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Résumé 

 

L’ADN est une des molécules qui est le plus étudiée, que ce soit en biologie, en chimie ou 

en physique, parce qu’elle code dans la séquence de nucléotides qui la compose l’information 

nécessaire à la synthèse des protéines. Les développements récents des expériences de 

microscopie ont permis l’étude d'un grand nombre de processus cellulaires, dont les plus connus 

sont la transcription et la réplication de l’ADN. Ces processus sont contrôlés par des protéines 

appelées facteurs de transcription, qui se lient à la séquence ADN et séparent ensuite localement 

les deux brins de la structure hélicoïdale pour accéder à l’information génétique. La dénaturation 

de l’ADN, c'est à dire la séparation des deux brins, est en elle-même un processus très intéressant 

pour la physique statistique, puisqu'elle peut être assimilée à une transition de phase. 

Ma thèse est structurée en deux parties : la première partie (chapitres 2 à 4) porte sur la 

modélisation de la dénaturation de l’ADN, alors que la seconde partie (chapitres 5 à 8) propose et 

discute un modèle pour les interactions entre l'ADN et les protéines visant à décrire comment 

certaines protéines, comme les facteurs de transcription, trouvent leur cible dans la séquence 

d'ADN. 

Après une introduction générale (chapitre 1), le deuxième chapitre de la thèse est une 

introduction portant plus particulièrement sur la dénaturation de l’ADN. Je commence par un 

rappel de la structure chimique et de la fonction de l’ADN, avant de décrire plusieurs modèles qui 

ont été développés pour l’étude de sa dénaturation. Je présente tout d'abord le modèle de Poland-

Scheraga, qui fait partie de la catégorie des modèles statistiques (pour lesquels une paire de bases 

est décrite par une variable à deux états : ouvert ou fermé), puis deux modèles dynamiques, basés 

sur des expressions explicites du Hamiltonien du système en fonction des coordonnées et des 

vitesses des particules qui composent la séquence. 

Le troisième chapitre décrit un modèle des expériences d’électrophorèse en deux 

dimensions. L’électrophorèse est une technique de séparation des séquences ADN qui est 

comparativement peu coûteuse et fréquemment utilisée en biologie. Elle est basée sur le fait que, 

dans un gel soumis à un champ électrique, les molécules d’ADN migrent avec des vitesses 

différentes en fonction de leur longueur et de leur composition. Cette séparation se fait 

généralement en deux étapes: tout d’abord une séparation en fonction de la longueur de la 
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séquence, puis une séparation en fonction de sa composition, provoquée par la dénaturation 

chimique ou thermique des molécules d’ADN. Le modèle discuté ici a été construit autour de 

MeltSim, un logiciel gratuit de calcul des courbes de dénaturation thermique de l’ADN basé sur 

le modèle de Poland-Scheraga. L'ajustement des paramètres du modèle a permis de prédire des 

positions des fragments d'ADN à la fin de la séparation en très bon accord avec les valeurs 

mesurées. 

Dans le chapitre 4, je décris enfin comment j'ai pu améliorer un modèle dynamique de la 

dénaturation de l'ADN, qui avait été développé dans notre groupe avant le début de ma thèse. J’ai 

obtenu un nouveau jeu de paramètres pour ce modèle, qui permet de reproduire correctement plus 

de données expérimentales que précédemment, comme par exemple la force critique lors 

d'expériences de dénaturation mécanique, ou encore l'évolution de la température critique en 

fonction de la taille des séquences. J'ai aussi comparé les résultats obtenus grâce à ce modèle 

avec ceux obtenus à partir des modèles statistiques et je me suis finalement intéressé à l’ordre de 

la transition de phase de dénaturation prédit par ce modèle. 

La deuxième partie du manuscrit porte sur la modélisation des interactions entre l'ADN et 

les protéines et sur les procédés par lesquels les protéines recherchent leur cible dans la séquence 

d'ADN. C'est là l'un des problèmes les plus discutés de la biophysique actuelle. En général, ces 

protéines trouvent très rapidement sur leur cible. Il est souvent admis que la méthode de 

recherche utilisée par les protéines, à savoir une combinaison de glissement 1D le long de l’ADN 

et de diffusion 3D dans la cellule, est beaucoup plus rapide que la diffusion 3D normale. 

Cependant les expériences montrent que cela est dû à la présence d'interactions électrostatiques 

entre la protéine et l’ADN et que la vitesse de recherche est par conséquent très fortement 

corrélée à la salinité du solvant. 

Je commence, au chapitre 5, par une présentation du problème et de certains résultats 

expérimentaux, ainsi que par une courte discussion des modèles existants. Je propose également 

une courte introduction théorique à la recherche par des marches aléatoires. 

Dans le sixième chapitre du rapport, je développe le modèle dynamique que je propose 

pour la description des interactions entre l'ADN et les protéines. L’ADN est décrite par un 

modèle "beads and springs" emprunté à la physique des polymères, alors que la protéine est 

modélisée par une sphère rigide dotée d'une charge ponctuelle en son centre. Le potentiel 

d’interaction ADN-protéine est composé de deux termes : un terme attractif d'origine 
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électrostatique et un terme répulsif de volume exclu, dont la somme présente un minimum à une 

distance de l'axe de l'ADN égale à la somme des rayons des beads décrivant l'ADN et la protéine. 

J’ai étudié les propriétés de ce modèle en intégrant les équations d'évolution du mouvement grâce 

à un algorithme de dynamique brownienne. Je présente les résultats concernant les mouvements 

1D et 3D de la protéine obtenus avec ce model et je discute leur accord avec les expériences. Ce 

modèle prédit une accélération maximale de la recherche due à la diffusion facilitée de l'ordre de 

deux, c'est à dire nettement plus faible que celle prédite par certains modèles cinétiques. 

 Le chapitre 7 propose une amélioration de la description de la protéine comme un 

ensemble interconnecté de 13 sphères plutôt qu'une sphère unique. J’ai utilisé ce modèle pour 

vérifier les résultats présentés dans le chapitre précédent, mais également pour étudier l'influence 

des propriétés de la protéine sur la diffusion facilitée. Les simulations conduites avec ce nouveau 

modèle confirment la faiblesse de l'augmentation de la vitesse de recherche due à la diffusion 

facilitée par rapport aux prédictions de certains modèles cinétiques. Ce modèle montre également 

que la forme et l’élasticité de la protéine semblent n'affecter la vitesse du processus de recherche 

que par le biais de leur effet sur les valeurs du coefficient de diffusion. Enfin, ce modèle prédit 

que l’efficacité de la diffusion facilitée est influencée plutôt par la charge totale de la protéine que 

par les charges partielles placées sur les différents sites et que le glissement 1D de la protéine le 

long de l'ADN est souvent sous-diffusif. 

 Dans le dernier chapitre, je compare enfin les résultats obtenus grâce à mon modèle aux 

prédictions d'un des rares modèles cinétiques vraiment prédictif et je montre que les deux types 

de modèles s'accordent en fait pour prédire que la diffusion facilitée n’accélère pas toujours 

l'association entre l'ADN et les protéines. En fait, je montre même que la combinaison de 

glissement 1D le long de l'ADN et de diffusion 3D dans la cellule ne peut être plus efficace que 

la diffusion 3D normale que si le coefficient de diffusion 1D est plus grand que le coefficient de 

diffusion 3D, alors qu'on sait expérimentalement qu'il est entre 3 et 5 ordres de grandeur plus 

petit. Ces résultats sont en bon accord avec une relecture récente des résultats expérimentaux. 

 En conclusion, dans la première partie de mon travail j’ai utilisé le modèle de Poland-

Scheraga pour décrire la séparation des séquences ADN par électrophorèse en deux dimensions, 

puis j'ai obtenu un meilleur jeu de paramètres pour le modèle dynamique de dénaturation de 

l'ADN développé dans notre groupe. Dans la deuxième partie, j’ai proposé un modèle dynamique 

pour l’étude des interactions entre l'ADN et les protéines. J’ai montré que ce modèle présente de 
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la diffusion facilitée et qu’il prédit un mouvement de la protéine en globalement bon accord avec 

les résultats expérimentaux. Cependant, les modèles décrivant la dénaturation ne peuvent pas être 

utilisés pour décrire l'interaction entre l'ADN et les protéines,  et vice versa. La perspective 

essentielle de ce travail consiste donc à établir des modèles d'ADN et de protéines plus résolus, 

capables de décrire les deux phénomènes à la fois. Ce type de modèle autorisera également 

l'étude des interactions "spécifiques", c'est à dire dépendant de la séquence, qui permettent à la 

protéine de se fixer sur sa cible. 
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One of the aims of computer simulations in science is the study of the properties of molecules 

and the interactions between them. They help understanding experimental results and sometimes 

even complement them. With the increasing development of computers, it is now possible to turn 

to the study of large systems, like bulk fluids or polymers. Also, the recent development of single 

molecule experimental techniques has brought along an increase of the interest of physicists in 

biology. 

The mostly studied molecule is definitely DNA, which fascinates by its ability to store the 

information needed for the synthesis of proteins or RNA. The part of a DNA molecule, which 

contains the information concerning one protein, is called a gene, while the ensemble of genes in 

a cell forms the genome. Although genetics is a field in continuous evolution, there are still many 

open questions regarding DNA: for example, how do cells copy the information stored in DNA 

during division, or how do they repair DNA? Moreover, recent developments in experimental 

techniques have made it possible to manipulate DNA in genetic engineering and 

nanotechnologies, thus creating an interest for the study of DNA properties in conditions that are 

not necessarily physiologically relevant. 

A DNA molecule consists of two polymers of nucleotides that form a double helix. 

Nucleotides are composed from a phosphate group linked by a phosphoester bond to a sugar ring, 

which is, in turn, linked to a carbon ring structure called "base". There are four types of bases, 

which may be part of the DNA structure: adenine (A), guanine (G), thymine (T), and cytosine 

(C). The first two ones are purines (they contain a pair of fused rings), while the last two ones are 

pyrimidines (they contain a single ring). The double helical structure of DNA results, on one 

hand, from stacking interactions between neighboring bases of the same strand and, on the other 

hand, from hydrogen bonds that form between a purine and a pyrimidine of opposite strands [1]. 

Adenine and thymine form a double bond, while guanine and cytosine form a triple bond. The 

breaking of these bonds and the subsequent opening of the double helix is called "denaturation", 

or "melting", and it can be triggered either thermally, when DNA is heated, or mechanically, 

when, for example, proteins pull the two strands away from each other. 

Besides replication, the best known phenomenon that involves the opening of DNA bases is 

transcription, that is, the process by which the information contained in a gene is read and used 

for the synthesis of molecules such as proteins or RNA. Transcription is controlled by so-called 
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"transcription factors", which are proteins that first connect to the DNA chain at specific sites and 

then promote transcription by RNA polymerase. In order to initiate this process, RNA 

polymerase has to recognize and connect to a specific site on double stranded DNA. In 

eukaryotes, this is done with the help of a few other proteins, the transcription factors, which 

form a preinitiation complex. The first protein to connect to DNA is the TATA-binding protein, 

which connects to a specific sequence that is rich in thymine and adenine, called the TATA box, 

and then mediates the connection of RNA polymerase to the start site of the gene. The TATA-

binding protein also opens the DNA double helix by bending it by 80°. Then RNA polymerase 

catalyses a polymerization reaction, by which it creates an RNA strand one base at a time. At the 

end of transcription, the newly created RNA molecule is released in the cytoplasm and the RNA 

polymerase disconnects from the gene. 

In fact, most of the processes that take place in a living cell are based on such symbiosis 

between DNA and proteins. Other notable examples are proteins that are responsible for packing 

DNA in a cell or for repairing damaged genes. These are all processes that researchers are trying 

to understand and copy, with the purpose, among others, of developing new generations of 

medicines for curing genetic diseases. 

The first step in the study of all these processes consists in understanding the properties of the 

DNA double helix and how it interacts with proteins. The study of DNA melting (thermal or 

chemical) in itself, besides having some interesting practical applications, like genome 

sequencing and separation, gives useful insight on the mechanisms involved in many of the 

biophysical processes that include nucleic acids. 

The problem when investigating DNA-related phenomena, as well as most other biological 

processes, is that they are quite difficult to describe in detail by an analytical theory and, because 

they involve large molecules, they moreover lead to very cumbersome all-atoms simulations. For 

example, a DNA base pair is composed of about 70 atoms, so that the description of a long DNA 

chain (hundreds of thousands of base pairs) and the associated buffer molecules involves a very 

large number of degrees of freedom. This, of course, has a direct consequence on the time 

interval that can be investigated. For example, the time scale associated with protein folding is of 

the order of microseconds. Even with today's most powerful computers, simulating such 

phenomena with all-atoms models would be prohibitively long. The time interval, which is 

usually simulated with such all-atoms models, is indeed of the order of a few nanoseconds. 
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Therefore, nowadays' solution for simulating biomolecules, both DNA and proteins, is essentially 

coarse-grained modeling. This is a technique based on the reduction of the number of degrees of 

freedom in the system by replacing a group of atoms, like for example a DNA base or a 

functional group of a protein, by a single particle. The interactions between these particles are 

modeled by mean-field potentials, which are adjusted to describe the macroscopic properties of 

the molecule that is specifically studied. The buffer is usually described implicitly by a set of 

random forces. This permits not only the study of larger systems than by using all-atoms models 

but also their study at much larger time scales and with longer equilibration periods. One of the 

first uses of coarse-grained molecular dynamics for the description of proteins goes back to 1975, 

when Levit and Warshell proposed a model for protein folding [2]. However, it is only recently 

that coarse-grained modeling has started to be extensively used in the study of biomolecules. 

The subject of this work is the study of models of DNA, as well as the interaction between 

DNA and proteins, at different resolutions. The first part of my thesis concentrates on the 

investigation of DNA models at different resolutions and how accurately they describe 

denaturation. 

I will start with the simplest models, which are Ising-type (or "statistical") models that 

describe a base pair by two possible states: open and closed. These models incorporate the effect 

of both stacking and pairing interactions. The algorithms, which describe melting using such 

statistical models, have the advantage that they give quite accurate results in a very short 

computer time. Several free programs are now available, which compute the fraction of DNA 

open base pairs as a function of temperature (melting curves). These programs are very useful for 

biological applications, like genome separation, primer design, or PCR. I will first discuss the 

application of statistical models to the modeling of two-dimensional electrophoresis experiments. 

Two-dimensional electrophoresis is a method for visualizing polymorphism and comparing 

genomes, which is based on the separation of DNA fragments subjected to an electric field 

according first to their size and then to their sequence composition. The first step is based on the 

fact that the velocities of the DNA fragments in an electric field depend on their size. The second 

step implies either a temperature gradient or the presence, in increasing concentration, of a 

chemical denaturant. Using experimental results for the separation of 40 DNA sequences, I will 

show that a simple expression for the mobility of DNA fragments in both dimensions allows one 

to reproduce final absolute locations with a precision, which is better than experimental 
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uncertainties. This part of my thesis was done in collaboration with Bénédicte Lafay, from 

Laboratoire Ampère (Université de Lyon) and is based on experimental and theoretical work 

performed in her group [3]. 

However, there are cases where statistical models are not detailed enough, as for example 

when it comes to investigate time-dependent properties of DNA. Dynamical models are more 

efficient for this purpose. By "dynamical model", I mean a model based on explicit expressions 

for the energy of the DNA sequence written in terms of continuous coordinates and velocities. 

Such models therefore rely uniquely on the microscopic description of the system and are 

expected to describe the whole dynamics of DNA, from small vibrations at low temperatures to 

large amplitude oscillations close to denaturation. The first model, which was designed to study 

solitons in DNA [4], can however not describe denaturation, because the only degree of freedom 

for a base pair is its rotation angle around the strand axis. The model that followed (Prohofsky et 

al [5]) considers that the principal source of nonlinearity in DNA are the hydrogen bonds 

between paired bases (which are usually modeled as Morse potentials), and that the important 

degree of freedom is the corresponding stretching coordinate. Dauxois, Peyrard and Bishop later 

replaced, in the model of Prohofsky and coworkers, the harmonic stacking interaction between 

two successive bases by an anharmonic one, and showed that this leads to denaturation curves 

that are in better agreement with experiments [6]. Before the beginning of my thesis work, a 

variant of the Dauxois-Peyrard-Bishop model had been developed in our group, based on the 

observation that the finiteness of stacking enthalpies is in itself sufficient to insure sharp melting 

curves [7]. I will present the improvements we brought to this model in order to get still better 

agreement with experimental results, and show that the improved model provides results that are 

in quantitative agreement with those obtained from statistical models. Finally, I will describe the 

critical properties of the model, paying special attention to the narrow region just below the 

critical temperature. 

The second part of this work proposes a model for the description of non-specific protein-

DNA interactions and of the search strategies, which DNA-binding proteins use to find their 

targets. The first studies that prove that proteins are able to bind on a DNA chain were published 

in 1967 [8,9]. Until then, the general belief was that it is RNA that recognizes sites on DNA 

rather than proteins. The debate on how proteins connect to DNA started three years later with 

the experiments of Riggs, Bourgeois and Cohn [10], who measured the lac repressor-operator 
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interaction kinetics and reported an association rate of about 9107×  M-1s-1. This is one to two 

orders of magnitude larger than the rate that was generally assumed for the speed limit of protein-

DNA association, if it were to be a purely diffusive process [11,12]. However, this rate was 

measured in a buffer, the ionic strength of which was much smaller than physiological values. 

This association rate decreased and became closer to that of diffusion driven reactions once the 

experiments were repeated at higher salinity. Riggs et al therefore concluded that, at low 

salinities, protein-DNA association must be speeded up by electrostatic attractions between the 

negative charges on DNA phosphates and positive charges on the protein. Surprisingly enough, 

most works performed since that time ignore this conclusion of Riggs et al and are basically 

aimed at proposing mechanisms that would enable DNA-protein association to be much faster 

than normal diffusion. 

The target sequence, which must be found by proteins, is very small compared to the size of 

the whole DNA. For example, a typical target site for the lac repressor is composed of about 10-

12 base pairs [13], while that of restriction enzymes consists of only 6-8 base pairs [14]. One 

might therefore wonder how the protein manages to find it in a time scale of about one minute. 

The generally accepted theory, which is confirmed by recent single molecule experiments, is that 

a protein connects to any site on DNA through random collisions (non-specific binding), and then 

searches for its specific site by sliding along the DNA sequence. It then detaches and diffuses 

again in the buffer if it has not found its target after a certain amount of time. This alternation of 

sliding and diffusion through the buffer is known as "facilitated diffusion". The specific DNA site 

differs from non-specific ones by the strength and the nature of its interactions with the protein: 

non-specific interactions are usually long range and soft (electrostatic), while specific interactions 

are short-range and sufficiently strong to trap the protein on that particular site (hydrogen 

bonds)[13]. 

Most models for the description of protein-DNA interactions that were developed until now 

are kinetic models of facilitated diffusion [15-19]. They have as ingredients three-dimensional 

and one-dimensional diffusion coefficients, as well as non-specific association and dissociation 

rates estimated a priori. They also make suppositions about the probability for sliding, and about 

how many base pairs a protein scans during a single sliding event (sliding length). These 

assumptions are then used to estimate the expressions of various quantities of interest, such as the 

association rate and the total time required to find the target, as a function of a set of well-defined 
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geometric quantities, such as the sequence length L and the cell’s volume V. As already 

mentioned, the more or less implicit goal of most of these models is to show that facilitated 

diffusion is able to speed up protein-DNA association, whatever the ionic strength of the buffer. 

Until now, no coarse-grained dynamical model has been proposed for the description of this 

phenomenon. In the second part of my thesis I present such a model, which does not involve a 

priori  assumptions regarding the motion of the protein. It is based on a description of double 

stranded DNA, which is inspired from polymer physics [20] and differs from the models studied 

in the first part of my thesis through the fact that a single spherical bead is used to model fifteen 

base pairs, thus ignoring the helical shape and the possibility of base pair opening. Moreover, the 

whole DNA chain is free to move in three dimensions through the cytoplasm. By studying a 

system formed of a cell containing a protein and several DNA segments, I will show that the 

proposed model successfully reproduces some of the observed properties of real systems and 

predictions of kinetic models, like the alternation between three-dimensional diffusion and one-

dimensional sliding of the protein along the DNA sequence. Even though these results indicate 

that this dynamical model indeed displays facilitated diffusion, they also show that its existence 

does not necessarily imply that the sampling of DNA by proteins happens at rates much larger 

than the diffusion limit. The most important prediction of this dynamical model is certainly that 

facilitated diffusion cannot be faster than normal diffusion by a factor larger than two, which is 

substantially smaller than what is sometimes believed. 

I will propose two models for describing the protein: the first one models the protein as a 

single rigid bead with a charge placed at its center, while the second one assumes that the protein 

is composed of thirteen beads connected by springs. In the second case, I investigated the 

association dynamics of both spherical and linear proteins, in order to study the influence of their 

geometry on the speed of the facilitated diffusion process. I also investigated how other physical 

properties of the protein, like the charge distribution, elasticity, and position of the search site, 

affect the DNA sampling process. 

At last, I will discuss whether the results obtained with my model are in real contradiction 

with those of kinetic models, and try to give a clear and well-proofed point of view on protein-

DNA association kinetics. I will make a short review of existing experimental and theoretical 

results and then I will show that, in fact, when using realistic parameters, correct kinetic and 

dynamical models agree on the issue that facilitated diffusion cannot be much faster than normal 
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diffusion. For this purpose, I computed the acceleration of targeting due to facilitated diffusion 

using both types of models and showed that, for experimental values of one-dimensional and 

three-dimensional diffusion coefficients, such a search strategy is most often even less efficient 

than normal diffusion. 

To conclude this Introduction, I should mention that, at about the same time my first article 

on this topic was published, some eminent biochemists also expressed the opinion that facilitated 

diffusion cannot speed up significantly the targeting process. Halford indeed published at the end 

of 2009 an article entitled “An end to 40 Years of mistakes in DNA-Protein Association 

Kinetics?”. In this article he contradicts the theory that proteins bind to DNA at rates that surpass 

the diffusion limit, stating that there is “no known example of a protein binding to a DNA site at 

a rate above the diffusion limit” [21]. He also points out the fact that Riggs, Bourgeois and Cohn 

did show that association rates decrease as the ionic strength of the solution increases, and that 

these results, although validated by subsequent experiments [22-24], have been overlooked for 

years - and sometimes still are. The results obtained during my PhD work therefore come as a 

confirmation of these statements, and point out that, indeed, there may have been some 

longstanding misinterpretations in protein-DNA association kinetics.  
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Part I: DNA denaturation 

2. Short review of DNA melting and DNA 

models 
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This chapter contains a short introduction to the structure and properties of DNA (sections 

2.1 and 2.2) and a description of the most widely used 1-dimensional statistical (section 2.3) and 

dynamical (section 2.4) models for DNA melting. It also includes a presentation of the dynamical 

model of DNA melting that was developed in our group before my arrival, as part of the thesis of 

Sahin Buyukdagli (section 2.5), as well as a brief sketch of the two methods that were used to 

investigate its properties, that is Molecular Dynamics simulations and Transfer Integral 

calculations (section 2.6).  

 

2.1. The structure of DNA 

 

 DNA (deoxyribonucleic acid) is the molecule that is responsible for the storage of 

information of about how, when and where to produce proteins in most living cells. A DNA 

molecule is a set of two entangled polymers (the "strands"), each strand consisting of a backbone 

and a chain of bases. The backbone is composed of sugar residues (2-deoxyriboze), which are 

joined together by phosphate groups that form phosphodiester bonds between the third and fifth 

carbon atoms of adjacent sugar rings. These bonds give directionality to the DNA strand, with the 

ends called 3’ (the one with a terminal hydroxyl group) and 5’ (the one with a terminal phosphate 

group). A phosphate, a sugar, and the attached base form a nucleotide. There are four types of 

bases: adenine (A), thymine (T), guanine (G) and cytosine (C). Adenine and guanine are 

respectively formed by fused five-member and six-member rings (purines), while cytosine and 

thymine are six-members ring compounds (pyrimidines). The sequence of nucleotides in a DNA 

strand gives the molecule’s primary structure. 

 In all living organisms, the two strands are held together by the pairing of complementary 

bases: as a consequence of both their size and chemical properties, adenine indeed pairs with 

thymine through hydrogen bonds, while cytosine pairs with guanine. In most cases, all bases of 

one strand pair with a complementary base on the other strand, so that the genetic information 

can actually be retrieved from each of the strands. The chemical structure of a DNA double 

strand is depicted in figure 2.1. Base pairing gives the secondary structure of DNA. 
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Figure 2.1.  Chemical structure of DNA (secondary structure). Image taken from Wikipedia Commons.  
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Figure 2.2. The B-DNA double helix (tertiary structure), with the minor and major grooves highlighted. Image 
taken from Wikipedia Commons.  
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 Moreover, there are forces that act between neighboring bases of the same strand: the 

stacking interactions. They are due on one hand to attractions between π orbitals of aromatic 

rings in successive bases and on the other hand to hydrophobic interactions that tend to push 

bases together. These stacking interactions are responsible for the helical structure of DNA 

(tertiary structure). There are several possible conformations for the double helix, which differ by 

the spatial positions of the atoms and the direction of the helix turn, but the one that is ubiquitous 

in living cells is B-DNA. In this conformation, a turn of the double helix consists of about ten 

nucleotides. A nucleotide is about 3.3 Å long and the diameter of the double helix is 22 to 26 Å. 

Actually, the two DNA strands are not perfectly opposite to each other, so the structures form 

two unequally sized grooves (figure 2.2). The larger one (major groove) is 22 Å wide while the 

smaller one (minor groove) is 12 Å wide. The major groove is the usual binding site for proteins, 

because bases are more accessible therein, but there are some proteins that bind into the minor 

groove (for example, the TATA-binding protein, which has an important role in transcription). 

The A conformation is shorter and wider than B-DNA, with bases that are tilted rather than 

perpendicular to the backbone. This structure usually forms in vitro, with less water than in 

physiological conditions, therefore implying weaker hydrophobic interactions. Finally, Z-DNA 

differs from B-DNA essentially by being a left-handed helix instead of the usual right-handed 

configuration. 

 DNA codes the information about protein and RNA structure through the order of the 

nucleotide sequence along a strand. The parts of DNA that bear information are divided into 

functional units called genes, which are typically 5000 up to 100000 nucleotides long. Usually, 

bacteria have about 5000 genes, while humans have about 20000 to 25000, which are eventually 

separated by long regions, which functions are still not understood. This makes DNA molecules 

quite long: for example, a human’s unpacked genome covers about two meters. A gene usually 

has two parts: a coding region that specifies the amino acid sequence of a protein and a regulatory 

region that controls the gene’s expression. A single coiled DNA molecule that contains genes, 

regulatory elements and noncoding regions forms a chromosome. In prokaryotic cells, DNA is 

found in the cytoplasm while in eukaryotic cells it is located in the nucleus. Actually, in 

eukaryotic cells, DNA is not free: it is packed around histones, forming a structure called 

chromatin. The purpose of this packing is to allow the long DNA molecule to fit in a nucleus, to 
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strengthen DNA to allow for meiosis and mitosis, and to control DNA replication and gene 

expression.  

  

2.2. DNA melting   

 

 DNA melting (also called "denaturation") is the process by witch hydrogen bonds 

between bases are broken and the two strands separate. These bonds are much weaker than the 

covalent bonds in the rest of the molecule, so melting does not affect the primary structure  of 

DNA and is a reversible process. Denaturation can be thermal, when DNA is heated, mechanical, 

if it is caused by a force (for example by proteins that pull one of the strands), or chemical. The 

most studied one is probably thermal denaturation. Although it differs from the base pairs 

opening that occurs during transcription, its understanding can still bring a lot of useful 

information on what happens in this process. 

 The most widely used method for the experimental study of DNA denaturation is UV 

absorption spectroscopy: the stacked base pairs in double stranded DNA absorb less ultraviolet 

light than the bases in a single stranded chain. An increase in temperature causes a sudden 

opening of base pairs, which is consequently accompanied by an abrupt increase in the 

absorption, a phenomenon known as hyperchromicity. Therefore, the plots of UV absorption as a 

function of temperature can be easily compared with theoretically determined plots of the fraction 

of open base pairs as a function of temperature (melting curves). The temperature at which half of 

the base pairs in a sequence are open is known as the melting temperature. Its value depends on 

several factors:  

• The types of base pairs the sequence contains: GC pairs are formed of three hydrogen 

bonds, while AT ones have only two, so the latter will break at a lower temperature. 

• The ion concentration of the buffer: positive ions shield the negatively charged 

phosphates of the backbones. When the ion concentration is small, this shielding is low 

and the repulsive forces between strands are higher, thus decreasing the melting 

temperature. 

• The presence in the buffer of agents that destabilize hydrogen bonds, such as formamide 

or urea: these molecules displace hydrates or counterions, having the same 

phenomenological effect as the decrease in ion concentration. 
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• The pH: at low pH (acid), the bases become protonated and thus with a positive charge, 

so they repel each other. At high pH (base), the bases instead lose their protons and they 

will once again tend to repel each other. 

DNA melting is a process that can be assimilated to an order-disorder transition, the order 

state being given by the paired bases, while the disordered state corresponds to loops formed by 

broken hydrogen bonds. This analogy is an important point for most of the studies on DNA 

denaturation. Many of the models that have been developed to describe DNA melting are inspired 

from the statistical physics of phase transitions (and are therefore named statistical models). They 

describe a DNA base pair as a spin in the one-dimensional Ising model, that is, as having two 

possible states: “open”, when the hydrogen bond is broken, and “closed”, when the hydrogen 

bond is intact [25,26]. 

