
HAL Id: tel-00542521
https://theses.hal.science/tel-00542521v1

Submitted on 2 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computer-Aided Control for Expressive Rendering
Hedlena Maria de Almeida Bezerra

To cite this version:
Hedlena Maria de Almeida Bezerra. Computer-Aided Control for Expressive Rendering. Human-
Computer Interaction [cs.HC]. Institut National Polytechnique de Grenoble - INPG, 2010. English.
�NNT : �. �tel-00542521�

https://theses.hal.science/tel-00542521v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité « Mathématiques, Sciences et Technologies de l'Information, Informatique»

Arrêté ministériel : 7 août 2006

Présentée et soutenue publiquement par

Hedlena Maria DE ALMEIDA BEZERRA

le 05 Novembre 2010

LE RENDU EXPRESSIF ASSISTÉ PAR ORDINATEUR

Thèse dirigée par François SILLION et codirigée par Joëlle THOLLOT

JURY

M. Georges-Pierre BONNEAU Professeur - Université de Grenoble Président du Jury
M. Bernard PÉROCHE Professeur - Université Claude Bernard Lyon 1 Rapporteur
M. Mario COSTA SOUSA Professeur - University of Calgary Rapporteur
M. Doug DECARLO Professeur - Rutgers University Examinateur
M. François SILLION Directeur de Recherche INRIA Rhône-Alpes Directeur
Mme. Joëlle THOLLOT Professeur - Université de Grenoble Co-directrice

Thèse préparée au sein du Laboratoire Jean Kuntzmann dans l' Ecole Doctorale MSTII

ii 0.1 Résumé

0.1 Résumé

L’édition, la création, et le design digital mènent la flexibilité des ordinateurs vers l’acte de
création. La quasi-absence de conséquences par l’expérimentation peut être à la fois une
bonne et une mauvaise chose. Bien que la flexibilité des ordinateurs encourage l’exploration
d’idées artistiques, elle peut également la freiner, en proposant trop d’options mal-adaptées.
Un grand défi pour le développement des logiciels graphiques aujourd’hui est de tirer parti
de la flexibilité sans précédent des ordinateurs, tout en offrant à l’utilisateur le niveau de
contrôle adapté à ses besoins.

La difficulté quand on développe un tel système est fortement influencée par l’attente
que l’utilisateur place dans le travail effectué par l’ordinateur. L’ordinateur étant consid-
éré comme un assistant dans le processus de création, on attend de lui qu’il soit ’assez
intelligent’ pour mériter ce rang. Habituellement, nous n’acceptons pas bien quand le ré-
sultat d’une telle assistance n’est pas satisfaisante. Cependant, le niveau d’attente et, par
conséquence, de satisfaction, varie en fonction de l’utilisateur. Les utilisateurs novices ont
tendance à être moins exigeants et sont satisfaits quand ils peuvent créer des résultats in-
téressants avec peu d’intervention humaine. Les utilisateurs professionnels, d’un autre côté,
ont des besoins différents. Ils recherchent des logiciels assez performants pour automatiser
leurs taches, mais qui leur laissent assez de contrôle sur le résultat obtenu. Pour cette caté-
gorie d’utilisateurs, plus l’impact du logiciel sur le résultat est important, plus ils veulent
avoir le contrôle sur la façon dont est obtenu ce résultat.

Dans cette thèse, nous démontrons que l’ordinateur peut être un assistant précieux dans
le processus de création visuel du moment que des systèmes d’interaction adaptés exis-
tent. L’adaptation est donc un aspect important car, à différents niveaux, les utilisateurs
veulent pouvoir contrôler le résultat afin d’exprimer leur style et leur créativité. La thèse
présente deux scénarios différents qui démontrent que la contrôlabilité joue un rôle ma-
jeur dans l’expressivité : une technique temps-réel pour grouper des scènes 3d dynamiques
pour obtenir automatiquement un résultat sur lequel on peut facilement appliquer un style
de rendu arbitraire; et plusieurs dérivées d’une primitive de dessin vectoriel appelée Diffu-
sion Curves qui contraignent et contrôlent la création de dégradés de couleurs complexes.
La thèse propose, d’un coté, des représentations mathématiques et algorithmiques adaptées
avec différents niveaux de contrôle sur les algorithmes de rendu expressif qui manipulent
des scènes bi et tridimensionnelles; et, d’un autre coté, de traduire ces outils en interface
intuitive pour l’utilisateur.

iii

0.2 Abstract

Digital edition, creation, and design bring the computer’s extraordinary flexibility to the
act of creation. The near absence of penalty for experimentation can be, however, both
a blessing and a curse. Although the unprecedent flexibility of the computer encourages
exploration of artistic ideas, it also can be a factor of great distraction to the artist. A great
challenge for the development of graphics softwares today is, thus, to take advantage of
computer’s unprecedented flexibility, while offering to the user the adapted level of control
that she or he is looking for.

The difficulty when designing such adapted system is highly influenced by the expecta-
tions users place on the job performed by computers. As the computer places itself in the
role of an assistant in the creation process, we expect it to be ’smart enough’ to deserve
this place. Usually, we do not accept well when the result of such assistance is not satisfac-
tory. Nevertheless, the level of expectation, and consequently, satisfaction, is not the same
for all users. Novice users tend to be less exigent and are often happy when the computer
help them to create interesting results without the need of a strong user intervention. Pro-
fessional users, on the other hand, usually have different needs. They are looking forward
to softwares that are good enough in automatizing tasks, but also that provide intuitive
controls to manipulate their results. For these users, the bigger is the impact of the work
generated by the computer in the final result, the more these tasks are subjected to have
control parameters.

In this thesis, we demonstrate that the computer can be placed as an incomparable as-
sistant into the visual creation process once well-adapted interaction systems are provided.
Adaptation is thus an important aspect because, in different levels, users want to be able to
have the control over the result in order to give their touch and express their creativity. The
thesis presents two different scenarios demonstrating that controllability plays a major role
in expressiveness: a real-time technique to cluster a dynamic 3D scene in order to achieve
an automatic, yet controllable output that can then be used as input to any rendering style;
and a number of adaptations to a drawing vector graphics primitive called Diffusion Curves
that constrain and control the creation of complex color gradients. The thesis proposes, on
one hand, mathematical and computational well-adapted representations to provide the user
with different levels of control over algorithms of expressive rendering in order to manip-
ulate two- and tridimensional scenes; and, on the other hand, to reproject this technical
support into user-friendly software solutions.

iv 0.3 Agradecimentos

0.3 Agradecimentos

Agradeço a Deus por ter sido tão ’mimada’ por Ele. A São José e Nossa Senhora, que sem-
pre estiveram ao meu lado. Agradeço a meus pais, em especial minha mãe, Maria Helena,
o coração mais terno do mundo. A meus irmãos, Helenilson, Hednilson, Nilshelena e Nil-
lena, tão numerosos e tão valiosos. À minhas cunhadas Tiana e Dani, tão lindas. A meus
sobrinhos Gabriel, Lucas, Isabela, Lara e Felipe, que enchem nossa família de alegrias.
À voinha, a quem esta tese é dedicada. E a todos aqueles de Dona Ana ou de Seu Neto
Avelino.

À família Eisemann, Freya, Hans, Almuth, Martin, Oma, Jezebela (in memoriam) e em
especial a Elmar, ator mais importante da minha vida dos últimos 5 anos. Sem sua inteligên-
cia e busca pela perfeição, essa tese não teria tamanha qualidade. Sem seu apoio e carinho,
eu não sei nem se teria conseguido... Elmar, à você, esta tese.

À Joëlle. Obrigada por ter acreditado em mim e transformado minha vida. Se hoje me
considero alguém melhor, mais madura, à ela devo o aprendizado. À François Sillion pela
oportunidade.

Aos meus fieis escudeiros Erika, Gi e Matheus. Meus irmãos por opção. À Beriê, e seu
entusiasmo pela computação gráfica. À Palu e recentemente Dani pelo apoio. À Cêça ’tra-
montina’ que me fez redescobrir a beleza da amizade brasileira. À Suzanita e Marcelinho
meus irmãos cariocas. À Paulinha, que me ensinou o encanto pela computação gráfica. A
Maluquete e suas histórias malucas. À AdeliJ, corpo diferente, mas destino copiado. Mod-
elo vivo da Barbie Software Engineer! À Betuca, pelas discussões e ensinamentos sobre
justiça social. À Bruno, Eraldo e Pablito, minhas melhores lembranças do Rio. À meu
querido Serginho Krakowski. À Tristan, meu amigo longe dos olhos, mas perto do coração.
À Tallitha e Elaine, minhas fortalezas. A Paulo e Bela e ja adianto Samuel. À Carlos, que
sempre esteve comigo.

À Hai and Valentin, primeiros e grandes amigos dessa jornada na França. À todos do
CTM, memórias de tantos anos. A Manu pela amizade e exemplo de bom gosto. À Frankoko,
por todas as palavras do mês, discussões futebolísticas e até ouvido para meus momentos
Barbie. À Pierrot, sempre classe em tudo, Minha admiração e profundo carinho. À Kar-
tic, Ajita and Atreya, além de tudo meus amigos. À Nassimo, Pierre-Neigel, Olivier, Cyril
Crassin, Cyril Soler, Fabrice, Nicolas, Charles, Isabelle, J-D, Laurent, Eric, Mahdi, Lau-
rence, Alex, Adrien, Thierry, Kaleigh, Kiran, Vasile. À Daniel Sykora, meu amigo hoje
mais real que virtual. À Patricia e Imma, pelo carinho tão imenso. À Adeline Pihuit, pela
amizade mais que feminina tão necessária no INRIA. A Danielzinho, chefe de todos os
chefes. À Laurentiu, por me fazer acreditar nos meus 27 anos.

À Dri, viestes na hora exata com ares de festa e luas de prata. À Javier, meu irmão de
continente e de fé.

Mencionar todo mundo é tão difícil, mas meu coração, eternamente grato a todos que
por aqui passaram.

Contents

0.1 Résumé . ii
0.2 Abstract . iii
0.3 Agradecimentos . iv

1 Introduction 1
1.1 Content Creation . 1
1.2 User control . 5
1.3 Goals and Contributions . 6

1.3.1 3D Grouping of Scenes . 6
1.3.2 Controllable Diffusion of Colors 7
1.3.3 Interpreting Shape from 2D Drawings 7

2 Dynamic Grouping in 3D Scenes 9
2.1 Criteria for Grouping . 10
2.2 Related Work . 14

2.2.1 Object-based NPR . 16
2.3 Overview of Our Approach . 18
2.4 Grouping . 19

2.4.1 Representative Points . 19
2.4.2 Clustering . 20
2.4.3 Temporal coherence . 23

2.5 Level of Abstraction and Stylization . 24
2.6 Feature Space . 26
2.7 Mean-Shift Extension . 27

2.7.1 Convergence . 27
2.8 Results . 29
2.9 Discussion . 30

3 Controllable Diffusion For Vector Graphics 31
3.1 Raster Graphics Images . 32
3.2 Vector Graphics Images . 33
3.3 Diffusion Curves . 37
3.4 Controllable Diffusion Curves . 39
3.5 Related Work on Diffusion . 42
3.6 Mathematical Background . 44

3.6.1 Diffusion Process . 45
3.6.2 Reformulating the Diffusion Process 45

3.7 Diffusion Control via Constraint Systems 47
3.7.1 Diffusion Barriers . 47
3.7.2 Anisotropic Diffusion . 49
3.7.3 Color Strength . 52

3.8 Beyond Local Constraints . 54

vi Contents

3.9 Results . 55
3.10 Discussion . 57

4 Shape and Tone Depiction from 2D Drawings 59
4.1 Computer-Assisted Drawings . 61
4.2 Lines and the Perception of Shape . 64

4.2.1 Shape Reconstruction from Labeling 65
4.2.2 Perceptual Experiments . 67

4.3 Shading and the Perception of Shape . 68
4.3.1 Manipulating 3D Scene Depiction 69
4.3.2 Manipulating 2D Scene Depiction 70

4.4 Shading from Line Drawings . 72
4.4.1 Enriching Cartoon Drawings . 74
4.4.2 Image-based Methods . 75

4.5 Ongoing Work on Shading from Curves 78
4.5.1 “Under”, “Over” . 78

4.5.1.1 Diffusion Barriers . 79
4.5.2 Mathematical Lines . 80
4.5.3 Surface Reconstruction from Line Properties 81
4.5.4 Anisotropic Diffusion . 83
4.5.5 Animated System . 83

4.6 Discussion . 84

5 Conclusion 85

1 Introduction

1.1 Content Creation

Since the early times, reality, visual perception, and imagination have stimulated the human
mind to express (by creating) and/or to interpret (by observing) visual content. Prehistoric
men were driven by the belief that images would protect them against other powers, which
were, to them, as real as the force of nature. We cannot hope to understand these strange
beginnings of art unless we try to enter into the mind of such primitive peoples and find out
what kind of experience it is which made them think of pictures, not as something nice to
look at, but as something powerful to use [Gom61]. It is fascinating to think how, in such
remote times, the need for visual creations was already present even though the medium
available to express them was so primitive. Nonetheless, prehistoric art pieces are far from
simplistic paintings one might expect and often reflect a tremendous creative mind capable
of exploiting the combination of basic materials to produce variances in color, chroma,
and intensity. Even though limited ranges of colors and shades were available, expressive
results were possible, for example, the impressive contrasts between light and dark placed
in order to achieve a sense of volume when drawing three-dimensional subjects as seen on
Figure 1.1.

Figure 1.1 A bison from Altamira cave (Spain) aged between 25,000 and 35,000 years. Already
at that time, artists used charcoal and other materials to create images on walls.

Thousands of years after the charcoal images left by humans on cave walls, the Egyptians
used a wider variety of media to create images in order to decorate, to represent real life, or
even to accompany individuals in their after-life. Figure 1.2 (left) shows an image of a gar-
den with a pound created at 1400 BC in order to represent a vivid picture of life in Egypt at
that time. Many advances occurred throughout the years, and new supports appeared, such
as human-made buildings, textile, paper, pottery. Art pieces depicted new color spectra that
originated from new materials and the way art was perceived changed. In the 15th century,

2 1.1 Content Creation

Figure 1.2 Art pieces at different stages of history. Left: The garden of Nebanum, c.1400 BC.
Wall painting from a tomb in Thebes. Middle: Albrecht Dürer Hare, 1502. Watercolor
and gouache on paper. Right: Le baiser de l’hôtel de ville by Robert Doisneau, 1950,
Photograph.

artists were capable of reproducing contemporary objects with an incredible amount of de-
tail through oil and watercolor techniques. The richness of those media and the popularity
gained by art pieces encouraged artists to bring in colors of incomparable fidelity and they
managed to produce astonishing renditions of their own worlds as, for example, the faithful
drawing of the Dürer’s hare where tiny details were carefully recorded (Figure 1.2 middle).

New discoveries lead to new forms of media which were slowly introduced and under-
stood as new art forms. From the first experiences with the pinhole camera in the 5th cen-
tury BC to the appearance of the modern cameras in the early decades of the 19th century,
photography introduced a new possibility for visual communication. Photography seemed
to be able to capture more detail and information than traditional media such as painting
and was incredibly faster. The control during creation moved away from ink, brushes, and
canvases to focus on aperture, composition, and capture. In the 20th century, photography
joined the popularity hall of expressive art and remarkable pieces can be cited as Le baiser
de l’hôtel de ville by Robert Doisneau in 1950 (Figure 1.2 right).

It is interesting to notice that photography paved the way to a new perception of art. Pho-
tography’s incredible ability to capture details from reality in a matter of seconds reflected
the enormous pace at which technology was growing and, underneath it, the need for speed
society was looking for.

This need for performance and accuracy also became evident in other fields. The need
for efficient numeric calculations inspired Charles Babbage in 1823 to start building his
difference engine, a complex mechanical machine for calculating logarithms and trigono-
metric functions that were important for the military for performing in ballistic calcula-
tions and motivated the construction of complex calculating machines. Such machines soon
found application in many fields, e.g., highly specialized solutions enabled to compute the
1890 U.S. census in a matter of months - while the previous census had taken almost 10
years [Wik10].

1 Introduction 3

Figure 1.3 Frieder Nake, plotter drawing, ink on paper, 1965.

With the commercializa-
tion of computer-driven plot-
ters in the early 1960’s, not
only typing became possible,
but the enormous computa-
tional potential could finally
also be exploited for draw-
ing. At this point, computer
art was a reflection of both;
the power of the computer
and its limitations. Although
some pioneering artists tried
out the possibilities of the
medium, producing art with
a computer required a strong
familiarity with its mathemat-

ical vocabulary. The visual language was dominated by geometric shapes and functions,
and compositions were made up of rotated and scaled copies [Spa98]. Not by coincidence,
many artwork was produced by the direct cooperation between artists and researchers, or
solely by those scientists who also developed artistic skills. The latter is the case of the
artwork created by the German professor Frieder Nake, whose art piece is depicted in Fig-
ure 1.3. During this early stage, questions had been raised concerning how much the work
produced by computers could be considered as art [Nol67, Nol66]. However, as pointed
out by Csuri and colleagues [CS68], the importance aspect of art lies in its conception.
This view was adopted wildly, as the potential of the computer was discovered, and they
acted increasingly as an assistant, rather than a creator. Csuri and colleagues believed that
the mathematical transformations made possible by the computer presented a new dimen-
sion of art. Indeed, in the following years, society was faced with a revolution: personal
computers and interactive graphics software systems.

Enabled via the incredible development of computers, the history of content creation was
influenced drastically. Computers became faster and more versatile enabling their applica-
tions to a large variety of domains and purposes and computer art took a giant leap forward.
Affordable cost, intelligent tools, high performance computation, and a new feeling of free-
dom, by surpassing the limitations of previous media, attracted many artists to explore the
computer as a creative tool. Powerful content creation software products were developed
and facilitated human-computer interaction more intuitive. Soon, the help provided by com-
puters made it possible for artists to better focus on the visual content instead of controlling
every process related to the creation. For example, interesting artwork like the Doll House
by Michele Turre presented in Figure 1.4 (left) illustrates well he advantages of the new
medium (the computer together with software and input tools). Here, scaling and compo-
sition mechanisms were enabled by the computer to allow the artist to concentrate on the
creative process.

The flexibility of this new medium was the basis that enabled its breakthrough and lead
to an omnipresence. From tiny cell phone screens, over astonishing dynamic special effects

4 1.1 Content Creation

Figure 1.4 Left: Image produced with the help of photo edition softwares. Doll House by Michele
Turre, created with the help of photo edition softwares. Right: Snapshot from a painter
software simulating watercolor and pencil mediums. Image from Corel Painter c© tu-
torials.

displayed in the cinema, to even art galleries. Today, many traditional artists feel comfort-
able to designing and experimenting with the computer before picking up their brush and
canvas. This is made possible due to the use of adequate software that immerses the artist
in a creative environment that adapts to their needs. Such software simulates the appear-
ance and behavior of traditional media that artists are familiar with. Many different tools
are only a simple button click away. Nonetheless, different software packages might still
specialize on particular task sets. For instance, tools such as Adobe Photoshop c© for photo
editing, usually have a different set of features and vocabulary than tools for drawing and
painting, like Corel Painter c©. Figure 1.4 (right) shows an example of a software interface
specialized on watercolor and pencil-like media simulation.

Beyond still images, significant advances were also achieved in the field of video and
animation. Computer animation and video-oriented motion graphics benefit from a wide
range of tools designed to automatize and help artists to create dynamic scenes. Even for
traditional cel animation, the use of software is increasingly involved in the creation pro-
cess. Possibilities, such as digital in-betweening (a process to add intermediate frames to
render more fluid continuous movements), to quasi-3D effects such as the ballroom scene
in Beauty and the Beast by Disney c© (see Figure 1.5 left). This development went even fur-
ther, Toy Story (1995), by Disney-Pixar c©, was the first fully and high successful computer-
generated feature film (Figure 1.5 middle). More than just enhancing the appearance of
traditional animation, the computer made it possible to create and animate fully believable
3D worlds. Even photo-realistic human actors like those presented in the movie Final Fan-
tasy: The Spirits Within produced by Square Pictures c© became possible (Figure 1.5, right).

1 Introduction 5

Although the amount of work involved in such a movie production is still considerable,
it is undeniable that computers brought interesting opportunities to the process of content
creation.

Figure 1.5 Left: Ballroom scene from Beauty and the Beast (1991) by Disney c©. Middle: Buzz
Lightyear character from Toy Story (1995), the first fully computer-generated fea-
ture film. Disney-Pixar c©. Right: Ming-Na’s character from Final Fantasy (2001) by
Square Pictures c© was designed to be as realistic as possible.

1.2 User control

Digital edition, creation, and design bring the computer’s extraordinary flexibility to the
act of creation. The near absence of a penalty for experimentation can, however, be both: a
blessing and a curse. This has been underlined by Anne Spalter in her book "The Computer
in the Visual Arts" [Spa98]. According to Spalter, although the unprecedented flexibility of
the computer encourages the exploration of artistic ideas, it also reduces the structure that
a physical medium often enforces. Therefore, the freedom of the medium can be a factor of
great distraction to the artist. A great challenge for the development of graphics software
today is, thus, to take advantage of the versatility of the medium provided by the computer,
while adapting the level of control to the artist’s expectations.

The difficulty when designing such an adaptive system is highly influenced by the expec-
tations users place on the job performed by computers. As the computer places itself in the
role of an assistant in the creation process, we expect it to be ‘smart enough’ to deserve this
place. Usually, we consider it unacceptable when the result of such assistance is unsatisfac-
tory. Nevertheless, the level of expectation, and consequently, satisfaction, might vary from
one user to the other. Novice users tend to be less demanding and are often satisfied when
the computer helps them to create an interesting result without much effort and little user
intervention. Professional users, on the other hand, usually have different needs. They are
expecting that the software is smart enough to automatize tasks, but it should also provide
intuitive controls that allow them to manipulate their results. For such users, the bigger the
impact of the computer on the final result, the more control parameters are expected.

6 1.3 Goals and Contributions

1.3 Goals and Contributions

In this dissertation, we argue that the computer is an incomparable assistant for the visual
content creation process, provided that well-suited interaction systems are made available.
Having appropriate control handles is an important aspect because these empower the user
in their creative process, and enable the creation of more expressive content. Our goal
is to exploit the large expressive potential lying in adequate computer algorithms and to
conceive general, yet intuitive tools. By building upon mathematical and computationally
well-adapted representations of the artistic expressiveness, it is possible to formalize this
aspect. However to truly achieve intuitive behavior, we also need to consider user-friendly
software solutions. Our thesis is that this goal can be reached by building upon intuitive,
yet tedious, but easy to perform operations by the machine, that are controlled on a higher
level by the artist. In such a way, we achieve a predictable algorithmic behavior, while
ensuring that the artistic freedom remains untouched and also avoid drowning the artist in
an abundance of possibilities and settings that Spalter warned about [Spa98].

We illustrate our principle via three different cases of expressive rendering for which
control handles are introduced that bridge generality and intuitiveness.

1.3.1 3D Grouping of Scenes

The first contribution is a grouping approach for elements in dynamic 3D scenes that helps
conveying and leveraging group relationships. We show that, by using clustering strategies
that take into account various attributes of the scene, we offer control handles that help the
artist to exploit the scene’s inherent structure in stylization processes.

Our contribution comprises the following elements:

• A general automatic grouping approach able to take many features (position, color,
velocity, etc) into account;

• An intuitive user interaction mechanism with portable and predictable composition
behavior;

• A temporal coherence system to ensure grouping information varies consistently over
time;

• An efficient approach based on a fast computation method to interactively manipulate
the scene.

This approach is presented in Chapter 2.

1 Introduction 7

1.3.2 Controllable Diffusion of Colors

Our second work addresses methods to create and manipulate two-dimensional drawings.
We present a technique to enable vector-based primitives to depict complex color gradients.
In particular, we extend the Diffusion Curve primitive by Orzan and colleagues [OBW+08].
While the original tool is particularly appreciated by novice users, professional artist com-
plain about a lack of expressive freedom. Our algorithm aims at increasing the flexibility in
order to enhance usability and expressiveness by providing the user with control over the
color diffusion process. More specifically, our contributions are:

• A more flexible curve primitive that blocks diffusion (but do not emit color);

• A control mechanism for diffusion anisotropy and orientation;

• A control mechanism for diffusion strength (speed);

• A generalized solution method for non-local diffusion.

