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vagues. J’espère continuer à collaborer avec lui. En plus de notre collaboration fructueuse,
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J’adresse mes remerciements les plus vifs aux membres de mon jury : Benôıt Desjardins,
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limites et toutes les autres raisons qui s’imposent.



Abstract

Scientific discovery may not be better than sex, but the satisfaction lasts longer.

Stephen Hawking

The present manuscript is devoted to the mathematical modeling of several environ-

mental problems ranging from water waves to powder-snow avalanches. This Habilitation

is organized globally in three parts. The first part is essentially introductive and contains

also the complete description of my scientific activities.

Scientific works dealing with water waves are regrouped in Part II. The spectrum of

covered topics is large. We start by proposing in Chapter 3 a generalized Lagrangian for

the water wave problem. This generalization allows for easy and flexible derivation of

approximate models in shallow, deep and intermediate waters. Some questions of viscous

wave damping are also investigated in the same chapter. Chapter 4 is entirely devoted to

various aspects of tsunami wave modeling. We investigate the complete range of physical

processes from the generation, through energy transformations and propagation up to the

run-up onto coasts. The next Chapter 5 is devoted specifically to the numerical simulation

and mathematical modeling of the inundation phenomena. This question is studied by

various approaches: Nonlinear Shallow Water Equations (NSWE) solved analytically and

numerically, Boussinesq-type systems and two-fluid Navier-Stokes equations.

In Part III we investigate two important questions belonging to the field of multi-fluid

flows. Chapter 6 is essentially devoted to the formal justification of the single-velocity

two-phase model proposed earlier for aerated flows modeling. Several numerical results

are presented as well. Moreover, similar analytical computations performed in a simpler

barotropic setting are provided in Appendix A. These results could apply, for example, to

the simulation of violent wave breaking.

Finally, in Chapter 7 we propose a novel model for powder-snow avalanche flows. This

system is derived from classical bi-fluid Navier-Stokes equations and has several nice prop-

erties. Numerical simulations of the avalanche interaction with obstacle are also presented.
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Résumé

It is by logic that we prove, but by intuition we discover.

Henri Poincaré

Ce mémoire est consacré à la modélisation mathématique de quelques problèmes envi-

ronnementaux. Ces travaux couvrent des thématiques allant des vagues jusqu’aux avalanches

de neige poudreuse. Cette habilitation se compose de trois parties. La première partie est

essentiellement introductive et contient également la description complète des mes activités

de recherche.

Les travaux scientifiques en lien avec la théorie des vagues sont regroupés dans la partie

II. Le spectre des sujets abordés est large. Dans le chapitre 3 nous proposons un La-

grangien généralisé pour le problème des vagues. Cette généralisation permet d’obtenir

de nouveaux modèles approchés des vagues dans l’eau profonde, peu profonde ou en pro-

fondeur intermédiaire. Dans le même chapitre nous étudions également quelques questions

liées à la dissipation visqueuse de l’intumescence. Le chapitre 4 traite de différents aspects

de la modélisation des tsunamis. Nous étudions toute la gamme des processus physiques

de la génération, transformations d’énergie, propagation jusqu’à l’inondation des côtes. Le

chapitre 5 est spécialement dédié aux différents aspects de la simulation numérique et de

la modélisation d’inondation. Ces questions sont traitées par différentes approches: les

équations de Saint-Venant, les équations de type de Boussinesq et le système de Navier-

Stokes bi-fluide.

Dans la partie III nous nous intéressons à deux problèmes relevant principalement

des écoulements multi-fluides. Le chapitre 6 contient la justification formelle du modèle

bifluide à quatre équations proposé avant pour la modélisation des écoulements aérés.

Quelques résultats numériques sont également présentés. Les calculs similaires effectués

dans le cas barotrope sont donnés dans l’appendice A. Ces résultats peuvent s’appliquer,

par exemple, à la simulation numérique du déferlement. Finalement, dans le chapitre 7

nous proposons un nouveau modèle pour les avalanches de neige poudreuse. Ce système

est dérivé du Navier-Stokes bifluide classique et possède de bonnes propriétés qualitatives.

Les simulations numériques d’interaction d’une avalanche avec obstacle sont présentées.
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2.4 Formation et diplômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Expérience professionnelle . . . . . . . . . . . . . . . . . . . . . . . 26
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Chapter 1

Introduction

Science is like sex. Sure, it may give some practical results, but that’s not why we do it.

Richard Phillips Feynman

Scientific works presented in this Habilitation have been essentially performed during

the last three years (2008 — 2010). After defending my PhD thesis in December 2007, I

spent the third year of my PhD grant at LRC Méso CEA/CMLA, ENS de Cachan, where

I continued my research work and prepared various competitions for permanent positions.

Fortunately, in May 2008 I was admitted to CNRS as a 〈〈Chargé de Recherche 〉〉 and

appointed in October 2008 to the Laboratory of Mathematics (LAMA UMR # 5127,

University of Savoie) which has become my new working place. I have been always enjoying

the exceptional environment and beneficial conditions of this laboratory.

The new breath in my research activities can be ascribed to fruitful interactions with

my new colleagues — Didier Bresch, Marguerite Gisclon and Céline Acary-Robert. In

August 2008 I had a chance to meet Didier Clamond in Adelaide, Australia. I learned

a lot from him about the water wave problem. Finally, a productive collaboration with

Dimitrios Mitsotakis and Theodoros Katsaounis was also initiated.

The present Habilitation contains three parts. The first one is introductive and contains

additionally a detailed description of my professional activities, while the two others are

devoted to the description of my scientific works.

In this introductive chapter we make a general review of the manuscript and point

out, whenever possible, the context and motivations for various studies described below.

Introductions specific to considered research fields are systematically given in the beginning

of each chapter.
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18 Introduction

1.1 Water waves

The Part II includes scientific works on various aspects of the water wave theory. It is

also the largest part in my Habilitation. This fact reflects my deep and old interest in this

subject.

Chapter 3 contains two studies devoted to completely different questions of the water

wave theory. Section 3.1 is based on our recent collaborative research work with Didier

Clamond [CD10]. More precisely, we propose a generalized Lagrangian variational formu-

lation which is exploited further to derive several known and several novel approximate

models for water waves in shallow, intermediate and deep waters.

During my PhD thesis in collaboration with Frédéric Dias we initiated a research on the

inclusion of weak dissipative effects into the water wave problem [DD07b, DD07c, Dut09b].

A little sequel to these studies is given in Section 3.2 where we investigate the transient

behaviour of the viscopotential flow group velocity.

The next Chapter 4 is devoted to my preferred topic in water waves theory — a tsunami

wave modeling. Recent events, especially the Tsunami Boxing Day 2004 [SB06], attracted

a lot of attention to this problem. The destructive potential of these waves (see Figure 1.1

for illustration) represents a primary hazard for a large number of coastal communities in

Indian and Pacific Oceans. Many studies in this chapter were initiated during my PhD

but finalized much later.

Section 4.1 discusses the notion of tsunami wave energy and approaches to its esti-

mation. Energy transformations are studied from the generation and during the wave

propagation [DD09a]. The next study described in Section 4.2 was initiated by a question

of Costas Synolakis during my PhD thesis defense. He wondered if we can predict the

effect of mud layers on tsunami generation process. A complete answer on this question

required some time and resulted in this publication [DD10] which greatly relies on methods

developed in our previous work [DD09b]. Section 4.3 is entirely devoted to the operational

and efficient numerical simulation of tsunami waves from the generation and to the run-up

onto coasts. This work was done in collaboration with Raphaël Poncet and Frédéric Dias

[DPD10]. Finally, Chapter 4 ends with Section 4.4 which contains our very recent study of

tsunami generation process using the latest advances in seismology (finite fault inversion

algorithm) [DMG10].

Continuously we move to Chapter 5 devoted to the simulation of inundation processes.

In Section 5.1 we present several finite volume schemes to discretize Boussinesq-type equa-

tions [DKM10]. These schemes were developed in collaboration with Theodoros Katsaou-

nis and Dimitrios Mitsotakis. One of the main novelties in this study is the simulation

of run-up using a dispersive wave model. Our scheme is validated by comparisons with
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Figure 1.1: Picture of Banda Aceh before and after Tsunami Boxing Day 2004.
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Figure 1.2: Various types of two-phase flows.

experimental data of C. Synolakis [Syn87]. Section 5.2 contains a comparison of three dif-

ferent approaches to solve the well-known dam-break problem: an analytical approach, a

numerical one with Nonlinear Shallow Water Equations (NSWE) and expensive two-fluid

simulations. The limits of each approach are then discussed.

Consequently, in this part of the manuscript we investigate a wide spectrum of prob-

lems ranging from a tsunami wave generation to wave run-up onto coasts. A generalized

variational structure and weak dissipative effects are also discussed.

1.2 Multi-fluid flows

Part III deals with my second big interest in Fluid Mechanics — multi-fluid and two-

phase flows. Various types of two-phase flows are illustrated on Figure 1.2.

When the number of interfaces is so big that it is impossible to follow them individu-

ally, the usual modeling procedure consists in applying an average operator to governing

equations written separately for each phase [Ish75, IH06]. Traditionally, the averaging of

nonlinear terms and interface boundary conditions requires some very strong assumptions

and semi-empiric modeling. Consequently, there is no consensus in this field at the present

time.
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My interest in two-phase flows is initially due to informal discussions with Jean-Michel

Ghidaglia, Gérard Le Coq, Fayssal Benkhaldoun and other members of CMLA. Later, these

discussions resulted in a series of works with Frédéric Dias and Jean-Michel Ghidaglia

[DDG08b, DDG08c, DDG10] where we proposed in an ad hoc manner a simple single

velocity model for aerated flows. Only later, in collaboration with Yannick Meyapin (our

Master degree student) and Marguerite Gisclon, we provided a formal justification of the

proposed four-equations model [MDG10]. This scientific work is given in Chapter 6.

In LAMA we are developing a new research axis on the mathematical modeling of

powder-snow avalanches. This research work is joint with Didier Bresch and Céline Acary-

Robert. Recently we proposed a novel two-fluid model for powder-snow avalanches [DARB10].

The model derivation and several numerical results are presented in Chapter 7.

Finally, in Appendix A we provide the derivation of a single velocity model but in

a simpler barotropic setting. Mathematical approach is inspired by the derivation given

above in Chapter 6. This is a joint work with Yannick Meyapin and Marguerite Gisclon

[MDG09].
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Chapter 2

Curriculum vitæ

One of the major ingredients for professional success in science is luck. Without this, forget it.

Leon Lederman

If you want to succeed in the world, you don’t have to be much cleverer than other people. You

just have to be one day earlier.

Leo Szilard
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2.5.1 Intérêts scientifiques . . . . . . . . . . . . . . . . . . . . . . . . . 28
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2.1 Vitæ

2.1.1 Renseignements personnels

Nom DUTYKH

Prénom Denys

Date de naissance le 17 Août 1982

Lieu de naissance Pologui, Ukraine

Nationalité ukrainienne

Situation familiale célibataire

Permis de conduire catégorie B

Adresse professionnelle Université de Savoie,

LAMA UMR CNRS 5127,

Campus Scientifique,

73376 Le Bourget-du-Lac

Adresse personnelle 723 Avenue de Lyon,

73000 Chambéry

Tél +33 04 79 75 86 52

Fax +33 04 79 75 81 42

Portable +33 06 66 06 97 58

E-mail Denys.Dutykh@univ-savoie.fr

Page web http://www.lama.univ-savoie.fr/˜dutykh

2.2 Prix scientifiques

• Le Prix La Recherche 2007, mention 〈〈Environnement 〉〉 parrainée par Veolia Envi-

ronnement, recherche: 〈〈Vagues extrêmes: de la physique à la prévision effective 〉〉 .

La remise des prix a eu lieu le 27 Novembre 2007 au Sénat, Palais du Luxembourg,

Paris

• Best Student Paper Award at 〈〈The Fifth IMACS International Conference on Non-

linear Evolution Equations and Wave Phenomena: Computation and Theory 〉〉 ,

Athens, GA, USA, April 16 – 19, 2007

mailto:Denys.Dutykh@univ-savoie.fr
http://www.lama.univ-savoie.fr/~dutykh
http://www.larecherche.fr/special/prixlr/laureats_2007.html
http://www.cs.uga.edu/~thiab/waves2007.html
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2.3 Qualifications

Section Corps Intitulé

26 Mâıtre de conférences (2008) Mathématiques appliquées et

applications des mathématiques

60 Mâıtre de conférences (2008) Mécanique, génie mécanique, génie civil

2.4 Formation et diplômes

Octobre 2005 – Décembre 2007: Thèse de Doctorat en Mathématiques Appliquées au

CMLA, ENS de Cachan.

Directeur de thèse: Professeur Frédéric DIAS.

Titre: 〈〈Modélisation mathématique des tsunamis 〉〉 , Mention 〈〈Très honorable 〉〉

Octobre 2004 – Juillet 2005: Master Recherche 2 〈〈Méthodes Numériques pour les Modèles

des Milieux Continus 〉〉 (ex DEA MN2MC) au CMLA, ENS de Cachan. Mention

〈〈Très bien 〉〉 , classement 1/10,

spcialité 〈〈Mathématiques appliquées 〉〉

Septembre 2003 – Juin 2004: Master à l’Université Nationale de Dnepropetrovsk, Fac-

ulté des Mathématiques Appliquées, Département de Modélisation Mathématique

Septembre 1999 – Juin 2003: Equivalent de Licence et Mâıtrise à la Faculté des Mathématiques

Appliquées, l’Université Nationale de Dnepropetrovsk, Ukraine

Septembre 1997 – Mai 1999: Ecole N◦ 23, classe spcialisée en physique, Dnepropetro-

vsk, Ukraine

Septembre 1989 – Mai 1997: Ecole N◦ 83, Dnepropetrovsk, Ukraine

2.4.1 Expérience professionnelle

Octobre 2008 – présent: Chargé de recherche C.N.R.S. de 2me classe (CR2) affecté au

LAMA - UMR 5127, Université de Savoie

Décembre 2007 – Septembre 2008: Post-doctorat au LRC Méso CEA DAM/CMLA

sous la direction de Frédéric Dias et de Jean-Michel Ghidaglia

http://www.cmla.ens-cachan.fr/Cmla/index.html
http://www.cmla.ens-cachan.fr/~dias
http://www.cmla.ens-cachan.fr/Cmla/DeaMN2MC/index.html
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2.4.2 Séjours à l’étranger

21 – 28 Mars 2010 : School of Mathematics, University College Dublin

2.4.3 Stages de recherche

Mars 2004 – Juillet 2005: Stage de M2 MN2MC, CMLA, ENS de Cachan, sous la di-

rection de Frédéric DIAS.

Titre: 〈〈Moving load on a layered floating ice sheet 〉〉

Février 2004 – Juin 2004: Travail de fin d’études l’Université Nationale de Dnepropetro-

vsk, Ukraine, sous la direction de Vladimir Lamzyuk.

Titre: 〈〈Harmonic oscillations of an inhomogeneous elastic layer 〉〉

2.4.4 Compétences informatiques

Langages de programmation C/C++, Fortran, Pascal

Langages de script python

Systmes d’exploitation Linux/Unix, Windows, Dos

Logiciels math. Maple, MatLab, Mathematica,

Scilab, Octave

FEM FreeFem++, FreeFEM3D

Librairies de calcul OpenFOAM, Deal.II, libMesh,

gmm++, blitz++, gsl, FFTW

Mailleurs GiD, GMSH

Visualisation ParaView, OpenDX, MatLab,

gnuplot

Bureautique LATEX, OpenOffice, AbiWord

2.4.5 Langues vivantes

Ukrainien langue maternelle

Russe langue maternelle

Français excellent

Anglais excellent (TOEIC score 885/990)

Italien notions de base

http://www.cmla.ens-cachan.fr/Cmla/DeaMN2MC/index.html
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.python.org/
http://www.ubuntu.com/
http://www.maplesoft.com/
http://www.mathworks.com/
http://www.wolfram.com/
http://www.scilab.org/
http://www.gnu.org/software/octave/
http://www.freefem.org/ff++/index.htm
http://www.freefem.org/ff3d/index.html
http://www.opencfd.co.uk/openfoam/
http://www.dealii.org/
http://libmesh.sourceforge.net/
http://www-gmm.insa-toulouse.fr/getfem/gmm_intro
http://www.oonumerics.org/blitz/
http://www.gnu.org/software/gsl/
http://www.fftw.org/
http://gid.cimne.upc.es/
http://geuz.org/gmsh/
http://www.paraview.org/
http://www.opendx.org/
http://www.mathworks.com/
http://www.gnuplot.info/
http://www.latex-project.org/
http://www.openoffice.org/
http://www.abisource.com/
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2.5 Activités de recherche

2.5.1 Intérêts scientifiques

• Mécanique des fluides

– écoulements à surface libre

– modèles des ondes longues

– simulation numériques des vagues

– écoulements compressibles et diphasiques

• Mécanique des solides

– théorie et dynamique des dislocations

– sources et propagation des ondes sismiques

• Méthodes numériques et calcul scientifique

– volumes finis

– éléments finis

– méthodes spectrales et pseudo-spectrales

2.5.2 Thèse

Thèse de Doctorat de l’École Normale Supérieure de Cachan enMathématiques

Appliquées

Titre 〈〈Modélisation mathématique des tsunamis 〉〉

Directeur Frédéric Dias (Professeur, ENS de Cachan)

Thse soutenue le 3 décembre 2007 l’École Normale Supérieure de Cachan,

après avis de:

• Jean-Claude Saut (Professeur, Université Paris-Sud),

• Didier Bresch (DR CNRS, Université de Savoie),

devant le jury formé de:
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Jean-Michel Ghidaglia Professeur, ENS de Cachan Examinateur

Jean-Claude Saut Professeur, Paris-Sud Rapporteur et Président

Didier Bresch DR CNRS, Université de Savoie Rapporteur

Costas Synolakis Professeur, USC Examinateur

Vassilios Dougalis Professeur, University of Athens Examinateur

Daniel Bouche HDR, CEA/DAM IdF Membre invit

Frédéric Dias Professeur, ENS de Cachan Directeur de thèse

USC = University of Southern California

Résumé. Cette thèse est consacrée à la modélisation des tsunamis. La vie de ces

vagues peut être conditionnellement divisée en trois parties: génération, propagation et

inondation. Dans un premier temps, nous nous intéressons à la génération de ces vagues

extrêmes. Dans cette partie du mémoire, nous examinons les différentes approches exis-

tantes pour la modélisation, puis nous en proposons d’autres. La conclusion principale à

laquelle nous sommes arrivés est que le couplage entre la sismologie et l’hydrodynamique

est actuellement assez mal compris.

Le deuxième chapitre est dédié essentiellement aux équations de Boussinesq qui sont

souvent utilisées pour modéliser la propagation d’un tsunami. Certains auteurs les utilisent

même pour modéliser le processus d’inondation (le run-up). Plus précisement, nous discu-

tons de l’importance, de la nature et de l’inclusion des effets dissipatifs dans les modèles

d’ondes longues.

Dans le troisième chapitre, nous changeons de sujet et nous nous tournons vers les

écoulements diphasiques. Le but de ce chapitre est de proposer un modèle simple et

opérationnel pour la modélisation de l’impact d’une vague sur les structures côtières. En-

suite, nous discutons de la discrétisation numérique de ces équations avec un schèma de

type volumes finis sur des maillages non structurés.

Finalement, le mémoire se termine par un sujet qui devrait être présent dans tous les

manuels classiques d’hydrodynamique mais qui ne l’est pas. Nous parlons des écoulements

viscopotentiels. Nous proposons une nouvelle approche simplifiée pour les écoulements

faiblement visqueux. Nous conservons la simplicité des écoulements potentiels tout en

ajoutant la dissipation. Dans le cas de la profondeur finie nous incluons un terme correcteur

dû à la présence de la couche limite au fond. Cette correction s’avère être non locale en

temps. Donc, la couche limite au fond apporte un certain effet de mémoire à l’écoulement.

Mots clés: Ondes de surface, génération des tsunamis, équations de Boussinesq,

écoulements diphasiques, écoulements viscopotentiels, volumes finis
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2.5.3 Publications

2.5.3.1 Revues internationales

• D. Dutykh, D. Mitsotakis, L. Chubarov, Yu. Shokin. Horizontal displacements

contribution to tsunami wave energy balance. Submitted, 2010

http://hal.archives-ouvertes.fr/hal-00530999/

• D. Dutykh, D. Mitsotakis, X. Gardeil. On the use of finite fault solution for tsunami

generation problems. Submitted, 2010

http://hal.archives-ouvertes.fr/hal-00509384/

• D. Clamond, D. Dutykh. Practical use of variational principles for modeling water

waves. Submitted, 2010

http://hal.archives-ouvertes.fr/hal-00456891/

• D. Dutykh, C. Acary-Robert, D. Bresch. Mathematical modeling of powder-snow

avalanche flows. Accepted to Studies in Applied Mathematics, 2010

http://hal.archives-ouvertes.fr/hal-00354000/

• D. Dutykh, Th. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive

wave propagation and runup. Submitted, 2010

http://hal.archives-ouvertes.fr/hal-00472431/

• D. Dutykh, R. Poncet, F. Dias. The VOLNA code for the numerical modelling of

tsunami waves: generation, propagation and inundation. Submitted, 2010

http://hal.archives-ouvertes.fr/hal-00454591/

• Y. Meyapin, D. Dutykh, M. Gisclon. Velocity and energy relaxation in two-phase

flows. Studies in Applied Mathematics, 125(2), 179 – 212, 2010

http://hal.archives-ouvertes.fr/hal-00440852/

• D. Dutykh, D. Mitsotakis. On the relevance of the dam break problem in the context

of nonlinear shallow water equations. Discrete and Continuous Dynamical Systems,

3(2), 2010

http://hal.archives-ouvertes.fr/hal-00369795/

• D. Dutykh. Group and phase velocities in the free-surface visco-potential flow: new

kind of boundary layer induced instability. Physics Letters A, 373, 3212 - 3216, 2009

http://hal.archives-ouvertes.fr/hal-00334440/

http://hal.archives-ouvertes.fr/hal-00530999/
http://hal.archives-ouvertes.fr/hal-00509384/
http://hal.archives-ouvertes.fr/hal-00456891/
http://hal.archives-ouvertes.fr/hal-00354000/
http://hal.archives-ouvertes.fr/hal-00472431/
http://hal.archives-ouvertes.fr/hal-00454591/
http://hal.archives-ouvertes.fr/hal-00440852/
http://hal.archives-ouvertes.fr/hal-00369795/
http://hal.archives-ouvertes.fr/hal-00334440/
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• D. Dutykh. Visco-potential free-surface flows and long wave modelling. European

Journal of Mechanics B/Fluids, 28(3), 430-443, 2009

http://hal.archives-ouvertes.fr/hal-00270926/

• D. Dutykh, F. Dias. Energy of tsunami waves generated by bottom motion. Proc.

