies close to the electron
absorption edges. Consequently, the scattering volume of high Z materials is very
much reduced, while, on the other hand, the scattering cross section increases as
Z2. Figure 4.2 reports the effective scattering intensity for an IXS experiment,
as a function of Z, in the case of a sample with optimum thickness and incident
photon energy of 17.8 keV .

Figure 4.2: Relative IXS signal, for an optimal sample thickness (L = 1/µ),
as a function of the atomic number Z at the photon energy of 17.8 keV, in the
small Q-limit (i.e. f(Q) = Z). The large discontinuity between Z = 39 and

Z = 40 is due to the K absorption edge of Zirconium.

4.1.2 Dynamic structure factor and phonons

In this paragraph it is shown how the dynamic structure factor is directly linked
to the quanta of the vibrational field: the phonons [150]. The simplest case is
represented by an ideal Bravais lattice with only one atom per unit cell. Being
~uj(t) the atomic displacement of atom j with respect to its lattice equilibrium

position, ~Rj, its instantaneous position, ~Rj(t), can be expressed as follows:

Rj(t) = Rj + uj(t) (4.15)

The dynamic structure factor (see equation 4.11) reads:

S(Q,ω) =
1

2π~N

∑

j,k

eiQ·(Rj−Rk)

∫ +∞

−∞

eiωt〈e−iQ·uk(0)eiQ·uj(t)〉dt (4.16)

In the framework of second quantization the atomic displacement is given by [154]:
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uj(t) =

√
~

2MN

∑

s,q

ǫ̂s,q√
ωs(q)

[aei(q·Rj−ωs(q)t) + a+e−i(q·Rj−ωs(q)t)] (4.17)

here the suffix s indicates the Cartesian indexes and a and a+ are the annihilation
and creation phonon operators. q and ωs(q) represent the phonon momentum and
frequency, while ǫ̂s,q is the phonon polarization. Exploiting the commutation rules
of a and a+, and some general relations, equation 4.16 becomes:

S(Q, ω) =
1

2π~N

∑

j

eiQ·Rj−2W (Q)

∫ +∞

−∞

e−iωte〈(Q·u0(0))(Q·uj(t))〉dt (4.18)

Where the quantity e−2W (Q) = e−〈(Q·ui(0))
2〉 is usually called the Debye-Waller

factor. Since we are dealing with small displacements, the argument of the integral
can be expanded as:

e〈(Q·u0(0))(Q·uj(t))〉 = 1 + 〈(Q · u0(0))(Q · uj(t))〉 + ... (4.19)

The first term leads to elastic Bragg scattering, while the second one represents
the inelastic scattering with the creation or annihilation of one phonon. Higher
order terms can be omitted since only small momentum transfers, compared to
the inverse of the typical atomic displacements, are considered. Within this ap-
proximation the inelastic part of the dynamic structure factor can be expressed
as:

S(Q,ω) =
1

4πMN
e−2W (Q)

∑

j

eiQ·Rj
(Q · ǫ̂s,q)

2

ωjs

[δ(ω − ωjs)〈n(ω) + 1〉 + δ(ω + ωjs)〈n(ω)〉]

(4.20)
where ǫ and ωs represent respectively the phonon polarization and frequency, and
〈n(ω)〉 is the Bose occupation number.
Thus according to the previous equation, in a crystal where the S(Q,ω) is dom-
inated by the Brillouin contribution, we have two inelastic lines located at ±ωjs.
These lines have an intensity that reflects the probability of creating and anni-
hilating phonons. The ratio between the intensity of S(Q,ω) at energies ±ωjs is
equal to :

S(Q,ωs)

S(Q,ω−s)
=

〈n(ω) + 1〉
〈n(ω)〉 = e

~ωs
kBT (4.21)

Nevertheless the spectral line shape predicted by this harmonic theory presents
some relevant differences as compared to the experimental one. In a real crystal
the anharmonicity and the interactions of phonons with the imperfections of the
material lead to a finite lifetime of the phonon excitations. The vibrational exci-
tations are no longer two delta function (δ(ω − ωs)) but they show a finite width
Γ.
In a glass the simple form that S(Q,ω) assumes in crystals is strongly modified
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and there are no models able to describe the dynamic structure factor from first
principles (see Figure 2.3). In contrast to the crystalline state a disordered system
is characterized by the absence of translational invariance, thus a density fluctu-
ation with wavevector Q is not an ”eigenstate” of the system. The dynamics of
a glass is influenced by the presence of new degrees of freedom with respect to a
crystal: hopping, tunneling and relaxation processes.
According to the complexity of the processes that control the dynamics in a glass,
the S(Q,ω) is not simply structured as in a crystal. However the dynamic struc-
ture factor of a glass can be characterized using quantities that have a well defined
meaning in the corresponding crystalline state as the energy excitation ~Ω, the
linewidth ~Γ and the nonergodicity factor fQ. The behavior of these parameters
in the mesoscopic region has been discussed in Chapter 2.

4.1.3 X-rays versus Neutrons

Traditionally the study of the atomic motion in condensed matter in this high fre-
quency region has been the domain of inelastic neutron scattering (INS). Neutrons
are particularly suited to these studies mainly for two reasons:

• neutrons with wavelengths comparable to the interparticle spacing have ki-
netic energy of ∼= 100 meV , and therefore, with moderate relative energy
resolution, it is possible to study efficiently the collective atomic excitations.

• neutrons scatter from the nuclei with an interaction strength sufficiently
small to allow a large penetration in most materials.

The INS technique has been successfully applied to the study of the density fluctu-
ations spectrum of crystalline solids and low density gases. In disordered systems,
like liquids, glasses and dense gases, very few neutrons studies have been per-
formed so far. In fact, due to the kinematics of the scattering process, the neutron
technique cannot be efficiently applied to study sound modes in materials with a
large speed of sound, typically above 1500 m/s. These kinematic limitations do
not apply to x-rays which are, therefore, particularly well suited to study the small
momentum and large energy transfer regions.
Neutrons directly couple to the nuclei through the Fermi pseudo-potential. More-
over, they have a spin of 1/2, and therefore the magnetic interaction with matter
is non negligible. The double differential cross section for neutrons reads [154]:

∂2σ

∂Ω∂ωf

= (
kf

ki

)[|〈b〉|2S(Q, ω) + (|〈b〉|2 − 〈|b|2〉)Ss(Q, ω)] (4.22)

where b is the neutron scattering length. Comparing this equation with that for
IXS (equation 4.13), it can be noticed that they are identical, once f(Q) is re-
placed by b. The difference between these two quantities arises from the fact that
f(Q) is an electronic property, while b is a purely nuclear property. X-rays are
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scattered by different materials according to the number of electrons (Z) of the
atomic species (f(Q) ∝ Z). On the other hand, b depends on Z, A (the atomic
number) and J̄ , the total (electronic + nuclear) magnetic moment. The result-
ing scattering strength can therefore be very different for different isotopes of the
same material, but also for the same isotope with a different orientation of its
total magnetic moment. This ”sensitivity” can produce very strong deviations of
the actual scattering length with respect to its average value, thus leading to a
significant contribution of the incoherent term (∝ |〈b〉|2 − 〈|b|2〉) in the neutron
cross section.
On the other hand, neutrons present an enormous advantage. Neutrons with a De
Broglie wavelength of about one Å have energies of ∼ 10 ÷ 100 meV , the same
order of magnitude of typical inelastic excitations. A moderate instrumental reso-
lution in energy (∆E/E) and momentum (∆Q/Q) of ∼ 10−2 is therefore sufficient
to probe the S(Q,ω) in the Å−1 and meV range. In contrast to this, X-rays with
wavelengths of a few Å have energies of some keV . A much higher instrumental
energy resolution (∆E/E ∼ 10−7) is then needed in order to resolve the same
excitations.
Another important difference between IXS and INS concerns the accessible dy-
namic range. The dynamic range corresponds to the (Q,E) values for which the
scattering process is allowed. For neutrons it can be derived by using the general
conservation laws (see equation 4.1) and the quantum mechanical relation between
energy and momentum:

E =
~

2|k|2
2Mn

(4.23)

where Mn is neutron mass. The equation that defines the dynamic range for neu-
trons is then:

|Q|2
|ki|2

= 2 − 2MnE

~2|ki|2
+ 2cos(2θ)

√

1 − 2MnE

~2|ki|2
(4.24)

This equation can be considered as the equivalent of equation 4.2 for X-rays. It is
evident that the momentum transfer, Q, is not only determined by the scattering
angle, but also by the energy transfer. Plotting equation 4.24 in the (Q,E)-plane,
a set of curves, corresponding to different 2θ values, can be derived. The points
lying on these curves are the only ones that can satisfy the energy and momentum
conservation laws. In the left panel of Figure 4.3 the typical dynamical range for
thermal (300 K) neutrons (i.e. ki = 35 nm−1 and Ei = 25.8 meV ) is reported. In
the right panel of the same figure the corresponding curves for the X-rays employed
in the present study (i.e. ki = 120 nm−1 and Ei = 23.724 keV ) are reported. In
both panels typical values for sound-like excitations are reported as straight lines.
Inspecting Figure 4.3 it is clear that X-rays can measure high energy excitations
even at low-Q (notice the factor 20 between the two energy scales). The limita-
tions imposed by the dynamic range are of primary importance in the study of
amorphous systems, like glasses or fluids, where the lack of translational period-
icity does not allow for the definition of Brillouin zones. As a consequence the
experiment has to be performed at small momentum transfer, at Q-values below



Chapter 4. High frequency dynamics of sorbitol 101

the first diffraction peak. In these cases, the energy of neutrons has to be increased
in order to enlarge the dynamical range, at the expense of the energy resolution.
Some differences between IXS and INS are listed in table 4.1.
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Figure 4.3: Dynamical range for neutrons (left panel) and x-rays (right panel).
Typical values for sound-like excitations, propagating with the velocity indicated

in the respective panels, are plotted as straight lines.

In conclusion the main advantages in using IXS rather than INS to study disor-

IXS INS

no correlation between strong correlation between
momentum and energy transfer momentum and energy transfer

∆E/E ∼ 10−7 ÷ 10−8 ∆E/E ∼ 10−1 ÷ 10−2

∂2σ/∂Ω∂Ef ∼ r2
0Z

2 (for small Q) ∂2σ/∂Ω∂Ef ∼ b2

strong photoelectric absorption weak absorption
⇒ no multiple scattering ⇒ multiple scattering

negligible incoherent scattering incoherent scattering
insensitive to magnetic excitations sensitive to magnetic excitations
small beam size: 100 µm or smaller large beam size: ∼ cm

small beam divergence: ∼ µrad large beam divergence: ∼ rad
low energy resolution high energy resolution

(1 ÷ 8 meV ) (0.5 ÷ 5 meV )
Q resolution ∼ 0.30 nm−1 Q resolution ∼ 1 nm−1

”infinite” dynamical range limited dynamical range

Table 4.1: Main characteristic of IXS and INS.

dered systems are the following:

• In some cases, using INS, it is impossible to separate the coherent and inco-
herent contribution.
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• X-rays are not limited by kinematic constraints (dynamical range). They
can probe high values of energy transfer even at small momentum transfer.

• IXS can allow for higher Q-resolution than INS.

In the last decade, these advantages of IXS were indeed successfully exploited in
the study of the collective dynamics in those cases where INS is difficult to apply
(kinematic limitations, large incoherent scattering, multiple scattering, very high
momentum resolution, or small samples).

4.1.4 An IXS spectrometer: beamline ID16 at the ESRF

In this section the IXS beamline ID16 at the European Synchrotron Radiation
Facility (ESRF) in Grenoble [155] will be briefly described. The experimental
strategy used for IXS measurements with meV energy resolution (thus suitable to
study the high frequency collective excitations) resembles that of a triple axis neu-
tron spectrometer (see Figure 4.4). The first axis is the backscattering monochro-
mator crystal which selects the energy ~ωi of the incident photons. The second
axis is located at the sample position, and determines the momentum transfer by
selecting the scattering angle. Finally the third axis corresponds to the analyser
crystal, which selects the scattered photon energy, ~ωf and focuses the scattered
radiation on the detector. The ID16 beamline is equipped with a 9 analysers crys-
tals which allow for the collection of 9 different IXS spectra, corresponding to 9
different transfer momenta, at the same time.
The optical layout of the triple axis inelastic x-ray spectrometer is reported in

Figure 4.4: Principle of a triple axis inelastic x-ray spectrometer.

Figure 4.5. The X-ray source consists of three undulators with a magnetic period
in the 26 mm- 35 mm range and a total length of 4.8 m, placed in a straight section
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of the electron storage ring. The utilized X-ray radiation energies correspond to
the undulator emission at the 3rd or 5th harmonics. The X-ray beam from the
undulator odd-harmonics has approximately a 40 × 20 µrad2 (horizontal × verti-
cal) angular divergence (FWHM), a spectral bandwidth ∆E/E ∼ 10−2, and an
integrated power within this divergence in the order of 200 W.
The X-ray beam from the undulators is pre-monochromatized to a bandwidth
∆E/E ≈ 1 · 10−4 using a silicon (1, 1, 1) double crystal monochromator kept in
vacuum and cooled by liquid nitrogen. The main role of the pre-monochromator is
to reduce the heat load impinging on the main monochromator. This is mandatory
in order to keep the thermal deformation of the silicon crystal below the limits for
which the energy resolution starts to deteriorate.
The X-ray photons from the pre-monochromator impinge onto the high energy res-
olution backscattering monochromator, consisting of an asymmetrically cut silicon
crystal oriented along the [111] direction, operating at a Bragg angle of 89.98o.
This extreme backscattering geometry insures the minimization of geometrical
contributions to the total energy resolution. The spectral angular acceptance, the
so-called Darwin width, is larger than the X-ray beam divergence, and, therefore,
all the photons within the desired energy bandwidth are transmitted. High order
Bragg reflections and perfect crystals are required in order to obtain the necessary
energy resolution of ∆E/E ∼ 10−7 ÷ 10−8. For this reason, silicon is used at
(n, n, n) reflections, with n = 7, 8, 9, 11, 12, 13 [156].
The monochromatic beam is focused in the horizontal and vertical plane by a

Figure 4.5: Optical layout of the beamline ID16 at the ESRF.

platinum coated mirror, located at 26 m from the sample and composed of two
regions: a central one with a cylindrical shape in the sagittal direction, and a lat-
eral one which is flat in the sagittal direction. The first region provides a focus at
the sample position of 250× 100 µm2 (H×V) FWHM. The lateral part provides a
focal size of 60×20 µm2 (H×V) FWHM, where the horizontal focusing is achieved
using a multilayer mirror.
The photons scattered by the sample are then energy-analyzed by the nine spher-

ical analysers which are mounted in a horizontal spectrometer and which operate
similarly to the high resolution monochromator (i.e in a near backscattering con-
figuration and at the same reflection order as the backscattering monochromator).
Although the problems connected to the energy resolution are conceptually the
same for the monochromator and for the analysers, the required angular accep-
tance is very different. The monochromator can be realized using a flat perfect
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Figure 4.6: Left panel: scheme of the position of the nine analysers (yellow
disks) employed at the beamline ID16 at ESRF. Right panel: inside of the
analyser chamber. The analysers are placed in two rows, with a fixed angular

offset of ∼ 0.75◦.

crystal. For the analyser crystals the optimal angular acceptance is dictated by the
desired momentum resolution. Considering values of ∆Q in the range of 0.1÷ 0.5
nm−1, the corresponding angular acceptance of the analysers crystals must be
∼ 10 mrad or higher, a value too much larger than the Darwin width. In addi-
tion the analysers system has to preserve the single crystal perfection necessary
to obtain the desired energy resolution. This constrain automatically excludes the
possibility to consider elastically bent crystals. The solution adopted at beamline
ID16 consists of laying a large number of undistorted perfect flat crystals on a
spherical surface, with the aim to use a 1:1 pseudo-Rowland circle geometry with
aberrations kept such that the desired energy resolution is not degraded. These
analysers consist of ∼12000 silicon perfect single crystals of surface size 0.6 × 0.6
mm2 and a thickness of 3 mm, glued on a spherical substrate of a radius equal
to the length of the spectrometer arm [157, 158]. The nine independent analysers
system is shown in Figure 4.6. The analysers are displaced on two rows with a
fixed angular offset among themselves of ∼ 0.75o, mounted on a 6.5 m long arm
that can rotate around the vertical axis passing through the scattering sample in
the 0o to 13o angular range. This configuration allows for recording 9 IXS spectra
at the same time, with a nearly constant Q-offset.
The spectrometer furthermore features of an entrance pinhole, motorized slits
in front of the analyser crystals to set the desired momentum resolution, and a
multi-element detector. The detectors are Peltier cooled silicon diodes of 1.5 mm
thickness with an active area of 3 × 8 mm2, inclined at 20o in order to enhance
the X-ray absorption. They have a very low dark count signal (∼ 1 count in 15
minutes).
Differently from traditional triple axis spectrometers, as a consequence of the
extreme backscattering geometry, the energy difference between analysers and
monochromator cannot be varied modifying the Bragg angle of one of the two
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crystals. The energy scans are therefore performed by changing the relative tem-
perature, ∆T , of the monochromator. This induces a relative variation of the
lattice parameters, ∆d/d = α(T )∆T , and therefore a relative variation of the
diffracted energy, ∆E/E = −∆d/d, is induced as well. Considering for the ther-
mal expansion coefficient, α, a value of ∼ 2.58 ·10−6K−1 at room temperature, the
required energy resolution of 10−7 ∼ 10−8 implies an accuracy in the temperature
control of the monochromator crystal in the mK-range. This task is achieved with
a carefully designed temperature bath, and an active feedback system [156], which
assures a temperature control with a precision of 0.2 mK in the temperature region
around 295 K. In order to convert the temperature scale into the energy scale, the
most recent results for α(T ) have been considered [159]:

α(T ) = α0 + β∆T (4.25)

where α0 = 2.581 ± 0.002 · 10−6 K−1, β = 0.016 ± 0.004 · 10−6 K−2, ∆T =
T − T0(22.5) oC. From equation 4.25 one can precisely calculate the variation of
lattice constants at the temperature T :

∆d/d0 =

∫ T

T0

α0 + β(T ′ − T0)dT ′ = (α0 − βT0)∆T +
1

2
β(T 2 − T 2

0 ). (4.26)

Finally, the variation of the diffracted energy, ∆E/E = −∆d/d, is easily calcu-
lated.