This approach is presented in Chapter 3.

1.3.3 Interpreting Shape from 2D Drawings

Scientists have explored many different avenues for understanding and representing shapes
based on line drawings. These efforts resulted in many techniques addressing the problem
from different perspectives such as the extraction of expressive lines from 3D surfaces, the
understanding of surface perception and the extraction of surface descriptions from hand-
made and computer-generated drawings. We analyze the importance of line and scene fea-
tures and links these to computational algorithms. Particularly, we discuss a whole series
of possible improvements over previous approaches for the extraction of approximating
surface normals from two-dimensional line drawings. While not all of our suggestions are
integrated in a software solution, we do illustrate how normals can be used to enrich the
drawing with shading information and show some examples for our improvement in Chap-
ter 4.

Overview As pointed out above, Chapters 2 and 3 describe our computational and mathe-
matical contributions to control the creation of expressive content, supported by prototype
implementations. Chapter 4 gives an overview of several shape depiction techniques and
discusses possible improvements for the particular case of cartoon-drawing illumination.
Finally, Chapter 5 presents the conclusion of the dissertation linking these contributions
together and summarizing potential directions for future work.

8 1.3 Goals and Contributions

2 Dynamic Grouping in 3D Scenes

One fundamental question in expressive rendering is: how to emphasize certain objects of
the depicted scene? Answering this question allows the creation of efficient visual con-
tents that communicate a specific message or are easier to understand. Artists have done
this for centuries. Depending on the medium, the artist has access to different methods of
stylization to produce different representations of the scene (see Figure 2.1). If the artist
uses a camera, the focus can be set so that certain objects will be blurred (e.g., in the back-
ground) (Fig. 2.1, left). If a pen-and-ink technique is used, he/she may decide to simplify
the silhouette of certain objects, and to detail that of others with precise strokes (Fig. 2.1,
middle). Furthermore, color can be used to make certain objects less visible by desaturation
or averaging (Fig. 2.1, right).

Figure 2.1 Several techniques to emphasize content. Left: Focus manipulation. Photo by Betuca.
Middle: simplify/improve line depiction by adding/removing details. Right: Color de-
saturation.

Grouping elements together is also part of the choice made to decide what areas should
be emphasized in the scene. Depicting objects as belonging to different groups plays a
major role to convey relationships between them and the organization of the scene, i.e.
overall composition. As a side-effect, the most salient or structured parts of the scene can
be identified, and the purpose of the image more efficiently communicated. One observation
is that elements in the group are often depicted in the same style. The criteria for grouping
are multifaceted. Depth of field is only one strategy. Others include semantics, proximity or
even orientation or common movement. Rather than visual items simply being aggregated,
items adhering together in a group suggest that they serve together as argument to a richer
scene interpretation [Fel03].

This chapter presents a generic clustering approach that can be used to derive the inher-
ent structure of a scene with applications to stylization. This is a common mechanism in
the artistic production that we transfer in the context of dynamic 3D scenes. We propose

10 2.1 Criteria for Grouping

an approach where clustering strategies can be devised taking into account any attribute
of the scene. Once the clustering is done, a temporally coherent Level of Abstraction is
assigned to each group and used to drive the stylization. We show how to achieve an au-
tomatic, yet controllable output that can then be used with any rendering style. Our choice
of 3D scenes as input is motivated to assure temporal coherence and to benefit of camera
movement. In the following sections, we propose an efficient solution based on an extended
mean-shift algorithm customized by user-defined criteria. The approach was published at
the 6th International Symposium on Non-photorealistic Animation and Rendering, NPAR
2008 [BEDT08].

2.1 Criteria for Grouping

Grouping and perceptual organization have proven to be remarkably difficult problems,
and the subjective judgments from human observer’s are still far superior to the best known
computation techniques [Fel03]. It is clear, therefore, that this mechanism cannot be com-
pletely automated, and that the user should keep some sort of control over it. There are
several criteria according to which objects can be grouped, the most common used being
spatial distance and depth position. In general, groups that bind objects at similar distances
(by similar color, proximity in the image, similar lighting, or similar blurring) make the
spatial organization of the scene to pop up more effectively [Dur02]. Figure 2.2 depicts two
comic book scenes from Spiderman by Marvel Comics c©. On the left, we easily perceive
two distinct groups of characters: one which elements are painted in a colorful manner,
and another painted in plain blue. The depiction of the scene suggests a clustering mech-
anism based on the character’s depth position. Characters placed in the first depth plane
are depicted with great amount of detail as it is commonly the case. The same criterion for
clustering can be perceived in the image on the right, but here, characters falling in a cluster
with a higher depth position are this time brought into attention.

Although spatial distance and depth seem to be more general choices for clustering, some
groups are based on complex criteria that can play a role individually, or in combination
with others. In The Death of the Superman illustration by DC Comics c© depicted in Fig-
ure 2.3, groups of elements can be easily identified. Nevertheless, the criteria which influ-
enced the clustering structure are rather complex. The scene’s arrangement suggest that the
grouping standard was based on the character’s movement direction. Consequently, char-
acters following the funeral are distinguished from those simply watching it. In addition,
the relative depth that follows the axis of movement seems to be also taken into account.
It explains why characters depicted at the back of the procession are part of another distin-
guished group. Nevertheless, many aspects on this image are based on semantical choices
that can only be retrieved from the user, not the scene itself. The dimension of each group,
the relationship between them, and the rules by which they are illustrated are some exam-
ples of the artist’s personal touch and proper use of visual perception cues.

The range of criteria for grouping is, therefore, multifaceted. Other Gestalt grouping

2 Dynamic Grouping in 3D Scenes 11

Figure 2.2 Spider-Man is a fictional Marvel c© Comics superhero. Characters are often grouped
into clusters and rendered with different colors in order to bring the audience’s atten-
tion to interactions between them.

principles like, for example, collinearity, shape similarity, color, or velocity can be con-
sidered individually or in combination in order to derive the interpretation of the scene.
The grouping approach becomes even more challenging when performed in animated 3D
scenes. The problem is harder than for a static image, because the layout of objects varies
with time. How would the Superman’s funeral scene (Figure 2.3) be depicted if the point of
view in which the scene was drawn moved with time? It would be more than tedious for an
artist to specify the grouping information at each frame, especially if temporal coherence
must be enforced. Even if he/she could do so, it would work only for static scenes, and not
for interactive scenes, where the viewpoint changes in real time.

The question of relating objects to each other helps to depict what to render, and it is
separated from the style, which only determines how these groups are rendered to achieve
a visual perception of the depicted scene. The stylization process can, nevertheless, use the
grouping information to evidence, enhance, the relationship of elements falling in the same
cluster. The extent to witch elements in these groups are detailed are here named Level
of Abstraction, or simply LOA. In the Spiderman example of Figure 2.2 (left), characters
falling in the cluster with a higher depth position were depicted in an abstracted manner,
therefore high LOA. Respectively, characters in the first depth plane were illustrated with
great amount of the detail, thus low LOA. The opposite situation is illustrated in Figure 2.2
(right). These two examples show that, once groups are retrieved, different LOAs can be
assigned to them according to the artist’s desire of emphasis/de-emphasis the subject.

Closely related to the problem of retrieving grouping information, the choice of LOA
also depends on the artist’s goal and often the viewpoint. Nevertheless, when dealing with
interactive scenes, specifying the LOA can be very tedious. In this chapter, we propose to
relate the derivation of LOAs to the grouping information, since it makes sense that all
members in a cluster should be equally perceived. One possibility is then to automatically

12 2.1 Criteria for Grouping

Figure 2.3 The Death of Superman is a 1992 comic book storyline that occurred in DC
Comics c©’s Superman titles.

derive LOAs using the average position of elements in a cluster to compute the distance
from the group to the observer. The aerial perspective effect seen in nature is one example
of this, where contrast decreases with distance. It is also common in artistic composition
to provide greater detail to foreground elements as seen in Figure 2.2 left. These consider-
ations motivated the use of depth in many previous techniques for abstraction and styliza-
tion [BTM06, KHRO01, MMK+00]. We see in Section 2.2 that, although depth is a very
common criterion for performing abstraction, it is not the only one that is involved. Infor-
mation like normals, colors [KWH06], or region of interests according to the viewer [DS02]
can also be combined to drive the process.

Spatial distance was the criteria used to cluster flowers and the butterfly depicted in
Figure 2.4. The consequently stylizations shown on (c) and (d) were performed taking the
extracted group information (b) into account. In Figure 2.4 (c), all the flower groups placed
in the exterior circular arrangement of the image were depicted using the same LOA, while
the group in the center of image containing the butterfly was depicted using a lower LOA
value, therefore being more evidenced. In Figure 2.4 (d), the same grouping information
was used to guide a completely different style: all the groups have the same LOA, but the
position of the clusters determines the size and orientation of the stylized strokes in this
painterly rendering style.

Grouping information plays an important role into the creation of efficient visual repre-
sentations. This process is, nevertheless, subject to several levels of controllability: First,
the attributes on which groups will be based on; Second, the influence of each of these
attributes into the clustering process; Third, the influence of these groups during the styl-
ization process (LOA). Therefore, we present an approach to interactively derive grouping
information of scenes that has the following properties:

2 Dynamic Grouping in 3D Scenes 13

a) b)

c) d)
Figure 2.4 An example illustrating our 3D clustering to drive two different stylizations: (a) A

meadow of flowers and a butterfly. (b) We cluster the scene according to position.
(c) Grouping information is used to drive a line rendering style where the group
containing the butterfly appears black; (d) The same grouping information can be
used to guide a completely different style: the shape of the clusters determines the
size and orientation of the stylized strokes in this painterly rendering.

• Generality: automatic grouping should be able to take many features (position, color,
velocity, etc) into account;

• Flexibility: the user’s interaction should be intuitive and the composition behavior
portable and predictable;

• Temporal Coherence: grouping information should vary continuously over time;

• Interactivity: computations must be fast enough for interactive manipulation of the
scene.

14 2.2 Related Work

2.2 Related Work

Grouping and abstraction have been proposed in many NPR works and often in form of a
particular style definition. In this Section, we concentrate on previous methods addressing
stylization processes that use clustering techniques as starting points to the determination
of LOA and/or to perform abstraction.

When dealing with images, abstraction is usually done by segmenting the image into
regions. Computing a segmentation of an image means partitioning it into a set of re-
gions with uniform visual aspect. By ‘uniform’, different methods mean different defi-
nitions, ranging from low-level properties (e.g., color) to higher-level properties and visual
cues from Gestalt and perception theory (e.g., texture) [LL06a]. This clustering in 2D can
be used to control stylization. Examples can be found in [WQL+06] for producing color
sketches from 2D input images (see Figure 2.5). To obtain sketchy look, the authors pre-
process the input image segmenting it into a set of regions via a mean-shift algorithm
which performs a clustering on the color space of neighboring pixels. Then, a two-stage
stylization algorithm is used to simulate properties of the artists’ free-hand drawing style.
Similarly, Bousseau et al. [BKTS00] present an interactive watercolor rendering technique
that recreates the special visual effects of lavis watercolor. Their technique is organized in
two steps: an abstraction step that recreates the uniform color regions of watercolor and an
effect step that filters the resulting abstracted image to obtain watercolor-like images. The
authors suggest that applying the watercolor filter to detailed images produce results that
appears too detailed compared to a painting done by hand. Therefore, a color abstraction
step is needed and aims at reproducing uniform color regions by segmenting the original
image. The aforementioned works suggest, therefore, that the segmentation of an image
into clusters of similar colors is of major importance to a broad range of abstraction tech-
niques.

Figure 2.5 Color Sketch Generation by [WQL+06]. (a) Input image. (b) Results of an image
segmentation. (c) Final results after abstraction.

In the context of video, the work of Wang et al. [WXSC04] describes a system for
transforming an input video into a highly abstracted, spatio-temporally coherent cartoon

2 Dynamic Grouping in 3D Scenes 15

animation with a range of styles. Also here, in order to obtain abstracted regions, the au-
thors make use of a mean-shift algorithm on the color space, but this time, it is used to
create three-dimensional semantic regions by interpolation between the keyframes. It sug-
gests, therefore, that clustering techniques can be used in higher order domains as 2D color
spaces in regard to time. A more complex technique to abstract videos by Winnemöller
et al. [WOG06] uses a class of filters, called anisotropic diffusion filters, which have the
desirable property of blurring small discontinuities and sharpening edges, as guided by a
diffusion conduction function that varies over the image. The abstracted image resulting
from this technique is then used to perform an automatic, real-time video and image ab-
straction framework that abstracts imagery by modifying the contrast of visually important
features, namely luminance and color opponency. We see that complex mechanisms can
drive different clustering techniques that are very often the base of content simplification
goals, later used in various stylization methods.

Figure 2.6 Video Tooning by [WXSC04]. Left: A smoothed semantic region sliced at time. Right:
A stylization example.

In general, the LOA is chosen manually as it is the case for all the previously mentioned
works. Nevertheless, several approaches provide ways to compute LOAs automatically.
De Carlo and Santella [DS02] use eye tracking to derive the user area of interest empha-
sizing them by adjusting their resolution, i.e., in areas of emphasis drawing regions with
higher resolution while in other areas drawing regions with lower resolution. Lecot and
Levy [LL06a] use a saliency map to guide the LOA computation and abstract the image
using higher-order color gradients. Bangham et al. [BGH03] associate LOAs based on the
distance to the center of attention, which is estimated using a scale space approach. Orzan
et al. [OBBT07] also use a scale-space analysis to abstract a photograph according to a
measure of importance. Although these approaches give interesting results, they do not
lead to information about what parts constitute an object, or a group of objects, and they
work on static data.

16 2.2 Related Work

2.2.1 Object-based NPR

If the input is a 3D scene, one typical way to guide abstraction is to rely on depth. The
farther an object is away from the viewpoint, the less detailed it is. Examples of usage can
be found in [MMK+00] based on graftals. In this work, smaller-scale changes in LOA (e.g.,
number of strokes, as well as stroke length, width, and color) varies view-dependently ac-
cording to a continuously changing measure of desired LOA. Consequently, certain graftals,
called tufts, have a multi-resolution structure, so that a single graftal, seen from a dis-
tance, transforms into several graftals when viewed from nearby as suggested by the cam-
era movement depicted in Figure 2.7. Because of their multi-resolution nature, tufts can
provide some measure of efficiency by reducing the cost of processing graftals that are ul-
timately not drawn, e.g., due to their distance from the camera. That is, a single tuft might
control all the blades of grass in a region of ground. When the camera is sufficiently far
away, the tuft can determine with a single computation that no blades need to be drawn
without visiting individual blades.

Figure 2.7 Art-based Rendering with Continuous Levels of Detail by [MMK+00]. The image is
rendered with different levels of details according to the distance of the object to the
camera. The image shows 3 different stages of a camera movement. When far away,
few details are rendered; the more the camera approaches from the objects, the more
details are revealed.

Also using depth as feature to guide the LOA, Barla et al. [BTM06] describe a toon
shader that supports view-dependent effects as a notion of tone detail, so that tone varies
with depth or orientation relative to the camera. Their technique also performs abstraction
of the shape perceived through the shading by using a modified normal field defined by in-
terpolating between normals of the original shape and normals of a highly abstracted shape.
The normal interpolation is also computed as function of depth position or orientation rela-
tive to the camera. This type of simplification is classical in Computer Graphics when level
of details are involved [LRC+03]. Cole et al. [CDF+06] present a temporally coherent sys-
tem that relies on focal points or planes to deemphasize parts of a stylized 3D scene based
on the distance in image or world space. This effectively guides the attention of an observer
to important areas of the image as seen in Figure 2.8. In contrast to a uniform distance as

2 Dynamic Grouping in 3D Scenes 17

used by these techniques, we propose an approach that can provide a scene adapted shape
of the focus area and seeks to account for general criteria.

Figure 2.8 Directing Gaze in 3D Models with Stylized Focus by [CDF+06]. The authors propose
a temporally coherent control of emphasis for interactive 3D NPR applications. In
this image, focal plane moves gradually from foreground to background, yielding to
an automatic change in emphasis.

Several works rely on handmade segmentations of a 3D scene. In [LD04] geometric
proximity is used to define bounding shapes for trees, where the size of the bounding vol-
umes is chosen by the user. When several trees are present in the scene, meaningful groups
are defined by hand. Balzer and Deussen [BD07] present a clustering algorithm for graph
visualization. Kowalski et al. [KHRO01] show various techniques for abstraction, and use
the notion of manually defined groups to produce convincing results. They also rely on the
heuristic that objects far away should be grouped together. The user is able to modify the
default behavior by adding some semantic importance information in the system. To illus-
trate this technique, Figure 2.9 (a) shows the group at a close distance, where grouping has
not yet taken effect. Every mountain draws all of its outlines. In (b), the camera has moved
back and the initial effects of the grouping can be perceived. The interior boundaries of the
group are beginning to fade away. Finally, in part (c), grouping is completed. All interior
outlines have disappeared, leaving only the exterior silhouette of the mountains. Part (d)
shows the result without grouping. Our work extends this approach by offering an auto-
matic clustering that could be taken as an input of their system. It generalizes the approach
by giving more flexibility to the grouping strategies. For most of these approaches, once
the clustering is established, it does not evolve over time, since it is handmade or given as
an input. In our approach, we concentrate on dynamic grouping.

The work of Kolliopoulos et al. [KWH06] introduces a segmentation technique similar
to our method in that they also use clustering. They segment a rendered 3D scene in im-
age space while taking into account, for each pixel, 3D information (e.g. depth, normals),
scene information (e.g., colors), and user provided object IDs. When dealing with animated
scenes, temporal coherence is encouraged by segmenting adjacent frames together. Given
a segmentation, the technique can then render the scene in a variety of styles that explicitly
make use of the segments as seen in Figure 2.10. Nevertheless, the major limitation of this
method is that it does not take hidden geometry into account. Therefore regions that get dis-

18 2.3 Overview of Our Approach

a) b) c) d)

Figure 2.9 User-Guided Composition Effects for Art-Based Rendering by [KHRO01]. As the
camera moves, groups are detected and the rendering styles is impacted through the
addition or suppression of outlines.

connected by a nearby occluder can cause severe problems. Moreover the information of
segmentation is not given at an object level, and thus it is harder to assure continuous evolu-
tion over time. Our work shares the same goal, and by using a fast object-space clustering,
we are able to do this interactively and let the user design his/her styles according to any
information available in the scene (including occluded geometry). We provide an analysis
of the advantages and disadvantages of object and image-space clustering in Section 2.8.

a) b) c) d)

Figure 2.10 Segmentation-Based 3D Artistic Rendering by [KWH06]. Simple scenes rendered in
various artistic styles based on 2D segments. (a) Scene segmentation. (b) Toon shad-
ing with segment-boundary contours. (c) Painterly strokes without relief texturing.
(d) Stippling.

2.3 Overview of Our Approach

Figure 2.11 shows a pipeline overview of our approach with its main components. The input
of our algorithm is an interactively manipulated 3D scene. The clustering is done on repre-
sentative points that sample the scene and are selected in a preprocess (Sec 2.4.1). At run
time, these points are clustered using a mean-shift algorithm (Sec 2.4.2) in a feature space
specified by the user (Sec 2.6). Information from the clustered representative points is then
remapped and interpolated for any point of the scene. Finally, the clustering information
can be used as input to any renderer to obtain the final abstracted image (Sec 2.5).

2 Dynamic Grouping in 3D Scenes 19

Figure 2.11 Overview: The first step is done in a preprocess, all the others are performed at
run-time. Finally, any stylization can be used for rendering.

2.4 Grouping

We begin by describing the clustering process in a simple case: how to cluster according to
the position of objects in camera space. This is the most popular grouping in art because it
takes into account position in x, y and depth of the projected scene. We demonstrate later
that our method allows to cluster based on other attributes.

2.4.1 Representative Points

Clustering scenes with many points is a time consuming process. To maintain interactive
frame rates, we work on a subset of scene points called representative points, computed
during a preprocess.

The selection of these points is a trade-off between speed (directly related to the number
of points) and accuracy of the final clustering. We propose to use a sampling method that
is independent of the geometry (not related to the tessellation), and controlled by a single
parameter. We select points on the objects surface using a Poisson sphere sampling (related
to Poisson sphere and disc distributions [Coo86, LD06]).

20 2.4 Grouping

Figure 2.12 Sampling (left), representative points (middle), weights on mesh (right).

Starting with a radius r of the size of the object, we add samples until any additional
sample would break the constraint that its distance to all other samples is at least r. Then
we decrease the radius, and continue the process until we reach r ≤ ε. The resulting samples
are our representative points. The single parameter ε controls the precision of the sampling.

The clustering itself is performed on representative points only. After grouping, the value
vP of a given attribute at a point P is obtained via a weighted interpolation of the attribute’s
values vi at the representative points:

vP :=
∑

w(P,Ri)vi∑
w(P,Ri)

, with w(P,R) := e−||P−R||2 (2.1)

where w is a weighting function that measures the proximity between two points (Fig-
ure 2.12, right).

Evaluating these weights at run-time would be quite costly. Our solution is to store the
weights for each vertex in texture coordinates that can be used to efficiently evaluate the
influence of each representative point. Currently, 32 RGBA texture coordinates can be used,
allowing 128 weights per vertex, which proved largely sufficient in practice. Very large
objects can be subdivided until 128 is enough for each sub-object.

2.4.2 Clustering

There exist many clustering algorithms in Computer Graphics. Many of them have been de-
vised for acceleration purposes, such as octrees, KD-trees, regular grids, etc. In most cases,
they impose uniform structure, and cannot handle arbitrarily shaped clusters. Their goal is
typically to divide the geometry in a balanced way to speed up hierarchical geometric tests.

2 Dynamic Grouping in 3D Scenes 21

In our case, the goal of the clusters is to reveal the inherent structure of the scene. Thus,
the resulting number of clusters cannot be known in advance, and should be derived for a
given scale. Clusters of arbitrary shape should be handled. Furthermore, we will see that it
is advantageous to be able to derive a cluster center. One possible approach that meets the
above constraints is the mean shift algorithm [CM02]. We chose it because of its simplicity
and potential to be accelerated in our context.

The mean-shift algorithm clusters points in a feature space. Thus, it is capable of finding
groups of points that share sufficient similarity. Even though there is a more general formu-
lation introduced in [WTXC04] that represents an anisotropic extension, we focus on the
original formulation.

Given n data points xi ∈ R
d, the original paper [CM02] defines a density function f ,

based on a kernel function K, that describes the likelihood for points to cluster with their
surrounding, and a scope H determining the scale on which clusters will be established. In-
tuitively, it is a superposition of local weighting functions around sample points. Formally,
it is given by:

f (x) :=
1

nHd

n∑
i=1

K
(x − xi

H

)
(2.2)

Even though several conditions are imposed on K, there is a large variety of choices [WJ95].
We use a radially symmetric function:

K(x) := (2π)−d/2e−
1
2 ||x||

2
(2.3)

In that case, H corresponds to the variance of the Gaussian.
The mean-shift moves each point iteratively along f ’s steepest ascent to a local maxi-

mum, called the cluster leader (or cluster mode). Interestingly, a locally weighted mean
(depending on K) results in a position that lies along this gradient direction. An iterative
process can thus be used, where the current position is replaced by the mean value of
the neighborhood (hence the name mean-shift). The convergence of this method has been
proved in [CM02]. Advanced solutions for a faster evaluation exist [PD07] but are out of
the scope of this thesis.

The mean-shift leads to clusters whose number does not have to be specified in advance,
revealing the clustering information inherent to the scene at a given scope H. It can be seen
as the scale at which we try to find clusters in the scene. Finding the right scale is a decision
we leave to the user, because it is a semantic definition. An automatic approach to derive a
reasonable size could be possible by exploring scale space techniques [Ter03], but would
be costly and might disagree with the artistic choice.