R. Soc. A (2009) 465, 725-744

http://hal.archives-ouvertes.fr/hal-00311752/

• D. Dutykh, F. Dias. Influence of sedimentary layering on tsunami generation,

Computer Methods in Applied Mechanics and Engineering, 199, 1268 - 1275, 2010

http://hal.archives-ouvertes.fr/hal-00288696/

• F. Dias, D. Dutykh, J.-M. Ghidaglia. A two-fluid model for violent aerated flows,

Computers and Fluids, 39(2), 283-293, 2010

http://hal.archives-ouvertes.fr/hal-00285037/

• D. Dutykh, F. Dias. Tsunami generation by dynamic displacement of sea bed due

to dip-slip faulting. Math. Comp. Sim., 80(4), 837-848, 2009

http://hal.archives-ouvertes.fr/hal-00174439/

• D. Dutykh, F. Dias. Viscous potential free-surface flows in a fluid layer of finite

depth, C. R. Acad. Sci. Paris, Ser. I, 345 (2007), 113–118

http://hal.archives-ouvertes.fr/hal-00145315/

• D. Dutykh, F. Dias. Dissipative Boussinesq equations, C. R. Mcanique, 335 (2007),

559–583. Special issue dedicated to J. V. Boussinesq

http://hal.archives-ouvertes.fr/hal-00137633/

• Y. Kervella, D. Dutykh, F. Dias. Comparison between three-dimensional linear and

nonlinear tsunami generation models, Theor. Comput. Fluid Dyn. (2007) 21:245–

269

http://hal.archives-ouvertes.fr/hal-00113909/

• D. Dutykh, F. Dias, Y. Kervella. Linear theory of wave generation by a moving

bottom, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 499–504

http://hal.archives-ouvertes.fr/hal-00114954/

2.5.3.2 Chapitres dans livres

• D. Dutykh, F. Dias,Water waves generated by a moving bottom. In book: “Tsunami

and Nonlinear Waves”, Kundu, Anjan (Editor), Springer Verlag 2007, Approx. 325

http://hal.archives-ouvertes.fr/hal-00270926/
http://hal.archives-ouvertes.fr/hal-00311752/
http://hal.archives-ouvertes.fr/hal-00288696/
http://hal.archives-ouvertes.fr/hal-00285037/
http://hal.archives-ouvertes.fr/hal-00174439/
http://hal.archives-ouvertes.fr/hal-00145315/
http://hal.archives-ouvertes.fr/hal-00137633/
http://hal.archives-ouvertes.fr/hal-00113909/
http://hal.archives-ouvertes.fr/hal-00114954/


32 Curriculum vitæ

p., 170 illus., Hardcover, ISBN: 978-3-540-71255-8

http://hal.archives-ouvertes.fr/hal-00115875/

2.5.3.3 Actes de conférences avec comité de lecture

• Y. Meyapin, D. Dutykh, M. Gisclon. Two-fluid barotropic models for powder-snow

avalanche flows, Proceedings of “The Fourth Russian-German Advanced Research

Workshop on Computational Science and High Performance Computing” in Springer

series “Notes on Numerical Fluid Mechanics and Multidisciplinary Design”, 2009

http://hal.archives-ouvertes.fr/hal-00394437/

• D. Dutykh, F. Dias. How does sedimentary layering affect the generation of tsunamis?

Proceedings of OMAE 2009, 28th International Conference on Ocean, Offshore and

Arctic Engineering, May 31-June 5, 2009, Honolulu, USA

• D. Dutykh. Visco potential free-surface flows, XXII ICTAM, 25 - 29 August 2008,

Adelaide, Australia

• F. Dias, D. Dutykh and J.-M. Ghidaglia. Simulation of Free Surface Compressible

Flows Via a Two Fluid Model, OMAE 2008, Nick Newman Symposium on Marine

Hydrodynamics. Estoril, Portugal, 15-20 June 2008

http://hal.archives-ouvertes.fr/hal-00258161/

• F. Dias, D. Dutykh. Dynamics of tsunami waves. In Book: “Extreme Man-Made

and Natural Hazards in Dynamics of Structures”, NATO Advanced Research Work-

shop, Opatija, Croatia, May 28 - June 1, pp. 35–60, 2006

http://hal.archives-ouvertes.fr/hal-00113612/

2.5.4 Actes de conférences

• D. Clamond, D. Dutykh. Dispersive wave equation derivation from a relaxed vari-

ational formulation, 3rd International Scientific Conference 〈〈Applied problems of

hydro- and aerodynamics 〉〉 , Dnepropetrovsk National University, Ukraine, Octo-

ber 2010

• D. Dutykh, F. Dias. Tsunami wave energy, 4th Canadian Conference on Geohaz-

ards, Université Laval, May 20-24, 7 p., 2008

• D. Dutykh, F. Dias, Fault dynamics and tsunami generation, ECCOMAS The-

matic Conference on Multi-scale Computational Methods for Solids and Fluids. A.

Ibrahimbegovic, F. Dias, H. Matthies, P.Wriggers (eds.), 79–81, 2007

http://hal.archives-ouvertes.fr/hal-00115875/
http://hal.archives-ouvertes.fr/hal-00394437/
http://hal.archives-ouvertes.fr/hal-00258161/
http://hal.archives-ouvertes.fr/hal-00113612/
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• C. Kassiotis, F. Dias, A. Ibrahimbegovic and D. Dutykh, A partitioned approach

to model tsunami impact on coastal protections, ECCOMAS Thematic Conference

on Multi-scale Computational Methods for Solids and Fluids. A. Ibrahimbegovic, F.

Dias, H. Matthies, P.Wriggers (eds.), 134–139, 2007

2.5.4.1 Revue de livres

• M. S. Howe, Hydrodynamics and Sound, Cambridge University Press, Cambridge

(2007). European Journal of Mechanics - B/Fluids, In Press, 2007

doi:10.1016/j.euromechflu.2007.06.002

2.5.4.2 Mémoires

• D. Dutykh. 〈〈Modélisation mathématique des tsunamis 〉〉 , Mémoire de thèse, CMLA,

ENS de Cachan, 2007

http://tel.archives-ouvertes.fr/tel-00194763/

• D. Dutykh. 〈〈Moving load on a layered floating ice sheet 〉〉 , Mmoire de Master 2

MN2MC, CMLA, ENS de Cachan, 2005

• D. Dutykh. 〈〈Harmonic oscillations of an inhomogeneous elastic layer 〉〉 , Mémoire

de Master, Faculté des mathématiques appliquées, Université Nationale de Dne-

propetrovsk (en ukrainien), 2004

2.5.4.3 Rapports de recherche

• D. Dutykh. Visco-potential free-surface flows. Research report of CMLA, 2008

• F. Dias, D. Dutykh and J.-M. Ghidaglia. A compressible two-fluid model for the

finite volume simulation of violent aerated flows. Analytical properties and numerical

results. Research report of CMLA, 2008

http://hal.archives-ouvertes.fr/hal-00279671/

2.5.4.4 Articles grand public

• Simuler une avalanche. La Recherche N428 - Avril 2009

• Springy sediments may amplify tsunamis. Issue 2662 of New Scientist magazine, 25

June 2008, page 20

• D. Dutykh. Comment nâıt un tsunami? , Le Mensuel de l’Université, N◦ 23, Février

2008

http://tel.archives-ouvertes.fr/tel-00194763/
http://hal.archives-ouvertes.fr/hal-00279671/
http://www.lemensuel.net/Comment-nait-un-tsunami.html
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2.5.5 Activités de rapporteur

2.5.5.1 Revues internationales

• Journal of Computational Physics

• Communications on Pure and Applied Analysis

• Comptes Rendus Mécanique

• European Journal of Mechanics - B/Fluids

• Mathematics and Computers in Simulation

• Numerische Mathematik

• Ocean Modelling

• SIAM Journal on Applied Mathematics (SIAP)

• Wave Motion

• Natural Hazards and Earth System Sciences

2.5.5.2 Actes de conférences

• FVCA6

• ISOPE 2010

• ICTAM 2008

• ISOPE 2007

• FVCA5

2.5.5.3 Appels à projets

• Cluster Environnement Rhône-Alpes (Projet 2: Risques gravitaires, séismes)

• Coopération universitaire et scientifique, Ambassade de France en Ukraine

http://www.elsevier.com/locate/jcp
http://aimsciences.org/journals/cpaa/
http://www.sciencedirect.com/science/journal/16310721
http://www.elsevier.com/wps/find/journaldescription.cws_home/600738/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/505615/description#description
http://www.springerlink.com/content/100497/
http://www.elsevier.com/wps/find/journaldescription.cws_home/601376/description#description
http://www.siam.org/journals/siap.php
http://www.elsevier.com/locate/wavemoti
http://www.nat-hazards-earth-syst-sci.net/
http://fvca6.fs.cvut.cz/
http://www.isope2010.org/
http://ictam2008.adelaide.edu.au/
http://www.isope.org/conferences/conferences.htm
http://www.latp.univ-mrs.fr/fvca5/
http://www.cluster-environnement.net/le-programme-scientifique/les-projets
http://ambafrance-ua.org/france_ukraine/spip.php?article1409
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2.5.6 Communications scientifiques

• Numerical simulation of dispersive waves, 29 Octobre 2010, Colloque EDP

Normandie, University of Caen, France

• Modeling of tsunami wave generation, 21st September 2010, Summer school and

workshop on ”Numerical Methods for interactions between sediments and water”,

Paris 13 University, France

• Modeling and simulation of compressible two-phase flows, 17th September

2010, NumAn 2010 Conference in Numerical Analysis , Crete, Greece

• Tsunami wave modeling, 6 April 2010, 〈〈Exploring structural controls on great

earthquake rupture and architecture of the Sunda/Sumatran convergent margin: in-

ternational collaboration, links to tsunami modeling and planning of future research

activities 〉〉 , Fondation des Treilles, France

• A generalized variational principle for water wave modeling, 11 December

2009, Hydrodynamique des lacs et approximation de Saint-Venant, Institut Jean le

Rond d’Alembert, Université Pierre et Marie Curie (Paris 6), Paris, France

• Mathematical modelling of tsunami wave generation, 12 November 2009,

Institut Jean le Rond d’Alembert, Université Pierre et Marie Curie (Paris 6), Paris,

France

• Powder-snow avalanche flow modelling, 12 - 16 October 2009, 4th Russian-

German Advanced Research Workshop, Freiburg, Germany

• Tsunami wave energy, 22 September 2009, Session “Numerical methods for com-

plex fluid flows”, Wolfgang Pauli Institute, Vienna, Austria

• Numerical simulation of powder snow avalanches. 26 March 2009, Atelier

VOR, Laboratoire 3S-R, Grenoble, France

• Numerical simulation of tsunami waves. Presentation of VOLNA code.

27 January 2009, Ocanographie et Mathmatiques, Ecole Normale Suprieure, Paris,

France

• Simulation of free surface compressible flows via a two fluid model, 27 Octo-

ber 2008, Séminaire et Groupe de travail de Modélisation Mathématique, Mécanique

et Numérique (M3N), Laboratoire de Mathématiques Nicolas Oresme, Université de

Caen, Caen, France
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• Mathematical modelling of tsunami waves, 23 October 2008, Sminaire EDP-

MOISE, Laboratoire Jean Kuntzmann, Grenoble, France

• Simulation of free surface compressible flows via a two fluid model, 20

October 2008, Rencontres Niçoises de la Mécanique des Fluides, Laboratoire J.A.

Dieudonné, Nice, France

• Mathematical modelling of tsunami generation, LAMA, Université de Savoie,

10 October 2008, Le Bourget-du-Lac, France

• Visco potential free-surface flows, XXII International Congress of Theoretical

and Applied Mechanics, Adelaide, Australia, 24–30 August 2008

• Tsunami wave energy, SIAM Conference on Nonlinear Waves and Coherent Struc-

tures (NW08), Universit di Roma “La Sapienza”, Rome, Italy, July 21–24, 2008

• Numerical modelling of tsunami waves. VOLNA code presentation, LAMA,

Université de Savoie, 4th July 2008, Le Bourget-du-Lac, France

• Simulation of Free Surface Compressible Flows Via a Two Fluid Model,

The 27th International Conference on OFFSHORE MECHANICS AND ARCTIC

ENGINEERING Estoril, Portugal, 15–20 June, 2008

• Numerical modelling of tsunami generation and runup, Groupe de Travail

Mécanique des Fluides Réels, 18 February 2008, CMLA, ENS de Cachan, France

• Influence of the mud layer on sea-bed deformations, 2nd FORTH Workshop

on Tsunami generation, 12 & 13 February, 2008, Heraklion, Crete (Greece)

• Simulation d’écoulements compressibles avec surface libre par un modèle

bifluide, CLAROM - Séminaire hydrodynamique et océano-météo, 29 novembre

2007, Institut Français du Pétrole

• Simulation of free surface motions via a two fluid model, International confer-

ence 〈〈Trends in Numerical and Physical Modeling for Industrial Multiphase Flows 〉〉 ,

September 17-21, 2007 Cargèse, Corsica, France

• On the dynamic generation of tsunamis by a moving bottom, TRANSFER

Workshop 〈〈Numerical Models, Inundation Maps and Test Sites 〉〉 , June 12 - 14,

2007, Fethiye, Turkey
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• Derivation and numerical resolution of long wave equations, Wolfgang Pauli

Institute, Vienna, Working session 〈〈Dispersive nonlinear longwave PDE’s and appli-

cations in physics 〉〉 organis par Jean-Claude Saut, 21 – 25 mai 2007

• On the generation of tsunamis by earthquakes, The Fifth IMACS International

Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation

and Theory, Athens, GA, USA, April 16 – 19, 2007

• Viscous shallow water equations: potential approach and numerical meth-

ods, 13 mars 2007, Institut de Mathématiques de Bordeaux, Groupe de travail

Océanographie

• Unstructured Finite Volume solver for dissipative shallow-water equa-

tions, 12 février 2007, CMLA, ENS de Cachan, Groupe de travail mécanique des

fluides réels

• Tsunami generation, SIAM Conference on Nonlinear Waves and Coherent Struc-

tures, September 9 – 12, 2006, University of Washington, Seattle, Washington

• Génération des tsunamis, Inauguration de LRC CMLA/CEA, 19 juin 2006

• Conférence 〈〈Results of the Sumatra Earthquake and Tsunami Offshore Sur-

vey 2005 〉〉 , October 19 – 24, 2005, Fondation des Treilles

2.5.6.1 Conférences grand public

• Tsunamis: du terrain au modèle numérique. Conférence grand public donnée avec

C. Beck au Cinéma Curial lors de la Fête de la Science 2009 à Chambéry

• What is applied mathematics? Talk given for general audience at Ecole Normale

Supérieure de Cachan, 27 April 2007

• Tsunami waves. Talk given for general audience at Ecole Normale Supérieure de

Cachan, 5 December 2006

2.5.7 Développement des logiciels

• VOLNA : code des volumes finis sur des maillages triangulaires non-structurs pour

la simulation de la gnration, de la propagation et de l’inondation des tsunamis (en

collaboration avec R. Poncet et F. Dias). Actuellement ce code est hbrg Irish

Centre for High-End Computing (ICHEC) et maintenu par School of Mathematics,

University College Dublin

http://www.les-treilles.com/ssimages/index.html
http://www.ichec.ie/
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2.5.8 Animation de la vie scientifique

• Membre du Comité Scientifique de la conférence 〈〈Finite Volumes for Complex Ap-

plications VI 〉〉 qui aura lieu du 6 au 10 juin 2011

http://fvca6.fs.cvut.cz/

• Organisation (avecD. Bresch etM. Gisclon) d’une session sur le thème 〈〈Numerical

models and methods for compressible and two-phase flows 〉〉 à Wolfgang Pauli Institute

(Vienne) qui a eu lieu du 17 au 21 mai 2010

http://www.lama.univ-savoie.fr/~dutykh/wpi10/

• Organisation (avec D. Bresch et C. Acary-Robert) d’une session 〈〈Numerical

methods for complex fluid flows 〉〉 Wolfgang Pauli Institute (Vienne) qui a eu lieu du

21 au 25 septembre 2009

http://www.lama.univ-savoie.fr/~dutykh/wpi09/

• Atelier Cargèse: 〈〈Modélisation physico–numérique pour les fluides, les particules et

le rayonnement. Confrontation modèles physiques et modèles numériques 〉〉 . Institut

d’Etudes Scientifique de Cargèse, Corse, 24 – 30 Septembre 2006

2.5.9 Financement de la recherche

2.5.9.1 Projets ANR

• Projet ANR MathOcéan (2009 – 2012) : 〈〈Analyse mathématique en océanographie

et applications 〉〉 . Porteur du projet: D. Lannes (ENS Paris)

• Projet ANR HEXECO (2007 – 2010) : 〈〈Hydrodynamique extrême du large à la

côte 〉〉 . Porteur du projet: O. Kimmoun (Ecole Centrale Marseille)

2.5.9.2 Autres projets

• Projet PEPS CNRS (2010 – 2011) 〈〈 Simulation numérique des vagues nonlinéaires

dans les milieux variables 〉〉 . Porteur: D. Dutykh (LAMA, Université de Savoie)

• ProjetPEPS CNRS (2009 – 2010) 〈〈PML, l’arithmétique et le calcul : vers l’arithmétique

et le calcul numérique efficace et élégamment certifié 〉〉 . Porteur: C. Raffalli

(LAMA, Université de Savoie)

• Projet 〈〈 Simulation numérique des avalanches de neige 〉〉 . Porteur: D. Dutykh,

Appel d’offre Cluster Environnement (2009 – 2010), région Rhône-Alpes

http://fvca6.fs.cvut.cz/
http://www.wpi.ac.at/
http://www.lama.univ-savoie.fr/~dutykh/wpi10/
http://www.wpi.ac.at/
http://www.lama.univ-savoie.fr/~dutykh/wpi09/
http://www.cmla.ens-cachan.fr/Utilisateurs/perfortmans/Cargese06/index.html
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2.5.9.3 Mobilité internationale

• Partenariat Hubert Curien – ULYSSES 2010 (coopération franco-irlandaise).