Figure 4.7 shows the instrumental response function of one of the nine analy-

Figure 4.7: Measured instrumental resolution function, corresponding to the
Si(11, 11, 11) configuration of the spectrometer, plotted both in linear (left

panel) and logarithmic (right panel) scale.

sers, corresponding to an energy resolution of 1.5 meV , when operating at the
Si(11, 11, 11) reflection . It has been recorded by measuring the scattering from a
disordered sample (Plexiglass) at a temperature of 10 K and at a Q-transfer cor-
responding to the first maximum of its static structure factor (10 nm−1). In this
way the elastic contribution to the scattering is maximized. Table 4.2 summarizes
the main characteristics of the 6.5 m long horizontal spectrometer.
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n Energy ∆E Qmax ∆Q Flux
[keV ] [meV ] [Å−1] [nm−1] [photons/s/200mA]

7 13.839 7.6 ± 0.2 2.0 0.95 1.0 · 1011

8 15.816 5.5 ± 0.2 2.3 0.55 7.6 · 1010

9 17.793 3.0 ± 0.2 2.6 1.25 2.4 · 1010

11 21.747 1.5 ± 0.1 3.2 1.50 4.6 · 109

12 23.724 1.3 ± 0.1 3.5 1.65 3.4 · 109

13 25.701 1.0 ± 0.1 3.8 1.75 1.0 · 109

Table 4.2: Main characteristics of the ID16 6.5 m long horizontal spectrometer,
for different Si(n, n, n) reflections. Energy indicates the incident photon energy,
∆E is the total energy resolution, Qmax indicates the maximum momentum
transfers and ∆Q indicates the Q-spacing between adjacent analyzers. The

photon flux values are measured at the sample position.

4.2 IXS measurements

Inelastic X-ray scattering (IXS) measurements were carried out at the beamline
ID16 at the European Synchrotron Radiation Facility in Grenoble [155]. In order
to get the highest exploitable energy resolution, an incident beam with an energy
of 23.724 keV and the silicon (12,12,12) reflection order for the main backscattering
monochromator have been employed. The overall energy resolution of the spec-
trometer was 1.3 - 1.5 meV full-width-half-maximum, depending on the analyser
crystal, and has been determined from the elastic scattering measurements from
a Plexiglass sample at low temperature, as explained in the previous section. The
energy scans have been performed by varying the temperature of the monochroma-
tor and keeping the temperature of the analysers fixed. Dynamic structure factor
spectra, S(Q,ω), have been collected in the exchanged momentum, Q, range be-
tween 1.3 and 12 nm−1 and have been normalized to the intensity of the incident
beam. Several experiments have been performed in order to collect information on
the acoustic-like dynamics of sorbitol in a wide temperature range from the deep
glassy phase up to the glass transition temperature. The Q resolution was defined
by slits in front of the analysers and was kept at about ∼ 0.34 nm−1. For each
momentum transfer several scans have been added to enhance the measurements
accuracy. Each scan has been performed in the -30/+30 meV energy range around
the elastic line by using a step of 0.2 meV in the central part of the spectrum (-
20/+20 meV) and a step of 0.4 meV in the tails. Each step has been counted
at least for 60 s. The total acquisition time for each spectrum has been chosen
between 4 and 8 hours depending on the investigated temperature.
The glass of sorbitol has been obtained by rapidly quenching in liquid nitrogen a

sample of liquid sorbitol kept for some hours under vacuum at about 383 K in or-
der to obtain an homogeneous and well transparent liquid, free of any gas content.
A Pyrex glass tube, 4 mm of inner diameter and 19 mm of length, closed with
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Figure 4.8: Sample holder (left) and cryostat (right) used for the IXS mea-
surements on glassy sorbitol.

two diamond single crystal disks of 0.5 mm of thickness has been used as sam-
ple holder (left panel Figure 4.8). The cell length was chosen in order to match
the photoelectric absorption length of sorbitol at the chosen incident energy (see
equation 4.14). The temperature of the sample was controlled using a Cryomech
ST15 cryostat (right panel Figure 4.8). The absence of crystallization has been
checked during all the experiments by measuring the static structure factor of the
system (see Figure 4.9).
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Figure 4.9: Scattered intensity of sorbitol measured at T=80 K. The dashed
line represents the position of the first sharp diffraction peak.
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4.2.1 Data analysis

Figure 4.10 shows a selection of dynamic structure factor spectra collected at the
lowest investigated temperature (T= 80 K) for several different exchanged mo-
mentum (Q) values. The spectra are composed by a central peak at zero energy
transfer and two inelastic features corresponding to the Stokes and anti-Stokes
components of the Brillouin doublet and thus related to the acoustic-like modes.
On increasing the momentum transfer Q in the scattering process, the doublet
clearly shifts toward higher energies and becomes broader. The temperature de-
pendence of the spectra is shown in Figure 4.11 for T=80, 150 and 246 K and for
two different exchanged wave vectors. On decreasing the temperature the inten-
sity of the inelastic doublet decreases while the excitation energy and broadening
do not display any visible change. In both Figures the intensity of the spectra is
reported on an absolute scale following the procedure described below. The good
signal-to-noise ratio can be appreciated by the smoothness of the points on the
tail of the spectrum.
In general, the IXS spectra can be formally expressed as [96]

I(Q, ~ω) = A(Q)~ω
n(~ω) + 1

kBT
SL(Q, ~ω) (4.27)

where SL(Q, ~ω) is the dynamic structure factor corresponding to the longitudinal
modes, n(~ω) is the Bose factor and A(Q) is a normalization factor mainly reflect-
ing the Q dependence of the atomic form factor. The SL(Q, ~ω) can be modeled
as the sum of a delta function to describe the elastic line and a damped harmonic
oscillator model (DHO) for the inelastic component:

S(Q, ~ω) = S(Q)

[
fQδ(~ω) + (1 − fQ)

1

π~

Ω(Q)2Γ(Q)

[ω2 − Ω(Q)2]2 + ω2Γ(Q)2

]
(4.28)

In this expression the parameter fQ is the non ergodicity factor (see section 2.4)
and corresponds to the inelastic to the total integrated intensity ratio.
The IXS measured intensity has been fitted through the convolution of the model
function described by equation 4.28 with the instrumental response function times
an intensity parameter. A baseline has also been added to account for background
noise. In Figure 4.10 and 4.11 the experimental data are reported together with
the best fitting line shape, the DHO contribution corresponding to the inelastic
features and the instrumental resolution.

4.2.2 Spectra normalization

The reliability of the measurements is strictly related to the possibility of reporting
the spectra on an absolute scale. In neutron scattering experiments the measured
spectra can be properly normalized using a reference scatterer. The use of X-
rays does not allow us to simply use such procedure, since geometrical effects
can critically affect the relative intensity. Such a problem can be avoided using
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Figure 4.10: Selected IXS spectra of glassy sorbitol at T=80 K for different
exchanged wave-vectors Q together with the best fitting line shape (red line).
The elastic (dashed green line) and the inelastic (dashed-dotted-dotted purple
line) components of the DHO model are reported after convolution with the
instrumental resolution. The intensity is reported in absolute scale as explained

in the text.



Chapter 4. High frequency dynamics of sorbitol 110

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.00

0.08

0.16

 Data
 Fit
 Resolution
 DHO  

Energy (meV)

T=80 K
0.00

0.08

0.16
T=150 K

 

 

 

0.00

0.08

0.16

0.24

S(
Q

,
) (

eV
-1

)

T=246 K

 

 

 

A)

-16 -12 -8 -4 0 4 8 12 16
0.00

0.04

0.08

0.12  Data
 Fit
 Resolution
 DHO  

Energy (meV)

T=80 K
0.00

0.04

0.08

0.12 T=150 K

 

 

 

0.00

0.04

0.08

0.12

S(
Q

,
) (

eV
-1

)

T=246 K 

 

 

 

B)

Figure 4.11: Selected IXS spectra of glassy sorbitol at T=80, 150 and 246
K for Q=1.60 nm−1 (A) and Q=3.06 nm−1 (B) together with the best fitting
line shape (red line). The elastic (dashed green line) and the inelastic (dashed-
dotted-dotted purple line) components of the DHO model are reported after
convolution with the instrumental resolution. The intensity is reported in ab-

solute scale as explained in the text.

the frequency moments of the dynamic structure factor as a tool to normalize
the measured intensity [76]. For such purpose, the second moment is the most
appropriate. In its classic description, it is given by the relation

M(2)(Q) =

∫ +∞

−∞

dωω2S(Q,ω) =
Q2kBT

M
(4.29)

where kB is the Boltzmann constant, T the temperature, ω the angular frequency,
and M the molecular mass of the system. The experimental dynamic structure
factor has then been normalized using the factor A(Q) where

A(Q) =
1

M(2)(Q)

∫ +∞

−∞

dωω2Sexp(Q,ω) (4.30)

being Sexp(Q,ω) given by equation (4.28) using the parameters obtained in the fit
routine.
This procedure allows for the determination of S(Q) integrating the quantity
(1/A(Q))Sexp(Q,ω).
It is important here to stress that the S(Q) can be, of course, obtained only in the
investigated Q range and that the whole procedure is an approximation being all
the integrals performed in the limited experimental energy range.

A check of this normalization procedure and, more in particular, of the use of the
DHO model (see equation 4.28) in the analysis of the spectra, is confirmed by the



Chapter 4. High frequency dynamics of sorbitol 111

0 2 4 6 8 10
0.1

0.3

0.5

0.7

0.9

1.1

1.3  S(Q)(1-fQ)

 kBT/(MvL
2)

Q (nm-1)

 

 

S(
Q

)(
1-

f Q
), 

 k
B
T/

(M
v L2 )

x10-3

Figure 4.12: The two sides of equation 4.31. The equality between the two
quantities represents a check of the consistency for the data analysis of the IXS

spectra.

following equality

S(Q)(1 − fQ) =
kBT

M

1

v2
∞

(4.31)

between the inelastic intensity S(Q)(1− fq) and the quantity kBT
M

1
v2
∞

. In fact this
relation is just a consequence of the application of the second moment rule to
the DHO function. The two sides of the equation have been calculated and are
reported in Figure 4.12. The relation 4.31 is well fulfilled in the whole investigate
range range confirming the validity of our data analysis procedure.

4.2.3 Static structure factor and compressibility

Once the static structure factor has been computed, we can study its value in the
Q → 0 limit. In the case of equilibrium systems, such as liquids and gases, the
macroscopic limit of the static structure factor gives information on the isothermal
compressibility χT , being

S(Q → 0) =
ρkBTχT

M
(4.32)

where ρ is the density.
In a glass, thus in a non equilibrium system, this relation must be modified taking
into account the relaxational processes that are frozen in at the glass transition
temperature Tg [160–162]. By considering these non-propagating density fluctua-
tions that are kinetically arrested at Tg the low Q limit of the S(Q) (4.32) becomes

S(Q → 0) =
ρkB

M

{
Tg

[
χ0

T (Tg) − M−1
∞ (Tg)

]
+ TM−1

∞ (T )
}

(4.33)
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where M∞(T ) is the real part of the high-frequency longitudinal modulus, related
to the sound velocity of the acoustic-like modes through the relation M∞(T ) =
ρ(T )v2

∞(T ), and χ0
T (Tg) is the isothermal compressibility in the liquid phase at

the glass transition temperature (see table 3.2). The previous equation assumes,
thus, that the fluctuations not frozen in below the glass transition arise from
long-wavelength propagating vibrational modes due to high-frequency longitudinal
excitations. In particular, the two relations 4.32 and 4.33 differ mainly in the case
of fragile systems, such as sorbitol, and less in strong materials. In fragile systems,
in fact, the compressibility is characterized by a bigger jump at the glass transition
than in strong materials and only by properly considering this jump it is possible
to estimate the correct long wavelength limit of the density fluctuations amplitude.
From the low Q limit of A(Q) we find S(Q → 0) = (2.8 ± 0.1) × 10−3 for T=80
K. Such value is compatible with the one estimated from relation (4.33), S(Q →
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Figure 4.13: Static structure factor of sorbitol obtained from the zero-th
moment of the normalized IXS spectra at T=80 K. The blue line represents the
long wavelength limit estimated from relation 4.33, while the green solid line

represents the macroscopic prediction 4.32.

0) = (2.3 ± 0.1) × 10−3, obtained from thermodynamic measurements [117] and
low-frequency Brillouin light scattering data (see section 3.3). Figure 4.13 shows
the value of the S(Q) obtained at T=80 K together with the limits corresponding
to equations 4.33 and 4.32. The simple hydrodynamic expression 4.32 gives a too
low value with respect to the data leaving a difference that can be completely
accounted for by taking into account the presence of density fluctuations frozen in
at Tg.
The value of the low Q limit of the S(Q) has been checked also at the other
investigated temperatures, thus for T=150, 220, 246, 256 and 267 K as well. The
obtained limits are reported in table 4.3 together with the ones estimated from
relations 4.32 and 4.33. In the case of the macroscopic limit 4.32, the values have
been obtained using the low frequency BLS data for all the temperatures, except
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for Tg where v0 has been obtained using also PVT measurements. There is a
good agreement between the experimental data for S(Q) and the limit 4.33 for all
temperatures. The validity of this relation represents a strong confirmation of the
whole normalization process and, thus, of the reliability of the measured spectra.

T S(Q → 0)exp. S(Q → 0)therm. S(Q → 0)macr.

[K] [10−3] [10−3] [10−3]

80 2.8 ± 0.1 2.3 ± 0.1 0.29 ± 0.02
150 2.4 ± 0.1 2.5 ± 0.1 0.55 ± 0.03
220 3.0 ± 0.1 2.7 ± 0.1 0.84 ± 0.05
246 3.1 ± 0.1 2.7 ± 0.1 0.95 ± 0.06
256 3.4 ± 0.1 2.8 ± 0.1 1.00 ± 0.06
267 3.8 ± 0.2 2.8 ± 0.1 2.8 ± 0.1

Table 4.3: Long wavelength limit of the amplitude of the density fluctuations
at different temperatures as obtained by the zero-th moment of the normalized
IXS spectra, S(Q → 0)exp., together with the values obtained from equation 4.33
using thermodynamic and low frequency data, S(Q → 0)therm., and from the
macroscopic equation 4.32, S(Q → 0)macr.. The latter has been calculated using
the isothermal compressibility estimated from the BLS data with the exception

of the value at Tg which comes from PVT measurements.

4.3 Acoustic properties of sorbitol at T=80 K

Figure 4.14 reports the acoustic dispersion curve of sorbitol for T=80 K as a func-
tion of the momentum Q transferred in the scattering process. The corresponding
estimated static structure factor is reported as well. As generally observed, the dis-
persion curve of glasses shows a striking resemblance with that of polycrystalline
samples [77]. The Brillouin energies show indeed a seemingly linear dependence
at low Q, which seems to correspond to the elastic macroscopic limit measured
at low frequency with Brillouin light scattering (dashed red line in Figure 4.14).
The analogy with respect to polycrystalline samples allows for the identification
of a pseudo-Brillouin zone with a border at ∼ 7 nm−1, a value that corresponds to
half of the first diffraction peak position (see Figure 4.9). The green line in Figure
4.14 represents the energy of the maximum of the boson peak of sorbitol mea-
sured with inelastic neutron scattering (see next Chapter). It is clear, here, that
the high frequency modes maintain their propagating character well beyond the
energy maximum in the reduced VDOS, confirming the same behavior observed
in other glasses [57].
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Figure 4.14: Dispersion relation of the longitudinal acoustic-like excitations
of sorbitol measured at T= 80 K. The data (blue dots, left y axis) are reported
as a function of the momentum transfer Q together with the static structure
factor S(Q) (green crosses, right y axis). The dark green line indicates the
energy of the boson peak maximum while the red dashed line corresponds to

the macroscopic elastic limit measured with Brillouin light scattering.

4.3.1 Breakdown of the Debye continuum approximation

The shape of the dispersion curve yields information on the apparent phase ve-
locity vL(Q) = Ω(Q)/Q that is reported as a function of Q in Figure 4.15 in the
whole investigated range (left panel) and in the low Q region (right panel). The
data do not show the smooth, sine-like decrease proposed from early experimental
results (see section 2.2). Rather, they present an abrupt decrease from the macro-
scopic value (horizontal line, from BLS data) to a lower plateau at ∼2 nm−1, while
only for higher Q values they show the expected sine-like decrease on approaching
the border of the pseudo-Brillouin zone (∼ 7 nm−1). The presence of the low-Q
negative dispersion cannot be associated with static density fluctuations. Indeed,
as shown in the same Figure, in the low Q region the static structure factor is al-
most flat and the medium can still be considered as a continuum from the density
point of view. This means that the softening of the sound speed is related to the
existence of extra degrees of freedom with respect to the elastic macroscopic level.
Using Figure 4.14 to convert energies into Q values, it is easy to realize that this
flattening of the sound velocity appears exactly in the energy range of the boson
peak, which corresponds to Q ∼ 1.7 nm−1 and that, of course, a flattening of the
sound velocity implies an excess of acoustic modes in the VDOS over the Debye,
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continuum medium prediction1. This mode softening, which is a quite marked
effect of the order of 8% confirms the results recently found in glassy glycerol [96]:
the Debye continuum approximation in glasses holds up to ∼1 nm−1 and above
that it undergoes an abrupt breakdown, whilst it still works reasonably well in
that same Q range for the corresponding crystals.
Differently from the case of glycerol (see the top panel of Figure 2.6), in sorbitol the
IXS apparent sound velocity reaches the macroscopic limit already at the lowest
probed Q-values, thus indicating the absence of relevant anharmonic, relaxational
and/or other Q-dependent effect in the frequency interval comprised between the
THz range probed by IXS and the 10 GHz range probed by BLS.
The presence of a negative dispersion of the sound velocity in the mesoscopic
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Figure 4.15: Left panel: sound velocity of sorbitol measured a T=80 K (blue
dots) as a function of the momentum transfer Q (blue dots) together with the
static structure factor S(Q) (green crosses). The red dashed line corresponds
the macroscopic elastic limit measured with Brillouin light scattering. Right
panel: same data in a smaller Q range. The vertical green line represents the

Q corresponding to the Ioffe-Regel limit, as discussed in section 4.3.3.

spatial range has been recently found in a molecular dynamics study of a Lennard-
Jones monatomic glass model as well [98] and can be related to the inhomogeneities
of the elastic response at the nano-scale [74].

