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Introduction

The general context of the present study is the HARVEST industrial/academic joint

project devoted to the development of a cross flow water turbine technology allowing

to harness the kinetic energy of rivers and oceans streams. The flow in such a turbine is

complex and involves many unsteady phenomena (dynamic stall in particular) that need

to be accurately captured in order to get an optimal design of the turbine. The current

design strategy of the HARVEST cross flow water turbines relies on a dual experimen-

tal/numerical strategy; there is however a strong need to increase the use of computations

in the design stage for obvious cost and time-to-market reduction reasons. Fast steady

models have been previously developed [3] for studying HARVEST turbines both isolated

and interacting within so-called farms; their scope is however limited to the estimate of tur-

bine global wake effect and global efficiency. Recently, thanks to the major improvements

in computer hardware as well as faster and more accurate algorithms made available in

commercial flow solvers, refined unsteady computations of cross-flow water turbines have

been made possible using a 3D Unsteady Reynolds-Averaged Navier-Stokes (URANS) ap-

proach [2] [78]. However, the computational time associated with such a 3D unsteady

application remains so large that a parametric study of the turbine, though needed for

an improved design of the machine, remains currently out of reach. Such an observation

of excessive computational cost is not specific to the design of cross flow water turbines:

it also holds more generally for the design of fluid devices involving unsteady flows over

complex 3D geometries, such as helicopters rotors for instance, wind turbines, flapping-

wing propulsion mechanisms as far as external aerodynamics is concerned but also internal

flows within rotor-stator combinations in the context of turbomachinery applications. It

is interesting to note the applications that have just been listed involve more specifically

time-periodic flow fields, responding to a forcing function associated at the macroscopic

level with the periodic motion of a body or at least of some body parts through the fluid.

Another category of time-periodic problems involves flows with an unsteadiness that is not

predetermined by a macroscopic forcing; for instance, the von Kármán wake flows behind

bluff bodies falls into this category as well as the prediction of flutter and limit-cycle os-

cillations. When in operation, the HARVEST turbine yields periodic unsteady flows that
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belong to one or the other category : some flow features, like the wake behind the rotational

axis, are uncorrelated from the rotational frequency while some others, like the dynamic

stall phenomenon, are correlated with the period of rotation and can be stable or unstable.

Usually, the study of these time-periodic flow configurations is treated in the same man-

ner as non-periodic unsteady flows. The so-called dual-time approach represents a well-

established way to compute general unsteady flows regardless of their periodicity, with

typically second-order accuracy in physical time and the possibility to use large physical

time-steps. In the dual-time approach the unsteady field at each step of the physical time

marching procedure is obtained as a steady solution with respect to a dual-time step [60]

[34]. This dual-time step (DTS) strategy can also be viewed as finding the solution of

the steady (with respect to the dual time) governing equations of the flow augmented by

a source term corresponding to the discretization of the physical time derivative using

typically a second-order Backward Difference Formula (BDF). The numerical methods

previously available for steady flows can be readily extended to handle unsteady flows by

simply taking into account this source term. A major drawback of the BDF-DTS method

for periodic flows is that it requires to compute, typically from an initial rest configuration,

the whole transient of the flow before the periodic flow of interest becomes established.

This flaw of the conventional dual-time strategy motivated the development of numerical

methods looking directly for the periodic solution of the flow. The time-periodicity of

the flow field provides a strong constraint that should indeed be reflected in an efficient

numerical method targeted for time-periodic configurations. Taking advantage of the de-

velopment of the periodic flow solution into a Fourier series, Hall & al [31] introduced an

efficient method dedicated to time periodic flows for turbomachinery applications. Follow-

ing a similar line of thought, Gopinath and Jameson proposed in 2005 the Time Spectral

Method (TSM) for external aerodynamics applications [27]. The TSM method transforms

the original system of (2 + d) unsteady equations describing the d-dimensional compress-

ible flow field at each time moment into an extended set of (2N + 1) × (d + 2) equations

corresponding to the flow solution at (2N + 1) time moments in the flow period, selected

so as to ensure spectral accuracy for the physical time-derivative.

The long-term objective of the present study is to improve the efficiency of the sea tur-

bine numerical design process by replacing the current BDF computations of turbulent

flows over HARVEST turbine configurations with a TSM approach. When the present

PhD work was initiated, TSM had been already used for a wide range of applications

(turbomachinery [21], rotorcraft [10]) but limited to compressible flows. Moreover, all the

available studies were performed using structured grid solvers [27, 66, 76, 68]. Having
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made the choice of unstructured grids to deal with the possibly complex geometries of a

realistic turbine (involving blades, connecting arms between the blades and the rotation

axis, hub) and since the targeted HARVEST application involves incompressible flows,

the projected application of the TSM approach for a more efficient sea turbine design

process required two major steps: the first one was to express and develop the TSM ap-

proach in the context of an existing unstructured grid solver for compressible flows (using

conventional BDF-DTS time-integration); the second one was to adapt this strategy to

an (initially not available) incompressible flow solver. Note this development work has

been performed using research codes and not commercial flow solvers; though reasonably

complex to perform in a conventional unsteady solver based on a BDF-DTS approach,

the coding of the TSM strategy requires nonetheless significant modifications of the solver

structure which make crucial the full access to the code source files. As will be explained

in the first part of this report, an Arbitrary Lagrangian Eulerian (ALE) strategy was also

implemented in the initially available flow solver to describe the motion of the unstruc-

tured computational grids. Once the ALE and TSM techniques implemented, validated

and assessed in the context of compressible flows, it was decided to extend the approach

to incompressible flows using the Artificial Compressibility (AC) method. Indeed, the AC

system of conservation laws is formally very close to the compressible Navier-Stokes equa-

tions, which considerably simplifies the adaptation of the TSM approach to incompressible

flows. The approach combining ALE with TSM is compared with the usual strategy com-

bining ALE and BDF-DTS both from the viewpoint of accuracy and efficiency.

During the course of this PhD, a first attempt to extend the TSM strategy from com-

pressible to incompressible flows has been performed in 2009 by Jameson [35] also using

an Artificial Compressibility method but on structured grids. Note however that Jame-

son reported stability concerns when computing high-frequency pitching airfoils. Very

recently (in 2010), an extension of the TSM approach to compressible flow computations

on unstructured grids has been presented by Yang and Mavriplis in [77]. To the best of

our knowledge, the periodic incompressible flow computations performed with the TSM

approach and presented in this work are the first available results of this kind. These

results have been presented in an article submitted to the AIAA Journal, reproduced in

the appendix E of the present document.

Though the long-term objective of the study is to contribute to the more efficient numeri-

cal design of sea turbines, which involves at least 3D URANS computations, it was decided

to limit the applications computed in the present work to less complex flows, namely 2D

inviscid or viscous laminar flows over airfoils, in order to better assess the impact of the

sole TSM strategy (without interference with turbulence modeling issues for instance).

Moreover, the limited cost of the 2D configurations also allowed an in-depth assessment

of the TSM approach proposed in the present work to speed up the integration of periodic

low-speed flows.
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Thesis Outline

The present document is divided into three main parts:

• the first part reviews the key numerical ingredients of the conventional unsteady

compressible and incompressible flow solvers developed for unstructured grid com-

putations. These baseline solvers include in particular a second-order dual-time

strategy for time-integration as well as an ALE formulation allowing to take into

account moving grid computations.

• The second part is mostly devoted to the design principles of the Time Spectral

Method and includes a first application of the method to a time-dependent heat

conduction model problem.

• The third part gathers the results obtained in this work using TSM for external

flow applications and proposes a detailed assessment of TSM accuracy and efficiency

analysis with respect to a conventional BDF-DTS approach.

The first part is divided into 2 chapters:

• Chapter 1 describes the compressible unsteady flow solver in which an ALE (Arbi-

trary Eulerian Lagrangian) formulation has been implemented to deal with moving

mesh applications. The main numerical ingredients of the unstructured grid solver

are briefly reviewed. Two well-established numerical fluxes (ROE and AUSM+) are

retained for space-discretization. The time discretization of the Navier-Stokes system

of equations, including the ALE treatment and the implicit formulation, is detailed.

This compressible solver is validated on inviscid and laminar viscous flows around a

moving NACA0012 airfoil.

• Chapter 2 deals with the development of the Artificial Compressibility (AC) method.

The required modifications of the ALE compressible solver, such as the adaptation

of the Roe scheme to the AC model, are described. The choice of the AC numerical

parameters is validated by performing some fixed grid applications: a steady com-

putation of a NACA0015 profile at 4◦ of incidence and an unsteady computation

of a NACA0015 profile at 16◦ of incidence. Next, the simulation of a pitching and

heaving NACA0015 airfoil recently computed and analyzed by Kinsey and Dumas

[41] is used to validate the full ALE-BDF-AC laminar solver (that is including the

ALE formulation applied to the AC system and solved using BDF-DTS).

The second part is divided into three chapters:

• Chapter 3 is a brief review of the harmonic methods developed in the past 15 years

to compute directly the time-periodic solutions of compressible and incompressible
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flows. The selection of the TSM approach among this panel of methods is explained

as well as the design principles of TSM.

• Chapter 4 describes the adaptation of the TSM to the various numerical treatments

presented in the first part of the report, namely: the ALE treatment, the time

implicit formulation and the derivation of TSM for the AC system. Some emphasis

is put on the implicit TSM treatment since it plays a key role in the overall efficiency

of the TSM approach. A methodology allowing to compare the computational costs

associated with the TSM and BDF approaches is introduced.

• Chapter 5 is devoted to a first application of the TSM on the linear heat conduction

equation. The simplicity of the problem is useful to better understand the TSM

concepts and put into practice the implicit formulations presented in the previous

chapter. A particular focus is made on the stability of these methods since the

amplification factor can be analyzed analytically in that linear case.

The third part is divided into 2 chapters:

• Chapter 6 deals with the application of TSM for compressible flow applications on

unstructured grids. The case of a fixed mesh is first treated with a rotating cylinder

flow taken from [8]. The moving mesh application is the case of a pitching aerofoil

previously computed in Chapter 1 with a conventional BDF-DTS approach. The

TSM results obtained for both cases are analyzed and compared to the BDF-DTS

reference data.

• Chapter 7 displays two incompressible flow test cases taken from the recent pitching

and heaving airfoil study performed by Kinsey and Dumas [41]. Since these cases

are distinct from the validation problem previously computed in Chapter 2, some

reference BDF simulations of these cases are first performed. TSM computations

are then carried out for an increasing number of harmonics N in order to determine

the best trade-off between cost and accuracy (both increasing functions of N) and

check wether TSM can outperform BDF.

Conclusions on the interest of the TSM approach for performing efficient unsteady flow

computations are drawn in the last chapter of the report and future tasks to perform

in order to achieve the application of TSM to the numerical design of sea turbines are

detailed.

5





Part I

Unsteady Solver Presentation

7





Chapter 1

Compressible flow solver

This chapter describes the main features of the unstructured flow solver initially available

to compute unsteady compressible flows in fixed grids. A first technical step carried out in

the present work was to extend this solver to deal with moving grids in order to be able to

treat unsteady problems of the oscillating airfoil type. This extension was performed using

a well-established Arbitrary-Lagrangian-Eulerian formulation. The salient features of the

solvers are reviewed to better understand how they will be impacted by the development

of a TSM approach presented in the second part of the thesis report.

1.1 Governing equations

The Navier-Stokes equations are derived from basic principles of mass, momentum and

energy conservation. In its most general form, a conservation law states that the rate

of change of a quantity in a control volume must be equal to the net volume of the

quantity transported through the control volume’s boundaries plus the amount that is

created/destroyed inside the control volume.

Let us consider an Arbitrary Lagrangian Eulerian (ALE) formulation where the control

volume Ω(t) (t being the physical time) can move independently from the flow motion

and is not attached to the absolute frame of reference either (Fig. 1.1). In this ALE

framework, Ω(t) ⊂ ℜ2 is bounded by a smooth closed surface ∂Ω(t) of curvilinear abscissa

γ which moves with a velocity s(x, t) = sx(t) i + sy(t) j, where x = x i + y j denotes the

Cartesian coordinates in the absolute frame of reference.

The two-dimensional Navier-Stokes equations for compressible unsteady flows, in the ab-

sence of body forces can be expressed in the following integral form:

∂

∂t

∫

Ω(t)

w dΩ(t) +

∮

∂Ω(t)

(F E − F V ) · n dγ = 0 (1.1)
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Figure 1.1: Lagrangian, Eulerian and ALE description from [19]

The non-dimensional unknown variable w is the vector of conserved absolute variables,

representing the density, momentum and energy.

w =




ρ

ρu

ρv

ρE




The second term represents the transport of w across the control volume’s boundary

∂Ω(t) where n = (nx, ny) is the outward unit normal vector. The convective flux vector

F E = (fE, gE) and viscous flux vector F V = (fV , gV ) are given by :

fE(w) =




ρ(u − sx)

ρu(u − sx) + p

ρv(u − sx)

ρE(u − sx) + pu


 , gE(w) =




ρ(v − sy)

ρu(v − sy)

ρv(v − sy) + p

ρE(v − sy) + pv




fV (w) =
1

Re




0

τxx

τxy

uτxx + vτxy − qx


 , gV (w) =

1

Re




0

τxy

τyy

uτxy + vτyy − qy
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where p is the pressure, (u, v) the fluid velocity. (u − sx), (v − sy) are the components of

the relative velocity of the fluid with respect to the surface velocity of the control volume

to take into account the grid motion.

The non-dimensionalization is based upon a representative length scale L (typically the air-

foil chord c for airfoil aerodynamic calculations), the free stream velocity U∞ =
√

u2
∞ + v2

∞,

the free stream density, ρ∞ and the free stream dynamic viscosity, µ∞. The pressure is

normalized by ρ∞U2
∞ and the Reynolds number is Re = ρ∞U∞L/µ∞.

The viscous flux includes the stress tensor τ modelized under Boussinesq assumptions

τxx =
2

3
µ(2

∂u

∂x
−

∂v

∂y
), τyy =

2

3
µ(2

∂u

∂x
−

∂v

∂y
) (1.2)

The heat flux vector q is given by the Fourier law [24] :

qi = −κ
∂T

∂i
, i = (x, y)

T is the temperature and µ the viscosity which depends on temperature and is given by

the Sutherland equation. The coefficient of thermal conductivity κ is given by :

κ = CP
µ

Pr

where Pr is the Prandtl number and CP is the specific heat at constant pressure. Closure

is provided, for an ideal gas, using the equation of state :

p = (γ − 1)ρ
(
E −

uiui

2

)
(1.3)

wheres γ is the ratio of the heat capacity at constant pressure CP to heat capacity at

constant volume CV (1.4 for air).

1.2 Spatial discretization

1.2.1 Finite Volume formulation on unstructured grids

The integral form of the equations is well adapted to a finite volume formulation, in

which case the control volume Ω(t) represents a cell of the grid. A cell being made up of

several faces, the fluxes through these cell faces are calculated to allow the transmission of

information from one cell to another. Thus, the method is intrinsically conservative which

makes it widely used in CFD.

The Finite Volume method can be applied on structured and unstructured meshes. On

the one hand, a structured mesh has a regular connectivity of the grid cells. It is made of

quadrangles in 2 dimensions and, thus can be stored into a 2 dimensional array with direct
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Figure 1.2: Location of cells in structured and unstructured meshes.

addressing. A cell located with indexes (j, k) will always have cells of indexes (j±1, k) and

(j, k±1) for neighbors. It makes the computation of fluxes trough faces easier. It is also a

method of choice for boundary layer problems because the connectivity regularity serves

a particular direction. However, in the case of more complex geometries, one cannot use

a single block for the whole geometry and the use of several structured blocks is required.

This task is not trivial and can be time-consuming. Mesh refinement is also made more

complicated since mesh lines propagate in the refined direction. Therefore, there are zones

where mesh is excessively fine and the total cell counts can become prohibitive.

On the other hand, an unstructured mesh is well adapted to complex geometries and

allows easy local refinement. It is typically made of triangles in 2D but can also be built

from quadrangles or a combination of triangles and quadrangles (hybrid mesh). One of

the drawback of an unstructured grid approach lies in the associated memory requirement.

Indeed, one needs to know the location of all the neighboring cells for the computation

of fluxes in a given cell. However, there is no implicit numbering relationships between

cells unlike the case of structured grids. Hence, one needs to handle the mesh connectivity

prior to any numerical simulation. It consists, minimally, in :

1. A list of nodes coordinates with their associated faces numbers and normal vector

coordinates.

2. A list of cell centers coordinates and their associated cell numbers

3. A list of face numbers with the left and right cells numbers

When integrating the flux on a cell boundary, the contribution of the fluxes on the finite

number of faces forming the cell volume are summed up so that :

∮

∂Ω

F (w).n dγ =
∑

p

NP+1∫

NP

F (w).n dγp (1.4)
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NP+1

NP

θp

v n

ΓP

vn

un

y

x

Figure 1.3: Unstructured grid cell.

Using the notations defined in Figure 1.3 and denoting n = (nx, ny) = (cos(θp), sin(θp)),

one can rewrite :

NP+1∫

NP

F (w).n dγp =

NP+1∫

NP

(f(w) cos(θp) + g(w) sin(θp)) dγp (1.5)

It can be easily shown that :

f(w) cos(θp) + g(w) sin(θp) = T−1
p f(Tpw) = fn(Tpw) (1.6)

with Tp the rotation matrix

Tp =




1 0 0 0

0 cos(θp) sin(θp) 0

0 − sin(θp) cos(θp) 0

0 0 0 1




and T−1
p its inverse

T−1
p =




1 0 0 0

0 cos(θp) − sin(θp) 0

0 sin(θp) cos(θp) 0

0 0 0 1




In practise, a one dimensional convective flux fE
n associated with the outward normal face

direction n is used
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F E(w) · n = fE
n (wn) (1.7)

where

fE
n =




ρ(un − sn)

ρ(un − sn)u + pnx

ρ(un − sn)v + pny

ρ(un − sn)E + pun


 =




ρun

ρunu + pnx

ρunv + pny

ρunE + pun


− sn · w, and wn = Tpw =




ρ

ρun

ρvn

ρE




1.2.2 Numerical flux

Ωo(i,k)

N 2
i,k

Γi,k

wi

wR
k

N 1
i,k

ri,k

wL
k

wo(i,k)

Ωi

ro(i,k)

Figure 1.4: Notation definitions for numerical flux expression.

Applying Eq. (1.1) on a given cell Ωi, introducing the average value w of w over the cell

and decomposing the flux balance as the sum of fluxes through each face Γi,k of cell Ωi

leads to:
∂

∂t
(wi|Ωi|) +

∑

k

∫

Γi,k

(F E − F V ) · n dγ = 0 (1.8)

where |Ωi| is the surface of the i-th grid cell Ωi. The normal physical flux (F E − F V ) · n

through the face Γi,k of length |Γi,k| is approximated by the numerical flux H = HE −HV

computed at the center i, k of the face Γi,k :

∫

Γi,k

(F E − F V ) · n dγ =
(
HE

i,k −HV
i,k

)
|Γi,k| + O(hp) (1.9)

where h denotes a typical grid length. The space accuracy order p will depend on the

choice of polynomial reconstruction used for the conservative variable inside each grid cell;

a linear reconstruction will be systematically used in this work leading to second-order

accuracy in space. For this reason and without loss of accuracy, the average state in cell

i is replaced by the state at cell center, denoted wi from now on.
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1.2. Spatial discretization

Inviscid fluxes

Two well-established numerical inviscid fluxes have been used in this work : the ROE

scheme [61] and the AUSM+ scheme [45]. They are both briefly described in the context

of their ALE formulation.

ROE flux The Roe approximate Riemann solver [61] approximates the inviscid physical

flux using the following numerical flux formula HE
i,k:

HE
i,k =

1

2
(F E(wL

k ) · ni,k + F E(wR
k ) · ni,k) +

1

2
QE

i,k(w
L
k − wR

k ) (1.10)

where wL/R are the states, respectively, on the left and right side of the kth interface Γi,k

of cell Ωi, QE is the Roe numerical dissipation matrix given by

QE = |AEnx + BEny| = |JE
⊥ |

where n = (nx, ny) and AE, BE are the inviscid flux Jacobian matrices: AE = dfE/dw, BE =

dgE/dw. The expressions of these Jacobian matrices are provided in Appendix A.1; the

following expression is eventually obtained for the normal Jacobian matrix JE
⊥ :

JE
⊥ =




Vn − sn ρnx ρny 0

0 Vn − sn 0 nx/ρ

0 0 Vn − sn ny/ρ

0 ρc2nx ρc2ny Vn − sn




where Vn = u nx + v ny and sn = sxnx + syny are respectively the flow normal velocity

and the grid normal velocity.

This Jacobian matrix can be also expressed as JE
⊥ = TΛ

ET−1 with Λ
E the diagonal

matrix containing the real eigenvalues of the hyperbolic system (1.1). The Roe dissipation

matrix is eventually computed as

QE
i,k = Ti,k|Λ

E
i,k|T

−1
i,k

with the so-called "Roe average" state w̃i,k given by
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Chapter 1. Compressible flow solver

a =

√
ρR

ρL

ρ̃ = a · ρL

ũ =
uL + auR

1 + a

ṽ =
vL + avR

1 + a

H̃ =
HL + aHR

1 + a

c̃ =

√
γ − 1

H̃ − 1/2 (ũ2 + ṽ2)

and with the grid velocity sn, computed at the face centroid. The Roe average is such that

(fE
n (wL

nk)− fE
n (wR

nk)) = JE
⊥ (w̃i,k) · (w

L
k −wR

k ), which allows to ensure Rankine-Hugoniot

relationships at the discrete level hence the correct representation of weak solutions.

Using the Roe-average property, Equation (1.10) can also be recast in the form :

HE
i,k =

1

2

(
fE

n (wL
nk) + fn(wR

nk)
)

+
1

2
Ti,k|sgn(ΛE

i,k)|T
−1
i,k (fE

n (wL
nk) − fE

n (wR
nk)) (1.11)

making clear the upwinding introduced by the Roe scheme. The numerical flux (1.11),

when coupled with a linear representation of the variable w inside each cell (see below),

offers an accurate and robust approximation of compressible flows for a large range of

regimes. Note however the matrix numerical dissipation associated with the Roe scheme

makes it rather expensive to compute, which is a known weakness of the method.

AUSM+ Alternatively, Liou and Steffen [46] have proposed the Advection Upstream

Splitting Method (AUSM) and its improved version AUSM+ [45]. The potential advantage

of this upwind scheme with respect to the Roe scheme is its simplicity, since it manipulates

scalar quantity only when introducing numerical dissipation through upwinding. The

drawback could be the use of several tuning parameters in the method but in practice

these parameters have been given recommended values once for all. The ALE derivation

of the AUSM+ flux can be found in [17], [49]; its application to compute unsteady flows

on moving meshes has also been successfully performed in [49] for instance.

The basic idea of Liou and Steffen [46] is to recognize convection and acoustic waves as
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1.2. Spatial discretization

two distinct processes and consist in treating them separately:

fE
n = f c

n + f p
n, (1.12)

where

f c
n =




ρ(Vn − sn)

ρ(Vn − sn)u

ρ(Vn − sn)v

ρ(Vn − sn)H + psn


 , f p

n =




0

pnx

pny

0




One can rewrite

f c
n = M · c




ρ

ρu

ρv

ρH


 , f p

n =




0

pnx

pny

psn




Compared to the classical formulation of AUSM for non-moving mesh, the Mach number

M is based on the relative normal velocity M = (Vn − sn)/c and c is the speed of sound.

Moreover, the additional term psn appearing in the energy equation can be splitted as a

pure pressure term because the interface velocity has the same value on the left and on

the right of the interface.

The numerical fluxes Hc
i,k and Hp

i,k that approximate the physical fluxes f c
n and f p

n at the

kth interface Γi,k of cell Ωi read

Hc
i,k(w

L
k , wR

k ) = mk ck Φk; Φk =




ρ

ρu

ρv

ρH


 (1.13)

Hp
i,k(w

L
k , wR

k ) = pk




0

nx

ny

sn


 (1.14)

Let us now specify how to express mk, ck,Φk and pk at the interface k.

The design of the numerical flux Hc
i,k is based on an upwind discretization according to

the flow direction whereas the construction of Hp
i,k is obtained by upwind discretization

following acoustic considerations.

Stage 1. Upwind discretization of the convective term Φk

Φk =

{
Φ

L if mk ≥ 0

Φ
R otherwise

(1.15)
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Chapter 1. Compressible flow solver

As a consequence, the convective flux reads

Hc
i,k(w

L
k , wR

k ) = ck

[
1

2
mk(Φ

L + Φ
R) −

1

2
|mk|(Φ

R − Φ
L)

]
(1.16)

Stage 2. Treatment of the characteristics mk, pk and ck The second idea of the

AUSM scheme is that an appropriate Mach number at the interface mk should be made of

a contribution M+(ML) associated to the wave coming from the left at wave speed M +1

and a contribution M−(MR) associated to the wave coming from the right at wave speed

M − 1. More precisely, we write

mk = M+
(4,β)(M

L) + M−
(4,β)(M

R) (1.17)

where ML = (V L
n − sn)/ck et MR = (V R

n − sn)/ck .

Likewise, the pressure at the interface is written

pk = P+
(5,α)(M

L) pL + P−
(5,α)(M

R) pR (1.18)

where P± are the split pressure functions associated respectively with the left and right

waves

The numerical speed of sound at the interface ck is computed by the simple average formula

ck =
1

2
(cL + cR) (1.19)

Stage 3. Construction of the split functions M±
(4,β) and P±

(5,α) Velocity and pres-

sure at the interface are polynomial function of (M ±1) derived from Van Leer flux-vector

splitting. The split Mach numbers are defined as :

M±
(1) =

1

2
(M ± |M |) (1.20)

M±
(2) =

{
M±

(1)(M) if |M | ≥ 1

±1
4
(M ± 1)2 otherwise

(1.21)

M±
(4,β) =




M±

(1)(M) if |M | ≥ 1

M±
(2)(M)

[
1 ∓ 16 βM∓

(2)(M)
]

otherwise
(1.22)

P±
(5,α) =





1
M
M±

(1)(M) if |M | ≥ 1

±M±
(2)(M)

[
(2 ∓ M) − 16 αMM∓

(2)(M)
]

otherwise
(1.23)

with α = 3/16 and β = 1/8. In the present study, there will be no specific analysis of

the influence of the numerical flux formula on the numerical solution, be it obtained by a
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1.2. Spatial discretization

time-marching approach or the Time Spectral Method. The Roe scheme and the AUSM+

scheme will be indifferently used, keeping in mind the AUSM+ scheme implementation is

slightly less expensive than the Roe scheme’s one. Note also some comparisons with the

commercial solver Fluent have been performed throughout this work and since this solver

relies on these same numerical fluxes, it was found interesting to also implement both of

them in the research code used in this thesis to allow code-to-code comparison with the

same space discretization on the same grid.

High order extension If one uses the cell center values of the left (i) and right (o(i, k))

cells for the left and right state at interface Γi,k, the previous scheme are only first order

accurate in space. This is why, a MUSCL variable reconstruction approach [5] [18] is used.

The states at face centers i, k are linearly reconstructed from the cell center values in the

cells i and o(i, k) sharing the face Γi,k and the cell gradients ∇w in each of these cells

{
wL

k = wi + ∇wi · ri,k

wR
k = wo(i,k) + ∇wo(i,k) · ro(i,k)

(1.24)

where ri,k (resp. ro(i,k)) denotes the vector extending from the cell center i (resp. o(i, k))

to the center of the interface Γi,k. The gradient ∇wi is computed at each cell center i

using a least-square formula applied on a fixed spatial support including the neighboring

cells sharing at least a node with cell i [18].

Viscous flux

The viscous numerical flux HV
i,k approximating the diffusive physical flux is obtained from

the arithmetic average of the viscous fluxes computed at the vertices N1
i,k,N

2
i,k of face Γi,k

(see Fig. 1.4 ).

HV
i,k =

1

2

(
F V (wN1

i,k
,∇wN1

i,k
) + F V (wN2

i,k
,∇wN2

i,k
)
)
· ni,k (1.25)

The value of w at a grid node N is computed from a set of cell-centered values in the

cells sharing this node and the value of ∇w at N is obtained from a least-square formula

applied using the same set of cell-centered values.

1.2.3 Conclusion on spatial discretization

Whatever the numerical flux retained, the space discretized integral form of the Navier

Stokes equations will be eventually written:

∂

∂t
(wi|Ωi|) +

∑

k

(HE
i,k −HV

i,k)|Γi,k| = 0 (1.26)
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Chapter 1. Compressible flow solver

The numerical inviscid flux balance or residual will be denoted from now on :

RE
i (w, x, s) =

1

|Ωi|

∑

k

HE
i,k |Γi,k| (1.27)

where, in the context of the ALE formulation, the dependence of this flux balance on the

mesh position x and velocity s has been made explicit. Similarly, the viscous flux balance

or residual will be denoted:

RV
i (w, x) =

1

|Ωi|

∑

k

HV
i,k |Γi,k| (1.28)

with an explicit dependence on the grid position x. Since the present work will focus on

rigid body motion for the grid, the cell surface |Ωi| will stay constant over time and the

semi-discrete form (1.26) of the ALE compressible system can also be expressed as

∂wi

∂t
+ RE

i (w, x, s) = RV
i (w, x) (1.29)

1.3 Time discretization

1.3.1 Time discretization including ALE treatment

Moving mesh strategy When dealing with moving airfoils in the ALE reference frame,

two main approaches can be considered for taking into account the grid motion. The first

approach is the rigid body technique in which all grid points have the same motion as

the airfoil. The initial quality of the mesh is preserved but unsteady boundary conditions

must be implemented that include the grid velocities. A drawback of this approach is that,

for high frequency pitching movements, relative velocity of in cells away from the center

of rotation may become very large leading to excessive numerical dissipation. The second

approach deforms the inner cells of the grid to conform to the instantaneous position of

the airfoil while the outer boundaries are kept fixed. Deformation can be performed using

methods based on spring analogy, which involve either the solution of a large system of

equations for the displacements of nodes [55, 6] and/or a local remeshing at each physical

time step of the calculation [48, 32]. In all these methods, a geometric conservation law

must also be satisfied to avoid volume discretization errors [42]. The Chimera technique

is yet another alternative for dealing with moving bodies that makes use of independently

meshed overlapping zones, typically a grid zone attached to the body and a grid zone

for the background domain [7, 39]. While the deforming grid approach is required for

aeroelastic studies or problems involving moving bodies within fixed multi-block geome-

tries, it can be avoided for the simple heaving and pitching airfoils cases treated in this

study. Consequently, a simple rigid body approach is retained with the mesh position x

directly derived from the law of motion and the grid velocity s computed using the simple
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1.3. Time discretization

analytical relationship

s(t) = Ω(t) ∧ (x(t) − xc(t)) + t (1.30)

where Ω is the rotational velocity vector, xc the center of rotation and t the translation

velocity vector.

Geometric Conservation Law An important requirement on transient simulations in

moving meshes is that they should satisfy the so-called geometric conservation law. This

property requires that the equations should be able to predict exactly the behavior of a

uniform flow in the moving grid. Mathematically, this requirement reads

d

dt

∫

Ω(t)

dΩ −

∮

∂Ω(t)

s.ndγ = 0 (1.31)

Equation (1.31) is known as the continuous Geometric Conservation Law (GCL). When

this equation is integrated between the times tn et tn+1, the new numerical equation that

must be verified is

tn+1∫

tn

d

dt

∫

Ω(t)

dΩ dt =

tn+1∫

tn

∮

∂Ω(t)

s.ndγ dt (1.32)

This new equation (1.32), known as the discrete GCL states that the change in area of cell

i between the times tn and tn+1 must be equal to the area swept by the faces animated by

a velocity s during the time step ∆t = tn+1 − tn.

The left hand side of equation (1.32) reduces to zero in the case of a rigid body motion of

the grid. To evaluate the right hand side, we make use of the Stokes’s theorem to write

∮

∂Ω(t)

s.ndγ =

∫

Ω(t)

∇ · s dΩ

and since ∇ · s = div(s) = 0 given the analytic expression of the grid velocity (Eq. 1.30),

the GCL is automatically satisfied for a rigid-body motion of the grid.

Time scheme Using a second-order backward difference formula (BDF) for the physical

time-derivative in (2.5) yields:

K

(
3
2
wn+1

i − 2wn
i + 1

2
wn−1

i

)

∆t
+ RE

i

(
wn+1, xn+1, sn+1

)
= RV

i

(
wn+1, xn+1

)
(1.33)

which leads to second-order accuracy in physical time over fixed grids as long as the

residuals are computed at time-level n + 1.
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Chapter 1. Compressible flow solver

1.3.2 Pseudo time marching technique

An unsteady solution of equation (1.33) is found using the dual time stepping method to

overcome the lack of numerical efficiency of the global time stepping approach. For each

physical time step, a solution for the unknown wn+1
i is sought as a steady solution with

respect to the dual time τ .

∂

∂τi

(wn+1
i ) +

(
3
2
wn+1

i − 2wn
i + 1

2
wn−1

i

)

∆t
+ Ri

(
wn+1

)
= 0 (1.34)

with the full residual R defined by Ri (w
n+1) = RE

i (wn+1) − RV
i (wn+1), where the

dependence on the grid position and velocity has been omitted for the sake of clarity.

We use a first order approximation for the dual-time derivative (which will vanish at steady

state anyway) . The Euler explicit formulation in dual time of equation (1.34) reads:

w
n,m+1
i − w

n,m
i

∆τn,m
i

+

(
3
2
w

n,m
i − 2wn

i + 1
2
wn−1

i

)

∆t
+ Ri(w

n,m) = 0 (1.35)

where wn,m is the fictitious state at the mth subiteration on τ performed between the nth

and (n + 1)th physical time-levels. The initial fictitious state at each physical time-level is

chosen as wn,0 = wn and the new physical state is defined as wn+1 = wn,mmax with mmax

the number of sub-iterations on τ needed to achieve steady-state convergence of (1.35).

1.3.3 Stability

In the case of unsteady simulation, the physical time step ∆t is usually restricted by

the desired accuracy. Moreover, the explicit scheme of equation (1.35) is submitted to

a restrictive CFL condition on the time step ∆τ . Indeed, if we consider the following

steady-state discretized equation :

wm+1
i − wm

i

∆τm
i

+ Ri(w
m) = 0 (1.36)

Ri is linearized and leads to the following approximation :

wm+1
i ≈

(
Id − Jm

i

∆τm
i

|Ωi|

)
wm

i (1.37)

where Jm
i is the Jacobian of the spatial operator Ri at iteration m. A sufficient condition

for the stability of this approximate explicit scheme can be expressed as:

||λm
i ||∆τm

i

|Ωi|
≤ 1 (1.38)
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1.4. Implicit method

where ||λm
i || is the spectral radius of Jm

i .

Therefore, we define the pseudo time step as:

∆τm
i = CFL

|Ωi|

||λm
i ||

(1.39)

where the CFL (Courant-Friedrichs-Lewy) number is a numerical parameter that is set by

the user. For instance, the convective pseudo time step reads:

∆τm
i = CFL

|Ωi|

max(Um
i − Si + c, Um

i − Si − c)
(1.40)

in agreement with the expression of the convective Jacobian eigenvalues (see Eq. (A.6)).

Ui and Si are the values of respectively the velocity magnitude and grid velocity magnitude

at the center of the cell i.

Equation (1.38) imposes a restrictive condition on the CFL. In practice, a viscous pseudo

time step is also computed, based on the viscous Jacobian spectral radius and select the

minimum of both the convective and viscous pseudo time steps.

1.4 Implicit method

In order to get free of the CFL limitation of the explicit scheme, an implicit dual-time

integration is used, which results in the following scheme :

∆w
n,m
i

∆τn,m
i

= −Ri

(
wn,m+1

)
−

(
3
2
w

n,m+1
i − 2wn

i + 1
2
wn−1

i

)

∆t
= −Rt

i

(
wn,m+1

)
(1.41)

with wn,m+1 = wn,m + ∆wn,m. Since the solution accuracy in physical time and space

does not depend on the dual-time increment ∆wn,m which goes to zero at steady-state on

τ , the full residual Rt
i (wn,m+1) can be expanded as :

Rt
i

(
wn,m+1

)
= Rt

i (wn,m) +
3

2

∆w
n,m
i

∆t
+

1

|Ωi|

∑

k

(
∆H

(i)
i,k

)n,m

|Γi,k| (1.42)

where (∆H
(i)
i,k)

n,m = H(i)n,m+1
− H(i)n,m

and H(i) = HE(i) − HV (i) denotes the numerical

flux formula retained in the implicit stage.

1.4.1 Matrix Free Implicit treatment

A way to reduce unit cost and memory requirement is to develop implicit treatments that

do not rely on full flux Jacobian matrices usually introduced when linearizing the explicit

stage. Since the implicit stage vanishes at steady-state this implicit numerical flux formula

does not impact the overall accuracy. However, the simplifications that can be introduced
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Chapter 1. Compressible flow solver

in the implicit stage linearization are likely to induce a loss of intrinsic efficiency which

will have to be balanced through a lower unit cost, so as to preserve the global efficiency

[47] [48].

Simplified inviscid implicit stage Following [36], [47], [48] the inviscid numerical flux

HE(i) appearing in the implicit stage is simply computed using the first-order Rusanov

numerical flux:

H
E(i)
i,k =

1

2
(F E

i · ni,k + F E
o(i,k) · ni,k) +

1

2
ρ(JE

⊥ )i,k(wi − wo(i,k)) (1.43)

where ρ(JE
⊥ )i,k is the spectral radius of the inviscid Jacobian matrix JE

⊥ computed at the

center of face Γi,k

The linearization of the time increment of this implicit numerical flux leads to the following

approximation

(∆HE(i))n,m
i,k =

1

2
((∆F E

i )n,m · ni,k + (∆F E
o(i,k))

n,m · ni,k) +
1

2
ρ(JE

⊥ )n,m
i,k (∆w

n,m
i − ∆w

n,m
o(i,k))

(1.44)

The resulting contribution of the implicit inviscid numerical flux balance eventually reads

∑

k

(∆HE(i))n,m
i,k =

1

2

[∑

k

(∆F E
o(i,k))

n,m · ni,k +
∑

k

ρ(JE
⊥ )n,m

i,k (∆w
n,m
i − ∆w

n,m
o(i,k))

]
|Γi,k|

(1.45)

since

∑

k

(∆F E
i )n,m · ni,k)|Γi,k| = (∆F E

i )n,m ·
∑

k

ni,k|Γi,k| = 0

Simplified viscous implicit stage The time-increment of the physical viscous flux

normal to a face can be linearized as follows:

∆(F V ) · n = ∆(fV (w,∇w))nx + ∆(gV (w,∇w))ny

+ [(AV
0 )∆w + (AV

1 )∆wx + (AV
2 )∆wy]nx

+ [(BV
0 )∆w + (BV

1 )∆wx + (BV
2 )∆wy]ny

where the viscous Jacobian matrices have been introduced: AV
0 =

∂fV

∂w
, AV

1 =
∂fV

∂wx

,

AV
2 =

∂fV

∂wy

and similarly BV
0 =

∂gV

∂w
, BV

1 =
∂gV

∂wx

, BV
2 =

∂gV

∂wy

.
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1.4. Implicit method

The partial derivatives wx, wy with respect to the x and y space-directions are related to

the partial derivatives w⊥, w‖ with respect to the (local) normal and tangential directions

relative to a face by the equalities wx = w⊥nx −w‖ny and wy = w⊥ny + w‖nx. Inserting

these relationships into the above flux linearization yields:

∆(F V ) · n = (JV
0 ) · ∆w + (JV

⊥ ) · ∆w⊥ + (JV
‖ ) · ∆w‖

where JV
0 = [AV

0 nx + BV
0 ny], JV

⊥ = [AV
1 n2

x + BV
2 n2

y + (AV
2 + BV

1 )nxny] and J‖ =

[AV
2 n2

x − BV
1 n2

y + (BV
2 − AV

1 )nxny].

This highly expensive linearization is drastically simplified by retaining only the contribu-

tions involving a positive definite matrix coefficient, namely:

∆(F V ) · n ≈ (JV
⊥ ) · ∆w⊥

with JV
⊥ = [AV

1 n2
x + BV

2 n2
y].

Furthermore, since JV
⊥ is a positive definite matrix it can be replaced by its spectral radius

ρ(JV
⊥ ) without compromising the linear stability of the implicit stage.

The normal derivative of w with respect to a face Γi,k is computed with a simple 2-point

formula using the difference between the variable in the i-cell and its kth neighbor, divided

by the sum of the distances between the involved cell centers and the interface

∆(w⊥)i,k =
∆wo(i,k) − ∆wi

||ri,k|| + ||ro(i,k)||

Eventually, the resulting contribution of the implicit numerical viscous flux to the numer-

ical flux balance is:

∑

k

(
∆H

V (i)
i,k

)n,m

|Γi,k| =
∑

k

ρ̃(JV
⊥ )

n,m

i,k (∆w
n,m
o(i,k) − ∆w

n,m
i ) |Γi,k| (1.46)

with ρ̃(JV
⊥ )i,k = ρ(JV

⊥ )i,k/
(
||ri,k|| + ||ro(i,k)||

)
.

Simplified full implicit stage Inserting the expressions (1.45) and (1.46) of the implicit

numerical fluxes into the expansion of the residual (1.42) and rearranging (1.41) yields the

following implicit solution for the ALE-C system (1.33) :

Dn,m
i ∆w

n,m
i +

1

2|Ωi|

∑

k

(
∆F E

o(i,k)

)n,m
· ni,k |Γi,k| −

∑

k

Cn,m
i,k ∆w

n,m
o(i,k) = −Rt

i(w
n,m)

(1.47)
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with the scalar coefficients Dn,m
i , Cn,m

i,k defined by:

Dn,m
i =

(
1

∆τn,m
i

+
3

2∆t
+
∑

k

Cn,m
i,k

)
, Cn,m

i,k =
1

|Ωi|

(
1

2
ρ(JE

⊥ ) + ρ̃(JV
⊥ )

)n,m

i,k

|Γi,k|

(1.48)

Point-Jacobi resolution Equation (1.47) can be solved at an extremely low cost per

iteration using a simple point-Jacobi relaxation method. Denoting l the iteration counter

associated with this method when (1.47) is iteratively solved to obtain wn,m+1 from the

known wn,m and introducing ∆φ(l) = φ(l) − φn,m, the PJ-BDF-ALE-C procedure reads :

∆w
(0)
i = 0




l = 0, lmax − 1

∆w
(l+1)
i = (Dn,m

i )−1

(
−Rt

i(w
n,m, xn, sn) −

1

2|Ωi|

∑

k

(
∆FE

o(i,k)

)(l)
· ni,k |Γi,k| +

∑

k

Cn,m
i,k ∆w

(l)
o(i,k)

)

w
n,m+1
i = w

n,m
i + ∆w

(lmax)
i

(1.49)

Let us recall that, with the BDF approach, the physical time-step included in the full

residual Rt is computed using the three-level formula (??); within the ALE framework, the

grid is kept fixed during the sub-iterative process on dual-time which means the expressions

of RE(wn,m, xn, sn) and RV (wn,m, xn) given in formula (1.33) are retained when the

counter m varies to obtain wn+1 from wn.

1.5 Boundary conditions

1.5.1 Far field

When computing external flow around a body, the far field boundary of the flow domain

will be set systematically far enough from the object. The physical state on the far field

boundary face is computed with the one dimensionnal Riemann invariants associated with

the direction normal to the boundary [33]. We assume that the flow is uniform at the far

field boundaries. The system of characteristic equations (c.f Appendix C) then reduces to

:

L−1δvp = 0 (1.50)

or explicitely
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dxn/dt = Vn − sn

xn

t

dxn/dt = Vn − sn + c

dxn/dt = Vn − sn − c

(a) Subsonic inlet boundary

xn

t

dxn/dt = Vn − sn
dxn/dt = Vn − sn − c

dxn/dt = Vn − sn + c

(b) Subsonic outlet boundary

Figure 1.5: Riemann Far-field boundary conditions

δρ −
δp

c2
= 0 along

dxn

dt
= Vn − sn (1.51)

δVt = 0 along
dxn

dt
= Vn − sn (1.52)

δVn +
δp

ρc
= 0 along

dxn

dt
= Vn − sn + c (1.53)

δVn −
δp

ρc
= 0 along

dxn

dt
= Vn − sn − c (1.54)

The first equation and second equation of (1.51) describes respectively the constancy of

entropy and tangential velocity along the streamline
dxn

dt
= Vn − sn.