Titre: 〈〈Numerical Models for Compressible and Incompressible Flows and Applica-

tions 〉〉 . Partenaires: School of Mathematical Sciences (University College Dublin),

CMLA (ENS de Cachan). Porteur français: D. Dutykh (LAMA, Université de

Savoie), porteur irlandais: T. Cox (School of Mathematical Sciences, University

College Dublin)

• Projet PICS CNRS (2010 – 2012) 〈〈Numerical simulation of higly nonlinear wa-

ter waves 〉〉 . Partenaire russe: Institute of Computational Technologies, Siberian

Branch of Russian Academy of Sciences and Novosibirsk State University. Porteur

français: D. Dutykh (LAMA, Université de Savoie), porteur russe: Yu. Shokin

(academician, director of Institute of Computational Technologies)

• Coopération franco-russe dans le cadre de l’accord CNRS/ASR 2010. Titre du

projet 〈〈 Solutions analytiques et numériques pour les modèles des avalanches de neige

poudreuse 〉〉 . Porteur français: D. Dutykh (LAMA, Université de Savoie), parte-

naire russe: V. Trushkov (System Ananlysis Research Center, Russian Academy of

Sciences)

2.6 Activités d’enseignement

2005 – 2006: Première année de monitorat à l’ENS de Cachan rattaché au Département

de mathématiques et au Centre d’Initiation à l’Enseignement Supérieur (CIES) de

Versailles

• TDs sur ordinateur deCalcul Scientifique sous MatLab, Option 〈〈Modélisation,

Calcul Scientifique 〉〉 , Préparation à l’agrégation de Mathématiques, Département

de Mathématiques, ENS de Cachan (39h)

• TDs sur ordinateur d’Optimisation sous MatLab, option 〈〈Modélisation, Cal-

cul Scientifique 〉〉 , Préparation à l’agrégation de Mathématiques, Département

de Mathématiques, ENS de Cachan (9h)

• Les oraux blancs, Préparation à l’agrégation de Mathématiques, Département

de Mathématiques, ENS de Cachan (16h)

2006 – 2007: Deuxième année de monitorat à l’ENS de Cachan rattaché au Département

de mathématiques et au Centre d’Initiation à l’Enseignement Supérieur (CIES) de

Versailles
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• TDs sur ordinateur deCalcul Scientifique sous MatLab, Option 〈〈Modélisation,

Calcul Scientifique 〉〉 , Préparation à l’agrgation de Mathématiques,

Département de Mathématiques, ENS de Cachan (64h)

2007 – 2008: Troisième année de monitorat à l’ENS de Cachan rattaché au Département

de mathématiques et au Centre d’Initiation à l’Enseignement Suprieur (CIES) de

Versailles

• TDs sur ordinateur deCalcul Scientifique sous MatLab, Option 〈〈Modélisation,

Calcul Scientifique 〉〉 , Préparation à l’agrégation de Mathématiques, Département

de Mathématiques, ENS de Cachan (64h)

2009 – 2010: Vacations à l’Université de Savoie

• TDs sur ordinateur pour les étudiants de L3 MATH (8h) et L3 MASS (8h) sur

la résolution numérique des Equations Différentielles Ordinaires

2.6.1 Encadrement d’étudiants

2.6.1.1 Étudiants en thèses

• Louis Stephan: participation à l’encadrement avec E. Wurtz (INES-LOCIE, Uni-

versité de Savoie). Sujet de thèse: 〈〈Modélisation de la ventilation naturelle pour

l’optimisation du rafrâıchissement passif des bâtiments 〉〉

2.6.1.2 Stages M2

• Yannick Meyapin (Mars – Juillet 2010): Co-encadrement avec M. Gisclon (LAMA,

Université de Savoie). Sujet: 〈〈Numerical simulation of single-velocity two-phase

flows 〉〉

• Ahmed Ossama Ghanem (Mars – Juillet 2010): Co-encadrement avec M. Gisclon

(LAMA, Université de Savoie) et J. Rajchenbach (LPMC, Université de Nice Sophia-

Antipolis). Sujet: 〈〈Numerical simulation of Faraday instability 〉〉

• Xavier Gardeil (Mars – Septembre 2010): Co-encadrement avec C. Beck (LGCA,

Université de Savoie). Sujet: 〈〈Tsunami wave modeling at the North of Venezuela 〉〉

• Yannick Meyapin (Mars – Juin 2009): Co-encadrement avec M. Gisclon (LAMA,

Université de Savoie). Sujet: 〈〈Velocity and energy relaxation in two-phase flows 〉〉
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• Youen Kervella (Mars – Juillet 2006): Co-encadrement avec F. Dias du stage

de Master 2 Recherche Physique Océan-Atmosphère, Université de Brest. Sujet:

〈〈Comparaison entre les modèles linéaires et nonlinéaires de génération des tsunamis 〉〉

2.6.1.3 Stages M1

• Mahmut Tuz (Mai – Juin 2010): Sujet de stage 〈〈Numerical computation of the

Dirichlet-to-Neumann map 〉〉

2.6.1.4 Autres encadrements

• Ianis Bernard (Mars – Juin 2009): participation à l’encadrement d’un TIPE. Sujet:

〈〈Modélisation d’un soliton hydraulique 〉〉

2.6.2 Participation dans les jurys de thèse

• Louis Stephan: Modélisation de la ventilation naturelle pour l’optimisation du

rafrâıchissement passif des bâtiments, le 16 avril 2010, INES-LOCIE, Université de

Savoie. Directeur de thèse: E. Wurtz

• Marx Chhay: Intégrateurs géométriques: Application à la Mécanique des Fluides,

le 16 décembre 2008, LEPTIAB, Université de La Rochelle. Directeurs de thèse:

A. Hamdouni & P. Sagaut

2.7 Activités collectives

2.7.1 Responsabilités administratives

• Membre du Conseil de l’UFR SFA (2009 - présent)

• Membre du Conseil Recherche du LAMA (2009 - présent)

• Correspondant valorisation du LAMA (2008 - présent)

• Reprsentant du LAMA dans la Fédération de recherche Vulnérabilité des Ou-

vrages aux Risques (VOR) (2008 - présent)

• Correspondant du LAMA pour International Center for Applied Computa-

tional Mechanics (ICACM) (2008 - présent)

http://www.sfa.univ-savoie.fr/
http://www.lama.univ-savoie.fr
http://www.lama.univ-savoie.fr
http://www.lama.univ-savoie.fr/
http://vor.grenoble-inp.fr
http://www.lama.univ-savoie.fr/
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2.7.2 Affiliations professionnelles

• Société de Mathématiques Appliquées et Industrielles (SMAI)

• Société Mathématique de France (SMF)

• The European Mathematical Society (EMS)

• GDR CNRS 2948: Groupement de Recherche MOAD (2005 – 2009) :

MOdélisation, Asymptotique, Dynamique non-linéaire

2.7.3 Séminaires

2008 – prsent: Séminaire de l’équipe EDP, LAMA, Université de Savoie. Participation,

invitation des orateurs.

2004 – 2008: Groupe de travail: 〈〈Mécanique des Fluides Réels 〉〉 .

Ce groupe de travail mensuel, organisé par le CMLA, permet de réunir des chercheurs

de l’Ecole Centrale de Paris, du CEA, d’EDF et du CMLA dont les thèmes de

recherche sont en relation avec la mécanique des fluides.

2.7.4 Événements grand public

• Stand sur les tsunamis en partenariat avec LGCA (Université de Savoie) à la Fête

de la Science 2009 à la Galérie Eureka à Chambéry

• Participation régulière aux Journées Portes Ouvertes de l’Université de Savoie

avec des exposés sur les tsunamis

2.8 Divers

Sport musculation, badminton, cyclisme, randonnée, tennis de table

Passe-temps lecture, photographie

http://smai.emath.fr/
http://smf.emath.fr
http://www.euro-math-soc.eu/
http://moad.univ-lyon1.fr/Main.php
http://www.cmla.ens-cachan.fr/Utilisateurs/perfortmans/GdtMF/
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Chapter 3

Water wave modeling

παντα ρεı, oυδεν µενεı

(Everything flows, nothing is stationary)

Heraclitus
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3.1 Practical use of variational principles for modeling wa-

ter waves

One should always generalize (Man muss immer generalisieren).

Carl Jacobi

You do not really understand something unless you can explain it to your grandmother.

Albert Einstein

Abstract. This Section describes a method for deriving approximate equa-

tions for irrotational water waves. The method is based on a ‘relaxed’ varia-

tional principle, i.e., on a Lagrangian involving as many variables as possible.

This formulation is particularly suitable for the construction of approximate

water wave models, since it allows more freedom while preserving the varia-

tional structure. The advantages of this relaxed formulation are illustrated

with various examples in shallow and deep waters, as well as arbitrary depths.

Using subordinate constraints (e.g., irrotationality or free surface imperme-

ability) in various combinations, several model equations are derived, some

being well-known, other being new. The models obtained are studied analyt-

ically and exact travelling wave solutions are constructed when possible.

3.1.1 Introduction

The water wave problem in fluid mechanics has been known since more than two hun-

dreds years [Cra04]. The classical mathematical formulation of surface gravity waves in-

volves five equations: the irrotationality of the fluid flow, the fluid incompressibility, the

bottom and the surface impermeabilities, and the surface isobarity [Mei89]. This system

of equations cannot be generally solved exactly and, historically, the water wave theory

has been developed by constructing various approximations. In shallow water, we have the

equations of Korteweg and de Vries (1895) [KdV95], Boussinesq (1871) [Bou71a], Benjamin

et al. (1972) [BBM72], Serre (1953) [Ser53], Green and Naghdi (1976) [GN76], Camassa and

Holm (1993) [CH93], Degasperis–Procesi (1999) [DP99], and many other model equations.

For more mathematical derivations and justifications we refer to [BCS02, BCS04, BCL05].

On finite depth and deep water, there is the celebrated nonlinear Schrödinger equation

Mei (1989) [Mei89] and the equations of Dysthe (1979) [Dys79], Trulsen et al. (2000)

[TKDV00], Kraenkel et al. (2005) [KLM05], among others. These equations are most

often derived via some perturbation techniques and are thus valid for waves of small am-

plitude. Moreover, these equations are generally valid for a very limited range of the ratio

wavelength/water depth and for narrow-banded spectra. However, for many applications
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it is necessary to use models uniformly valid for all depths and which are accurate for

large amplitudes. It is well-known in theoretical physics that variational formulations are

tools of choice to derive such approximations when small parameter expansions are inef-

ficient. Variational principles have also the big advantage of ensuring that one can build

approximations with optimal ‘fit’ among all the equations defining the problem at hand.

There are mainly two variational formulations for irrotational surface waves that are

commonly used, namely the Lagrangian of Luke (1967) [Luk67] and the Hamiltonian of

Zakharov (1968) [Zak68]. Details on the variational formulations for surface waves can

be found in review papers, e.g., Radder (1999) [Rad99], Salmon (1988) [Sal88], Zakharov

and Kuznetsov (1997) [ZK97]. The water wave problem is also known to have the multi-

symplectic structure [Bri96]. These variational principles have been exploited, in different

variants, to build analytical and numerical approximations, e.g., [Bal96, KBEW01] just to

mention a few references.

Luke’s Lagrangian assumes that the flow is exactly irrotational, i.e., the Lagrangian

involves a velocity potential but not explicitly the velocity components. If in addition

the fluid incompressibility and the bottom impermeability are satisfied identically, the

equations at the surface can be derived from Zakharov’s Hamiltonian [Zak68]. Thus, both

principles naturally assume that the flow is exactly irrotational, as it is the case of the

water wave problem formulation, but Zakharov’s Hamiltonian is more constrained than

Luke’s Lagrangian. Luke’s and Zakharov’s variational formulations require that part or all

of the equations in the bulk of the fluid and at the bottom are satisfied identically, while

the remaining relations must be approximated [CS93]. It is because the irrotationality and

incompressibility are mathematically easy to fulfill, that they are chosen to be satisfied

identically. Beside simplicity, there are generally no reasons to fulfill irrotationality and/or

incompressibility instead of the impermeability or the isobarity of the free surface, for

example. In this study, we illustrate the benefit of releasing the constraints of exact

irrotationality and incompressibility, since approximations of these relations are sufficient

in most practical cases.

Variational formulations involving as few dependent variables as possible are often

regarded as simpler [YLB08]. It is understandably tempting to solve exactly (i.e., ana-

lytically) as many equations as possible in order to ‘improve’ the solution accuracy. This

is not always a good idea, however. Indeed, numerical analysis and scientific computing

know many examples when efficient and most used algorithms do exactly the opposite.

These so-called relaxation methods — e.g., pseudo-compressibility for incompressible fluid

flows [KKS05] — have proven to be very efficient for stiff problems. The same idea may

also apply to analytical approximations. When solving a system of equations, the exact

resolution of a few equations does not necessarily ensure that the overall error is reduced:
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what really matters is that the global error is minimized. Since for irrotational water waves

it is possible to use a variational formulation, approximations derived from the latter are

guaranteed to be optima.

In this study we would like to elucidate the benefit of using relaxed variational methods

for the water wave problem. In other words, we illustrate the advantage of using a varia-

tional principle involving as many dependent variables as possible. We emphasize that our

primary purpose here is to provide a generalized framework for deriving model equations

for water waves. This methodology is explained on various examples, some of them being

new to our knowledge. However, the potential of the present approach is far from being

fully exploited.

The Chapter is organized as follows. In Section 3.1.2, Luke’s Lagrangian is relaxed

to incorporate explicitly more degrees of freedom. This modification yields the Hamilton

principle in its most general form. The advantage of this formulation is subsequently illus-

trated with examples over a fixed horizontal bottom, for the sake of simplicity. We begin

in Section 3.1.3 with shallow water models, where some well-known and a few novel mod-

els are derived from the same Lagrangian, but with different subordinate constraints. In

Section 3.1.4, similar model equations are derived in the deep water limit. In particular, a

generalization of the Klein–Gordon equation and a remarkably simple accurate approxima-

tion for traveling waves are derived. A generalized ansatz, including the shallow and deep

waters as limiting particular cases is presented in Section 3.1.5. Further generalizations

are discussed in Section 3.1.6 and their advantage is illustrated with a variant of Serre’s

equations. Finally, conclusions and perspectives for future studies are outlined in Section

3.1.7.

3.1.2 Generalized variational formulation

Water wave problem possesses several variational structures [Whi65, Luk67, Zak68].

In the present study we will extensively exploit the Lagrangian variational formalism.

Surface gravity wave equations, for a potential flow with an impermeable bottom and an

impermeable free surface where the pressure is constant (taken to be zero), can be derived

minimizing the following functional [Luk67]:

L =

∫ t2

t1

∫

Ω

L ρ d2
x dt, L = −

∫ η

−d

[
gy + φt +

1
2
(∇φ)2 + 1

2
φ 2
y

]
dy, (3.1)

with x = (x1, x2) the horizontal Cartesian coordinates, y the upward vertical coordinate,

t the time, ∇ the horizontal gradient, Ω the horizontal domain, φ the velocity potential

and g > 0 the acceleration due to gravity; y = η(x, t), y = 0 and y = −d(x, t) being,

respectively, the equations of the free surface, of the still water level and of the bottom.
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For the sake of simplicity, the surface tension effect is neglected and the fluid density ρ is

constant (and can thus be set to unity without any loss of generality), but this is not a

limitation for the purpose of this study.

Integrating by parts, then neglecting the terms at the horizontal and temporal bound-

aries because they do not contribute to the minimization (this will be done repeatedly below

without explicit mention), Luke’s variational formulation (3.1) can be rewritten with the

following Lagrangian density:

L = φ̃ ηt + φ̌ dt − 1
2
gη2 + 1

2
gd2 −

∫ η

−d

[
1
2
(∇φ)2 + 1

2
φ 2
y

]
dy, (3.2)

where the over ‘tildes’ and ‘wedges’ denote, respectively, the quantities written at the free

surface y = η and at the bottom y = −d. We shall also denote with ‘bars’ the quantities

averaged over the water depth, e.g.

ū(x, t) ≡ 1

η(x, t) + d(x, t)

∫ η(x,t)

−d(x,t)

u(x, y, t) dy.

The variational formulations (3.1) and (3.2) impose that any approximation is exactly

irrotational, i.e., the choice of an ansatz for φ necessarily implies an irrotational motion.

Note that the term 1
2
gd2 in (3.2) can be omitted because, d being prescribed, it does not

contribute to the minimization process. Note also that Luke’s Lagrangian (3.1) can been

extended to the case where the bottom function d(x, t) is unknown if a condition at y = −d
is added to the problem [TC88].

To give us more freedom while keeping an exact formulation, the variational principle is

modified (relaxed) by introducing explicitly the horizontal velocity u = ∇φ and the vertical

one v = φy. The variational formulation can thus be reformulated with the Lagrangian

density

L = φ̃ηt + φ̌dt − 1
2
gη2 −

∫ η

−d

[
1
2
(u2 + v2) + µ · (∇φ− u) + ν(φy − v)

]
dy, (3.3)

where the Lagrange multipliers µ and ν have to be determined. By variations with respect

of u and v, one finds at once the definition of the Lagrange multipliers:

µ = u, ν = v. (3.4)

Using these definitions, (3.3) becomes

L = φ̃ ηt + φ̌ dt − 1
2
g η2 +

∫ η

−d

[
1
2
u

2 + 1
2
v2 − u · ∇φ − v φy

]
dy. (3.5)

However, it is advantageous to keep the most general form of the Lagrangian (3.3), be-

cause it allows to choose ansatz for Lagrange multipliers µ and ν that are different
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from the velocity field u and v. Indeed, the Lagrangian density (3.3) involves six vari-

ables {η, φ,u, v,µ, ν}, while the simplified Lagrangian (3.5) involves only four variables

{η, φ,u, v} and the original Lagrangian (3.2) only two (η and φ). These additional vari-

ables introduce additional freedom in the construction of approximations, thus allowing

more subordinate relations to be fulfilled. The Lagrangian density (3.5) was used by Kim

et al. (2001) [KBEW01] to derive the ‘irrotational’ Green–Naghdi equations for long waves

in shallow water. The more general Lagrangian density (3.3) provides more flexibility to

derive model equations, as illustrated below.

The connection of (3.3) with the variational formulation of the classical mechanics

can be seen applying Green’s theorem to (3.3) that yields another equivalent variational

formulation involving the Lagrangian density

L = (ηt + µ̃ · ∇η − ν̃) φ̃ + (dt + µ̌ · ∇d+ ν̌) φ̌ − 1
2
g η2

+

∫ η

−d

[
µ · u− 1

2
u

2 + νv − 1
2
v2 + (∇ · µ+ νy)φ

]
dy, (3.6)

which in deep water limit (d→∞) becomes (if φ decay faster than y−1 as y → −∞)

L = (ηt + µ̃ · ∇η − ν̃) φ̃ − 1
2
g η2

+

∫ η

−∞

[
µ · u− 1

2
u

2 + νv − 1
2
v2 + (∇ · µ+ νy)φ

]
dy.

Thus, in the special case µ = u and ν = v, the Hamilton principle of classical mechanics

is recovered in Eulerian description of motion, i.e., the variational principle involves the

kinetic energy minus the potential energy plus some constraints for the fluid incompress-

ibility, for the flow irrotationality and for the bottom and surface impermeabilities, as

already pointed out by Miles [Mil77]. In other words, the Lagrangian density (3.6) is the

Hamilton principle in its most general form for irrotational surface gravity waves.

Note that, via the integration by parts, the term ηtφ̃, for example, can be replaced

by −ηφ̃t in all the Lagrangian densities given above, without loss (nor gain) of general-

ity. Note also that the relaxed variational formulations involving (3.3) and (3.6) being

strictly equivalent, one should use the more convenient one depending on the problem un-

der consideration. Note finally that extensions of (3.3) and (3.6) including, e.g., obstacles,

surface tensions and stratifications in several homogeneous layers are straightforward gen-

eralizations. For instance, to include the surface tension it is sufficient to add the term

−σ(
√

1 + (∇η)2−1) into the definition of the Lagrangian density (3.6), σ being the surface

tension coefficient.

The goal in this study is to illustrate the power of the relaxed variational principle via

some simple examples. We shall thus consider, for simplicity, a fixed horizontal bottom and
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we shall derive various approximate equations for shallow and deep waters. Possibilities

for arbitrary depths and some other generalizations will also be discussed.

3.1.3 Examples in shallow water

Let consider first the shallow water case, with constant depth for the clarity of exposi-

tion. We introduce a realistic ansatz for these waves and then apply several constraints to

derive various approximations, some of them being well-known, others being new.

3.1.3.1 Choice of a simple ansatz

For a long wave in shallow water, in potential motion on a horizontal impermeable sea

bed at y = −d, it has long been noticed that the velocity field can be well approximated

truncating the following expansion by Lagrange (1781) [Lag81]:

u = ǔ − 1
2
(y + d)2∇2

ǔ + 1
24
(y + d)4∇4

ǔ + · · · . (3.7)

All Lagrange’s followers (e.g., Airy, Boussinesq, Rayleigh and many others) used this type

of expansions to derive their respective approximations [Cra04]. Reviews on shallow water

approximations can be found in Bona et al. (2002, 2004) [BCS02, BCS04], Kirby (1997)

[Kir97], Madsen and Schäffer (1999) [MS99], Wu (2001) [Wu01], Dougalis & Mitsotakis

(2008) [DM08], among others.

We consider here a simple ansatz of polynomial type, that is a zeroth-order polynomial

in y for φ and for u, and a first-order one for v, i.e., we approximate flows that are nearly

uniform along the vertical direction. Our ansatz thus reads

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ (y + d) (η + d)−1 ṽ(x, t). (3.8)

Such ansatz are the basis of most shallow water approximations. We have also to introduce

suitable ansatz for the Lagrange multiplier µ and ν. Since µ = u and ν = v for the exact

solution, the natural ansatz for the multipliers are

µ ≈ µ̄(x, t), ν ≈ (y + d) (η + d)−1 ν̃(x, t). (3.9)

With the ansatz (3.8) and (3.9), the Lagrangian density (3.6) becomes

L = (ηt + µ̄ · ∇η) φ̄ − 1
2
g η2

+ (η + d)
[
µ̄ · ū − 1

2
ū

2 + 1
3
ν̃ ṽ − 1

6
ṽ2 + φ̄∇ · µ̄

]
. (3.10)

Using the Green formula, the variational problem can also be written such that the La-

grangian density is in the following simpler form

L = φ̄ηt − 1
2
gη2 + (η + d)

[
µ̄ · ū− 1

2
ū

2 + 1
3
ν̃ṽ − 1

6
ṽ2 − µ̄ · ∇φ̄

]
. (3.11)
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The two Lagrangian densities (3.10) and (3.11) differing by a divergence term, they yield

exactly the same equations. Thus, depending on the constraints, we use the Lagrangian

density leading to the simpler expression. We now investigate equations led by this shallow

water model under various subordinate relations.