 

2.3. The Poland-Scheraga statistical model 

 

The types of interactions considered in statistical models are base pairing (free energy Gi) 

between complementary bases, and stacking (free energy s
iiG 1, − ) between successive bases of the 

same strand. This leads to a description of the opening of the ith base pair as a function of a 

stability constant si, which is expressed as: 
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where T is the buffer’s temperature and kB is Boltzmann’s constant. The best known model of this 

type is certainly that of Poland and Scheraga [27,28]. This model proved to be very efficient in 

studying the order of the denaturation transition [29] and how it is affected by sequence 

heterogeneity [30]. In this model the partition function Zk of a specified state k is a product of 

three terms: a stability term, which has the form given in equation (2.1), a cooperativity term, 

which operates between a closed and an open segment, and an entropic term, which takes into 

account the number of configurations of the denaturated portions of the sequence (loops). This 

last term was introduced because the nearest-neighbour interactions alone are not sufficient to 

induce a genuine phase transition (melting just corresponds to a smooth crossover between the 

closed helix form and the open coil state). This term induces long-range interactions that are 
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weak but sufficient for a phase transition to occur [27,28]. It is usually taken as a power law of 

the form:  

cDmmf −+= )()( ,                           (2.2) 

where m is the loop size, D is a stiffness  parameter with a generally  assumed value of 1=D  and 

the exponent c can take values either  of 7.1=c ( if it is derived from probabilities of ring closure 

for self-avoiding random walks) or 15.2=c  (if it is estimated using the total number of 

configurations of a loop embedded in a chain - sharper phase transition). The five mechanisms by 

which denaturation can propagate and the corresponding terms in the partition function are 

depicted in figure 2.3. 

Poland subsequently provided an algorithm, which allows the efficient calculation of the 

probability for each base pair to be in the open or closed state [31]. This algorithm works 

particularly well when combined with the approximation proposed by Fixman and Freiere, which 

consists in expanding the loop function as an exponential series [32]. Such models were more 

recently further improved along two directions. First, the various parameters of the model were 

adjusted against experimental melting curves (for example references [33-35] and references 

therein). Secondly, it was shown how to take more properly into account excluded volume effects 

between the loops and the rest of the chain [29,36] (the loop entropy was originally estimated by 

counting the number of configurations for a closed self-avoiding random walk [37]). This turns 

out to be of great importance from the physical point of view, since these later calculations lead 

to a loop closure exponent c greater than 2, which implies that the phase transition is first order, 

 
 
Figure 2.3. Cartoon of the five mechanisms by which denaturation can propagate in the Poland-Scheraga model, 
and corresponding terms of the partition function. Image taken from reference [38].  
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while the older estimate of c was smaller than 2 and therefore consistent with a second order 

phase transition. 

As a consequence of these improvements, there now exist several online free programs, 

which provide reliable melting curves of sequences as long as several thousands of base pairs 

within a few seconds. One of the best known ones is probably Meltsim [38], which is based on 

Poland’s algorithm [31] and Fixman and Freire’s speed up approximation [32]. It also gives the 

user the choice between several parameters sets [33,35,39]. Such a program is of great interest in 

many areas of biology, like PCR control and mutation analysis. 

These programs can also be incorporated in home-written codes for predicting results of 

various biology experiments, like genome separation through temperature gradient or denaturing 

gradient electrophoresis display. Electrophoresis is a separation technique, which is based on the 

fact that, when placed in a gel subjected to an electric field, molecules migrate with different 

speeds according to their size and charges. For writing the corresponding code, one does not need 

to fully understand the algorithms behind the computation of denaturation curves, but only to 

have a tool that is fast, reliable and easy to use. In turn, this kind of simulations help optimize 

experimental conditions (denaturing gradient or temperature range, electrophoresis duration) 

without having to perform a large number of tedious preliminary experiments, and to predict 

whether electrophoresis is a convenient tool to identify a given mutation or a difference that is 

expected to exist between the genomes of closely related organisms. Chapter 3 of this report 

precisely contains a detailed study of the modelling of two-dimensional DNA electrophoresis 

separation experiments. 

However, statistical models are not always detailed enough, especially when it comes to 

describing time dependent phenomena. In this case, a more suitable approach is that provided by 

dynamical models. I briefly describe dynamical models in the two following sections (sections 

2.4 and 2.5). I moreover describe in chapter 4 some work aimed at optimizing the parameters of 

the dynamical model developed in our group, and I compare the melting curves computed 

therewith with experimental ones and those obtained from statistical models. 
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2.4. The Dauxois-Peyrard-Bishop dynamical model 

 

Dynamical models are based on explicit expressions for the energy of the DNA sequence, 

which are written in terms of usual continuous coordinates and velocities. They are conceptually 

appealing in the sense that one just needs to provide a microscopic description of the system, like 

kinetic energy and the shape of pairing and stacking interactions. Its macroscopic properties and 

evolution with temperature then unequivocally follow there from. Stated in other words, if the 

masses and characteristic energies introduced in the Hamiltonian are reasonable and the derived 

macroscopic properties match experimental results, then one might feel confident that the 

microscopic description of the system is correct. Moreover, dynamical models are of course 

mandatory as soon as one is not interested in averaged quantities but rather in transient 

phenomena and fluctuations [40]. 

The first dynamical models for the description of DNA were developed for the study of 

soliton wave propagation in the DNA double strand. In 1980, hydrogen-deuterium exchange 

experiments evidenced the propagation of base pairs openings along the chain in a manner that 

resembles that of solitons [41]. In the same work the authors proposed a Hamiltonian for 

describing DNA: 
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where r is the length of the bond (considered rigid) between the base and the sugar-phosphate 

backbone and nφ  is the rotation angle of the basis around the strand axis. The first term in the 

Hamiltonian denotes the kinetic energy, the second one gives the torsional elastic energy of the 

bases, while the third one is an attractive potential that describes hydrogen bonds between bases. 

This first model is quite simple, but further on more complex models have been developed [42-

47]. However, these models are not suitable to describe DNA thermal denaturation because the 

only degree of freedom is the rotation of the bases around the strands, while denaturation is better 

described by the stretching of the base pairs. To my knowledge, Prohofsky and co-workers were 

the first to propose a dynamical model that describes DNA denaturation [5,48]. The Hamiltonian 

of this model writes:  
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where un and vn are the displacements from the equilibrium positions of the two bases that 

compose the nth base pairs, taken along the axis that is perpendicular to the backbone and joins 

the two strands. The first term gives the kinetic energy, the second term contains the stacking 

interaction between successive bases, which is considered here to be harmonic, and, finally, the 

last term describes the base-pairing interactions as Morse potentials: 
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By making a change of variables from the absolute coordinates un and vn to symmetric and 

antisymmetric coordinates: 
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the Hamiltonian can be rewritten as: 

),...,,(),...,,( 212211 nn yyyHxxxHH +=                 (2.7) 

where the first term describes the motion of the centers of mass of the base pairs: 
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while the second terms describes the forming and breaking of base pairs: 
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This Hamiltonian also has solitonic wave solutions, which have been studied in detail [49,50]. 

 However, this model does not accurately describe the denaturation transition. Dauxois, 

Peyrard and Bishop (DPB) indeed pointed out that it leads to a much too smooth denaturation 

process, but that this is no longer the case upon introduction of an anharmonic stacking 

interaction [6]: 
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This new expression implies that the stacking interaction becomes weaker when the 

corresponding base pairs separate further, thus decreasing the stiffness of the chains and leading 

to a much steeper phase transition [6]. It is based on the hypothesis that, when the hydrogen 
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bonds connecting the bases break, the electronic distribution on the bases is sufficiently modified 

to let the stacking interaction between the bases decrease significantly. 

 The model of equation (2.10), which from now on will be referred to as the DPB model, 

was essentially used to investigate the dynamics of short sequences containing from several tens 

to a few hundreds base pairs [51,52], but it was shown in our group that it is also able to 

reproduce the characteristic peaks, which appear in the melting curves of inhomogeneous 

sequences in the 1000-10000 base pairs range [53] (the peaks that were reported for periodic 

DNA sequences with two or three base pairs in the unit cell [54] essentially arise from end effects 

and are not directly related to the experimentally observed ones). 

 

2.5. The dynamical model developed in our group 

 

A few years ago, a variant of the DPB model was developed in our group [7], which is 

closer to statistical ones than the DPB model, in the sense that it is based on site-specific, finite 

stacking enthalpies (numerical values for the enthalpies were borrowed from table 1 of [38]). It is 

based on the observation that the finiteness of the stacking interaction is in itself sufficient to 

insure a sharp melting transition. Since I will report in chapter 4 on several results obtained with 

this model, I now describe it in some detail. 

The general form of the Hamiltonian is: 
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where N is the number of base pairs in the sequence and ny  a measure of the distance between 

the paired bases at position n. More precisely, if nu and nv  denote the displacements of the two 

bases of pair n from their equilibrium positions along the direction of the hydrogen bonds that 

connect them, then ny  is defined as in equation (2.6), that is ( ) 2/nnn vuy −=  [5,55]. In the 
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expression for the kinetic energy Ekin, m denotes the mass of a nucleotide, which we assume to be 

independent of the precise nature of the base pair at position n (numerically, we use m=300 amu). 

As for the DPB model, the potential energy V is the sum of two different contributions, namely 

on-site potentials ( )n
n

M yV )(  and nearest-neighbour interaction potentials ( )1
)( , −nn

n yyW . ( )n
n

M yV )(  

represents the two or three hydrogen bonds that connect the paired bases at position n and is 

taken as a Morse potential of depth nD , as in the original model of Prohofsky and coworkers 

[5,48]. ( )n
n

M yV )(  is often called a “pairing” potential, because it is an increasing function of ny  

and therefore opposes the dissociation of the pair. Our model differs from the DPB one 

essentially in the ( )1
)( , −nn

n yyW  interaction, which is again the sum of two terms, namely the 

stacking potential plus the backbone stiffness. Both terms are increasing functions of 1−− nn yy , 

which means that they oppose the de-stacking of the bases, that is, the separation of successive 

bases belonging to the same strand. The stacking potential is modelled by a gaussian hole of 

depth CHn /∆ , while the backbone stiffness is taken as a harmonic potential of constant bK . Its 

role consists in preventing dislocation of the strands, that is, in insuring that bases belonging to 

the same strand do not separate infinitely when approaching the melting temperature. 

 The numerical values for the parameters of equation (2.11) used in previous works 

[7,40,53,56-58] were obtained in the following way: the ten stacking enthalpies nH∆  were 

borrowed from statistical models (table 1 of reference [38]) and it was assumed that the paired 

bases do not unstack simultaneously, which implies that 2=C  [7]. On the other hand, a uniform 

stacking strength of 22.0/ =∆ CH n  eV was used to model the homogeneous sequences that are 

involved in most statistical studies. nD =0.04 eV and a=4.45 Å-1 were taken from the DPB model 

[6], while bK =10-5 eV Å-2 was fixed somewhat arbitrarily. Finally, b was varied to get a 40 to 50 

K separation between the melting temperatures of pure AT and GC sequences, as in experiments 

performed at physiological salinities and pH values. It was consequently fixed at b=0.10 Å-2. 

 Actually, the results obtained with this set of parameters should be improved with respect 

to at least three points. First, the denaturation curves have a weak temperature resolution, in the 

sense that they are somewhat too smooth compared to the curves obtained with statistical models 

or experimental ones. Moreover, the critical temperature diminishes much too quickly with 

decreasing sequence lengths. As reported in [57], the lowering of the melting temperature 
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behaves as 3250/N for this model and 1850/N for the DPB model, while most online 

oligonucleotide property calculators assume a 500/N dependence (which agrees with the 

experimental results reported in [59]) and statistical models even predict a gap smaller than 1 K 

between the melting temperatures of an infinitely long homogeneous sequence and its finite 

counterpart with N=100 base pairs. Finally, mechanical unzipping experiments performed at 

constant force show that the critical force, which is needed to keep the two strands of a DNA 

sequence open at around 20°C, lies in the range 10-20 pN [60,61], while this model predicts that 

a few pN are sufficient. As will be argued below, this poor agreement between predicted and 

measured critical forces is essentially ascribable to a too small value of bK  (remember that this 

parameter was fixed arbitrarily), while the exaggerated sensitivity of the melting temperature 

with sequence length results from the too large depth of the stacking interaction. I will show in 

chapter 4 that it is sufficient, once these two points have been corrected, to slightly adjust the 

remaining parameters in order to reproduce experimental denaturation curves more correctly. 

 

2.6. Molecular Dynamics simulations and Transfer Integral calculations 

 

The two methods, which were used in our group to investigate the properties of 

dynamical models, are Molecular Dynamics (MD) simulations and Transfer-Integral (TI) 

calculations. MD simulations consist in integrating step by step the Langevin equations: 
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with a second order Brünger-Brooks-Karplus integrator [62]. γ is the dissipation coefficient (we 

assumed 5=γ  ns−1) and )(tw  a normally distributed random function with zero mean and unit 

variance. The second and third term in the right-hand side of equation (2.12) model the effect of 

the buffer on the DNA sequence. The sequence is first heated by subjecting it to a temperature 

ramp, which is slow enough for the physical temperature of the system (calculated from the 

average kinetic energy) to follow the temperature of the random kicks (the symbol T in equation 

(2.12)). The average values of the quantities we are interested in are then obtained by integrating 

Langevin equations at constant temperature for time intervals of 100 ns. 

 MD simulations are very easy to implement, but they have two limitations: firstly, they 

require a very large amount of CPU time, because step by step integration of hundreds or 
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thousands of coupled differential equations is intrinsically slow, and secondly, the temperature 

resolution of the results is rather poor, especially close to the melting temperature, because of the 

very slow fluctuations of temperature of the sequence in this range [40]. 

On the other side, the TI method [54,63] is a mathematical technique to replace the N-

dimensional integrals, which appear for example in the expressions of the partition function Z 

( )VyyyZ N β−= ∫ expd...dd 21 .            (2.13) 

and the average bond length at position n 
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by products of N one-dimensional integrals. Other quantities of interest, like the free energy per 

base pair, f, the entropy per base pair, s, and the specific heat per base pair, Vc , are then easily 

obtained from Z according to 
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Note that we use finite differences for the calculation of s and Vc . When it works, the TI method 

is very efficient, in the sense that it enables to calculate most quantities much more rapidly and 

with a better temperature resolution than MD simulations. As discussed in some detail by Zhang 

et al [54], the TI kernel is however singular when using a bound on-site Morse potential, so that 

one needs to check carefully the convergence of the obtained results with respect to the upper 

bound for y, which is assumed in practical calculations. A general observation would be that, at 

the thermodynamic limit of infinitely long homogeneous chains, there always exists a certain 

temperature range surrounding the critical temperature, where the TI method is not valid. For 

some sets of parameters, this interval is so large that the TI method is essentially useless (this is, 

of course, not the case for the set of parameters that will be proposed in chapter 4). In contrast, 

calculations are more reliable for finite sequences, because they melt at temperatures that are 

lower than the critical temperature of the infinite sequence. 
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 I have not been involved in the development of the TI codes. Therefore, I do not provide 

here more detail on this technique. More precisions can be found, for instance, in the work of 

Zhang et al [54] and in some publications of our group [56-58]. 

 In order to illustrate the capabilities of the two methods, the temperature evolution of the 

average base pair separation, ∑= nN yy 1 , and of the average pairing and potential energy per 

base pair, ( NVu /= ), are shown in figures 2.4 and 2.5, respectively. Solid lines show results 

obtained from TI calculations, and dashed lines results obtained from MD simulations, for a 

homogeneous sequence with 1000 base pairs. It can be seen that the agreement between both 

types of calculations is generally very good, except close to the critical temperature, where MD 

simulations are much noisier than TI calculations (although 10 trajectories were averaged, so that 

MD simulations required between 10 and 100 times more CPU time than TI calculations) and 

evolve less sharply with temperature. As mentioned above, this difference is due in part to the 

very slow temperature fluctuations of the sequence in this interval [40], and in part to the fact that 

the averaging time between two temperature increments (100 ns per K) is too small compared to 

the characteristic times of the denaturation dynamics of the sequence. 
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Figure 2.4. Plot, as a function of the temperature T of the sequence, of the average base pair separation 

∑
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n
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yy
1

1  for a homogeneous sequence with 1000 base pairs, obtained from MD simulations (dashed 

line) and TI calculations (solid line). Calculations were performed for the model in equation (2.11) and the 
parameters reported in section 4.3. y  is expressed in Å. The vertical dot-dashed line shows the critical 

temperature for this sequence (( ) 73.356=NTc  K). Each point of the MD curve corresponds to a total 

accumulation time of 1 µs.  
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Figure 2.5. Plot, as a function of the temperature T of the sequence, of the average energy in each Morse 
oscillator and the average total potential energy per base pair, NVu /= , for a homogeneous sequence with 

1000 base pairs, obtained from MD simulations (dashed lines) and TI calculations (solid lines). Calculations 
were performed for the model in equation (2.11) and the parameters reported in section 4.3. Energies are 
expressed in eV. The vertical dot-dashed line shows the critical temperature for this sequence (( ) 73.356=NTc  

K). Each point of the MD curve corresponds to a total accumulation time of 1 µs. For TI calculations, u was 
obtained from equation (2.15) and the relation sTfu += . 



 40 



 41 

 

3. Application of statistical models to 2D 

electrophoresis display 
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In this chapter, I will describe how I built a program around MeltSim [38] (one of the free 

programs for computing DNA melting curves that are based on the Poland algorithm) to get 

predictions of the results of electrophoresis experiments, and I will show that these experiments 

can indeed be modelled with high accuracy. As already mentioned in the Introduction, this part of 

my thesis has been done at the suggestion of Bénédicte Lafay from Laboratoire Ampère 

(Université de Lyon), and it is based on experimental and theoretical work [3] performed in her 

group. 

 

3.1. Introduction 

 

 Electrophoresis is a separation technique that is widely used by biologists. It is a fast and 

economical way of visualizing polymorphism and comparing genomes. An interesting variation 

of this rather old technique is two-dimensional (2D) DNA display, which was first described by 

Fisher and Lerman [64-66]. It consists in separating DNA fragments in two steps, first according 

to their size and then to their sequence composition. The first step uses traditional slab 

electrophoresis, for example in agarose or polyacrylamide gels. Collisions between DNA and the 

gel reduce the mobility of DNA fragments, so that the gel acts as a sieve and the electrophoretic 

mobility becomes size-dependent, with smaller molecules generally going faster than large ones 

[67]. In the second dimension, fragments of identical lengths are separated on the basis of their 

sequence composition, thanks to a gradient of either temperature (TGGE : temperature gradient 

gel electrophoresis) or concentration of a chemical denaturant present in the buffer, e.g., a 

mixture of urea and formamide (DGGE : denaturing gradient gel electrophoresis), both methods 

being closely related [68,69]. The effective volume of denaturated regions of DNA being larger 

than that of double-stranded ones, the mobility of a given fragment decreases as the number of 

open base pairs increases. Since AT-rich regions melt at lower temperatures than GC-rich ones, 

GC-rich fragments usually move farther than AT-rich ones. 

 Although 2D DNA display has already been applied to the comparison of the genomes of 

closely related bacteria [70-72], this method is still essentially empirical and simulations have 

only been used to a very limited extent to plan experiments and analyze results [3,73,74]. In 

particular, it has been shown only recently [3] that separation of DNA fragments in 2D display 
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experiments can be predicted with satisfying precision using a model that combines step-by-step 

integration of the equations of motion of each fragment and the use of the open source program 

MeltSim [38] to estimate the number of open base pairs at each step of the DGGE phase. In this 

work the method was validated by predicting the outcome of the separation of 40 sequences. The 

first separation was done in a 0.8% agarose gel in 40mM Tris, 1mM Na2EDTA at 2 V/cm for 8h. 

For the second dimension, a 4% polyacrylamide gel with parallel ascending gradient of 

formamide (10-40%) and urea (1.8-7M) was used and the separation lasted for 24h, at a constant 

temperature of 60°C and in an electric field of 7 V/cm. The setups used for two separations are 

shown in figures 3.1 and 3.2.   

However, in reference [3] were not used the computed absolute final positions of the 

DNA sequences, but only their positions relative to two reference segments, because the absolute 

positions were wrong by more than 1 cm (that is, several tens of percents of the total 

displacement). The fact that the errors in computed absolute final positions are so large is 

worrying in itself, because it unambiguously indicates that something is wrong in the model. 

Moreover, using relative positions is quite dangerous, since an eventual error in the coordinates 

of one of the reference sequences implies that the positions of all other sequences will be wrongly 

predicted. Also, some of the expressions that were used to compute the mobility of the fragments 

are quite imprecise and depend on too many parameters. 

The goal of the work presented in this chapter was to extend the results presented in 

reference [3] along several lines. I have used absolute coordinates, instead of relative ones, and 

shown that they can be computed with uncertainties that are smaller than experimental ones. I 

have also shown that one can use simple expressions to describe correctly the mobility of a DNA 

sequence in a gel. 
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Figure 3.1.  The experimental setup used for the separation in the first dimension (horizontal agarose gels).  
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Figure 3.2  Upper image: The setup used for the separation experiments in a second dimension (Dcode Universal 
Detection System-vertical polyacrylamide gels) Lower image: Experimental display of the sequences discussed here 
(a gel shown at the end of separation in the two dimension). Super-imposed in colors are the simulation results of  
reference [3]. The color code is the following: yellow for EcoRI digested sequences, red for Eco91, pink for Eco47I, 
blue for HindII and green for PstI.  

E1 

E2 
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3.2. General framework 

 

 According to the definition of mobility, the position y of sequence s at time t in a constant 

electric field E satisfies the relation: 

( )Eys
dt

dy
,µ=                    (3.1) 

If the mobility ( )ys,µ  depends uniquely on the sequence s and not on position y, as is the case 

for the standard electrophoresis set-up in the first dimension, integration of equation (3.1) is 

straightforward and leads to 

( ) ( ) ( ) tEsyty µ=− 0                     (3.2) 

In contrast, if the mobility ( )ys,µ  depends on both the sequence s and position y, as is the case 

for TGGE and DGGE, then equation (3.1) must be integrated step by step, according to 

( ) ( ) ( )( ) dtEtystydtty ,µ+=+                  (3.3) 

Here, I integrated such equations of motion for the same 40 DNA fragments discussed in 

reference [3] using the same conditions as described therein. These fragments were obtained from 

the site-specific restrictions of λ-phage genomic DNA using EcoRI, Eco47I, Eco91I, HindIII and 

PstI, respectively (however, here it is not important how the DNA sequence were obtained, but it 

is only their sizes and base compositions that matter). As reported in the first columns of table 

3.1, the size of these fragments varies between 1929 and 23130 base pairs, and their GC content 

between 36.0% and 58.9%. For the first separation (according to size), I plugged the 

experimental values of the electric field (E=2 V/cm) and the total electrophoresis time (t=8 h) in 

equation (3.2). For the second separation (according to sequence composition), equation (3.3) 

was integrated with the experimental value E=7 V/cm for 44 h by steps of 7 minutes. I also 

checked that results do not vary when the total integration time is increased to 80 h and the time 

step lowered to 1 minute. These results are similar to those obtained with an integration time of 

24 h, which coincides with the experimental duration, showing that DNA sequences were already 

stopped at the end of the electrophoresis experiments. 
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   1st dimension 2nd dimension 

Enzyme 
Length 

(bp) 
GC 
% 

yexp 
(cm) 

σexp 
(cm) 

ycalc 
(cm) 

∆y 
(cm) 

yexp 
(cm) 

σexp 
(cm) 

ycalc 
(cm) 

∆y 
(cm) 

EcoRI 21226 56.9 2.45 0.04 2.35 0.10 3.56 0.21 3.57 -0.01 
 7421 44.5 5.02 0.10 5.09 -0.07 2.39 0.27 2.41 -0.02 
 5804 49.6 6.03 0.14 6.08 -0.05 3.10 0.19 3.11 0.00 
 5643 43.2 6.20 0.18 6.20 0.00 2.07 0.31 2.18 -0.11 
 4878 39.7 6.89 0.18 6.87 0.02 1.84 0.35 1.76 0.08 
 3530 44.0 8.61 0.21 8.54 0.07 2.36 0.31 2.47 -0.10 

Eco47I 8126 47.8 4.68 0.10 4.76 -0.08 2.07 0.32 2.29 -0.22 
 6555 38.0 5.56 0.12 5.57 -0.01 1.81 0.34 1.75 0.07 
 6442 43.7 5.61 0.12 5.64 -0.03 2.45 0.29 2.42 0.03 
 3676 47.5 8.35 0.20 8.32 0.03 2.70 0.25 2.96 -0.25 
 2606 56.4 10.31 0.21 10.29 0.02 3.89 0.18 3.85 0.04 
 2555 56.7 10.45 0.25 10.41 0.04 4.04 0.17 4.00 0.04 
 2134 55.3 11.58 0.27 11.52 0.06 3.83 0.21 3.83 0.01 
 2005 57.6 11.87 0.27 11.92 -0.05 4.30 0.18 4.00 0.30 
 1951 58.5 12.03 0.28 12.09 -0.06 4.38 0.17 4.25 0.13 

Eco91I 8453 46.7 4.52 0.08 4.62 -0.10 2.17 0.30 2.43 -0.25 
 7242 47.1 5.13 0.12 5.18 -0.05 1.79 0.34 1.76 0.04 
 6369 46.0 5.68 0.14 5.69 -0.01 2.44 0.26 2.48 -0.04 
 5687 56.4 6.12 0.16 6.17 -0.05 3.51 0.16 3.77 -0.26 
 4822 40.2 6.96 0.19 6.93 0.03 2.08 0.32 2.12 -0.04 
 4324 58.1 7.46 0.18 7.46 0.0 3.88 0.13 3.94 -0.06 
 3675 46.0 8.42 0.20 8.32 0.10 2.84 0.25 2.72 0.12 
 2323 57.8 11.06 0.24 10.99 0.07 4.06 0.18 4.01 0.05 
 1929 58.9 12.09 0.28 12.16 -0.07 4.33 0.19 4.29 0.04 

HindIII 23130 55.9 2.32 0.04 2.22 0.10 2.81 0.30 2.25 0.56 
 9416 45.0 4.18 0.09 4.27 -0.09 2.20 0.31 2.37 -0.17 
 6682 48.0 5.49 0.12 5.49 0.00 2.70 0.24 2.83 -0.13 
 4361 45.2 7.37 0.17 7.42 -0.05 2.30 0.30 2.46 -0.15 
 2322 37.1 10.97 0.26 11.00 -0.03 2.36 0.37 2.29 0.07 
 2027 36.0 11.82 0.26 11.85 -0.03 2.00 0.41 1.76 0.24 

PstI 11497 46.8 3.63 0.06 3.68 -0.05 2.20 0.32 2.29 -0.09 
 5077 44.9 6.69 0.16 6.68 0.01 2.32 0.29 2.50 -0.18 
 4749 43.8 7.02 0.19 7.00 0.02 2.51 0.26 2.48 0.04 
 4507 36.0 7.31 0.18 7.26 0.05 1.86 0.34 1.77 0.09 
 2838 56.6 9.85 0.24 9.78 0.07 4.02 0.16 4.07 -0.05 
 2560 53.2 10.39 0.22 10.40 -0.01 3.74 0.18 3.76 -0.02 
 2459 57.7 10.61 0.24 10.64 -0.03 4.15 0.17 4.11 0.04 
 2443 54.8 10.69 0.24 10.68 0.01 3.84 0.19 3.82 0.02 
 2140 53.1 11.52 0.27 11.51 0.01 3.59 0.24 3.62 -0.03 
 1986 58.1 11.92 0.27 11.98 -0.06 4.14 0.19 3.98 0.16 

rms    0.19  0.05  0.26  0.15 

 
 
 
 
Table 3.1. Absolute coordinates of the DNA fragments in the 2D display. The table indicates the size of each 
fragment, its GC content, and, for each dimension, the experimental absolute position (yexp), the experimental 
uncertainty (σexp, in cm), the calculated absolute position (ycalc) and the error (∆y=yexp-ycalc). Absolute positions in 
the first dimension were obtained with the expression of mobility in equation (3.4) and parameters 

41017.0 −×=Lµ  cm2/(V s), 41053.4 −×=Sµ  cm2/(V s) and 41200=m . Absolute positions in the second 

dimension were obtained with the expression of mobility in equation (3.6), the expression of equivalent 

temperature in equation (3.8), and parameters 100=rL  bps, 134.0]Na[ =+  M, 600 =T  °C and 540.0=α  °C. 
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As will be seen in more detail in section 3.4, the calculation of ( )( )tys,µ  during DGGE requires 

the estimation of the number of open base pairs of sequence s at a temperature T, which has the 

same effect as the local concentration of denaturant. The modeling of denaturation was achieved 

by using the open source program MeltSim [38]. I used the set of thermodynamic parameters of 

Blake and Delcourt [39] and set the positional map resolution to 1, which corresponds to the 

highest possible calculation precision for the number of open base pairs. The influence of the 

remaining free parameter of the program, namely the salt concentration [Na+], will be discussed 

in detail in section 3.4. 

 At last, the mobility ( )ys,µ  is expressed for both electrophoresis steps as a function of a 

certain numbers of parameters, which need to be adjusted to reproduce experimental results 

accurately. Therefore, I embedded equation (3.2) and the step by step integration of equation 

(3.3) in a refinement loop based on the gradient method, in order to vary the parameters so as to 

minimize the root mean square deviation between experimental positions and those calculated 

from equations (3.2) and (3.3). 