The last two Riemann invariants associated to the acoustic waves can be integrated

which leads to the conservation of R+
n = Vn +

2c

γ − 1
along the path

dxn

dt
= Vn − sn + c

and R−
n = Vn −

2c

γ − 1
along the path

dxn

dt
= Vn − sn − c

In the present study, the normal vectors are systematically oriented towards the exterior of

the domain at the boundary. We use the subscript B to indicate boundary variables, the

subscript i for the interior points and ∞ for the freestream values. The system of Riemann

invariants at the boundary is specified according to the sign of the characteristics (Fig.

1.5) and is solved for the boundary variables. At the subsonic inlet, we have:
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Chapter 1. Compressible flow solver

pB

ρBγ
=

p∞
ρ∞γ

since Vn − sn < 0 (1.55)

VtB = Vt∞ since Vn − sn < 0 (1.56)

R+
nB = VnB +

2cB

γ − 1
= Vni +

2ci

γ − 1
since Vn − sn + c > 0 (1.57)

R−
nB = VnB −

2cB

γ − 1
= Vn∞ −

2c∞
γ − 1

since Vn − sn − c < 0 (1.58)

and at the subsonic outlet, we have:

pB

ρBγ
=

pi

ρiγ
since Vn − sn > 0 (1.59)

VtB = Vti since Vn − sn > 0 (1.60)

R+
nB = VnB +

2cB

γ − 1
= Vni +

2ci

γ − 1
since Vn − sn + c > 0 (1.61)

R−
nB = VnB −

2cB

γ − 1
= Vn∞ −

2c∞
γ − 1

since Vn − sn − c < 0 (1.62)

The flux on the boundary face is then computed using the physical flux formula with the

computed physical state. The far-field boundary treatment for viscous flows is the same

as for the inviscid flows.

1.5.2 Wall

At a solid wall boundary, the normal velocity is zero since no mass or other convective flux

can penetrate the solid body. For moving grid application this condition reads Vn−sn = 0.

The pressure is estimated using the solution polynomial in the cell adjacent to the wall

face under consideration. The inviscid flux at the solid wall boundary is then:

fE
n,wall =




0

pnx

pny

psn


 (1.63)

If no other flux is specified, this boundary treatment leads to a slip condition. For viscous

flow applications, a zero velocity tangential velocity boundary condition is also enforced.

The velocity at the wall nodes is made equal to the grid velocity vwall = s and the viscous

flux is calculated like for the interior cells.
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1.6. Code Validation

1.6 Code Validation

In this section, we will present an inviscid and viscous calculation of a moving NACA0012

profile since our focus is on the assessment of the ALE treatment newly implemented in the

existing compressible solver. The validation methodology is based on the comparison of the

PJ-BDF-ALE-C solver, FLUENTR©solver and some reference results from the literature.

We try to use as much as possible the same numerical parameters for both our research

code and FLUENTR©. The grid is identical and moves in the same rigid body fashion. The

spatial schemes (ROE, AUSM+) described in section 1.2.2 are available in FLUENTR©.

Likewise, second order implicit time accurate scheme and density based solver are selected.

The time step size depends on the case of study and will be specified for each case. A

sufficient number of subiterations are calculated to ensure a residual drop of 4 orders of

magnitude at each physical time step (typically 40).

1.6.1 Inviscid case oscillating NACA0012 CT1

The PJ-BDF-ALE-C inviscid validation test case is a pitching NACA-0012 aerofoil selected

form the AGARD database [44]. A periodic motion of the aerofoil is defined by the

instantaneous angle of attack

α(t) = αm + α0 sin(ωt) (1.64)

The freestream Mach number is M∞ = 0.6, the mean incidence αm = 2.89◦, the amplitude

α0 = 2.41◦, the reduced frequency k = 0.0808 and the pitching is about the quarter chord

(xp/c = 0.25). k is related to the pulsation ω and the frequency f by:

k =
πfc

U∞

=
ωc

2U∞

This CT1 case is actually turbulent since the Reynolds number is Re = 4.8×106. However,

since no turbulence model has been yet implemented in the code, the inviscid computations

are compared with reference [17], in which both inviscid and turbulent computations are

carried out. Other turbulent simulations can be found in [4, 76].

The aerofoil can be moved using a rigid body mesh motion or a deforming grid approach.

• In the first case, all grid points have the same motion as the airfoil. Therefore the

initial grid quality is preserved. This is the method chosen in the PJ-BDF-ALE-C

and FLUENTR©solvers.

• In the second case , a layer of outer grid points is kept rigid while the inner cells

are deforming. The main drawback is that a remeshing algorithms must be used at

each outer time step. The geometric conservation law must also account for the the

change of cell volume to avoid discretization errors. This is the method chosen by

Darracq [17].
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Figure 1.7: Inviscid CT1. (a): global view of the computational grid. (b): close-up on the
airfoil region.

Figure 1.6 illustrate the two moving mesh approaches on a 192×48 C-mesh

Figure 1.6: Rigid body mesh motion (left) and deforming mesh (right) approaches from
[17]

The grid is a O type mesh of 8822 cells displayed in Figure 1.7. The far field boundaries

are located 50 chords away from the profile.

The AUSM+ scheme is used in all simulations and a time discretization of 256 time-steps

per period is chosen. The PJ-BDF-ALE-C computations make use of lmax = 16 for the

implicit PJ solver and CFL = 106 for computing the dual time.

To fulfill the similarity conditions between calculations, the Mach numbers must be kept

equal. Since the FLUENTR©code is dimensional, the choice of keeping the same grid
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1.6. Code Validation

dimensions and adjusting the upstream velocity U∞ is made. The resulting parameters

are described in Table 1.1.

Solvers
PJ-BDF-ALE-C FLUENTR©

Parameters

Chord c [m] 1 1
Upstream velocity U∞ [m.s −1] 1 208.2

Pulsation ω [rad.s−1] 0.1616 33.64
Time step ∆t [s] 0.15 7 ×10−4

Period T [s] 38.88 0.186
Number of time steps per cycle N∆t 260 265

Table 1.1: Inviscid CT1. Solvers parameters

Aerodynamic coefficients

Comparisons between the 3 codes are represented in figure 1.8 for the lift coefficient CL

and pitching moment Cm around the quarter chord for the 5th cycle. The lift and pitching

moment coefficients are defined by

CL =
FL

1
2
ρcU2

∞

, Cm =
M

1
2
ρcU2

∞

(1.65)

where FL and M are respectively the force exerted on the airfoil in the direction perpen-

dicular to the flow and M the pitching moment.
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Figure 1.8: Inviscid CT1. (a): Lift coefficient. (b): Pitching moment coefficient
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There is a very good agreement on the prediction of the lift and moment coefficient evo-

lution between the PJ-BDF-ALE-C and the FLUENTR©codes. However, one can observe

substantial differences with the results of Darracq [17], in particular on the moment coef-

ficient which is a rather sensitive quantity. These discrepancies can be explained by mesh

considerations since the mesh moving technique is different and also because the mesh

itself is different, with results which are not necessarily grid-converged. The observed

differences with experiment are of course expected since the computations are all inviscid

ones. The agreement between the developed solver and the commercial code demonstrates

the proper implementation of the ALE formulation in our code.
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Figure 1.9: Inviscid CT1. Contours of Mach levels. The terms (up) and (down) indicate
an increasing or decreasing incidence angle respectively
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1.6.2 Viscous case -plunging NACA0012

The viscous moving mesh application involves a plunging airfoil. This kind of motion

is interesting because, traditionally, lift and thrust are produced by steady flow devices

like in commercial aircrafts. In contrast, insects and birds create the same forces from

unsteady aerodynamics by flapping and hovering their wings. This flapping flight is a fine

example of optimum motion of aerodynamic surfaces that simultaneously develop the nec-

essary thrust for forward motion and sustained lift to remain airborne. These studies have

been gaining a lot of interest due to their potential application to the design of innovative

unmanned aircraft vehicles (UAVs).

In this viscous compressible study, we consider an NACA0012 airfoil animated by a plung-

ing motion defined by :

y(t) = H0 cos(ωt) (1.66)

Flows around plunging airfoils can be classified according to their Strouhal numbers

St =
ωH0c

U∞

= 2hk (1.67)

The case of study is characterized by a low Strouhal number St = 0.288, an amplitude of

plunging motion h = 0.08 and a reduced frequency k = 1.8. The freestream Mach number

is M∞ = 0.2 and the Reynolds number is Re = 1850. For this low Reynolds number, the

flow can be assumed to be laminar.

Like in the previous section, results of the PJ-BDF-AE-C solver are compared with the

results of FLUENTR©and the results of Allaneau [1]. In the latest reference, simulations

were done on a structured C-type mesh counting 4096 × 512 cells; the mesh is subject to

rigid body motion and moves with the airfoil.

For the FLUENTR©and PJ-BDF-ALE-C computations, the grid presented in the previous

section (see Fig. 1.7) and the ROE spatial scheme are used. The time discretization is of

72 time-steps per period. The PJ-BDF-ALE-C computations make use of lmax = 16 for

the implicit PJ solver and CFL = 106 for computing the dual time.

In the case of viscous compressible flow computations, three adimensional numbers - Mach,

Reynolds and Prandtl numbers - must be adjusted to match the values used in the non-

dimensional research solver (respectively 0.2, 1850 and 0.72). The FLUENTR©freestream

velocity is calculated from the Mach number and the speed of sound

U∞ = M∞

√
γ

p∞
ρ∞

= 0.2 ×

√
1.4 ×

101325

1.176
= 69.43 m.s−1

.

To keep the Reynolds number, the first solution is to modify the dynamic viscosity. In

that case the thermal diffusivity α must be changed to keep the Prandtl number Pr =
µ

ρα
.
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Solvers
PJ-BDF-ALE-C FLUENTR©

Parameters

Chord c [m] 1 4.05E−4

Upstream velocity U∞ [m.s−1] 1 69.4
Pulsation ω [rad.s−1] 3.6 6.15E6

Amplitude H0 [m] 0.08 3.24E−5

Time step ∆t [s] 0.024 1.41E−7

Period T [s] 1.74 1.1E−5

Number of time step per period N∆t 72 72

Table 1.2: Viscous plunging NACA0012. Solvers parameters
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Figure 1.10: Viscous plunging NACA0012. (a): Lift coefficient. (b): Drag coefficient

The second solution, which is prefered here, is to modify the mesh dimension in which

case the Prandlt number is not affected. From the Reynolds number we have

c =
µRe

ρU∞

=
1.78 × 10−5 × 1850

1.176 × 69.43
≈ 4.05 × 10−4

All the resulting parameters are summarized in table 1.2

Lift and drag coefficients are represented in polar form, as a function of the vertical

coordinate y in figure 1.10. The agreement with both FLUENTR©and reference [1] results

is satisfactory. This set of parameters (plunging amplitude and frequency) corresponds

to a case where the fluid exerts drag on the airfoil in the flow direction since CD is

positive. Fig. 1.11 shows the pattern developed by the flow for three positions in the cycle.

The time-accurate compressible flow solver has been successfully extended to moving grid
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computations. Before proceeding to analyze in the second part of this report how the

efficiency of this solver can be improved by making use of a Time-Spectral-Method, it is

first extended in the next chapter to deal with incompressible flows on moving grids.
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Figure 1.11: Viscous plunging NACA0012. Contours of Mach numbers levels and velocity
streamlines
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Incompressible flow solver

2.1 Artificial Compressibility Method

When dealing with incompressible viscous flow problems, it is customary to rely on a

pressure-correction formulation to solve the incompressible Navier-Stokes equations and

deal with the typical decoupling of the continuity and momentum equations. The salient

features of such a formulation are a staggered-grid formulation (even though co-located

incompressible solvers have also been developed over the past years) and the need of

an efficient Poisson solver for the derived pressure equation. This equation is used for

calculating the pressure field, given a velocity field that satisfies the incompressibility

condition both inside the computational domain as well as at the boundaries.

Since no incompressible flow solver on general unstructured grid was available at the

start of the thesis to be used as a development platform for implementing the TSM idea,

it was decided to develop from scratch such an incompressible solver, taking advantage

of the available compressible solver presented in the previous chapter. It was therefore

natural to rely on the artificial compressibility (AC) approach initially proposed by Chorin

[14]. The main idea of Chorin’s method consisted in adding an artificial pressure term

to the continuity equation. This pseudo term changes the mathematical character of the

continuity equation from elliptic to hyperbolic by introducing the artificial compressibility

and allows the system of equations to be solved with a variety of time-marching schemes

developed for compressible flow solvers. The AC strategy has therefore been favored in

this work to take full advantage of the efficient implicit methods previously developed for

solving hyperbolic problems and rather easy to adapt to the AC system as briefly described

in this chapter.
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2.2 Governing equations

2.2.1 Steady equation

The original form of the Artificial Compressibility method was developed for steady-state

problems. Let us recall the original AC method provides a steady solution of the 1D Euler

equations by finding the steady-state of the following hyperbolic system of conservation

laws with respect to the dual or fictitious time τ :

∂

∂τ

(
p

u

)

︸ ︷︷ ︸
=w

+
∂

∂x

(
βu

u2 + p

)

︸ ︷︷ ︸
=f(w;β)

= 0 (2.1)

with x the space variable p, u the pressure and velocity, β the constant artificial com-

pressibility parameter. At steady-state on τ , the solution u(x) of (2.1) satisfies the zero-

divergence condition while both fields u(x) and p(x) satisfy the steady (with respect to τ)

momentum equation.

The square root of the artificial compressibility parameter β represents a speed of artificial

pressure wave and affects the overall convergence rate. If β gets higher, then the artificial

pressure wave travels faster. However, for an extremely fast wave speed (ideally, the wave

speed goes to the infinity in an incompressible media), a large disparity in eigenvalues is

introduced. This degrades the overall convergence and stability. The value of β affects as

well as the accuracy of the physical solution through the numerical dissipation of the space

discretization. Hence an optimal β (wave speed) has to be found for a given problem. This

is the goal of section 2.5.1. However, as long as the steady-state on τ is correctly achieved,

the AC system remains consistent with the incompressible flow equations whatever the

value of β.

2.2.2 Unsteady equation

The AC method was extended to time accurate formulations first by Peyret [59]. A time-

accurate solution of the 1D Euler equations is now found as the steady solution respect to

the dual time τ :

∂

∂τ

(
p

u

)
+

(
0 0

0 1

)

︸ ︷︷ ︸
=K

·
∂

∂t

(
p

u

)
+

∂

∂x
f(w; β) = 0 (2.2)

with t the physical time. The singular matrix K is introduced to remove the contribution of

a physical time derivative for the pressure variable which must not appear in the continuity

equation. At steady-state on τ , the solution u(x, t) of Eq. (2.2) satisfies the zero-divergence

condition while both fields u(x, t) and p(x, t) satisfy the unsteady (with respect to t)
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momentum equation. Rewriting Eq. (2.2) in the compact form of a 1D hyperbolic system

with a source term
∂w

∂τ
+

∂

∂x
f(w; β) = S = −K

∂w

∂t

makes clear the AC system can be efficiently driven to an accurate steady-solution by mak-

ing use of tools initially developed in the context of compressible flow solutions: second-

order upwind discretization for the flux derivative, second-order BDF discretization for the

physical time-derivative and first-order implicit stage for fast convergence on the dual-time.

Let us now turn to the AC system extended to the case of 2D incompressible viscous flows

computed on moving grids. Let Ω(t) ⊂ ℜ2 be an arbitrary control volume bounded by

a smooth closed surface ∂Ω(t) which moves independently from the flow with a velocity

s(x, t) = sx(t) i+sy(t) j, where x = x i+y j denotes the vector of Cartesian coordinates

in the absolute frame of reference.

In the Arbitrary Lagrangian Eulerian (ALE) framework, the 2D Navier-Stokes equations

for incompressible unsteady flows, modified to account for the AC method, can be ex-

pressed in the following integral form

∂

∂τ

∫

Ω(t)

w dΩ(t) + K
∂

∂t

∫

Ω(t)

w dΩ +

∫

∂Ω(t)

(F E − F V ) · n dγ = 0 , (2.3)

where n is the outward unit normal vector and γ the curvilinear abscissa of ∂Ω. The

vector of variables w, the singular matrix K, the inviscid fluxes F E = (fE, gE) and the

viscous fluxes F V = (fV , gV ) are defined by:

w =




p

u

v


 , K =




0 0 0

0 1 0

0 0 1


 , fE(w) =




β(u − sx)

u(u − sx) + p

v(u − sx)


 , gE(w) =




β(v − sy)

u(v − sy)

v(v − sy) + p




fV (
∂w

∂x
,
∂w

∂y
) =

1

Re




0

2
∂u

∂x
∂u

∂y
+

∂v

∂x


 , gV (

∂w

∂x
,
∂w

∂y
) =

1

Re




0
∂u

∂y
+

∂v

∂x

2
∂v

∂y




The pressure p and the components (u, v) of the fluid velocity in the absolute frame of

reference are normalized respectively by ρ∞U2
∞ and U∞, with ρ∞ and U∞ the freestream

density and velocity magnitude. The Reynolds number is Re = ρ∞U∞L/µ∞ with L a

typical length scale.

Note that, because of the geometric conservation law (section 1.3.1), it is possible to write

the inviscid flux continuity equation component without including the grid velocity.
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2.3 Numerical discretization of the AC system

In this section, the notations of Chapter 1 are adopted unless stated differently.

2.3.1 Spatial discretization

The Roe approximate Riemann solver initially developed to solve the compressible Euler

equations [61] is adapted to the hyperbolic ALE-AC system (Eq. 2.3) and combined with

a MUSCL variable reconstruction approach (presented in Sec. 1.2.2) in order to derive

the inviscid numerical flux formula HE
i,k:

HE
i,k =

1

2
(F E(wL

k ) · ni,k + F E(wR
k ) · ni,k) +

1

2
QE

i,k(w
L
k − wR

k ) (2.4)

where wL/R are the reconstructed states, respectively, on the left and right side of the

kth interface Γi,k of cell Ωi and QE = |AEnx + BEny| = |JE
⊥ | is the Roe numerical

dissipation matrix. The expressions of the inviscid Jacobian matrices for the AC system

AE = dfE/dw, BE = dgE/dw are detailed in Appendix B.1.

An immediate calculation for system (2.3) yields:

JE
⊥ =




0 βnx βny

nx Vn − sn + u nx u ny

ny v nx Vn − sn + v ny




This Jacobian matrix can be also expressed as JE
⊥ = T |ΛE|T−1 with Λ

E the diagonal

matrix containing the real eigenvalues of the hyperbolic system (2.3). The Roe dissipation

matrix is eventually computed as

QE
i,k = Ti,k|Λ

E
i,k|T

−1
i,k

with the state wi,k taken as the arithmetic average of wL
i,k, wR

i,k following the references

[62, 70, 38]. Indeed it is demonstrated in Appendix B.3 that this average state satisfies

the ROE properties [61].

The viscous fluxes are approximated using a linearly exact extension of the diamond

method of Noh [58], not detailed here. Let us point out the steady-state of (2.3) depends

on the AC parameter β through the numerical dissipation matrix QE.
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2.3. Numerical discretization of the AC system

2.3.2 Implicit method

The semi-discrete form of the ALE-AC system is given by:

∂wi

∂τi

+ K
∂wi

∂t
+ RE

i (w, x, s) = RV
i (w, x) (2.5)

Equation (2.5) differs from the dual-time marching compressible equation by the singular

matrix K which multiplies the physical time derivative term. Consequently, it is clear

that, from a numerical point of view, the time-implicit resolution of Eq. (2.5) does not

need major modification of the compressible solver.

The numerical method described in the context of the unsteady compressible solver are

recycled. The physical time-derivative is discretized with a second-order BDF scheme

with a choice of grid positions and velocities for integrating RE
i (w, x, s) and RV

i (w, x)

described in Sec. 1.3.

A first-order implicit dual-time integration is used so that the AC equivalent of Equation

(1.41) is

∆w
n,m
i

∆τn,m
i

= −Ri

(
wn,m+1

)
− K

(
3
2
w

n,m+1
i − 2wn

i + 1
2
wn−1

i

)

∆t
= −Rt

i

(
wn,m+1

)
(2.6)

with wn,m+1 = wn,m + ∆wn,m and the full residual Rt
i (wn,m+1) is expanded as

Rt
i

(
wn,m+1

)
= Rt

i (wn,m) + K
3

2

∆w
n,m
i

∆t
+

1

|Ωi|

∑

k

(
∆H

(i)
i,k

)n,m

|Γi,k| (2.7)

where (∆H
(i)
i,k)

n,m = H(i)n,m+1
− H(i)n,m

and H(i) = HE(i) − HV (i) denotes the numerical

flux formula retained in the implicit stage.

Like in section 1.4.1, HE(i) appearing in the implicit stage is simply computed using the

first-order Rusanov numerical flux:

H
E(i)
i,k =

1

2
(F E

i · ni,k + F E
o(i,k) · ni,k) +

1

2
ρ(JE

⊥ )i,k(wi − wo(i,k)) (2.8)

where ρ(JE
⊥ )i,k is the spectral radius of the inviscid Jacobian matrix JE

⊥ computed at the

center of face Γi,k.

The implicit numerical viscous flux takes the following simplified form :

H
V (i)
i,k =

ρ(JV
⊥ )i,k

||ri,k|| + ||ro(i,k)||
(wo(i,k) − wi) = ρ̃(JV

⊥ )i,k(wo(i,k) − wi) (2.9)

where ρ(JV
⊥ )i,k is the spectral radius of the viscous Jacobian matrix.

The expressions of the inviscid and viscous Jacobian matrices leading to the spectral radii

for the AC system are given in Appendix B.
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Chapter 2. Incompressible flow solver

Inserting the expressions (2.8) (2.9) of the implicit numerical fluxes into the expansion

of the residual (2.7) and rearranging (2.6) yields the following implicit solution for the

ALE-AC system (1.33):

D
n,m
i ∆w

n,m
i +

1

2|Ωi|

∑

k

(
∆F E

o(i,k)

)n,m
· ni,k |Γi,k| −

∑

k

Cn,m
i,k ∆w

n,m
o(i,k) = −Rt

i(w
n,m)

(2.10)

where the coefficients D
n,m
i , Cn,m

i,k are now defined by:

D
n,m
i =

(
I

∆τn,m
i

+
3

2

K

∆t
+
∑

k

Cn,m
i,k I

)
, Cn,m

i,k =
1

|Ωi|

(
1

2
ρ(JE

⊥ ) + ρ̃(JV
⊥ )

)n,m

i,k

|Γi,k|

(2.11)

The implicit stage is still matrix-free with a scalar diagonal coefficient D for ∆pn,m
i deprived

from the 3
2∆t

contribution in the mass conservation equation and including this term in

the momentum conservation equations which involve ∆un,m
i and ∆vn,m

i . Equation (2.10)

is solved with the same point-Jacobi relaxation procedure presented in Section 1.4.1.

In the next sections, the different versions of the code will be refered to as PJ-S-AC for the

steady solver, PJ-BDF-AC for the unsteady solver on fixed mesh and PJ-BDF-ALE-AC

for the unsteady solver on moving meshes.

2.4 Boundary conditions

2.4.1 Far field

The far field boundary conditions are deduced from the system of compatibility equations

(Appendix C).

δh1 =
(
−2cVtδp + A(c +

sn

2
)δVt + B(c −

sn

2
)δVt − (A − B)VtδVn

)
= 0 along

dxn

dt
= Vn − sn

(2.12)

δh2 =
(
−(c +

sn

2
)δp + BδVn

)
= 0 along

dxn

dt
= Vn −

sn

2
− c

(2.13)

δh3 =
(
(c −

sn

2
)δp + AδVn

)
= 0 along

dxn

dt
= Vn −

sn

2
+ c

(2.14)
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2.4. Boundary conditions

Introducing the quantity φ = p + 1
2
V 2

n , one obtains

Vtδφ − snδVn − (c −
sn

2
)(c +

sn

2
)δVt = 0

(c +
sn

2
)δφ − (c +

sn

2
)2δVn = 0

(c −
sn

2
)δφ + (c −

sn

2
)2δVn = 0

(2.15)

Unlike the boundary condition for the compressible system of Euler equations, it is not

possible to integrate the Riemann variables. Hence, system (2.15) is linearized using the

interior values for the coefficients. The characteristics variables are discretized in an up-

wind fashion depending on the sign of the characteristics.

At the subsonic inlet

There are two ingoing characteristics corresponding to eigenvalues λ1 = Vn − sn and

λ2 = Vn−sn/2−c and one outgoing characteristic λ3 = Vn−sn/2+c , thus the discretized

system of boundary conditions system is

Vti(φB − φ∞) − sn(VnB − Vn∞) − (ci −
sn

2
)(ci +

sn

2
)(VtB − Vt∞) = 0

(φB − φ∞) − (ci −
sn

2
)(VnB − Vn∞) = 0

(φB − φi) + (ci +
sn

2
)(VnB − Vni) = 0

(2.16)

and the solution of system (2.16) for the boundary variables is:

VnB =
(ci −

sn

2
)Vn∞ + (ci + sn

2
)Vni

2ci

+
φi − φ∞

2ci

pB =
(ci + sn

2
)φ∞ + (ci −

sn

2
)φi

2ci

+
(ci + sn

2
)(ci −

sn

2
)(Vni − Vn∞)

2ci

−
1

2
V 2

nc

VtB = Vt∞ +
Vti(φc − φ∞) − sn(Vnc − Vn∞)

(ci + sn

2
)(ci −

sn

2
)

(2.17)

At the subsonic outlet

There are two outgoing characteristics λ1 = Vn − sn and λ3 = Vn −
sn

2
+ c and one ingoing

chacracteristic λ2 = Vn − sn

2
− c, thus the discretized system of boundary conditions is:

43



Chapter 2. Incompressible flow solver

Vti(φB − φi) − sn(VnB − Vni) − (ci −
sn

2
)(ci +

sn

2
)(VtB − Vti) = 0

(φB − φ∞) − (ci +
sn

2
)(VnB − Vn∞) = 0

(φB − φi) + (ci −
sn

2
)(VnB − Vni) = 0

(2.18)

and the solution of system (2.18) for the boundary variables is:

VnB =
(ci −

sn

2
)Vn∞ + (ci + sn

2
)Vni

2ci

+
φi − φ∞

2ci

pB =
(ci + sn

2
)φ∞ + (ci −

sn

2
)φi

2ci

+
(ci + sn

2
)(ci −

sn

2
)(Vni − Vn∞)

2ci

−
1

2
V 2

nc

VtB = Vti +
Vti(φc − φi) − sn(Vnc − Vni)

(ci + sn

2
)(ci −

sn

2
)

(2.19)

2.4.2 Wall

At a solid wall boundary, the normal velocity is zero since no mass or other convective flux

can penetrate the solid body. For moving grid application this condition reads un−sn = 0.

The pressure is extrapolated from the interior ghosts cells to the boundary. The inviscid

flux at the solid wall boundary is then:

fE
n,wall =




0

pnx

pny


 (2.20)

2.5 Code Validation

This section presents a validation of the newly developed unsteady incompressible code.

First, the solver is used on a stationary mesh for the computation of steady and unsteady

flows over a NACA0015 airfoil corresponding respectively to the angles of attack α = 4◦

and α = 16◦. Then, the solver is validated for moving mesh applications with a pitching

and heaving NACA0015 airfoil recently studied by Kinsey and Dumas [41].
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Figure 2.1: Static NACA0015. (a): global view of the computational grid. (b): close-up
on the airfoil region.

2.5.1 Fixed mesh simulations

Common numericals parameters

All the computations make use of lmax = 16 for the implicit PJ solver and CFL = 106 for

computing the dual time. The unstructured mesh counts 14000 cells and is represented in

Fig. 2.1. The far field boundary is located 10 chords away from the airfoil.

Steady simulation

The test case is a NACA 0015 airfoil at 4◦ of incidence and Re = 1000. The results

are compared with reference [23] in which the author uses an incompressible viscous flow

solver based on a vorticity stream fonction formulation. We also compare the PJ-S-AC

solver with the commercial software FLUENTR©which uses a SIMPLE algorithm for pres-

sure and velocity coupling. The numerical flux used for the AC computation is the ROE

scheme adapted to the artificial compressibility method as presented in section 2.3. We

test different values of the artificial compressibility parameter β in order to determine the

optimal choice with regards to the convergence speed and solver precision.

In the case of incompressible viscous flow, the only adimentional number which matters is

the Reynolds number. Hence, the grid does not need to be resized for the FLUENTR©simulations

and the upstream velocity is simply calculated from the chord and Reynolds number (see

table 2.2 for the numerical values).
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Figure 2.2: Static NACA0015. Convergence histories for different values of β, PJ-S-AC
solver, incidence α = 4◦,Re = 1000.

Residuals Figure 2.2 shows that the best convergence rate is obtained for a parameter

β = 5. For this value, approximately 2000 iterations are needed to achieved a drop residual

of 4 orders. This value of the AC parameter will be systematically used from now on.

Velocity contours The velocity streamlines represented in figure 2.3 show a recircula-

tion zone at the extrados in the trailing edge region.

Solvers PJ-S-AC FLUENTR© Fang [23]
Incompressible method β=1 β=5 β=10 β=20 SIMPLE ω − Ψ − Γ

CL 0.1418 0.1429 0.1432 0.1436 0.156 0.148
CD 0.1340 0.1342 0.1343 0.1344 0.1249 0.129

Table 2.1: Global aerodynamic coefficients resuts, steady NACA0015, incidence α = 4◦,
Re = 1000, incompressible flow.

Aerodynamic coefficients Concerning the accuracy, the comparison of the PJ-S-AC,

FLUENT codes and reference [23] is presented in table 2.1. We can see the slight depen-

dence of the results with β (through the matrix dissipation). The global coefficients CL

and CD are in good agreement with the results of purely incompressible solvers. For β = 5,

the difference is of 8% and 3% for CL with FLUENTR©and Fang [23] respectively and 7%

and 4% for CD. From now on, we will retain the value β = 5 in all the AC simulations.
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Figure 2.3: Static NACA0015. Contours of velocity magnitude and velocity streamlines,
PJ-S-AC solver β = 5, α = 4◦, Re=1000.

Unsteady simulations

The test case is a NACA0015 airfoil at 16◦ of incidence and Re = 1000. For these

conditions, the flow becomes unsteady and periodic. Again, we compare the results of

PJ-BDF-AC solver with the reference [23] and a FLUENTR©computation. We use 100

sub-iterations in dual time to achieve a residual drop of 3 orders of magnitude. Like for

the steady case, the grid dimension is identical in both solvers and the upstream velocity

is adapted in FLUENTR©to match the Reynolds number. The time step is ∆t = 0.05 in

the PJ-BDF-AC solver and leads to approximately 30 discretization points per cycle of

the periodic unsteady phenomenon.

Solvers
PJ-BDF-AC FLUENTR©

Parameters
Chord c [m] 1 1

Upstream velocity U∞ [m.s −1] 1 0.0145
Time step ∆t [s] 0.05 3.441

Table 2.2: Static NACA0015. Code parameters for unsteady incompressible NACA0015
computations, α = 16◦, Re = 1000.
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Figure 2.4: Static NACA0015. Aerodynamic coefficients, CL and CD as a function of time,
PJ-BDF-AC solver,α = 16◦, Re = 1000.

Aerodynamic coefficients Figure 2.4 represents the time history of the Lift and Drag

coefficient. Note that the time is made adimensional in FLUENTR©by dividing the physical

time by the characteristic time tc = c/U∞.

Results are summarized in table 2.3. Generally, there is a good agreement between PJ-

BDF-AC and FLUENTR©. Errors on the amplitude and average values of the aerodynamic

coefficients are below 1.5%.

Solvers

PJ-BDF-AC FLUENT Fang [23]

Results

Average CL 0.684 0.694 0.669

CL amplitude 0.352 0.352 0.31

Average CD 0.317 0.322 0.304

CD amplitude 0.043 0.045 0.047

Period T [s] 1.54 1.52 1.6

Table 2.3: Static NACA0015, α = 16◦, Re = 1000. Comparison of global aerodynamic
coefficients computed using various incompressible solvers.
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Figure 2.5: Static NACA0015. Contours of velocity magnitude and velocity streamlines à
t = 20, CL = 0.55 and CD = 0.296, PJ-BDF-AC solver,α = 16◦, Re = 1000.

Contours Figure 2.5 illustrates the unsteady vortex shedding that appears at the airfoil

extrados. Figure 2.6 shows that the far-field treatment is correct even if the far-field

boundaries are relatively close.
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Figure 2.6: Static NACA 0015. Far field boundary treatment, PJ-BDF-AC solver, α = 16◦,
Re = 1000.
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2.5.2 Moving mesh simulation

The unsteady incompressible solver is used to compute incompressible unsteady laminar

flows over moving airfoils. An interesting application is motivated by the following obser-

vation : a wing that is simultaneously heaving and pitching can extract energy from an

incoming flow. Several tidal turbine concept are based on this power extraction principle

[71]. Kinsey and Dumas [41] recently studied the theoretical performance of such a system

by performing a parametric study of a pitching and heaving airfoil.

The airfoil flow computations presented in [41] were carried out using a conventional

pressure-based solver implemented in the commercial solver FLUENTR©on very fine grids

and with a very small time-step to ensure time and grid convergence and allow a fine

analysis of the flowfield. These computations will therefore be retained as first reference

data and the ability of the proposed PJ-BDF-ALE-AC to provide similar results will be

established in the present section.

Test-cases description

The geometry under study is a NACA0015 airfoil submitted to a pitching motion around

an axis located at one-third of the airfoil chord xp/c = 1/3 and/or a heaving motion.

These prescribed motions are defined by the following laws of evolution for the pitching

angle θ(t), and the vertical position y(t)

{
θ(t) = θ0 sin(ωt)

y(t) = H0 sin(ωt + π
2
)

(2.21)

where θ0 and H0 are respectively the pitching and heaving amplitudes, ω is the angular

velocity. The reduced frequency f ∗ is defined as f ∗ =
fc

U∞

, where U∞ is the freestream

velocity. The Reynolds number based on the freestream conditions and the airfoil chord

is equal to Re = 1100 hence the flow is assumed laminar.

Depending on the pitching/heaving amplitude and frequency, the airfoil can either be in

the power extraction or in the propulsion regime. Kinsey & al found that the highest

efficiency is achieved for θ0 = 76.33◦, H0 = 1 and f ∗ = 0.14. This test case (which

will be denoted by HE for Highest Efficiency from now on) is also the more detailed in

the publication [41]. It is thus used as the validation test case for our PJ-BDF-ALE-AC

solver. Two other cases will be presented in the last chapter of this report, dedicated to

TSM incompressible flow applications.

Numerical parameters

The computational mesh displayed in Fig. 2.9 was generated so as to be similar to the grid

used in [41] since both the proposed PJ-BDF-ALE-AC solver and the commercial solver

used by Kinsey and Dumas are second-order methods on unstructured triangular grids.
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Figure 2.7: Pitching and heaving motion pa-
rameters from [41] Figure 2.8: Stingray tidal turbine device [71]

Parameters

Pulsation ω [rad.s−1] 0.8796
Heaving amplitude H0 [m] 1
Pitching amplitude θ0 [◦] 76.33

Time step ∆t [s] 0.0137
Period T [s] 7.142

Number of time step per period N∆t 520

Table 2.4: HE test case. Solver parameters

This mesh is different than the mesh presented in figure 2.1. It is finer and the far field

boundary is located at 50 chords. It counts 32000 cells, with 360 points set on the airfoil

and a near body resolution tailored to satisfy the criterion y2
p

U∞

ν∞∆
∼ 1, where yp is the

distance from the wall to the first adjacent cell centroid and ∆ is the minimal edge length

on the airfoil. The enforcement of this criterion combines a low cell-Reynolds number and

a moderate cell aspect-ratio near the airfoil surface to ensure solution accuracy. The AC

parameter β is constant and equal to 5 according to section 2.5.

520 physical time steps per period or cycle are used with 100 dual time iterations performed

at each physical time step, 16 iterations of the PJ method and a CFL of 106 for computing

the dual time to achieve a residual drop of 3 orders of magnitude. The computation is

started with a uniform pressure and velocity flow field. 4 cycles must be computed before

flow periodicity is fully achieved. A variation of the mean aerodynamic coefficient inferior

to 0.2% between two consecutive cycles is the criterion typically used to ensure a fully

periodic flow is obtained. All the PJ-BDF-ALE-AC results displayed hereafter correspond

to the 5th cycle for HE and will be labelled BDF from now on.
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Figure 2.9: Moving NACA0015. (a): global view of the computational grid. (b): close-up
on the airfoil region.

Results

The comparison with the reference results [41] is performed on the force coefficients, more

precisely on the CY coefficient and CX coefficient. Figure 2.10 presents the computed

CX and CY coefficients over the normalized time period; note only 1 out of 8 physical

time-steps are plotted for the present BDF computations.

The agreement between [41] and the present BDF results is globally very good.

In figure 2.11a, the pressure coefficient Cp =
p − p∞
1/2ρU2

∞

around the airfoil is plotted at two

time instances in the period. At t/T = 0, we observe a noticeable difference between the

PJ-BDF-ALE-AC results and the Kinsey results for the medium configuration (16000 cells

and 2000 time steps per cycle) and the fine configuration (72000 cells and 4000 time steps

per cycle). First, it is interesting to see that there is still a slight dependence of mesh

and time step refinement between the medium and fine computations. A further mesh

refinement targeted on the trailing edge region should probably improve the comparison.

Besides, the range of Cp values extends from −1.5 to 1, which is relatively low compared

to the Cp at t/T = 0.25, leading to visible errors. If we look at the corresponding pressure

field at t/T = 0 in figure 2.12, the physics of the flow is respected with a trailing edge

vortex shedding clearly visible in the wake. The PJ-BDF-ALE-AC pressure coefficient

at t/T = 0.25 shows very good agreement with the finest Kinsey configuration (see Fig.

2.11b). In conclusion, an unsteady incompressible flow solver on unstructured grid is now

available and ready to be possibly improved, as far as efficiency is concerned, by using

a Time Spectral Method instead of the conventional BDF time-marching approach. The

design principles of such a TSM strategy are investigated in the second part of this report.
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Figure 2.10: HE test case. (a): CX evolution computed computed in [41] and using the
present BDF method. (b): CY evolution computed in [41] and using the present BDF
method.
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Figure 2.11: HE test case. Pressure coefficient distribution from leading edge to trailing
edge.
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Figure 2.12: HE test case. Contours of pressure (dashed for negative, solid for positive).

x

y

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(a) t/T = 0

x

y

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) t/T = 0.25

Figure 2.13: HE test case. Contours of velocity magnitude and velocity streamlines.
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Chapter 3

A brief review of harmonic methods

Harmonic methods take advantage of the time periodicity of a problem to decompose its

solution into several harmonic contributions and thus simplify a full unsteady problem

into a set of coupled steady problems. The Time Spectral Method briefly discussed in the

introduction belongs to this class of methods. A short overview of harmonics methods

is proposed in this chapter before proceeding to describe with more details the TSM ap-

proach specifically used and analyzed in the present work.

Harmonic methods have been used for a long time in the structural analysis domain (see

for instance [43]) and in electronics [25]. To the best of our knowledge, spectral time

discretization methods have been first introduced first in Computational Fluid Dynam-

ics (CFD) in 1995 by Carte, Dusěk and Fraunié [11, 12] for incompressible wake flow

simulations. Later on, in 2001, these methods have also been investigated for internal

compressible flow computations in turbomachinery by Chen [13] and McMullen [53]. In

these studies, a periodic solution is sought via the Fourier coefficients in the frequency

domain. In 2002, Hall & al [31] are the first to suggest another approach, namely the Har-

monic Balance Technique (HBT), by casting the frequency domain equations back into

the time domain. In 2005, Gopinath and Jameson [27] itemize the matrix formulation of

Hall & al [31] to provide an expression of the time spectral operator for every time instant,

which they call the "Time Spectral Method" or TSM. The present chapter offers a brief

review of the harmonic methods following their chronological order of appearance. Thus,

the frequency domain methods are first presented and the successive ideas leading to the

TSM are explained next.
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Chapter 3. A brief review of harmonic methods

3.1 Frequency domain methods

3.1.1 Single harmonic methods

The single harmonic methods consider the solution of a time-periodic flow as the sum of a

basic state and the contribution of a fundamental frequency. A complete review of these

methods can be found in [65]. In the so-called linearized Euler method [29, 73], the basic

state is a steady flow w and the instantaneous flow solution is expressed as:

w = w + w̃, w̃ = ŵ eiωt (3.1)

with i the imaginary complex number and ω the fundamental pulsation. The assumed

solution Eq. (3.1) is substituted into the Euler equations and the resulting system is

truncated at first order, leading to an equation for the steady part and another one to

compute the complex amplitude of the harmonics in the frequency domain, called the

linearized Euler equation.

In the Non Linear Harmonic Method of Ning and He [57], the vector of conserved vari-

ables is decomposed as the sum of a time-averaged contribution and a single harmonic

perturbation:

w = w + w̃, w̃ = ŵ eiωt (3.2)

Starting from the compressible Navier-Stokes equations, Ning and Heb derive a new sys-

tem of conservation laws, with a standard continuity equation for the time-averaged con-

tribution but with momentum equations containing additional terms, introduced by the

non-linearities of the Navier-Stokes system, similar to the turbulent Reynolds stress tensor

components associated with RANS modeling. These terms appearing in the time-averaged

fluxes must be modeled. A term such as ũṽ for instance is computed by taking advantage

of the fact ũ and ṽ vary in a harmonic manner, so that the time average ũṽ over a period

can be expressed as:

ũṽ =
1

2
|û||v̂| cos Φuv (3.3)

where Φuv is the phase difference between ũ and ṽ and the amplitudes of the unsteady

perturbations û, v̂ are obtained from the linearized Euler equation.

3.1.2 Multi-harmonic methods

Incompressible flows

The first application of a multi-harmonic method in the domain of fluid mechanics must

be granted, according to our analysis of the available literature, to Carte & al [11], where

the simulation of a laminar incompressible after-body wake was considered. Let us briefly

explain the key principles of the approach proposed in [11], which could have been the

approach retained in this work to reduce the computational cost of the targeted incom-
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3.1. Frequency domain methods

pressible flow problems. The Navier-Stokes equations for incompressible viscous flows in

velocity-pressure formulation read:

∂v

∂t
+ v∇v − ν∇2v + ∇p = 0

∇.v = 0
(3.4)

where v denotes the velocity and p is the pressure. If the flow is assumed periodic in time,

any of the flow variable can be expressed as a Fourier series:

v =
k=+∞∑

k=−∞

ĉk(x)eikωt (3.5)

p =
k=+∞∑

k=−∞

d̂k(x)eikωt (3.6)

where ω = 2π/T and with T the period. The complex Fourier coefficients ĉk(x) and d̂k(x)

are no longer time-dependent of course; moreover velocity and pressure being real vari-

ables, the conditions ĉk = ĉ−k and d̂k = d̂−k must be fulfilled, where the overbar denotes

the complex conjugate.

