Méthode de décomposition spectrale temporelle pour le calcul d'écoulements incompressibles périodiques en temps

Sylvain Antheaume

LEGI, Grenoble INP

Directeur de thèse : Christophe Corre

Projet Harvest

Définition d'une hydrolienne

Dispositif mécanique permettant de convertir l'énergie cinétique des courants en énergie électrique

Projet Harvest

Définition d'une hydrolienne

Dispositif mécanique permettant de convertir l'énergie cinétique des courants en énergie électrique

 V_0

LaMCoS

Figure: Turbine Achard

 V_0

Une physique complexe...mais périodique en temps

Figure: Isocontours de vorticité (300 s⁻¹), simulation RANS 3D, thèse de J. Zanette (2010)

- Phénomènes périodiques induits par l'excitation harmonique (pales)
- Phénomènes périodiques auto-induits (arbre)

Calcul instationnaire complet

- Calcul avec marche en temps séquentielle : Pas de temps $\Delta t = t^{n+1} - t^n$ correspondant à 1° de rotation
- Période transitoire avant d'atteindre le périodique établi $N_{cycles} = 5$

Temps de calcul RANS 3D \approx 45 jours sur 12 processeurs

Réduire le temps de calcul d'écoulements incompressibles périodiques en temps

Réduire le temps de calcul d'écoulements incompressibles périodiques en temps

Simplification du problème

S'affranchir du calcul du transitoire pour ne rechercher que la solution périodique établie

Réduire le temps de calcul d'écoulements incompressibles périodiques en temps

Simplification du problème

S'affranchir du calcul du transitoire pour ne rechercher que la solution périodique établie

Piste de réflexion

Utiliser des pas de temps plus grands

Réduire le temps de calcul d'écoulements incompressibles périodiques en temps

Simplification du problème

S'affranchir du calcul du transitoire pour ne rechercher que la solution périodique établie

Piste de réflexion

Utiliser des pas de temps plus grands

Contrainte

Facile à mettre en oeuvre dans un solveur temporel

Réduire le temps de calcul d'écoulements incompressibles périodiques en temps

Simplification du problème

S'affranchir du calcul du transitoire pour ne rechercher que la solution périodique établie

Piste de réflexion

Utiliser des pas de temps plus grands

Contrainte

Facile à mettre en oeuvre dans un solveur temporel

Solution proposée

Utiliser une méthode de décomposition spectrale temporelle

Méthodes harmoniques temporelles pour le compressible

• K.C. Hall, J.P Thomas et W.S Clark, 2002, "Harmonic Balance Technique" HBT : Application aux turbomachines

Méthodes harmoniques temporelles pour le compressible

- K.C. Hall, J.P Thomas et W.S Clark, 2002, "Harmonic Balance Technique" HBT : Application aux turbomachines
- A. Gopinath et A. Jameson, 2005, "Time Spectral Method" TSM : Application aux écoulements externes

Méthodes harmoniques temporelles pour le compressible

- K.C. Hall, J.P Thomas et W.S Clark, 2002, "Harmonic Balance Technique" HBT : Application aux turbomachines
- A. Gopinath et A. Jameson, 2005, "Time Spectral Method" TSM : Application aux écoulements externes
- A. Jameson, 2009, Tentative d'utilisation de la TSM avec méthode de compressibilité artificielle

• Point de départ : solveur 2D compressible sur maillages non structurés fixes

- Point de départ : solveur 2D compressible sur maillages non structurés fixes
- Formulation ALE (Arbitrary Lagrangian Eulerian) pour prendre en compte le mouvement de maillages

- Point de départ : solveur 2D compressible sur maillages non structurés fixes
- Formulation ALE (Arbitrary Lagrangian Eulerian) pour prendre en compte le mouvement de maillages
- Implémentation et analyse de la TSM sur le cas de l'équation de la chaleur + cas classiques compressibles

- Point de départ : solveur 2D compressible sur maillages non structurés fixes
- Formulation ALE (Arbitrary Lagrangian Eulerian) pour prendre en compte le mouvement de maillages
- Implémentation et analyse de la TSM sur le cas de l'équation de la chaleur + cas classiques compressibles
- Ecriture d'un code incompressible BDF-ALE en utilisant la méthode de compressibilité artificielle

- Point de départ : solveur 2D compressible sur maillages non structurés fixes
- Formulation ALE (Arbitrary Lagrangian Eulerian) pour prendre en compte le mouvement de maillages
- Implémentation et analyse de la TSM sur le cas de l'équation de la chaleur + cas classiques compressibles
- Ecriture d'un code incompressible BDF-ALE en utilisant la méthode de compressibilité artificielle
- S Implémentation de la TSM dans le solveur incompressible et analyse

Plan de la présentation

- Contexte de la thèse
- 2 Solver incompressible BDF
- 3 Approche TSM
- Comparaison TSM/BDF
- 5 Conclusion et Perspectives

1 Contexte de la thèse

- 2 Solver incompressible BDF
 - 3 Approche TSM
 - 4 Comparaison TSM/BDF
- 5 Conclusion et Perspectives

Système Compressibilité Artificielle (CA)

Système incompressible Euler 2D instationnaire

$$\begin{cases} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0\\ \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0 \end{cases}$$

Continuité

Quantité de mouvement

$$\begin{pmatrix} \frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial}{\partial \tau} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0$$

 β est le paramètre de compressibilité artificielle

$$\begin{pmatrix} \frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial}{\partial \tau} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0$$

$$\frac{\partial}{\partial \tau} \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \beta u \\ u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \beta v \\ uv \\ v^2 + p \end{pmatrix} = 0$$

$$\begin{pmatrix} \frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial}{\partial \tau} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0$$

$$\frac{\partial}{\partial \tau} \underbrace{\begin{pmatrix} p \\ u \\ v \end{pmatrix}}_{\mathbf{w}} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \beta u \\ u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \beta v \\ uv \\ v^2 + p \end{pmatrix} = 0$$

$$\begin{pmatrix} \frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial}{\partial \tau} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0$$

$$\frac{\partial}{\partial \tau} \underbrace{\begin{pmatrix} p \\ u \\ v \end{pmatrix}}_{\mathbf{w}} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{K}} \frac{\partial}{\partial t} \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \beta u \\ u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \beta v \\ uv \\ v^2 + p \end{pmatrix} = 0$$

$$\begin{pmatrix} \frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial}{\partial \tau} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0$$

$$\frac{\partial}{\partial \tau} \underbrace{\begin{pmatrix} p \\ u \\ v \end{pmatrix}}_{\mathbf{w}} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{K}} \frac{\partial}{\partial t} \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \underbrace{\frac{\partial}{\partial x} \begin{pmatrix} \beta u \\ u^2 + p \\ uv \end{pmatrix}}_{\nabla \cdot \mathbf{F}^{\mathcal{E}}(\mathbf{w}, \beta)} + \frac{\partial}{\partial y} \begin{pmatrix} \beta v \\ uv \\ v^2 + p \end{pmatrix}}_{\nabla \cdot \mathbf{F}^{\mathcal{E}}(\mathbf{w}, \beta)} = 0$$

$$\begin{pmatrix} \frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial}{\partial \tau} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} u^2 + p \\ uv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} uv \\ v^2 + p \end{pmatrix} = 0$$

 β est le paramètre de compressibilité artificielle Système Compressibilité Artificielle

$$\frac{\partial}{\partial \tau} \underbrace{\begin{pmatrix} p \\ u \\ v \end{pmatrix}}_{\mathbf{w}} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{K}} \frac{\partial}{\partial t} \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \underbrace{\frac{\partial}{\partial x} \begin{pmatrix} \beta u \\ u^2 + p \\ uv \end{pmatrix}}_{\nabla \cdot \mathbf{F}^{E}(\mathbf{w}, \beta)} + \frac{\partial}{\partial y} \begin{pmatrix} \beta v \\ uv \\ v^2 + p \end{pmatrix}}_{\nabla \cdot \mathbf{F}^{E}(\mathbf{w}, \beta)} = 0$$