The advantage of performing clustering in feature space is that this definition is com-
pletely independent of the scene or animation. This is an elegant solution that has rather
predictable behavior without further user interaction.

Figure 2.13 shows a comparison between our clustering and several naive strategies.
The scene is the one shown in Figure 2.4 with a circular arrangement of flowers. A pixel-
based (a), as well as an object center-based distance measure (b), do not isolate the circular
arrangement. Clustering according to a grid (c) causes artificial separations between neigh-

22 2.4 Grouping

a) Pixel-based b) Object center-based

c) Voxel grid d) Our result

Figure 2.13 Comparison of our clustering to naive approaches.

boring elements. Our approach (d) produces clusters that are more natural because they
relate to the scene’s structure.

Figure 2.14 shows an example inspired by Kolliopoulos et al. [KWH06] in order to com-
pare our object space approach to their image space method. The style we use is similar to
Kolliopoulos’ cartoon style: the color of a cluster is the mean color of the objects contained
in the cluster. Using an image space method creates two clusters in the background due to
the occlusion. The chosen style has a large impact on the final image. With our approach
the background trees stay clustered whatever may happen in the foreground.

Nevertheless, including invisible geometry may also produce undesirable results. For
example, if a house contains people, should it behave differently in the clustering process
than an empty house? There is no automatic way to predict what an artist would desire.
The strength of our approach is to give the user the possibility to have more control over
the grouping behavior. In the aforementioned example, one could exclude the people inside
the house as long as its door remains shut and add them into the clustering process once the
door opens. We present different ways to vary the influence of sample points in Section 2.6.

2 Dynamic Grouping in 3D Scenes 23

Figure 2.14 Comparison of our clustering to an image-based approach: (Left) original scene;
(Middle) our result; (Right) using only visible points creates two distinct clusters in
the background.

2.4.3 Temporal coherence

It is important to note that, in general, the mean-shift clustering is not stable: a slight per-
turbation can lead to a different classifications. Figure 2.15 shows this situation. There are
two small clusters in blue and red. The white point in the middle does not provide enough
density to create its own cluster, neither does it change the global density function in a way
that would fuse the red and the blue cluster. This point can go either way, or even stay un-
clustered. A tiny perturbation can lead to a leap towards a rather distant position resulting
in popping artifacts.

Nevertheless, ensuring temporal coherence in our case is relatively straightforward. We
work in object space so we have information about all representative points and their his-
tory independently of their visibility. For image-based approaches, this step represents an
important challenge. Our solution is to integrate a smoothing process with exponential de-
cay. The problem of Figure 2.15 occurs only at local minima of the density function where
the gradient vanishes. To ensure that a point does not directly jump from one cluster to the
other without passing through an intermediate state, we examine whether it is located near
a minimum. This can be done based on the computed mean-shift value. It is proportional
to the gradient and we simply test whether the initial displacement is small enough to be
neglected. In practice, a small constant value performs well as pointed out in [WXSC04].
We used 10−5 throughout this paper, but it could be chosen according to the scene’s total
density.

We refer to the resource video 1 for the demonstration of temporally coherent examples.

2.5 Level of Abstraction and Stylization

As mentioned in the overview of our approach, once the grouping is established, for each
cluster, a level of abstraction (LOA) is derived that guides the stylization. This value (vector
or scalar) is a set of significant attributes, necessary to determine the final rendering. Its
choice is application-dependent and thus left to the user.

1http://artis.inrialpes.fr/Members/Hedlena.Bezerra/resources/
DynamicGrouping.avi

http://artis.inrialpes.fr/Members/Hedlena.Bezerra/resources/DynamicGrouping.avi
http://artis.inrialpes.fr/Members/Hedlena.Bezerra/resources/DynamicGrouping.avi

24 2.5 Level of Abstraction and Stylization

cut through
density function

density for blue points
density for red points

density for white points

density for Mean-Shift

Figure 2.15 Slight perturbations can lead to a different clustering. The white point could join the
red or the blue cluster.

Here, we present two strategies to derive LOAs along with a corresponding stylization
example.

LOA computation using the cluster leader A simple way to compute the LOA is to
use the cluster leader. Indeed, this feature point best represents the attributes of the group.
It also lies inside the cluster defined by the density function. This is not necessarily the case
for an average.

AbstractionOriginal

Figure 2.16 The original scene is clustered using the position in camera space as feature space;
The LOA is computed from the depth of the cluster leader; The style is cartoon-like
with aerial perspective.

Figure 2.16 shows an example that uses this strategy. The trees are clustered according to
their camera space projections. The LOA of a cluster is the z coordinate of its leader. Two
simple styles are used: color is desaturated according to the LOA and an outline is drawn
around the clusters based on the discontinuities of the cluster LOA in image space.

LOA computation using a specific scene attribute A second strategy is to con-
sider a specific attribute and merge it inside a cluster. A standard choice is to compute the

2 Dynamic Grouping in 3D Scenes 25

average or the maximum. One direct application is to emphasize particular elements of the
scene to attract the observer’s attention. One way to achieve this is by attaching a special
attribute to each object indicating its importance. The LOA of a cluster is then chosen based
on whether it contains an important element.

After camera close up

Butterfly shares importance with cluster

Figure 2.17 In this example the LOA is based on the presence of the butterfly in the cluster.
Using screen position as a feature, the clustering evolves according to the viewpoint.
Camera zoom underneath the upper arrow: a flower bush when seen from far away
is separated into individual flowers when zooming.

Figure 2.17 shows an example. The butterfly is important and colorizes surrounding el-
ements of the scene. This importance is encoded in an attribute (1 for the butterfly, 0 else-
where). Clustering is performed in camera space. Due to the view space projection, objects
farther away will create larger clusters, whereas objects near the viewpoint will be treated
individually. This makes the butterfly act on larger groups at a distance. The LOA is given
by the maximum of the importance value inside a cluster. A non-zero value indicates that
color should be applied whereas zero results in a gray-scale output.

26 2.6 Feature Space

2.6 Feature Space

Although we illustrated the mean shift clustering in the context of position, it works on
a feature space of arbitrary dimension. This allows our system to consider any attributes,
or their combination, to define the clustering. For example, we can take color into account.
Let’s assume that feature points have (x, y, z, r, g, b) attributes. We can map them to a feature
space using a perspective projection for position and LUV for color.

Combining attributes like color and position in a clustering process might not seem very
intuitive, but by defining a mapping function, the clustering behavior can be predicted. For
example, if color is supposed to be relatively more important than position, a scaling of the
color dimensions takes this into account.

Figure 2.18 shows an example. Here, we use a simple style where the object’s color is
computed as the average of the objects colors in the cluster. Using only color leads to two
clusters (red and orange in Figure 2.18-(b)). Similarly if only position is taken into account,
three clusters are naturally obtained (Figure 2.18-(c)). When using both color and position,
we end up with a compromise where a yellow apple among the red apples will neither
be clustered with close apples (due to color), nor other yellow apples (due to distance)
(Figure 2.18-(d)). This example demonstrates that multiple features can easily be taken
into account in a controllable way.

Original scene

Clustered by position

Clustered by color

Clustered by position and color

a. b.

c. d.

Figure 2.18 (a) A scene with different colors, is clustered using different attributes: (b) color, (c)
position, (d) color and position.

2 Dynamic Grouping in 3D Scenes 27

2.7 Mean-Shift Extension

To allow more flexibility in the clustering process, we propose a slight modification of the
original mean-shift to include weighting of points in the process. It adds two degrees of
freedom. First, it makes the scale H vary with each point xi. Second, a weight ωi is defined
for each point. These modifications are driven by the fact that the user should be able to
specify that certain elements, with a particular semantics, are more likely to yield separate
clusters, or will more or less ‘attract’ their neighbors in feature space. This is typically
useful in a scene that has elements at different scales. On a field with cows, each flower
might be grouped with its neighboring flowers, but the scale is intuitively smaller than the
level at which cows are grouped. Some elements might be important and imply the use of
a larger radius.

The reformulated density function is:

f (x) := 1/n
n∑

i=1

ωiK(
x − xi

Hi
) (2.4)

With this weight instead of classical means the method still converges. A proof is given in
Section 2.7.1.

Figure 2.19 shows an example for the influence of the weight. Here, the color of the
cluster corresponds to the color of the leader defined by a ramp from green to red along the
x-axis of the image. The only attribute considered is position and the top image shows the
result when all characters have similar weights: we obtain one cluster with the leader in its
center. The bottom image shows the result of increasing only the weight of the left giraffe.
All the giraffes are clustered again but the leader is positioned on the left. This mechanism
is very intuitive and easily manipulable via an interface where the user selects an object
and moves a slider to assign it a weight. The modifications are directly visible allowing an
interactive adjustment.

2.7.1 Convergence

In [CM02], the proof for the iterative scheme was given for the original formulation. In
our case, we can apply almost the same reasoning. Therefore we will mostly focus on the
differences. Like in [CM02], we take a k(x) such that K(x) = k(x2) and g(x) = −k′(x). We
can rewrite the gradient of f as:

∇ f (x) =

n∑
i=0

cig
(
||

x − xi

Hi
||2

)
∑n

i=0 xicig
(
||

x−xi
Hi
||2

)
∑n

i=0 cig
(
||

x−xi
Hi
||2

) − x

 (2.5)

28 2.7 Mean-Shift Extension

Figure 2.19 The user can modify the weight of certain objects to influence the clustering. Black
points indicate the cluster leader positions. Halos indicate stronger weights.

where we denote the grouped constants ci (including ωi). Thus moving along the gradient
is related to replacing our position by the weighted mean:

mean(x) :=

∑n
i=0 xicig

(
||

x−xi
Hi
||2

)
∑n

i=0 cig
(
||

x−xi
Hi
||2

) (2.6)

As in [CM02], yi+1 := mean(yi) should converge for any y0. The only property we need to
apply the original proof, is that the functions k(x2/H2

i) are all convex and cig(||x − xi||
2/H2

i)
is bounded. This is the case because of the choice of the kernel function K.

2 Dynamic Grouping in 3D Scenes 29

2.8 Results

This chapter presented a real-time technique to cluster a dynamic 3D scene. Our algorithm
performs often well, running from 90 fps for the butterfly to 160 fps for the apple scene. The
computation time depends on the number of representative points (we used up to around
500 points at real-time rates), the scale and the scene structure that can be more or less
adapted to our acceleration grid. Of course, the theoretical performance of the mean-shift
is expected O(n2) and this could be the case, but in practice, the grid data structure makes
the algorithm fast enough for many complex scenes.

Our technique allows the user to control the clustering via several parameters. The first
choice is the feature space that enables our system to decide which attributes have to be
taken into account and in which proportion. It describes the similarity measure used for the
clustering. Second, the user has to select the global scale of the clustering and can mod-
ify weights and scale per object. These parameters can be changed interactively for easy
tuning. Interesting improvements are possible, for instance, exploring learned-by-example
clustering, and a system that automatically suggests ‘good’ parameters to assist the user.

The LOA computation and stylization are currently implemented using shaders, letting
the user make his own programs. But nothing prevents the creation of more intuitive user
interfaces for given types of rendering that would use our clustering as a first step. We
have shown that with simple styles and simple LOA strategies we can obtain quite complex
behaviors.

Currently, representative points are chosen in a preprocess. This ‘sampling’ is necessary
to allow a fast clustering by treating a smaller set of points. However, it is an approximation
and might create artifacts for deformable objects because the samples may lose the unifor-
mity of their initial distribution. One interesting venue of future work in this direction is to
investigate a real-time sampling method to address this issue.

In comparison to image based approaches like [KWH06], our algorithm shows strengths
as well as weaknesses. Temporal coherence becomes simpler and invisible geometry can
be treated (we discussed the implications in Section 2.4.2). Another important point is that,
usually, there are fewer representative points than pixels, accelerating the computations but
also leading to coarser clusters. Image solutions directly take texture into account and our
preprocess becomes unnecessary, which allows the easy integration of deforming objects.
A combination of both techniques is a promising direction of future work.

30 2.9 Discussion

2.9 Discussion

Group information can be very effective in revealing the structure of a scene. When dif-
ferent parameters are taken into account, different scene features can be revealed. We have
raised a series of control features that reflect a set of ’handles’ in which the user can hold
to modify the scene representation to create comprehensible images. For all features here
exploited, default attributes can be derived, e.g., the extraction of clusters according to the
object’s positions and the automatic derivation of LOA according to the group’s average
position. In this way, it can be adapted to different level of user expertise and artistic com-
position goals.

The presented approach can be applied in contexts other than NPR and graphics. For
example, to perform simulation calculations for groups instead of each individual. The idea
would be to perform a detailed computation for the cluster leader and coarse approxima-
tions for other elements, that are then combined to determine the complete simulation.
Another application that our clustering is useful for is to steer group behavior. All these
possibilities are unified in one approach. Our technique can also be used for artificial intel-
ligence to help make decisions: based on group size, special members, distances to other
clusters, etc. Finally, we believe that our decomposition of the image creation process opens
new research avenues. We see such a computational model as a step towards a better for-
malization of the abstraction process leading to powerful computer-generated illustration
systems.

Because grouping is fundamentally a perceptually driven task, many subjective crite-
ria can potentially be taken into consideration. Expressing arbitrary subjective criteria in
computationally meaningful forms requires mathematically formulated heuristics. Never-
theless, heuristics might not always produce the expected behavior, particularly in highly
subjective perceptions of grouping (such as ‘similarity’). However, given that our approach
is decoupled from the actual algorithms used in computing the feature space, we envisage
that as heuristics get better at expressing subjective criteria, the approach will yield more
interesting results in expressive rendering and other fields.

3 Controllable Diffusion For Vector
Graphics

A medium in art may refer to the type of material used to create artwork. In this sense,
no limit exists on what defines an art medium. Traditional media, as well as any arbitrary
object used to create a piece of artwork, are considered an art medium [Sto10]. Different
types of media provide artists with a great flexibility in expressiveness. Many options exist
in which one may wish to explore in creating original artworks. In Figure 3.1 (left), the
artist Romero Britto1 uses acrylic on canvas to create an impression that reflects his opti-
mistic faith in the world around him. Many of his paintings decorate hospital facilities and
have been found to be very successful among children. Various other art techniques provide
other art media. Photography falls into the artwork category and the medium it uses tradi-
tionally is paper and film. However, with the move to digital technology for printing, film
has been replaced by the computer. The intense gaze of an Indian girl photograph depicted
in Figure 3.1 (middle) was captured using a digital camera. This kind of medium provides
the user with enormous flexibility greatly due to its near zero cost of experimentation and
real-time display of the result. In the present days, a list of art media includes digital files
and printed material, as more technology based projects are accepted as art.

Figure 3.1 From left to right: Lost of Innocence by Romero Britto c©. Intense gaze of Indian girl
(image thanks to Betuca). Computer illustration by Ken Wong’s electronic portfolio
accessible on the Internet.

Technology has also played a major role in producing visual contents with the advent of
digital design and layout programs. The main benefit of using a computer is the flexibility
it offers to people in the field of illustration or design. Digital creation has become a great

1http://www.britto.com/

32 3.1 Raster Graphics Images

source of illustrations which are, nowadays, easier to share and expose due to the advent
of the Internet. Figure 3.1 (right) depicts an illustration made using graphic software and
shared by an electronic portfolio created by the artist Ken Wong 2. If an artist wants to
pursue sharing their artwork electronically, digital drawing can save some time over having
to digitize the work using a scanner, where readjustments might be necessary depending
on how the scan turned out. The popularity of the personal computers also became pos-
sible thanks to intuitive input mechanisms that often imitate drawing tools. Images drawn
on devices like tablets are easily transferred into drawing programs like CAD or edition
programs. With such devices, even degrees of shadings can be achieved depending on the
pressure sensitivity of its surface. Nevertheless, the process of including the computer into
the creation process raises important design concerns about the representation, and manip-
ulation processes. The latter two are strongly related to each other since different image
representations can facilitate or prevent manipulations and therefore a careful analysis is
necessary.

This chapter first discusses methods to represent and manipulate two-dimensional draw-
ings. It gives an overview over raster and vector graphics representations, focusing on their
characteristics to enable the creation and manipulation of complex color illustrations. Being
a recent concern in the Graphics community, we will present approaches to enable vector-
based primitives to depict complex color gradients. Especially, we will review the Diffusion
Curves primitive by Orzan et al. [OBW+08]. Then we present a novel algorithm to increase
the usability and expressiveness of this technique by providing the user with control over
the color diffusion process. This algorithm was developed as a part of this dissertation, and
was recently published at the 8th International Symposium on Non-Photorealistic Anima-
tion and Rendering, NPAR 2010 [BEDT10].

3.1 Raster Graphics Images

Raster Graphics is the two-dimensional representation of an image as a finite set of points
defined by numerical values of a matrix structure where each entry is a pixel. Typically,
each point in an image is represented by three or four component intensities such as red,
green, blue and alpha. Modern systems encode pixel color values by devoting some bits
for each of the RGBA separate components. By using an appropriate combination of these
elements, million colors can be represented, though not necessarily distinguishable by the
human visual system. Raster images are suitable for the representation of complex varia-
tions of shapes and colors, like photographs. They are also easily displayed and used in
many electronic devices. Several software solutions are available to create, manipulate, and
store raster images and, usually, they provide a large variety of manipulation tools to alter
a single or a set of pixels at once (e.g., Gaussian blurs, edge detectors, image sharpeners,
or artistic filters).

2http://www.kenart.net/

http://www.kenart.net/

3 Controllable Diffusion For Vector Graphics 33

The possibility to store arbitrary colors in each pixel makes raster images very suitable to
represent any kind of visual content, but it comes with a cost. First, image files are usually
large and directly related to the quality of the representation (resolution). Second, due to
its sample-based representation, pixels are isolated entities and information about objects
constituting the image are difficult to retrieve. This drawback makes many manipulation
techniques very difficult, for example, the deformation of objects. A third important issue is
related to image resizing. Since the image width and height are fixed values, image scaling
operations usually result in artifacts. An example is depicted in Figure 3.2. The original
image (left) was scaled by a factor of seven and the result is depicted in the middle image.
This operation degrades greatly the quality of the image as it reveals its pixel structure.

Figure 3.2 Left: Original image. Close-up after image scaling using raster (middle) and vector
(right) representations.

3.2 Vector Graphics Images

Vector Graphics is an image representation that uses geometric shapes to represent its con-
tent. Objects in the image are represented by a set of elements (such as rectangles, circles,
ellipses, Bézier curves), or text. All shapes have attributes specific to that shape for position-
ing and sizing. They also have presentation attributes which affect operations and attributes
like fill and stroke color, border width and more. Figure 3.3 illustrates an ellipse object and
its main shape and presentation attributes used to render it. Vector graphics programs use
these mathematical formulae to construct the screen image, building the best quality image
possible given the screen resolution. Therefore, when a scaling is performed on a vector
graphic version of the previous example of a flower depicted in Figure 3.2 (left), the result
is still a sharp and fine rendition of its content (right), in opposition of its raster graphics
counterpart (middle). This occurs because the mathematical formulae determine where the
dots that make up the image should be placed for the best results when displaying the im-
age. Since these formulae can produce an image scalable to any size and detail, the quality

34 3.2 Vector Graphics Images

of the image is limited only by the resolution of the display, and the file size of vector data
generating the image stays the same.

cx="100" cy="100"

stroke-width="2"

�ll="red"

stroke="black"

rx="100" ry="54"

Attribute
cx
cy
rx
ry

Presentation Attributes

Explanation
The x-axis center of the ellipse
The y-axis center of the ellipse

The length of the ellipse’s radius along the x-axis
The length of the ellipse’s radius along the y-axis

Color, FillStroke, Graphics

Figure 3.3 A Vector Graphics element: an example of an ellipse and its attributes.

For artists it is often beneficial to work with vector-based applications because objects
can be described directly via primitives that represent the shape instead of having to work
with pixels. The image can be manipulated by editing screen objects which are then saved
as modifications to their mathematical formulae. Most geometric-based software (for exam-
ple, Corel CorelDRAW c©, Inkscape c©) provide intuitive graphical user interface to group,
stylize, transform and composite elements into previously rendered objects. The feature
set includes nested transformations (objects can be moved, scaled, rotated, distorted, or
flipped), clipping paths, alpha masks, filter effects and template objects.

a) b) c) d) e)

Figure 3.4 Vector Graphics color fill. a) No paint (transparent). b) Flat (solid) color. c) Linear
Gradient (a smooth transition between two or more colors). d) Radial Gradient (a
smooth transition between two or more colors in a radial direction). e) Pattern (filled
with a repeating pattern).

To control the appearance of objects, there are a number of different options for the fill
paint attribute. A fill is the only way to create a solid area of color. Examples of the differ-
ent options are shown in Figure 3.4. Easy to manipulate, expressive results can be achieved
even when only flat colors are used, as shown in Figure 3.5 (left). Gradients allows users to
imitate shading effects and bring three dimensional look to pictures. Basically, a gradient
is a smooth transition between two or more colors. Vector graphics supports two types of
gradients: linear (along a line, as shown in Figure 3.4 (c)), or radial (away from a center,
with possibly unequal axes and a noncentral focus point, shown in Figure 3.4 (d). Inter-
esting shadings can also be created by composing gradients and flat colors, as shown in

3 Controllable Diffusion For Vector Graphics 35

Figure 3.5 (middle). Patterns and textures (Figure 3.4 (e)) are other expressive options that
allow texture looking into pictures. As any other filling element, they can be used alone
or overlapping other effects like gradient and make possible to increase the tridimensional
look of images, as shown in Figure 3.5 (right). Unfortunately, despite the expressiveness
power offered by these features, some challenges remain. Traditional vector graphics tend
to look less detailed than their pixel-counterparts, as it is visible when compared to real pho-
tographs. The advent of more advanced color fills helped to close this gap. New solutions
like gradient meshes (Adobe Illustrator c©, Corel CorelDRAW c©) are capable of represent-
ing almost photo-realistic images by interpolating colors on a planar quadrilateral mesh.

Figure 3.5 Filling attributes can bring expressiveness into the creation process. Left: Vector im-
age created with flat colors. Middle: Gradients and flat colors can be composed to
achieve tridimensional look. Right: Patterns allow texture mapping look to bidimensi-
nal images.

With gradient mesh, designers can create complex and photorealistic art using carefully
laid out gradients. A gradient mesh can be thought of as net placed over a solid filled
object, as illustrated in Figure 3.6 (left). Using the various points where the mesh intersect,
punctual colors can be added and are then interpolated over the entire mesh by a bicubic
interpolation algorithm. By adding colors and manipulating the mesh structure itself, flat
colors or complex gradients that imitate highlights or shadows can be depicted and the
result be impressive realistic shades of colors as for the Yukio Miyamoto 3 illustration
depicted in Figure 3.6 (right).

Unfortunately, creating a gradient mesh manually requires skill and is labor intensive.
To help to bridge the gap, Sun et al. [SLWS07] described a semi-automatic optimization
process for fitting a gradient mesh to a given image region. With this approach, a resulting
gradient mesh can then be obtained in a matter of minutes instead of the exhaustive hours
that it would require for a skilled user to obtain the same result. Nevertheless, this algorithm
requires user assistance both to segment the image into regions, and to construct the mesh

3www.khulsey.com/masters_yukio_miyamoto.html

www.khulsey.com/masters_yukio_miyamoto.html

36 3.2 Vector Graphics Images

Figure 3.6 Photorealistic design with gradient mesh tool. Left: net support for color interpola-
tion. Right: result after interpolating.

(the user must choose the grid corners and usually the spacings of the grid lines for each
region). Then later, in the same spirit, Lai et al. [LHM09] presented a fully automatic algo-
rithm to represent an arbitrary image region using a single mesh. Their mesh representation
handles the creation of complex geometry and even holes, issues presented in the previous
approach (see Figure 3.7). Their results are general, compact, and compatible with com-
mercial software. Although these automatic approaches can dramatically increase the time
necessary to create a mesh, gradient meshes are inefficient and difficult to manipulate since
too many small patches are generated in smooth regions. In addition, the introduction of
such a grid adds more complexity to the vector illustration, trading off some of its editing
advantages against a richer representation.