The time derivative of the velocity is then given by:

∂v

∂t
=

k=+∞∑

k=−∞

ikωĉk(x)eikωt (3.7)

The variable decompositions ( Eq. (3.5) and (3.7)) are next introduced in system (3.4)

and the orthogonality of the Fourier series is exploited to derive an equivalent momentum

equation in the Fourier space:

(ikω − ν∇2)ĉk +
n=+∞∑

n=−∞

(ĉn · ∇)ĉk−n + ∇d̂k = 0, ∀ k ∈ Z (3.8)

with the Fourier components ck satisfying the continuity equation:

∇ · ĉk = 0, ∀ k ∈ Z (3.9)

Note that, because of the non-linearity of the momentum equation, the individual equa-

tions for each mode are not independent: the equation for the kth wave-number also

depends on the values of all the other modes n 6= k.
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Chapter 3. A brief review of harmonic methods

Only a finite number of modes k are computed in practice: −N ≤ k ≤ N where N is the

highest number of harmonics retained. The method becomes attractive if a satisfactory

solution accuracy can be achieved with a not too large truncated number of harmonics.

Indeed, the flow solution is obtained after solving simultaneously in the frequency domain

a system of 2N + 1 steady equations of the type (3.8)-(3.9). This set of equation differs

from the original Navier-Stokes system in the time domain (3.4) by the formulation of the

non-linear term in equation (3.8) and the complex nature of the Fourier coefficients ck and

dk; however the very structure of the individual equations (3.8) and (3.9) remains similar

to the original Navier-Stokes system so that the modification of the initially available

Navier-Stokes solver into a multi-harmonics solver can be performed for a moderate effort

of development.

In the original formulation proposed in [11, 12], the variables are not necessarily periodic

in time. Transient behaviors, and not only periodic oscillations, can also be accounted

for by adding an additional degree of freedom to the variables v and p. For the sake of

simplicity, this additional degree will not be considered in the next paragraph, limited to

periodic problems.

Numerical implementation The discrete solution method for (3.8) and (3.9) adopted

in [11, 12] is based on a modification of an implicit finite volume time-marching solution

of the Navier-Stokes equations initially developed by Braza and co-workers [37, 9]. A

pseudo-time derivative on τ is introduced to drive the system to a steady state:

ĉm+1
k − ĉm

k

∆τ
+ ikωĉm+1

k +
n=+N∑

n=−N

(ĉm
n · ∇)ĉm+1

k−n − ν∇2ĉm+1
k + ∇d̂m

k = 0

∇ · ĉm+1
k = 0





∀ k ∈ [−N : N ]

(3.10)

The usual projection procedure for coupling velocity and pressure in incompressible flow

solvers is then adapted to solve system (3.10) using the following steps:

ĉ∗
k − ĉm

k

∆τ
+ ikωĉ∗

k +
n=+N∑

n=−N

(ĉm
n · ∇)ĉ∗

k−n − ν∇2ĉ∗
k + ∇d̂m

k = 0 (3.11)

∇2Φk = ∇.ĉ∗
k (3.12)

ĉm+1
k = ĉ∗

k −∇2Φk (3.13)

d̂m+1
k = d̂m

k +
Φk

∆τ
(3.14)

Eq. (3.11)-(3.14) are discretized in space using a second-order finite volume method and

solved by an Alternate Direction Implicit algorithm well suited at the time for the struc-
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3.1. Frequency domain methods

tured grid computations performed by the authors. The parameter ∆τ appearing in Eq.

(3.11) is chosen so as to optimize the performance of the ADI algorithm. For each dual

time step, one ADI sweep in both space directions (2D problems are considered) is carried

out in Eq. (3.11) and Eq. (3.12) is solved by several iterations of an ADI Poisson solver

to obtain the new divergence-free approximation of the velocity by Eq. (3.13). The pres-

sure correction at level m + 1 is given by Eq. (3.14). Note the solution strategy and the

associated solvers are directly adapted from the initial Navier-Stokes solver in the time

domain, which greatly simplifies the development cost of the method.

Another more recent contribution involving a frequency domain harmonic technique for

incompressible flow can be found in the work of Welch & al [74]. In this study, a multi

harmonic approach is applied to the stream function and vorticity transport formulation

of the 2-D incompressible Navier-Stokes equations and used to efficiently obtain the time-

periodic flow field associated with synthetic jets in quiescent flows and cross-flows.

Compressible flows

Hall & al in [30], then Chen & al [13] and McMullen [53] have been pioneering the use of

harmonic methods in the frequency domain for the compressible Navier-Stokes equations.

In order to explain the main design principles of their approach, let us start from the semi-

discrete form (1.29) of the compressible Navier-Stokes equations introduced in Chapter

1:

∂w

∂t
+ R(w) = 0 (3.15)

where the residual operator R contains the spatial discretization of the convective and

diffusive fluxes (see Eq. (1.27) and (1.28)).

Assuming again the time periodicity of w and therefore of R(w), with a pulsation ω, the

Fourier transform of equation (3.15) reads :

k=+∞∑

k=−∞

(
ikω|Ω|ŵk + R̂k

)
eikωt = 0 (3.16)

As seen in the previous section, an equation for each mode can be deduced from equation

(3.16), leading to:

ikωŵk + R̂k = 0, for k ∈ [−N, N ] (3.17)

where only a limited number N of modes has been taken into account. The non-linearity

of R implies:
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Chapter 3. A brief review of harmonic methods

R̂k(w) 6= R(ŵk) (3.18)

The coefficients R̂k can be computed from ŵk but, unlike the nonlinear term in the

incompressible momentum equation (see 3.8), the expression of the nonlinear operator for

the compressible equations involves the product of u, v and ρ which must be individually

developped as Fourier series. This results in complex series of convolution that becomes

massively time consuming [30].

The alternative proposed by Hall & al in [30] is to compute R̂k from the residual in the

time domain R(w), taking advantage of the Fast Fourier Transform (FFT) computational

efficiency. The strategy is described in Figure 3.1: the vector w(t) is calculated from

the Fourier coefficients ŵk using an inverse FFT at evenly distributed intervals over the

time period; at each of these time instances, the steady operator R(w(t)) can then be

computed; next, a FFT is used to transform the spatial operator back into the frequency

domain where R̂k is known for all wavenumbers. The unsteady residual Îk = i kωŵk +R̂k

is obtained by adding R̂k to the spectral representation of the temporal derivative ikωŵk.

W
k

W(t) R(t) R
k

I
k

+

ik!W
k

Solution

S
o

lu
ti

o
n

Time

Residual

R
e

si
d

u
al

Time

0 +1 +2-1-2

Frequency Domain

0 +1 +2-1-2

Frequency Domain

Figure 3.1: Simplified dataflow diagram of the time advancement scheme illustrating the
pseudo spectral approach used in calculating the non-linear spatial operator from [52].

A first-order pseudo time derivative is eventually introduced in [30] to integrate equation

(3.17) and yields:

∂ŵk

∂τk

+ ikωŵk + R̂k = 0 (3.19)

This method is named Non-Linear Frequency Domain (NLFD) since it takes into account

the full non linearity of the operator R and solves the equations in the frequency domain.

In [54], Mc Mullen & al test the NLFD on a laminar flow over a cylinder with an imposed

Strouhal number and a turbulent pitching airfoil. It is demonstrated that, despite of
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3.2. Time domain methods

the cost of the FFT, the NLFD reduces the overall computational cost with respect to a

conventional dual time step approach, as described in section 1.3.2.

3.2 Time domain methods

Frequency domain methods proved to be efficient and accurate for computing periodic

flows and it is possible to rely on some key ingredients of an existing Time Domain solver

to facilitate the development of the Frequency Domain solver (see for instance in the pre-

vious section the detailed description of the strategy proposed by [11, 12] which recycles

the pressure correction strategy and Poisson solver from the time domain to the frequency

domain). However, for compressible flow, an additional procedure must be implemented

to compute the residual vector in the frequency domain. Besides, since most of the pro-

gramming langages only deal with real numbers, the resolution of complex equation in

the frequency domain comes down to the resolution of two equations. For the reasons

mentionned above, it might be desirable to work in the time domain for an even more

straightforward implementation of an harmonic method. Following this line of idea, Hall

& al [31] suggested a strategy, called "Harmonic Balance Technique" (HBT), that cast

the modal equations back into the time domain. HBT was further elaborated in 2005

by Gopinath and Jameson [27], who provided an explicit expression of the time spectral

operator and christened the approach "Time Spectral Method" or TSM.

3.2.1 Time Spectral Method

The Nyquist-Shannon theorem [64] states that 2N + 1 time instances evenly distributed

in the time period of a signal allow to compute at best the N th harmonic of the funda-

mental frequency (the first harmonic being the fundamental frequency itself). Therefore,

considering the Fourier series decomposition of w truncated to the N th harmonic

w =
N∑

k=−N

ŵk(x)eikωt (3.20)

the kth Fourier coefficient ŵk (−N ≤ k ≤ N) can be accurately computed using the

forward discrete Fourier transform over 2N + 1 time instances evenly distributed over the

time period.

The analytic expression of this discrete Direct Fourier Transform (DFT) is given by :

ŵk(x) =
1

2N + 1

2N∑

n=0

wne
−ikωn∆t (3.21)

with wn ≡ w(n∆t) and ∆t = T/(2N + 1).
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Chapter 3. A brief review of harmonic methods

The main idea of the time domain spectral methods is to look for these solutions wn in

order to retrieve the solution at any time t in the period using (3.20).

Conversely the discrete Inverse Fourier Transform (IFT) allows to retrieve wn using the

harmonics :

wn =
N∑

k=−N

ŵke
ikωn∆t (3.22)

These relations can be written in matrix form :

ŵ∗ = Ew∗ and w∗ = E−1ŵ∗ (3.23)

where

ŵ∗ = (ŵ−N , ŵ1−N , · · · , ŵN), w∗ = (w0, w1, · · · , w2N) (3.24)

The matrices of the DFT and IFT are given by :

Ek,n =
1

2N + 1
exp(−2iπk

n

2N + 1
), E−1

k,n = exp(2iπk
n

2N + 1
) (3.25)

The periodic solution of (3.15) is searched as the solution of the following problem:

∂

∂t
(w∗) + R(w∗) = 0 (3.26)

Applying the DFT to (3.26) leads to 2N + 1 equations (one for each wavenumber) in the

frequency domain similar to (3.17) and written here in matrix form:

DEw∗ + R̂(w∗) = 0 (3.27)

where D is a diagonal matrix with elements defined by

Dkk = ikω (3.28)

The application of the IFT to R̂∗ = R̂(ŵ∗) leads to the original expression R because

the DFT is bijective. Besides, the IFT of the term DEw∗ becomes a source term that

coupling all the time instants :

E−1DEw∗
︸ ︷︷ ︸

Dt(w∗)

+R(w∗) = 0 (3.29)

Let us denote Dt the spectral operator approximating the physical time derivative
∂

∂t
of

equation (3.26)

Dt(w
∗) = E−1DEw∗ ≈

∂w∗

∂t
(3.30)
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3.2. Time domain methods

Gopinath and Jameson [27] have provided a detailed expression of this matrix spectral

operator for each instant n:

Dt(wn) =
2N+1∑

j=1

dn,jwj−1 (3.31)

with

dn,j =





π
T
(−1)n−j csc

(
π (n−j)
2N+1

)
if n 6= j

0 if n = j
(3.32)

Performing the change of variable p = j − i, the expression of Dt simplifies into :

Dt(wn) =
N∑

p=−N

dpwn+p (3.33)

with

dp =

{
π
T
(−1)(p+1) csc

(
πp

2N+1

)
if p 6= 0

0 if p = 0
(3.34)

Note the subscript n + p of w in (3.33) actually refers to the remainder of the euclidian

division of n + p by 2N + 1. Moreover, d−p = −dp and dp = dp−N , so that the coefficients

dp need to be computed for p ∈ [0; N ] only.

Using (3.33) to approximate the physical time derivative at tn, system (3.15) written at

t = tn becomes:

Dt(wn) + R(wn) = 0 (3.35)

Since the spectral time-derivative depends on the whole set of solutions wn+p with p ranging

from −N to N , system (3.35) must be written for each time instance in the period:

Dt(wn) + R(wn) = 0, 0 ≤ n < 2N + 1 (3.36)

with the residual vector R a non-linear function of wn. The non-linear system of equations

(3.36) is iteratively solved through a dual time-marching strategy, that is looking for the

steady-state with respect to τ of the following system

∂wn

∂τ
= −Rt

n(w), 0 ≤ n < 2N + 1 (3.37)

where the total residual is defined as Rt
n(w) = Dt(wn) + R(wn) for the TSM approach.

The operator Dt is a spectral time discretization scheme centered on the time instant n.
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Figure 3.2: Time derivative of the cosine function with the TSM and BDF approaches.

The accuracy of this spectral operator can be illustrated on the cosine function f(t) =

cos(ωt) (with ω = 2). In figure 3.2a, f is sampled with 3 and 50 points. The 2nd order BDF

scheme described by formula (??) is applied on the 50 points to estimate the derivative

f ′(t) = −ω sin(ωt); the periodicity condition is used to apply the 3-point scheme at the

boundary points. The computed discrete derivative, denoted BDF(50), is displayed in

figure 3.2b and shows a reasonable agreement with the exact derivative, despite a slight

phase difference which goes to zero when the number of discretization points is increased.

Meanwhile, the same BDF scheme applied with 3 discretization points only yields an

approximate derivative, BDF(3), which is far from the exact solution. When the TSM

scheme is applied with these same 3 discretization points evenly distributed on the period,

an excellent approximation of the time derivative is obtained.

Odd-even decoupling

Equation (3.33) can be written as a matrix vector product:

Dt(wn) = Dw∗ (3.38)

where the matrix Dodd is given by :

Dodd =




0 dodd
1 · · · dodd

N −dodd
N · · · −dodd

1

−dodd
1 0 dodd

1 dodd
2 · · · · · · −dodd

2
...

...
...

...
...

...
...

dodd
1 dodd

2 · · · · · · −dodd
2 −dodd

1 0


 (3.39)
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and the dodd
p coefficients are given by (3.34). An even number of instants 2N could also

be used. In that case, (3.33) and (3.34) become:

Dt(wn) =
N−1∑

p=−N

deven
p wn+p (3.40)

with

deven
p =

{
π
T
(−1)(p+1) cot

(
πp
2N

)
: p 6= 0

0 : p = 0
(3.41)

and the matrix Deven is

Deven =




0 deven
1 · · · deven

N−1 0 −deven
N · · · −deven

1

−deven
1 0 deven

1 deven
2 · · · 0 · · · −deven

2
...

...
...

...
...

...
...

...

deven
1 deven

2 · · · 0 · · · −deven
2 −deven

1 0


 (3.42)

It is clear that every row of Deven contains two zeros, while the rows of Dodd have only one

zero. As a consequence, Dodd has only one zero eigenvalue corresponding to eigenvector

e1 = (1, 1, ∆ · · · , 1)T . Eigenvector e1 corresponds itself to a zero time derivative for a

constant solution (all wn are identical), a property of a consistent scheme. Deven has

two zero eigenvalues with eigenvectors e1 and e2 = (1, 0, 1, 0, · · · , 1, 0)T . Eigenvector e2

which results in a discrete zero time-derivative too corresponds to an odd-even decoupled

solution, i.e. this mode is not damped by Deven and the scheme might become unstable.

It was found in practice that, for cases of pitching airfoils and wings where the time

derivative is relatively small, both Deven and Dodd are stable. However for problems where

the time derivative becomes large, e.g. high rotational speed turbomachinery problems,

the odd-even decoupling introduces instabilities, which lead to the failure of the algorithm

using an even number of time intervals. Consequently, only an odd number of time intervals

will be used from now on.
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3.2.2 Pseudo-time marching and TSM strategies

The TSM strategy applied to solve a time-periodic flow governed by (3.15)

∂w

∂t
+ R(w) = 0

transforms the original equation (3.15) into a set of coupled steady equations (3.36)

Dt(wn) + R(wn) = 0, 0 ≤ n < 2N + 1

or, using the vector notation (3.24)

Dt(w
∗) + R(w∗) = 0.

In the remainder of this report, the notation wn will be favored because it makes more

explicit the discretization index n in the time domain. When describing fully discrete TSM

strategies, the index i, n for the solution vector w will refer to the grid cell space-location i

and time-location n within the period. Moreover, since the non-linear system of equations

(3.36) is solved using a sub-iterative process (3.37) the quantity wm
n is introduced to denote

the flow solution at (physical) time-instance n and sub-iteration m (the space discretization

is not considered here for the sake of simplicity); similarly, (w∗)m would denote the set

of flow solutions at all the time-instances spanned over the period, computed at the mth

level of the sub-iterative process converging to a steady-state with respect to τ . Assuming

for instance a simple Euler explicit approximation for the dual-time derivative in (3.37)

leads to:
(w∗)m+1 − (w∗)m

∆τ
= −Dt((w

∗)m) −R((w∗)m) (3.43)

Fig. 3.3 illustrates the convergence process for (3.43). The targeted (unknown) solution of

(3.36) - or equivalently steady solution of (3.43) - is plotted over a period as a solid line;

the initial state (w∗)0 is typically defined using the free-stream value associated with each

TSM instant, represented by points on the figure 3.3(a). After several sub-iterations on m

using (3.43), the flow solution (w∗)m takes for instance the intermediate values depicted in

Fig.3.3(b). When full steady convergence is achieved on 3.43 after mmax sub-iterations, the

TSM states provide an accurate representation (w∗)mmax of the periodic solution instances

w∗. For a given number of modes N (fixed by accuracy considerations), the efficiency of

the TSM strategy is therefore directly related to the number of sub-iterations mmax needed

to achieve a steady-state on τ and to the computational time spent to evolve from (w∗)m

to (w∗)m+1. The choice of an optimal dual-time marching strategy (explicit / implicit)

will be discussed in the next chapter. It is worth noticing that some computational time

might be saved by first computing the 2N + 1 steady uncoupled equations as the initial

guess of the solution [76].
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Figure 3.3: TSM dual time-marching convergence principle

3.3 Selected method

The Time Spectral Method has been retained in this work because it can be implemented

within an existing time-accurate solver with a moderate amount of effort. Indeed, the

available code at the beginning of this Ph.D was a compressible unstructured grid solver.

Thus, the TSM has been first tested in this code to deal with compressible applications

which are the topic of Chapter 6.2.3.

Once the TSM has been validated for these compressible cases, the Artificial Compress-

ibility (AC) strategy has been favored to deal with incompressible applications because of

the ease of coding starting from the original compressible code (see Chap. 2). The imple-

mentation of the implicit TSM for compressible and incompressible flows will be presented

in the next Chapter 4 and TSM incompressible results are gathered in Chapter 7.
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Had the reference code been a pressure-based incompressible solver, the strategy would

certainly have been different. Indeed, we could imagine to apply the TSM to the incom-

pressible system of Navier-Stokes. System (3.4) would be transformed into:

Dt(vn) + vn∇vn − ν∇2vn + ∇pn = 0

∇.vn = 0

}
0 ≤ n < 2N + 1 (3.44)

And the time domain discretized system equivalent to (3.10) is

vm+1
n − vm

n

∆τ
+ Dt(v

m(+1)
n ) + vm

n ∇vm+1
n − ν∇2vm+1

n + ∇pm
n = 0

∇.vm+1
n = 0



 0 ≤ n < 2N + 1

(3.45)

Again, the TSM time instants are coupled trough the TSM source term which can be

treated explicitely or implicitely. The individual equations, modified with this additional

source term, can be solved with the incompressible solver [37, 9] presented in Sec. 3.1.2

for the frequency domain harmonic method for instance.

This method has not been further investigated but could be worth developing in order to

be compared with its frequency domain counterpart (See section 3.1.2).

Moreover, in the literature, we find that the harmonic methods have been extended to

much more complex situations where the frequency is not known a-priori [28, 67], the

number of harmonics is adapted in each grid cell to fit the harmonic content [50], when

the TSM time sampling is not uniform [56], when there are multiple excitation fundamental

frequencies [21, 20]. A short review of these methods is present in reference [65].

An attempt to carry out the Gradient Based Variable Time Period (GBVTP) [28] to

deal with self-induced periodic behavior in the laminar wake of a cylinder is presented in

Appendix D.

However, in the remainder of the report, we will limit the range of applications to periodic-

flows with a single fundamental excitation frequency and only the "basic" TSM will be

used.
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As explained in the previous chapter, the efficiency of the Time Spectral Method depends

for a great part on the numerical strategy used to drive the coupled equations (3.37) to

a steady-state on the dual or fictitious time τ . It will be first recalled that the explicit

dual-time integration of the TSM system displays severe stability limits when the number

of harmonics N increases and/or the frequency is high. This is why several authors

[66, 76, 68] in the recent past have put forward implicit solution strategies that allow the

use of both large CFL numbers ensuring faster convergence to a steady-state and a high

number of harmonics N that might be needed to accurately describe complex unsteady

flows. However, the TSM implicit formulation introduces off-diagonal terms in the implicit

matrix, which can make the linear system hard to solve with simple relaxation techniques

such as Point Jacobi or Gauss-Seidel. A simple fix will be presented, that allows to

successfully extend to the TSM formulation an original matrix free implicit formulation

initially developed for BDF-DTS computations.

4.1 Explicit TSM for compressible flows

4.1.1 Combining TSM and ALE

Recalling on one hand the description of the ALE formulation provided in 1 and on the

other hand the TSM system (3.37) introduced in the previous Chapter, it is possible to

write a generalization of the TSM approach within an ALE framework :

∂wn

∂τ
= −Rt

n(w, xn, sn), 0 ≤ n < 2N + 1 (4.1)

where the total residual is defined as Rt
n(w) = Dt(wn) + R(wn, xn, sn) for the TSM

approach. In the present study, the 2N + 1 grid positions xn and velocities sn are a

priori known from the prescribed grid motion. For each instant n, the grid is moved to

its expected position and the grid velocity sn needed for the computation of the ALE
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convective fluxes is analytically computed using Eq. (1.30) at time instance tn.

Note this simplified implementation is made possible because the mesh remains rigid

during the motion in the application test-cases treated in this work. However, when the

mesh is deforming in the general case, the task of determining the grid velocity is not trivial.

Indeed, as seen in section 1.3.1, the grid velocity for general moving mesh application is

calculated using a linear combination of the surrounding mesh position corresponding to

physical time steps tn−1, tn, tn+1. If the same method is used for TSM computations, it

can lead to non-negligible errors, especially if a small number of harmonics is considered,

i.e. if the mesh positions are significantly spaced out. Sicot & al [65] propose to use

the mesh positions at the TSM instants and the spectral time derivative to compute the

deforming grid velocity. Such as strategy is well justified by the spectral accuracy of the

time derivative operator which was exemplified in Figure 3.2b. Another well-known issue

when dealing with dynamically deforming grids is the implementation of a Geometric

Conservation Law (see Sec. 1.3.1). A GCL for the TSM in the context of unstructured

grids has been recently presented by Yang and Mavriplis [77].

As previously described in Section 3.2.2 for a fixed grid, a simple first-order Euler explicit

discretization of the dual-time derivative appearing in (4.1), yields the following iterative

formula for the TSM time-marching process to a dual-time steady-state:

∆wm
n

∆τm
n

= −Rt
n(wm, xn, sn), 0 ≤ n < 2N + 1 (4.2)

where ∆wm
n = wm+1

n − wm
n and ∆τm

i is the local (dual) time-step in cell i of the grid

associated to the time instance tn within the period.

4.1.2 Stability Analysis

Van der Weide & al [72] have proposed a stability analysis for the pseudo time step ∆τ

when used in the TSM approach (4.2), which leads to a new stability condition (depending

on the problem frequency and the number of modes N) with respect to the usual stability

condition (1.39) recalled in Chapter 1.

In the frequency domain, an explicit formulation of (4.2) for wave-number k with a local

pseudo-time step ∆τk reads :

ŵm+1
i,k − ŵm

i,k

∆τm
i,k

+ ikωŵm
i,k + R̂m

i,k = 0 (4.3)

Following the linearization strategy of the spatial operator described in section 1.3.3, (4.3)

can also be recast in the form:

ŵm+1
i,k ≈ (Id − Ĵm

i,k

∆τm
i,k

hi

− ∆τm
i,kikω) ŵm

i,k (4.4)
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where Ĵm
i,k is the Jacobian matrix of the frequency residual vector R̂m

i,k. As first established

in [72], the pseudo time step in the frequency domain ∆τm
i,k ensuring the stability of (4.4)

can be estimated as :

∆τm
i,k = CFL

hi

||λ||mi,k + kωhi

(4.5)

with hi a characteristic length of the cell i in the computational grid, ||λ||mi,k the spectral

radius of the frequency Jacobian matrix Ĵm
i,k and the CFL number such that CFL ≤ 1.

An additional term based on the wave number is added to the denominator of (4.5)

compared to the standard steady definition of equation (1.39). The maximal pseudo-time

step given by (4.5) is associated with a solution in the frequency domain. To estimate a

maximal pseudo-time step in the time domain, a first strategy is to consider the inverse

Fourier transform of equation (4.3) for all the wavenumbers −N ≤ k ≤ N :

E−1

(
∆ŵ

∗,m
i

∆τ ∗,m
i

+ ikωŵ
∗,m
i + R̂∗,m

i

)
= 0 (4.6)

or

E−1

(
∆ŵ

∗,m
i

∆τ ∗,m
i

)
+ Dt(w

∗,m
i ) + R(w∗,m

i ) = 0 (4.7)

Such an inverse Fourier transform operation, with different time steps ∆τ ∗
i,k in the fre-

quency domain, yields a matrix time-step in the time domain coupling all the time levels

tn. The proper estimate of the local time-step would then require to invert this matrix in

each cell and at every pseudo time iteration, making this approach rather costly.

Alternatively, a time-step in the frequency domain corresponding to the highest mode,

i.e. the most restrictive of all wavenumbers, can be used; the local pseudo-time no longer

depends on the wave number and is given by:

∆τm
i = CFL

hi

||λ||mi,N + Nω hi

(4.8)

On transforming back into the time domain, the time-step ∆τm
i retains the form (4.8)

since it is independent of the wave-number. Note this choice of time-step is likely to

become restrictive when the number of harmonics increases and/or the frequency of the

periodic phenomenon is high. However such a simplified choice considerably reduces the

computational cost required by the multiple matrix inversions associated with the IFT of

the wave-number dependent choice Eq. (4.5)

Actually, for programming reasons, a slightly different definition was adopted, which takes

into account the difference of spectral radius for the time instances tn:
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∆τm
i = CFL

hi

||λ||mi,n + ωNhi

(4.9)

However, the use of large CFL makes no difference between the two definitions.

4.2 Implicit Time Spectral Method

Using an Euler implicit dual-time strategy for integrating (4.1) in each grid cell i at each

time instance tn allows the use of large dual-time steps, hence fast convergence to a steady-

state independently of ω or N , but the following implicit non-linear TSM-ALE problem

must be solved:
∆wm

n

∆τm
n

= −Rt
n(wm+1, xn, sn), 0 ≤ n < 2N + 1 (4.10)

From now on and for the sake of simplicity, the dependence of the spatial residual vector

on the grid position xn and mesh velocity sn will no longer appear. How these terms are

computed in the present work has been explained in the previous Section.

4.2.1 Semi-implicit approach

The most straightforward implicitation of the TSM scheme computes the spatial residual

vector at the new time level but leaves the computation of the time spectral derivative at

the known time level, leading to the following equation:

∆wm
n

∆τm
n

= −Dt(w
m
n ) −R(wm+1

n ), 0 ≤ n < 2N + 1 (4.11)

The residual vector at iteration m + 1 is next linearized around the state at iteration m:

R(wm+1
n ) ≈ R(wm

n ) + Jn ∆wm
n + O(∆w2

n) (4.12)

where Jn is the Jacobian matrix Jn =
∂Rn(w)

∂w
. The final formulation of the semi-implicit

method reads:

(
Id

∆τm
n

+ Jn

)
∆wm

n = −Rt
n(wm), 0 ≤ n < 2N + 1 (4.13)

This method is very simple to implement since it introduces no formal modification of

the implicit stage with respect to the one used for DTS-BDF in Chapter 1. The 2N + 1

steady states at time instances tn are coupled through the explicit stages only. Previous

authors [66, 76] report stability problems quickly arise with this semi-implicit formulation;

therefore it will not be further investigated in this work.
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4.2.2 Full implicitation

To improve the stability, the source term of the TSM is treated implicitly, that is computed

at the new time level m + 1, which yields:

∆wm
n

∆τm
n

= −Dt(w
m+1
n ) −R(wm+1

n ), 0 ≤ n < 2N + 1 (4.14)

The linearity of the Dt operator allows to write

Dt(w
m+1
n ) = Dt(w

m
n ) + Dt(∆wm

n ) (4.15)

so that the full implicitation of the TSM eventually reads:

(
1

∆τm
n

+ Jn

)
∆wm

n + Dt(∆wm
n ) = −Rt

n(wm), 0 ≤ n < 2N + 1 (4.16)

Since d0 = 0 in the spectral time derivative operator, the diagonal terms of the implicit

TSM matrix are not modified compared to the steady state solver implicit matrix but

new off-diagonal terms are introduced. The TSM fully implicit formulation (4.16) can be

written in matrix form:

A∗,m∆w∗,m = −Rt (w∗,m) (4.17)

with

A∗ =




Id

∆τ0
+ J0 d1Id · · · dNId d−NId · · · d−1Id

d−1Id
. . . . . .

...
. . . . . .

...
...

. . . . . . d1Id
. . . . . .

...

d−NId · · · d−1Id
Id

∆τN
+ JN d1Id · · · dNId

...
. . . . . . d1Id

. . . . . .
...

...
. . . . . .

...
. . . . . . d1Id

d1Id · · · dNId d−NId · · · d−1Id
Id

∆τ2N
+ J2N




(4.18)

4.2.3 Review of the implicit TSM solvers

All the existing contributions on the implicit formulation of the TSM strategy [66, 76, 68]

start from an implicit scheme of the form (4.17). These contributions differ by the solution

method applied manifold.

The goal of this section is not to present the numerous existing implicit linear solvers (see

[15] for instance) but to focus on the solutions adopted by previous researchers to deal

with the specificities of the new matrix A∗ associated with TSM implicit treatment.

The main problem arising with the full implicit TSM formulation is the emergence of off-

diagonal terms introduced by the Dt operator applied on the increments ∆w. These off-
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diagonal terms and the zero-contribution of Dt to the diagonal coefficients of the implicit

TSM matrix lead to a loss of diagonal dominance for the matrix A∗ which can compromise

the performance of some linear solvers.

In the context of turbomachinery simulations on structured grids, Sicot & al [66] solved

the system (4.17) with a block Jacobi method. The implicit coupling term Dt(∆wm
n ) were

thus moved to the right hand side of the implicit scheme leaving a diagonally dominant

left-hand-side matrix; an over-relaxation strategy was used at each Jacobi iteration to

speed up the convergence of the method.

Su & al [68] also noticed that the fully-implicit TSM can leads to a loss of diagonal

dominance for the matrix A∗ associated with the implicit scheme. Therefore, they use the

GMRES solver of Saad and Schultz [63] to solve Eq. (4.17).

Woodgate & al [76] also noticed this problem and eventually solved the linear system using

a Krylov subspace method with BILU factorization and no fill-in (i.e. the sparsity pattern

of the factorization is the same as the coefficient matrix).

Let us point out the contributions [66], [68] and [76], published in 2008 and 2009, were

all devoted to structured grid computations. Recently, in June-July 2010, Z. Yang and

D. Mavriplis [77] have presented results obtained on unstructured meshes using the TSM

method for periodic and quasi-periodic unsteady computations. The main contribution of

their work is the extension of TSM to deal with flows including a slow transient in addition

to strong periodic behavior. It can be noted however a fully implicit treatment is also used

in their work, relying on a block Jacobi method which combines, on unstructured grids,

multigrid and line-implicit agglomeration techniques D. Mavriplis is well known for [51].

4.2.4 Matrix-free implicit solution with Jacobi iteration

In the present work, the matrix-free implicit treatment described in Chapter 1 for the

BDF approach (see Sec. 1.4.1) is adapted to deal with the TSM implicit stage. The TSM

residual at dual time-level m + 1 can be approximated as follows :

Rt
i,n

(
wm+1

)
= Rt

i,n (wm) + Dt(∆wm
i,n) +

1

|Ωi|

∑

k

(
∆H

(i)
(i,k),n

)m

|Γi,k| (4.19)

where the balance of the flux increment is computed using the formulae (1.45) and (1.46)

previously introduced when deriving the BDF implicit stage but now applied with the

variable increment ∆wm
i,n instead of ∆w

n,m
i . It is important to point out ∆wm

i,n used in

the TSM strategy denotes the conservative variable increment at point i, n in the space and

time domain, with a time domain spectral discretization applied on a single flow period;

the exponent m refers to the time-marching index to the dual steady-state. In contrast,

∆w
n,m
i used in the BDF-DTS strategy denotes the conservative variable increment at

point i in the space domain with an exponent n, m referring to the mth sub-iteration of
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the time-marching process on the pseudo-time τ performed at each physical-time level

n. Expanding the flux increment balance and the spectral approximation of the physical

time derivative with (3.33) and (3.34) leads to the following implicit relationship, where

the terms depending on ∆wm
i,n have been gathered in the LHS:

(
1

∆τm
i

+
∑

k

Cm
(i,k),n

)
∆wm

i,n = −Rt
i,n(wm) −

1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)m
· n(i,k),n |Γ(i,k),n|

+
∑

k

Cm
(i,k),n∆wm

(o(i,k)),n −

N∑

p=−N

dp∆wm
i,n+p

(4.20)

with the scalar coefficients Cm
(i,k),n defined by (notation for spectral raddi are unchanged

with respect to Chapter 1):

Cm
(i,k)n =

1

|Ωi,n|

(
1

2
ρ(JE

⊥ ) + ρ̃(JV
⊥ )

)m

(i,k),n

|Γ(i,k),n| (4.21)

Since (4.20) is formally very close to (1.47), it makes sense to straightforwardly apply
the point-Jacobi relaxation procedure described by (1.49) in Chapter 1 to the resolution
of (4.20). However, doing so, stability problems quickly appear because of the loss of

diagonal dominance for A∗ translated to the presence of the term
N∑

p=−N

dp∆wm
i,n+p in the

RHS of (4.20). A simple fix is adopted in this work: the LHS diagonal coefficient Dm
i,n

of ∆wm
i,n is modified to include the contribution

p=N∑

p=−N

|dp|, which is sufficient to ensure

the diagonal dominance of the implicit stage with only a limited impact on its efficiency.
System (4.20) is then iteratively solved using a simple PJ relaxation technique, yielding
the following PJ-TSM-ALE system:

∆w
(0)
i,n = 0





l = 0, lmax − 1

∆w
(l+1)
i,n =

(
Dm

i,n

)−1


−Rt

i,n(wm) −
1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)(l)
· n(i,k),n |Γ(i,k),n| +

∑

k

Cm
(i,k),n∆w

(l)
(o(i,k)),n −

N∑

p=−N

dp∆w
(l)
i,n+p




wm+1
i,n = wm

i,n + ∆w
(lmax)
i,n

(4.22)

with the modified diagonal coefficient Dm
i,n =

1

∆τm
i

+
∑

k

Cm
(i,k),n +

N∑

p=−N

|dp|.
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4.3 Adaptation of TSM to artificial compressibility

To the best of our knowledge, the only previous application of TSM to the AC system

for incompressible laminar periodic flow has been performed by Jameson [35], but with a

limited success since stability concerns were encountered for high frequency and/or large

number of harmonics.

The space-discretized ALE-AC system at time instance tn reads

∂wn

∂τ
+ K

∂wn

∂t
+ R(wn, xn, sn) = 0 (4.23)

where

K =




0 0 0

0 1 0

0 0 1




If the physical time operator is replaced by the Time Spectral operator coupling all the

time instants, the TSM-ALE-AC system reads

∂wn

∂τ
+ KDt(wn) + R(wn, xn, sn) = 0, 0 ≤ n < 2N + 1 (4.24)

The derivation of a fully implicit treatment for the TSM-ALE-AC system (4.24) is highly

similar to the derivation of the fully implicit treatment for the ALE-AC system with BDF

time-integration (2.5) described in Section 2.3.2. The design of this implicit scheme faces

the same loss of diagonal dominance issue than the one met in the compressible case, at

least for the momentum equation since there is no physical time-derivative hence no TSM

term coupling the pressure variables pn in the continuity equation. The need to distinguish

between the continuity and momentum equations is easily taken into account using the

singular matrix K previously introduced in Chapter 2.

Eventually, the implicit expression equivalent to (4.20), but for the TSM-ALE-AC system

is:

(
1

∆τm
i

+
∑

k

Cm
(i,k),n

)
∆wm

i,n = −Rt
i,n(wm) −

1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)m
· n(i,k),n |Γ(i,k),n|

+
∑

k

Cm
(i,k),n∆wm

(o(i,k)),n − K

N∑

p=−N

dp∆wm
i,n+p

(4.25)

with the appropriate AC definitions for the primitive variable, fluxes and residuals given

in Chapter 2. For instance, the scalar coefficients Cm
(i,k),n still defined by equation (4.21)

involve spectral radii that correspond to the AC Jacobian matrices.

Equation (4.25) is solved with the iterative PJ procedure just described in the previous

section for the compressible system yielding to the PJ-TSM-ALE-AC solver. Again, since
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there is no TSM coupling term for the pressure variables pn, there is no need to modify

the diagonal coefficient for the continuity equation so that

Dm
i,n =

1

∆τm
i

+
∑

k

Cm
(i,k),n + K

N∑

p=−N

|dp|

4.4 Assesment of TSM against BDF

Before proceeding to the application of the TSM approach to a model heat conduction

problem in the next chapter and to some external flow applications in the part III of this

thesis report, let us introduce the tools and indicators that will be used to quantify the

perform of TSM and assess the interest of the approach as an alternative to BDF-DTS

when computing time-periodic problems.

4.4.1 Convergence of the TSM approach

With the TSM approach, the full unsteady residual of the BDF method Rt(wn,m+1) is

replaced by a full steady residual Rt(wm+1
n ). Both BDF and TSM benefit from the use of

large CFL numbers hence large ∆τ made possible by the implicit dual-time formulation.

The main difference between these approaches is that BDF has to be converged to a dual

steady-state at each physical time-iteration of a time-marching process performed on the

space domain while TSM has to be converged only once to a dual steady-state but on an

extended physical time and space domain. Expressed in yet another way, BDF requires to

solve many times linear systems of moderate size (equal to the number of cells in the space

grid multiplied by the number of conservative variables) while TSM requires to solve once

a large linear system (the size of which is the size of the BDF linear systems multiplied

by the number of time instances in the period). The other difference is the nature of the

source term introduced by the physical-time approximation (using BDF or TSM) which

strongly impacts the convergence rate to the dual steady-state.

The convergence of (4.22) to a steady-state is monitored by plotting the pressure residual

defined as the root mean square of the residual operator Rt(w) first component, computed

in all the grid cells and averaged by the number of time instances over the period:

resm
av =

1

2N + 1

2N∑

n=0

√√√√ 1

Ncell

Ncell∑

i=1

∆pm
i,n

2

∆τm
i

2 (4.26)

This quantity is normalized by its value at the first iteration to facilitate the comparison

between calculations performed with different values for the number of harmonics N .
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4.4.2 Accuracy

As seen in Chapter 1 and Chapter 2 when applying the BDF compressible and incompress-

ible flow solver, the accuracy of a BDF computation for a quantity of interest, denoted C

for the sake of argument, strongly depends on the fact the fully periodic regime is indeed

reached. This condition is satisfied in practice by computing for instance the difference of

the C time-average between two consecutive cycles and imposing this difference to drop

below 2% to stop the unsteady computation. When applying TSM, the convergence to

the (dual) steady-state is the sole condition to satisfy in order to obtain the estimate of

the periodic solution. Note however the TSM solution for C is obtained for a reduced

number of time instances (2N + 1) in the period - typically N does not exceed 16 and

can be as low as 2 or 4 -. Meanwhile the BDF solution for C is usually computed with

a number of time-steps per cycle that can be equal to several hundreds and will not go

below 50. In practice, the TSM solution for C is reconstructed over the cycle using (3.21)

and (3.20) and then visually compared, on some graphical representations, to the BDF

solution to allow at least a qualitative comparison. This type of comparison has been

generally retained in the previously published works on TSM [27, 66] and will be also per-

formed in the present contribution. A more quantitative error analysis can be performed

by computing the RMS error between BDF and TSM computations after proper recon-

struction of the TSM solution. This type of analysis will be presented in section 7.2.2 for

the incompressible TSM applications. What is important to keep in mind at this stage

is that the objective regarding TSM accuracy is to find the minimal number of modes

N allowing to achieve at least a qualitative agreement with either a reference analytical

solution (see next chapter) or a reference DTS solution (see next part).

4.4.3 CPU cost and memory requirement

The global computational cost of the usual BDF approach can be expressed as:

CBDF = N∆t × Ncycles × mBDF
max × lmax × Ncells × cBDF

u

where N∆t is the number of physical time-steps used to describe a flow period or cy-

cle, Ncycles is the number of cycles to be computed before a periodic solution is actually

reached, mBDF
max is the number of dual sub-iterations used at each physical time-step to

reach the dual steady-state (a residual drop of 3 orders is retained as the criterion) , lmax

is the number of iterations used with the PJ relaxation method, Ncells is the grid size and

cBDF
u is the unit cost (per point and per iteration) of the TSM method.

Meanwhile, the global computational cost of the newly proposed TSM approach is ex-

pressed as:

CTSM(N) = (2N + 1) × mTSM(N)
max × lmax × Ncells × cTSM

u (N)
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where (2N +1) is the number of time-instances retained to describe the flow period, mTSM
max

is the number of iterations on the dual time needed to drive the TSM system to a steady-

state ( it is estimated for a convergence criterion of resav = 10−4) , lmax is the number of

iterations used with the PJ relaxation method, Ncells is the grid size and c
TSM(N)
u is the

unit cost (per point and per iteration) of this TSM method.

Since lmax is the same for BDF and TSM, the cost ratio between TSM(N) and BDF used

with the same computational grid reads:

η =
CTSM(N)

CBDF

=
(2N + 1)

N∆t × Ncycles

×
m

TSM(N)
max

mBDF
max︸ ︷︷ ︸

Φ1

×
c
TSM(N)
u

cBDF
u︸ ︷︷ ︸
Φ2

(4.27)

where the contribution Φ1 depends on the flow problem while the contribution Φ2, ratio

of the unit costs associated with the TSM(N) and BDF methods, depends only on the

numerical implementation of these methods into the computer code in use.

The unit cost ratio between the TSM approach and the BDF, Φ2(N) method should

display a weak dependency only on the number N of harmonics, on one hand through the

extra terms introduced by the spectral time approximation and on the other hand through

the extra-cost that might be induced by the memory access associated with the large-scale

TSM systems which couple 2N +1 systems of conservation laws. Ideally, with no memory

issues, one would expect Φ2(N) to remain close to unity whatever the value of N .

In practice, to assess the ratio Φ2(N), TSM simulations are run on the computational

machine for an increasing number of harmonics. The TSM times are averaged over 100 dual

time iterations. Results are presented in figure 4.1 and eventually Φ2(N) is numerically

estimated as a linear function of N (which remains however implementation-dependent

but, this is a key point, not problem-dependent) :

Φ2(N) ≈ 0.8208 + 0.0925 × N (4.28)
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N

fl 2

5 10 15 20

1

1.5

2

2.5

real

linear approximation

Figure 4.1: Evolution of the unit cost ratio of TSM over BDF methods as a function of
N .

Formula (4.27) for the TSM efficiency (cost reduction factor with respect to BDF) will be

next used as follows : in a first step the accuracy analysis will allow to define what is the

value of N needed to ensure a TSM accuracy comparable with the BDF accuracy; in a

second step, formula (4.27) will be applied to quantify the (possibly) net gain offered by

TSM. Note again that η = Φ1(N)×Φ2(N) with a "universal" or intrinsic form for Φ2(N)

given by (4.28) but a value Φ1 that depends on the type of problem to be solved. The

next chapters will allow to identify typical values for Φ1.
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Heat conduction benchmark problem

The TSM approach described in the previous chapters will be applied to compressible and

incompressible time-periodic flows in chapter 6 and 7. For these external flow applications,

the BDF results will be considered as reference solutions. Before proceeding to such a BDF

/ TSM comparison, it was thought interesting to analyze the TSM approach on a simpler

test problem, namely an unsteady linear conduction problem, where an analytical solution

is available and the reduced computational time allows for an in-depth analysis of various

implicit strategies for instance. This chapter can also be considered as a modest tribute

to Jean Baptiste Joseph Fourier ( 21 March 1768 - 16 May 1830), French mathematician

and physicist who performed his experiments on the propagation of heat in Grenoble

and presented in 1822 his work on heat flow in "Théorie analytique de la chaleur" [24].