 

3.3. Separation according to size 

 

Van Winkle, Beheshti and Rill (vWBR) [75,76] recently proposed an empirical formula 

that correctly reproduces the observed mobilities of DNA fragments for a large number of 

experimental conditions. This formula writes 

( )
( )







 −








−−=

m

sN

s SLL

exp
1111

µµµµ
                     (3.4) 

where Lµ  and Sµ  are the respective mobilities of infinitely large and very small fragments, ( )sN  

is the length of the investigated DNA fragment, and m denotes the typical size that separates 

“small” from “large” sequences. Van Winkle et al [76] furthermore published the following 

expressions for Lµ , Sµ  and m : 

( )
( )

Cm

C

C

S

L

27807490

1058.056.3

59.1exp1099.1
4

4

+=
×−=

−×=
−

−

µ
µ

                 (3.5) 
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where Lµ  and Sµ  are expressed in cm2/(V s) and m in base pairs, while C denotes the agarose 

gel concentration in percents. The six numerical constants in equation (3.5), as well as the forms 

of the equations themselves, are expected to be valid only for the precise system investigated by 

van Winkle et al [76]. Still, the somewhat different experimental conditions of reference [3] 

could be accounted for by feeding in equation (3.5) an adjusted gel concentration C=0.75% close 

to the exact value C=0.80%. It was indeed shown that this leads to calculated relative positions in 

good agreement with observed ones [3] (note, however, that absolute positions display errors 

larger than 1 cm). Due to the rather rigid forms of equations (3.5), it is however not warranted 

that this kind of adjustment will prove to be sufficient for experimental conditions that differ 

more widely from those of reference [76], in particular for the very popular polyacrylamide gels, 

and the choice of the additional parameter(s) to adjust might become rather tricky. 

 I found that a very efficient alternative to bypass this numerical problem consists in 

adjusting directly the parametersLµ , Sµ  and m of equation (3.4) against the final absolute 

locations along the first dimension. I obtained ( ) 41002.017.0 −×= mLµ  cm2/(Vs), 

( ) 41003.053.4 −×= mSµ  cm2/(V s) and 640041200m=m , which differs substantially from the 

values derived from equation (3.5) with the adjusted gel concentration C=0.75%, namely 

41060.0 −×=Lµ  cm2/(V s), 41012.3 −×=Sµ  cm2/(V s) and 9575=m . Absolute positions 

obtained from equation (3.4) and the adjusted values of Lµ , Sµ  and m are compared to observed 

ones in table 3.1. Experimental positions correspond to the average of the coordinates measured 

in three different experiments, while the associated uncertainties were estimated by taking the 

standard deviations for these three experiments. Note that the results of a fourth experiment, 

which differ markedly from the three other ones, were discarded. It can be seen that the root 

mean square deviation between observed and calculated absolute positions, that is 0.05 cm, is 

almost four times smaller than the average experimental uncertainty, which is 0.19 cm. 



 51 

 

3.4. Separation according to sequence composition 

 

 It appears that very few studies have addressed the question of the electrophoretic 

mobility of partially melted DNA sequences. To my knowledge, there is indeed only one 

available model [68], which is inspired from previously existing results for the mobility of 

branched polymers in gels. Although this model has no firm theoretical background and should 

be tested under a larger range of experimental conditions, several studies performed so far have 

reported fairly good agreement with experimental data [77,78]. According to this model, the 

mobility of a partially melted DNA sequence decreases exponentially with the size of the melted 

regions, that is 

( ) ( ) ( )








−=

rL

Tp
sTs exp, 0µµ                  (3.6) 

where ( )s0µ  is the mobility of the fragment when it is completely double-stranded, ( )Tp  is the 

sum of the probabilities for each base pair to be open at temperature T, and rL  is a size 

parameter, which is related to the mechanism that slows down partially melted fragments, and is 

therefore expected to depend on gel properties (concentration and pore size) and the flexibility of 

single-stranded DNA. Values of rL  reported in the literature range from 45 to 130 base pairs 

[77,78]. As already mentioned, I used the open source program MeltSim [38], together with the 

set of thermodynamic parameters of Blake and Delcourt [39], to estimate ( )Tp . The input 

quantities of this program are the temperature T, but also the salt concentration [Na+]: it is indeed 

well-known that the melting temperature of a sequence varies logarithmically with [Na+]. It 

should however be stressed that MeltSim was developed to predict the denaturation behavior of 

DNA sequences in cells and closely related media. Since porous gels differ sensitively from such 

solutions, it is not obvious that salt concentration has the same effect in cells and in gels. 

Moreover, it is difficult to predict how the presence of other salts in the composition of the buffer 

affects the melting temperature of the DNA sequences. In the simulations reported below, I 

therefore considered the [Na+] input of the MeltSim program as a free parameter not necessarily 

related to the exact salt concentration in the gel. 
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Equation (3.6) is sufficient to calculate the mobility of DNA fragments in TGGE 

experiments, that is, when a temperature gradient is imposed to the gel, because the temperature 

T at each position y of the gel is known up to a certain precision. The link between the mobility 

( )ys,µ  of equation (3.1) and the mobility ( )Ts,µ  of equation (3.6) is therefore straightforward. 

This is no longer the case for DGGE experiments, where the temperature of the plate is kept 

uniform around 60°C and a gradient of chemical denaturant (urea+formamide) is added to the gel 

in order to destabilize base pairings. In this later case, the known quantity is the concentration dC  

of the denaturant at each position y in the gel, so that estimation of the mobility ( )ys,µ  requires 

the additional knowledge of the equivalent temperature T, which has the same effect as a 

denaturant concentration dC  from the point of view of the melting of DNA fragments. A linear 

relation was proposed in reference [69], namely 

dCT
2.3

1
57+=                  (3.7) 

where dC  is the concentration of the standard stock solution of urea and formamide at position y 

(expressed in % v/v) and T the equivalent temperature (expressed in °C) to feed in the MeltSim 

program to estimate ( )Tp  at this position. As will be discussed below, equation (3.7) does not 

enable one to reproduce the absolute positions reported in reference [3]. I have therefore replaced 

equation (3.7) by the more general linear relation: 

dCTT α+= 0                    (3.8) 

where 0T  and α are considered as free parameters. I also took into account the very slight 

increase in gel viscosity due to the gradient of denaturant by slightly adjusting the mobilities of 

the DNA sequences at each time step. This is done by dividing the calculated mobility at each 

moment by the relative viscosity, which is computed according to reference [69]: 

drel C3103.41 −×+=η                   (3.9) 

 To summarize, calculation of the mobility of DNA fragments in the second dimension 

requires the knowledge of the numerical values of four constants, namely [Na+], rL , 0T  and α. 

To be really complete, one should actually include ( )s0µ , the mobility of fragment s when it is 

completely double-stranded (see equation (3.6)), in the list of the free parameters of the model. 

However, several trials showed that this parameter is so strongly correlated to the four other ones 
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that it is numerically impossible to let all of them vary simultaneously. I have therefore 

considered that the mobility ( )s0µ  that appears in equation (3.6) is equal to the mobility obtained 

from equation (3.4) (in the first gel). This, of course, involves some degree of approximation, 

since the gels in the two dimensions are not identical. 

I varied [Na+], rL , 0T  and α in order to reproduce the experimental results of reference 

[3]. These DGGE experiments were performed with 9 cm long plates and a denaturant 

concentration dC  increasing regularly from 25% to 100% between the extremities of the plates 

(the total concentration of stock denaturant was computed using the protocol given by Myers et 

al [79]: 100% stock denaturant corresponds to 7 M urea and 40% deionized formamide). 

Similarly to the first dimension, the experimental absolute positions and uncertainties reported in 

table 3.1 were obtained from three different experiments, while the results of a fourth experiment, 

which differ markedly from those of the three other ones, were discarded. I first allowed the four 

parameters to vary simultaneously. This resulted in the salinity [Na+] decreasing below 0.001 M, 

which is the limit of validity of the set of thermodynamic parameters in the MeltSim program. In 

order to understand why this happens, I next performed a series of three parameters fits (rL , 0T  

and α) at several values of [Na+] ranging from 0.001 M to 0.3 M. Results are shown in figures 

3.3 and 3.4. It is seen in figure 3.3 that the root mean square (rms) error between experimental 

and calculated absolute positions actually remains essentially constant in the whole range 0.001-

0.3 M. Furthermore, examination of figure 3.4 indicates that the adjusted values of 0T  and α vary 

logarithmically with [Na+]. This is not really surprising because, as I have already mentioned, the 

melting temperature of a given sequence increases logarithmically with [Na+]. At last, it is seen in 

the top plot of figure 3.4 that the adjusted value of rL  varies between 100 and 140 base pairs, 

which agrees with previously reported values [77,78]. 

Figures 3.3 and 3.4 are however not sufficient to illustrate how broad the space of 

solutions is, that is, how widely each parameter can be varied while still preserving a very good 

agreement between observed and calculated absolute positions. To get a better insight, figure 3.5 

shows the results of a series of two parameters fits, which consisted in adjusting simultaneously 

0T  and α for increasing values of rL  at two fixed values of [Na+], namely 0.01 and 0.1 M. It is 

seen in the top plot of figure 3.5 that rL  can actually be varied between 30 and 220 base pairs 

without letting the rms error increase by more than 0.05 cm. As shown in the middle and bottom 
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plots of figure 3.5, the adjusted values of 0T  and α vary little with rL  in this range and remain 

close to 370 =T °C and 63.0=α °C at [Na+]=0.01 M, and 580 =T °C and 54.0=α °C at 

[Na+]=0.1 M. It should be clear from the examination of figures 3.3-3.5 that the numerical 

criterion alone is not sufficient to fix unambiguously the set of parameters to use in the model 

and that other criteria must be taken into account. In my opinion, a very sensible criterion would 

consist in fulfilling the condition that the equivalent temperature deduced from equation (3.8) 

should be equal to the true temperature of the plate in the absence of chemical denaturant, that is 

for 0=dC %. This amounts to impose 600 =T °C in equation (3.8). 

  

 

 
 
 

Figure 3.3. Root mean square deviations between experimental and calculated absolute positions along the 
second dimension in the DGGE experiments for the 40 DNA sequences listed in table 3.1. The three parameters, 
Lr, T0  and α were adjusted simultaneously for each fixed value of the salinity [Na+].  
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Figure 3.4. Adjusted values of rL  (top plot), 0T  (middle plot), and α (bottom plot), for fixed values of the 

salinity [Na+]. 
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Figure 3.5. Results of a series of two parameters fits, which consisted in adjusting simultaneously 0T  and α for 

increasing values of rL  at two fixed values of [Na+] (0.01 and 0.1 M). The top plot shows the root mean square 

error (expressed in cm) between experimental and calculated absolute positions along the second dimension of 
the DGGE experiments for the 40 DNA sequences listed in table 3.1. The middle plot shows the evolution of 0T  

(expressed in °C) and the bottom plot the evolution of α (expressed in °C). 
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I therefore performed another series of two parameters fits, which consisted in adjusting 

simultaneously [Na+] and α for increasing values of rL  at fixed 600 =T °C. Results are shown in 

figure 3.6. Not surprisingly, the top plot again indicates that rL  can be varied between 30 and 

220 base pairs without letting the root mean square error increase by more than 0.05 cm. What is, 

however, more interesting, is that the middle and bottom plots of figure 3.6 show that the value of 

[Na+] to feed in the MeltSim program must be chosen in the range 0.10 to 0.15 M and that α 

consequently varies in the range 0.52 to 0.55 °C. Note that this is substantially larger than the 

value α=1/3.2=0.31 °C proposed in reference [69], but figure 3.6 unambiguously indicates that 

the absolute positions measured in reference [3] cannot be reproduced with such a low value of α 

- at least as long as one considers that ( )s0µ  in equation (3.6) is equal to the mobility in the first 

dimension obtained from equation (3.4). 

A second criterion is clearly mandatory in order to choose between the various solutions 

shown in figure 3.6. In my opinion, this criterion should rely on the knowledge of the number of 

base pairs of each sequence that are open at the end of the electrophoresis experiment. It should 

indeed be realized that all the solutions shown in figure 3.6 lead to the same dynamics of the 

fragments, that is, the mobility and the final position of each fragment do not depend on the 

chosen ( )α],Na[, +
rL  triplet, but they do not lead to the same denaturation properties, that is, to 

the same number of open base pairs. Stated in other words, ( ) rLTp /  remains the same for all 

( )α],Na[, +
rL  triplets, but not ( )Tp . This is clearly illustrated in figure 3.7, which shows the 

evolution as a function of time of the number of open base pairs (top plot) and of the position y 

(middle plot), as well as the evolution as a function of y of the mobility ( )ys,µ  (bottom plot), for 

two fragments with respective low and high GC contents and two ( )α],Na[, +
rL  triplets with 

very different values of rL . More precisely, the two fragments are the 2323 base pairs Eco91I 

digest of the λ-phage with 57.8% GC content and the 6555 base pairs Eco47I digest of the λ-

phage with 38.0% GC content, while the chosen sets of parameters are 30=rL  base pairs, 

145.0]Na[ =+  M and 526.0=α  °C, and 200=rL  base pairs, 105.0]Na[ =+  M and 524.0=α  

°C. Examination of the middle and bottom plots of figure 3.7 indicates that the calculated 

positions and mobilities of the two fragments are very similar for the two sets of parameters. In 

contrast, it can be seen in the top plot that the number of base pairs that are open at the end of the 
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electrophoresis experiment differ widely for the two sets of parameters: the set with 30=rL  base 

pairs predicts that about 250 base pairs are open for both fragments, while the set with 200=rL  

base pairs predicts that this number is close to 1500 (note that 200/150030/250 ≈ ). In order to 

fix unambiguously the correct set of parameters, which must be used to predict electrophoresis 

experiments such as those reported in reference [3], one should therefore complement these 

experiments with detailed measurements of the mobility of a few sequences, as in figure 4 of 

reference [77]. The positions of the bumps in the evolution of mobility, which reflect the abrupt 

opening of large portions of the fragment, indeed reveal the correct value of rL , and 

consequently also of ]Na[ +  and α. 

 Since these additional data are not available for the experiments reported in reference [3], 

we chose the set of parameters that leads to the smallest root mean square error, that is 100=rL  

base pairs, 134.0]Na[ =+  M and 540.0=α  °C, to compare calculated and experimental absolute 

positions in the second dimension. Results are tabulated in the four last columns of table 3.1. It is 

stressed that the root mean square deviation between calculated and observed absolute positions 

(0.15 cm) is almost twice smaller than the average experimental uncertainty (0.26 cm). 
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Figure 3.6. Results of a series of two parameters fits, which consisted in adjusting simultaneously [Na+] and α 
for increasing values of rL  at fixed 600 =T °C. The top plot shows the root mean square error (expressed in 

cm) between experimental and calculated absolute positions along the second dimension (DGGE experiments) 
for the 40 DNA sequences listed in table 3.1. The middle plot shows the evolution of [Na+] (expressed in M) and 
the bottom plot the evolution of α (expressed in °C). 
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Figure 3.7. Evolution as a function of time of the number of open base pairs (top plot) and of the position y 
(middle plot), and evolution as a function of y of the mobility ( )ys,µ  (bottom plot), for two different fragments 

and two different sets of parameters. The two fragments are the 2323 bps Eco91I digest with 57.8% GC content 
and the 6555 bps Eco47I digest with 38.0% GC content. The two sets of parameters are 30=rL  bps, 

145.0]Na[ =+  M and 526.0=α  °C, and 200=rL  bps, 105.0]Na[ =+  M and 524.0=α  °C. 600 =T °C for 

both sets. 
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3.5. Conclusion 

  

In this chapter, I have presented a study of the parameterization issues associated with a 

model aimed at predicting the final absolute locations of DNA fragments in 2D display 

experiments. In particular, I have shown that simple expressions for the mobility of DNA 

fragments in both dimensions allow one to reproduce experimental final absolute locations to 

better than experimental uncertainties. I have furthermore pointed out that the results of 2D 

display experiments are not sufficient to determine the best set of parameters for the modeling of 

fragments separation in the second dimension, and that additional detailed measurements of the 

mobility of a few sequences are necessary to achieve this goal. 

To model electrophoresis along the second dimension, which involves the melting of 

DNA along a concentration gradient of chemical denaturant, I have written a program that 

embeds the MeltSim code, which is based on the Poland-Scheraga model. This work convinced 

me that programs like MeltSim are very convenient for practical purposes. They are simple to 

use, even for people like me, who have not enough time at disposition to understand all the 

subtleties of the description of DNA melting with such statistical models. In addition, the 

precision of the underlying model is sufficient for many practical purposes. For example, it was 

mentioned in the discussion at the end of reference [3], that the weakest part of the simulation 

program is probably equation (3.6), which expresses the mobility of a partially melted DNA 

sequence as an exponentially decreasing function of the size of the melted regions, and that the 

rL  parameter should probably include some dependence on the properties of the gel (like its 

concentration and the size of the pores) and the studied DNA sequences (their length, the number 

and location of melted regions). All the attempts we made in this direction were unsuccessful, 

which is probably due to the fact that experimental uncertainties, which result essentially from 

the difficulty to control precisely the reproducibility of experimental conditions and the 

spontaneous deformation of the gels, are almost twice as large as the rms deviation between 

experimental and calculated positions. Today's limiting step is therefore neither the MeltSim 

code, nor the expressions I used to calculate mobility in both dimensions, but rather the 

experimental procedure: to my mind, it will indeed not be possible to improve the model as long 

as experimental uncertainties will not have been made substantially smaller than what can be 

achieved in today’s experiments. 
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4. Improving our dynamical DNA model 
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4.1. Introduction 

 

 It has been shown in the preceding chapter that statistical models enable a fast and reliable 

estimation of the denaturation properties of DNA sequences. This is no longer the case for the 

dynamical models, which will be discussed in this chapter. More precisely, dynamical models are 

indeed accurate - and we work hard to make them even more accurate - but they involve 

calculations, which are orders of magnitude more time consuming than statistical ones. As a 

consequence, they would for instance have been of no practical help to simulate the 2D 

electrophoresis experiments discussed in the previous chapter. 

 Yet, dynamical models are useful, because they provide a complementary point of view 

on the dynamics of melting, in the sense that, for dynamical models, the macroscopic properties 

of the sequence (like the critical temperature and the temperature evolution of the specific heat) 

depend only on its microscopic properties, like the depth and the shape of the stacking and 

pairing interactions. In contrast, models like that of Poland and Scheraga make heavy use of the 

statistical properties of the sequence, like the partition function of the loops and the cooperativity 

parameter. Moreover, the effect of temperature is explicitly plugged in statistical models through 

the definition of site-dependent stacking entropies. It is therefore interesting to check the degree 

of agreement between predictions obtained from models that rely on so different building blocks. 

I will come back to this point in section 4.5. Obviously, dynamical models are also powerful 

tools when one is not interested in the mean value of a quantity but rather in its fluctuations [40]. 

The purpose of the work presented in this chapter is threefold. I will first show how it is 

possible to get better estimations of the parameters of the model developed in our group by taking 

into consideration experimental facts that were disregarded up to this point. I will then compare 

the results obtained with the improved model with those obtained from statistical models. Finally, 

I will describe briefly the critical properties of the new model and compare them to those of the 

previous one. I will conclude with a discussion of the critical behaviour of the model in the very 

narrow region just below the critical temperature. 
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4.2. Adjustment of the parameters 

 

 As already emphasized in section 2.5, the dynamical model developed in our group needs 

to be improved with respect to at least three points. First, this model predicts, like the DPB one, a 

much too large sensitivity of the critical temperature with respect to the length of the sequence, 

leading to unrealistically small melting temperatures for sequences with less than several hundred 

base pairs. Moreover, we performed some calculations to probe the mechanical unzipping of 

DNA, and found that our model predicts too small critical forces. Additionally, the temperature 

resolution is too small compared to the experimental one. I will show in this section how these 

points can be improved, at least partially, by varying the parameters of the model. 

The Hamiltonian H of the model, which we developed to study DNA denaturation, is 

shown in equation (2.11). This Hamiltonian describes free DNA, that is, the case where no 

external force is applied to the sequence. In the presence of a force acting on one of the bases of 

the base pair at position n=1, the energy stretchH  of the perturbed system may be written as [80]: 

1yFHH stretch −=                   (4.1) 

It should however be noted that, because of the 2  factor that appears in the expression of ny  as 

a function of the positions nu  and nv  of each nucleotide (see equation (2.6)), F is, properly 

speaking, not the experimental force, but rather the experimental force multiplied by 2 . The 

critical force ( )TFc  is defined as the force required to keep the two strands separated at 

temperature T. This is the force, for which the variation of the average free energy per base pair 

of a very long sequence,( )Tg0 , is equal to the variation of free energy per base pair of the 

stretched single strands, ( )FTgu ,  [60-61,81-82]: 

( )( ) ( ) ( ) )(0,, 00 ccucu TgTgTgTFTg −=−                (4.2) 

Equation (4.2) contains an approximation, in the sense that it assumes that the free energy per 

base pair of a stretched double-stranded sequence is equal to that of an unstretched sequence. 

Results obtained using equation (4.2) are therefore better checked with independent calculations. 

Following the arguments of Singh and Singh [80], the variation of the free energy per base pair of 

unstretched long sequences may be estimated for the model in equation (2.11) according to  
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for temperatures T smaller than the critical temperature cT . In equation (4.3), nDD =  denotes the 

depth of the Morse potential for a homogeneous sequence. Moreover, it is possible for some 
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where ( )TkB/1=β . When approximating the nearest-neighbour interaction potential in equation 

(2.11) by 
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The plot of ( )TFc  obtained with equations (4.2), (4.3) and (4.6) and the original set of parameters 

reported in section 2.5 is shown as a solid line in figure 4.1. It was checked that Monte-Carlo 

simulations performed with the Hamiltonian in equation (4.1), reported as open circles in figure 

4.1, are in excellent agreement with this curve in the 290-370 K temperature range. Conclusion 

therefore is that the parameters used up to now lead to a too small critical force around 20°C (the 

experimental value lies in the range 10-20 pN [60,61]), especially when remembering that F in 

equations (4.1) to (4.8) denotes the experimental force multiplied by 2 . Examination of 

equations (4.6) to (4.8) shows that ( )TFc  depends strongly on bK , which was fixed somewhat 

arbitrarily in the original set of parameters. Comparison with mechanical unzipping experiments 

will therefore help fix this parameter to a more grounded value. Plots of ( )FTgu ,  obtained from 

equation (4.6) indicate that bK  must actually be increased for the calculated critical curve to 

come closer to the experimental one. This is a very positive point, because we also noticed that 

bK =10-5 eV Å-2 sometimes leads to distances between successive bases on the same strand that 

are unrealistically large. Increasing bK  will therefore improve the quality of the model with 

respect to two points and not only one. 

Moreover, and despite the fact that we have no definitive proof thereof, many trials 

convinced us that the only way to substantially reduce the dependence of the critical temperature 

on the length of the sequence consists in decreasing the depth of the stacking interaction, that is, 

in assuming smaller values for CH n /∆ . Since we want to go on using the stacking enthalpies 

nH∆  that were adjusted for statistical models, C must consequently be made larger than the value 

2=C , which we used up to now and was obtained by assuming that paired bases do not unstack 

simultaneously [7]. Low frequency Raman spectra [84,85] and theoretical investigations of 

collective modes in DNA [86,87] suggest, on the other hand, that the stacking stiffness CbH n /∆  

may be larger than what was assumed in the original set of parameters (note, however, that the 

two models are substantially different). The increase of the parameter b controlling the width of 

the Gaussian hole must therefore be larger than the decrease of the hole depth CH n /∆ . 
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4.3. New parameters 

 

Taking into account the considerations made above and requiring that calculated melting 

curves reproduce experimental ones is still not sufficient to fix all the parameters of the model 

unambiguously. However, we found that the following set of parameters allows for a correct 

reproduction of most of the known properties of DNA under usual salinity conditions (75 mM 

NaCl): 

•  Morse pairing potential: == DDn 0.048 eV and =a 6.0 Å-1 (against =D 0.040 eV and 

=a 4.45 Å-1 previously). 

• Stacking potential: 4=C  and =b 0.80 Å-2 (against 2=C  and =b 0.10 Å-2 previously). 

For inhomogeneous sequences, the ten stacking enthalpies nH∆  are taken from table 1 of 

reference [38] (as previously), while we used 409.0=∆=∆ HH n  eV for homogeneous 

ones (against the value 44.0=∆H  eV that was used previously). 

• Backbone stiffness: bK =4.0 10-4 eV Å-2 (against bK =10-5 eV Å-2 previously). As 

anticipated, the most important change compared to the earlier set of parameters concerns 

this parameter. 

 The plot of ( )TFc  obtained with this new set of parameters and equations (4.2), (4.3) and 

(4.6) is shown in figure 4.1. It is seen that, although probably still somewhat too small, the 

critical force around 20°C is now in much better agreement with the experimentally determined 

one [60,61]. Moreover, the melting temperature also decreases much less rapidly as a function of 

the length of the sequence. Figure 4.2 indeed indicates a 77.0/540 N  dependence, which is still 

larger than the decrease predicted by statistical models but is in qualitative agreement with both 

the N/500  dependence that is plugged in most online oligonucleotide property calculators and 

the experimental results reported in [59]. 
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Figure 4.1. Plot of the critical force cF , which is required to keep the two DNA strands separated, as a 

function of the temperature T of the sequence, according to the model of equation (2.11) and the old and new 
sets of parameters. Solid lines were obtained from equations (4.2), (4.3) and (4.6) and the few open circles from 
Monte Carlo simulations, as a check to the validity of these equations. 
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Figure 4.2. Plot, as a function of the length of the sequence N, of the difference ( )NTT cc −  between the critical 

temperatures of an infinitely long homogeneous sequence, 43.359=cT  K (see section 4.6), and a homogeneous 

sequence with N base pairs, ( )NTc . The dot-dashed line is the least-square fit to the calculated shifts. 
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4.4. Heterogeneous pairing and salt concentration contributions 

 

The set of parameters proposed above assumes that heterogeneity is carried by stacking 

interactions. One might instead assume that heterogeneity is carried by pairing interactions, as in 

heterogeneous versions of the DPB potential [51,52,54]. It is sufficient, for this purpose, to fix 

nH∆  to its average value 409.0=∆H  eV and introduce two different values for the Morse 

potential depth nD , namely one for AT base pairs and one for GC base pairs. One is thus led to 

the following set of parameters: 

• Morse pairing potential: =nD 0.041 eV for AT base pairs, =nD 0.054 eV for GC base 

pairs, and =a 6.0 Å-1. 

• Stacking potential: 4=C , =b 0.80 Å-2 and 409.0=∆=∆ HH n  eV. 

• Backbone stiffness: bK =4.0 10-4 eV Å-2. 

Results obtained with this set of parameters are qualitatively and quantitatively similar to 

those obtained with the set of parameters proposed in section 4.3. Since recent work suggests that 

heterogeneity is carried by both pairing and stacking interactions [88-90], one could think about 

introducing both different nD  and nH∆  values in the model. We however made no attempt in 

this direction because of the complexity of TI calculations for this kind of hybrid models [53]. 

 At last, it should be noted that the influence of different salinity conditions on DNA 

melting can easily be taken into account in this particular form of our model by using 

)]Na/[]Na[Log(006.0041.0 0
+++=nD  for AT base pairs and 

)]Na/[]Na[Log(004.0054.0 0
+++=nD  for GC base pairs, where nD  is expressed in eV and 

=+
0]Na[ 75 mM. The variations of critical temperature with respect to salinity obtained with 

these expressions agree well with those predicted by statistical models. 
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4.5. Comparison of the melting curves obtained with this model and statistical 

ones 

 

As mentioned before, in statistical models a base pair can only assume one of two states: 

“open” or “closed”. There is no ambiguity when estimating, for example, the fraction of open 

base pairs as a function of temperature, or the temperature at which each base pair of a given 

sequence has probability 0.5 to be open. Such plots are shown as dashed lines in figures 4.3 and 

4.4 for the 1793 base pair human β-actin cDNA sequence (NCB entry code NM_001101). 

Calculations were performed with the MeltSim program [38], the parameters of Blossey and 

Carlon [35], and salinity =+
0]Na[ 75 mM. 

“Closed” and “open” are more ambiguous concepts in the case of dynamical models, 

which are expressed in terms of continuous coordinates ny . For example, one might consider that 

the fraction of open base pairs is obtained by computing at each time t the fraction of base pairs 

for which ny  is larger than a given threshold threshy  and in subsequently averaging this quantity 

over t [6,52,54,55]. Alternatively, one can consider that a given base pair n is open if the mean 

elongation ny  is larger than the threshold threshy  and average this quantity over the sequence. 

The two definitions are rather close and, as long as one does not deal with experimental results 

obtained with ultra-short laser pulses, there is no physical reason to choose one definition instead 

of the other. Still, the curves obtained with these two definitions are not identical. In particular, 

we noticed that results obtained with the second definition are better resolved in temperature and 

closer to those obtained with statistical models [53,58]. Further on, we will therefore use this 

definition and consider that base pair n is open if threshn yy > . It remains that the choice of 

threshy  itself is not trivial. Figure 2.4 indeed shows that if one chooses for threshy  a too small value, 

like for example two or three times a/1  (approximately 0.5 Å), then application of the criterion 

to a long homogenous sequence would lead to the erroneous conclusion that all base pairs are 

already open tens of Kelvins below the critical temperature. For such long homogeneous 

sequences, the larger the value of threshy , the closer the critical temperature determined with the 

threshn yy >  criterion to the exact one. But, on the other hand, a too large value of threshy  is in 
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turn not suitable for inhomogeneous sequences, because different portions of an inhomogeneous 

sequence melt at different temperatures and the separation of open base pairs belonging to 

bubbles is limited by the double-stranded portions. The choice of threshy  therefore appears as a 

compromise between these two conflicting considerations. Practically, we found that, for the set 

of parameters proposed in section 4.3, the choice 10=threshy  Å leads to reasonable results for 

both homogeneous and inhomogeneous sequences. Still, one must keep in mind that the critical 

temperature determined with this criterion is 2 to 3 Kelvins lower than the correct one (see figure 

2.4). 