To improve the creation of complex vector-based color gradients while keeping the pro-
cess simple and intuitive, Orzan et al. [OBW+08] introduced a new vector primitive called
Diffusion Curves. We’ll present the details of this technique in the next section.

Figure 3.7 An automatic algorithm to produce gradient mesh from pictures [LHM09]. From left
to right: original photograph, image segmentation, generated mesh, vector result.

3.3 Diffusion Curves

3 Controllable Diffusion For Vector Graphics 37

To understand the concept of diffusion curves, two important observations need to be dis-
cussed: the importance of edges to the recognition of images, and the process of creating
2D drawings.

In an image context, lines are often important features and encode much of the initial
scene information, which is exploited by many vision-related algorithms [Eld99, Car88].
These studies have demonstrated that edges, augmented by color and blur information,
constitute a near-complete and natural primitive for encoding images. Consequently, some
authors, as Elder et al. [EG01], have exploited these studies and introduced image ma-
nipulation techniques based on deleting, copying or pasting edges. Further, it was also
demonstrated that edges can be used to compress images [EZ98] and manipulate pho-
tographs [EZ96, OBBT07].

On the broader level, we verify that the process of producing traditional 2D freehand
drawings can be roughly divided into two major stages: the drawing process and the paint-
ing process. Once drawings are traced onto the canvas, colors are applied in the resulting
areas of the image. Therefore, the relation of lines and colors are of major importance
into the creation process. Although filling regions with solid colors can be very expressive,
complex color gradients more effectively convey the illusion of volume and illumination,
enabling the depiction of a broad range of effects.

Figure 3.8 Diffusion Curves approach. Left: Image encoded by curve primitives. Right: Image
after diffusion process.

This environment of edges and colors filling images laid the groundwork for Diffusion
Curves [OBW+08], a vector representation of edges and their attributes. Diffusion curves
greatly increase the manipulation capabilities suggested by Elder et al. [EG01] to include
shape, color, contrast, and blur operations to generate images allowing the creation of rich
colored areas. The process is simple and intuitive. The formulation of diffusion curves
allows for the flexible creation of vector graphics images from a set of curves and colors:

38 3.3 Diffusion Curves

a diffusion process fills out the parts of the image that are away from curves, as shown in
Figure 3.8.

Figure 3.9 depicts the representation of diffusion curves. Technically, a Diffusion-Curve
image is defined by a set of Bézier curves (a). For each curve, the user specifies two sets of
color control points (b), one at each side, corresponding to color constraints on the right and
left half space of the curve. By specifying a set of blur points along the curve (c), an artist
can also create smooth color transitions across curve boundaries. Color and blur attributes
can vary along a curve to create rich color transitions. This variation is guided by an interpo-
lation between the attribute control points in attribute space. Then, color curves are diffused
outwards by a solving a Poisson Equation (more details are presented in Section 3.6.1) and
are combined with the blur diffusion to define the final image (d). The diffusion curves
themselves hold an intuitive meaning and are very compact since the colors and blur values
are only specified at control points of the curves.

a) b) c) d)

Figure 3.9 A Diffusion curve: (a) A geometric curve described by a Bézier spline. (b) Arbitrary
colors on either side, linearly interpolated along the curve. (c) A blur amount linearly
interpolated along the curve. The final color image (d) is obtained by diffusion and
reblurring.

The fact that the diffusion curves representation relies on a small number of simple en-
tities makes it particularly well-suited for artists. It’s representation is compact and com-
patible with vector graphics representations because image can be stored by sets of control
point attributes as curve structure, colors, and blur. The diffusion process employed by
this technique allows for highly expressive results. Later, Winnemöller et al. [WOBT09]
also proved that more complex attributes as normals and texture coordinates can be eas-
ily attached to curves in order to be diffused and enrich 2D drawings. Several works have
also improved the diffusion process in order to obtain fine grained results [JCW09a], and
extended the diffusion curves idea to render 3D surfaces details [JCW09b].

Diffusion is, indeed, a key component that enables a rich, yet simple definition of resolution-
independent illustrations. However, despite many advantages, the Diffusion Curve model
has limitations in certain situations and does not always seem to agree with how an artist
wants to use the them in an illustration software system. First, the diffusion itself cannot
be controlled, only the colors. Further, the fact that color needs to be defined everywhere
along the curve can lead to tedious and nonintuitive interactions. In the following sections,
we present how this lack of controllability affects the creation process and propose a re-
formulation of diffusion curves in order to provide the user with a finer iteration with the

3 Controllable Diffusion For Vector Graphics 39

resulting image. We will present a number of adaptations to diffusion curves that constrain
how color is spread across the image. Specifically, we argue for the utility of controlling
the speed and direction of the color diffusion, and the ability to have barriers that can be
defined without the need to specify a particular color along these curves. We also describe
how this can be implemented by solving a linear system, and demonstrate the effectiveness
of our solution on a number of examples.

M
an

y
Co

ns
tr

ai
nt

s

D
i�

us
io

n
Ba

rr
ie

r

Figure 3.10 Diffusion Curves allow us to draw vector images with a rich set of color gradients
(left). Our work reduces the number of color definitions (middle) for an equivalent
output (right).

3.4 Controllable Diffusion Curves

To illustrate the importance of controlling a color diffusion process, we will start taking
a look at some examples. Johnston [Joh02] pointed out that not all curves should diffuse
values to both sides. In particular, along occlusion boundaries, diffusion should typically
only occur on the occluding part. To handle these exceptions, a blending mask is manually
created that limits the extent of diffusion. On the other hand, diffusion curves do not offer
this kind of control, and many illustrations exhibit unwanted halos or modifications of
the color gradients, because the artist is forced to specify diffused colors on both sides of
each curve, even if there is no need for them. An example is illustrated in Figure 3.10.
The curtain needs color constraints even on the occluding boundary, leading to a large
number of additional color constraints whose presence affected the radial appearance of
the sun’s gradient. Instead, the approach presented in this chapter allows the definition of
diffusion barriers that block diffusion without emitting colors. No color constraints need to

40 3.4 Controllable Diffusion Curves

be defined on the blocked side, which avoids the inconsistencies, as illustrated in the inset,
that can arise from such unnecessary color constraints that do not perfectly match up with
the geometry. Diffusion barriers can also be used to define shapes that can simply be filled
with colors via diffusion curves, that are applied similarly to a paint-bucket tool.

Another example is a gradient where colors from different places intervene with dif-
fering strengths. Figure 3.11 illustrates how the shadow underneath the bed also strongly
influences the surrounding floor. Controlling the color strength directly provides influence
over the impact of a color. Previously, the artist was obliged to place additional curves to
simulate a non-linear diffusion behavior. Not only is this tedious, but any color change also
implied that all these curves would need to be adapted. Influencing the diffusion via color
strength is independent of the associated colors.

Figure 3.11 Our work also allows the control the diffusion strength of certain colors (right,
floor), or even influence diffusion directions (right, cushion).

We also introduce a control over diffusion orientation which helps to guide color locally
(almost like a smearing tool). It allows complex shapes and color variations that cannot be
achieved with the uniform diffusion available from previous work. In Figure 3.11 (right)
this technique was used to create a complex pattern on the cushion, and we show in the
following sections how expressive results are possible while keeping the representation
vector-based.

Finally, in some situations, one needs to use a color resulting from the diffusion process
at a different location of the scene; e.g., if a shape represents a thin occluder and one wants
to guarantee a smooth color transition on the occludee. An example of this situation is
depicted in Figure 3.12. On the left, we show that, to give the impression of a continuous
color diffusion across the wall, the user was forced to place color constraints on the left

3 Controllable Diffusion For Vector Graphics 41

and right sides of the curtain hanger. Not only this can be a tedious a process, but care
must be taken in order to choose colors that match the diffusion and give the impression
of a continuous wall paint. On the right, we show the same result made with non-local
diffusion. Here, the colors defined on one side of the hanger were diffused through its right
side without the need of any extra color constraint. This is made possible because we allow
colors to be diffused to arbitrary regions of the image and no longer restrained into it’s
neighborhood.

color constraints

Di�usion Curves

color constraints

di�used across boundary
Our approach

Figure 3.12 The artist decided to add a color gradient to the wall. Usually it would be blocked by
the curtain rod, but by virtually connecting the two regions, colors are transferred
from one side to the other. Further, the color gradient was conveniently defined in
the interior region of the wall, similar to a paint-bucket fill. This was enabled by
setting some boundaries to diffusion barriers.

We will show in the next sections how our technique avoids such problems by enabling
control over the diffusion process and related diffusion constraints while maintaining the
simplicity of the original Diffusion Curves. The new degrees of artistic freedom allow for
further expressivity and enable an intuitive design of complex illustrations and color gradi-
ents. Figure 3.13 shows the entire bedroom image after applying our diffusion extensions.
Precisely, our contributions are:

• Diffusion barriers that block diffusion (but do not emit color);

• Control over diffusion anisotropy and orientation;

• Control over diffusion strength (speed);

• A generalized solution method for non-local diffusion.

42 3.5 Related Work on Diffusion

Figure 3.13 The figure shows Figure 3.10 (left) that was modified using the diffusion curve exten-
sions presented in this chapter. Our solution offers more control over the diffusion
process and makes several tasks simpler.

3.5 Related Work on Diffusion

As previously discussed, edges are often important feature to the recognition of objects
through the natural vision processes. This fact motivated many vision-related techniques to
compress images [EZ98] or manipulate photographs [EZ96, OBBT07]. These tasks often
underly the principle of the Poisson equation which has found applications in many con-
texts of computer graphics, e.g., image editing, where it enables seamless cut-and-paste
operations as presented in the work of Perez et al. [PGB03]. This work provides a series
of manipulation techniques that range from replacement by, or mixing with, another source
image region, to alterations of some aspects of the original image inside the selection, such
as texture, illumination, or color (see examples in Figure 3.14). All these features have the
Poisson equation at their heart. Solving this equation is equivalent to compute the function
whose gradient is the closest, in the L2-norm, to some prescribed vector field, called by
the authors the guidance vector field, under given boundary conditions. The user usually
specify such guidance vector by selecting a region from source images and the algorithm
reconstructs the target regions to obtain a seamless manipulation.

Besides Diffusion Curves, the Poisson equation is also the basis of the real-time gra-
dient domain painting [MP08], where colors are sparsely defined along curves drawn in
raster images and interpolated everywhere else. Jeschke et al. [JCW09a] introduced a faster

3 Controllable Diffusion For Vector Graphics 43

Source/destination Seamless cloning

Concealment

Figure 3.14 Images from Poisson Image Editing by [PGB03] showing application of the Poisson
Equation. Left: Seamless cloning. Right: By importing seamlessly a piece of the
background undesirable artifacts can easily be hidden.

and more accurate solver by exploiting the fact that the constraints are very sparse. Also,
triangulation-based solutions [FHL+09] are interesting alternatives to pixel-based diffu-
sions. Although all these solutions are efficient, the diffusion is always uniform. Our work
is strongly inspired by the aforementioned approaches, but we aim for a more flexible tool
that provides the user with more control over the diffusion process.

Figure 3.15 Curve normal approximation, interpolation and character illumination from ’Lumo:
Illumination from Cel Animation by [Joh02].

Diffusion processes were also used by Johnston [Joh02] to interpolate normals derived
from outlines of a 2D drawing, as shown in Figure 3.15. In his technique, 2D normals
are calculated by computing the gradient along outlines (c) with the help of a mask (b) to
constraint these normals to point outwards the curve. These normals are then interpolated
and diffused to the interior of the circle (d) by solving a partial differential equation with a
similar result as solving the Poisson equation. Once normals are computed, the 2D drawing
can be relighted giving it a 3D appearance (e). Jeschke et al. [JCW09b] used a very similar
diffusion curve technique to diffuse colors on 3D surfaces and create textures, displacement
maps and geometry images (Figure 3.16). They present three algorithms that enable the
real-time color diffusion on surfaces while retaining the vector character of the diffusion
curve style. These approaches can benefit from the extensions proposed in this chapter as

44 3.6 Mathematical Background

Figure 3.16 A 3D vase rendered in different styles using diffusion curve. Image from ’Rendering
Surface Details with Diffusion Curves’ by [JCW09b].

well.
Isenberg et al. [IBCSC06] also proposed a pipeline to enrich 2D vector illustrations by

capturing line information from another data structure (as 3D meshes) into a line primitive
called G-Stroke [IB06], an augmented line primitive used to store stroke properties along
with geometrical and topological information used during the vector rendering process.
This approach also proposes to capture shading information (as Gouraud shading) by using
a library to redirect OpenGL calls into a 2D mesh structure, having, therefore, triangles to
depict shading. There are a number of techniques that achieve resolution independence, of
which reconstruction using diffusion is just one possibility. The Ardeco system [LL06b]
simulates complex shading via local approximations using linear or quadratic gradients.
Since it is an image conversion process, the results may contain a very large number of
regions. Solutions for the derivation of vector information from implicit surfaces [SEH08]
and meshes [EPD09, EWHS08] also exist, but the works focus on the extraction of shape
primitives, not their visual appearance or texture.

3.6 Mathematical Background

Before presenting our algorithm, we will discuss interpolations based on the Poisson equa-
tion, which is the principle that underlies Diffusion Curves (Section 3.6.1). We reformulate
the relationship into a constrained linear system that will provide the basis for our work
(Section 3.6.2). We present how to modify the system to support diffusion barriers, curves
that block the diffusion processes without emitting colors (Section 3.7.1). We show how
to guide the diffusion process by orienting it according to a user-specified flow field (Sec-
tion 3.7.2). We then add the possibility to control the strength of a color during the diffusion
(Section 3.7.3) before addressing a non-local extension of the diffusion process to allow us,
e.g., to transfer color from one part of the image to another (Section 3.8).

3 Controllable Diffusion For Vector Graphics 45

3.6.1 Diffusion Process

Our work builds upon the Poisson-equation framework previously applied in many con-
texts [TT99, PGB03, OBW+08]. Consider an image I with n pixels, {Ik | k ∈ 1 . . . n} (colors
are addressed individually as Ik or as a grid simply as Ii, j). The goal is to derive an inter-
polant matching a set of constrained pixel colors {Ck | k ∈ I}, where I ⊆ {1 . . . n} is an index
set, and having a gradient close (L2-norm) to a given vector field w = {wk | k ∈ 1 . . . n}. The
vector field values are also stored in pixels and addressed, just like for I with wk := (wx

k ,w
y
k).

The image I is defined implicitly using the Poisson equation:

4 I = div w,
and Ik = Ck, ∀k ∈ I, (3.1)

where 4 is the Laplace operator, and div is the divergence operator. The solution is usually
found by solving a discretized version of Equation 3.1 for each color channel separately.
A Gauss-Seidel solver could be used, but more efficient conjugate gradient or multigrid
solvers (as in [OBW+08]) are an option. In the case of Gauss-Seidel iterations, a value Ii, j

needs to be updated by adding (Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1 + div wi, j)/4.
In the case of Diffusion Curves, colors are specified along each side of the curve and

represent hard constraints. In addition, the vector field w is zero everywhere except across
constraint curves. In other words, the solution will show a continuous, smooth change of
colors except across hard constraints.

3.6.2 Reformulating the Diffusion Process

To facilitate the understanding of how to influence the diffusion process, we need to look a
little closer at its properties. After solving Equation 3.1, the resulting image I is the solution
to the following constrained minimization:

I = argmin
Image J

n∑
i=0

|∇Ji − wi|
2,

subject to Jk = Ck, ∀k ∈ I, (3.2)

where ∇ is the gradient operator, Ck are the color constraints at the pixel positions I, and
wi = (wx

i ,w
y
i) is the vector field w at pixel position i. The solution is the result of a mini-

mization process that searches for the image whose gradient is the best fit to a given vector
field, while respecting the color constraints.

In our work, we want to guide the diffusion process in various ways. Consequently, we
cannot always rely on the original Poisson equation. Instead we will set up a constraint
system involving hard and soft constraints. Hard constraints (Ik = Ck) are the colors stored
at pixel positions I and defined by the initial color curves chosen by the user. Hard con-
straints will be satisfied exactly. The soft constraints guide the diffusion in the image and

46 3.6 Mathematical Background

implicitly define the color of the remaining pixels. Soft constraints might not be satisfied
exactly, but the solution best satisfies our system in the least square sense.

To illustrate the use of such an equation system, we start by writing the Poisson-equation
as a soft constraint system:

(
∇x

∇y

)
I1
...
In

 =

wx
1
...

wx
n

wy
1
...

wy
n

, (3.3)

where ∇x is a simple matrix that encodes the derivative along the axis x, (wx
k ,w

y
k) is the vec-

tor field w’s value at pixel k ∈ 1 . . . n. Each line of∇x is of the form (0, . . . , 0,−1, 1, 0, . . . , 0).
∇y is defined accordingly. The matrix encodes the properties of the solution, which we are
going to modify for our purposes.

In general, the Equation system 3.3 is over-constrained. To find the least-squares fit, we
use the pseudo-inverse. For this, the equation needs to be multiplied by (∇t

x,∇
t
y). The result

of doing so is:

(∇t
x,∇

t
y)

(
∇x

∇y

)
I1
...
In

 = (∇t
x,∇

t
y)

wx
1
...

wx
n

wy
1
...

wy
n

(∇t

x∇x + ∇t
y∇y)

I1
...
In

 = ∇t
x

wx

1
...

wx
n

 + ∇t
y

wy

1
...

wy
n

 , (3.4)

where n is the number of pixels in the image.
The operator (∇t

x∇x +∇t
y∇y) is the discrete version of the Laplace operator and, similarly,

(∇t
xw

x + ∇t
yw

y) is the divergence. In the Poisson-equation example, the lines in ∇t
x∇x have

the form (0, . . . , 0, 1,−2, 1, 0, . . . , 0) which corresponds to a discrete second derivative. The
similar structure of ∇t

y∇y implies that the lines in matrix (∇t
x∇x + ∇t

y∇y) have the form:

4Ii, j − Ii+1, j − Ii−1, j − Ii, j+1 − Ii, j−1 = div wi, j,

which readily corresponds to the discrete Poisson equation.

3.7 Diffusion Control via Constraint Systems

3 Controllable Diffusion For Vector Graphics 47

Figure 3.17 For Diffusion Curves colors have to be defined along the curve. Here, the back-
ground was supposed to be dark and this color is dragged into the interior of the hat
(red circle).

We will now illustrate how to apply the previous formulation in order to improve upon the
original standard definition.

3.7.1 Diffusion Barriers

An important issue addressed in this chapter relates to the inflexibility of the relation be-
tween curves and colors. For each Diffusion Curve, one needs to define color values for
both sides of the curve. These double-sided constraints often oblige users to select colors
at awkward locations, which produces unwanted side-effects as shown in Figure 3.17. In
this example, the black line defined on the exterior side of the hat impacts the color of the
ribbons at that location. In order to avoid such artifacts, the user must select colors along
the intersection between hat and ribbons. Furthermore, the choice of the right colors is dif-
ficult, since they need to match the diffused region accordingly. A better solution would
enable the diffusion process to determine some of the colors directly. In other words, the
curve in question would, on one side, define colors in the interior of the hat, but, on the
other side, simply be used as a barrier to prevent the ribbon and hat colors from mixing.

Being able to specify our constraint system allows us to define locally controllable diffu-
sion behavior. Omitting constraints that relate two pixels breaks the connectivity between
them and, therefore, blocks the diffusion process at that location. For a better understand-
ing, Figure 3.18 illustrates such a scenario.

Each pixel represented in the image stores a soft constraint that indicates the direction in
which color information is diffused (a). Thus, every pixel diffuses color to its 4-connected
neighbors, except those pixels located along the two columns in the middle of the grid. In
order to illustrate the impact of locally manipulating a soft constraint, such pixels relate
to only two of their neighbors, therefore breaking the connectivity between pixels in these
columns. When color information is defined at some pixel positions (b), the result is that

48 3.7 Diffusion Control via Constraint Systems

it will be diffused following the connectivity defined by the soft constraint (c-d). Because
pixels in the middle of the grid do not relate, color information cannot cross them, and is
therefore prevented from mixing (e).

c) d) e)a) b)

Figure 3.18 a) Soft constraints indicating the diffusion behavior. b) Color is attributed to some
pixels. c-d) Color diffusion illustration. e) Result after minimization. The missing
soft constraints placed on the pixels in the middle of the image prevent colors from
mixing.

This simple operation enables us to define diffusion barriers: curves that do not actively
emit colors but, instead, are responsible for blocking the diffusion process from crossing
the pixels underneath it. This kind of curve is useful when the user desires to restrain the
diffusion from reaching a certain region without having to actually define any color at that
location.

Figure 3.19 shows a practical example of the use of such a curve. Blue and orange color
pixels are placed on the image (a). If no other curve is added, the blue and orange pixels
will be diffused and mix at certain locations (b). Nevertheless, if we place a circle curve as
a barrier (c), the diffusion of the blue pixels will be restrained to its interior; analogously,
the orange to its exterior (d). In practice, diffusion barriers are obtained by breaking the
connectivity between pixels underneath the curve and those located on its left side (e).

d)b)a) c)

e)

Figure 3.19 a) Blue and orange strokes. b) Diffusion of blue and orange strokes. c) The circle
defines a diffusion barrier. d) Diffusion blocked in the interior and exterior of the
circle (diffusion barrier). e) Soft constraints breaking connectivity across the curve.

It is also possible to only set a different behavior to one side of the curve. In this case,
one side emits colors, whereas the other serves as a barrier to prevent colors from crossing
the curve at that location. This is an important tool that lets the user avoid defining colors
at awkward locations, as previously shown in Figure 3.17.

Figure 3.20 left indicates the lines where placing double-sided color constrained curves
is problematic. To solve this problem, we transform these lines into diffusion barriers. For

3 Controllable Diffusion For Vector Graphics 49

this, we prevent the right side of the red line from emitting colors to the interior of the
hat, but on its left side, we remove the constraints connecting it to the pixels underneath
the curve. Analogously, the interior side of the green line will emit its original colors,
while its exterior side will work as a barrier. The result of the diffusion is depicted in
Figure 3.20 right. Notice that colors diffused from the ribbons are now nicely expanded to
the boundaries of the hat without discontinuity artifacts.

Figure 3.20 Left: Lines along which problems occur. Center: Red and green line curves are
transformed into barrier curves emitting colors from only one of its sides. Right:
Result of the diffusion.

3.7.2 Anisotropic Diffusion

We have seen in Section 3.6.2 that the diffusion process is guided by soft constraints on the
derivative. Minimizing derivatives in all directions ensures the uniformity of the results.
While this is of interest in many situations, it can be useful to give more control to this
process. When drawing motion-blur-like streaks, flames, paint strokes and other phenom-
ena, the color interpolation often has a privileged direction. In other words, continuity is
enforced more strongly along one direction than another. Such behavior can be achieved
via directional smoothness constraints, resulting in an anisotropic diffusion.

Let’s look at a simple example. We have seen that each pixel has a row in the matrices
∇x and ∇y which enforces a smoothness along the corresponding axes. Leaving out the
row in ∇y would lead to a diffusion along the x-axis. This is a direct consequence of the
fact that differences along the y-axis are no longer penalized. Figure 3.21 (left) shows the
influence of this process and illustrates the resulting motion-blur-like streaks obtained with
this solution.

For an arbitrary diffusion direction ~d := (cos θ, sin θ)T , the matrix row needs to be
changed. The directional derivative along ~d is (∇x,∇y)~d. Correspondingly, the discretized
constraint reads:

cos θ(Ii+1, j − Ii, j) + sin θ(Ii, j+1 − Ii, j) = 0. (3.5)

Replacing the original full-derivative constraint leads to a diffusion process only along

50 3.7 Diffusion Control via Constraint Systems

a) b)

Figure 3.21 Left: Horizontal diffusion; Right: Path-guided diffusion

~d. Our goal is to use differing directional constraints to globally guide the diffusion (Fig-
ure 3.21, right).