The method of decomposition into the "not-yet" called Fourier series enabled him to find

analytical solution to the heat conduction problem. Did he imagine that his idea would

be used years later to reduce the computational cost of CFD time periodic problems ?

5.1 Description of the periodic heat-conduction prob-

lem

5.1.1 Problem set-up

Let us consider a one-dimensional unsteady conduction problem in a wall. At the initial

time, the temperature is supposed uniform inside the wall, equal to T0. At the left bound-

ary of the wall, located at x = 0, the temperature is prescribed and varies periodically

with respect to time with a pulsation ω and an amplitude α T0 around the T0 value. At

the right boundary, located at x = L, the temperature is set to the constant value T0. The

thermal diffusivity of the wall material a is supposed to be constant. The evolution of the

temperature distribution inside the wall is governed by the following set of equations :
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• Heat equation
∂T

∂t
= a

∂2T

∂x2
(5.1)

• Boundary conditions :

T (0, t) = T0(1 + α cos(ωt))

T (L, t) = T0

• Initial condition

T (x, 0) = T0 ∀x ∈]0 : L]

Given the left boundary condition, the initial condition is discontinuous since T (0, 0) =

T0(1 + α) while the initial temperature is equal to T0 everywhere else. Introducing the

normalized or non-dimensional variable θ(x, t) =
T (x, t) − T0

αT0

, the problem can also be

expressed as :

• Heat equation:
∂θ

∂t
= a

∂2θ

∂x2
(5.2)

• Boundary conditions:

θ(0, t) = cos(ωt)

θ(L, t) = 0

• Initial condition:

θ(x, 0) = 0 ∀x ∈]0 : L]

Note again the initial distribution is discontinuous since θ(x, 0) = 0 everywhere but at

x = 0 where θ(0, 0) = 1.

5.1.2 Exact periodic solution

After a transient regime, an established periodic flow is reached with a time-periodic

solution that can be searched under the following form :

θs(x, t) = θs(x) exp(iωt) (5.3)

where i is the standard imaginary unit. Inserting the above expression in (5.2) yields the

ordinary differential equation:

iωθs = a
d2θs

dx2
(5.4)

84



5.1. Description of the periodic heat-conduction problem

The solution of (5.4) reads :

θs(x) = A exp(−

√
ω

2a
x) exp(−i

√
ω

2a
x) + B exp(

√
ω

2a
x) exp(i

√
ω

2a
x) (5.5)

θs is a wave solution of spatial period or wavelength λ =
2π√

ω/(2a)
.

The constants A and B in (5.5) are determined by application of the boundary conditions.

The left boundary condition θs(0, t) = 1 implies A = 1 while, assuming L is large with

respect to
√

2a/ω, the right boundary condition θs(L, t) = 0 yields B ≈ 0. The periodic

solution takes eventually the form:

θs(x, t) = exp(−

√
ω

2a
x) cos(ωt −

√
ω

2a
x) (5.6)

This solution of period T = 2π/ω displays a phase difference
√

ω
2a

x with respect to the

imposed temperature at x = 0. For a given pulsation, the amplitude of the oscillations

inside the wall is controlled by the position x and the thermal diffusivity a. This amplitude

decreases when moving away from the left boundary where the periodic signal is applied;

likewise, a weak diffusivity will damp the oscillations close to this source of perturbation.

5.1.3 Full unsteady solution

The full unsteady solution of the heat conduction problem, including the transient, can

be found using Fourier series. Let us define a function Φ(x, t) as :

Φ(x, t) = θ(x, t) − θs(x, t) (5.7)

This function still satisfies the heat equation (5.2) with boundary conditions now given

by :

Φ(0, t) = 0

Φ(L, t) = 0

and the initial condition:

Φ(x, 0) = θ(x, 0) − θs(x, 0) = − exp(−

√
ω

2a
x) cos(−

√
ω

2a
x)

The function Φ is found as a decomposition into sinus series on the space interval [0 : L],

with the bn coefficients depending on time :
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Φ(x, t) =
∞∑

n=1

bn(t) sin(
nπx

L
) (5.8)

Differentiating twice Φ with respect to the variable x yields:

∂2Φ(x, t)

∂x2
=

∞∑

n=1

−(
nπ

L
)2bn(t) sin(

nπx

L
) (5.9)

so that after insertion in the heat equation the following ordinary differential equation is

found for bn(t) :

b′n(t) = a(−
nπ

L
)2bn(t) (5.10)

This ODE is immediately solved to yield:

bn(t) = Bn exp(−n2(
π2a

L2
)t) (5.11)

so that the function Φ(x, t) can be eventually expressed as:

Φ(x, t) =
∞∑

n=1

Bn exp(−n2(
π2a

L2
)t) sin(

nπx

L
) (5.12)

The Bn coefficients are obtained from the initial condition

Φ(x, 0) =
∞∑

n=1

Bn sin(
nπx

L
) (5.13)

These coefficients are nothing else but the sinus series coefficients of the initial solution,

computed as:

Bn =
2

L

∫ L

0

Φ(x, 0)dx =
2

L

∫ L

0

− exp(−

√
ω

2a
x) cos(−

√
ω

2a
x) sin(

nπx

L
)dx (5.14)

This integral formula is numerically estimated.

One can observe on solution (5.12) a typical diffusion time L2/(π2a). When time increases,

the exponential term in (5.12) goes to zero and one retrieves the established time periodic

solution. The highest harmonics disappear the most quickly and the smallest the thermal

diffusivity, the longest the transient period. The now available exact solution of the

unsteady heat conduction problem under consideration will be useful to assess the accuracy

of the numerical methods that will be next applied to obtain discrete approximate solutions

of the problem. Note however that, because of the initial discontinuity at x = 0, the

exact solution in this neighborhood is accurately computed only when a large number of

harmonics is used in (5.12).
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Unsteady solution N=5

Periodic solution

Figure 5.1: Evolution of the temperature at location x = L/3. Comparison of analytical
solutions.

5.1.4 Analytical results

The solutions derived in the previous sections are computed for numerical values corre-

sponding to the seasonal variation of temperature inside the earth crust : the period of

the prescribed temperature at x = 0 is a one-year period T = 3.1536 × 107s which leads

to a pulsation ω = 2π/T = 2 × 10−7s−1 and the amplitude of the temperature oscillation

is fixed by α = 2. The earth crust is supposed to be L = 30m deep and its thermal

diffusivity is taken as a = 0.5 × 10−6m2s−1. Analytical solutions are plotted in Figure

(5.1) at the location x = L/3 = 10m. For this particular depth, the time periodic solution

θs(L/3, t) and the full unsteady solution θ(L/3, t) = θs(L/3, t) − Φ(L/3, t) are computed

for an overall span of time approximately equal to 8 years (2920 days) in order to ensure

time periodicity is fully reached.

It can be observed in Figure 5.1 that a large number of harmonics N is needed to correctly

capture the discontinuity of the initial solution. Moreover, the full unsteady solution

catches up with the periodic solution after a time span of approximately 8 years.
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5.2 Unsteady numerical modeling

The numerical method described in this section should be as much as possible representa-

tive of the BDF approach. However, because of the linearity of the simple heat conduction

problem under study, it was not deemed necessary to use a BDF-DTS approach to ensure

second-order accuracy in time and an even simpler second-order accurate Crank-Nicholson

scheme was retained. Note the comparison between a conventional time-marching and the

TSM approach remains fair since in that case the cost of the conventional time-marching

strategy is even further reduced.

The heat equation (5.1) is approximated at second-order in time and space using the

Crank-Nicholson implicit scheme which reads :

T n+1
i − T n

i = λ
∆t

∆x2
a(T n+1

i+1 − 2T n+1
i + T n+1

i−1 ) + (1 − λ)
∆t

∆x2
a(T n

i+1 − 2T n
i + T n

i−1) (5.15)

with λ = 1/2. Choosing λ = 0 yields the first-order in time Euler explicit scheme while

λ = 1 corresponds to the first-order in time but unconditionally stable Euler implicit

scheme. With λ = 1/2 second-order accuracy in time and unconditional stability are

ensured. The Crank-Nicholson implicit scheme can also be recast in ∆-form as :

− λ
a∆t

∆x2
∆T n

i−1 + (1 + 2λ
a∆t

∆x2
)∆T n

i − λ
a∆t

∆x2
∆T n

i+1 = ∆T exp
i (5.16)

with the explicit stage given by :

∆T exp
i =

∆t

∆x2
a
(
T n

i+1 − 2T n
i + T n

i−1

)

Scheme (5.16) is applied at all the interior points of the computational domain, i.e. for

i ranging from i = 2 to i = imax − 1 if the computational domain is discretized with a

uniform grid counting imax = 101 points. The Dirichlet boundary condition at the left

boundary x = 0 (i = 1) is of course time-dependent, given by T (0, t) = T0(1 + αcos(ωt))

or rather θ(0, t) = cost(ωt) since the heat conduction problem is numerically solved using

the non-dimensional variable θ rather than the dimensional temperature T .

5.3 Time Spectral Method

5.3.1 Time spectral discretization

Let us recall once again the basic concept of the Time Spectral Method is to replace the

time derivative appearing in the governing equation(s) with a new time spectral operator

that couples several time instants evenly distributed over the time-period of the periodic
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problem. In the present case, the time spectral formulation of the heat equation reads :

Dt(Tn) = a
∂2Tn

∂x2
, 0 ≤ n < 2N + 1 (5.17)

where Tn is the temperature at time tn = n
2N+1

P with N the maximum number of har-

monics considered and P the period (symbol P is exceptionally used here instead of T

to avoid any confusion with the temperature variable T ). Eq. (5.17) represents a system

of 2N + 1 coupled steady equations. Note the left Dirichlet boundary condition at point

i = 1 is transformed into :

T1,n = T0(1 + α cos(ω tn)), ∀ n ∈ [0 : 2N ] (5.18)

5.3.2 Direct solution

Applying to (5.17) the second-order centered discretization previously used with the

Crank-Nicholson scheme yields :

Dt(Ti,n) =
a

∆x2
(Ti+1,n − 2 Ti,n + Ti−1,n) (5.19)

or, in matrix form :

A∗ T ∗ = B (5.20)

where the LHS matrix, the vector of unknowns and the RHS vector are given by :

A∗ =




R d1Id · · · dNId d−NId · · · d−1Id

d−1Id
. . . . . .

...
. . . . . .

...
...

. . . . . . d1Id
. . . . . .

...

d−NId · · · d−1Id R d1Id · · · dNId

...
. . . . . . d1Id

. . . . . .
...

...
. . . . . .

...
. . . . . . d1Id

d1Id · · · dNId d−NId · · · d−1Id R




, T ∗ =




T1,0

...

Timax,0

...

...

T1,2N

...

Timax,2N
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B =




T1,0

0
...

0

T0

...

...

T1,2N

0
...

0

T0




with R =




1 0 · · · · · · · · · · · · 0

− a
∆x2 2 a

∆x2 − a
∆x2 0

. . . . . .
...

0
. . . . . . . . . . . . . . .

...
... 0 − a

∆x2 2 a
∆x2 − a

∆x2 0
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . − a
∆x2 2 a

∆x2 − a
∆x2

0 · · · · · · · · · 0 0 1




(5.21)

The matrix A∗ is a square matrix of size (2N +1)× imax while the R tridiagonal matrix of

size imax directly results from the space discretization operator. The non-zero coefficients

of the RHS vector B in equation (5.20) correspond to the boundary conditions. Owing to

the linearity of the governing equation, (5.20) is a linear system that can be directly solved

using the Lower Upper (LU) decomposition of matrix A∗. The dual-time sub-iterative

process to solve the TSM scheme in the general non-linear case is actually not needed for

the very particular case of the linear heat equation considered here. Nonetheless, since

our goal when solving this model problem is to take advantage of the problem simplicity

to investigate various solution strategies, the dual-time marching to solve (5.19) will be

next considered.

5.3.3 Dual-time marching strategy

In the case of compressible and incompressible periodic flow problems that will be treated

in the last part of this thesis report, the governing TSM systems equivalent to (5.19)

will be non-linear so that their solutions will be sought as steady states of an iterative

procedure on a pseudo-time. Let us mimic the various dual-time strategies at hand when

solving the simple linear equation (5.19).

Explicit TSM scheme

The application of the explicit TSM scheme (Sec. 4.4.1) to the heat equation yields :

∆Tm
i,n =

∆τ a

∆x2
(Tm

i+1,n − 2 Tm
i,n + Tm

i−1,n) − ∆τ Dt(Ti,n)m (5.22)
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Following the methodology presented in Sec. 4.1.2, the stability of (5.22) can be analyzed

by first writing the scheme in the frequency domain :

T̂m+1
i,k = T̂m

i,k +
∆τ a

∆x2

(
T̂m

i+1,k − 2 T̂m
i,k + T̂m

i−1,k

)
− ∆τ ikωT̂m

i,k (5.23)

where i is the imaginary unit. The Von-Neumann stability analysis technique is then used

to find a stability criterion for equation (5.23). The vector T̂k is decomposed into spatial

Fourier modes

T̂i,k =
∑

k′

̂̂
Tke

ik′xi

Since

T̂m
i+1,k − 2 T̂m

i,k + T̂m
i−1,k = 2(cos(η) − 1) T̂i,k = −4 sin2(

η

2
) T̂i,k (5.24)

with the wavenumber η = k′∆x, the relationship (5.23) can be rewritten as follows :

T̂m+1
i,k =

(
1 − ∆τ ȧ sin2(

η

2
) − ∆τ ikω

)
T̂m

i,k (5.25)

where ȧ =
4a

∆x2
. The stability condition can be written:

∣∣∣1 − ∆τ ȧ sin2(
η

2
) − ∆τikω

∣∣∣ ≤ 1

or, after rearranging :

∆τ ≤
2 ȧ sin2(η

2
)

(
ȧ sin2(η

2
)
)2

+ (kω)2

A large number of harmonics N and/or a high frequency will limit the maximum allowable

time step. It is found numerically that the right hand side of equation (5.26) is minimum

for the highest harmonic k = N and the maximum spatial Fourier mode ηmax = π. The

most restrictive stability condition is thus given by :

∆τ ≤
1

ȧ

2
+

(Nω)2

2ȧ

(5.26)

By analogy with the definition of the dual time step adopted for TSM in the case of a

convective problem in Section 4.1.2, the time-step ∆τ used for the present heat equation

problem is computed as :

∆τ = CFL
1

ȧ

2
+ Nω

(5.27)

which allows to recover a usual expression ∆τ = CFL
∆x2

2a
for a purely diffusive problem
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without TSM. Note using the notation CFL in this case is somehow abusive since the CFL

number refers to the stability condition for a convective problem. It should be understood

that the CFL symbol is used here (though improperly) to denote the safety factor used

to compute the time-step with respect to a chosen characteristic or reference time-step of

the problem. Inserting (5.27) into (5.26) yields a stability condition expressed on the CFL

number :

CFL ≤
1 + β N

1 +
(

1
2
βN
)2 (5.28)

where β = 1
2

ω∆x2

a
. With the choice of numerical values for a, ω and ∆x previously

given (a = 0.5 × 10−6 m2 s−1, ω = 2 × 10−7 s−1, ∆x = L/100 = 0.3 m), it is immediate

to compute β = 0.018. With N = 1, the stability condition (5.28) for the TSM explicit

scheme yields a maximal allowable CFL to be used in (5.27) equal to CFLmax = 1.0179.

Numerical computations, not reproduced here for the sake of compactness and because

our focus is on implicit TSM strategies, allowed to check that any larger value for the CFL

resulted indeed in an unstable scheme.

Semi-implicit TSM scheme

When deriving the semi-implicit TSM scheme, the space discretization is treated implicitly

whereas the TSM term remains treated explicitly:

∆Tm
i,n =

∆τ a

∆x2

(
Tm+1

i+1,n − 2 Tm+1
i,n + Tm+1

i−1,n

)
− ∆τ Dt(Ti,n)m (5.29)

or in ∆-form :

−
∆τ a

∆x2
∆Tm

i−1,n +

(
1 +

∆τ 2a

∆x2

)
∆Tm

i,n −
∆τ a

∆x2
∆Tm

i+1,n = ∆T exp
i,n (5.30)

where the explicit increment is given by (5.22). There is no implicit coupling between

equations for n = 0, 2N , with the TSM term present in the explicit stage only. Equation

(5.30) can also be recast in the following matrix form:

R ∆T m
n = ∆T (exp)

n (5.31)

92



5.3. Time Spectral Method

with

R =




1 0 · · · · · · · · · · · · 0

−a∆τ
∆x2 1 + 2 a∆τ

∆x2 −a∆τ
∆x2 0

. . . . . .
...

0
. . . . . . . . . . . . . . .

...
... 0 −a∆τ

∆x2 1 + 2 a∆τ
∆x2 −a∆τ

∆x2 0
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . −a∆τ
∆x2 1 + 2 a∆τ

∆x2 −a∆τ
∆x2

0 · · · · · · · · · 0 −1 1




, ∆T (exp)
n =




0

∆T
(exp)
2,n
...
...
...
...

∆T
(exp)
imax−1,n

0




For each pseudo time iteration, the explicit stage is first computed and (5.31) is solved

next using a tridiagonal matrix algorithm (TDMA)

The Von-Neumann stability analysis technique is applied to transform (5.30) into the

frequency domain :

H∆
̂̂
Tk = −K

̂̂
Tk

with

H = 1 + ∆τ ȧ sin2(η
2
)

K = ∆τ ȧ sin2(η
2
) + ∆τikω

so that
̂̂
Tk

m+1

=
H − K

H

̂̂
Tk

m

= G
̂̂
Tk

m

The amplification factor G can be expressed as :

G =
1 − ∆τikω

1 + ∆τ ȧ sin2(η
2
)

and the stability condition |G| ≤ 1 yields :

∆τ ≤
2ȧ sin2(η

2
)

(kω)2 − (ȧ sin2(η
2
))2

(5.32)

The most restrictive condition is obtained for the minimal spatial Fourier mode ηmin =
π

L
∆x and the highest harmonic k = N . With N = 1 and the CFL definition of (5.27), the

corresponding maximum allowable CFL for the semi-implicit TSM scheme is CFLmax =

3.10. The stability of the semi-implicit TSM formulation is slightly better than with the

previous explicit scheme but for a greater cost per iteration (since a linear system solution
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is needed at each iteration) which makes this semi-implicit scheme rather unattractive.

Fully implicit TSM

The fully implicit form of the TSM (Eq. (4.16)) applied to the conduction equation reads :

∆Tm
i,n =

∆τ a

∆x2

(
Tm+1

i+1,n − 2 Tm+1
i,n + Tm+1

i−1,n

)
− ∆τ Dt(Ti,n)m+1 (5.33)

or, in equivalent ∆-form :

−
∆τ a

∆x2
∆Tm

i−1,n +

(
1 +

∆τ 2a

∆x2

)
∆Tm

i,n −
∆τ a

∆x2
∆Tm

i+1,n + ∆τ Dt(∆Tm
i,n) = ∆T exp

i,n (5.34)

Equation (5.34) exhibits a TSM term in the implicit stage that couples all the time instants.

Scheme (5.34) can also be recast in matrix form:

A∗∆T ∗,m = ∆T ∗,(exp) (5.35)

where

A∗ =




R d1Id · · · dNId d−NId · · · d−1Id

d−1Id
. . . . . .

...
. . . . . .

...
...

. . . . . . d1Id
. . . . . .

...

d−NId · · · d−1Id R d1Id · · · dNId

...
. . . . . . d1Id

. . . . . .
...

...
. . . . . .

...
. . . . . . d1Id

d1Id · · · dNId d−NId · · · d−1Id R




, ∆T ∗,(exp)
n =




0

∆T
(exp)
2,1
...

∆T
(exp)
imax−1,1

0
...

∆T
(exp)
2,n
...

∆T
(exp)
imax−1,n

0




and the matrix R associated with the space discretization is identical to the one defined

in Eq. (5.21).

The stability of this fully implicit approach is analyzed through the amplification factor

G following the same procedure as the one described for the semi-implicit scheme. The

Fourier symbols H and K respectively associated with the implicit and explicit stage read :

H = 1 + ∆τ ȧ sin2(η
2
) + ∆τikω

K = ∆τ ȧ sin2(η
2
) + ∆τikω

(5.36)
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yielding an amplification factor G = (H − K)/H such that :

|G|2 =
1

(1 + ∆τ ȧ sin2(η
2
))2 + (∆τkω)2

(5.37)

Obviously, |G| ≤ 1 for all modes k which proves the purely implicit TSM solution is

unconditionally stable.

Solution methods

The unconditional stability of the fully implicit TSM scheme (5.34) is ensured provided

the system (5.35) is exactly solved. Such an exact solution can be performed with a LU

decomposition of the matrix A∗ - as previously mentioned in section 5.3.2 for the direction

solution method, without pseudo-time marching. Let us emphasize once again the direct

solution without time-marching is not an option in the general non-linear case. The

exact solution of the fully implicit TSM scheme has to be performed at each pseudo-time

iteration, which would make it costly to use. Therefore, equation (5.34) or system (5.35)

is preferably solved using an iterative technique, such as the Point Jacobi solution method

already described in the first part of this thesis report for the conventional unsteady

compressible and incompressible flow solvers and also detailed in the section 4.2.4 of the

previous chapter for the fully implicit TSM scheme. Let us recall the idea is to get rid

of the implicit coupling of the 2N + 1 equations by relaxing the TSM term. Thus, the

original system is simplified into a set 2N +1 independent equations similar to Eq. (5.30)

but with a different right hand side including the contribution of the spectral operator.

In the case of the unsteady heat equation considered in this chapter, the point Jacobi

iterative procedure can be written:

∆T
(0)
i,n = 0





l = 0, lmax − 1

n = 0, 2N

−
∆τ a

∆x2
∆T l+1

i−1,n +

(
1 +

∆τ 2a

∆x2

)
∆T l+1

i,n −
∆τ a

∆x2
∆T l+1

i+1,n = ∆T exp
i,n − ∆τ Dt(∆T l

i,n)

Tm+1
i,n = Tm

i,n + ∆T lmax

i,n

(5.38)

Under matrix form, this same Jacobi iteration reads:

R∆T l+1
n = ∆T (exp)

n − ∆τ D∆T ∗,l (5.39)

with
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D =




0 d1 · · · dN d−N · · · d−1

d−1
. . . . . .

...
. . . . . .

...
...

. . . . . . d1
. . . . . .

...

d−N · · · d−1 0 d1 · · · dN

...
. . . . . . d1

. . . . . .
...

...
. . . . . .

...
. . . . . . d1

d1 · · · dN d−N · · · d−1 0




, T ∗ =




T 0
i

T 1
i
...
...
...
...

T 2N
i




(5.40)

Since the fully implicit TSM scheme is now iteratively solved, the stability of the Point

Jacobi TSM scheme (5.38) must be specifically assessed through a Von Neumann analysis.

After Fourier transform, the Point Jacobi formula (5.38) is expressed as follows in the

frequency domain :

Hα∆
̂̂
T

l+1

k = −K
̂̂
T k − (H − Hα)∆

̂̂
T

l

k (5.41)

where the Fourier symbols H and K are those associated with the exactly solved fully

implicit TSM scheme, given by (5.36), while Hα is the Fourier symbol associated with the

Point Jacobi implicit stage :

Hα = 1 + ∆τ ȧ sin2(
η

2
)

As demonstrated in [16, 40] the amplification factor G corresponding to the iterative

method (5.41) can be written:

{
G = G ∗ +V l(1 − G∗)

V = 1 − H/Hα

(5.42)

where G∗ is the amplification factor associated with the exactly solved fully implicit TSM

scheme, given by (5.37). This interesting formula (5.42) shows two levels of efficiency are

involved in the Point Jacobi implicit scheme:

1. At a first level, the efficiency depends on the target amplification factor, G∗. The

Point Jacobi iterative solver is indeed only a way to converge to the solution of the

exact fully implicit TSM scheme (5.34) or (5.35). In the present case, the efficiency

offered by the amplification factor G∗ associated with (5.34) and the Fourier symbols

H, K given by (5.36) is ideal since the implicit stage corresponds to a full implicita-

tion of the explicit stage. In the case of compressible and incompressible flows, the

matrix-free implicit stage offers a more reduced intrinsic efficiency but balanced by

its low computational cost.

2. At a second level, the iterative method aims to achieve as fast as possible the con-

vergence of G towards G∗, i.e. with the lowest possible number of Jacobi iterations.
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This convergence speed depends on the V factor, function of H and Hα only. Since

|G − G ∗ | = |V |l|1 − G ∗ |, the most efficient iterative method is obtained when V

is the closest to zero (ideally V = 0 for Hα = H but there is no relaxation in that

case and the exact solution is recovered).

V can be computed exactly for the Point Jacobi applied to the fully implicit TSM solution

of the unsteady heat conduction problem :

V = −
∆τikω

1 + ∆τ ȧ sin2(η
2
)

(5.43)

It is again clear from (5.43) that a large number of harmonics and/or a high frequency is

detrimental to the convergence of the point Jacobi iterative method.

For a given couple of parameters (N, ω), two cases can occur (remembering the target

amplification factor G∗ is such that |G ∗ | ≤ 1 for any value of the CFL number):

1. |V | ≤ 1, then |G| ≤ 1, ∀ l, ∀ CFL and the relaxation method is unconditionally

stable

2. |V | ≥ 1 above a given CFL number CFLmax, then ∃ lstable ∈ ℜ so that |G| ≤

1 for l ≤ lstable and for a CFL number below CFLmax while |G| ≥ 1 for l ≥ lstable

With V given by (5.43), |V | is maximum for sin2(η
2
) = 0 and for k = N so that a sufficient

condition for ensuring |V | ≤ 1 reads :

|∆τiNω| ≤ 1

which is easily transformed into :

CFL ≤
ȧ/2 + Nω

Nω
(5.44)

For N = 1 and the specific heat conduction problem under study, the stability condition

(5.44) yields a maximum allowable CFL number for the Point Jacobi solution of the fully

implicit TSM scheme equal to CFLmax = 56.55.

In the following figures, the convergence of the TSM methods is assesed with respect to

the TSM average temperature residual given by:

resm
av =

1

2N + 1

2N∑

n=0

√√√√ 1

Ncell

Ncell∑

i=1

∆Tm
i,n

2

∆τm
i,n

2 (5.45)

Figure 5.2 shows the convergence histories of the fully implicit TSM method solved with

a Point Jacobi technique and lmax = 2. the TSM residual is defined as: It can be checked
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iteration
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Figure 5.2: Convergence histories for the full implicit TSM method, PJ method of resolu-
tion, N = 1, lmax = 2.

that, in accordance with the previously developed theory, CFL ≥ 56 leads to an unstable

scheme.

Note the best convergence result is obtained for CFL = 40, a lower value than the max-

imum allowable CFL. This occurrence of an optimal value for the CFL number which is

not necessarily the maximum stable value results from the very behavior of G for the Point

Jacobi approach but has not been further analyzed from a theoretical viewpoint.

The PJ method should make use of a minimal number of Jacobi iterations to efficiently

move the TSM solution from the mth to the m + 1th pseudo time iteration. In order

to determine this optimal lmax number, several simulations were performed with lmax =

2, 4, 8 for a fixed CFL number retained equal to the optimal value CFL = 40 previously

observed. Figure 5.3a shows that some efficiency relatively to the number of pseudo

time iterations can be obtained by using lmax = 4 instead of lmax = 2. Meanwhile, the

further increase of the number of Jacobi iterations from lmax = 4 to lmax = 8 does not

show significant improvement. However, this result must be counterbalanced by the total

number of iteration involved in the solution process. Indeed, if the global number of

iterations is considered, that is the product of the pseudo time iterations by the Jacobi

iterations, it can be observed on Fig. (5.3b) that using lmax = 2 represents actually the

most efficient strategy.
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Figure 5.3: Convergence histories for the full implicit TSM method and an increasing
number of PJ iterations, N = 1, CFL = 40.

Correction of diagonal dominance

The conditional stability of the fully implicit TSM scheme when solved by the PJ method is

an undesirable property. This means indeed that when computing next compressible and

incompressible unsteady flows one would probably need to perform several preliminary

computations in order to select a CFL number yielding stable computations. This is

clearly not convenient with respect for instance to the existing practice with the matrix-

free implicit PJ solver associated with the BDF method and described in Chapter 1, which

can be safely used with systematic very large values for the CFL number. Following the

idea already developed in the previous chapter, the stability of the PJ solver applied to the

fully implicit TSM scheme is improved by adding a diagonal contribution to the implicit

stage in order to preserve the diagonal dominance of the implicit stage matrix A∗. The

baseline fully implicit TSM scheme (5.34) is thus modified into :

−
∆τ a

∆x2
∆Tm

i−1,n+

(
1 + ∆τ

N∑∑∑

m=−N

|dm| +
∆τ 2a

∆x2

)
∆Tm

i,n−
∆τ a

∆x2
∆Tm

i+1,n+∆τ Dt(∆Tm
i,n) = ∆T exp

i,n

(5.46)

where the new contribution to the coefficient of ∆Tm
i,n appears in bold characters. Natu-

rally, this added contribution to the implicit stage tends to make the solver intrinsically

less efficient since the implicit stage is no longer the exact full implicitation of the explicit

stage. However, as will be now demonstrated for the heat conduction problem under study,

this slight modification is sufficient to ensure the unconditional stability of the PJ method

applied to (5.46).
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Retaining the notations previously introduced, the Fourier symbol H for the modified

TSM scheme reads :

H = 1 + ∆τ ȧ sin2(
η

2
) + ∆τ

N∑

m=−N

|dm| + ∆τikω (5.47)

thereof the amplification factor of the exactly solved (5.46) is given by :

G∗ =
1 + ∆τ

∑N
m=−N |dm|

1 + ∆τ ȧ sin2(η
2
) + ∆τikω

(5.48)

Note this new amplification factor G∗ is greater than the one without diagonal correction

given by (5.37). However, the key advantage of the proposed correction is that when the

Point Jacobi method is applied to solve (5.46) :

∆T
(0)
i,n = 0





l = 0, lmax − 1

n = 0, 2N

−
∆τ a

∆x2
∆T l+1

i−1,n +

(
1 + ∆τ

N∑

m=−N

|dm| +
∆τ 2a

∆x2

)
∆T l+1

i,n −
∆τ a

∆x2
∆T l+1

i+1,n = ∆T exp
i,n − ∆τ Dt(∆T l

i,n)

Tm+1
i,n = Tm

i,n + ∆T lmax

i,n

(5.49)

the Fourier symbol V associated with PJ is now given by :

V = −
∆τikω

1 + ∆τ ȧ sin2(η
2
) + ∆τ

∑N
m=−N |dm|

(5.50)

Since |V | < 1 whatever the value of the CFL number and since |G ∗ | < 1 this means the

modified Point Jacobi fully implicit TSM scheme is unconditionally stable.

In Fig. 5.4 are plotted the convergence histories of the full implicit method with an

exact LU solver and the PJ solver with and without diagonal correction. It is obvious that

the exact solver is the most efficient in terms of iterations; a residual of 10−6 is reached

after 5 iterations. However, the computational cost of the method at each iteration be-

comes prohibitive when the size of the system increases and therefore the method will be

no longer used in the flow applications treated in the last part of the report. The diagonal

correction associated with the PJ method leads as expected to an unconditionally stable

method. The best efficiency is obtained for a CFL = 1000 and a number of Jacobi itera-

tions lmax = 2. For this choice of parameters a convergence of the residual to res = 10−6

is obtained after 80 iterations. When compared to the best PJ solver without correction,
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Figure 5.4: Comparison of convergence histories of implicit methods of resolution, N = 1.

one can see that the corrected PJ solver is slightly less efficient. However, this method

is retained as the reference solution strategy for the remainder of this work because it

is stable and yields an efficiency only weakly sensitive to the choice of the CFL number

beyond CFL = 1000 - this value will be systematically retained from now on, avoiding any

preliminary attempt.

5.4 Results

Various TSM algorithms (explicit, semi-implicit, fully implicit with and without diagonal

correction) have been presented and analyzed in the previous Section. The fully implicit

TSM with diagonal correction and solved using Point Jacobi has been selected as the

reference TSM algorithm. This method will be used in the present section to compute the

model heat conduction problem whose parameters are summarized in Table 5.1. Emphasis

will be put on the accuracy of the TSM results with respect to the analytical solutions

as well as the numerical solution computed using the unsteady Crank-Nicholson solver.

Further comments will be made on the relation between the frequency spectrum of the

input signal (here the left boundary unsteady condition) and the number of harmonics

required by the TSM method to ensure a sufficient accuracy; the efficiency of the TSM

approach will also be compared with the unsteady Crank-Nicholson solver.
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Lenght L Thermal diffusivity a Amplitude α Pulsation ω Period T

[m] [m2.s−1] [rad.s−1] [s]

30 0.5 × 10−6 2 2 × 10−7 3.1536 × 107

Table 5.1: Parameters of the heat conduction problem

5.4.1 Single harmonic input

The unsteady boundary condition applied at x = 0 is supposed purely sinusoidal (see

(5.1) or (5.2)). The periodic analytical solution of (5.6) can be decomposed into a Fourier

series:

θ(x, t) =
k=+1∑

k=−1

θ̂k(x)eikωt (5.51)

where {
θ̂0 = 0

θ̂−1 = θ̂1 = exp(−
√

ω
2a

x) exp(i
√

ω
2a

x)
(5.52)

Thus, the final periodic solution is entirely described by a single harmonic so that, consis-

tently, the TSM method is applied with the minimal number of modes N = 1.

Figure 5.5a displays the computed evolution of the normalized temperature at the location

x/L = 3. The numerical solutions are :

• on one hand the Crank-Nicholson solution computed using CFL = 1. This small

value of the CFL number bas been retained in order to ensure a good accuracy of

the time-accurate solution. Since for the unsteady solver ∆t = CFL ∆x2/a, the

choice CFL = 1 yields ∆t = 90000 s ≈ 25 h. Such a physical time-step corresponds

to a time-discretization of 350 steps per period.

• on the other hand, the fully implicit TSM scheme with diagonal correction and PJ

solution is applied with a single TSM mode, N = 1. The typical convergence to a

steady state is plotted in Fig.5.4 : about 60 iterations on the dual or pseudo-time

are needed in order to reach a steady-state (with a residual typically reduced by 5

orders of magnitude).

The analytical solution displayed in Fig.5.5a is the analytical periodic solution (5.6). For

the sake of clarity and because it is already available in Fig.5.1, the full analytical solution

including the transient behavior defined by (5.12) and (5.14) has not been plotted in

Fig.5.5a. From Fig.5.1 and 5.5a it can be observed the Crank-Nicholson (CN) approach

yields an approximate solution very close to the full analytical solution. Meanwhile, the

TSM solution does not allow of course to reproduce the transient behavior since targeted

at the computation of the periodic solution. The agreement between the TSM solution and
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the analytical periodic solution plotted in Fig.5.5a is excellent. The unsteady CN solver

and the full exact solution reach an established periodic behavior after approximately 7

periods. After 7 cycles, the match is perfect - at least at the plot scale - between the

analytical solution, the unsteady CN solution and the TSM solution with N = 1. The

solutions can also be analyzed by plotting the temperature distributions along x at selected

time instances. Figure 5.5b displays the analytical (periodic) temperature distribution and

the TSM distribution along the depth of the crust for the 3 time instants computed by

the TSM approach (hence the TSM solutions T ∗
0 , T ∗

1 and T ∗
2 are directly compared with

the exact distributions at t0, t1 and t2). The agreement between both sets of distributions

is excellent, demonstrating the accuracy of the TSM approach with N = 1 for the present

test-problem.
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Figure 5.5: Conduction equation. Comparison of unsteady analytical, unsteady numerical
and TSM solutions.

5.4.2 Double harmonic input

The simple unsteady heat equation model problem allows to further investigate the influ-

ence of the choice of N on the TSM solution accuracy. Let us consider indeed a modified

left boundary condition, with a time-varying prescribed temperature given by the following

law :

T (0, t) = T0(1 + α(cos(ωt) + cos(2ωt))) (5.53)

Because of the linearity of the conduction equation, the final periodic solution is the sum

of the the solution for the 2 frequencies introduced in the Dirichlet boundary condition,

corresponding to ω and 2ω:
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Figure 5.6: Conduction equation. Double harmonic excitation, TSM solution with N = 1.

θs(x, t) = exp(−

√
ω

2a
x) cos(ωt −

√
ω

2a
x) + exp(−

√
2ω

2a
x)cos(2ωt −

√
2ω

2a
x) (5.54)

The solution of the new problem involving the modified boundary condition (5.53) but

with all other physical parameters left unchanged is computed using the CN scheme with

the same ∆t as in the previous case of a single-harmonic problem and the TSM scheme

with N = 1. The convergence to a steady-state of the TSM approach is achieved in a

way similar to the previously computed single-harmonic test-case. But, as far as accuracy

is concerned, the picture is now quite different since, as can be checked in Fig.5.6, using

a single harmonic with TSM yields a numerical periodic solution which remains far from

the exact periodic solution. Meanwhile, the unsteady CN solver coincides with this exact

periodic solution after a short transient. It is also worth noticing that the TSM solution

obtained for the heat conduction problem with a double harmonic input signal using TSM

with N = 1 is different from the solution previously obtained using TSM with N = 1 for

the heat conduction problem with a single harmonic input. Both TSM problems differ

indeed through the left boundary values associated with the coupled steady solutions at

time t0, t1, t2 over the period. These three time-instances are displayed in Fig.5.7a and

the points on the double harmonic left boundary condition correspond to the three fixed

temperature values used in the TSM system. When solving the previous problem with a

single harmonic left boundary condition, the fixed temperature values used at x = 0 in the

TSM system correspond to different values, taken at the same time-instances since N = 1

with the same period but along the dotted curve associated with the single harmonic

boundary condition. The spurious computation of the temperature time-derivative using
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a spectral difference formula with N = 1 when the input signal contains a double harmonic

is clearly visible in Fig.5.7b.

As soon as N = 2 is used with the TSM approach, the time derivative is correctly computed

(Fig. 5.8b) and the exact periodic solution is very well approximated using TSM (Fig.

5.9).
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Figure 5.7: Time Spectral derivative of the double harmonic input signal with N = 1.
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Figure 5.8: Time Spectral derivative of the double harmonic input signal with N = 2
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Figure 5.9: Conduction equation. Double harmonic excitation, TSM solution with N = 2.

The additional contribution of puslation 2ω is not clearly visible in Fig. 5.9 because the

term exp(−
√

2ω
2a

x) cos(2ωt−
√

2ω
2a

x) of the periodic solution (Eq. (5.54)) disappears closer

to the boundary. If the solution is plotted at the location x = L/20 (see Fig.5.10), the

contributions of both boundary modes are now clearly identified.It can also be observed

the periodic state is reached faster when getting closer to the left boundary since the

influence of this boundary is more immediate.
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Figure 5.10: Normalized temperature θ(x, t) as a function of time at location x = L/20

106



5.5. Lessons taught by the heat equation model problem

5.4.3 TSM efficiency

As previously mentioned, the reference method retained for the unsteady calculation is the

Crank-Nicholson scheme with CFL = 1, corresponding to a time-discretization counting

N∆t = 350 steps per period. Typically, Ncycles = 7 periods are necessary to reach the peri-

odic state using the CN scheme. The method for evaluating the computational efficiency

of the TSM which has been presented in Section 4.4.3 is not readily applicable to the

present case since the conduction equation solver differs from the flow solver on two main

points : i) the unsteady method, also denoted λ-scheme with λ = 1/2 for Crank-Nicholson,

does not use a pseudo-time approach, ii) the unit cost ratio Φ2(N) between TSM and the

CN or λ-scheme is not given by (4.28). The way to evaluate the global cost ratio between

TSM and the unsteady scheme still follows the same principles and yields :

η =
CTSM(N)

Cλ

=
(2N + 1)

N∆t × Ncycles

× mTSM(N)
max

︸ ︷︷ ︸
Φ1

×
c
TSM(N)
u

cλ
u︸ ︷︷ ︸

Φ2

(5.55)

The cost per iteration of the λ-scheme is numerically computed using an average cost over

100 iterations and is estimated to be Cλ
u = 0.053 s. The same method is applied to evaluate

the unit cost of the TSM and leads to c
TSM(1)
u = 0.07 and c

TSM(2)
u = 0.084. Moreover, from

Fig. 5.4, the number of dual iterations to achieve steady state with TSM is approximately

m
TSM(N)
max = 60. As a consequence, η(1) ≈ 0.097 and η(2) ≈ 0.194 which demonstrates the

efficiency of the TSM (cost reduction by a factor between 10 for the single-harmonic input

case and 5 for the double-harmonic input case.

5.5 Lessons taught by the heat equation model problem

The simplicity of the unsteady heat equation has made possible to combine a priori analy-

sis, in particular Von Neumann stability analysis, and actual TSM computations in order

to identify the best strategy that should be followed when applying the TSM approach. It

was concluded the Point Jacobi solution of the fully implicit TSM scheme with a diagonal

correction designed to preserve the TSM system diagonal dominance offered a good level

of both robustness and efficiency.Naturally, for the simple model problem considered in

this chapter, better solutions are available, such as the direct solution (without any dual-

time marching) of the TSM system using once for all a LU solver. The corrected PJ-TSM

solver defined by (5.46) is however of particular interest because its design principles are

those followed to derive the implicit TSM solver for compressible flows, denoted PJ-TSM-

ALE and summarized in formula (4.22) of Chapter 4, as well its version for incompressible

flows (4.25). The good properties of the PJ-TSM solver with diagonal correction reported

in this Chapter are therefore a positive signal for the use of (4.22) in Chapter 6 and of

(4.25) in Chapter 7. Treating an unsteady scalar heat conduction problem with TSM was
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also enlightening as far as the practical implementation of the TSM approach within an

existing time-accurate solver is concerned. This point does not explicitly appear in the

report since details on the algorithmic developments are kept minimal but it was worth

mentioning.

Let us keep in mind there is a number of limitations to the lessons drawn from this model

problem analysis. Specific solution methods can be proposed for the linear systems associ-

ated with the TSM discretization of the 1D heat conduction problem (based in particular

on the well-known efficient tridiagonal solver known as the Thomas algorithm) which can-

not be extended to the general unstructured grids considered in the last part of this work.

Because of the linearity of the spatial operator, the frequency spectrum of the excitation

law and the field response are identical for the heat conduction problem. This makes easy

to guess how many harmonics are needed with TSM to get the correct periodic solution.

With a non-linear spatial operator, such as the one associated with the compressible or

incompressible Navier-Stokes equations, the relationship between the harmonic content

of the excitation and the number of TSM modes is much more complex and no longer a

priori known. Last, the global efficiency gain reported in this chapter asks of course for a

confirmation on more realistic applications. The last part of the thesis report is devoted

to such an assessment of the TSM approach developed in this work for compressible and

incompressible two-dimensional flow problems.
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Chapter 6

Compressible flows

In this chapter, the TSM is applied to two compressible flows cases and compared in terms

of accuracy and time-efficiency to a BDF approach following the methodology presented

in Section 4.4. The first case involves a rotating cylinder studied by Bergmann [8] on a

fixed grid whereas the second case is a moving grid application consisting of the pitching

aerofoil already studied in section 1.6.1 with a conventional BDF-DTS approach. These

simulations are representative of the ability of the TSM to deal with inviscid and laminar

time-periodic compressible flows. Similar compressible flow applications have already been

treated by Gopinath & al [27, 26] and Woodgate and Badcock [76]. The originality of the

present study lies in the implicit formulation described in Chapter 4 which allows the use a

large number of harmonics compared to references [27, 26] and in the use of unstructured

grids compared to [27, 26, 76].