We computed the evolution of the fraction of open base pairs as a function of temperature 

and the melting temperature of each base pair of the 1793 base pairs actin sequence for the 

parameters of section 4.3 using the TI procedure described in reference [53]. The results are 

plotted as solid lines in figures 4.3 and 4.4. The results obtained with three different thresholds 

( =threshy 7, 10 and 15 Å) are shown for the sake of comparison. It can be checked that, except for 

the short region of the sequence that melts at the highest temperature, the agreement between 

results obtained with statistical and dynamical models is rather striking. In particular, the 

resolution in temperature of melting curves is higher for the new parameters than for the old set 

and almost comparable to that of statistical models. In contrast, no increase in resolution is 

observed in the plot of )(TcV , as can be checked in figure 4.5. 
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Figure 4.3. Plot, as a function of the temperature T of the sequence, of the fraction of open base pairs for the 
1793 base pairs human β-actin cDNA sequence (NCB entry code NM_001101) obtained with MeltSim [38] 
(dashed line) and the dynamical model proposed here (solid lines). MeltSim calculations were performed with 

the parameters of Blossey and Carlon [35] and a salt concentration =+
0]Na[ 75 mM. Results obtained with 

three different thresholds ( =threshy 7, 10 and 15 Å) are shown for TI calculations performed with the dynamical 

model. Remember that critical temperatures determined with the threshn yy >  criterion are 2 to 3 Kelvins 

lower than exact ones, as discussed in section 4.5. 
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Figure 4.4. Plot, as a function of the position of the base pair, of the opening temperature of each base pair of 
the 1793 base pairs human β-actin cDNA sequence (NCB entry code NM_001101) obtained with MeltSim [38] 
(dashed line) and the dynamical model proposed here (solid lines). MeltSim calculations were performed with 

the parameters of Blossey and Carlon [35] and a salt concentration =+
0]Na[ 75 mM. Results obtained with 

three different thresholds ( =threshy 7, 10 and 15 Å) are shown for TI calculations performed with the dynamical 

model. Remember that critical temperatures determined with the threshn yy >  criterion are 2 to 3 Kelvins 

lower than exact ones, as discussed in section 4.5. 
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Figure 4.5.  Plot of the specific heat per particle, Vc , as a function of temperature T for the 1793 base pairs 

human β-actin cDNA sequence (NCB entry code NM_001101), obtained from TI calculations performed with the 
dynamical model proposed here. Vc  is expressed in units of the Boltzmann constant Bk . 
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4.6. Critical behaviour of the dynamical model 

 

This section is devoted to the description of the critical behaviour of the dynamical model 

with the parameters proposed in section 4.3. I will show that it does not differ significantly from 

the behaviour observed with the set of parameters used in references [56,57], which implies that 

the melting of homogeneous DNA sequences looks like a first-order phase transition. It will be 

however pointed out that there is necessarily a crossover to another regime very close to the 

melting temperature. 

 The temperature evolution of the entropy per base pair, s, is shown in figure 4.6 for 

infinitely long sequences and sequences with N=1000 and N=100 base pairs. This plot, as well as 

all the other plots discussed in this section, were obtained from TI calculations performed as 

discussed in references [56,57]. It is seen that the temperature evolution of s displays the step-like 

behavior that is characteristic of first-order phase transitions. This is particularly clear for the 

infinite sequence and the sequence with N=1000 base pairs, but the step-like behavior is still 

well-marked for shorter sequences. As usual, this step-like behavior of s corresponds to thin 

peaks in the temperature evolution of the specific heat per base pair, Vc , as can be checked in 

figure 4.7. Note that, in both figures, the solid line associated with infinite sequences is 

interrupted in the narrow temperature interval where TI calculations are not valid. 

 Further information is gained by calculating the critical exponents, which characterize the 

power-law behavior of several statistical properties of infinitely long homogeneous sequences 

close to the critical temperature. For example, critical exponents α, β and ν are defined according 

to 
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              (4.10) 

where ξ denotes the correlation length and y  is taken as the order parameter of the melting 

transition [56]. The critical temperature of a sequence of length N, ( )NTc , is easily found as the 

temperature where Vc  is maximum. Because of the temperature interval where TI calculations 

are not valid, it may be somewhat more complex to determine the critical temperature of  
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Figure 4.6. Plot, as a function of the temperature T of the sequence, of the entropy per base pair, s, for an infinitely 
long homogeneous sequence and sequences with 1000=N  and 100=N  base pairs. These results were obtained 
from TI calculations. s is expressed in units of the Boltzmann constant Bk . The solid curve for the infinitely long 

chain is interrupted in the temperature interval where the TI method is not valid. 
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Figure 4.7. Plot, as a function of the temperature T of the sequence, of the specific heat per base pair, Vc , for 

an infinitely long homogeneous sequence and sequences with 1000=N  and 100=N  base pairs. These results 
were obtained from TI calculations. Vc  is expressed in units of the Boltzmann constant Bk . The solid curve for 

the infinitely long chain is interrupted in the temperature interval where the TI method is not valid. 
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infinitely long sequences, ( )∞== NTT cc . Here, we took advantage of the fact that the critical 

temperature shift ( )NTT cc −  unambiguously decreases as a power of N and consequently found 

cT  as the temperature for which ( )( )NTT cc −log  is best adjusted with a linear function of ( )Nlog . 

One gets 43.359=cT  K and, as already mentioned in section 4.2, 770.05.539)( −−≈ NTNT cc  (see 

figure 4.2). Critical exponents α, β and ν are then obtained by drawing log-log plots of, 

respectively,Vc , y  and ξ as a function of the temperature gap TTc −  and by estimating the 

slope of each curve in the temperature range where the power law holds. The plots in figures 4.8 

to 4.10 show that 33.1=α , 41.1−=β , and 47.1=ν , not so far from the values 13.1=α , 

31.1−=β , and 23.1=ν  obtained with the old set of parameters [56]. 

 The critical exponent of the specific heat, α, is thus larger than 1, which confirms that 

melting indeed looks like a first-order phase transition in the temperature range where power-

laws hold. The first-order regime with 1>α  can however not hold up to the critical temperature, 

because the average potential energy per base pair, NVu /= , is expected to evolve as 

( ) α−−∝ 1TTu c . If the regime with 1>α  would hold up to the critical temperature, then u would 

become infinite at cT , which is of course not possible. Figure 4.11 indeed shows that the value of 

α deduced from log-log plots of u as a function of TTc − , 37.1=α , is close to the estimation 

obtained from the plot of Vc , that is 33.1=α . Most importantly, figures 4.8 to 4.11 all display a 

crossover from the first-order regime to another regime in the last few Kelvins below the critical 

temperature. We checked that the results presented in these figures are converged, that is, they do 

not vary when the size of the matrix in TI calculations is increased from 4201 to 8201 and the 

maximum value of y correspondingly increases from about a/5000  to about a/10000 . Still, as 

mentioned in section 2.6, neither MD simulations nor TI calculations are able to provide a clear 

indication of what happens very close to cT . 

 At that point, it is worth noting that analogy with the wetting transition [91] and 

calculations performed with a rougher model [92] suggest that the melting transition is 

asymptotically second-order. This actually agrees with further work performed in our group 

without my participation [93]. In this later work, the free energy per base pair, f, was separated 

into a singular part, singf , and a non-singular part nsf . nsf  was taken as the free energy of two 
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widely separated, non-interacting DNA strands, so that singf  remains constant above the critical 

temperature, as must be the case. Combination of equations (2.15) and (4.10) indicates that singf  

is expected to vary as ( ) α−− 2TTc  close to the critical temperature. Log-log plots of singf  as a 

function of TTc −  then led to the value 57.0=α  for the model in equation (2.11) and the set of 

parameters of section 4.3 [93]. Similar calculations performed for the DPB model in equation 

(2.10) and increasing values of ρ confirmed that values of α estimated in this way are always 

comprised between 0 and 1, while values of α larger than 1 may be obtained when this critical 

exponent is estimated from the temperature evolution of Vc  [93]. This would confirm that the 

melting transition is asymptotically second order (as determined from the temperature evolution 

of singf ), while it actually looks first order (as determined from the temperature evolution of Vc ) 

up to a few degrees below the critical temperature. 

 

4.7. Conclusion 

 

In this chapter, I described how we varied the parameters of the dynamical model 

developed in our group to get a better agreement with experimental results that were not taken 

into account up to now, that is, the critical force needed to keep two DNA strands separated and 

the sequence size dependence of the critical temperature. Then, I showed that the results obtained 

with the improved model agree well with those obtained from statistical models. Finally, I 

checked that the critical properties of the dynamical model remain qualitatively similar to those 

predicted with the original set of parameters. Still, it should be noted that the resolution in the 

temperature evolution of the specific heat per base pair, Vc , is still much too poor compared to 

experiment (see figure 4.5).  
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Figure 4.8. Log-log plot, as a function of the temperature gap ( ) TNTc − , of the specific heat per base 

pair, Vc , for an infinitely long homogeneous sequence and sequences with 1000=N  and 100=N  base 

pairs. These results were obtained from TI calculations. Vc  is expressed in units of the Boltzmann constant 

Bk . The dot-dashed straight line shows the slope corresponding to a critical exponent 33.1=α . 
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Figure 4.9. Log-log plot, as a function of the temperature gap ( ) TNTc − , of the average base pair separation, 

y , for an infinitely long homogeneous sequence and sequences with 1000=N  and 100=N  base pairs. 

These results were obtained from TI calculations. y  is expressed in Å. The dot-dashed straight line shows the 

slope corresponding to a critical exponent 41.1−=β . 
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Figure 4.10. Log-log plot, as a function of the temperature gap TTc − , of the correlation length, ξ, for an 

infinitely long homogeneous sequence. This result was obtained from TI calculations. The dot-dashed straight 
line shows the slope corresponding to a critical exponent 47.1=ν . 
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Figure 4.11. Log-log plot, as a function of the temperature gap ( ) TNTc − , of the average potential energy per 

base pair, NVu /= , for an infinitely long homogeneous sequence and sequences with 1000=N  and 

100=N  base pairs. These results were obtained from TI calculations. u is expressed in eV. The dot-dashed 
straight line shows the slope corresponding to a critical exponent 37.01 −=− α . 
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Part II: DNA – protein interactions 

5. Introduction 
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5.1. Experiments of Riggs, Bourgeois and Cohn: the paradox of the missing salt 

 

 Although great advances have been made in genetics in the last decades and the genomes 

of several species are now completely mapped, there is still a lot of discussion on how gene 

expression takes place. Even if the steps of transcription are known, the means by which 

transcription factors find their targets are still not very well understood. The first and certainly 

one of the most important steps that have been made in this direction is due to the experiments of 

Riggs, Bourgeois and Cohn [10]. They measured the association rate for the lac repressor in 

various reaction conditions using a sensitive membrane filter assay for the lac repressor–operator 

complex [94]. This method consists in filtering a solution which contains repressor-operator 

complexes trough a membrane that only permits the passage of free DNA molecules. Therefore, 

they could measure how many of the DNA molecules would create complexes with the repressor 

in a certain amount of time. Their first experiment was performed in a buffer containing KCl, 

Tris-HCl and magnesium acetate at 0.01 M concentrations and they reported that the lac 

repressor binds to its operator site at a rate of about 9107×  M-1s-1. This value is one to two orders 

of magnitude larger than what is generally assumed for diffusion limited reactions (I will explain 

in the next section how this theoretical rate is computed). Riggs, Bourgeois and Cohn assigned 

this very high rate to the existence of an electrostatic attraction between the negatively charged 

DNA and a positively charged site on the repressor. As an argument for this assumption they 

made a series of experiments where they increased the ionic concentration in the buffer up to 

physiological values and obtained a net decrease of the association rate down to values of the 

same order of magnitude as the diffusion limit (figure 5.1). The article ends with a very clear 

discussion of these results, from which the most important conclusion is that even though 

protein-DNA association reactions are accelerated by the existence of electrostatic attractions 

they are still diffusion limited. Another argument in support of this statement is the fact that when 

repeating their experiments with 20% sucrose in the buffer, the association rate is reduced by a 

factor of two, as expected from the change in viscosity. In the end, the authors suggest a possible 

mechanism for the repressor finding its target that implies “rolling” or “hopping” around the 

DNA sequence.  
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Figure 5.1. Variation of the lac repressor-operator association rate with the KCl concentration in the buffer for 
the experiments of  Riggs, Burgeois and Cohn in reference [10].   
 

 

 

Figure 5.2. Representation of the facilitated diffusion process. The first cartoon shows sliding, the seconds depicts 
hoping and the third is an image of intersegment transfer, taken from reference [16].  
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This last hypothesis was later developed in a theoretical model [95] that became the 

inspiration for most of the models that followed. Berg, Winter and von Hippel indeed suggested 

that the protein’s target search can be greatly accelerated by its sliding on DNA, because this 

would reduce the dimensionality of the process [96]. This scenario implies that the protein 

connects randomly on the DNA chain and then slides along it in search of its target (figure 5.2). 

If it does not find the target after a certain amount of time it disconnects, diffuses in the cell and 

then reconnects somewhere else. Besides this, some proteins can also do intersegment transfer, 

which implies transiently doubly binding to two DNA segments. The combination of these 

processes is now known as facilitated diffusion, and is the basis for many theoretical models that 

aim to describe protein-DNA interactions [15-19]. Most of them are analytical models inspired 

by the theoretical description of chemical reactions, which only take into consideration the 

kinetics of the entire molecule population of the system. These models usually imply assuming 

the values of non-specific association and dissociation probabilities in order to compute the 

specific association rate.  

 Surprisingly enough, the majority of the theoretical works tend to assign the very high 

association rates measured in the early experiment of Riggs et al to facilitated diffusion and they 

seem to ignore the fact that this rate decreases when increasing the ionic strength of the buffer. 

This negligence has propagated, giving birth to a general conception that facilitated diffusion 

accelerates DNA-protein association with a factor as high as 100 compared to the diffusion limit. 

 The development of new techniques for in vivo microscopy has recently permitted direct 

visualization of the motion of proteins inside the cell, the precise determination of their diffusion 

coefficients and has also evidenced the existence of facilitated diffusion [98-109]. These 

experiments show that the values of the one-dimensional diffusion coefficient of the protein are 

up to a thousand times smaller than those for three-dimensional diffusion, and that the protein 

spends more time sliding than diffusing through the buffer. These facts should cast a doubt on the 

belief that facilitated diffusion is necessarily faster than normal diffusion. Incidentally, a recent 

review of experimental results by Halford[21] states that there is "no known example of a protein 

binding to a specific DNA site at a rate above the diffusion limit", and that "the rapidity of these 

reactions is due primarily to electrostatic interaction between oppositely charged molecules". 

This work clearly reminds us that the very high association rate observed in the first experience 

of Riggs, Bourgeois and Cohn is due to the absence of salt in the buffer, and that once these 
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experiments are repeated at a higher salt concentration the association rate greatly decreases. It 

also points out that these results have been confirmed by several other experiments [22-24]. Also, 

Halford suggests that we should put “an end to forty years of mistakes in DNA-protein 

association kinetics”. Therefore, these experimental results indicate that the debate around how 

proteins find their targets should now concentrate on whether facilitated diffusion really 

accelerates DNA sampling and which are the conditions for this to happen.  

 One of the goals of my thesis is to propose a mechanical model for the study of non-

specific DNA protein interactions and to use it to discuss in what conditions the alternation 

between one-dimensional diffusion and three-dimensional diffusion can lead to faster DNA 

sampling than normal diffusion. It implies developing a Hamiltonian that describes the 

interactions inside the cell and solving the equations of motion for the particles in the system. 

The next chapters contain a general presentation of existing models, a description of the model 

proposed, a study of what characteristics of the protein affect the speed of DNA sampling and a 

comparison of the results presented here with existing theoretical results. 

 

5.2. The diffusion limit and the Smoluchowski rate 

 

The purpose of this section is to explain how the diffusion limit is computed in the case of 

proteins binding on DNA.  

In a reaction where one spherical molecule A associates with a spherical molecule B, the 

association rate constant will reach the diffusion limit when every collision of A with B will 

result in a complex. The rate constant for a diffusion limited reaction is usually computed using 

the Smoluchowski equation [110]: 

))()(1000(4 BABAAvogSmol rrDDNk ++= π             (5.1) 

It is expressed in units of M-1s-1. AvogN  is Avogadro's number, AD and BD  are the 3D diffusion 

constants of the colliding species A and B (in units of m2 s-1), and Ar  and Br  their reaction radii 

(in meters). This is deduced by computing the particle flux that diffuses trough a spherical 

molecule in the case of the steady state solutions for Fick’s equation [111]. In order to show the 

steps of this procedure, I will give here the case of a reaction with a fixed target, but the 
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deduction is similar for all other cases. The concentration of particles diffusing in space at the 

distance r from an absorbing particle of radius a is given by: 

)1()( 0 r

a
CrC −=                 (5.2) 

where C0 is the initial concentration of particles. The flux trough the spherical absorber is:  

20)(
r

a
DC

r

C
DrJ −=

∂
∂−=               (5.3) 

The particles are absorbed by the sphere with a rate I that is equal to the area times the inward 

flux, which equals -J(a): 

04 DaCI π=                 (5.4) 

The reaction rate is given by the coefficient that relates I and C0. If the molecules are not 

considered spherical, then the problem becomes more complicated because the Smoluchowski 

rate also depends on a geometrical factor, which is proportional to the fraction of the number of 

collisions in which the two molecules face each other in the correct orientation for complex 

formation. When applying equation (5.1) to the particular case of a protein associating with 

DNA, Riggs et al [10] considered that the reaction radius BA rr +  is of the order of 0.5 nm, which 

is approximately the size of a base or an amino-acid. They further on pointed out that the 

diffusion constant of DNA is negligible compared to that of the protein and consequently 

estimated that 10
BA 1050.0 −×≈+ DD  m2 s-1, on the basis of the 150000 molecular weight of the 

lac repressor (this is very close to the value obtained from Einstein's formula for the diffusion 

constant of a sphere). By plugging these numerical values in equation (5.1), one obtains 

8
Smol 102×≈k  M-1 s-1, which is about 35 times less than the value measured in reference [10]. 

However, the crucial point is that equation (5.1) is valid only if molecules A and B have no net 

charge or if these charges are neutralized by counterions [112]. If this is not the case, then the 

association rate for free diffusion must be modified to include an electrostatic factor elecf  [21,95]: 

elecSmol fkk =                 (5.5) 

elecf  is larger than 1 if the interacting surfaces of A and B possess opposite charges. It is instead 

comprised between 0 and 1 if the sign of the charges is the same. Moreover, elecf  usually tends 

towards 1 when the ionic strength is increased, because there are more and more counterions that 

neutralize the charges on the interacting surfaces of A and B. If the salinity of the buffer is very 
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low, it can be considered in a first approximation that the electrostatic interaction between DNA 

and the protein is an unscreened Coulomb potential ( )rqq πε4/BA , where Aq  and Bq  are the 

charges on interacting particles A and B, and r is the distance between them. Debye [113] 

showed that, in this case, felec is given by: 

1elec −
=

xe

x
f                 (5.6) 

and 

Tkrr
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=

πε
                (5.7) 

By plugging e5A −=q  (the DNA electrostatic charge for about 7 bps), e10B =q  (the typical 

value for a protein effective charge [114,115]), 5.0BA =+ rr  nm, and 080εε =  in equations (5.6) 

and (5.7), one obtains 70elec ≈f , which is of the same order of magnitude as the decrease in the 

association rate constant that Riggs et al measured when increasing the salinity of the buffer up to 

physiological values (0.1 M KCl instead of 0.01 M) [10]. As far as I know, there does not exist 

such an explicit formula as equation (5.6) neither for the screened Debye-Hückel potential, nor 

for the sum of a screened Debye-Hückel potential and an excluded volume term, as the one I use 

in my model (see below). It was, however, checked numerically that the association rate for a 

screened Debye-Hückel potential is comprised between Schmolukowski's rate and Debye's one 

[116]. 

 

5.3. Kinetic models  

 

 Almost all the models for the description of protein-DNA association that were developed 

until now are based on similar series of assumptions regarding the nature of site targeting. These 

models assume that proteins alternate between three-dimensional (3D) motion in the cell and one-

dimensional (1D) sliding along the DNA chain and that both motions are purely diffusive with 

known diffusion coefficients D1D and D3D. These values are used to compute various observables 

such as the binding rate and the total time required for targeting as a function of a set of well 

defined geometric quantities, such as the DNA sequence length L and the average volume V of 

the cell, and a more or less extended list of rate constants and reaction probabilities (see, for 
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example, table I of reference [95]). For example, Halford and Marko [16] computed the reaction 

rate starting from the probability for a protein to find a nearby target by diffusion. They divided 

this process into several stages: first, the protein has to diffuse in solution until it encounters a 

DNA coil. Once the protein enters the coil it has a certain probability to find the target. 

Therefore, it has to visit the coil several times in order to be sure that it connects to the specific 

site. Defining the sliding length as the starting distance for which the probability of binding is 

0.5, and then applying the laws for 1D and 3D diffusion to the steps of the targeting process, 

Halford and Marko showed that the reaction rate for unit protein concentration can be expressed 

as: 
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Since they considered the 3D diffusion-limited rate to be equal to D3Da , where a is the size of 

the target, it follows that the acceleration of the reaction due to facilitated diffusion is ( )3D/ Dak . 

After a couple of additional hypotheses regarding the values of these parameters (of which the 

most important is that DD DD 31 ≈ ), Halford and Marko concluded that this ratio is at its 

maximum equal to about 30 for an optimal sliding length 100sl ≈l  base pairs, a value that is 

close to those obtained from single-molecule experiments [102,104,109]. This model gives a 

good hint on the qualitative dependence of the targeting speed on many parameters, but it is not 

very accurate. For example, it neglects the numerical factors that are present in the 1D and 3D 

diffusion equation and consequently also the 4π factor in the association rate. 

Most of the other kinetic models rely heavily on terms or expressions that are quite 

difficult to relate to experimentally measured properties of molecules and/or quantities derived 

from dynamical systems (for example various correlation terms that are supposed to arise when 

the protein switches from 1D to 3D motion). Therefore, I have only found one kinetic model to 

which it is possible and meaningful to compare the results obtained with the dynamical model I 

have developped. Using older calculations of Szabo et al [117], Klenin, Merlitz, Langowski and 

Wu derived from first principles that the mean time of the first arrival of the protein at the target 

of radius a can be written in the form [118]: 
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where 1DD  and 3DD  are the diffusion coefficients of the protein in the buffer and along the DNA 

sequence, respectively, and ξ  

3D

1D

3D

1D

2

1

τ
τ

π
ξ

D

D

L

V=                         (5.10) 

the distance where the efficiencies of the two types of diffusion become equal to each other (1Dτ  

and 3Dτ  are the average times the protein spends in the bound and free states, respectively). The 

accuracy of equation (5.9) was checked for the simple system where the protein is described as a 

random walker that is allowed to enter freely in the neighborhood of the DNA but has a given 

finite probability to exit this volume at each time step [18,118]. Although equation (5.9) was 

developed starting from a different idea than that leading to equation (5.8), it gives the same 

general tendencies for the reaction time (it has the same qualitative dependence on the diffusion 

coefficients for example). As will be shown below, all the quantities that appear in equations 

(5.9) and (5.10) can also be derived using molecular dynamics, and the mean time of first arrival 

τ can be related to the rate constant k. Further on, equation (5.9) will therefore be used for all 

comparisons between kinetic models and the model described in this work.  

 

5.4. The volume of the Wiener sausage 

  

 Before describing the dynamical model proposed in this work, I would like to make a 

short synthesis of some mathematical results regarding Brownian motion and random walks. A 

pure Brownian process is diffusive, so it is characterised by a diffusion coefficient D such that: 

dDtt 2)(2 =>< R                         (5.11) 

where d is the dimension of the space. The spatial region travelled by a spherical Brownian 

particle in a time t is formed by all points within a fixed distance of the centre of the particle. In 

mathematical terms, this comes to compute the Lebesgue measure of the space covered by the 

Brownian motion. This is also known as the Wiener sausage [119] (this name is a pun resulting 

from a combination between “Wiener processes”, which are a class of mathematical processes 

that include Brownian motions and which were named after the mathematician who studied them, 

and “Viennese sausages”, which can be used as a spatial representation of the volume covered by 

a 3D random walker). The volume of the Wiener sausage is important for the analysis of most of 
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the physical processes that can be described by a random walk. The analytical expressions for its 

long time asymptotic values in the case of a diffusing sphere of radius δ are [120,121]: 

tDt D1

16
)(

π
≈l                         (5.12) 

in the case of a 1D random walk,  

)log(

2
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t

t
tS

π≈                (5.13) 

for the surface covered in a 2D process and  

tDtV D34)( δπ≈                         (5.14) 

for the volume spanned by a 3D Brownian motion. 

Equation (5.12) shows, as one would intuitively expect from the diffusion equation, that 

the length covered by a 1D random walker increases as the square root of time. However, the 

result for the 3D case is less intuitive. Even though the average distance travelled by a 3D 

diffusing particle increases as a square root of time, the volume it covers increases linearly. The 

essential reason for this is that in three dimensions a random walk has a zero probability to re-

visit a point in space, in contrast to 1D and 2D motions. It is therefore not surprising that the 

visited volume increases more rapidly in three dimensions than in the 1D or 2D cases.  
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6.  The dynamical model: description and 

first results 
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 In this chapter, I describe the model I have developed to investigate DNA-protein 

interactions and the first basic results obtained therewith.  

  

6.1. Description 

 

I consider a system composed of a cell (or its nucleus) described as a sphere of radius R0 

containing a protein and several DNA segments. For the description of DNA, I have chosen an 

existing wormlike chain model [20] inspired from polymer physics. This is a bead-and-spring 

model that accurately reproduces the DNA molecule’s persistence length and translational 

diffusion coefficient. The DNA segments consist of chains of n beads connected by springs, 

which stand for fifteen base pairs. Each bead has a hydrodynamic radius 78.1DNA =a nm and an 

electrostatic charge of eele 1210243.0 0
10

DNA ≈×=  (e is the charge of the electron) placed in its 

center. The equilibrium value for the inter-bead distance is 50 =l nm. I chose the number of 

beads in a segment, n, in such a way that the length of each DNA segment is approximately equal 

to the radius of the cell, thus filling the cell homogeneously with DNA but avoiding a chain’s 

excessive curvature. This description does not take into account histones or other proteins that 

may be connected to DNA, but it has been shown that the sliding track of bacterial DNA can be 

truncated into short and mostly uniformly distributed DNA segments [122]. The number m of 

segments is chosen so that the density of bases inside the cell is close to real values. As pointed 

out in [16], the volume V of the cell and the total DNA length L are connected according to 

LwV 2= , where w represents roughly the spacing of nearby DNA segments. m must therefore 

fulfil the relation 0
23

03
4 mnlwR ≈π , where the average value 0.45=w  nm holds for both 

prokaryote and eukaryote cells [16]. However, this model best describes organisms where DNA 

is not packed in chromatin, like, for example, viruses. In this first work, I used three different 

sizes for the system (in order to make sure that the results are not size dependent): 

• 30=m  segments of 33=n  beads (i.e. a total of 14850 base pairs) and a cell radius 

134.00 =R  µm 
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• 50=m  segments of 40=n  beads (i.e. a total of 30000 base pairs) and a cell radius 

169.00 =R  µm 

• 80=m segments of 50=n  beads (i.e. a total of 60000 base pairs), with the cell radius 

213.00 =R  µm 

and 45=w  nm in the three cases. Figure 6.1 is an image of the cell for the last case.  

The potential energy potE  of the system consists of three terms: 

wallDNA/protDNApot VVVE ++=                           (6.1) 

where DNAV  describes the potential energy of the DNA beads and the interactions between them, 

DNA/protV  stands for the interactions between the protein bead and DNA segments, and wallV  

models the interactions with the cell wall, which refrain all the beads in the system from going 

outside the cell. DNAV  is taken from reference [20]: 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.1. Snapshot of the cell for the case where 80=m and 50=n . In white are the DNA beads and in 
dark orange is the protein.  
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where kj ,r  denotes the position of bead k of segment j, 1,,, +−= kjkjkjl rr  the distance between 

two successive beads belonging to the same segment, and kj ,θ  the angle formed by three 

successive beads on the same segment 
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sE is the bond stretching energy. This is actually a computational device without real 

biological meaning, which is essentially aimed at avoiding dealing with rigid rods. The stretching 

force constant is fixed at 2
0B /100 lTkh = , with 298=T  K. This value was chosen in order to 

balance between using a time step that is as large as possible and having only small 

displacements from the equilibrium length. For this value of h one gets 02.1/ 0 =>< ll .  

bE  is the elastic bending potential. There are several methods to approximate the bending 

rigidity constant g of a worm-like chain, all aiming to give a correct persistence length. One of 

the simplest is: 

0l

Tpk
g B= ,                           (6.4)  

where p is the persistence length (here 0.50=p  nm, i. e. 10 beads ) and l0 is the inter-particle 

distance. This would give a value of Tkg B10=  , but here I have used the value Tkg B82.9= , 

which I borrowed from references [20,123].  
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eE  is a Debye-Hückel potential, which describes repulsive electrostatic interactions 

between DNA beads [20,124,125]. This potential also takes into considerations the screening of 

interactions due to the ions in the buffer, so that in equation (6.2) 07.3=Dr  nm stands for the 

Debye length at 0.01 M molar salt concentration of monovalent ions: 

IeN

Tk
r

A

B
D 22

ε= ,                          (6.5) 

where 080εε = is the dielectric constant of the buffer, NA is Avogadro’s number, and I is the 

ionic strength of the buffer:  
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where n is the number of types of ions in the buffer, ci is their concentration and zi is their charge. 

