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Résumé

L’ADN est une des molécules qui est le plus étudige ce soit en biologie, en chimie ou
en physique, parce qu’elle code dans la séquencridéotides qui la compose l'information
nécessaire a la synthese des protéines. Les dpeehemts récents des expériences de
microscopie ont permis I'étude d'un grand nombremrbeessus cellulaires, dont les plus connus
sont la transcription et la réplication de 'ADNe& processus sont contrdlés par des protéines
appeléesacteurs de transcriptigmui se lient a la séquence ADN et séparent enfagalement
les deux brins de la structure hélicoidale pouédeca I'information génétique. La dénaturation
de 'ADN, c'est a dire la séparation des deux brss en elle-méme un processus tres intéressant
pour la physique statistique, puisqu'elle peut &smilée a une transition de phase.

Ma these est structurée en deux parties : la prenpigrtie (chapitres 2 a 4) porte sur la
modélisation de la dénaturation de I’ADN, alors tpseconde partie (chapitres 5 a 8) propose et
discute un modéle pour les interactions entre I'A&INes protéines visant & décrire comment
certaines protéines, comme les facteurs de tramisarj trouvent leur cible dans la séquence
d'ADN.

Aprés une introduction générale (chapitre 1), laxié@me chapitre de la these est une
introduction portant plus particulierement sur kndturation de 'ADN. Je commence par un
rappel de la structure chimique et de la fonctieW ADN, avant de décrire plusieurs modeles qui
ont été développés pour I'étude de sa dénaturaimprésente tout d'abord le modéle de Poland-
Scheraga, qui fait partie de la catégorie des nesdgthtistiques (pour lesquels une paire de bases
est décrite par une variable a deux états : oweférmeé), puis deux modeles dynamiques, basés
sur des expressions explicites du Hamiltonien dsiésye en fonction des coordonnées et des
vitesses des particules qui composent la séquence.

Le troisieme chapitre décrit un modéle des expéesnd’électrophorése en deux
dimensions. L’électrophorése est une technique é&mration des séquences ADN qui est
comparativement peu colteuse et frequemment @tiéaébiologie. Elle est basée sur le fait que,
dans un gel soumis a un champ électrique, les mielecd’ADN migrent avec des vitesses
differentes en fonction de leur longueur et de leomposition. Cette séparation se fait

généralement en deux étapes: tout d’abord une aéparen fonction de la longueur de la



séquence, puis une séparation en fonction de s@astion, provoquée par la dénaturation

chimique ou thermique des molécules d’ADN. Le medgikcuté ici a été construit autour de

MeltSim, un logiciel gratuit de calcul des courliesdénaturation thermique de 'ADN basé sur
le modele de Poland-Scheraga. L'ajustement desnptnes du modéle a permis de prédire des
positions des fragments d'ADN a la fin de la sépamaen trés bon accord avec les valeurs
mesurees.

Dans le chapitre 4, je décris enfin comment j'aBmeliorer un modéle dynamique de la
dénaturation de I'ADN, qui avait été développé daoise groupe avant le début de ma these. J'ai
obtenu un nouveau jeu de parameétres pour ce maypeélpermet de reproduire correctement plus
de données expérimentales que précédemment, cormmexpmple la force critique lors
d'expériences de dénaturation mécanique, ou eféwaution de la température critique en
fonction de la taille des séquences. J'ai aussipaoinles résultats obtenus grace a ce modeéle
avec ceux obtenus a partir des modeles statistiefiesme suis finalement intéressé a I'ordre de
la transition de phase de dénaturation prédit @anadéle.

La deuxieéme partie du manuscrit porte sur la medgtin des interactions entre I'ADN et
les protéines et sur les procédés par lesquefgdsines recherchent leur cible dans la séquence
d'ADN. C'est la I'un des problemes les plus discdl la biophysique actuelle. En général, ces
protéines trouvent tres rapidement sur leur cilileest souvent admis que la méthode de
recherche utilisée par les protéines, a savoircongbinaison de glissement 1D le long de 'ADN
et de diffusion 3D dans la cellule, est beaucougs ptpide que la diffusion 3D normale.
Cependant les expériences montrent que cela estla{présence d'interactions électrostatiques
entre la protéine et 'ADN et que la vitesse dehezche est par conséquent trés fortement
corrélée a la salinité du solvant.

Je commence, au chapitre 5, par une présentatigorahleme et de certains résultats
expérimentaux, ainsi que par une courte discusdsnmodeles existants. Je propose également
une courte introduction théorique a la recherchiedpa marches aléatoires.

Dans le sixieme chapitre du rapport, je dévelogpmbdele dynamique que je propose
pour la description des interactions entre 'ADNIlet protéines. L’ADN est décrite par un
modéle "beads and springs" emprunté a la physigsepdlymeres, alors que la protéine est
modélisée par une spheére rigide dotée d'une chaogetuelle en son centre. Le potentiel

d’interaction ADN-protéine est composé de deux &Fm un terme attractif d'origine



électrostatique et un terme répulsif de volumewexdbnt la somme présente un minimum a une
distance de l'axe de I'ADN égale a la somme demnsagles beads décrivant 'ADN et la protéine.
J'ai étudié les propriétés de ce modele en intédearéquations d'évolution du mouvement grace
a un algorithme de dynamique brownienne. Je prédesatrésultats concernant les mouvements
1D et 3D de la protéine obtenus avec ce model dis@ute leur accord avec les expériences. Ce
modéle prédit une accélération maximale de la rebleedue a la diffusion facilitée de I'ordre de
deux, c'est a dire nettement plus faible que ge#éite par certains modeles cinétiques.

Le chapitre 7 propose une amélioration de la desaon de la protéine comme un
ensemble interconnecté de 13 sphéres plutdt ggpinere unique. J'ai utilisé ce modele pour
vérifier les résultats présentés dans le chapittedulent, mais également pour étudier l'influence
des propriétés de la protéine sur la diffusionlitée. Les simulations conduites avec ce nouveau
modéle confirment la faiblesse de l'augmentatioradeitesse de recherche due a la diffusion
facilitée par rapport aux prédictions de certaimslétes cinétiques. Ce modéle montre également
que la forme et I'élasticité de la protéine sembléaffecter la vitesse du processus de recherche
que par le biais de leur effet sur les valeurs akffcient de diffusion. Enfin, ce modéle prédit
que l'efficacité de la diffusion facilitée est inféincée plutot par la charge totale de la protéire q
par les charges partielles placées sur les différgtes et que le glissement 1D de la protéine le
long de I'ADN est souvent sous-diffusif.

Dans le dernier chapitre, je compare enfin lesltd@s obtenus grace a mon modele aux
prédictions d'un des rares modéles cinétiques ertimpredictif et je montre que les deux types
de modeéles s'accordent en fait pour prédire qudiffasion facilitée n’accélere pas toujours
l'association entre I'ADN et les protéines. En,fgt montre méme que la combinaison de
glissement 1D le long de I'ADN et de diffusion 3Bnd la cellule ne peut étre plus efficace que
la diffusion 3D normale que si le coefficient défusion 1D est plus grand que le coefficient de
diffusion 3D, alors qu'on sait expérimentalementl st entre 3 et 5 ordres de grandeur plus
petit. Ces résultats sont en bon accord avec Ueetuee récente des résultats expérimentaux.

En conclusion, dans la premiére partie de mormairg\ai utilisé le modéle de Poland-
Scheraga pour décrire la séparation des séquerigispar électrophorése en deux dimensions,
puis j'ai obtenu un meilleur jeu de paramétres geumodele dynamique de dénaturation de
I'ADN développé dans notre groupe. Dans la deuxigante, j'ai proposé un modele dynamique

pour I'étude des interactions entre 'ADN et lest@ines. J'ai montré que ce modeéle présente de



la diffusion facilitée et qu'’il prédit un mouvemente la protéine en globalement bon accord avec
les résultats expérimentaux. Cependant, les modél@s/ant la dénaturation ne peuvent pas étre
utilisés pour décrire l'interaction entre I'ADN les protéines, et vice versa. La perspective
essentielle de ce travail consiste donc a étabBrrdodeles d'ADN et de protéines plus résolus,
capables de décrire les deux phénomenes a laGeidype de modele autorisera egalement
I'étude des interactions "spécifiques”, c'est @ diépendant de la séquence, qui permettent a la

protéine de se fixer sur sa cible.
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One of the aims of computer simulations in scieadbe study of the properties of molecules
and the interactions between them. They help utalesg experimental results and sometimes
even complement them. With the increasing developroecomputers, it is now possible to turn
to the study of large systems, like bulk fluidgpotymers. Also, the recent development of single
molecule experimental techniques has brought alongcrease of the interest of physicists in
biology.

The mostly studied molecule is definitely DNA, whitascinates by its ability to store the
information needed for the synthesis of proteingRbIA. The part of a DNA molecule, which
contains the information concerning one proteircakbed a gene, while the ensemble of genes in
a cell forms the genome. Although genetics is ld fie continuous evolution, there are still many
open questions regarding DNA: for example, how dilsaopy the information stored in DNA
during division, or how do they repair DNA? Moreoveecent developments in experimental
technigues have made it possible to manipulate DMNA genetic engineering and
nanotechnologies, thus creating an interest fosthdy of DNA properties in conditions that are
not necessarily physiologically relevant.

A DNA molecule consists of two polymers of nuclees that form a double helix.
Nucleotides are composed from a phosphate grolkpdiby a phosphoester bond to a sugar ring,
which is, in turn, linked to a carbon ring struetwalled "base". There are four types of bases,
which may be part of the DNA structure: adenine, (@)anine (G), thymine (T), and cytosine
(C). The first two ones are purines (they contapa® of fused rings), while the last two ones are
pyrimidines (they contain a single ring). The daubklical structure of DNA results, on one
hand, from stacking interactions between neighlgobiases of the same strand and, on the other
hand, from hydrogen bonds that form between a puaird a pyrimidine of opposite strands [1].
Adenine and thymine form a double bond, while gnarand cytosine form a triple bond. The
breaking of these bonds and the subsequent opehithg double helix is called "denaturation”,
or "melting”, and it can be triggered either theltgpavhen DNA is heated, or mechanically,
when, for example, proteins pull the two strandayfwom each other.

Besides replication, the best known phenomenonitivatves the opening of DNA bases is
transcription, that is, the process by which tHermation contained in a gene is read and used

for the synthesis of molecules such as proteinRNA. Transcription is controlled by so-called
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“"transcription factors", which are proteins thastficonnect to the DNA chain at specific sites and
then promote transcription by RNA polymerase. Irdeor to initiate this process, RNA
polymerase has to recognize and connect to a gpesitt on double stranded DNA. In
eukaryotes, this is done with the help of a feweotproteins, the transcription factors, which
form a preinitiation complexThe first protein to connect to DNA is the TATAAKINg protein,
which connects to a specific sequence that isindhymine and adenine, called the TATA box,
and then mediates the connection of RNA polymetadbe start site of the gene. The TATA-
binding protein also opens the DNA double helixdending it by 80°. Then RNA polymerase
catalyses a polymerization reaction, by which @ates an RNA strand one base at a time. At the
end of transcription, the newly created RNA moleaslreleased in the cytoplasm and the RNA
polymerase disconnects from the gene.

In fact, most of the processes that take place linidg cell are based on such symbiosis
between DNA and proteins. Other notable exampleg#goteins that are responsible for packing
DNA in a cell or for repairing damaged genes. Thageall processes that researchers are trying
to understand and copy, with the purpose, amongrstiof developing new generations of
medicines for curing genetic diseases.

The first step in the study of all these processesists in understanding the properties of the
DNA double helix and how it interacts with proteirighe study of DNA melting (thermal or
chemical) in itself, besides having some intergstiractical applications, like genome
sequencing and separation, gives useful insighthenmechanisms involved in many of the
biophysical processes that include nucleic acids.

The problem when investigating DNA-related phenoajaas well as most other biological
processes, is that they are quite difficult to déscin detail by an analytical theory and, because
they involve large molecules, they moreover leadeiy cumbersome all-atoms simulations. For
example, a DNA base pair is composed of about @@dstso that the description of a long DNA
chain (hundreds of thousands of base pairs) anddbeciated buffer molecules involves a very
large number of degrees of freedom. This, of cqunses a direct consequence on the time
interval that can be investigated. For exampleithe scale associated with protein folding is of
the order of microseconds. Even with today's masivasful computers, simulating such
phenomena with all-atoms models would be prohielyiviong. The time interval, which is

usually simulated with such all-atoms models, ideed of the order of a few nanoseconds.
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Therefore, nowadays' solution for simulating bioewoiles, both DNA and proteins, is essentially
coarse-grained modeling. This is a technique basetthe reduction of the number of degrees of
freedom in the system by replacing a group of atolike for example a DNA base or a
functional group of a protein, by a single particléne interactions between these particles are
modeled by mean-field potentials, which are adpistedescribe the macroscopic properties of
the molecule that is specifically studied. The bufis usually described implicitly by a set of
random forces. This permits not only the studyanfiér systems than by using all-atoms models
but also their study at much larger time scales\aitiol longer equilibration periods. One of the
first uses of coarse-grained molecular dynamicsHerdescription of proteins goes back to 1975,
when Levit and Warshell proposed a model for profelding [2]. However, it is only recently
that coarse-grained modeling has started to begixtdy used in the study of biomolecules.

The subject of this work is the study of modeldDA, as well as the interaction between
DNA and proteins, at different resolutions. Thestfipart of my thesis concentrates on the
investigation of DNA models at different resolutsorand how accurately they describe
denaturation.

I will start with the simplest models, which arantytype (or “"statistical') models that
describe a base pair by two possible states: opérclased. These models incorporate the effect
of both stacking and pairing interactions. The atgms, which describe melting using such
statistical models, have the advantage that theg guite accurate results in a very short
computer time. Several free programs are now aailavhich compute the fraction of DNA
open base pairs as a function of temperature (mgettirves). These programs are very useful for
biological applications, like genome separationmpr design, or PCR. | will first discuss the
application of statistical models to the modeliddveo-dimensional electrophoresis experiments.
Two-dimensional electrophoresis is a method foualizing polymorphism and comparing
genomes, which is based on the separation of DN@nfients subjected to an electric field
according first to their size and then to theirusage composition. The first step is based on the
fact that the velocities of the DNA fragments indectric field depend on their size. The second
step implies either a temperature gradient or ttesgnce, in increasing concentration, of a
chemical denaturant. Using experimental resultdHerseparation of 40 DNA sequences, | will
show that a simple expression for the mobility ddADfragments in both dimensions allows one

to reproduce final absolute locations with a preas which is better than experimental
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uncertainties. This part of my thesis was done allaboration with Bénédicte Lafay, from
Laboratoire Ampere (Université de Lyon) and is lbase experimental and theoretical work
performed in her group [3].

However, there are cases where statistical modelat detailed enough, as for example
when it comes to investigate time-dependent praggedf DNA. Dynamical models are more
efficient for this purpose. By "dynamical model"mlean a model based on explicit expressions
for the energy of the DNA sequence written in tewhgontinuous coordinates and velocities.
Such models therefore rely uniquely on the micrpgcalescription of the system and are
expected to describe the whole dynamics of DNAnfiemall vibrations at low temperatures to
large amplitude oscillations close to denaturatibime first model, which was designed to study
solitons in DNA [4], can however not describe denaiion, because the only degree of freedom
for a base pair is its rotation angle around thenst axis. The model that followed (Prohofskty
al [5]) considers that the principal source of nordiriy in DNA are the hydrogen bonds
between paired bases (which are usually modelddase potentials), and that the important
degree of freedom is the corresponding stretchamgdinate. Dauxois, Peyrard and Bishop later
replaced, in the model of Prohofsky and cowork#rs, harmonic stacking interaction between
two successive bases by an anharmonic one, andedhibwat this leads to denaturation curves
that are in better agreement with experiments Bgffore the beginning of my thesis work, a
variant of the Dauxois-Peyrard-Bishop model hadnbeeveloped in our group, based on the
observation that the finiteness of stacking entkalgs in itself sufficient to insure sharp melting
curves [7]. | will present the improvements we lgiouto this model in order to get still better
agreement with experimental results, and showttteatmproved model provides results that are
in quantitative agreement with those obtained fetatistical models. Finally, | will describe the
critical properties of the model, paying specidkition to the narrow region just below the
critical temperature.

The second part of this work proposes a modelHerdescription of non-specific protein-
DNA interactions and of the search strategies, WHXNA-binding proteins use to find their
targets. The first studies that prove that protairgsable to bind on a DNA chain were published
in 1967 [8,9]. Until then, the general belief wasittit is RNA that recognizes sites on DNA
rather than proteins. The debate on how proteins@ct to DNA started three years later with

the experiments of Riggs, Bourgeois and Cohn [MBlp measured thkc repressor-operator
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interaction kinetics and reported an associatite oi about7x10° M™s™. This is one to two
orders of magnitude larger than the rate that veaiglly assumed for the speed limit of protein-
DNA association, if it were to be a purely diffusiprocess [11,12]. However, this rate was
measured in a buffer, the ionic strength of whidswmuch smaller than physiological values.
This association rate decreased and became ctoseattof diffusion driven reactions once the
experiments were repeated at higher salinity. Riggsl therefore concluded that, at low
salinities, protein-DNA association must be speegdledy electrostatic attractions between the
negative charges on DNA phosphates and positivegebaon the protein. Surprisingly enough,
most works performed since that time ignore thiactasion of Riggset al and are basically
aimed at proposing mechanisms that would enable Pphein association to be much faster
than normal diffusion.

The target sequence, which must be found by praténvery small compared to the size of
the whole DNA. For example, a typical target saethelac repressor is composed of about 10-
12 base pairs [13], while that of restriction enegntonsists of only 6-8 base pairs [14]. One
might therefore wonder how the protein managesni it in a time scale of about one minute.
The generally accepted theory, which is confirmgddzent single molecule experiments, is that
a protein connects to any site on DNA through ramaollisions (non-specific binding), and then
searches for its specific site by sliding along B¥A sequence. It then detaches and diffuses
again in the buffer if it has not found its targdter a certain amount of time. This alternation of
sliding and diffusion through the buffer is knows "#acilitated diffusion”. The specific DNA site
differs from non-specific ones by the strength #me nature of its interactions with the protein:
non-specific interactions are usually long range swft (electrostatic), while specific interactions
are short-range and sufficiently strong to trap getein on that particular site (hydrogen
bonds)[13].

Most models for the description of protein-DNA irgtetions that were developed until now
are kinetic models of facilitated diffusion [15-19]hey have as ingredients three-dimensional
and one-dimensional diffusion coefficients, as vealnon-specific association and dissociation
rates estimated priori. They also make suppositions about the probaliditysliding, and about
how many base pairs a protein scans during a sisigiéng event (sliding length). These
assumptions are then used to estimate the expnessiwarious quantities of interest, such as the

association rate and the total time required td fire target, as a function of a set of well-define
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geometric quantities, such as the sequence lebgtnd the cell’'s volume/. As already
mentioned, the more or less implicit goal of mokttheese models is to show that facilitated
diffusion is able to speed up protein-DNA assoomtwhatever the ionic strength of the buffer.

Until now, no coarse-grained dynamical model haanlygroposed for the description of this
phenomenon. In the second part of my thesis | ptesgch a model, which does not involve
priori assumptions regarding the motion of the protdins based on a description of double
stranded DNA, which is inspired from polymer phgsj20] and differs from the models studied
in the first part of my thesis through the facttthasingle spherical bead is used to model fifteen
base pairs, thus ignoring the helical shape angdlsibility of base pair opening. Moreover, the
whole DNA chain is free to move in three dimensidhough the cytoplasm. By studying a
system formed of a cell containing a protein ancdesd DNA segments, | will show that the
proposed model successfully reproduces some oblbiserved properties of real systems and
predictions of kinetic models, like the alternatioetween three-dimensional diffusion and one-
dimensional sliding of the protein along the DNAjsence. Even though these results indicate
that this dynamical model indeed displays fac#ithtiffusion, they also show that its existence
does not necessarily imply that the sampling of DbiAproteins happens at rates much larger
than the diffusion limit. The most important preda of this dynamical model is certainly that
facilitated diffusion cannot be faster than norméfusion by a factor larger than two, which is
substantially smaller than what is sometimes betiev

I will propose two models for describing the prateihe first one models the protein as a
single rigid bead with a charge placed at its agnthile the second one assumes that the protein
is composed of thirteen beads connected by sprimgshe second case, | investigated the
association dynamics of both spherical and lineatens, in order to study the influence of their
geometry on the speed of the facilitated diffugioocess. | also investigated how other physical
properties of the protein, like the charge disttitn, elasticity, and position of the search site,
affect the DNA sampling process.

At last, | will discuss whether the results obtaingith my model are in real contradiction
with those of kinetic models, and try to give aatland well-proofed point of view on protein-
DNA association kinetics. | will make a short revief existing experimental and theoretical
results and then | will show that, in fact, whenngsrealistic parameters, correct kinetic and

dynamical models agree on the issue that facititdifusion cannot be much faster than normal
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diffusion. For this purpose, | computed the ac@tien of targeting due to facilitated diffusion
using both types of models and showed that, foeewgental values of one-dimensional and
three-dimensional diffusion coefficients, such arsk strategy is most often even less efficient
than normal diffusion.

To conclude this Introduction, | should mentiontthet about the same time my first article
on this topic was published, some eminent biochisnaiso expressed the opinion that facilitated
diffusion cannot speed up significantly the tanggtprocess. Halford indeed published at the end
of 2009 an article entitled “An end to 40 Years rofstakes in DNA-Protein Association
Kinetics?”. In this article he contradicts the thethat proteins bind to DNA at rates that surpass
the diffusion limit, stating that there is “no knovexample of a protein binding to a DNA site at
a rate above the diffusion limit” [21]. He also pts out the fact that Riggs, Bourgeois and Cohn
did show that association rates decrease as tie stvength of the solution increases, and that
these results, although validated by subsequergrements [22-24], have been overlooked for
years - and sometimes still are. The results obtaouring my PhD work therefore come as a
confirmation of these statements, and point out, thedeed, there may have been some

longstanding misinterpretations in protein-DNA agaton kinetics.
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Part I: DNA denaturation
2. Short review of DNA melting and DNA

models
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This chapter contains a short introduction to tinecsure and properties of DNA (sections
2.1 and 2.2) and a description of the most widakydul-dimensional statistical (section 2.3) and
dynamical (section 2.4) models for DNA meltingalso includes a presentation of the dynamical
model of DNA melting that was developed in our grdnefore my arrival, as part of the thesis of
Sahin Buyukdagli (section 2.5), as well as a bsigftch of the two methods that were used to
investigate its properties, that is Molecular Dymasnsimulations and Transfer Integral

calculations (section 2.6).

2.1. The structure of DNA

DNA (deoxyribonucleic acid) is the molecule that responsible for the storage of
information of about how, when and where to prodpoateins in most living cells. A DNA
molecule is a set of two entangled polymers (theatsls"), each strand consisting of a backbone
and a chain of bases. The backbone is composedgaf sesidues (2-deoxyriboze), which are
joined together by phosphate groups that form phodigster bonds between the third and fifth
carbon atoms of adjacent sugar rings. These bamdsigectionality to the DNA strand, with the
ends called 3’ (the one with a terminal hydroxydgp) and 5’ (the one with a terminal phosphate
group). A phosphate, a sugar, and the attachedfbasea nucleotide. There are four types of
bases: adenine (A), thymine (T), guanine (G) antbsiye (C). Adenine and guanine are
respectively formed by fused five-member and sixaier rings (purines), while cytosine and
thymine are six-members ring compounds (pyrimidin€ee sequence of nucleotides in a DNA
strand gives the molecule’s primary structure.

In all living organisms, the two strands are helgether by the pairing of complementary
bases: as a consequence of both their size andicdigmnoperties, adenine indeed pairs with
thymine through hydrogen bonds, while cytosine paiith guanine. In most cases, all bases of
one strand pair with a complementary base on theraitrand, so that the genetic information
can actually be retrieved from each of the strafde chemical structure of a DNA double

strand is depicted in figure 2.1. Base pairing gitree secondary structure of DNA.
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Figure 2.1. Chemical structure of DNA (secondary structure)adm taken from Wikipedia Commons.
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Figure 2.2 The B-DNA double helix (tertiary structure), witte minor and major grooves highlightdchage
taken from Wikipedia Commons.
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Moreover, there are forces that act between neighd bases of the same strand: the
stacking interactions. They are due on one handitttactions between orbitals of aromatic
rings in successive bases and on the other hahgdiwphobic interactions that tend to push
bases together. These stacking interactions apomsible for the helical structure of DNA
(tertiary structure). There are several possibldarmnations for the double helix, which differ by
the spatial positions of the atoms and the diraatibthe helix turn, but the one that is ubiquitous
in living cells is B-DNA. In this conformation, aifn of the double helix consists of about ten
nucleotides. A nucleotide is about 3.3 A long amel diameter of the double helix is 22 to 26 A.
Actually, the two DNA strands are not perfectly opjpe to each other, so the structures form
two unequally sized grooves (figure 2.2). The largee (major groove) is 22 A wide while the
smaller one (minor groove) is 12 A wide. The majmove is the usual binding site for proteins,
because bases are more accessible therein, bataheisome proteins that bind into the minor
groove (for example, the TATA-binding protein, wihibas an important role in transcription).
The A conformation is shorter and wider than B-DN#ith bases that are tilted rather than
perpendicular to the backbone. This structure Wgdarms in vitro, with less water than in
physiological conditions, therefore implying weak®mdrophobic interactions. Finally, Z-DNA
differs from B-DNA essentially by being a left-hawtihelix instead of the usual right-handed
configuration.

DNA codes the information about protein and RNAiature through the order of the
nucleotide sequence along a strand. The parts oA Bidt bear information are divided into
functional units called genes, which are typic&B00 up to 100000 nucleotides long. Usually,
bacteria have about 5000 genes, while humans Hzog 20000 to 25000, which are eventually
separated by long regions, which functions aré st understood. This makes DNA molecules
quite long: for example, a human’s unpacked genoowers about two meters. A gene usually
has two parts: a coding region that specifies thma acid sequence of a protein and a regulatory
region that controls the gene’s expression. A sirggliled DNA molecule that contains genes,
regulatory elements and noncoding regions formiBransosome. In prokaryotic cells, DNA is
found in the cytoplasm while in eukaryotic cellsist located in the nucleus. Actually, in
eukaryotic cells, DNA is not free: it is packed @mnd histones, forming a structure called

chromatin. The purpose of this packing is to allbe long DNA molecule to fit in a nucleus, to

26



strengthen DNA to allow for meiosis and mitosisdan control DNA replication and gene

expression.