4.3.2 Acoustic attenuation

The width of the Brillouin peaks gives information on the sound attenuation of
the acoustic-like excitations in the THz frequency range. In fact the absorption

1The vibrational density of states can be described in terms of the sound velocity being
g(ω) ∝ dQ/dΩ [55].
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Figure 4.16: FWHM of the Brillouin peak as a function of the exchanged wave-
vector. The red line is best fit line shape obtained from the phenomenological
function 4.34 describing the crossover from a ∼ Q4 power law dependence at low
Q (pink line) to a quadratic behavior at higher Q (green line). The vertical light
green line represents the Q corresponding to the Ioffe-Regel limit, as discussed

in the next section.

coefficient αabs, given by the inverse of the mean free path l, can be expressed as
αabs = l−1 = (vLτ)−1 = Γ/vL, being τ the finite life time of the excitations.
In Figure 4.16 the Q-dependence of ~Γ is reported in log-linear scale for T=80
K. This parameter clearly displays a strong Q-dependence, changing continuously
(red line) from ∼ Q4 at low-Q (pink line) to ∼ Q2 at high-Q (green line), thus
supporting the universality of the low-Q ∼ Q4 dependence previously observed in
other few glasses [85, 91, 96].
The red line in the Figure is obtained by using the phenomenological function

~Γ(Q) = A
Q2

[
1 +

(
Qc

Q

)(4−2)δ
] 1

δ

(4.34)

describing the crossover from a ∼ Q4 power law dependence at low Q to a quadratic
behavior at higher Q. The obtained parameters are reported in table 4.4 As re-
ported in section 2.2, this Rayleigh regime (Q ∼ Q4) in the mode damping is
predicted by substantially different theoretical models for the vibrations in disor-
dered solids [68, 92, 93]. In fact, the existence of a plateau in the low temperature
thermal conductivity of glasses requires the mean free path of the propagating
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A Qc δ

0.37±0.01 2.13 ± 0.30 3.44 ± 1.23

Table 4.4: Values of the parameters entering equation 4.34 in the description
of the behavior of the sound attenuation reported in Figure 4.16.

acoustic excitations to decrease at least with the fourth power of energy [51]. The
existence of a strong scattering process in the nanometer spatial range has already
been observed only in fews other intermediate and strong glasses [85, 96]. Sorbitol
represents the first fragile system showing such behavior. It is in fact generally
very difficult to measure the high frequency modes in fragile systems for energies
close or below the boson peak one.
It is worth emphasizing that this peculiar ∼ Q4 dependence of the broadening ~Γ
appears in the same Q range where the negative dispersion of the high-frequency
sound velocity is detected, clearly indicating that these two features must be
strictly related. As it will be shown in the next Chapter, these elastic anoma-
lies not only appear in the same energy range of the boson peak, but, as in the
case of glycerol [96], they can be used to evaluate quantitatively the shape of the
boson peak.

4.3.3 The Ioffe-Regel criterion

The analysis of the high frequency dynamics allows us to calculate the Ioffe Regel
(IR) limit for the acoustic-like excitations of sorbitol. This limit is usually defined
as the energy where the mean free path becomes comparable to half of the wave-
length of the propagating plane-wave excitations, and corresponds to the condition

πΓIR/ΩIR = 1 (4.35)

for longitudinal and transverse modes. The IR criterion represents an upper limit
for a well-defined plane-wave approach to describe the acoustic-like excitations
[163].
In several systems the IR limit for the longitudinal acoustic-like modes takes place
at energies close to that of the boson peak maximum, suggesting the existence of
a strict correlation [91]. Nevertheless this result is highly controversial [164].
In the case of sorbitol, the Ioffe-Regel condition for the longitudinal branch is
fulfilled at about ΩIR ∼ 6.7 meV, thus at energies higher than that of the bo-
son peak (see Figure 4.17). Such result is in agreement with recent molecular
dynamics studies in which the equality ~ΩIR = ~ΩBP seems to hold only for the
transverse excitations, while the longitudinal modes reach that limit at higher
energies [98, 104]. Notwithstanding in some glasses the correlation between bo-
son peak and Ioffe Regel energy applies for both the longitudinal and transverse
branches [165].
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Figure 4.17: Ioffe Regel limit for the longitudinal acoustic-like waves at
T=80 K. The IR energy is given by the intersection between the data and the
red dashed line defined by equation 4.35. The solid green line marks the energy

of the boson peak maximum.

Using the dispersion curve (see Figure 4.14) to convert energies into Q values,
it is possible to define a IR wave-vector QIR, which in the case of sorbitol cor-
responds to QIR ∼ 2.55 nm−1. This value corresponds to the upper end of the
elastic anomalies detected at low Q for the longitudinal modes (see Figures 4.15
and 4.16), thus in a spatial range where the continuum approximation is no longer
valid.

4.3.4 Nonergodicity factor

Figure 4.18 shows the Q dependence of the nonergodicity factor of sorbitol mea-
sured at T=80 K. At this low temperature the fQ has been correctly measured
only for Q values above Q = 2.91 nm−1. Generally fQ follows in phase the oscil-
lations of the static structure factor and reaches an almost constant value in the
low Q region where S(Q) is flat.
For a system at thermodynamic equilibrium, the low Q limit of the nonergodicity
factor is given by the relation

fQ(Q → 0) = 1 − v2
0

v2
∞

(4.36)
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Figure 4.18: Nonergodicity factor of sorbitol measured at T=80 K. The red
rectangle represents the continuum limit calculated from relations 4.37 and 4.38.

where v0 and v∞ are the relaxed and unrelaxed sound velocity, respectively (see
Figure 1.8). In the case of glasses, relation 4.36 should be modified by taking into
account the jump of the isothermal compressibility at Tg. A correct macroscopic
limit estimation should indeed consider the relaxational processes that are frozen
in at the glass transition temperature as well as in the case of the static structure
factor. By using the correct low Q limit for the S(Q) given by equation 4.33, and
using equation 4.31 we obtain

fQ(Q → 0) =
1

1 + αχ(T ) T
Tg

(4.37)

where the parameter αχ(T ) is given by

αχ(T ) =
M−1

∞ (T )

χ0
T (Tg) − M−1

∞ (Tg)
(4.38)

where χ0
T (Tg) is the isothermal compressibility in the liquid phase at Tg and M∞

the real part of the high frequency longitudinal modulus. Expression 4.37 is for-
mally identical to the relation 2.5 proposed by Scopigno and coworkers [3]. The
main difference between these two relations resides in the definition of the param-
eter α (or αχ) in the denominator. In the case of Ref. [3] this relation was deduced
from an harmonic description of the atomic vibrations and the parameter α con-
tains all the microscopic details of the system. In the present case, instead, the
parameter αχ is described only through macroscopic quantities and turns out to be
nothing else that the extension for T < Tg of the relation between the vibrational
and relaxational compressibility 3.27 proposed by Buchenau and Wischnewski [4]
and discussed in section 3.3.3.
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The obtained continuum limit of the nonergodicity parameter 4.37 is also re-
ported in Figure 4.18. There is a clear good agreement with the experimental
data at low Q. The hydrodynamic value described by relation 4.36 corresponds
to fQ(Q → 0) = 0.31 ± 0.03, a value so low that cannot be reported in the same
Figure. As for the static structure factor, the long wavelength limit of the non-
ergodicity factor is clearly reached only by considering that part of the density
fluctuations are frozen in at the glass transition.

4.4 Temperature dependence of the high-frequency

dynamics
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Figure 4.19: Dispersion curves of sorbitol at different investigated tempera-
tures. The black line marks the energy of the boson peak maximum, which is

constant in the investigated temperature range.

The acoustic properties of sorbitol have been investigated in a wide temperature
range, from 80 K up to the glass transition temperature. As shown in Figure
4.11 a simple glance at the experimental data do not allow for a determination
of any remarkable temperature dependence of the inelastic features. The energy
excitations seems to be not very much affected by temperature variations. This
is also evident by looking at Figure 4.19 where the dispersion curve is reported
as a function of the momentum transfer Q for all the investigated temperatures.
All the results found at the lowest temperature- such as the existence of a pseudo
Brillouin zone with border at ∼ 7 nm−1 and the existence of propagating modes
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well above the boson peak energy- are valid up to the glass transition tempera-
ture.
The same observation can be drawn for the sound attenuation as well. Figure
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Figure 4.20: Q-dependence of ~Γ in log-linear scale for the different consid-
ered temperatures. The two lines emphasize the change in the Q-dependence of
~Γ from a power law compatible with Q4 at low Q to one compatible with Q2

at high Q.

4.20 shows the Q-dependence of ~Γ in log-linear scale for the different considered
temperatures. Both the Rayleigh ∼ Q4 dependence at low Q and the quadratic
Q-dependence at higher Q are present in whole investigated temperature range.
These data represent the first measurements of the temperature dependence of
the low Q strong damping regime found in some glasses [85, 91, 96]. The deter-
mination of the line width at so low exchanged wave vectors requires indeed high
accuracy in the IXS experiments. In particular, it was here possible to obtain re-
liable measurements of ~Γ down to ∼1.3 nm−1, where ~Γ is only about one fourth
of the FWHM of the instrumental function.
It is interesting here to note the temperature independence of ~Γ in the whole Q-
range. This result extends similar observations previously limited to the high-Q
Q2-range [89], and confirms the non-dynamic origin of sound wave attenuation in
the whole explored Q-range.
Looking more carefully at the data, the dispersion curve comes out to be not really
temperature independent. The temperature effects can be emphasized looking at
the apparent sound velocity, which is reported in Figure 4.21 a). The sound speed
is marked by a clear temperature dependence in the whole Q range.
It is interesting to observe that the temperature dependence of the IXS apparent

sound velocity curve follows that of the macroscopic one measured with BLS in
the whole explored Q-range, and in particular in the region where the plateau at
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Figure 4.21: Inelastic x-ray scattering results for the apparent sound velocity
vL = Ω/Q of the longitudinal acoustic excitations of glassy sorbitol at the
indicated temperatures. The macroscopic limits for the sound velocity obtained
from BLS measurements (see section 3.3) are reported as well (horizontal lines).
The vertical dot-dashed line marks the Q-value corresponding to the boson peak
position via the dispersion relation of Figure 4.19. (b): same data as in (a) but

rescaled for the macroscopic sound velocity.

∼2 nm−1 in the apparent sound velocity is observed: the shape of the dispersion
curves in this interesting range turns then out to be temperature independent.
This observation is verified in Figure 4.21 b), where the IXS sound velocity data at
the different temperatures are reported after rescaling for their macroscopic limit.
A single curve is obtained. This result implies that the dispersion curves in the
explored Q range can be completely described by the modifications of the elastic
medium.
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4.4.1 The quasi harmonic nature of the high frequency ex-
citations

The temperature dependence of the high-frequency acoustic dispersion curves of
glassy sorbitol can be described to a good approximation within a quasi-harmonic
approach.
In order to understand the role played by the temperature on the high frequency
sound velocity in glassy sorbitol, the data must be considered together with the
corresponding attenuation data, ~Γ. As reported in section 3.3 these two quantities
are in fact not independent: they are related to the real (M ′) and the imaginary
(M ′′) part of the longitudinal elastic modulus M(ω) = M ′(ω) + iM ′′(ω), being
M ′ = v2

Lρ and M ′′ = ΓvLρ/Q, where ρ is the mass density.
The scaling of the high frequency sound velocity data with the elastic contin-

Figure 4.22: Scheme of the frequency dependence of the real and imaginary
part of the longitudinal modulus in presence of an additional anharmonic or

relaxational contribution. The details are explained in the text.

uum and the non-dynamic origin for the sound attenuation require the absence
of anharmonic effects in the frequency range explored by IXS. In section 3.3 we
have seen that the low frequency sound attenuation measured with BLS displays
a strong temperature dependence (see bottom panel of Figure 3.8). This behavior
represents a typical signature of the presence of anharmonic contribution in the
GHz frequency range explored by BLS [88]. The temperature dependence of the
IXS data imply instead that this contribution must be completely negligible in the
high frequency range here investigated.
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In general the role of anharmonicity can be quantitatively evaluated from the
analysis of the low frequency longitudinal modulus. The frequency behavior of
the sound velocity and absorption - proportional, respectively, to M ′ and M ′′ -
has been already reported in Figure 1.8 in presence of the structural relaxation
alone. The effect due to the presence of an additional secondary relaxational or
anharmonic contribution is schematically reported in Figure 4.22 for the real and
imaginary part of the longitudinal modulus. The anharmonicity leads to the ap-
pearance of a second step in M ′ (or in the sound velocity) with a corresponding
second peak in M ′′ (or in the absorption) when the angular frequency fulfills the
condition ωβ = 1/τβ.
The temperature dependence of M ′ and M ′′ obtained from BLS (see section 3.3)
and thermodynamic [117] measurements of glassy sorbitol are reported in Figure
4.23. The observed temperature dependence of the longitudinal modulus can be
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Figure 4.23: Temperature dependence of the real and imaginary part of the
longitudinal modulus of glassy sorbitol derived from BLS (see section 3.3) and
thermodynamic [117] measurements. The red full lines are the best fitting
curves using the model of equation 4.39. In the top panel the fully relaxed
(orange empty squares) and unrelaxed (green stars) values of M ′ are reported
for some representative temperatures, in order to emphasize the small effect on

M ′ of the purely anharmonic term of the model.
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described taking into account two important contributions: i) quasi-harmonic ef-
fects that induce a temperature dependence of the sound velocity following the
dependence of density on temperature [166, 167]; ii) purely anharmonic effects
that, as said above, play an important role on the acoustic absorption (and then
on M ′′) in the GHz frequency range probed with BLS [88]. In addition to that, the
IXS data add further constraints: iii) M ′ must be basically frequency-independent
in the frequency range between the frequencies probed in the BLS experiment
(∼20 GHz) and those probed in the IXS one at the lowest considered Q value
(∼1 THz); iv) the Γ probed in the IXS experiment is clearly of non-dynamic
origin, which implies that anharmonic contributions must be negligible at the cor-
responding frequencies. Following Ref. [168], it is then possible to set up a simple
model to describe the BLS data. Indeed the longitudinal modulus can be expressed
as

M(ω) = M∞ − ∆2
M

1 + iωτ
, (4.39)

where M∞ = ρv2
∞ is the fully unrelaxed longitudinal modulus that one can mea-

sure at frequencies high enough for the anharmonic contributions to be completely
negligible, and v∞ is the corresponding sound velocity; ∆2

M = M∞ − M0∞ rep-
resents the strength of the anharmonic process, where M0∞ is the fully relaxed
longitudinal modulus that one would measure if there were no anharmonicity, and
τ is an average relaxation time [168]. In this simple model M ′ is then given by the
quasi-harmonic term M∞ corrected for the anharmonic contribution, while M ′′ is
completely determined by the anharmonic term, being

M ′ = M∞ − ∆2
M

1 + ω2τ 2
and M ′′ =

∆2
Mωτ

1 + ω2τ 2
(4.40)

In order to use equation 4.40 to describe the BLS data in Figure 4.23, with the
additional constraints posed by the IXS data, it is necessary to fix the temperature
dependence of the various parameters that intervene in it.
In a quasi-harmonic picture the purely elastic velocity, v∞ can be taken to be
linearly dependent on density [166, 167], and therefore linearly dependent on tem-
perature, that is M∞(T ) = M0

∞(1+aT )2 with M0
∞ and a temperature independent

parameters. Moreover, for consistency reasons, the strength ∆2 can be defined as
∆2 = ∆2

0(1 + bT )2, with again ∆2
0 and b temperature independent parameters.

Finally, the relaxation time τ can be for simplicity reasons assumed to have an
exponential behavior τ = τ0e

En
T , with τ0 and En again assumed to be temperature

independent.
The model of equation 4.40 can then be adjusted to the data of Figure 4.23 (with

the additional constraints posed by the IXS ones) using the six parameters above
as free parameters. The best fitting curve obtained from this analysis is reported
as well in Figure 4.23, and well reproduces the experimental data 2. From the
model of Equation 4.40 we obtain the parameters reported in table 4.5. In partic-
ular we find a value En ∼30 K and a characteristic time τ ∼15 ps at 150 K, which

2The increase in M ′′ observed in the BLS data at high temperatures is due to the structural
relaxation entering the frequency window probed by BLS and cannot be accounted for by our
simple model (see section 3.3).
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M0
∞ a ∆2

0 b τ0 En

[GPa] [10−4K−1] [GPa] [10−4K−1] [ps] [K]

28.5 2.48 0.23 9.0 12.5 27.3

Table 4.5: Values of the parameters of the equation model 4.40 used to describe
the temperature behavior of M ′ and M ′′ of sorbitol.

are quite common figures for glasses [88]. The values of M0∞(T ) and M∞(T ) are
also reported in Figure 4.23 at some representative temperatures, in order to give
a visual idea of the obtained M0

∞, ∆2
0, a and b parameters. It is clear that the BLS

results for M ′ (and thus for the sound velocity) basically correspond to the purely
elastic limit, with anharmonicity affecting them only very slightly due to its small
strength. This clarifies why the sound velocity obtained in the BLS experiment
and in the IXS one at the smallest probed Q values are basically coincident, and
implies that the observed temperature dependence of the sound velocity both in
the BLS and in the IXS range is practically governed by the quasi-harmonic term
alone. This explains as well the origin of the scaling observed in Figure 4.21 b).
The anharmonic term conversely completely describes M ′′ in the BLS frequency
range while, given the values obtained for ∆2 and τ , it turns out to be completely
negligible in the IXS range.

4.4.2 Fragility and nonergodicity factor

Figure 4.24 shows the Q dependence of the nonergodicity factor for the investigated
temperatures. In the Figure the macroscopic limits calculated from relations 4.37
and 4.38 are reported as well (see also values in table 4.6). It is interesting here
to note that even if the macroscopic level is not yet completely reached at the
lowest investigated Q values, there is a good agreement among the data and the
continuum values at all the selected temperatures. This agreement represents a
further confirmation of the validity of equations 4.37 and 4.38 for the estimation
of the long wavelength limit of the fQ from low frequency and thermodynamic
measurements.
Equation 4.37 can be used as well to determine the Q dependence of the αIXS

parameter, which is reported in Figure 4.25 for all the investigated temperatures.
Albeit the continuum macroscopic limit described by equation 4.38 and reported

in table 4.6 exhibits a clear temperature dependence, the high frequency data can
be considered almost temperature independent within experimental errors, being
the latter of the same order of the observed temperature dependence (∼ 10% -
15%). This result confirms the validity of the equality

α ≡ αχ(Tg) (4.41)

suggested by Buchenau and Wischnewski [4], where α is the parameter proposed
by Scopigno and coworkers obtained from the temperature dependence of fQ as
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Figure 4.24: Nonergodicity factor of sorbitol at the indicated temperatures.
The squares at low-Q represent the long wavelength limits estimated from rela-

tions 4.37 and 4.38.

expressed by the relation 4.37 (see section 2.4 and 3.3.3). Moreover the strong
Q-dependence of the α parameter, which rapidly decreases on increasing the ex-
changed wave vectors, shows that the macroscopic limit is reached only at the
lowest investigated Q value. In many glasses the α parameter has been obtained
by the temperature dependence of fQ for Q ∼ 2 nm−1. From Figure 4.25 it is
clear that the choice of Q is extremely delicate and can be in fact the cause of
some discrepancies in the proposed correlation between the α parameter and the
kinetic fragility.
Figure 4.26 reports the inverse of the nonergodicity factor for Q = 1.45 nm−1

T [K] fQ,macr. αχ

80 0.91 ± 0.01 0.32 ± 0.01
150 0.84 ± 0.01 0.33 ± 0.01
220 0.78 ± 0.01 0.35 ± 0.01
246 0.75 ± 0.01 0.35 ± 0.02
256 0.74 ± 0.01 0.36 ± 0.02
267 0.73 ± 0.01 0.37 ± 0.02

Table 4.6: Long wavelength limit of the nonergodicity factor and the αχ

parameter obtained from equations 4.37 and 4.38.
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Figure 4.25: Temperature dependence of the αIXS parameter obtained by
equation 4.37. The lines represent the long wavelength limit αχ estimated from

relation 4.38.