6.1 Rotating Cylinder

6.1.1 Test case description

The case of study consists in a cylinder animated of a periodic rotation around its axis.

The fluid is considered compressible and viscous. The wake dynamics of a cylinder is

characterized by its Reynolds number [75, 79].

Re =
U∞D

ν

where U∞ is the velocity far upstream of the cylinder, D the diameter and ν the dynamic

viscosity.

The Reynolds number Re = 200 corresponds to the upper limit of the laminar wake [79].

The wake flows becoming tridimensional for Re ≃ 190 [75], it is not legitimate to expect

a realistic description of the cylinder wake dynamics using just a bidimensional approach.

However, it is commonly accepted that bidimensional effects still play a major role beyond
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Re = 190 which justifies the approach [8]. In his PhD thesis, Bergmann considers two

cases: in the first one, the cylinder is rotated with a harmonic law of the form:

λ(t) =
Vt(t)

U∞

=
R

.

θ

U∞

= A sin(2πStf t) (6.1)

where Vt(t) is the tangential velocity of the cylinder, A and Stf are respectively the am-

plitude and the forcing Strouhal.

In the second case, the cylinder is fixed. A natural instability breaks out in the near wake

and a Von Kármán vortex shedding occurs downstream of the cylinder. Both phenom-

ena are characterized by a shedding frequency, related to the Strouhal non-dimensional

number by :

St =
fD

U∞

(6.2)

where f is the shedding frequency. When the cylinder is rotated with an harmonic law,

the shedding frequency is equal to the rotational frequency. In that case, the notation Stf

is used to point out a forcing Strouhal. When the cylinder is motionless, the shedding

frequency is natural and only depends on the flow regime via the Reynolds number.

The main objective of rotating the cylinder is to obtain a drag reduction using this active

control strategy. Bergmann [8] found that the couple of parameters (A = 2.2, Stf =

0.53) leads to the best results as far as drag reduction is concerned. In his work, the

incompressible Navier-Stokes equations are solved using a projection method of prediction-

correction type for the pressure variable [37].

Figures 6.1 represent the temporal evolution of the drag and lift coefficients respectively

for the driven/rotating and still cylinder; let us recall these coefficients are defined as :

CD =
FD

1
2
ρDU2

∞

, CL =
FL

1
2
ρDU2

∞

(6.3)

where FD and FL are respectively the force exerted on the cylinder in the direction of the

flow and perpendicular to the flow direction. It can be observed in Fig.6.1 the drag and

lift response adopts the forcing frequency of the Strouhal number Stf . The reduction on

the drag coefficient resulting from the harmonic rotation is about 25%. The average value

of CD goes down from 1.4 to 1.04 while the amplitude of the lift coefficient oscillations is

also reduced by 75 % (from 1.38 to 0.34).
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Figure 6.1: (a) Drag coefficient CD. (b) Lift coefficient CL. Fixed cylinder (solid line),
rotating cylinder (dotted line) from [8].

In the next sections, the results of the PJ-BDF-C solver are first compared with the

reference [8] for the rotating cylinder case. Then, TSM calculations are performed and

compared to the BDF approach. An attempt to apply the TSM to the particular case of

the non-rotating cylinder where the frequency of oscillations is unknown is presented in

Appendix D.

6.1.2 Numerical parameters

To drive the cylinder into rotation, the mesh is kept fixed and the tangential velocity

is specified at the cylinder wall boundary where a no-slip viscous boundary condition is

imposed.

The TSM and BDF versions of the compressible flow solver (PJ-BDF-C and PJ-TSM-C)

are used with an upstream Mach number equal to M∞ = 0.2 (minimal recommended value

for the non-preconditioned compressible flow solver at hand to avoid low-Mach number

issues) and compared with Bergman results obtained with an incompressible flow solver.

The AUSM+ numerical scheme is used for spatial discretization, CFL = 106 for computing

the dual time step ∆τm
i,n with (4.8) and lmax = 16 for the implicit stage point Jacobi

resolution in both the TSM and BDF approaches.

The mesh, displayed in figure 6.2 counts 24000 cells. It is of O-grid type with boundaries

located 20 D away from the cylinder center in order to be able to use the Riemann

invariants for expressing the boundary conditions.
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Figure 6.2: Rotating cylinder. (a): Global view of the computational grid. (b): Close-up
on the cylinder region.

6.1.3 BDF simulation

The flow period computed with (6.2) for Stf = 0.53 is equal to T ≈ 1.886 s. The time

step is ∆t = 4 × 10−2„ corresponding approximately to N∆t = 50 time steps per cycle.

Reference CL CD

PJ-BDF-C ± 0.41 1.00 ± 0.0325

Bergmann [8] ± 0.36 1.04 ± 0.025

Table 6.1: Rotating cylinder. Global aerodynamic coefficients, BDF results, A=2.2, Stf =
0.53, Re = 200, M = 0.2

The time-evolution of the global aerodynamic coefficients is plotted in Fig.6.3 for the BDF-

DTS computation. The associated key values are summarized in table 6.1; they are in good

agreement with reference [8]. The differences are likely due to the difference of physical

modeling between the compressible and incompressible assumptions. The transient stage

before the periodic state is quite long, as observed in Fig.6.3, with around 50 periods

needed for the CL to achieve an established periodic evolution and 100 periods for CD.

The lift coefficient oscillates at the forcing frequency whereas the drag coefficient oscillates

twice as fast. This behavior is easily understood since there is a drag axis symmetry of

the problem for two opposite tangential velocity values.
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Figure 6.3: Rotating cylinder with’M = 0.2, Re = 200, A = 2.2, Stf = 0.53. Computed
evolution of CD (a) and CL (b) using BDF-DTS.

6.1.4 Fourier Analysis

The global coefficients can be analyzed using a Fourier series development to get a first

idea of the spectrum content of the solution and therefore of the number of time instants

needed for the following TSM computations. Consider a periodic function f ; if f is real,

it can be decomposed using real coefficients so that

f(t) = a0(f) +
+∞∑

n=1

(an(f) · cos(nωt) + bn(f) · sin(nωt)) (6.4)

with ω = 2π/T and T the period. The real Fourier coefficients read





a0(f) = 1
T

T∫
0

f(t)dt

b0(f) = 0

(6.5)

and for any natural number n > 0





an(f) = 2
T

T∫
0

f(t) cos(nωt)dt

bn(f) = 2
T

T∫
0

f(t) sin(nωt)dt

(6.6)
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The nth harmonic is written as the function

x 7→ an(f) cos(nωx) + bn(f) sin(nωx) = χn cos

(
nx

2π

T
+ φn

)
, (6.7)

where χ2
n = an(f)2 + bn(f)2 and if χn 6= 0, cos(φn) = an/χn and sin(φn) = −bn/χn. The

amplitude of the nth harmonic function is then

|χn| =
√

an(f)2 + bn(f)2 (6.8)

The output of this Fourier analysis applied to the global aerodynamic coefficients is pre-

sented in figure 6.4.
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Figure 6.4: Rotating cylinder. Spectrum of the BDF solution.

One can check that the average value of CL is zero since the amplitude of harmonic 0 is

|χ0| = 0 whereas the amplitude of the first harmonic is |χ1| =≃ 0.205. The amplitudes

of the higher modes are negligible but it will be seen later on that they play a significant

role in the accuracy of the TSM computations. The average value of CD is given by

|χ0| = 1.00. The fact that the function oscillates twice as fast as the lift function is visible

on the spectrum since the amplitude of the first harmonic is zero and the amplitude of

harmonic 2 is |χ2| ≃ 0.065.

6.1.5 TSM simulation

Number of time instants

The harmonic content of the lift and drag coefficients led us to use only two harmonics

for the TSM computations. This is equivalent (see previous section) to using 2N + 1 time

instants evenly distributed over the period, that is - with N = 2 - looking for 5 steady
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6.1. Rotating Cylinder

solutions which correspond to the five time instants tn, 0 ≤ n < 5. The five flow fields

are initialized with the freestream values and these problems only differ by the boundary

condition written at the cylinder. Indeed, at each time instant corresponds a different

tangential velocity:

Vt(tn) = 2.2 · sin(2π
n

5
) (6.9)

Figure 6.5 displays the position of the TSM time instants on the tangential velocity curve.
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Figure 6.5: Rotating cylinder. Location of the TSM time instants on Vt, A=2.2, Stf = 0.53.
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Figure 6.6: Rotating cylinder. Location of the expected TSM solutions, A=2.2, Stf = 0.53,
Re = 200, M = 0.2.
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TSM index n 0 1 2 3 4
CL BDF -0.1606 0.0657 0.2060 0.0606 -0.1723
CL TSM -0.1540 0.0521 0.1953 0.0562 -0.1723
CD BDF 1.0191 0.9787 1.0398 0.9829 1.0134
CD TSM 1.015 0.9735 1.042 0.9765 1.019

Table 6.2: Comparison of TSM and BDF results for N = 2, A=2.2, Stf = 0.53, Re = 200,
M = 0.2.

Figure 6.6 displays the projection of the TSM time instants on the BDF lift and drag

curves : the points in this figure represent the expected steady solution of the TSM

equations.

Global aerodynamic coefficients

A first TSM calculation is carried out with N = 2. Table 6.2 compares the results of the

TSM with the previous BDF calculation at the TSM time instances. Note that the BDF

results are obtained by linear interpolation using the nearby BDF discretization points.

It shows a difference of 7% at worst for the CL coefficient and n = 2 and under 0.03% at

best for CL and n = 4. Therefore, the TSM results show a correct trend with N = 2 but

cannot be considered as accurate as the reference BDF results. This is why the number

of harmonics considered in the TSM computation is increased. Moreover, a different

representation of the TSM results is also used to allow a better comparison with the

BDF method (see section 4.4.2) : the aerodynamic coefficients are reconstructed using the

computed TSM values and formulae (3.21) and (3.20) for every BDF time discretization

points in the period . Figure 6.7 displays these reconstructed lift and drag coefficients

against the BDF results for the 100th period. The increase in the number of modes

significantly improves the TSM accuracy. For N = 4, the TSM and BDF lift coefficient

curves are almost superimposed whereas there is still a little discrepancy for the drag

coefficient. For N = 8, no improvement on the TSM solution is observed. The reason

lies in the fact there is still some transient effects in the BDF solution which is not yet

perfectly periodic in time, even for the 100th period.

Convergence

The convergence history of the TSM approach plotted in figure 6.8 for an increasing

number of modes shows that the convergence rate is weakly sensitive to the number of

modes. It is worth mentioning that the method actually diverges for N = 1 and that, if

the diagonal correction on the TSM fully implicit treatment is not applied, the method

fails to converge for N > 2.
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Figure 6.7: Rotating cylinder. Comparison of the CL (a) and CD (b) coefficients computed
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Wall pressure distributions and pressure fields

Figure 6.9 shows the wall pressure coefficients computed with the TSM and BDF ap-

proaches. Five time instants corresponding to N = 2 are represented. The TSM results

for N = 2 have been directly plotted whereas the TSM values for N > 2 have been re-

constructed for these specific time instances. Consistently with the previous observations

made on the global aerodynamic coefficients, a good agreement is observed between the

TSM and BDF solutions for N ≥ 4. The pressure fields corresponding to the same time

instances and computed using TSM with N = 8 are displayed in Fig. 6.10 : the BDF and

TSM contours are almost superimposed.

Efficiency of the TSM approach

The methodology presented in section 4.4.3 to analyze the global efficiency gain offered

by the TSM approach with respect to the conventional BDF strategy is now applied on

this cylinder flow problem to compute the flow-dependent factor Φ1 appearing in formula

(4.27). All the parameters needed for the computation of Φ1 are summarized in table 6.3.

The typical number m
TSM(N)
max of iterations on the pseudo-time τ needed to achieve a steady

state for the TSM computations is estimated for a convergence criterium of resav = 10−4.

This number is roughly m
TSM(N)
max = 2000 whatever the value of N (see Fig.6.8). The global

Method mmax N∆t Ncycle

BDF 60 50 100
TSM 2000

Table 6.3: Rotating cylinder. Parameters retained for the calculation of the contribution
Φ1 to the cost ratio η (4.27).

cost ratio for TSM and BDF strategies is then given by:

η = Φ1(N) × Φ2(N) = (0.0066 × (2N + 1)) × Φ2(N) (6.10)

with the problem-independent linear approximation of Φ2 expressed as (4.28). As ex-

plained in 4.4.3, the ideal Φ2 factor in the above formula would be roughly equal to 1.
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Figure 6.9: Rotating cylinder. Wall pressure coefficient for an increasing number of har-
monics. Comparison with the reference BDF simulation.
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Figure 6.10: Rotating cylinder. Pressure contours for N = 8. Comparison with the
reference BDF simulation.
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Figure 6.11: Evolution of the global cost ratio between TSM and BDF with an increasing
number of harmonics.

Fig 6.11 displays the evolution of the global cost ratio η computed with the measured unit

cost ratio Φ2(N) given by (4.28), in which case η vary quadratically with N , or with an

ideal unit cost ratio roughly equal to 1, in which case the variation of η remains linear with

respect to N . This latter case provides an upper limit for the number of harmonics N that

might be used by the TSM approach before its computational cost exceeds that of the BDF

approach (η > 1). In the particular case of rotating cylinder under study though, the cost

of the TSM stays well below the limit η = 1. For N = 4, when "engineering accuracy" is

achieved according to the previous analysis of the TSM and BDF computations, η ≈ 0.07

which speaks up for the TSM. The reason for this very low cost of the TSM with respect

to BDF - with a reduction factor about 14 - is essentially to be found in the large number

of flow cycles necessary to reach the periodic steady state (Ncycles = 100) when the BDF

approach is used.

6.2 Pitching aerofoil

The TSM approach is now applied to the pitching airfoil test-case already computed with

the BDF approach in 1.6.1. While the previous test-problem was computed on a fixed grid,
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the present one makes full use of the moving grid features provided by the compressible

TSM-ALE solver presented in section 4.1.

6.2.1 Fourier Analysis

Following the methodology of the previous cylinder case, the unsteady aerodynamic CL

and Cm coefficients obtained with the BDF-DTS approach are analyzed in the frequency

domain (Fig. 6.12). This spectrum content provides a guideline to find an educated guess

or estimate of the number of harmonics needed with the TSM approach.
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Figure 6.12: Inviscid CT1. Spectrum of the BDF solution.

It is clear that the lift coefficient contains mainly one harmonic whereas the spectrum of

Cm shows significant amplitudes up to the 9th harmonic. One might expect the proper

representation of the lift or moment coefficient using TSM(N) will not require the same

minimal value of N .
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6.2.2 TSM-ALE illustration

In order to illustrate the principles of the TSM-ALE algorithm presented briefly in Sec.

4.1.1, the value N = 1 is first retained. Let us recall the TSM time instances are given by:

tn =
n − 1

2N + 1
· T, 0 ≤ n < 2N + 1 (6.11)

At each TSM time corresponds a different mesh position as illustrated in Fig. 6.13 where

the angle of attack is the angle between the chord and the upstream velocity direction.

The angular position of the airfoil is given by

θ(tn) = θm + θ0 sin(ωtn), 0 ≤ n < 2N + 1 (6.12)

where θm = −αm and θ0 = −α0
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Figure 6.13: (up) increasing angle of attack, (down) decreasing angle of attack

The angular velocity of the aerofoil is computed from the law of motion:

Ω(tn) = θ0 cos(ωtn), 0 ≤ n < 2N + 1 (6.13)

and the grid velocity for each TSM position is calculated as

sn = Ωn ∧ (x(tn − xc(tn))

where Ω is the rotational velocity vector and xc the center of pitching.

6.2.3 TSM simulation

A first TSM simulation is run with the same grid as in the BDF calculation of Section

1.6.1, with the AUSM+ scheme for space discretization, lmax = 16 for the implicit PJ

solver and CFL = 106 for computing the dual-time.
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Global aerodynamic coefficients
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Figure 6.14: Inviscid CT1. Comparison of the CL coefficient computed using BDF and
TSM with N = 1 and N = 2.

The lift coefficient is plotted in figure 6.14 as a function of angle of attack and compared

with the fully periodic BDF result : it is observed that engineering accuracy can be

obtained using TSM with only a single harmonic. A similar TSM case is realized by

Gopinath & al [27] on an oscillatory pitching airfoil AGARD CT6 and the authors reach

the same conclusion.

The Mach number contours obtained with N = 1 for the three TSM time instances over

the period are displayed in figure 6.15 and compared with the reference BDF calculation:

the agreement between BDF and TSM is good for all the instants. On the other hand, the

TSM and BDF pitching moment are compared in Figure 6.16 for an increasing number

of harmonics. It is obvious that N = 1 is not sufficient to retrieve the correct Cm-BDF

coefficient. For N = 8, the comparison is satisfactory and for N = 16, the match is almost

perfect. In [76], Woodgate and Badcock studied the same CT1 configuration in a turbulent

flow. They find that, in order to be able to reconstruct the pressure correctly with the

TSM nearby the shock region, they need to increase the number of modes up to N = 16.

On the same Figure 6.16, the Fourier series of the BDF solution with a truncated number

of harmonic identical to the number used in the TSM calculation (noted Fourier in the

legend) is also plotted. This illustrates the non linear effect of the spatial operator R which

is expressed by Eq. (3.18). Indeed, for the same value of N , it can be observed that the

Fourier truncated BDF solution is closer to the full BDF solution than the TSM solution.

126



6.2. Pitching aerofoil

0
.2
5

0.50

0.50

0
.5
5

0
.5
5

0.55

0.55

0.60
0.
60

0
.6
0

0
.6
0

0
.6
5

0
.6
5

0
.7
0

0.70

0
.7
0

0.75

0.
75

0
.8
0

0.90
0.95

x

y

-0.5 0 0.5

-0.5

0

0.5

BDF

TSM-N=1

(a) n = 0, t/T = 0, α = 2.89◦ (up)

0
.4
0 0
.5
5

0.55

0
.6
0

0
.6
0

0
.6
0

0
.6
0

0
.6
5

0.65

0
.6
5

0.
65

0.70

0.70

0.75

x

y

-0.5 0 0.5

-0.5

0

0.5

BDF

TSM-N=1

(b) n = 1, t/T = 0.33, α = 0.8◦ (down)

0.400
.5
0

0.60

0.60

0
.7
0

0
.7
0

0
.8
0

0
.8
0

1
.0
0

x

y

-0.5 0 0.5

-0.5

0

0.5

BDF

TSM-N=1

(c) n = 2, t/T = 0.66, α = 4.98◦ (down)

Figure 6.15: Inviscid CT1. Mach contours. Comparison of TSM results with N = 1 with
the reference BDF simulation
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In other words, the TSM necessitates more modes than the Fourier decomposition of the

solution would indicate. This is why the interest of the initial Fourier decomposition is

limited besides the fact that it needs to run an unsteady simulation beforehand. The

highest harmonics of small amplitudes which can be neglected with regard to the Fourier

decomposition of the solution can actually have significant role in the final solution and

cannot be neglected to get an accurate TSM solution. Hence, it will no longer be proceeded

to this frequency analysis in the next TSM test cases.

Convergence

The convergence history presented in figure 6.17 shows that between 2000 and 2800 iter-

ations are needed by the fully implicit TSM scheme with diagonal correction to achieve

steady-state convergence on dual time. Note the convergence improves with the number of

modes increasing : 2800 iterations are needed for N = 1 while 2000 iterations are sufficient

for N = 16.
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Figure 6.17: Inviscid CT1. Convergence history for the PJ-TSM-ALE method, N ranging
from 1 to 16

Efficiency of the TSM approach

All the parameters required for the computation of Φ1 are summarized in table 6.4. The
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Figure 6.16: Inviscid CT1. Comparison of the pitching moment coefficient computed using
TSM and BDF with an increasing number of harmonics.
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Method mmax N∆t Ncycle

BDF 100 260 5
TSM 2500

Table 6.4: Inviscid CT1. Parameters retained for the calculation of cost Φ1.

global cost ratio between TSM and BDF strategies for the CT1 test-problem is then given

by:

η = Φ1(N) × Φ2(N) = (0.01923 × (2N + 1)) × Φ2(N) (6.14)

with the linear approximation of Φ2 given by (4.28).
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Figure 6.18: Inviscid CT1. Evolution of the global cost ratio between TSM and BDF with
an increasing number of harmonics.

For this pitching application, it is concluded from Fig.6.18 the lift coefficient can be ob-

tained using TSM rather than BDF for a cost ratio η = 0.057 if we consider that N = 1

leads to an accurate enough solution. On the other hand, the pitching moment coefficient

necessitates more harmonics. The cost reduction for N = 8 is only η = 0.51. Note that

using the present implementation of the method (which determines the intrinsic cost ratio

contribution Φ2) the TSM cost would overtake the BDF cost for approximately N = 13

harmonics. However, an optimal implementation of the TSM with a unit cost ratio Φ2 ≈ 1

would preserve a net gain η = 0.5 with N = 13 on this test-problem.
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Chapter 7

Incompressible flow applications

This last chapter deals with two incompressible laminar flow test cases taken from the

recent pitching and heaving airfoil study performed by Kinsey and Dumas [41]. The TSM

results on this kind of applications are, to the best of our knowledge, fully original and have

been presented in an article submitted to the AIAA Journal and reproduced in Appendix

E.

7.1 BDF simulations

7.1.1 Test case description

Among the many pitching and heaving airfoil cases studied by Kinsey & al [41] to analyze

the power extraction regime, two configurations were selected, different from each other by

their harmonic content response. The first test case, denoted PH from now on, combines

pitching and heaving motion with θ0 = 60◦, H0 = 1 and f ∗ = 0.18. The second test case,

denoted PP, corresponds to a pure pitching motion with θ0 = 23◦, H0 = 0 and f ∗ = 0.12.

In both cases, the Reynolds number based on the freestream conditions and the airfoil

chord is equal to Re = 1100 hence the flow is assumed laminar. The numerical parameters

are the same as in Sec. 2.5.2 (grid, AC parameter, physical time-step, number of dual

sub-iterations). The computation is started with a uniform pressure and velocity flow

field; 6 (respectively 4) cycles must be computed for PH (resp. PP) before flow periodicity

is fully achieved. All the PJ-BDF-ALE-AC results displayed hereafter correspond to the

7th cycle for PH and 5th cycle for PP and will be labelled BDF from now on.

7.1.2 Results

The comparison with the reference results [41] is performed on the force coefficients, more

precisely on the CY coefficient which is the only one made available by Kinsey and Dumas.

The CX coefficient is also presented for future comparison with the TSM approach. Figure
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Chapter 7. Incompressible flow applications

Test cases
PH PP

Parameters

Pulsation ω [rad.s−1] 1.1309 0.7539
Heaving Amplitude H0 [m] 1 0
Pitching Amplitude θ0 [◦] 60 23

Time step ∆t [s] 0.0106 0.0160
Period T [s] 5.555 8.333

Number of time step per period N∆t 520 520

Table 7.1: PH and PP test cases. Solver parameters
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Figure 7.1: PH testcase. (a): CX evolution computed using the present BDF method.
(b): CY evolution computed in [41] and using the present BDF method.

7.1 displays the computed CX and CY coefficients over the normalized time period for the

PH test-case; note only 1 out of 8 physical time-steps are plotted for the present BDF

computations. Similar results obtained for the PP test-case are plotted in Figure 7.2.

The agreement between [41] and the present BDF results is globally very good. A slight

difference on the CY prediction can be observed in Fig. 7.1 for the PH problem. Further

grid and time-refinement did not modify the present BDF results which will consequently

be retained as reference data, against which the TSM approach developed in the next

section will be compared, both in terms of accuracy and efficiency.
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Figure 7.2: PP testcase. (a): CX evolution computed using the present BDF method. (b):
CY evolution computed in [41] and using the present BDF method.

7.2 TSM simulations

The PJ-TSM-ALE-AC method is now applied to the computation of the test-problems

PH and PP and its results are compared to those obtained using the PJ-BDF-ALE-AC

approach. In the present study, the convergence of TSM to a steady-state will be first

analyzed when the number of modes N is varied for accuracy purpose. The reference BDF

strategy and the developed TSM approach will then be discussed in terms of accuracy:

in particular, the number of modes needed to achieve a sufficient level of accuracy will be

investigated for test-problems PH and PP. The potential efficiency gain offered by TSM

with respect to BDF will be finally assessed.

7.2.1 Convergence of the TSM approach

All the computations make use of lmax = 16 for the implicit PJ solver and CFL = 106

for computing the dual-time step ∆τm
i,n with (4.9). The convergence histories displayed in

Fig. 7.3 demonstrate the convergence rate of the TSM solver to a steady-state depends

only weakly on the number of modes N : for test-case PH, less than 4000 iterations are

needed to achieve a residual decrease by four orders of magnitude while a bit less than

3000 iterations are sufficient for test-case PP, whatever the value of N . The cost of an

iteration depends of course on the value of N but this point will be discussed at the end

of the section after analyzing the accuracy of the TSM solutions.
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Figure 7.3: Convergence history for the PJ-TSM-ALE-AC method. (a): PH test problem
with increasing number of harmonics (N ranging from 2 to 16). (b): PP test problem
with increasing number of harmonics (N ranging from 4 to 22).

7.2.2 Accuracy of the TSM solutions

The accuracy of the TSM solutions will be first assessed in a qualitative way by comparing

the steady solutions of the PJ-TSM-ALE-AC system obtained for an increasing number of

harmonics with the previously computed BDF solution. This comparison will be performed

on the evolution of the global force coefficients CX , CY over a cycle both for the PH

and PP test-problems. Next the computed wall pressure distribution over the airfoil

and pressure contours at selected instants within the period will also be compared. A

more quantitative error analysis between TSM and BDF will be eventually proposed and

conclusions regarding the potential efficiency gain offered by TSM with respect to BDF

will be drawn.

Global aerodynamic coefficients

Figures 7.4 and 7.5 display the CX and CY coefficients computed using the TSM approach

with an increasing number of harmonics for the PH and PP flow problems respectively.

These evolutions over a period are plotted along the previously computed BDF results,

whose accuracy was checked with respect to [41]. Let us recall the BDF computations

use 520 physical times-steps per period and require about 4 (resp. 6) cycles before reach-

ing a periodic solution for the PH (resp. PP) flow problem. The TSM evolutions are

reconstructed from the computed wn fields for any time in the period using the truncated

Fourier series representation of the flow solution. For the PH test-problem, the computed

evolution using TSM with N = 2 and N = 4 significantly differs from the reference result;
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Figure 7.4: PH test-case. Comparison of the CX (a) and CY (b) coefficients computed
using BDF and TSM with an increasing number of harmonics.

very small differences between the BDF and TSM evolution remain with N = 8 but both

evolutions appear superimposed with N = 16. For the PP test-problem, the computed

evolution of CX and CY using TSM with N = 4 and N = 8 display significant differences

with the reference result; with N = 16 there are still some very small discrepancies while

with N = 22 the BDF and TSM results appear as superimposed.

Wall pressure distributions and pressure fields

Two moments within the period are retained for a closer comparison of the computed flow

fields: t/T = 0.25 and t/T = 0.45. For each of these moments, the wall pressure coefficient

distribution obtained by using BDF and TSM(N) is plotted, respectively in Fig. 7.6 and

7.7 for test-problem PH. Let us recall these pressure distributions are reconstructed at

each grid point i from the computed wi,n values, applying formula (3.20), (3.21) in each

grid cell. For the PH computation, the already very good agreement between BDF and

TSM(8) and the almost perfect match between BDF and TSM(16) wall distributions are

clearly visible; this similarity is confirmed on the pressure contours displayed in Fig.7.8.

For test-problem PP, the wall pressure coefficient distribution obtained by using BDF and

TSM(N) is plotted, respectively in Fig. 7.9 and 7.10. The match is already very good

with N = 16 and almost perfect when N = 22; this similarity is confirmed on the pressure

contours displayed in Fig.7.11.
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Figure 7.5: PP test-case. Comparison of the CX (a) and CY (b) coefficients computed
using BDF and TSM with an increasing number of harmonics.

Quantitative error analysis

The RMS error on the CX force coefficient is defined as:

ǫRMS(CX) =

√√√√ 1

N∆t

N∆t∑

k=1

(
(CX)TSM(N)(tk) − (CX)BDF (tk)

(∆CX)BDF

)2

where the values of the CX coefficients at times tk in the flow cycle and the amplitude

of the CX variation are readily available for the BDF computation while the values of

CX corresponding to the TSM computation are obtained by reconstruction of the flow

solution using a truncation Fourier series with N harmonics. The RMS error on the CY

force coefficient is similarly defined. These errors are plotted as a function of N in Fig.7.12

to conclude on the best choice of N : the number of harmonics must indeed be taken large

enough to ensure the computed TSM solution is sufficiently accurate with respect to the

usual BDF solution but not unnecessarily large since the gain expected from the TSM

approach with respect to the BDF strategy is a cost reduction rather than an increased

accuracy. Consistently with the previous graphical comparisons between BDF and TSM

solutions, the error levels achieved on test problem PH for a given number of harmonics

are much lower than the errors levels obtained on test problem PP. For test-case PH, the

RMS error on CX and CY drops below the 1% level for N = 8 while N = 16 is needed to

fulfill this same criterion for test-case PP.

136



7.2. TSM simulations

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=2

(a)

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=4

(b)

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=8

(c)

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=16

(d)

Figure 7.6: Flow problem PH. Reconstructed TSM(N) wall pressure coefficient at time
t/T = 0.25 for an increasing number N of harmonics. Comparison with the reference BDF
distribution.
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Figure 7.7: Flow problem PH. Reconstructed TSM(N) wall pressure coefficient at time
t/T = 0.45 for an increasing number N of harmonics. Comparison with the reference BDF
distribution.
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Figure 7.8: Flow problem PH. Reconstructed TSM pressure field (N=16) at time t/T =
0.25 (a) and t/T = 0.45 (b).

7.2.3 Efficiency of the TSM approach

In the present study, the same number N∆t = 520 of physical time-steps per cycle has

been used for PH and PP as well as the same number of dual sub-iterations mBDF
max = 100.

As far as global cost is concerned, and regardless of the accuracy issue for the time being,

the PH and PP test-cases differ by the number of cycles needed to achieve fully periodic

flow (NPH
cycles = 6 while NPP

cycles = 4) and the typical number m
TSM(N)
max of iterations on

τ needed to achieve a steady-state for the TSM computations. This number is roughly

m
TSM(N)
max ≈ 3300 for PH and m

TSM(N)
max ≈ 2800 for PP, whatever the number of harmonics

N (see Fig. 7.3). All these parameters are summarized in Table 7.2.

Method mmax N∆t Ncycle

BDF 100 520 6
TSM 3300

(a) PH case

Method mmax N∆t Ncycle

BDF 100 520 4
TSM 2800

(b) PP case

Table 7.2: Incompressible TSM simulations. Parameters retained for the calculation of
cost Φ1

Consequently the global cost ratio for TSM and BDF strategies is given, for test-case PH,

by

ηPH = ΦPH
1 (N) × Φ2(N) = (0.010577 × (2N + 1)) × Φ2(N) (7.1)

and for test-case PP by

ηPP = ΦPP
1 (N) × Φ2(N) = (0.01346 × (2N + 1)) × Φ2(N) (7.2)
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Figure 7.9: Flow problem PP. Reconstructed TSM(N) wall pressure coefficient at time
t/T = 0.25 for an increasing number N of harmonics. Comparison with the reference
BDF distribution.
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Figure 7.10: Flow problem PP. Reconstructed TSM(N) wall pressure coefficient at time
t/T = 0.45 for an increasing number N of harmonics. Comparison with the reference BDF
distribution.

141



Chapter 7. Incompressible flow applications

-0.95

-0.65

-0.50

-0.35

-0.35

-0.20

-0.20

-0.20

-0.05

0.10

0.10

0.25

x

y

-0.5 0 0.5

-0.5

0

0.5
BDF

TSM-N=22

(a)

-1.40

-1.25

-1.10

-0.95

-0.80

-0.65

-0.50

-0.50

-0.35

-0.35

-0.20

-0.20

-0.20

-0.20

-0.20

-0.05

-0.05

-0.05

0.10

0.10

0.25

x
y

-0.5 0 0.5

-0.5

0

0.5

BDF

TSM-N=22

(b)

Figure 7.11: Flow problem PP. Reconstructed TSM pressure field (N=22) at times t/T =
0.25 (a) and t/T = 0.45 (b)
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Figure 7.12: Root mean square error of the normalized difference between the CX (a) and
CY (b) coefficients computed using the reference BDF strategy with N∆t = 520 iterations
per cycle and the TSM(N) strategy with increasing N .
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7.2. TSM simulations
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Figure 7.13: Evolution of the global cost ratio η = CTSM(N)/CBDF between TSM(N)
and BDF with an increasing number N of harmonics for TSM(N). Solid lines: measured
cost ratio for the PH and PP test-cases. Dashed lines: ideal cost ratio with a TSM(N)
implementation of unit cost Φ2 roughly equal to the unit cost of the BDF approach.

Fig. 7.13 displays the evolution of the global cost ratio for PH and PP, given respectively

by (7.1) and (7.2), with the measured unit cost ratio Φ2(N) given by (4.28). It can be

observed in Fig.7.13 that the measured value of ηPP reaches 1 for N = 16 while ηPH

remains below 0.8 for this same number of harmonics. With an improved implementation

allowing to reduce the growth of the unit cost Φ2 with N , the global cost ratio η could

remain below 0.5 for N = 16.

The key point of the present efficiency analysis is reached when crossing the evolution

of η(N) given by Fig.7.13 with the accuracy assessment summarized on the RMS-errors

for CX and CY plotted in Fig.7.12. The RMS-errors on these aerodynamic coefficients are

plotted against the global efficiency ratio η in Fig. 7.14 : the solid lines correspond to the

measured evolution of ηPH and ηPP while the dashed lines correspond to the ideal evolu-

tion where the unit cost ratio Φ2 would remain roughly equal to 1. From the previously

performed accuracy analysis, the BDF and reconstructed TSM solutions were found to

be almost coincident when the normalized RMS error on CY dropped below 1%, corre-

sponding to a number of harmonics N = 8 for the PH case and N = 16 for the PP case.

Retaining this same criterion, it can be observed in Fig.7.14 the TSM approach provides
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Figure 7.14: Evolution of the root mean square error on CY as a function of the global cost

ratio η =
CTSM(N)

CBDF

for test-problems PH and PP. Solid lines: measured cost ratio. Dashed

lines: ideal cost ratio with a TSM(N) implementation of unit cost Φ2 roughly equal to the
unit cost of the BDF approach.

a solution as accurate as the conventional BDF strategy for an overall cost divided by 5

when computing the PH case; meanwhile, for the PP case, the larger number of harmon-

ics needed by the TSM approach to provide the same level of accuracy as BDF does not

allow to reduce the CPU cost, with ηPP ≈ 1 for N = 16. An improved implementation

of the TSM approach could make the method attractive even for the PP test-case, with

an ideal computational cost ratio that could go down to 0.5 for N = 16 in that case.

The analysis of the TSM efficiency has been focused on the achievable CPU gain using

the steady computation of a reduced number of modes within a flow period instead of a

full unsteady computation over several cycles. It must be pointed out however the TSM

method is also more demanding memory-wise than the BDF strategy since it requires to

store (2N + 1) × Ncells unknown states at each step of the steady-state convergence pro-

cess against Ncells unknown states for the BDF method at each step of the time-marching

process.
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Conclusion and Perspectives

This thesis work is a fundamental contribution to the continuous efficiency improvement

of a numerical design process applied to a new concept of Darrieus type sea turbines.

The optimal design of sea turbines involves numerous computations of unsteady viscous

(turbulent) flows, more precisely of flows displaying a time-periodicity. Up to now these

computations are performed using time-accurate solvers which solve the whole transient of

the flow prior to the establishment of a periodic flow. Two such solvers have been described

in the first part of this report. Starting from a second-order accurate compressible solver

based on a BDF physical-time discretization solved by a dual-time-step (DTS) marching

implicit procedure, an Arbitrary-Lagrangian-Eulerian (ALE) formulation has been devel-

oped to compute unsteady flows over periodically moving bodies. This solver has also

been extended to deal with incompressible flows combining the Artificial Compressibility

(AC) model with BDF-DTS time-marching and ALE.

A long history of time-periodic flow computations over external (helicopter rotor) and

internal (turbomachinery) configurations has led to the development of harmonic meth-

ods, either in the frequency or the time domain, which take advantage of the assumed

flow periodicity to reduce the computational cost of an established periodic regime by

using a Fourier series development of the flow solution. These methods have been briefly

reviewed in Chapter 3 of this report and the recently developed Time-Spectral Method

(TSM) has been identified as the potentially most appropriate method to reduce the cost

of time-periodic incompressible flow computation owing to his moderately complex imple-

mentation within the available time-accurate solvers.

The stability issue inherent to the TSM dual-time explicit formulation when the num-

ber of harmonics increases and/or the frequency of the periodic phenomenon is high has

been highlighted. As pointed out by previous authors [66, 76, 68], the implicit treatment

of the large scale TSM system, coupling (2N + 1) systems of conservation laws with N

the number of harmonics retained to describe the periodic flows under study, is crucial

to ensure the efficiency of the TSM method with respect to a conventional BDF formula.
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Conclusion

In the present work, an implicit formulation of the TSM method has been derived from

a simple matrix-free treatment previously developed in the context of compressible flows

and also extended to the AC system. Special care has been taken to ensure the diagonal

dominance property of the TSM implicit stage, with a simple modification of the diago-

nal contribution which does not significantly affect the convergence of the implicit solver

to a steady-state. A basic point-relaxation technique of Jacobi type (PJ standing for

Point-Jacobi) has been retained to solve the linear system associated to the implicit TSM

scheme for a very low cost per iteration which makes up for the reduced intrinsic efficiency

of the method. The proposed TSM implicit treatment has been thoroughly analyzed for

a simple linear heat conduction problem and the efficiency gains registered for this model

problem using TSM instead of a conventional time-marching technique were sufficient to

motivate the implementation of a similar TSM implicit strategy in the initially developed

compressible and incompressible flow solvers on unstructured moving grids.

The resulting compressible TSM-ALE-PJ solver has been successfully applied to the com-

putation of the periodic compressible viscous flow over a rotating cylinder and the periodic

compressible inviscid flow over a pitching NACA0012 aerofoil. In the cylinder case, N = 4

harmonics are required to achieve engineering accuracy for the aerodynamic coefficients

of the cylinder whereas a single harmonic is enough to get a correct lift coefficient for the

pitching aerofoil case. For this same CT1 test-case, an accurate prediction of the pitching

moment requires however to use N = 8.

This coarse representation of the flow cycle offered by the spectral formula used for ap-

proximating the physical time-derivative combined with an efficient solution of the steady

solution for the TSM system coupling the (2N + 1) selected unknown fields within a flow

period has allowed a substantial gain of CPU time with respect to conventional time-

marching approaches. For the test-problems computed in Chapter 6, the cost reduction

offered by TSM with respect to BDF is significant, ranging from more than 94% at best

for the CT1 lift to 50% at worst for the CT1 pitching moment.

The computation of a pitching and heaving NACA 0015 airfoil has demonstrated that

between N = 8 and N = 16 harmonics are required by the TSM method to accurately

represent such two-dimensional low-Reynolds periodic incompressible flows. A level of

accuracy on the flow solution over a period comparable to that offered by a conventional

BDF time-integration was achieved using an overall CPU time divided by a factor five.

Note however that, for a pure pitching test-case at a lower reduced frequency over the

same NACA 0015 geometry, no CPU reduction was observed using TSM(N) instead of

BDF because twice more harmonics (16 instead of 8) were needed in that case to achieve

an accuracy level similar to that of the BDF approach.

Even though significant CPU cost reductions using TSM appear to depend to a rather
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large extent on the computed flow problem, the results obtained in this thesis work can be

considered as sufficiently encouraging to motivate the extension of the proposed implicit

TSM formulation to three-dimensional turbulent flows. Since the three-dimensional ver-

sion of the compressible flow solver used as a starting point in this thesis is now available,

the steps to take to obtain a 3D turbulent TSM solver are immediately deduced from the

present work. Only a bit of development time is needed.

In order to make the TSM approach computationally attractive even when a rather large

number of modes is required to achieve a sufficient level of accuracy, ongoing work is de-

voted on one hand to the optimal implementation of the method so as to reduce as much

as possible the growth of the unit cost ratio Φ2 when N increases and on the other hand

to the efficiency improvement of the implicit solver with respect to the PJ method used

in the present study. The general minimal residual GMRES solver of Saad and Schultz

[63] already used in [68] seems to be an interesting candidate because it does not require

diagonal dominance of the implicit matrix for convergence.

A current research axis is also focused on strategies allowing for an automatic deter-

mination of the number of harmonics to be used with the TSM approach for ensuring

a prescribed accuracy level. This is a difficult task since the harmonic content of the

response is generally not a priori known. The pitching and heaving airfoil problem of

Chapter 7 is a good example of this difficulty since a small change in the motion law

parameters significantly impacts the flow behavior. A possible strategy would be to run

a calculation with an initial underestimated guess of N and consecutively, another one

with N +1 with the solution of the previous calculation to initialize the flow. The process

would be repeated until the comparison of the two consecutive TSM solutions reaches a

prescribed level of convergence. Knowing that the TSM solution tends towards the BDF

reference solution when the number of harmonics increases, this should lead automatically

to the suitable minimal number N .
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Appendix A

Compressible system matrices

A.1 Inviscid Jacobian matrices for primitive variables

As the system of Euler is hyperbolic in time, one can define and study the quantities

that propagates along the characteristics. It is essential to identify these directions of

disturbance propagation to define consistent numerical fluxes.

In order to investigate the characteristics properties of the Euler equations, we writte the

system in quasi linear form for the conservative variables. The convective flux F E does not

depend on the flow gradients and therefore, the system contains only first order derivative.

∂w

∂t
+ J · ∇w = S (A.1)

A =
∂F E

∂w
is the jacobian matrix of the inviscid flux in conservative variable form. To find

the eigenvalues of A, it is easier to work with the local formulation in primitive variables.

∂ρ

∂t
+ (vp · ∇)ρ + ρ(∇ · vp) = 0

∂vp

∂t
+ (vp · ∇)vp +

1

ρ
∇p = 0

∂p

∂p
+ (vp · ∇)p + ρc2(∇ · vp) = 0

(A.2)

Then, if vp is the vector of primitive variables :

vp =




ρ

u

v

p
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Chapter A. Compressible system matrices

one can rewrite system (A.1) as :

∂vp

∂t
+ JE

p · ∇vp = 0 (A.3)

We are interested in the direction of propagation normal to a face oriented by the vector

n = (nx, ny).

∂vp

∂t
+ AE

p nx
∂vp

∂x
+ BE

p ny
∂vp

∂y
= 0 (A.4)

with

AE
p =




u − sx ρ 0 0

0 u − sx 0 0

0 0 u − sx 0

0 ρc2 0 u − sx




BE
p =




v − sy 0 ρ 0

0 v − sy 0 0

0 0 v − sy 0

0 0 ρc2 v − sy




The eigenvalues of the system are solution of equation :

det|JE
p⊥ − λId| = 0 (A.5)

where JE
p⊥ = JE

p · n = Ap nx + Bp ny and Id is the 4 × 4 identity matrix.