In general, diffusion is rarely just following a single direction. Usually, a tradeoff be-
tween a privileged direction and its orthogonal counterpart is wanted. This implies the need
for a similar smoothness constraint involving ~d⊥ := (− sin θ, cos θ)T . Adding both equations
to the system would result again in a uniform diffusion process (it merely reflects a rota-
tion of the basis vectors, meaning that ∇~d and ∇ ~d⊥ take the role of ∇x and ∇y respectively
in Eq. 3.3). Nonetheless, an anisotropic result can be obtained by scaling the constraints
differently, as this influences the least-square result of the equation system. We will show
how to use this observation to control how strongly a given direction is respected during
the color diffusion.

a) De�nition of di�usion directions b) Di�used directions

Direction Curve

Di�usion
Barrier

Figure 3.22 To define per-pixel diffusion directions, the directions are themselves diffused.

In order to specify a direction ~d and a tradeoff between standard and anisotropic diffu-
sion, we suggest that the user draws direction curves. These curves contain a 2D vector,
whose direction defines an orientation ~d and whose length results in a scaling factor to per-

3 Controllable Diffusion For Vector Graphics 51

form the tradeoff. The vectors defined by the directional curves are spread via a uniform
diffusion, leading to a value in each pixel. In our interface, we let the user define vectors of
length smaller than one, because a global scale does not affect the solution.

In the example of Figure 3.22 b, diffusion barriers were used to refrain the diffusion
to the right (outer arc) and left (inner arc) sides of the curves. Adding color constraints,
our diffusion process, according to Equation 3.5, leads to the result depicted in Figure 3.23.
Here, color information defined along a curve (a) is dragged by the flow field resulting in an
arc-shaped diffusion of colors creating a rainbow effect (b). To define a diffusion direction,
the user only defined a single direction per curve, although more would have been possible.
Just like colors, directions are interpolated along the curve, but follow the curve’s tangent
direction.

b) Colors di�used along directionsa) Di�usion directions

Figure 3.23 The directions define constraints that ensure that the color is diffused accordingly.

While in the previous example the directions were basically of constant length, direc-
tional constraints can vanish when opposing directions are merged during diffusion. In
these areas, a privileged direction does not exist and a uniform diffusion should be applied.
This need is compatible with our idea to use the length of ~d to define the tradeoff between
standard and anisotropic diffusion. One possibility would be to use 1 − ||~d|| as a scaling
factor on the equation according to ~d⊥. For ||~d|| = 1, only the diffusion along ~d is applied
and for ~d = 0 the uniform diffusion is reestablished.

In practice, we use a different solution with a threshold τ. If the vector is longer than the
threshold, we renormalize it. Only if it is below τ, we use the length ~d/τ as before. This
threshold could also be diffused, but we found that a global value of 0.5 is usually a good
choice.

Figure 3.24 illustrates the influence of anisotropic diffusion and the threshold. Standard
diffusion curves lead to a very smooth result that is missing many of the vivid characteristics
one would expect in the case of a fire illustration. With our solution, the contrast is improved
because color follows the flow of the lines and the final result looks more detailed, although
we only relied on the same color curves. Modifying the threshold allows us to obtain a more
uniform body for the fire.

52 3.7 Diffusion Control via Constraint Systems

Figure 3.24 A complex anisotropic diffusion defined with a small set of curves. The two examples
use different threshold settings to tradeoff uniform and anisotropic diffusion.

3.7.3 Color Strength

The previous section presented a way to control diffusion directions, but one limitation is
that it does not allow us to influence the diffusion speed. In other words, independent of
the direction, the diffusion between two colors will weight both colors in the same way. In
this section, we will present a solution to attribute a strength to a color in order to define its
dominance in the diffusion process.

Figure 3.25 Left: Standard diffusion (equal strength), Middle: Orange stronger than blue. Right:
Varying strength along curve.

Figure 3.25 depicts a simple example with two color constraints, orange on the top and
blue at the bottom. As expected, the diffusion process spreads these colors uniformly over
the remaining image connecting both color constraints. In order to achieve fine-grained
results, we introduce color strengths, a mechanism to control the region of influence of
colors during the diffusion process. By manipulating the color strength, the artist can make
the orange color become more dominant over the blue, thus pushing the diffusion in this

3 Controllable Diffusion For Vector Graphics 53

direction (Figure 3.25, middle). A variety of effects can be obtained if different values
of color strength are defined along lines as, for example, the diagonal diffusion effect in
Figure 3.25, right. Figure 3.26 shows an example of complex color gradients achieved by
manipulating the color strength in the interior and exterior of the eye. Compared with the
standard result, we show that the color strength extension can lead to interesting results
with no additional curves.

Figure 3.26 The curves (left) define both parts of the image (right). The left part uses uniform
weights, the right has varying weights.

One way of controlling the strength of colors during diffusion is to formulate this prob-
lem as an interpolation process. Intuitively, if we have two colors c1, c2 with respective
strengths a1 and a2, then we would like the interpolation T of the two to yield:

T ((c1, a1), (c2, a2)) =
a1c1 + a2c2

a1 + a2
.

As we can see, the equation results in ci for ai → ∞, and if a1 = 0, the equation simplifies
to c2. Therefore, the values a1, a2 can be used to control the dominance of one color over
the other. The result is a linear combination of the initial color values that naturally favors
colors with a higher strength. This generalizes:

T ((c1, a1), . . . , (ck, ak)) =

∑
ciai∑
ai

In some sense, when thinking of a blending process, the strength value will indicate the
mixing coefficients. Due to the normalization, such a weighted blending is non-linear and,
hence, would not fit into the diffusion framework. Nevertheless, it is possible to linearize
the computations using homogenous colors.

54 3.8 Beyond Local Constraints

A homogenous color is defined by a RGB-tuple (r, g, b) and an alpha value a , 0. Al-
gebraically they resemble homogenous coordinates, widely used in projective geometry
calculations [Wil06]. Two homogenous colors (r1, g1, b1, a1) and (r2, g2, b2, a2) describe the
same actual color when a2(r1, g1, b1) = a1(r2, g2, b2). If ai is not zero, the actual color is
obtained via a projection mapping P(r, g, b, a) = (r/a, g/a, b/a). It is easy to verify that the
projection of the sum of homogenous colors corresponds to the weighted sum of the actual
colors, as defined above.

The key idea of our extension is that the alpha value of a color will define the color
strength. In the interface, the user only specifies a standard color c = (r, g, b) and a color
strength a. This input is then transformed into a homogenous color by mapping it to
(ar, ag, ab, a). Each channel (including the alpha channel) is thus diffused separately, but all
following the same diffusion behavior. At the end of the diffusion process, we perform the
projection (r/a, g/a, b/a) to obtain the final result. The correctness of this solution becomes
clear when inspecting the way that the Gauss-Seidel iterations would update the values in
the solver, where an average is computed in each step. The final projection then transforms
the result into a weighted sum and the diffusion will reflect the weight.

We explicitly excluded the case when ai equals zero. It makes the color’s contribution
to the weighted sum be zero as well. Therefore, it would be possible to use this special
case to define diffusion barriers, but in practice, this can lead to small artifacts along the
boundaries and care has to be taken to correct them. Such difficulties do not arise with the
solution presented in Section 3.7.1.

3.8 Beyond Local Constraints

The final problem we will address relates to the fact that the diffusion is usually locally
defined. In other words, a differently colored region will always block the diffusion on its
boundary. In this section, we will present a solution to connect different areas of the image
to ensure a continuous diffusion between them. To some extent this can serve as a color
picking for colors that are only implicitly defined by the diffusion process.

Our solution to ensure the same color on two locations is to simply link them in the
diffusion process with soft constraints via a similar condition as the one that usually exists
between neighboring pixels. For two pixels Ik, I j, this translates to a soft constraint of the
form Ik − I j = 0. Again, the importance of this similarity can be steered by multiplying the
equation with a factor. It is, hence, possible to ensure that both pixels will receive similar
values at the end of the diffusion. The definition of such a constraint is simple. We allow the
user to link two curves and then define points of correspondence between them, by default,
we match both curves via their parametrization uniformly. It is also possible to match one
curve with several others if needed.

There are several applications that arise from this strategy. It is possible to address
smaller occlusions without resorting to layers, by channeling colors from one side of an
object to another, as illustrated in Figure 3.12. Here, color gradients are continued across

3 Controllable Diffusion For Vector Graphics 55

boundaries and small gaps. Another application is the creation of seamless textures. This is
usually a complicated process because colors have to be matched correctly across bound-
aries. Solutions exist to create such textures in a postprocess [PGB03], but in this case the
artist has little control over the appearance. By matching boundary pixels via non-local
constraints, the diffusion can be wrapped around the domain and during the design process
the result can already be visualized. It is also possible to move and repeat constraints, so
that their displacement effectively drags the texture over the screen. An example can be
found in Figure 3.27.

Figure 3.27 Seamless diffusion textures via non-local constraints.

3.9 Results

Our method was implemented using OpenGL on a NVIDIA GT285 graphics card. Besides
the non-local constraints, all other extensions can be handled locally and thus can be inte-
grated directly into the diffusion curve algorithm. Color strength comes at an added cost of

56 3.9 Results

about 30%, because the diffusion uses four instead of three channels. Directional diffusion
comes at roughly twice the cost, because we first diffuse directions, but it still leads to a
real-time solution. Unfortunately, the quality of the final result suffers from the multi-grid
solver, and, for the non-local constraints, a local diffusion model is no longer very efficient.
Instead, we rely on a general global linear solver implemented in CUDA which, as a side
benefit leads to more precise images. Unfortunately, due to its generality the solver is slower
and our system then does no longer reach real-time performance. For the scene depicted
in Figure 3.10, the computation took approximately 4 − 5 seconds for a 512 × 512 image.
Although the feedback is not instant, it is sufficiently fast to create convincing drawings in
a small amount of time. If needed, one could imagine caching non-local constraint results
to give an approximate, but faster feedback. In the same spirit, we could also maintain an
inverted matrix to allow interactive color adaptation, but we keep such investigations for
future work.

Figure 3.28 Left: Image outlines. Center: Shading using color diffusion. Right: Result of relight-
ing using a normal map created by normal vector diffusion.

The advantage of our solution is that it is more flexible. Artifacts such as halos can be
avoided if the artist desires. Diffusion barriers also make the color fill more intuitive and
can be useful for diffusing normals. The folds on the skirts in Figure 3.28 and on the lion’s
mane in Figure 3.29 benefits from this solution and makes the lighting look more realistic.
More details about the derivation of normal maps to enrich 2D drawings are discussed on
Chapter 4. We will explore this idea in more details in Chapter 4. Color strength is a sim-
ple way of making adjustments to the illustration without increasing its complexity. The
same holds for anisotropic diffusion that allows us to increase the richness in the illustra-
tions drastically. A few directional curves can intuitively define a complex color diffusion.
Finally, non-local diffusion allows easy color transfer and occlusion treatment.

3 Controllable Diffusion For Vector Graphics 57

Figure 3.29 Our approach can diffuse not only colors (left), but also normals (middle) for re-
lighting purposes (right).

3.10 Discussion

In this chapter, we presented several new methods to increase the flexibility of diffusion-
based tools for artists. We illustrated several scenarios in which our solution can be of
strong benefit for the user. Our work also enabled new designs that were previously not
easily realizable with existing solutions.

Being compact, vector graphics representations are of great benefit for users. A large
set of manipulation techniques are made easily due to its intrinsic concise mathematical
formulation and controllability via a set of parameters. When adequate user interfaces are
provided, artists are able to interact with these parameters in a total transparent way, making
the creation process intuitive. Nevertheless, compact representations have also drawbacks.
For being compact, it tries to represent areas by sparse information defined via mathe-
matical formulation. Colored regions or curves are not as precisely defined as for raster
representations, but implicitly. This compressed codification might be interpreted as a limi-
tation since it might not translate exactly into the artist’s wish. The more the manipulations
are fine grained, the more these features will constitute a challenge for this representation
since it will require an adequate vocabulary to represent it.

In the case of our technique to control diffusion processes, the definition of a directional
field over regions were particularly challenging. Proposing to the user a smearing-like tool
was an intuitive way to indicate how colors must be diffused across regions of the image
while keeping the representation ‘sparse enough’ to be encoded into mathematical formu-
lations and, therefore, stored as vectorial representations. This explains our choice of en-
coding these guidance fields as directional curves. Nevertheless, this approach leaves place
for improvement. Brush-like tools, with the possibility of controlling radius and strength
might also be a good alternative. The user could then ’sculpt’ the vector field by modifying
and overlapping vectors with the use of such brushes. This technique would be relatively
easy to implement in raster images since each directional information needed at each pixel
would be directly stored at that point. In order to keep the representation vector-based,

58 3.10 Discussion

therefore as general as possible, this directional field would need to be encoded into prim-
itives. The question goes back to ’what primitive from the available vocabulary would be
suitable?’. Diffusion Curves represent a great step forward in helping bridge this gap. Al-
though limitations exist, it can be considered as a seminal work to improve and enrich the
vector graphics vocabulary in order to render the format more expressive. We believe this is
a promising field where researches will face the great challenge of presenting controllable,
but yet user-friendly solutions that enable expressiveness while easy to manipulate.

Orzan et al. [OBW+08] also proposed an automatic vectorization mechanism based on
Diffusion Curves. From a raster input image, curves were extracted and colors informa-
tion sampled along them. This information was diffused and the image reconstructed. We
believe that our directional diffusion technique can improve this approach. We suggest the
derivation of a flow field from the color gradients presented in the source image. Such flow
field can then be used with curves and colors to help the reconstruction. We believe that this
could lead to more accurate results and the need of less color curves. Nevertheless, adding
the complexity of directional curves.

Another interesting point to be discussed about this Chapter concerns the set of tools that
can be presented to the user. Many formulations presented here are subjects of handling by
a set of arguments, or allow for great flexibility. For example, we have seen that the tradeoff
between directional or uniform diffusion can be controlled by the user. We proposed here
a very simple way to control this tradeoff (linearly), but several other approaches might
be considered. We believe that strong connections between researchers and artists are the
best way to conceive expressive and user-friendly tools and are of major importance, in
one hand propose innovative graphic solutions and, on the other hand, to understand what
better suits the digital art and illustration communities needs.

To conclude, in this chapter, we showed that diffusion processes are of great potential
to enrich compact representations like vector graphics. The advent of Diffusion Curves
showed that it was possible to take advantage of the well accepted concept of drawings
based on line to create complex illustrations. We proposed a series of extensions that, not
only improves expressiveness of these vector primitives, but also that are flexible and pow-
erful enough to be used in many diffusion processes. For instance, our work could be ap-
plied in other domains. Flow fields are very versatile and one recent example is street
modeling [CEW+08] where the proposed Diffusion Curves tools can be used. In the design
process and provides the possibility to guide the diffusion of various information that could
be a useful extension for city simulations. Another example concerns vectorial illustrations
from 3D models. It is usually tedious, but an automatic transformation into layered vec-
tor graphics is possible [EPD09]. The resulting document is usually refined by an artist. If
diffusion curves are involved, care must be taken to ensure color consistency across cuts
that were introduced to allow a layer decomposition. Our diffusion constraints can ensure
smoothness in the final illustration across layers. In the same way, we could also connect
different images at the same time in order to produce not a single, but various matching tex-
ture tiles, that can then be employed as Wang Tiles [CSHD03] for modeling and rendering
repeating patterns with variations.

4 Shape and Tone Depiction from
2D Drawings

Lines have been used in many ways throughout the history of art. Drawing lines on planar
surfaces like walls or paper sheets has been one of the most common forms of expression.
Drawings are manifestations of semiotics, that is, one way through which the function of
assignment of meaning is expressed and constructed [Pia92]. Even in early stages of human
development, children represent their surrounding three-dimensional world on flat sheets of
paper, or are able to recognize 3D objects directly from their corresponding 2D illustration
depicted in books or tv cartoons. Although these images are necessarily incomplete and
abstract, they contain sufficient information to make assumptions about the shape. Interest-
ingly, a silhouette alone provides many cues and allow us to identify objects, such as the
horse in Figure 4.1 (left) by the English artist and book illustrator Walter Crane. The only
information lies in this line bounding the object’s shape. Despite the drawing’s simplicity,
we are able to create a mental volumetric representation from this very economic represen-
tation. Crane considered lines as a true language, a sensitive and vigorous speech of many
dialects. In his book Line & Form [Cra00], he completed:

Outline, one might say, is the Alpha and Omega of Art. It is the earliest mode
of expression among primitive peoples, as it is with the individual child, and it
has been cultivated for its power of characterization and expression, and as an
ultimate test of draughtsmanship, by the most accomplished artists of all time.

Figure 4.1 Left: Horse outlines illustrated by Walter Crane. Even such ‘economic’ line drawing
allows us to recognize the depicted object. Right: Drawing by John Flaxman. Lines
can be used to indicate many material properties, here, the softness of the tissues.

Once familiar with this representation, most of us are capable to, if not draw, interpret
such sets of planar lines. This phenomenon is difficult to explain because it is situated at

60

the interface between the physical and mental world. Biology explains the process by the
stimulation of light on the rods and cones at the bottom of the eye, but cannot tell how this
process leads to imaging. All we know is that, when we look at the set of lines illustrated in
Figure 4.1 (right) by the draughtsman and sculptor John Flaxman, we immediately identify
the two human figures and their inanimate canes. We are further capable of estimating
the softness of the tissues composing their clothes. This indicates that drawing is not only
a visual process, but instead, we rely on experience - of all our senses - to interpret the
illustration [Nic90].

To derive a rich representation, scientists have found many different points of view to
explore. Rather than a complete state of the art, the purpose of the following sections is to
analyze which line and scene features are of importance and can be linked to computational
algorithms.

If artists are capable of extracting lines from a mental representation of a scene, is a
computer able to extract similar lines from three-dimensional objects? If so, which surface
features can successfully generate lines? These are the questions discussed in Section 4.1,
where we give a brief overview about computer-line-drawing approaches. Then, looking at
line drawings from a different perspective, we see that these minimal skeletons of visual
forms are capable of reproducing the illusion of an actual seeing of the object. What two-
dimensional features trigger the three-dimensional perception? These are concerns raised
by many researches in the computer graphics and vision communities. Section 4.2 reviews
an illustrative number of computational mechanisms for the extraction and validation of
how three-dimensional structures are perceived when looking at lines.

When an object is placed in an illuminated environment, its surface material interacts
with the lighting conditions revealing its shape, position, and characteristics (color, light re-
sponse, roughness). Section 4.3 shows that, inspired by artistic techniques, researchers have
exploited the depiction of shading cues to propose approaches to render enhanced views of
objects. Nevertheless, when dealing with two-dimensional pictures, surface information is
not directly at hand. The section reviews approaches to retrieve surface information from
shaded images, and show how such inferred information can be used to re-render the scene
with different perspectives.

Section 4.4 discusses the interesting case of enriching two-dimensional line drawings
with 3D information. Many traditional computer techniques for cartoon creation rely on
user interventions to annotate drawings with shape information. Although approximate,
this shape information can be successfully used to add shading, texture, and many other
features to bring vivid colors into drawings. We will look into details of Lumo: illumina-
tion for cel animation by Scott F. Johnston [Joh02], a seminal image-based algorithm for
creating normal map images from cartoon line drawings. This work has inspired many oth-
ers, in particular, Winnemöller et al. [WOBT09] to add texture information on top. These
two techniques are the main block upon which we sketch a series of improvements for the
extraction of approximative surface normals from two-dimensional line drawings in Sec-
tion 4.5. For discussion purposes, the reader will realize that we revisit many techniques
mentioned along the chapter, trying to take advantages of such different perspectives. It
is an exploration into the intriguing world of lines and the many interpretations made by
humans, and computers. The ideas and preliminary here-presented results have not been

4 Shape and Tone Depiction from 2D Drawings 61

published.

4.1 Computer-Assisted Drawings

Many books teach drawing techniques [Nic90, Edw87]. They often discuss the use of some
types of lines, like contours, as well as their meaning and physical interpretation. Neverthe-
less, it seems impossible to extract an exact algorithm from these sources because, accord-
ing to many authors, drawing is a complex process where observation outstrips artifices or
techniques [Nic90].

Although nobody seems to be able to characterize and encode all subtle and complex
visual perceptual cues and composition, it is of interest to the scientific community to
study and develop approaches to better understand it. Several computer algorithms have
have been proposed in order to automatize the generation of drawings from many types
of sources and in a broad range of styles. When the field of Non-photorealistic render-
ing (NPR) got a strong attention in Computer Graphics, seminal works were proposed to
enhance the depiction of scenes by manipulating the appearance of geometric properties.
The main goal of this new born field was to overcome the limitations imposed by photo-
realistic approaches and to produce images that effectively communicate a message and/or
were visually close to those produced by hand [SS02, INC+06]. Since then, the creation
of images and 3D scenes that mimic hand-made styles became a solid venue in computer
graphics. Several approaches for different techniques been proposed as, for instance, pen-
and-ink techniques [WWSS96, WS94, SFWS03, INC+06], watercolor painting [CAS+97,
BKTS00, BNTS07], or algorithms for generating realistic drawing strokes that can take
on the appearance of pastels, charcoals, or crayons [GTDS10, GTDS04, MTG06]. Many
challenges remain open and new research continues to evolve from these works.

Automate Line Drawings
An important topic in the Computer Graphics community is to aim at the understanding
and extraction of lines from 3D surface models. Many of these methods tried to identify
which features presented on 3D meshes are likely to appear in hand-made drawings. In
the following paragraphs, we will present the main mathematical models to extract such
features and to render their line representations. We do not intend to be exhaustive, but
rather give the reader a quick understanding that there are many different ways to generate
lines from a variety of surface features.

Contours are probably the most simple and straightforward line to draw. When we move
our viewpoint along these lines, it is comparable to ‘touching’ an object and we can almost
feel the delimiting structure of the shape. Mathematically, these contours, known as silhou-
ettes, are 3D curves characterized by points on the object where the view vector v(p) is
orthogonal to the normal n(p) of the surface. Given a point p of a smooth closed surface S ,
p lies in a contour if n(p) ·v(p) = 0. The view vector v(p) can be assumed to be (0, 0,−1) for
an orthographic camera. Extracting the corresponding contour lines from 3D objects is, at

62 4.1 Computer-Assisted Drawings

least nowadays, a relatively efficient task. Olson and Zhang [OZ06], for instance, proposed
an efficient silhouette extractor for triangle meshes based on 3D Hough transforms. Such
transform allows the organization of the mesh data more effectively for silhouette compu-
tations than the traditional dual transform. Dual transforms had been previously used in the
work of Hertzmann and Zorin [HZ00] to segment contour curves into smooth parts with
constant visibility, as well as an automatic method for generating hatch marks in order to
convey surface shape. Figure 4.2 shows a drawing generated with this approach. We realize
that, although crucial to understanding, contour lines give a first coarse idea of the shape
(left), but they do not convey information about the interior shape of the surface. We, nev-
ertheless, see more details on the corresponding 3D shape when, for instance, shading is
added to the model (right).

Figure 4.2 Direction fields on the Venus. Left: Silhouettes alone do not convey the interior shape
of the surface. Right: Shape perception is enhanced when shading is added to the
drawing.

To fill the void inside the contour curves, different types of lines can be used and can
easily be found in many artistic drawings. This is the case of ridges which are long narrow
upper sections, like the horizontal line formed by the juncture of two slopping planes (for
example, the line formed by the surfaces at the top of roof). Valleys are analogous to the
ridges. As for contours, algorithmic solutions were proposed to extract such geometric lines
efficiently [IFP95, OBS04, YBS05].

Other lines, such as suggestive contours [DFRS03, DFR04] and apparent ridges [JDA07],
have been introduced by the research community. Even though not present in the artis-
tic vocabulary, studies have shown that these lines are indeed drawn on hand-made art-
works [CGL+08].

It is sometimes argued that paintings have the appearance to be more dynamic than pho-
tographs, maybe because the artist has the freedom to look at the model from different, but
yet close, points of views which are later combined into a single image. This is also the
philosophy of suggestive contours in relation to the traditional occluding contours. By ex-

4 Shape and Tone Depiction from 2D Drawings 63

panding the point of view, suggestive contours (by DeCarlo et al. [DFRS03]) reveal those
locations at which the surface is almost in contour from the original viewpoint - locations
at which the dot product n(p) · v(p) is a positive local minimum rather than a zero. Ge-
ometrically, they are view-dependent curves along which the radial curvature is zero and
where the surface bends away from the viewer. When combined with traditional contours,
suggestive contours can increase the perception of the underlying surface as depicted on
Figure 4.3.