2.2. DNA melting

DNA melting (also called "denaturation") is theopess by witch hydrogen bonds
between bases are broken and the two strands sep8in@se bonds are much weaker than the
covalent bonds in the rest of the molecule, soingelioes not affect the primary structure of
DNA and is a reversible process. Denaturation @athbrmal, when DNA is heated, mechanical,
if it is caused by a force (for example by proteiinat pull one of the strands), or chemical. The
most studied one is probably thermal denaturatithough it differs from the base pairs
opening that occurs during transcription, its ustierding can still bring a lot of useful
information on what happens in this process.

The most widely used method for the experimentiadlys of DNA denaturation is UV
absorption spectroscopy: the stacked base pailsuble stranded DNA absorb less ultraviolet
light than the bases in a single stranded chain.infknease in temperature causes a sudden
opening of base pairs, which is consequently acemmpd by an abrupt increase in the
absorption, a phenomenon known as hyperchromititgrefore, the plots of UV absorption as a
function of temperature can be easily compared thigoretically determined plots of the fraction
of open base pairs as a function of temperaturdtiteurves). The temperature at which half of
the base pairs in a sequence are open is knowreasdlting temperature. Its value depends on
several factors:

» The types of base pairs the sequence contains:d8€ gqre formed of three hydrogen
bonds, while AT ones have only two, so the lattérlweak at a lower temperature.

 The ion concentration of the buffer: positive ioskield the negatively charged
phosphates of the backbones. When the ion contientia small, this shielding is low
and the repulsive forces between strands are highes decreasing the melting
temperature.

» The presence in the buffer of agents that destatilydrogen bonds, such as formamide
or urea: these molecules displace hydrates or edons, having the same

phenomenological effect as the decrease in ionesdreation.
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* The pH: at low pH (acid), the bases become pro&mhand thus with a positive charge,
so they repel each other. At high pH (base), tlsed@nstead lose their protons and they
will once again tend to repel each other.

DNA melting is a process that can be assimilateahtorder-disorder transition, the order
state being given by the paired bases, while therdered state corresponds to loops formed by
broken hydrogen bonds. This analogy is an imporgant for most of the studies on DNA
denaturation. Many of the models that have beeeldped to describe DNA melting are inspired
from the statistical physics of phase transiticargd(are therefore named statistical models). They
describe a DNA base pair as a spin in the one-dilaral Ising model, that is, as having two
possible states: “open”, when the hydrogen bondraken, and “closed”, when the hydrogen
bond is intact [25,26].

2.3. The Poland-Scheraga statistical model

The types of interactions considered in statisticatlels are base pairing (free ene@jy

between complementary bases, and stacking (fregyel@, ) between successive bases of the

same strand. This leads to a description of theniageof theith base pair as a function of a
stability constans, which is expressed as:

G +G*®
s = ex;{— '—”‘1} (2.1)
kT

whereT is the buffer's temperature akglis Boltzmann’s constant. The best known modehi t
type is certainly that of Poland and Scheraga @7,Phis model proved to be very efficient in
studying the order of the denaturation transiti@®][and how it is affected by sequence
heterogeneity [30]. In this model the partition d¢tion Z; of a specified statk is a product of
three terms: a stability term, which has the forweg in equation (2.1), a cooperativity term,
which operates between a closed and an open segamehain entropic term, which takes into
account the number of configurations of the deraddual portions of the sequence (loops). This
last term was introduced because the nearest-rmighbteractions alone are not sufficient to
induce a genuine phase transition (melting justesmonds to a smooth crossover between the

closed helix form and the open coil state). Thigntenduces long-range interactions that are
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weak but sufficient for a phase transition to ocdf@it,28]. It is usually taken as a power law of
the form:

f(m=(m+D)°, (2.2)
wheremis the loop sizeD is a stiffness parameter with a generally assiwvaéue of D =1 and

the exponent can take values either of= 1.7 (if it is derived from probabilities of ring cloe

for self-avoiding random walks) oc = 215 (if it is estimated using the total number of
configurations of a loop embedded in a chain -@aphase transition). The five mechanisms by
which denaturation can propagate and the correspgriegrms in the partition function are
depicted in figure 2.3.

Poland subsequently provided an algorithm, whidébma the efficient calculation of the
probability for each base pair to be in the openclosed state [31]. This algorithm works
particularly well when combined with the approxirmatproposed by Fixman and Freiere, which
consists in expanding the loop function as an egptal series [32]. Such models were more
recently further improved along two directions.sEithe various parameters of the model were
adjusted against experimental melting curves (faangle references [33-35] and references
therein). Secondly, it was shown how to take maooperly into account excluded volume effects
between the loops and the rest of the chain [29}B&]loop entropy was originally estimated by
counting the number of configurations for a closetf-avoiding random walk [37]). This turns
out to be of great importance from the physicahpof view, since these later calculations lead

to a loop closure exponeatgreater than 2, which implies that the phase tiianss first order,

Case: I Il I v v
process: - JITTAIIYL  THIATHTIL{LLL
\ s
e X
Boundaries: +2 +1 0 -1 -2
Equilibrium. (N+1) N nepy TSN+ N"+1) s't-!ﬁ-” ) IS IN+N+N"+1)
constant = 0 Ur:f(N) S % g f(N"+1) g f(N"+1) ’ O f(NT) -0, f(N")

Figure 2.3 Cartoon of the five mechanisms by which denaitamatan propagate in the Poland-Scheraga model,
and corresponding terms of the partition functibnage taken from reference [38].
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while the older estimate af was smaller than 2 and therefore consistent wife@nd order
phase transition.

As a consequence of these improvements, there ristvseveral online free programs,
which provide reliable melting curves of sequenasdong as several thousands of base pairs
within a few seconds. One of the best known ongsabably Meltsim [38], which is based on
Poland’s algorithm [31] and Fixman and Freire’'sespep approximation [32]. It also gives the
user the choice between several parameters se85[338]. Such a program is of great interest in
many areas of biology, like PCR control and mutatoalysis.

These programs can also be incorporated in homtewrtodes for predicting results of
various biology experiments, like genome separatwough temperature gradient or denaturing
gradient electrophoresis display. Electrophoresis $separation technique, which is based on the
fact that, when placed in a gel subjected to antmtefield, molecules migrate with different
speeds according to their size and charges. Ftnwthe corresponding code, one does not need
to fully understand the algorithms behind the cotapon of denaturation curves, but only to
have a tool that is fast, reliable and easy to lséurn, this kind of simulations help optimize
experimental conditions (denaturing gradient or gerature range, electrophoresis duration)
without having to perform a large number of tediquesliminary experiments, and to predict
whether electrophoresis is a convenient tool tatifle a given mutation or a difference that is
expected to exist between the genomes of closédyerk organisms. Chapter 3 of this report
precisely contains a detailed study of the modgllni two-dimensional DNA electrophoresis
separation experiments.

However, statistical models are not always detatledugh, especially when it comes to
describing time dependent phenomena. In this @as®gre suitable approach is that provided by
dynamical models. | briefly describe dynamical mede the two following sections (sections
2.4 and 2.5). | moreover describe in chapter 4 saork aimed at optimizing the parameters of
the dynamical model developed in our group, andrhgare the melting curves computed

therewith with experimental ones and those obtafred statistical models.

30



2.4. The Dauxois-Peyrard-Bishop dynamical model

Dynamical models are based on explicit expresdionthe energy of the DNA sequence,
which are written in terms of usual continuous dimaites and velocities. They are conceptually
appealing in the sense that one just needs toge@/microscopic description of the system, like
kinetic energy and the shape of pairing and stackiteractions. Its macroscopic properties and
evolution with temperature then unequivocally fallthere from. Stated in other words, if the
masses and characteristic energies introduceckitdémiltonian are reasonable and the derived
macroscopic properties match experimental resdftsn one might feel confident that the
microscopic description of the system is correcorébver, dynamical models are of course
mandatory as soon as one is not interested in geérguantities but rather in transient
phenomena and fluctuations [40].

The first dynamical models for the description dfi®» were developed for the study of
soliton wave propagation in the DNA double strahd.1980, hydrogen-deuterium exchange
experiments evidenced the propagation of base pp&aings along the chain in a manner that
resembles that of solitons [41]. In the same wdr& authors proposed a Hamiltonian for
describing DNA:

H = Z{% mrig +%(¢n ~ @)+ mgr(l-coscon)} (2.3)

wherer is the length of the bond (considered rigid) betwéhe base and the sugar-phosphate

backbone andp, is the rotation angle of the basis around thendtiaxis. The first term in the

Hamiltonian denotes the kinetic energy, the seaumal gives the torsional elastic energy of the
bases, while the third one is an attractive poaémiiat describes hydrogen bonds between bases.
This first model is quite simple, but further on ma@omplex models have been developed [42-
47]. However, these models are not suitable tordes®NA thermal denaturation because the
only degree of freedom is the rotation of the basesnd the strands, while denaturation is better
described by the stretching of the base pairs. Y&kmowledge, Prohofsky and co-workers were
the first to propose a dynamical model that dessribNA denaturation [5,48]. The Hamiltonian

of this model writes:
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H = E{g(uf +\‘/§)+%[(un —u_ ) +(v, —vn_1)2]+vM (u, -v, )} (2.4)

where u, and v, are the displacements from the equilibrium posgiof the two bases that
compose theth base pairs, taken along the axis that is peipelad to the backbone and joins
the two strands. The first term gives the kinetiergy, the second term contains the stacking
interaction between successive bases, which isdenesl here to be harmonic, and, finally, the

last term describes the base-pairing interactisidarse potentials:
V,, (U, —v )= D(-e 2y (2.5)

By making a change of variables from the absolderdinatesu, and v, to symmetric and
antisymmetric coordinates:

X, = (U, +V,) /2

(2.6)

Yo = (U, =V,)/2
the Hamiltonian can be rewritten as:
H=H, (X, %X, %) +Hy (Y1, Yare Vi) (2.7)
where the first term describes the motion of th&tees of mass of the base pairs:
Hl = Z{mxﬁ +5(Xn - Xn—l)z} (28)

~ 12 2
while the second terms describes the forming aadKking of base pairs:

m . K -a

H, =Z{5yn 50, ~Y,)?+D(-e y”)z} (2.9)

This Hamiltonian also has solitonic wave solutionkich have been studied in detail [49,50].

However, this model does not accurately desciilgedenaturation transition. Dauxois,
Peyrard and Bishop (DPB) indeed pointed out th#&atls to a much too smooth denaturation
process, but that this is no longer the case umptroduction of an anharmonic stacking
interaction [6]:

H, = Z{g % +%(yn —y, i g [+ pfi-e )2} (2.10)

n
This new expression implies that the stacking adegon becomes weaker when the
corresponding base pairs separate further, thugakng the stiffness of the chains and leading

to a much steeper phase transition [6]. It is bamedhe hypothesis that, when the hydrogen
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bonds connecting the bases break, the electrosiichdition on the bases is sufficiently modified
to let the stacking interaction between the basesedse significantly.

The model of equation (2.10), which from now ol Wwe referred to as the DPB model,
was essentially used to investigate the dynamiahoft sequences containing from several tens
to a few hundreds base pairs [51,52], but it waswshin our group that it is also able to
reproduce the characteristic peaks, which appeathén melting curves of inhomogeneous
sequences in the 1000-10000 base pairs range tfs3]peaks that were reported for periodic
DNA sequences with two or three base pairs in thieaell [54] essentially arise from end effects

and are not directly related to the experimentaligerved ones).
2.5. The dynamical model developed in our group

A few years ago, a variant of the DPB model wasetigped in our group [7], which is
closer to statistical ones than the DPB modelhendense that it is based on site-specific, finite
stacking enthalpies (numerical values for the dptéa were borrowed from table 1 of [38]). It is
based on the observation that the finiteness ofstheking interaction is in itself sufficient to
insure a sharp melting transition. Since | will@gpn chapter 4 on several results obtained with
this model, | now describe it in some detail.

The general form of the Hamiltonian is:

H=E,+V
d
S = 22( d{n]
N N
v=2w (va)+ 2 W (Yo Yoa) (2.11)
V" (y,)=D (1— exp(— ay,))’

W(n)(yn!yn—l = (1 eXF( yn 1 )) b(yn _yﬂ-1)2

whereN is the number of base pairs in the sequenceygnd measure of the distance between

the paired bases at positianMore precisely, ifu,and v,, denote the displacements of the two
bases of pain from their equilibrium positions along the direxti of the hydrogen bonds that

connect them, thery, is defined as in equation (2.6), thatys =(u,, -v,)/~2 [5,55]. In the
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expression for the kinetic energyi,, m denotes the mass of a nucleotide, which we assuipe
independent of the precise nature of the baseapaiositionn (numerically, we use=300 amu).
As for the DPB model, the potential enedgys the sum of two different contributions, namely

on-site potentials/{" (y, ) and nearest-neighbour interaction potential® (y_,y_ ). V{ (y,)

represents the two or three hydrogen bonds thatemrthe paired bases at positiorand is

taken as a Morse potential of depth), as in the original model of Prohofsky and coweske
[5,48]. v{"(y, ) is often called a “pairing” potential, becausésian increasing function df,|

and therefore opposes the dissociation of the main model differs from the DPB one
essentially in thew ™ (yn'yn—l) interaction, which is again the sum of two termamely the
stacking potential plus the backbone stiffnesshBetms are increasing functions |gf - y,,4|,
which means that they oppose the de-stacking ob#ises, that is, the separation of successive
bases belonging to the same strand. The stackitent is modelled by a gaussian hole of
depthAH /C, while the backbone stiffness is taken as a hairotential of constank . Its

role consists in preventing dislocation of the itis that is, in insuring that bases belonging to

the same strand do not separate infinitely whemagghing the melting temperature.

The numerical values for the parameters of equnafih1l) used in previous works
[7,40,53,56-58] were obtained in the following wahe ten stacking enthalpie&H , were
borrowed from statistical models (table 1 of refexe [38]) and it was assumed that the paired
bases do not unstack simultaneously, which imphasC =2 [7]. On the other hand, a uniform

stacking strength ofAH /C = 022 eV was used to model the homogeneous sequendesr¢ha
involved in most statistical studieB, =0.04 eV and=4.45 A" were taken from the DPB model
[6], while Kb=105 eV A? was fixed somewhat arbitrarily. Finallywas varied to get a 40 to 50

K separation between the melting temperatures i pI and GC sequences, as in experiments
performed at physiological salinities and pH valuewas consequently fixed b£0.10 A2

Actually, the results obtained with this set ofgraeters should be improved with respect
to at least three points. First, the denaturatimves have a weak temperature resolution, in the
sense that they are somewhat too smooth compateé taurves obtained with statistical models
or experimental ones. Moreover, the critical terapee diminishes much too quickly with

decreasing sequence lengths. As reported in [54, lowering of the melting temperature
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behaves as 3299/ for this model and 185N/ for the DPB model, while most online
oligonucleotide property calculators assume a 808tépendence (which agrees with the
experimental results reported in [59]) and stat@tmodels even predict a gap smaller than 1 K
between the melting temperatures of an infinitelgg homogeneous sequence and its finite
counterpart withN=100 base pairs. Finally, mechanical unzipping expents performed at
constant force show that the critical force, whismeeded to keep the two strands of a DNA
sequence open at around 20°C, lies in the rang® 1N [60,61], while this model predicts that
a few pN are sufficient. As will be argued belowistpoor agreement between predicted and

measured critical forces is essentially ascribabla too small value oK, (remember that this

parameter was fixed arbitrarily), while the exagged sensitivity of the melting temperature
with sequence length results from the too largetdep the stacking interaction. | will show in
chapter 4 that it is sufficient, once these twong®ihave been corrected, to slightly adjust the

remaining parameters in order to reproduce expataheenaturation curves more correctly.

2.6. Molecular Dynamics simulations and Transfertegral calculations

The two methods, which were used in our group teestigate the properties of
dynamical models, are Molecular Dynamics (MD) siatigins and Transfer-Integral (TI)
calculations. MD simulations consist in integratstgp by step the Langevin equations:

2
m ddt{n - _Z_H —my ddzn +W(t)y2myk, T (2.12)
Y,

with a second order Briinger-Brooks-Karplus intemr§62]. y is the dissipation coefficient (we

assumedy =5 ns?’) and w(t) a normally distributed random function with zeroaneand unit

variance. The second and third term in the rigmehside of equation (2.12) model the effect of
the buffer on the DNA sequence. The sequencessHgated by subjecting it to a temperature
ramp, which is slow enough for the physical tempeeaof the system (calculated from the
average kinetic energy) to follow the temperaturéne random kicks (the symb®lin equation
(2.12)). The average values of the quantities wdraerested in are then obtained by integrating
Langevin equations at constant temperature for timegvals of 100 ns.

MD simulations are very easy to implement, butythave two limitations: firstly, they

require a very large amount of CPU time, becausp by step integration of hundreds or
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thousands of coupled differential equations isinstcally slow, and secondly, the temperature
resolution of the results is rather poor, especigbse to the melting temperature, because of the
very slow fluctuations of temperature of the seaeen this range [40].

On the other side, the Tl method [54,63] is a nradteal technique to replace the

dimensional integrals, which appear for exampléheexpressions of the partition functign
Z= J'dyl dy, ...dy, exp(— [:’V). (2.13)
and the average bond length at position

(%) =5 v .y v, exel- V) (2.14)

by products olN one-dimensional integrals. Other quantities otnest, like the free energy per

base pairf, the entropy per base pas,and the specific heat per base pajr, are then easily

obtained fronZ according to

1
f=—"-In(Z
G
of
S=—— 2.15
oT ( )
__ 0% f
oT?

Note that we use finite differences for the caltalaofs andc,. When it works, the Tl method

is very efficient, in the sense that it enablesdtrulate most quantities much more rapidly and
with a better temperature resolution than MD simaoies. As discussed in some detail by Zhang
et al [54], the TI kernel is however singular when usangound on-site Morse potential, so that
one needs to check carefully the convergence oblitained results with respect to the upper
bound fory, which is assumed in practical calculations. Aaggahobservation would be that, at
the thermodynamic limit of infinitely long homogemes chains, there always exists a certain
temperature range surrounding the critical tempeeatwhere the Tl method is not valid. For
some sets of parameters, this interval is so ldrgethe TI method is essentially useless (this is,
of course, not the case for the set of paramelatswill be proposed in chapter 4). In contrast,
calculations are more reliable for finite sequendescause they melt at temperatures that are

lower than the critical temperature of the infirsequence.
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| have not been involved in the development oftheodes. Therefore, | do not provide
here more detail on this technique. More precisicens be found, for instance, in the work of
Zhanget al[54] and in some publications of our group [56-58]

In order to illustrate the capabilities of the twethods, the temperature evolution of the

average base pair separatiom) =+ > (Y, ), and of the average pairing and potential enesgy p

base pair, l(|:<V>/ N), are shown in figures 2.4 and 2.5, respectivBhlid lines show results

obtained from TI calculations, and dashed linesiltesobtained from MD simulations, for a
homogeneous sequence with 1000 base pairs. It €sedn that the agreement between both
types of calculations is generally very good, exadpse to the critical temperature, where MD
simulations are much noisier than Tl calculaticadghugh 10 trajectories were averaged, so that
MD simulations required between 10 and 100 timesen@PU time than TI calculations) and
evolve less sharply with temperature. As mentioalkadve, this difference is due in part to the
very slow temperature fluctuations of the sequendhbis interval [40], and in part to the fact that
the averaging time between two temperature incr&n@d0 ns per K) is too small compared to

the characteristic times of the denaturation dycaraf the sequence.
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Figure 2.4. Plot, as a function of the temperature T of theusege, of the average base pair separation

N
(y)=+> (y,) for a homogeneous sequence with 1000 base pditained from MD simulations (dashed
n=1
line) and TI calculations (solid line). Calculatisrwere performed for the model in equation (2.149 ¢he
parameters reported in section 4.(3y> is expressed in A. The vertical dot-dashed linewshthe critical

temperature for this sequencé’c(N):356.73 K). Each point of the MD curve corresponds to &alto
accumulation time of As.
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Figure 2.5. Plot, as a function of the temperature T of theugege, of the average energy in each Morse
oscillator and the average total potential energy pase pair,u = (V)/ N, for a homogeneous sequence with

1000 base pairs, obtained from MD simulations (@akhnes) and Tl calculations (solid lines). Calkatibns
were performed for the model in equation (2.11) #mel parameters reported in section 4.3. Energies a
expressed in eV. The vertical dot-dashed line slibevsritical temperature for this sequencde (N) =356.73
K). Each point of the MD curve corresponds to alt@iccumulation time of 4s. For Tl calculations, u was
obtained from equation (2.15) and the relatior f +T s.
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3. Application of statistical models to 2D

electrophoresis display
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In this chapter, | will describe how | built a pragh around MeltSim [38] (one of the free
programs for computing DNA melting curves that desed on the Poland algorithm) to get
predictions of the results of electrophoresis expents, and | will show that these experiments
can indeed be modelled with high accuracy. As direaentioned in the Introduction, this part of
my thesis has been done at the suggestion of B#aédafay from Laboratoire Ampére

(Université de Lyon), and it is based on experirakand theoretical work [3] performed in her

group.

3.1. Introduction

Electrophoresis is a separation technique thaidsly used by biologists. It is a fast and
economical way of visualizing polymorphism and campg genomes. An interesting variation
of this rather old technique is two-dimensional YZENA display, which was first described by
Fisher and Lerman [64-66]. It consists in sepagaMNA fragments in two steps, first according
to their size and then to their sequence compaositithe first step uses traditional slab
electrophoresis, for example in agarose or polyanrgle gels. Collisions between DNA and the
gel reduce the mobility of DNA fragments, so thHa gel acts as a sieve and the electrophoretic
mobility becomes size-dependent, with smaller mdées generally going faster than large ones
[67]. In the second dimension, fragments of idexttiengths are separated on the basis of their
sequence composition, thanks to a gradient of reimaperature (TGGE : temperature gradient
gel electrophoresis) or concentration of a chemdshaturant present in the buffer, e.g., a
mixture of urea and formamide (DGGE : denaturingdgent gel electrophoresis), both methods
being closely related [68,69]. The effective voluofedenaturated regions of DNA being larger
than that of double-stranded ones, the mobilitya @fiven fragment decreases as the number of
open base pairs increases. Since AT-rich regionsah&wer temperatures than GC-rich ones,
GC-rich fragments usually move farther than AT-ractes.

Although 2D DNA display has already been appl@thie comparison of the genomes of
closely related bacteria [70-72], this method i88 essentially empirical and simulations have
only been used to a very limited extent to planeexpents and analyze results [3,73,74]. In

particular, it has been shown only recently [3]t tb@paration of DNA fragments in 2D display
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experiments can be predicted with satisfying precisising a model that combines step-by-step
integration of the equations of motion of each finegt and the use of the open source program
MeltSim [38] to estimate the number of open basesgd each step of the DGGE phase. In this
work the method was validated by predicting theconrte of the separation of 40 sequences. The
first separation was done in a 0.8% agarose gédimM Tris, 1ImM NaEDTA at 2 V/cm for 8h.
For the second dimension, a 4% polyacrylamide gih warallel ascending gradient of
formamide (10-40%) and urea (1.8-7M) was used hadéeparation lasted for 24h, at a constant
temperature of 60°C and in an electric field of /erd. The setups used for two separations are
shown in figures 3.1 and 3.2.