3.1.3.2 Unconstrained approximation

Without further constraints, the minimization of (3.11) yields

δ ū : 0 = µ̄ − ū, (3.12)

δ ṽ : 0 = ν̃ − ṽ, (3.13)

δ µ̄ : 0 = ū − ∇φ̄, (3.14)

δ ν̃ : 0 = ṽ, (3.15)

δ φ̄ : 0 = ηt + ∇ · [ (η + d) µ̄ ] , (3.16)

δ η : 0 = µ̄ · ū − 1
2
ū

2 + 1
3
ν̃ ṽ − 1

6
ṽ2 − µ̄ · ∇φ̄ − φ̄t − g η. (3.17)

The relations (3.12)–(3.15) imply that the motion is exactly irrotational, but the fluid in-

compressibility is not satisfied identically. With these four relations, the last two equations

can be rewritten in the form:

ht + ∇ · [ h ū ] = 0, (3.18)

ūt + (ū · ∇) ū + g∇h = 0, (3.19)

where h = η + d is the total water depth. Equations (3.18)–(3.19) are the very well-

known nonlinear shallow water equations, also known as Airy or Saint-Venant equations

(Wehausen & Laitone 1960 [WL60], §28). They are sometimes called non-dispersive fully-

nonlinear approximation because their classical derivation assumes long waves without the

extra hypothesis of small amplitudes.

The Saint-Venant equations do not admit smooth progressive wave solutions. They

are nevertheless widely used because they can be solved analytically by the method of

characteristics [Sto57]. Moreover, numerous efficient finite volumes type schemes have

been proposed [ZCIM02]. These equations have also been validated by comparisons with

experimental data even for the wave runup case [Syn87]. Below we present several more

elaborated models.

3.1.3.3 Constraining with free surface impermeability

We now constrain the ansatz (3.8) imposing that the impermeability of the free surface

is satisfied identically. Since the surface impermeability is expressed through the velocity
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(µ, ν) in (3.6), we substitute

ν̃ = ηt + µ̄ · ∇η, (3.20)

into the Lagrangian density (3.10), and the minimization procedure gives

δ ū : 0 = µ̄ − ū, (3.21)

δ ṽ : 0 = ηt + µ̄ · ∇η − ṽ, (3.22)

δ µ̄ : 0 = ū + 1
3
ṽ∇η − ∇φ̄, (3.23)

δ φ̄ : 0 = ηt + ∇ · [ (η + d) µ̄ ] , (3.24)

δ η : 0 = µ̄ · ū − 1
2
ū

2 − 1
6
ṽ2 − µ̄ · ∇φ̄ − φ̄t − g η

− 1
3
(η + d) [ ṽt + µ̄ · ∇ṽ + ṽ∇ · µ̄ ] . (3.25)

The relations (3.21) and (3.23) link the velocity potential and the horizontal velocity as

∇φ̄ 6= ū = µ̄ and, therefore, equations (3.21)–(3.25) cannot be derived from Luke’s vari-

ational principle. Nevertheless, the relaxed variational principle ensures that the vorticity

induced by the ansatz choice is minimum. Relations (3.21) and (3.24) provide the mass

conservation and hence, with (3.20), the approximation (3.21)–(3.25) implies that the fluid

incompressibility is fulfilled identically.

Eliminating φ̄, µ̄ and ṽ from the horizontal gradient of (3.25), the system (3.21)–(3.25)

becomes

ht +∇ · [hū] = 0, (3.26)

ūt + ū · ∇ū+ g∇h+ 1
3
h−1

∇[h2γ̃] = (ū · ∇h)∇(h∇ · ū)

− [ ū · ∇(h∇ · ū) ]∇h, (3.27)

with h = η + d and where

γ̃ = ṽt + ū · ∇ṽ = h
{
(∇ · ū)2 − ∇ · ūt − ū · ∇ [∇ · ū ]

}
, (3.28)

is the fluid vertical acceleration at the free surface.

In the two-dimensional case (one horizontal dimension) the right-hand side of (3.27)

vanishes and the system (3.26), (3.27) reduces to the equations first derived by Serre (1953)

[Ser53], independently rediscovered by Su and Gardner (1969) [SG69] and again by Green,

Laws and Naghdi (1974) [GLN74]. It is sometimes called weakly-dispersive fully-nonlinear

approximation [Wu01]. These equations admit a traveling solitary wave solution

η = a sech2 1
2
κ(x1 − ct), c2 = g (d+ a), (κd)2 = 3 a (d+ a)−1,

which is linearly stable [Li02]. Note that this solution does not impose any limitation on

the wave amplitude, meaning that Serre’s equations are inconsistent for the highest waves.

Note also that the Serre equations have a non-canonical Hamiltonian structure [Li02].
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In three dimensions, equations (3.26)–(3.27) were called by Kim et al. (2001) [KBEW01]

‘irrotational’ Green–Naghdi equations. If the right-hand side of (3.27) is neglected, we

recover the classical Green–Naghdi equations [GN76].

Craig and Grooves (1994) [CG94], and many others, also derived various shallow water

models starting from a variational principle. The main difference with our approach is

that we do not introduce any small parameter but we make assumptions on the vertical

structure of the flow.

3.1.3.4 Constraining with incompressibility and partial potential flow I

Here, we restrict the freedom imposing that the velocity potential is related to the

horizontal velocity as u = ∇φ, and that the fluid incompressibility ∇ · u + vy = 0 is

fulfilled, together with the relations µ = u and ν = v, i.e., we take the subordinate

conditions

µ̄ = ū, ν̃ = ṽ, ū = ∇φ̄, ṽ = −(η + d)∇2φ̄.

These constraints do not impose exact irrotationality because v 6= φy. Obviously, we shall

derive an approximation which lies “between” the Saint-Venant and Serre equations.

Thus, the Lagrangian density (3.11) becomes

L = φ̄ ηt − 1
2
g η2 − 1

2
(η + d)

(
∇φ̄
)2

+ 1
6
(η + d)3

(
∇

2φ̄
)2
,

and its minimization yields

δ φ̄ : 0 = ηt + ∇ ·
[
(η + d)∇φ̄

]
+ 1

3
∇

2
[
(η + d)3

(
∇

2φ̄
) ]
,

δ η : 0 = φ̄t + g η + 1
2

(
∇φ̄
)2 − 1

2
(η + d)2

(
∇

2φ̄
)2
.

It seems that these equations have never appeared before in the literature. They are

a generalization of the so-called Kaup–Boussinesq (or canonical Boussinesq) equations

[Kau75, Kup85] and are thus referred to as the gKB equations. This can be seen noticing

that the gKB equations can be derived from the canonical Hamiltonian∫

Ω

{
1
2
g η2 + 1

2
(η + d)

(
∇φ̄
)2 − 1

6
(η + d)3

(
∇

2φ̄
)2 }

d2
x, (3.29)

while the classical Kaup–Boussinesq (cKB) equations are obtained replacing (η + d)3 by

d3 in (3.29) and restricting the resulting Hamiltonian to one horizontal dimension.

The linearized gKB and cKB systems admit the special traveling wave solution

η = a cos k(x1 − ct), c2 = gd (1− 1
3
k2d2), (3.30)

implying that these equations are linearly ill-conditioned (c2 < 0 for kd >
√
3). However,

if, like the cKB, the gKB equations are integrable, they may be a somewhat interesting

model for gravity waves in shallow water.



3.1 Relaxed variational principle for water waves 55

3.1.3.5 Constraining with incompressibility and partial potential flow II

So far, all the approximations derived turned out to be such that µ = u and ν = v.

We propose here a novel approximation that does not satisfies one of these identities and

that is an interesting variant of the previous model.

We impose a partially potential flow such that µ = ∇φ and ν = φy, together with the

incompressibility condition ∇ · u + vy = 0 and the condition u = µ. Thus, substituting

the constraints

µ̄ = ū = ∇φ̄, ν̃ = 0, ṽ = −(η + d)∇2φ̄,

into the Lagrangian density (3.11) yields

L = φ̄ ηt − 1
2
g η2 − 1

2
(η + d)

(
∇φ̄
)2 − 1

6
(η + d)3

(
∇

2φ̄
)2
,

and the minimization procedure gives the equations

δ φ̄ : 0 = ηt + ∇ ·
[
(η + d)∇φ̄

]
− 1

3
∇

2
[
(η + d)3

(
∇

2φ̄
) ]
, (3.31)

δ η : 0 = φ̄t + g η + 1
2

(
∇φ̄
)2

+ 1
2
(η + d)2

(
∇

2φ̄
)2
. (3.32)

These equations can be derived from the canonical Hamiltonian

∫

Ω

{
1
2
g η2 + 1

2
(η + d)

(
∇φ̄
)2

+ 1
6
(η + d)3

(
∇

2φ̄
)2 }

d2
x,

which is always positive (an interesting feature for modeling water waves). To the linear

approximation, equations (3.31), (3.32) have the progressive wave solution

η = a cos k(x1 − ct), c2 = gd (1 + 1
3
k2d2), (3.33)

which is well-behaved (i.e., c2 is never negative). Comparisons with the gKB equations

suggest to refer to equations (3.31)–(3.32) as regularized general Kaup-Boussinesq (rgKB).

However, the linear dispersion relation (3.33) approximates the dispersion relation of linear

waves — i.e., c2 = g tanh(kd)/k— only to the order O(k2), while (3.30) is O(k4). Therefore,

the rgKB equations are not very interesting for modeling water waves, but these equations

may be of interest to model other physical processes.

3.1.3.6 Other constraints and generalizations

We briefly discuss now some other possible generalizations.
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3.1.3.6.1 Constraining with incompressibility and potential flow I In the previous

example, we have constructed an approximation such that µ = u but ν 6= v. Now, we

release the constraint µ = u and keep the other constraints. Thus, we impose

µ̄ = ∇φ̄, ν̃ = 0, ṽ = −(η + d)∇ · ū,

so that the pseudo velocity field (µ, ν) is irrotational while the velocity field (u, v) is

incompressible. After same elementary algebra, the Lagrangian density becomes

L = φ̄ ht − 1
2
g η2 + h ū · ∇φ̄ − 1

2
h ū2 − 1

6
h3 (∇ · ū)2 − h

(
∇φ̄
)2
,

where h = η + d. The minimization procedure yields

δ ū : 0 = h∇φ̄ − h ū + 1
3
∇
[
h3∇ · ū

]
,

δ φ̄ : 0 = ht − ∇ · [ h ū ] + 2∇ ·
[
h∇φ̄

]
,

δ η : 0 = φ̄t + g η + 1
2
ū

2 +
(
∇φ̄
)2 − ū · ∇φ̄ + 1

2
h2 (∇ · ū)2 .

The linearization of this system of equations have a (2π/k)-periodic sinusoidal traveling

wave solution with the dispersion relation

c2 = gd (1 + 2
3
k2d2) (1 + 1

3
k2d2)−1 = gd (1 + 1

3
k2d2) + O(k4),

which, like the previous example, is not satisfactory for water waves. However, these

equations may be of interest in other contexts than water waves.

3.1.3.6.2 Constraining with incompressibility and potential flow II We now assume

that the pseudo velocity field (µ, ν) is divergence free, while the velocity field (u, v) is

irrotational, i.e., we impose the constraints

ū = ∇φ̄, ṽ = 0, ν̃ = −(η + d)∇ · µ̄.

The Lagrangian density becomes

L = φ̄ ηt − 1
2
g η2 − 1

2
(η + d)

(
∇φ̄
)2
,

which, after minimization, yields the Saint-Venant equations. Thus, these constraints do

not bring anything new. It should be emphasized that this is the case for the special

shallow water ansatz we are considering here, but this is not necessarily the case for other

ansatz.



3.1 Relaxed variational principle for water waves 57

3.1.3.6.3 Further possibilities The constraints of Sections (3.1.3.4) to (3.1.3.6.2) can

be unified into a single formalism considering combinations. Indeed, the velocity field (u, v)

being not more (nor less) physical than the pseudo-velocity field (µ, ν) and the potential

velocity field (∇φ, φy), the constraints can be imposed by combinations of these three

fields. For instance, we could impose the irrotationality for the field

( c1u + c2µ + (1− c1 − c2)∇φ , c1v + c2ν + (1− c1 − c2)φy ),

the fluid incompressibility for the field

( c3u + c4µ + (1− c3 − c4)∇φ , c3v + c4ν + (1− c3 − c4)φy ),

and so on for any constraint we may think of. The cn are parameters at our disposal. We can

choose them in a convenient way based on some mathematical and physical considerations.

For example, imposing that the approximate equations derived must be linearly well-posed

and/or have better dispersion relation properties.

In the examples above, only some kinematic constraints (irrotationality, incompress-

ibility, impermeability) were used. We could have also considered dynamical constraints

based on, e.g., the Bernoulli equation, or other relevant dynamical equations.

The relaxed variational principle provided a common platform for deriving several shal-

low water equations from the same ansatz in changing only the constraints. Beside the

ansatz, no further approximation were made and the derivations required only some el-

ementary algebra. Using more general ansatz — i.e., involving more free functions and

parameters — one can introduce more constraints, if desired, and derives more accurate

approximations. A simple example is given in Section 3.1.6 below.

3.1.4 Examples in deep water

We illustrate here the advantages of the relaxed variational principle in the opposite

limiting case of deep water.

3.1.4.1 Choice of an ansatz

For progressive waves in deep water, the Stokes expansion shows that the velocity

field varies nearly exponentially along the vertical (Appendix 3.1.8). Even for very large

unsteady waves (including breaking waves), accurate numerical simulations and experi-

ments have shown that the vertical variation of the velocity field is indeed very close to

an exponential [GCHJ03, JCHG07]. Thus, this property is exploited here to derive simple

approximations for waves in deep water.
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Let κ > 0 be a characteristic wavenumber corresponding, for example, to the carrier

wave of a modulated wave group or to the peak frequency of a JONSWAP spectrum.

Following the discussion above, it is natural to seek approximations in the form

{φ ; u ; v ; µ ; ν } ≈ { φ̃ ; ũ ; ṽ ; µ̃ ; ν̃ } eκ(y−η), (3.34)

where φ̃, ũ, ṽ, µ̃ and ν̃ are functions of x and t that will be determined using the variational

principle. The ansatz (3.34) is certainly the simplest possible that is consistent with exper-

imental evidences. This ansatz has already been used by Kraenkel et al. (2005) [KLM05]

for building their approximation. Possible generalizations are discussed in Section 3.1.6.

For the sake of simplicity, we introduce the constraints µ̃ = ũ and ν̃ = ṽ. Thus, the

ansatz (3.34) substituted into the Lagrangian density (3.5) yields

2κL = 2κ φ̃ ηt − gκ η2 + 1
2
ũ

2 + 1
2
ṽ2 − ũ · (∇φ̃− κφ̃∇η) − κ ṽ φ̃. (3.35)

With (or without) subordinate relations, this Lagrangian gives various equations. We

investigate two cases here.

3.1.4.2 Unconstrained approximation

Without further constraints, the minimization procedure yields

δ ũ : 0 = ũ − ∇φ̃ + κ φ̃∇η,

δ ṽ : 0 = ṽ − κ φ̃,

δ φ̃ : 0 = 2κ ηt + ∇ · ũ − κ ṽ + κ ũ · ∇η,

δ η : 0 = 2gκ η + 2κ φ̃t + κ∇ · ( φ̃ ũ ).

The two first relations imply that this approximation is exactly irrotational and their use

in the last two equations gives

ηt +
1
2
κ−1

∇
2φ̃ − 1

2
κφ̃ = 1

2
φ̃
[
∇

2η + κ (∇η)2
]
, (3.36)

φ̃t + g η = −1
2
∇ ·

[
φ̃∇φ̃ − κ φ̃2

∇η
]
. (3.37)

Since equations (3.36)–(3.37) derive from an irrotational motion, they can also be obtained

from Luke’s Lagrangian (3.2) under ansatz (3.34). Equations (3.36)–(3.37) are a deep water

counterpart of Saint-Venant equations for shallow water waves; this claim will appear

clearer in Section 3.1.5. They can also be derived from the canonical Hamiltonian

∫

Ω

{
1
2
g η2 + 1

4
κ−1

[
∇φ̃ − κ φ̃∇η

]2
+ 1

4
κ φ̃2

}
d2
x. (3.38)
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This ‘simple’ Hamiltonian is quartic in nonlinearities and involves only first-order deriva-

tives. It has to be compared with Zakharov’s quartic Hamiltonian (3.58) which involves

second-order derivatives and pseudo-differential operators. However, Zakharov’s quartic

Hamiltonian is valid for broad spectra. Note that the Hamiltonian (3.38) cannot be derived

from the exact one (3.57), since the latter assumes that irrotationality and incompressibil-

ity are both satisfied identically in the bulk, while the incompressibility is not fulfilled by

equations (3.36)–(3.37).

To the linear approximation, after elimination of φ̃, equations (3.36)–(3.37) yield

ηtt − 1
2
(g/κ)∇2η + 1

2
g κ η = 0, (3.39)

that is a Klein–Gordon equation. For this reason, equations (3.36)–(3.37) will be referred

here as generalized Klein–Gordon (gKG). The Klein–Gordon equation is prominent in

mathematical physics and appears, e.g., as a relativistic generalization of the Schrödinger

equation. The Klein–Gordon equation (3.39) admits a special (2π/k)-periodic traveling

wave solution

η = a cos k(x1 − ct), c2 = 1
2
g (k2 + κ2) (κ k2)−1.

Therefore, if k = κ the exact dispersion relation of linear waves (i.e., c2 = g/k) is recovered,

as it should be. This means, in particular, that the gKG model is valid for spectra narrow-

banded around the wavenumber κ.

We focus now on (2π/κ)-periodic progressive waves solution of the gKG equations, i.e.,

we seek for solutions depending only on the variable θ = κ(x1−ct). We were not able to

find an exact analytic solution but a Stokes-like expansion gives some interesting insights.

To the seventh-order, we have

κ η = α cos θ + 1
2
α2
(
1+ 25

12
α2+ 1675

192
α4
)
cos 2θ

+ 3
8
α3
(
1+ 99

16
α2+ 11807

320
α4
)
cos 3θ + 1

3
α4
(
1+ 64

5
α2
)
cos 4θ

+ 125
384
α5
(
1+ 6797

300
α2
)
cos 5θ + 27

80
α6 cos 6θ + 16807

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 φ̃ = α
(
1− 1

4
α2− 59

96
α4− 4741

1536
α6
)
sin θ + 1

2
α2
(
1+ 11

12
α2+ 547

192
α4
)
sin 2θ

+ 3
8
α3
(
1+ 163

48
α2+ 221

15
α4
)
sin 3θ + 1

3
α4
(
1+ 149

20
α2
)
sin 4θ

+ 125
384
α5
(
1+ 5057

375
α2
)
sin 5θ + 27

80
α6 sin 6θ + 16807

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c = 1 + 1
2
α2 + 1

2
α4 + 899

384
α6 +O(α8).

The expansions of η and φ̃ match the exact Stokes wave (c.f. Appendix 3.1.8) up to the

third-order (non-matching coefficients are displayed bold). This is not surprising since the

gKG equations are cubic in nonlinearities. A bit more surprising is that the phase velocity
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c is correct up to the fifth-order. But the most interesting is that, to the leading order, the

n-th Fourier coefficient is (for all n up to infinity)

nn−2 αn

2n−1 (n−1)! , (3.40)

which is also the case for the exact Stokes wave (Appendix 3.1.8).

In comparison, for the cubic Zakharov equations (3.59)–(3.60), the phase velocity is

correct only up to the third-order and the Fourier coefficients do not verify the asymptotic

behavior (3.40) (see Appendix 3.1.9). Truncating Zakharov’s Hamiltonian at the order

N + 1 in nonlinearities, the corresponding Stokes double series is correct up to the order

N in the expansion parameter. But none of these higher approximations have the exact

asymptotic behavior (3.40) for their Fourier coefficients because they involve expansions

around η = 0, while the gKG does not.

3.1.4.3 Constraining with the free surface impermeability

In order to satisfy the free surface impermeability identically, we take

ṽ = ηt + ũ · ∇η,

and the Lagrangian density (3.35) becomes

2κL = φ̃ (κ ηt +∇ · ũ) − gκ η2 + 1
2
ũ

2 + 1
2
(ηt + ũ · ∇η)2, (3.41)

while the minimization procedure yields the equations

δ ũ : 0 = ũ+ (ηt + ũ · ∇η)∇η −∇φ̃, (3.42)

δ φ̃ : 0 = κηt +∇ · ũ, (3.43)

δ η : 0 = 2gκη + κφ̃t + ηtt + (ũ · ∇η)t +∇ · (ũηt) +∇ · [(ũ · ∇η)ũ]. (3.44)

The relation (3.43) implying that ∇·u+vy = 0, the solution satisfies the incompressibility

identically. On the other hand, the irrotationality being not verified identically, equations

(3.42)–(3.44) cannot be derived from Luke’s variational formulation. Note that (3.42)

yields ∇φ̃ = ũ+ ṽ∇η that is exact for potential flows [CS93, FCKG05].

As for the shallow water case, the potential φ̃ can be eliminated from equations (3.42),

thus yielding a deep water analog of Serre’s and the Green–Naghdi equations.

To the linear approximation, relations (3.42)–(3.44) can be combined into a single

equation for the elevation of the free surface:

(∇2 − κ2) ηtt + 2 g κ∇2η = 0,
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which admits the special (2π/k)-periodic solution

η = a cos k(x1 − ct), c2 = 2 g κ (k2 + κ2)−1.

Therefore, if k = κ the exact linear approximation is recovered, as it should be. Again, this

means that this model is valid for narrow-banded spectra. How narrow will be investigated

now.