Contours Suggestive Contours Ridges & Valleys Apparent RidgesShaded View

Figure 4.3 The Bust model rendered with several different feature lines. From left to right: the
3D model, contours, suggestive contours, ridges and valleys, apparent ridges.

Another example of recently proposed lines are the apparent ridges by Tilk Judd et
al. [JDA07]. Apparent ridges are view-dependent lines that appear when the surface normal
is changing at a locally maximal rate with respect to image position, like a derivative on the
buffer containing the normal map. These lines are able to capture shape features that con-
tours, ridges, valleys, or even suggestive contours are not able to, such as the nose depicted
in Figure 4.3.

Although each of the aforementioned lines seem to get very close to traditional hand-
made work, there is no such thing as a perfect type, a single line type that best reveals all the
shape features encoded in human drawings. Several other line models have been proposed
throughout the last years and each of them communicates shape aspects that were omitted
by others. The more pronouncing demarcating curves [KST08], for instance, are lines that
appear commonly on archeology drawings and typically separate ridges and valleys on
3D objects (hence the name demarcating). Many other mathematical models exist and can
appear alone or in combination with other lines: view-dependent highlight lines [DR07],
lines from shading features [LMLH07], or yet crease lines [KMM+02] drawn directly on
3D models, to cite a few.

Even though it seems well accepted that these mathematical lines are likely to appear in
hand-made drawings, a comparative study comparing these propositions and human-made

64 4.2 Lines and the Perception of Shape

drawings was needed. Assembling many of these models together, Cole et al. [CGL+08]
have recently proposed a study to verify how well these algorithms can describe the human
artists’ lines. This study considered lines generated with an image-based approached, such
as the Canny edge detector [Can86], and the aforementioned geometric ridges and valleys,
suggestive contours, and apparent ridges. The result of this study reveals interesting facts.
For example, all human drawings analyzed exhibited examples of multiple classes of lines.
This reinforces the idea that no line model can be considered self-sufficient to represent
every aspect of the drawing. Also, the study indicates that the large majority of hand-made
lines are overlapped by these computer generated models. These are very good news which
suggest that the research community is on the right track toward understanding the line
drawing mechanism. Nonetheless, it is important to continue the investigation of line types
in art, to propose efficient solutions to validate the mathematical models, as well as to look
at the problem from different perspectives, such as, how lines influence the perception of
shape.

4.2 Lines and the Perception of Shape

Accurate drawings resembling photography convey information in a form which can be
understood by an observer because it conforms with what she would have seen. Neverthe-
less, even if a drawing is less accurate, or if it makes transgressions of standard physics,
these limitations do not seem to interfere with the viewer’s understanding of the scene.
This can be observed in Picasso’s skewed faces, in the colored shadows of the works by
Matisse, or in the inaccurate lines used in children drawings. Cavanagh [Cav05] has shown
that physical transgressions like impossible shadows, color, reflections or contours often
pass unnoticed by the viewer and these facts suggest that the brain uses a simpler, reduced
physical model to understand the world. This simplification relates to our ability of mak-
ing abstractions. The author suggests that the real world is subject to an extensive set of
physical constraints, but few of these seem to be checked by our vision. It is this smaller
set of constraints that allows us to recognize objects and scenes even if they do not exist in
our real world. For instance, we are capable of recognizing hands with only two or three
fingers, or yet a ‘hand’ of a mouse or a woodpecker. We are capable of making conceptual
interpretations, rather than a merely physical analysis of the world.

More than understanding incorrect physics or non-existent objects, the human brain also
has the impressive power of constructing meaningful images from fragmented information.
Line drawings demonstrate that minimal skeletons of visual forms are capable of repro-
ducing the illusion of more. They make the eye recognize the content as being consistent
with what is seen when looking at an actual view or object [Gil91]. This happens because
we are able to decode lines, colors, and other means of representations into shapes and
significations.

4 Shape and Tone Depiction from 2D Drawings 65

4.2.1 Shape Reconstruction from Labeling

Research in computer vision offers a number of computational mechanisms for extract-
ing three-dimensional structures from two-dimensional line drawings [Sug86]. The main
question studied by these approaches is to find what shape is represented by the primitives.
Although it seems to be clear that many different shapes could project into the same line
drawing when viewed from the correct viewpoint, many authors propose to characterize, in
some useful and complete way, the constraints imposed upon this infinite set of scenes. In
order to be able to characterize the scene, it is important to make use of a suitable catego-
rization of the features encoding information: lines and regions. This process is called la-
beling and has been used by many authors as a language with which the sparse information
is encoded. Huffman [Huf71] and Clowes [Clo71] set forth the first labeling scheme valid
for polyhedra. The Huffman-Clowes labeling method classifies line segments into three
categories: convex edges, concave edges, and occluding edges. The goal of this process is
to establish a connection between the two-dimensional representations and their shape in
three dimensions. Lines with different labels impose different types of constraints on the
three-dimensional interpretation. Some researchers have attempted to determine a unique
three-dimensional shape which supposedly is the one perceived by a human observer based
on line constraints. Typically, these approaches use some criterion to choose one among the
possible spatial interpretations. For example, Brady and Yuille [BY83] search for the most
compact shape possible.

Kanade [Kan81], Sugihara [Sug86], and several others have extended the Huffman-
Clowes labeling scheme based on junction libraries. Waltz [Wal75] extended this approach
to categorize regions under lighting conditions. A different extension was proposed by
Malik [Mal86] who augmented the labeling vocabulary for drawings of piecewise smooth
surfaces. For a better understanding of how such labeling process can help with the in-
terpretation of the perceived surface, we illustrate a few label constraints defined by this
technique.

Figure 4.4 shows a labeling example for Malik’s approach. A “+” label represents a
convex edge: an orientation discontinuity such that the two surfaces meeting along the
edge in the scene enclose a filled volume corresponding to a dihedral angle less than π. A
“-”label represents a concave edge: an orientation discontinuity such that the two surfaces
meeting along the edge in the scene enclose a filled volume corresponding to a dihedral
angle greater than π. A “←” or a “→” represent an occluding convex edge. When viewed
from the camera, both surface patches which meet along the edge project on the same side
of the line, one in front of the other. As one moves in the direction of the arrow, these
surfaces are to the right as seen from the camera. A “←←” or “→→” represents a contour.
As one moves in the direction of the twin arrows, again, the surface lies to the right.

As it has been said before, such labels impose constraints on the shape they represent. For
instance, the author suggests contour labels to impose constraints as follows. Considering
an orthographic projection along the z-axis, let n be the unit surface normal, and I be the
unit tangent vector at a point of the contour, hence, n · I = 0. As a contour corresponds
to points on the surface where the line of sight vector ẑ lies in the tangent plane of the

66 4.2 Lines and the Perception of Shape

Figure 4.4 Labeling scheme by [Mal86]. A “+” label represents a convex edged. A “-” label
represents a concave edge. A “←” or a “→” represents an occluding convex edge. A
“←←” or “→→” represents a contour.

surface, it follows that n · ẑ = 0 for points on the surface (equivalently nz = 0). Therefore, in
general, n lies in the image plane and can be constructed by drawing the outward-pointing
unit vector perpendicular to the projection of the contour in the image plane.

In addition to lines, shape constraints are also defined inside areas. In the case of Malik’s
approach, each area in the image is assumed to be the projection of a connected smooth-
surface part. Therefore, the functions that map each image point to its position and orienta-
tion must be smooth within a single area. Also, the surface normals at all the visible surface
patches must have positive n components. It follows that, as the surface normal in a smooth
patch can be written in terms of the partial derivatives of I with respect to x and y. Then, if a
C2 function z(x, y) is specified, the orientation function n(x, y) is automatically determined
and smooth. Therefore, considering a dense labeling of a line drawing, a candidate solu-
tion to this set of constraints is obtained by specifying a piecewise smooth function z(x, y)
corresponding to the depth at each visible point in the scene.

Probably this labeling mechanism is not sufficient to describe the delicate process that
is triggered by human perception, but such information is useful to constrain the computer
solution and make it approach the perceived shape. Nonetheless, just basing the derivation
on lines we consider useful, might prevent the computer from generating an appropriate
result as well. To achieve the perceived shape one might actually need to modify the original
input. From our point of view, this input might miss certain important lines, might exhibit
superfluous lines, or even wrongly positioned ones. Ultimately, perception is more complex
than what can be captured via a few labels.

4 Shape and Tone Depiction from 2D Drawings 67

Figure 4.5 A collection of gauge figures used in [KvK92]. Rows depict constant tilt, columns
depict constant slant.

4.2.2 Perceptual Experiments

Although drawings trigger the impression of an actual seeing of the object, such pro-
jection is vacuous. Koenderink et al. [KvK92] have proposed strategies for measuring
the internal representation of three-dimensional surfaces generated via the inspection of
two-dimensional portrayals, usually from photographic sources. More recently, Cole et
al. [CSD+09] proposed a study to investigate the ability of sparse line drawings to depict
3D shape. Cole’s approach is based on the gauge figure technique to reveal the perceived
surface orientation at any arbitrary location in an image. In this context, a gauge figure is
circular disk, pierced orthogonally through the center with a straight line (Figure 4.5). To
indicate the perceived shape, one can adjust the gauge figure in such a way that the disk
looks tangent to the surface of the depicted object by manipulating the slant and tilt of the
projection of the gauge figure with the mouse, for example. Gauge figures had already been
used previously [KvK92, KvKT01], nevertheless Cole et al. were the pioneers to use it in
the context of line drawings. To obtain local estimates of the surface orientation at a large
number of points spread over a picture.

In the aforementioned investigation, Cole et al. considered not only hand-made line
drawings, but also computer-generated illustrations. As in previous research [CGL+08],
this choice of including ’artificial’ drawings was motivated by the need of investigating
how well lines generated by compute algorithms are effective in conveying shape. There-
fore, the input data considered human-made line drawings, as well as drawings created us-
ing algorithmic line models as suggestive contours, ridges and valleys, and apparent ridges.
In order to confront the effectiveness of line drawings against shaded images, these ren-
ditions were also included in the study. Subjects were then asked to place gauge figures
on the surface of these drawings to indicated the surface perceived. Figure 4.6 depict an
example of such task. The result of this study suggested interesting facts concerning the

68 4.3 Shading and the Perception of Shape

human perception of line drawings, as well as the effectiveness of computer generated line
models. In general, the study suggested that interpretations across viewers were consistent
regardless of the type of drawing. Also, different people interpret line drawings roughly as
similarly as they interpret shaded images (with a slight advantage for the latter), but that,
at times, even shading failed to communicate shape effectively. Concerning the computer
generated lines, they demonstrated that not all line drawings are equally effective at depict-
ing shape. For example, suggestive contours behaved more or less adequately depending
on the characteristics of the model. Although the computer generated lines were found to
be placed at similar locations of hand-made lines (as mentioned before), the study reveals
that the computer is not ready to replace human skills: artist are superior in selecting the
most appropriate lines in each case. This finding opens the space to future approaches to
explore algorithms for selecting the best set of lines to depict a shape.

Human drawing Contours Apparent RidgesShaded Image

Figure 4.6 Gauge figures placed on the surface of drawings to indicate the perceived shape
in [CGL+08].

4.3 Shading and the Perception of Shape

When an object is placed in an illuminated environment, its surface material interacts with
the lighting conditions revealing its shape, position, and characteristics (color, light re-
sponse, roughness). This is a complex effect present in the real world, which behavior is
sought by many researches to be efficiently modeled in the computer. Although some level
of flexibility is allowed by these algorithms, non-photorealistic techniques allow artists to
arrange surfaces and lights to suit the message of the piece rather than the requirements
of the physical world. The goal is not only to accurately imitate an existing scene, but
also to communicate other characteristics of objects in a visually comprehensible man-
ner [VPB+09]. For instance, in Archeology, fine surface characteristics are depicted in sharp
relief as depicted in Figure 4.7.

4 Shape and Tone Depiction from 2D Drawings 69

Figure 4.7 Archaeological illustration, medieval shoe (leather), detail. Non-photorealistic tech-
niques allow artists to arrange surfaces and lights to suit the message of the piece
rather than the requirements of the physical world. Helena Michel c©. Pencil on pa-
per.

4.3.1 Manipulating 3D Scene Depiction

Inspired by artistic techniques, researchers have exploited the depiction of shading cues to
propose approaches to render enhanced views of objects. Gooch et al. [GGSC98] presented
a lighting model for three-dimensional scenes that provides a better shape comprehension
by mapping the change in surface orientation into variations of hue instead of brightness
variations. Cignoni et al. [CST05] proposed a view-independent algorithm to enhance the
depiction of high-frequency components of a model for an enhanced depiction of its sur-
face details. The technique is based on a normal modification, i.e., a manipulation on the
surface orientation of the model while leaving the silhouette, therefore its geometry, un-
changed. Later on, the work of Rusinkiewicz et al. [RBD06] extended this idea to reveal
relief surface details. Differently of Cignoni’s, this approach does not perform changes
on the surface orientation, but rather simulates the effect of illuminating parts of an ob-
ject with different light positions that are, ultimately, combined into a single rendition.
Although these methods can effectively enhance detail perception, their non-photorealistic
look impairs the depiction of complex materials and illumination. To bridge this gap, Barla
et al. [VPB+09] proposed a new light warping approach that stems from rendering tech-
niques, but leads to an enhancement of important surface features.

70 4.3 Shading and the Perception of Shape

4.3.2 Manipulating 2D Scene Depiction

Obtaining a surface normal from two-dimensional images has found interesting applica-
tions for content manipulation. A number of authors generated normal maps for a variety
of applications. For example, once a normal map is created with the help of pen-based
interface, Okabe et al. [OZM+06] proposes to change the illumination of objects in a real
photographs (see Figure 4.8 top). In the work of Hui Fang and John C. Hart [FH04], a shape
from shading technique was used to recover surface normals from a input photograph. The
resulting normal information was then used to texture objects in photographed surface (see
Figure 4.8 middle). Rusinkiewicz et al. [TFFR07] have demonstrated that normal enhanced
images are a good alternative data structure lying between simple 2D images and full 3D
models. Named RGBN images, this structure is the result of having the standard color im-
age components (RGB) augmented with normal information (N). This information can be
captured using a photometric stereo approach relying on several images (captured from a
single camera position) of an object illuminated from different directions. The resulting
data structure was used in the creation of complex non-photorealistic illustrations that em-
phasize certain features of the image (for instance, revealing surface relief as depicted on
Figure 4.8, bottom). Similarly, a photogrammetric modeling method was proposed by De-
bevec et al. [DTM96] for the recovery of the basic geometry from a set of still photographs.
The geometric information was then used to model and render the photograph’s equivalent
architecture scene. Jones et al. [JGB+06] also presented an image-based technique for re-
lighting dynamic human performances under spatially varying illumination. Their approach
is based on flashing light rapidly from different directions and therefore compute normals
on the fly.

It is important to note that human vision is surprisingly tolerant of certain physical inac-
curacies and therefore accurate surface information is not required in some cases. For in-
stance, Kahn et al. [KRFB06] exploited the flexibility of human vision to reliably estimate
illumination in their image-based material transformation technique. Using a similar ap-
proach, Lopez-Moreno et al. [LMJH+10] proposed a method to stylize photographs based
on the extraction of approximate depth information from a single input image. Based on
the the hypothesis that exact surface information is not a strong requirement in shading, in
the next section we will investigate how approximate shape input can be used in order to
enrich a more sparse representation: two-dimensional line drawings.

4 Shape and Tone Depiction from 2D Drawings 71

Figure 4.8 Manipulating 2D Scene Depiction. Top: Relighting photographs in [OZM+06] using
normal map created with the help of pen-based interface. Middle: Normal map cre-
ated with the help of shape from shading techniques enabled textured objects in pho-
tographed surfaces in [FH04]. Bottom: Surface detail is revealed thanks to RGBN
images created from a photometric approach in [TFFR07].

72 4.4 Shading from Line Drawings

�

�

�

Shape from Shading Techniques

Shape from Shading (SFS) is a classical problem in computer vision that aims to derive 3D scene
description given one or more 2D shaded images. A very didactic survey about the many exist-
ing techniques can be found in the work by Ruo Zhang et al. [ZTCS99]. The shape recovered
from these techniques can be expressed in several ways: depth z(x, y), surface normal (nx, ny, nz),
surface gradient (p, q), and surface slant, φ, and tilt, θ. Considering a simple model of image
formation, like the Lambertian model, the gray level of a point on a surface depends on the
angle between the light source and the surface normal directions. Even with such a simplified
material model like the Lambertian, and a given light source directions, this problem is still not
simple. This is because each surface point has at least two unknowns (for instance, (p, q) for the
surface gradient) and each pixel in the image provides one single gray value. We have thus an
underdetermined system. Finding a unique solution is difficult; it requires additional constraints.
For instance, the approach by Leclerc and Bobicks [LB91] obtains the solution based on two
additional constraints: the brightness constraint and the smoothness constraint. The brightness
constraint requires that the reconstructed shape produce the same brightness as the input image
at each surface point, while the smoothness constraint ensures a smooth surface reconstruction.
The system is solved directly for depth by using a discrete formulation and employing a con-
jugate gradient technique. To ensure convergence, a stereo depth map was used as an initial
estimate. Other kinds of approaches derive shape based on the assumption of surface type. This
is the case of Pentland’s local approach [Pen84] to recover shape information from the intensity,
and its first and second derivatives. He used the assumption that the surface is locally spheri-
cal at each point. Recent Shape From Shading approaches are able to reconstruct scenes which
are considered acceptable by most people, nevertheless, studies indicate that the human visual
system relies on different mechanisms to solve the shape from shading than computer vision
normally employs [ZTCS99]

.

4.4 Shading from Line Drawings

Although objects can be well represented on a flat surface by means of accurately drawn
outlines, in some cases, it is impossible to express the surface character without the addition
of light and shade [Spa00, CGL+08]. For instance, a circular plane and a sphere may each
result in a circular outline for certain views. Under such conditions, the difference between
the bodies can only be expressed by shading. This situation is indeed extreme, nevertheless,
mere outline can never adequately render the delicate variations of the surface of flowers
and fruits, for example.

Indeed, we have seen in the previous section how much information is encoded in shad-
ing. In fact, it could help differentiating a sphere from a circle. Nevertheless, when dealing
with line drawings, surface recovery might be an even more difficult problem. This is due to

4 Shape and Tone Depiction from 2D Drawings 73

a series of facts. First, line drawings are an economic means to represent scenes. One char-
acteristic is that the information in the drawing is very often sparse, therefore insufficient
for shape reconstruction. Second, artist’s drawings are really two-dimensional projections
of 3D characters as visualized in the animator’s mind [DFVR02]. It means that the artist
can take shortcuts by representing cues more economically, and arranging surfaces and
lights to suit the message of the piece rather than the requirements of the physical world.
Consequently, it is not clear that an actual three-dimensional scenes could be reconstructed
from an artistic depiction, at least not following physical models.

Although a difficult problem, the computer graphics community has found ways to over-
come these limitations. For instance, if the information on the drawing is too sparse to
allow for surface recovery, one alternative is to rely on the user to ‘complete’ or suggest the
missing information. The challenge is to identify how this user intervention will take place.

One approach in this direction is the work of Wu et al. [WTBS07]. A 3D shape is de-
fined by interpolating sparse normal information provided by the user via so-called shape
palettes. The process is illustrated on Figure 4.9 and described as follows. After drawing a
simple 2D primitive (curves, dots, etc), the user specifies its 3D orientation by drawing a
corresponding primitive over the surface of some familiar shape, as, for instance, a sphere
(b). The normal information along the corresponding primitive is then adapted and trans-
ferred to the drawing at the primitive location. The familiar shape is therefore used as a
palette of shape information. A dense normal field is then created from the sparse normal
information by minimizing an energy function. This surface information can now be used
for many purposes as for 3D shape recovery or rendering (c). The drawback of this tech-
nique is the need of a large and variate set of shape palettes in order to allow expressiveness.
Different approaches rely on hand-held devices as pen-tablets to allow a more intuitive and
flexible user intervention. This is the case of the previously mentioned technique of Okabe
et al. [OZM+06] to relight photographs. Here, using pen-tablet technologies, the user as-
signs sparse surface normals to a photograph by tilting the pen. The use of such technology
was inspired by the free surface modeling approach by Igarashi et al. [IMT06].

Figure 4.9 Shape Palettes by [WTBS07]. A surface is created by linking 2D primitives drawn in
the freehand view to their corresponding 3D shape on the ‘shape palette’ (the sphere).
Specifying this relationship will generate a cylinder-like structure.

74 4.4 Shading from Line Drawings

4.4.1 Enriching Cartoon Drawings

The possibility to extrapolate normals from two-dimensional curves is especially useful in
the field of hand-drawn animation. A big problem when creating the cel images is to il-
luminate the 2D character as it were a 3D object living in a 3D illuminated environment:
the shading problem. S. F. Johnston [Joh02] discusses the shading problem very clearly,
indicating that the components involved in the illumination of a point on a surface (position
and surface normal) are incomplete in hand-drawn artwork - the surface normal is unknown
and the position information lacks depth. Current research on computer assistance for tra-
ditional animation focuses on two main lines: geometry-based methods and image-based
methods. In the first, geometric objects are created in order to support the animation pro-
cess. The latter uses image-based techniques to render the 2D character without involving
actual 3D geometry.

The shading problem in computer-assisted 2D animation is a recent concern. To over-
come the lack of proper shape information, many authors, like Di Fiore et al. [DFVR02],
discussed the incorporation of approximate 3D models into the traditional computer anima-
tion process. According to the authors, approximate models can be of great help to provide
features, such as frame-to-frame coherence, rapid inking and shading, or the creation of dif-
ferent extreme poses while retaining the proportions of the object (avoiding redrawing the
object). In their technique, 3D polygonal objects are created by revolving sketches of 2D
circular and rounded forms (as for free surface modeling techniques). Other approaches,
nevertheless, exist. For instance, Correa et al. [CJTF98] presented an approach to distort
crude 3D models created by artists in such a way that the it conforms to the hand-drawn art
with the help of two techniques: a silhouette detection scheme and a depth preserving warp.
Once the textured 3D model is efficiently warped into the 2D shape, it can then replace the
flat colors that would be used in the ink-and-paint stage of traditional cel animation (Fig-
ure 4.10 left).

Figure 4.10 Three-dimensional information improving traditional computer animation process.
Left: Vivid textures applied to cel animation by [CJTF98]. Right: Semi-automatic
shadows for cel animation by [PFWF00]

Making use of rich representations as 3D models has also inspired researches for the
creation of shadows in cel animation. In the work of Petrović et al. [PFWF00], line art
created by artists are converted into character mattes: bitmaps that define regions of the

4 Shape and Tone Depiction from 2D Drawings 75

image covered by the character. Simply put, these layers are then inflated to become three-
dimensional by borrowing techniques, again, from free surface modeling systems (Igarashi
et al. [IMT06]), while preserving their image-space silhouettes. With such approximative
3D figures, user-defined light positions and background objects at hand, the system then
finally computes self, contact, and cast-shadowing (Figure 4.10 right). The inflate metaphor
common in shape sketch interfaces has also been used by Joshi and Carr [JC08] to enhance
2D drawings and photographs with 3D geometry. An initial surface mesh is generated by
triangulating the area bounded by user-defined curves. A ‘thin-plate spline’ [Wah90] is then
generated to inflate the initial mesh.

The great advantage of the geometry-based methods is the possibility of supporting both
the frame-to-frame coherence and the shading process. However, these methods cannot
cope with more fluid animations, where few strokes would change the implied geometry
drastically [Joh02]. In addition to this, 2D cartoon drawings can be very ‘unrealistic’ in the
sense that it might not correspond to any three-dimensional surface. Image-based methods
work directly with the vivid drawings made by the artist, but it often requires a large number
of images.

4.4.2 Image-based Methods

Johnston [Joh02] proposed a seminal image-based approach to approximate a normal field
from two-dimensional line drawings. The technique estimates normals wherever possible
and uses a sparse interpolation to approximate them over the remaining image. In the fol-
lowing we will review this technique, to later (Section 4.5) propose a discussion about its
contributions and possible directions for improvements.