However, in reference [3] were not used the congpuatiesolute final positions of the
DNA sequences, but only their positions relativévio reference segments, because the absolute
positions were wrong by more than 1 cm (that isyesd tens of percents of the total
displacement). The fact that the errors in compubdolute final positions are so large is
worrying in itself, because it unambiguously indé&sathat something is wrong in the model.
Moreover, using relative positions is quite dangsrasince an eventual error in the coordinates
of one of the reference sequences implies thgbakeions of all other sequences will be wrongly
predicted. Also, some of the expressions that weeel to compute the mobility of the fragments
are quite imprecise and depend on too many parasnete

The goal of the work presented in this chapter wasxtend the results presented in
reference [3] along several lines. | have used latessgoordinates, instead of relative ones, and
shown that they can be computed with uncertairthas are smaller than experimental ones. |
have also shown that one can use simple expredsiaescribe correctly the mobility of a DNA

sequence in a gel.
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Figure 3.1. The experimental setup used for the separationdritst dimension (horizontal agarose gels).
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Figure 3.2 Upper image:The setup used for the separation experimentssacand dimension (Dcode Universal
Detection System-vertical polyacrylamide gels) Loiwveage: Experimental display of the sequencesudised here
(a gel shown at the end of separation in the twaoedision). Super-imposed in colors are the simulatésults of
reference [3]. The color code is the following: Ip@t for EcoRI digested sequences, red for Eco9ik far Eco47I,
blue for Hindll and green for Pstl.
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3.2. General framework

According to the definition of mobility, the pasit y of sequencs at timet in a constant

electric fieldE satisfies the relation:

Y= s y)E (3.1)

If the mobility ,u(s, y) depends uniquely on the seques@nd not on positioy, as is the case
for the standard electrophoresis set-up in the @isiension, integration of equation (3.1) is
straightforward and leads to

y(t)- y(0) = p(s)Et (32)

In contrast, if the mobility,u(s, y) depends on both the sequesand positiory, as is the case
for TGGE and DGGE, then equation (3.1) must begmatied step by step, according to

y(t +dt) = y{t)+ u(s, y(t) Edt (33)
Here, | integrated such equations of motion for saene 40 DNA fragments discussed in
reference [3] using the same conditions as destthrrein. These fragments were obtained from
the site-specific restrictions afphage genomic DNA using EcoRl, Eco47l, Eco91l,dHlinand
Pstl, respectively (however, here it is not impottaow the DNA sequence were obtained, but it
is only their sizes and base compositions thaterat@s reported in the first columns of table
3.1, the size of these fragments varies betweef @88 23130 base pairs, and their GC content
between 36.0% and 58.9%. For the first separatiaccofding to size), | plugged the
experimental values of the electric fieB=@ V/cm) and the total electrophoresis tinve8(h) in
equation (3.2). For the second separation (acogrttinsequence composition), equation (3.3)
was integrated with the experimental vake7 V/cm for 44 h by steps of 7 minutes. | also
checked that results do not vary when the totalgration time is increased to 80 h and the time
step lowered to 1 minute. These results are sirtolahose obtained with an integration time of
24 h, which coincides with the experimental dumatishowing that DNA sequences were already

stopped at the end of the electrophoresis expetgmen
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1st dimension 2nd dimension
Enzyme Length GC Yexp Gexp Yealc Ay Yexp Gexp Yealc Ay
(bp) % (cm)  (cm) (cm) (cm) | (cm)  (cm) (cm) (cm)

EcoRl 21226 56.9 2.45 0.04 2.35 0.10 3.56 0.21 3.57 -0.01
7421 445 5.02 0.10 5.09 -0.07 2.39 0.27 241 -0.02
5804 49.6 6.03 0.14 6.08 -0.05 3.10 0.19 3.11 0.00
5643 43.2 6.20 0.18 6.20 0.00 2.07 0.31 2.18 -0.11
4878  39.7 6.89 0.18 6.87 0.02 1.84 0.35 1.76 0.08
3530 44.0 8.61 0.21 8.54 0.07 2.36 0.31 2.47 -0.10
Eco47l 8126 47.8 4.68 0.10 4.76 -0.08 2.07 0.32 2.29 -0.22
6555 38.0 5.56 0.12 557 -0.01 1.81 0.34 1.75 0.07
6442 437 5.61 0.12 5.64 -0.03 2.45 0.29 2.42 0.03
3676 475 8.35 0.20 8.32 0.03 2.70 0.25 2.96 -0.25
2606 56.4 10.31 0.21 10.29 0.02 3.89 0.18 3.85 0.04
2555 56.7 10.45 0.25 10.41 0.04 4.04 0.17 4.00 0.04
2134 55.3 11.58 0.27 11.52 0.06 3.83 0.21 3.83 0.01
2005 57.6 11.87 0.27 11.92 -0.05 4.30 0.18 4.00 0.30
1951 585 12.03 0.28 12.09 -0.06 4.38 0.17 4.25 0.13
Eco91l 8453 46.7 4.52 0.08 4.62 -0.10 2.17 0.30 2.43 -0.25
7242  47.1 5.13 0.12 5.18 -0.05 1.79 0.34 1.76 0.04
6369 46.0 5.68 0.14 5.69 -0.01 2.44 0.26 2.48 -0.04
5687 56.4 6.12 0.16 6.17 -0.05 351 0.16 3.77 -0.26
4822  40.2 6.96 0.19 6.93 0.03 2.08 0.32 212 -0.04
4324 58.1 7.46 0.18 7.46 0.0 3.88 0.13 3.94 -0.06
3675 46.0 8.42 0.20 8.32 0.10 2.84 0.25 2.72 0.12
2323 57.8 11.06 0.24 10.99 0.07 4.06 0.18 4.01 0.05
1929 58.9 12.09 0.28 12.16 -0.07 4.33 0.19 4.29 0.04
Hindlll 23130 55.9 2.32 0.04 2.22 0.10 2.81 0.30 2.25 0.56
9416 45.0 4.18 0.09 4.27 -0.09 2.20 0.31 2.37 -0.17
6682  48.0 5.49 0.12 5.49 0.00 2.70 0.24 2.83 -0.13
4361 45.2 7.37 0.17 7.42 -0.05 2.30 0.30 2.46 -0.15
2322 37.1 10.97 0.26 11.00 -0.03 2.36 0.37 2.29 0.07
2027 36.0 11.82 0.26 11.85 -0.03 2.00 0.41 1.76 0.24
Pstl 11497 46.8 3.63 0.06 3.68 -0.05 2.20 0.32 2.29 -0.09
5077 44.9 6.69 0.16 6.68 0.01 2.32 0.29 2.50 -0.18
4749  43.8 7.02 0.19 7.00 0.02 251 0.26 2.48 0.04
4507  36.0 7.31 0.18 7.26 0.05 1.86 0.34 1.77 0.09
2838 56.6 9.85 0.24 9.78 0.07 4.02 0.16 4.07 -0.05
2560 53.2 10.39 0.22 10.40 -0.01 3.74 0.18 3.76 -0.02
2459 57.7 10.61 0.24 10.64 -0.03 4.15 0.17 4.11 0.04
2443 54.8 10.69 0.24 10.68 0.01 3.84 0.19 3.82 0.02
2140 531 11.52 0.27 1151 0.01 3.59 0.24 3.62 -0.03
1986 58.1 11.92 0.27 11.98 -0.06 4.14 0.19 3.98 0.16
rms 0.19 0.05 0.26 0.15

Table 3.1 Absolute coordinates of the DNA fragments in 2Bedisplay. The table indicates the size of each
fragment, its GC content, and, for each dimenstbe, experimental absolute position.{), the experimental
uncertainty g, in cm), the calculated absolute positiog,y and the error fy=Ye.sYcac). Absolute positions in
the first dimension were obtained with the expassiof mobility in equation (3.4) and parameters

M= 017x10™ cnf/(V s), Us = 453x10™* cnf/(V s) and m=41200. Absolute positions in the second
dimension were obtained with the expression of lipbin equation (3.6), the expression of equivalen
temperature in equation (3.8), and parameté&fs=100 bps,[Na*] = 0.134 M, T, =60 °C and a = 0.540 °C.
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As will be seen in more detail in section 3.4, ¢adculation of (s, y(t)) during DGGE requires
the estimation of the number of open base paieqtience at a temperatur€, which has the
same effect as the local concentration of denatufd® modeling of denaturation was achieved
by using the open source program MeltSim [38].dduthe set of thermodynamic parameters of
Blake and Delcourt [39] and set the positional magolution to 1, which corresponds to the
highest possible calculation precision for the nambf open base pairs. The influence of the
remaining free parameter of the program, namelystiieconcentration [N§ will be discussed

in detail in section 3.4.

At last, the mobility,u(s, y) is expressed for both electrophoresis steps andidn of a
certain numbers of parameters, which need to bests] to reproduce experimental results
accurately. Therefore, | embedded equation (3.2)tae step by step integration of equation
(3.3) in a refinement loop based on the gradierthatt in order to vary the parameters so as to
minimize the root mean square deviation betweeremx@ntal positions and those calculated
from equations (3.2) and (3.3).

3.3.Separation according to size

Van Winkle, Beheshti and Rill (VWBR) [75,76] recinproposed an empirical formula
that correctly reproduces the observed mobilitiedDbIA fragments for a large number of
experimental conditions. This formula writes

i )

where 4, and y are the respective mobilities of infinitely larged very small fragmentsy (s)

is the length of the investigated DNA fragment, andlenotes the typical size that separates
“small” from “large” sequences. Van Winklet al [76] furthermore published the following
expressions foy, , s andm:

4, =199x10™* exg- 159C)

Us =(356- 058C)x10™ (3.5)
m = 7490+ 2780C
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where y, and yg are expressed in &V s) andm in base pairs, whil€ denotes the agarose

gel concentration in percents. The six numericalstants in equation (3.5), as well as the forms
of the equations themselves, are expected to lieé ealy for the precise system investigated by
van Winkleet al [76]. Still, the somewhat different experimentanditions of reference [3]
could be accounted for by feeding in equation (arbpadjusted gel concentrati®*0.75% close
to the exact valu€=0.80%. It was indeed shown that this leads toutaled relative positions in
good agreement with observed ones [3] (note, homyvekiat absolute positions display errors
larger than 1 cm). Due to the rather rigid formseqgtiations (3.5), it is however not warranted
that this kind of adjustment will prove to be sciiint for experimental conditions that differ
more widely from those of reference [76], in partar for the very popular polyacrylamide gels,
and the choice of the additional parameter(s) joshanight become rather tricky.

| found that a very efficient alternative to bypathis numerical problem consists in

adjusting directly the parametgrs, s and m of equation (3.4) against the final absolute
locations along the first dimension. | obtainegds :(0.171 0.02)><1O'4 cnf/(Vs),

Us = (4531 0.03)><10‘4 cnf/(V s) and m = 41200+ 6400, which differs substantially from the
values derived from equation (3.5) with the adjdstgel concentratiorC=0.75%, namely
[, = 0680x10™ cnf/(V s), ug =312x10* cnf/(V s) and m=9575. Absolute positions
obtained from equation (3.4) and the adjusted wabfgy, , 1, andm are compared to observed

ones in table 3.1. Experimental positions corredponthe average of the coordinates measured
in three different experiments, while the assodaiacertainties were estimated by taking the
standard deviations for these three experimentse it the results of a fourth experiment,
which differ markedly from the three other onesravdiscarded. It can be seen that the root
mean square deviation between observed and cadusdisolute positions, that is 0.05 cm, is

almost four times smaller than the average expetiah@ncertainty, which is 0.19 cm.
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3.4.Separation according to sequence composition

It appears that very few studies have addressedgttestion of the electrophoretic
mobility of partially melted DNA sequences. To mwokvledge, there is indeed only one
available model [68], which is inspired from prewsty existing results for the mobility of
branched polymers in gels. Although this model madirm theoretical background and should
be tested under a larger range of experimentalittons, several studies performed so far have
reported fairly good agreement with experimentaiad&@7,78]. According to this model, the
mobility of a partially melted DNA sequence dece=masxponentially with the size of the melted
regions, that is
ulsT)= (e -2 @5)

L

r

where 1,(s) is the mobility of the fragment when it is comglgtdouble-strandedp(T) is the

sum of the probabilities for each base pair to penoat temperatur&, and L, is a size
parameter, which is related to the mechanism tbatssdown partially melted fragments, and is
therefore expected to depend on gel propertiesc@umation and pore size) and the flexibility of
single-stranded DNA. Values df reported in the literature range from 45 to 138ebpairs
[77,78]. As already mentioned, | used the openc@program MeltSim [38], together with the
set of thermodynamic parameters of Blake and Delcf89], to estimate p(T). The input

quantities of this program are the temperafiyrbut also the salt concentration [Nt is indeed
well-known that the melting temperature of a segeewaries logarithmically with [N& It
should however be stressed that MeltSim was degdlop predict the denaturation behavior of
DNA sequences in cells and closely related medraeSporous gels differ sensitively from such
solutions, it is not obvious that salt concentratitas the same effect in cells and in gels.
Moreover, it is difficult to predict how the presenof other salts in the composition of the buffer
affects the melting temperature of the DNA sequende the simulations reported below, |
therefore considered the [Nanput of the MeltSim program as a free paramateirnecessarily

related to the exact salt concentration in the gel.
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Equation (3.6) is sufficient to calculate the mipilof DNA fragments in TGGE
experiments, that is, when a temperature gradgeimposed to the gel, because the temperature
T at each positioy of the gel is known up to a certain precision. Tihk between the mobility
u(s,y) of equation (3.1) and the mobility(s, T) of equation (3.6) is therefore straightforward.
This is no longer the case for DGGE experimentsgrevithe temperature of the plate is kept
uniform around 60°C and a gradient of chemical tdeaat (urea+formamide) is added to the gel

in order to destabilize base pairings. In thisrlatese, the known quantity is the concentratijn
of the denaturant at each positipm the gel, so that estimation of the mobiljm;(s, y) requires
the additional knowledge of the equivalent tempe®il, which has the same effect as a
denaturant concentratio@, from the point of view of the melting of DNA fragmts. A linear

relation was proposed in reference [69], namely

1
T=57+—C 3.7
32 3.7)

where C, is the concentration of the standard stock satutiburea and formamide at positign
(expressed in % v/v) ant the equivalent temperature (expressed in °C)éd fa the MeltSim
program to estimatep(T) at this position. As will be discussed below, dipra(3.7) does not

enable one to reproduce the absolute positionstexpm reference [3]. | have therefore replaced
equation (3.7) by the more general linear relation:

T=T,+aC, (3.8)
where T, and a are considered as free parameters. | also toak antount the very slight

increase in gel viscosity due to the gradient afaderant by slightly adjusting the mobilities of
the DNA sequences at each time step. This is dgngiviiding the calculated mobility at each

moment by the relative viscosity, which is compuaedording to reference [69]:

N, =1+43x10°C, (3.9)
To summarize, calculation of the mobility of DNAa§ments in the second dimension

requires the knowledge of the numerical valuesoof ftonstants, namely [Na L, , T, anda.

To be really complete, one should actually inclydgs), the mobility of fragmens when it is

completely double-stranded (see equation (3.6))hénlist of the free parameters of the model.

However, several trials showed that this paramstso strongly correlated to the four other ones
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that it is numerically impossible to let all of thevary simultaneously. | have therefore
considered that the mobilityo(s) that appears in equation (3.6) is equal to theilhypbbtained
from equation (3.4) (in the first gel). This, ofuree, involves some degree of approximation,
since the gels in the two dimensions are not idahti

| varied [Nd], L,, T, anda in order to reproduce the experimental resultsetérence

[3]. These DGGE experiments were performed with @ long plates and a denaturant
concentrationC, increasing regularly from 25% to 100% betweendk&emities of the plates
(the total concentration of stock denaturant wasmaed using the protocol given by Myeats

al [79]: 100% stock denaturant corresponds to 7 M waed 40% deionized formamide).
Similarly to the first dimension, the experimerahlsolute positions and uncertainties reported in
table 3.1 were obtained from three different experits, while the results of a fourth experiment,
which differ markedly from those of the three otbees, were discarded. | first allowed the four
parameters to vary simultaneously. This resultetthénsalinity [N4] decreasing below 0.001 M,
which is the limit of validity of the set of thermdgnamic parameters in the MeltSim program. In

order to understand why this happens, | next peora series of three parameters flts, (T,

and a) at several values of [Naranging from 0.001 M to 0.3 M. Results are shdwidigures
3.3 and 3.4. It is seen in figure 3.3 that the nmmeian square (rms) error between experimental
and calculated absolute positions actually remagsentially constant in the whole range 0.001-
0.3 M. Furthermore, examination of figure 3.4 iradés that the adjusted valuesigfanda vary
logarithmically with [Nd]. This is not really surprising because, as | halveady mentioned, the
melting temperature of a given sequence increaggsithmically with [N4]. At last, it is seen in
the top plot of figure 3.4 that the adjusted vabfieL, varies between 100 and 140 base pairs,
which agrees with previously reported values [7],78

Figures 3.3 and 3.4 are however not sufficient Iigstrate how broad the space of
solutions is, that is, how widely each parameter loa varied while still preserving a very good
agreement between observed and calculated absasifttons. To get a better insight, figure 3.5
shows the results of a series of two parametessvibhich consisted in adjusting simultaneously

T, and a for increasing values off, at two fixed values of [N3 namely 0.01 and 0.1 M. It is

seen in the top plot of figure 3.5 that can actually be varied between 30 and 220 base pai

without letting the rms error increase by more tBa@b cm. As shown in the middle and bottom
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plots of figure 3.5, the adjusted valuesTgf and a vary little with L, in this range and remain

close to T, = 37C and a = 063°C at [Nd]=0.01 M, and T, = 58C and a = 054°C at

[Na']=0.1 M. It should be clear from the examination fifures 3.3-3.5 that the numerical
criterion alone is not sufficient to fix unambigusbyi the set of parameters to use in the model
and that other criteria must be taken into accduantny opinion, a very sensible criterion would
consist in fulfilling the condition that the equigat temperature deduced from equation (3.8)
should be equal to the true temperature of thes plathe absence of chemical denaturant, that is

for C, =0%. This amounts to imposE, = 60°C in equation (3.8).
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Figure 3.3. Root mean square deviations between experimentilcattulated absolute positions along the
second dimension in the DGGE experiments for thBMA sequences listed in table 3.1. The three patars,
L., To anda were adjusted simultaneously for each fixed valuhe salinity [N4].
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| therefore performed another series of two pararmsdits, which consisted in adjusting

simultaneously [Ng and a for increasing values of, at fixed T, = 60°C. Results are shown in

figure 3.6. Not surprisingly, the top plot agaimicates thatlL, can be varied between 30 and
220 base pairs without letting the root mean sgaena@ increase by more than 0.05 cm. What is,
however, more interesting, is that the middle aottidm plots of figure 3.6 show that the value of
[Na'] to feed in the MeltSim program must be choserthi range 0.10 to 0.15 M and that
consequently varies in the range 0.52 to 0.55 °@eNhat this is substantially larger than the
value a=1/3.2=0.31 °C proposed in reference [69], butregB8.6 unambiguously indicates that
the absolute positions measured in reference [@jatbe reproduced with such a low valuexof

- at least as long as one considers ptz@(‘s) in equation (3.6) is equal to the mobility in tirst
dimension obtained from equation (3.4).

A second criterion is clearly mandatory in ordecchmose between the various solutions
shown in figure 3.6. In my opinion, this criterishould rely on the knowledge of the number of
base pairs of each sequence that are open at dhef ¢ne electrophoresis experiment. It should
indeed be realized that all the solutions showfigare 3.6 lead to the same dynamics of the

fragments, that is, the mobility and the final piosi of each fragment do not depend on the
chosen(Lr,[Na+],a) triplet, but they doot lead to the same denaturation properties, thab is,
the same number of open base pairs. Stated in wiers, p(T)/L, remains the same for all
(L,.[Na*], a) triplets, but notp(T). This is clearly illustrated in figure 3.7, whichows the
evolution as a function of time of the number oEpgase pairs (top plot) and of the posityon
(middle plot), as well as the evolution as a fumetofy of the mobility,u(s, y) (bottom plot), for
two fragments with respective low and high GC cotgeand two(L,,[Na*],a) triplets with
very different values ofL, . More precisely, the two fragments are the 2328el@airs Eco91l
digest of thex-phage with 57.8% GC content and the 6555 base o471 digest of tha-
phage with 38.0% GC content, while the chosen sktgarameters ard.. =30 base pairs,
[Na']=0.145 M and a =0.526 °C, andL, = 200base pairsfNa’]=0. 1081 and a =0.524

°C. Examination of the middle and bottom plots @fufe 3.7 indicates that the calculated
positions and mobilities of the two fragments aeeyvsimilar for the two sets of parameters. In

contrast, it can be seen in the top plot that tialver of base pairs that are open at the end of the
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electrophoresis experiment differ widely for theotsets of parameters: the set with=  [Bfse
pairs predicts that about 250 base pairs are apepoth fragments, while the set with =200
base pairs predicts that this number is close @9 IBote that250/30=1500/ 200). In order to

fix unambiguously the correct set of parametersciwimust be used to predict electrophoresis
experiments such as those reported in referenceo[8 should therefore complement these
experiments with detailed measurements of the ntplif a few sequences, as in figure 4 of
reference [77]. The positions of the bumps in thel@ion of mobility, which reflect the abrupt

opening of large portions of the fragment, indeevyeal the correct value ot , and
consequently also giNa'] anda.

Since these additional data are not availabléhf®rexperiments reported in reference [3],
we chose the set of parameters that leads to thestroot mean square error, that{s=100
base pairsfNa’]=0. 13M and a =0.540 °C, to compare calculated and experimental absolut

positions in the second dimension. Results ardagdalin the four last columns of table 3.1. It is
stressed that the root mean square deviation betesdeulated and observed absolute positions

(0.15 cm) is almost twice smaller than the averegeerimental uncertainty (0.26 cm).
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3.5. Conclusion

In this chapter, | have presented a study of thrarpaterization issues associated with a
model aimed at predicting the final absolute lamati of DNA fragments in 2D display
experiments. In particular, 1 have shown that sanpkpressions for the mobility of DNA
fragments in both dimensions allow one to reprodexgeerimental final absolute locations to
better than experimental uncertainties. | havehimnore pointed out that the results of 2D
display experiments are not sufficient to deterntheebest set of parameters for the modeling of
fragments separation in the second dimension, lagidaidditional detailed measurements of the
mobility of a few sequences are necessary to aelilas goal.

To model electrophoresis along the second dimensidrich involves the melting of
DNA along a concentration gradient of chemical deraat, | have written a program that
embeds the MeltSim code, which is based on thenBefzheraga model. This work convinced
me that programs like MeltSim are very conveniantgdractical purposes. They are simple to
use, even for people like me, who have not enougk at disposition to understand all the
subtleties of the description of DNA melting witlhuch statistical models. In addition, the
precision of the underlying model is sufficient foany practical purposes. For example, it was
mentioned in the discussion at the end of refer¢BLethat the weakest part of the simulation
program is probably equation (3.6), which expregbesmobility of a partially melted DNA
sequence as an exponentially decreasing functidheotize of the melted regions, and that the

L, parameter should probably include some dependencie properties of the gel (like its

concentration and the size of the pores) and tiaiest DNA sequences (their length, the number
and location of melted regions). All the attempts made in this direction were unsuccessful,
which is probably due to the fact that experimentatertainties, which result essentially from
the difficulty to control precisely the reprodudity of experimental conditions and the
spontaneous deformation of the gels, are almostetwas large as the rms deviation between
experimental and calculated positions. Today'stiingi step is therefore neither the MeltSim
code, nor the expressions | used to calculate bt both dimensions, but rather the
experimental procedure: to my mind, it will indesaot be possible to improve the model as long
as experimental uncertainties will not have beemlensubstantially smaller than what can be

achieved in today’s experiments.
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4. Improving our dynamical DNA model
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4.1. Introduction

It has been shown in the preceding chapter tatisgtal models enable a fast and reliable
estimation of the denaturation properties of DNAwances. This is no longer the case for the
dynamical models, which will be discussed in thhamter. More precisely, dynamical models are
indeed accurate - and we work hard to make thenm ewere accurate - but they involve
calculations, which are orders of magnitude mometiconsuming than statistical ones. As a
consequence, they would for instance have beenoopmactical help to simulate the 2D
electrophoresis experiments discussed in the prevgbapter.

Yet, dynamical models are useful, because theyigeoa complementary point of view
on the dynamics of melting, in the sense thatdfgramical models, the macroscopic properties
of the sequence (like the critical temperature #yedtemperature evolution of the specific heat)
depend only on its microscopic properties, like tepth and the shape of the stacking and
pairing interactions. In contrast, models like th&Poland and Scheraga make heavy use of the
statistical properties of the sequence, like théitman function of the loops and the cooperativity
parameter. Moreover, the effect of temperaturex@iatly plugged in statistical models through
the definition of site-dependent stacking entropiess therefore interesting to check the degree
of agreement between predictions obtained from isdtat rely on so different building blocks.

I will come back to this point in section 4.5. Obwsly, dynamical models are also powerful
tools when one is not interested in the mean val@gequantity but rather in its fluctuations [40].

The purpose of the work presented in this chaténreefold. | will first show how it is
possible to get better estimations of the parammetethe model developed in our group by taking
into consideration experimental facts that wereegjarded up to this point. | will then compare
the results obtained with the improved model withse obtained from statistical models. Finally,
| will describe briefly the critical properties tie new model and compare them to those of the
previous one. | will conclude with a discussiortlod critical behaviour of the model in the very

narrow region just below the critical temperature.
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4.2. Adjustment of the parameters

As already emphasized in section 2.5, the dyndmoalel developed in our group needs
to be improved with respect to at least three goiRirst, this model predicts, like the DPB one, a
much too large sensitivity of the critical temperat with respect to the length of the sequence,
leading to unrealistically small melting temperatifor sequences with less than several hundred
base pairs. Moreover, we performed some calculationprobe the mechanical unzipping of
DNA, and found that our model predicts too smallical forces. Additionally, the temperature
resolution is too small compared to the experimeona. | will show in this section how these
points can be improved, at least partially, by uagythe parameters of the model.

The HamiltonianH of the model, which we developed to study DNA deration, is
shown in equation (2.11). This Hamiltonian desailbeee DNA, that is, the case where no
external force is applied to the sequence. In tkegnce of a force acting on one of the bases of

the base pair at positiorr1, the energyH of the perturbed system may be written as [80]:

stretch

Howen=H = FY, (4.1)

stretch
It should however be noted that, because offefactor that appears in the expressiorypfas

a function of the positions,, and v,, of each nucleotide (see equation (2.®))is, properly
speaking, not the experimental force, but ratherekperimental force multiplied by2 . The
critical force FC(T) is defined as the force required to keep the tivands separated at
temperaturd. This is the force, for which the variation of theerage free energy per base pair
of a very long sequencg,(T), is equal to the variation of free energy per bpai of the
stretched single strands, (T,F) [60-61,81-82]:

9, (T.Fe(T) - 9.(T. 0) = 9o(T) - 9o (Te) (4.2)
Equation (4.2) contains an approximation, in thessethat it assumes that the free energy per
base pair of a stretched double-stranded sequeneguial to that of an unstretched sequence.
Results obtained using equation (4.2) are therdfeteer checked with independent calculations.

Following the arguments of Singh and Singh [80, ¥ariation of the free energy per base pair of
unstretched long sequences may be estimated fonddel in equation (2.11) according to
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go(T)_ 9(Te) = D(l _1j 4.3)

for temperature§ smaller than the critical temperature. In equation (4.3)D = D, denotes the

depth of the Morse potential for a homogeneous esgzpi Moreover, it is possible for some
models to calculate the free energy per base ppdineostretched single strands by taking the

derivative of the partition functiod(T, F)
Z(T! F) = J.dyl dy, ..dyy exd_ BH stretch)

= [ dy, dy, ..dy, exr{— ﬂ(N D+ WO (y,.y,.)+ Fly, - yn_l)}D (4.4)

n=2

gu(T,F):-Niﬁm(z(T,F))

whereﬁzl/(kBT). When approximating the nearest-neighbour intemagbotential in equation

(2.11) by

WO (y,, ¥os) = min[%,%b(yn - yn_l)z} + Ky (Yo = Vo)’ (4.5)
one obtains

gu(T,F):D—%In(a(IIHZ)) (4.6)
where

I, = ,4,571T<b exp{u2 —ﬁ%j{zerf(v-u)—erf(v+u)}
u= /BFZ
4K,

4.3

and
I, = 4—;/( expu'? ferf(v-u') + erf(v +u')}
(=K, +0HD
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The plot of FC(T) obtained with equations (4.2), (4.3) and (4.6) #redoriginal set of parameters

(4.8)

reported in section 2.5 is shown as a solid linéigare 4.1. It was checked that Monte-Carlo
simulations performed with the Hamiltonian in eqomat(4.1), reported as open circles in figure
4.1, are in excellent agreement with this curvéhm 290-370 K temperature range. Conclusion
therefore is that the parameters used up to noavttea too small critical force around 20°C (the
experimental value lies in the range 10-20 pN [6]),6especially when remembering tHain
equations (4.1) to (4.8) denotes the experimeruatef multiplied by /2. Examination of
equations (4.6) to (4.8) shows thIéJ(T) depends strongly o, , which was fixed somewhat
arbitrarily in the original set of parameters. C@mgon with mechanical unzipping experiments

will therefore help fix this parameter to a morewgnded value. Plots aju(T,F) obtained from
equation (4.6) indicate thak, must actually be increased for the calculatedcatitcurve to
come closer to the experimental one. This is a pesitive point, because we also noticed that
K,=10° eV A* sometimes leads to distances between successies ba the same strand that
are unrealistically large. Increasing, will therefore improve the quality of the modeltiwi
respect to two points and not only one.