On doit résoudre le problème stationnaire en temps dual

$$\frac{\partial}{\partial \tau}(\mathbf{w}) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}) - \nabla \cdot \mathbf{F}^{E}(\mathbf{w},\beta)$$

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K}rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{\mathcal{E}}(\mathbf{w},eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K} rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{E}(\mathbf{w}, eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

Méthode Volume Finis : $\mathbf{w} = (\mathbf{w}_0, \cdots, \mathbf{w}_i, \cdots, \mathbf{w}_{N_{cells}})^t$ N_{cells}

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K} rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{E}(\mathbf{w},eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

 $\label{eq:Methode Volume Finis: w = (w_0, \cdots, w_i, \cdots, w_{N_{cells}})^t \qquad \qquad N_{cells}$

Discrétisation spatiale : Schéma de ROE, reconstruction MUSCL à l'ordre 2

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K}rac{\partial}{\partial t}(\mathbf{w}) - \mathcal{R}(\mathbf{w})$$

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K} rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{E}(\mathbf{w},eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

 $\label{eq:Methode Volume Finis: w = (w_0, \cdots, w_i, \cdots, w_{N_{cells}})^t \qquad \qquad N_{cells}$

Discrétisation spatiale : Schéma de ROE, reconstruction MUSCL à l'ordre 2

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K}rac{\partial}{\partial t}(\mathbf{w}) - \mathcal{R}(\mathbf{w})$$

Discrétisation en temps physique : schéma BDF implicite à l'ordre 2

$$\frac{\partial}{\partial \tau}(\mathbf{w}) = -\mathbf{K} \frac{\left(\frac{3}{2}\mathbf{w}^{n+1} - 2\mathbf{w}^n + \frac{1}{2}\mathbf{w}^{n-1}\right)}{\Delta t} - \mathcal{R}\left(\mathbf{w}^{n+1}\right)$$

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K} rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{\mathsf{E}}(\mathbf{w},eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

 $\label{eq:Methode Volume Finis: w = (w_0, \cdots, w_i, \cdots, w_{N_{cells}})^t \qquad \qquad N_{cells}$

Discrétisation spatiale : Schéma de ROE, reconstruction MUSCL à l'ordre 2

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K}rac{\partial}{\partial t}(\mathbf{w}) - \mathcal{R}(\mathbf{w})$$

Discrétisation en temps physique : schéma BDF implicite à l'ordre 2

$$\frac{\partial}{\partial \tau}(\mathbf{w}) = -\mathbf{K} \frac{\left(\frac{3}{2}\mathbf{w}^{n+1} - 2\mathbf{w}^n + \frac{1}{2}\mathbf{w}^{n-1}\right)}{\Delta t} - \mathcal{R}\left(\mathbf{w}^{n+1}\right) \qquad \qquad \mathbf{N}_{\Delta t} = \frac{T}{\Delta t}$$

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K} rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{E}(\mathbf{w},eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

 $\label{eq:Methode Volume Finis: w = (w_0, \cdots, w_i, \cdots, w_{N_{cells}})^t \qquad \qquad N_{cells}$

Discrétisation spatiale : Schéma de ROE, reconstruction MUSCL à l'ordre 2

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K}rac{\partial}{\partial t}(\mathbf{w}) - \mathcal{R}(\mathbf{w})$$

Discrétisation en temps physique : schéma BDF implicite à l'ordre 2

$$\frac{\partial}{\partial \tau}(\mathbf{w}) = -\mathbf{K} \frac{\left(\frac{3}{2}\mathbf{w}^{n+1} - 2\mathbf{w}^n + \frac{1}{2}\mathbf{w}^{n-1}\right)}{\Delta t} - \mathcal{R}\left(\mathbf{w}^{n+1}\right) \qquad \qquad \mathbf{N}_{\Delta t} = \frac{T}{\Delta t}$$

Discrétisation en temps dual : Schéma implicite à l'ordre 1

$$\frac{\mathbf{w}^{n,m+1} - \mathbf{w}^{n,m}}{\Delta \tau^{n,m}} = -\mathbf{K} \frac{\left(\frac{3}{2}\mathbf{w}^{n,m+1} - 2\mathbf{w}^{n} + \frac{1}{2}\mathbf{w}^{n-1}\right)}{\Delta t} - \mathcal{R}\left(\mathbf{w}^{n,m+1}\right)$$

Soutenance de thèse 04-11-2010

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K} rac{\partial}{\partial t}(\mathbf{w}) -
abla \cdot \left(\mathbf{F}^{E}(\mathbf{w},eta) - \mathbf{F}^{V}(
abla \mathbf{w})
ight)$$

 $\label{eq:Methode Volume Finis: w = (w_0, \cdots, w_i, \cdots, w_{N_{cells}})^t \qquad \qquad N_{cells}$

Discrétisation spatiale : Schéma de ROE, reconstruction MUSCL à l'ordre 2

$$rac{\partial}{\partial au}(\mathbf{w}) = -\mathbf{K}rac{\partial}{\partial t}(\mathbf{w}) - \mathcal{R}(\mathbf{w})$$

Discrétisation en temps physique : schéma BDF implicite à l'ordre 2

$$\frac{\partial}{\partial \tau}(\mathbf{w}) = -\mathbf{K} \frac{\left(\frac{3}{2}\mathbf{w}^{n+1} - 2\mathbf{w}^n + \frac{1}{2}\mathbf{w}^{n-1}\right)}{\Delta t} - \mathcal{R}\left(\mathbf{w}^{n+1}\right) \qquad \qquad \mathbf{N}_{\Delta t} = \frac{T}{\Delta t}$$

Discrétisation en temps dual : Schéma implicite à l'ordre 1

$$\frac{\mathbf{w}^{n,m+1} - \mathbf{w}^{n,m}}{\Delta \tau^{n,m}} = -\mathbf{K} \frac{\left(\frac{3}{2}\mathbf{w}^{n,m+1} - 2\mathbf{w}^{n} + \frac{1}{2}\mathbf{w}^{n-1}\right)}{\Delta t} - \mathcal{R}\left(\mathbf{w}^{n,m+1}\right) \quad m_{max}$$

Soutenance de thèse 04-11-2010

Système implicite BDF

A chaque pas de temps physique, on doit résoudre

Système implicite BDF

A chaque pas de temps physique, on doit résoudre

$$rac{\Delta \mathbf{w}^{n,m}}{\Delta au^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$
A chaque pas de temps physique, on doit résoudre

$$rac{\Delta \mathbf{w}^{n,m}}{\Delta au^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$

On linéarise le résidu

$$\mathcal{R}^{t}(\mathbf{w}^{n,m+1}) \approx \mathcal{R}^{t}(\mathbf{w}^{n,m}) + \mathbf{J}^{n,m} \Delta \mathbf{w}^{n,m} + \mathcal{O}\left((\Delta \mathbf{w}^{n,m})^{2}\right)$$

A chaque pas de temps physique, on doit résoudre

$$rac{\Delta \mathbf{w}^{n,m}}{\Delta au^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$

On linéarise le résidu

$$\mathcal{R}^{t}(\mathbf{w}^{n,m+1}) \approx \mathcal{R}^{t}(\mathbf{w}^{n,m}) + \mathbf{J}^{n,m} \Delta \mathbf{w}^{n,m} + \mathcal{O}\left((\Delta \mathbf{w}^{n,m})^{2}\right)$$

Phase implicite complète

$$\left(\frac{\mathsf{I}_{\mathsf{d}}}{\Delta\tau^{n,m}}+\mathsf{J}^{n,m}\right)\Delta\mathsf{w}^{n,m}=-\mathcal{R}^{t}(\mathsf{w}^{n,m})$$

A chaque pas de temps physique, on doit résoudre

$$rac{\Delta \mathbf{w}^{n,m}}{\Delta au^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$