3.1.4.3.1 Two-dimensional progressive waves We seek now exact solutions depending

only on ξ ≡ x1 − ct (two-dimensional progressive waves). Equations (3.42)–(3.43) yield

respectively

φ̃ξ = ũ + (ũ− c) η 2
ξ , ũ = c κ η + cK1,

where K1 is an integration constant. Substituting these relations into (3.44) and multiply-

ing the result by ηξ, after one integration and some algebra, we obtain

(
d η

dξ

)2

=
K 2

0 −
(
κ η − K1 ε̂

−2
)2

ε̂−2 (κ η + K1 − 1 )2
, (3.45)

where

ε̂2 ≡ 2 g κ−1 c−2 − 1,

and where K0 is another integration constant. Assuming that ηξ = 0 at the wave crest

where η = a and at the trough where η = −b (hence a + b is the total wave height), we

find

K0 = 1
2
κ (a+ b), K1 = 1

2
κ (a− b) ε̂2.

Solving equation (3.45), together with the condition of zero mean free surface elevation,

we obtain an exact (2π/k)-periodic solution in the parametric form [Gen03]:

k ξ(τ) = τ − ε ε̂−1 sin τ, k η(τ) = 1
2
ε2 ε̂−1 + ε cos τ, (3.46)

with

ε = 1
2
k (a+ b), k κ−1 = ε̂ + 1

2
( ε̂−1 + ε̂ ) ε2,

ε being a wave steepness and τ being a parametric variable such that a crest is at τ = 0 and

the closest troughs at τ = ±π. This remarkably simple solution describes surface waves

as trochoids. Smooth surface profiles are obtained for 0 6 ε < ε̂, ε ≪ ε̂ corresponding to

quasi-sinusoidal solutions (infinitesimal waves). For the limiting case ε = ε̂, in the vicinity

of the crest k(a−η) ∼ 1
2
ε(6kξ)

2

3 so the solution involves a sharp angle forming a 0◦ inner

angle (i.e., a cusp), while the exact angle should be 120◦ for irrotational traveling waves.

So far, κ is a free parameter at our disposal. We shall now investigate various choices.
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3.1.4.3.2 Simple approximation A ‘natural’ choice is to take κ = k, yielding the steep-

ness ε̂ ≈ 0.596 for the limiting wave. With this peculiar choice of κ, a Stokes-like expansion

of the solution of (3.46) is

k η = α cos kξ + 1
2
α2
(
1+ 13

12
α2+ 395

192
α4
)
cos 2kξ

+ 3
8
α3
(
1+ 35

16
α2+ 1727

320
α4
)
cos 3kξ + 1

3
α4
(
1+ 33

10
α2
)
cos 4kξ

+ 125
384
α5
(
1+ 53

12
α2
)
cos 5kξ + 27

80
α6 cos 6kξ + 16807

46080
α7 cos 7kξ + O(α8),√

k/g c = 1 + 1
2
α2 + 1

2
α4 + 611

384
α6 +O(α8).

As for the gKB approximation, the Fourier coefficients of this Stokes-like expansion satisfy

the asymptotic expression (3.40) and the expansion of c is exact up to the fifth-order.

Therefore, taking κ = k leads to a quite accurate approximation. However, the optimum

value of κ leads to an even more interesting approximation.

3.1.4.3.3 Optimum parameter With the trochoidal solution and the relation between

the parameters obtained above, the Lagrangian density (3.41) integrated over one wave-

length yields the Lagrangian

L =
π g ε4

4 k3
=

π g

k3

[
− 1 +

κ c2

2 g
+

√
k2 c2

2 g κ
− k2 c4

4 g2

]2
.

Thus, the Lagrangian is minimum when the steepness is minimum or, equivalently, the

wavelength is maximum if the wave height is kept constant. The variational principle

being defined with fixed horizontal and temporal boundaries, the optimum parameter κ

is obtained minimizing L keeping k and c constant. After some algebra, the equation

dL/dκ = 0 gives two possible solutions for κ:

κ± =
√
2 k
[
1 + 2ε2 ±

√
1− 4ε2

]− 1

2

,

provided that ε 6 1/2. Both solutions correspond to an extremum of L. However, a

solution is stable only if the optimal κ is a minimum of L, i.e., if

d2L

dκ2

∣∣∣∣
κ=κ±

> 0,

which, after some algebra, yields the condition
√
3 ε κ± < k. (3.47)

The first solution

κ+ / k =
√
2
[
1 + 2ε2 +

√
1− 4ε2

]− 1

2

= 1 + 1
2
ε4 + O

(
ε6
)
,
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is very close to the wavenumber k when the steepness ε is small. When the steepness

increases form 0 to 1/2, the dimensionless parameters κ/k, kc2/g and
√
3εκ/k increase

monotonically. The highest wave is obtained for ε = 1/2, where κ/k = 2/
√
3 ≈ 1.15,

kc2/g = 3
√
3/4 ≈ 1.3 and

√
3εκ/k = 1. All these waves are smooth and stable because

condition (3.47) is fulfilled.

The second solution

κ− / k =
√
2
[
1 + 2ε2 −

√
1− 4ε2

]− 1

2

,

is admissible (i.e., real) if 1/2 > ε >
√√

5− 2 ≈ 0.486. As the steepness decays form 1/2

to
√√

5− 2, the crest sharpens, the limiting value ε = ε̂ =
√√

5− 2 corresponding to

a cusp at the crest. Thus the sharp-crested wave is not the highest one. All these waves

are unstable because condition (3.47) is violated, i.e., the solution κ− is a maximum of the

Lagrangian and not a minimum.

Remark 1. Taking the optimum parameter κ has improved the accuracy of the approxi-

mation. The main gain is qualitative, however. Indeed, we found that waves are unstable

before a sharp crest is formed. Such behavior is not predicted by low-order perturbation

expansions. This simple example is a remarkable illustration of the power of the varia-

tional method. The trochoidal wave described here is probably the approximation with the

highest ratio accuracy/complexity ever derived for a traveling wave in deep water. This

approximation has first been derived by Geniet (2003) [Gen03] via a different approach.

3.1.5 Arbitrary depth

A general ansatz, for waves in finite constant depth and satisfying identically the bottom

impermeability, is suggested by the linear theory of water waves:

φ ≈ cosh κY

cosh κh
φ̃(x, t), u ≈ cosh κY

cosh κh
ũ(x, t), v ≈ sinh κY

sinh κh
ṽ(x, t),

µ ≈ cosh κY

cosh κh
µ̃(x, t), ν ≈ sinh κY

sinh κh
ν̃(x, t), (3.48)

where Y = y + d and h = η + d. The parameter κ is a characteristic wave number to be

made precise a posteriori . This ansatz is uniformly valid for all depths because it yields

the shallow water one (3.8) as κ→ 0, and the deep water one (3.34) as d→∞. Obviously,

the ansatz (3.48) is valid for wave fields with wavenumber spectra that are narrow-banded

around κ. Substituting the ansatz (3.48) into the relaxed variational principle (3.6), we
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obtain

L = [ ηt + µ̃ · ∇η ] φ̃ − 1
2
g η2 + [ ν̃ ṽ − 1

2
ṽ2 ]

sinh(2κh)− 2κh

2κ cosh(2κh)− 2κ

+ [µ̃ · ũ− 1
2
ũ

2 + φ̃∇ · µ̃− κ tanh(κh)φ̃ µ̃ · ∇η]
sinh(2κh) + 2κh

2κ cosh(2κh) + 2κ

+ 1
2
φ̃ ν̃

[
2κh

sinh(2κh)
− 1

]
.

Applying various constraints, one obtains generalized equations including the ones de-

rived in Sections 3.1.3 and 3.1.4 as limiting cases. In particular, we can derive arbi-

trary depth generalizations of the Saint-Venant and ‘irrotational’ Green–Naghdi equations.

Thus, the relaxed variational principle leads simple derivations of model equations for finite

amplitude waves in arbitrary depth, which is not the case with the classical perturbations

techniques. These developments are left to future investigations.

3.1.6 Generalizations

The ansatz (3.48) can be generalized in many relevant ways, depending on the problem

under consideration. Natural generalizations can be based on the velocity vertical varia-

tions given by, e.g., higher-order deep and shallow water theories, or obtained fitting some

experimental data. In this section we propose a possible generalization based on an ansatz

of the form

φ ≈
[
cosh κY

cosh κh

]λ
φ̃(x, t), u ≈

[
cosh κY

cosh κh

]λ
ũ(x, t), v ≈

[
sinh κY

sinh κh

]λ
ṽ(x, t), (3.49)

where λ is a parameter at our disposal. If λ = 1, the ansatz (3.48) is recovered, but the

case λ 6= 1 does not correspond to the vertical profile predicted by any theory based on

perturbation expansions. Still, this type of ansatz is of some interest, as we shall see below.

Note first that in the deep water limit d→∞, the ansatz (3.49) becomes

φ ≈ eλκ(y−η)φ̃(x, t), u ≈ eλκ(y−η)
ũ(x, t), v ≈ eλκ(y−η) ṽ(x, t),

and thus, via the change of parameter λκ 7→ κ, the ansatz (3.34) is recovered. This means

that (3.49) is not more general than (3.48) in deep water. On the contrary, these two

ansatz are very different in finite depth. We illustrate this claim in the simple case of

shallow water (κh→ 0) when (3.49) becomes

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈
[
y + d

η + d

]λ
ṽ(x, t),

where we have replaced φ̃ and ũ by φ̄ and ū, respectively, since they are equal in this

limiting case.
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3.1.6.1 Modified Serre’s equations

For the sake of simplicity, we consider here only one horizontal dimension, say x1, and

we set x1 = x and u1 = u, for brevity. We also consider the special case µ = u and

ν = v together with the constraint ṽ = ηt + ũηx (free surface’s impermeability). Thus, the

Lagrangian density (3.6) yields

L = (ηt + [(η + d)ū]x) φ̃− 1
2
gη2 + 1

2
(η + d)ū2 + 1

2
β(η + d) [ηt + ūηx]

2 , (3.50)

where β = (2λ + 1)−1. After some algebra, the minimization procedure leads to the

following equations

ht + [ h ū ]x = 0, (3.51)

ūt + ū ūx + g hx + β h−1 [ h2 γ̃ ]x = 0, (3.52)

where γ̃ is defined in (3.28). If β = 1
3
the classical Serre equations are recovered.

Equations (3.51)–(3.52) admit a (2π/k)-periodic cnoidal traveling wave solution:

ū =
c η

d+ η
, (3.53)

η = a
dn2
(
1
2
κ(x− ct)|m

)
− E/K

1−E/K = a − H sn2
(
1
2
κ(x− ct)|m

)
, (3.54)

dn and sn being elliptic functions of Jacobi of parameter m (0 6 m 6 1), and where

K = K(m) and E = E(m) are the complete ellipic integrals of the first and second kinds,

respectively (Abramowitz & Stegun 1965, #17.3, [AS65]). The parameter κ is a sort of

wavenumber, a is the wave amplitude (mean level to crest elevation), H is the total wave

height (trough to crest elevation) and c is the wave phase velocity observed in the frame

of reference without mean flow. The wave parameters are related via the relations

k =
π κ

2K
, H =

maK

K −E , (κd)2 =
g H

mβ c2
, (3.55)

m =
g H (d+ a) (d+ a−H)

g (d+ a)2 (d+ a−H) − d2 c2
. (3.56)

In the limiting case m → 1, we have K → ∞,E/K → 0, k → 0, H → a and hence, the

classical solitary wave solution is recovered

η = a sech2 1
2
κ(x− ct), c2 = g (d+ a),

a

d
=

β (κd)2

1 − β (κd)2
.

At this stage, β is still a free parameter. An optimum expression for this parameter

can be obtained substituting the solution (3.53), (3.54) into the Lagrangian density (3.50),
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integrating L over one wavelength, then solving dL/dβ = 0 keeping k and c constant

(as well as g and d), the other parameters varying according to relations (3.55), (3.56).

Thus, after some cumbersome algebra, we found that β = 0 is the optimum value for this

parameter, which is not very interesting for practical applications. A possible alternative

here is to choose β such that the exact relation c2 = g tanh(κd)/κ is satisfied identically

or up to some asymptotic order.

The main objective of this section is to show that one can derive sensible equations

from ansatz not deriving from some classical approximation procedure. This is another

illustration of the power of the variational procedure.

3.1.7 Discussion

In this study, we have illustrated the advantage of using a variational principle with

as many variables as possible. We call it the relaxed variational principle, since the La-

grangian density (3.6) involves more degrees of freedom (i.e., the variables η, φ, u, v, µ and

ν) compared to the two degrees of freedom (η and φ) in the classical case. In particular,

these extra variables can be used to impose various constraints such as incompressibility,

irrotationality, impermeability, etc. The practical use of the relaxed formulation was illus-

trated on numerous examples in shallow, deep and intermediate waters. Thus, we obtained

several approximations, some well-known, some new to our knowledge.

In the shallow water regime, we have first obtained the classical nonlinear shallow

water (or Saint-Venant) equations (3.18)–(3.19). Then, with the same ansatz (3.8) but

imposing the constraint of the free surface impermeability, we have derived the irrota-

tional Green–Naghdi equations (3.26)–(3.27). Applying the incompressibility constraint

and choosing differently the pseudo-velocity field, we have obtained two kinds of general-

ized Kaup-Boussinesq equations. Several ways of further generalizations were also outlined.

In deep water, two models were considered. Namely, we derived deep water counter-

parts of the celebrated Saint-Venant and Serre equations. The former has a canonical

Hamiltonian formulation and degenerates to the Klein–Gordon equation in the linear ap-

proximation; we thus called the new system (3.36)–(3.37) generalized Klein–Gordon equa-

tions. The latter could be solved analytically for a two-dimensional traveling wave. This

solution is a striking illustration of the power of the variational formulation compared to

asymptotic expansion methods, especially for large amplitudes when the small expansion

parameter is no longer small. In addition, both equations were shown to possess excellent

asymptotic properties with respect to Stokes-like expansions.

The case of arbitrary depth has also been briefly considered. In particular, it has been

shown how easily one can introduce an ansatz valid for all depths. Indeed, the vertical
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variation of the velocity field suggested by the linear theory provides at once such a general

ansatz which degenerates to previous cases when the water is shallow (κd → 0) or deep

(d→∞). This simplicity and flexibility of the variational principle is quite remarkable.

Finally, we considered a generalized ansatz and we illustrated its consequence in the

limiting case of shallow water. In this way, we derived the modified Serre equations and

subsequently obtained exact cnoidal and solitary wave solutions. The main purpose of this

example was to illustrate the fact that one can introduce an ansatz which is not inspired

by any asymptotic expansion and nevertheless lead to good approximations.

In the present study, some further possibilities for generalizations are also mentioned.

However, we have to emphasize that not all ansatz and constraints will necessarily lead to

physically relevant and tractable approximations; the same is true for models derived from

asymptotic expansions. Nonetheless, the relaxed variational formulation is sufficiently

versatile to allow easy derivations of physically sound models. We have illustrated this

claim, in particular, by showing how it is simple to obtain approximate equations valid for

all depths.

Sometimes, the choice of the constraints may seem to be rather ad hoc, but that should

not be surprising. Indeed, the water wave theory already knows several ad hoc ’tricks’

intended to improve the approximation quality. For instance, it was proposed in [MBS03] to

replace the polynomial shallow water expansion (3.7) by a (m,n)-Padé approximation, the

orders m and n being chosen to improve the linear dispersion relation of progressive waves.

Another example is the use of the velocity potential defined at some depth y0 [Nwo93] and,

as before, the free parameter y0 is chosen to improve linear dispersion characteristics. The

approach proposed here is not more ad hoc that any example mentioned above. Moreover,

the variational principle automatically minimizes the approximation error while allowing

for greater flexibility in the choice of ansatz and constraints.

In the several examples presented here, the ansatz involve free parameters that we have

chosen constant for simplicity. One can also consider these parameters as functions and find

their optimum value minimizing the functional. Doing so will lead to more complicated

equations, but this is not a major issue if these equations are intended to be treated

numerically.

In order to derive approximate models, variational formulations are more efficient than

asymptotic expansions. However, both approaches can be also combined. Indeed, once the

variational principle has been applied to an ansatz, asymptotic expansions can be further

applied to obtain simpler models. For instance, one could consider ‘unidirectionalized’

approximations [Olv84, Olv88] to derive variants of Korteweg and de Vries (1895) [KdV95],

Dysthe (1979) [Dys79], Camassa and Holm (1993) [CH93], Degasperis and Procesi (1999)

[DP99], Kraenkel et al. (2005) [KLM05], and other equations. This possibility will be
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investigated in future works.

For the sake of simplicity, we have considered only gravity waves propagating at the

surface of a single layer of a homogeneous fluid with a horizontal bottom. It is trivial to

introduce a relaxed variational formulation including, e.g., surface tension, stratifications in

several homogeneous layers and obstacles. Such general variational formulations, together

with relevant ansatz and well chosen constraints, will easily lead to interesting models.

For perfect fluids, variational formulations can also be obtained for rotational motions

[Eck60, Luk67, LMMR86, Sal88, Mor98, CSS06]. A relaxed version of such variational

principles will facilitate the derivation of approximate models.

The numerical models for simulating water waves are undergoing constant improve-

ments. The state of the art can be found in recent reviews (e.g., [Fen99, DB06, Ma10]).

Certainly, the variational principle is the tool of choice to derive efficient approximations.

By efficient, we mean models that capture most of the relevant physics and which, in the

same time, can be easily and rapidly solved numerically. One interesting direction for fu-

ture researches is the development of numerical schemes preserving hamiltonian structure

at the discrete level. Another interesting application is the derivation of new improved

models with uneven bathymetry for coastal hydrodynamics and tsunami wave modeling

(Synolakis & Bernard 2006, [SB06]).

The use of a variational principle for modeling surface waves is by no mean new. How-

ever, its power has not yet been fully exploited. The present study is a further contribution

in this direction. Obviously, advantages of relaxed variational principles may as well be

exploited in physical contexts other than water waves, such as plasma physics, nonlinear

optics, etc.

3.1.8 Appendix A. Exact Stokes wave

In deep water, a seventh-order Stokes expansion (for the exact equations) is

κ η = α cos θ + 1
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α4 + 707
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α6 +O(α8),
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where θ = x−ct. Note that, to the leading order, the n-th Fourier coefficient is 21−nnn−2αn/(n−
1)! (this is also true for all n > 7). In the bulk of the fluid, the velocity potential is

g−
1

2κ
3

2 φ = α
(
1− 1

8
α2− 7

12
α4− 14761

9216
α6
)
eκy sin θ + 1

2
α4
(
1+ 11

6
α2
)
e2κy sin 2θ

+ 1
12
α5
(
1+ 191

24
α2
)
e3κy sin 3θ + 1

72
α6 e4κy sin 4θ

+ 1
480
α7 e5κy sin 5θ + O(α8),

meaning that harmonics appear at the fourth-order only, thus justifying the ansatz (3.34).

Note that, to the leading order, the n-th Fourier coefficient is αn+2/n!(n−1) for all n > 1.

3.1.9 Appendix B. Cubic Zakharov’s equations

Satisfying exactly the Laplace equation and the bottom impermeability, the gravity

waves variational formulation [Luk67] yields the Hamiltonian [Zak68]:

H = 1
2

∫ {
g η2 + φ̃ V

}
d2
x, V = [φy −∇η · ∇φ ]y=η . (3.57)

Introducing a Dirichlet–Neumann operator G, such that V = G(η)φ̃ (Craig & Sulem

1993, [CS93]), expanding G around η = 0 and neglecting the terms beyond the quartic

nonlinearities, the Hamiltonian (3.57) becomes

H = 1
2

∫ {
gη2 + φ̃

[
dφ̃− d(ηdφ̃)−∇ · (η∇φ̃)

+ 1
2
d(η2∇2φ̃) + d(η d(η dφ̃)) + 1

2
∇

2(η2 dφ̃)
]}

d2
x, (3.58)

with the pseudo-differential operator d = (−∇2)
1

2 tanh[(−∇2)
1

2d ]. (For one horizontal

dimension in infinite depth df = −H(fx), H the Hilbert transform.) Thus, the cubic

Zakharov’s equations (CZE) are

ηt − dφ̃ = −∇ · (η∇φ̃)− d(ηdφ̃) +
1
2
∇

2(η2dφ̃) + d(ηd(ηdφ̃)) + 1
2
d(η2∇2φ̃), (3.59)

φ̃t + gη = 1
2
(dφ̃)2 − 1

2
(∇φ̃)2 − (ηdφ̃)∇2φ̃− (dφ̃)d(ηdφ̃). (3.60)

For progressive (2π/κ)-periodic solutions in infinite depth, a seventh-order Stokes ex-
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pansion is
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where the incorrect (compared to the exact expansion) coefficients and signs are displayed

in bold face. Thus, the CZE match the exact Stokes wave up to the third-order only.

Truncating the Hamiltonian at the order N +1 in nonlinearities, the corresponding Stokes

double series is correct up to the order N in the expansion parameter. None of these

approximations have the exact asymptotic behavior (3.40) for their Fourier coefficients.
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3.2 Group and phase velocities in the free-surface visco-

potential flow: new kind of boundary layer induced

instability

Should I refuse a good dinner simply because I do not understand the process of digestion?

Oliver Heaviside

Sir, I have found you an argument. I am not obliged to find you an understanding.

Samuel Johnson

Abstract. Water wave propagation can be attenuated by various phys-

ical mechanisms. One of the main sources of wave energy dissipation lies in

boundary layers. The present work is entirely devoted to thorough analysis

of the dispersion relation of the novel visco-potential formulation. Namely, in

this study we relax all assumptions of the weak dependence of the wave fre-

quency on time. As a result, we have to deal with complex integro-differential

equations that describe transient behaviour of the phase and group velocities.