Electrostatic interactions between neighbouring beads belonging to the same segment are not 

included in the expression of eE  in equation (6.2), because it is considered that these nearest-

neighbour interactions rather contribute to the stretching and bending terms.  

The potential wallV , which models the interactions between DNA and the protein and the 

cell wall, is taken as a sum of short range repulsive terms that act on the beads that trespass the 

radius of the cell, 0R , and repel them back inside the cell: 
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where protr  denotes the position of the protein and f is a function defined as: 

if 0Rx ≤  : ( ) 0=xf  

if 0Rx >  : ( ) 1
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The coefficients TkB  and TkB10  in equation (6.7) were roughly adjusted by hand, in order that, 

at 298 K and for cell radii 0R  comprised between 0.134 and 0.213 µm, all the beads (DNA and 

protein) remain confined inside a sphere of radius 010.1 R≈ , which insures that the time spent by 

the beads outside the cell is negligible. The coefficient is 10 times larger for the protein than for 

DNA, because the protein is modelled by a single bead, so that its mobility is much larger than 
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that of the interconnected DNA beads and its motion outside the sphere of radius 0R  more 

difficult to oppose. 

 The interaction DNA/protV  between the protein and DNA beads is the sum of an attractive 

and a repulsive term: 
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where F is a function defined as:  
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if σ2>x  : ( ) 0=xF                        (6.10) 

and 28.5protDNA =+= aaσ  nm. (P)
eE  is the Debye-Hückel potential, which models the attractive 

electrostatic interactions between the protein and DNA beads, while evE  is an excluded volume 

term, which prevents the protein bead from superposing to a DNA bead and (P)
eE  from diverging. 

evE  is sometimes taken as the repulsive part of the Lennard-Jones potential [126]. Being of order 

12, this function is however so sharp that it leads too often to numerical bugs, while the order 4 

function ( )xF  enables relatively trouble-free calculations. The prefactor of evE  was chosen as 

DNAprotB / eeTk , because this insures that the DNA/protein interaction DNA/protV  displays a global 

minimum very close to protDNA aa +=σ , whatever the charge prote  of the protein bead (figure 

6.2). Intuitively, DNA/protV  must indeed be minimum at some value close to the sum of the radii of 

DNA and the protein (that is, close toσ ) in order for sliding to take place. Moreover, I will take 

advantage of the fact that the position of this minimum does not depend on prote  to let prote  

assume different values, thereby varying the percentage of time the protein bead spends in 1D 

sliding and 3D motion. 
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Figure 6.2. Plot, as a function of the distance prot, rr −kj  between the centres of the two beads, of the 

interaction potential DNA/protV  between the protein bead and bead k of DNA segment j, for three different values 

of DNAprot / ee  (0.3, 2 and 5) and a purely repulsive potential, which is just the repulsive part of the potential 

with 3.0/ DNAprot =ee . DNA/protV  is expressed in eV and prot, rr −kj  in nm. Note that the three curves with 

3.0/ DNAprot =ee , 2 and 5 all display a minimum located at prot, rr −kj =5.04 nm, close to 

28.5PROTDNA =+= aaσ  nm. 
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Figure 6.3. Plot of the equal energy lines for the DNA-protein interaction potential with 2/ DNAprot =ee . At 

infinite DNA-protein separation the potential energy is 0. Contour lines are separated by 0.02 eV, with the lines 
in red corresponding to -0.1, -0.2 and -0.3 eV. The green line denotes the minimum energy path. The 
hydrodynamic radii of DNA and the protein beads are indicated, with the protein sitting on a minimum.  
 
 
 

Figure 6.3 shows the lines of equal potential for the interaction energy between the 

protein and a fixed, straight DNA chain for 2/ DNAprot =ee . Except for the depth of the minimum, 

equipotential lines for values of DNAprot / ee  ranging from 0.3 to 5 are very similar to figure 6.3. It 

is important to notice that the potential well is deeper by a factor up to almost 3 if the protein 

interacts simultaneously with several DNA beads. Also, the potential barrier the protein has to 

pass in order to slide from one bead to the other is very small compared to the maximum depth of 

the potential wall, so it does not have any significant effect on the sliding motion for moderate 

values of prote . In contrast, it cannot be excluded that this barrier plays a significant role in the 

subdiffusive behaviour, which is observed for larger values of prote  or highly deformable proteins 

(see chapters 7 and 8). 
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For describing the motion of the system I used Brownian dynamics. Brownian dynamics 

is employed in molecular dynamics simulations when one wants to avoid dealing with explicit 

solvent molecules. Instead, molecular collisions are accounted for by adding random forces to the 

potential and friction forces in a Newtonian motion. The Brownian dynamics equation of motion 

for an ensemble of particles is:  

)()())(( tttE ξ+−−∇= rZrrM &&&                       (6.11) 

where M  is a diagonal matrix containing the masses of the particles, E is the potential energy, Z 

is the tensor containing friction coefficients, and ξ(t) are random forces with mean and covariance 

given by:  
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                      (6.12) 

Equation (6.12) is based on the fluctuation-dissipation theorem. This theorem states that, for a 

randomly moving particle, friction is related to a random force. Since the random force does not 

have a time scale, the time scale of the motion of such a system is given by the inertial relaxation 

times, defined as the inverses of the eigenvalues of the matrix M -1Z. When these times are short 

compared to the timescale of the simulation it is possible to ignore inertia and assume that 

0)( =trM && . Then, equation (6.11) becomes:  

)())(()( 11 ttEt ξ−− +∇−= ZrZr& ,                      (6.13) 

which can also be written as:  
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where D is the diffusion tensor, connected to the friction coefficients by:  

1−= ZD TkB                          (6.15) 

The mean and covariance of the random forces are connected to the diffusion tensor through:  
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The algorithm that I have chosen for solving these equations is that of Ermack and McCammon 

[127]. This algorithm is based on the approximation that momentum relaxation occurs much 

faster than position relaxation. This condition translates in a condition that the time step is 

sufficiently large: aMt πη6/>∆ (for a detailed explanation see reference [127]). In this case, this 
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gives a lower limit for the time step of 1 ps. According to the first-order version of this algorithm, 

the updated position vector for the beads is given by: 

)()()()(

B

)()1( .2. n
G

nnnnn t
Tk

t ξLFDrr ∆+∆+=+                     (6.17) 

where t∆  is the time step. Note that )(nr  and )1( +nr  are collective vectors that include the position 

vectors kj ,r  of all DNA beads, as well as the position vector protr  of the protein bead, at steps n 

and n+1. The second term in the right-hand side of equation (6.17) models the diffusive effects of 

the buffer. )(nF  is the collective vector of inter-particle forces arising from the potential energy 

potE  and )(nD  the hydrodynamic interaction diffusion tensor. As in [126], I built the successive 

tensors )(nD  using a modified form of the Rotne-Prager tensor for unequal size beads [128-130] 

(see equations (26)-(28) of [126]). The third term in the right-hand side of equation (6.17) models 

the effects on )1( +nr  of collisions between the buffer and the protein and DNA beads. )(n
Gξ  is a 

vector of random numbers extracted at each step n from a Gaussian distribution of mean 0 and 

variance 1, while )(nL  is the lower triangular matrix obtained from the Choleski factorization of 

)(nD  : 

)()()( . ntnn LLD =                         (6.18) 

where )(nt L  denotes the transpose of )(nL . The CPU time required to factor the diffusion matrix 

increases as the cube of the number of beads that are taken into account in )(nD , so that the 

Choleski factorization of )(nD  turns out to be the limiting step for the investigation of the 

dynamics of large systems. There is an algorithm that can be used to decrease the exponent from 

3 to 2.25 [131,132], but I chose to use a more drastic approximation. Since the main purpose of 

this work is to study the interaction between DNA and the protein, it is most important that the 

motion of DNA close to the protein is modelled correctly. The results are little affected if the 

motion of DNA far from the protein is handled in a cruder way. Therefore, I used equations 

(6.17) and (6.18) to calculate the position at each time step of the protein and the 100 DNA beads 

closest to it, while the positions of the remaining DNA beads were obtained from the diagonal 

approximation of equation (6.17), that is 
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where 00089.0=η  Pa s denotes the viscosity of the buffer at 298 K. Note that equation (6.19) is 

just the first-order discretization of the usual Langevin equation without hydrodynamic 

interactions and with the second-order term arising from kinetic energy dropped. When 

considering a system with 2000 DNA beads, use of equations (6.17) and (6.18) to update the 

positions of the protein and the 100 closest DNA beads slows down calculations by only 10% 

compared to the case where equation (6.19) is used for all beads. In contrast, the CPU time is 

already multiplied by a factor larger than 2 if equations (6.17) and (6.18) are used for the 200 

DNA beads closest to the protein. On the other hand, I checked that use of equation (6.19) to 

update the position of all beads leads to results that differ substantially from those presented 

further on, while use of equations (6.17) and (6.18) to update the position of the 200 DNA beads 

closest to the protein, instead of the 100 closest ones, leads to similar results. The use of equation 

(6.17) for the protein and the 100 closest DNA beads and of equation (6.19) for the other DNA 

beads therefore appears as a very reasonable choice.  

For all simulations, the m DNA segments were first placed inside the cell according to a 

randomization procedure that insures an essentially uniform distribution of the beads in the cell 

(see figure 6.4). The protein bead was then placed at random in a sphere of radius 5/0R . In order 

to avoid too strong repelling interactions at time 0=t , all initial configurations where the 

distance between the protein and at least one DNA bead turned out to be smaller than 

28.5protDNA =+= aaσ  nm were rejected. The equations of motion (6.17) and (6.19) were then 

integrated for 10 µs, in order for the system to equilibrate at the correct temperature. The 

quantities of interest were subsequently obtained by integrating the equations of motion for 

longer time intervals and averaging over several different trajectories. Finally, I have checked 

that time steps t∆  equal to 25, 100 and 400 ps lead to identical results (see figure 6.5). Most of 

the results discussed in this chapter were consequently obtained with 100=∆t  ps, although a few 

ones dealing with the system with 4000 DNA beads were obtained with 400=∆t  ps.  
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Figure 6.4. Profile of the number of DNA beads per unit volume as a function of the distance r from the centre 
of the cell after an integration time of 30 µs. The maximum of the curve was arbitrarily scaled to 1. This profile 
was averaged over 64 different trajectories with 2000 DNA beads. 
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Figure 6.5. Comparison of results obtained with different time steps. Both plots show the evolution of )(tN , 

the number of different DNA beads visited by the protein at time t. It is considered that a DNA bead and the 
protein are in contact if the distance between the centres of the two beads is smaller than 

28.5protDNA =+= aaσ  nm. The top plot shows the evolution of )(tN  for the system with 2000 DNA beads, 

1/ DNAprot =ee  and time steps 25=∆t  and 100 ps. The bottom plot shows the evolution of )(tN  for the system 

with 4000 DNA beads, 1/ DNAprot =ee  and time steps 100=∆t  and 400 ps. Each curve was averaged over 6 

different trajectories. 
 
 



 113 

 

6.2. 1D and 3D diffusion and DNA sampling 

 

For studying the nature of the motion of the protein and of the DNA sampling process, I 

chose three quantities: the proportion D1ρ  of the total simulation time (excluding equilibration) 

that the protein spends connected to the DNA chain, which is equivalent to the probability of 

sliding, the number )(tN  of different DNA beads it has visited at time t, and the number nsim of 

DNA beads to which it is simultaneously connected when it is not diffusing freely in the buffer. 

Actually, the number )(tN  of sites visited by a diffusing particle is the most important parameter 

for studying a search process: it is indeed connected to the association rate in diffusion controlled 

reactions and to the first passage time on a given site. On the other hand, examination of nsim is 

useful when varying the charge of the protein, because it may indicate when the values of the 

parameters become unrealistic.  

For the repulsive DNA/protV  potential displayed in figure 6.2, the DNA and the protein never 

attract each other. The protein therefore moves almost freely in the buffer, except that it is 

repelled by the excluded volume interaction evE  whenever the distance to a DNA bead becomes 

too small. This case is actually very close to a diffusion limited reaction. Because of the large 

density of DNA beads, the probability for the protein to be found close to a DNA bead is not 

negligible: if one considers that the protein interacts with bead k of DNA segment j when 

σ≤− prot, rr kj , then DNA “fills” about 3% of the cell volume and the protein is expected to 

spend approximately the same amount of time interacting with DNA, in spite of the absence of 

attractive interactions. This is indeed the case, as can be checked in figure 6.6, which shows the 

proportion of time 1Dρ  during which the protein interacts with a DNA bead as a function of the 

ratio DNAprot / ee . In this plot, the points at 0/ DNAprot =ee  correspond to the repulsive potential in 

figure 6.2, while circles and lozenges respectively denote results obtained with the 

σ≤− prot, rr kj  and σ5.1prot, ≤− rr kj  criteria for interacting beads. It is seen that 1Dρ  is indeed 

close to 3% for the repulsive potential and the σ≤− prot, rr kj  criterion. 
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I found that the number of beads visited by the protein in the absence of the attractive part 

of DNA/protV  increases with time following an exponential law:  

( )








−−=

nm

t

nm

tN κexp1                        (6.20) 

where 09.1=κ  µs-1 (see figure 6.7). The most important aspect of this law is that it implies that 

( )tN  increases linearly with a rate κ  as long as N  remains sufficiently small compared to the 

total number nm  of DNA beads inside the cell, while this rate steadily decreases down to zero 

when N  comes closer and closer to nm , due to saturation (there are less and less new beads to 

visit). 

 
 
Figure 6.6. Plot, as a function of the ratio DNAprot / ee , of the portion of time 1Dρ  during which the protein 

remains attached to a DNA bead. The abscissa axis actually corresponds to the variation of prote  at constant 

DNAe . Circles and lozenges denote results obtained with, respectively, the σ≤− prot, rr kj  and 

σ5.1prot, ≤− rr kj  criterions for interacting beads. The point at 0/ DNAprot =ee  was obtained with the 

repulsive potential of figure 6.2. Each point was averaged over 12 different trajectories propagated for 100 µs 
for the system with 2000 beads. 
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Figure 6.7. Plot of ( ) ( )( )nmtN /1ln −  as a function of ( )nmt /  for the system with 2000=nm  DNA beads and 

the repulsive potential of figure 6.2. The dot-dashed straight line represents the same plot for the expression of 
( )tN  in equation (6.20) and a rate 09.1=κ  µs-1. 
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To compare this law with equation (5.14) one firstly needs to remember that DNA is 

homogenously distributed in the cell and that its motion is slow compared to that of the protein. 

Then N(t) and V(t) can be related through )()( tcVtN = . In the end, we can deduce from equation 

(5.14) an increase rate for the number of visited sites: 

cD δπκ D34=                         (6.21) 

Knowing that is sufficient for the protein to touch a DNA site to consider that is has been visited, 

one can approximate that the volume covered by the protein in a time t is equivalent to the trace 

of a 3D random walk performed by a sphere with radius DNAprot aa +=δ . One can therefore 

compute the association rate from equation (5.14) according to: 

( ) cDaa D3DNAprot4 +≈ πκ                        (6.22) 

When plugging in equation (6.22) the actual concentration of DNA beads, 221089.9 ×=c  

beads/m3, and the 3D diffusion coefficient at 298 K of a sphere of radius prota , 
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D B

ηπ
 m2/s                      (6.23) 

one obtains 46.0≈κ  beads/µs, which is less than a factor 2 away from the value of κ obtained 

from the simulations, and coincides almost perfectly with the value that is obtained when the 

positions of all the beads are updated according to equation (6.19), that is when hydrodynamic 

interactions are completely disregarded. I will come back to this point in chapter 8. 

If 0/ DNAprot >ee , then the interaction potential DNA/protV  between the protein and DNA 

beads displays a minimum close to protDNA aa +=σ  (figure 6.2), so that the motion of the protein 

results from the balance of conflicting constraints: DNA/protV  tends to localize the protein close to 

DNA segments, while stochastic interactions with the buffer tend to release the protein bead in 

the bulk of the cell. Figure 6.6 indicates that the motion of the protein therefore consists of a 

combination of 1D sliding and 3D motion for values of DNAprot / ee  not too large, up to 

3/ DNAprot ≈ee . For larger values of DNAprot / ee , the electrostatic attraction between the protein and 

DNA is predominant, so that the protein spends most of the time in the neighbourhood of a DNA 

segment. The ratio 1/ DNAprot ≈ee  corresponds to an effective protein charge ee 12prot ≈ , which 
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is of the same order of magnitude as experimentally determined protein effective charges 

[114,115]. 

At this point, it should be mentioned that hydrodynamic interactions tend to decrease the 

ratio of time the protein spends sliding along the DNA chain compared to 3D motion in the 

buffer. For example, if one neglects all hydrodynamic interactions, then 1Dρ  is found to be equal 

to 0.60 (respectively, 0.95) for 1/ DNAprot =ee  and the σ≤− prot, rr kj  criterion (respectively, the 

σ5.1prot, ≤− rr kj  criterion) for interacting beads, instead of 20.01D =ρ  and 0.44 when 

hydrodynamic interactions are taken into account. As will be discussed in chapter 8, this has 

marked consequences on the number )(tN  of different beads visited by the protein at time t. 

Figure 6.8 illustrates the typical trajectory of a protein bead for the ratio 1/ DNAprot =ee . 

During the 15 µs time interval displayed in this figure, the protein visits four different segments. 

Globally, sliding along each segment can last several µs, but it is frequently interrupted by 

shorter time intervals during which the protein is released in the buffer and at the end of which it 

reattaches to the same segment either at the same position or at a neighbouring one. These short 

jumps are often called “hops” [95,109,133]. On the other hand, the protein sometimes moves 

almost freely and for longer time intervals (several µs) in the buffer before reattaching to another 

segment or eventually to the same segment but at a rather different position. Note also that 

intersegmental transfer, which involves an intermediate state where the protein is simultaneously 

bound to two different segments [95,109,133], is observed in these simulations, especially at 

larger values of DNAprot / ee , although this kind of motion is not illustrated in figure 6.8. 

It can easily be checked that the number of different DNA beads visited by the protein 

during 1D diffusion very precisely follows the square root law in equation (5.12). For example, 

the solid line in figure 6.9 shows the evolution of )(tN  for the system with 2000 DNA beads and 

1/ DNAprot =ee , obtained by averaging over 43 sliding events, which lasted more than 1 µs and 

during which the protein neither detached from the DNA segment for more than 0.07 µs nor 

reached one of the extremities of the segment. It can be seen that this solid curve very closely  
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Figure 6.8. Typical protein trajectory for the system with 2000 DNA beads and the ratio 1/ DNAprot =ee . This 

plot indicates, at each time, to which bead of which DNA segment the protein is eventually attached. Time 
intervals for which no position is indicated correspond to those periods where the protein is diffusing in the 

buffer. It was assumed that the protein is attached to bead k of DNA segment j if σ≤− prot, rr kj . 
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Figure 6.9. Evolution of the number )(tN  of different DNA beads visited by the protein during 1D sliding. 

Calculations were performed with 2000 DNA beads and the ratio 1/ DNAprot =ee . )(tN  was averaged over 43 

sliding events with the following properties : (i) each sliding event lasted more than 1 µs, (ii) the protein did not 
separate from the DNA segment by more than σ during more than 0.07 µs, (iii) the protein bead did not reach one 
of the extremities of the DNA segment. The dot-dashed line corresponds to a diffusion coefficient 9.71D =D  

beads2 µs-1. 
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follows the dot-dashed line, which represents the evolution of tDltN D1
11

0 16)( −−= π  with a 

diffusion coefficient 9.7D1 =D  beads2 µs-1, or 1800D1 ≈D  bp2 µs-1. The experimental values for 

the 1D diffusion coefficient of DNA binding proteins are close to 5 (base pairs)2 µs-1 [99,102]. 

Since one bead represents 15 base pairs, this implies that the model predicts a velocity for sliding, 

which is about one to two orders of magnitude too large. This is due firstly to the fact that real 

protein sliding follows the helical path of the DNA chain and is often accompanied by 

geometrical rearrangements of the DNA sequence, two points that are completely neglected in 

this model. Moreover, in addition to the (P)
eE  electrostatic interaction, the protein and the DNA 

sequence interact through several hydrogen bonds when the protein is sufficiently close to the 

sequence. This point is crucial for specific DNA-protein interaction (that is, sequence 

recognition) [13,134-138] but is again completely neglected in the proposed model for non-

specific DNA-protein interactions. The situation changes somewhat in the case where the protein 

is described using a more precise model or if it has higher charges, but I will come back to this 

point later.  

Examination of figure 6.6 indicates that the amount of time 1Dρ , during which the protein 

is attached to a DNA segment and experiences sliding, is a monotonically increasing function of 

the charge on the proteinprote . In contrast, the number )(tN  of different DNA beads visited by 

the protein after a certain amount of time t is not a monotonic function of prote , and therefore of 

1Dρ , as can be checked in figures 6.10 and 6.11. These figures display the evolution of )(tN  for 

the repulsive interaction potential of figure 6.2 and seven values of DNAprot / ee  ranging from 0.3 

to 5. In figure 6.10, it is assumed that the protein is attached to bead k of DNA segment j if 

σ≤− prot, rr kj , while the corresponding criterion in figure 6.11 is σ5.1prot, ≤− rr kj . It is seen 

in both figures that )(tN  increases with the charge until 1/ DNAprot ≈ee , then remains nearly 

constant up to 3/ DNAprot ≈ee , before decreasing again. The reason for this sharp decrease at large 

values of DNAprot / ee  can be understood from the inspection of figure 6.12, which shows the 

average number of DNA beads that are simultaneously attached to the protein when it is not 

moving freely in the buffer. One observes that the number of DNA beads within σ5.1  of the 

protein is close to 2 for values of DNAprot / ee  smaller or close to 1, which indicates that the protein 
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forms a triangle with two successive DNA beads belonging to the same segment and separated by 

about 50 =l  nm. The number of DNA beads within σ5.1  of the protein increases however 

rapidly for larger values of DNAprot / ee , because the charge of the protein bead is sufficient to 

attract several DNA segments, which form a cage around it. The protein visits the DNA beads 

forming the cage in a short amount of time, but the slope of )(tN  then decreases as the protein 

experiences difficulties to escape the cage and visit other segments.  This cage effect is strong 

enough for the )(tN  curve for 5/ DNAprot =ee  to be lower than that for the repulsive potential 

when the σ5.1prot, ≤− rr kj  criterion is considered (see figure 6.11).  

However, the crucial point is certainly that figures 6.10 and 6.11 show that, for this 

model, the combination of 1D sliding and 3D motion leads, in a certain range of the DNAprot / ee  

ratio, to faster DNA sampling than pure 3D diffusion. I now assume that nature selects the fastest 

process and focus on the properties of the system with 1/ DNAprot =ee . Figure 6.13 shows the time 

evolution of )(tN  for systems with 1/ DNAprot =ee  and increasing numbers of DNA beads, 

namely 990=nm , 2000 and 4000. As expected, the three curves coincide at short times, that is, 

when nmtN <<)( . Each curve then successively displays saturation as )(tN  approaches mn. All 

these curves however follow the law of equation (6.20) with the same rate 84.1=κ  µs-1, as can 

be seen in figure 6.14. This is rather interesting since it indicates that the observed behaviour is 

independent of the size of the cell and can reasonably be extrapolated to larger cell sizes. In 

addition, this law implies that even in the case where the protein and the DNA beads attract each 

other, the global motion of the protein is likely to remain diffusive-like, since )(tN  follows at 

short times the linear law predicted by the formula for the volume of the Wiener sausage (I will 

come back later in more detail to this important point). Also, the search process is about two 

times faster than for the case where there are only pure repulsive interactions (for this latter case I 

obtained a rate 09.1=κ µs-1). This means that facilitated diffusion indeed accelerates this 

process, but with a factor much smaller than the maximum acceleration predicted by kinetic 

models. I will present a more detailed comparison between dynamical and kinetic models in 

chapter 8.  
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Figure 6.10. Evolution of the number )(tN  of different DNA beads visited by the protein, for seven values of 

DNAprot / ee  ranging from 0.3 to 5 and for the repulsive DNA/protein interaction potential of figure 6.2. Each 

curve was averaged over 12 different trajectories for the system with 2000 beads. It was assumed that the 

protein is attached to bead k of DNA segment j if σ≤− prot, rr kj . 
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Figure 6.11. Same as figure 6.10, except that it is considered that the protein is attached to bead k of DNA 

segment j if σ5.1prot, ≤− rr kj  instead of σ≤− prot, rr kj . 
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Figure 6.12. Plot, as a function of the ratio DNAprot / ee , of the average number of DNA beads that are 

attached to the protein when it does not move freely in the buffer. The abscissa axis actually corresponds to 
the variation of prote  at constant DNAe . Circles and lozenges denote results obtained with, respectively, the 

σ≤− prot, rr kj  and σ5.1prot, ≤− rr kj  criterions for interacting beads. The points at 0/ DNAprot =ee  

were obtained with the repulsive potential of figure 6.2. Each point was averaged over 12 different 
trajectories propagated for 100 µs for the system with 2000 beads. 
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Figure 6.13. Evolution of )(tN , the number of different DNA beads visited by the protein at time t, for the 

system with 1/ DNAprot =ee  and 990, 2000 and 4000 DNA beads. It was assumed that the protein is attached to 

bead k of DNA segment j if σ≤− prot, rr kj . Each curve was averaged over 6 different trajectories. 
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Figure 6.14. Solid line : plot of ( ) ( )( )nmtN /1ln −  as a function of ( )nmt /  for the system with 

1/ DNAprot =ee  and 990, 2000 and 4000 DNA beads (the curves for 2000 and 4000 beads nearly superpose). 

( )tN  corresponds to the curves in figure 6.13. The dot-dashed straight line represents the same plot for the 

expression of ( )tN  in equation (6.20) and a rate 84.1=κ  µs-1. 
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6.3. Conclusion 

 

The model described in this chapter is very promising. Despite the fact that it is quite 

simple, it manages to describe the succession of 1D sliding along the DNA chain and 3D 

diffusion in the buffer by witch the protein finds its target. However, this model predicts a value 

of the 1D diffusion coefficient that is too high compared to experimental values. This is a 

predictable consequence of the approximations that were made. The values obtained here for the 

sliding length are in good agreement with both experimental results and values predicted by other 

models. However, it should be noted that, because of the high values that our model predicts for 

the one-dimensional diffusion coefficient of the protein the predicted duration of a sliding event 

is necessarily shorter than in the case of experiments. This might imply that it is discussible if the 

comparison between predicted and measured sliding length is really appropriate.  

The roughest approximation certainly concerns the protein, which is described as a single 

bead with an electric charge prote  placed at its centre. For large values ofprote , this leads to the 

cage effect discussed previously and to too frequent intersegmental transfers. A better 

approximation certainly consists in considering the protein as a set of interconnected beads with a 

certain charge distribution. In the following chapter, I am going to discuss the extent to which the 

conclusions presented above are affected when the protein is modelled as such a set of 

interconnected beads. 

The model also predicts that the mechanism of facilitated diffusion can indeed accelerate 

the scanning speed. This acceleration is, however, much more limited than the maximum one 

predicted by kinetic models. I will come back to this point in chapter 8. 
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7.  Model with 13 beads proteins 
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The purpose of this chapter is to check the extent to which the conclusions drawn in the 

preceding chapter are affected when the protein is modelled in a somewhat less crude way. 

 

7.1. The model 

 

The system studied in this chapter is consequently the same as the one described 

previously but with the protein modelled as a set of thirteen beads connected by springs instead 

of a single bead. I used two geometries for the protein: “spherical” and “linear” (figure 7.1). The 

"spherical" protein is obtained by placing 12 beads at the vertices of a regular icosahedron and a 

thirteenth bead at its centre (21 beads would have been required for a regular dodecahedron). A 

bond connects the central bead to the 12 other beads, and each bead at a vertex is connected to its 

five nearest neighbors by a similar bond. The distance between the central bead and those at the 

vertices is equal to the bead radius 5.3prot =a  nm, so that the radius of the protein at rest is close 

to 7.0 nm and the distance between two nearest neighbors placed at the vertices is 

68.35210/4 prot0 ≈+= aL  nm. Linear proteins are taken as flexible and extensible chains of 

13 beads separated at equilibrium by a distance 5.3prot =a  nm. Because no bending interaction 

among protein beads is taken into account (see below), "linear" proteins generally assume bent 

geometries with average end-to-end distances of the order of 17.0 nm. I fixed the number of 

beads of linear proteins to 13, although they are too large compared to real proteins, for the sake 

of an easier comparison with spherical proteins.  