Explicitely,

det

∣∣∣∣∣∣∣∣∣

Vn − sn − λ ρnx ρny 0

0 Vn − sn − λ 0 nx/ρ

0 0 Vn − sn − λ ny/ρ

0 ρc2nx ρc2ny Vn − sn − λ

∣∣∣∣∣∣∣∣∣
= 0

where Vn = u nx + v ny and sn = sxnx + syny is the normal grid velocity . The solutions

are :

λ1 = λ2 = Vn − sn

λ3 = Vn − sn + c

λ4 = Vn − sn − c

(A.6)

The transformation matrices L, L−1and diagonal matrix Λ
E which satisfy the relation

JE
p⊥ = LΛ

E
p L−1 are given by :
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A.1. Inviscid Jacobian matrices for primitive variables

L =




1 0 ρ/2c ρ/2c

0 ny nx/2 −nx/2

0 −nx ny/2 −ny/2

0 0 ρc/2 ρc/2




L−1 =




1 0 0 −1/c2

0 ny −nx 0

0 nx ny 1/ρc

0 −nx −ny 1/ρc




Λ
E =




Vn − sn 0 0 0

0 Vn − sn 0 0

0 0 Vn − sn + c 0

0 0 0 Vn − sn − c




If M is the Jacobian matrix of transformation of conservative variables towards primitive

variables, that is

M =
∂w

∂vp

(A.7)

then, the relation between the flux jacobian in conservative variable form JE and the one

in primitive variable form JE
p can be found by rewritting equation (A.1)

M
∂vp

∂t
+ JEM · ∇vp = 0 (A.8)

and by multiplying on the left by M−1 :

∂vp

∂t
+ M−1AM · ∇vp = 0 (A.9)

Identifying equations (A.3) and (A.9) gives

JE
p = M−1JEM or JE = MJE

p M−1 (A.10)

From equation (A.10), one can see that matrices JE
⊥ = JE · n et JE

p⊥ = JE
p · n have the

same eigenvalues since they are linked by the equation :

J⊥ = M−1J⊥M (A.11)

which leads to Λ
E
p = Λ

E.

The ALE formulation appears only as an additional diagonal term −sn on the Jacobian

matrix JE
⊥ . Thus, compared to the original fixed mesh formulation, the new system has

the same left and right eigenvectors and the new eigenvalues are easily deduced from the

original ones.
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Chapter A. Compressible system matrices

A.2 Inviscid Jacobian matrices for conservative vari-

ables

The Jacobian matrices for the conservative system of Euler equation are neverthelesse

useful, especially in order to writte the ROE scheme.

AE =
∂fE

∂w
=




−sx 1 0 0
γ−3

2
u2 + γ−1

2
v2 (3 − γ)u − sx −(γ − 1)v γ − 1

−uv v u − sx 0

−γuE + (γ − 1)u(u2 + v2) γE − γ−1
2

(v2 + 3u2) −(γ − 1)uv γu − sx




BE =
∂gE

∂w
=




−sy 0 1 0

−uv v − sy u 0
γ−3

2
v2 + γ−1

2
u2 −(γ − 1)u (3 − γ)v − sy γ − 1

−γvE + (γ − 1)v(u2 + v2) −(γ − 1)uv −γE + γ−1
2

(u2 + 3v2) γv − sy




The inviscid Jacobian matrix is decomposed into:

JE
⊥ = AEnx + BEny = TΛ

ET−1

with

T =




1 0 ρ
2c

ρ
2c

u ρny
ρ
2c

(u + cnx)
ρ
2c

(u − cnx)

v −ρnx
ρ
2c

(v + cny)
ρ
2c

(v − cny)
u2+v2

2
ρ(uny + vnx)

ρ
2c

(H + cVn) ρ
2c

(H − cVn)




T−1 =




1 − γ−1
2

M2 (γ − 1) u
c2

(γ − 1) v
c2

−γ−1
c2

1
ρ
(vnx − uny)

ny

ρ
−nx

ρ
0

c
ρ
(γ−1

2
M2 − Vn

c
1
ρ
(nx − (γ − 1)u

c
) 1

ρ
(ny − (γ − 1)v

c
) γ−1

ρc
c
ρ
(γ−1

2
M2 − Vn

c
1
ρ
(nx − (γ − 1)u

c
) 1

ρ
(ny − (γ − 1)v

c
) γ−1

ρc




Λ =




Vn − sn 0 0 0

0 Vn − sn 0 0

0 0 Vn − sn + c 0

0 0 0 Vn − sn − c
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A.3. Viscous Jacobian matrices

A.3 Viscous Jacobian matrices

In order to ensure the diagonal dominance of the implicit upwind scheme, we neglected

the contribution of the tangential Jacobians in the implicit operator (see Sec. 1.4.1). More

precisely, we only retained the Jacobian AV
1 in the x direction while we only retained BV

2

in the y direction. These Jacobians matrices reads

AV
1 =

∂fV

∂wx

=
µ

Re ρ




0 0 0 0

−4
3
u 4

3
0 0

−v 0 1 0

−αu2 − βv2 − γ
Pr

E αu βv γ
Pr


 (A.12)

BV
2 ==

∂gV

∂wy

=
µ

Re ρ




0 0 0 0

−u 1 0 0

−4
3
v 0 4

3
0

−αv2 − βu2 − γ
Pr

E βu αv γ
Pr


 (A.13)

with α =
4

3
−

γ

Pr
and β = 1 −

γ

Pr

Since AV
1 and BV

2 are lower triangular matrices, their spectral radius can be computed

straightforwardly. Moreover, they share the same diagonal terms, involving that their

respective spectral radius are equal.

ρ(AV
1 ) = ρ(BV

2 ) =
µ

Re ρ
· max

[
γ

Pr
,
4

3

]
(A.14)

For the air at moderate temperature, we then have max
[

γ
Pr

, 4
3

]
= γ

Pr
, so finally, the

spectral radius of JV
⊥ is :

ρ
(
JV
⊥

)
= ρ

(
AV

1 n2
x + BV

2 n2
y

)
=

µ

Re ρ

γ

Pr
(A.15)
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Appendix B

Artificial Compressibility

B.1 Inviscid Jacobian matrices

The Jacobian matrices for the artificial compressibility system are simple in comparison

with the compressible system. Indeed, naturally, we work with the primitive variables.

AE =
∂fE

∂w
=




0 β 0

1 2u − sx 0

0 V u − sx


 (B.1)

BE =
∂gE

∂w
=




0 0 β

0 v − sy u

1 0 2v − sy


 (B.2)

JE
⊥ =




0 βnx βny

nx un − sn + unx uny

ny vnx un − sn + vny


 (B.3)

However, on can notice that the contribution of the ALE flux to the Jacobian matrix is not

just an additional term on the diagonal. Therefore the transformation matrices T and T−1

in JE
⊥ = AEnx + BEny = TΛ

ET−1 are not identical to the static mesh transformation

matrices. They are

T =




0 −A B

−ny nyVt + nx(c −
sn

2
) −nyVt + nx(c + sn

2
)

nx −nxVt + ny(c −
sn

2
) nxVt + ny(c + sn

2
)


 (B.4)

A = (c − sn

2
)2 + Vn(c − sn

2
)

B = (c + sn

2
)2 − Vn(c + sn

2
)
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with c =
√

(Vn − sn

2
)2 + β and

T−1 =
1

2c(c + sn

2
)(c − sn

2
)




−2cVt T−1
1,2 T−1

1,3

−(c + sn

2
) B nx B ny

c − sn

2
A nx A ny


 (B.5)

with

T−1
1,2 = −(A + B)c ny − (A − B)(ny

sn

2
+ nxVt)

T−1
1,3 = (A + B)c nx + (A − B)(nx

sn

2
− nyVt)

det(T ) = −2c(c +
sn

2
)(c −

sn

2
)

and

Λ
E =




un − sn 0 0

0 un − sn

2
− c 0

0 0 un − sn

2
+ c


 (B.6)

Obvisously, one can check that imposing sn = 0 into the matrices T , T 1,ΛE leads to the

formulation without ALE flux.

B.2 Viscous Jacobian matrices

The viscous Jacobian matrices needed for the computation of the implicit stage are given

by

AV
1 =

∂fV

∂wx

=
1

Re




0 0 0

0 2 0

0 0 1


 (B.7)

BV
2 =

∂gV

∂wy

=
1

Re




0 0 0

0 1 0

0 0 2


 (B.8)

JV
⊥ = AV

1 n2
x + BV

2 n2
y =

1

Re




0 0 0

0 2n2
x + n2

y 0

0 0 2n2
y + n2

x


 (B.9)

The spectral radius of JV
⊥ is then

ρ
(
JV
⊥

)
=

1

Re
max(|2n2

x + n2
y|, |2n

2
y + n2

x|) =
1

Re
max(n2

x + 1, n2
y + 1) (B.10)
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B.3 ROE average state for AC

In this section, a Roe average state that satisfies the Roe matrix conditions for the AC

system is sought.The methodology presented in [22] is followed and applied to the the

static AC system.

First, we decompose the data difference in terms of the right engenvectors R̃k and the

wave strenghts α̃k as:

∆w =
3∑

k=1

α̃kR̃k (B.11)

where the over tilde denotes the unknown average state. The columns of T being the right

eigenvectors of the system, we have :

∆p = −α̃2(c̃(Ṽn + c̃)) + α̃3(−c̃(Ṽn − c̃)) (B.12a)

∆u = −α̃1ny + α̃2(nyṼt + c̃) + α̃3(−nyṼt + nxc̃) (B.12b)

∆v = α̃1nx + α̃2(−nxṼt + ny c̃) + α̃3(nxṼt + ny c̃) (B.12c)

(B.12b) ·nx + (B.12c) ·ny

and (B.12b) ·ny - (B.12c) ·nx leads to :

∆Vn = α̃2c̃ + α̃3c̃ (B.13a)

∆Vt = α̃1 + (α̃2 + α̃3)Ṽt (B.13b)

The system of (B.13a) and (B.12a) allow to find α2 and α3 and then (B.13b) is used to

find α1 Eventually, one has:

α̃1 = ∆Vt − ∆Vn
Ṽt

c̃
(B.14a)

α̃2 =
−∆p − ∆Vn(Ṽn − c̃)

2 c̃2
(B.14b)

α̃3 =
∆p + ∆Vn(Ṽn + c̃)

2 c̃2
(B.14c)

The Roe matrix conservativity condition states that:

∆F E = JE
⊥ δw =

3∑

k=1

α̃kλ̃kR̃k (B.15)
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β(∆u nx + ∆v ny) = −α̃2(c̃(Ṽn + c̃))(Ṽn − c̃)) + α̃3(−c̃(Ṽn − c̃))(Ṽn + c̃)

(B.16a)

∆p nx + (2u nx + v ny)∆u + (u ny)∆v = −α̃1nyṼn + α̃2(nyṼt + nxc̃)(Ṽn − c̃) + α̃3(−nyṼt + nxc̃)(Ṽn + c̃)

(B.16b)

∆p ny + (v nx)∆u + (u nx + 2v ny)∆v = α̃1nxṼn + α̃2(−nxṼt + ny c̃)(Ṽn − c̃) + α̃3(nxṼt + ny c̃)(Ṽn + c̃)

(B.16c)

(B.16a) is identical to (B.12a) so it doesn’t give us any information.

Doing the operation (B.16b)·nx + (B.16c) ·ny and substituing the expression of α2 (B.14b)

and α3 (B.14c) into the resulting equation gives :

∆V 2
n = 2 Ṽ n ∆Vn (B.17)

and since:

∆V 2
n = (V R

n )2 − (V L
n )2 (B.18)

∆Vn = V R
n − V L

n (B.19)

we obtain :

Ṽn =
1

2
(V R

n + V L
n ) (B.20)

Doing the operation (B.16b)·ny - (B.16c) ·nx and substituing the expression of α1, α2, α3

into the resulting equation gives :

∆(VnVt) = ∆VtṼn + ∆VnṼt (B.21)

and since

∆(VnVt) = V R
n V R

t − V L
n V L

t (B.22)

∆Vt = V R
t − V L

t (B.23)

and using equation (B.20)

one finds :

Ṽt =
1

2
(V R

t + V L
t ) and c̃ =

√
Ṽn

2
+ β (B.24)
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Appendix C

Compatibility equations

C.1 Compatibility equations

The compatibility equations are the expression of the system of equations in the eigen-

vectors basis. It has been seen in Appendix A that a matrix L−1 can be defined that will

diagonalize the matrix JE
p . Introducing the decomposition of Jp = LΛ

EL−1, the system

of Euler equations reads :

∂vp

∂t
+ (LΛL−1 · ∇)vp = 0 (C.1)

and multiplying equation (C.1) by L−1, one obtains the system of decoupled compatibility

equations :
∂L−1vp

∂t
+ (Λ · ∇)L−1vp = 0 (C.2)

The vector h = L−1vp is the vector of the characteristic variables. Each of the compati-

bility equation can be written
∂hi

∂t
+ (λi · ∇)hi = 0 (C.3)

Because the right hand side of equation is zero, the characteristic variables hi are stricly

conserved during their propagation along the characteristics Ci defined by

dxn

dt
= λi (C.4)

The characteristic variables are also called Riemmann variables and Riemann invariants

when they remain constant. This condition reads

δhi = 0

Sometimes, the Riemann variables can be integrated and leads to simple implementation

of the boundary condition (see Sec. 1.5.1). In other cases, the compatibility equations are

linearized to be able to find the variables at the boundary (see Sec. 2.4.1).
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Appendix D

Non-rotating cylinder

In this section, the mesh is kept fixed and the velocity at the cylinder wall is zero. The

previous mesh used with the rotating cylinder is tested with this configuration but it turns

out to be not fine enough in the wake to enable the instability.

Hence, a new grid of 32106 cells represented in Fig. D.1 is used. Note that the gris in

reference [69] is made of 48103 cells
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Figure D.1: Non-rotating cylinder. (a): global view of the computational grid (b): close
up on the cylinder region.

BDF Results

From reference [69], we know that the Strouhal number is approximately St = 0.195 which

leads to a period T = 1/f = 5.12s. The time step is ∆t = 0.1s which gives 50 discretization

points per cycle.
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Time
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Figure D.2: Non-rotating cylinder. Global aerodynamic coefficients comparison between
the PJ-BDF-C solver (a) and reference [69] (b)

Reference CL CD Strouhal
HIFUN ± 0.73 1.41 ± 0.044 0.195

Tai & Zhao [69] ± 0.64 1.31 ± 0.041 0.195
Bergmann [8] ± 0.69 1.39 ± 0.045 0.195

Table D.1: Non-rotating cylinder. Comparison of aerodynamic coefficients results, Re =
200, M = 0.2

Table D.1 shows the results of the BDF approach simulation. They are in good agreement

with references [69] and [8]. The Strouhal number is identical.

TSM simulation

So far, the TSM has been used for the prediction of periodic unsteady flows where the

period is known a priori. The frequency content of the flow field is a consequence of the

time variation of the boundary conditions of the problem. In the present still cylinder

case, the flow is indeed periodic but the frequency of unsteadiness is not known a priori.

This raises two issues:

• Because the TSM times tn share the same wall boundary condition, if we initialize

the 2N + 1 problems with the same freestream field, there is no coupling of the

equations. All w0
n are identical, corresponding to the eigenvector of zero eigenvalue

for the TSM time operator (see section 3.2.1).
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• Because, the time period is not known a priori, one cannot compute exactly the

spectral operator. Hence, for different guesses of the time period, the residuals will

converge to different levels of accuracy. Only for the exact time period, will the

residual go to machine zero to solve exactly Rt
n(w) = 0.

To adress the first issue, the initialization of the flow fields is realized with the results of

a TSM simulation with an approximate guess of the period and a non-zero amplitude for

the cylinder velocity. Thus, one can hope to obtain initial solutions not too far from the

expected final solutions.

To adress the second issue, an optimisation method based on the residual gradient is

proposed by Gopinath & al [28] to converge towards the exact time period. This "Gradient

Based Variable Time Period" (GBVTP) consists in solving the new problem Rt
n(w, T ) = 0

where the period is now part of the solution. We remind that the residual is :

Rt
n(w) = Dt(wn) =

N∑

p=−N

dpwn+p + R(wn)

The gradient of the square of Rt
n with respect to the period T is:

∂Rt2

n

∂T
= 2 ×Rt

n ×
−1

T

N∑

p=−N

dpwn+p (D.1)

The average of all the gradients over the TSM time instances and cells is used to update

the time period for the next dual time iteration

Tm+1 = Tm − ∆T
∂Rt2

n

∂T
(D.2)

with ∆T a suitable increment to ensure convergence. At every dual time iteration, a new

period is computed with (D.2), resulting in a new spectral operator.

Attempts of TSM computation following the presented methodology did not succeed.
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Implicit incompressible TSM article
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Implicit Time Spectral Method for Periodic

Incompressible Flows

S. Antheaume1 and C. Corre 2

Laboratoire des Ecoulements Geophysiques et Industriels,

Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9 France

The Time Spectral Method converts a time-periodic flow computation into the

solution of 2N + 1 coupled steady computations where N denotes the number of har-

monics retained in the Fourier analysis of the flow. The efficiency of the method has

been previously demonstrated by several authors for compressible flow applications

on structured grids using implicit solution of the large-scale steady system introduced

by the coupling. In this paper, the Time Spectral Method is extended to periodic

incompressible viscous flows using a finite-volume formulation of the Artificial Com-

pressibility system on general moving unstructured grids. Numerical simulations of

low-Reynolds flows over an airfoil show the Time Spectral Method can afford, though

not systematically, a reduction by a factor up to 5 of the computational cost with re-

spect to a conventional unsteady technique which computes the whole transient flow

behavior.

1 Ph.D candidate
2

Professor
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Nomenclature

A, B, J = flux Jacobian matrices

CX , CY = force coefficients

Cp = pressure coefficient

c = airfoil chord

F = physical flux

f∗ = nondimensional frequency, fc/U∞

H0 = heaving amplitude

H = numerical flux

N = number of harmonics

Re = Reynolds number

R = residual vector discretizing the flux balance

s = grid velocity vector

t, τ = physical and dual time

w = conservative variable vector

x = grid position vector

β = artificial compressibility parameter

η = global cost ratio

θ, θ0 = angular position and pitching amplitude

ω = angular velocity

Subscripts

i = cell index

∞ = freestream value

n = TSM nth time instant

Superscripts

l = Jacobi iteration counter

m = dual time counter

n = physical time counter
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I. Introduction

The design of aerodynamic or hydrodynamic devices often requires the study of unsteady flow

configurations. When this design process is performed with numerical tools, the so-called dual-

time approach represents a well-established way to efficiently compute unsteady flows. In this

approach the unsteady field at each step of the physical time marching procedure is obtained as

a steady solution with respect to a dual-time step [1] [2]. This dual-time step (DTS) strategy

can also be viewed as finding the solution of the steady (with respect to the dual time) governing

equations of the flow augmented by a source term corresponding to the discretization of the physical

time derivative using typically a second-order Backward Difference Formula (BDF). The numerical

methods previously available for steady flows can be readily extended to handle unsteady flows by

simply taking into account this source term. Among the many industrial flow applications requiring

unsteady flow analysis, a large set of problems involve time periodicity such as helicopter rotors, wind

turbines, flapping-wing propulsion mechanisms as far as external aerodynamics is concerned but also

internal flows within rotor-stator combinations in the context of turbomachinery applications. A

drawback of the BDF-DTS method for such flows is that it requires to compute, typically from

an initial rest configuration, the whole transient of the flow before the periodic flow of interest

becomes established. This flaw of the conventional dual-time strategy motivated the development

of numerical methods looking directly for the periodic solution of the flow. Taking advantage of

the development of the periodic flow solution into a Fourier series, Hall & al [3] introduced an

efficient method dedicated to time periodic flows for turbomachinery applications. Following a

similar line of thought, Gopinath and Jameson proposed the Time Spectral Method (TSM) for

external aerodynamics applications [4]. The TSM method transforms the original system of (2 +

d) unsteady equations describing the d-dimensional compressible flow field at each time moment

(2 scalar equations expressing mass and energy conservation and d scalar equations expressing

the conservation of the d momentum components) into an extended set of (2N + 1) × (d + 2)

equations corresponding to the flow solution at (2N + 1) time moments in the flow period, selected

so as to ensure spectral accuracy for the physical time-derivative. To make the method truly

attractive, it is of course crucial to efficiently compute the steady-state of this extended system of
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conservation laws. Since, as pointed out by [5], the explicit time-integration of the TSM system

displays severe stability limits when the number of harmonics N increases, several authors [6–8]

have put forward implicit solution strategies. These allow the use of both large CFL numbers

ensuring faster convergence to a steady-state and a high number of harmonics N that might be

needed to accurately described complex unsteady flows. Up to now, TSM has been used for a wide

range of applications dealing mostly with compressible flows: turbomachinery [9], rotorcraft [10].

The context of the present study is the HARVEST industrial/academic joint project devoted to the

development of a cross flow water turbine technology allowing to harness the kinetic energy of rivers

and oceans streams [11]. The hydrodynamic design of the turbine is currently performed using both

an experimental and numerical strategy. The final objective of the present work is to improve the

efficiency of the numerical design by replacing the current BDF computations of turbulent flows over

sea turbine configurations [12] with a TSM approach. This supposes to adapt the TSM strategy

to an incompressible flow solver. A first attempt in this direction has been recently performed

by Jameson [13] using an Artificial Compressibility (AC) method but stability concerns emerged

when computing high-frequency pitching airfoils. In the present paper, an implicit TSM strategy is

successfully applied to the computation of 2D incompressible laminar flow over oscillating airfoils

in pitching and heaving motion recently studied in [14] using a conventional BDF method. Such

2D laminar configurations represent only a first step towards the computation of more realistic 3D

turbulent flows over water turbines; they were however retained at this stage because their limited

cost allows an in-depth assessment of the TSM approach proposed in the present work to speed up

the integration of periodic low-speed flows. This approach relies on the AC method to describe the

incompressible flow and an ALE strategy to describe the motion of the unstructured computational

grids. It is compared to a conventional BDF approach, also combining AC and ALE, both from

the viewpoint of accuracy and efficiency. The paper is organized as follows: section II reviews the

main ingredients of the DTS-BDF incompressible flow solver (AC model, ALE formulation, implicit

time-integration) and displays validation results obtained for flows over a pitching and heaving

NACA0015 airfoil recently computed and analyzed by Kinsey and Dumas [14]; section III details

the application of TSM to the AC method and section IV describes the adaptation of an implicit
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treatment developed in [15] to the TSM system; in section V, the implicit TSM approach is applied

to the flow computation of a pitching and heaving NACA0015 airfoil for an increasing number of

harmonics N in order to determine the best trade-off between accuracy and cost (both increasing

functions of N) and check whether TSM can outperform BDF. Conclusions and perspectives are

drawn in the last section.

II. Incompressible flow solver

A. Governing equations

The solution of the incompressible Navier-Stokes equations is typically obtained using either a

pressure-based method where pressure and velocity are solved in an iterative fashion through a

pressure-correction equation, or a density-based method, such as the artificial compressibility (AC)

approach of Chorin [16]. The latter AC strategy has been favored in this work to take advantage

of efficient implicit methods previously developed for solving hyperbolic problems [15] and easy to

adapt to the AC system. Let us recall the AC method provides a time-accurate solution of the 1D

Euler equations by finding the steady-state of the following hyperbolic system of conservation laws

with respect to the dual or fictitious time τ

∂

∂τ




p

u




︸ ︷︷ ︸
=w

+




0 0

0 1




︸ ︷︷ ︸
=K

·
∂

∂t




p

u


+

∂

∂x




βu

u2 + p




︸ ︷︷ ︸
=f(w;β)

= 0 (1)

with x the space variable, t the physical time, p, u the pressure and velocity, β the constant ar-

tificial compressibility parameter. At steady-state on τ , the solution u(x, t) of (1) satisfies the

zero-divergence condition while both fields u(x, t) and p(x, t) satisfy the unsteady (with respect to

t) momentum equation. Rewriting (1) in the compact form of a 1D hyperbolic system with a source

term

∂w

∂τ
+

∂

∂x
f(w; β) = S = −K

∂w

∂t

makes clear the AC system can be efficiently driven to an accurate steady-solution by making

use of tools initially developed in the context of compressible flow solutions: second-order upwind

discretization for the flux derivative, second-order BDF discretization for the physical time-derivative
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and first-order implicit stage for fast convergence on the dual-time. Note the choice of value for

the AC parameter β affects the overall convergence rate as well as the accuracy of the physical

solution through the numerical dissipation of the space discretization; however, as long as the

steady-state on τ is correctly achieved, the AC system remains consistent with the incompressible

flow equations whatever the value of β. Let us now turn to the AC system extended to the case of

2D incompressible viscous flows computed on moving grids. Let Ω(t) ⊂ ℜ2 be an arbitrary control

surface bounded by a smooth closed contour ∂Ω(t) which moves independently from the flow with a

velocity s(x, t) = sx(t) i + sy(t) j, where x = x i + y j denotes the vector of Cartesian coordinates

in the absolute frame of reference. In the Arbitrary Lagrangian Eulerian (ALE) framework, the 2D

Navier-Stokes equations for incompressible unsteady flows, modified to account for the AC method,

can be expressed in the following integral form:

∂

∂τ

∫

Ω(t)

w dΩ(t) + K
∂

∂t

∫

Ω(t)

w dΩ(t) +

∫

∂Ω(t)

(F E − F V ) · n dγ(t) = 0 , (2)

where n is the outward unit normal vector and γ the curvilinear abscissa of ∂Ω. The vector of

conservative variables w, the singular matrix K, the inviscid fluxes F E = (fE , gE) and the viscous

fluxes F V = (fV , gV ) are defined by

w =




p

u

v




, K =




0 0 0

0 1 0

0 0 1




, fE(w) =




β(u − sx)

u(u − sx) + p

v(u − sx)




, gE(w) =




β(v − sy)

u(v − sy)

v(v − sy) + p




fV (
∂w

∂x
,
∂w

∂y
) =

1

Re




0

2
∂u

∂x
∂u

∂y
+

∂v

∂x




, gV (
∂w

∂x
,
∂w

∂y
) =

1

Re




0

∂u

∂y
+

∂v

∂x

2
∂v

∂y




The pressure p and the components (u, v) of the fluid velocity in the absolute frame of reference are

normalized respectively by ρ∞U2
∞

and U∞, with ρ∞ and U∞ the freestream density and velocity

magnitude. For the following airfoil flow computations, the Reynolds number Re = ρ∞U∞c/µ∞ is

based on the airfoil chord c. The next subsection describes the finite-volume upwind scheme and

implicit time-discretization used in this work to solve the so-called ALE-AC system (2).
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B. Numerical Methods

1. Spatial discretization

System (2) is solved on general unstructured grids using a finite volume approach. Applying (2) on

a given cell Ωi, introducing the average value w of w over the cell and decomposing the flux balance

as the sum of fluxes through each face Γi,k of cell Ωi leads to

∂

∂τ
(wi|Ωi|) + K

∂

∂t
(wi|Ωi|) +

∑

k

∫

Γi,k

(F E − F V ) · n dγ = 0 (3)

where |Ωi| is the surface of the i-th grid cell Ωi. The normal physical flux vector (F E − F V ) · n

through the face Γi,k of length |Γi,k| is approximated by the numerical flux vector H = HE −HV

computed at the center i, k of the face Γi,k

∫

Γi,k

(F E − F V ) · n dγ =
(
HE

i,k −HV
i,k

)
|Γi,k| + O(hp)

where h denotes a typical grid length. The space accuracy order p will depend on the choice of

polynomial reconstruction used for the conservative variable inside each grid cell; a linear recon-

struction will be systematically used in this work leading to second-order accuracy in space. For this

reason and without loss of accuracy, the average state in cell i is replaced by the state at cell center,

denoted wi from now on. The Roe approximate Riemann solver initially developed to solve the

compressible Euler equations [17] is adapted to the hyperbolic ALE-AC system (2) and combined

with a MUSCL variable reconstruction approach [18] [19] in order to derive the inviscid numerical

flux formula HE
i,k

HE
i,k =

1

2
(F E(wL

k ) · ni,k + F E(wR
k ) · ni,k) +

1

2
QE

i,k(wL
k − wR

k ) (4)

where wL/R are the reconstructed states, respectively, on the left and right side of the kth interface

Γi,k of cell Ωi, QE is the Roe numerical dissipation matrix. The states at face center i, k are linearly

reconstructed from the cell center values in the cells i and o(i, k) sharing the face Γi,k and the cell

gradients ∇w in each of these cells




wL
k = wi + ∇wi · ri,k

wR
k = wo(i,k) + ∇wo(i,k) · ro(i,k)

(5)

where ri,k (resp. ro(i,k)) denotes the vector extending from the cell center i (resp. o(i, k)) to the

center of the interface Γi,k. The gradient ∇wi is computed at each cell center i using a least-square
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formula applied on a fixed spatial support including the neighboring cells sharing at least a node

with cell i [19]. The Roe numerical dissipation matrix QE is given by:

QE = |AEnx + BEny| = |JE
⊥
|

where n = (nx, ny) and AE , BE are the inviscid flux Jacobian matrices: AE = dfE/dw, BE =

dgE/dw. An immediate calculation for system (2) yields:

JE
⊥

=




0 βnx βny

nx V⊥ − s⊥ + u nx u ny

ny v nx V⊥ − s⊥ + v ny




where V⊥ = u nx + v ny, s⊥ = sxnx + syny. This Jacobian matrix can be also expressed as

JE
⊥

= T |ΛE |T−1 with Λ
E the diagonal matrix containing the real eigenvalues of the hyperbolic

system (2). The Roe dissipation matrix is eventually computed as

QE
i,k = Ti,k|Λ

E
i,k|T

−1
i,k

with the state wi,k taken as the arithmetic average of wL
i,k, wR

i,k following Taylor and Whitfield [20].

The viscous fluxes are approximated using a linearly exact extension of the diamond method of Noh

[21], not detailed here. Let us point out the steady-state of (2) depends on the AC parameter β

through the numerical dissipation matrix QE . The numerical inviscid flux balance or residual will

be denoted from now on

RE
i (w, x, s) =

1

|Ωi|

∑

k

HE
i,k |Γi,k| (6)

where, in the context of the ALE formulation, the dependence of this flux balance on the mesh

position x and speed s has been made explicit. Similarly, the viscous flux balance or residual will

be denoted

RV
i (w, x) =

1

|Ωi|

∑

k

HV
i,k |Γi,k| (7)

with an explicit dependence on the grid position x. Since only rigid body motion is considered

for the moving grid computation performed in the present work, the cell surface |Ωi| will remain

constant over time and can be removed from the dual and physical time derivatives in (3) to be
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inserted into the inviscid and viscous residual (6) and (7). The semi-discrete form (3) of the ALE-AC

system can also be expressed as

∂wi

∂τi
+ K

∂wi

∂t
+ RE

i (w, x, s) = RV
i (w, x) (8)

2. Time-discretization including ALE treatment

When dealing with moving airfoils in the ALE reference frame, two main approaches can be consid-

ered for taking into account the grid motion. The first approach is the rigid body technique in which

all grid points have the same motion as the airfoil. The initial quality of the mesh is preserved but

unsteady boundary conditions must be implemented that include the grid velocities. A drawback of

this approach is that, for high frequency pitching movements, relative velocity of in cells away from

the center of rotation may become very large leading to excessive numerical dissipation. The second

approach deforms the inner cells of the grid to conform to the instantaneous position of the airfoil

while the outer boundaries are kept fixed. Deformation can be performed using methods based on

spring analogy, which involve either the solution of a large system of equations for the displacements

of nodes [22, 23] and/or a local remeshing at each physical time step of the calculation [24, 25]. In

all these methods, a geometric conservation law must also be satisfied to avoid volume discretization

errors [26]. The Chimera technique is yet another alternative for dealing with moving bodies that

makes use of independently meshed overlapping zones, typically a grid zone attached to the body

and a grid zone for the background domain [27, 28]. While the deforming grid approach is required

for aeroelastic studies or problems involving moving bodies within fixed multi-block geometries, it

can be avoided for the simple heaving and pitching airfoils cases treated in this study. Consequently,

a simple rigid body approach is retained with the mesh position x directly derived from the law of

motion and the grid velocity s computed using the simple analytical relationship

s(t) = Ω(t) ∧ (x(t) − xc(t)) + t (9)

where Ω is the rotational velocity vector, xc the center of rotation and t the translation velocity

vector.
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For the sake of clarity and without loss of generality, the dual time step resolution is left aside in this

section. Using a second-order backward difference formula (BDF) for the physical time-derivative

in (8) yields the following second-order discretization of the ALE-AC system:

K

(
3
2wn+1

i − 2wn
i + 1

2wn−1
i

)

∆t
+ RE

i

(
wn+1, xn+1, sn+1

)
= RV

i

(
wn+1, xn+1

)
(10)

3. Implicit Time integration

The fully discrete ALE-AC system (10) can also be expressed as

K

(
3
2wn+1

i − 2wn
i + 1

2wn−1
i

)

∆t
+ Ri

(
wn+1

)
= 0 (11)

with the full residual R defined by Ri

(
wn+1

)
= RE

i

(
wn+1

)
−RV

i

(
wn+1

)
, where the dependence

on the grid position and velocity has been omitted for the sake of simplicity. The non-linear system

(11) is solved using a DTS approach, that is the new state wn+1 is iteratively obtained as the

steady-solution with respect to the dual-time τ of the augmented system

w
n,m+1
i − w

n,m
i

∆τn,m
i

+ K

(
3
2w

n,m
i − 2wn

i + 1
2wn−1

i

)

∆t
+ Ri (wn,m) = 0 (12)

where wn,m is the fictitious state at the mth subiteration on τ performed between the nth and

(n + 1)th physical time-levels. The initial fictitious state at each physical time-level is chosen as

wn,0 = wn and the new physical state is defined as wn+1 = wn,mmax with mmax the number of

sub-iterations on τ needed to achieve steady-state convergence of (12). The efficiency of the method

is ensured by making use of an implicit dual-time integration

∆w
n,m
i

∆τn,m
i

= −Ri

(
wn,m+1

)
− K

(
3
2w

n,m+1
i − 2wn

i + 1
2wn−1

i

)

∆t
= −Rt

i

(
wn,m+1

)
(13)

with wn,m+1 = wn,m + ∆wn,m. Since the solution accuracy (on t and x) does not depend on the

dual-time increment ∆wn,m which goes to zero at steady-state on τ , the full residual Rt
i

(
wn,m+1

)

can be expanded as

Rt
i

(
wn,m+1

)
= Rt

i (wn,m) + K
3

2

∆w
n,m
i

∆t
+

1

|Ωi|

∑

k

(
∆H

(i)
i,k

)n,m

|Γi,k| (14)

where (∆H
(i)
i,k)n,m = H(i)n,m+1

− H(i)n,m
and H(i) = HE(i) − HV (i) denotes the numerical flux

formula retained in the implicit stage. Since the implicit stage vanishes at steady-state this numerical
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flux formula does not impact the overall accuracy and its design is solely guided by stability and

efficiency requirements. Following [29], [30], [24] the inviscid numerical flux HE(i) appearing in the

implicit stage is simply computed using the first-order Rusanov numerical flux:

H
E(i)
i,k =

1

2
(F E

i · ni,k + F E
o(i,k) · ni,k) +

1

2
ρ(JE

⊥ )i,k(wi − wo(i,k)) (15)

where ρ(JE
⊥

)i,k is the spectral radius of the inviscid Jacobian matrix JE
⊥

computed at the center of

face Γi,k. The implicit numerical viscous flux takes the following simplified form

H
V (i)
i,k =

ρ(JV
⊥

)i,k

||ri,k|| + ||ro(i,k)||
(wo(i,k) − wi) = ˜ρ(JV

⊥
)i,k(wo(i,k) − wi) (16)

where ρ(JV
⊥

)i,k is the spectral radius of the viscous Jacobian matrix. More details on the derivation

of the implicit viscous flux can be found in [15]. Inserting the expressions (15) (16) of the implicit

numerical fluxes into the expansion of the residual (14) and rearranging (13) yields the following

implicit solution for the ALE-AC system (10):

D
n,m
i ∆w

n,m
i +

1

2|Ωi|

∑

k

(
∆F E

o(i,k)

)n,m

· ni,k |Γi,k| −
∑

k

Cn,m
i,k ∆w

n,m
o(i,k) = −Rt

i(w
n,m) (17)

The coefficients D
n,m
i , Cn,m

i,k are defined by:

D
n,m
i =

(
I

∆τn,m
i

+
3

2

K

∆t
+
∑

k

Cn,m
i,k I

)
, Cn,m

i,k =
1

|Ωi|

(
1

2
ρ(JE

⊥
) + ˜ρ(JV

⊥
)

)n,m

i,k

|Γi,k| (18)

with I the identity matrix; note the implicit stage is in fact matrix-free with a scalar diagonal

coefficient D for ∆pn,m
i deprived from the 3

2∆t contribution in the mass conservation equation and

including this term in the momentum conservation equations which involve ∆un,m
i and ∆vn,m

i .

Equation (17) can be solved at a very low cost per iteration using a simple point-Jacobi relaxation

method. Denoting l the iteration counter associated with this method when (17) is iteratively solved

to obtain wn,m+1 from the known wn,m and introducing ∆φ(l) = φ(l)−φn,m, the PJ-BDF-ALE-AC
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procedure reads:

∆w
(0)
i = 0





l = 0, lmax − 1

∆w
(l+1)
i = (Dn,m

i )
−1

(
−Rt

i(w
n,m, xn+1, sn+1) −

1

2|Ωi|

∑

k

(
∆F E

o(i,k)

)(l)

· ni,k |Γi,k| +
∑

k

Cn,m
i,k ∆w

(l)
o(i,k)

)

w
n,m+1
i = w

n,m
i + ∆w

(lmax)
i

(19)

C. Solver Validation

The solver presented in the previous section is validated by computing incompressible unsteady

laminar flows over pitching and heaving airfoils which were recently studied by Kinsey and Dumas

[14]. The airfoil flow computations presented in [14] were performed using a conventional pressure-

based solver implemented in a commercial solver on very fine grids and with a very small time-step

to ensure time and grid convergence and allow a fine analysis of the flowfield. These computations

will therefore be retained as first reference data and the ability of the proposed PJ-BDF-ALE-AC

to provide similar results will be established in the present section.

1. Test-cases description

The geometry under study is a NACA0015 airfoil submitted to a pitching motion and/or a heaving

motion. These prescribed motions are defined by the following laws of evolution for the pitching

angle θ(t), around an axis located at one-third of the airfoil chord, and the vertical position y(t)




θ(t) = θ0 sin(ωt)

y(t) = H0 sin(ωt + π
2 )

(20)

where θ0 and H0 are respectively the pitching and heaving amplitudes, ω is the angular velocity.

The reduced frequency f∗ is defined as f∗ = fc
U∞

, where U∞ is the freestream velocity. The first test

case, denoted PH from now on, combines pitching and heaving motion with θ0 = 60◦, H0 = 1 and

f∗ = 0.18. The second test case, denoted PP, corresponds to a pure pitching motion with θ0 = 23◦,

H0 = 0 and f∗ = 0.12. In both cases, the Reynolds number based on the freestream conditions and

the airfoil chord is equal to Re = 1100 hence the flow is assumed laminar.
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Fig. 1 (a): global view of the computational grid. (b): close-up on the airfoil region.

2. Numerical parameters

The computational mesh displayed in Fig.1 was generated so as to be similar to the grid used in

[14] since both the proposed PJ-BDF-ALE-AC solver and the commercial solver used by Kinsey

and Dumas are second-order methods on unstructured triangular grids. This mesh counts 32000

cells, with 360 points set on the airfoil and a near body resolution tailored to satisfy the criterion

y2
p

U∞

ν∞∆ ∼ 1, where yp is the distance from the wall to the first adjacent cell centroid and ∆ is the

minimal edge length on the airfoil. The enforcement of this criterion combines a low cell-Reynolds

number and a moderate cell aspect-ratio near the airfoil surface to ensure solution accuracy. The

AC parameter β is constant and equal to 5; this value was retained as offering a good trade-off

between accuracy and efficiency after a careful assessment of the flow solver on several incompressible

reference flows (this study is not reproduced for the sake of conciseness and because the focus of

the present work is on the TSM approach applied to the AC solver, not on the AC solver itself).

For each case, 520 physical time steps per period or cycle are used corresponding to a fixed non-

dimensional value of ∆t ≈ 1.06−2 and ∆t ≈ 1.16−2 for the PH an PP test cases respectively. The

local dual time step is computed as ∆τn,m
i = CFL max( hi

(ρE)n,m

i

,
h2

i

(2ρV )n,m

i

) with hi a characteristic

length of the cell Ωi, ρE and ρV the spectral radii of the inviscid and viscous Jacobian matrices and

CFL the multiplication factor of the characteristic time-step chosen as large as possible, CFL = 106,
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to ensure fast convergence to the dual steady-state through the use of very large values for ∆τn,m
i .

At each physical time step, 100 dual time iterations are performed with 16 iterations of the PJ

method to solve (19). The residual drops by 3 to 4 orders of magnitude for all the time instants

of a cycle; it has been checked that this criterion is sufficient to obtain converged results (global

aerodynamic coefficients, wall distribution, fields).

The computation is started with a uniform pressure and velocity flow field; 6 (respectively 4) cycles

must be computed for PH (resp. PP) before flow periodicity is fully achieved. A variation of

the mean aerodynamic coefficient inferior to 0.2% between two consecutive cycles is the criterion

typically used to ensure a fully periodic flow is obtained. All the PJ-BDF-ALE-AC results displayed

hereafter correspond to the 7th cycle for PH and 5th cycle for PP and will be labelled BDF from

now on.

3. Results

The comparison with the reference results [14] is performed on the force coefficients, more precisely

on the CY coefficient which is the only one made available by Kinsey and Dumas. The CX coefficient

is also presented for future comparison with the TSM approach. Figure 2 presents the computed

CX and CY coefficients over the normalized time period for the PH test-case; note only 1 out of

8 physical time-steps are plotted for the present BDF computations. Similar results obtained for

the PP test-case are plotted in Figure 3. The agreement between [14] and the present BDF results

is globally very good. A slight difference on the CY prediction can be observed in Fig. 2 for the

PH problem. Further grid and time-refinement did not modify the present BDF results which will

consequently be retained as reference data, against which the TSM approach developed in the next

section will be compared, both in terms of accuracy and efficiency.

III. Artificial Compressibility and Time Spectral Method

The present section explains how the time-spectral method, essentially used up to now in the context

of compressible flows for structured grid computations, can be combined with the unstructured AC

solver described in the previous section. The straightforward application of the TSM for the ALE-

AC system is first explained; next, the method of resolution of the AC-ALE TSM discretization is
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Fig. 2 PH test case. (a): CX evolution computed using the present BDF method. (b): CY

evolution computed in [14] and using the present BDF method.
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Fig. 3 PP test case. (a): CX evolution computed using the present BDF method. (b): CY

evolution computed in [14] and using the present BDF method.

described and the necessary modifications to perform on the implicit treatment are detailed.
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A. TSM discretization of the ALE-AC system

Taking advantage of the time periodicity of w, the solution vector can be decomposed into a Fourier

series

w =

+∞∑

k=−∞

ŵk(x)eikωt (21)

where ω is the pulsation of the periodic phenomenon related to the period T by ω = 2π/T . The

complex number i is underlined to avoid confusion with the cell index i. In practice, the solution is

represented with a finite number of harmonics N

w =

N∑

k=−N

ŵk(x)eikωt (22)

The Nyquist-Shannon theorem [31] states that the kth Fourier coefficient ŵk with − N ≤ k ≤ N

can be accurately computed with 2N + 1 time instances evenly distributed over the time period

ŵk(x) =
1

2N + 1

2N∑

n=0

wne−ikωn∆t (23)

with wn ≡ w(tn = n∆t) and ∆t = T/(2N + 1). The main idea of the TSM [4] is then to look

for these solutions wn in order to retrieve the solution at any time t in the period using (22). The

space-discretized ALE-AC system at time instance tn reads :

K
∂wn

∂t
+ R(wn, xn, sn) = 0 (24)

where w = {wi} is the set of solution values in all the grid cells and R = {Ri} is the set of residual

values computed in all the grid cells, which depends non-linearly on w. From now on, wi,n will

denote the solution at the grid point i and the nth time instance tn in the period. Using the Fourier

decomposition (22) of wn into equation (24) leads to 2N + 1 equations (one for each wavenumber)

in the frequency domain

K

N∑

k=−N

ikωŵkeikωn∆t + R̂(ŵk, x̂k, ŝk) = 0 (25)

The operator R̂ could be directly computed from ŵk but, because of its non-linearity, this would

involve complex series of convolution becoming massively time consuming [3]. Using equation (23)

allows to cast system (25) back into the time domain and to retrieve the original residual vector R
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because of the bijective property of the Fourier transform

KDt(wn) + R(wn, xn, sn) = 0 (26)

where Dt(wn) is the spectral derivative with respect to time which couples the time instances.The

spectral time operator expressed in the time domain becomes

Dt(wn) =

N∑

p=−N

dpwn+p (27)

In equation (27) the subscript n + p must be understood as expressed modulo 2N + 1 to get the

corresponding positive subscript. For instance w−N = wN+1. The dp coefficients are given by

dp =





π
T (−1)(p+1) csc

(
πp

2N+1

)
if p 6= 0

0 if p = 0

(28)

Since the spectral time-derivative depends on the whole set of solutions wn+p with p ranging from

−N to N , system (26) must be written for each time instance in the period

KDt(wn) + R(wn, xn, sn) = 0, 0 ≤ n < 2N + 1 (29)

B. Resolution of the TSM-ALE-AC system

The non-linear system of equations (29) is iteratively solved through a dual time-marching strategy,

that is looking for the steady-state with respect to τ of the following system

∂wn

∂τ
= −Rt

n(w, xn, sn), 0 ≤ n < 2N + 1 (30)

where the total residual is defined as Rt
n(w) = KDt(wn) + R(wn, xn, sn) for the TSM approach.