Using numerical computations, we show several snapshots of these important

quantities at different times as functions of the wave number. Good qualita-

tive agreement with previous study [Dut09b] is obtained. Thus, we validate

in some sense approximations made anteriorly. There is an unexpected con-

clusion of this study. According to our computations, the bottom boundary

layer creates disintegrating modes in the group velocity. In the same time,

the imaginary part of the phase velocity remains negative for all times. This

result can be interpreted as a new kind of instability which is induced by the

bottom boundary layer effect.

3.2.1 Introduction

The classical potential free-surface flow theory is known to be a good and relatively

inexpensive model of water waves (especially in comparison with free-surface Navier-Stokes

equations formulation [HW65, SZ99, WY07]). However, there are some physical situations

where viscous effects cannot be neglected. The necessity of including some dissipation into

various water waves models was pointed out explicitly in a number of experimental studies

[ZG71, Wu81, BPS81]. For example, in the “Rsum” section of [BPS81] one finds:

. . . it was found that the inclusion of a dissipative term was much more im-

portant than the inclusion of the nonlinear term, although the inclusion of the

nonlinear term was undoubtedly beneficial in describing the observations. . .
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Obviously this conclusion is related to dissipation description only and does not have the

general character. One can find many other evidences in the literature which point out the

importance of viscous effects.

Historically, the researchers tried first to include the dissipative effects into various

long wave models such as Burgers, Korteweg-de Vries and Boussinesq equations. There

is a vast literature on this subject [Keu48, OS70, KM75, Mil76, Mat76, Kha87, Lun89,

Sug91, SKP96, Kha97, DD07b, Dut07].

In order to include some dissipation into the framework of free-surface potential flows,

we developed the so-called visco-potential formulation [LO04, DDZ08, DD07c, Dut07,

Dut09b]. The kinematic viscosity (or eddy viscosity more precisely) appears through local

dissipative terms in kinematic and dynamic free-surface boundary conditions. The main

peculiarity consists in modifying the bottom kinematic condition due to the presence of the

boundary layer which is assumed to be laminar. Mathematically, this correction procedure

leads to a nonlocal in time term. Note, that from fractional calculus point of view this

nonlocal term is also a half-order integral. The physical relevance of the visco-potential

formulation was shown in [LSVO06]. They compared model predictions with experiments

on the damping and shoaling of solitary waves. It was shown that the viscous damping

due to the bottom boundary layer is well represented by this theory.

To complete our literature review, recall that there is also an alternative approach to

potential flows of viscous fluids developed by Daniel Joseph and his collaborators [JL94,

FJ02, JW04, Jos06].

The main goal of the present study is twofold. On one hand, we refine our previous

dispersion relation analysis. In particular, we do not neglect the evolution terms it∂ω
∂t
,

where ω(t;k) is the wave frequency (3.65). Consequently, we have to deal with complex

integro-differential equations. On the other hand, we show that bottom boundary layer

can induce a disintegrating instability of the wave packets. This result is new to author’s

knowledge.

The present study is organized as follows. In Section 3.2.2 we describe the governing

equations and perform classical dispersion relation analysis. Then, we derive an equation

for the group velocity in Section 3.2.2.1. Section 3.2.3 contains several numerical results

and their discussion. Finally, this Letter is ended by outlining main conclusions of the

study in Section 3.2.4.

3.2.2 Mathematical formulation and dispersion relation analysis

Consider the 3D fluid domain bounded above by the free-surface z = η(x, t), x = (x, y)

and below by the rigid boundary z = −h(x). A Cartesian coordinate system with the
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z-axis pointing vertically upwards and the xOy-plane coinciding with the still-water level.

The flow is assumed incompressible and the fluid viscous with the kinematic viscosity ν.

The governing equations of the free-surface visco-potential flow have the following form

[DD07c, Dut07, Dut09b]:

∆φ = 0, (x, z) ∈ Ω = R
2 × [−h, η], (3.61)

ηt +∇η · ∇φ = φz + 2ν∆η, z = η, (3.62)

φt +
1

2
|∇φ|2 + gη + 2νφzz = 0, z = η, (3.63)

φz = −
√
ν

π

t∫

0

φzz(x, z = −h, τ)√
t− τ dτ, z = −h. (3.64)

We can derive corresponding long wave models from the visco-potential formulation (3.61)

– (3.64). The derivation can be found in [LO04, DD07c, Dut07].

In order to perform the dispersion relation analysis, we have to linearize equations

(3.61) – (3.64) over the flat bottom z = −h. This procedure is classical [Sto57, Whi99] and

we do not detail it here. Then, we look for the following periodic plane wave solutions:

φ(x, z, t) = ϕ(z)ei(k·x−ω(t;k)t), η(x, t) = η0e
i(k·x−ω(t;k)t), (3.65)

where k is the wavenumber and ω(t;k) is the wave frequency.

Remark 2. It is important to assume from the beginning of the derivation that the wave

frequency ω explicitly depends on the time t. Consequently, we get some additional impor-

tant terms of the form it∂ω(t;k)
∂t

(see equation (3.66)) which were neglected in our previous

study [Dut09b].

We plug the special form of solutions (3.65) into the linearized version of the governing

equations (3.61) – (3.64). After performing some simple computations (details can be found

in [Dut07, Dut09b]), we come to the following necessary condition of periodic solution (3.65)

existence:

Ω2 + gk tanh(kh)− kF (ω, t)(Ω2 tanh(kh) + gk) = 0, (3.66)

where we introduced several notations k := |k|, Ω := it∂tω+iω−2νk2 and F (ω) is inherited
from the nonlocal term:

F (ω, t) :=

√
ν

π

t∫

0

eiω(τ)(t−τ)

√
t− τ dτ.

Once the wave frequency ω is computed from equation (3.66), the phase speed can be

immediately deduced by its definition:

cp(t; k) :=
ω(t; k)

k
.
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Remark 3. The classical dispersion relation for water waves ω2 = gk tanh(kh) can be

immediately recovered from (3.66) if we replace Ω by iω and F (ω) by 0.

3.2.2.1 Group velocity

The group velocity is defined as follows:

cg(t; k) :=
∂ω(t; k)

∂k
.

There are several physical interpretations of this quantity. One can see it as the wave

energy propagation speed. Another interpretation consists in viewing it as the wavetrain

amplitude variation speed. Anyhow, the group speed cg plays an important role in the

description of the wavetrains and wavepackets. The evolution equation of this quantity

can be obtained by simple differentiation of (3.66) with respect to the wavenumber modulus

k:

2ΩΓ + g tanh(kh) + gkh(1− tanh2(kh))− (F + k∂kF )(Ω
2 tanh(kh) + gk)

− kF
(
2ΩΓ tanh(kh) + Ω2(1− tanh2(kh))h + g

)
= 0, (3.67)

where Ω was defined above and Γ := it∂tcg + icg − 4νk.

Integro-differential equations (3.66) and (3.67) are too complex for any mathematical

analysis so far. Therefore, we use numerical methods in order to explore some properties

of the solutions.

3.2.3 Numerical results and discussion

In order to have an insight into the transient behaviour of the phase and group velocities,

we have to solve numerically equations (3.66) and (3.67) correspondingly. Hence, in this

study we discretize all local terms with a first order implicit scheme, while the integral term

F (ω, t) is computed in explicit way for the sake of computational efficiency. Resulting

algebraic equations are solved analytically. Initial conditions were chosen according to

[DDZ08]:

cp|t=0 =

√
g

k
tanh(kh)− 2iνk, cg|t=0 =

(1
2
+

kh

sinh(2kh)

)
Re cp|t=0 − 4iνk.

The values of all parameters used in numerical computations can be found in Table 3.1.

The time step ∆t is chosen to achieve the convergence up to graphical resolution.

In this section upper and lower images always refer to the real and imaginary parts

respectively unless special indications are given. Presented here results are normalized by√
gh. Thus, all real parts at the infinitely long wave limit kh→ 0 take the unitary value.
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parameter definition value

ν eddy viscosity 10−3 m2

s

g gravity acceleration 9.8 m
s2

h water depth 1 m

∆t time step 0.05 s

Table 3.1: Values of the parameters used in the phase and group velocities numerical computa-

tions.
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Figure 3.1: Real and imaginary parts of the phase velocity at t = 2 s.
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Figure 3.2: Real and imaginary parts of the phase velocity at t = 4 s.

First of all, on Figures 3.1 and 3.2 we show two snapshots of the phase velocity at

different times. In these figures we plot also computational results of our previous weakly

dynamic analysis [Dut09b], which consists in neglecting differential evolution terms it∂ω
∂t

in equation (3.66). We can state an excellent agreement for the real part of the phase

velocity. However, with the simplified approach we get only the qualitative behaviour

of the imaginary part. This discrepancy is located in the region of long waves where

the boundary layer damping is predominant. The dissipation of short waves is perfectly

described again. From quantitative point of view, our previous analysis overestimates the

dissipation rate for long wavelengths. We refer to [Dut09b] for the discussion and physical

interpretation of the phase velocity behaviour.

Group velocity snapshots are presented on Figures 3.3 – 3.7. The real part of the group

velocity cg is shown only on Figure 3.7 since its evolution is slow as in the phase velocity

case. The whole animation of the group velocity can be downloaded at [GRP].

The imaginary part of the group velocity remains negative until about 1 s (see Figure

3.4). Then, it was very unexpected for the author to observe the formation of modes with

positive imaginary part (see Figure 3.5). These destabilizing modes may be responsible of

wavepackets disintegration. We refer to the next section for the discussion of this interesting

result.
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Figure 3.3: Imaginary part of the group velocity at t = 0.8 s.
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Figure 3.4: Imaginary part of the group velocity at t = 1 s.
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Figure 3.5: Imaginary part of the group velocity at t = 2 s.
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Figure 3.6: Imaginary part of the group velocity at t = 4 s.
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3.2 Group and phase velocities in visco-potential flow 79

3.2.4 Conclusions

In this work we performed an analysis of linear dispersion relation for visco-potential

flow formulation. Several numerical snapshots of the phase and group velocities were

presented. The main particularity in this study is that we make no assumption of the weak

dependence on time. Therefore, we come up with additional terms of the form itω′(t; k)

which complicate analysis and numerical computations. We can conclude that we obtain

a good qualitative agreement with preceding results [Dut09b]. Thus, we validate in some

sense approximations made anteriorly. However, our computations reveal less oscillatory

behaviour in the imaginary part of the phase velocity for intermediate wavelengths.

Furthermore, we studied the evolution of the group velocity with time for the visco-

potential formulation. Physically, this quantity represents the energy propagation speed.

There exists also another interpretation. The group velocity cg(t; k) can be seen as the

wavetrain amplitude variation speed. Numerical simulations show the appearance of modes

with positive imaginary part for 1
2
< kh < 3

2
in the group velocity. These modes may

destabilize wave packets. Physically, this effect comes from the bottom boundary layer.

Previous numerical study [WLY06] did not reveal this instability since the authors did

not take into account for the boundary layer effect. Hence, they included only a local

dissipative term which has a stabilizing effect.

It is well known that Stokes wavepacket can be disintegrated by the Benjamin-Feir in-

stability [Ben67, BF67]. This instability comes from the resonant quartet wave interaction.

The classical result of T. Brooke Benjamin [Ben67], refined later by R.S. Johnson [Joh77],

states that no instability is present if kh < σ0 and the modes inside a certain band-width

grow without bound if kh ≥ σ0. The critical value of σ0 is estimated about 1.363. There

is a certain surprising interplay with our results that we would like to point out here. Our

theory gives less sharper results. That is why we prefer to speak about the instability zone

defined as U(t) = {kh ∈ R+ : Im cg(t; k) > 0} in kh-space. According to our computations,

the topological structure of the set U(t) is a union of finite number of intervals (see the

animation [GRP]). It is curious that the critical value σ0 lies inside this zone (see Figure

3.5).

The wave turbulence can be perfectly described in the framework of potential flows. It

gives direct cascade of energy from the waves spectral maximum to the dissipative region

[ZLF92]. However, in the present study we did not investigate the effect of viscous inter-

action with bottom onto the wave turbulence. Presumably, it will modify the dissipation

region. This question deserves a thorough consideration.

Recently it was shown that the Benjamin-Feir instability can be enhanced by dissipation

[BD07]. The peculiarity lies in the form of dissipative terms that we put into the model.

Our computations show the stabilizing effect of local dissipative terms [SHC+05, WETG01,
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WLY06] and the destabilizing effect of our nonlocal dissipation.

The experiments should confirm our theoretical result, provided that a generated wave-

train have sufficiently big wavelength to interact with the bottom boundary layer.



Chapter 4

Tsunami wave modeling

Tandis que des séismes se produisaient, la mer recula loin de ce qui était alors la terre, puis se

souleva et envahit un secteur du territoire de la cité, dont elle submergea une partie, alors

qu’elle se retira du reste, si bien qu’est actuellement mer ce qui auparavant était terre; et la mer

fit prir tous les gens qui n’avaient pas pu la devancer en courant sur les hauteurs.

La cause d’un tel phénomène est, à mon avis, qu’au point où le séisme est le plus fort, à cet

endroit la mer se rétracte, puis soudain s’étirant en sens inverse produit une vague plus violente;

tandis que sans séisme il ne me semble pas qu’un tel phénomène puisse se produire.

Thucydide (411 av. J.-C.)
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4.1 Energy of tsunami waves generated by bottom motion

The fundamental concept in social science is Power, in the same sense in which Energy is the

fundamental concept in physics.

Bertrand Russell

For those who want some proof that physicists are human, the proof is in the idiocy of all the

different units which they use for measuring energy.

Richard P. Feynman

Abstract. In the vast literature on tsunami research, few articles have

been devoted to energy issues. A theoretical investigation on the energy of

waves generated by bottom motion is performed here. We start with the full

incompressible Euler equations in the presence of a free surface and derive

both dispersive and non-dispersive shallow-water equations with an energy

equation. It is shown that dispersive effects only appear at higher order in the

energy budget. Then we solve the Cauchy–Poisson problem of tsunami gen-

eration for the linearized water wave equations. Exchanges between potential

and kinetic energies are clearly revealed.

4.1.1 Introduction

Oceanic waves can be devastating as shown by recent events. Whilst some areas are

more vulnerable than others, the recent history shows that catastrophic waves can hit

even where they are not expected. The tsunami waves generated by the huge undersea

earthquake in Indonesia on 26 December 2004 caused devastation across most of the coasts

of the Bay of Bengal. The tsunami waves generated by the massive submarine landslide

in Papua-New Guinea on 17 July 1998 as well as the 17 July 2006 Java tsunami and the

2 April 2007 Solomon Islands tsunami also caused devastation, but on a smaller scale.

Unfortunately, such cataclysmic tsunamis are likely to be generated again by earthquakes,

massive landslides or volcano eruptions [SB06].

Information on tsunami energy can be obtained by applying the normal mode repre-

sentation of tsunami waves, as introduced by [War80]. For example, [Oka03] considers

the total energy released into tsunami waves. He obtains expressions for the energy of

tsunamis (see his expressions (31) for a tsunami generated by an earthquake and (36) for

a tsunami generated by a landslide). In the case of a landslide, he computes the ratio be-

tween tsunami energy and total change in energy due to the slide. In the present study, we

use the incompressible fluid dynamics equations. Tsunamis have traditionally been consid-

ered as non-dispersive long waves. However various types of data (bottom pressure records

[RWG95]; satellite data [KML05]; hydrophone records [OTR07]) indicate that tsunamis
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are made up of a very long dispersive wave train, especially when they have enough time

to propagate. These waves travel across the ocean surface in all directions away from the

generation region. Recent numerical computations using dispersive wave models such as

the Boussinesq equations show as much as 20% reduction of tsunami amplitude in cer-

tain locations due to dispersion [DT07]. But one has to be careful with the interpretation

of satellite data: as indicated by [KS06], the mid-ocean steepness of the 2004 Sumatra

tsunami measured from satellite altimeter data was less than 10−5. Nonlinear dispersive

theory is necessary only when examining steep gravity waves, which is not the case in deep

water.

The wavelength of tsunamis and, consequently, their period depend essentially on the

source mechanism. If the tsunami is generated by a large and shallow earthquake, its

initial wavelength and period will be greater. On the other hand, if the tsunami is caused

by a landslide (which happens less commonly but can be devastating as well), both its

initial wavelength and period will be shorter as indicated for example by [KRTB96]. From

these empirical considerations one can conclude that dispersive effects are a priori more

important for submarine landslide and slump scenarios than for tsunamigenic earthquakes.

Once a tsunami has been generated, its energy is distributed throughout the water

column. Clearly, the more water is displaced, the more energetic is the tsunami (compare

for example the December 2004 and March 2005 Sumatra tsunamis). Due to the large scale

of this natural phenomenon and limited power of computers, tsunami wave modellers have

to adopt simplified models which reduce a fully three-dimensional (3D) problem to a two-

dimensional (2D) one. This approach is natural, since in the case of very long waves the

water column moves as a whole. Consequently the flow is almost 2D. Among these models

one can mention the nonlinear shallow water equations (SWE), Boussinesq type models,

the Green-Naghdi and Serre equations. There is a wide variety of models, depending on

whether or not the effects of run-up/run-down, bottom friction, turbulence, Coriolis effects,

tidal effects, etc, are included.

Today scientists can easily predict when a tsunami will arrive at various places by know-

ing source characteristics and bathymetry data along the paths to those places. Unfortu-

nately one does not know as much about the energy propagation of such waves. Obviously

tsunami amplitude is enhanced over the major oceanic ridges. [TRM+05] clearly describe

the waveguide type effect from mid-ocean ridges that has funnelled the 2004 megatsunami

away from the tip of Africa. As emphasized by [KKLW07], travel-time computation based

on the first arrival time may lead to errors in the prediction of tsunami arrival time as

higher energy waves propagate slower along ridges. At the beginning, the energy is essen-

tially potential, although it depends on the generation mechanism. Then it redistributes

itself into half kinetic and half potential energies. Finally, it converts its potential compo-
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nent into kinetic energy. How do these conversions take place? The purpose of this study

is to shed some light on this topic and to see if the importance of dispersion in tsunamis

can be studied by looking at the energy rather than at wave profiles.

Previous researchers have considered the topic of tsunami wave energy. [Kaj70, DK97,

VDP02] studied the energy exchange between the solid bottom and the overlying water

associated with the bottom deformation. There were recent attempts to obtain equations

for tsunami energy propagation. We can mention here the work of [TB00] devoted to

idealized theoretical cases and the work of [KKLW07] using the energy flux point of view

to study the changes in the 2004 tsunami signal as it travelled from Indonesia to the Pacific

Ocean. We believe that these models can be improved, given the present state of the art

in wave modelling.

A point of interest is that some of the equations used for wave modelling have an

infinite number of conserved quantities. There has been some confusion in the literature

on which quantities can be called energy. Indeed there is here an interesting question.

In incompressible fluid mechanics, the internal energy equation is decoupled from the

equation of continuity and from the fundamental law of dynamics. It is used only when

one is interested in computing the temperature field once the velocity distribution is known.

In addition to the internal energy equation, one can write a total energy (internal energy

+ kinetic energy) equation, or a total enthalpy equation. The confusing part is that

for perfect fluids one usually defines the total energy differently: it is the sum of internal

energy, kinetic energy, and potential energies associated to body forces such as gravitational

forces and to the pressure field. If in addition the fluid is incompressible, then the internal

energy remains constant. In the classical textbooks on water waves [Sto58, Joh97], one

usually introduces the energy E as the sum of kinetic and potential energies and then

looks for a partial differential equation giving the time derivative dE/dt. In any case,

when one uses a depth-integrated model such as the nonlinear SWE, one can compute

the energy a posteriori (the potential energy is based on the free-surface elevation and the

kinetic energy on the horizontal velocity). But one can also apply the nonlinear shallow

water assumptions to the full energy equation to begin with. Then one obtains a nonlinear

shallow water approximation of the energy equation. Are these two approaches equivalent?

We show that the answer is no.

First we present the energy equation in three different forms: full water wave equations,

dispersive SWE and non-dispersive SWE. Surprisingly, the energy equation is the same for

dispersive and non-dispersive SWE at leading order. Then we present some numerical

computations over a flat bottom. It allows us to concentrate on the generation process

and the energy transfer through the moving seabed. We refer to [DPD10] for simulations

of some real world events including energy pumping and its transformation over uneven
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Figure 4.1: Sketch of the 3D fluid domain for wave generation by a moving bottom.

bathymetry, using the SWE with energy. Finally we present the energy equation in a

fourth form: the linearized dispersive water wave equations. We solve the Cauchy–Poisson

problem of tsunami generation. Exchanges between potential and kinetic energies are

clearly revealed.

4.1.2 Derivation of the energy equation

Consider the 3D fluid domain shown in Figure 4.1. It is bounded above by the

free surface z∗ = η∗(x∗, y∗, t∗) and below by the solid boundary with prescribed motion

z∗ = −h∗(x∗, y∗, t∗). A Cartesian coordinate system with the z∗−axis pointing vertically

upwards and the x∗Oy∗−plane coinciding with the still-water level is chosen.