All beads, except for that at the center of the spherical protein, are assigned electrostatic 

charges pe  placed at their centers (however, electrostatic interactions between protein beads are 

neglected, see below). I considered several protein charge distributions, namely (i) uniform 

distributions with increasing total charge ∑=
p peeprot , (ii) gradients of charges with fixed total 

charge prote  and increasing values of the maximum charge maxe , (iii) gradients of charges with 

fixed maximum charge maxe  and increasing total charge prote , and (iv) random distributions. For 

spherical proteins, gradient distributions are based on sets of four equally spaced charge values 

∆− kemax , where k varies from 0 to 3 and ( ) 18/12 protmax ee −=∆ . Charges maxe  and ∆− 3maxe   



 132 

 
 
Figure 7.1. Schematic representations of the two protein models used in chapter 7.  
 
 
 
 
are carried by two beads placed at opposite vertices of the icosahedron, while the five beads 

closest to the bead with charge maxe  carry a charge ∆−maxe  and the five beads closest to the bead 

with charge ∆− 3maxe  carry a charge ∆− 2maxe . For linear proteins, instead of a single bead with 

charge ∆− 3maxe , I placed the charge ( ) 2/3max ∆−e  at the centres of two beads, in order to 

compensate for the fact that the bead placed at the centre of the icosahedron is not charged. For 

most cases, I increased the total charge prote , or the maximum charge maxe , up to DNA5e− . At last, 

except otherwise specified, the results presented below were obtained by considering that there is 

a single bead of the protein that has the ability to connect to DNA and therefore plays the role of 

a search site. Also, in most cases, and unless otherwise specified, this bead had the highest 

positive charge maxe , but I also ran simulations were this was no longer the case. I have also 

checked that the results remain essentially the same if one instead assumes that all beads of the 

protein are able to connect to the DNA chain (figure 7.2).  

The potential energy of the system is: 

wallDNA/protprotDNApot VVVVE +++=              (7.1) 
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Figure 7.2. Time evolution of the logarithm of 2000/)(1 tN− , the portion of DNA beads not yet visited by the 

protein search site, for a spherical protein with a gradient distribution of charges with total charge 

DNAprot 2.1 ee −=  and maximum positive charge DNAmax 8.0 ee −= , for the cases where it has one search site (in 

red) and twelve search sites (in blue). It was considered that protein bead p is attached to bead k of DNA 

segment j if σ≤− pkj Rr , . 
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When comparing to equation (6.1), the extra term, Vprot, describes the interaction between the 

protein beads. The beads that compose the protein interact with each other only by means of 

harmonic stretching potentials. More precisely, for linear proteins the potential is: 

( )∑
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prot1,2

prot
prot 2
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Tk
CV              (7.2) 

In equation (7.2), the 13 beads are labeled from j=0 to j=12 and 11, ++ −= jjjjL RR  denotes the 

distance between two successive beads (jR  is the position of bead j). A distance prota  separates 

two neighbouring beads at equilibrium. For spherical proteins, I instead assumed that: 
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In equation (7.3), index 0 refers to the bead located at the center of the icosahedron and indices 1 

to 12 to those placed at the vertices, kjkjL RR −=,  denotes the distance between protein beads 

j and k, and ( )jVk 1∈  means that the sum runs over the five beads k that are the nearest 

neighbours of bead j at equilibrium. At equilibrium, the central bead is separated by prota  from 

the beads placed at the vertices of the icosahedron, while two neighbouring beads located at 

vertices are separated by 0L . As for the DNA elastic constant h, all the results shown below were 

obtained, unless otherwise specified, with a constant C in equations (7.2) and (7.3) equal to 

C=100 in order to get very small displacements of the average bond length without precluding 

the use of sufficiently large time steps. Still, I also ran simulations where C was varied between 5 

and 225 to study how the deformability of proteins affects facilitated diffusion. 

 The terms for VDNA are the same as in equation (6.2), while Vwall becomes 
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and VDNA/prot is modified as follows:  
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where F is given by equation (6.10). In equation (7.5), the charges are taken as signed quantities, 

while they were considered as positive quantities in equation (6.9). This is the reason why the 

minus sign in the expression of )( p
eE disappeared. It is important to emphasize again that, when 

the charges placed at the centre of the DNA and protein beads have opposite signs, the interaction 

between the two beads must be minimum at some value close to 28.5protDNA =+= aaσ  nm, i.e. 

the sum of the radii of the DNA and protein beads, in order for 1D sliding to take place. The 

expression for )(
ev

pE  in equation (7.5) insures that this is indeed the case and that the position of 

the minimum does not depend on the charge pe . It should however be mentioned that another 

change in the model is that now the interaction potential is minimum not when the centers of the 

two beads are separated by σ, as in chapter 6, but rather when this distance is equal to σ+0.5 nm 

(this was achieved by introducing the factor 1.86 in the expression of )(
ev

pE ). The minimum of the 

potential well was shifted by this small amount in order to better agree with recent theoretical 

models [139] and experimental results for complexes of EcoRV [140] and the Skn1 and Sap1 

proteins [141]. 

For solving the equations of motion of the complete system, I used the same algorithm as 

in chapter 6, including hydrodynamic interactions between all the beads of the protein. All the 

calculations were performed using the system with 2000 DNA beads and a time step of 100 ps.  

 

7.2. Results 

 

I investigated a large number of different spherical and linear 13 beads protein models and 

found that, for all of the cases, )(tN  follows the law given in equation (6.20) for single bead 

proteins, that is: 

)exp(1
)(

mn

t

mn

tN κ−−=               (7.6) 

where 2000=mn  is the total number of DNA beads.  

This is illustrated in figure 7.3, which shows the time evolution of ))/()(1log( mntN−  for 

selected linear and spherical proteins with uniform and gradient distributions of charges. It is seen  
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Figure 7.3. Time evolution of the logarithm of 2000/)(1 tN− , the portion of DNA beads not yet visited by the 

protein search site, for (a) linear proteins with a gradient distribution of charges with total charge 0prot =e  

and maximum charge DNAmax 8.0 ee −=  (solid line), (b) linear proteins with a gradient distribution of charges 

with total charge DNAprot 2.1 ee −=  and maximum charge DNAmax 2.1 ee −=  (short dashes), (c) spherical 

proteins with a gradient distribution of charges with total charge 0prot =e  and maximum charge 

DNAmax 5.1 ee −=  (dot-dot-dot-dashes), and (d) spherical proteins with a gradient distribution of charges with 

total charge DNAprot 2.1 ee −=  and maximum positive charge DNAmax 8.0 ee −=  (long dashes). For all proteins, 

the search site was assumed to be the bead with charge maxe . For the linear proteins, the search site is located 

at one of the extremities of the chain. It was considered that protein bead p is attached to bead k of DNA 

segment j if σ≤− pkj Rr , . The dot-dashed straight lines, which were adjusted against the evolution of 

2000/)(1 tN−  for each protein, were used to estimate the values of κ. 
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that equation (7.6) remains valid for very long times and for values of )(tN  very close to the 

total number of DNA beads. As already mentioned, equation (7.6) reduces to a linear increase at 

short times. According to the formula for the volume covered by a 3D random walker, this 

suggests that, as for single bead proteins, the global motion of 13 beads proteins is essentially 

diffusive-like. Figure 7.3 also points towards a very general result, namely that )(tN  increases 

significantly more rapidly for linear proteins than for spherical ones (at least as long as the search 

site is located at one of the extremities of the chain, see below). The rationale for this observation 

is that, according to equation (6.21), κ increases linearly with D3D  and the 3D diffusion 

coefficient of linear proteins is significantly larger than that of spherical ones. I indeed computed 

the diffusion coefficient for the protein, D3D, from equation (5.11) by launching simulations that 

involved only the protein and disregarded both DNA segments and cell boundaries. For C=100, I 

obtained 101020.0 −× m2/s for the spherical protein and 101035.0 −×  m2/s for the linear one.  

In contrast, it might seem at first sight that 13 beads proteins differ more substantially 

from single bead ones as far as sliding along DNA is involved. For example, figure 7.4 shows 

log-log plots of )(tN  for long sliding events of spherical proteins with uniform and gradient 

distributions of charges. It is seen that the time evolution of )(tN  approximately corresponds to 

straight lines in these plots, which implies that )(tN  increases as a power of t, that is 

βα ttN =)( , but the exponent β is now smaller than 1/2. Stated in other words, sliding is here 

subdiffusive. This is not really surprising, because subdiffusion is often encountered in dense 

media and has recently been experimentally reported for the global motion of proteins in the 

cytoplasm or the nucleus [142-144]. By looking more closely at sliding events, it can be noticed 

that 13 beads proteins spend large amounts of time attached to the same DNA beads and the time 

intervals during which they actually slide are substantially shorter than for single bead proteins 

with DNAprot ee −= . This is an important observation, because it is well known that large average 

waiting times between random-walk steps are sufficient to induce subdiffusion (see for example 

[145]). The reason why waiting times are longer for 13 beads proteins than for single bead ones is 

that, in this model, sliding is driven uniquely by thermal noise and this process is less efficient for 

13 beads proteins than for single bead ones, because part of the energy received from collisions is 

used to deform proteins instead of being converted into sliding impulsions. It might therefore be 

the case that small barriers, like those observed in figure 6.3, are sufficient to hinder efficiently 
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the 1D sliding of the protein along the DNA sequence. Still, it should be mentioned that the 

average number of beads visited during each sliding event (5 to 10 beads, that is from 75 to 150 

base pairs) is in fairly good agreement with experimental results, which lie in the range 30 to 170 

base pairs [108,109].  This comparison is subject, of course, to the same remark as in chapter 6.  

If the depth of the attractive well between DNA and the protein is smaller than the energy 

TkB  of thermal noise, then the protein does not spend enough time connected to DNA for actual 

sliding to take place. On the other hand, if attraction is too strong, then the protein remains 

attached to the same DNA beads instead of sliding. One therefore expects that waiting times 

become longer for increasing values of the protein charge prote  and, consequently, that the 

exponent β decreases. It can be checked in the top plot of figure 7.4 that this is indeed the case. 

While values of β close to 0.40 were obtained for most of the investigated proteins (see figure 

7.4), β was found to decrease down to about 0.20 for uniform charge distributions with 

DNAprot 8.4 ee −= . 

At this point, I however checked that single bead proteins actually behave just like 13 

beads ones with this respect. More precisely, I performed simulations with single bead proteins 

with charge DNAprot 5ee −=  and obtained 30.0≈β . The diffusive character of sliding reported in 

chapter 6 ( 50.0=β  for DNAprot ee −= ) therefore does not extend to proteins with too large values 

of prote . 

In the previous chapter, the value of the electrostatic charge placed at the center of the 

protein bead was increased in order to vary the amount of time 1Dρ  during which the protein is 

attached to DNA and check whether certain combinations of 1D and 3D motions lead to faster 

DNA sampling than pure 3D diffusion. Here I will follow the same general idea, except that, 

since the protein is now modeled by 13 interconnected beads, instead of a single one, there are 

several different ways to modify1Dρ . 

The most natural way to compare the dynamics of the present model to that of the 

previous one consists in placing identical electrostatic charges at the centre of the 12 beads 

located at the vertices of the icosahedron (uniform charge distributions) and letting these charges 

vary. Results for such spherical proteins with uniform charge distributions are presented in figure 

7.5. This figure displays the evolution, as a function of the total protein charge prote , of three  
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Figure 7.4. Log-log plots of the time evolution of the number )(tN  of different DNA beads visited by the protein 

for spherical proteins with (a) uniform charge distributions and four values of the total charge ranging from 

DNAprot 8.0 ee −=  to DNAprot 8.4 ee −=  (top), (b) gradient distributions of charges with total charge 0prot =e  and 

four values of the maximum charge ranging from DNAmax 4.0 ee −=  to DNAmax 3ee −=  (middle), and (c) a 

gradient distribution of charges with total charge DNAprot 8.0 ee −=  and maximum charge DNAmax 2.1 ee −= , 

and four values of the elastic constant C ranging from 10 to 200 (bottom). In order to improve the signal/noise 
ratio, it was assumed for this plot that the protein is attached to bead k of DNA segment j if any of the protein 

beads (and not a given one) satisfies the condition σ≤− pkj Rr , . Each curve was averaged over a number of 

sliding events that varied between 50 and 200. Each sliding event lasted more than 1 µs, during which the 
protein neither separated from the DNA segment by more than σ during more than 0.07 µs nor reached one of 
the extremities of the DNA segment. 
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Figure 7.5. Plot, as a function of the total protein charge prote , of N(100µs) (top), 1Dρ  (middle), and nsim 

(bottom) for spherical proteins with uniform charge distributions. Circles correspond to results obtained by 

considering that protein bead p is attached to bead k of DNA segment j if σ≤− pkj Rr , , while lozenges 

correspond to the criterion σ5.1prot, ≤− rr kj . Error bars indicate the standard deviations for the six 

trajectories over which each point was averaged (note that error bars are masked by circles and lozenges 
whenever the size of these symbols is larger than the computed standard deviation). Points at prote =0 denote 

results obtained with purely repulsive interactions between DNA and the protein. 
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quantities, namely )s100( µN , the number of different DNA beads visited by the protein search 

site after 100 µs (top plot), 1Dρ , the portion of time that the protein search site spends attached to 

a DNA bead (middle plot), and simn , the average number of DNA beads that are simultaneously 

attached to the protein search site when it interacts with DNA. Circles correspond to results 

obtained by considering that protein bead p is attached to bead k of DNA segment j if 

σ≤− pkj Rr , , while lozenges correspond to the criterion σ5.1, ≤− pkj Rr . Error bars 

indicate the standard deviations for the six trajectories over which each point was averaged. The 

points at 0prot =e  correspond to purely repulsive DNA-protein interactions, that is, more 

precisely, when keeping only the repulsive part of the interaction potential with DNA1.0 eep −= . 

As already mentioned, it can safely be considered that, for repulsive DNA-protein interactions, 

the motion of the protein inside the cell is rather similar to pure 3D diffusion.   

Examination of the middle and bottom plots of figure 7.5 shows that both 1Dρ  and simn  

increase with prote , like for single bead proteins. Large values of simn  indicate that the protein’s 

charge is sufficiently large for the protein to attract and attach simultaneously to several DNA 

segments, which form a cage around it. This phenomenon is probably not relevant from the 

biological point of view, because only a few proteins are known to have more than one “reading 

head” [13] (the best known example is the lac repressor, which has two binding sites [146]). This 

implies that one should consider only those charge distributions, which are associated with 

moderate values of simn , for instance, smaller than 3 for the σ5.1  threshold. 

When comparing the top plot of figure 7.5 to figure 6.10, one first notices that )(tN  

increases more slowly for 13 beads proteins than for single bead ones. For example, for the 

repulsive potential, the number of DNA beads visited by 13 beads proteins is only about 50% of 

the number of DNA beads visited by single bead proteins. This is again essentially due to the 

difference in the values of the 3D diffusion coefficient at 298 K, which is equal to 

10
D3 1070.0 −×=D  m2/s for single beads and to 10

D3 1020.0 −×≈D  m2/s for the spherical protein. 

Nonetheless, the key point is certainly that, as for single bead proteins, there exists a range of 

values of prote  for which )(tN  increases more rapidly than for repulsive DNA-protein 

interactions. This range extends roughly up to DNAprot 2ee −=  for uniform charge distributions. It 
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can be noticed that )(tN  is increased at maximum by about 50% compared to the repulsive 

potential, not so far from the maximum increase close to 70% obtained for single bead proteins.  

Needless to say that these conclusions drawn from the dynamics of proteins with uniform 

charge distributions must be confirmed by results obtained for more complex distributions. I 

postpone the case of random charge distributions until the next section and focus now on the 

results obtained for spherical proteins with gradient distributions of charges. For such gradient 

distributions, I either fixed the value of the maximum protein charge maxe  and varied the total 

charge prote , or fixed prote  and varied maxe . It turns out that the results obtained for these gradient 

distributions are quite similar to those discussed above, at least as long as prote  and maxe  remain 

moderate. For example, the results for DNAmax 8.0 ee −=  are shown in figure 7.6 and those for 

0prot =e  in figure 7.7. It is seen that, in both cases, 1Dρ  increases with increasing charge and 

)s100( µN  goes through a maximum for values of 1Dρ  comprised between 0.3 and 0.7 for the 

σ5.1  threshold. Moreover, the increase of )(tN  relative to the case of purely repulsive 

interactions between DNA and the protein does not exceed 40%, which again agrees with the 

results obtained for uniform charge distributions. Things are however noticeably different for 

larger values of maxe  or prote . For example, I checked that for gradient distributions with 

DNAprot 4.2 ee −= , the total protein charge is sufficiently large for proteins to spend all the time 

attached to a DNA segment, irrespective of maxe  (and consequently of the charge of the search 

site: I assumed so far that the search site is the protein bead with highest positive charge). As a 

consequence, )s100( µN  varies little with increasing values of maxe .  

Conclusion therefore is that, even for rather rigid spherical protein models (remember that 

C=100 for all the results presented above), facilitated diffusion increases DNA sampling speed by 

about 20 to 50% compared to 3D diffusion, which is even less than the 70% increase observed 

for single bead proteins. Still, the efficiency of the facilitated diffusion mechanism is again lower 

for linear proteins, as can be seen in figure 7.8, which shows results obtained for linear proteins 

with uniform charge distributions (similar results were obtained for gradient distributions with 

0prot =e ). C was also fixed to 100. Since no clear increase of )s100( µN  is observed when the  
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Figure 7.6. Same as figure 7.5, but for spherical proteins with gradient distributions of charges and maximum 
positive charge DNAmax 8.0 ee −= . The search site is assumed to be the protein bead with charge maxe . 
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Figure 7.7. Same as figure 7.5, but for spherical proteins with gradient distributions of charges and total 

charge 0prot =e . The search site is assumed to be the protein bead with charge maxe . 
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Figure 7.8. Same as figure 7.5, but for linear proteins with uniform charge distributions. The search site is 
assumed to be one of the beads located at the extremities of the protein chain. 
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total charge is increased from zero, in spite of the fact that 1Dρ  does increase significantly, it 

must be admitted that no combination of 1D and 3D motions is more efficient than pure 3D 

diffusion. This can be understood by noticing that, for identical values of C, spherical proteins are 

much more rigid than linear ones, because each bead at the vertices of the icosahedron is 

connected to the central bead and to its five nearest neighbours, while each bead of linear proteins 

is connected to only one or two nearest neighbours. 1D sliding of linear proteins is therefore even 

less efficient than that of spherical ones.  

 

7.3. Other factors that affect the speed-up of DNA sampling 

 

The purpose of this section is to discuss the effect of several other parameters, namely the 

value of the elastic constant C, the randomness of the charge distribution, and the charge and 

position of the protein search site, on the speed of DNA sampling.   

Let us first consider the effect of the protein elastic constant C. The time evolution of the 

number )(tN  of different DNA beads visited by the protein search site for spherical proteins with 

a gradient distribution of charges with DNAprot 8.0 ee −=  and DNAmax 2.1 ee −=  and values of C 

ranging from 10 to 225 is shown in the bottom plot of figure 7.4 for long sliding events and in 

figure 7.9 for the global (1D+3D) motion. While 1D sliding depends little on C, for the global 

motion )(tN  instead decreases significantly and rapidly with C for values of C comprised 

between 10 and 100 before remaining nearly constant for larger values of C. It can be checked in 

figure 7.10 that this is essentially due to the evolution of the 3D diffusion coefficient with 

increasing values of C, in agreement with equation (6.21). The top plot indeed shows that D3D  

decreases from about 0.32×10-10 m2/s for C=5 to about 0.20×10-10 m2/s for values of C larger than 

100. The average protein radius jL ,0  was also computed during these simulations. Results are 

shown as filled circles in the bottom plot of figure 7.10. It is seen that jL ,0  decreases with 

increasing values of C in the range C=5-100, so that the decrease of D3D  in this range is in clear 

contradiction with equation (6.23). Note that this decrease of jL ,0  with increasing C agrees 

with preceding work [130]. It is actually due to hydrodynamic interactions. Indeed, if  
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Figure 7.9. Time evolution of the number )(tN  of different DNA beads visited by the protein search site for 

spherical proteins with a gradient distribution of charges with DNAprot 8.0 ee −=  and DNAmax 2.1 ee −= , and five 

values of the elastic constant C ranging from 10 to 225. The value of C is indicated for each curve. It was 

considered that protein bead p is attached to bead k of DNA segment j if σ≤− pkj Rr , . 
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Figure 7.10. Evolution, as a function of the value of the elastic constant C, of (a) D3D, the 3D diffusion 
coefficient at 298 K of spherical (top plot), and (b) the average value of L0,j/aprot for these proteins, obtained 
from simulations with (filled circles) and without (empty squares) hydrodynamic interactions. L0,j is the distance 
between the central bead with index 0 and the bead with index j>0 initially located at one of the vertices of the 
icosahedron. 
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hydrodynamic interactions are neglected, then jL ,0  evolves only very little with C in the range 

C=5-100 (see the empty squares in the bottom plot of figure 7.10). This points out that, for a 

system where hydrodynamic interactions are expressed by the Rotne-Prager tensor, there is not 

necessarily a 1/r dependence of the translational diffusion coefficient, as given by the Einstein 

formula in equation (6.23). Actually, the displacement from this equation can be evaluated by 

means of the Kirkwood-Riseman formula, which gives the translational diffusion coefficient of a 

chain of beads using pre-averaged values for hydrodynamic forces [147]: 
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where 1−
ijr  is the mean inverse distance between beads i and j averaged over an ensemble of 

configurations. In conclusion, the deformability of the protein essentially affects the speed of 

DNA sampling through the associated variations of the diffusion coefficient, much as the shape 

of the protein that was previously discussed.  

Another parameter that might affect the DNA sampling process is the 

regularity/randomness of the protein charge distribution. While all results presented up to now 

involved proteins with either uniform or gradient distributions of charges, figure 7.11 indicates 

how these results are affected when the charges of a gradient distribution are redistributed 

randomly. More precisely, this figure shows the time evolution of )(tN  for spherical proteins 

with a gradient distribution of charges with DNAprot 4.2 ee −=  and DNAmax 2.1 ee −= , as well as two 

distributions obtained by random permutations of these charges (but the search site remains the 

bead with charge maxe ). It can be checked on this example that the regular and random charge 

distributions lead essentially to the same behaviour for )(tN .  

A related question is that of the importance of the charge carried by the search site. At this 

point it should be remembered that it was assumed in all simulations discussed up to now that the 

search site is the bead with largest positive charge maxe . However, results are not much affected 

when this condition is released. For example, the time evolution of )(tN  for spherical proteins 

with identical gradient distributions of charges with DNAprot 2.1 ee −=  and DNAmax 2.1 ee −=  but 

search sites located either on bead 1 (with charge DNAmax 2.1 ee −= ) or bead 2 (with charge 

DNA467.0 e− ) are compared in figure 7.12. It is seen that the difference between the two curves is 
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not significant. By combining the two later observations, it can be surmised that the results 

should be rather similar for a given set of protein charges, whatever the exact spatial distribution 

of the charges and the precise charge carried by the search site. It can be checked in figure 7.13 

that this is indeed the case. This figure shows the time evolution of )(tN  for linear proteins with 

a gradient distribution of charges with DNAprot 4.2 ee −=  and DNAmax 2.1 ee −=  (solid line), as well 

as two distributions obtained by random permutations of these charges. The search site is the 

central (seventh) bead of each chain. It has a charge of DNA13.0 e  for the gradient distribution, and 

charges DNA53.0 e−  and DNA40.0 e  for the random distributions. In spite of the large differences 

between these proteins, the evolution of )(tN  is essentially similar for the three of them.  

Conclusion therefore is that, within the validity of this coarse grained model, the 

dynamics of DNA sampling is essentially governed by the total charge of the protein or, in the 

case this charge is small, by the maximum local charge, but that the exact spatial distribution of 

charges and the precise charge carried by the search site play little role. It can of course not be 

excluded that this conclusion will be somewhat moderated when the dynamics of finer grained 

models is investigated. 

 In contrast, it should be mentioned that a factor that certainly does play an important role 

is the accessibility of the protein search site. For example, it is clear that, for linear proteins, 

beads located at the extremities of the chain are more accessible and have a higher probability to 

interact with DNA than beads located inside the chain, so that one expects DNA sampling by the 

former ones to be more efficient. This is confirmed by the examination of figure 7.12, which 

displays the time evolution of )(tN  for linear proteins with identical uniform charge distributions 

with total charge DNAprot 3.1 ee −= , but with search sites placed either on bead 1 (extremity) or 

bead 7 (central bead). It is seen that bead 1 samples DNA at a speed about 50% larger than the 

central bead. This conclusion obviously agrees with the observation that, in real life, "reading 

heads" are usually exposed outside the proteins, like the two α helices of the cro repressor, which 

can be inserted in the major or minor grooves of the DNA double helix [13]. 
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7.4. Conclusion 

 

 In this chapter, I improved the molecular mechanical model presented in chapter 6 by 

describing the protein as a set of interconnected beads instead of a single one. Most of the results 

obtained with this improved model agree with both experimental results and the predictions of 

the previous model. The new model predicts, like the original one, that DNA sampling proceeds 

via a succession of 3D motion in the cell, 1D sliding along the DNA sequence, short or long hops 

between neighbouring or more widely separated sites, and intersegmental transfers. This more 

detailed description for the protein permitted to show that, within the validity limits of this 

model, the shape and deformability of proteins essentially affect the speed of DNA sampling 

trough the associated variations of their diffusion coefficient. Moreover, this model predicts that 

the sampling speed is governed by the total charge on the protein rather than by that on the search 

site. Also, this model predicts an acceleration of site targeting due to facilitated diffusion that is 

even smaller than what was predicted in the previous chapter. Since this result seems to be in 

contradiction with the predictions of many kinetic models, I will present in the next chapter a 

detailed comparison between dynamical and kinetic models.  
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Figure 7.11. Time evolution of the number )(tN  of different DNA beads visited by the protein search site for 

spherical proteins with a gradient distribution of charges with total charge DNAprot 4.2 ee −= and maximum 

charge DNAmax 2.1 ee −=  (solid line), as well as two distributions obtained by random permutations of these 

charges. Shown in the small inserts are the positions of the charges at equilibrium. The darkest disk 
corresponds to charge DNAmax 2.1 ee −=  and the brightest one to the maximum negative charge 0.8eDNA. The 

search site is the protein bead with charge maxe . It was considered that protein bead p is attached to bead k of 

DNA segment j if σ≤− pkj Rr , . 
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Figure 7.12. Time evolution of the number )(tN  of different DNA beads visited by the protein search site for 

linear proteins with a uniform charge distribution with total charge DNAprot 3.1 ee −= , as well as for spherical 

proteins with a gradient distribution of charges with total charge DNAprot 2.1 ee −=  and maximum charge 

DNAmax 2.1 ee −= . For the linear proteins, the search site (SS) is assumed to be either the first or the seventh 

(middle) bead, while for the spherical proteins the SS is assumed to be either bead 1 with charge 

DNAmax 2.1 ee −=  or bead 2 with charge DNA467.0 e− . It was considered that protein bead p is attached to bead 

k of DNA segment j if σ≤− pkj Rr , . 
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Figure 7.13. Time evolution of the number )(tN  of different DNA beads visited by the protein search site for 

linear proteins with a gradient distribution of charges with total charge DNAprot 4.2 ee −=  and maximum charge 

DNAmax 2.1 ee −=  (solid line), as well as two distributions obtained by random permutations of these charges. In 

the small inserts are shown the positions of the charges at equilibrium. Filled circles correspond to positive 
charges and empty ones to negative charges, the radius of each circle being proportional to the absolute value 
of the charge. The search site, which is surrounded by a square, is the central (seventh) bead of each chain. It 
has charge DNA13.0 e  for the gradient distribution, and charges DNA53.0 e−  and DNA40.0 e  for the random 

distributions. It was considered that protein bead p is attached to bead k of DNA segment j if σ≤− pkj Rr , . 
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8. Comparison of kinetic and dynamical 

models and discussion on facilitated 

diffusion 
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In the two previous chapters, I have computed the acceleration of DNA sampling due to 

facilitated diffusion. I have shown that for the single bead protein the maximum acceleration due 

to facilitated diffusion is not larger than two, a value that is much smaller than predicted by other 

models [11-19,97]. The results obtained with the second model for the protein confirm this 

hypothesis. Actually, for the 13 beads proteins there are several cases where the search speed is 

even below the diffusion limit. This means that there is no combination of 3D diffusion and 1D 

sliding that is faster than normal diffusion. This asks for a more detailed analysis of the concept 

of facilitated diffusion: whether it is really more efficient than normal diffusion and also what 

happens in real systems. Therefore, in this chapter I compare results obtained with dynamical and 

kinetic models, also taking into account some recent reviews of the results in this field, and then I 

present some conclusions regarding facilitated diffusion in real systems. 

 

8.1. Methodology 

 

To compare dynamical and kinetic models, I ran additional simulations for the single bead 

protein, where I varied the DNA concentration (through the variation of the parameter w, see 

chapter 6) and the protein charge. These simulations were done in two versions: including 

hydrodynamic interactions or ignoring them. As before, the most important quantity that I extract 

from the simulations is the total number of different DNA beads visited by the protein, N(t). I 

checked that, for all of the investigated cases, the number of beads visited in time follows the law 

given by equation (6.20). By inverting this relation, one obtains that the mean time kt  of first 

arrival at the kth distinct bead is: 
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This relation is, however, necessarily wrong for the last DNA bead ( nmk = ), since it predicts 

that it takes an infinite time for the protein to reach this bead, while this time must be finite. By 

computing the mean time of first arrival τ over the other 1−nm  beads, one obtains: 
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which, for large values of nm , is very close to 

κ
τ nm≈                    (8.3)  

It can be checked numerically that the validity of equation (8.3) degrades only slowly when the 

average in equation (8.2) is calculated over 10−nm  or 100−nm  beads instead of 1−nm . This 

indicates that the validity of equation (8.3) does not depend too sensitively on the exact 

asymptotic behavior of )(tN  close to nm  (remember that equation (6.20) remains valid even 

when the protein has already visited more than 99.5% of the total number of DNA beads).  