The 2N+1 steady values wn are coupled through the spectral approximation Dt(wn) of the physical

time derivative. Let us denote wm
n the intermediate value of wn at the mth iteration of the dual-time

evolution to a steady-state. Using a simple first-order Euler explicit discretization for the dual-time

derivative, the steady-state is reached by iteratively solving

∆wm
n

∆τm
i,n

= −Rt
n(wm, xn, sn), 0 ≤ n < 2N + 1 (31)

where ∆wm
n = wm+1

n −wm
n and ∆τm

i,n is the local (dual) time-step in cell i of the grid associated with

the time instance tn within the period. Note that, in the present study, the 2N + 1 grid positions

17



and velocities are a priori known from the prescribed grid motion. In particular, the velocity sn is

calculated with equation (9) at time tn. Adapting to the present AC system the stability analysis

conducted in [5] for TSM compressible flow computations using an explicit formulation similar to

(31) leads to the following CFL-like stability condition for the choice of ∆τm
i,n:

∆τm
i,n = CFL

hi

||λ||mi,n + Nωhi
(32)

with hi a characteristic length of the cell i in the computational grid, ||λ||mi,n the spectral radius of the

Jacobian matrix associated with the inviscid AC system at time instance tn and CFL ≤ 1. Looking

for the solution of a steady incompressible flow, the matrix K would be equal to zero and the above

condition would not include the Nωhi contribution. When the explicit TSM scheme is applied to

obtain the solution of a periodic incompressible flow with either a high frequency (ω >> 1) and/or

a high number N of harmonics, condition (32) can become particularly restrictive. Using an Euler

implicit dual-time integration for integrating (30) in each grid cell i at each time instance tn allows

the use of large dual-time steps, hence fast convergence to a steady-state independently of ω or N ,

but the following implicit non-linear TSM-ALE-AC problem must be solved:

∆wm
i,n

∆τm
i,n

= −Rt
i,n(wm+1, xn, sn), 0 ≤ n < 2N + 1 (33)

C. Implicit time spectral method: PJ-TSM-ALE-AC system

The full TSM residual is defined by Rt(w) = KDt(w)+R(w) with the spectral difference operator

Dt linear and the spatial discretization operator R formally unchanged with respect to the BDF

approach. Following a line of work similar to that described for the BDF approach, the TSM residual

at dual time-level m + 1 can be approximated as follows

Rt
i,n

(
wm+1

)
= Rt

i,n (wm) + KDt(∆wm
i,n) +

1

|Ωi|

∑

k

(
∆H

(i)
(i,k),n

)m

|Γi,k| (34)

where the flux increment balance ∆H(i) is computed using the formulae (15) and (16) previously

introduced when deriving the BDF implicit stage but now applied with the variable increment ∆wm
i,n

instead of ∆w
n,m
i . Expanding this flux increment balance and the spectral approximation of the

physical time derivative with (27) (28) leads to the following implicit relationship, where the terms

18



depending on ∆wm
i,n have been gathered in the Left Hand Side (LHS)

(
1

∆τm
i,n

+
∑

k

Cm
(i,k),n

)
∆wm

i,n = −Rt
i,n(wm) −

1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)m

· n(i,k),n |Γ(i,k),n|

+
∑

k

Cm
(i,k),n∆wm

(o(i,k)),n − K

N∑

p=−N

dp∆wm
i,n+p

(35)

with the scalar coefficients Cm
(i,k),n defined by:

Cm
(i,k)n =

1

|Ωi,n|

(
1

2
ρ(JE

⊥ ) + ˜ρ(JV
⊥

)

)m

(i,k),n

|Γ(i,k),n| (36)

and d0 = 0 in the spectral time-derivative so that there is no contribution of this term to the above

LHS. Following the strategy adopted to solve the BDF-ALE-AC system, a Point-Jacobi strategy

could be applied to obtain an iterative solution of the above TSM-ALE-AC system. However, a

significant difference arises when going from the BDF to the TSM system: while the BDF formula

strengthens the diagonal dominance of the linear system associated with the implicit stage, the

TSM formula introduces only off-diagonal terms which lead to a loss of diagonal dominance. This

issue was pointed out by Su and Yuan in [8] and the problem was then fixed by using the GMRES

solver of Saad and Schultz [32] to solve the implicit TSM system. Woodgate and Badcock [7]

also highlight the performance reduction of their Krylov linear solver due to the loss of diagonal

dominance for the matrix of the implicit system. In the present work, a simple fix is adopted:

the LHS coefficient of ∆wm
i,n in (35) is modified to include the contribution K

p=N∑

p=−N

|dp|, which is

sufficient to ensure the diagonal dominance of the implicit stage with only a limited impact on its

efficiency. System (35) is then iteratively solved using a simple PJ relaxation technique, yielding

the following PJ-TSM-ALE-AC system:

∆w
(0)
i,n = 0





l = 0, lmax − 1

∆w
(l+1)
i,n =

(
Dm

i,n

)−1


−Rt

i,n(wm) −
1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)(l)

· n(i,k),n |Γ(i,k),n| +
∑

k

Cm
(i,k),n∆w

(l)
(o(i,k)),n − K

N∑

p=−N

dp∆w
(l)
i,n+p




wm+1
i,n = wm

i,n + ∆w
(lmax)
i,n

(37)
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with the modified diagonal coefficient Dm
i,n =

1

∆τm
i,n

+
∑

k

Cm
(i,k),n + K

N∑

p=−N

|dp|.

IV. Assessment of TSM against BDF

The above PJ-TSM-ALE-AC method is now applied to the computation of the test-problems PH and

PP and its results are compared to those obtained using the PJ-BDF-ALE-AC approach. To the best

of our knowledge, the only previous application of TSM to the AC system for incompressible laminar

periodic flow has been performed by Jameson [13], but with a limited success since stability concerns

were encountered for high frequency and/or large number of harmonics. In the present study, the

convergence of TSM to a steady-state will be first analyzed when the number of harmonics N is

varied for accuracy purpose. The reference BDF strategy and the newly developed TSM approach

will then be discussed in terms of accuracy: in particular, the number of modes needed to achieve a

sufficient level of accuracy will be investigated for test-problems PH and PP. The potential efficiency

gain offered by TSM with respect to BDF will be finally assessed.

A. Convergence of the TSM approach

The convergence of (37) to a steady-state is monitored by plotting the pressure residual defined as

the root mean square of the residual operator Rt(w) first component, computed in all the grid cells

and averaged by the number of time instances over the period:

resm
av =

1

2N + 1

2N∑

n=0

√√√√ 1

Ncell

Ncell∑

i=1

∆pm
i,n

2

∆τm
i,n

2

This quantity is normalized by its value at the first iteration to facilitate the comparison between

calculations performed with different values for the number of harmonics N . All the computations

make use of lmax = 16 for the implicit PJ solver and CFL = 106 for computing the dual-time step

∆τm
i,n with (32). The AC parameter β is the same as in the previous BDF calculations (β = 5).

The convergence histories displayed in Fig. 4 demonstrate the convergence rate of the TSM solver

to a steady-state depends only weakly on the number of harmonics N : for test-case PH, less than

4000 iterations are needed to achieve a residual decrease by four orders of magnitude while a bit

less than 3000 iterations are sufficient for test-case PP, whatever the value of N . The cost of an
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Fig. 4 Convergence history for the PJ-TSM-ALE-AC method. (a): PH test problem with

increasing number of harmonics (N ranging from 2 to 16). (b): PP test problem with increasing

number of harmonics (N ranging from 4 to 22).

iteration depends of course on the value of N but this point will be discussed at the end of the

section after analyzing the accuracy of the TSM solutions.

B. Accuracy of the TSM solutions

The accuracy of the TSM solutions will be first assessed in a qualitative way by comparing the

steady solutions of the PJ-TSM-ALE-AC system obtained for an increasing number of harmonics

with the previously computed BDF solution. This comparison will be performed on the evolution

of the global force coefficients CX , CY over a cycle both for the PH and PP test-problems. Next

the computed wall pressure distribution over the airfoil and pressure contours at selected instants

within the period will also be compared. A more quantitative error analysis between TSM and BDF

will be eventually proposed and conclusions regarding the potential efficiency gain offered by TSM

with respect to BDF will be drawn.

1. Global aerodynamic coefficients

Figures 5 and 6 display the CX and CY coefficients computed using the TSM approach with an

increasing number of harmonics for the PH and PP flow problems respectively. These evolutions
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Fig. 5 PH test-case. Comparison of the CX (a) and CY (b) coefficients computed using BDF

and TSM with an increasing number of harmonics.

over a period are plotted along the previously computed BDF results, whose accuracy was checked

with respect to [14]. Let us recall the BDF computations use 520 physical times-steps per period

and require about 4 (resp. 6) cycles before reaching a periodic solution for the PH (resp. PP)

flow problem. The TSM evolutions are reconstructed from the computed wn fields for any time

in the period using the truncated Fourier series representation of the flow solution. For the PH

test-problem, the computed evolution using TSM with N = 2 and N = 4 significantly differs from

the reference result; very small differences between the BDF and TSM evolution remain with N = 8

but both evolutions appear superimposed with N = 16. For the PP test-problem, the computed

evolution of CX and CY using TSM with N = 4 and N = 8 display significant differences with the

reference result; with N = 16 there are still some very small discrepancies while with N = 22 the

BDF and TSM results appear as superimposed.

2. Wall pressure distributions and pressure fields

Two moments within the period are retained for a closer comparison of the computed flow fields:

t/T = 0.25 and t/T = 0.45. For each of these moments, the wall pressure coefficient distribution

obtained by using BDF and TSM(N) is plotted, respectively in Fig. 7 and 9 for test-problem PH.

Let us recall these pressure distributions are reconstructed at each grid point i from the computed
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Fig. 6 PP test-case. Comparison of the CX (a) and CY (b) coefficients computed using BDF

and TSM with an increasing number of harmonics.

wi,n values, applying formulae (22) and (23) in each grid cell. For the PH computation, the already

very good agreement between BDF and TSM(8) and the almost perfect match between BDF and

TSM(16) wall distributions are clearly visible; this similarity is confirmed on the pressure contours

displayed in Fig. 11. For test-problem PP, the wall pressure coefficient distribution obtained by

using BDF and TSM(N) is plotted, respectively in Fig. 8 and 10. The match is already very good

with N = 16 and almost perfect when N = 22; this similarity is confirmed on the pressure contours

displayed in Fig. 12.

3. Quantitative error analysis

The RMS error on the CX force coefficient is defined as:

ǫRMS(CX) =

√√√√ 1

N∆t

N∆t∑

k=1

(
(CX)TSM(N)(tk) − (CX)BDF (tk)

(∆CX)BDF

)2

where the values of the CX coefficients at times tk in the flow cycle and the amplitude ∆CX of the

CX variation are readily available for the BDF computation while the values of CX corresponding

to the TSM computation are obtained by reconstruction of the flow solution using a truncation

Fourier series with N harmonics. The RMS error on the CY force coefficient is similarly defined.

These errors are plotted as a function of N in Fig. 13 to conclude on the best choice of N : the
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Fig. 7 Flow problem PH. Reconstructed TSM(N) wall pressure coefficient at time t/T = 0.25

for an increasing number N of harmonics. Comparison with the reference BDF distribution.

number of harmonics must indeed be taken large enough to ensure the computed TSM solution is

sufficiently accurate with respect to the usual BDF solution but not unnecessarily large since the

gain expected from the TSM approach with respect to the BDF strategy is a cost reduction rather

than an increased accuracy. Consistently with the previous graphical comparisons between BDF

and TSM solutions, the error levels achieved on test problem PH for a given number of harmonics

are much lower than the errors levels obtained on test problem PP. For test-case PH, the RMS error

on CX and CY drops below the 1% level for N = 8 while N = 16 is needed to fulfill this same

criterion for test-case PP.

24



!"

$
%

! !"# !"$ !"% !"& '

()"*

()

(#"*

(#

('"*

('

(!"*

!

!"*

' !"#

$%&'()*

(a)

!"#

$
%

! !"# !"$ !"% !"& '

()"*

()

(#"*

(#

('"*

('

(!"*

!

!"*

' !"#

$%&'()*

(b)

!"#

$
%

! !"# !"$ !"% !"& '

()"*

()

(#"*

(#

('"*

('

(!"*

!

!"*

' !"#

$%&'()*+

(c)

!"#

$
%

! !"# !"$ !"% !"& '

()"*

()

(#"*

(#

('"*

('

(!"*

!

!"*

' !"#

$%&'()**

(d)

Fig. 8 Flow problem PP. Reconstructed TSM(N) wall pressure coefficient at time t/T = 0.25

for an increasing number N of harmonics. Comparison with the reference BDF distribution.

C. Efficiency of the TSM approach

The global computational cost of the usual BDF approach can be expressed as:

CBDF = N∆t × Ncycles × mBDF
max × lmax × Ncells × cBDF

u

where N∆t is the number of physical time-steps used to describe a flow period or cycle, Ncycles is

the number of cycles to be computed before a periodic solution is actually reached, mBDF
max is the

number of dual sub-iterations used at each physical time-step to reach the dual steady-state, lmax

is the number of iterations used with the PJ relaxation method, Ncells is the grid size and cBDF
u is
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Fig. 9 Flow problem PH. Reconstructed TSM(N) wall pressure coefficient at time t/T = 0.45

for an increasing number N of harmonics. Comparison with the reference BDF distribution.

the unit cost (per point and per iteration) of the PJ-BDF-ALE-AC method.

Meanwhile, the global computational cost of the newly proposed TSM approach is expressed as:

CTSM(N) = (2N + 1) × mTSM(N)
max × lmax × Ncells × cTSM

u (N)

where (2N + 1) is the number of time-instances retained to describe the flow period, mTSM
max is the

number of iterations on the dual time needed to drive the PJ-TSM-ALE-AC system to a steady-

state , lmax is the number of iterations used with the PJ relaxation method, Ncells is the grid size

and c
TSM(N)
u is the unit cost (per point and per iteration) of this PJ-TSM-ALE-AC method.
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Fig. 10 Flow problem PP. Reconstructed TSM(N) wall pressure coefficient at time t/T = 0.45

for an increasing number N of harmonics. Comparison with the reference BDF distribution.

Since lmax is the same for BDF and TSM, the cost ratio between TSM(N) and BDF used with the

same computational grid reads:

η =
CTSM(N)

CBDF
=

(2N + 1)

N∆t × Ncycles
×

m
TSM(N)
max

mBDF
max︸ ︷︷ ︸

Φ1

×
c
TSM(N)
u

cBDF
u︸ ︷︷ ︸
Φ2

where, for the given flow solver described and used in this work, the contribution Φ1 depends on the

flow problem only while the contribution Φ2, ratio of the unit costs associated with the TSM(N)

and BDF methods, depends on the numerical implementation of these methods into the computer

code in use. In the present study, the same number N∆t = 520 of physical time-steps per cycle has
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Fig. 11 Flow problem PH. Reconstructed TSM pressure field (N = 16) at time t/T = 0.25 (a)

and t/T = 0.45 (b).
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Fig. 12 Flow problem PP. Reconstructed TSM pressure field (N = 22) at times t/T = 0.25 (a)

and t/T = 0.45 (b).

been used for PH and PP as well as the same number of dual sub-iterations mBDF
max = 100. As far

as global cost is concerned, and regardless of the accuracy issue for the time being, the PH and PP

test-cases differ by the number of cycles needed to achieve fully periodic flow (NPH
cycles = 6 while

NPP
cycles = 4) and the typical number m

TSM(N)
max of iterations on τ needed to achieve a steady-state

for the TSM computations. This number is roughly m
TSM(N)
max ≈ 3300 for PH and m

TSM(N)
max ≈ 2800
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Fig. 13 Root mean square error of the normalized difference between the CX (a) and CY (b)

coefficients computed using the reference BDF strategy with N∆t = 520 iterations per cycle

and the TSM(N) strategy with increasing N .

for PP, whatever the number of harmonics N (see Fig. 4). Consequently, the global cost ratio for

TSM and BDF strategies is given, for test-case PH, by

ηPH = ΦPH
1 (N) × Φ2(N) = (0.010577× (2N + 1)) × Φ2(N) (38)

and for test-case PP by

ηPP = ΦPP
1 (N) × Φ2(N) = (0.01346× (2N + 1)) × Φ2(N) (39)

The unit cost ratio between the TSM approach and the BDF method should display a weak depen-

dency only on the number N of harmonics, on one hand through the extra terms introduced by the

spectral time approximation and on the other hand through the extra-cost that might be induced

by the memory access associated with the large-scale TSM systems which couple 2N + 1 systems

of conservation laws. Ideally, with no memory issues, one would expect Φ2(N) to remain close to

unity whatever the value of N . In practice, the ratio of the TSM(N) and BDF unit costs has been

numerically estimated as a linear function of N (which is implementation-dependent)

Φ2(N) ≈ 0.8208 + 0.0925× N (40)

Fig. 14 displays the evolution of the global cost ratio for PH and PP, given respectively by (38)
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Fig. 14 Evolution of the global cost ratio η = CTSM(N)/CBDF between TSM(N) and BDF with

an increasing number N of harmonics for TSM(N). Solid lines: measured cost ratio for the

PH and PP test-cases. Dashed lines: ideal cost ratio with a TSM(N) implementation of unit

cost Φ2 roughly equal to the unit cost of the BDF approach.

and (39), with the measured unit cost ratio Φ2(N) given by (40), in which case ηPH and ηPP

vary quadratically with N , or with an ideal unit cost ratio roughly equal to 1, in which case the

variation of ηPH and ηPP remains linear with respect to N . Though ideal, this latter case provides

an upper limit for the number of harmonics N that might be used by the TSM approach before

its computational cost exceeds that of the BDF approach. It can be observed in Fig. 14 that the

measured value of ηPP reaches 1 for N = 16 while ηPH remains below 0.8 for this same number of

harmonics. With an improved implementation allowing to reduce the growth of the unit cost ratio

Φ2 with N , the global cost ratio η could remain below 0.5 for N = 16.

The key point of the present efficiency analysis is reached when crossing the evolution of η(N) given

by Fig. 14 with the accuracy assessment summarized on the RMS-errors for CX and CY plotted in

Fig. 13. The RMS-errors on these aerodynamic coefficients are plotted against the global efficiency

ratio η in Fig. 15: the solid lines correspond to the measured evolution of ηPH and ηPP while the

dashed lines correspond to the ideal evolution where the unit cost ratio Φ2 would remain roughly
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CTSM(N)
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for test-problems PH and PP. Solid lines: measured cost ratio. Dashed lines:

ideal cost ratio with a TSM(N) implementation of unit cost Φ2 roughly equal to the unit cost

of the BDF approach.

equal to 1. From the previously performed accuracy analysis, the BDF and reconstructed TSM

solutions were found to be almost coincident when the normalized RMS error on CY dropped below

1%, corresponding to a number of harmonics N = 8 for the PH case and N = 16 for the PP case.

Retaining this same criterion, it can be observed in Fig. 15 the TSM approach provides a solution

as accurate as the conventional BDF strategy for an overall cost divided by 5 when computing the

PH case; meanwhile, for the PP case, the larger number of harmonics needed by the TSM approach

to provide the same level of accuracy as BDF does not allow to reduce the CPU cost, with ηPP ≈ 1

for N = 16. An improved implementation of the TSM approach could make the method attractive

even for the PP test-case, with an ideal computational cost ratio that could go down to 0.5 for

N = 16 in that case. The analysis of the TSM efficiency has been focused on the achievable CPU

gain using the steady computation of a reduced number of modes within a flow period instead of a

full unsteady computation over several cycles. It must be pointed out however the TSM method is

also more demanding memory-wise than the BDF strategy since it requires to store (2N +1)×Ncells
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unknown states at each step of the steady-state convergence process against Ncells unknown states

for the BDF method at each step of the time-marching process.

V. Conclusion

The TSM method has been successfully applied to the computation of periodic incompressible flows

over airfoils using an artificial compressibility formulation within an ALE framework on general

unstructured grids. As pointed out by previous authors [6–8], the implicit treatment of the large

scale TSM system, coupling (2N +1) systems of conservation laws with N the number of harmonics

retained to describe the periodic flows under study, is crucial to ensure the efficiency of the TSM

method with respect to a conventional BDF formula. In the present work, an implicit formulation

of the TSM method has been derived from a simple matrix-free treatment previously developed

in the context of compressible flows and readily applicable to the AC system. Special care has

been taken to ensure the diagonal dominance property of the TSM implicit stage, with a simple

modification of the diagonal contribution which does not significantly affect the convergence of the

implicit solver to a steady-state. A basic point-relaxation technique has been retained to solve

the linear system associated implicit TSM scheme for a very low cost per iteration which makes

up for the reduced intrinsic efficiency of the method (a few thousand inexpensive iterations are

needed to achieve steady-state). The computation of low-Reynolds periodic flow over a pitching

and heaving NACA0015 airfoil has demonstrated that between N = 8 and N = 16 harmonics

are required by the TSM method to accurately represent these two-dimensional unsteady flows.

This coarse representation of the flow cycle offered by the spectral formula used for discretizing

the physical time-derivative combined with an efficient solution of the steady solution for the TSM

system coupling the (2N +1) selected unknown fields within a flow period has allowed a substantial

gain of CPU time for the computed pitching and heaving test-case over a NACA0015 airfoil: a level

of accuracy on the flow solution over a period comparable to that offered by a conventional BDF

time-integration was achieved using an overall CPU time divided by a factor five. Note however no

reduction was observed using TSM(N) for the pure pitching test-case at a lower reduced frequency

because twice as many harmonics (16 instead of 8) were needed in that case to achieve an accuracy
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level similar to that of the BDF approach. In order to make the TSM approach computationally

attractive even when a rather large number of modes are required to achieve a sufficient level of

accuracy, ongoing work is devoted on one hand to the optimal implementation of the method so as

to reduce as much as possible the growth of the unit cost ratio Φ2 when N increases and on the

other hand to the efficiency improvement of the implicit solver with respect to the PJ method used

in the present study in order to potentially reduce both Φ1 and Φ2. Efficient relaxation strategies

proposed for instance in [33] will be investigated in this perspective. Our current research is also

focused on strategies allowing an automatic determination of the number of harmonics to be used

with the TSM approach for ensuring a prescribed accuracy level.
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Méthode de décomposition spectrale temporelle

implicite pour le calcul d’écoulements

incompressibles périodiques en temps
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La méthode TSM (Time Spectral Method) consiste à remplacer le calcul insta-

tionnaire d’une solution périodique en temps en le calcul de 2N + 1 problèmes sta-

tionnaires couplés où N est le nombre d’harmoniques retenus dans la série de Fourier

tronquée du système Navier-Stokes. L’efficacité de la méthode a dores et déjà été

démontrée par plusieurs auteurs pour des applications d’écoulements compressibles

dans le contexte de maillages structurés en utilisant une formulation implicite pour

résoudre le système augmenté par le couplage des équations. Dans ce papier, la TSM

est étendue aux écoulements périodiques incompressibles visqueux en utilisant une

formulation Volumes Finis de la méthode de compressibilité artificielle sur des mail-

lages non-structurés en mouvement. Des simulations numériques d’écoulements à bas

Reynolds autour de profils en mouvement de battement et d’oscillation montrent que

la TSM permet d’atteindre des réductions de coût de facteur 5 dans le meilleur des

cas en comparaison avec une méthode de calcul instationnaire classique.
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Nomenclature

A,B,J = Matrices Jacobiennes des flux

CX , CY = Coefficients d’efforts

Cp = Coefficient de pression

c = Corde du profil

F = Flux physique

f∗ = Fréquence adimensionnelle, fc/U∞

H0 = Amplitude de battement

H = Flux numériques

N = Nombre d’harmoniques

Re = Nombre de Reynolds

R = Vecteur des résidus spatiaux

s = Vecteur vitesse de grille

t, τ = Temps physique et fictif

w = Vecteur des variables conservatives

x = Vecteur de la position de grille

β = Paramètre de compressibilité artificielle

η = Rapport global des coûts TSM et BDF

θ, θ0 = Position angulaire et amplitude d’oscillation

ω = Vitesse angulaire

Indices

i = Indice de cellule

∞ = Valeur à l’infini amont

n = nime instant TSM

Exposants

l = Compteur des itérations Jacobi

m = Compteur de la boucle en temps fictif

n = Compteur de la boucle en temps physique
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I. Introduction

La conception de machines aérodynamiques ou hydrodynamique nécessite souvent le calcul

d’écoulements instationnaires. Quand cette étape de conception est réalisée avec des outils

numériques, l’approche dite "en temps fictif" est une méthode classique pour calculer ces écoule-

ments instationnaires. Dans cette approche, le champ instationnaire à chaque pas de temps physique

est obtenu comme solution stationnaire d’un problème en temps fictif ou dual [1] [2]. Cette stratégie

en temps dual, Dual Time Step ou DTS peut aussi être interprétée comme la recherche d’une solu-

tion (par rapport au temps dual) des équations stationnaires de l’écoulement augmentées d’un terme

source correspondant à la discrétisation de la dérivée en temps physique réalisée typiquement avec

un schéma précis au second ordre, Backward Difference Formula (BDF). Les méthodes numériques

disponibles pour les écoulements stationnaires peuvent alors être très facilement adaptées pour

traiter ces écoulements instationnaires en prenant simplement en compte ce terme source. Parmi

les nombreuses applications industrielles qui nécessitent une analyse instationnaire de l’écoulement,

beaucoup présentent une périodicité temporelle comme par exemple les rotors d’hélicoptères, les

éoliennes pour ce qui concerne l’aérodynamique externe et les turbomachines pour l’aérodynamique

interne. Un inconvénient de la méthode BDF-DTS est qu’elle requière de calculer, typiquement

depuis un état initial correspondant au repos, toute la période transitoire avant que l’écoulement

périodique s’établisse. Ce défaut des méthodes classiques en temps dual a motivé le développement

de méthodes numériques s’intéressant uniquement à trouver l’état périodique établi. Profitant du

développement de la solution périodique en série de Fourier, Hall & al [3] ont introduit une méth-

ode efficace dédiée aux écoulements périodiques en temps pour les applications turbomachines. En

reprenant la même idée, Gopinath et Jameson proposent la Time Spectral Method ou TSM pour

traiter de problèmes aérodynamiques externes [4]. La TSM transforme le système original de (2+d)

équations instationnaires décrivant l’écoulement compressible de dimension d pour chaque instant

(2 correspondant aux équations de conservation de masse et d’énergie et d le nombre d’équations

scalaires exprimant la conservation des d composantes de la quantité de mouvement) en un système

étendu de (2N +1)×(d+2) équations correspondant à la solution de l’écoulement à (2N +1) instants

dans la période, choisis de façon à assurer la précision spectrale de la dérivée en temps physique. Pour
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rendre la méthode vraiment attractive, il est bien entendu très important de calculer efficacement

l’état stationnaire de ce système étendu de lois de conservations. Comme l’on fait remarquer van der

Weide & al dans [5], l’intégration en temps explicite du système TSM montre une limite de stabilité

très sévère si le nombre d’harmoniques N augmente ou si la fréquence du phénomène périodique

calculé est importante. Plusieurs auteurs [6–8] ont donc mis en place des stratégies d’intégration

en temps implicite. Cela permet l’utilisation de grands CFL qui assurent une convergence plus

rapide vers l’état stationnaire et la possibilité d’utiliser un grand nombre d’harmoniques N comme

la description précise d’écoulements périodiques de spectre riches peut l’exiger. Jusqu’à présent, la

TSM a été utilisée pour un grand nombre d’applications qui traitent essentiellement d’écoulements

compressibles : turbomachines [9], rotors d’hélicoptères [10]. Le contexte de la présente étude est le

projet HARVEST qui s’attache à développer une technologie de turbine hydrolienne permettant la

conversion de l’énergie cinétique des courants de marées et/ou de rivières en énergie électrique [11].

La conception hydrodynamique de cette turbine est actuellement réalisée en utilisant des stratégies

expérimentales et numériques. L’objectif final de ce travail est d’améliorer l’efficacité de la partie

numérique en remplaçant les calculs BDF actuels d’écoulements turbulents 3D autour de la turbine

[12] par une approche TSM. Cela suppose d’adapter la stratégie TSM dans un solveur incompress-

ible. Une première tentative en ce sens a été récemment proposée par Jameson [13] en utilisant une

méthode de Compressibilité Artificielle (AC) mais des problèmes de stabilité sont très vite apparus

dès lors qu’il a calculé des profils oscillants avec une fréquence élevée. Dans ce papier, une formu-

lation TSM implicite est proposée et appliquée avec succès au calcul d’écoulements incompressibles

laminaires autour de profils en mouvement de battement et d’oscillation récemment étudiés par

Kinsey et Dumas [14] avec une approche BDF classique. Les calculs de telles configurations 2D

stationnaires représentent un premier pas vers le calcul plus compliqué d’écoulements turbulents 3D

sur des turbines hydroliennes. Ils restent néanmoins intéressants, à cette étape de développement,

car leur faible coût permet une évaluation rigoureuse de la capacité de la TSM a accélérer le calcul

d’écoulements périodiques en temps à bas Reynolds. Cette approche utilise la méthode AC pour

décrire l’écoulement incompressible et une stratégie ALE pour décrire le mouvement de maillages

non-structurés. Elle est comparée avec une approche BDF classique qui combine aussi AC et ALE
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du point de vue de la précision et de l’efficacité. Le papier est organisé comme suit : la partie II

rappelle les principaux ingrédients du solveur incompressible DTS-BDF (modèle AC, formulation

ALE, intégration en temps implicite) et montre des résultats de validation obtenus pour les cas

de profils NACA0015 en mouvement de battement et oscillation récemment analysés par Kinsey et

Dumas [14]; la partie III détaille l’application de la TSM à la méthode AC et la section IV décrit

l’adaptation à un traitement implicite développé dans [15] pour le système TSM; dans la section V,

la méthode TSM implicite est appliquée au calcul d’écoulement autour d’un profil NACA0015 en

mouvement de battement et oscillation pour un nombre croissant d’harmoniques N dans le but de

déterminer le meilleur compromis entre précision et coût (tous les deux fonctions croissantes de N)

et de savoir si la TSM peut surpasser la BDF. Des conclusions et perspectives sont tirées dans la

dernière partie.

II. Solveur Incompressible

A. Equations

La solution des équations Navier-Stokes incompressibles est typiquement obtenue en utilisant soit,

une méthode à équation de pression où pression et vitesse sont résolues de façon itérative à travers

une équation de correction pour la pression soit, une méthode basé sur la masse volumique comme

la méthode de compressibilité artificielle (AC) de Chorin [16]. Cette dernière stratégie est celle

retenue dans cette étude afin de pouvoir bénéficier des méthodes implicites efficaces précédemment

développées pour traiter des problèmes hyperboliques [15] et facilement adaptables au système AC.

Rappelons que la méthode AC permet d’obtenir la solution instationnnaire des équation d’Euler

1D en recherchant l’état stationnaire du système hyperbolique de lois de conservations suivant par

rapport à un temps fictif ou dual τ

∂

∂τ




p

u




︸ ︷︷ ︸
=w

+




0 0

0 1




︸ ︷︷ ︸
=K

·
∂

∂t




p

u


+

∂

∂x




βu

u2 + p




︸ ︷︷ ︸
=f(w;β)

= 0 (1)

avec x la variable d’espace, t le temps physique, p, u la pression et vitesse, β, le paramètre constant

de compressibilité artificielle. A l’état stationnaire sur τ , la solution u(x, t) de (1) satisfait la

condition de divergence nulle tandis que les deux champs u(x, t) et p(x, t) satisfont les équations de
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quantités de mouvement instationnaires (par rapport à t). Si l’on réécrit (1) sous forme compacte

d’un système hyperbolique 1D avec terme source, l’on obtient

∂w

∂τ
+

∂

∂x
f(w;β) = S = −K

∂w

∂t

et il devient clair que le système AC peut être efficacement conduit vers une solution stationnaire

précise en utilisant des outils initialement développé dans le contexte des écoulement compressibles

: discrétisation amont au deuxième ordre des gradients des flux, discrétisation BDF au deuxième

ordre de la dérivée en temps physique et premier ordre implicite pour une convergence rapide en

temps dual. Notons que le choix de la valeur du paramètre β affecte la convergence générale ainsi

que la précision de la solution physique à travers la dissipation numérique de la discrétisation en

espace. Cependant, tant que l’état stationnaire par rapport à τ est correctement atteint, le système

AC reste consistent avec les équations incompressibles quel que soit la valeur de β. Tournons nous

maintenant vers le système AC étendu au cas d’écoulements incompressibles 2D visqueux pour des

maillages en mouvement. Supposons que Ω(t) ⊂ ℜ2 est une surface de contrôle arbitraire délimité

par un contour continu fermé ∂Ω(t) qui se déplace indépendamment du fluide à la vitesse s(x, t) =

sx(t) i + sy(t) j, où x = x i + y j est le vecteur des coordonnées cartésiennes dans le référentiel

absolu. Dans ce référentiel ALE, les équations 2D Navier-Stokes pour les écoulements instationnaires

incompressibles, modifiées pour prendre en compte la méthode AC, peuvent s’exprimer sous la forme

intégrale :

∂

∂τ

∫

Ω(t)

w dΩ(t) + K
∂

∂t

∫

Ω(t)

w dΩ(t) +

∫

∂Ω(t)

(F E − F V ) · n dγ(t) = 0 , (2)

où n est le vecteur unitaire normal sortant et γ l’abscisse curviligne du contour ∂Ω. Le vecteur des

variables conservatives w, la matrice singulière K, les flux convectifs F E = (fE , gE) et visqueux

F V = (fV , gV ) sont définis par
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Re
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La pression p et les composantes (u, v) de la vitesse du fluide dans le référentiel absolu sont normalisés

respectivement par ρ∞U2
∞

et U∞, avec ρ∞ et U∞ les magnitudes de la masse volumique et vitesse

à l’infini amont. Pour les calculs d’écoulements autour de profils qui vont suivre, le nombre de

Reynolds Re = ρ∞U∞c/µ∞ est basé sur la corde du profil c. La prochaine sous-partie décrit les

approches volumes-finis, schéma upwind et intégration en temps implicite utilisées dans ce travail

pour résoudre le système ALE-AC (2).

B. Méthodes numériques

1. Discrétisation spatiale

Le système (2) est intégré sur des maillages non structurés en utilisant une approche Volume Finis.

En appliquant (2) sur une cellule donnée Ωi, en introduisant la valeur moyenne w de w sur la cellule

et en décomposant la balance des flux comme la somme des flux à travers chaque face Γi,k de la

cellule Ωi, on obtient

∂

∂τ
(wi|Ωi|) + K

∂

∂t
(wi|Ωi|) +

∑

k

∫

Γi,k

(F E − F V ) · n dγ = 0 (3)

où |Ωi| est la surface de la i-ème cellule Ωi. Le vecteur des flux physiques normal (F E − F V ) · n à

travers la face Γi,k de longueur |Γi,k| est approchée par le flux physique numérique H = HE −HV

calculé au centre i, k de la face Γi,k

∫

Γi,k

(F E − F V ) · n dγ =
(
HE

i,k −HV
i,k

)
|Γi,k| + O(hp)

où h est une longueur de grille typique. La précision en espace p dépend du choix de la reconstruction

polynomiale utilisée pour la variable conservative à l’intérieur de chaque cellule; une reconstruction
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linéaire est systématiquement utilisée dans cette étude conduisant à une précision au second ordre

en espace. Pour cette raison et, ce, sans perte de précision, l’état moyenné dans la cellule i est

remplacé par l’état au centre de la cellule, noté wi à partir de maintenant. Le solveur approché

de Roe initialement développé pour les équations d’Euler compressibles [17] est adapté au système

hyperbolique ALE-AC (2) et combiné avec une approche MUSCL pour la reconstruction [18] [19]

pour obtenir la formule du flux physique numérique HE
i,k

HE
i,k =

1

2
(F E(wL

k ) · ni,k + F E(wR
k ) · ni,k) +

1

2
QE

i,k(wL
k − wR

k ) (4)

où wL/R sont les états reconstruits, respectivement, à gauche et à droite de la kieme interface Γi,k

de la cellule Ωi, QE est la matrice de dissipation de Roe. Les valeurs des états au centre de la

face i, k sont linéairement reconstruit depuis les valeurs des états aux centres des cellules i et o(i, k)

partageant la face Γi,k et leurs gradients ∇w dans chacune de ces cellules.




wL
k = wi + ∇wi · ri,k

wR
k = wo(i,k) + ∇wo(i,k) · ro(i,k)

(5)

où ri,k (resp. ro(i,k)) désigne le vecteur s’étendant du centre de la cellule i (resp. o(i, k)) au centre

de l’interface Γi,k. Le gradient ∇wi est calculé à chaque centre de cellule i en utilisant une formule

aux moindres carrés appliquée sur un support fixé incluant les cellules voisines partageant au moins

un nœud avec la cellule i [19]. La matrice de dissipation de Roe QE est donnée par :

QE = |AEnx + BEny| = |JE
⊥
|

où n = (nx, ny) et AE , BE sont les matrices Jacobiennes des flux numériques convectifs : AE =

dfE/dw,BE = dgE/dw. Le calcul immédiat pour le système (2) donne :

JE
⊥

=




0 βnx βny

nx V⊥ − s⊥ + u nx u ny

ny v nx V⊥ − s⊥ + v ny




où V⊥ = u nx + v ny, s⊥ = sxnx + syny. Cette matrice Jacobienne peut aussi être exprimée comme

JE
⊥

= T |ΛE |T−1 avec Λ
E la matrice diagonale qui contient les valeurs propres réelles du système

hyperbolique (2). La matrice de dissipation de Roe peut finalement être calculée comme :

QE
i,k = Ti,k|Λ

E
i,k|T

−1
i,k

8



avec l’état wi,k pris comme la moyenne arithmétique de wL
i,k et wR

i,k en suivant Taylor and Whitfield

[20]. Les flux visqueux sont approchés en utilisant une extension linéaire exacte de la méthode

"diamant" de Noh [21] qui n’est pas détaillée ici.

Précisons que l’état stationnaire de (2) dépend du paramètre AC β à travers la matrice de dissipation

QE . La balance des flux numériques convectifs ou résidu sera notée à partir de maintenant

RE
i (w,x, s) =

1

|Ωi|

∑

k

HE
i,k |Γi,k| (6)

où, dans le contexte de la formulation ALE, la dépendance de cette balance des flux par rapport à

la position de maillage x et sa vitesse s a été rendue explicite. De façon similaire, la balance des

flux visqueux ou résidu sera noté

RV
i (w,x) =

1

|Ωi|

∑

k

HV
i,k |Γi,k| (7)

avec une dépendance explicite vis à vis de la position de grille x. Comme, seul le mouvement de

corps rigide sera considéré dans ce travail, la surface de cellule |Ωi| reste constante au cours du

temps et peut être retirée des dérivées en temps physique et dual dans (3) pour être insérée dans les

résidus spatiaux convectifs et visqueux (6) et (7). La forme semi-discrète (3) du système ALE-AC

peut aussi être exprimée comme

∂wi

∂τi
+ K

∂wi

∂t
+ RE

i (w,x, s) = RV
i (w,x) (8)

2. Discrétisation en temps incluant le traitement ALE

Quand on traite de profils en mouvement dans le repère ALE de référence, deux principales approches

peuvent être considérée pour prendre en compte le mouvement de maillage. La première approche

est la technique de corps rigide où tous les points de grille sont animés du même mouvement que

le profil. La qualité initiale du maillage est préservée mais des conditions limites instationnaires

doivent être implémentées qui incluent les vitesses de grille. Un inconvénient de cette méthode
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est que, pour des profils dont la fréquence d’oscillation est importante, la vitesse relative dans

les cellules loin du centre de rotation peut devenir très importante conduisant à une dissipation

numérique trop importante. La seconde approche consiste à déformer les cellules intérieures pour

se conformer à la position instantanée du profil tandis que les frontières extérieures sont fixes. La

déformation peut être réalisée avec des méthodes basées sur l’analogie de ressort, qui implique soit,

de trouver la solution d’un grand système d’équations pour le déplacement des nœuds [22, 23] et/ou

un remaillage local à chaque pas de temps physique du calcul [24, 25]. Dans les deux cas de la dernière

approche, une loi de conservation géométrique doit aussi être introduite et par conséquent satisfaite

pour éviter les erreurs de discrétisation sur les surfaces (2D) et volumes (3D) [26]. La technique

Chimère offre encore une autre alternative pour traiter des corps en mouvement en utilisant des zones

indépendamment maillées qui se superposent, typiquement, une zone de grille attachée au corps et

une autre en arrière plan [27, 28]. Alors que l’approche maillage déformable est nécessaire pour des

études aéroélastiques ou des problèmes qui impliquent des corps en mouvement dans une géométrie

multi-blocs, elle peut être évitée pour les cas de simples profils en mouvement de battement et

d’oscillation considérés dans cette étude. En conséquence, une simple approche de corps rigide est

retenue avec la position de maillage x directement dérivée de la loi du mouvement et une vitesse de

grille s calculée en utilisant la simple relation analytique :

s(t) = Ω(t) ∧ (x(t) − xc(t)) + t (9)

où Ω est la vitesse angulaire de rotation, xc est le centre de rotation et t est la vitesse de translation.