Moreover, and despite the fact that we have nondie® proof thereof, many trials

convinced us that the only way to substantiallyumsdthe dependence of the critical temperature
on the length of the sequence consists in decrgéisendepth of the stacking interaction, that is,

in assuming smaller values fd&xH /C. Since we want to go on using the stacking eniésilp
AH  that were adjusted for statistical mod€lsnust consequently be made larger than the value
C =2, which we used up to now and was obtained by assuthat paired bases do not unstack
simultaneously [7]. Low frequency Raman spectra,§B} and theoretical investigations of
collective modes in DNA [86,87] suggest, on theeotiand, that the stacking stiffnedsl, b/C

may be larger than what was assumed in the origetabf parameters (note, however, that the
two models are substantially different). The inseeaf the parametdr controlling the width of

the Gaussian hole must therefore be larger thadd¢beease of the hole de@tH  /C.
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4.3. New parameters

Taking into account the considerations made aboderequiring that calculated melting
curves reproduce experimental ones is still notigent to fix all the parameters of the model
unambiguously. However, we found that the followiset of parameters allows for a correct
reproduction of most of the known properties of DNAder usual salinity conditions (75 mM
NacCl):

* Morse pairing potentialD, =D =0.048 eV anda =6.0 A (againstD =0.040 eV and

a =4.45 A* previously).

« Stacking potentialC =4 and b=0.80 A? (againstC =2 and b=0.10 A? previously).

For inhomogeneous sequences, the ten stackinglgiethAH  are taken from table 1 of
reference [38] (as previously), while we usa#i , = AH =0.409 eV for homogeneous

ones (against the valudH = 044 eV that was used previously).

- Backbone stiffnessik,=4.0 10* eV A? (against K,=10° eV A? previously). As

anticipated, the most important change compare¢da@arlier set of parameters concerns
this parameter.

The plot of F, (T) obtained with this new set of parameters and &u=(4.2), (4.3) and

(4.6) is shown in figure 4.1. It is seen that, ailtgh probably still somewhat too small, the
critical force around 20°C is now in much betteremgnent with the experimentally determined
one [60,61]. Moreover, the melting temperature alsoreases much less rapidly as a function of
the length of the sequence. Figure 4.2 indeed atelica540/ N *" dependence, which is still
larger than the decrease predicted by statisticalats but is in qualitative agreement with both
the 500/ N dependence that is plugged in most online oligteaticle property calculators and

the experimental results reported in [59].
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Figure 4.1 Plot of the critical forceF;, which is required to keep the two DNA strandsasafed, as a

function of the temperature T of the sequence, rdaug to the model of equation (2.11) and the ahdl aew
sets of parameters. Solid lines were obtained fegumations (4.2), (4.3) and (4.6) and the few operies from
Monte Carlo simulations, as a check to the validityhese equations.
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4.4. Heterogeneous pairing and salt concentratioontributions

The set of parameters proposed above assumesetieabdeneity is carried by stacking
interactions. One might instead assume that heterty is carried by pairing interactions, as in
heterogeneous versions of the DPB potential [5342]t is sufficient, for this purpose, to fix
AH to its average valu@AH =0.409 eV and introduce two different values for the Mors
potential depthD,,, namely one for AT base pairs and one for GC Ipases. One is thus led to
the following set of parameters:

* Morse pairing potentialD, =0.041 eV for AT base paird), =0.054 eV for GC base

pairs, anda = 6.0 A,

 Stacking potentialC =4, b=0.80 A? and AH , =AH =0.409eV.
« Backbone stiffnessi, =4.0 10* eV A%,

Results obtained with this set of parameters agaditgtively and quantitatively similar to
those obtained with the set of parameters propimsselction 4.3. Since recent work suggests that
heterogeneity is carried by both pairing and stagknteractions [88-90], one could think about

introducing both differentD, and AH, values in the model. We however made no attempt in

this direction because of the complexity of TI cddtions for this kind of hybrid models [53].
At last, it should be noted that the influencedifferent salinity conditions on DNA

melting can easily be taken into account in thistipalar form of our model by using

D, =0.041+0.006 Log(Na']/[Na‘],) for AT base pairs and
D, =0.054+0.004Log([Na"]/[Na*],) for GC base pairs, wherB, is expressed in eV and

[Na"], =75 mM. The variations of critical temperature wittspect to salinity obtained with

these expressions agree well with those predigtesidtistical models.
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4.5. Comparison of the melting curves obtained witiis model and statistical

ones

As mentioned before, in statistical models a basegan only assume one of two states:
“open” or “closed”. There is no ambiguity when esdting, for example, the fraction of open
base pairs as a function of temperature, or th@eeature at which each base pair of a given
sequence has probability 0.5 to be open. Such pletshown as dashed lines in figures 4.3 and
4.4 for the 1793 base pair hum@ractin cDNA sequence (NCB entry code NM_001101).
Calculations were performed with the MeltSim progr{88], the parameters of Blossey and

Carlon [35], and salinityNa"], =75 mM.

“Closed” and “open” are more ambiguous conceptshi case of dynamical models,

which are expressed in terms of continuous cootegya. For example, one might consider that

the fraction of open base pairs is obtained by adgmg at each timé the fraction of base pairs

for which y, is larger than a given thresholg, .., and in subsequently averaging this quantity

res

overt [6,52,54,55]. Alternatively, one can consider taagiven base pair is open if the mean
eIongation(yn> is larger than the thresholy, ., and average this quantity over the sequence.
The two definitions are rather close and, as lon@r@e does not deal with experimental results
obtained with ultra-short laser pulses, there ipingsical reason to choose one definition instead
of the other. Still, the curves obtained with thése definitions are not identical. In particular,
we noticed that results obtained with the secorfhitien are better resolved in temperature and

closer to those obtained with statistical model3,98]. Further on, we will therefore use this
definition and consider that base paiis open if (y,) > Yy It remains that the choice of
Yiresh 1tS€IF is Not trivial. Figure 2.4 indeed showsttlfaone chooses foy,, .., @ too small value,

like for example two or three timeiga (approximately 0.5 A), then application of theterion
to a long homogenous sequence would lead to tlemeswus conclusion that all base pairs are
already open tens of Kelvins below the critical pemature. For such long homogeneous

sequences, the larger the valueygf.,, the closer the critical temperature determineth wie

(V) > Yuesn Criterion to the exact one. But, on the other hantbo large value of/y,, is in
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turn not suitable for inhomogeneous sequencesubeddifferent portions of an inhomogeneous
sequence melt at different temperatures and tharapn of open base pairs belonging to

bubbles is limited by the double-stranded portioftse choice ofy,, ., therefore appears as a

compromise between these two conflicting considmnat Practically, we found that, for the set

of parameters proposed in section 4.3, the cheicg, = 0 Aleads to reasonable results for

both homogeneous and inhomogeneous sequencesofilmust keep in mind that the critical
temperature determined with this criterion is Btdelvins lower than the correct one (see figure
2.4).

We computed the evolution of the fraction of opasdpairs as a function of temperature
and the melting temperature of each base pair ®f1f93 base pairs actin sequence for the
parameters of section 4.3 using the TI proceduserdeed in reference [53]. The results are
plotted as solid lines in figures 4.3 and 4.4. Tésults obtained with three different thresholds
(Viresn = 7> 10 and 15 A) are shown for the sake of comparikaan be checked that, except for
the short region of the sequence that melts ahitjeest temperature, the agreement between
results obtained with statistical and dynamical eiedis rather striking. In particular, the
resolution in temperature of melting curves is ligfor the new parameters than for the old set
and almost comparable to that of statistical modklscontrast, no increase in resolution is

observed in the plot of, (T ,)as can be checked in figure 4.5.
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Figure 4.3 Plot, as a function of the temperature T of thquence, of the fraction of open base pairs for the
1793 base pairs humaftactin cDNA sequence (NCB entry code NM_001101gioed with MeltSim [38]
(dashed line) and the dynamical model proposed (eokd lines). MeltSim calculations were performeith

the parameters of Blossey and Carlon [35] and & sahcentration[Na*], =75 mM. Results obtained with
three different thresholdsy, s, =7, 10 and 15 A) are shown for Tl calculations perfed with the dynamical
model. Remember that critical temperatures detezthiwith the(yn>> Yinresn Criterion are 2 to 3 Kelvins
lower than exact ones, as discussed in section 4.5.
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Figure 4.4.Plot, as a function of the position of the base pafi the opening temperature of each base pair of
the 1793 base pairs humgractin cDNA sequence (NCB entry code NM_001103iroéd with MeltSim [38]
(dashed line) and the dynamical model proposed (eokd lines). MeltSim calculations were performeith

the parameters of Blossey and Carlon [35] and & sahcentration[Na*], =75 mM. Results obtained with
three different thresholdsy, s, =7, 10 and 15 A) are shown for Tl calculations perfed with the dynamical

model. Remember that critical temperatures detezthiwith the(yn>> Yinresn Criterion are 2 to 3 Kelvins
lower than exact ones, as discussed in section 4.5.
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Figure 4.5. Plot of the specific heat per particle, , as a function of temperature T for the 1793 baaies
humang-actin cDNA sequence (NCB entry code NM_001101gjrdd from Tl calculations performed with the
dynamical model proposed herg, is expressed in units of the Boltzmann conskant
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4.6. Critical behaviour of the dynamical model

This section is devoted to the description of thiical behaviour of the dynamical model
with the parameters proposed in section 4.3. | shibw that it does not differ significantly from
the behaviour observed with the set of parametsed in references [56,57], which implies that
the melting of homogeneous DNA sequences looksdilfiest-order phase transition. It will be
however pointed out that there is necessarily @saeer to another regime very close to the
melting temperature.

The temperature evolution of the entropy per baae s, is shown in figure 4.6 for
infinitely long sequences and sequences Witi000 andN=100 base pairs. This plot, as well as
all the other plots discussed in this section, was&ined from TI calculations performed as
discussed in references [56,57]. It is seen theatemperature evolution efdisplays the step-like
behavior that is characteristic of first-order phasansitions. This is particularly clear for the
infinite sequence and the sequence WNtHLO00 base pairs, but the step-like behavior I§ sti
well-marked for shorter sequences. As usual, ttep-kke behavior ofs corresponds to thin

peaks in the temperature evolution of the spetifiat per base paig,, as can be checked in
figure 4.7. Note that, in both figures, the solidel associated with infinite sequences is
interrupted in the narrow temperature interval vehEr calculations are not valid.

Further information is gained by calculating tgtical exponents, which characterize the
power-law behavior of several statistical propertad infinitely long homogeneous sequences
close to the critical temperature. For exampléicali exponents:, f andv are defined according
to
¢, O(T.-T)"

(y)o(r.-1) (4.10)

o -1)”

where¢ denotes the correlation length a(1yi> is taken as the order parameter of the melting
transition [56]. The critical temperature of a sexece of lengtiN, TC(N), is easily found as the
temperature where, is maximum. Because of the temperature intervadre/T| calculations

are not valid, it may be somewhat more complexetemnine the critical temperature of
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Figure 4.6 Plot, as a function of the temperature T of teguence, of the entropy per base pair, s, for éinitely
long homogeneous sequence and sequencesNvith000 and N =100 base pairs. These results were obtained
from TI calculations. s is expressed in units @& Boltzmann constarity . The solid curve for the infinitely long
chain is interrupted in the temperature intervalesé the Tl method is not valid.
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Figure 4.7. Plot, as a function of the temperature T of thguence, of the specific heat per base pajr, for
an infinitely long homogeneous sequence and segaemith N =1000 and N =100 base pairs. These results
were obtained from TI calculations, is expressed in units of the Boltzmann conskgntThe solid curve for
the infinitely long chain is interrupted in the tpamature interval where the Tl method is not valid.
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infinitely long sequencesT, :TC(N = oo). Here, we took advantage of the fact that thecalit
temperature shiffl, —TC(N) unambiguously decreases as a powed aind consequently found
T. as the temperature for whisbg(T, - T,(N)) is best adjusted with a linear functionlog(N).

One getsT, =359 4X and, as already mentioned in section ZZN) =T, ~5395N°"" (see
figure 4.2). Critical exponents, f and v are then obtained by drawing log-log plots of,
respectivelye, , (y} and¢ as a function of the temperature ggp-T and by estimating the
slope of each curve in the temperature range wiher@ower law holds. The plots in figures 4.8
to 4.10 show thato =133, f=-141, and v = 147, not so far from the valueg =113,

L =-131, andv = 123 obtained with the old set of parameters [56].

The critical exponent of the specific heat,is thus larger than 1, which confirms that
melting indeedooks like a first-order phase transition in the tempem®a range where power-

laws hold. The first-order regime witln >1 can however not hold up to the critical tempemgtur

because the average potential energy per base tp&il(,\/)/N, is expected to evolve as

u (T, -T)". If the regime witha >1 would hold up to the critical temperature, thewould
become infinite afl,, which is of course not possible. Figure 4.11 etishows that the value of
a deduced from log-log plots af as a function off_ —T, a = 137, is close to the estimation
obtained from the plot of, , that isa = 1.33. Most importantly, figures 4.8 to 4.11 all display

crossover from the first-order regime to anothe@ime in the last few Kelvins below the critical
temperature. We checked that the results presemtédse figures are converged, that is, they do
not vary when the size of the matrix in Tl calcidas is increased from 4201 to 8201 and the
maximum value of/ correspondingly increases from ab&@@00/ a to aboutl0000 a. Still, as
mentioned in section 2.6, neither MD simulations fibcalculations are able to provide a clear

indication of what happens very closeTa

At that point, it is worth noting that analogy Wwithe wetting transition [91] and
calculations performed with a rougher model [92ggest that the melting transition is
asymptotically second-order. This actually agreeth iurther work performed in our group
without my participation [93]. In this later worlje free energy per base pdjrwas separated

into a singular part,f_,, and a non-singular part .. f . was taken as the free energy of two

sing?
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widely separated, non-interacting DNA strands, s ff_ = remains constant above the critical

sing

temperature, as must be the case. Combinationuzitiens (2.15) and (4.10) indicates thigf,,

is expected to vary aél’C —T)Z"’ close to the critical temperature. Log-log plofs iy, as a

ing
function of T, =T then led to the value = 057 for the model in equation (2.11) and the set of
parameters of section 4.3 [93]. Similar calculasigrerformed for the DPB model in equation
(2.10) and increasing values pfconfirmed that values aof estimated in this way are always
comprised between 0 and 1, while values: dérger than 1 may be obtained when this critical

exponent is estimated from the temperature evaiutioc, [93]. This would confirm that the

melting transition is asymptotically second ordas (letermined from the temperature evolution

of fg,), while it actually looks first order (as determthfrom the temperature evolution qf)

sing

up to a few degrees below the critical temperature.
4.7. Conclusion

In this chapter, | described how we varied the patars of the dynamical model
developed in our group to get a better agreemettt @iperimental results that were not taken
into account up to now, that is, the critical foreeded to keep two DNA strands separated and
the sequence size dependence of the critical teayver Then, | showed that the results obtained
with the improved model agree well with those aigdi from statistical models. Finally, |
checked that the critical properties of the dynainmodel remain qualitatively similar to those
predicted with the original set of parameters.|,Stilshould be noted that the resolution in the

temperature evolution of the specific heat per Ese ¢, , is still much too poor compared to

experiment (see figure 4.5).
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Figure 4.8 Log-log plot, as a function of the temperaturepg'EL(N)—T, of the specific heat per base
pair, ¢, , for an infinitely long homogeneous sequence awiences withN =1000 and N =100 base
pairs. These results were obtained from Tl calcat. ¢, is expressed in units of the Boltzmann constant
kg . The dot-dashed straight line shows the slopeesponding to a critical exponeat = 1.33.
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Figure 4.9. Log-log plot, as a function of the temperature Q'Q(N)—T, of the average base pair separation,
(y}, for an infinitely long homogeneous sequence aglences withN =1000 and N =100 base pairs.

These results were obtained from TI calculatio(r;é. is expressed in A. The dot-dashed straight limevsithe
slope corresponding to a critical exponefit=-141.

84



2 10%F
c -
) -
> -
o -
S 10°F . v=147
s - '\\/
S I
=1 i
c
2 10'F
(- C
Q C
"Ej‘ B
@ n
§ 10° F thermodynamic limit
lllllll 1 Illlllll 1 [ T I I |

10° 10’
temperature gap T_-T (K)

10

Figure 4.1Q Log-log plot, as a function of the temperatur@gg. — T , of the correlation length, for an
infinitely long homogeneous sequence. This resadt @btained from TI calculations. The dot-dashedight

line shows the slope corresponding to a criticgd@enty =147 .

85



10_1 IIIIIII 1 1,\'IIIIIII I I IIIIIII 1

thermodynamic limit

1-a = -0.37

potential energy per base pair (eV)

homogeneous sequences

1 L1 1.1l II 1 1 1 | | I 1 1 1 | | I
10° 10’ 102
temperature gap T_(N)-T (K)

1072

Figure 4.11 Log-log plot, as a function of the temperatur@ g'q(N)—T , of the average potential energy per
base pair, u:<V>/N, for an infinitely long homogeneous sequence aggusences withN =1000 and

N =100 base pairs. These results were obtained from Tdutations. u is expressed in eV. The dot-dashed
straight line shows the slope corresponding toiticad exponentl—a =-037.
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Part II: DNA — protein interactions

5. Introduction
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5.1. Experiments of Riggs, Bourgeois and Cohn: theradox of the missing salt

Although great advances have been made in genetibe last decades and the genomes
of several species are now completely mapped, tisestill a lot of discussion on how gene
expression takes place. Even if the steps of trgtgmn are known, the means by which
transcription factors find their targets are stitit very well understood. The first and certainly
one of the most important steps that have been maitiés direction is due to the experiments of
Riggs, Bourgeois and Cohn [10]. They measured #s®a@ation rate for th&ac repressor in
various reaction conditions using a sensitive mamdffilter assay for thiac repressor—operator
complex [94]. This method consists in filtering a@ludion which contains repressor-operator
complexes trough a membrane that only permits #ssape of free DNA molecules. Therefore,
they could measure how many of the DNA moleculesald/greate complexes with the repressor
in a certain amount of time. Their first experimevds performed in a buffer containing KClI,
Tris-HCl and magnesium acetate at 0.01 M conceotrstand they reported that thac
repressor binds to its operator site at a ratdofie7 x10° M™s™. This value is one to two orders
of magnitude larger than what is generally assufoediffusion limited reactions (I will explain
in the next section how this theoretical rate impated). Riggs, Bourgeois and Cohn assigned
this very high rate to the existence of an eletatas attraction between the negatively charged
DNA and a positively charged site on the repres8sran argument for this assumption they
made a series of experiments where they incredsedhnic concentration in the buffer up to
physiological values and obtained a net decreasbeofissociation rate down to values of the
same order of magnitude as the diffusion limitfg 5.1). The article ends with a very clear
discussion of these results, from which the mogpairtant conclusion is that even though
protein-DNA association reactions are acceleratgedhle existence of electrostatic attractions
they are still diffusion limited. Another argumentsupport of this statement is the fact that when
repeating their experiments with 20% sucrose inbiliéer, the association rate is reduced by a
factor of two, as expected from the change in \&ggoln the end, the authors suggest a possible
mechanism for the repressor finding its target thailies “rolling” or “hopping” around the

DNA sequence.
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Figure 5.1 Variation of the lac repressor-operator associatiate with the KCI concentration in the buffer for
the experiments of Riggs, Burgeois and Cohn ereefce [10]

Figure 5.2 Representation of the facilitated diffusion proc&se first cartoon shows sliding, the seconds aspi
hoping and the third is an image of intersegmeansfer, taken from reference [16].
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This last hypothesis was later developed in a #te@l model [95] that became the
inspiration for most of the models that followecerg, Winter and von Hippel indeed suggested
that the protein’s target search can be greatlglacated by its sliding on DNA, because this
would reduce the dimensionality of the process .[96]is scenario implies that the protein
connects randomly on the DNA chain and then slaesg it in search of its target (figure 5.2).
If it does not find the target after a certain amoof time it disconnects, diffuses in the cell and
then reconnects somewhere else. Besides this, parteins can also do intersegment transfer,
which implies transiently doubly binding to two DNgegments. The combination of these
processes is now known as facilitated diffusiord snthe basis for many theoretical models that
aim to describe protein-DNA interactions [15-19]o#M of them are analytical models inspired
by the theoretical description of chemical readjowhich only take into consideration the
kinetics of the entire molecule population of tlystem. These models usually imply assuming
the values of non-specific association and dissiocigprobabilities in order to compute the
specific association rate.

Surprisingly enough, the majority of the theoratiworks tend to assign the very high
association rates measured in the early experiofeRiggset al to facilitated diffusion and they
seem to ignore the fact that this rate decreases witreasing the ionic strength of the buffer.
This negligence has propagated, giving birth toeaegal conception that facilitated diffusion
accelerates DNA-protein association with a factohigh as 100 compared to the diffusion limit.

The development of new techniques ifovivo microscopy has recently permitted direct
visualization of the motion of proteins inside tedl, the precise determination of their diffusion
coefficients and has also evidenced the existerfcéamlitated diffusion [98-109]. These
experiments show that the values of the one-dimeasidiffusion coefficient of the protein are
up to a thousand times smaller than those for tmr@ensional diffusion, and that the protein
spends more time sliding than diffusing throughldib&er. These facts should cast a doubt on the
belief that facilitated diffusion is necessarilyster than normal diffusion. Incidentally, a recent
review of experimental results by Halford[21] statkat there is "no known example of a protein
binding to a specific DNA site at a rate abovedifeusion limit", and that "the rapidity of these
reactions is due primarily to electrostatic intéi@at between oppositely charged molecules”.
This work clearly reminds us that the very highoagstion rate observed in the first experience

of Riggs, Bourgeois and Cohn is due to the absehaalt in the buffer, and that once these
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experiments are repeated at a higher salt contentrdne association rate greatly decreases. It
also points out that these results have been coaditoy several other experiments [22-24]. Also,
Halford suggests that we should put “an end toyfomtars of mistakes in DNA-protein
association kinetics”. Therefore, these experimenssults indicate that the debate around how
proteins find their targets should now concentrate whether facilitated diffusion really
accelerates DNA sampling and which are the condtior this to happen.

One of the goals of my thesis is to propose a @ar@chl model for the study of non-
specific DNA protein interactions and to use itdiscuss in what conditions the alternation
between one-dimensional diffusion and three-dinmvadi diffusion can lead to faster DNA
sampling than normal diffusion. It implies develogpi a Hamiltonian that describes the
interactions inside the cell and solving the eduregiof motion for the particles in the system.
The next chapters contain a general presentati@xiefing models, a description of the model
proposed, a study of what characteristics of ttmepm affect the speed of DNA sampling and a
comparison of the results presented here withiagisheoretical results.

5.2. The diffusion limit and the Smoluchowski rate

The purpose of this section is to explain how tifieision limit is computed in the case of
proteins binding on DNA.

In a reaction where one spherical molecule A assegiwith a spherical molecule B, the
association rate constant will reach the diffusiomt when every collision of A with B will
result in a complex. The rate constant for a diffadimited reaction is usually computed using
the Smoluchowski equation [110]:

Koot = 47(1000N 5,00 )(D, + Dy ) (1 + 1) (5.1)

It is expressed in units of &% N is Avogadro's number, and D, are the 3D diffusion

Avog
constants of the colliding species A and B (in sioit nf s%), and r, andrg their reaction radii

(in meters). This is deduced by computing the plartflux that diffuses trough a spherical
molecule in the case of the steady state solufenBick’s equation [111]. In order to show the

steps of this procedure, | will give here the ca$ea reaction with a fixed target, but the
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deduction is similar for all other cases. The com@ion of particles diffusing in space at the

distance from an absorbing particle of radiass given by:
a
C(r) =G, (1-7) (5.2)

where G is the initial concentration of particles. Thexfluough the spherical absorber is:

oC a
J(r)=-D—=-DC, — 5.3
() ar Orz ( )

The particles are absorbed by the sphere withedl fthiat is equal to the area times the inward
flux, which equalsJ(a):

| =47DaC, (5.4)
The reaction rate is given by the coefficient thaatesl and Cy. If the molecules are not
considered spherical, then the problem becomes cwrglicated because the Smoluchowski
rate also depends on a geometrical factor, whiglraportional to the fraction of the number of
collisions in which the two molecules face eacheotim the correct orientation for complex
formation. When applying equation (5.1) to the igatar case of a protein associating with

DNA, Riggset al[10] considered that the reaction radiys+r, is of the order of 0.5 nm, which

is approximately the size of a base or an amind-athey further on pointed out that the

diffusion constant of DNA is negligible compared tiwat of the protein and consequently
estimated thaD, + D, = 050x10™ n? s', on the basis of the 150000 molecular weight ef th

lac repressor (this is very close to the value obthifnem Einstein's formula for the diffusion
constant of a sphere). By plugging these numenediies in equation (5.1), one obtains

k.., =2x10° M s, which is about 35 times less than the value nredsin reference [10].

Smol
However, the crucial point is that equation (5slyalid only if molecules A and B have no net
charge or if these charges are neutralized by eoions [112]. If this is not the case, then the

association rate for free diffusion must be modifie include an electrostatic factdy,, [21,95]:

k =k, f (5.5)

Smol " elec

f.. IS larger than 1 if the interacting surfaces chd B possess opposite charges. It is instead

elec

comprised between 0 and 1 if the sign of the clairg¢he same. Moreoveff,, . usually tends

elec
towards 1 when the ionic strength is increasedalise there are more and more counterions that

neutralize the charges on the interacting surfaéés and B. If the salinity of the buffer is very
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low, it can be considered in a first approximatibat the electrostatic interaction between DNA
and the protein is an unscreened Coulomb potquaIB/(MEr), where g, and g, are the

charges on interacting particles A and B, ant the distance between them. Debye [113]

showed that, in this casgecis given by:

(5.6)

x=— a0 (5.7)
47 (ry +rg)kgT

By plugging g, =—-5% (the DNA electrostatic charge for about 7 bpg),=10e (the typical
value for a protein effective charge [114,115])+r, =0 nth, ande =80¢, in equations (5.6)

and (5.7), one obtain$__. = 70, which is of the same order of magnitude as tleedese in the

elec
association rate constant that Riggsl measured when increasing the salinity of the buffeto
physiological values (0.1 M KCI instead of 0.01 MP]. As far as | know, there does not exist
such an explicit formula as equation (5.6) neittoerthe screened Debye-Huickel potential, nor
for the sum of a screened Debye-Hickel potentidlaanexcluded volume term, as the one | use
in my model (see below). It was, however, checkeherically that the association rate for a
screened Debye-Huckel potential is comprised betvw&sEhmolukowski's rate and Debye's one
[116].