On linéarise le résidu

$$\mathcal{R}^{t}(\mathbf{w}^{n,m+1}) \approx \mathcal{R}^{t}(\mathbf{w}^{n,m}) + \mathbf{J}^{n,m} \Delta \mathbf{w}^{n,m} + \mathcal{O}\left((\Delta \mathbf{w}^{n,m})^{2}\right)$$

Phase implicite complète

$$\left(rac{\mathbf{I}_{\mathbf{d}}}{\Delta au^{n,m}}+\mathbf{J}^{n,m}
ight)\Delta\mathbf{w}^{n,m}=-\mathcal{R}^t(\mathbf{w}^{n,m})$$

• On a un système linéaire à résoudre de taille $N_{cells} imes 3$

A chaque pas de temps physique, on doit résoudre

$$rac{\Delta \mathbf{w}^{n,m}}{\Delta au^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$

On linéarise le résidu

$$\mathcal{R}^{t}(\mathbf{w}^{n,m+1}) \approx \mathcal{R}^{t}(\mathbf{w}^{n,m}) + \mathbf{J}^{n,m} \Delta \mathbf{w}^{n,m} + \mathcal{O}\left((\Delta \mathbf{w}^{n,m})^{2}\right)$$

Phase implicite complète

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{n,m}} + \mathbf{J}^{n,m}\right) \Delta \mathbf{w}^{n,m} = -\mathcal{R}^{t}(\mathbf{w}^{n,m})$$

• On a un système linéaire à résoudre de taille $N_{cells} imes 3$

• On résout le système avec une méthode de relaxation de type Point Jacobi

A chaque pas de temps physique, on doit résoudre

$$rac{\Delta \mathbf{w}^{n,m}}{\Delta au^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$

On linéarise le résidu

$$\mathcal{R}^{t}(\mathbf{w}^{n,m+1}) \approx \mathcal{R}^{t}(\mathbf{w}^{n,m}) + \mathbf{J}^{n,m} \Delta \mathbf{w}^{n,m} + \mathcal{O}\left((\Delta \mathbf{w}^{n,m})^{2}\right)$$

Phase implicite complète

$$\left(rac{\mathbf{I}_{\mathbf{d}}}{\Delta au^{n,m}}+\mathbf{J}^{n,m}
ight)\Delta\mathbf{w}^{n,m}=-\mathcal{R}^{t}(\mathbf{w}^{n,m})$$

- On a un système linéaire à résoudre de taille $N_{cells} imes 3$
- On résout le système avec une méthode de relaxation de type Point Jacobi
- On utilise un flux numérique simplifié pour la phase implicite

A chaque pas de temps physique, on doit résoudre

$$\frac{\Delta \mathbf{w}^{n,m}}{\Delta \tau^{n,m}} = -\mathcal{R}^t(\mathbf{w}^{n,m+1})$$

On linéarise le résidu

$$\mathcal{R}^{t}(\mathbf{w}^{n,m+1}) \approx \mathcal{R}^{t}(\mathbf{w}^{n,m}) + \mathbf{J}^{n,m} \Delta \mathbf{w}^{n,m} + \mathcal{O}\left((\Delta \mathbf{w}^{n,m})^{2}\right)$$

Phase implicite complète

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{n,m}} + \mathbf{J}^{n,m}\right) \Delta \mathbf{w}^{n,m} = -\mathcal{R}^{t}(\mathbf{w}^{n,m})$$

- On a un système linéaire à résoudre de taille $N_{cells} imes 3$
- On résout le système avec une méthode de relaxation de type Point Jacobi
- On utilise un flux numérique simplifié pour la phase implicite

 I_{max} , nombre d'itérations nécessaire pour résoudre la phase implicite

Boucle temps physique $N_{cycles} \times N_{\Delta t}$

 $N_{\Delta t}$ nombre de pas de temps par période N_{cycles} nombre de cycles avant le périodique

Boucle temps physique $N_{cycles} \times N_{\Delta t}$ Boucle temps dual m_{max}

 $N_{\Delta t}$ nombre de pas de temps par période N_{cycles} nombre de cycles avant le périodique m_{max} nombre d'itérations en temps dual

 $N_{\Delta t}$ nombre de pas de temps par période N_{cycles} nombre de cycles avant le périodique m_{max} nombre d'itérations en temps dual N_{cells} nombre de cellules l_{max} nombre d'itérations Jacobi C_{u} cout unitaire (par point et par itération)

 $\begin{cases} \text{Boucle temps physique } N_{cycles} \times N_{\Delta t} \\ \\ \begin{cases} \text{Boucle temps dual } m_{max} \\ \\ \text{Boucle sur les cellules } N_{cells} \\ \\ \\ \end{cases} \\ \begin{cases} \text{Boucle Point Jacobi } l_{max} \\ \\ \\ \hline \end{array} \\ \end{cases} \\ \end{cases}$

 $N_{\Delta t}$ nombre de pas de temps par période N_{cycles} nombre de cycles avant le périodique m_{max} nombre d'itérations en temps dual N_{cells} nombre de cellules l_{max} nombre d'itérations Jacobi C_u cout unitaire (par point et par itération)

Coût total BDF

$$\mathcal{C}^{BDF} = \textit{N}_{cycles} imes \textit{N}_{\Delta t} imes \textit{m}_{max} imes \textit{N}_{cells} imes \textit{I}_{max} imes \textit{C}_{u}$$

D Contexte de la thèse

- 2 Solver incompressible BDF
- 3 Approche TSM
 - 4 Comparaison TSM/BDF
- 5 Conclusion et Perspectives

Décomposition en série de Fourier

Jean Baptiste Joseph Fourier (1768-1830)

"Théorie Analytique de la Chaleur" (1822)

Soit f une fonction périodique en temps f(x, t + T) = f(x, t), T est la période $f = \frac{1}{T}$ est la fréquence fondamentale et $\omega = \frac{2\pi}{T}$ la pulsation fondamentale

Série de Fourier complète

$$f(x,t) = \sum_{k=-\infty}^{k=+\infty} \widehat{f}_k(x) e^{\underline{i}k\omega t}$$

Illustration d'une décomposition

Figure: Décomposition en série de Fourier du C_X de la turbine Achard

Série de Fourier tronquée à N $C(x, t) = \sum_{k=-N}^{k=N} \widehat{C}_k(x) e^{ik\omega t}$

Illustration d'une décomposition

Figure: Décomposition en série de Fourier du C_X de la turbine Achard

Série de Fourier tronquée à N $C(x, t) = \sum_{k=-N}^{k=N} \widehat{C}_k(x) e^{ik\omega t}$ Harmonique de rang k: $H_k(x,t) = \hat{C}_{-k}(x)e^{-\underline{i}k\omega t} + \hat{C}_k(x)e^{\underline{i}k\omega t}$

Illustration d'une décomposition

Figure: Décomposition en série de Fourier du C_X de la turbine Achard

Série de Fourier tronquée à N $C(x,t) = \sum_{k=0}^{k=N} H_k(x,t)$ Harmonique de rang k: $H_k(x,t) = \hat{C}_{-k}(x)e^{-\underline{i}k\omega t} + \hat{C}_k(x)e^{\underline{i}k\omega t}$

Reconstruction depuis le domaine temporel

Théorème de Nyquist-Shannon (1928)

La fréquence d'échantillonnage d'un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce signal d'une forme analogique à une forme numérique.

Reconstruction depuis le domaine temporel

Théorème de Nyquist-Shannon (1928)

La fréquence d'échantillonnage d'un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce signal d'une forme analogique à une forme numérique.

$$\widehat{C}_k(x) = rac{1}{2N+1}\sum_{n=0}^{2N}C_n e^{-\underline{i}k\omega t_n}$$

On peut reconstruire exactement les harmoniques jusqu'au rang Nà partir de la solution en 2N+1 points.