Figure 4.11 Normal fields from two-dimensional drawings by [Joh02]. (a) Outlines. (b) Image
matte. (d) Normals along outilines. (d) Normal interpolation over image matte. (e)
Illumination.

Figure 4.11 illustrates this principle. In cel animation, exterior silhouette and interior
folds (a) represent locations where the surface normal is perpendicular to the eye vector
(orthogonal to the paper plane). By computing gradient information across an image matte
(b), normal vectors can be obtained along these silhouettes and folds (c). These normal are
then interpolated across the image matte to generate a normal field (d). The approximate

76 4.4 Shading from Line Drawings

normal map can finally be used to depict shading (e). Normal vectors computed from sil-
houettes result in values for Nx and Ny, but Nz is equal to zero along the curve. To give the
impression of volume, (Nx,Ny) are linearly interpolate across the field, with Nz recomputed
from the result to maintain unit-length.

a) b) c) d) e)

Figure 4.12 Normal derivation by [Joh02]. (a) Outlines. (c) Region matte. (d) Blobbed normals.
(e) Two-sided normals. (f) Quilted normals.

Figure 4.12 shows that, when this algorithm is applied to a more complex shape, the re-
sult seems to have very little shape detail. Using mattes to separate regions (b) and applying
the technique on each of them, creates a more accurate representation of the character’s nor-
mals (c). However, the result still lacks much of the detail contained in the original image
(a). When the gradient is computed across ink lines, rather than matte edges, opposing nor-
mals are generated on each side of the lines (d). When these normals are interpolated, much
more detail is revealed, but the image appears quilted because the internal folds should only
affect the normals on one side of the edge, not both (e). The solution proposed by the au-
thor is to blend these blobby and quilted results into a single image that conveys a more
harmonic shape. We will discuss the approach in the following.

For Johnston, a drawn line can be interpreted as a boundary separating two regions. In
many circumstances, one of these regions overlaps the other. Tagging edges with white on
the “over” side and black on the “under” side produces an illustration that better defines
the layering within the image (Figure 4.13 a). When the over/under edge illustration is
interpolated, it forms a grayscale matte (Figure 4.13 b). The quilted normal image is a more
accurate representation of the normals on the “over” side of the edges where the matte is
white; the normals on the darker “under” side of an edge are less certain. These mattes
can be viewed as a measure of confidence in the known normals. The normal on the under
side of an edge should interpolate the shape of the underlying object as if that edge did not
exist. By blending the quilted and blobby normals using the over/under confidence matte as
a key, a more adapted normal image is formed (Figure 4.13 c). Johnston used this normal
map to shade cartoon characters in order to insert them into live scenes, as depicted on (d).
Given the impression of a volumetric body, the illustrated cat has a more vivid appearance
and matches harmonically the live scene.

Inspired by Johnston’s technique to create normal surfaces from two-dimensional curves

4 Shape and Tone Depiction from 2D Drawings 77

a) b) c) d)

Figure 4.13 Normal blending technique by [Joh02]. (a) “Under/over” assignment. (b) Confi-
dence Matte. (d) Blended normals. (e) Shading result.

and their previous work on diffusion, Winnemöller et al. [WOBT09] introduced an ap-
proach to design and manipulate textures in 2D images. The more interesting characteristic
of this work was to show that diffusion processes can be suitable to spread many kinds
of information. Previously introduced as a color diffusion, the authors extended this idea
to diffuse more complex information, such as texture coordinates and normal vectors. The
contribution of this approach over the interpolation process presented by Johnston is that
now, due to this vector-based primitive, the entire process of drawing and shading can take
all advantages of a vector-based approach. After drawing the character’s outlines, the user
specifies normal constraints on the curves by the definition of normal control points, in
the same spirit as for color diffusion. The normal values defined by these control points
are then interpolated and normalized along the curve. The sparse normal information is
spread over the remaining image by the same diffusion process proposed for Diffusion
Curves [OBW+08]. Thus, each component Nx, Ny, and Nz is interpolated separately. In-
spired by the inflation technique of Joshi and Carr [JC08] Winnemöller’s approach allows
the user to manipulate normal values at the location of curves. Thus, different values of (Nx,
Ny, Nz), in particular those with Nz , 0 can be sent to the solver, allowing the definition of a
broad range of curve types. Figure 4.14 shows an example of a vector-based image created
with this approach. Drawing with colors (a), to the normal map (b), texture coordinates map
(c), and texture pattern (d - top), everything is created using the Diffusion-Curve metaphor.
When used in combination, these features allow very complex effects to be created while
keeping the result vector-based (d). Diffusion Curves can therefore be a versatile primitive
for the creation of vector-based normal fields. In the next section, we propose a discussion
over a series of improvements on this technique to allow for the creation of a broader range
of surface normal types.

78 4.5 Ongoing Work on Shading from Curves

Figure 4.14 Diffusion Curve metaphore used to design and manipulate textures in 2D images.
From the support drawing with colors (a), to the normal map (b), texture coordinates
map (c), and texture pattern (d - top), everything is created using the Diffusion Curve
metaphor.

4.5 Ongoing Work on Shading from Curves

Image-based approaches are indeed closer to the two-dimensional pipeline to which artist
of traditional drawing and animation are used to. They add to the scene a touch of three-
dimensionality without losing its fluid appearance. Nevertheless, in order to provide ex-
pressive tools much needs to be improved. In this section, we will discuss a set of ongoing
ideas to help improving the expressiveness of creating shading effects from line drawings.
Although many of them could not yet be validated, we believe that their discussion will
help the conception of a flexible and user-friendly tool for enriching 2D drawings. We will
borrow ideas and findings from solutions previously presented in this document and discuss
how they could contribute to such a system.

4.5.1 “Under”, “Over”

Johnston’s under/over tag system was proposed in order to create a layering system of
regions that form the drawing. This layering system did make sense in the case of his
illustrations because we observe that they are composed of one basic line type: contours.
Because contours can be understood as boundaries that delineate a shape and separate it
from its background, they represent depth discontinuities in the scene. Consequently, this
kind of lines indicates a layering system where the region falling on one side of the curve
(and delimited by it) occludes the region on the other side. Thus, Johnston’s under/over tags
indicates to the system which side of each curve delimits the object, and which belongs to
its background.

4 Shape and Tone Depiction from 2D Drawings 79

Later on, when this line tag system is interpolated, it creates a confidence matte: a map
that indicates how confident the system can be about the shape at certain locations. Loca-
tions tagged now as “over” received the normals from the quilted normal map, therefore
revealing more of its shape. On the other hand, the “under” areas received the normals pre-
sented in the blobbed normal map because these surfaces are less detailed. This technique is
based on an interesting fact about contours. Although these lines tell us something about the
shape it delimits on one side of the line, nothing can be said about the surface on the other
side. Therefore, locations nearby the curve and falling on the side delimiting the object
(tagged as “over”) are more likely to be accurately defined by the geometry of the curve.
Thus, Johnston’s approach attributes the detailed quilted normals to these locations. Analo-
gous, the geometry of a contour curve can say nothing about the shape occluded underneath
it. Thus, the shape at those locations are predicted with low confidence. Consequently, less
detailed surface as in the blobbed shape is preferable to be defined there.

The work of Winnemöller et al. [WOBT09] obtained a similar normal map results with-
out directly using Johnston’s blending approach. Based on the metaphor of the original
Diffusion Curves, every curve is constrained on both sides and provide the corresponding
normal information. To mimic the blending result obtained by Johnston using Diffusion
Curves, one might define silhouette normals on one side of the curve, and low detail nor-
mal vectors as (0, 0, 0) on its other side (so that low detailed shape information is diffused
at that location). Although this technique can mimic the under/over blending system to
some extend, we observe that a more efficient approach can be obtained by the use of our
previously introduced Diffusion Barriers 3.7.1.

4.5.1.1 Diffusion Barriers

Our more flexible primitive, Diffusion Barrier, allows for an easy representation of many
types of curves as, for instance, contours. This curve can diffuse normal information at one
side, while simply blocking the diffusion at the other side. This representation is therefore
more appropriate to the problem since there is no need to define normal constraints on
the occluding side of the curve. Shape information will very likely be derived from the
diffusion of other curves nearby. This solution is compatible with Johnston’s affirmation
that the area should be interpolated without considering such a silhouette.

In Lumo approach, tools to tag the edges make an initial best-guess for each line segment
by inspecting a relative-depth list of paint regions. To derive normal information at the
object side of a contour curve, we propose to automatically extract it from its geometry.
It is a well known fact that a normal vector at a point p of a smooth surface is defined
by the cross product of two tangent vectors on the surface. In the contour case, one of
these tangents is known to be aligned with the view direction. Considering an orthographic
camera, it follows that the normal of the surface is given by the cross product of the 2D
curve’s tangent and the view direction, i.e., (ny,−nx, 0) × (0, 0,−1) = (nx, ny, 0) = n(p).
This means that contours represent points on the surface where the normal vector n(p)
corresponds to the normal of the 2D curve. Although there are two choices for the sign

80 4.5 Ongoing Work on Shading from Curves

of the normal, we suggest that a good approximation can be performed by relying on the
tangent direction of the curve. It assumes the surface to lie on the left of the curve, which
allows us to chose the vector pointing outwards the interior of the shape. When using such
line drawing system to generate normal maps, contour lines can be efficiently generated
by an automatic initialization of Diffusion Barriers. With such approach, solely normal
constraints along one side of the curve are calculated, the interior of the shape. The other
side remains unconstrained. Figure 4.15 shows the result of a prototype system based on
Diffusion Barriers to illustrate our presented approach. Our solution generates normal maps
with more shape details than Lumo’s blobbed solution, while avoiding the quilted look.
In addition, we believe that our previously introduced non-local diffusion presented on
Chapter 3 can be used to improve the shape retrieved from partially occluded areas.

Figure 4.15 One-sided curves. Left: Outlines. Right: Normal interpolation from one-sided nor-
mal curves.

4.5.2 Mathematical Lines

In the case of Johnston’s approach, we realize that one can generate convincing shapes be-
cause he was able to point out the characteristics of the surface represented by contours.
This suggests that, if these properties are known for other types of lines, as for those dis-
cussed on Section 4.1, it would be possible to generate different types of surfaces. For in-
stance, when drawing suggestive contours with Diffusion-Curve primitives, the system can
set the normals along the line to lay on the image plane, but to slightly bend towards the
viewer when reaching the contour prolongations. The same holds for ridge and valley lines.
These lines characterize for an abrupt change in the normal surface direction on its left and

4 Shape and Tone Depiction from 2D Drawings 81

right side. When this kind of lines are drawn, predefined normals can be suggested on both
sides of the curve, and a draft solution obtained. If, as for Winnemöller et al. [WOBT09],
the user has the possibility to manipulate the normals on these lines via normal control
points, a broader variety of surfaces could be easily drawn. In this way, we propose to
extend Lumo’s set of lines with others already well defined in computer-generated line
drawings.

Spherical

Linear

LinearSlerp

Vector Interpolation methods

Figure 4.16 Different interpolation methods. Left: Spherical versus Linear interpolations. Mid-
dle: Shading result using SLERP interpolation. Right: Shading result using linear
interpolation (with nz recomputation).

4.5.3 Surface Reconstruction from Line Properties

In a certain way, using the surface properties of lines to reconstruct surfaces shares simi-
larities to the labeling systems presented in Section 4.2.1. We remind the reader that, once
lines were labeled, their geometric characteristics were crucial in imposing constraints on
the surface, helping the system to retrieve corresponding shapes. Approaches as discussed
in Malik’s work [Mal86] to extract smooth surfaces based on line constraints might also be
of help in interpolating normal vectors across regions. In the case of interpolation methods
as for Lumo, such function relates to the interpolation scheme employed. This fact sug-
gests that the interpolation function plays a major role in the definition of the surface once
normal constraints are specified along curves.

Because only sparse information is available, it is difficult to propose a general interpo-
lation technique capable of defining any arbitrary shape, but such interpolation schemes,
do result in surfaces with different characteristics. To illustrate its fact, we show an ex-
ample generated by interpolating normals using a spherical linear interpolation technique
(SLERP). Spherical interpolation between two vectors does not interpolate each coordinate

82 4.5 Ongoing Work on Shading from Curves

individually like linear interpolation does. Instead, the direction and lengths are interpolated
individually (see Figure 4.16 left). The spherical interpolation of two normalized vectors
(p0, p1) is calculated using the formula:

Slerp(p0, p1, t) =
sin[(1 − t)Ω]p0 + sin[tΩ]p1

sin Ω

where Ω is the angle between (p0, p1). The result of using this interpolation to gener-
ate normal maps from lines is that the spherical shape of objects appears more pronounced
when compared to Johnston’s approach. The modified interpolation will shift more normals
away from the viewer, hereby enhancing the shape. This fact can be observed in Figure 4.16
middle and right. In particular, realize how the region in the center of the elephant’s face
is more pronounced when using the SLERP method. As a side effect, the SLERP interpo-
lation also has the advantage that nz no longer needs a special treatment as was the case in
Johnston’s approach. Generally, we want to indicate that it would be interesting to exploit
these different interpolation schemes in order to control the generation of a broader range
of shapes.

�

�

�

Adjusting Shape Curvature with Lumo

For both Johnston’s and Winnemöller’s approach, the normal vector in a pixel p is calculated by
minimizing differences within a certain neighborhood. For these approaches, nx and ny are inter-
polated across the region, and nz recomputed to define a unit vector. The result of this algorithm
is that normals are interpolated to create the profile of a hemisphere. To enable the manipulation
of the generated shape, local and global scaling approaches were suggested by Johnston. In the
first one, the blending of quilted and blobbed normals can be manipulated by adjusting the edge
confidence intensity nearby lines. This is similar to adjusting the normal values along lines in the
diffusion curve approach. Nevertheless, care must be taken when recomputing the nz coordinate.
Two other algorithms were proposed to control the puffiness of a region. They can be seen as a
post-process once the spherical normal map is obtained via traditional diffusion. The first idea
is to replace a normal with the normal of a sphere that has been scaled in z; the second replaces
hemispherical normals by the normals of a visible unit-sphere slice of thickness S : nx and ny are
linearly scaled by

√
S · (2 − S) and nz is recomputed to maintain unit length. This method can

indeed generate interesting results from shallow to pointed surfaces as illustrated in the Figure
bellow. On the left, z-scaled sphere normals with values S = (0.25, 0.5, 1.0, 2.0, 4.0). On the
right, uniformly scaled normals with values S = (0.125, 0.25, 1.0)

4 Shape and Tone Depiction from 2D Drawings 83

4.5.4 Anisotropic Diffusion

Control over the diffusion process itself can also bring benefits to depiction of different
shapes. For instance, making use of our anisotropic diffusion presented on section 3.7.2.
Once normals are able to follow the direction of a given vector field, a variety of shapes
become possible and many tedious definitions are simplified. In addition, getting inspiration
from shape from shading approaches, we believe that the expressiveness of the system can
yet be improved if such anisotropic diffusion is extended in order to reflect changes also
in gradient magnitudes. Here again, as for colors, solutions for adapted interfaces to define
such gradients must be derived. It is important to remember that keeping the solution vector-
based can be a great contribution to an overall production pipeline.

4.5.5 Animated System

Another interesting challenge is to study the possibility to work on animated systems. For
this to work, care must be taken especially when deforming objects. This is a major problem
even for current animation software solutions like, for example, Toon Boom Animation c© 1.
In particular, when applying texture with this solution on top of animated two-dimensional
drawings, the result does not look convincing because the texture seems to slide on the
surface 2. When using a Diffusion-Curve approach to create normal fields, care must be
taken when curves are deformed. In this case, normal constraints along curves must be
adapted in order to reflect such shape deformations. Temporal-coherence must also be taken
into account. While curve-based definitions could be directly transferred from one frame
to the other if the curve relations are indicated by the artist, we could further make use of
non-local constraints over time in order to attach values from different frames to each other.
This assures a coherent animation with little effort. In addition, the problem of animated
scenes requires real-time-oriented solutions. Therefore, optimizations in hardware, taking
advantage of the latest features of graphic cards, must be considered to derive an easy-to
use solution that produces real-time results. Our current attempts went in the direction of
sparse GPU solvers, but in the future, we plan to investigate more specified solutions, that
exploit the locality of the diffusion process.

1http://www.toonboom.com/products/animate/
2an illustration of this limitation, taken from the Toon Boom Galery can be found in
http://artis.inrialpes.fr/Members/Hedlena.Bezerra/resources/chasse_
galerie_sample_03.mov

http://www.toonboom.com/products/animate/
http://artis.inrialpes.fr/Members/Hedlena.Bezerra/resources/chasse_galerie_sample_03.mov
http://artis.inrialpes.fr/Members/Hedlena.Bezerra/resources/chasse_galerie_sample_03.mov

84 4.6 Discussion

4.6 Discussion

There are many perspectives through which one can look at line drawings. We have seen
in this chapter that, when someone is drawing, lines are representations for the mind of
three-dimensional entities. Further, even if such drawings are created by someone else, we
are able of re-projecting such primitives and recognize their signification to a large extent.
In fact, much could be interpreted by using just lines, but shade cues and colors can add
harmony to the depiction. Further, shading information can ease the process of perceiving
volumetric shapes.

However, as a general note, automatically inferring information from a given two-dimensional
line drawing is a very complex task. Finding a good set of controls often implies that one
should abstract the problem and evaluate it from different perspectives. It can be useful, for
instance, to adapt a solution for controlling the generation of cartoon normal fields from
computer vision techniques or from understanding of psychology. In fact, bringing knowl-
edge from different fields related to the understanding of perception in art is an ongoing
effort. This is a trend that can increasingly be observed in the scientific community of the
field (examples include events such as NPAR 2010 [DS10]). This chapter follows this di-
rection and discusses a variety of methods that, in the context of 2D image shading, could
contribute to a more general, yet simple surface definition machinery.

5 Conclusion

In this dissertation, we investigated the process of producing expressive imagery with the
aid of computers. In particular, we have seen that algorithms and mathematical tools can
provide a substantial basis to provide tools that are easy to use and can deliver high-quality
illustrations. Even novice users can produce convincing results. Unfortunately, such con-
structs often restrain true artists and reduce their freedom. One direction would have been
to derive complex solutions to reestablish the generality. Nonetheless, when looking at the
history of computer graphics and even art, complex techniques are often doomed to fail
because they block out the novice user and can be very nonintuitive.

Our thesis is that it is possible to combine simplicity and artistic freedom. One key insight
is that both goals can be reached in a very simple manner. We found that it is important to
maintain the actual creation process simple, so that even an unexperienced user understands
the principle of the approach and can quickly produce convincing artworks. On the other
hand, we believe that it is crucial to enable a higher control over the simple process to
regain the artistic freedom, hereby, combining the best properties of both worlds. Similar
concepts can be found in standard software systems, where default values might remain
untouched by beginners, but are tweaked by professional users.

Nonetheless, there is one more aspect in our observation, the application itself must ex-
hibit a certain simplicity, so that people understand immediately the effect of their manipu-
lations. This is best achieved by building the creation process upon a simple task (flooding
colors, grouping elements, inflating drawings...), that are particularly easy to perform by a
machine, well understood by a user, but would demand a lot of effort when done manu-
ally. Although, it should be pointed out that simplicity does not necessarily imply a naive
process. In many cases, we showed that only a sound mathematical foundation allows us
to achieve a convincing behavior, rather we claim that the process should be simple in the
sense that its outcome is predictable and intuitive to the observer.

Interestingly, such simple processes (not unlike the well-known Game of life) do not nec-
essarily lead to simple outcomes. In fact, even complex results can be achieved by simple
processes, and to navigate appropriately in this vast space of potential results, one needs the
possibilities to guide the outcome in an intuitive way. Usually, such controls can themselves
be simple (following the previous example, e.g., an initial configuration for the Game of
Life), but need to exhibit the needed generality.

Our thesis is that by allowing for a general control over such a simple process, we can
combine simplicity of usage with general artistic freedom. Such a claim is hard to prove,
because we would need to address all tools, potentially even algorithms that have not yet
been conceived. Instead, we show that this principle is a very useful and powerful concept
by illustrating our findings with various examples.

In this dissertation, we illustrated that grouping information is a crucial element for the
stylization of a scene, can improve understanding of spatial relationships and even convey
semantic information. Furthermore, we show that while the grouping itself is a tedious pro-
cess that can be performed by a machine and can follow a simple process, an artist would
like to control this behavior in order to fulfill the artistic vision. Our principle enables com-
plex stylization that takes the dynamic scene configuration into account without the need to

86

resort to tedious manipulations. Hereby, we show that convincing results can be obtained
easily without restricting the artistic freedom and that scene structure is an important com-
ponent in the stylization process.

A second example is our work on Diffusion Curves. Vector illustrations have many ad-
vantages, but producing gradients is tedious because the few existing techniques do not
provide enough generality to produce convincing illustrations. Building upon Diffusion
Curves, we showed that by providing intuitive higher level controls, it is possible to pro-
duce complex gradients, and reestablish generality without resorting to nonintuitive solu-
tions. Many difficult tasks are simplified by our solution and properties, such as diffusion
barriers, appear as natural extensions. Our approach generalizes many aspects of Diffusion
curves and delivers a useful algorithm to produce complex vector illustrations.

A third example illustrates how cartoon drawing illumination can be guided by following
the same principles. Initially, we show that a simple inflation scheme can provide the user
with an initial guess of the surface shape. While this form might be acceptable for a novice
user, more freedom is needed when manipulating surface shape more accurately. Via higher
level controls (e.g., tweaked normal definitions, inflation techniques or feature curves) it is
possible to generalize the approach without removing its simplicity. It becomes easy to de-
fine normal fields over surfaces that allow efficient cartoon illumination. In particular, such
an approach avoids the tedious redrawing of elements when changing the illumination di-
rection, which would be the case when working with shading directly instead of the surface
geometry.

Our findings indicate that it is useful to augment simple processes with higher-level con-
trol in order to allow simple, yet general expressive content creation. Ultimately, we cannot
prove the optimality of our solutions, but we believe they are convincing enough to defend
our principle. Furthermore, each of our contribution is, as itself, a useful contribution to
the computer graphics community, as our algorithms provide a deeper understanding of the
processes that link art and algorithmics. Furthermore, our work delivers solutions that are
a gain for the artistic toolbox and provide new ways of abstraction and stylization that help
to better convey the artistic intentions. In this sense, we believe that we reached our goal
to better understand how to combine artistic freedom with simplicity of usage. In the end,
art is for everybody, not only from a passive point of view, where someone observes an art-
work, but also from an active point of view, where art is created. All we need is guidance...
or control.

Bibliography

[BD07] M. Balzer and O. Deussen. Level-of-detail visualization of clustered graph
layouts. In Asia-Pacific Symposium on Visualisation 2007, 2007.

[BEDT08] Hedlena Bezerra, Elmar Eisemann, Xavier Décoret, and Joëlle Thollot. 3d
dynamic grouping for guided stylization. In NPAR ’08: Proceedings of the
6th international symposium on Non-photorealistic animation and rendering,
pages 89–95, New York, NY, USA, 2008. ACM.

[BEDT10] Hedlena Bezerra, Elmar Eisemann, Doug DeCarlo, and Joëlle Thollot. Dif-
fusion constraints for vector graphics. In NPAR ’10: Proceedings of the 8th
International Symposium on Non-Photorealistic Animation and Rendering,
pages 35–42, New York, NY, USA, 2010. ACM.

[BGH03] J.A. Bangham, S.E. Gibson, and R. Harvey. The art of scale-space. In Pro-
ceedings of British Machine Vision Conference 2003, pages 569–578, 2003.

[BKTS00] Adrien Bousseau, Matt Kaplan, Joëlle Thollot, and François X. Sillion. In-
teractive watercolor rendering with temporal coherence and abstraction. In
Proceedings of NPAR 2006, pages 141–149, 2000.

[BNTS07] Adrien Bousseau, Fabrice Neyret, Joëlle Thollot, and David Salesin. Video
watercolorization using bidirectional texture advection. ACM Transaction on
Graphics (Proceedings of SIGGRAPH 2007), 26(3), 2007.