5.3. Kinetic models

Almost all the models for the description of pint®NA association that were developed
until now are based on similar series of assumptregarding the nature of site targeting. These
models assume that proteins alternate betweendmensional (3D) motion in the cell and one-
dimensional (1D) sliding along the DNA chain andttboth motions are purely diffusive with
known diffusion coefficient®p andD3p. These values are used to compute various obdesvab
such as the binding rate and the total time reduioe targeting as a function of a set of well
defined geometric quantities, such as the DNA secgpidengthL and the average voluméof

the cell, and a more or less extended list of catestants and reaction probabilities (see, for
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example, table | of reference [95]). For examplalfétd and Marko [16] computed the reaction
rate starting from the probability for a proteinfiod a nearby target by diffusion. They divided
this process into several stages: first, the pnoais to diffuse in solution until it encounters a
DNA coil. Once the protein enters the coil it hasertain probability to find the target.
Therefore, it has to visit the coil several timesrder to be sure that it connects to the specific
site. Defining the sliding length as the startingtahce for which the probability of binding is
0.5, and then applying the laws for 1D and 3D diffan to the steps of the targeting process,
Halford and Marko showed that the reaction rateufat protein concentration can be expressed
as:

-1
k=|—+ +Lf (5.8)
D3D £S| DlDV

Since they considered the 3D diffusion-limited redebe equal teaD,,, wherea is the size of
the target, it follows that the acceleration of thaction due to facilitated diffusion ls/(aD,y).

After a couple of additional hypotheses regardimg ¥alues of these parameters (of which the

most important is thatD,, = D,,), Halford and Marko concluded that this ratio is i
maximum equal to about 30 for an optimal slidinggh 7 = 100 base pairs, a value that is

close to those obtained from single-molecule expents [102,104,109]. This model gives a

good hint on the qualitative dependence of theetarg speed on many parameters, but it is not
very accurate. For example, it neglects the nuraefactors that are present in the 1D and 3D
diffusion equation and consequently also4hdactorin the association rate.

Most of the other kinetic models rely heavily onnte or expressions that are quite
difficult to relate to experimentally measured pedpes of molecules and/or quantities derived
from dynamical systems (for example various coti@haterms that are supposed to arise when
the protein switches from 1D to 3D motion). Therefd have only found one kinetic model to
which it is possible and meaningful to compare rsults obtained with the dynamical model |
have developped. Using older calculations of Szthbal [117], Klenin, Merlitz, Langowski and
Wu derived from first principles that the mean tiofethe first arrival of the protein at the target
of radiusa can be written in the form [118]:

v ., é
8D,,¢ 4D,

r=( J1--2 arctanf)] (5.9)
m 4

95



where D,, and D, are the diffusion coefficients of the protein e touffer and along the DNA

sequence, respectively, aad

E= 1VDp oy (5.10)
2L Dy, 1y

the distance where the efficiencies of the two sypediffusion become equal to each othgy, (
and r,, are the average times the protein spends in thedoand free states, respectively). The

accuracy of equation (5.9) was checked for the lgrapstem where the protein is described as a
random walker that is allowed to enter freely ie tieighborhood of the DNA but has a given
finite probability to exit this volume at each tinséep [18,118]. Although equation (5.9) was
developed starting from a different idea than tleatling to equation (5.8), it gives the same
general tendencies for the reaction time (it hassime qualitative dependence on the diffusion
coefficients for example). As will be shown beloall the quantities that appear in equations
(5.9) and (5.10) can also be derived using moledyaamics, and the mean time of first arrival
7 can be related to the rate constknFurther on, equation (5.9) will therefore be usadall

comparisons between kinetic models and the modseirithed in this work.
5.4. The volume of the Wiener sausage

Before describing the dynamical model proposethis work, | would like to make a
short synthesis of some mathematical results reggamrownian motion and random walks. A
pure Brownian process is diffusive, so it is chwased by a diffusion coefficiem such that:
<R?>(t) = 2dDt (5.11)
whered is the dimension of the space. The spatial re¢fiamwelled by a spherical Brownian
particle in a time is formed by all points within a fixed distancetb& centre of the particle. In
mathematical terms, this comes to compute the Igelsesneasure of the space covered by the
Brownian motion. This is also known as the Wiermrsage [119] (this name is a pun resulting
from a combination between “Wiener processes”, Wildce a class of mathematical processes
that include Brownian motions and which were naier the mathematician who studied them,
and “Viennese sausages”, which can be used adial sparesentation of the volume covered by

a 3D random walker). The volume of the Wiener sgasa important for the analysis of most of
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the physical processes that can be described éaydom walk. The analytical expressions for its
long time asymptotic values in the case of a diffgsphere of radius are [120,121]:

o) = 1—6D1D t (5.12)
T
in the case of a 1D random walk,

2tn

S(t) = 5.13
(t) 00 (5.13)

for the surface covered in a 2D process and

V(t)=4mJd Dy, t (5.14)

for the volume spanned by a 3D Brownian motion.

Equation (5.12) shows, as one would intuitively extpfrom the diffusion equation, that
the length covered by a 1D random walker increasethe square root of time. However, the
result for the 3D case is less intuitive. Even tlodhe average distance travelled by a 3D
diffusing particle increases as a square rootmétithe volume it covers increases linearly. The
essential reason for this is that in three dimerssi@ random walk has a zero probability to re-
visit a point in space, in contrast to 1D and 2Dtiows. It is therefore not surprising that the

visited volume increases more rapidly in three disiens than in the 1D or 2D cases.
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6. The dynamical model: description and

first results
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In this chapter, | describe the model | have dgwedl to investigate DNA-protein

interactions and the first basic results obtaimsdeawith.

6.1. Description

| consider a system composed of a cell (or itseus)l described as a sphere of radiys
containing a protein and several DNA segments.tk@rdescription of DNA, | have chosen an
existing wormlike chain model [20] inspired fromlypmer physics. This is a bead-and-spring
model that accurately reproduces the DNA moleculgssistence length and translational
diffusion coefficient. The DNA segments consistabfains ofn beads connected by springs,

which stand for fifteen base pairs. Each bead hagdeodynamic radius,, = 1.78nm and an

electrostatic charge d,,, = 0.243x10'°l ,e=12e (e is the charge of the electron) placed in its
center. The equilibrium value for the inter-beadtalice isl, = ®m. | chose the number of

beads in a segmemt, in such a way that the length of each DNA segriseapproximately equal
to the radius of the cell, thus filling the cellrhogeneously with DNA but avoiding a chain’s
excessive curvature. This description does not tadce account histones or other proteins that
may be connected to DNA, but it has been shownthiesliding track of bacterial DNA can be
truncated into short and mostly uniformly distrigditDNA segments [122]. The numbmrof
segments is chosen so that the density of basiek ithee cell is close to real values. As pointed

out in [16], the volumé/ of the cell and the total DNA length are connected according to
V =w?L, wherew represents roughly the spacing of nearby DNA segsns must therefore
fulfil the relation 47R5 =w?mnl,, where the average value=450 nm holds for both
prokaryote and eukaryote cells [16]. However, thizdel best describes organisms where DNA

is not packed in chromatin, like, for example, sg8. In this first work, | used three different

sizes for the system (in order to make sure theatdbults are not size dependent):
* m=30 segments ofn =33 beads (i.e. a total of 14850 base pairs) and laragius
R, =0.134 um
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* m=50 segments on=40 beads (i.e. a total of 30000 base pairs) and laragius
R, =0.169 um

* m=80segments oin=50 beads (i.e. a total of 60000 base pairs), withcile radius
R, =0.213 um
and w =45 nm in the three cases. Figure 6.1 is an imagkeotell for the last case.
The potential energ¥,, of the system consists of three terms:
Epot =Vona T Vonaprot T Vaai (6.1)
whereV,,, describes the potential energy of the DNA beadsthe interactions between them,
Vonapor Stands for the interactions between the proteiadbend DNA segments, and,,

models the interactions with the cell wall, whiairain all the beads in the system from going

outside the cellV,,, is taken from reference [20]:

i
s 3
.3" ‘g -

etay.
% if

o e
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Figure 6.1 Snapshot of the cell for the case whene=80and n=50. In white are the DNA beads and in
dark orange is the protein.
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TE 5 k=13=)+1K=1 ”I’j,k —I'J,K” (6.2)

wherer,, denotes the position of be&cf segment, I, =||rj,k =T, .|| the distance between

two successive beads belonging to the same segraedtf,, the angle formed by three

successive beads on the same segment

_ (rj,k _rj,k+1)[(rj,k+1 _rj,k+2)

||rj,k e

cosf, , (6.3)

s =Tz
E.is the bond stretching energy. This is actuallyoanputational device without real
biological meaning, which is essentially aimed\atiding dealing with rigid rods. The stretching
force constant is fixed alh =100k,T /17, with T =298 K. This value was chosen in order to
balance between using a time step that is as lagepossible and having only small
displacements from the equilibrium length. For tratue ofh one gets<| > /|, = 102
E, is the elastic bending potential. There are séwveethods to approximate the bending

rigidity constantg of a worm-like chain, all aiming to give a corrgmrsistence length. One of
the simplest is:
9= (6.4
wherep is the persistence length (hepe=50.0 nm, i. e. 10 beads ) anglis the inter-particle
distance. This would give a value gf=10k,T , but here | have used the valge- 982k,T ,

which | borrowed from references [20,123].
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E. is a Debye-Huckel potential, which describes rgjpel electrostatic interactions

between DNA beads [20,124,125]. This potential &de@s into considerations the screening of

interactions due to the ions in the buffer, so thagquation (6.2)r, = 307 nm stands for the

Debye length at 0.01 M molar salt concentratiomohovalent ions:

/ kT
(= ’ 6.5
° | 2N,e*l (6-5)

where £ =80¢&,is the dielectric constant of the bufféds is Avogadro’s number, andis the

ionic strength of the buffer:
1S,

I ==>cz’, (6.6)
2 i=1

wheren is the number of types of ions in the bufigis their concentration arglis their charge.

Electrostatic interactions between neighbouringdbebelonging to the same segment are not

included in the expression d&, in equation (6.2), because it is considered thesd¢ nearest-

neighbour interactions rather contribute to thetstring and bending terms.

The potentialV,

wall

which models the interactions between DNA andptwein and the

cell wall, is taken as a sum of short range repalsgerms that act on the beads that trespass the

radius of the cellR,, and repel them back inside the cell:

Vwall = kBTiZ fmrj.k”)-'-lo kBT f q

n
j=1 k=1

) 6.7)

r prot

wherer_ . denotes the position of the protein dnsla function defined as:

prot

if x<R,: f(x)=0

if x>R, : f(x)=(%] -1, (6.8)

The coefficientsk,T and10k,T in equation (6.7) were roughly adjusted by handyrder that,
at 298 K and for cell radiR, comprised between 0.134 and 0.248, all the beads (DNA and
protein) remain confined inside a sphere of radiuslO R,, which insures that the time spent by

the beads outside the cell is negligible. The ¢oiefit is 10 times larger for the protein than for

DNA, because the protein is modelled by a singkdbso that its mobility is much larger than
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that of the interconnected DNA beads and its mobaiside the sphere of radiu], more

difficult to oppose.

The interactionV,,,,. between the protein and DNA beads is the sum aitaactive

and a repulsive term:

- P
VDNA/prot - Ee + Eev

e ex{_||rj,k prot J
Eép) _ DNA prot ZZ rD (69)
j=1 k=1 ||rj Kk _rprot
= kT zzFQh.k )
€ona j=1 k=1
whereF is a function defined as:
4 2
if x<v20 : F(x):l{(gj —(EJ ]+1
X X
if x>v20 : F(x)=0 (6.10)

and o = ap, +a,, = 528nm. EY is the Debye-Hiickel potential, which models theaative
electrostatic interactions between the protein BN\ beads, whileE,, is an excluded volume
term, which prevents the protein bead from supénga® a DNA bead an&" from diverging.
E,, IS sometimes taken as the repulsive part of threaed-Jones potential [126]. Being of order
12, this function is however so sharp that it letmsoften to numerical bugs, while the order 4
function F(x) enables relatively trouble-free calculations. Tinefactor of E,, was chosen as

keT €

ot/ Eona » DECAUSE this insures that the DNA/protein intesacv,, . displays a global

minimum very close tao = a;,, +a,., whatever the charge, , of the protein bead (figure

prot ?

6.2). Intuitively, Vpy o Must indeed be minimum at some value close tstine of the radii of

DNA and the protein (that is, closedq in order for sliding to take place. Moreover, illiake

advantage of the fact that the position of thisimirm does not depend og,, to let e,

assume different values, thereby varying the péagenof time the protein bead spends in 1D

sliding and 3D motion.
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Figure 6.2 Plot, as a function of the distamﬂeLk -r

oot DE€tween the centres of the two beads, of the
interaction potentiaNMpypror PEtWeen the protein bead and bead k of DNA segjpfenthree different values
of e,q/€na (0.3, 2 and 5) and a purely repulsive potentidich is just the repulsive part of the potential

with €0/ €y = 03. VDNA,prot is expressed in eV arﬂn ik ~Tprot

in nm. Note that the three curves with
&t/ €na =03, 2 and 5 all display a minimum located #r“( ~Tprot
0 =apnp * 8prot = 528 NM

=5.04 nm, close to
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€prot / €pna = 2
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y (nm)
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Figure 6.3. Plot of the equal energy lines for the DNA-proteiteraction potential witl, /ey, = 2. At

infinite DNA-protein separation the potential englig 0. Contour lines are separated by 0.02 e\ Wit lines
in red corresponding to -0.1, -0.2 and -0.3 eV. Treen line denotes the minimum energy path. The
hydrodynamic radii of DNA and the protein beads imdicated, with the protein sitting on a minimum.

Figure 6.3 shows the lines of equal potential tog tnteraction energy between the
protein and a fixed, straight DNA chain fey,, /e,,, = . Except for the depth of the minimum,
equipotential lines for values &,/ e,,, ranging from 0.3 to 5 are very similar to figurg.6it

is important to notice that the potential well seger by a factor up to almost 3 if the protein
interacts simultaneously with several DNA beadsoAlthe potential barrier the protein has to
pass in order to slide from one bead to the otheery small compared to the maximum depth of
the potential wall, so it does not have any sigaitiit effect on the sliding motion for moderate

values ofe, . In contrast, it cannot be excluded that thisibamplays a significant role in the

subdiffusive behaviour, which is observed for largalues ofe, , or highly deformable proteins

(see chapters 7 and 8).
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For describing the motion of the system | used Biaw dynamics. Brownian dynamics
is employed in molecular dynamics simulations wbee wants to avoid dealing with explicit
solvent molecules. Instead, molecular collisioresaacounted for by adding random forces to the
potential and friction forces in a Newtonian motidine Brownian dynamics equation of motion
for an ensemble of particles is:

Mt =-=0E(r (t)) —Zr(t) + (1) (6.11)
whereM is a diagonal matrix containing the masses ofptimticles,E is the potential energy,

Is the tensor containing friction coefficients, aiff) are random forces with mean and covariance
given by:

<é(t)>=0

< 5§t;£(t')T >= 2k, TZ(t —t') (612)
Equation (6.12) is based on the fluctuation-digsppatheorem. This theorem states that, for a
randomly moving particle, friction is related taandom force. Since the random force does not
have a time scale, the time scale of the motiosuch a system is given by the inertial relaxation
times, defined as the inverses of the eigenvaltigiseomatrixM *Z. When these times are short
compared to the timescale of the simulation it asgible to ignore inertia and assume that
Mi (t) =0. Then, equation (6.11) becomes:

r(t) =-Z70E(r (t)) +Z7'&(t), (6.13)
which can also be written as:
()= = OE( )+ &) (6.14)

B

whereD is the diffusion tensor, connected to the frictoaefficients by:

D=k,TZ™ (6.15)
The mean and covariance of the random forces amgected to the diffusion tensor through:
$e()=0

<& (M) ()T >=2DI(t -t')

The algorithm that | have chosen for solving thegeations is that of Ermack and McCammon

(6.16)

[127]. This algorithm is based on the approximattbhat momentum relaxation occurs much
faster than position relaxation. This conditionngiates in a condition that the time step is

sufficiently large:At > M /67ma (for a detailed explanation see reference [12#]jhis case, this
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gives a lower limit for the time step of 1 ps. Aodiog to the first-order version of this algorithm,
the updated position vector for the beads is ghwen

r(n+1) =r(n) +kA_Er D(n)_F(n) + /ZA'[ L(n).g((;n) (6.17)
B

where At is the time step. Note that” andr ™ are collective vectors that include the position

vectorsr,, of all DNA beads, as well as the position veatgy, of the protein bead, at steps

andn+1. The second term in the right-hand side of eqng6.17) models the diffusive effects of
the buffer. F™ is the collective vector of inter-particle forcassing from the potential energy

E . and D™ the hydrodynamic interaction diffusion tensor. iA4126], | built the successive

pot

tensorsD™ using a modified form of the Rotne-Prager tensorunequal size beads [128-130]
(see equations (26)-(28) of [126]). The third temthe right-hand side of equation (6.17) models
the effects onr ™ of collisions between the buffer and the proteid &NA beads.&l” is a
vector of random numbers extracted at each stepm a Gaussian distribution of mean 0 and
variance 1, whileL™ is the lower triangular matrix obtained from theo®ski factorization of
D™ -

D™ =M L™ (6.18)
where 'L™ denotes the transpose bf”. The CPU time required to factor the diffusion rixat
increases as the cube of the number of beads thatken into account iD™, so that the
Choleski factorization ofD™ turns out to be the limiting step for the inveatign of the
dynamics of large systems. There is an algorithamh ¢tin be used to decrease the exponent from
3 to 2.25 [131,132], but | chose to use a moretdrapproximation. Since the main purpose of
this work is to study the interaction between DN#Addhe protein, it is most important that the
motion of DNA close to the protein is modelled emtty. The results are little affected if the
motion of DNA far from the protein is handled inceuder way. Therefore, | used equations
(6.17) and (6.18) to calculate the position at daok step of the protein and the 100 DNA beads
closest to it, while the positions of the remainDNA beads were obtained from the diagonal

approximation of equation (6.17), that is

At o, |2KeT At o (6.19)

PO o
6777 apya 6711 apya
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where 7 = 0.00089 Pa s denotes the viscosity of the buffer at 298léte that equation (6.19) is

just the first-order discretization of the usualngavin equation without hydrodynamic
interactions and with the second-order term arisirgm kinetic energy dropped. When
considering a system with 2000 DNA beads, use ahggns (6.17) and (6.18) to update the
positions of the protein and the 100 closest DNAdseslows down calculations by only 10%
compared to the case where equation (6.19) is imseall beads. In contrast, the CPU time is
already multiplied by a factor larger than 2 if ajans (6.17) and (6.18) are used for the 200
DNA beads closest to the protein. On the other hamtiecked that use of equation (6.19) to
update the position of all beads leads to restls differ substantially from those presented
further on, while use of equations (6.17) and (btb8update the position of the 200 DNA beads
closest to the protein, instead of the 100 closess, leads to similar results. The use of equation
(6.17) for the protein and the 100 closest DNA Iseadd of equation (6.19) for the other DNA
beads therefore appears as a very reasonable choice

For all simulations, then DNA segments were first placed inside the cellbading to a
randomization procedure that insures an essentialfprm distribution of the beads in the cell

(see figure 6.4). The protein bead was then platedndom in a sphere of radi&® . 16 order

to avoid too strong repelling interactions at tihe 0, all initial configurations where the
distance between the protein and at least one DMAdDbturned out to be smaller than

0 =ap, +a,, = 528 nm were rejected. The equations of motion (6.1id) €.19) were then

integrated for 10 ps, in order for the system toildiyate at the correct temperature. The
quantities of interest were subsequently obtaingdnkegrating the equations of motion for
longer time intervals and averaging over severtiemint trajectories. Finally, | have checked
that time stepait equal to 25, 100 and 400 ps lead to identicallie¢see figure 6.5). Most of
the results discussed in this chapter were consdéiguebtained withAt =100 ps, although a few
ones dealing with the system with 4000 DNA beadsewétained withAt = 400 ps.
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Figure 6.4.Profile of the number of DNA beads per unit voluaeea function of the distance r from the centre
of the cell after an integration time of 30 ps. Thaximum of the curve was arbitrarily scaled tdtis profile
was averaged over 64 different trajectories wit@@DNA beads.
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Figure 6.5 Comparison of results obtained with differentetisteps. Both plots show the evolution(t),

the number of different DNA beads visited by thagin at time t. It is considered that a DNA beantl dhe
protein are in contact if the distance between tbentres of the two beads is smaller than
0 =apya *ayo = 528 nm. The top plot shows the evolutionMdft) for the system with 2000 DNA beads,

&rot/ €ona =1 @nd time stepdit = 25 and 100 ps. The bottom plot shows the evolutioN @j for the system
with 4000 DNA beadsg, / epya =1 and time stepgit =100 and 400 ps. Each curve was averaged over 6
different trajectories.
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6.2. 1D and 3D diffusion and DNA sampling

For studying the nature of the motion of the prot@nd of the DNA sampling process, |
chose three quantities: the proportigr), of the total simulation time (excluding equiliboat)
that the protein spends connected to the DNA chalinch is equivalent to the probability of
sliding, the numbemN (t) of different DNA beads it has visited at tifjeand the numbaet;y, of
DNA beads to which it is simultaneously connectdtemwit is not diffusing freely in the buffer.
Actually, the numbem (t) of sites visited by a diffusing particle is the shanportant parameter
for studying a search process: it is indeed comaeitt the association rate in diffusion controlled
reactions and to the first passage time on a gsiten On the other hand, examinationngf; is
useful when varying the charge of the protein, beeat may indicate when the values of the
parameters become unrealistic.

For the repulsive/,, .. Potential displayed in figure 6.2, the DNA and giretein never
attract each other. The protein therefore movesstifreely in the buffer, except that it is
repelled by the excluded volume interactigp, whenever the distance to a DNA bead becomes
too small. This case is actually very close to feugion limited reaction. Because of the large

density of DNA beads, the probability for the pmté be found close to a DNA bead is not
negligible: if one considers that the protein iatds with beadk of DNA segment] when

||rj]k —I <0, then DNA *fills” about 3% of the cell volume arttle protein is expected to
spend approximately the same amount of time intieigaevith DNA, in spite of the absence of
attractive interactions. This is indeed the case;an be checked in figure 6.6, which shows the

proportion of timep,, during which the protein interacts with a DNA bessla function of the

ratio e,

I €na - IN this plot, the points a

ot/ Eona = @orrespond to the repulsive potential in

figure 6.2, while circles and lozenges respectivelgnote results obtained with the

<o and|r;, -r

||rj]k = ot oot € 15 0 criteria for interacting beads. It is seen tlggy is indeed

close to 3% for the repulsive potential and ||m -r_ .|l < o criterion.

prot
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| found that the number of beads visited by théenoin the absence of the attractive part
of Vpuaprot INCreases with time following an exponential law:
N—(t)=1—ex;{—KLj (6.20)
mn mn
where x = 109 ps’ (see figure 6.7). The most important aspect &f ki is that it implies that
N(t) increases linearly with a rate as long asN remains sufficiently small compared to the
total numbermn of DNA beads inside the cell, while this rate diBadecreases down to zero
when N comes closer and closer ton, due to saturation (there are less and less nadshi®

visit).
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0.8 ' o -
i 1506/ 1
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O e ]
0.0 | ! | ] ] ! | ) ] ! ]
0 1 2 3 4 5

€prot / €DNA

Figure 6.6.Plot, as a function of the rati@,/e;ya , Of the portion of timeo;, during which the protein
remains attached to a DNA bead. The abscissa atisally corresponds to the variation &, at constant

epna - Circles and lozenges denote results obtained ,witkspectively, the"rj’k—rprot"sa and

||rj,k—rprot||sl.50 criterions for interacting beads. The point &, /epya =0 was obtained with the

repulsive potential of figure 6.2. Each point wagi@ged over 12 different trajectories propagated 00 pus
for the system with 2000 beads.
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Figure 6.7. Plot of In(1— N(t)/(mn)) as a function oft/(mn) for the system withmn = 2000 DNA beads and

the repulsive potential of figure 6.2. The dot-dasistraight line represents the same plot for tkgression of
N(t) in equation (6.20) and a rate = 109 ps’.

115



To compare this law with equation (5.14) one fyrstieeds to remember that DNA is
homogenously distributed in the cell and that itsion is slow compared to that of the protein.
ThenN(t) andV(t) can be related througN(t) = cV(t) . In the end, we can deduce from equation
(5.14) an increase rate for the number of visitegbs
K =4mD,,0c (6.21)
Knowing that is sufficient for the protein to toualDNA site to consider that is has been visited,
one can approximate that the volume covered bytbin in a timd is equivalent to the trace

of a 3D random walk performed by a sphere withuad) =a . +a,,,. One can therefore

prot
compute the association rate from equation (5.&dgraling to:

K=A4r (aprot + aDNA) Dy, C (6.22)

When plugging in equation (6.22) the actual cormation of DNA beads,c = 989x10%
beads/r, and the 3D diffusion coefficient at 298 K of @epe of radius,

prot ?

— kBT

= = 0.7x10™° mé/s (6.23)
6rrn a

3D
prot

one obtainsk = 046 beads/us, which is less than a factor 2 away ftwervalue ofc obtained
from the simulations, and coincides almost perjeatith the value that is obtained when the
positions of all the beads are updated accordinggtetion (6.19), that is when hydrodynamic
interactions are completely disregarded. | will eback to this point in chapter 8.