Reconstruction depuis le domaine temporel

Théorème de Nyquist-Shannon (1928)

La fréquence d'échantillonnage d'un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce signal d'une forme analogique à une forme numérique.

$$\widehat{C}_k(x) = \frac{1}{2N+1} \sum_{n=0}^{2N} C_n e^{-\underline{i}k\omega t_n}$$

On peut reconstruire exactement les harmoniques jusqu'au rang Nà partir de la solution en 2N+1 points.

On échantillonne avec des instants équirépartis dans la période

$$t_n = \frac{n T}{2N+1}, \quad n \in [0:2N]$$

Figure: Approche en temps séquentielle et approche harmonique temporelle

Pour obtenir la solution périodique établie :

Figure: Approche en temps séquentielle et approche harmonique temporelle

Pour obtenir la solution périodique établie :

() On cherche la solution en un nombre limité d'instants 2N + 1

Figure: Approche en temps séquentielle et approche harmonique temporelle

Pour obtenir la solution périodique établie :

- **(**) On cherche la solution en un nombre limité d'instants 2N + 1
- **2** A partir de 2N + 1 instants, on obtient les harmoniques jusqu'au rang N

Figure: Approche en temps séquentielle et approche harmonique temporelle

Pour obtenir la solution périodique établie :

- **(**) On cherche la solution en un nombre limité d'instants 2N + 1
- **2** A partir de 2N + 1 instants, on obtient les harmoniques jusqu'au rang N
- La série de Fourier tronquée à N donne la solution à n'importe quel instant t

On cherche la solution $\mathbf{w}_n = \mathbf{w}(t_n)$ pour $n \in [0:2N]$ au problème

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On cherche la solution $\mathbf{w}_n = \mathbf{w}(t_n)$ pour $n \in [0:2N]$ au problème

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On suppose que \mathbf{w}_n est périodique en temps, on la décompose en série de Fourier tronquée à N

$$\mathbf{w}_n = \sum_{k=-N}^{k=+N} \widehat{\mathbf{w}}_k(x) e^{\underline{i}k\omega t_n}$$

On cherche la solution $\mathbf{w}_n = \mathbf{w}(t_n)$ pour $n \in [0:2N]$ au problème

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On dérive en temps physique

$$\frac{\partial \mathbf{w}_n}{\partial t} = \sum_{k=-N}^{k=+N} \underline{i} k \omega \ \widehat{\mathbf{w}}_k(x) e^{\underline{i} k \omega t_n}$$

On cherche la solution $\mathbf{w}_n = \mathbf{w}(t_n)$ pour $n \in [0:2N]$ au problème

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On dérive en temps physique

$$\frac{\partial \mathbf{w}_n}{\partial t} = \sum_{k=-N}^{k=+N} \underline{i} k \omega \ \widehat{\mathbf{w}}_k(x) e^{\underline{i} k \omega t_n}$$

Expression dans le domaine fréquentiel

$$\frac{\partial}{\partial \tau}(\widehat{\mathbf{w}}_k) = -\mathbf{K}\underline{i}k\omega \ \widehat{\mathbf{w}}_k(x)e^{\underline{i}k\omega t_n} - \widehat{\mathcal{R}}_k(\widehat{\mathbf{w}}) \quad k \in [-N:N]$$

On cherche la solution $\mathbf{w}_n = \mathbf{w}(t_n)$ pour $n \in [0:2N]$ au problème

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On dérive en temps physique

$$\frac{\partial \mathbf{w}_n}{\partial t} = \sum_{k=-N}^{k=+N} \underline{i} k \omega \ \widehat{\mathbf{w}}_k(x) e^{\underline{i} k \omega t_n}$$

Expression dans le domaine fréquentiel

$$\frac{\partial}{\partial \tau}(\widehat{\mathbf{w}}_k) = -\mathbf{K}_{\underline{i}}k\omega \ \widehat{\mathbf{w}}_k(x)e^{\underline{i}k\omega t_n} - \widehat{\mathcal{R}}_k(\widehat{\mathbf{w}}) \quad k \in [-N:N]$$

A cause de la non linéarité de \mathcal{R} : $\widehat{\mathcal{R}}_k(\widehat{\mathbf{w}}) \neq \mathcal{R}(\widehat{\mathbf{w}}_k)$

On cherche la solution $\mathbf{w}_n = \mathbf{w}(t_n)$ pour $n \in [0:2N]$ au problème

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K}\frac{\partial}{\partial t}(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On dérive en temps physique

$$\frac{\partial \mathbf{w}_n}{\partial t} = \sum_{k=-N}^{k=+N} \underline{i} k \omega \ \widehat{\mathbf{w}}_k(x) e^{\underline{i} k \omega t_n}$$

Expression dans le domaine fréquentiel

$$\frac{\partial}{\partial \tau}(\widehat{\mathbf{w}}_k) = -\mathbf{K}_{\underline{i}}k\omega \ \widehat{\mathbf{w}}_k(x)e^{\underline{i}k\omega t_n} - \widehat{\mathcal{R}}_k(\widehat{\mathbf{w}}) \quad k \in [-N:N]$$

A cause de la non linéarité de $\mathcal{R} : \widehat{\mathcal{R}}_k(\widehat{\mathbf{w}}) \neq \mathcal{R}(\widehat{\mathbf{w}}_k)$

On repasse donc dans le domaine temporel

$$\frac{\partial}{\partial \tau}(\mathbf{w}_n) = -\mathbf{K} D_t(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n)$$

On a un nouvel opérateur spectral qui approche la dérivée en temps physique

$$D_t(\mathbf{w}_n) \approx \frac{\partial}{\partial t}(\mathbf{w}_n)$$

On a un nouvel opérateur spectral qui approche la dérivée en temps physique

$$D_t(\mathbf{w}_n) \approx \frac{\partial}{\partial t}(\mathbf{w}_n)$$

L'opérateur D_t à l'instant t_n s'écrit :

$$D_t(\mathbf{w}_n) = \sum_{p=-N}^N d_p \mathbf{w}_{n+p}$$

La dérivée spectrale dépend des solutions \mathbf{w}_q , $q \in [0:2N]$ et $d_0 = 0$

On a un nouvel opérateur spectral qui approche la dérivée en temps physique

$$D_t(\mathbf{w}_n) \approx \frac{\partial}{\partial t}(\mathbf{w}_n)$$

L'opérateur D_t à l'instant t_n s'écrit :

$$D_t(\mathbf{w}_n) = \sum_{p=-N}^N d_p \mathbf{w}_{n+p}$$

La dérivée spectrale dépend des solutions \mathbf{w}_q , $q \in [0:2N]$ et $d_0 = 0$

On doit donc résoudre un système couplé stationnaire

$$rac{\partial}{\partial au}(\mathbf{w}_n) = -\mathbf{K} D_t(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n) \quad 0 \le n < 2N+1$$

On a un nouvel opérateur spectral qui approche la dérivée en temps physique

$$D_t(\mathbf{w}_n) \approx \frac{\partial}{\partial t}(\mathbf{w}_n)$$

L'opérateur D_t à l'instant t_n s'écrit :

$$D_t(\mathbf{w}_n) = \sum_{p=-N}^N d_p \mathbf{w}_{n+p}$$

La dérivée spectrale dépend des solutions \mathbf{w}_q , $q \in [0:2N]$ et $d_0 = 0$

On doit donc résoudre un système couplé stationnaire

$$rac{\partial}{\partial au}(\mathbf{w}_n) = -\mathbf{K} D_t(\mathbf{w}_n) - \mathcal{R}(\mathbf{w}_n) \quad 0 \leq n < 2N+1$$

Intérêt de la TSM

On simplifie un problème instationnaire en 2N + 1 problèmes stationnaires couplés

Précision de l'opérateur spectral D_t

Figure: Dérivée de la fonction α définie par $\alpha(t) = \cos(\omega t)$ avec un schéma BDF et TSM

BDF TSM $\frac{\partial \alpha}{\partial t}(t_n) \approx \frac{\left(\frac{3}{2}\alpha_{n+1} - 2\alpha_n + \frac{1}{2}\alpha_{n-1}\right)}{\Delta t} \qquad \frac{\partial \alpha}{\partial t}(t_n) \approx D_t(\alpha_n) = \sum_{p=-N}^N d_p \alpha_{n+p}$