Moreover, it is also possible to check that, for a pure diffusive 3D motion, the rate κ 

obtained from the time evolution of )(tN  and the mean time of first arrival τ obtained from 

Klenin et al's formula in equation (5.9) are related through equation (8.3). Indeed, in the absence 

of sliding ( 0D1 →τ ) and for a radius a equal to δ, the mean time of first arrival obtained from 

Klenin et al's relation in equation (5.9) tends towards: 

cD

mn

D

V

δπδπ
τ

3D3D 44
==                  (8.4) 

When comparing equation (8.4) with equation (6.21), one finds the confirmation that κ and τ are 

related through equation (8.3) for 3D diffusion. 

The strategy that I have adopted to compare my model with that of Klenin et al therefore 

consists in extracting several quantities from the simulations I ran. On one side, I have directly 

estimated the rate constant κ from each simulation by fitting the computed evolution of )(tN  

against equation (6.20). On the other side, I have also derived numerical values for 1DD , 3DD , 

1Dτ  and 3Dτ  from the same simulations (see below for more detail). I used these values to 

compute the mean time of first arrival τ according to Klenin et al's formula in equation (5.9). 

Finally, I converted τ to a rate constant κ by using equation (8.3) and compared it to the value of 

κ deduced from the time evolution of )(tN . 
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8.2. Computation of the quantities needed to compare dynamical and kinetic 

       models 

 

 Figure 8.1 displays a logarithmic plot of the time evolution of )/()(1 mntN− , with 

4000=mn , the fraction of DNA beads not yet visited by the protein, for 1/ DNAprot =ee  and for 

values of w ranging between 18 nm and 135 nm (with hydrodynamic interactions). Rate constants 

κ were extracted from such plots by fitting the computed evolution of )(tN  against equation 

(6.20). These values are reported in table 8.1 in units of beads/µs. This table has 24 entries, which 

correspond to all possible combinations obtained with four values of w (18, 32, 45 and 135 nm), 

three different DNA-protein interaction laws (repulsive interactions, 1/ DNAprot =ee , and 

3/ DNAprot =ee ), and two different ways of handling hydrodynamic interactions ("off" and "on"). 

As will also be the case for all subsequent tables, the first number in each entry was obtained 

with the σ≤− prot, rr kj  criterion, while the number in parentheses was obtained with the 

σ5.1prot, ≤− rr kj  criterion. It is seen that the values of κ vary over more than two orders of 

magnitude and depend very strongly on whether hydrodynamic interactions are taken into 

account or not.  

 Klenin et al's formula in equations (5.9) and (5.10) depends on 1Dτ  and 3Dτ , the average 

times the protein spends in the bound and free states, respectively. Equation (5.10) may be 

rewritten in the slightly more convenient form 

1D

1D

3D

1D

12

1

ρ
ρ

π
ξ

−
=

D

D
w                 (8.5) 

where D1ρ  denotes the fraction of time during which the protein is attached to a DNA bead, that 

is )/( D3D1D1D1 τττρ += . Values of D1ρ  are easily extracted from the simulations by checking at 

each time step whether the distance between the center of the protein bead and that of any DNA 

bead is smaller than the threshold, that is σ or 1.5σ. The obtained values of D1ρ  are shown in 

table 8.2. As already emphasized in the preceding chapters, D1ρ  increases from nearly 0 for the  
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Figure 8.1. Logarithmic plot of the time evolution of 4000/)(1 tN− , the fraction of DNA beads not yet visited 

by the protein, for 1/ DNAprot =ee  and four values of w ranging between 18 nm and 135 nm. Hydrodynamic 

interactions are taken into account. It was furthermore considered that the protein is attached to bead k of DNA 

segment j if σ≤− prot, rr kj . The dot-dashed straight lines, which were adjusted against the evolution of 

4000/)(1 tN−  for each value of w, were used to estimate the values of κ. 
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κ (units of beads/µs) 

HI w (nm) 
repulsive potential 1/ DNAprot =ee  3/ DNAprot =ee  

18 2.70 (3.86) 2.32 (2.69) 0.30 (0.34) 

32 0.98 (1.44) 0.84 (0.91) 0.121 (0.127) 

45 0.47 (0.70) 0.52 (0.55) 0.086 (0.089) 
off 

135 0.050 (0.075) 0.149 (0.153) 0.037 (0.038) 

18 5.73 (8.40) 7.82 (10.30) 7.76 (8.96) 

32 1.94 (3.00) 2.90 (3.43) 2.85 (3.10) 

45 1.08 (1.68) 1.83 (2.11) 1.59 (1.70) 
on 

135 0.30 (0.38) 0.49 (0.53) 0.40 (0.41) 
 

 
 
Table 8.1. Values of the rate constant κ (expressed in units of beads/µs), obtained by fitting the time evolution 
of )(tN  against equation (6.20), for different values of w, different DNA-protein interaction laws, and 

hydrodynamic interactions switched either "off" or "on". The first number in each entry was obtained with the 

σ≤− prot, rr kj  criterion, while the number in parentheses was obtained with the σ5.1prot, ≤− rr kj  

criterion. 
 

D1ρ  
HI w (nm) 

repulsive potential 1/ DNAprot =ee  3/ DNAprot =ee  

18 0.12 (0.43) 0.60 (0.982) 0.912 (1.000) 

32 0.04 (0.16) 0.60 (0.961) 0.902 (1.000) 

45 0.02 (0.09) 0.61 (0.995) 0.906 (1.000) 
off 

135 < 0.01 (0.01) 0.29 (0.44) 0.46 (0.56) 

18 0.15 (0.44) 0.32 (0.74) 0.66 (0.985) 

32 0.05 (0.17) 0.23 (0.53) 0.66 (0.979) 

45 0.03 (0.11) 0.20 (0.41) 0.67 (0.986) 
on 

135 < 0.01 (0.01) 0.09 (0.19) 0.56 (0.78) 

 

Table 8.2. Values of D1ρ , the fraction of time during which the protein is attached to a DNA bead, for different 

values of w, different DNA-protein interaction laws, and hydrodynamic interactions switched either "off" or 

"on". The first number in each entry was obtained with the σ≤− prot, rr kj  criterion, while the number in 

parentheses was obtained with the σ5.1prot, ≤− rr kj  criterion. 
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repulsive potential to almost 1 for large values of the protein charge. It can also be seen in table 

8.2 that D1ρ  is substantially smaller when hydrodynamic interactions are taken into account than 

when they are not. Stated in other words, hydrodynamic interactions (HI) tend to move the 

protein away from the DNA. We will see that this has a marked effect on the targeting speed. At 

last, it can also be noticed that the values of D1ρ  for the largest value of w (145 nm) are 

substantially smaller than for the three other values of w (18, 32, and 45 nm), which reflects the 

fact that DNA segments are more widely separated and the protein consequently spends more 

time diffusing freely in the buffer. 

In table 8.3 are given the values of the 1D diffusion coefficients D1D in units of 10-10m2s-1. 

They were computed, as in the previous chapter, by drawing log-log plots of the average value of 

the number of visited beads during long sliding events. A few representative plots are shown in 

figure 8.2. All plots are approximately linear in log-log scales, which means that )(tN  evolves 

according to a power law βα ttN ≈)( . I found that β is close to 0.5 for 1/ DNAprot =ee  and HI 

switched "on", to 0.45 for 1/ DNAprot =ee  and HI switched "off", to 0.40 for 3/ DNAprot =ee  and HI 

switched "on", and to 0.20 for 3/ DNAprot =ee  and HI switched "off". This indicates that the 

sliding motion is diffusive in the first case, slightly subdiffusive in the second and third cases, 

and very subdiffusive in the last case. This is probably connected to the fact that, when going 

from the first to the fourth case, the protein bead actually spends more and more time attached to 

the same DNA bead without moving: large average waiting times between random-walk steps are 

indeed sufficient to induce subdiffusion (see, for example, [145]). Except for the last case, the 

time evolution of )(tN  can therefore be fitted with a square-root law ttN α≈)(  and then the 

diffusion coefficient is obtained using equation (5.12) and the relation )()( 0 tNlt =l . As could 

reasonably be expected, the estimated values of 1DD  do not depend on the value of w. In contrast, 

1DD  appears to be about twice larger when HI are taken into account than when they are not. Not 

surprisingly, 1DD  also depends to some extent on the shape and depth of the interaction potential: 

values of 1DD  for 3/ DNAprot =ee  appear to be about 40% larger than the corresponding values for 

1/ DNAprot =ee . 
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Figure 8.2. Log-log plots of the time evolution of the number )(tN  of different DNA beads visited by the 

protein during 1D sliding for various systems with w=45 nm. As indicated on the figure, two simulations were 
ran with 1/ DNAprot =ee  and two other ones with 3/ DNAprot =ee . Similarly, hydrodynamic interactions were 

taken into account for two of the simulations, but neglected for the two other ones. It was considered that the 

protein is attached to bead k of DNA segment j if σ≤− prot, rr kj . For each simulation, )(tN  was averaged 

over several tens of sliding events with the following properties : (i) each sliding event lasted more than 1 µs, 
(ii) the protein did not separate from the DNA segment by more than σ during more than 0.07 µs, (iii) the 
protein bead did not reach one of the extremities of the DNA segment. 
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1DD  (units of 10-10 m2 s-1) 

HI w (nm) 
1/ DNAprot =ee  3/ DNAprot =ee  

18 1.15 (1.30)  

32 1.18 (1.21)  

45 1.14 (1.20)  
off 

135 1.15 (1.21)  

18 1.94 (2.29) 3.13 (3.18) 

32 2.15 (2.71) 2.82 (2.54) 

45 1.93 (2.74) 2.72 (2.62) 
on 

135 1.92 (2.39) 2.45 (2.11) 

 
 
Table 8.3. Values of 1DD , the diffusion coefficient of the protein along the DNA segment, expressed in units of 

10-10 m2 s-1, for different values of w, different DNA-protein interaction laws, and hydrodynamic interactions 

switched either "off" or "on". The first number in each entry was obtained with the σ≤− prot, rr kj  criterion, 

while the number in parentheses was obtained with the σ5.1prot, ≤− rr kj  criterion. 1D motion for 

3/ DNAprot =ee  and HI switched "off" is too subdiffusive to be described by a diffusion coefficient 1DD . 

 

HI w (nm) 
3DD  

(units of 10-10 m2 s-1) 

18 0.66 (0.63) 

32 0.73 (0.72) 

45 0.72 (0.71) 
off 

135 0.69 (0.69) 

18 1.40 (1.37) 

32 1.45 (1.49) 

45 1.65 (1.71) 
on 

135 4.11 (3.47) 

 

Table 8.4. Values of 3DD , the diffusion coefficient of the protein in the buffer, expressed in units of 10-10 m2 s-1, 

for different values of w, and hydrodynamic interactions switched either "off" or "on". The first number in each 

entry was obtained with the σ≤− prot, rr kj  criterion, while the number in parentheses was obtained with the 

σ5.1prot, ≤− rr kj  criterion. The values of 3DD  were obtained from the expression of the volume of the 3D 

Wiener sausage in equation (6.21) and the values of κ reported in the "repulsive potential" column of table 8.1. 
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As already shown before, the 3D diffusion coefficient of the protein in the buffer can be 

estimated in at least three different ways, namely from Einstein's formula (equation (6.23) – in 

the case of a single bead protein this gives 10
3D 1070.0 −×=D  m2 s-1), from the expression of the 

volume of the 3D Wiener sausage (equation (6.21)), and from the mean squared displacement of 

the protein (equation (5.11)). For repulsive DNA/protein interactions and HI switched "off", the 

values of 3DD  obtained with these methods should be very close. The estimates obtained from the 

values of κ in the "repulsive potential" column of table 8.1 and equation (6.21) with σδ =  or 

σδ 5.1=  are shown in the top half of table 8.4. It can be checked that they indeed agree very 

closely with the result of Einstein's formula. In contrast, when HI are taken into account, the 

values of 3DD  obtained from the expression of the volume of the 3D Wiener sausage are 

substantially larger than those obtained from Einstein's formula (see the bottom half of table 8.4). 

This agrees with Kirkwood-Riseman's equation, which states that HI reduce the effective friction 

coefficient of long DNA chains [148]. However, this is in apparent contradiction with other 

works that state that HI tend to decrease the association rate between two diffusing spheres 

placed at short distance [149-151], because the stochastic (thermal) motions of the two particles 

become highly correlated, which slows down their relative mobility. I therefore confirmed this 

result by extracting D3D from the time evolution of the mean squared displacement of the protein, 

according to equation (5.11), that is, more precisely: 

tDt 3D

2

protprot 6)0()( =− rr ,                        (8.6) 

For example, I checked that equation (8.6) leads to 10
3D 1068.0 −×=D  m2 s-1 for w=45 nm and HI 

switched "off" and to 10
3D 1060.1 −×=D  m2 s-1 for HI switched "on". The dependence of the 3D 

diffusion coefficient of the protein on HI is a point that certainly deserves further attention on its 

own. 

All the quantities that are necessary to estimate the rate constant κ from Klenin et al's 

formula for the mean time of first arrival τ in equations (5.9) and (8.5) and the relation between τ 

and κ in equation (8.3) are now at disposal. These values of κ are reported in table 8.5 in units of 

beads/µs. Since there is no sliding of the protein along the DNA for the repulsive DNA/protein 

interaction, D1ρ  was set to 0 in this case in Klenin et al's formula, although D1ρ  is actually small 
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but not zero because of collisions (see table 8.2). As a consequence, the "repulsive potential" 

column of table 8.5 is similar to that of table 8.1, because this column of table 8.1 is used to 

estimate the 3D diffusion coefficient 3DD  (table 8.4) according to the expression for the volume 

of the 3D Wiener sausage in equation (6.21). Moreover, for 3/ DNAprot =ee  and HI switched 

"off", the sliding motion of the protein along DNA is too subdiffusive to enable an estimation of 

1DD . Klenin et al's formula can therefore not be used in this latter case. 

 

8.3. Acceleration of targeting due to facilitated diffusion and hydrodynamic 

       interactions 

 

Table 8.6 shows the acceleration of the protein targeting process due to facilitated 

diffusion. This acceleration was estimated as the ratio of a given rate constant κ for 1/ DNAprot =ee  

or 3/ DNAprot =ee  divided by the corresponding value of κ for the repulsive DNA/protein 

interaction. Table 8.7 similarly shows the acceleration of the targeting process due to HI. This 

acceleration was estimated as the ratio of a given rate constant κ for HI switched "on" divided by 

the corresponding value of κ for HI switched "off". In both cases, the values of κ were taken from 

table 8.1 for the dynamical model and from table 8.5 for the kinetic model. 

Let us first concentrate on the results obtained with the dynamical model. For a reason 

which will become clear later, I first discuss the results obtained with the σ threshold. For HI 

switched "on", the values for the acceleration of targeting due to facilitated diffusion reported in 

table 8.6 are comprised between 1.3 and 1.7 and are quite similar for 1/ DNAprot =ee  and 

3/ DNAprot =ee  (remember that the acceleration becomes smaller than 1 for values of DNAprot / ee  

larger than 5). Table 8.6 additionally indicates that the acceleration due to facilitated diffusion 

depends only marginally on w, and consequently on DNA concentration, when HI are considered. 

Things are, however, quite different when HI are switched "off". In this case, the acceleration due 

to facilitated diffusion depends significantly on w. When w increases from 18 nm to 135 nm, the 

acceleration indeed increases by a factor of almost 4 for 1/ DNAprot =ee , and almost 7 for 

3/ DNAprot =ee . Moreover, the value of the acceleration depends much more sharply on the  
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1/ DNAprot =ee  3/ DNAprot =ee  

HI w (nm) 
dynamical kinetic dynamical kinetic 

18 0.86 (0.70) 0.80 (0.12) 0.11 (0.09)  

32 0.86 (0.63) 1.10 (0.26) 0.12 (0.09)  

45 1.10 (0.79) 1.49 (0.13) 0.18 (0.13)  
off 

135 2.98 (2.04) 4.20 (3.07) 0.74 (0.51)  

18 1.36 (1.23) 0.90 (0.47) 1.35 (1.07) 0.77 (0.11) 

32 1.49 (1.14) 1.21 (0.92) 1.47 (1.03) 1.16 (0.20) 

45 1.69 (1.26) 1.37 (1.20) 1.47 (1.01) 1.34 (0.21) 
on 

135 1.63 (1.39) 1.73 (1.82) 1.33 (1.08) 2.67 (1.50) 

 

Table 8.6. Acceleration of the protein targeting process due to facilitated diffusion, for both the dynamical and 
kinetic models, estimated as the ratio of a given rate constant κ for 1/ DNAprot =ee  or 3/ DNAprot =ee  divided 

by the corresponding value of κ for the repulsive DNA/protein interaction. The values of κ were taken from 
table 8.1 for the dynamical model and from table 8.5 for the kinetic model. 

 
κ (units of beads/µs) 

HI w (nm) 
repulsive potential 1/ DNAprot =ee  3/ DNAprot =ee  

18 2.70 (3.86) 2.16 (0.48)  

32 0.98 (1.44) 1.08 (0.38)  

45 0.47 (0.70) 0.70 (0.09)  
off 

135 0.050 (0.075) 0.21 (0.23)  

18 5.73 (8.40) 5.15 (3.93) 4.43 (0.95) 

32 1.94 (3.00) 2.35 (2.76) 2.25 (0.59) 

45 1.08 (1.68) 1.48 (2.02) 1.45 (0.36) 
on 

135 0.30 (0.38) 0.52 (0.69) 0.80 (0.57) 

 
 
Table 8.5. Values of the rate constant κ (expressed in units of beads/µs) obtained from Klenin et al's formula for 
τ in equations (5.9) and (8.5), the relation between τ and κ in equation (8.3), and the values of D1ρ , 1DD  and 

3DD  in tables 8.2 to 8.4, for different values of w, different DNA-protein interaction laws, and hydrodynamic 

interactions switched either "off" or "on". Since there is no sliding of the protein along the DNA for the 

repulsive DNA/protein interaction, D1ρ  was set to 0 in this case in Klenin et al's formula, although D1ρ  is 

actually small but not zero (see table 8.2). Moreover, for 3/ DNAprot =ee  and hydrodynamic interactions 

switched "off", the sliding motion of the protein along the DNA is too subdiffusive to enable an estimation of 

1DD . Klenin et al's formula can therefore not be used in this latter case. 
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repulsive potential 1/ DNAprot =ee  3/ DNAprot =ee  

w (nm) 
dynamical kinetic dynamical kinetic dynamical kinetic 

18 2.12 (2.18) 2.12 (2.18) 3.37 (3.83) 2.38 (8.19) 25.9 (26.4)  

32 1.98 (2.08) 1.98 (2.08) 3.45 (3.76) 2.18 (7.26) 23.6 (24.4)  

45 2.30 (2.40) 2.30 (2.40) 3.52 (3.84) 2.11 (22.4) 18.5 (19.1)  

135 6.00 (5.07) 6.00 (5.07) 3.29 (3.46) 2.48 (2.26) 10.8 (10.8)  

 

Table 8.7. Acceleration of the protein targeting process due to hydrodynamic interactions (HI), for both the dynamical and 
kinetic models. Acceleration of targeting due to HI was estimated as the ratio of a given rate constant κ for HI switched "on" 
divided by the corresponding value of κ for HI switched "off". In both cases, the values of κ were taken from table 8.1 for the 
dynamical model and from table 8.5 for the kinetic model. 
 
protein charge than for HI switched "on". Indeed, in the range of values of w I investigated, 

acceleration of targeting for 1/ DNAprot =ee  is larger than that for 3/ DNAprot =ee  by a factor which 

varies between 3.5 and 8. More precisely, facilitated diffusion is about 10 times slower than 3D 

diffusion for 3/ DNAprot =ee  and w=18 nm, but more than 3 times faster for 1/ DNAprot =ee  and 

w=135 nm. 

The crucial role of hydrodynamics is further emphasized by the values of the acceleration 

of targeting due to HI reported in table 8.7. It is seen that, for values of w close to physiological 

ones (30 to 50 nm), this acceleration is close to 2 for repulsive DNA/protein interactions and to 

3.5 for 1/ DNAprot =ee , while it is as large as 20 for 3/ DNAprot =ee . Examination of tables 8.2 to 

8.4 suggests that the large acceleration of targeting observed when HI are switched "on" is 

ascribable to two rather distinct effects. First, as already noted in the preceding section, both 1DD  

and 3DD  are roughly twice larger when HI are switched "on" than when they are switched "off" 

(see tables 8.3 and 8.4). This, of course, accelerates the targeting process in proportion. The 

second effect is that HI tend to detach the protein from the DNA sequence, as can be checked by 

looking at the values of D1ρ  reported in table 8.2. This considerably modifies the motion of 

highly charged proteins. For example, for 3/ DNAprot =ee  and HI switched "off", the protein 

spends about 90% of the time attached to DNA for physiological values of w. The protein 

remains consequently attached for most of the time to the same portion of the DNA sequence and 
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either does not move or performs essentially 1D search, which is quite inefficient (see equation 

(5.12)). In contrast, D1ρ  is of the order of 66% when HI are switched "on", so that, in spite of the 

strong electrostatic attraction exerted by DNA, the protein spends a sizeable amount of time 

diffusing in 3D in the buffer. Stated in other words, the reduction of D1ρ  caused by HI allows 

strongly charged proteins to search efficiently for their target, while this would be forbidden by 

electrostatic interactions in the absence of HI. 

 

8.4. Comparison of the dynamical and kinetic models 

 

Let us now examine the agreement between results obtained with the dynamical and 

kinetic models, and let us start with the results obtained when switching HI "off". For the 

repulsive DNA/protein interaction potential, the corresponding columns of tables 8.1 and 8.5 are 

identical. This actually just reflects the facts that the values of κ in table 8.1 were used to estimate 

the diffusion coefficients 3DD  reported in table 8.4 and that D1ρ  was further assumed to be zero 

in equation (8.5) for repulsive DNA/protein interactions, because in this case it is not possible to 

derive an estimation of 1DD  from Brownian dynamics simulations. Still, when plugging in 

equation (8.4) the value of 3DD  obtained from Einstein formula (equation (6.23)) instead of those 

reported in table 8.4, one again obtains "kinetic" rate constants κ that are in excellent agreement 

with "dynamical" ones. 

While for repulsive DNA/protein interactions the agreement between the dynamical and 

kinetic models does not depend on the threshold used in Brownian dynamics simulations, this is 

no longer the case for the interaction potential with 1/ DNAprot =ee . Comparison of tables 8.1 and 

8.5 indeed indicates that the agreement is pretty good for the σ threshold, while the values of κ 

estimated from Klenin et al's formula are much too small for the σ5.1  threshold. This is actually 

also the case for all the simulations that will be discussed in the remainder of this chapter. 

Examination of tables 8.3 and 8.4 indicates that the values of 1DD  and 3DD  derived from 

Brownian dynamics simulations are not sensitive to the threshold, as one would reasonably 

expect. In contrast, the fraction of time D1ρ  during which the protein is attached to the DNA 

sequence depends strongly on the threshold. In particular, the σ5.1  threshold leads to values of 
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D1ρ  that are close to 1 for most of the simulations. The point is, that the values of the rate 

constant κ obtained from Klenin et al's formula tend towards 0 when D1ρ  tends towards 1. This 

reflects the fact that the protein motion thereby switches from facilitated diffusion, for which 

)(tN  increases linearly with time, to 1D diffusion, for which )(tN  increases as the square root of 

time. Overestimation of D1ρ  therefore essentially results in underestimation of κ. This is very 

clearly what happens when the σ5.1  threshold is used in Brownian dynamics simulations. In 

contrast, it seems that the σ threshold leads to values of D1ρ  that perform a better job as input 

values to Klenin et al's formula. Therefore, I will henceforth only consider values obtained with 

the σ threshold. 

The top half of the last column of table 8.5 is void. This is due to the fact that the sliding 

motion of the protein for 3/ DNAprot =ee  and HI switched "off" is so much subdiffusive that it is 

neither meaningful nor practically feasible to extract diffusion coefficients 1DD  from the 

simulations. As a direct consequence, it is not possible in this case to derive estimates of κ from 

Klenin et al's formula. I am not familiar enough with the theoretical background of reference 

[117] to determine whether this is a fundamental limitation of the kinetic model, or whether 

equations (5.9) and (5.10) can be generalized to account for subdiffusive 1D motion of the 

protein. 

Let us now compare results obtained with the dynamical and kinetic models when HI are 

switched "on". The kinetic model does not explicitly incorporate them, which rises an interesting 

question: are HI reducible to their effect on 1DD , 3DD , and D1ρ ? Stated in other words, is it 

sufficient to plug in Klenin et al's expression the values of 1DD , 3DD , and D1ρ  deduced from 

simulations with HI switched "on" to get reasonable estimates of κ ? Comparison of the bottom 

halves of tables 8.1 and 8.5 suggests that this is indeed the case. Even if the values of κ differ in 

one case by a factor of 2, the agreement is generally correct. 
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8.5. What about real systems? 

 

In this chapter, I have thus shown that the dynamical model I proposed and the kinetic 

model of Klenin et al [118] support each other, in the sense that the rate constants κ obtained (i) 

directly from the simulations, and (ii) from Klenin et al's formula using values of 1DD , 3DD , and 

D1ρ  extracted from the simulations, are in good agreement. In particular, both models suggest 

that the acceleration of targeting due to facilitated diffusion is not very large for the system I 

considered. Table 8.6 indeed shows that the dynamical and kinetic models agree in predicting an 

acceleration comprised between 20% and 70% for physiological values of w, HI switched "on", 

and protein charges ranging from 1/ DNAprot =ee  to 3/ DNAprot =ee . 

However, one must at this point wonder how this result transfers to real DNA and 

proteins. The essential point is that the dynamical system corresponds to a ratio 3D1D / DD  of the 

order of unity (see tables 8.3 and 8.4), as is customary for translational diffusion. In contrast, the 

ratio 3D1D / DD  for real DNA/protein systems (measured essentially by single molecule 

experiments) is rather of the order of 310−≈  [99,100,102,103,105,106,152-154]. This three orders 

of magnitude difference may be due to the fact that in real systems the protein has to follow a 

helical track along the DNA, which considerably enhances the translational friction coefficient 

[98,101,155]. Using Klenin et al's formula, acceleration of targeting due to facilitated diffusion 

can be written in the form: 
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where ξ is given in equation (8.5) and a is taken here as the sum of the protein and DNA 

hydrodynamic radii, σ. As a consequence, for a given DNA concentration (and therefore a given 

value of w), the acceleration due to facilitated diffusion depends uniquely on D1ρ  and the ratio 

3D1D / DD . For each value of 3D1D / DD , one can therefore search for the value of D1ρ  for which 

this acceleration is maximum. The result is plotted in figure 8.3 for three different values of w 

(18, 45 and 135 nm). The top plots show the largest acceleration of targeting (relative to 3D 

diffusion) that can be attained for each value of 3D1D / DD , and the bottom plots the value of D1ρ   
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Figure 8.3. Plot, as a function of 3D1D / DD  and for three different values of w (18, 45 and 135 nm), of the 

maximum value of )4/( 3D caDπκ  that can be attained for values of D1ρ  comprised between 0 and 1 (top plot), 

and plot of the value of D1ρ  at which this maximum is attained (bottom plot). )4/( 3D caDπκ  is evaluated 

according to equation (8.7). This ratio represents the maximum value of the acceleration of targeting, 
compared to 3D diffusion, which can be achieved thank to facilitated diffusion. 
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at which this maximum is attained. It is seen that, for physiological values of w (30-50 nm), 

facilitated diffusion cannot be faster than 3D diffusion for values of 3D1D / DD  smaller than about 

0.3: maximum acceleration is indeed 1 at 0D1 =ρ . For values of 3D1D / DD  larger than this 

threshold, the maximum acceleration instead increases approximately as the square root of 

3D1D / DD . This maximum acceleration is furthermore attained for values of D1ρ  close to 1/2  

when 3D1D / DD  is larger than about 1. At last, the maximum acceleration due to facilitated 

diffusion increases slowly with w. 

For values of 3D1D / DD  close to 1.5, as in these simulations (see tables 8.3 and 8.4), figure 

8.3 indicates that maximum acceleration due to facilitated diffusion is of the order of 2 for 

physiological values of w, which is exactly what I obtained (see table 8.6). In contrast, realistic 

values of 3D1D / DD  are much smaller than the 0.3 threshold, which implies, as already stated, that 

facilitated diffusion is necessarily slower than 3D diffusion. For such small values of 3D1D / DD , 

equation (8.7) actually reduces to: 

D1
3D

1
4

ρ
π

κ −≈
caD

                    (8.8) 

This conclusion agrees with experimental results, which indicate that the measured 

apparent diffusion coefficient of molecules that do not interact with chromatin or nuclear 

structures (like the green fluorescent protein or dextrans) range between 10-11 and 10-10 m2 s-1 

[152-154], depending on their size, as predicted by Einstein's formula, while that of biologically 

active molecules is instead usually reduced by a factor of 10-100 compared to this formula [155-

159].   