If e,./€ns >0, then the interaction potentiad,, ., between the protein and DNA

prot

beads displays a minimum closedo= a,,, +a,, (figure 6.2), so that the motion of the protein

pro

results from the balance of conflicting constraints,,,, tends to localize the protein close to

DNA segments, while stochastic interactions wita Huffer tend to release the protein bead in
the bulk of the cell. Figure 6.6 indicates that thetion of the protein therefore consists of a

combination of 1D sliding and 3D motion for value$ e, /e, not too large, up to

rot

€

ot/ Eona = 3. FOr larger values &, / e, , the electrostatic attraction between the prodeid

DNA is predominant, so that the protein spends rab#te time in the neighbourhood of a DNA

segment. The ratie

ot/ €ona =1 corresponds to an effective protein chaggg =12€, which
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is of the same order of magnitude as experimentdéitermined protein effective charges
[114,115].

At this point, it should be mentioned that hydrodymc interactions tend to decrease the
ratio of time the protein spends sliding along DA chain compared to 3D motion in the

buffer. For example, if one neglects all hydrodyrmamteractions, therp,, is found to be equal

to 0.60 (respectively, 0.95) f@, , /€,,, =1 and the||rj,k -r_ .|l < o criterion (respectively, the

rot prot

<150 criterion) for interacting beads, instead @f, =  0z20hd 0.44 when

||rj,k _rprot
hydrodynamic interactions are taken into accours.wAll be discussed in chapter 8, this has

marked consequences on the numiét) of different beads visited by the protein at time

Figure 6.8 illustrates the typical trajectory opeotein bead for the ratie,

lepua =1.
During the 15 ps time interval displayed in thigufie, the protein visits four different segments.
Globally, sliding along each segment can last sg¢vgs, but it is frequently interrupted by
shorter time intervals during which the proteimakeased in the buffer and at the end of which it
reattaches to the same segment either at the sasit®op or at a neighbouring one. These short
jumps are often called “hops” [95,109,133]. On ttker hand, the protein sometimes moves
almost freely and for longer time intervals (seV@rs) in the buffer before reattaching to another
segment or eventually to the same segment butrather different position. Note also that
intersegmental transfer, which involves an intenaedstate where the protein is simultaneously
bound to two different segments [95,109,133], isesbed in these simulations, especially at

larger values ok

ot/ €ona» @lthough this kind of motion is not illustratedfigure 6.8.
It can easily be checked that the number of diffeNA beads visited by the protein
during 1D diffusion very precisely follows the sgeiaoot law in equation (5.12). For example,

the solid line in figure 6.9 shows the evolutionN{t) for the system with 2000 DNA beads and

€

ot/ €ona =1, Obtained by averaging over 43 sliding events,civhasted more than 1 pus and

during which the protein neither detached from EN¢A segment for more than 0.07 ps nor
reached one of the extremities of the segmenarite seen that this solid curve very closely
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Figure 6.8 Typical protein trajectory for the system withOBODNA beads and the ratie, o / €pna =1. This

plot indicates, at each time, to which bead of WhiZNA segment the protein is eventually attachecheT
intervals for which no position is indicated corpesd to those periods where the protein is diffgsim the

buffer. It was assumed that the protein is attadieeloead k of DNA segment j||iijk -r <0.
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Figure 6.9. Evolution of the numbemMN(t) of different DNA beads visited by the protein dgrilD sliding.
Calculations were performed with 2000 DNA beads drelratio e, /epya =1. N(t) was averaged over 43

sliding events with the following properties : €ach sliding event lasted more than 1 ps, (ii) ghetein did not
separate from the DNA segment by more tbauring more than 0.07 us, (iii) the protein bead dot reach one
of the extremities of the DNA segment. The dotethdime corresponds to a diffusion coefficieD{, = 7.9
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follows the dot-dashed line, which represents thelution of N(t) =1,'y/1677'D,;t with a

diffusion coefficientD,, = 7.9 bead$ us', or D,; =1800 bpf us’. The experimental values for
the 1D diffusion coefficient of DNA binding protairare close to 5 (base pafrg}’ [99,102].
Since one bead represents 15 base pairs, thisesrpiat the model predicts a velocity for sliding,
which is about one to two orders of magnitude &xgé. This is due firstly to the fact that real
protein sliding follows the helical path of the DNgéhain and is often accompanied by
geometrical rearrangements of the DNA sequence,pwots that are completely neglected in

this model. Moreover, in addition to tHe{® electrostatic interaction, the protein and the DNA

sequence interact through several hydrogen bon&s e protein is sufficiently close to the
sequence. This point is crucial fapecific DNA-protein interaction (that is, sequence
recognition) [13,134-138] but is again completebglected in the proposed model foon-
specificDNA-protein interactions. The situation changesiswhat in the case where the protein
is described using a more precise model or if & higher charges, but | will come back to this
point later.
Examination of figure 6.6 indicates that the amaoaftime o, , during which the protein

Is attached to a DNA segment and experiences gligsnra monotonically increasing function of

the charge on the proteap,, . In contrast, the numbeN(t) of different DNA beads visited by

the protein after a certain amount of titmis not a monotonic function o€ _ ., and therefore of

prot ?
Pip» as can be checked in figures 6.10 and 6.11. Tigs®s display the evolution dfi(t) for

the repulsive interaction potential of figure 6ritlaseven values of

prot

leyua ranging from 0.3
to 5. In figure 6.10, it is assumed that the protsi attached to bedd of DNA segmenj if

<150. It is seen

IFix =Tt < &, while the corresponding criterion in figure 6i1r;, —r

in both figures thatN(t) increases with the charge ung|, /e,, = , then remains nearly

rot

constant up tee

prot

le,ua =3, before decreasing again. The reason for thigpsifecrease at large

values ofe

ot/ Eona CAN be understood from the inspection of figurE26which shows the

average number of DNA beads that are simultanecaisfched to the protein when it is not

moving freely in the buffer. One observes that nbenber of DNA beads withil50 of the

protein is close to 2 for values ef, /e,,, smaller or close to 1, which indicates that thetein

rot
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forms a triangle with two successive DNA beads bgiog to the same segment and separated by

about |, = 5nm. The number of DNA beads withih5¢ of the protein increases however

rapidly for larger values og,

/e » because the charge of the protein bead is serdfido
attract several DNA segments, which form a cageratat. The protein visits the DNA beads
forming the cage in a short amount of time, butglope of N(t) then decreases as the protein
experiences difficulties to escape the cage antl otiser segments. This cage effect is strong

enough for theN(t) curve fore

prot

le,ua =5 to be lower than that for the repulsive potential

when the]r;, —r

oot € 150 criterion is considered (see figure 6.11).

However, the crucial point is certainly that figeiré.10 and 6.11 show that, for this

model, the combination of 1D sliding and 3D motleads, in a certain range of tleg /e,

ratio, to faster DNA sampling than pure 3D diffusid now assume that nature selects the fastest

process and focus on the properties of the systiéimey, / e,,, =1. Figure 6.13 shows the time

evolution of N(t) for systems withe

ot €ona = 1and increasing numbers of DNA beads,

namely mn =990, 2000 and 4000. As expected, the three curvegideirat short times, that is,
when N(t) << mn. Each curve then successively displays saturaisod(t) approachemn All

these curves however follow the law of equatio®@pwith the same rate = 184 ps', as can

be seen in figure 6.14. This is rather interesimge it indicates that the observed behaviour is
independent of the size of the cell and can reddprize extrapolated to larger cell sizes. In
addition, this law implies that even in the caseskglthe protein and the DNA beads attract each

other, the global motion of the protein is likety temain diffusive-like, sinceN(t) follows at

short times the linear law predicted by the formfolathe volume of the Wiener sausage (I will
come back later in more detail to this importaninpo Also, the search process is about two
times faster than for the case where there arepniy repulsive interactions (for this latter chse
obtained a ratex = 109usY). This means that facilitated diffusion indeed ederates this
process, but with a factor much smaller than theimam acceleration predicted by kinetic
models. | will present a more detailed comparisetwken dynamical and kinetic models in
chapter 8.
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Figure 6.10.Evolution of the numbeN (t) of different DNA beads visited by the protein,deven values of
€0t/ €ona Fanging from 0.3 to 5 and for the repulsive DNA#gin interaction potential of figure 6.2. Each
curve was averaged over 12 different trajectories the system with 2000 beads. It was assumedthieat

protein is attached to bead k of DNA segmenﬂljjij( -r <0o.
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Figure 6.11 Same as figure 6.10, except that it is considé¢ned the protein is attached to bead k of DNA
segment | ii"r]-’k —rprm" <150 instead 011|rj]k —rprm”sa.
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Figure 6.12.Plot, as a function of the rati@, /€pna , Of the average number of DNA beads that are

attached to the protein when it does not move yreethe buffer. The abscissa axis actually coroesfs to
the variation ofe,, at constanteyy, . Circles and lozenges denote results obtained, wétpectively, the

||rj’k —rprot”sa and ||erk —rp,ot”s 150 criterions for interacting beads. The points @f/€pya =0

were obtained with the repulsive potential of figu.2. Each point was averaged over 12 different
trajectories propagated for 100 us for the systdth 2000 beads.
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Figure 6.13.Evolution of N(t), the number of different DNA beads visited byghaein at time t, for the
system withe,; / €pys =1 and 990, 2000 and 4000 DNA beads. It was assuh#dtte protein is attached to

bead k of DNA segment j|FfJ-’k - rprot" < o . Each curve was averaged over 6 different trajeetn
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Figure 6.14. Solid line : plot of In(l— N(t)/(mn)) as a function oft/(mn) for the system with
€orot / €ona =1 @nd 990, 2000 and 4000 DNA beads (the curvesGo0 2nd 4000 beads nearly superpose).

N(t) corresponds to the curves in figure 6.13. Theddsthed straight line represents the same plotHer t
expression oiN(t) in equation (6.20) and a rate = 184 ps™.
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6.3. Conclusion

The model described in this chapter is very pramgisDespite the fact that it is quite
simple, it manages to describe the succession ofsliding along the DNA chain and 3D
diffusion in the buffer by witch the protein finds target. However, this model predicts a value
of the 1D diffusion coefficient that is too high rapared to experimental values. This is a
predictable consequence of the approximationsviea¢ made. The values obtained here for the
sliding length are in good agreement with both expental results and values predicted by other
models. However, it should be noted that, becatisieechigh values that our model predicts for
the one-dimensional diffusion coefficient of thetein the predicted duration of a sliding event
Is necessarily shorter than in the case of experisnd@ his might imply that it is discussible if the
comparison between predicted and measured slidimgh is really appropriate.

The roughest approximation certainly concerns tioéem, which is described as a single

bead with an electric chargg,, placed at its centre. For large valueggf, this leads to the

cage effect discussed previously and to too freguatersegmental transfers. A better
approximation certainly consists in considering pih@tein as a set of interconnected beads with a
certain charge distribution. In the following chaptl am going to discuss the extent to which the
conclusions presented above are affected when tbeip is modelled as such a set of
interconnected beads.

The model also predicts that the mechanism ofifamh diffusion can indeed accelerate
the scanning speed. This acceleration is, howewach more limited than the maximum one

predicted by kinetic models. | will come back testhoint in chapter 8.
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7. Model with 13 beads proteins
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The purpose of this chapter is to check the extemthich the conclusions drawn in the

preceding chapter are affected when the proteimodelled in a somewhat less crude way.
7.1. The model

The system studied in this chapter is consequethtty same as the one described
previously but with the protein modelled as a dethoteen beads connected by springs instead
of a single bead. | used two geometries for theégmo“spherical” and “linear” (figure 7.1). The
"spherical” protein is obtained by placing 12 beadthe vertices of a regular icosahedron and a
thirteenth bead at its centre (21 beads would h@&en required for a regular dodecahedron). A
bond connects the central bead to the 12 othersbead each bead at a vertex is connected to its
five nearest neighbors by a similar bond. The d=tabetween the central bead and those at the

vertices is equal to the bead radayg, = B8, so that the radius of the protein at restasec

to 7.0 nm and the distance between two nearesthipeig placed at the vertices is
L, =4a,,/10+ 2,/5 = 368 nm. Linear proteins are taken as flexible and resitste chains of
13 beads separated at equilibrium by a distamge= 35 nm. Because no bending interaction

among protein beads is taken into account (seawvpeltinear” proteins generally assume bent
geometries with average end-to-end distances obtter of 17.0 nm. | fixed the number of
beads of linear proteins to 13, although they aoeldarge compared to real proteins, for the sake
of an easier comparison with spherical proteins.

All beads, except for that at the center of theesighl protein, are assigned electrostatic

chargese, placed at their centers (however, electrostatierattions between protein beads are

neglected, see below). | considered several pratearge distributions, namely (i) uniform

distributions with increasing total chargg, = Zpep , (ii) gradients of charges with fixed total

chargee

ot and increasing values of the maximum chaegg,, (iii) gradients of charges with

fixed maximum chargee

' @nd increasing total chargs,,, and (iv) random distributions. For
spherical proteins, gradient distributions are dase sets of four equally spaced charge values

€,.x — KA, wherek varies from O to 3 and = (12emax -e )/18. Charges,,, ande, —3A

prot
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Figure 7.1 Schematic representations of the two protein nsagged in chapter 7.

are carried by two beads placed at opposite vertéethe icosahedron, while the five beads

closest to the bead with chargg,, carry a chargee, ., —A and the five beads closest to the bead

with chargee, ., —3A carry a charge,

max

—2A . For linear proteins, instead of a single beadh wit
chargee,, —3A, | placed the chargfe . —3A)/2 at the centres of two beads, in order to

compensate for the fact that the bead placed atehte of the icosahedron is not charged. For

most cases, | increased the total chagge, or the maximum charge, ., up to —5e;,, - At last,

except otherwise specified, the results presengéalbwere obtained by considering that there is
a single bead of the protein that has the abiitgdnnect to DNA and therefore plays the role of
a search site. Also, in most cases, and unlessvafiee specified, this bead had the highest

positive chargee, ., but | also ran simulations were this was no loripe case. | have also

checked that the results remain essentially thees&iwne instead assumes that all beads of the
protein are able to connect to the DNA chain (fegidr2).

The potential energy of the system is:
Epot :VDNA +Vprot +VDNA/prot +Vwall (71)
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Figure 7.2. Time evolution of the logarithm df- N(t) /2000, the portion of DNA beads not yet visited by the

protein search site, for a spherical protein with gradient distribution of charges with total charge

€0t = —1.2€py, @nd maximum positive chargs,,, = —08epy, , for the cases where it has one search site (in
red) and twelve search sites (in blue). It was aered that protein bead p is attached to bead IDBIA

segment j ii"rj’k -R p" <o.
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When comparing to equation (6.1), the extra tevig, describes the interaction between the
protein beads. The beads that compose the proteract with each other only by means of

harmonic stretching potentials. More precisely liioear proteins the potential is:

1 KeT <
Vprot - Z(Lj,iﬂ aprot) (7-2)
2 aprot j=0

In equation (7.2), the 13 beads are labeled frentoj=12 andL. —||Rj denotes the

j.j+ j+1

distance between two successive bedels (s the position of beag. A distancea,, separates

two neighbouring beads at equilibrium. For sphécateins, | instead assumed that:

Vpro‘:%Ckg_Ti(LOYi - prot)2 1 s TZ Z( L~ 0) (7.3)

prot j=1 0 j=1 kv (
k>j

In equation (7.3), index O refers to the bead ledait the center of the icosahedron and indices 1

to 12 to those placed at the vertices, =|R; -R,| denotes the distance between protein beads

j andk, and kOV,(j) means that the sum runs over the five bdadbat are the nearest
neighbours of beapat equilibrium. At equilibrium, the central beaiseparated by, from

the beads placed at the vertices of the icosahedvbite two neighbouring beads located at

vertices are separated ly. As for the DNA elastic constaht all the results shown below were

obtained, unless otherwise specified, with a constain equations (7.2) and (7.3) equal to
C=100 in order to get very small displacements ef @average bond length without precluding
the use of sufficiently large time steps. Stildl$o ran simulations wheféwas varied between 5
and 225 to study how the deformability of protedfifects facilitated diffusion.

The terms fopna are the same as in equation (6.2), wkijlgibecomes

m n

Vo ka2 )]+ 20K, T Z iR, ) (7.4)

j=1 k=1

and Vonasprot IS modified as follows:

12
= (p) (p)
VDNA/prot - Z (Ee + Eev )

p=0
1
e m.n exl{_r”rj'k_Rp”J
EG = €ona pz D
P B R
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€, n

E(P = 186k,T

>3 F(r. R, 7.5)

j=1 k=1

eDNA
whereF is given by equation (6.10). In equation (7.5§ thmarges are taken as signed quantities,
while they were considered as positive quantiteequation (6.9). This is the reason why the

minus sign in the expression & disappeared. It is important to emphasize agai) thiaen
the charges placed at the centre of the DNA antbpprbeads have opposite signs, the interaction

between the two beads must be minimum at some ¢édge too = a,, +a,,, = 528nm, i.e.

prot

the sum of the radii of the DNA and protein beadsprder for 1D sliding to take place. The
expression forE{” in equation (7.5) insures that this is indeeddhasge and that the position of
the minimum does not depend on the chaggelt should however be mentioned that another
change in the model is that now the interactiorepiél is minimum not when the centers of the
two beads are separateddyyas in chapter 6, but rather when this distan@gisgl tos+0.5 nm
(this was achieved by introducing the factor 118@he expression oE”). The minimum of the

potential well was shifted by this small amountoidler to better agree with recent theoretical
models [139] and experimental results for complesie&coRV [140] and the Sknl and Sapl
proteins [141].

For solving the equations of motion of the compkatstem, | used the same algorithm as
in chapter 6, including hydrodynamic interactioretveen all the beads of the protein. All the

calculations were performed using the system WiB02DNA beads and a time step of 100 ps.
7.2. Results

| investigated a large number of different sphéréal linear 13 beads protein models and

found that, for all of the case$\(t) follows the law given in equation (6.20) for siagbead

proteins, that is:
w :1—exp(—/(L) (76)
mr mr

where mn= 2000 is the total number of DNA beads.

This is illustrated in figure 7.3, which shows timae evolution oflog(l— N(t)/(mn)) for

selected linear and spherical proteins with unifarmd gradient distributions of charges. It is seen
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Figure 7.3 Time evolution of the logarithm &f N(t)/2000, the portion of DNA beads not yet visited by the
protein search site, for (a) linear proteins withgeadient distribution of charges with total chargg,,; =0
and maximum charge,,,, = —08epy, (solid line), (b) linear proteins with a gradiedtstribution of charges
with total charge e, =125y, and maximum chargee,,, =-12e5, (short dashes), (c) spherical
proteins with a gradient distribution of charges tiwitotal charge g, =0 and maximum charge
€max = —1.5epya (dot-dot-dot-dashes), and (d) spherical proteinghwa gradient distribution of charges with
total charge e, = —12epy, and maximum positive charge,,, = -08epy, (long dashes). For all proteins,

the search site was assumed to be the bead witlyele,,,. For the linear proteins, the search site is leaht
at one of the extremities of the chain. It was @ered that protein bead p is attached to bead IObIA

segment j if"r]-’k —Rp"s o . The dot-dashed straight lines, which were adpistgainst the evolution of

In(1 - N(t) / 2000)

0.0

-0.5

-1.0

-1.5
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eprot='dI .2 €pNA

linear protein

eprot=O
k=1.07 ps™
Y
linear protein / \
eprotz'1 -2 €pna :;‘\‘;\,
xk=1.28ps"
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timet (ms)

1- N(t)/2000 for each protein, were used to estimate the vabiies
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that equation (7.6) remains valid for very longdsnand for values oN(t) very close to the
total number of DNA beads. As already mentionediaéign (7.6) reduces to a linear increase at
short times. According to the formula for the vokiroovered by a 3D random walker, this
suggests that, as for single bead proteins, thigaglmotion of 13 beads proteins is essentially
diffusive-like. Figure 7.3 also points towards aywegeneral result, namely thad(t) increases
significantly more rapidly for linear proteins théor spherical ones (at least as long as the search
site is located at one of the extremities of thaithsee below). The rationale for this observation

is that, according to equation (6.2X),increases linearly withD,, and the 3D diffusion

coefficient of linear proteins is significantly ggr than that of spherical ones. | indeed computed
the diffusion coefficient for the proteilsp, from equation (5.11) by launching simulationsttha
involved only the protein and disregarded both Dé&§ments and cell boundaries. Esr100, |
obtained 020x10™°m?s for the spherical protein an@i35x107'° m%s for the linear one.

In contrast, it might seem at first sight that J&atbs proteins differ more substantially
from single bead ones as far as sliding along DblAnvolved. For example, figure 7.4 shows

log-log plots of N(t) for long sliding events of spherical proteins withiform and gradient
distributions of charges. It is seen that the tawelution of N(t) approximately corresponds to

straight lines in these plots, which implies thhit(t) increases as a power af that is

N(t) = a t”, but the exponerft is now smaller than 1/2. Stated in other wordslirgj is here
subdiffusive. This is not really surprising, becawsibdiffusion is often encountered in dense
media and has recently been experimentally repddedhe global motion of proteins in the
cytoplasm or the nucleus [142-144]. By looking molesely at sliding events, it can be noticed
that 13 beads proteins spend large amounts ofattaehed to the same DNA beads and the time
intervals during which they actually slide are gabsally shorter than for single bead proteins

with e, = =€, - This is an important observation, because ited known that large average

waiting times between random-walk steps are sefficto induce subdiffusion (see for example
[145]). The reason why waiting times are longer¥8rbeads proteins than for single bead ones is
that, in this model, sliding is driven uniquely thermal noise and this process is less efficient fo
13 beads proteins than for single bead ones, begautof the energy received from collisions is
used to deform proteins instead of being convarntasliding impulsions. It might therefore be

the case that small barriers, like those obsemdtjure 6.3, are sufficient to hinder efficiently
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the 1D sliding of the protein along the DNA sequenstill, it should be mentioned that the
average number of beads visited during each slieiregt (5 to 10 beads, that is from 75 to 150
base pairs) is in fairly good agreement with expental results, which lie in the range 30 to 170
base pairs [108,109]. This comparison is subgatpurse, to the same remark as in chapter 6.
If the depth of the attractive well between DNA ahd protein is smaller than the energy

ko T of thermal noise, then the protein does not sgemmigh time connected to DNA for actual

sliding to take place. On the other hand, if attoacis too strong, then the protein remains
attached to the same DNA beads instead of slidbwe therefore expects that waiting times

become longer for increasing values of the protarge e, and, consequently, that the

exponent} decreases. It can be checked in the top plotgofdi 7.4 that this is indeed the case.
While values offf close to 0.40 were obtained for most of the ingastd proteins (see figure
7.4), p was found to decrease down to about 0.20 for umifcharge distributions with

e —4.8e55 -

prot =
At this point, | however checked that single beadtgins actually behave just like 13
beads ones with this respect. More precisely, fopeed simulations with single bead proteins

with chargee . = —-5e,,, and obtaine@ = 030. The diffusive character of sliding reported in

prot

chapter 6 3 = 050 for e, = —€p, ) therefore does not extend to proteins with tegdavalues

of e

prot *

In the previous chapter, the value of the electitcsicharge placed at the center of the
protein bead was increased in order to vary theuamof time p,, during which the protein is
attached to DNA and check whether certain comlwnatiof 1D and 3D motions lead to faster
DNA sampling than pure 3D diffusion. Here | willllmv the same general idea, except that,
since the protein is now modeled by 13 intercorettieads, instead of a single one, there are
several different ways to modigy, .

The most natural way to compare the dynamics of plesent model to that of the
previous one consists in placing identical eletats charges at the centre of the 12 beads
located at the vertices of the icosahedron (unifoharge distributions) and letting these charges
vary. Results for such spherical proteins with amif charge distributions are presented in figure

7.5. This figure displays the evolution, as a fiorcof the total protein charge, ,, of three
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Figure 7.4.Log-log plots of the time evolution of the numibé(t) of different DNA beads visited by the protein
for spherical proteins with (a) uniform charge distitions and four values of the total charge ramgifrom
€orot = ~0.88pna 10 €y = —48epy,a (top), (b) gradient distributions of charges witial chargee,,, =0 and
four values of the maximum charge ranging frap,, = —04epys 10 €. =—3epya (Middle), and (c) a
gradient distribution of charges with total chargg,, =-08epys and maximum charge,,, =—12epya

and four values of the elastic constant C rangimognf 10 to 200 (bottom). In order to improve thensignoise
ratio, it was assumed for this plot that the proted attached to bead k of DNA segment j if anthefprotein

beads (and not a given one) satisfies the cond'hig)p -R p" < 0. Each curve was averaged over a number of

sliding events that varied between 50 and 200. Esihing event lasted more thangs, during which the
protein neither separated from the DNA segment bserthans during more than 0.04s nor reached one of
the extremities of the DNA segment.
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Figure 7.5 Plot, as a function of the total protein chargg,,, of N10Qus) (top), p;p (middle), and gm
(bottom) for spherical proteins with uniform chardestributions. Circles correspond to results ob&dl by
considering that protein bead p is attached to b&adf DNA segment j iﬂrj’k —Rp" < o, while lozenges

correspond to the criterio”njyk—r <150. Error bars indicate the standard deviations fdret six

prot

trajectories over which each point was averagedténihat error bars are masked by circles and lossng
whenever the size of these symbols is larger tharcomputed standard deviation). Pointsegt,,=0 denote

results obtained with purely repulsive interactidretween DNA and the protein.
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quantities, namelyN (100 s) , the number of different DNA beads visited by gretein search
site after 10Qus (top plot), o, , the portion of time that the protein search sfgiends attached to

a DNA bead (middle plot), and,, ., the average number of DNA beads that are simettasly

sim ?

attached to the protein search site when it interagth DNA. Circles correspond to results

obtained by considering that protein bepdis attached to bead of DNA segmentj if

Irix —R,| <o, whie lozenges correspond to the criterign, -R |<150. Error bars

indicate the standard deviations for the six ttayees over which each point was averaged. The

points at e

prot

=0 correspond to purely repulsive DNA-protein intéi@as, that is, more
precisely, when keeping only the repulsive parthef interaction potential with), = -0.1e,, .

As already mentioned, it can safely be considehad] for repulsive DNA-protein interactions,
the motion of the protein inside the cell is ratbienilar to pure 3D diffusion.

Examination of the middle and bottom plots of figut.5 shows that botjw,, and ng,

increase withe

o0 like for single bead proteins. Large valuesngf indicate that the protein’s
charge is sufficiently large for the protein toratt and attach simultaneously to several DNA
segments, which form a cage around it. This phemomes probably not relevant from the
biological point of view, because only a few prateare known to have more than one “reading
head” [13] (the best known example is the repressor, which has two binding sites [146]).sThi
implies that one should consider only those chatgributions, which are associated with

moderate values af_._, for instance, smaller than 3 for thé o threshold.