The fluid is assumed to be inviscid. Its motion is governed by the 3D Euler equations,

written here in their incompressible form (see for example [Gis08] for the compressible

counterpart, after replacing ρ by p in the pressure term of his Eq. 3):

∇ · ~u∗ = 0, (4.1)

∂~u∗

∂t∗
+∇ ·

(
~u∗ ⊗ ~u∗ + p∗

ρ∗
Id

)
= ~g, (4.2)

∂e∗

∂t∗
+∇ ·

[(
e∗ +

p∗

ρ∗

)
~u∗
]

= 0, (4.3)



4.1 Tsunami wave energy 87

where ρ∗ is the fluid density, ~u∗ = (u∗, v∗, w∗) the velocity vector, e∗ the sum of kinetic

energy density e∗K = 1
2
|~u∗|2 and potential energy density e∗P = gz∗, p∗ the pressure and ~g

the acceleration due to gravity. In the present study ~g = (0, 0,−g). For incompressible

flows, the energy equation (4.3) is redundant. Indeed it can be obtained from Eq. (4.2).

However we keep it since it is not equivalent to derive shallow water equations with or

without the energy equation.

Equations (4.1)–(4.3) have to be completed by the kinematic and dynamic boundary

conditions. Since surface tension effects are not important for long waves, the dynamic

boundary condition on the free surface reads

p∗ = p∗s, at z∗ = η∗. (4.4)

Later we will replace the surface pressure p∗s by 0 but we keep it arbitrary for now.

The kinematic boundary conditions on the free surface and at the seabed are, respec-

tively,

w∗ =
∂η∗

∂t∗
+ u∗

∂η∗

∂x∗
+ v∗

∂η∗

∂y∗
, z∗ = η∗, (4.5)

w∗ = −∂h
∗

∂t∗
− u∗∂h

∗

∂x∗
− v∗∂h

∗

∂y∗
, z∗ = −h∗. (4.6)

Below we denote the horizontal gradient by ∇⊥ and the horizontal velocity by ~u∗⊥. After

a few manipulations and integration across the water column from bottom to top, one can

write the following global energy equation:

∂E∗

∂t∗
+∇⊥ · Φ∗ + P ∗ = 0, (4.7)

where E∗ is the sum of kinetic and potential energies in the flow, per unit horizontal area,

Φ∗ the horizontal energy flux vector, and P ∗ the net energy input due to the pressure

forces doing work on the upper and lower boundaries of the fluid. They are given by the

following expressions:

E∗ =

∫ η∗

−h∗

(
1

2
ρ∗ |~u∗|2 + ρ∗gz∗

)
dz∗, (4.8)

Φ∗ =

∫ η∗

−h∗

~u∗⊥

(
1

2
ρ∗ |~u∗|2 + p∗ + ρ∗gz∗

)
dz∗, (4.9)

P ∗ = p∗sη
∗
t∗ + p∗bh

∗
t∗ , (4.10)

where p∗s is the pressure exerted on the free surface and p∗b the bottom pressure. In the

case of a stationary bottom boundary and of a free surface on which the pressure vanishes,

then as expected the net energy input P ∗ is identically zero. Energy can be brought to the

system by a moving bottom or by a pressure disturbance on the free surface. From now

on, we take p∗s = 0.
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4.1.2.1 Dimensionless equations

The problem of tsunami propagation possesses two characteristic length scales: the

average water depth h0 for the vertical dimension and a typical wavelength l for the hor-

izontal dimensions. It is classical to introduce the following dimensionless variables. The

scaling for the independent variables is

x =
x∗

l
, y =

y∗

l
, z =

z∗

h0
, t =

√
gh0
l

t∗.

In order to introduce the dimensionless dependent variables we need one more parameter,

the typical wave amplitude a:

u =
h0

a
√
gh0

u∗, v =
h0

a
√
gh0

v∗, w =
h0
l

h0

a
√
gh0

w∗, η =
η∗

a
, h =

h∗

h0
,

π =
p∗ + ρ∗gz∗

ρ∗ga
, p =

p∗

ρ∗gh0
, e =

e∗

gh0
.

The hydrostatic pressure −ρ∗gz∗ has been incorporated into π.

The following dimensionless parameters, which are assumed to be small, are introduced:

ε := a/h0, µ := h0/l.

The parameter ε represents the relative importance of nonlinear terms and µ measures

dispersive effects. Note that

e =
1

2
ε2(u2 + v2) +

1

2

ε2

µ2
w2 + z.

The Euler equations of motion (4.1)–(4.3) become in dimensionless form

µ2(ux + vy) + wz = 0, (4.11)

µ2ut + εµ2(u2)x + εµ2(uv)y + ε(uw)z + µ2πx = 0, (4.12)

µ2vt + εµ2(uv)x + εµ2(v2)y + ε(vw)z + µ2πy = 0, (4.13)

µ2wt + εµ2(uw)x + εµ2(vw)y + ε(w2)z + µ2πz = 0, (4.14)

µ2et + εµ2 ((e+ p)u)x + εµ2 ((e+ p)v)y + ε ((e+ p)w)z = 0. (4.15)

In dimensionless form the boundary conditions (4.4)–(4.6) become

π = η, z = εη, (4.16)

w = µ2ηt + εµ2uηx + εµ2vηy, z = εη, (4.17)

εw = −µ2ht − εµ2uhx − εµ2vhy, z = −h. (4.18)

In the case of a static bottom h = h(x, y), the order of magnitude of the vertical velocity

w at the bottom is O(µ2). With a moving bathymetry the behaviour is different:

w|z=−h = −µ
2

ε
ht + O(µ2).
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4.1.2.2 Integration over the depth

Next we reduce the above 3D problem (4.11)–(4.18) into a 2D one by integrating all the

equations over the water column. We begin with the continuity equation (4.11) which we

integrate with respect to z from −h to εη. Taking into account the boundary conditions

(4.17) and (4.18), one obtains

ηt +
∂

∂x

εη∫

−h

u dz +
∂

∂y

εη∫

−h

v dz = −1
ε
ht. (4.19)

A source term appears in equation (4.19) due to the moving bathymetry. For tsunami

generation, the function h∗ can be represented as follows:

h∗(x∗, y∗, t∗) = h∗0(x
∗, y∗)− ζ∗(x∗, y∗, t∗),

where h∗0(x
∗, y∗) is the static sea bed profile and ζ∗(x∗, y∗, t∗) the bottom displacement

due for example to coseismic displacements or landslides. In nondimensional form this

representation takes the form:

h(x, y, t) = h0(x, y)− εζ(x, y, t),

since the bottom variation must be of the same order of magnitude as the typical wave

amplitude a: ζ∗(x∗, y∗, t∗) = aζ(x, y, t). Differentiating with respect to time yields

1

ε

∂h

∂t
= −∂ζ

∂t
= O(1).

Below we will replace 1
ε
ht by −ζt.

Integrating the vertical momentum conservation equation (4.14) yields

π|z=−h = η +
∂

∂t

εη∫

−h

w dz + ε
∂

∂x

εη∫

−h

uw dz + ε
∂

∂y

εη∫

−h

vw dz. (4.20)

A more general expression for the pressure can be obtained if we integrate equation

(4.14) from z to εη and use the boundary conditions (4.16) and (4.17):

π = η +
∂

∂t

εη∫

z

w dz + ε
∂

∂x

εη∫

z

uw dz + ε
∂

∂y

εη∫

z

vw dz − ε

µ2
w2. (4.21)

The vertical velocity w is obtained by integrating the continuity equation (4.11) from

−h to z and applying the seabed kinematic condition (4.18):

w = µ2ζt − µ2


 ∂

∂x

z∫

−h

u dz +
∂

∂y

z∫

−h

v dz


 . (4.22)
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Finally, the integration of the equation of energy conservation (4.15) yields

∂

∂t

εη∫

−h

e dz + ε
∂

∂x

εη∫

−h

(e + p)u dz + ε
∂

∂y

εη∫

−h

(e+ p)v dz − ε p|z=−h ζt = 0, (4.23)

which is nothing else than the dimensionless counterpart of Eq. (4.7).

All the equations derived above are exact and no assumption has been made about the

orders of magnitude of ε and µ.

4.1.2.3 The nonlinear shallow-water equations with energy equation

In Appendix A, we briefly summarize the derivation of various systems of shallow-water

wave equations. The non-dispersive SWE are obtained by taking the limit µ → 0. Here

we provide the dispersive and non-dispersive SWE in their conservative forms [ES05] with

dimensions, based on the depth-averaged horizontal velocity ~̄u∗. The total water depth

h∗ + η∗ is denoted by H∗(x∗, y∗, t∗). The definition of E∗ is given by Eq. (4.8).

4.1.2.3.1 SWE with dispersion and energy equation

∂H∗

∂t∗
+∇ · (H∗~̄u∗) = 0, (4.24)

∂(H∗~̄u∗)

∂t∗
+∇ ·

(
H∗~̄u∗ ⊗ ~̄u∗ + 1

2
gH∗2

)
+

(
h∗3

6
∇
(
∇ ·
(
H∗~̄u∗

h∗

))
− h∗2

2
∇
(
∇ ·
(
H∗~̄u∗

)))

t∗
= gH∗∇h∗, (4.25)

∂E∗

∂t∗
+∇ ·

(
~̄u∗
(
E∗ +

1

2
ρ∗gH∗2

))
= ρ∗gH∗∂ζ

∗

∂t∗
. (4.26)

4.1.2.3.2 SWE without dispersion and with energy equation

∂H∗

∂t∗
+∇ · (H∗~̄u∗) = 0, (4.27)

∂(H∗~̄u∗)

∂t∗
+∇ ·

(
H∗~̄u∗ ⊗ ~̄u∗ + 1

2
gH∗2

)
= gH∗∇h∗, (4.28)

∂E∗

∂t∗
+∇ ·

(
~̄u∗
(
E∗ +

1

2
ρ∗gH∗2

))
= ρ∗gH∗∂ζ

∗

∂t∗
. (4.29)

Between (i) and (ii), only the equation for the evolution of the horizontal velocity (4.28)

differs. In particular, it is interesting to note (this is the first main result of the present

study) that the energy equations are the same in the dispersive and non-dispersive cases.
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Differences appear only at higher order (terms of order O(εµ2)). The physical meaning is

that the vertical velocity as well as the non-uniform structure of the horizontal velocity

appear only at the next order. An additional remark can be made about the hyperbolic

structure of the system (4.27)–(4.29). We restrict our observations to one space dimension.

Let us assume that a shock wave propagates from left to right at velocity s > 0. The states

before and after the discontinuity are denoted by (H∗
l,r, ū

∗
l,r, E

∗
l,r) correspondingly. From

entropy considerations one can conclude that for an admissible state H∗
l > H∗

r . For a

general system of conservation laws vt + ∂xf(v) = 0, the Rankine-Hugoniot relations have

the simple form f(vr)− f(vl) = s(vr − vl).
Some simple algebraic calculations yield the following relations:

s =
H∗

l ū
∗
l −H∗

r ū
∗
r

H∗
l −H∗

r

, ū∗r = ū∗l ±
√

1

2
g(H∗2

l −H∗2
r )
( 1

H∗
r

− 1

H∗
l

)
,

E∗
r

H∗
r

=
E∗

l

H∗
l

− 1

2
ρ∗g
( 1

H∗
r

− 1

H∗
l

)H∗2
r ū

∗
r −H∗2

l ū
∗
l

ū∗r − ū∗l
. (4.30)

These formulas relate left and right states connected in the (H∗, ū∗, E∗) space by a shock

wave. The first two relations are well known. What is new to our knowledge is the formula

(4.30) which gives an insight into the energy states in a shock wave. In practice, they can

be used for the theoretical analysis of bores and as a validation test for nonlinear SWE

codes (with energy equation).

4.1.3 Simulations of energy

Next we illustrate the main features of energy evolution in tsunami generation. The

importance of dispersive effects strongly depends on the extent of the source area (the

smaller the source the stronger the dispersive effects) and the ocean depth in the source

area [KDD07]. We restrict our study to the non-dispersive SWE (4.27)–(4.29). We solve

these equations numerically with a finite volume method [DPD10].

While the common practice in modeling tsunami generation consists in translating the

initial sea bottom deformation to the water surface, thus neglecting all dynamical effects,

we prefer to include some dynamics in the process in an effort to be closer to what happens

in reality [DDK06]. We construct the bottom motion by multiplying Okada’s static solution

ζ∗OK(x
∗, y∗)1 by a function of time [Ham73]:

h∗(x∗, y∗, t∗) = h∗0(x
∗, y∗)− (1− e−α∗t∗)ζ∗OK(x

∗, y∗).

1Okada’s solution is a steady analytical solution for the seafloor displacement following an underwater

earthquake, based on dislocation theory in an elastic half-space [Oka85].
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Parameter Value

Dip angle, δ 13◦

Slip angle, θ 90◦

Fault length, L∗ 18 km

Fault width, W ∗ 14 km

Fault depth 5 km

Slip along the fault 10 m

Poisson ratio 0.27

Young modulus 9.5× 109 Pa

Acceleration due to gravity, g 9.81 m/s2

Water depth, h0 1 km

Characteristic rise time, t∗0 8 s

α∗ = log(3)/t∗0 0.1373 s−1

Table 4.1: Values of physical parameters used for the energy density computations.

The parameter α∗ is related to the characteristic time t∗0 under consideration. We chose

1− e−α∗t∗
0 =

2

3
⇔ α∗ =

log 3

t∗0
.

The various parameters used in the computations are given in Table 4.1.

Other time laws are possible and we refer to [DD07d] for more details. In the present

numerical computations we chose h∗0(x
∗, y∗) = h0 = const. This choice is not only made

for the sake of simplicity. Another reason is that Okada’s solution is derived within the

assumption of an elastic half-space which does not take into account the bathymetry. In

order to be coherent with this solution we assume the bottom to be flat before deformation.

With our definition of potential energy, the total energy is nonzero both at time t∗ = 0

and at time t∗ → ∞. For practical applications it is important to isolate the energy

available to the tsunami wave. One possibility is to define the wave energy as follows:

E∗
wave = E∗ +

1

2
ρ∗gh∗2. (4.31)

Clearly E∗
wave = 0 both at time t∗ = 0 and at time t∗ → ∞ when the wave has left the

generation region. From Eq. (4.29), one finds that the energy equation satisfied by E∗
wave

is
∂E∗

wave

∂t∗
+∇ ·

(
~̄u∗
(
E∗

wave +
1

2
ρ∗gH∗2 − 1

2
ρ∗gh∗2

))
= ρ∗g(H∗ − h∗)∂ζ

∗

∂t∗
. (4.32)
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(a) Free surface (b) Total energy (c) Potential energy

Figure 4.2: Tsunami generation leading to a dipolar wave form; t∗ = 4 s. The same scales are

used in Figures 4.2–4.9: for the free surface, red denotes a rise of sea level; for the total energy,

the scale goes from 0 (blue) to 5×104 (red); for the potential energy, the scale goes from 0 (blue)

to 104 (red).

(a) Free surface (b) Total energy (c) Potential energy

Figure 4.3: t∗ = 6 s

Figures 4.2–4.9 show the distributions of free-surface elevation η∗(x∗, y∗), total wave energy

E∗
wave(x

∗, y∗) and potential wave energy 1
2
ρ∗gη∗2 at various times. One clearly sees the

generation process. The formation of the leading elevation and depression waves takes

a few seconds. Then the propagation begins. As shown by [BMR72], tsunami energy

radiates primarily at right angles to a rupturing fault (see also [Kaj70]). The distribution

of potential energy makes sense when one compares the potential energy plots with the

free-surface plots. The total energy spreads in a more uniform manner across the area

affected by the waves.

It is also of interest to see how the wave energy E∗
wave, integrated over the whole fluid

domain, varies during the generation process. This evolution is shown in figure 4.10. Three

curves are plotted in figure 4.10(a). The solid curve simply is the energy (4.8) integrated
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(a) Free surface (b) Total energy (c) Potential energy

Figure 4.4: t∗ = 10 s

(a) Free surface (b) Total energy (c) Potential energy

Figure 4.5: t∗ = 20 s

(a) Free surface (b) Total energy (c) Potential energy

Figure 4.6: t∗ = 40 s
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(a) Free surface (b) Total energy (c) Potential energy

Figure 4.7: t∗ = 80 s

(a) Free surface (b) Total energy (c) Potential energy

Figure 4.8: t∗ = 120 s

(a) Free surface (b) Total energy (c) Potential energy

Figure 4.9: t∗ = 160 s
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(b) Total, potential and kinetic energies

Figure 4.10: (a) Total energy
∫∫

E∗
wavedx

∗ as a function of time computed with the SWE

with energy (4.27) – (4.29) (top curve), the linearized water wave equations (middle curve) and

reconstructed from the flow variables ~̄u∗ and η∗ when no energy equation is used (bottom curve).

(b) Partition between potential and kinetic energies as a function of time for the reconstructed

energy. The top curve of (b) is the same as the bottom curve of (a).

over the water surface. The middle curve will be explained in Section 4 (linearized theory).

The bottom curve is obtained as follows. Imagine that one is solving the SWE without the

energy equation. In order to look at the energy, a natural way to do it is to approximate

the wave energy E∗
wave as

E∗
wave ≈

1

2
ρ∗H∗|~̄u∗|2 + 1

2
ρ∗gη∗2,

and then to integrate over the whole fluid domain. The second main result of the present

study is that the difference between the proper way to compute the energy and the ap-

proximate way can be large. It is probably due to the vertical velocity, which is completely

neglected in the second approach. Once the motion of the sea bottom has stopped, the to-

tal energy remains constant. However the reconstructed energy decreases with time. This

indicates that computing the wave energy directly from the conservative energy equation

(4.32) is much better, especially with the type of numerical method we use. In figure

4.10(b), one clearly sees the exchange between potential and kinetic energies until equipar-

tition is reached.

4.1.4 Energy in the framework of the dispersive linearized equations

In the case of tsunamis generated by earthquakes, nonlinear effects are not important

during the process of generation and propagation. This is why it is valid to use the lin-

earized water-wave equations. [DDK06] and others showed that taking an instantaneous
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seabed deformation is not equivalent to instantaneously transferring the seabed deforma-

tion to the ocean surface, except in the framework of the linearized shallow water equations

(very long waves). The difference comes from the vertical velocities and dispersion. In this

case we must go back to the initial set of equations (4.1)–(4.3). Since the motion starts

from the state of rest, it can be considered as irrotational (potential flow) and one can

introduce the velocity potential ~u∗ = ∇φ∗.

We perform the linearization of the equations (4.1) and (4.2), and of the boundary

conditions (4.4) – (4.6). It is equivalent to taking the limit of the equations as ε→ 0. For

the sake of convenience, we switch back to the physical variables. The linearized problem

in dimensional variables reads [DD07d]

∆⊥φ
∗ + ∂2φ∗/∂z∗2 = 0, (x∗, y∗, z∗) ∈ R

2 × [−h∗, 0], (4.33)

∂φ∗

∂z∗
=

∂η∗

∂t∗
, z∗ = 0, kinematic condition, (4.34)

∂φ∗

∂t∗
+ gη∗ = 0, z∗ = 0, dynamic condition. (4.35)

Within linear theory the forces that cause perturbations are so weak that the boundary

condition at the bottom (4.6) is also simplified:

∂φ∗

∂z∗
=
∂ζ∗

∂t∗
, z∗ = −h∗. (4.36)

The bottom motion appears in the right-hand side of Eq. (4.36).

The Laplace equation (4.33) together with the boundary conditions (4.34), (4.35) and

(4.36) determine the boundary-value problem for the velocity potential φ∗ within the linear

theory. In order to solve the equations for a prescribed bottom motion, one can use Fourier

and Laplace transforms (this approach is followed here) or Green’s functions. Three sce-

narios are considered for the bottom motion [DDK06]: the passive generation in which the

deformation of the sea bottom is simply translated to the free surface (one is then solving

an initial value problem) and two dynamical processes ζ∗(x∗, y∗, t∗) = T (t∗)ζ∗OK(x
∗, y∗),

where ζ∗OK(x
∗, y∗) is given by Okada’s solution. The two choices for T are the instanta-

neous deformation with T (t∗) = Ti(t
∗) = H(t∗), where H(t∗) denotes the Heaviside step

function, and the exponential law used above in Section 3:

T (t∗) = Te(t
∗) =

{
0, t∗ < 0,

1− e−α∗t∗ , t∗ ≥ 0,
with α∗ > 0.

Let ζ̂∗OK be the Fourier transform of ζ∗OK, ω
2 = g|k∗| tanh(|k∗|h∗) the dispersion relation

and x∗ = (x∗, y∗). We provide the general integral solution for the free surface elevation in
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the three cases,

η∗o(x
∗, t∗) =

1

(2π)2

∫∫

R2

ζ̂∗OKe
ik∗·x∗

cos(ωt∗) dk∗, (passive) (4.37)

η∗i (x
∗, t∗) =

1

(2π)2

∫∫

R2

ζ̂∗OKe
ik∗·x∗

cosh(|k∗|h∗) cos(ωt
∗) dk∗, (instantaneous) (4.38)

η∗e(x
∗, t∗) =

−α∗2

(2π)2

∫∫

R2

ζ̂∗OKe
ik∗·x∗

cosh(|k∗|h∗)
e−α∗t∗ − cos(ωt∗)− ω/α∗ sin(ωt∗)

α∗2 + ω2
dk∗, (4.39)

and the velocity potential in the passive case (the expressions for the other two active cases

are a bit cumbersome) [DDK06],

φ∗
o(x

∗, t∗) =
1

4π2

∫∫

R2

−g
ω
ζ̂∗OKe

ik∗·x∗

(cosh |k∗|z∗ + tanh |k∗|h∗ sinh |k∗|z∗) dk∗. (4.40)

Then one can easily compute the kinetic and potential energies:

E∗
K =

1

2
ρ∗
∫∫

R2

∫ η∗

−h∗

|∇φ∗|2 dx∗dz∗, E∗
P =

1

2
ρ∗g

∫∫

R2

η∗2 dx∗. (4.41)

Results are shown in figures 4.11 and 4.12. Even though there are differences during

the first few seconds, the three mecanisms lead to the same almost exact equipartition

between kinetic and potential energy once the dipolar waves start to propagate. The

simplest estimate proposed for the energy of tsunamis generated by a dislocation source

is that given by [OS03]. They compute the increase in potential energy of the ocean by

displacing a volume of water S × δh∗ from the bottom to the surface of the ocean. This

also represents the work of the pressure forces displacing the ocean bottom. Then they

explain that the center of mass of the displaced water, initially at height δh∗/2 above the

ocean floor, is transferred to the ocean surface, so that the change in potential energy is

not as much. The difference between the two is the energy available to the tsunami wave:
∫∫

E∗
wavedx

∗ =
1

2
ρ∗gS(δh∗)2. (4.42)

Incidentally, this expression does not depend on the sign of δh∗ and is also valid for a

sudden subsidence of a section of the ocean floor. It can be extended to a more realistic

sea floor deformation, such as the one used in this study, ζ∗OK(x
∗, y∗):

∫∫
E∗

wavedx
∗ =

1

2
ρ∗g

∫∫
(ζ∗OK)

2dx∗. (4.43)

This quantity corresponds to the square in figure 4.11(b).