 

8.6. Conclusion 

 

In this chapter, I have shown that my model and the kinetic model of Klenin et al agree in 

predicting that facilitated diffusion cannot be much faster than normal diffusion. I have computed 

the rate constant κ firstly directly from simulations and then from Klenin et al’s formula, by using 

values of D1D, D3D and ρ1D computed with the dynamical model. For physiological DNA 

concentrations and realistic protein charges, the acceleration of targeting due to facilitated 

diffusion is in both cases smaller than 70%. Actually, the alternation of sliding and 3D diffusion 
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in the buffer can be faster than normal diffusion only for values of D1D/ D3D, which are much 

larger than those measured experimentally. These results come as a confirmation of Halford’s 

analysis of experimental results dealing with protein-DNA non-specific interactions and of his 

conclusion: during the past 40 years, there may indeed have been some mistakes in the 

understanding of protein–DNA association kinetics. 
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9. Conclusions and perspectives 
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 The purpose of my thesis work was the study of DNA models at different resolutions and 

of DNA-protein interactions and facilitated diffusion. 
 I started with the study of the simplest DNA models, namely statistical ones, and 

presented their application to 2D electrophoresis display. Using a code based on the open source 

program MeltSim, I showed that the results of genome separation experiments can be predicted 

with an accuracy that is higher than that of the measured values. I also pointed out that the use of 

simple expressions for the mobility of the sequences in the gels is sufficient to reach such an 

accuracy. Actually, my results also prove that nowadays the limiting step in separation problems 

is the reproducibility of the experimental procedure and not the validity of the model. Finally, I 

showed that the results of 2D display experiments are not sufficient to determine the best set of 

parameters for the modeling of fragments separation in the second dimension, and that additional 

detailed measurements of the mobility of a few sequences are necessary to achieve this goal. 

I next studied DNA melting using a dynamical model. More precisely, I improved the set 

of parameters of the dynamical model developed in our group, in order to get a better agreement 

with experimental results, which were not taken into account until now, like the critical force 

needed to keep two DNA strands separated and the dependence of the critical temperature on the 

length of the sequence. This model has some similarity with statistical models, in the sense that it 

is based on site-dependent, finite stacking and pairing enthalpies. However, in contrast to 

statistical models, no explicit temperature dependence is plugged in the dynamical model. Instead 

of site dependent stacking entropies, temperature evolution is indeed governed by the shape of 

the stacking and pairing interactions. I compared the results obtained with the improved model 

with those of statistical models and found satisfactory agreement. I also studied the critical 

behavior of the new model and observed that, if one relies on the temperature evolution of the 

specific heat, then DNA denaturation looks like a first order phase transition in a rather broad 

temperature interval. Very close to the critical temperature, one however observes a crossover to 

a smoother regime (second order transition?). If one instead relies on the temperature evolution of 

the singular part of free energy of the system, then the order of the DNA melting transition 

depends on the anharmonicity of the stacking interaction: it is second order for an almost 

harmonic stacking potential, but looks first order for large anharmonicities. This is somewhat 

reminiscent of statistical models, which describe DNA denaturation as a phase transition, which 

order depends on the way the partition function of a loop and the loop closure exponent are 
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computed. 

 In the second part of my thesis, I proposed a dynamical model for the description of 

protein-DNA interaction and facilitated diffusion, which is based on a DNA model inspired from 

polymer physics. This model suggests that, although DNA sampling is performed via a 

succession of 3D motion in the buffer, 1D sliding along the DNA chain, short hops between 

neighboring sites, and intersegmental transfers, the global motion of the protein still looks 

diffusive-like. I computed the rate at which the protein scans the DNA sequence and studied how 

it is affected by the electrostatic and mechanical properties of the protein, like its charge 

distribution, its total charge, its shape, and its elasticity. I showed that the model predicts that 

facilitated diffusion accelerates sampling in a certain range of values of the charge of the protein. 

Moreover, for reasonable values of the total charge of the protein, the number of base pairs 

visited during a single sliding event is comparable to the values deduced from single molecule 

experiments, that is from a few tens to a few hundreds base pairs. I also studied the effect that 

hydrodynamic interactions have on the sampling process and showed that they can significantly 

increase the scanning rate. Finally, I compared the results obtained with the dynamical model 

with those obtained with the kinetic model of Klenin et al, and showed that both models agree in 

predicting that facilitated diffusion cannot push the speed of DNA sampling far beyond the 

diffusion limit. For realistic values of the 1D and 3D diffusion coefficients, facilitated diffusion is 

even most probably slower than normal diffusion. This result comes as an argument in the debate 

whether protein-DNA association is faster than diffusion, and supports a recent review of 

experimental work, which concludes that there is no known example of a protein that finds its 

target faster than diffusion and that we should put "an end to 40 years of mistakes in protein-

DNA association kinetics" [21]. 

 Even tough most of the results presented here are quite reliable, the model I proposed has 

several limitations. First, it predicts a 1D diffusion coefficient which is much larger than 

experimentally measured values. This is probably due to the fact that my model takes into 

account neither the helical structure of DNA nor the specific (sequence dependent) interactions 

between DNA and the protein, which slow down the sliding process. Moreover, hydrodynamic 

interactions are treated in a simplified way, disregarding the fluidity of hydration layers and 

short-range lubrication effects. 

To my mind, the most important improvement one should bring to this model deals with 
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the resolution at which DNA is described. Ideally, an improved model should combine the 

properties of the dynamical models discussed in the two parts of this work. More precisely, it 

should be complex enough to describe both DNA at the scale of a single base pair and the 

diffusion of the double strand in the buffer. In contrast, the DNA models discussed in the first 

part of this work do not permit the study of the global motion of the sequence in the buffer and of 

its diffusion coefficient, while the model for DNA-protein interactions proposed in the second 

part is not detailed enough to describe individual base pairs and their opening as a consequence 

of either protein pulling or temperature increase. A model, which in my opinion could be applied 

to both DNA melting and the study of DNA-protein interactions, was proposed recently 

[160,161]. In this model, a sugar, a phosphate and a base are each described by one bead, so that 

six beads are needed for each base pair. The Hamiltonian of this model is rather similar to that 

used in the second part of my thesis. It includes stretching, bending and electrostatic interactions 

between the different beads. It also includes torsion and stacking interactions, which give DNA 

its helical structure with the major and minor grooves. Base pairing interactions are described by 

Lennard-Jones-type potentials. Moreover, the parameters of the model were fitted to reproduce 

both the correct denaturation curves and the persistence length of double-stranded DNA. 

This improved description of DNA should of course be complemented by a better 

description of the protein. One should indeed switch from working with ‘generic’ proteins to 

specific structures. An interesting candidate could be a recent coarse-grained model, which uses 

one bead to describe each amino acid that composes a protein [162]. The initial configuration is 

built by placing the centers of the beads at the positions of the Cα atoms of the X-ray diffraction 

structures, which can be downloaded from the Protein DataBank. Each bead has the total charge 

of the residue it stands for. The beads are connected by springs and the number and strength of 

connections are adjusted to reproduce the vibrational normal modes of the protein. 

I think that the combination of these two models could be used to improve greatly the 

results presented in the second part of this thesis, in particular concerning the 1D sliding of the 

protein. It could permit simulating the track of the protein on the double helix, and therefore 

should provide a more accurate 1D diffusion coefficient and sliding length. Most importantly, 

such a composite model would also be sufficiently fine-grained to model specific interactions and 

simulate how DNA-binding proteins stop on their targets. The key point is obviously to be able to 

make the link between the two models, that is, to define meaningful interactions between the 
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beads composing the DNA sequence and those standing for amino acids. 

I have started implementing these models, choosing to begin with the TATA-binding 

protein. The TATA-binding protein is a transcription factor, which binds to a small DNA 

sequence that is rich in thymine and adenine. It then opens the double strand by bending it to an 

angle of 80°. The motivation of this choice is twofold. Firstly, the TATA-binding protein is a 

small protein (the C-terminal domain is composed of 180 amino acids), which structure has been 

determined at very high resolution (see, for example, references [163] and [164]) and is well 

conserved between different species. Secondly, this is the first protein, which, in eukaryotes, 

connects to DNA during the initiation process for transcription by the RNA polymerase. It is 

therefore not influenced by the presence of other proteins, which makes it a simple system to 

study. 

 I am confident that such mesoscopic dynamical models of DNA-protein interactions can 

help a lot in clearing these complex domains. 



 181 

 

References: 
 

1. F. Crick and J. D. Watson, Nature 171, 737 (1953). 

2. M. Levitt and A.Warshel, Nature 253, 694 (1975). 

3. J. F. Mercier, C. Kingsburry, G. W.  Slater and B. Lafay, Electrophoresis 29, 1264 

(2008).  

4. C. T. Zhang, Phys. Rev. A. 35, 886 (1987).  

5. M. Techera, L. L. Daemen and E. W. Prohofsky, Phys. Rev. A 40, 6636 (1989).  

6. T. Dauxois, M. Peyrard and A. R. Bishop, Phys. Rev. E 47, R44 (1993). 

7. M. Joyeux and S. Buyukdagli, Phys. Rev. E 72, 051902 (2005). 

8. M. Ptashme, Nature 214, 232 (1967).  

9. W. Gilbert and B. Muller Hill, Proc. Nat. Acad. Sci. USA  58, 2415 (1967). 

10. A. D. Riggs, S. Bourgeois and M. Cohn, J. Mol. Biol. 53, 401 (1970). 

11. O. G. Berg and P. H. von Hippel, Annu. Rev. Biophys. Biophys. Chem. 14, 131 

(1985).  

12. H. Gutfreund, Kinetics for the Life Sciences, Cambridge University Press, 

Cambridge, (1995).  

13. R. F. Bruinsma, Physica A 313, 211 (2002).  

14. R. J. Roberts, T. Vincze, J. Posfai and D. Macelis, Nucleic Acids Res. 35, D269 

(2007). 

15. M. Coppey, O. Bénichou, R. Voiturez and M. Moreau, Biophys. J. 87, 1640 

(2004). 

16. S. E. Halford and J. F. Marko, Nucleic Acids Res. 32, 3040 (2004). 

17. T. Hu, A. Y. Grosberg and B. I. Shklovskii, Biophys. J. 90, 2731 (2006). 

18. H. Merlitz, K. V. Klenin, C. X. Wu and J. Langowski, J. Chem. Phys. 125, 014906  

(2006). 

19. M. Slutsky and L. A. Mirny, Biophys. J. 87, 4021 (2004). 

20. H. Jian, A. Vologodskii and T. Schlick, Journal of Computational Physics 136, 

168 (1997).  



 182 

21. S. E. Halford, Biochemical Society Transactions 37, 343 (2009). 

22. M. D. Barkley, Biochemistry 20, 3833 (1981). 

23. R. B. Winter, O. G. Berg and P. H. von Hippel, Biochemistry 20, 6961 (1981).  

24. M. Hsieh and M. Brenowitz, J. Biol. Chem.  272, 22092 (1997). 

25. B. H. Zimm and J.R Bragg, J. Chem. Phys. 31, 526 (1959).  

26. B. H. Zimm, J. Chem. Phys. 33, 1349 (1960).  

27. D. Poland and H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966). 

28. D. Poland and H. A. Scheraga, J. Chem. Phys. 45, 1464 (1966). 

29. E. Carlon, E. Orlandini and A. L. Stella, Phys. Rev. Lett 88, 198101 (2002).  

30. T. Garel and C. Monthus, Journal of Statistical Mechanics – Theory and 

experiment, Art. No. P06004 (2005).  

31. D. Poland, Biopolymers 13, 1859 (1974).  

32. M. Fixman and J. J. Freire, Biopolymers 16, 2603 (1977). 

33. J. SantaLucia, Proc. Natl. Acad. Sci USA 95, 1460 (1998). 

34. J. SantaLucia and D. Hicks, Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004).  

35. R. Blossey and E. Carlon, Phys. Rev. E. 68, 061911 (2003). 

36. Y. Kafri, D. Mukamel and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000).  

37. M. E. Fisher, J. Chem. Phys. 44, 616 (1966).  

38. R.D. Blake, J. W. Bizzaro, J.D. Blake, G. R. Day, S. G. Delcourt, J. Knowles, K.  

A. Marx and J. SantaLucia, Bioinformatics 15, 370 (1999). 

39. R. D. Blake and S.G. Delcourt, Nucleic Acids Res. 26, 3323 (1998). 

40. M. Joyeux, S. Buyukdagli and M. Sanrey, Phys. Rev. E 75, 061914 (2007). 

41. S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhansl and S. Litwin, 

Proc. Natl. Acad. Sci. USA 77, 7222 (1980). 

42. S. Yomosa, Phys. Rev. A 30, 474 (1984). 

43. C. T. Zhang and K. C. Chou, Chem. Phys. 191, 17 (1995). 

44. G. Gaeta, Phys. Lett. A 168, 383 (1992).  

45. G. Gaeta, Phys. Lett. A 190, 301 (1994).  

46. G. Gaeta, J. Biol. Phys. 24, 81 (1999). 

47. G. Gaeta, Phys. Rev. E. 74, 021921 (2006). 

48. Y. Gao and E. W. Prohofsky, J. Chem. Phys. 80, 2242 (1984). 



 183 

49. S. Cocco, M. Barbi and M. Peyrard, Phys. Lett. A 253, 161 (1999). 

50. T. Dauxois and M. Peyrard, The physics of solitons, Nonlinear Science and Fluid  

Dynamics, Cambridge University Press, Cambridge (2006).  

51. A. Campa and A. Giansanti, Phys. Rev. E 58, 3585 (1998). 

52. A. Campa and A. Giansanti, J. Biol. Phys. 24, 141(1999).  

53. S. Buyukdagli and M. Joyeux, Phys. Rev. E 77, 031903 (2008). 

54. Y.-L. Zhang, W-M Zheng, J-X Liu and Y.Z. Chen, Phys. Rev. E 56, 7100 (1997). 

55. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989).  

56. S. Buyukdagli and M. Joyeux, Phys. Rev. E 73, 051910 (2006). 

57. S. Buyukdagli and M. Joyeux, Phys. Rev. E 76, 021917 (2007). 

58. S. Buyukdagli, M. Sanrey and M. Joyeux, Chem. Phys. Lett. 419, 434 (2006).  

59. D. De Luchi, C. Gouyette and J.A. Subirana, Analytical Biochemistry 322, 279 

(2003). 

60. C. Danilowicz, Y. Kafri, R. S. Conroy, V. W. Coljee, J. Weeks and M. Prentiss, 

Phys. Rev. Lett. 93, 078101 (2004). 

61. C. H. Lee, C. Danilowicz, V. W. Coljee and M. Prentiss, Eur. Phys. J. E 19, 339 

(2006).  

62. A. Brünger, C. B. Brooks and M. Karplus, Chem. Phys. Lett. 105, 495 (1984). 

63. T. Schneider and E. Stoll, Phys. Rev. B 22, 5317 (1980). 

64. S.G. Fisher and L.S. Lerman, Cell 16, 191 (1979). 

65. S. G. Fisher and L.S Lerman, Proc. Natl. Acad. Sc. USA 77, 4420 (1980). 

66. S. G. Fisher and L.S Lerman, Proc. Natl. Acad. Sc. USA 80, 1579 (1983). 

67. J. L. Viovy, Rev. Modern Phys. 72, 813 (2000). 

68. L.S Lerman, S.G. Fisher, I. Hurley, K. Silverstein and N. Lumelsky, Ann. Rev. 

Biophys. Bioeng. 13, 399 (1984). 

69. L.S. Lerman and K. Silverstein, Methods Enzymol. 155, 482 (1987). 

70. C. A. Malloff, R. C. Fernandez and W. L. Lam, J. Mol. Biol. 312, 1 (2001). 

71. C. A. Malloff, R. C. Fernandez, E. M. Dullaghan, R.W. Stokes and W.L. Lam, 

Gene 293, 205 (2002). 

72. E. M. Dullaghan, C. A. Malloff, A.H. Li, W.L. Lam and R. W. Stokes, 

Microbiology 148, 3111 (2002). 



 184 

73. G. Steger, Nucleic Acids Res. 22, 2760 (1994). 

74. S. Brossette and R.M. Wartell, Nucleic Acids Res. 22, 4321 (1994). 

75. R. L. Rill, A. Beheshti and D. H. Van Winkle, Electrophoresis 23, 2710 (2002). 

76. D. H. Van Winkle, A. Beheshti and R.L. Rill, Electrophoresis 23, 15 (2002). 

77. J. Zhu and R. M. Wartell, Biochemistry 36, 15326 (1997).  

78. R.M Wartell, S. Hosseini, S. Powell and J. Zhu, J. Chromatogr. A 806, 169 

(1998). 

79. R. M. Meyers, T. Maniatis and L.S. Lerman, Methods Enzymol. 155, 501 (1987). 

80. N. Singh and Y. Singh, Eur. Phys. J. E 17, 7 (2005).  

81. S. Cocco, R. Monasson and J. F. Marko, Proc. Natl. Acad. Sci. USA 98, 8608 

(2001).  

82. D. K. Lubensky and D. R. Nelson, Phys. Rev. E 65, 031917 (2002).  

83. E. Carlon, M. L. Malki and R. Blossey, Phys. Rev. Lett. 94, 178101 (2005).  

84. H. Urabe and Y. Tominaga, J. Phys. Soc. Jpn 50, 3543 (1981). 

85. H. Urabe, Y. Tominaga and K. Kubota, J. Chem. Phys. 78, 5937 (1983). 

86. E. W. Prohofsky, Statistical mechanics and stability of macromolecules, 

Cambridge University Press, Cambridge (1995). 

87. S. Cocco and R. Monasson, J. Chem. Phys. 112, 10017 (2000). 

88. E. Protozanova, P. Yakovchuk and M. D. Frank-Kamenetskii, J. Mol. Biol. 342, 

775 (2004). 

89. A. Krueger, E. Protozanova and M. D. Frank-Kamenetskii, Biophys. J. 90, 3091 

(2006). 

90. T. Ambjornsson, S. K. Banik, O. Krichevsky and R. Metzler, Phys. Rev. Lett. 97, 

128105 (2006).  

91. F. De los Santos, O. Al Hammal and M. A. Munoz, Phys. Rev. E 77, 032901 

(2008).  

92. D. Cule and T. Hwa, Phys. Rev. Lett. 79, 2375 (1997).  

93. S. Buyukdagli and M. Joyeux, Chem. Phys. Lett. 484, 315 (2010). 

94. A. D. Riggs, H. Suzuki and S. Bourgeois, J. Mol. Biol. 48, 67 (1970). 

95. O. G. Berg, R. B. Winter and P. H. von Hippel, Biochemistry 20, 6929 (1981). 



 185 

96. G. Adam and M. Delbruck, Reduction of dimensionality in biological diffusion 

processes, in Structural Chemistry and Molecular Biology, Freeman, San 

Francisco (1968). 

97. P. H. von Hippel and O. G. Berg, J. Biol. Chem. 264, 675 (1989). 

98. J. Gorman and E. C. Greene, Nature structural and molecular biology 15, 768 

(2008). 

99. J. Elf, G. W. Li and X. S. Xie, Science 316, 1191 (2007). 

100. I. Bonnet, A. Biebricher, P.-L. Porté, C. Loverdo, O. Bénichou, R. Voituriez, C. 

Escudé, W. Wende, A. Pingoud and P. Desbiolles, Nucleic Acids Res. 36, 4118 

(2008). 

101. B. Bagchi, P. C. Blainey and X. S. Xie, J. Phys Chem. B 112, 6282 (2008). 

102. P. C. Blainey, A. M. van Oijen, A. Banerjee, G. L. Verdine and X. S. Xie, Proc. 

Nat. Acad. Sci. USA. 103, 5752 (2006). 

103. A. Tafvizi, F. Huang, J. S. Leith, A. R. Fersht, L. A. Mirny and A. M. van Oijen, 

Biophys. J. 95, L1 (2008). 

104. Y. M. Wang, R. H. Austin and E. C. Cox, Phys. Rev. Lett. 97, 048302 (2006). 

105. J. H. Kim and R.G. Larson, Nucleic Acids Research 35, 3848 (2007). 

106. A. Granéli, C.C. Yeykal, R.B. Robertson and E.C. Greene, Proc. Nat. Acad. Sci. 

USA 103, 1221 (2006).  

107. Y. Wang, L. Guo, I. Golding, E. C. Cox and N. P. Ong, Biophys. J. 96, 609 

(2009). 

108. D. M. Gowers and S. E. Halford, EMBO Journal 22, 1410 (2003). 

109. D. M. Gowers, G. G. Wilson and S. E. Halford, Proc. Natl. Acad. Sc. USA 102, 

15883 (2005). 

110. M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).  

111. H. C. Berg, Random walks in Biology, Princeton University Press, Princeton 

(1993). 

112. M. T. Record, W.T. Zhang and C.F. Anderson, Adv. Prot. Chem. 51, 281 (1998).  

113. P.J.W. Debye, Trans. Electrochem. Soc. 82, 265 (1942). 

114. U. Böhme and U. Scheler, Chem. Phys. Lett. 435, 342 (2007). 

115. B. Honig and A. Nicholls, Science 268, 1144 (1995). 



 186 

116. N. J. B. Green, and S.M. Pimblott, J. Phys. Chem. 93, 5462 (1989).  

117. A. Szabo, K. Schulten and Z. Schulten, J. Chem. Phys. 72, 4350 (1980).  

118. K. V. Klenin, H. Merlitz, J. Langowski and C. X. Wu, Phys Rev Lett 96, 018104 

(2006). 

119. M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28, 525 (1975).  

120. F. Spitzer, Probab. Theory Relat. Fields 3, 110 (1964). 

121. A. M. Berezhkvoskii, Yu. A. Makhnovskii and R. A. Suris, J. Stat. Phys. 57, 333 

(1989). 

122. A. J. Varshavsky, S. A. Nedopasov, V. V. Bakayev, T. G. Bakayeva and G. P. 

Georgiev, Nucleic Acids Research 4, 2725 (1977). 

123. M.D. Frank-Kamenetskii, A.V. Lukashin and V.V. Anshelevich, J. Biomol. Struct. 

Dynam. 2, 1005 (1985). 

124. D. Stigter, Biopolymers 16, 1435 (1977). 

125. A.V. Vologodskii and N.R. Cozzarelli, Biopolymers 35, 289 (1995). 

126. G. Arya, Q. Zhang and T. Schlick, Biophys. J. 91, 133 (2006). 

127. D.L. Ermak and J.A. McCammon, J. Chem. Phys. 69, 1352 (1978). 

128. J. Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969). 

129. J. G. de la Torre and V.A. Bloomfield, Biopolymers 16, 1747 (1977). 

130. B. Carrasco, J. G. de la Torre and P. Zipper, Eur. Biophys. J. 28, 510 (1999). 

131. M. Fixman, Macromolecules 19, 1204 (1986). 

132. R.M. Jendrejack, M.D. Graham and J.J. de Pablo, J. Chem. Phys. 113, 2894 

(2000). 

133. C. Bustamante, M. Guthold, X. Zhu and G. Yang, J. Biol. Chem. 274, 16665 

(1999). 

134. P. Etchegoin and M. Nöllmann, J. Theor. Biol. 220, 233 (2003). 

135. M. Barbi, C. Place, V. Popkov and M. Salerno, Phys. Rev. E 70, 041901 (2004). 

136. M. Barbi, C. Place, V. Popkov and M. Salerno, J. Biol. Phys. 30, 203 (2004). 

137. T. Hu and B.I. Shklovskii, Phys. Rev. E 74, 021903 (2006). 

138. R. Murugan, Phys. Rev. E 76, 011901 (2007). 

139. V. Dahirel, F. Paillusson, M. Jardat, M. Barbi and J. M. Victor, Phys. Rev. Lett. 

102, 228101 (2009). 



 187 

140. S. Jones, P. van Heyningen, H. M. Berman and J. M. Thornton, J. Mol. Biol. 287, 

877 (1999). 

141. O. Givaty and Y. Levy, J. Mol. Biol. 385, 1087 (2009). 

142. I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006). 

143. G. Guigas and M. Weiss, Biophys. J. 94, 90 (2008). 

144. M. Wachsmuth, W. Waldeck and J. Langowski, J. Mol. Biol. 298, 677 (2000). 

145. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000). 

146. M. Lewis, G. Chang, N. C. Horton, M. A. Kercher, H. C. Pace, M. A. 

Schumacher, R. G. Brennan and P. Lu, Science 271, 1247 (1996). 

147. T. Schlick, Molecular modeling and simulation – An interdisciplinary guide, 

Springer, New York (2006). 

148. J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948). 

149. J. M. Deutch and B. U. Felderhof, J. Chem. Phys. 59, 1669 (1973) 

150. H. L. Friedman, J. Phys. Chem. 70, 3931 (1966). 

151. Y. von Hansen, R.R. Netz and M. Hinczewski, J. Chem. Phys. 132, 135103 

(2010). 

152. O. Seksek, J. Biwersi and A.S Verkman, J. Cell. Biol. 138, 131 (1997).  

153. J. Braga, J.M.P. Desterro and M. Carmo-Fonesca, Mol. Biol. Cell. 15, 4749 

(2004). 

154. S. M. Gorsich, M. Wachsmuth, K. F. Toth, P. Lichter and K. Rippe, J. Cell Sci. 

118, 5825 (2005). 

155. J. M. Schurr, Biophys. Chem. 9, 413 (1975). 

156. R. D. Phair and T. Misteli, Nature 404, 604 (2000).  

157. A. B. Houtsmuller and W. Vermeulen, Histochem. Cell. Biol. 115, 13 (2001).  

158. A. S. Verkman, Trends Biochem. Sci. 27, 27-33 (2002).  

159. R. D. Phair, P. Scaffidi, C. Elbi, J. Vacerova, A. Dey, K. Ozato, D. T. Brown, G. 

Hager, M. Bustin and T. Misteli, Mol. Cell Biol. 24, 6393 (2004).  

160. T. A. Knotts IV, N. Rathore, D. C. Schwartz and J. J. de Pablo, J. Chem. Phys. 

126, 084901 (2007). 

161. E. J. Sambriski, D. C. Schwartz and J. J. De Pablo, Biophysical Journal 96, 1675 

(2009).  



 188 

162. J. N. Stember and W. Wriggers, J. Chem. Phys. 131, 074112 (2009). 

163. D. B. Nikolov and S.K. Burley, Nature Structural Biology 1, 621 (1994). 

164. Y. Kim, J. H. Geiger, S. Hahn and P. B. Sigler, Nature 365, 512 (1993). 

 



 189 



 190 

Abstract 

The first part of my thesis deals with the modelling of DNA denaturation. I first used a 
statistical model (Poland-Scheraga) to show that one can predict the final positions of the 
fragments during 2D electrophoresis assays with a precision greater than experimental 
uncertainties. Then, I improved a dynamical model developed in our group by showing how its 
parameters can be varied to get predictions in better agreement with experimental results that 
were not addressed until now, like mechanical unzipping, the evolution of the critical temperature 
with sequence length, and temperature resolution. In the second part of my thesis I present a 
dynamical model for non-specific DNA-protein interactions. This model is based on a previously 
developed “bead-spring” model for DNA with elastic, bending and electrostatic interactions, 
while I chose to model protein-DNA interactions through electrostatic and excluded-volume 
forces. For the protein, I used two simple coarse-grained models: I first described the protein as a 
single bead and then improved this description by using a set of thirteen interconnected beads. I 
studied the properties of this model using a Brownian dynamics algorithm that takes 
hydrodynamic interactions into account, and obtained results that essentially agree with 
experiments. For example, I showed that the protein samples DNA by a combination of 3D 
diffusion in the buffer and 1D sliding along the DNA chain. I have also showed that this process, 
which is known as facilitated diffusion, cannot accelerate DNA sampling by proteins as much as 
it is sometimes believed to do. 

Keywords: 2D electrophoresis display, DNA denaturation, facilitated diffusion. 

Résumé 

La première partie de ma thèse porte sur la modélisation de la dénaturation de l'ADN. J'ai 
tout d'abord utilisé le modèle statistique de Poland-Scheraga pour montrer que, lors de 
l'électrophorèse 2D, on peut prédire les positions finales des fragments avec une précision 
meilleure que l'incertitude expérimentale. J'ai ensuite amélioré un modèle dynamique développé 
dans l'équipe en variant ses paramètres pour obtenir un meilleur accord avec des résultats 
expérimentaux nouveaux, tels la dénaturation mécanique, l'évolution de la température critique 
avec la longueur de la séquence, et la résolution en température. Dans la seconde partie de ce 
travail, je propose un modèle qui décrit les interactions non-spécifiques entre l'ADN et les 
protéines. Ce modèle est basé sur une description "billes et ressorts" déjà existante de l'ADN, qui 
inclut des interactions d'élongation, de pliage et électrostatiques, alors que je décris les 
interactions entre l'ADN et la protéine par des énergies électrostatiques et de volume exclu. Pour 
la protéine, j'ai tout d'abord considéré une simple bille, puis un réseau de treize billes 
interconnectées. J'ai étudié la dynamique de ce modèle en utilisant un algorithme de dynamique 
brownienne qui tient compte des interactions hydrodynamiques et montré qu'il donne des 
résultats en bon accord avec les expériences. J'ai par exemple observé que la protéine visite bien 
les différents sites de l'ADN par une succession de diffusion 3D et de glissement 1D le long de 
l'ADN. J'ai également montré que ce processus, appelé facilitated diffusion, ne peut pas accélérer 
beaucoup la vitesse de recherche de la protéine, contrairement à ce qui est parfois soutenu. 

Mots-clés : électrophorèse en deux dimensions, dénaturation de l’ADN, diffusion facilitée. 