(blue squares) and Q = 3.06 nm−1 (red circles) as a function of the rescaled tem-
perature T/Tg. As previously reported in section 2.4, this graph corresponds to
the analogue of the Angell plot in the glassy state. The two lines represent the best
fitting line shapes obtained from relation 4.37 from which we obtain α = 0.31±0.01
and α = 0.24 ± 0.01 for Q = 1.45 nm−1 and Q = 3.06 nm−1, respectively. We
remind that the linear relation 4.37 is valid only in the low temperature limit. For
this reason the values corresponding at T = 256 K and T = 267 K have not been
considered. The two values of α differ of about ∼ 30%. It is then clear that a
correct estimation of the α parameter from the 1/fQ vs T/Tg behavior is strictly
related to the choice of the Q value and requires a good knowledge of the macro-
scopic continuum limit as well. In the case of sorbitol, albeit the macroscopic
limit is not fully reached at the lowest probed Q-value at all the temperatures, the
choice of Q = 1.45 nm−1 can be clearly considered valid for the estimation of the
α parameter (see Figure 4.25).
The above results can be viewed also in term of kinetic fragility. Following the

correlation mA = 135α proposed by Scopigno and coworkers [3], we find m = 42±1
from the lowest Q data reported in Figure 4.26. This value is in agreement with
the macroscopic one mχ ∼ 43 ± 1 obtained from the value of αχ(T = 80K) re-
ported in table 4.6. These values are not far from the one obtained from the ratio
between the bulk and the shear modulus discussed in section 3.3.3 (m ∼ 59).
However all of these correlations are in complete disagreement with the kinetic



Chapter 4. High frequency dynamics of sorbitol 129

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

1.32

=0.2
4±0

.01

 Q=1.45 nm-1

 Q=3.06 nm-1

 

 

1/
f Q

T/T
g

=0.
31±

0.0
1
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rescaled temperature T/Tg. The two dashed lines correspond to the best fit line

shapes obtained from equation 4.37.

fragility measured in the supercooled liquid phase (mA ∼ 107). As suggested by
Buchenau and Wischnewski [4] a possible explanation could be related to the ex-
istence of a basically fragility independent α parameter in very fragile systems,
such as sorbitol (see section 3.3.3).
Recently the discrepancy between the estimated fragility in the glassy state and
the kinetic one has been attributed to the presence of relevant secondary relax-
ation process, which affect the measurement of the nonergodicity factor (see section
2.4). As shown in the right panel of Figure 2.15, the presence of an anharmonic
or secondary contribution adds an extra part to the area of the elastic line in the
S(Q,ω), leading to an incorrect measurement of the fQ.
In the case of sorbitol, we can easily obtain an estimation of the contribution to
fQ coming from the anharmonicity described in section 4.4.1. It has been shown
that at the glass transition temperature the non ergodicity factor is described
by equation 4.36, which can be rewritten as fQ(Tg) = ∆2(Tg)/M∞(Tg), where
∆2(Tg) = M∞(Tg) − M0(Tg) (see Figure 4.22). In presence of anharmonicity the
measured nonergodicity factor can be written as

fQ(Tg) = fQ,str(Tg) + fQ,ana(Tg) (4.42)

where

fQ,str(Tg) =
∆2

str(Tg)

M∞(Tg)
(4.43)

and

fQ,ana(Tg) =
∆2

ana(Tg)

M∞(Tg)
(4.44)
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are the contributions due to the α structural relaxation process and to the anhar-
monicity, respectively. Using the fitting parameters reported in table 4.5 we find
fQ,ana(Tg) = (1.45 ± 0.02)10−2. This value is ∼ 50 times smaller than the macro-
scopic measured one reported in table 4.6. By using the correct value fQ,str(Tg)
of the nonergodicity factor to calculate the α parameter (see equation 4.37), we
find αstr = 0.40 ± 0.02, a value almost ∼ 8% higher with respect to the measured
one. The new value is anyway not high enough for a correct estimation of the
kinetic fragility through the relation mA = 135α, being mstr = 54± 3. This value
is close to that estimated from the bulk to shear modulus ratio (see section 3.3.3)
and seems to confirm the idea of the independence of the fragility from the α
parameter for glass formers with high mA values [4].



Résumé du chapitre 5

Dans ce chapitre nous présentons la relation entre l’élasticité et la
densité des états vibrationnels du sorbitol. Les résultats obtenus
sur la dynamique acoustique du sorbitol seront ici analysés en re-
lation avec l’étude de la dépendance en température de la densité des
états vibrationnels. Celle-ci a été mesurée en utilisant la diffusion
inélastique des neutrons.
Dans la première partie du chapitre nous présentons une brève de-
scription de la section efficace de INS et les principes de base de
la technique de temps de vol utilisée pour nos mesures. Dans la
deuxième partie du chapitre nous mettons en relation les résultats de
neutrons avec la dynamique vibrationnelle du sorbitol. Comme nous
démontrerons le BP est clairement lié aux anomalies observées dans
la courbe de dispersion acoustique dans la région mésoscopique des
vecteurs d’onde de quelques nm−1. La relation est en plus renforcée
par la possibilité de reproduire quantitativement la forme de BP en
utilisant la dépendance en Q de la vitesse du son et de l’atténuation
à haute fréquence. Ce résultat confirme le rôle central des excita-
tions acoustiques dans le BP et il est en accord avec une théorie
récente des excitations vibrationnelles dans les systèmes à désordres
élastiques.
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Chapter 5

Vibrational density of states and
elasticity in sorbitol

In this Chapter the relation between elasticity and vibrational density of states in
sorbitol is discussed. The state of the art in this topic has already been presented
in section 2.3. As shown there, despite of the effort done in the last years, a general
agreement in the scientific community is still missing. In some glasses the changes
of the boson peak, when pressure or temperature is applied [99], can be completely
described by the corresponding transformation of the continuum medium while in
other systems this relation is questioned [100], possibly due to the presence of
anharmonic or relaxation contributions in the fews meV energy range [103].
The results obtained on the acoustic dynamics of sorbitol will be here combined
with a temperature dependence study of the vibrational density of states. The
latter has been measured using Inelastic Neutron Scattering spectroscopy. Such
technique is in fact a valuable tool for the investigation of atomic motions in solids
and liquids [169].
The first part of the Chapter reports a brief description of the INS cross section
and of the basic working principles of the Time-of-Flight (TOF) technique used
for the measurements.
In the second part of the Chapter, a comparison between the neutron results and
the vibrational dynamics of sorbitol is reported. As it will be shown there, the
excess in the VDOS at ∼4.5 meV over the Debye, elastic continuum prediction,
is found to be clearly related to the anomalies observed in the acoustic dispersion
curve in the mesoscopic wavenumber range of fews nanometers (see section 4.3).
The relation is then strengthen by the possibility of quantitatively reproducing the
shape of the boson peak on the basis of the Q-dependence of the high frequency
sound velocity and sound attenuation. This result confirms the central role of the
acoustic excitations in the boson peak and is in agreement with a recent theory of
the vibrational excitations in disordered elastic media [67].
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5.1 Inelastic Neutron Scattering

Neutrons are a powerful tool for the investigation of the vibrational properties
of disordered systems. Some of the main peculiarities of neutrons spectroscopies
have already been discussed in section 4.1.3. As reported there, thermal or cold
neutrons are characterized by a wavelength λ of 1 − 10 Å (0.1 − 1 nm), thus of
the same order of magnitude as interatomic distances, and their kinetic energy is
similar to that of several excitations in condensed matter. For these reasons they
are suitable for the study of both dynamical and structural properties of many
materials. In general, they can be produced in a thermal or cold moderator, ei-
ther at a high-flux reactor or at a spallation source.
The first part of this section reports a brief summary of Inelastic Neutron Scatter-
ing theory. In particular a description of the INS cross section and the connection
to the vibrational density of states of glasses is discussed. In the second part the
basic working principles of a ToF technique will be illustrated.

5.1.1 INS cross section

The main features of the neutron scattering geometry are the same as for photons
and are illustrated in Figure 4.1. In section 4.1.3 it has been shown that the
accessible (Q, ω) space for neutrons, described by the kinematic relation 4.24, is
restricted with respect to that of X-rays due to the presence of the neutron mass.
This limitation can be overcome in spectroscopy studies of crystalline samples,
where the translation invariance allows for the study of the acoustic excitations
in high-order Brillouin zones. Of course, this is not the case for topologically
disordered systems, where the absence of periodicity imposes that the acoustic
excitations must be measured at small momentum transfers.
In analogy to equation 4.9 for X-rays, the double-differential cross-section can be
determined in the framework of first order perturbation theory, on the basis of the
Fermi golden rule [152]. Considering the initial and final neutrons states, |I〉 and
|F 〉, as plane waves, the double-differential cross-section can be written as [169]:

∂2σ

∂Ω∂ωf

=
( m

2π~2

)(kf

ki

)∑

I,F

PI

∣∣∣
〈
F
∣∣∣V̂
∣∣∣ I
〉∣∣∣

2

δ(~(ω − ωF + ωI)) (5.1)

where V̂ is the interaction potential operator between the neutron and the target
sample. In the previous expression PI represents the probability of finding the
system in the initial state I while the horizontal bar stands for any average not
included in PI , as for example the nuclear spin orientation or the distribution of
isotopes.
In the following treatment the magnetic interaction between the neutrons and
the nuclei will be completely neglected. Moreover, by considering only the nuclear
interaction, which is strong and short ranged (d ∼ 10−13 cm) [152] and by assuming
that the scattering is isotropic, the nuclear potential can be described through the
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Fermi pseudo-potential:

V̂ (r) =
2π~

2

m
bδ(r − R) (5.2)

where R denotes the position of the nucleus.
In reality, this expression is a mathematical description which does not correspond,
not even approximately, to the actual nuclear potential, but ensures that the
scattering is isotropic and thus described by a single parameter b, which represent
the scattering length of the atoms.
For a system of atoms the Fermi pseudo-potential can be written as

m

2π~2
V̂ (r) =

∑

l

blδ(r − Rl) =
∑

l

V̂l(r − Rl) (5.3)

where Rl is the position vector of the lth scattering nucleus. Inserting Equation
5.3 into Equation 5.1, the double-differential cross-section becomes:

∂2σ

∂Ω∂ωf

=
kf

ki

∑

I,F

PI |〈F |
∑

l

V̂l(Q)eiQ·Rl |I〉|2δ(~(ω − ωF + ωI)) (5.4)

where

V̂l(Q) =

∫
drV̂l(r)eiQ·r. (5.5)

Writing the δ function in its integral form and using the Heisenberg operator
property Ô(t) = eitĤ/~Ôe−itĤ/~, equation 5.4 can be written as

∂2σ

∂Ω∂ωf

=
kf

ki

1

2π~

∫ ∞

−∞

dte−itω
∑

ll′

〈e−iQ·RlV̂ +
l (Q)V̂l′(Q, t)eiQ·Rl′ (t)〉 (5.6)

where the suffix + indicates the complex conjugate and the angular brackets denote
the thermal average of the enclosed quantity being:

〈....〉 =
∑

IPI |〈I|(...)|I〉|. (5.7)

Supposing that there is no coupling between the target sample states and the
interaction potential, the average over nuclear spin orientations and distributions,
denoted by the horizontal bar can be considered independent from the thermal
average and one obtains:

∂2σ

∂Ω∂ωf

=
kf

ki

1

2π~

∫ ∞

−∞

dte−itω
∑

ll′

V̂ +
l (Q)V̂l′(Q)〈e−iQ·RleiQ·Rl′ (t)〉

=
kf

ki

1

2π~

∫ ∞

−∞

dte−itω
∑

ll′

b+
l bl′〈e−iQ·RleiQ·Rl′ (t)〉 (5.8)

where
b+
l bl′ = |b|2 + δll′ [|b|2 − |b|2]

For a defined element, the average of the scattering length bl over all isotopes and
spin is called coherent scattering length, while the mean-square deviation of bl
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from its average values is known as the incoherent scattering length, thus

|b|2 = b2
coh (5.9)

and
|b|2 − |b|2 = b2

incoh (5.10)

with b2
scatt = b2

coh + b2
incoh . Therefore, it is possible to separate the coherent and

the incoherent contribution to the scattering cross section, being

∑

l,l′

b+
l bl′〈e−iQ·RleiQ·Rl′ (t)〉 =

∑

l,l

b2
coh〈e−iQ·RleiQ·Rl′ (t)〉 +

∑

l

b2
incoh〈e−iQ·RleiQ·Rl(t)〉

In this way equation 5.8 becomes
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ki
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︸ ︷︷ ︸
( ∂2σ

∂Ω∂ωf
)incoh

. (5.11)

The same expression can be written also in terms of the coherent σcoh = 4πb2
coh

and the incoherent σincoh = 4πb2
incoh scattering cross section, and yields to

(
∂2σ

∂Ω∂ωf

)

coh

=
kf

ki

σcoh

4π
Scoh(Q, ω) (5.12)

and (
∂2σ

∂Ω∂ωf

)

incoh

=
kf

ki

σincoh

4π
Sincoh(Q, ω) (5.13)

In the case of coherent nuclear scattering, the interaction potential couples the
neutron to the density of the target system. The coherent scattering cross sec-
tion gives, indeed, information on the collective motions of the atoms, thus on the
wavevector and frequency of the vibrational modes, and permits to map the dis-
persion relations in the (Q, ω) space. The quantity Scoh(Q, ω) corresponds in fact
to the dynamic structure factor measured with X-rays. On the other hand, the
incoherent dynamic structure factor represents the time and space Fourier trans-
form of the self pair correlation function and, consequently, describes the single
particle dynamics. As shown in the next paragraph, the incoherent term yields
information on the density of vibrational states of the system.

5.1.2 Scattering from nuclei undergoing harmonic vibra-
tions

Substituting the instantaneous position vector of the l-th atom Rl(t) = R0
l +ul(t)

in the equation 5.8 of the double-differential neutron cross section, one obtains
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[169, 170]:

∂2σ

∂Ω∂ωf

=
kf

ki
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In the harmonic approximation, using the Bloch identity for the argument of the
integral, the average can be moved to the exponent, being

〈e−iQ·ul(0)eiQ·ul′ (t)〉 = e−Wle−Wl′e〈Q·ul Q·ul′ (t)〉 = e−2W e〈Q·ul Q·ul′ (t)〉 (5.15)

where the exponent W is the Debye-Waller factor. It is equal to 1
2
〈(Q · ul)

2〉,
provided that one has a Gaussian distribution of atomic displacements. In a cubic
symmetry, the average is 1

6
Q2〈u2〉 and this result is a fair approximation also for

isotropic systems.
As previously reported, the mean square displacement can be used as an indicator
of a non harmonic behavior of the material or of the existence of relaxational
phenomena. Moreover, it is directly connected with the density of states g(ω) (see
Equation 1.28) being

〈u2〉 =
~

2m

∫ ∞

0

g(ω)

ω
[2n(ω) + 1]dω. (5.16)

where m is the molecular mass and n(ω) the Bose factor.
Using this formalism the coherent and the incoherent contributions to the differ-
ential neutron scattering cross section become:
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Following the general considerations reported in section 4.1.2, thus through the
expansion of relation 5.15 (see equation 4.19) and through the expression of the
displacement in the framework of the second quantization (see equation 4.17), the
incoherent scattering cross section of one-phonons events becomes [169]:

(
∂2σ

∂Ω∂ωf

)

incoh,1ph

=
Nσinc

8πM

kf

ki

Q2e−2W (Q) g(ω)

ω
[n(ω) + 1]. (5.18)

This expression means that it is possible to obtain information on the VDOS of a
system by measuring the incoherent contribution to the scattering cross section.
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Figure 5.1: Scheme of the ToF spectrometer IN4 at the ILL [171].

5.1.3 A ToF spectrometer: IN4 at the ILL

In this section the basic principles of a Time-of-Flight experiment are described,
with reference to the neutron thermal spectrometer IN4 at the Institut Laue-
Langevin in Grenoble [171].
ToF is a perfect technique for density of states measurements. In fact it allows
to explore large sections of the (Q, ω) space using many detectors, which collect
simultaneously neutrons over a wide range of values of the scattered energy.
In general a TOF spectrometer analyses the change of velocity of neutrons after
interaction with the sample by measuring their time of arrival at the detectors.
The typical structure of a ToF instrument is reported in Figure 5.1.
A series of bursts of monochromatized neutrons is sent to the sample and the
energy of the scattered neutrons is then analysed by measuring their time of arrival
at the detectors which cover a wide angular range.
In the IN4 ToF spectrometer the incident beam of neutrons (with energies in
the 10-100 meV range) passes through two background choppers which act as a
low-pass filter, eliminating from the beam most of the fast neutrons and gamma
rays that would give background noise in the spectra. The monochromatization
of the incoming beam is realized by an assembly of 55 crystal pieces, which also
concentrates the divergent incident beam onto a small area at the sample position.
The curvature of the monochromator can vary in order to control the time and
space focusing conditions at the sample position.
The monochromatized beam is then pulsed by a Fermi chopper, which transmits
short neutron pulses (10 ... 50 µs) to the sample. The time-of-flight of neutrons
between the chopper and the sample (1 ... 5 ms) can be measured by using precise
electronic circuitry. The size of the beam impinging on the sample is of about
2 × 4 cm2.
The energy exchange with the sample leads to out coming neutrons with different
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Figure 5.2: Scheme of the neutron flight-path in a ToF experiment.

velocities. The flight-path of the scattered neutrons takes place in vacuum to avoid
parasitic scattering and a radial collimator around the sample position is used to
cut the scattering from the sample environment.
An array of detectors is arranged at a known fixed distance from the sample and
covers scattering angles from 13◦ up to 120◦. The scattered neutrons arrive at the
detector at a time fixed by their energy. Neutrons that have gained energy from
the sample will arrive faster with respect to neutrons which have lost energy (see
right panel of Figure 5.2). A scheme of the flight-path of the neutrons is reported
in the right panel of Figure 5.2. By considering that a neutron takes a time t0 to
travel from the chopper to the sample at a distance L0 away, the incident velocity
is simply given by

vi =
L0

t0
(5.19)

If at the time t the neutron is scattered to a detector, placed at distance L1 from
the sample, then the final neutron speed is

vf =
L1

t − t0
(5.20)

where all the quantities are known. The neutron energy and momentum transfer
are respectively,

E =
m

2
(v2

i − v2
f ) (5.21)

and
Q =

m

~
(vi − vf) (5.22)

This means that from the measured arrival time and the know flight path, the
value of the energy exchange can be easily derived and, together with the detector
angle, the wave-vector can be readily calculated.
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5.2 INS measurements

Figure 5.3: Photo of the sample holder used for ToF measurements. From top
left: Al ring used during the sample preparation, two parts of the Al sample-

holder and o-ring used to seal the cell for the measurements.