When comparing the top plot of figure 7.5 to figldd0, one first notices thatl(t)
increases more slowly for 13 beads proteins tharsifogle bead ones. For example, for the
repulsive potential, the number of DNA beads visitg 13 beads proteins is only about 50% of
the number of DNA beads visited by single beadginst This is again essentially due to the
difference in the values of the 3D diffusion cogfnt at 298 K, which is equal to
D,, = 070x107*° nf/s for single beads and @,, = 020x10™° m?/s for the spherical protein.

Nonetheless, the key point is certainly that, assfogle bead proteins, there exists a range of

values of e

ot fOr which N(t) increases more rapidly than for repulsive DNA-piot

interactions. This range extends roughly ugejg = —2e,,, for uniform charge distributions. It
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can be noticed thaN(t) is increased at maximum by about 50% comparedéorépulsive
potential, not so far from the maximum increaseselto 70% obtained for single bead proteins.
Needless to say that these conclusions drawn fnendynamics of proteins with uniform
charge distributions must be confirmed by resulttaimed for more complex distributions. |
postpone the case of random charge distributionit tine next section and focus now on the
results obtained for spherical proteins with grati@istributions of charges. For such gradient

distributions, | either fixed the value of the maxim protein charges, ., and varied the total

ax

chargee,_ ., or fixed e

prot 1 prot

and variede,, . It turns out that the results obtained for thgselient
distributions are quite similar to those discusabdve, at least as long ag,, and e, remain
moderate. For example, the results &, =-0.8e,,, are shown in figure 7.6 and those for
€, =0 in figure 7.7. It is seen that, in both casgs, increases with increasing charge and

N(100us) goes through a maximum for values pf, comprised between 0.3 and 0.7 for the
150 threshold. Moreover, the increase of(t) relative to the case of purely repulsive
interactions between DNA and the protein does moeed 40%, which again agrees with the
results obtained for uniform charge distributiofifiings are however noticeably different for

larger values ofe ,, or e For example, | checked that for gradient distitns with

prot *

€

prot

=-24e,,, , the total protein charge is sufficiently large froteins to spend all the time

attached to a DNA segment, irrespectiveegf, (and consequently of the charge of the search

site: | assumed so far that the search site iptbein bead with highest positive charge). As a
consequenceN (100 us) varies little with increasing values ef_, .

Conclusion therefore is that, even for rather rigptherical protein models (remember that
C=100 for all the results presented above), fatddaliffusion increases DNA sampling speed by
about 20 to 50% compared to 3D diffusion, whiclkeven less than the 70% increase observed
for single bead proteins. Still, the efficiencytbé facilitated diffusion mechanism is again lower
for linear proteins, as can be seen in figure Widch shows results obtained for linear proteins
with uniform charge distributions (similar resuilt&ere obtained for gradient distributions with

€, = 0). C was also fixed to 100. Since no clear increash (00 4s) is observed when the
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Figure 7.6. Same as figure 7.5, but for spherical proteinggradient distributions of charges and maximum
positive chargee,,,, = —08epya - The search site is assumed to be the protein dtacchargee,,,, -
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144



Pip

nsim
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assumed to be one of the beads located at thengitige of the protein chain.
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total charge is increased from zero, in spite ef fdict thatp,, does increase significantly, it

must be admitted that no combination of 1D and 3@ions is more efficient than pure 3D
diffusion. This can be understood by noticing that,identical values of, spherical proteins are
much more rigid than linear ones, because each bheabe vertices of the icosahedron is
connected to the central bead and to its five meaeghbours, while each bead of linear proteins
is connected to only one or two nearest neighbdibssliding of linear proteins is therefore even

less efficient than that of spherical ones.

7.3. Other factors that affect the speed-up of DNamMpling

The purpose of this section is to discuss the effeseveral other parameters, namely the
value of the elastic constat the randomness of the charge distribution, aedctrarge and
position of the protein search site, on the spdédalNA sampling.

Let us first consider the effect of the proteinséitaconstanC. The time evolution of the

numberN(t) of different DNA beads visited by the protein s#ssite for spherical proteins with
a gradient distribution of charges with , =-08e,, ande,,  =-12¢,, and values ofC
ranging from 10 to 225 is shown in the bottom mbfigure 7.4 for long sliding events and in
figure 7.9 for the global (1D+3D) motion. While 1dlding depends little o€, for the global

motion N(t) instead decreases significantly and rapidly wittfor values ofC comprised

between 10 and 100 before remaining nearly conftatarger values o€. It can be checked in
figure 7.10 that this is essentially due to theleton of the 3D diffusion coefficient with

increasing values o, in agreement with equation (6.21). The top phateled shows thab,,
decreases from about 0.3252@n?/s for C=5 to about 0.20x I8 m?/s for values of C larger than

100. The average protein radiQBO,j> was also computed during these simulations. Resu#
shown as filled circles in the bottom plot of figur.10. It is seen tha(ﬂ_0‘j> decreasewith
increasing values d in the rangeC=5-100, so that the decrease[@f; in this range is in clear

contradiction with equation (6.23). Note that thiscrease of L, ;) with increasingC agrees

with preceding work [130]. It is actually due todmgdynamic interactions. Indeed, if
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Figure 7.9. Time evolution of the numbeX (t) of different DNA beads visited by the protein sbasite for
spherical proteins with a gradient distribution afarges withe,,; = —-08epya and €y, = 125y, , @nd five
values of the elastic constant C ranging from 1®#5. The value of C is indicated for each curtewads
considered that protein bead p is attached to deatiDNA segment j "r]-’k -R p" <o.
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hydrodynamic interactions are neglected, tl<1l—:-g)j> evolves only very little wittC in the range

C=5-100 (see the empty squares in the bottom pldigafe 7.10). This points out that, for a
system where hydrodynamic interactions are exptdebgehe Rotne-Prager tensor, there is not
necessarily a t/dependence of the translational diffusion coeffitj as given by the Einstein
formula in equation (6.23). Actually, the displaeerhfrom this equation can be evaluated by
means of the Kirkwood-Riseman formula, which gittes translational diffusion coefficient of a
chain of beads using pre-averaged values for hythadic forces [147]:

_ kel 1f,, 85/
D = e N(1+ N ;(m >] (7.7)

where<rij'1> is the mean inverse distance between beauslj averaged over an ensemble of

configurations. In conclusion, the deformability thie protein essentially affects the speed of
DNA sampling through the associated variationshef diffusion coefficient, much as the shape
of the protein that was previously discussed.

Another parameter that might affect the DNA sanwplinprocess is the
regularity/randomness of the protein charge distrdm. While all results presented up to now
involved proteins with either uniform or gradienstdbutions of charges, figure 7.11 indicates
how these results are affected when the charges gfadient distribution are redistributed

randomly. More precisely, this figure shows theetigvolution of N(t) for spherical proteins
with a gradient distribution of charges wie),, = -24e,,, ande,, =-12e,,,, as well as two

distributions obtained by random permutations elsthcharges (but the search site remains the

bead with charges, . ). It can be checked on this example that the sggahd random charge

ax

distributions lead essentially to the same behavimuN((t) .

A related question is that of the importance ofc¢harge carried by the search site. At this
point it should be remembered that it was assumedl simulations discussed up to now that the

search site is the bead with largest positive aharg, . However, results are not much affected
when this condition is released. For example, time tevolution of N(t) for spherical proteins

with identical gradient distributions of chargesttwe, , = -12¢,, ande, , =-12¢,, but

rot

search sites located either on bead 1 (with clgrge -12e,,) or bead 2 (with charge

-0.467e,,, ) are compared in figure 7.12. It is seen thatdifference between the two curves is
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not significant. By combining the two later obsdiwas, it can be surmised that the results
should be rather similar for a given set of prowiarges, whatever the exact spatial distribution
of the charges and the precise charge carrieddgehrch site. It can be checked in figure 7.13

that this is indeed the case. This figure showdithe evolution ofN(t) for linear proteins with

a gradient distribution of charges wit) , = -24e,,, ande,, =-12e,, (solid line), as well

rot
as two distributions obtained by random permutatioh these charges. The search site is the

central (seventh) bead of each chain. It has ayehair 0.13¢,,, for the gradient distribution, and
charges—- 053¢,,, and 040e,,, for the random distributions. In spite of the mmjfferences

between these proteins, the evolutionN\gt) is essentially similar for the three of them.

Conclusion therefore is that, within the validity this coarse grained model, the
dynamics of DNA sampling is essentially governedthy total charge of the protein or, in the
case this charge is small, by the maximum locatg#habut that the exact spatial distribution of
charges and the precise charge carried by thelseaecplay little role. It can of course not be
excluded that this conclusion will be somewhat matdzl when the dynamics of finer grained
models is investigated.

In contrast, it should be mentioned that a fatitat certainly does play an important role
is the accessibility of the protein search siter &ample, it is clear that, for linear proteins,
beads located at the extremities of the chain ane raccessible and have a higher probability to
interact with DNA than beads located inside therghso that one expects DNA sampling by the
former ones to be more efficient. This is confirm®dthe examination of figure 7.12, which

displays the time evolution dfi(t) for linear proteins with identical uniform chardestributions

with total chargee

prot

bead 7 (central bead). It is seen that bead 1 ssnipiNA at a speed about 50% larger than the
central bead. This conclusion obviously agrees with observation that, in real life, "reading

=-13e,,, . but with search sites placed either on bead freemty) or

heads" are usually exposed outside the protekesthie twoo helices of thero repressor, which

can be inserted in the major or minor grooves ef@NA double helix [13].
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7.4. Conclusion

In this chapter, | improved the molecular mechadnimadel presented in chapter 6 by
describing the protein as a set of interconneceatlb instead of a single one. Most of the results
obtained with this improved model agree with botipexrimental results and the predictions of
the previous model. The new model predicts, likedhginal one, that DNA sampling proceeds
via a succession of 3D motion in the cell, 1D sigdalong the DNA sequence, short or long hops
between neighbouring or more widely separated,séted intersegmental transfers. This more
detailed description for the protein permitted tmw that, within the validity limits of this
model, the shape and deformability of proteins msséy affect the speed of DNA sampling
trough the associated variations of their diffuscoefficient. Moreover, this model predicts that
the sampling speed is governed by the total chamgée protein rather than by that on the search
site. Also, this model predicts an acceleratiorsitd targeting due to facilitated diffusion that is
even smaller than what was predicted in the previchapter. Since this result seems to be in
contradiction with the predictions of many kinetirodels, | will present in the next chapter a

detailed comparison between dynamical and kinetidets.
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Figure 7.11.Time evolution of the numbeM(t) of different DNA beads visited by the protein shasite for
spherical proteins with a gradient distribution oharges with total chargee, ., =-24epy, and maximum
charge e,,, = —12ey,, (solid line), as well as two distributions obtaihby random permutations of these

charges. Shown in the small inserts are the positiof the charges at equilibrium. The darkest disk
corresponds to charge,,,, =-12epys and the brightest one to the maximum negative ggh@Bepya. The

search site is the protein bead with chargg,, . It was considered that protein bead p is attacteeiead k of
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Figure 7.12 Time evolution of the numbeN(t) of different DNA beads visited by the protein shasite for
linear proteins with a uniform charge distributiovith total chargee,,; = -13epya , @s well as for spherical

proteins with a gradient distribution of chargestiwitotal charge e, =-12epy, and maximum charge

€max = —1.2epna - For the linear proteins, the search site (SSassumed to be either the first or the seventh
(middle) bead, while for the spherical proteins tB& is assumed to be either bead 1 with charge
=-12ep\a OF bead 2 with charge-0.467ep,, - It Was considered that protein bead p is attacteedead

k of DNA segment j "r]-’k -R p" <o.
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Figure 7.13 Time evolution of the numbeN(t) of different DNA beads visited by the protein shasite for
linear proteins with a gradient distribution of afges with total charges,, o, = —24epya and maximum charge

emax = —1.2epya (sOlid line), as well as two distributions obtaihley random permutations of these charges. In

the small inserts are shown the positions of thergds at equilibrium. Filled circles correspond positive
charges and empty ones to negative charges, thasad each circle being proportional to the abgelvalue
of the charge. The search site, which is surrounitled square, is the central (seventh) bead of eheln. It

has charge 013, for the gradient distribution, and charges053ey\, and 040epy, for the random

distributions. It was considered that protein bgais attached to bead k of DNA segment"j ik -R p” <o.
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8. Comparison of kinetic and dynamical
models and discussion on facilitated

diffusion
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In the two previous chapters, | have computed tloelaration of DNA sampling due to
facilitated diffusion. | have shown that for thegle bead protein the maximum acceleration due
to facilitated diffusion is not larger than twoyalue that is much smaller than predicted by other
models [11-19,97]. The results obtained with theosd model for the protein confirm this
hypothesis. Actually, for the 13 beads proteinsdlae several cases where the search speed is
even below the diffusion limit. This means thatréhes no combination of 3D diffusion and 1D
sliding that is faster than normal diffusion. Thisks for a more detailed analysis of the concept
of facilitated diffusion: whether it is really moedficient than normal diffusion and also what
happens in real systems. Therefore, in this chamempare results obtained with dynamical and
kinetic models, also taking into account some receviews of the results in this field, and then |

present some conclusions regarding facilitatedighiéin in real systems.
8.1. Methodology

To compare dynamical and kinetic models, | ran tmthl simulations for the single bead
protein, where | varied the DNA concentration (tigb the variation of the parameter see
chapter 6) and the protein charge. These simukatiware done in two versions: including
hydrodynamic interactions or ignoring them. As lbefdhe most important quantity that | extract
from the simulations is the total number of dififer®NA beads visited by the proteiN(t). |
checked that, for all of the investigated cases nilimber of beads visited in time follows the law

given by equation (6.20). By inverting this relatjmne obtains that the mean tirheof first

arrival at thekth distinct bead is:

t, = -mm(l-LJ (8.1)
K mn

This relation is, however, necessarily wrong fag thst DNA bead K = mn), since it predicts

that it takes an infinite time for the protein &ach this bead, while this time must be finite. By

computing the mean time of first arrivabver the othemn -1 beads, one obtains:

1 mn-1 mn-1 k
T = t, =—— Inj1-— 8.2
S, =21 k| 82

mn-117
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which, for large values ofnn, is very close to

r=mn (8.3)
K

It can be checked numerically that the validityeguation (8.3) degrades only slowly when the
average in equation (8.2) is calculated oman—10 or mn-100 beads instead ahn-1. This
indicates that the validity of equation (8.3) domst depend too sensitively on the exact
asymptotic behavior oN(t) close tomn (remember that equation (6.20) remains valid even
when the protein has already visited more than®@®bthe total number of DNA beads).

Moreover, it is also possible to check that, fopuae diffusive 3D motion, the rate
obtained from the time evolution dfi(t) and the mean time of first arrivalobtained from
Klenin et als formula in equation (5.9) are related throughagign (8.3). Indeed, in the absence
of sliding (7,, — 0) and for a radius equal tod, the mean time of first arrival obtained from
Klenin et als relation in equation (5.9) tends towards:

- V. mn
47D,,0 4/, 0cC

(8.4)

When comparing equation (8.4) with equation (6.®hk finds the confirmation thatandt are
related through equation (8.3) for 3D diffusion.

The strategy that | have adopted to compare my hwidie that of Kleninet al therefore
consists in extracting several quantities from ghmulations | ran. On one side, | have directly

estimated the rate constanfrom each simulation by fitting the computed evmn of N(t)
against equation (6.20). On the other side, | talse derived numerical values f@,,, D,,,
I,, and r,, from the same simulations (see below for moreilletaused these values to

compute the mean time of first arrivalaccording to Kleniret als formula in equation (5.9).
Finally, | converted to a rate constamtby using equation (8.3) and compared it to thee/alf

x deduced from the time evolution df(t) .
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8.2. Computation of the quantities needed to congdynamical and kinetic
models

Figure 8.1 displays a logarithmic plot of the tiregolution of 1- N(t)/(mn), with
mn= 4000, the fraction of DNA beads not yet visited by thretein, fore, ., /e,,, = 1and for
values ofw ranging between 18 nm and 135 nm (with hydrodyoanteractions). Rate constants
x were extractedrom such plots by fitting the computed evolutioh NH(t) against equation

(6.20). These values are reported in table 8.hits wf beads/us. This table has 24 entries, which
correspond to all possible combinations obtainetth ¥aur values ofv (18, 32, 45 and 135 nm),

three different DNA-protein interaction laws (repine interactions, e, /e, = 1 and

! ~prot
€0t/ €ona =3), and two different ways of handling hydrodynanmteractions ("off" and "on").
As will also be the case for all subsequent tables,first number in each entry was obtained

with the |r;, —r

oot S O cCriterion, while the number in parentheses wasaiobtl with the

<150 criterion. It is seen that the values rovary over more than two orders of

||rj,k T prot
magnitude and depend very strongly on whether ldydramic interactions are taken into
account or not.

Klenin et als formula in equations (5.9) and (5.10) depends,grand 7, the average

times the protein spends in the bound and freeesstaespectively. Equation (5.10) may be

rewritten in the slightly more convenient form

f=w i%—p:m (85)
2Dy 1- oy

where p,, denotes the fraction of time during which the protis attached to a DNA bead, that
is pp =T, /(T +75,) . Values of p, are easily extracted from the simulations by cheglat

each time step whether the distance between theraeinthe protein bead and that of any DNA

bead is smaller than the threshold, thas isr 1.55. The obtained values gb,, are shown in

table 8.2. As already emphasized in the precedwagters,p,, increases from nearly O for the
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Figure 8.1 Logarithmic plot of the time evolution &f N(t)/4000, the fraction of DNA beads not yet visited
by the protein, fore, /epna =1 and four values of w ranging between 18 nm and rir85 Hydrodynamic
interactions are taken into account. It was furtinere considered that the protein is attached toddeaf DNA
segment j if”rLk —rprot”sa. The dot-dashed straight lines, which were adpisigainst the evolution of
1- N(t)/4000 for each value of w, were used to estimate theegbfx.
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x (units of beads/us)
HI w (nm)
repulsive potentidl ot/ €ona =1 €orot / €ona =3
18 2.70 (3.86) 2.32 (2.69) 0.30 (0.34)
off 32 0.98 (1.44) 0.84 (0.91) 0.121 (0.127
45 0.47 (0.70) 0.52 (0.55) 0.086 (0.089
135 0.050 (0.075) 0.149 (0.153) 0.037 (0.038)
18 5.73 (8.40) 7.82(10.30) 7.76 (8.96)
32 1.94 (3.00) 2.90 (3.43) 2.85 (3.10)
on 45 1.08 (1.68) 1.83 (2.11) 1.59 (1.70)
135 0.30 (0.38) 0.49 (0.53) 0.40 (0.41)

Table 8.1.Values of the rate constant(expressed in units of beads/us), obtained hpdithe time evolution
of N(t) against equation (6.20), for different values of different DNA-protein interaction laws, and

hydrodynamic interactions switched either "off""on". The first number in each entry was obtainathuhe
||r]-,k —rprot"s o criterion, while the number in parentheses wasatetd with the ||r]-,k —rprot"s 150

criterion.
HI w (nm) Fio
repulsive potentiall €0t/ €ona =1 €t/ Eona =3

18 0.12 (0.43) 0.60 (0.982) 0.912 (1.000

o 32 0.04 (0.16) 0.60 (0.961) 0.902 (1.000
45 0.02 (0.09) 0.61 (0.995) 0.906 (1.000
135 <0.01 (0.01) 0.29 (0.44) 0.46 (0.56)
18 0.15 (0.44) 0.32 (0.74) 0.66 (0.985)
32 0.05 (0.17) 0.23 (0.53) 0.66 (0.979)

on 45 0.03 (0.11) 0.20 (0.41) 0.67 (0.986)
135 <0.01 (0.01) 0.09 (0.19) 0.56 (0.78)

Table 8.2.Values of o, , the fraction of time during which the proteinaisached to a DNA bead, for different

values of w, different DNA-protein interaction lgved hydrodynamic interactions switched eitherf™ oir
<o criterion, while the number in

"on". The first number in each entry was obtaindthvthe ||rlek =T prot

parentheses was obtained with l"n%k - rprot" <150 criterion.
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repulsive potential to almost 1 for large valuesh& protein charge. It can also be seen in table
8.2 that p,; is substantially smaller when hydrodynamic intéoars are taken into account than
when they are not. Stated in other words, hydrodyoanteractions (HI) tend to move the
protein away from the DNA. We will see that thisslkeamarked effect on the targeting speed. At
last, it can also be noticed that the valuesmf for the largest value ofv (145 nm) are
substantially smaller than for the three other galofw (18, 32, and 45 nm), which reflects the
fact that DNA segments are more widely separatetithe protein consequently spends more
time diffusing freely in the buffer.

In table 8.3 are given the values of the 1D diffustoefficientD;p in units of 10"’m?s™.
They were computed, as in the previous chaptedrémring log-log plots of the average value of
the number of visited beads during long slidingreseA few representative plots are shown in

figure 8.2. All plots are approximately linear iogtHog scales, which means thii(t) evolves

according to a power laviN(t) = atP . | found thatg is close to 0.5 fore, . /exmns = land HI

switched "on", to 0.45 foe

prot

lesna = Bnd HI switched "off", to 0.40 foe,, /€,,, = &nd HI
switched "on", and to 0.20 foe,, /e, = &nd HI switched "off". This indicates that the

sliding motion is diffusive in the first case, siity subdiffusive in the second and third cases,
and very subdiffusive in the last case. This isbplly connected to the fact that, when going
from the first to the fourth case, the protein baatlially spends more and more time attached to
the same DNA bead without moving: large averageimgatimes between random-walk steps are

indeed sufficient to induce subdiffusion (see, éaample, [145]). Except for the last case, the
time evolution of N(t) can therefore be fitted with a square-root 1ait) = a~/t and then the
diffusion coefficient is obtained using equationl@® and the relatiort(t) =1,N(t .)As could
reasonably be expected, the estimated valué3 pfdo not depend on the valuewfIn contrast,
D,, appears to be about twice larger when HI are takenaccount than when they are not. Not
surprisingly, D,, also depends to some extent on the shape and ofetpih interaction potential:

values of D, for e

ot Eona = 3 @ppear to be about 40% larger than the correspgnadilues for

eprot / eDNA = 1 -
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Figure 8.2 Log-log plots of the time evolution of the numbft) of different DNA beads visited by the

protein during 1D sliding for various systems with45 nm. As indicated on the figure, two simulasiavere
ran with €,/ €pya =1 and two other ones witle,; / €pys =3. Similarly, hydrodynamic interactions were

taken into account for two of the simulations, baglected for the two other ones. It was consid¢hedl the
protein is attached to bead k of DNA segment"j ik -r <o . For each simulationN(t) was averaged

prot

over several tens of sliding events with the falhgwproperties : (i) each sliding event lasted mthan 1 us,
(i) the protein did not separate from the DNA segiby more tharo during more than 0.07 ps, (iii) the
protein bead did not reach one of the extremitiethe DNA segment.
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D,y (units of 10°° n?* s*)
HI w (nm)
€orot lepna =1 €orot €pna =3
18 1.15 (1.30)
32 1.18 (1.21)
off
45 1.14 (1.20)
13¢ 1.15(1.21
18 1.94 (2.29) 3.13 (3.18)
32 2.15 (2.71) 2.82 (2.54)
on
45 1.93 (2.74) 2.72 (2.62)
13¢ 1.92 (2.39 2.45 (2.11

Table 8.3 Values ofD,, the diffusion coefficient of the protein along thNA segment, expressed in units of
10%° nt s, for different values of w, different DNA-protéitteraction laws, and hydrodynamic interactions

switched either "off" or "on". The first number éach entry was obtained with ﬂHE‘Lk =T prot

< 0o criterion,

while the number in parentheses was obtained wlith "rjyk —Ioot| <150 criterion. 1D motion for

oot/ €ona =3 and HI switched "off" is too subdiffusive to bectébed by a diffusion coefficied;p, .

D3D
HI w (nm)
(units of 10" m? s%)
18 0.66 (0.63)
32 0.73 (0.72)
off
45 0.72 (0.71)
135 0.69 (0.69)
18 1.40 (1.37)
32 1.45 (1.49)
on
45 1.65 (1.71)
135 4.11 (3.47)

Table 8.4.Values of Dy, the diffusion coefficient of the protein in theffier, expressed in units of 1ont s?,
for different values of w, and hydrodynamic intei@as switched either "off" or "on". The first nuerkin each

entry was obtained with th"! ik ~Tprot

< o criterion, while the number in parentheses wasawiatd with the

||r]-,k —rprot"s 150 criterion. The values oD, were obtained from the expression of the volumbef3D
Wiener sausage in equation (6.21) and the valueg@ported in the "repulsive potential” column obla 8.1.
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As already shown before, the 3D diffusion coefitief the protein in the buffer can be

estimated in at least three different ways, nanfrggn Einstein's formula (equation (6.23) — in
the case of a single bead protein this gillgs = 070x10™° n? s%), from the expression of the
volume of the 3D Wiener sausage (equation (6.2, from the mean squared displacement of
the protein (equation (5.11)). For repulsive DNAein interactions and HI switched "off", the

values of D, obtained with these methods should be very clbise.estimates obtained from the

values ofx in the "repulsive potential” column of table 8 Adaequation (6.21) wittd =0 or

0 =150 are shown in the top half of table 8.4. It canchecked that they indeed agree very
closely with the result of Einstein's formula. lantrast, when HI are taken into account, the

values of D,, obtained from the expression of the volume of 8i2 Wiener sausage are

substantially larger than those obtained from Ein& formula (see the bottom half of table 8.4).
This agrees with Kirkwood-Riseman's equation, wistdtes that HI reduce the effective friction
coefficient of long DNA chains [148]. However, this in apparent contradiction with other
works that state that HI tend to decrease the adBwt rate between two diffusing spheres
placed at short distance [149-151], because thlehastic (thermal) motions of the two particles
become highly correlated, which slows down thelatree mobility. | therefore confirmed this
result by extractindpsp from the time evolution of the mean squared disgi@ent of the protein,
according to equation (5.11), that is, more préygise

(o ® = O ) = 6Dt (5.6)

For example, | checked that equation (8.6) lead® tp= 068x10™"° m? s* for w=45 nm and Hl

switched "off* and toD,, = 160%x10™*° m* s* for HI switched "on". The dependence of the 3D

diffusion coefficient of the protein on Hl is a pbithat certainly deserves further attention on its
own.