Précision de l'opérateur spectral D_t

Figure: Dérivée de la fonction α définie par $\alpha(t) = \cos(\omega t)$ avec un schéma BDF et TSM

Avantage

La précision spectrale de D_t permet l'utilisation de grands pas de temps

Discrétisation en temps dual TSM

Euler explicite pour l'approximation de la dérivée en temps fictif

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Figure: Principe de convergence en temps dual de la méthode TSM pour N = 2

Comparaison algorithmes BDF/TSM BDF

 $\begin{array}{l} \text{Boucle temps physique } N_{cycles} \times N_{\Delta t} \\ \left(\begin{array}{c} \text{Boucle temps dual } m_{max}^{BDF} \\ \left(\begin{array}{c} \text{Boucle sur les cellules } N_{cells} \end{array} \right) \end{array} \right. \end{array}$

 $\begin{cases} \text{Boucle Point Jacobi } I_{max}^{BDF} \\ \text{Système Implicite BDF } C_u^{BDF} \end{cases}$

 $\begin{cases} \text{Boucle temps dual } m_{max}^{TSM} \\ \text{Boucle sur les cellules } N_{cells} \times (2N + 1) \\ \text{et instants TSM} \\ \begin{cases} \text{Boucle Point Jacobi } I_{max}^{TSM} \\ \hline \text{Système Implicite TSM } C_u^{TSM} \end{cases} \end{cases}$
Comparaison algorithmes BDF/TSM BDF

Boucle temps physique $N_{cycles} \times N_{\Delta t}$ Boucle temps dual m_{max}^{BDF} Boucle sur les cellules N_{cells} Boucle Point Jacobi I_{max}^{BDF} Système Implicite BDF C_u^{BDF}

 $\begin{cases} \text{Boucle temps dual } m_{max}^{TSM} \\ \text{Boucle sur les cellules } N_{cells} \times (2N + 1) \\ \text{et instants TSM} \\ \begin{cases} \text{Boucle Point Jacobi } I_{max}^{TSM} \\ \hline \text{Système Implicite TSM } C_u^{TSM} \end{cases} \end{cases}$

 En terme d'occupation mémoire, la TSM revient à calculer un problème stationnaire sur un maillage "espace-temps" (2N + 1) fois plus grand

Comparaison algorithmes BDF/TSM BDF

Boucle temps physique $N_{cycles} \times N_{\Delta t}$ Boucle temps dual m_{max}^{BDF} Boucle sur les cellules N_{cells} Boucle Point Jacobi I_{max}^{BDF} Système Implicite BDF C_u^{BDF}

 $\begin{cases} \text{Boucle temps dual } m_{max}^{TSM} \\ \text{Boucle sur les cellules } N_{cells} \times (2N + 1) \\ \text{et instants TSM} \\ \begin{cases} \text{Boucle Point Jacobi } I_{max}^{TSM} \\ \hline \text{Système Implicite TSM } C_u^{TSM} \end{cases} \end{cases}$

 En terme d'occupation mémoire, la TSM revient à calculer un problème stationnaire sur un maillage "espace-temps" (2N + 1) fois plus grand

Avec BDF, on cherche

Avec TSM, on cherche

w^{*m*}

Formulation explicite

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau^m} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Formulation explicite

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau^m} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Limitation sur le temps dual

$$\Delta \tau^m < \mathsf{CFL} \frac{h}{||\lambda||_N^m + \omega Nh}$$

Les hautes fréquences et/ou un grand nombre d'harmoniques N limitent le CFL

Formulation explicite

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau^m} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Limitation sur le temps dual

$$\Delta \tau^m < \mathsf{CFL} \frac{h}{||\lambda||_N^m + \omega Nh}$$

Les hautes fréquences et/ou un grand nombre d'harmoniques N limitent le CFL

Implicitation partielle : on implicite uniquement le résidu

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^{m+1}) \quad 0 \le n < 2N+1$$

Formulation explicite

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau^m} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Limitation sur le temps dual

$$\Delta \tau^m < \mathsf{CFL} \frac{h}{||\lambda||_N^m + \omega Nh}$$

Les hautes fréquences et/ou un grand nombre d'harmoniques N limitent le CFL

Implicitation totale : on implicite le résidu et le terme TSM

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau} = -\mathbf{K} D_t(\mathbf{w}_n^{m+1}) - \mathcal{R}(\mathbf{w}_n^{m+1}) \quad 0 \le n < 2N+1$$

Formulation explicite

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau^m} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Limitation sur le temps dual

$$\Delta \tau^m < \mathsf{CFL} \frac{h}{||\lambda||_N^m + \omega Nh}$$

Les hautes fréquences et/ou un grand nombre d'harmoniques N limitent le CFL

Implicitation totale : on implicite le résidu et le terme TSM

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau} = -\mathbf{K} D_t(\mathbf{w}_n^{m+1}) - \mathcal{R}(\mathbf{w}_n^{m+1}) \quad 0 \le n < 2N+1$$

Linéarisation des opérateurs

$$\mathcal{R}(\mathbf{w}_n^{m+1}) \approx \mathcal{R}(\mathbf{w}_n^m) + \mathbf{J}_n^m \ \Delta \mathbf{w}_n^m + \mathcal{O}\left((\Delta \mathbf{w}_n^m)^2\right)$$

Formulation explicite

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau^m} = -\mathbf{K} D_t(\mathbf{w}_n^m) - \mathcal{R}(\mathbf{w}_n^m) \quad 0 \le n < 2N+1$$

Limitation sur le temps dual

$$\Delta \tau^m < \mathsf{CFL} \frac{h}{||\lambda||_N^m + \omega Nh}$$

Les hautes fréquences et/ou un grand nombre d'harmoniques N limitent le CFL

Implicitation totale : on implicite le résidu et le terme TSM

$$\frac{\mathbf{w}_n^{m+1} - \mathbf{w}_n^m}{\Delta \tau} = -\mathbf{K} D_t(\mathbf{w}_n^{m+1}) - \mathcal{R}(\mathbf{w}_n^{m+1}) \quad 0 \le n < 2N+1$$

Linéarisation des opérateurs

$$\mathcal{R}(\mathbf{w}_n^{m+1}) \approx \mathcal{R}(\mathbf{w}_n^m) + \mathbf{J}_n^m \ \Delta \mathbf{w}_n^m + \mathcal{O}\left((\Delta \mathbf{w}_n^m)^2\right)$$

$$D_t(\mathbf{w}_n^{m+1}) = D_t(\mathbf{w}_n^m) + D_t(\Delta \mathbf{w}_n^m)$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathbf{K} D_{t}(\mathbf{w}_{n}^{m}) - \mathcal{R}(\mathbf{w}_{n}^{m})$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = \underbrace{-\mathbf{K} D_{t}(\mathbf{w}_{n}^{m}) - \mathcal{R}(\mathbf{w}_{n}^{m})}_{-\mathcal{R}_{n}^{t}(\mathbf{w}^{m})}$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}}+\mathbf{J}_{n}^{m}
ight)\Delta\mathbf{w}_{n}^{m}+\mathbf{K}D_{t}(\Delta\mathbf{w}_{n}^{m})=-\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

Sous forme matricielle

$$\mathbf{A}^{*,m} \Delta \mathbf{w}^{*,m} = -\mathcal{R}^t \left(\mathbf{w}^{*,m} \right), \quad \mathbf{w}^* = \left[\mathbf{w}_0, \cdots, \mathbf{w}_n, \cdots, \mathbf{w}_{2N} \right]^t$$

$$\left(rac{\mathbf{I_d}}{\Delta au^m} + \mathbf{J}_n^m
ight)\Delta \mathbf{w}_n^m + \mathbf{K} D_t(\Delta \mathbf{w}_n^m) = -\mathcal{R}_n^t(\mathbf{w}^m)$$