The neutron spectra were obtained at the thermal time-of-flight spectrometer IN4
at the High Flux Reactor of the Institut Laue-Langevin at Grenoble. The spec-
tra of glassy sorbitol have been collected for T=150, 220 and 246 K. For each
measured temperature, the spectra have been collected for several hours in order
to increase the statistics. The chosen neutron wavelength of 2.7 Å provides an
energy resolution of 0.6 meV FWHM on the elastic line and allows to study the
momentum transfer range from 0.5 to 4 Å−1.
A disk-shaped sample 200 µm thick and with a diameter of 5 cm was used in order
to obtain a transmission of 90% at the used wavelength and to match the neutron
beam dimension. Figure 5.3 reports a photo of the sample holder used for the
measurements. The cell consists of two Al disks, one of them with an inner hole of
the same dimension of the sample. Melt sorbitol was poured into this inner space
and the cell was then closed with a thin aluminium disk placed on the external
part of the Al disk (left up in Figure 5.3). The presence of this thin spacer is nec-
essary during the sample preparation; it avoids the contact between liquid sorbitol
and the internal side of the cell without altering the desired sample thickness. It
has allowed us to open the cell and check the quality of the obtained glass. The
glass has been obtained by rapidly quenching the cell into liquid nitrogen, paying
attention to keep it always in horizontal position. The measurements were done
in trasmission geometry, with the sample disk inclined at 45◦ with respect to the
incoming beam in order to maximize the illuminated surface of the sample.
In order to perform a correct data treatment, the empty cell contribution and the
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scattering from a vanadium sample, filling the same Al container, were performed
as well.

5.2.1 ToF data reduction

Equations 5.12 and 5.13 describe the neutron scattering cross section. An INS
experiment allows us to achieve different information depending on the weight of
the coherent and incoherent contributions for each element of the material under
investigation.
Table 5.1 reports the values for the coherent, incoherent and absorption cross sec-
tions of the elements present during the measurements. The huge contribution of
hydrogen in the incoherent scattering cross section is well evident. Being hydrogen

Elements σcoh [barn] σincoh [barn] σabs [barn]

H 1.7568 80.26 0.3326
C 5.551 0.001 0.0035
O 4.232 0 0
V 0.0184 5.08 5.08
Al 1.495 0.0082 0.231

Table 5.1: Neutron scattering cross sections of the elements used during the
experiments. The indexes coh, incoh and abs correspond to the coherent, in-
coherent and the absorption scattering cross sections respectively. Data from

[172].

the most abundant element in sorbitol (C6H14O6), it clearly follows that the dou-
ble differential cross section of sorbitol is to a very good approximation incoherent
and almost totally due to the hydrogen contribution. The coherent contribution
to the scattering cross section is in fact just 7% of σtot = σcoh + σincoh and can
be neglected. This means that the intensity of the spectra will allow us to gain
information on the vibrational density of states through equation 5.18.
In reality, the raw data measured in a ToF experiment do not correspond im-
mediately to the S(Q, ω). They have to be corrected for several factors as the
detectors efficiencies, the intensity of the incident flux and the absorption of the
sample-holder. Moreover, in order to relate the VDOS of sorbitol to the elastic
properties of the system, it is mandatory to obtain the data on an absolute scale.
In general, an inelastic neutron scattering experiment on a ToF spectrometer gives
experimental access to the numbers of neutrons, ∆n, detected within a time chan-
nel of width ∆t, by a detector covering a solid angle ∆Ω. The data capture takes
place during an acquisition time T in which the sample is illuminated by an in-
coming flux Φ0 of neutrons per second.
In a multi-detector spectrometer, each detector is fixed at an angle 2θk, between
the incoming and the scattered beams. ∆tj is the time width of channel j cen-
tered at time tj (corresponding to energy ωj). The incoming neutron flux Φ(E, tj)
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[n◦
neut/cm2s] is measured by a monitor, which is a detector with a very low effi-

ciency. The number of counts at the monitor is given by:

Nm,j = ηmAmΦ(E, tj)T (5.23)

where ηm is the monitor efficiency for energy E, Am is the monitor area and T
is the measuring time. During the same experimental time T , the number of
scattered neutrons counted by the detector k in the time channel tj is:

N s+c
k,j = ηkA

s
iTΦ(E, tj)I

E
s+c(2θk, tj)∆Ωk∆tj (5.24)

where the suffix s + c refers to the sample and the container, As
i is the sample

illuminated area and IE
s+c(θk, ωj) is the scattered intensity due to the sample and

the container. The acquisition time T and the incident flux can be removed from
the data by normalizing for the monitor counts, Nm,j obtaining:

Ñ s+c
k,j =

N s+c
k,j

Nm,j

=
ηk

ηm

As
i

Am

IE
s+c(2θk, tj)∆Ωk∆tj (5.25)

where all the quantities relative to the monitor are known. The same treatment
has to be performed for the empty container measurements.
The detector parameters, present in Equation 5.25, can be removed by normalizing
Ñ s+c

k,j to the data of a predominantly incoherent scatterer with identical scattering
geometry as the sample. For this purpose, vanadium is a good candidate, being
completely incoherent (see values in table 5.1). The scattering from a vanadium
sample is given by:

N̂V
k,tot =

∑

j

N̂V
k,j =

ηk

ηm

∆Ωk

Am

tAV
i IV

tot (5.26)

where

IV
tot = NV

σV
i

4π
e−2W (Q). (5.27)

This allows to derive the detector parameters:

ηk

ηm

∆Ωk

Am

=
1

AV
i

N̂V
k,tot

IV
tot

. (5.28)

At this point the contributions to the counted neutrons due to the cell must be
removed. In general, the neutrons counted by the detector during an experiment
have various origins: they can come from single events in the sample or in the
cell before or after the sample and from multiple scattering events in the sample
or in the cell or a combination of both. Moreover, there are also environmental
neutrons, which are not coming from scattering events but from background noise
present even in absence of the sample.
The subtraction of the empty cell has to be performed taking into account the fact
that the transmitted beam is attenuated by the sample. The obtained intensity is
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consequently given by:

Is = Is+c − TsIc (5.29)

where Ts is the sample transmission and the index s and c referrer to the sample
and empty cell respectively. In the simplest form, Ts can be defined for a rectan-
gular infinite slab as Ts = e−µT L where µT = N · σT is the absorption coefficient
and σT = σabs +σscatt = σabs +σcoh +σincoh is the total cross section. The choice of
an Al container allows us to neglect the possible multiple scattering contribution
of the cell, being Al almost transparent to neutrons (see values in table 5.1).
A flat additional background, due to the environmental neutrons and to electrical
noise has to be removed as well. Several additional standard corrections must
then be done in order to take into account the correct detector efficiency and the
frame overlap. The latter correction removes the contribution associated to slow
neutrons coming from the precedent neutron bunch. In all the previous steps the
data are refined as a function of the neutrons time-of-flights. The time to energy
conversion can be easily performed through equation 5.21.
All of the above corrections can be done with the program INX at the Institut
Laue-Langevin in Grenoble. The multiple scattering corrections can be performed
assuming an angle independent multiple scattering contribution. Following the
procedure described in Ref. [173], it is possible to deal with the multiple scat-
tering problem in a simple way. A useful approximation consists to assume a
Q-independent multiple scattering, which is a good approximation when wide-
angle scattering dominates the signal. In practice, it is necessary first to calculate
an average spectrum over all detectors (weighted with the sinus of the scattering
angle), then fold this average spectrum with itself. The elastic line in one of the
spectra has to be converted into a δ-function, in order to avoid a broadening of
the elastic line in the folding process. The so-obtained folded spectrum is then
subtracted with an appropriate multiple-scattering factor (MSF) from every de-
tector in such a way that the intensity extrapolated to Q equal to zero goes to
zero. In fact at low momentum transfer Q, the incoherent inelastic scattering is
proportional to Q2. Then for practical purposes, one can have a good estimate
of the inelastic multiple scattering by extrapolating the final intensity to Q equal
zero using a Q2 law. As MSF should be close to 1 − Ts, this procedure represents
also a check of the validity of the subtraction operation.
The multiple scattering contribution has been removed for every set of data, yield-
ing small values of MSF, which agree with the values expected from the transmis-
sion. The results have been finally re-binned in Q on a regular grid covering the
entire measured (Q,E) region.
The intensity obtained from the whole ToF data reduction corresponds exactly

to the one-phonon incoherent cross section 5.18, except for the factor kf/ki al-
ready removed during the corrections. The resulting data are reported in Figure
5.4 together with those for the vanadium sample. The excess of modes in the
vibrational density of state is well evident at about 4.5 meV for all temperatures.
To extract information on the vibrational density of states on an absolute scale,
the data have been corrected for both the Bose factor and the elastic contribution
(and thus the Debye-Waller factor), and then converted into energy (E=~ω). The
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measured intensity becomes:

Int =
~

2Q2

2M

g(E)

E
. (5.30)

The boson peak of sorbitol can then be easily obtained by dividing the intensity
for the energy itself and the factor ~

2Q2

2M
, being M the average molecular mass

M = 1
N

∑
i mi [174]. In the limit of low frequencies, thus in the range of interest

here, it is possible to neglect all the intra molecular modes of the system, which
indeed are located at much higher frequencies. In this way the system dynamics
can be related to the dynamics of a unique average molecule, where the double-
differential cross section is dominated by the hydrogen atoms.

5.3 Boson peak and elastic properties

The temperature dependence of the reduced vibrational density of states is re-
ported in the upper panel of Figure 5.5 together with the expected low-energy
Debye limits

gD(E)/E2 = 3/E3
D, (5.31)

where

E3
D =

18π2ρ

M

(
1

v3
LA

+
2

v3
TA

)−1

. (5.32)
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In the previous expression the transverse and longitudinal sound velocity values

0.0 0.1 0.2 0.3 0.4
0.5

1.0

1.5

2.0

0 2 4 6 8 10 12
0.5

1.0

1.5

2.0

 

 

g(
E)

/g
D
(E

)

 T=246 K
 T=220 K
 T=150 K

E (meV)

E/E
D

g(
E)

/E
2  (1

0-4
 m

eV
-3

)

 

 

Figure 5.5: Upper panel: reduced VDOS of glassy sorbitol for different tem-
peratures, together with the indication of the corresponding Debye level (hori-
zontal lines). Lower panel: same data as above after rescaling in Debye units.

T vLA vTA vD ED

[K] [m/s] [m/s] [m/s] [meV ]

246 4081 ± 24 2107 ± 17 2359 ± 26 30.5 ± 0.3
220 4120 ± 25 2131 ± 17 2386 ± 26 30.8 ± 0.3
150 4213 ± 25 2192 ± 18 2453 ± 26 31.7 ± 0.3

Table 5.2: Values of the longitudinal, transverse and Debye sound velocity
of sorbitol, together with the Debye energy ED values estimated using relation

5.32.

are taken from the low frequency BLS measurements. In addition, the Cauchy-
like relation 3.24 has been used to extrapolate the data for the transverse velocity
outside the range where they have been measured. Table 5.2 reports all the values
used to estimate the Debye level.
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On decreasing the temperature in the glassy state, the intensity of the boson peak
slightly decreases as well. The position of the maximum does not display any
strong change in the explored temperature range. As reported in section 2.3 this
behavior is generally observed in glasses. To check whether there exists or not a
relation between the VDOS and the elastic properties of sorbitol, the data have
been replotted in Debye units, thus dividing them for the continuum limit 5.31.
The corresponding data are reported in the lower panel of Figure 5.5. The result
is clear: by re-plotting the reduced VDOS in Debye units, all the curves rescale
on a single one in the peak region. This means that the observed temperature
dependence can be accounted for by the transformation of the elastic medium,
similar to what has been previously observed in some experiments and numerical
simulations [99, 104] (see section 2.3).
Though small differences remain in the low energy range of the spectra, the overall
validity of the scaling procedure suggests a strong relation between boson peak
and elastic properties. This phenomenology is very similar to the one observed
for the high frequency sound velocity measured with IXS and reported in Fig-
ure 4.21: the temperature dependence of the elastic properties dictates that of
both the boson peak and of the acoustic excitations in the corresponding energy
range, thus making even stronger the connection between acoustic excitations in
the mesoscopic range and the boson peak in glasses.
In section 4.4 it has been shown as the temperature dependence of the high-
frequency acoustic dispersion curves of glassy sorbitol can be described to a good
approximation within a quasi-harmonic approach, whilst the corresponding acous-
tic damping (~Γ) is definitively non-dynamic in origin. This observation then
leads to a natural frame for justifying and understanding the observed scaling of
the boson peak with the parameters of the elastic medium. Glasses with anhar-
monic and/or relaxational contributions larger than in sorbitol and for which the
quasi-harmonic approximation does not hold might however show a more complex
phenomenology.

5.3.1 A model for the boson peak

In the previous chapter it has been shown that both the acoustic dispersion and
damping of the high frequency modes display peculiar anomalies which appear in
the same energy range of the boson peak and which seem to be universal features
of the glasses dynamics [96]. In the case of glycerol the simultaneous presence of
a negative dispersion of the sound velocity and a Rayleigh scattering regime for
the acoustic attenuation allows for a quantitative description of the shape of the
boson peak.
In fact, the vibrational density of states can be estimated from the acoustic disper-
sion curve. In a simple crystal-like approach, thus neglecting the finite damping
of the modes, the reduced VDOS can be expressed as:

g(E)

E2
=

1

Q3
D

[(
Q2

E2

∂Q

∂E

)

L

+ 2

(
Q2

E2

∂Q

∂E

)

T

]
(5.33)
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data) sound velocities of sorbitol at T=80 K. The dashed-dotted line corresponds
to the macroscopic sound speed measured with BLS, while the green line is the
best fit line shape according to equation 5.34. The transverse values have been

obtained assuming a constant bulk modulus as explained in the text.

where the index L and T correspond to the longitudinal and transverse branch
respectively and QD is the Debye wave-vector. Assuming valid a plane-wave de-
scription of the modes, the previous relation means that the boson peak can be
described in principle starting from the derivative of the inverse of the acoustic
sound velocity (thus ∂Q/E

∂E
). In order to perform such operation the inverse of the

sound velocity has been fitted using the empirical function

Q

E
=

A

w
√

π/2
exp

[−2(E − E∗)2

w2

]
+

q

πE
arcsin

(
πE

qv(T,L)BLS

)
(5.34)

where v(T,L)BLS
is the continuum limit value, while A, w, E∗ and q are simply

fitting parameters.
The transverse branch has been estimated from the longitudinal one assuming
that the two curves exhibit the same anomalies at the same energy. In particular,
a constant bulk velocity has been assumed in the explored energy range, being

vT (E) =

√
3

4
(v2

L(E) − v2
B(E = 0)) (5.35)
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Figure 5.7: A): reduced VDOS in Debye units (blue circles) together with the
prediction of the crystal-like model equation 5.33 (red lines) using the IXS data
at T=246 K and at T=150 K. B): same data as A) (blue circles) together with
the prediction of the model equation 5.36 (red lines), which takes into account

the broadening of the high frequency excitations as well.

where vB is the bulk velocity. This assumption has been verified in the case of a
Lennard Jones glass [98]. The bulk velocity can be obtained inverting relation 5.35
and using the longitudinal sound speed measured with BLS and the transverse one
calculated through the Cauchy-like relation 3.24.
Figure 5.6 shows the inverse of the sound velocity as a function of the excitations

energy for the transverse and longitudinal acoustic-like branches for T=80 K. The
data are reported together with the best fitting lineshape obtained from equation
5.34 (green line) and the macroscopic limit (red dashed-dotted line). The two ve-
locities display the same behavior. However in the case of the transverse branch,
the mode softening is more than three times larger than in the longitudinal one.
This result is not surprising, if one considers that the boson peak has predomi-
nantly transverse character [73, 104].
The validity of the proposed model was checked by using the IXS data measured
at T=246 K and T=150 K. In Figure 5.7 A) the INS reduced density of states is
reported as a function of the rescaled energy E/ED together with the prediction of
the model equation 5.33. It is important here noting that this simple crystal-like
approach is able to predict the existence of a peak in the VDOS. This means that
the excess of modes in the VDOS over the Debye continuum limit approximation
originates from deformations of the dispersion curve at the nanometer length scale.
However, the model fails on predicting the position of the boson peak maximum,
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which is clearly overestimated.
Following always Ref. [96], the model can be improved considering also the broad-
ening of the acoustic-like excitations, which has a finite value in glasses. In this
case, the reduced VDOS can be described through the relation [67]

g(ω)

ω2
=

1

Q3
D

∫ QD

0

dQ
M

kBT

[
SI

L(Q,ω) + 2SI
T (Q,ω)

]
(5.36)

where SI
L,T (Q,ω) are the inelastic part of the dynamic structure factor for the

longitudinal and transverse branch respectively, and M is the molecular mass.
The DHO model entering in relation 4.28 has been employed to estimate the
dynamic structure factors. SI

L(Q,ω) has been calculated directly through the
fitting parameters obtained from the analysis of the IXS spectra. For the transverse
excitations, instead, the excitations energy has been taken from relation 5.35, while
the width has been estimated assuming that [165]:

ΓL(E) = ΓT (E). (5.37)

The result of the equation model 5.36 are reported in Figure 5.7 B) for T=246
K and T=150 K, respectively. We find the same result as for the glycerol glass:
the broadening of the Brillouin peaks shifts the results of the crystal-like model
to lower energies and allows for a quantitative description of the boson peak. Dif-
ferently from the case of glycerol, also the intensity of the boson peak is strongly
affected by the damping of the high frequency modes present in the corresponding
energy range.