All the quantities that are necessary to estimagerate constant from Klenin et als
formula for the mean time of first arrivain equations (5.9) and (8.5) and the relation betw
andx in equation (8.3) are now at disposal. These gatiie are reported in table 8.5 in units of
beads/us. Since there is no sliding of the proadnmg the DNA for the repulsive DNA/protein

interaction, p,, was set to 0 in this case in Klerghals formula, althoughp,, is actually small
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but not zero because of collisions (see table &8)a consequence, the "repulsive potential”
column of table 8.5 is similar to that of table ,8ukcause this column of table 8.1 is used to

estimate the 3D diffusion coefficie?,, (table 8.4) according to the expression for thieiwve

of the 3D Wiener sausage in equation (6.21). Mceeofor e,

lepua = 3 and HI switched
"off", the sliding motion of the protein along DNIA too subdiffusive to enable an estimation of

D,; - Kleninet als formula can therefore not be used in this |aitse.

8.3. Acceleration of targeting due to facilitatedffdision and hydrodynamic

interactions

Table 8.6 shows the acceleration of the proteigetamg process due to facilitated

diffusion. This acceleration was estimated as #tie of a given rate constanfor e, /e, =1

rot

Or eprot

lesus =3 divided by the corresponding value ef for the repulsive DNA/protein
interaction. Table 8.7 similarly shows the accdleraof the targeting process due to HI. This
acceleration was estimated as the ratio of a gisnconstant for HI switched "on" divided by
the corresponding value effor HI switched "off". In both cases, the valudéscavere taken from
table 8.1 for the dynamical model and from tabf&f8r the kinetic model.

Let us first concentrate on the results obtainetth whe dynamical model. For a reason
which will become clear later, | first discuss tfesults obtained with the threshold. For HI
switched "on", the values for the accelerationamgeting due to facilitated diffusion reported in

table 8.6 are comprised between 1.3 and 1.7 andgaite similar for e

prot

/ey = 1and

€0t Eona =3 (remember that the acceleration becomes smaber thfor values of,

oot / €ona
larger than 5). Table 8.6 additionally indicateattthe acceleration due to facilitated diffusion
depends only marginally om, and consequently on DNA concentration, when ldlansidered.
Things are, however, quite different when HI arécved "off". In this case, the acceleration due
to facilitated diffusion depends significantly an Whenw increases from 18 nm to 135 nm, the

acceleration indeed increases by a factor of almodor e, /e, =1, and almost 7 for

rot

€

prot

le,ua = 3. Moreover, the value of the acceleration dependshnmuore sharply on the
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x (units of beads/ps)
HI w (nm)
repulsive potentiah €0t/ €ona =1 ot/ Eona =3
18 2.70 (3.86) 2.16 (0.48)
o 32 0.98 (1.44) 1.08 (0.38)
45 0.47 (0.70) 0.70 (0.09)
135 0.050 (0.075) 0.21 (0.23)
18 5.73 (8.40) 5.15 (3.93) 4.43 (0.95)
32 1.94 (3.00) 2.35 (2.76) 2.25 (0.59)
on 45 1.08 (1.68) 1.48 (2.02) 1.45 (0.36)
135 0.30 (0.38) 0.52 (0.69) 0.80 (0.57)

Table 8.5 Values of the rate constan{expressed in units of beads/us) obtained fromiKlet al's formula for
7 in equations (5.9) and (8.5), the relation betwe@mdx in equation (8.3), and the values pf,, D;p and

D,p in tables 8.2 to 8.4, for different values of wfedlent DNA-protein interaction laws, and hydrodynic
interactions switched either "off* or "on". Sinckete is no sliding of the protein along the DNA fboe
repulsive DNA/protein interactionp,, was set to 0 in this case in Klenin et al's formualthough 0, is
actually small but not zero (see table 8.2). MoroVor e, /€pya =3 and hydrodynamic interactions

switched "off", the sliding motion of the proteilorzg the DNA is too subdiffusive to enable an esion of
D,p - Klenin et al's formula can therefore not be usethis latter case.

" w (o) €0t/ €ona =1 €0t/ €ona =3
dynamical kinetic dynamical kinetic
18 0.86 (0.70) 0.80 (0.12) 0.11 (0.09)
of 32 0.86 (0.63) 1.10 (0.26)]  0.12 (0.09)
45 1.10 (0.79) 1.49 (0.13)]  0.18 (0.13)
135 2.98 (2.04) 4.20 (3.07)]  0.74 (0.51)
18 1.36 (1.23) 0.90 (0.47) 1.35 (1.07) 0.77 (0.172)
32 1.49 (1.14) 1.21 (0.92) 1.47 (1.03) 1.16 (0.20)
on 45 1.69 (1.26) 1.37(1.20)] 1.47(1.01)  1.34(0.21)
135 1.63 (1.39) 1.73(1.82))  1.33(1.08)  2.67 (1.50)

Table 8.6.Acceleration of the protein targeting process duéatilitated diffusion, for both the dynamical and
kinetic models, estimated as the ratio of a givete constank for e,/ €pya =1 O €,/ €pna =3 divided

by the corresponding value effor the repulsive DNA/protein interaction. The wad ofx were taken from
table 8.1 for the dynamical model and from tabkef8r the kinetic model.
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repulsive potential epmt/ €ona =1 eprot/ €na =3
w (nm)
dynamical kinetic dynamical kinetic dynamical Kiicet
18 2.12 (2.18) 2.12 (2.18) 3.37 (3.83) 2.38 (8.19)25.9 (26.4)
32 1.98 (2.08) 1.98 (2.08) 3.45 (3.76) 2.18 (7.26)23.6 (24.4)
45 2.30 (2.40) 2.30 (2.40) 3.52 (3.84) 2.11 (22/4)18.5 (19.1)
135 6.00 (5.07) 6.00 (5.07) 3.29 (3.46) 2.48 (2.26)10.8 (10.8)

Table 8.7 Acceleration of the protein targeting process duéydrodynamic interactions (HI), for both the dygmieal and
kinetic models. Acceleration of targeting due towdls estimated as the ratio of a given rate constdar HI switched "on"
divided by the corresponding valuexoffor HI switched "off". In both cases, the valués were taken from table 8.1 for the
dynamical model and from table 8.5 for the kinetiadel.

protein charge than for HI switched "on". Indeedl,the range of values af | investigated,

acceleration of targeting fa, /e, = & larger than that foe, , /e,,, = By a factor which

varies between 3.5 and 8. More precisely, facddadiffusion is about 10 timedowerthan 3D

diffusion for e

ot/ €ona =3 @andw=18 nm, but more than 3 timéaster for e

ot/ €ona =1 @nd
w=135 nm.

The crucial role of hydrodynamics is further empbed by the values of the acceleration
of targeting due to HI reported in table 8.7. Iseen that, for values @f close to physiological
ones (30 to 50 nm), this acceleration is close for2epulsive DNA/protein interactions and to

3.5 fore

prot

lepna =1, while it is as large as 20 fa&,, /e, =3. Examination of tables 8.2 to

rot
8.4 suggests that the large acceleration of targedbserved when HI are switched "on" is

ascribable to two rather distinct effects. Firstaready noted in the preceding section, Hoth
and D,, are roughly twice larger when HI are switched "timéin when they are switched "off"

(see tables 8.3 and 8.4). This, of course, acdekeithe targeting process in proportion. The
second effect is that HI tend to detach the prdi@im the DNA sequence, as can be checked by

looking at the values ofo, reported in table 8.2. This considerably modifies motion of
highly charged proteins. For example, fej, /e,, = aBd HI switched "off', the protein

spends about 90% of the time attached to DNA foysmtogical values ofw. The protein

remains consequently attached for most of the torthe same portion of the DNA sequence and
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either does not move or performs essentially 1Dcbeavhich is quite inefficient (see equation
(5.12)). In contrastp,;, is of the order of 66% when HI are switched "0 that, in spite of the
strong electrostatic attraction exerted by DNA, pretein spends a sizeable amount of time
diffusing in 3D in the buffer. Stated in other werdhe reduction ofo,;, caused by HI allows

strongly charged proteins to search efficiently tfugir target, while this would be forbidden by

electrostatic interactions in the absence of Hl.

8.4. Comparison of the dynamical and kinetic models

Let us now examine the agreement between resutsned with the dynamical and
kinetic models, and let us start with the resultdgamed when switching HI "off". For the
repulsive DNA/protein interaction potential, therr@sponding columns of tables 8.1 and 8.5 are
identical. This actually just reflects the factattthe values of in table 8.1 were used to estimate

the diffusion coefficientsD,, reported in table 8.4 and that, was further assumed to be zero

in equation (8.5) for repulsive DNA/protein intetiaos, because in this case it is not possible to
derive an estimation oD,;, from Brownian dynamics simulations. Still, whenugding in
equation (8.4) the value dd,, obtained from Einstein formula (equation (6.28)gtead of those
reported in table 8.4, one again obtains "kinetaté constants that are in excellent agreement
with "dynamical” ones.

While for repulsive DNA/protein interactions theragment between the dynamical and
kinetic models does not depend on the threshold us8rownian dynamics simulations, this is

no longer the case for the interaction potentiahvg,, / e;,, =1. Comparison of tables 8.1 and

8.5 indeed indicates that the agreement is pretogd dor thes threshold, while the values &f
estimated from Kleniet als formula are much too small for tiéo threshold. This is actually
also the case for all the simulations that will discussed in the remainder of this chapter.
Examination of tables 8.3 and 8.4 indicates that vhlues of D,, and D,, derived from
Brownian dynamics simulations are not sensitivetite threshold, as one would reasonably
expect. In contrast, the fraction of timg, during which the protein is attached to the DNA

sequence depends strongly on the threshold. licplar, the 1.50 threshold leads to values of
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P, that are close to 1 for most of the simulationBe Point is, that the values of the rate
constantc obtained from Kleniret afs formula tend towards 0 when,, tends towards 1. This
reflects the fact that the protein motion therelytches from facilitated diffusion, for which
N(t) increases linearly with time, to 1D diffusion, fohich N(t) increases as the square root of
time. Overestimation ofo,, therefore essentially results in underestimatibm.oThis is very
clearly what happens when tleso threshold is used in Brownian dynamics simulatidns
contrast, it seems that tlethreshold leads to values @, that perform a better job as input
values to Kleniret als formula. Therefore, | will henceforth only camhesi values obtained with
theo threshold.

The top half of the last column of table 8.5 isd:drhis is due to the fact that the sliding

motion of the protein foe, /e, = &nd HI switched "off" is so much subdiffusive tliais

neither meaningful nor practically feasible to extr diffusion coefficientsD,, from the

simulations. As a direct consequence, it is nosjdes in this case to derive estimatescdfom
Klenin et als formula. | am not familiar enough with the thetazal background of reference
[117] to determine whether this is a fundamentalitation of the kinetic model, or whether
equations (5.9) and (5.10) can be generalized townt for subdiffusive 1D motion of the
protein.

Let us now compare results obtained with the dynahand kinetic models when HI are
switched "on". The kinetic model does not expliciticorporate them, which rises an interesting

question: are HI reducible to their effect &y,, D,,, and p,, ? Stated in other words, is it
sufficient to plug in Kleniret als expression the values &f,,, D,,, and p,, deduced from

simulations with HI switched "on" to get reasonaéftimates ok ? Comparison of the bottom
halves of tables 8.1 and 8.5 suggests that thigleed the case. Even if the valuesdafiffer in

one case by a factor of 2, the agreement is génpeatect.
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8.5. What about real systems?

In this chapter, | have thus shown that the dynalmoodel | proposed and the kinetic
model of Kleninet al [118] support each other, in the sense that tteea@nstants obtained (i)

directly from the simulations, and (ii) from Klen@t als formula using values dd,,, D,,, and

P extracted from the simulations, are in good agexgmin particular, both models suggest
that the acceleration of targeting due to facwithtiffusion is not very large for the system |
considered. Table 8.6 indeed shows that the dyredraid kinetic models agree in predicting an
acceleration comprised between 20% and 70% foriplogscal values ofw, HI switched "on",

and protein charges ranging frog,, /e, =110 ¢

prot /eDNA = 3
However, one must at this point wonder how thisultegransfers to real DNA and

proteins. The essential point is that the dynanmsgatem corresponds to a raty, / D,, of the

order of unity (see tables 8.3 and 8.4), as isocnaty for translational diffusion. In contrast, the

ratio D,,/D,, for real DNA/protein systems (measured essenti&lly single molecule

experiments) is rather of the order=10~° [99,100,102,103,105,106,152-154]. This three arder
of magnitude difference may be due to the fact thatal systems the protein has to follow a
helical track along the DNA, which considerably anbes the translational friction coefficient
[98,101,155]. Using Klenirt als formula, acceleration of targeting due to féatéd diffusion

can be written in the form:

K- 1= P (8.7)

4rDyac  17a [1—Earctan@)]

2¢ T &
where ¢ is given in equation (8.5) anal is taken here as the sum of the protein and DNA
hydrodynamic radiig. As a consequence, for a given DNA concentratzon therefore a given

value ofw), the acceleration due to facilitated diffusiorpeleds uniquely onp,, and the ratio
D,,/D,,. For each value oD,/ D,,, one can therefore search for the valugogf for which

this acceleration is maximum. The result is plotiedigure 8.3 for three different values wf
(18, 45 and 135 nm). The top plots show the largestleration of targeting (relative to 3D

diffusion) that can be attained for each valuebgf / D,,, and the bottom plots the value pof;
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Figure 8.3 Plot, as a function oD, /D35 and for three different values of w (18, 45 and han), of the
maximum value ok /(47Dspac) that can be attained for values g, comprised between 0 and 1 (top plot),
and plot of the value ojo,; at which this maximum is attained (bottom plat)/(47D;pac) is evaluated

according to equation (8.7). This ratio represeiti® maximum value of the acceleration of targeting,
compared to 3D diffusion, which can be achievedkha facilitated diffusion.
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at which this maximum is attained. It is seen tlfat, physiological values oiv (30-50 nm),

facilitated diffusion cannot be faster than 3D uléibn for values oD, / D,, smaller than about
0.3: maximum acceleration is indeed 1 @}, =0. For values ofD,,/D,, larger than this

threshold, the maximum acceleration instead ine®agpproximately as the square root of

D,, / D,y. This maximum acceleration is furthermore attaifted/alues ofp,, close to 1/2
when D,,/D,, is larger than about 1. At last, the maximum smegion due to facilitated

diffusion increases slowly withv.

For values ofD,, / D, close to 1.5, as in these simulations (see téb8and 8.4), figure

8.3 indicates that maximum acceleration due tolifat@d diffusion is of the order of 2 for
physiological values ofv, which is exactly what | obtained (see table 8l8)contrast, realistic

values of D, / D,, are much smaller than the 0.3 threshold, whicHigapas already stated, that
facilitated diffusion is necessarily slower than @@fusion. For such small values Bf / D,,,

equation (8.7) actually reduces to:

#wac ~1-p, (8.8)
This conclusion agrees with experimental resultsjctv indicate that the measured
apparent diffusion coefficient of molecules that dot interact with chromatin or nuclear
structures (like the green fluorescent protein extdhns) range between *0and 10° m? s*
[152-154], depending on their size, as predicteEimgtein’'s formula, while that of biologically
active molecules is instead usually reduced by#ofaf 10-100 compared to this formula [155-

159].

8.6. Conclusion

In this chapter, | have shown that my model anckthetic model of Kleniret alagree in
predicting that facilitated diffusion cannot be rhifaster than normal diffusion. | have computed
the rate constantfirstly directly from simulations and then from Klergbhals formula, by using
values ofDip, D3p and pip computed with the dynamical model. For physiolagi®NA
concentrations and realistic protein charges, tbeelaration of targeting due to facilitated

diffusion is in both cases smaller than 70%. Adyydhe alternation of sliding and 3D diffusion
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in the buffer can be faster than normal diffusiolycfor values ofDip/ Dsp, which are much
larger than those measured experimentally. Thesdtsecome as a confirmation of Halford's
analysis of experimental results dealing with pref@NA non-specific interactions and of his
conclusion: during the past 40 years, there mayeddhave been some mistakes in the

understanding of protein—DNA association kinetics.
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9. Conclusions and perspectives
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The purpose of my thesis work was the study of DiN@dels at different resolutions and
of DNA-protein interactions and facilitated diffosi.

| started with the study of the simplest DNA madehamely statistical ones, and
presented their application to 2D electrophorespldy. Using a code based on the open source
program MeltSim, | showed that the results of gea@®paration experiments can be predicted
with an accuracy that is higher than that of theasneed values. | also pointed out that the use of
simple expressions for the mobility of the sequenicethe gels is sufficient to reach such an
accuracy. Actually, my results also prove that ndaye the limiting step in separation problems
is the reproducibility of the experimental procezland not the validity of the model. Finally, |
showed that the results of 2D display experimengsnat sufficient to determine the best set of
parameters for the modeling of fragments separatidhe second dimension, and that additional
detailed measurements of the mobility of a few segas are necessary to achieve this goal.

I next studied DNA melting using a dynamical modébre precisely, | improved the set
of parameters of the dynamical model developeduimgooup, in order to get a better agreement
with experimental results, which were not takeroiatcount until now, like the critical force
needed to keep two DNA strands separated and giendence of the critical temperature on the
length of the sequence. This model has some sityilaith statistical models, in the sense that it
iIs based on site-dependent, finite stacking andingaienthalpies. However, in contrast to
statistical models, no explicit temperature depeandas plugged in the dynamical model. Instead
of site dependent stacking entropies, temperatuotigon is indeed governed by the shape of
the stacking and pairing interactions. | compares results obtained with the improved model
with those of statistical models and found satisfigc agreement. | also studied the critical
behavior of the new model and observed that, if @ies on the temperature evolution of the
specific heat, then DNA denaturation looks likeiratforder phase transition in a rather broad
temperature interval. Very close to the criticahperature, one however observes a crossover to
a smoother regime (second order transition?). éfiastead relies on the temperature evolution of
the singular part of free energy of the systemnttiee order of the DNA melting transition
depends on the anharmonicity of the stacking intema it is second order for an almost
harmonic stacking potential, but looks first order large anharmonicities. This is somewhat
reminiscent of statistical models, which descridéADdenaturation as a phase transition, which

order depends on the way the partition functiormdbop and the loop closure exponent are
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computed.

In the second part of my thesis, | proposed a iyl model for the description of
protein-DNA interaction and facilitated diffusiowhich is based on a DNA model inspired from
polymer physics. This model suggests that, altholg$A sampling is performed via a
succession of 3D motion in the buffer, 1D slidingng the DNA chain, short hops between
neighboring sites, and intersegmental transfers, global motion of the protein still looks
diffusive-like. | computed the rate at which thefein scans the DNA sequence and studied how
it is affected by the electrostatic and mechanjwalperties of the protein, like its charge
distribution, its total charge, its shape, andeiiasticity. | showed that the model predicts that
facilitated diffusion accelerates sampling in a&errange of values of the charge of the protein.
Moreover, for reasonable values of the total chafy¢he protein, the number of base pairs
visited during a single sliding event is comparatioléhe values deduced from single molecule
experiments, that is from a few tens to a few haddrbase pairs. | also studied the effect that
hydrodynamic interactions have on the sampling gge@and showed that they can significantly
increase the scanning rate. Finally, | comparedréiselts obtained with the dynamical model
with those obtained with the kinetic model of Kleet al and showed that both models agree in
predicting that facilitated diffusion cannot pudie tspeed of DNA sampling far beyond the
diffusion limit. For realistic values of the 1D aB® diffusion coefficients, facilitated diffusios i
even most probably slower than normal diffusionisTiesult comes as an argument in the debate
whether protein-DNA association is faster than udifbn, and supports a recent review of
experimental work, which concludes that there isknown example of a protein that finds its
target faster than diffusion and that we should 'faut end to 40 years of mistakes in protein-
DNA association kinetics" [21].

Even tough most of the results presented herqute reliable, the model | proposed has
several limitations. First, it predicts a 1D diffos coefficient which is much larger than
experimentally measured values. This is probablg thuthe fact that my model takes into
account neither the helical structure of DNA nce #pecific (sequence dependent) interactions
between DNA and the protein, which slow down thdis§ process. Moreover, hydrodynamic
interactions are treated in a simplified way, dismeling the fluidity of hydration layers and
short-range lubrication effects.

To my mind, the most important improvement one #hduing to this model deals with

178



the resolution at which DNA is described. Ideally) improved model should combine the
properties of the dynamical models discussed intwee parts of this work. More precisely, it
should be complex enough to describe both DNA atdtale of a single base pair and the
diffusion of the double strand in the buffer. Innt@st, the DNA models discussed in the first
part of this work do not permit the study of thelgdl motion of the sequence in the buffer and of
its diffusion coefficient, while the model for DNprotein interactions proposed in the second
part is not detailed enough to describe indivichede pairs and their opening as a consequence
of either protein pulling or temperature increasenodel, which in my opinion could be applied

to both DNA melting and the study of DNA-proteinteractions, was proposed recently
[160,161]. In this model, a sugar, a phosphateaahdse are each described by one bead, so that
six beads are needed for each base pair. The téamaitt of this model is rather similar to that
used in the second part of my thesis. It include=ching, bending and electrostatic interactions
between the different beads. It also includes dorsind stacking interactions, which give DNA
its helical structure with the major and minor gres. Base pairing interactions are described by
Lennard-Jones-type potentials. Moreover, the paramef the model were fitted to reproduce
both the correct denaturation curves and the gersis length of double-stranded DNA.

This improved description of DNA should of course bomplemented by a better
description of the protein. One should indeed dwitom working with ‘generic’ proteins to
specific structures. An interesting candidate cdagda recent coarse-grained model, which uses
one bead to describe each amino acid that compopestein [162]. The initial configuration is
built by placing the centers of the beads at tha&tjpms of the ¢ atoms of the X-ray diffraction
structures, which can be downloaded from the PrddeitaBank. Each bead has the total charge
of the residue it stands for. The beads are coaddny springs and the number and strength of
connections are adjusted to reproduce the vibraltisormal modes of the protein.

| think that the combination of these two modelsildobe used to improve greatly the
results presented in the second part of this thesigarticular concerning the 1D sliding of the
protein. It could permit simulating the track ofetlprotein on the double helix, and therefore
should provide a more accurate 1D diffusion cogdfit and sliding length. Most importantly,
such a composite model would also be sufficientig-grained to model specific interactions and
simulate how DNA-binding proteins stop on theigtts. The key point is obviously to be able to

make the link between the two models, that is, éingé meaningful interactions between the
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beads composing the DNA sequence and those stafodiagiino acids.

| have started implementing these models, choogingegin with the TATA-binding
protein. The TATA-binding protein is a transcriptidactor, which binds to a small DNA
sequence that is rich in thymine and adenine.elh thpens the double strand by bending it to an
angle of 80°. The motivation of this choice is taldf Firstly, the TATA-binding protein is a
small protein (the C-terminal domain is composed &3 amino acids), which structure has been
determined at very high resolution (see, for exanptferences [163] and [164]) and is well
conserved between different species. Secondly,ishtbe first protein, which, in eukaryotes,
connects to DNA during the initiation process faanscription by the RNA polymerase. It is
therefore not influenced by the presence of othetems, which makes it a simple system to
study.

I am confident that such mesoscopic dynamical isoofeDNA-protein interactions can

help a lot in clearing these complex domains.
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Abstract

The first part of my thesis deals with the modejliof DNA denaturation. | first used a
statistical model (Poland-Scheraga) to show tha ocan predict the final positions of the
fragments during 2D electrophoresis assays with recigion greater than experimental
uncertainties. Then, | improved a dynamical modriatbped in our group by showing how its
parameters can be varied to get predictions irebetjreement with experimental results that
were not addressed until now, like mechanical yvngp the evolution of the critical temperature
with sequence length, and temperature resolutiorthé second part of my thesis | present a
dynamical model for non-specific DNA-protein intetians. This model is based on a previously
developed “bead-spring” model for DNA with elastlwending and electrostatic interactions,
while | chose to model protein-DNA interactions dhgh electrostatic and excluded-volume
forces. For the protein, | used two simple coarseéngd models: | first described the protein as a
single bead and then improved this description $iggia set of thirteen interconnected beads. |
studied the properties of this model using a Bramnidynamics algorithm that takes
hydrodynamic interactions into account, and obtinmesults that essentially agree with
experiments. For example, | showed that the prosaimples DNA by a combination of 3D
diffusion in the buffer and 1D sliding along the BMhain. | have also showed that this process,
which is known as facilitated diffusion, cannot @lecate DNA sampling by proteins as much as
it is sometimes believed to do.

Keywords: 2D electrophoresis display, DNA denaiorgtfacilitated diffusion.

Résumeé

La premiere partie de ma thése porte sur la madiisde la dénaturation de 'ADN. J'ai
tout d'abord utilisé le modéle statistique de P®i&cheraga pour montrer que, lors de
I'électrophorese 2D, on peut prédire les positiinales des fragments avec une précision
meilleure que l'incertitude expérimentale. J'aivgiesameélioré un modele dynamique développé
dans I'équipe en variant ses paramétres pour obtenimeilleur accord avec des résultats
expérimentaux nouveaux, tels la dénaturation méoanil'évolution de la température critique
avec la longueur de la séquence, et la résolutiotempérature. Dans la seconde partie de ce
travail, je propose un modéle qui décrit les intdoms non-spécifiques entre 'ADN et les
protéines. Ce modeéle est basé sur une descrigiibes’et ressorts" déja existante de I'ADN, qui
inclut des interactions d'élongation, de pliage édctrostatiques, alors que je décris les
interactions entre 'ADN et la protéine par desr@ies électrostatiques et de volume exclu. Pour
la protéine, jai tout d'abord considéré une simpike, puis un réseau de treize billes
interconnectées. J'ai étudié la dynamique de ceslaah utilisant un algorithme de dynamique
brownienne qui tient compte des interactions hygnadghiques et montré qu'il donne des
résultats en bon accord avec les expériencegal'axemple observé que la protéine visite bien
les différents sites de I'ADN par une successioulitfasion 3D et de glissement 1D le long de
I'ADN. J'ai également montré que ce processus,l@pfpeilitated diffusion, ne peut pas accélérer
beaucoup la vitesse de recherche de la protéingai@ment a ce qui est parfois soutenu.

Mots-clés : électrophorése en deux dimensions,tdéateon de I’ADN, diffusion facilitée.
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