Sous forme matricielle

$$\mathbf{A}^{*,m} \Delta \mathbf{w}^{*,m} = -\mathcal{R}^t \left(\mathbf{w}^{*,m} \right), \quad \mathbf{w}^* = \left[\mathbf{w}_0, \cdots, \mathbf{w}_n, \cdots, \mathbf{w}_{2N} \right]^t$$

comme $d_0 = 0$, on a

$$\mathbf{A}^{*} = \begin{pmatrix} \frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau} + \mathbf{J}_{\mathbf{0}} & d_{\mathbf{1}}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} & d_{-N}\mathbf{I}_{\mathbf{d}} & \cdots & d_{-1}\mathbf{I}_{\mathbf{d}} \\ d_{-1}\mathbf{I}_{\mathbf{d}} & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_{1}\mathbf{I}_{\mathbf{d}} & \ddots & \ddots & \vdots & \vdots \\ d_{-N}\mathbf{I}_{\mathbf{d}} & \cdots & d_{-1}\mathbf{I}_{\mathbf{d}} & \frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau} + \mathbf{J}_{N} & d_{1}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} \\ \vdots & \ddots & \ddots & d_{1}\mathbf{I}_{\mathbf{d}} & \cdots & d_{1}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ d_{1}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} & d_{-N}\mathbf{I}_{\mathbf{d}} & \cdots & d_{-1}\mathbf{I}_{\mathbf{d}} & \frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau} + \mathbf{J}_{2N} \end{pmatrix}$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \sum_{p=-N}^{N} |d_{p}| \mathbf{I}_{\mathbf{d}}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

Sous forme matricielle

$$\mathbf{A}^{*,m} \Delta \mathbf{w}^{*,m} = -\mathcal{R}^t \left(\mathbf{w}^{*,m} \right), \quad \mathbf{w}^* = \left[\mathbf{w}_0, \cdots, \mathbf{w}_n, \cdots, \mathbf{w}_{2N} \right]^t$$

comme $d_0 = 0$, on a

$$\mathbf{A}^{*} = \begin{pmatrix} \frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau} + \mathbf{J}_{\mathbf{0}} & d_{\mathbf{1}}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} & d_{-N}\mathbf{I}_{\mathbf{d}} & \cdots & d_{-1}\mathbf{I}_{\mathbf{d}} \\ d_{-1}\mathbf{I}_{\mathbf{d}} & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_{1}\mathbf{I}_{\mathbf{d}} & \ddots & \ddots & \vdots & \vdots \\ d_{-N}\mathbf{I}_{\mathbf{d}} & \cdots & d_{-1}\mathbf{I}_{\mathbf{d}} & \frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau} + \mathbf{J}_{N} & d_{1}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} \\ \vdots & \ddots & \ddots & d_{1}\mathbf{I}_{\mathbf{d}} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & d_{1}\mathbf{I}_{\mathbf{d}} \\ d_{1}\mathbf{I}_{\mathbf{d}} & \cdots & d_{N}\mathbf{I}_{\mathbf{d}} & d_{-N}\mathbf{I}_{\mathbf{d}} & \cdots & d_{-1}\mathbf{I}_{\mathbf{d}} & \frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau} + \mathbf{J}_{2N} \end{pmatrix}$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{\rho=-N}^{N} |d_{\rho}| \mathbf{I}_{\mathbf{d}}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

On résout le système avec une méthode de relaxation de type Point Jacobi

$$\begin{split} \Delta \mathbf{w}_{n}^{(0)} &= 0\\ \begin{cases} l = 0, l_{max} - 1\\ \left(\frac{\mathbf{I}_{d}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{p = -N}^{N} |d_{p}| \mathbf{I}_{d} \right) \Delta \mathbf{w}_{n}^{(l+1)} &= -\mathcal{R}_{n}^{t}(\mathbf{w}^{m}) - \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{(l)})\\ \Delta \mathbf{w}_{n}^{(l_{max})} &= \Delta \mathbf{w}_{n}^{m} \end{split}$$

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{\rho=-N}^{N} |d_{\rho}| \mathbf{I}_{\mathbf{d}}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

On résout le système avec une méthode de relaxation de type Point Jacobi

$$\begin{split} \Delta \mathbf{w}_{n}^{(0)} &= 0\\ \begin{cases} l = 0, l_{max} - 1\\ \left(\frac{\mathbf{I}_{d}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{p = -N}^{N} |d_{p}| \mathbf{I}_{d} \right) \Delta \mathbf{w}_{n}^{(l+1)} &= -\mathcal{R}_{n}^{t}(\mathbf{w}^{m}) - \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{(l)})\\ \Delta \mathbf{w}_{n}^{(l_{max})} &= \Delta \mathbf{w}_{n}^{m} \end{split}$$

• En relaxant le terme TSM, on facilite le couplage des instants

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{\rho=-N}^{N} |d_{\rho}| \mathbf{I}_{\mathbf{d}}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

On résout le système avec une méthode de relaxation de type Point Jacobi

$$\begin{split} \Delta \mathbf{w}_{n}^{(0)} &= 0\\ \begin{cases} l = 0, l_{max} - 1\\ \left(\frac{\mathbf{I}_{d}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{p = -N}^{N} |d_{p}| \mathbf{I}_{d} \right) \Delta \mathbf{w}_{n}^{(l+1)} &= -\mathcal{R}_{n}^{t}(\mathbf{w}^{m}) - \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{(l)})\\ \Delta \mathbf{w}_{n}^{(l_{max})} &= \Delta \mathbf{w}_{n}^{m} \end{split}$$

• En relaxant le terme TSM, on facilite le couplage des instants

• Même discrétisation spatiale que pour la marche en temps classique

$$\left(\frac{\mathbf{I}_{\mathbf{d}}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{\rho=-N}^{N} |d_{\rho}| \mathbf{I}_{\mathbf{d}}\right) \Delta \mathbf{w}_{n}^{m} + \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{m}) = -\mathcal{R}_{n}^{t}(\mathbf{w}^{m})$$

On résout le système avec une méthode de relaxation de type Point Jacobi

$$\begin{split} \Delta \mathbf{w}_{n}^{(0)} &= 0\\ \begin{cases} l = 0, l_{max} - 1\\ \left(\frac{\mathbf{I}_{d}}{\Delta \tau^{m}} + \mathbf{J}_{n}^{m} + \mathbf{K} \sum_{p = -N}^{N} |d_{p}| \mathbf{I}_{d} \right) \Delta \mathbf{w}_{n}^{(l+1)} &= -\mathcal{R}_{n}^{t}(\mathbf{w}^{m}) - \mathbf{K} D_{t}(\Delta \mathbf{w}_{n}^{(l)})\\ \Delta \mathbf{w}_{n}^{(l_{max})} &= \Delta \mathbf{w}_{n}^{m} \end{split}$$

- En relaxant le terme TSM, on facilite le couplage des instants
- Même discrétisation spatiale que pour la marche en temps classique
- \implies Pour chaque instant TSM, on se retrouve avec un sytème implicite similaire au système stationnaire classique

Effet de la correction diagonale

Figure: Historique de convergence pour l'équation de la chaleur avec TSM et résolution Point Jacobi du système implicite ($I_{max} = 2, N = 1$)

Comparaison des coûts TSM et BDF

BDF

TSM

Boucle temps physique $N_{cycles} \times N_{\Delta t}$ Boucle temps dual m_{max}^{BDF} (Boucle sur les cellules N_{cells}

 $\begin{cases} \text{Boucle Point Jacobi } I_{max}^{BDF} \\ \hline \\ \text{Système Implicite BDF } C_u^{BDF} \end{cases}$

Boucle temps dual m_{max}^{TSM} Boucle sur les cellules $N_{cells} \times (2N + 1)$ et instants TSM

 $\begin{cases} \text{Boucle Point Jacobi } I_{max}^{TSM} \\ \hline \text{Système Implicite TSM } C_u^{TSM} \end{cases}$