5.3.2 Comparison with a model based on random local
elastic moduli

The observed behavior of the high frequency sound velocity and attenuation of
sorbitol can be compared to the predictions of a model for the vibrational exci-
tations in a disordered elastic medium proposed by Schirmacher and coworkers
[68]. As described in section 2.1, this model is based on the assumption that
the disorder induces random spatial fluctuations, ∆G(r), of the shear modulus
G(r) = G0 [1 + ∆G(r)] that are Gaussian distributed around an average value
with a variance proportional to the degree of disorder γG. The model is devel-
oped in a mean-field approach using the self-consistent Born approximation for
the self-energy Σ(ω) = Σ′(ω)+ iΣ′′(ω) [67, 68]. The VDOS can then be written as

g(ω) ∝
∑

|k|<kD

Im {GL(k, ω) + 2GT (k, ω)} (5.38)

where GL(k, ω) and GT (k, ω) are the Green’s functions related to the longitudinal
and transverse susceptibilities through the relations

χL(k, ω) = k2GL(k, ω) = k2
{
−ω2 + k2

[
c2
L,0 − 2Σ(ω)

]}−1
(5.39)
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and
χT (k, ω) = k2GT (k, ω) = k2

{
−ω2 + k2

[
c2
T,0 − Σ(ω)

]}−1
. (5.40)

In the previous expression cL,0 and cT,0 are the sound velocities of the systems
without disorder.
The real part of the self energy is related to the sound velocity through the relations

c2
L(ω) = c2

L,0 − 2Σ′(ω) (5.41)

and
c2
T (ω) = c2

T,0 − Σ′(ω) (5.42)

while the imaginary part gives information on the sound damping, being

Γ(ω) ≈ 2k2 Σ′′(ω)

ω
(5.43)
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Figure 5.8 shows the boson peak, the sound velocity and the sound attenuation
of sorbitol together with the behavior predicted by the model equations 5.38, 5.41
and 5.43 respectively, for different values of the parameter ∆γ = γG − γC

G . This
parameter rules the results of the model and represents the distance between the
degree of disorder and the critical value γC

G where the system becomes unstable.
For ∆γ = 0.01 the model is clearly able to quantitatively account for the excess
in the vibrational density of state (Figure 5.8 a)). Both the boson peak maximum
and its intensity are in fact well reproduced. Different is the situation for the
sound velocity and damping: although the model predicts the existence of both
a softening of the acoustic-like modes and a Rayleigh attenuation regime, these
features are located at too low energies with respect to the experimental data.
On increasing the parameter ∆γ the elastic anomalies shift toward higher energies
and a value of ∆γ = 0.06 leads to a better agreement with the data, even if the
width is definitely underestimated. In any case, the model fails to reproduce all
the data sets simultaneously.
The discrepancy between the model and the data concerning the elastic anoma-
lies is probably due to the fact that in the model the Rayleigh regime for the
attenuation always takes place below the onset of the excess in the VDOS while
the experiments show that this regime dominates the ~Γ dependence in the boson
peak energy range up to energies close to the Ioffe-Regel one and thus, higher than
that of the boson peak (see Figures 4.16 and 4.17).
The theory of Schirmacher and coworkers also predicts the existence of a quanti-
tative relation between the excess over the Debye density of states and the width
of the Brillouin line, given by:

ED∆g(E) = ED [g(E) − gD(E)] = f(cL, cT )
Γ(E)

ED

(5.44)

where f(cL, cT ) = 2
π
(cD/cL)2 [1 + (cL/cT )4] and cL, cT and cD are the longitudi-

nal, transverse and Debye sound velocity respectively. In Figure 5.9 the two sides
of equation 5.44 are reported. The dashed-dotted-dotted (purple) and the solid
(green) lines are just two guides for eyes representing a ∼ E2 and a ∼ E4 behavior
respectively.
In Ref. [68] the authors found that the sound attenuation ~Γ(E) displays a
quadratic dependence on the excitations energy in the whole range covered by
the boson peak. In the case of sorbitol this is not the case, being the ∼ E2 behav-
ior located at higher energies (see Figure 5.9). Moreover, differently from what
found in Ref. [68], relation 5.44 is not fulfilled for sorbitol.
Albeit the model is partially able to reproduce the shape of boson peak, the above
considerations show the limits of this theoretical approach. The elastic anomalies
found in the high frequency dispersion curve of sorbitol clearly indicate a strong
connection between the acoustic properties and the BP and they represent the
starting point for new improvements of the model. In fact the previous compar-
ison does not allow us to discriminate between the different models for the BP,
being not able to give us information on the nature itself of the BP. In particular,
the elastic anomalies found here could either be due to effects of disorder on the
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elastic constants or either they could be the consequence of the presence of addi-
tional modes in the same energy range. This last idea is at the basis of the soft
potential model (SPM) described in section 2.1. In the case of sorbitol we could
not check the validity of this model due to the lack of information on the thermal
conductivity of the system. Anyway, the SPM seems also to well reproduce the ex-
perimental data in some systems [100, 175]. It is then clear that a good knowledge
of the acoustic modes is fundamental to test the different theoretical approaches
and that further experimental investigation in this direction is of course extremely
important.



Résumé du chapitre 6

Dans ce chapitre nous présentons la dynamique vibrationnelle à haute
fréquence d’un verre polymère de soufre. Les mesures IXS ont été
réalisées au cours de mon mémoire de mâıtrise en 2006. Ces ré-
sultats expérimentaux sont brièvement résumées au début du présent
chapitre. Pour comprendre le comportement des excitations collec-
tives dans le gamme des énergies de meV, les données sont ici mises
en relation avec les résultats à basse fréquence rapportés dans le
troisième chapitre et avec les informations sur la VDOS et sur la
fragilité du matériel.
Comme nous démontrerons la dynamique à haute fréquence du soufre
ne présente aucun signe des anomalies élastiques trouvées dans le
cas du sorbitol ou du glycérol. La courbe de dispersion du soufre
semble suivre le comportement typique sinusöıdal qui a été observé
dans plusieurs autres systèmes alors que l’atténuation démontre une
dépendance quadratique de l’énergie des excitations. Nous constatons
un comportement singulier de la vitesse du son à haute fréquence par
rapport à la limite macroscopique explorée avec BLS qui peut être
expliqué à travers une contribution anharmonique présente dans la
région à basse fréquence.
A première vue, la dynamique du soufre pourrait être considérée
en désaccord complet avec les résultats discutés dans les chapitres
précédents. En réalité, ce n’est pas le cas. L’existence d’anomalies
élastiques à haute fréquence est strictement liée au BP qui, dans
le cas du soufre, est situé à environ 1.2 meV. Cette valeur est trop
faible par rapport à la valeur minimum d’énergie accessible avec IXS.
En d’autres termes, il n’est pas possible actuellement d’accéder à
des excitations collectives du soufre dans la région des énergies du
BP. Ce résultat permet une réconciliation avec le scenario décrit
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précédemment qui semble être universel dans les verres, comme ex-
pliqué dans le chapitre suivant.



Chapter 6

High frequency dynamics of sulfur

In this Chapter the high frequency vibrational dynamics of polymeric glassy sulfur
is presented. The IXS measurements have been performed during my master the-
sis in 2006. Those experimental results are briefly summarized at the beginning
of this Chapter. In order to understand the behavior of the collective excitations
in the meV energy range, the data are here discussed in relation to the low fre-
quency results reported in section 3.5 and some information on the VDOS and on
the fragility of the material. In fact, as already stressed, a detailed analysis on
the vibrational properties of glasses requires a combined experimental study with
neutron, X-ray and light scattering probes.
As it will be shown, the high frequency dynamics of sulfur does not display any
signature of the elastic anomalies found in the case of sorbitol or glycerol [96].
The dispersion curve of sulfur seems to follow the typical sine-like behavior ob-
served in several other systems [57] while the modes attenuation exhibits an almost
quadratic dependence on the excitation energy. Some peculiarities are found in
the high frequency sound velocity values with respect to the macroscopic limit
explored with BLS that can be explained in terms of an anharmonic contribution
present in the low frequency range.
At first sight, the dynamics of sulfur could be considered in complete disagreement
with the whole scenario discussed in the previous chapters. Actually this is not
the case. The existence of elastic anomalies at high frequency is strictly related to
the boson peak, which, in the case of sulfur, is located at about ∼ 1.2 meV. This
value is too low with respect to the minimum accessible energy value that can
be probed with IXS. In other words, it is not currently possible to access to the
collective excitations of sulfur in the energy range of the boson peak. This result
allows for a reconciliation with the previously described scenario, which seems to
be universal in glasses, as explained in the next Chapter.
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Figure 6.1: Selected IXS spectra of glassy sulfur at T=202 K for different ex-
changed wave-vectors Q together with the best fitting line shape (red line). The
elastic (green line) and the inelastic (purple line) components of the DHO model
are reported after convolution to the instrumental resolution. The intensity is

reported on an absolute scale as explained in the text.

6.1 IXS measurements

Inelastic X-ray scattering measurements were carried out at the beamline ID16 of
the European Synchrotron Radiation Facility in Grenoble [155]. As for sorbitol,
an incident beam with an energy of 23.724 keV and the silicon (12,12,12) reflec-
tion order for the main backscattering monochromator was employed. The energy
resolution was of ∼ 1.3 meV FWHM. During the experiment the beamline set up
was configured in order to measure five different Q values simultaneously.
The high frequency dynamics has been investigated for T=101, 148 and 202 K.
At each of the first two temperatures, the dynamic structure factor, S(Q, ~ω),
has been measured only at five different wave-vectors, corresponding to the five
different analysers, placed at a fixed distance of ∼ 3.3 nm−1 one from the other.
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At T=202 K, the IXS spectra have been collected in the exchanged momentum,
Q, range between 1.5 and 17 nm−1, thus up to values close to the one of the first
maximum in the static structure factor (∼ 18 nm−1). Depending on the investi-
gated temperature, each point of the spectra was counted between 180 and 360 s
in order to reach a good signal to noise ratio.
The glass of sulfur has been obtained by rapidly quenching in liquid nitrogen poly-
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Figure 6.2: Comparison between the measured S(Q) corrected for the atomic
form factor (red circles) and the one estimated using the zero-th moment rule

of the S(Q, ~ω) (blue squares).

meric liquid sulfur heated up to 473 K. A disk-shape sample 1.3 mm thick and
with a diameter of 5 mm was used in order to maximize the IXS signal. Due to the
low thermal conductivity of sulfur, a second identical sample has been prepared
with a thermocouple placed inside it in order to allow for a correct measurements
of the sample temperature. In order to avoid any crystallization process, the two
samples have been rapidly inserted in a AL125 cryostat kept at 80 K and mounted
on the same Cu sample holder.
Figure 6.1 reports a selection of the dynamic structure factor of glassy sulfur mea-
sured at T = 202 K for different exchanged wave-vectors Q. The Brillouin doublet
is well defined close to the elastic line. The data are reported together with the
best fit line shape obtained from the the convolution of equation 4.28 with the in-
strumental resolution. The normalization of the IXS data was performed following
the procedure described in section 4.2.2 exploiting the second moment rule. The
static structure factor has been calculated as well and is reported in Figure 6.2
together with the one directly measured during the experiment and corrected for
the atomic form factor. The latter has been properly shifted in intensity in order
to match the estimated one. The good agreement at low Q is a confirmation of
the whole normalization procedure.
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6.2 Acoustic properties of sulfur

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

0.0

0.5

1.0

1.5

2.0

EBP

  S(Q
)

 

 (m
eV

)

Q (nm-1)

Max. S(Q)

Figure 6.3: Dispersion relation of the longitudinal acoustic-like excitations of
sulfur measured at T= 202 K. The data (blue dots) are reported as a function of
the momentum transfer Q together with the static structure factor S(Q) (green
crosses) obtained from the integration of the spectra. The red line indicates the
energy of the boson peak maximum while the purple dashed line corresponds

to the first sharp diffraction peak of the S(Q).

Figure 6.3 reports the dispersion curve of sulfur for T=202 K as a function of the
exchanged momentum Q. The corresponding estimated static structure factor is
reported as well (green dots). The dispersion curve displays a linear Q dependence
for wave vectors values up to ∼ 5.7 nm−1. At higher Q, the curve bends and
reaches a minimum in correspondence of the maximum of the static structure
factor (dashed line in Figure 6.3). The red line in the Figure represents the energy
of the maximum of the boson peak obtained from the Raman measurements [176]
reported in Figure 6.4. In general the Raman light scattering intensity can be
written as

I(ω) = g(ω)C(ω)
[n(ω) + 1]

ω
(6.1)

where C(ω) is the photon-vibration coupling coefficient, [n(ω) + 1] is the Bose
occupation factor and g(ω) is the vibrational density of states. In Figure 6.4 the
reduced Raman intensity IR = C(ω)g(ω)/ω2 is reported. A maximum correspond-
ing to the boson peak is well evident at about ∼ 15 cm−1 (corresponding to 1.9
meV). This value does not coincide with the boson peak position, being IR related
to the boson peak of a glass through the factor C(ω). Experimentally it has been
found that EBP,raman = 1.5 · EBP,neutrons [176]. Through this relation we obtain
EBP = 1.2 meV for glassy sulfur. This value is typical of fragile systems, such as
polymeric glasses, and is out of the energy window accessible to IXS. In fact, as
it is shown in Figure 6.3 the boson peak is located at a so low value that it is not
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Figure 6.4: Reduced Raman intensity IR = C(ω)g(ω)/ω2 of glassy sulfur at
T=153 K [176].

possible, from the experimental point of view, to measure the acoustic-like modes
present in the same energy range. This means that an IXS experiment on glassy
sulfur allows only the study of the high frequency dynamics well above the excess
in the reduced VDOS.
The upper panel of Figure 6.5 shows the apparent sound velocity of sulfur at

the investigated temperatures. The macroscopic limits measured with BLS (see
section 3.5) are reported as well (horizontal lines). A different scenario is here
observed: there is no evidence of the negative dispersion found in glycerol [96] and
sorbitol (see Figure 4.15). The sound velocity of sulfur is almost constant up to
Q ∼ 4 nm−1 and then smoothly decreases on increasing the momentum transfer
in the scattering process. As shown in the previous Chapter, the softening of the
modes observed in sorbitol is strictly related to the boson peak, and thus we should
expect it in an energy range lower than the one here investigated.
In reality a sort of anomaly in the case of sulfur is also here observed. The high
frequency sound velocity is in fact ∼ 4% higher than the corresponding macro-
scopic limit (see inset in the upper panel of Figure 6.5). As explained in the next
paragraph, this difference is due to the presence of an anharmonic contribution at
low frequency which affects the values measured with BLS.
The lower panel of Figure 6.5 reports the width of the inelastic features as a func-
tion of the exchanged wave vector for different temperatures. As expected from
the previous discussions, the damping is temperature independent and follows the
typical ∼ Q2 behavior usually observed at energies higher than the boson peak
one in other glasses [57, 89]. On approaching the FSDP of the S(Q) (see Figure
6.3), the excitations become more and more ill-defined and ~Γ deviates also from
the observed quadratic dependence.
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Figure 6.5: Inelastic x-ray scattering results for the Q-dependence of the
sound velocity (upper panel) and broadening ~Γ (lower panel) of the longitudinal
acoustic-like excitations of glassy sulfur at the indicated temperatures. In the
upper panel the horizontal lines mark the macroscopic limits measured with
BLS, while the inset shows an enlargement of the low Q behavior of the data
taken at T=202 K. In the lower panel the red line represents the quadratic best

fit lineshape of the low Q behavior of the data taken at T=202 K.

6.2.1 The quasi harmonic nature of the high frequency ex-
citations

At low frequencies, the vibrational dynamics of glasses is affected by anharmonic-
ity. In section 4.4.1 we have seen that the BLS results can be described in terms
of the simultaneous presence of a purely anharmonic and a quasiharmonic contri-
bution. In the case of sorbitol, the anharmonicity is weak and influences the BLS
sound velocity only very slightly. In that case, in fact, the low frequency sound
velocity basically corresponds to the purely elastic limit measured at the lowest
investigated Q value with IXS. The presence of a more “important” anharmonic
term, would instead lead to a strong dispersion of the sound speed with frequency
(or wavenumber). This scenario explains the observed difference in glassy sulfur
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Figure 6.6: Temperature dependence of the sound velocity and FWHM of
glassy sulfur measured with BLS (see section 3.5). The red full lines are the
best fitting curves using the model of equation 6.2. In the top panel the fully
relaxed v0∞(orange empty squares) and unrelaxed v∞ (empty green triangles)
sound velocity values are reported for some representative temperatures, in order
to emphasize the effect of anharmonicity. The high frequency IXS data of vL

(purple triangles) are plotted as well.

between the high frequency vL measured with IXS and the low frequency one ob-
tained from BLS measurements (see inset in the top panel of Figure 6.5).
In order to investigate the role played by anharmonicity in glassy sulfur, the low
frequency data have been analyzed with the model equation 4.39 proposed in sec-
tion 4.4.1. Due to the lack of information on the temperature dependence of the
density of glassy sulfur, the quasi-harmonic hypothesis used in the case of sorbitol
cannot be exploited or tested, and the model has a purely empirical justification.
The model reads:

v2
L = v2

∞ − ∆2

1 + ω2τ 2
and Γ =

∆2

v2
∞

ω2τ

1 + ω2τ 2
(6.2)

In these expressions, the quasiharmonic term is contained in the description of the
fully unrelaxed sound velocity v2

∞ = (v0
∞)2(1+aT )2, while the anharmonic process
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is described by an average relaxation time τ = τ0e
En
T , and a strength given by

∆2 = B(T − T0) with T0 = 100 K. The choice of this expression for ∆2 is due
to the limited information on the Brillouin linewidth of the longitudinal modes.
In fact, as shown in Figure 6.6 Γ has been measured only at temperatures higher
than 150 K. The lack of data for Γ at lower temperatures does not allow us to for-
mulate a more accurate model for the anharmonic contribution. In this situation,
a simple approximation to describe ∆2 is of course given by a linear temperature
dependence with the condition ∆2(T0) = 0 for T0 = 100 K in order to match the
measured data.
The best fitting curves obtained from this analysis are reported in Figure 6.6 to-
gether with the experimental data, while the fit parameters are reported in table
6.1. The fit has been performed only in the temperature range where both Γ and
vL have been measured. The simple model described by equation 6.2 is clearly
able to well reproduce the experimental data, even if a more elaborate description
would be necessary in order to account for the detailed shape of Γ.
Moreover, differently from the case of sorbitol, the model suggests that the sound
velocity shows a relevant dispersion up to the THz frequency range probed by
IXS, while the anharmonic contribution to the Brillouin width remains negligible
in the high frequency range.
The strength of the anharmonic process yields information on the relaxed sound

v0
∞ a B τ0 En

[km/s] [10−4K−1] [m2/s2K] [ps] [K]

2.51 4.05 5.1 2.50 220

Table 6.1: Values of the parameters of the equation model 6.2 used to describe
the temperature behavior of v∞(T ) and ~Γ(T ) of sulfur.

velocity v0∞ - related to M0,∞ reported in Figure 4.22 - being ∆2 = v2
∞ − v2

0∞.
The resulting values are also reported in Figure 6.6 at some selected temperatures
together with the v∞ values estimated from the fit. The low frequency dynam-
ics of sulfur is clearly characterized by a stronger anharmonic contribution than
that affecting the dynamics of sorbitol. In particular, for T = 200 K we find
(∆2/v2

∞)sorb = (1.26 ± 0.02)10−2 for sorbitol and (∆2/v2
∞)sulf = (9.52 ± 0.13)10−2

for sulfur, thus a value almost eight times higher than in sorbitol.
On increasing the temperature, the strength of the anharmonic contribution in-
creases and the measured sound velocities do not correspond any longer to the
pure elastic limit measured at low Q with IXS (purple triangles in Figure 6.6).
As consequence, the macroscopic continuum limit of sulfur can be experimentally
reached only at low temperatures or through the investigation of the dynamics
at higher frequencies. The residual differences between the v∞ value at T = 150
K and the corresponding IXS one is likely due to the low accuracy in the high
frequency estimation of vL, which has been measured for only one Q value (see
Figure 6.5). The same argument can be applied probably also to the lower IXS
temperature, even if we do not have the estimated value for v∞.
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Figure 6.7: Brillouin width ~Γ as a function of the excitation energy measured
with IXS (blue circles) and BLS (green triangle). The red line represents the

anharmonic contribution to the damping, calculated from equation 6.2.