Par souci de simplicité et sans perte de généralité, la résolution en temps dual est mise de coté dans

cette partie. En utilisant une discrétisation au second ordre Backward Difference Formula (BDF)

pour la dérivée en temps physique dans (8), on obtient le système ALE-AC suivant discrétisé au

second-ordre

K

(
3
2wn+1

i − 2wn
i + 1

2wn−1
i

)

∆t
+ RE

i

(
wn+1,xn+1, sn+1

)
= RV

i

(
wn+1,xn+1

)
(10)

10



3. Intégration en temps implicite

Le système ALE-AC complet discrétisé (10) peut aussi être exprimé comme

K

(
3
2wn+1

i − 2wn
i + 1

2wn−1
i

)

∆t
+ Ri

(
wn+1

)
= 0 (11)

avec le résidu complet R défini par Ri

(
wn+1

)
= RE

i

(
wn+1

)
−RV

i

(
wn+1

)
où la dépendance vis à

vis de la position et de la vitesse de grille a cette fois été omise par souci de simplicité. Le système

non-linéaire (11) est simplement résolu avec une méthode DTS, c’est à dire que le nouvel état wn+1

est obtenu de façon itérative comme solution stationnaire en temps dual τ du système augmenté

w
n,m+1
i − w

n,m
i

∆τn,m
i

+ K

(
3
2w

n,m
i − 2wn

i + 1
2wn−1

i

)

∆t
+ Ri (wn,m) = 0 (12)

où wn,m est l’état fictif à la mieme sous itération sur τ entre la nieme et (n + 1)ieme boucle en temps

physique. L’état fictif initial à chaque pas de temps physique est choisi comme wn,0 = wn et le

nouvel état physique est défini comme wn+1 = wn,mmax avec mmax le nombre de sous itérations sur

τ nécessaires pour atteindre l’état stationnaire de convergence de (12). L’efficacité de la méthode

est assurée par le fait d’utiliser une intégration implicite en temps dual

∆w
n,m
i

∆τn,m
i

= −Ri

(
wn,m+1

)
− K

(
3
2w

n,m+1
i − 2wn

i + 1
2wn−1

i

)

∆t
= −Rt

i

(
wn,m+1

)
(13)

avec wn,m+1 = wn,m + ∆wn,m. Comme la précision de la solution (en t et x) ne dépend pas de

l’incrément en temps dual ∆wn,m qui tend vers zéro à l’état stationnaire sur τ , le résidu complet

Rt
i

(
wn,m+1

)
peut être développé comme

Rt
i

(
wn,m+1

)
= Rt

i (wn,m) + K
3

2

∆w
n,m
i

∆t
+

1

|Ωi|

∑

k

(
∆H

(i)
i,k

)n,m

|Γi,k| (14)

avec (∆H
(i)
i,k)n,m = H(i)n,m+1

−H(i)n,m
et H(i) = HE(i) −HV (i) la notation pour le flux numérique

retenu dans la phase implicite. Comme l’incrément implicite disparaît à l’état stationnaire, la

formule du flux numérique implicite n’impacte pas la précision globale et son choix est simplement

guidé par des considérations de stabilité et efficacité. En suivant [29], [30], [24], le flux numérique

convectif HE(i) qui apparaît dans la phase implicite est simplement calculé en utilisant le flux
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numérique de Rusanov précis au premier-ordre :

H
E(i)
i,k =

1

2
(F E

i · ni,k + F E
o(i,k) · ni,k) +

1

2
ρ(JE

⊥
)i,k(wi − wo(i,k)) (15)

où ρ(JE
⊥

)i,k est le rayon spectral de la matrice Jacobienne des flux JE
⊥

calculé au centre de la face

Γi,k. Le flux numérique implicite visqueux prend simplement la forme simplifiée

H
V (i)
i,k =

ρ(JV
⊥

)i,k

||ri,k|| + ||ro(i,k)||
(wo(i,k) − wi) = ˜ρ(JV

⊥
)
i,k

(wo(i,k) − wi) (16)

où ρ(JV
⊥

)i,k est le rayon spectral de la matrice Jacobienne visqueuse. Plus de détails sur la dérivation

de ce flux implicite visqueux peuvent être trouvés dans la référence [15]. En insérant les expressions

(15) (16) des flux numériques implicites dans le développement du résidu (14) et en réarrangeant

(13), on obtient la forme implicite suivante pour le système ALE-AC (10) :

D
n,m
i ∆w

n,m
i +

1

2|Ωi|

∑

k

(
∆F E

o(i,k)

)n,m

· ni,k |Γi,k| −
∑

k

Cn,m
i,k ∆w

n,m
o(i,k) = −Rt

i(w
n,m) (17)

Les coefficients D
n,m
i , Cn,m

i,k sont définis par :

D
n,m
i =

(
I

∆τn,m
i

+
3

2

K

∆t
+
∑

k

Cn,m
i,k I

)
, Cn,m

i,k =
1

|Ωi|

(
1

2
ρ(JE

⊥
) + ˜ρ(JV

⊥
)

)n,m

i,k

|Γi,k| (18)

avec I la matrice identité; notons que la phase implicite est en fait "sans-matrice" avec un coefficient

diagonal D pour ∆pn,m
i privé de la contribution 3

2∆t dans l’équation de conservation de la masse en en

incluant ce terme dans les équations de conservation de quantité de mouvement qui implique ∆un,m
i

and ∆vn,m
i . L’equation (17) peut être résolue pour un coût par point et par itération extrêmement

faible en utilisant une méthode de relaxation Jacobi par point. Si on note l, le compteur des itérations

associé à cette méthode quand (17) est résolue de manière itérative pour obtenir wn,m+1 depuis

l’état connu wn,m et si on introduit la notation ∆φ(l) = φ(l) −φn,m, la procédure PJ-BDF-ALE-AC

se résume à :

∆w
(0)
i = 0





l = 0, lmax − 1

∆w
(l+1)
i = (Dn,m

i )
−1

(
−Rt

i(w
n,m,xn+1, sn+1) −

1

2|Ωi|

∑

k

(
∆F E

o(i,k)

)(l)

· ni,k |Γi,k| +
∑

k

Cn,m
i,k ∆w

(l)
o(i,k)

)

w
n,m+1
i = w

n,m
i + ∆w

(lmax)
i

(19)
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C. Validation du solveur

Le solver présenté dans la partie précédente est validé en calculant des écoulements incompressibles

laminaires autour de profils en battement et oscillation qui ont été récemment étudié par Kinsey

and Dumas [14]. Les calculs de profils présentés dans [14] ont été réalisés en utilisant une méthode

incompressible conventionnelle à équation de pression implémentée dans un solver commercial sur

des maillages très fins et en utilisant des pas de temps très petits pour s’assurer de la convergence

de grille et permettre une analyse fine de l’écoulement. En conséquence, ces calculs sont retenus

comme référence et la capacité du code PJ-BDF-ALE-AC à fournir des résultats équivalents va être

établie dans cette même partie.

1. Description des cas-tests

La géométrie étudiée est un profil NACA0015 soumis à un mouvement d’oscillation et/ou de batte-

ment. Ces mouvements sont définis par les lois d’évolution suivantes pour l’angle d’oscillation θ(t),

autour d’un axe situé à un tiers de la corde, et la position verticale y(t)




θ(t) = θ0 sin(ωt)

y(t) = H0 sin(ωt + π
2 )

(20)

où θ0 et H0 sont respectivement les amplitudes d’oscillation et de battement et ω la vitesse angulaire.

La fréquence réduite f∗ est définie par f∗ = fc
U∞

, où U∞ est la vitesse à l’infini amont. Le premier

cas test, noté PH à partir de maintenant, combine oscillation et battement avec θ0 = 60◦, H0 = 1

et f∗ = 0.18. Le second cas test, noté PP, correspond à un mouvement de pure oscillation avec

θ0 = 23◦, H0 = 0 et f∗ = 0.12. Dans les deux cas, le nombre de Reynolds basé sur les conditions

amont au loin et la corde du profil est égal à Re = 1100 et donc l’écoulement peut être considéré

comme laminaire.

2. Paramètre numériques

Le maillage reproduit dans la Fig. 1 a été généré de façon à être très proche de celui utilisé dans

[14] puisque les deux méthodes, solveur PJ-BDF-ALE-AC et solveur commercial FLUENT utilisé

par Kinsey and Dumas sont précises au deuxième ordre et utilisent des maillages non-structurés

triangulaires. Le maillage compte 32000 cellules, avec 360 points sur le profil et une résolution
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Fig. 1 (a) : Vue générale du maillage (b) : zoom sur la région du profil.

proche paroi taillée de façon à satisfaire le critère y2
p

U∞

ν∞∆ ∼ 1, où yp est la distance depuis la

paroi jusqu’au centre de la première cellule et ∆ est la plus petite taille de face sur le profil.

L’application de ce critère combine un petit Reynolds de maille et un rapport d’aspect modéré près

de la surface pour s’assurer de la précision de la solution. Le paramètre AC β est constant et égal à

5; cette valeur a été retenue comme offrant un bon compromis entre précision et efficacité après une

évaluation rigoureuse du solveur sur plusieurs cas incompressibles de référence (cette étude n’est

pas reproduite ici par souci de concision et parce que le point de focale de ce travail est l’approche

TSM appliquée au solveur AC et non le solveur AC en lui-même.

Pour chaque cas, 520 pas de temps par période ou cycle sont utilisés correspondant à une valeur

adimensionelle fixe de ∆t ≈ 1.06−2 et ∆t ≈ 1.16−2 pour les cas PH et PP respectivement. Le pas de

temps dual local est calculé comme suit ∆τn,m
i = CFL max( hi

(ρE)n,m

i

,
h2

i

(2ρV )n,m

i

) avec hi une distance

caractéristique de la cellule Ωi, ρE et ρV les rayons spectraux des matrices Jacobiennes des flux

convectifs et visqueux et CFL, le facteur de multiplication du pas de temps dual caractéristique

choisi aussi grand que possible, CFL = 106, pour s’assurer de la convergence rapide vers l’état

stationnaire en temps dual à travers l’utilisation de très grandes valeurs pour ∆τn,m
i . A chaque

pas de temps physique, 100 itérations en temps dual sont réalisées avec 16 itérations Point Jacobi

pour résoudre (19). Le résidu décroit alors de 3 ou 4 ordres en magnitude pour tous les instants
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du cycle. Il a été vérifié que ce critère est suffisant pour obtenir des résultats convergés (coefficients

aérodynamiques globaux, distribution de pression à la paroi, champs). Le calcul est démarré avec

un champ de pression et vitesse uniforme; 6 (respectivement 4) cycles doivent être calculés pour

PH (resp. PP) avant que la périodicité soit complètement atteinte. Une variation de la moyenne

du coefficient aérodynamique inférieure à 0.2% entre deux cycles consécutifs est typiquement retenu

pour justifier d’un écoulement véritablement périodique. En suivant ce critère, tous les résultats

du solveur PJ-BDF-ALE-AC présentés ensuite correspondent donc au 7ieme cycle pour PH et 5ieme

cycle pour PP et seront "étiquettés" BDF à partir de maintenant.

3. Résultats

La comparaison avec les résultats de référence [14] est effectuée sur les coefficients d’efforts, plus

précisément sur le coefficient CY qui est le seul rendu disponible par Kinsey et Dumas. Le coefficient

CX est aussi présenté pour comparaison ultérieure avec l’approche TSM.

La figure 2 présente les coefficients calculés CX et CY en fonction de la période normalisée pour

le cas PH; notez que seulement 1 pas de temps sur les 8 est représenté pour les calculs BDF pour

la clarté du dessin. Des résultats semblables sont obtenus pour le cas PP et sont montrés dans la

figure 3. L’accord entre [14] et nos résultats BDF est globalement très bon. Une légère différence

sur le CY peut être observée sur la figure 2 pour le cas PH. Un raffinement du maillage et du pas

de temps n’ont pas modifié les résultats et, par conséquent, ceci sont retenus comme résultats de

référence et serviront de base de comparaison avec les résultats TSM sur les aspects précision et

temps de calcul.

III. Compressibilité Artificielle et TSM

Cette partie explique comment la TSM, essentiellement utilisée jusqu’à présent dans le contexte

d’ écoulements compressibles et de maillages structurés peut être couplée avec le solveur AC non

structuré décrit dans la partie précédente. L’application directe de la TSM pour le système ALE-AC

est tout d’abord expliquée; ensuite, la méthode de résolution du système discrétisé AC-ALE TSM

est décrite et les modifications nécessaires pour le traitement implicite sont détaillées.
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Fig. 2 Cas test PH. (a): Evolution du CX en utilisant notre approche BDF. (b): Evolution du

CY calculé dans [14] et avec notre approche BDF
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Fig. 3 Cas test PP. (a): Evolution du CX evolution en utilisant notre approche BDF. (b):

Evolution du CY calculé dans [14] et avec notre approche BDF

A. Discrétisation TSM du système ALE-CA

Profitant de la périodicité temporelle de w, le vecteur solution peut être décomposé en série de

Fourier

w =
+∞∑

k=−∞

ŵk(x)eikωt (21)
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où ω est la pulsation du phénomène périodique, reliée à la période T par ω = 2π/T . Le nombre

complexe imagniaire pur i est souligné pour éviter toute confusion avec l’indice de cellule i. En

pratique la solution est représentée avec un nombre fini d’harmoniquesN

w =
N∑

k=−N

ŵk(x)eikωt (22)

Le théorème de Nyquist-Shannon [31] spécifie que les kieme coefficients de Fourier, ŵk with −N ≤

k ≤ N peuvent être exactement calculés avec 2N + 1 instants répartis uniformément sur la période

ŵk(x) =
1

2N + 1

2N∑

n=0

wne−ikωn∆t (23)

avec wn ≡ w(tn = n∆t) et ∆t = T/(2N + 1). La principale idée de la TSM [4] sonsiste alors à

rechercher ces 2N + 1 solutions wn afin de retrouver la solution à n’importe quel temps dans la

période en utilisant (22). La système ALE-AC discrétisé spatialement au temps tn est alors :

K
∂wn

∂t
+ R(wn,xn, sn) = 0 (24)

où w = {wi} représente en fait l’ensembel des solutions dans toutes les cellules et R = {Ri} est

l’ensemble des valeurs de résidu calculés dans toutes les cellules et qui dépend de façon non linéaire

de w. A partir de maintenant wi,n désignera la solution au point de maillage i et aunieme instant tn

dans la période. En utilisant la décomposition en série de Fourier (22) de wn dans l’équation (24),

cela conduit à 2N + 1 equations (une pour chaque longueur d’onde) dans le domaine fréquentiel

K

N∑

k=−N

ikωŵkeikωn∆t + R̂(ŵk, x̂k, ŝk) = 0 (25)

L’opérateur R̂ pourrait être directement calculé à partir de ŵk, mais, à cause de sa non-linéarité,

cela impliquerait des séries de convolutions complexes qui deviendraient rapidement exhorbitantes

à calculer [3]. Le fait d’utiliser l’équation (23) permet de revenir dans le domaine temporel et de

retrouver l’opérateur résidu spatial originel R grace à la propriété de bijection de la transformée de

Fourier

KDt(wn) + R(wn,xn, sn) = 0 (26)
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où Dt(wn) est le nouvel opérateur spectral de dérivée par rapport au temps qui couple tous les

instants. Cet opérateur spectral, exprimé dans le domaine temporel s’écrit :

Dt(wn) =

N∑

p=−N

dpwn+p (27)

Dans l’équation (27), l’indice n+p doit être interprété comme exprimé modulo 2N +1 pour obtenir

l’indice positif correspondant. Par exemple w−N = wN+1. Les coefficients dp sont donnés par

dp =





π
T (−1)(p+1) csc

(
πp

2N+1

)
if p 6= 0

0 if p = 0

(28)

Comme la dérivée spectrale en temps dépend de l’ensemble des solutions wn+p avec p allant de −N

à N , le système (26) doit être écrit de manière couplée pour chaque instants dans la période

KDt(wn) + R(wn,xn, sn) = 0, 0 ≤ n < 2N + 1 (29)

B. Resolution du système TSM-ALE-AC

Le système non-linéaire d’équations (29) est résolu de manière itérative à travers une stratégie de

pas de temps dual, autrement dit en recherchant l’état stationnaire par rapport à τ du système

suivant

∂wn

∂τ
= −Rt

n(w,xn, sn), 0 ≤ n < 2N + 1 (30)

où le résidu total est défini par Rt
n(w) = KDt(wn) + R(wn,xn, sn) pour l’approche TSM. Les

2N +1 valeurs stationnaireswn sont couplées à travers l’approche spectrale Dt(wn) de la dérivée en

temps physique. Notons maintenant wm
n , la valeur intermédiaire de wn à l’itération m vers l’état

stationnaire en temps dual. En utilisant une simple discrétisation Euler du premier ordre pour la

dérivée en temps dual, l’état stationnaires est atteint en résolvant de façon itérative

∆wm
n

∆τm
i,n

= −Rt
n(wm,xn, sn), 0 ≤ n < 2N + 1 (31)
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où ∆wm
n = wm+1

n − wm
n et ∆τm

i,n est le pas de temps dual (local) dans la cellule i du maillage

associé à l’instant tn de la période. Notez que dans cette étude, les 2N + 1 positions et vitesses

de grille sont a priori connues de par les lois de mouvements imposées. En particulier, la vitesse

sn est calculée avec l’équation (9) au temps tn. Adapter au système TSM-AC l’analyse de stabilité

conduite par van der Weide dans [5] pour le système TSM compressible qui utilise une formulation

explicite identique à (31), conduit à la condition de stabilité suivante pour le choix du CFL

∆τm
i,n = CFL

hi

||λ||mi,n + Nωhi
(32)

avec hi une longueur caractéristique de la cellule i dans la grille, ||λ||mi,n le rayon spectral de la

matrice Jacobienne associée au système Euler AC au temps tn et CFL ≤ 1. Si on recherche la

solution stationnaire de l’écoulement incompressible, la matrice k est réduite à la matrice nulle et la

condition précédente n’inclurait pas la contribution Nωhi. Quand une formulation TSM explicite

est utilisée avec une haute fréquence (ω >> 1) et/ou un nombre d’harmoniques importants N ,

la condition (32) peut devenir particulièrement restrictive. Le fait d’utiliser une formulation Euler

implicite en temps dual pour intégrer (30) dans chaque cellule i à chaque instant tn permet d’utiliser

des grands pas de temps dual, et donc d’avoir une convergence efficace en temps dual vers l’état

stationnaire indépendant de ω ou N , mais le problème non linéaire TSM-ALE-AC implicite non

linéaire doit être résolu :

∆wm
i,n

∆τm
i,n

= −Rt
i,n(wm+1,xn, sn), 0 ≤ n < 2N + 1 (33)

C. TSM implicite : système PJ-TSM-ALE-AC

Le résidu complet TSM est défini par Rt(w) = KDt(w)+R(w) avec l’opérateur de dérivée spectrale

Dt linéaire et l’opérateur résidu spatial R formellement inchangé par rapport à l’approche BDF. En

suivant la ligne de conduite décrite pour l’approche BDF, le résidu TSM au niveau de temps dual

m + 1 peut être approché de la manière suivante

Rt
i,n

(
wm+1

)
= Rt

i,n (wm) + KDt(∆wm
i,n) +

1

|Ωi|

∑

k

(
∆H

(i)
(i,k),n

)m

|Γi,k| (34)
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où l’incrément de balance de flux ∆H(i) est calculé en utilisant les formules (15) et (16) précédem-

ment introduites pour dériver la phase implicite BDF et appliquées maintenant avec l’incrément

de variable ∆wm
i,n au lieu de ∆w

n,m
i . Développer cet incrément de balance de flux et l’approche

spectrale de la dérivée en temps physique avec (27) (28) conduit à la relation implicite suivante,

où les termes dépendants de ∆wm
i,n ont été rassemblés dans le membre de gauche Left Hand Side

(LHS).

(
1

∆τm
i,n

+
∑

k

Cm
(i,k),n

)
∆wm

i,n = −Rt
i,n(wm) −

1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)m

· n(i,k),n |Γ(i,k),n|

+
∑

k

Cm
(i,k),n∆wm

(o(i,k)),n − K

N∑

p=−N

dp∆wm
i,n+p

(35)

avec les coefficients scalaires Cm
(i,k),n définis par

Cm
(i,k)n =

1

|Ωi,n|

(
1

2
ρ(JE

⊥
) + ˜ρ(JV

⊥
)

)m

(i,k),n

|Γ(i,k),n| (36)

et d0 = 0 dans l’opérateur de dérivée spectrale de sorte qu’il n’y a pas de contribution de ce terme

dans le membre de gauche ci-dessus. En suivant la stratégie adoptée pour résoudre le système BDF-

ALE-AC, une stratégie Point Jacobi pourrait être appliquée pour obtenir une solution itérative du

système TSM-ALE-AC ci-dessus. Cependant, une différence fondamentale apparaît quand on passe

du système BDF au système TSM : tandis que la formule BDF renforce la dominance diagonale du

système linéaire associé à la phase implicite, la formule TSM introduit des termes hors-diagonaux

qui conduisent à une perte de dominance diagonale. Ce problème a été souligné par Su et Yuan

dans [8] a a été ensuite résolu en utilisant le solveur GMRES de Saad et Schultz [32] pour résoudre

le système TSM implicite. Woodgate and Badcock [7] ont aussi fait remarquer une réduction de la

performance de leur solveur de Krylov à cause de la perte de dominance diagonale de la matrice

du système implicite. Dans ce travail, un simple correctif est utilisé : le LHS de ∆wm
i,n dans

(35) est modifié pour inclure la contribution K

p=N∑

p=−N

|dp|, ce qui est suffisant pour s’assurer de la

dominance diagonale de la phase implicite avec un impact limité sur son efficacité. Le système (35)

est ensuite résolu en utilisant une simple technique de relaxation PJ, conduisant ainsi au système

PJ-TSM-ALE-AC suivant :
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∆w
(0)
i,n = 0





l = 0, lmax − 1

∆w
(l+1)
i,n =

(
Dm

i,n

)−1


−Rt

i,n(wm) −
1

2| Ωi,n|

∑

k

(
∆F E

o(i,k),n

)(l)

· n(i,k),n |Γ(i,k),n| +
∑

k

Cm
(i,k),n∆w

(l)
(o(i,k)),n − K

N∑

p=−N

dp∆w
(l)
i,n+p




wm+1
i,n = wm

i,n + ∆w
(lmax)
i,n

(37)

avec le coefficient diagonal modifié Dm
i,n =

1

∆τm
i,n

+
∑

k

Cm
(i,k),n + K

N∑

p=−N

|dp|

IV. Evaluation de la TSM par rapport au BDF

Le solveur PJ-TSM-ALE-AC présenté ci-avant est maintenant appliqué au calcul des cas tests PH

et PP et ces résultats sont comparés avec ceux obtenus en utilisant l’approche PJ-BDF-ALE-AC. A

notre connaissance, l’unique tentative de couplage de la TSM et du système AC pour les écoulements

incompressibles laminaires a été réalisée par Jameson [13], avec un succès limité puisque des limites

de stabilités sont apparus pour des hautes fréquences et/ou un grand nombre d’harmoniques. Dans

cette étude, la convergence de la TSM vers un état stationnaire va être tout d’abord analysée quand

le nombre d’harmoniques N est augmenté pour des raisons de précision. La stratégie de référence

BDF et la nouvelle approche TSM seront ensuite comparées en termes de précision : en particulier,

le nombre de modes nécessaires pour atteindre un niveau suffisant de précision sera étudié pour

les cas test PH et PP. Le gain potentiel en efficacité offert par la TSM par rapport au BDF sera

finalement évalué.

A. Convergence de l’approche TSM

La convergence de (37) vers un état stationnaire est surveillée en traçant le résidu de pression défini

comme la racine carrée de la moyenne, Root Mean Square (RMS) de la première composante de

l’opérateur résidu Rt(w), calculé dans toutes les cellules et moyenné par le nombre d’instants dans
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Fig. 4 Historiques de convergence de la méthode PJ-TSM-ALE-AC. (a) : cas test PH pour

un nombre croissant d’harmoniques (N allant de 2 à 16). (b) cas test PP pour un nombre

croissant d’harmoniques (N allant de 4 à 22).

la période

resm
av =

1

2N + 1

2N∑

n=0

√√√√ 1

Ncell

Ncell∑

i=1

∆pm
i,n

2

∆τm
i,n

2

Cette quantité est normalisée par sa valeur à la première itération pour faciliter la comparaison entre

les calculs réalisés avec différentes valeurs du nombre d’harmoniques N . Tous les calculs utilisent

lmax = 16 itérations pour le solveur implicite PJ et un CFL = 106 pour calculer le pas de temps dual

∆τm
i,n avec (32). Le paramètre AC β est identique à celui utilisé pour les calculs BDF précédents

(β = 5).

Les historiques de convergence montrés dans la Fig. 4 démontrent que la vitesse de convergence du

solveur TSM vers l’état stationnaire ne dépend que faiblement du nombre d’harmoniques N : pour

le cas test PH moins de 4000 itérations sont nécessaires pour atteindre une baisse du résidu de 4

ordres en magnitude quand un peu moins de 3000 sont suffisantes pour le cas test PP, quel que soit

la valeur de N . Le coût d’une itération dépend bien sur de la valeur de N mais ce point va être

discuté à la fin de cette partie après avoir analysé la précision des solutions TSM.
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B. Précision des solutions TSM

La précision des solutions TSM va tout d’abord être évaluée de façon qualitative en comparant

les solutions stationnaires du système PJ-TSM-ALE-AC obtenues pour un nombre croissant

d’harmoniques avec la solution BDF précédente. Cette comparaison sera effectuée sur l’évolution

des coefficients d’effort globaux CX , CY sur un cycle pour les cas test PH et PP. Ensuite, les dis-

tributions de pression autour du profil pour 2 instants sélectionnes dans la période seront aussi

comparées. Une analyse plus quantitative de l’erreur sera finalement proposée et des conclusions

concernant le gain d’efficacité potentiel offert par la TSM vis à vis du BDF seront tirées.

1. Coefficients aérodynamiques globaux

Les figures 5 et 6 montrent les coefficients CX et CY calculés avec l’approche TSM et un nombre

croissant d’harmoniques pour les problèmes d’écoulements PH et PP respectivement. Ces évolutions

sur une période sont tracées avec les résultats BDF précédemment calculés et dont la précision a

été auparavant vérifiée en comparaison de [14]. Rappelons que les calculs BDF utilisent 520 pas de

te temps physique par période et nécessitent 4 (resp. 6) cycles avant d’atteindre l’état périodique

établi pour le cas PH (resp. PP). Les évolutions TSM sont reconstruites à partir des champs wn

pour n’importe quel temps dans la période grâce à la série de Fourier tronquée de la solution. Pour

le cas test PH, l’évolution calculée avec la TSM pour N = 2 et N = 4 diffère considérablement

des résultats de référence; de petites différences entre BDF et TSM restent pour N = 8 et les 2

évolutions apparaissent superposées pour N = 16. Pour le cas test PP, les évolutions des CX et CY

calculées avec la TSM pour N = 4 et N = 8 montrent des différences importantes avec les résultats

de référence; avec N = 16, il y a toujours quelques petites imperfections tandis que pour N = 22,

les solutions BDF et TSM apparaissent superposées.

2. Distributions de coefficient de pression à la paroi et champs de pression

Deux instants dans la période sont retenus pour une comparaison plus précise des champs calculés :

t/T = 0.25 et t/T = 0.45. Pour chacun de ces instants, la distribution du coefficient de pression à la

paroi obtenue en utilisant BDF et TSM(N) est tracée, respectivement dans la figure 7 et 9 pour le

cas test PH. Rappelons que ces distributions de pression sont reconstruites à chaque point de grille
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Fig. 5 Cas test PH. Comparaison des coefficients CX (a) et CY (b) pour un nombre croissant

d’harmoniques.
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Fig. 6 Cas test PP. Comparaison des coefficients CX (a) et CY (b) pour un nombre croissant

d’harmoniques.

i à partir des valeurs wi,n calculées et en appliquant les formules (22) and (23) dans chaque cellule.

Pour le calcul de PH, le très bon accord entre BDF et TSM(8) et l’accord presque parfait entre BDF

et TSM(16) sont clairement visibles; ceci est confirmé par les contours de pression reproduits dans

la Fig. 11. Pour le cas PP, la distribution du coefficient de pression obtenu avec BDF et TSM(N)

est représentée, respectivement dans la Fig. 8 et 10. L’accord est déjà très bon pour N = 16 et

24



x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=2

(a)

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=4

(b)

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=8

(c)

x/c

C
P

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2
BDF

TSM-N=16

(d)

Fig. 7 Cas test PH. Distribution (reconstruite) du coefficient de pression à la paroi pour la

TSM(N) au temps t/T = 0.25 pour un nombre croissant d’harmoniques. Comparaison avec les

distributions de référence BDF.

presque parfait pour N = 22. Cette similarité est confirmée par les champs de pression de la figure

12.

3. Analyse quantitative de l’erreur

L’erreur RMS sur le coefficient d’effort CX est défini par :

ǫRMS(CX) =

√√√√ 1

N∆t

N∆t∑

k=1

(
(CX)TSM(N)(tk) − (CX)BDF (tk)

(∆CX)BDF

)2
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Fig. 8 Cas test PP. Distribution (reconstruite) du coefficient de pression à la paroi pour la

TSM(N) au temps t/T = 0.25 pour un nombre croissant d’harmoniques. Comparaison avec les

distributions de référence BDF.

où les valeurs des coefficients CX aux temps tk dans le cycle de l’écoulement et l’amplitude ∆CX de

la variation de CX sont directement disponibles pour les calculs BDF tandis que les valeurs de CX

correspondantes au calcul TSM sont obtenues par reconstruction de la solution de l’écoulement en

utilisant la série de Fourier tronquée avec N harmoniques. L’erreur RMS sur le coefficient de force

CY est définie de façon identique. Ces erreurs sont tracées en fonction de N dans la Fig. 13 pour

déterminer le meilleur choix de N : le nombre d’harmoniques doit en effet être pris suffisamment

grand pour s’assurer que la solution TSM calculée est suffisamment précise en comparaison du
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Fig. 9 Cas test PH. Distribution (reconstruite) du coefficient de pression à la paroi pour la

TSM(N) au temps t/T = 0.45 pour un nombre croissant d’harmoniques. Comparaison avec les

distributions de référence BDF.

calcul usuel BDF mais pas trop grand non plus dans le sens ou le gain espéré avec l’approche TSM

par rapport à l’approche BDF est un gain en temps de calcul plus qu’un gain en précision. De

façon cohérente avec les représentations graphiques des comparaisons BDF et TSM précédentes, les

niveaux d’erreur atteints pour le cas PH pour un nombre donné d’harmoniques sont bien plus bas

que pour le cas PP. Pour le cas PH, les erreur RMS sur le CX et CY descendent sous la barre de 1%

pour N = 8 tandis que N = 16 harmoniques sont nécessaires pour satisfaire le même critère pour

le cas PP.
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Fig. 10 Cas test PP. Distribution (reconstruite) du coefficient de pression à la paroi pour la

TSM(N) au temps t/T = 0.45 pour un nombre croissant d’harmoniques. Comparaison avec les

distributions de référence BDF.

C. Efficacité de l’approche TSM

Le coût global de l’approche BDF usuelle peut être exprimée comme :

CBDF = N∆t × Ncycles × mBDF
max × lmax × Ncells × cBDF

u

où N∆t est le nombre de pas de temps utilisé pour décrire une période ou un cycle, Ncycles est

le nombre de cycles nécessaires avant d’atteindre l’état périodique établi, mBDF
max est le nombre

de sous-itérations en temps dual utilisées à chaque pas de temps physique pour atteindre l’état
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Fig. 11 Cas test PH. Champ de pression TSM reconstruit (N = 16) au temps t/T = 0.25 (a) et

t/T = 0.45 (b).
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Fig. 12 Cas test PP. Champ de pression TSM reconstruit (N = 22) au temps t/T = 0.25 (a) et

t/T = 0.45 (b).

stationnaire dual, lmax est le nombre d’itérations utilisées avec la méthode de résolution de

relaxation PJ, Ncells est la taille de grille et cBDF
u est le coût unitaire (par point et par itération)

de la méthode PJ-BDF-ALE-AC.
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Fig. 13 Erreur RMS de la différence normalisée entre les coefficients CX (a) et CY (b) calculés

avec la stratégie BDF de référence avec N∆t = 520 itérations par cycle et la stratégie TSM(N)

avec un nombre croissant N .

Par ailleurs, le coût global de la nouvelle approche TSM proposée peut être exprimé comme :

CTSM(N) = (2N + 1) × mTSM(N)
max × lmax × Ncells × cTSM

u (N)

où (2N + 1) est le nombre d’instants retenus pour décrire la période, mTSM
max est le nombre

d’itérations sur le temps dual nécessaires pour conduire le système TSM-ALE-AC vers l’état

stationnaire, lmax est le nombre d’itérations utilisées par la méthode de relaxation PJ, Ncells

est la taille de grille et c
TSM(N)
u est le coût unitaire par point et par itération de cette méthode

PJ-TSM-ALE-AC.

Comme lmax est le même pour BDF et TSM, le rapport de coût entre TSM(N) et BDF utilisés sur

le même maillage revient à :

η =
CTSM(N)

CBDF
=

(2N + 1)

N∆t × Ncycles
×

m
TSM(N)
max

mBDF
max︸ ︷︷ ︸

Φ1

×
c
TSM(N)
u

cBDF
u︸ ︷︷ ︸
Φ2

où, pour le solveur donné et décrit dans ce travail, la contribution Φ1 dépend du problème considéré

seulement tandis que la contribution Φ2, rapport des coûts unitaires associés aux méthodes TSM(N)

et BDF, dépend de l’implémentation numérique de ces méthodes dans le code utilisé. Dans cette
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étude, le même nombre N∆t = 520 de pas de temps physiques par cycle a été utilisé pour les cas PH

et PP et il en va de même pour le nombre de sous-itérations en temps dual mBDF
max = 100. En ce qui

concerne le coût global et indépendamment de la problématique de la précision pour le moment, les

cas PH et PP diffèrent de par le nombre de cycles nécessaires pour atteindre l’état périodique établi

(NPH
cycles = 6 tandis que NPP

cycles = 4) et de par le nombre typique m
TSM(N)
max d’itérations sur τ pour

atteindre l’état stationnaire pour les calculs TSM. Ce nombre vaut grossièrement m
TSM(N)
max ≈ 3300

pour PH et m
TSM(N)
max ≈ 2800 pour PP, quel que soit le nombre d’harmoniques N (voir Fig. 4). Par

conséquent, le rapport de coût entre les stratégies TSM et BDF est donné, pour le cas test PH, par

ηPH = ΦPH
1 (N) × Φ2(N) = (0.010577 × (2N + 1)) × Φ2(N) (38)

et pour le cas test PP par

ηPP = ΦPP
1 (N) × Φ2(N) = (0.01346 × (2N + 1)) × Φ2(N) (39)

Le rapport de coût unitaire entre les approches TSM et BDF devrait montrer une faible dépendance

uniquement vis à vis du nombre d’harmoniques, d’un coté à cause des termes supplémentaires intro-

duit par l’approximation spectrale de la dérivée et d’un autre coté à travers le coût supplémentaire

dû au temps d’accès mémoire associé au grand système TSM qui couple les 2N + 1 systèmes de lois

de conservation. Idéalement, sans problèmes de mémoire, on devrait s’attendre à un rapport Φ2(N)

qui reste proche de l’unité quel que soit la valeur de N . En pratique, ce rapport a été numériquement

estimé comme une fonction linéaire de N (qui est dépendant de l’implémentation)

Φ2(N) ≈ 0.8208 + 0.0925 × N (40)

La Fig. 14 montre l’évolution du rapport de coût global pour les cas PH et PP, donnés respectivement

par (38) et (39), avec un rapport de coût unitaire mesuré Φ2(N) donné par (40), auquel cas ηPH

et ηPP varient de façon quadratique avec N , ou avec un rapport de coût unitaire idéal égal à 1,

auquel cas la variation de ηPH et ηPP reste linéaire par rapport à N . Bien qu’idéal, ce dernier

cas fournit une limite haute du nombre d’harmoniques N qui pourraient être utilisés avant que le
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Fig. 14 Evolution du rapport de coût global η = CTSM(N)/CBDF entre la TSM(N) et la BDF

pour un nombre croissant d’harmoniques N . Lignes pleines : rapport de coût mesuré pour

PH et PP. Lignes pointillées : rapport de coût idéal Φ2 = 1.

coût de l’approche TSM dépasse le coût de l’approche BDF. On peut observer dans la Fig. 14

que la valeur mesurée de ηPP atteint 1 pour N = 16 tandis que ηPH reste en dessous de 0.8 pour

le même nombre d’harmoniques. Avec une meilleure implémentation qui permettrait de réduire

l’augmentation du rapport de coût unitaire Φ2 avec N , ce rapport de coût global pourrait rester en

dessous de 0.5 pour N = 16.

Le point clé de cette analyse d’efficacité est atteint quand on croise l’évolution de η(N) donné par

la Fig. 14 avec les résultats d’erreurs pour CX et CY représentés dans la Fig. 13. Les erreurs RMS

sur ces coefficients aérodynamiques sont représentés en fonction du rapport de coût global dans

la Fig. 15 : les lignes pleines correspondent à l’évolution mesurée de ηPH et ηPP tandis que les

lignes pointillées correspondent à l’évolution idéale où le rapport de coût unitaire Φ2 reste grosso-

modo égal à 1. D’après l’analyse précédente concernant la précision, les solutions BDF et TSM

reconstruites ont été jugées coïncidentes quand l’erreur RMS normalisée descend en dessous de 1%,

ce qui correspond à N = 8 pour le cas PH et N = 16 pour le cas PP. Si on retient ce même critère, on

peut observer dans la Fig. 15 que l’approche TSM fournit une solution aussi précise que l’approche
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pour les cas PH et PP. Lignes pleines : rapport de coût mesuré pour PH et PP. Lignes

pointillées : rapport de coût idéal Φ2 = 1.

BDF conventionnelle pour un coût total divisé d’un facteur 5 pour le cas PH; en procédant de la

même manière, pour le cas PP, le nombre d’harmoniques nécessaire à la TSM pour produire le

même niveau de précision que la BDF ne permet pas de réduire le coût CPU, puisque ηPP ≈ 1 for

N = 16. Une meilleure implémentation de l’approche TSM pourrait rendre l’approche attractive,

même pour le cas PP, avec un rapport de coût global idéal qui descendrait alors à 0.5 pour N = 16

dans ce cas. L’analyse de l’efficacité de la TSM s’est concentrée sur le gain CPU atteignable en

utilisant le calcul stationnaire d’un nombre limité de modes dans une période au lieu d’une solution

instationnaire complète sur plusieurs cycles. Il est important de souligner cependant que la TSM

est aussi plus consommatrice d’espace mémoire que la stratégie BDF puisqu’elle requière de stocker

(2N + 1)×Ncells inconnues à chaque étape du calcul vers l’état stationnaire à comparer aux Ncells

inconnues de la méthode BDF à chaque étape de la procédure de marche en temps classique.
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V. Conclusion

La méthode TSM a été appliquée avec succès au calcul d’écoulements périodiques incompressibles

autour de profils en utilisant une méthode de compressibilité artificielle dans le cadre d’une formula-

tion ALE sur maillages non-structurés. Comme l’ont souligné nombre d’auteurs avant nous [6–8], le

traitement implicite du grand système TSM, qui couple les 2N + 1 systèmes de lois de conservation

avec N , le nombre d’harmoniques retenus pour décrire l’écoulement périodique qui nous intéresse,

est crucial pour s’assurer de l’efficacité de la méthode TSM par rapport à une formule BDF con-

ventionnelle. Dans ce travail, une formulation implicite de la TSM a été dérivée à partir du simple

traitement sans-matrice développé précédemment dans le contexte des écoulements compressibles et

applicable directement au système AC. Une attention spéciale a été portée pour s’assurer de la pro-

priété de dominance diagonale de la phase implicite, avec une simple modification de la contribution

diagonale qui n’affecte pas trop la convergence du solveur implicite vers l’état stationnaire. Une

technique de relaxation par point a été retenue pour résoudre le système linéaire implicite TSM pour

un coût par itération très bas qui contrebalance la réduction d’efficacité intrinsèque à la méthode

(quelques milliers d’itérations de moindre coût sont nécessaires pour obtenir l’état stationnaire). Le

calcul de l’écoulement périodique incompressible à bas-Reynolds autour d’un profil NACA0015 en

battement et oscillation a démontré qu’entre N = 8 et N = 16 harmoniques sont requis par la TSM

pour représenter de façon précise ces écoulements instationnaires bi-dimensionnels. Cette discréti-

sation grossière de la période sur le cycle "autorisée" par la formule spectrale utilisée pour la dérivée

en temps physique couplée à une méthode de résolution efficace du système TSM couplant les 2N +1

instants choisis dans la période nous a permis d’observer un gain CPU substantiel pour le cas test

d’un profil NACA0015 en battement et oscillation considéré. Un niveau de précision comparable à

celui offert par une méthode BDF conventionnelle d’intégration en temps a été atteint pour un coût

total CPU divisé d’un facteur cinq. Cependant, pour le cas du profil en mouvement d’oscillation

pure, nous n’avons pas observé de réduction de temps de calcul en utilisant TSM principalement

parce qu’il est nécessaire d’utiliser deux fois plus d’harmoniques (16 au lieu de 8) pour ce cas, pour

atteindre un niveau de précision identique à celui de la méthode BDF.

Afin de rendre l’approche TSM intéressante d’un point de vue temps de calcul quand un grand
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nombre de modes sont requis pour une bonne précision, le travail en cours s’attache d’une part

à améliorer l’implémentation de la méthode de façon à réduire le plus possible l’accroissement du

rapport de coût unitaire Φ2 quand N augmente et d’un autre coté, à l’amélioration de l’efficacité du

solveur implicite par rapport à la méthode PJ utilisée dans cette étude pour réduire potentiellement

à la fois les rapports Φ1 and Φ2. Des stratégies de relaxation efficaces proposées par exemple

dans [33] vont être étudiées dans cette perspective. Notre recherche actuelle se consacre aussi aux

stratégies permettant de déterminer automatiquement et a priori le nombre d’harmoniques à utiliser

avec l’approche TSM pour s’assurer d’un niveau de précision donné.
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Titre : Méthode de décomposition spectrale temporelle implicite pour le calcul

d’écoulements incompressibles périodiques

Résumé : Ce travail de thèse se consacre au développement et à l’analyse d’une méthode

de décomposition spectrale en temps TSM (Time Spectral Method) visant à calculer efficace-

ment des écoulements à périodicité temporelle. L’intérêt principal de cette formulation réside

dans la possibilité de s’affranchir du calcul de la solution transitoire pour rechercher directe-

ment l’état périodique établi et dans l’utilisation de grands pas de temps grace à la précision

spectrale de la discrétisation temporelle TSM. La méthode TSM consiste à remplacer le calcul

instationnaire d’une solution périodique en temps en le calcul de 2N + 1 problèmes station-

naires couplés où N est le nombre d’harmoniques retenus dans la série de Fourier tronquée

du système Navier-Stokes. La TSM est implémentée dans un code numérique qui résoud les

équations instationnaires de Navier-Stokes dans un contexte de maillages non-structurés mis

en mouvement grace à une approche ALE (Arbitary Lagrangian Eulerian). Une formulation

implicite est proposée afin de rendre la méthode encore plus attrayante en termes de temps

de calcul. Un apport original de cette thèse est l’extension de la TSM au calcul d’écoulements

incompressibles laminaires en utilisant une méthode de compressibilité artificelle. Les cas tests

de profils en mouvement de battement et d’oscillation permettent d’analyser et d’apprécier

l’efficacité de cette nouvelle approche.

Mots-clés : Décomposition spectrale en temps, compressibilité artificielle, ALE, méthode

implicite, écoulements incompressibles

Title: Implicit Time Spectral Method for time-periodic incompressible flows

Abstract: This Ph.D work deals with the implementation and analysis of a Time Spectral

Method (TSM) dedicated to the efficient calculation of time-periodic flows. The main interest

of the formulation lies in the fact that the calculation of the flow transient is not needed

anymore and, instead, the final periodic solution can be directly looked for. Besides, the use

of large physical time step is made possible by the spectral accuracy of the TSM time deriva-

tive operator. The Time Spectral Method converts a time-periodic flow computation into the

solution of 2N + 1 coupled steady computations where N denotes the number of harmonics

retained in the Fourier analysis of the flow. The TSM is implemented into a Navier-Stokes

solver in the context of general moving unstructured grids using an ALE (Arbitary Lagrangian

Eulerian) formulation. An implicit scheme is proposed to make the approach even more at-

tractive in terms of computational cost. An original contribution of this thesis is the extension

of the TSM to the computation of laminar incompressible flows using the artificial compress-

ibility method. Numerical simulations of oscillating and heaving airfoils allow a fine analysis

of the TSM and show that it can lead to substantial computational cost reduction.

Keywords: Time Spectral Method, artificial compressibility, ALE, implicit method, incom-

pressible flows
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