[BTM06] P. Barla, J. Thollot, and L. Markosian. X-toon: An extended toon shader. In
Proceedings of NPAR 2006, pages 127–132, 2006.

[BY83] Michael Brady and Alan Yuille. An extremum principle for shape from con-
tour. In IJCAI’83: Proceedings of the Eighth international joint conference on
Artificial intelligence, pages 969–972, San Francisco, CA, USA, 1983. Mor-
gan Kaufmann Publishers Inc.

[Can86] J Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., 8(6):679–698, 1986.

[Car88] Stefan Carlsson. Sketch based coding of grey level images. Signal Process.,
15(1):57–83, 1988.

[CAS+97] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and
David H. Salesin. Computer-generated watercolor. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics and interactive
techniques, pages 421–430, New York, NY, USA, 1997. ACM Press/Addison-
Wesley Publishing Co.

[Cav05] Patrick Cavanagh. The artist as neuroscientist. Nature, 434:301–307, March
2005.

88 Bibliography

[CDF+06] F. Cole, D. DeCarlo, A. Finkelstein, K. Kin, K. Morley, and A. Santella. Di-
recting gaze in 3d models with stylized focus. In Proceedings of Eurographics
Symposium on Rendering 2006, pages 377–387, 2006.

[CEW+08] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene
Zhang. Interactive procedural street modeling. ACM Trans. Graph., 27(3),
2008.

[CGL+08] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart
Barros, Adam Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz.
Where do people draw lines? In SIGGRAPH ’08: ACM SIGGRAPH 2008
papers, pages 1–11, New York, NY, USA, 2008. ACM.

[CJTF98] Wagner Toledo Corrêa, Robert J. Jensen, Craig E. Thayer, and Adam Finkel-
stein. Texture mapping for cel animation. In SIGGRAPH ’98: Proceedings of
the 25th annual conference on Computer graphics and interactive techniques,
pages 435–446, New York, NY, USA, 1998. ACM.

[Clo71] M. B. Clowes. On seeing things. Artificial Intelligence, 2(1):79 – 116, 1971.

[CM02] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(5):603–619, May 2002.

[Coo86] R. L. Cook. Stochastic sampling in computer graphics. In Proc. of SIG-
GRAPH, pages 51–72. ACM Press, 1986.

[Cra00] Walter Crane. Line and Form. Project Gutenberg EBook, 1900.

[CS68] Charles Csuri and James Shaffer. Art, computers and mathematics. In AFIPS
’68 (Fall, part II): Proceedings of the December 9-11, 1968, fall joint com-
puter conference, part II, pages 1293–1298, New York, NY, USA, 1968.
ACM.

[CSD+09] Forrester Cole, Kevin Sanik, Doug DeCarlo, Adam Finkelstein, Thomas
Funkhouser, Szymon Rusinkiewicz, and Manish Singh. How well do line
drawings depict shape? In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers,
pages 1–9, New York, NY, USA, 2009. ACM.

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang
tiles for image and texture generation. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 287–294, New York, NY, USA, 2003. ACM.

[CST05] Paolo Cignoni, Roberto Scopigno, and Marco Tarini. A simple normal en-
hancement technique for interactive non-photorealistic renderings. Computer
& Graphics, 29(1):125–133, feb 2005.

Bibliography 89

[DFR04] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz. Interactive ren-
dering of suggestive contours with temporal coherence. In NPAR ’04: Pro-
ceedings of the 3rd international symposium on Non-photorealistic animation
and rendering, pages 15–145, New York, NY, USA, 2004. ACM.

[DFRS03] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony San-
tella. Suggestive contours for conveying shape. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 848–855, New York, NY, USA, 2003. ACM.

[DFVR02] F. Di Fiore and F. Van Reeth. Employing approximate 3d models to enrich tra-
ditional computer assisted animation. In Proceedings of Computer Animation,
pages 183–190, 2002.

[DR07] Doug DeCarlo and Szymon Rusinkiewicz. Highlight lines for conveying
shape. In NPAR ’07: Proceedings of the 5th international symposium on Non-
photorealistic animation and rendering, pages 63–70, New York, NY, USA,
2007. ACM.

[DS02] D. DeCarlo and A. Santella. Stylization and abstraction of photographs. In
Proceedings of SIGGRAPH 2002, pages 769–776, 2002.

[DS10] Doug DeCarlo and Matthew Stone. Visual explanations. In NPAR ’10: Pro-
ceedings of the 8th International Symposium on Non-Photorealistic Anima-
tion and Rendering, pages 173–178, New York, NY, USA, 2010. ACM.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and ren-
dering architecture from photographs: a hybrid geometry- and image-based
approach. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 11–20, New York, NY,
USA, 1996. ACM.

[Dur02] Fredo Durand. Limitations of the medium and pictorial techniques, July 2002.
Perceptual and Artistic Principles for Effective Computer Depiction, Course
Notes for ACM SIGGRAPH 2002.

[Edw87] Betty Edwards. Drawing on the Artist Within: An Inspirational and Practical
Guide to Increasing Your Creative Powers. Fireside, April 1987.

[EG01] James H. Elder and Richard M. Goldberg. Image editing in the contour do-
main. IEEE Trans. Pattern Anal. Mach. Intell., 23(3):291–296, 2001.

[Eld99] James H. Elder. Are edges incomplete? International Journal of Computer
Vision, 34(2-3):97–122, 1999.

[EPD09] Elmar Eisemann, Sylvain Paris, and Frédo Durand. A visibility algorithm for
converting 3D meshes into editable 2D vector graphics. In SIGGRAPH ’09:
ACM SIGGRAPH 2009 papers, pages 1–8, New York, NY, USA, 2009. ACM.

90 Bibliography

[EWHS08] Elmar Eisemann, Holger Winnemöller, John C. Hart, and David Salesin. Styl-
ized vector art from 3d models with region support. Computer Graphics Fo-
rum (Proceedings of the Eurographics Symposium on Rendering 2008), 27(4),
June 2008.

[EZ96] James H. Elder and Steven W. Zucker. Space scale localization, blur, and
contour-based image coding. In Proceedings of the 1996 Conference on Com-
puter Vision and Pattern Recognition (CVPR 1996), pages 00–27, 1996.

[EZ98] James H. Elder and Steven W. Zucker. Local scale control for edge detection
and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell., 20(7):699–716,
1998.

[Fel03] Jacob Feldman. Perceptual grouping by selection of a logically minimal
model. Int. J. Comput. Vision, 55(1):5–25, 2003.

[FH04] Hui Fang and John C. Hart. Textureshop: Texture synthesis as a photograph
editing tool. ACM Transactions on Graphics, 23:2004, 2004.

[FHL+09] Zeev Farbman, Gil Hoffer, Yaron Lipman, Daniel Cohen-Or, and Dani
Lischinski. Coordinates for instant image cloning. In SIGGRAPH ’09: ACM
SIGGRAPH 2009 papers, pages 1–9, New York, NY, USA, 2009. ACM.

[GGSC98] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-
photorealistic lighting model for automatic technical illustration. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer graph-
ics and interactive techniques, pages 447–452, New York, NY, USA, 1998.
ACM.

[Gil91] Robert W. Gill. Basic Rendering: Effective Drawing for Designers, Artists
and Illustrators. Thames & Hudson, 1991.

[Gom61] Ernst Hans Gombrich. The Story Of Art. Phaidon Press, 1961.

[GTDS04] Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and François Sillion.
Programmable style for npr line drawing. In Rendering Techniques 2004 (Eu-
rographics Symposium on Rendering). ACM Press, june 2004.

[GTDS10] Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and François X. Sillion.
Programmable rendering of line drawing from 3d scenes. ACM Trans. Graph.,
29(2):1–20, 2010.

[Huf71] D. A. Huffman. Impossible objects as nonsense sentences. Machine Intelli-
gence, 6:295–323, 1971.

[HZ00] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 517–526, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

Bibliography 91

[IB06] Tobias Isenberg and Angela Brennecke. G-strokes: A concept for simplifying
line stylization. Computers & Graphics, 30(5):754–766, October 2006.

[IBCSC06] Tobias Isenberg, Angela Brennecke, Mario Costa Sousa, and Sheelagh
Carpendale. Beyond pixels: Illustration with vector graphics. Technical re-
port, University of Calgary, February 2006.

[IFP95] Victoria Interrante, Henry Fuchs, and Stephen Pizer. Enhancing transparent
skin surfaces with ridge and valley lines. In VIS ’95: Proceedings of the 6th
conference on Visualization ’95, page 52, Washington, DC, USA, 1995. IEEE
Computer Society.

[IMT06] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching
interface for 3d freeform design. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses, page 11, New York, NY, USA, 2006. ACM.

[INC+06] Tobias Isenberg, Petra Neumann, Sheelagh Carpendale, Mario Costa Sousa,
and Joaquim A. Jorge. Non-photorealistic rendering in context: an observa-
tional study. In NPAR ’06: Proceedings of the 4th international symposium on
Non-photorealistic animation and rendering, pages 115–126, New York, NY,
USA, 2006. ACM.

[JC08] P. Joshi and N. Carr. Repoussé: Automatic inflation of 2d art. In Proceeding
of Eurographics Workshop on Sketch-Based Modeling, 2008.

[JCW09a] Stefan Jeschke, David Cline, and Peter Wonka. A GPU laplacian solver for
diffusion curves and poisson image editing. In Proceedings of SIGGRAPH
Asia 2009, pages 1–8, 2009.

[JCW09b] Stefan Jeschke, David Cline, and Peter Wonka. Rendering surface details with
diffusion curves. In Proceedings of SIGGRAPH Asia 2009, pages 1–8, 2009.

[JDA07] Tilke Judd, Frédo Durand, and Edward Adelson. Apparent ridges for line
drawing. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 19, New
York, NY, USA, 2007. ACM.

[JGB+06] Andrew Jones, Andrew Gardner, Mark Bolas, Ian McDowall, and Paul De-
bevec. Simulating spatially varying lighting on a live performance. In Pro-
ceedings of 3rd European Conference on Visual Media Production (CVMP
2006), 2006.

[Joh02] Scott F. Johnston. Lumo: illumination for cel animation. In NPAR ’02: Pro-
ceedings of the 2nd international symposium on Non-photorealistic animation
and rendering, pages 45–ff, New York, NY, USA, 2002. ACM.

[Kan81] Takeo Kanade. Recovery of the three-dimensional shape of an object from a
single view. Artificial Intelligence, 17:409 – 460, 1981.

92 Bibliography

[KHRO01] M. A. Kowalski, J. F. Hughes, C.B. Rubin, and J. Ohya. User-guided com-
position effects for art-based rendering. In Proceedings of Symposium on
Interactive 3D Graphics 2001, pages 99–102, 2001.

[KMM+02] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowalski,
Joseph C. Lee, Philip L. Davidson, Matthew Webb, John F. Hughes, and Adam
Finkelstein. Wysiwyg npr: drawing strokes directly on 3d models. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on Computer graph-
ics and interactive techniques, pages 755–762, New York, NY, USA, 2002.
ACM.

[KRFB06] Erum Arif Khan, Erik Reinhard, Roland W. Fleming, and Heinrich H.
Bülthoff. Image-based material editing. ACM Trans. Graph., 25(3):654–663,
2006.

[KST08] Michael Kolomenkin, Ilan Shimshoni, and Ayellet Tal. Demarcating curves
for shape illustration. ACM Trans. Graph., 27(5):1–9, 2008.

[KvK92] J.J. Koenderink, A.J. vanDoorn, and A.M. Kappers. Surface perception in
pictures. Percept Psychophys, 52(5):487–496, November 1992.

[KvKT01] J.J. Koenderink, A.J. vanDoorn, A.M. Kappers, and J.T. Todd. Ambiguity and
the ’mental eye’ in pictorial relief. Perception, 30(4):431–438, 2001.

[KWH06] A. Kolliopoulos, J. M. Wang, and A. Hertzmann. Segmentation-based 3d
artistic rendering. In Proceedings of Eurographics Symposium on Rendering
2006, pages 361–370, 2006.

[LB91] Yvan G. Leclerc and Aaron F. Bobick. The direct computation of height from
shading. In In Conference on Computer Vision and Pattern Recognition, pages
552–558, 1991.

[LD04] T. Luft and O. Deussen. Watercolor illustrations of plants using a blurred
depth test. In Proceedings of NPAR 2004, pages 11–20, 2004.

[LD06] Ares Lagae and Philip Dutré. Poisson sphere distributions. In Vision, Model-
ing, and Visualization. IEEE Computer Society, 2006. Accepted.

[LHM09] Yu-Kun Lai, Shi-Min Hu, and Ralph R. Martin. Automatic and topology-
preserving gradient mesh generation for image vectorization. ACM Transac-
tion on Graphics, 28(3):1–8, 2009.

[LL06a] G. Lecot and B. Levy. Ardeco: Automatic region detection and conversion. In
Proceedings of Eurographics Symposium on Rendering 2006, pages 349–360,
2006.

Bibliography 93

[LL06b] Gregory Lecot and Bruno Levy. Ardeco: Automatic Region DEtection and
COnversion. In Proceedings of the 17th Eurographics Symposium on Render-
ing (EGSR 2006), pages 349–360, 2006.

[LMJH+10] Jorge Lopez-Moreno, Jorge Jimenez, Sunil Hadap, Erik Reinhard, Ken An-
jyo, and Diego Gutierrez. Stylized depiction of images based on depth per-
ception. In NPAR ’10: Proceedings of the 8th international symposium on
Non-photorrealistic animation and rendering. ACM, 2010.

[LMLH07] Yunjin Lee, Lee Markosian, Seungyong Lee, and John F. Hughes. Line draw-
ings via abstracted shading. In SIGGRAPH ’07: ACM SIGGRAPH 2007 pa-
pers, page 18, New York, NY, USA, 2007. ACM.

[LRC+03] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner.
Level of Detail for 3D Graphics. Morgan-Kaufmann, Inc., 2003.

[Mal86] Jitendra Malik. Interpreting line drawings of curved objects. PhD thesis,
Stanford, CA, USA, 1986.

[MMK+00] L. Markosian, B. Meier, M. A. Kowalski, L. S. Holden, J. D. Northrup, and
J. F. Hughes. Art-based rendering with continuous level of details. In Pro-
ceedings of NPAR 2000, pages 59–66, 2000.

[MP08] James McCann and Nancy S. Pollard. Real-time gradient-domain painting. In
Proceedings of SIGGRAPH 2008, 2008.

[MTG06] Kyoko Murakami, Reiji Tsuruno, and Etsuo Genda. Natural-looking strokes
for drawing applications. Vis. Comput., 22(6):415–423, 2006.

[Nic90] Kimon Nicolaïdes. The Natural Way to Draw: A Working Plan for Art Study.
Mariner Books, February 1990.

[Nol66] A. Michael Noll. Human or machine: A subjective comparison of piet mon-
drian’s ‘composition with lines’ and a computer-generated picture. The Psy-
chological Record, 16(1):1–10, January 1966.

[Nol67] A. Michael Noll. The digital computer as a creative medium. IEEE Spectrum,
4(10):89–95, October 1967.

[OBBT07] Alexandrina Orzan, Adrien Bousseau, Pascal Barla, and Joëlle Thollot.
Structure-preserving manipulation of photographs. In Proceedings of NPAR
2007, pages 103–110, aug 2007.

[OBS04] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Ridge-valley lines
on meshes via implicit surface fitting. ACM Trans. Graph., 23(3):609–612,
2004.

94 Bibliography

[OBW+08] Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla,
Joëlle Thollot, and David Salesin. Diffusion curves: A vector representation
for smooth-shaded images. In Proceedings of SIGGRAPH 2008, volume 27,
2008.

[OZ06] Matt Olson and Hao Zhang. Silhouette extraction in hough space. In Pro-
ceedings of EUROGRAPHICS 2006, 2006.

[OZM+06] Makoto Okabe, Gang Zeng, Yasuyuki Matsushita, Takeo Igarashi, Long Quan,
and Heung yeung Shum. Single-view relighting with normal map painting. In
In Proceedings of Pacific Graphics 2006, pages 27–34, 2006.

[PD07] S. Paris and F. Durand. A topological approach to hierarchical segmentation
using mean shift. In Proceedings of IEEE conference on Computer Vision and
Pattern Recognition 2007, 2007.

[Pen84] A. P. Pentland. Local shading analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-6(2):170–187, March 1984.

[PFWF00] Lena Petrović, Brian Fujito, Lance Williams, and Adam Finkelstein. Shadows
for cel animation. In SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pages 511–516, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[PGB03] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In
Proceedings of SIGGRAPH 2003, pages 313–318, 2003.

[Pia92] Jean Piaget. La formation du symbole chez l’enfant: Imitation, jeu et rêve,
image et représentation, page 310. Delachaux & Niestle, 8th edition, July
1992.

[RBD06] Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo. Exaggerated shad-
ing for depicting shape and detail. ACM Trans. Graph., 25(3):1199–1205,
2006.

[SEH08] Matei Stroila, Elmar Eisemann, and John Hart. Clip art rendering of smooth
isosurfaces. IEEE Transactions on Visualization and Computer Graphics,
14(1):135–145, 2008.

[SFWS03] M. C. Sousa, K. Foster, B. Wyvill, and F. Samavati. Precise ink drawing of
3d models. Computer Graphics Forum (Proceedings of Eurographics 2003),
22(3):369–379, September 2003.

[SLWS07] Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. Image vectorization
using optimized gradient meshes. ACM Transaction on Graphics, 26(3):11,
2007.

Bibliography 95

[Spa00] W. E. Sparkes. How to shade from models, common objects, and casts of
ornament. Cassel, 1900.

[Spa98] Anne Morgan Spalter. The Computer in the Visual Arts. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[SS02] Thomas Strothotte and Stefan Schlechtweg. Non Photorealistic Computer
Graphics: Modeling, Rendering and Animation. Morgan Kaufmann, 2002.

[Sto10] Elizabeth Stover. What is a medium in art? Internet, July 2010.

[Sug86] Kokichi Sugihara. Machine interpretation of line drawings. MIT Press, Cam-
bridge, MA, USA, 1986.

[Ter03] B. M. Ter Haar Romeny. Front-End Vision and Multi-Scale Image Analysis:
Multi-Scale Computer Vision Theory and Applications, Written in Mathemat-
ica. Springer, 2003.

[TFFR07] Corey Toler-Franklin, Adam Finkelstein, and Szymon Rusinkiewicz. Illustra-
tion of complex real-world objects using images with normals. In Interna-
tional Symposium on Non-Photorealistic Animation and Rendering (NPAR),
August 2007.

[TT99] Jack Tumblin and Greg Turk. Lcis: a boundary hierarchy for detail-preserving
contrast reduction. In Proceedings of SIGGRAPH 1999, pages 83–90, 1999.

[VPB+09] Romain Vergne, Romain Pacanowski, Pascal Barla, Xavier Granier, and
Christophe Schlick. Light warping for enhanced surface depiction. In SIG-
GRAPH ’09: ACM SIGGRAPH 2009 papers, pages 1–8, New York, NY, USA,
2009. ACM.

[Wah90] G. Wahba. Spline models for observational data, volume 59. SIAM, 1990.

[Wal75] D. Waltz. Understanding line drawings of scenes with shadows. In Patrick
Winston, editor, The Psychology of Computer Vision, pages 19–91. McGraw-
Hill, 1975.

[Wik10] Wikipedia. United states census, August 2010.

[Wil06] Philip Willis. Projective alpha colour. In Proceeding of Eurographics 2006,
2006.

[WJ95] M. P. Wand and M. Jones. Kernel Smoothing. Chapman and Hall, 1995.

[WOBT09] Holger Winnemöller, Alexandrina Orzan, Laurence Boissieux, and Joëlle
Thollot. Texture design and draping in 2d images. Computer Graphics
Forum (Proceedings of the Eurographics Symposium on Rendering 2009),
28(4):1091–1099, 2009.

96 Bibliography

[WOG06] Holger Winnemoller, Sven C. Olsen, and Bruce Gooch. Real-time video ab-
straction. In Proceedings of SIGGRAPH 2006, pages 1221–1226, 2006.

[WQL+06] F. Wen, Q.Luan, L. Liang, Y-Q. Xu, and H-Y. Shum. Color sketch generation.
In Proceedings of NPAR 2006, pages 47–54, 2006.

[WS94] Georges Winkenbach and David H. Salesin. Computer-generated pen-and-ink
illustration. In SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 91–100, New York, NY,
USA, 1994. ACM.

[WTBS07] Tai-Pang Wu, Chi-Keung Tang, Michael S. Brown, and Heung-Yeung Shum.
Shapepalettes: interactive normal transfer via sketching. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers, page 44, New York, NY, USA, 2007. ACM.

[WTXC04] J. Wang, B. Thiesson, Y. Xu, and M. F. Cohen. Image and video segmenta-
tion by anisotropic mean shift. In Proceedings of European Conference on
Computer Vision 2004, pages 238–249, 2004.

[WWSS96] Georges Winkenbach, Georges Winkenbach, David H. Salesin, and David H.
Salesin. Rendering parametric surfaces in pen and ink. In SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 469–476. ACM
SIGGRAPH, Addison Wesley, 1996.

[WXSC04] J. Wang, Y. Xu, H-Y. Shum, and M. F. Cohen. Video tooning. In Proceedings
of SIGGRAPH 2004, pages 574–583, 2004.

[YBS05] Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel. Fast and robust
detection of crest lines on meshes. In SPM ’05: Proceedings of the 2005 ACM
symposium on Solid and physical modeling, pages 227–232, New York, NY,
USA, 2005. ACM.

[ZTCS99] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape
from shading: A survey. Pattern Analysis and Machine Intelligence,
21(8):690–706, August 1999.

	Front
	main.pdf
	0.1 Résumé
	0.2 Abstract
	0.3 Agradecimentos
	1 Introduction
	1.1 Content Creation
	1.2 User control
	1.3 Goals and Contributions
	1.3.1 3D Grouping of Scenes
	1.3.2 Controllable Diffusion of Colors
	1.3.3 Interpreting Shape from 2D Drawings

	2 Dynamic Grouping in 3D Scenes
	2.1 Criteria for Grouping
	2.2 Related Work
	2.2.1 Object-based NPR

	2.3 Overview of Our Approach
	2.4 Grouping
	2.4.1 Representative Points
	2.4.2 Clustering
	2.4.3 Temporal coherence

	2.5 Level of Abstraction and Stylization
	2.6 Feature Space
	2.7 Mean-Shift Extension
	2.7.1 Convergence

	2.8 Results
	2.9 Discussion

	3 Controllable Diffusion For Vector Graphics
	3.1 Raster Graphics Images
	3.2 Vector Graphics Images
	3.3 Diffusion Curves
	3.4 Controllable Diffusion Curves
	3.5 Related Work on Diffusion
	3.6 Mathematical Background
	3.6.1 Diffusion Process
	3.6.2 Reformulating the Diffusion Process

	3.7 Diffusion Control via Constraint Systems
	3.7.1 Diffusion Barriers
	3.7.2 Anisotropic Diffusion
	3.7.3 Color Strength

	3.8 Beyond Local Constraints
	3.9 Results
	3.10 Discussion

	4 Shape and Tone Depiction from 2D Drawings
	4.1 Computer-Assisted Drawings
	4.2 Lines and the Perception of Shape
	4.2.1 Shape Reconstruction from Labeling
	4.2.2 Perceptual Experiments

	4.3 Shading and the Perception of Shape
	4.3.1 Manipulating 3D Scene Depiction
	4.3.2 Manipulating 2D Scene Depiction

	4.4 Shading from Line Drawings
	4.4.1 Enriching Cartoon Drawings
	4.4.2 Image-based Methods

	4.5 Ongoing Work on Shading from Curves
	4.5.1 ``Under'', ``Over''
	4.5.1.1 Diffusion Barriers

	4.5.2 Mathematical Lines
	4.5.3 Surface Reconstruction from Line Properties
	4.5.4 Anisotropic Diffusion
	4.5.5 Animated System

	4.6 Discussion

	5 Conclusion