This situation is similar to that observed in the case of a silicate glass [103] and
reported in Figure 2.10 B. In that system, in fact, the presence of anharmonic or
relaxational processes at low frequency lead to relevant dispersion of the sound
velocity in the GHz range probed by IXS, so that the pure elastic limit can only
be reached at high frequency.
From the model 6.2 we find a value En ∼ 220 K and a characteristic time τ ∼ 7
ps at T=200 K. These values, together with the corresponding ∆2 one, can be
used to estimate the anharmonic contribution to the damping of the collective ex-
citations at high frequencies. Figure 6.7 reports the Brillouin width ~Γ measured
at T=202 K with IXS together with the anharmonic contribution calculated from
equation 6.2 and the corresponding value measured with BLS. In the frequency
range explored by IXS, the anharmonic contribution to the damping is expected to
be almost three orders of magnitude smaller than the measured excitation broad-
ening and can be completely neglected. This result confirms the non dynamic
nature of the sound attenuation at high frequency.

6.2.2 Nonergodicity factor

In section 4.2.2 it has been shown as the second moment sum rule for the dynamic
structure factor allows for the determination of the S(Q) of the investigated sys-
tem. We have seen that the validity of the whole normalization procedure can be



Chapter 6. High frequency dynamics of sulfur 163

0 2 4 6 8 10 12 14 16 18
0.00

0.01

0.02

0.03

0.04

0.05  S(Q)(1-fQ)

 kBT/(MvL
2)

 

 

S(
Q

)(
1-

f Q
), 

k B
T/

(M
v L2 )

Q (nm-1)

Figure 6.8: Check of the validity of relation 4.31 for glassy sulfur measured
at T=202 K with IXS.

checked looking at the relation 4.31

S(Q)(1 − fQ) = kBT/(Mv2
L).

Figure 6.8 shows the two sides of relation 4.31 for glassy sulfur at T=202 K.
The relation holds in the whole Q range, thus up to the first maximum of the
S(Q). This agreement represents moreover a confirmation of the evaluation of the
nonergodicity factor.
The static structure factor can be furthermore used to estimate the isothermal
compressibility, χ0

T , of the corresponding supercooled liquid at Tg. In fact as seen
in section 4.2.3, χ0

T can be obtained from the long wavelength limit of the S(Q)
being

χ0
T (Tg) =

ρkB

MTg

S(Q → 0) + M−1
∞ (Tg) −

T

Tg

M−1
∞ (T ). (6.3)

This quantity has been calculated as follows: the S(Q → 0) limit has been esti-
mated using the IXS results on glassy sulfur at T=202 K, the density has been
assumed equal to the one measured below Tg (ρ = 1.92 g/cm3) [142] and the val-
ues of M−1

∞ have been taken from the fully unrelaxed sound velocities v∞ obtained
from the analysis of the low frequency BLS data using the model 6.2. We find
χ0

T (Tg) = 0.21 ± 0.01 GPa−1.
In the case of glassy sorbitol it has shown that if the data satisfy the relation 4.31
then the long wavelength limit of fQ is given by relations 4.37 and 4.38.
The nonergodicity factor of sulfur measured at T=202 K is reported in the left
panel of Figure 6.9 together with the macroscopic limit given by equation 4.37
and reported in table 6.2. Differently from the case of glassy sorbitol (see Figure
4.18), the fQ of sulfur is basically flat in the low Q range, up to Q ∼ 7 nm−1 and
corresponds to the macroscopic continuum value. This agreement confirms the
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Figure 6.9: Left panel: Nonergodicity factor of sulfur measured at T=202
K. The blue square represents the continuum limit given by relations 4.37 and
4.38. The calculated S(Q) is reported as well (green stars). Right panel: Q
dependence of the α parameter obtained from relation 4.37. The blue rectangle

is the continuum limit obtained through equation 4.38.

validity of both the normalization procedure used for the IXS spectra and of the
value obtained for χ0

T from relation 6.3. It in fact confirms that it is possible to
get information on the isothermal compressibility of a supercooled liquid close to
the glass transition through the study of the vibrational dynamics in the corre-
sponding glassy state.
The Q independence of the nonergodicity factor at low wave vectors implies that
in the same Q range the shape of the high frequency sound velocity of sulfur is
completely described by the Q dependence of the static structure factor. In fact
in this range equation 4.31 yields vL ∝ 1/

√
S(Q) (see Figure 6.10). This relation

is not valid in the case of sorbitol due to the marked Q dependence of fQ in the
low Q range (see Figure 4.24).
Equation 4.37, 1/fQ = 1+αT/Tg, can be inverted to obtain the αIXS parameter,

T [K] fQ,macr. αχ

202 0.56 ± 0.02 0.90 ± 0.09

Table 6.2: Long wavelength limit of the nonergodicity factor and the αχ

parameter obtained from equations 4.37 and 4.38.

shown in the right panel of Figure 6.9, together with the corresponding long wave-
length limit αχ given by equation 4.38 and reported in table 6.2. This quantity
can be used to check the validity the correlation m = 135α proposed between
the kinetic fragility and the vibrational properties of glasses [3, 4] (see section
2.4). Using the low wave vector value, corresponding to the macroscopic limit,
we estimate a kinetic fragility of mχ(T = 202 K) = 122 ± 12. As previously
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Figure 6.10: Wave-vector dependence of the high frequency sound velocity
vL (blue circles, left y axis) and

√
kBT/MS(Q) (red triangles, right y axis) of

sulfur measured with IXS at T=202 K.

reported, this quantity can be obtained as well from the temperature dependence
of the inverse of the nonergodicity factor as a function of the rescaled tempera-
ture T/Tg. The corresponding data are reported in Figure 6.11 together with the
best fit lineshape. From the slope of the curve we obtain a kinetic fragility of
mIXS = 115 ± 3. The two values of the fragility are basically compatible within
the experimental errorbars. Albeit their value is slightly higher than the one cal-
culated in the liquid phase (mA = 86 ± 7, see section 3.4.1), this result seems to
confirm the validity of the correlation between fast dynamics in the glassy state
and slow dynamics in the supercooled liquid phase in polymeric glassy sulfur.
However, as reported in Ref. [29], one should take into account the anharmonic
contribution found at low frequency as well (see section 6.2.1). Following the same
procedure described in section 4.4.2 for sorbitol (in particular equations 4.42 and
4.44), we find fQ,ana(Tg) = (13.2 ± 0.8)10−2, thus a value almost 10 times higher
than that of sorbitol. By using the estimated value fQ,str(Tg) of the nonergodicity
factor we find the value αstr = 1.34 ± 0.12 for the α parameter related only to
the structural relaxation process. Such a value would corresponds to a fragility
of mstr = 181 ± 16, in clear disagreement with that of the corresponding viscous
melt. In reality, the linear relation proposed by Scopigno and coworkers seems to
bend at high α values, in agreement with the case of polymeric sulfur. This aspect
will be treat more in detail in the next Chapter together with a comparison to
other systems.
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Figure 6.11: Inverse of the nonergodicity factor of sulfur for Q = 2 nm−1

measured at T=101, 148 and 202 K as a function of the rescaled temperature
T/Tg. The red line represents the best fit shape obtained from relation 1/fQ =

1 + α (T/Tg).

6.3 Glassy sulfur versus liquid sulfur

It is interesting to compare the sound velocity measured in the glass at low and
high frequency to that corresponding to the liquid phase. Figure 6.12 displays
the temperature dependence of the sound velocity measured in the GHz and
THz frequency range in the glassy state together with that measured in the MHz
[130, 177, 178], GHz [139] and THz [138] frequency ranges in the liquid phase on
crossing the λ transition. The differences in the liquid sulfur data corresponding to
different frequencies are due to the effect played by the main structural relaxation
process. Being present both above and below Tλ, the observed differences in the
longitudinal modulus on crossing Tλ are not related to the huge increase in the
viscosity during the polymerization transition, as confirmed by the presence of a
secondary slow process (see section 3.4) [140].
The structural relaxation process is of course frozen in the glassy phase, and then
one should expect that the high-frequency IXS data measured in the polymeric
liquid above Tλ and the sound velocity data measured in the glass are strongly
related. That this is actually the case is indicated as well in Figure 6.12, where
we show that the data in the glass can be extrapolated from the data in the poly-
meric liquid, and vice versa. This confirms the strict relation between these two
states of sulfur, and shows the possibility to get information on the viscoelastic
properties of the polymeric liquid phase by studying the elastic properties of the
corresponding glass.
In the Figure we added also the point corresponding to the relaxed sound velocity
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Figure 6.12: Temperature dependence of the sound velocity vl of the longitu-
dinal acoustic excitations. The values measured in the glassy state in the GHz
(blue circles) and THz (magenta stars) frequency range are reported together
with those measured in the liquid phase in the MHz (empty violet triangles and
green hexagons) [130, 177, 178], in the BLS (empty purples circles) [139] and in
the IXS (red squares) frequency range. The orange empty circle has been cal-

culated from the relation v0(Tg) = 1/
√

ρ(Tg)χ0
T (Tg) using the values of χ0

T (Tg)

obtained from relation 6.3. The dashed black line indicates Tλ = 432 K. The
full green and red lines show that the data in the glass can be obtained by a
simple linear extrapolation of the corresponding data in the polymeric liquid

phase above Tλ.

v0(Tg) = 1/
√

ρ(Tg)χ0
T (Tg) estimated from the value of the isothermal compress-

ibility of the liquid at Tg obtained from the analysis of the IXS data (see section
6.2.2). Also in this case the data can be linearly extrapolated from the correspond-
ing ones in the polymeric liquid phase above Tλ.



Résumé du chapitre 7

Dans ce chapitre les principaux résultats de ce travail de thèse sont
mis en relation avec le comportement des autres verres. Comme
nous l’avons vu dans les chapitres précédents, la rupture de l’appro-
ximation du continuum de Debye dans la région mésoscopique sem-
ble être une caractéristique universelle des verres et elle se présente
toujours avec un fort, genre Rayleigh, régime d’atténuation des ex-
citations acoustiques correspondantes. En outre, ces comportements
particuliers peuvent être utilisés pour reproduire quantitativement la
forme du BP, en confirmant ainsi la connexion étroite entre BP et
les modes acoustiques à haute fréquence. Ce sujet sera traité dans
la première partie du chapitre, tandis que dans la deuxième par-
tie, on présentera un résumé des résultats sur les corrélations en-
tre la fragilité des liquides visqueux et les propriétés élastiques des
verres. Comme on le montrera même si il existe une indication
claire de la présence d’une sorte de relation entre ces deux états
de la matière, une corrélation quantitative universelle est toujours
manquante. Toutes les relations analysées dans cette thèse sont, en
effet, liées à des comportements dépendants du système et, selon le
système, leur validité peut être fortement débattue.
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Chapter 7

Comparison with other systems

In this Chapter the main results of this Thesis work are discussed in relation with
the behavior of other glasses. As anticipated in the previous Chapters the break-
down of the Debye continuum approximation on the mesoscopic spatial range
seems to be an universal feature of glasses and comes always with a strong,
Rayleigh like, damping of the corresponding acoustic excitations. Furthermore,
these peculiar behaviors can be used to quantitatively account for the shape of
the boson peak, confirming the strict connection between BP and high frequency
acoustic modes. This argument will be treated in the first part of the Chapter,
while in the second part, a summary of the results on the correlations between
fragility of viscous liquids and elastic properties of glasses will be presented. As
it will be shown there, even if there is a clear indication of some sort of relation
between these two states of matter, a quantitatively universal correlation is still
missing. All of the relations investigated in this Thesis are indeed related to system
dependent behaviors and, depending on the system, their validity can be strongly
debated.

7.1 Universal behavior of glasses

Figure 7.1 reports the high frequency sound velocity of strong silica [97], interme-
diate glycerol [96], and fragile sulfur and sorbitol rescaled for the corresponding
macroscopic value as a function of E/EBP , in order to compare the different sys-
tems. The universal occurrence of the negative dispersion at low Q values is well
evident. Moreover it takes place always in the same energy range, below the energy
of the corresponding boson peak maximum. As observed in the previous Chapter,
polymeric sulfur does not show this universal behavior, being the lowest investi-
gated Q well above EBP and thus above the negative dispersion as well. Moreover
the sound velocity of sulfur seems to have already reached the macroscopic limit,
suggesting the absence of the negative dispersion in this glass. However, it has
been shown that the softening of the modes is responsible for a peak in the reduced
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Figure 7.1: High frequency sound velocity rescaled by the macroscopic value
of silica [97], glycerol [96], sulfur and sorbitol as a function of the energy rescaled

to the maximum of the boson peak.

vibrational density of states (see the Figure 5.7 A)). As a consequence, depend-
ing on the intensity of the BP we expect to find a more or less evident negative
dispersion; in particular the higher is the BP intensity, the larger should be the
softening of the sound velocity. As previously reported, the amplitude of the BP
is usually lower in fragile systems [60]. Even if we do not have information on
the BP intensity of sulfur on an absolute scale, the presence of low elastic moduli,
and more precisely of a high bulk to shear moduli ratio (B′/G′ = 7.65 ± 0.31, see
section 3.5.2) is typical of fragile systems having a BP less intense than glycerol
and silica [5, 6, 60]. For this reason, the negative dispersion in sulfur is expected to
be smaller than in the other systems, and could be hidden by the large errorbars
values (see Figure 7.1).
Different is the situation in the case of sorbitol; it has indeed be shown that de-
spite of the fact that supercooled sorbitol displays a super-Arrhenius behavior on
approaching Tg, glassy sorbitol has elastic properties similar to those of strong and
intermediate systems, such as high elastic moduli values, and thus a low value of
the bulk to shear modulus ratio (B′/G′ = 2.44 ± 0.07, see section 3.3.3). In this
case in fact, the intensity of the BP is similar to that of intermediate glasses, such
as glycerol, with a consequent well evident softening of the sound velocity.

Figure 7.2 shows the high frequency acoustic attenuation as a function of the
rescaled energy E/EBP for the same systems reported in Figure 7.1. All the glasses
display a strong, Rayleigh-like, behavior of the excitations broadening with the ex-
ception of sulfur, whose damping follows a (~Ω)2 dependence. In particular, as
expected from the observations reported in section 6.2, this behavior takes place
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Figure 7.2: High frequency sound attenuation of silica [97], glycerol [96],
sulfur and sorbitol as a function of the energy rescaled for the maximum of the

boson peak.

well above the BP maximum in an energy range where also the other systems
exhibit a quadratic dependence of ~Γ on the excitation energies.
In section 5.3.1 it has shown as the peculiar behavior of the high frequency ex-
citations can be used to quantitatively reproduced the shape of the boson peak.
The model equations 5.36 have been successfully applied both for glycerol [96]
and sorbitol (see Figure 5.7 B)), while in the case of silica, the model is able to
estimate the position of the BP but it underestimates its intensity [179]. Albeit
this inconsistency, these results confirm the strict correlation between the BP and
the high frequency acoustic modes and should be taken into account to improve
the current theoretical models of the vibrational density of states of glasses.

7.1.1 The Ioffe Regel criterion

In section 4.3.3 the Ioffe-Regel criterion has been discussed. We have seen that in
the case of sorbitol the upper limit EIR for a description of the acoustic excitations
in terms of well defined plane waves takes place at energies higher than that of
the boson peak. It is interesting here to compare this result with those of other
glasses, and in relation with the elastic anomalies found on the nanometer spatial
range. As previously reported, a correlation has been proposed between the boson
peak energy and EIR, which is, however, strongly debated [91, 164].
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Figure 7.3: Left panel: Ioffe-Regel limit vs boson peak energy for different
glasses. Black symbols are taken from Ref. [91], while the colored symbols
correspond respectively to silica (magenta triangle) [97], glycerol (red square)
[96], sulfur (green triangle) and sorbitol (blue circle). Right panel: EIR vs EBP

as in the left panel, but the black symbols are instead taken from Ref. [164].

glass EIR EBP EIR/EBP

[meV] [meV]
silica 6.31 ± 0.38 6 1.05 ± 0.06
glycerol 5.00 ± 0.42 4 1.25 ± 0.11
sulfur 2.40 ± 0.38 1.2 2.00 ± 0.32
sorbitol 6.70 ± 0.36 4.5 1.49 ± 0.08

Table 7.1: Values of EIR and EBP for silica [97], glycerol [96], sulfur and
sorbitol.

Figure 7.3 reports the EIR vs EBP plot for various glasses, taken from Ref. [91]
(black symbols in the left panel) and from Ref. [164] (black symbols in the right
panel). We added the points for silica [97], glycerol [96], sulfur and sorbitol. The
corresponding data are reported in table 7.1. Without entering the discussion on
the validity of the values used in the two Figures, it is interesting here to note that,
in all glasses EIR ≥ EBP , with the exception of densified silica (number 3 in the
right panel). Our data show as well that the Ioffe-Regel limit for the longitudinal
modes is larger than the BP energy, as in the case of sorbitol and sulfur. Moreover
looking at the elastic anomalies found in silica, glycerol, and sorbitol (see Figures
7.1 and 7.2 and values in table 7.1), it is interesting to note that EIR is also
always found close to the upper end of the low Q, Rayleigh like behavior of the
acoustic damping (and at the end of the negative dispersion), confirming thus the
significance of EIR as a crossover between well-defined acoustic excitations and
a more complex pattern of excitations at higher Q. Furthermore, a simple look
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at the data reported in table 7.1 shows that it is clearly not possible to find a
quantitative relation between the energy of the boson peak and the IR limit: for
instance, glassy sorbitol has a higher EIR value than silica but at the same time a
lower BP position. Moreover following the definition of the IR limit, EIR = π~Γ,
it is clear that this quantity is almost temperature independent while there are
systems, such as silica, where EBP is strongly affected by temperature changes
[164, 180]. In the previous Chapters we have in fact seen that the excitation
energy ~Ω does not display any appreciable temperature dependence (which is only
evident in the sound velocity) and that the corresponding high frequency sound
attenuation is non dynamic in origin in the low Q range governed by the Rayleigh
like regime. Albeit sorbitol is the first glass where this damping mechanism has
been measured under temperature changes, being EIR at the crossover between
the two different Q regimes for the damping, it is straightforward to imaging a
temperature independence of this limit as well. As a consequence, depending on
the chosen temperature, several systems can show a worst of better correlation
between EIR and the BP energy.