Coût total TSM

$$\mathcal{C}^{\textit{TSM}(\textit{N})} = (2\textit{N}+1) imes \textit{m}_{max}^{\textit{TSM}} imes \textit{I}_{max}^{\textit{TSM}} imes \textit{N}_{cells} imes \textit{C}_{u}^{\textit{TSM}}$$

Comparaison des coûts TSM et BDF

BDF

TSM

Boucle temps physique $N_{cycles} \times N_{\Delta t}$ Boucle temps dual m_{max}^{BDF}

Boucle sur les cellules N_{cells}

 $\begin{cases} \text{Boucle Point Jacobi } I_{max}^{BDF} \\ \hline \\ \text{Système Implicite BDF } C_u^{BDF} \end{cases}$

Boucle temps dual m_{max}^{TSM}

Boucle sur les cellules $N_{cells} \times (2N + 1)$

et instants TSM

Boucle Point Jacobi Imax

Système Implicite TSM C,,

Coût total TSM

$$\mathcal{C}^{\mathsf{TSM}(\mathsf{N})} = (2\mathsf{N}+1) imes \mathsf{m}_{\mathsf{max}}^{\mathsf{TSM}} imes \mathsf{I}_{\mathsf{max}}^{\mathsf{TSM}} imes \mathsf{N}_{\mathsf{cells}} imes \mathcal{C}_{u}^{\mathsf{TSM}}$$

Coût total BDF

$$\mathcal{C}^{BDF} = \textit{N}_{\Delta t} imes \textit{N}_{cycles} imes \textit{m}_{max}^{BDF} imes \textit{I}_{max}^{BDF} imes \textit{N}_{cells} imes \textit{C}_{u}^{BDF}$$

$$\eta = \frac{\mathcal{C}^{TSM(N)}}{\mathcal{C}^{BDF}} = \frac{(2N+1)}{N_{\Delta t} \times N_{cycles}} \times \frac{m_{max}^{TSM(N)}}{m_{max}^{BDF}} \times \frac{C_u^{TSM(N)}}{C_u^{BDF}}$$

$$\eta = \frac{\mathcal{C}^{TSM(N)}}{\mathcal{C}^{BDF}} = \underbrace{\frac{(2N+1)}{N_{\Delta t} \times N_{cycles}} \times \frac{m_{max}^{TSM(N)}}{m_{max}^{BDF}}}_{\Phi_1} \times \frac{C_u^{TSM(N)}}{C_u^{BDF}}$$

Φ₁ dépend du problème considéré

$$\eta = \frac{\mathcal{C}^{TSM(N)}}{\mathcal{C}^{BDF}} = \underbrace{\frac{(2N+1)}{N_{\Delta t} \times N_{cycles}} \times \frac{m_{max}^{TSM(N)}}{m_{max}^{BDF}}}_{\Phi_1} \times \underbrace{\frac{\mathcal{C}_u^{TSM(N)}}{\mathcal{C}_u^{BDF}}}_{\Phi_2}$$

- Φ₁ dépend du problème considéré
- Φ_2 (rapport des couts unitaires TSM/BDF) mesure l'efficacité de l'implémentation

$$\eta = \frac{\mathcal{C}^{TSM(N)}}{\mathcal{C}^{BDF}} = \underbrace{\frac{(2N+1)}{N_{\Delta t} \times N_{cycles}} \times \frac{m_{max}^{TSM(N)}}{m_{max}^{BDF}}}_{\Phi_1} \times \underbrace{\frac{\mathcal{C}_u^{TSM(N)}}{\mathcal{C}_u^{BDF}}}_{\Phi_2}$$

- Φ₁ dépend du problème considéré
- Φ_2 (rapport des couts unitaires TSM/BDF) mesure l'efficacité de l'implémentation

 $\Phi_2(N) \approx 0.8208 + 0.0925 \times N$

- 1 Contexte de la thèse
- 2 Solver incompressible BDF
- 3 Approche TSM
- Comparaison TSM/BDF
- 5 Conclusion et Perspectives

Présentation des cas tests

Equations du mouvement

$$\begin{cases} \text{Pitching} \quad \theta(t) = \theta_0 \sin(\omega t) \\ \text{Heaving} \quad y(t) = H_0 \sin(\omega t + \frac{\pi}{2}) \end{cases}$$

 θ_0 , amplitude de rotation H_0 , amplitude du battement

Pulsation $\omega = 2\pi f$ Fréquence réduite $f^* = \frac{fc}{U_{\infty}}$ U_{∞} est la vitesse à l'infini amont

Figure: Régimes $H_0/c = 1$

 $\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{7} \\$

20 0.00 0.05 0.10 f² 0.15 0.20 0.25

Figure: Mode turbine

Figure: Régimes $H_0/c = 1$

Régimes de fonctionnement

Figure: Mode turbine

Figure: Régimes $H_0/c = 1$

Figure: Mode propulseur

Soutenance de thèse 04-11-2010

Etude paramétrique du mode turbine

Figure: Carte des rendements dans l'espace paramétrique (f^*, θ_0) NACA0015, Re=1100, $H_0/c = 1$, $x_p/c = 1/3$, Résultats de Kinsey et Dumas (2008)

Etude paramétrique du mode turbine

Figure: Carte des rendements dans l'espace paramétrique (f^*, θ_0) NACA0015, Re=1100, $H_0/c = 1$, $x_p/c = 1/3$, Résultats de Kinsey et Dumas (2008)

Cas test PH (Pitching Heaving),	$\eta = 11.4\%$
---------------------------------	-----------------

Fréquence réduite	f^*	0.18
Amplitude battement	H_0 [m]	1
Amplitude rotation	θ_0 [°]	60

Paramètres numériques communs BDF/TSM

Figure: Maillage NACA0015

Compressibilité artificielle	β	5
Facteur accélération	CFL	10 ⁶
Itérations Jacobi	I _{max}	16
Nombre de cellules	N _{cells}	30000

Formulation ALE variables absolues, repère absolu

Résultats BDF, cas PH : C_Y

		CA-BDF	Kinsey & Dumas (FLUENT)
Nombre de cellules	N _{cells}	30000	72000
Pas de temps par période	$N_{\Delta t}$	520	2000
Sous itérations temps dual	m_{max}^{BDF}	100	?
Méthode incompressible		Compressibilité artificielle $\beta = 5$	SIMPLE

Figure: Comparaison des résultats du solver CA-BDF avec Kinsey & Dumas : Evolution du C_Y

Figure: Vidéo isovaleurs de pression

Comparaison BDF/TSM PH : C_y

Figure: Comparaison des résultats BDF et TSM pour un nombre croissant d'harmoniques : C_Y PH. Les carrés noir représentent les 2N + 1 instants de calcul TSM

Figure: Méthode BDF, cas PH à t/T = 0.5 Figure: Méthode TSM, cas PH pour un nombre croissant d'harmoniques

Pour obtenir un résidu de 10⁻⁴

- $m_{max}^{BDF} \approx 100$
- $m_{max}^{TSM} \approx 3300$

$$\textit{res}_{av}^{\textit{TSM},m} = \frac{1}{2N+1} \sum_{n=0}^{2N} \sqrt{\frac{1}{N_{\textit{cell}}} \sum_{i=1}^{N_{\textit{cell}}} \frac{\Delta p_{i,n}^{m\,2}}{\Delta \tau_i^{m^2}}}$$
Champs de pression PH

Figure: Cas test PH. Comparaison des champs de pression BDF et TSM reconstruit (N = 16) à t/T = 0.25 (a) et t/T = 0.45 (b).

Spectre des résultats BDF : C_{v} PH

Question

Peut-on relier facilement le spectre de la solution BDF et les résultats TSM ?

Spectre des résultats BDF : C_v PH

Question

Peut-on relier facilement le spectre de la solution BDF et les résultats TSM?