7.2 Fragility of liquids and nonergodicity factor

of glasses

In sections 2.4, 4.3.4 and 6.2.2 the relation between slow dynamics in supercooled
liquids and fast dynamics in glasses has been largely discussed. The results for
sorbitol and sulfur show that in order to properly estimate the nonergodicity fac-
tor of glasses, it is necessary to take its macroscopic value, which can be easily
obtained from low frequency BLS data and from the knowledge of the isothermal
compressibility in the liquid phase at the glass transition temperature (see equa-
tions 4.37 and 4.38). In order to properly compare the fQ with the fragility of
liquids, the nonergodicity factor should be related only to the structural relaxation
process that is frozen in the glassy state. We have seen that the presence of an-
harmonic or relaxation contribution can lead to a wrong estimation of the fQ, and
as a consequence of the α parameter to be compared to mA. It is interesting here
to compare the results obtained in sorbitol and sulfur together with those found
in other systems.
Figure 7.4 reports the values of the kinetic fragility mA of supercooled liquids
vs the values of the α parameter estimated by means of different techniques for
several systems [29]. In particular, the Figure shows also new values of the α pa-
rameter (blue triangles) obtained for different glasses by considering the presence
of an anharmonic or relaxational contribution at very low frequency, as explained
in Ref. [29]. The corresponding values for sulfur and sorbitol are also reported.
In this case the α parameter has been obtained from the macroscopic limit 4.38
and the Figure reports both the value estimated directly from the measured fQ

(purple circles) than those calculated by considering the anharmonic contribution
found in the GHz frequency range through equations 4.42 and 4.44 (magenta cir-
cles). Obviously, by removing the anharmonic contribution α shifts toward higher
values. It is important to stress that the anharmonic contribution considered in
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time (grasped by the kinetic fragility, mA) and the nonergodicity factor (grasped
by the α parameter for several glasses. All the data are taken from Ref. [29]
with the exception of sorbitol and sulfur, for which the α parameter has been
calculated from relation 4.38 (purple circles) and by considering the anharmonic
contribution found in the GHz frequency range (magenta circles). The data

without a name are the same as in Figure 2.14.

this Thesis for sorbitol and sulfur is different from that considered in Ref. [29].
Looking at the Figure it is clear than neither sorbitol nor polymeric sulfur fulfill
the proposed relation between the kinetic fragility and the nonergodicity factor.
In particular, in the case of glassy sulfur the system goes out of the proposed
correlation once the anharmonic contribution is taken into account.
These results clearly show the difficulty to find a quantitative relation between
α and mA, in particular once systems with high fragility values are taken into
account1.

The value of the α parameter can be not even always taken as an indication
of the fragile character of a system, in the sense that the more fragile the liquid
the higher the corresponding α in the glassy state. This is shown by the case for
sorbitol (see Figure 7.4) and can be clearly observed looking at Figure 7.5 where
the temperature dependence of the inverse of the nonergodicity factor, measured
with IXS, is reported as a function of the rescaled temperature T/Tg for several
glasses [3].
While for polymeric glassy sulfur the α parameter - and thus the slope of the
linear behavior of 1/fQ - is higher than for instance that for OTP in agreement

1As previously discussed and shown in Figure 2.14 the relation mA = 135α seems to be valid
for several strong and intermediate glass formers.
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with its fragile character, fragile sorbitol exhibits a behavior very close to that of
glycerol, and thus of intermediate systems. In Figure 7.5 all the data are reported
by assuming the presence of the structural relaxation process alone governing the
microscopic dynamics. Anyway, we have seen that in the case of sorbitol, the
anharmonic contribution found in the GHz is weak and does not alter the results
(see the two values of α in Figure 7.4) which remain in disagreement with any
proposed correlation between kinetic fragility and elastic properties of glasses.



Conclusions and perspectives
(français)

Au cours de cette thèse nous avons poursuivi l’objectif difficile de clarifier plusieurs
aspects concernant les propriétés vibrationelles des verres. Deux thèmes princi-
paux ont été abordé. D’un côté on a largement étudié la relation entre les pro-
priétés élastiques des verres et la bien connue ”anomalie” dans la densité réduite
des états vibrationnels, donc le BP. De l’autre côté, la connaissance détaillée de la
dynamique vibrationnelle des verres dans une grande gamme de fréquences nous a
permis de vérifier plusieurs corrélations proposées entre la dynamique rapide dans
les verres et la dynamique lente dans les correspondants liquides surfondus.
Cette étude a été soutenue par l’utilisation de la diffusion inélastique de la lumière,
de rayons x et de neutrons. La combinaison des résultats trouvés avec ces diffé-
rentes techniques nous a permis d’effectuer une étude approfondie des propriétés
vibrationnelles de deux verres fragiles: sorbitol moléculaire et soufre polymère.
Malgré la structure différente des deux systèmes étudiés, dans les deux cas, les
excitations acoustiques à haute fréquence peuvent être décrites avec une bonne
approximation dans une approche quasi-harmonique, donc avec une vitesse du
son dont la dépendance en température est entièrement régie par les transforma-
tions correspondantes du continuum élastique et avec un mécanisme d’atténuation
acoustique clairement non dynamique dans son origine. En outre, dans le cas du
sorbitol l’excès des modes dans le VDOS à 4,5 meV, par apport à la prédiction
du continuum élastique de Debye, est clairement lié à des anomalies observées
dans la courbe de dispersion acoustique dans la région mésoscopique de vecteurs
d’onde de quelques nm−1. Ces anomalies élastiques se manifestent comme une
diminution de la vitesse du son à haute fréquence et en correspondance il y a une
forte atténuation gouvernée par un mécanisme genre Rayleigh pour des énergies
des excitations proches de celle du maximum du BP. L’étude de la dépendance
en température de ces propriétés montre que la connexion avec le BP est main-
tenue même avec les changements de température. Ces résultats nous permettent
de justifier et comprendre la relation déchelle du BP observé avec les paramètres
du milieu élastique. Le lien entre BP et les modes acoustiques est d’ailleurs ren-
forcé par la possibilité de reproduire quantitativement sa forme en utilisant la
dépendance en Q des excitations collectives à haute fréquence.
Dans le cas du soufre vitreux polymère, les limites actuelles expérimentales de
IXS et la valeur basse du maximum du BP ne nous permettent pas d’enquêter
le caractère des excitations acoustiques présentes dans la même gamme d’énergie
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du BP. Dans cet échantillon, les caractéristiques observées dans le sorbitol sont
probablement déplacées vers des énergies plus basses et donc dans une région qui
ne peut pas être explorée actuellement. En conséquence, les excitations collec-
tives à haute fréquence du soufre montrent le comportement typique observé dans
d’autres verres bien au-dessus de l’énergie du BP. À basses vecteurs d’onde la
vitesse du son à haute fréquence du soufre se trouve à être plus élevée par rapport
à la limite macroscopique explorée avec BLS. Cet écart peut être expliqué grâce à
une contribution anharmonique présente dans la région à basse fréquence.
L’analyse détaillée des propriétés vibrationnelles du soufre polymère et du sorbitol
nous a donné la possibilité de vérifier la validité dans ces systèmes de certaines
corrélations proposées entre l’état vitreux et la phase liquide correspondante. Nous
avons montré que dans les deux systèmes le rapport entre le module de cisaillement
instantané et celui de la compressibilité ne suit pas la dépendance linéaire de la
fragilité cinétique trouvée pour plusieurs verres par Novikov et al. [5, 6]. Bien que
les polymères en général violent ce genre de relation, les résultats sur le sorbitol
sont plutôt en évident désaccord. Cela est dû à l’étrange caractère de ce système,
dont la dynamique est similaire à celle des systèmes forts et intermédiaires dans
l’état vitreux et à celle des systèmes très fragiles dans la phase de liquide surfondu.
La relation entre le paramètre de nonergodicité et la fragilité cinétique a été vérifié
également en vue de récentes améliorations de la corrélation d’origine proposées par
Scopigno et ses collègues [29]. Malgré nous avons utilisé une approche différente
par rapport à celle proposée dans Ref. [29], nous constatons que même en con-
sidérant la présence des mécanismes de relaxation ou anharmonicité présents à
basse fréquence, la relation proposée n’est pas satisfaite ni dans le sorbitol, ni
dans le soufre. En outre, le paramètre α qui décrit la dépendance en température
du facteur de nonergodicité mesuré avec IXS est strictement lié au comportement
des correspondantes excitations collectives à haute fréquence. Une évaluation cor-
recte de ce paramètre, et donc du facteur de nonergodicité, devrait plutôt être
effectuée en utilisant son valeur macroscopique. Nous trouvons que cette limite
continuum peut être obtenue à partir d’un prolongement naturel dans l’état vi-
treux de la relation proposée par Buchenau et Wischnewski [4] qui est valable à
la température de transition vitreuse.
Ces conclusions nous permettent d’avoir une image raffinée sur des questions fon-
damentales sur la dynamique vibrationnelle des verres et de nombreux aspects
de ce travail de thèse exigeront une enquête plus approfondie. En particulier, les
anomalies élastiques universelles trouvées dans des verres à proximité de l’énergie
du BP devraient être prises en compte afin d’améliorer les modèles théoriques
actuels pour l’excès de modes dans la densité réduite des états. Dans cette per-
spective, plusieurs autres travaux expérimentaux sont également fondamentaux.
Par exemple à l’avenir des études pourraient être effectuées en fonction de la pres-
sion dans les verres et en fonction de la température dans la phase liquide surfondu.
La comparaison avec les phases cristallines correspondantes devraient être menées,
ainsi, afin de clarifier dans quelle mesure les anomalies discutées ici sont vraiment
propres à l’état désordonné.
Les résultats sur la corrélation entre les verres et les liquides surfondus posent au
contraire beaucoup de doutes sur la possibilité concrète de trouver des relations
universelles. Malgré le fait que plusieurs corrélations proposées soient vérifiées
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pour un grand nombre de matériaux forts et intermédiaires, les systemes fragi-
les, tels que le sorbitol moléculaire et le soufre polymère, semblent présenter un
comportement plus complexe et dépendant du système.



Conclusions and perspectives

During this Thesis project we pursued the challenging aim to clarify several as-
pects concerning the vibrational properties of glasses. Two main topics have been
tackled. From one side the relation between elastic properties of glasses and the
well known “anomaly” in the reduced vibrational density of states, thus the boson
peak, has been largely investigated. On the other side, the accurate knowledge
of the vibrational dynamics of glasses in a wide frequency range has allowed us
to check several proposed correlations between fast dynamics in glasses and slow
dynamics in the corresponding supercooled liquids.
This study has been supported by the use of inelastic light (BLS), x-ray (IXS)
and neutron (INS) scattering techniques. The combinations of the results found
with these different techniques has allowed us to perform a deep investigation of
the vibrational properties of two fragile glasses: molecular sorbitol and polymeric
sulfur.
Albeit the different structure of the two investigated systems, in both cases the
high frequency acoustic excitations can be described to a good approximation in
a quasi-harmonic approach, thus with a sound velocity whose temperature depen-
dence is completely governed by the transformation of the corresponding contin-
uum medium and with an acoustic attenuation mechanism clearly non dynamic
in its origin. Moreover, in the case of sorbitol the excess in the VDOS at 4.5 meV
over the Debye, elastic continuum prediction (boson peak) is found to be clearly
related to anomalies observed in the acoustic dispersion curve in the mesoscopic
wavenumber range of few nm−1. These elastic anomalies appear as a softening
of the high frequency sound velocity and a corresponding strong, thus Rayleigh
like, damping mechanism for excitations energies close to that of the boson peak
maximum. The study of the temperature dependence of these properties shows
that the connection with the BP is kept under temperature changes. These results
then lead to a natural frame for justifying and understanding the observed scaling
of the boson peak with the parameters of the elastic medium. The link between
BP and acoustic modes is moreover strengthen by the possibility to quantitatively
reproduce its shape using the Q-dependence of the high frequency collective exci-
tations.
In the case of polymeric glassy sulfur, the current experimental limitations of IXS
and the low BP maximum value do not allow the investigation of the character
of the acoustic excitations present in the crucial energy range of the BP. In this
sample, the features observed in sorbitol are likely shifted toward lower energies
and thus in a range that cannot be explored at the current time. As a consequence,
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the high frequency collective excitations of sulfur display the typical behavior ob-
served in other glasses well above the BP energy. At low exchanged wavevectors
the high frequency sound velocity of sulfur is found to be higher with respect to
the macroscopic limit explored with BLS. This discrepancy has be explained in
terms of an anharmonic contribution present in the low frequency range.
The detailed analysis of the vibrational properties of sorbitol and polymeric sulfur
gave us the possibility to check the validity in these systems of some of the pro-
posed correlations between the glassy state and the corresponding liquid phase.
We showed that in both systems the ratio of instantaneous shear to bulk modulus
does not follow the linear dependence on the kinetic fragility found for several
glasses by Novikov et al. [5, 6]. While polymers usually violate such relation, the
results on sorbitol are instead in clear disagreement. This is due to the peculiar
character of this glass former, whose dynamics is similar to that of strong and
intermediate systems in the glassy state and to very fragile systems in the super-
cooled liquid phase.
The relation between the nonergodicity parameter and the kinetic fragility has
been checked also in view of the recent improvements on the original correlation
proposed by Scopigno and coworkers [29]. Albeit we used a different approach with
respected to that proposed in Ref. [29], we find that even taking into account the
presence of anharmonic or relaxation mechanisms present at low frequencies, the
proposed relation is not fulfilled neither in sorbitol nor in sulfur. Moreover the
α parameter describing the temperature dependence of the nonergodicity factor
measured with IXS is found to be strictly related to the behavior of the correspond-
ing high frequency collective excitations. A correct evaluation of this parameter,
and thus of the nonergodicity factor, should be instead performed looking at its
macroscopic value. We find that this continuum limit can be obtained from a
natural extension in the glassy state of the relation proposed by Buchenau and
Wischnewski [4] and valid at the glass transition temperature.
These conclusions allow us to have a refined picture on fundamental questions
on the vibrational dynamics of glasses and many aspects of this Thesis work will
require further investigation. In particular the universal elastic anomalies found
in glasses close to the boson peak energy should be taken into account in order
to improve the current theoretical models for the excess of modes in the reduced
density of states. In this perspective, several additional experimental works are
also fundamental. For instance, studies performed as a function of pressure could
be carried out in the future, as well as a function of temperature up to the su-
percooled liquid phase. The comparison with the corresponding crystalline phases
should be carried out as well, in order to clarify to what extent the anomalies
discussed here are truly peculiar to the disordered state.
The results on the correlation between glasses and supercooled liquids open in-
stead many doubts on the concrete possibility to find universal relations. Albeit
several proposed correlations are verified for many strong and intermediate ma-
terials, fragile systems, such as molecular sorbitol and polymeric sulfur, seem to
present a more complex and system dependent behavior.
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Resumé

Une des questions les plus ambitieuses dans la Physique de la Matière Condensée
concerne la compréhension des propriétés vibrationnelles des verres. En particu-
lier, une anomalie présente dans la densité d’états vibrationnels (VDOS) à des
énergies de quelques meV a suscité beaucoup d’intérêt en raison de sa présence
universelle dans les verres. Cette anomalie, appelée “boson peak” (BP), apparâıt
comme un pic dans la VDOS réduite par rapport à la prévision du continuum
élastique de Debye, dans une région d’énergies où le modèle de Debye fonctionne
encore assez bien pour les correspondants cristaux.
Dans ce travail de Thèse on présente les résultats d’une étude expérimentale de
la dynamique vibrationelle dans des verres du sorbitol at du soufre, par diffusion
inélastique de la lumière, des rayons x et des neutrons. Dans le cas du sorbitol, ces
résultats montrent clairement que le BP est lié à des anomalies observées dans la
courbe de dispersion acoustique dans la région mésoscopique des vecteurs d’onde
de quelques nm−1. En outre, l’étude de la dépendance en température de ces
propriétés montre que cette connexion est maintenue même avec les changements
de température. Enfin, le comportement des modes à haute fréquence peut être
utilisé pour réproduire quantitativement la forme du BP, ce qui suggère une forte
relation entre les propriétés acoustiques dans la région mésoscopique et le BP. Ce
comportement semble être universel dans les verres. Dans le cas du soufre vitreux
le BP est situé à l’extérieur de la fenêtre d’énergies qui peut être sondée par IXS et
donc il n’est pas possible expérimentalement d’étudier le caractère des excitations
collectives correspondantes.
Mots clés: Boson Peak, diffusion inélastique, dynamique vibrationelle du verres.

Summary

One of the most challenging issue in condensed matter physics concerns the un-
derstanding of the vibrational properties of glasses. In particular, an anomaly
present in the vibrational density of states (VDOS) at energies of few meV has
attracted much interest due to its universal occurrence in glasses. This anomaly,
called ”boson peak” (BP), appears as a peak in the reduced VDOS over the De-
bye, elastic continuum prediction in an energy range where the Debye model still
works reasonably well for the corresponding crystals.
In this PhD work we present the results of an experimental study of the vibra-
tional dynamics in glassy sorbitol and sulfur by means of inelastic scattering of
light, x-ray and neutron. In the case of sorbitol, these results show that the boson
peak is clearly related to anomalies observed in the acoustic dispersion curve in
the mesoscopic wavenumber range of few nm−1. Moreover, the study of the tem-
perature dependence of these properties shows that this connection is kept under
temperature changes. Finally, the behavior of the high frequency modes can be
used to quantitatively account for the BP, suggesting a strong connection between
acoustic properties in the mesoscopic range and boson peak. This behavior seems
to be universal in glasses. In the case of glassy sulfur the BP is located at energies
outside the window which can be probed by IXS and it is not possible experimen-
tally to investigate the character of the corresponding collective excitations.
Key words: Boson Peak, inelastic scattering, vibrational dynamics of glasses.
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