Figure: Comparaison des résultats du solver Figure: Spectre de la décomposition du C_Y CA-BDF avec Kinsey & Dumas : Evolution en série de Fourier du C_Y

Spectre et résultats TSM : C_Y PH

Figure: Comparaison de la décomposition en série de Fourier de la solution BDF (gauche) avec la solution TSM pour un nombre croissant d'harmoniques (droite) : C_Y PH

Spectre et résultats TSM : C_Y PH

Figure: Comparaison de la décomposition en série de Fourier de la solution BDF (gauche) avec la solution TSM pour un nombre croissant d'harmoniques (droite) : C_Y PH

Réponse

Pas évident à cause de la non linéarité de l'opérateur spatial : $\widehat{\mathcal{R}}_k(\mathbf{w}) \neq \mathcal{R}(\widehat{\mathbf{w}}_k)$

Résultats BDF, cas PP : C_Y

Cas test PP (Pure Pitching), $\eta = 0.8\%$

Fréquence réduite	f^*	0.12
Amplitude battement	H_0 [m]	0
Amplitude rotation	θ_0 [°]	23

Figure: Comparaison des résultats du solver CA-BDF avec Kinsey & Dumas : Evolution du C_Y

Figure: Vidéo isovaleurs de pression

Comparaison BDF/TSM, cas PP : C_{y}

Figure: Comparaison des résultats BDF et TSM pour un nombre croissant d'harmoniques : C_Y PP. Les carrés noir représentent les 2N + 1 instants de calcul TSM

Convergence TSM, cas PP

Figure: Historique de convergence de la méthode TSM pour le cas PP et pour un nombre croissant d'harmoniques

Pour obtenir un résidu moyen de 10^{-4} , $m_{max}^{TSM}\approx 2800$

Champs de pression PP

Figure: Cas test PP. Comparaison des champs de pression BDF et TSM reconstruit (N = 22) à t/T = 0.25 (a) et t/T = 0.45 (b).

Spectre des résultats BDF : C_v PP

Figure: Comparaison des résultats du solver CA-BDF avec Kinsey & Dumas : Evolution du C_Y

Figure: Décomposition du C_Y en série de Fourier

Spectre et résultats TSM : C_Y PP

Figure: Comparaison de la décomposition en série de Fourier de la solution BDF (gauche) avec la solution TSM pour un nombre croissant d'harmoniques (droite) : C_Y PP

Précision : Calcul de l'erreur

L'erreur RMS sur le coefficient C_Y est définie par :

$$\epsilon_{RMS}(C_Y) = \sqrt{\frac{1}{N_{\Delta t}} \sum_{k=1}^{N_{\Delta t}} \left(\frac{(C_Y)_{TSM(N)}(t_k) - (C_Y)_{BDF}(t_k)}{(\Delta C_Y)_{BDF}}\right)^2}$$

Erreur sur le C_Y

Figure: Erreur RMS de la difference normalisée entre le C_Y calculé avec la méthode BDF et 520 pas de temps par période et la méthode TSM(N) pour un nombre croissant d'harmoniques N.

Erreur inférieure à 1% sur le $C_Y \implies \begin{cases} 7 & \text{harmoniques pour PH} \\ 16 & \text{harmoniques pour PP} \end{cases}$

Résultats coûts

Figure: Rapport de cout TSM sur BDF en fonction du nombre d'harmoniques *N*

Méthode	m _{max}	$N_{\Delta t}$	N _{cycle}
BDF	100	520	4
TSM	2800		

Table: PP case

Méthode	m _{max}	$N_{\Delta t}$	N _{cycle}
BDF	100	520	6
TSM	3300		

Table: PH case

Résultats combinés de précision et coût

Figure: Erreur RMS sur le C_Y en fonction du rapport de cout η

Erreur inférieure à 1% sur le $C_Y \implies \begin{cases} \eta^{PH} = 0.2 & \text{Gain de facteur 5} & N = 7\\ \eta^{PP} = 1 & \text{Gain nul} & N = 16 \end{cases}$

D Contexte de la thèse

- 2 Solver incompressible BDF
- 3 Approche TSM
- 4 Comparaison TSM/BDF
- 5 Conclusion et Perspectives

Résultats obtenus

Gains en temps de calcul

Pour les cas incompressibles 2D laminaires présentés \rightarrow gain d'un facteur 1 à 5

Résultats obtenus

Gains en temps de calcul

Pour les cas incompressibles 2D laminaires présentés \rightarrow gain d'un facteur 1 à 5

Quel gain peut-on espérer pour la turbine Achard?

$$\eta = \frac{\mathcal{C}^{TSM(N)}}{\mathcal{C}^{BDF}} = \underbrace{\frac{(2N+1)}{N_{\Delta t} \times N_{cycles}}}_{\Phi_{1-physique}} \times \underbrace{\frac{m_{max}^{TSM(N)}}{m_{max}^{BDF}}}_{\Phi_{1-dual}} \times \underbrace{\frac{\mathcal{C}_{u}^{TSM(N)}}{\mathcal{C}_{u}^{BDF}}}_{\Phi_{2}}$$

 $\Phi_{1-physique}$: rapport indépendant de l'implémentation de la méthode TSM

 $\Phi_{1-\text{physique}}$: rapport indépendant de l'implémentation de la méthode TSM

• Nombre de pas de temps par période $N_{\Delta t} = 360$

 $\Phi_{1-physique}$: rapport indépendant de l'implémentation de la méthode TSM

- Nombre de pas de temps par période $N_{\Delta t} = 360$
- Nombre de cycles pour arriver à l'état périodique établi $N_{cycles} = 5$

 $\Phi_{1-physique}$: rapport indépendant de l'implémentation de la méthode TSM

- Nombre de pas de temps par période $N_{\Delta t} = 360$
- Nombre de cycles pour arriver à l'état périodique établi $N_{cycles} = 5$
- Nombre d'harmoniques N nécessaires pour représenter la solution $N \approx 20$

Méthode	m _{max}	$N_{\Delta t}$	N _{cycle}
BDF	100	360	5
TSM	3000		

Table: Paramètres de calcul estiméspour la turbine Achard

 $\eta_{estime}(20) \approx 1.7$

Figure: Rapport de coût TSM/BDF estimé pour la turbine Achard

Perspectives d'amélioration de la TSM

Améliorer le rapport de coût unitaire TSM/BDF Φ_2

Méthode	m _{max}	$N_{\Delta t}$	N _{cycle}
BDF	100	360	5
TSM	3000		

Table: Paramètres de calcul estiméspour la turbine Achard

$$\eta_{estime}(20) \approx 1.7$$

 $\mathsf{Id\acute{e}alement}\ \Phi_2=1$

 $\eta_{ideal}(20) \approx 0.7$

Figure: Rapport de coût TSM/BDF estimé et idéal pour la turbine Achard

Amélioration de la convergence en temps dual $m_{max}^{TSM(N)}$ et m_{max}^{BDF}

Amélioration de la convergence en temps dual $m_{max}^{TSM(N)}$ et m_{max}^{BDF}

Amélioration de la convergence en temps dual $m_{max}^{TSM(N)}$ et m_{max}^{BDF}

Amélioration de la résolution du système implicite

Méthode de relaxation Gauss Seidel par point

Amélioration de la convergence en temps dual $m_{max}^{TSM(N)}$ et m_{max}^{BDF}

- Méthode de relaxation Gauss Seidel par point
- Solveur GMRES (pas sensible à la perte de dominance diagonale)

Amélioration de la convergence en temps dual $m_{max}^{TSM(N)}$ et m_{max}^{BDF}

- Méthode de relaxation Gauss Seidel par point
- Solveur GMRES (pas sensible à la perte de dominance diagonale)
- 2 Amélioration de la phase implicite

Amélioration de la convergence en temps dual $m_{max}^{TSM(N)}$ et m_{max}^{BDF}

- Méthode de relaxation Gauss Seidel par point
- Solveur GMRES (pas sensible à la perte de dominance diagonale)
- 2 Amélioration de la phase implicite
- Implémentation de la TSM dans un solveur purement incompressible

Merci de votre attention