4.1 Tsunami wave energy 99

Parameter Value

Dip angle, δ 13◦

Slip angle, θ 90◦

Fault length, L∗ 150 km

Fault width, W ∗ 50 km

Fault depth 35 km

Slip along the fault 15 m

Poisson ratio 0.27

Young modulus 9.5× 109 Pa

Acceleration due to gravity, g 9.81 m/s2

Water depth, h∗ 4 km

Characteristic rise time, t∗0 50 s

α∗ = log(3)/t∗0 0.0220 s−1

Table 4.2: Values of physical parameters used for the Cauchy-Poisson analysis of tsunami

generation.
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Figure 4.11: Time evolution of kinetic and potential energies (4.41) for three mechanisms of

tsunami generation: passive generation, instantaneous bottom motion and exponential bottom

motion. The square in plot (b) indicates the estimate (4.43).
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Figure 4.12: Same as figure 4.11. Time evolution of total energy E∗
wave = E∗

K + E∗
P (a) and

trajectory in energy space (b). The straight dashed-dotted line represents equipartition of kinetic

and potential energies. The squares represent the last computed points.

4.1.5 Concluding remarks

In this article we provided a formal derivation of the total energy equation in the

framework of the nonlinear SWE, both for dispersive and non-dispersive waves. We also

made an attempt to better understand the energy transfer from a moving bottom to the

water above. The importance of this topic is clear, given the serious hazard that tsunamis

represent for coastal regions.

Tsunami energy can be studied at several levels. A simple formula was given by [OS03].

In the present work, we extended it to more spatially realistic sea floor deformations. But

this formula does not involve any dynamics, which can play an important role in tsunami

generation. A somewhat counterintuitive consequence of this simple estimate is that the

energy carried by the full tsunami wave is practically independent of depth [OS04]. One

would think that the energy involved in lifting a 4 km column of water above a rupture is

different from lifting only 100 m of water (whether instantaneously or in a few seconds).

But no difference can be found in wave height. The assumption of incompressibility may

in fact no longer be valid, especially for a very deep ocean.

The emphasis of this paper has been on tsunami generation. At the runup or inundation

stage, energy is also quite important. Potential energy is being transferred into kinetic

energy and the study of these exchanges is left for future work. Our approach can also

be used to analyze the structure of the wave field in caustics more accurately than with

ray theory [Ber07]. The present studyr can be considered as a first step towards a better

understanding of tsunami wave energy, in order to provide scales for tsunami magnitudes

for example. More profound mathematical and physical analysis is needed.

Another extension is the study of other mechanisms. For example [Oka03] showed that
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the combination of a lesser absolute level of excitation and a more pronounced shift of the

spectral energy towards higher frequencies characterized by strong dispersion makes land-

slide sources significantly deficient far-field tsunami generators, as compared to classical

dislocations.

4.1.6 Appendix. Derivation of dispersive shallow-water equations

with variable bathymetry

We derive the Boussinesq equations following the method used, for example, by [YL89,

VS93, Nwo93]. A moving bathymetry was considered in the framework of the Boussinesq

equations by [VS93], but they dealt with a 2D problem leading to a 1D system of equations.

We need to know the depth dependence of the horizontal velocity ~u⊥ in order to reduce

the problem to a 2D one. We expand ~u⊥ in a Taylor series in the vertical coordinate z

about the seabed z = −h:

~u(x, y, z, t) = ~u|z=−h + (z + h) ~uz|z=−h +
(z + h)2

2!
~uzz|z=−h + . . . . (4.44)

From now on, the horizontal velocity at the bottom is denoted by

~ub := ~u⊥(x, y,−h, t).

If the flow is assumed to be irrotational, there is an additional relation which closes the

system:

(~u⊥)z = ∇w. (4.45)

Substituting (4.22) into (4.45) clearly shows that (~u⊥)z(x, y,−h, t) = O(µ2). Substituting

(4.44) into (4.22) and integrating then yields

w = µ2ζt − µ2∇ ·
(
(z + h)~ub

)
+ O(µ4). (4.46)

The vertical velocity varies linearly with respect to z over the depth at leading order O(µ2).

The horizontal velocities can be found by integrating the irrotationality condition (4.45)

from −h to z:

~u⊥ = ~ub +

z∫

−h

∇w dz. (4.47)

Substituting (4.46) for w and integrating gives

~u⊥ = ~ub + µ2(z + h)

[
∇ζt −

1

2
(z − h)∇(∇ · ~ub)−∇

(
∇ · (h~ub)

)]
+ O(µ4). (4.48)
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We see that the horizontal velocities vary quadratically with respect to z over the depth

at leading order O(µ2).

Following [Urs53], we introduce a number which measures the relative importance of

nonlinear and dispersive effects in long waves:

S := ε/µ2.

In order to simplify the computations we now assume that S = O(1). Dispersive terms

can be neglected if S ≫ 1.

An expression for the pressure can be obtained by substituting (4.48) and (4.46) into

(4.21), integrating and retaining leading order terms:

π = η +
µ2

2
z2∇ · ~ubt + µ2z

(
∇ · (h~ubt)− ζtt

)
+ O(µ4). (4.49)

The equation for the free-surface evolution is derived by substituting (4.48) into the

depth-integrated continuity equation (4.19) and integrating:

ηt +∇ ·
(
(h+ εη)~ub

)
− µ2∇ ·

[h2
2
∇
(
∇ · (h~ub)− ζt

)
− h3

3
∇
(
∇ · ~ub

)]
− ζt = 0. (4.50)

The equation for the evolution of the horizontal velocity is obtained by substituting

(4.48) and (4.49) into (4.12) and (4.13):

~ubt + ε(~ub · ∇)~ub + ∇η + µ2
[h2
2
∇(∇ · ~ub) − h∇

(
∇ · (h~ub) − ζt

)]
t

= 0.

Using the irrotationality condition this equation can be rewritten as

~ubt +
ε

2
∇ |~ub|2 + ∇η + µ2

[h2
2
∇(∇ · ~ub) − h∇

(
∇ · (h~ub) − ζt

)]
t

= 0. (4.51)

Finally we write the energy equation by substituting (4.48) and (4.49) into (4.23):

∂

∂t

εη∫

−h

e dz + ε∇ ·






εη∫

−h

e dz +
1

2
(h + εη)2


 ~ub


− ε(h+ εη)ζt = 0. (4.52)

The higher-order terms are of order O(εµ2).

Another possibility for the choice of variables is to introduce the depth averaged velocity.

The corresponding standard Boussinesq-type equations were obtained by [Per67] in the

case of a fixed seabed. We extend the results to a moving bathymetry and add the energy

equation. The main advantage of the depth averaged velocity consists in the fact that

the continuity equation (or equivalently the equation for the free-surface elevation) is very

simple and exact in this variable.
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Let us rewrite all equations in terms of the depth-averaged velocity defined by

~̄u =
1

h+ εη

εη∫

−h

~u⊥ dz. (4.53)

The depth-integrated continuity equation (4.19) yields immediately

ηt +∇ ·
(
(h+ εη)~̄u

)
− ζt = 0. (4.54)

In order to derive equations for the horizontal velocity and the energy we need a relation

between ~ub and ~̄u. The desired relation is deduced directly from the definition (4.53) by

substituting (4.48) in it:

~̄u = ~ub −
µ2

2
h∇
(
∇ · (h~ub)− ζt

)
+
µ2

3
h2∇(∇ · ~ub) + O(ε2 + εµ2 + µ4).

Inverting the last equation yields

~ub = ~̄u+ µ2
[h
2
∇
(
∇ · (h~ub)− ζt

)
− h2

3
∇(∇ · ~ub)

]
+ O(ε2 + εµ2 + µ4). (4.55)

Substituting the relation (4.55) into equation (4.51) gives the standard Boussinesq

equations for a moving bottom:

~̄ut +
ε

2
∇
∣∣~̄u
∣∣2 +∇η + µ2

[h2
6
∇(∇ · ~̄u)− h

2
∇(∇ · (h~̄u)− ζt)

]
t
= 0. (4.56)

The energy equation is obtained by substituting the relation (4.55) into equation (4.52):

∂

∂t

εη∫

−h

e dz + ε∇ ·






εη∫

−h

e dz +
1

2
(h+ εη)2


 ~̄u


− ε(h+ εη)ζt = 0. (4.57)

Since the energy equation is redundant for incompressible flows, the linear dispersion

relation is unaffected by the inclusion of the energy equation. As is well-known, it can be

improved by defining the horizontal velocity at an arbitrary level.
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4.2 Influence of sedimentary layering on tsunami genera-

tion

The most incomprehensible thing about the world is that it is comprehensible.

Albert Einstein

Abstract. The present Section is devoted to the influence of sediment

layers on the process of tsunami generation. The main scope here is to demon-

strate and especially quantify the effect of sedimentation on vertical displace-

ments of the seabed due to an underwater earthquake. The fault is modelled as

a Volterra-type dislocation in an elastic half-space. The elastodynamics equa-

tions are integrated with a finite element method. A comparison between two

cases is performed. The first one corresponds to the classical situation of an

elastic homogeneous and isotropic half-space, which is traditionally used for

the generation of tsunamis. The second test case takes into account the pres-

ence of a sediment layer separating the oceanic column from the hard rock.

Some important differences are revealed. We conjecture that deformations in

the generation region may be amplified by sedimentary deposits, at least for

some parameter values. The mechanism of amplification is studied through

careful numerical simulations.

4.2.1 Introduction

The primary application of this study is that of tsunami generation by the deformation

of the sea bottom following an underwater earthquake. We do not explicitly compute

the tsunami waves induced above the generation region. The coupling between solid and

water motions was already performed in our previous work [DD09b] and can be done

again if necessary. Here we are mainly interested in the extreme amplitudes of the seabed

displacements during the first minutes of a tsunamigenic earthquake. Recall that the free

surface motion roughly follows these displacements. There are two fundamental reasons for

this. The first one is that the rupture velocity of the seismic source, V , is much larger than

the phase velocity of the tsunami, c. In practice, for seismic sources, V is of the order of 3

km/s, whereas c is typically less than 250 m/s, even for the deepest ocean basins [OS03].

It means that the gravitational forces do not have enough time to change the shape of

the free surface during the characteristic time of the seabed motion [BMR72]. The second

reason is that water is assumed to be incompressible and shallow. Altogether it means that

for our purpose we can restrict our attention to the motion of the ocean bottom. Profiles

of the ocean free surface are not computed in this study.

The two fundamental reasons mentioned above are often used to justify the passive

approach for tsunami generation where the static sea-bed displacement is simply translated
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to the free surface to generate the initial condition. Our previous investigations [DDK06,

DD07d, DD09b] showed important differences between passive and active generations when

the resulting wave is generated by a moving bottom.

We would like to underline that the present study is a theoretical one at this stage and

must be followed by a thorough study of the influence of the various parameters such as

rupture velocity, focal depth, dip angle, slip angle, fault size (only one-dimensional – 1D –

faults are considered in this paper), sedimentary structure (the sedimentary layer is taken

as a Poisson solid in this study). Moreover, the far-field effect might be different from

the near-field effect. We simply explore some aspects of the influence of the sedimentary

layering on tsunami generation. We do not consider historical examples, even though it

should be done in the future. Our goal is to present a framework for studying the process

of tsunami generation. Recall that ten years ago, Synolakis et al. [SLCY97] were writing:

“There is a lack of quantitative information on sediment layers overlying tsunamigenic

faults and about how these layers affect directly the generation of tsunamis.” Our study

is a small step toward a better understanding of the rôle of sediments.

The influence of sedimentary layering was already mentioned in some studies [Fuk79,

Oka88, FWB06]. Let us comment on the various results obtained so far. Both studies

[Fuk79] and [Oka88] point out that fracturing through thick sediments produces large

displacements in the source region but relatively small displacements in the far field. In

the work by Okal [Oka88], the influence of the sediment layer was studied in the framework

of normal modes and interesting results were obtained for sources inside as well as outside

the layer of sediments. In the present study we perform direct numerical simulations by

solving the elastodynamics equations with a finite element method (FEM).

To our knowledge, the most recent numerical study concerning the rôle of sedimentation

in subduction-zone thrust faults is [FWB06]. The scope of that paper was the long-term

evolution of a typical subduction wedge. A quite sophisticated thermo-mechanical mod-

elling of the plate movement with realistic rheology was used. As in our study, the governing

equations were solved with a two-dimensional FEM. The authors came to some important

conclusions (see also [SB06] for interesting remarks on sediment layers). We would like to

quote some of them since there is a connection with our results:

“Our numerical simulations demonstrate that sedimentation stabilizes the un-

derlying wedge, preventing internal deformation beneath the basin. Maximum

slip during great-thrust earthquakes tends to occur where sedimentary basins

stabilize the overlaying wedge. The lack of deformation in these stable regions

increases the likelihood of thermal pressurization of the subduction thrust, al-

lows the fault to load faster, and allows greater healing of the fault between

rupture events.”
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In view of the above results, it is interesting to compare the distribution of sediment

thickness in the world oceans (see Figure 4.13) with the seismic hazard map (see Fig-

ure 4.14). As one can see on Figure 4.13, the sediment thickness varies from 0 to 20 km.

Important deposits can be found along the Eastern coasts of America and the Western

coasts of Africa. Fortunately there is no substantial seismic activity in these regions. But

in the Bay of Bengal, and in particular in the Andaman sea, the situation is different. In

this part of the world two factors are present simultaneously: an important seismic hazard

and thick sediment layers. Unfortunately, we do not have reliable information on sediment

thickness in the Mediterranean region. One can find different information in the literature.

The estimates go from 25 m [HRR+04] to 1500 m or even more [EOS+05]. So, it is difficult

to draw any conclusions. In this study we try to understand what kind of implications this

may have for tsunami generation processes.

The present study is organised as follows. In Section 4.2.2 we briefly describe the

simplified mathematical model which represents the Earth crust. In the same section we

also give some ideas about the discretisation procedure of the governing equations. Section

4.2.3 contains the description of two idealised test cases. Then, some results on the profile of

the seafloor are presented. Finally, important conclusions and practical recommendations

to tsunami wave modelers are given in Section 4.2.4. Some directions for future research

are also outlined.

4.2.2 Mathematical model and numerical method

In this paper we use the same mathematical model as in our previous study [DD09b].

Nevertheless, we give here a brief description of the model and refer to [Dut07, DD09b,

KDID07] for more details. We emphasize again that we consider a 1D fault. In other words

the fault has only one dimension, its length L.

The fault is assumed to lie inside a linear elastic isotropic material. In the next section

both homogeneous and inhomogeneous distributions of the Earth crust properties will be

considered.

We provide the 3D version of the governing equations. Let σ represent the stress

tensor. The displacement field ~u = (u, v, w)(x, y, z, t) satisfies the classical elastodynamic

equations issued from continuum mechanics [AR02]:

∇ · σ = ρ
∂2~u

∂t2
, (4.58)

where ρ the material density. It is common in seismology to assume that the stress tensor

is determined by Hooke’s law through the strain tensor ε = 1
2
(∇~u+∇t~u). Therefore

σ = λ(∇ · ~u)I + 2µε, (4.59)
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Figure 4.13: Total sediment thickness of the world’s ocean and marginal seas (source: NOAA).
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Figure 4.14: Global seismic hazard map (source: Swiss Seismological Service).

where λ and µ are the Lamé coefficients. The coefficient µ is the shear modulus. Thus, we

come to the following linear elastodynamic problem:

∇ ·
(
λ(∇ · ~u)I + µ(∇~u+∇t~u)

)
= ρ

∂2~u

∂t2
. (4.60)

As already pointed out, these coefficients can possibly depend on the spatial coordinates

(x, y, z) (x, y: horizontal, z: vertical). The Lamé coefficients can be expressed in terms of

Poisson’s ratio ν and Young’s modulus E as follows:

λ =
2µν

1− 2ν
=

Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

This remark immediately leads to the following property of solutions to the steady version

of Equation (4.60): such solutions do not depend on Young’s modulus but only on Poisson’s

ratio.

The fault is modeled as a dislocation inside an elastic material. This type of model is

widely used for the interpretation of seismic motion. A dislocation is considered as a surface

(in three-dimensional problems) or a line (in two-dimensional problems) in a continuous

medium where the displacement field is discontinuous. The displacement vector is increased

by the amount of the Burgers vector~b along any contour C enclosing the dislocation surface
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(or line), i.e. ∮

C

d~u = ~b. (4.61)

We let a dislocation run at speed V along a fault inclined at an angle δ with respect to

the horizontal. The rupture starts at the point x = 0 and z = −d (it is supposed to be

infinitely long in the transverse y−direction), propagates at constant rupture speed V for

a finite time L/V in the direction δ and stops at a distance L. Let ζ be a coordinate along

the dislocation line. On the fault located in the interval 0 < ζ < L, the slip is assumed to

be constant. The rise time is assumed to be 0. We insist here that in real situations, the

fault is two-dimensional and the rupture velocity usually refers to the velocity at which

the fault ruptures in the transverse y−direction (see for example [Oka88]).

4.2.2.1 Discretization of the elastodynamics equations

In order to apply the FEM we rewrite the governing equation (4.60) in the domain Ω

in variational form. One has
∫

Ω

ρ
∂2~u

∂t2
· ~v dΩ +

∫

Ω

σ(~u) : ∇~v dΩ =

∫

ΓN

~f · ~v dS, ∀~v ∈ V,

where V is the linear closed subspace of
(
H1(Ω)

)2
and ~f is the loading applied to the

Neumann boundary ΓN . This term is equal to zero in our computations, since the seabed

is considered to be a free boundary in geophysics.

In order to discretize the time derivative operator we apply a classical second order

finite-difference scheme. We underline that the resulting method is fully implicit and has

the advantage of being free of any CFL-type condition. In such problems implicit schemes

become advantageous since the velocity of propagation of seismic waves is of the order of

3− 4 km/s. After discretizing in time, one obtains the following variational form:

∫

Ω

ρ
~u(n+1) − 2~u(n) + ~u(n−1)

∆t2
· ~v dΩ +

∫

Ω

σ(~u(n+1)) : ∇~v dΩ =

∫

ΓN

~f · ~v dS,

where the superscript denotes the time step number, e.g. ~u(n) = ~u(x, tn). Then, we apply

the usual P2 finite-element discretization procedure. For the numerical computations, we

used the freely available code FreeFem++ [HPHO].

Let us say a few words about the boundary conditions and the treatment of the dislo-

cation in the program. As already stated, the seabed is assumed to be a free surface:

σ · ~n = ~f = ~0, z = 0.
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Figure 4.15: Typical mesh used in the numerical computations. The length scale is in meters.

The other boundaries are assumed to be fixed or in other words, we apply Dirichlet type

boundary conditions ~u = ~0. The authors are aware of the reflective properties of this type

of boundary conditions. But we take a computational domain which is sufficiently large,

so that the seismic waves do not reach the boundaries during the simulation time. This

approach is not computationally expensive since we use adaptive mesh algorithms [HPHO]

and in the regions far from the fault, element sizes are considerably bigger than in the fault

vicinity. A typical mesh used in simulations is plotted on Figure 4.15.

Now, let us discuss the implementation of the dislocation. Across the fault, the dis-

placement field is discontinuous and satisfies the following relation:

~u+(x, t)− ~u−(x, t) = ~b(x, t), (4.62)

where the signs ± denote the upper and lower boundary of the dislocation surface, respec-

tively. In order to satisfy the condition (4.62) we apply the following boundary conditions

on the fault surface:

~u|
x∈Γ+ =

~b

2
, ~u|

x∈Γ− = −
~b

2
.

Remark 4. Due to the presence of huge hydrostatic pressures in the crust, the two sides

of the fault cannot detach physically. In any case this situation does not occur in nature.

Mathematically it means that the Burgers vector ~b is tangent to the dislocation surface at

each point.



4.2 Influence of sedimentary layering 111

d

L

O

x

z

Figure 4.16: Test case with a homogeneous medium.

4.2.3 Numerical results

The numerical method described in the previous section was validated in our previous

study [DD09b] by comparing numerical results with analytical results. In the present

work we compare vertical displacements at the ocean bottom in two different situations.

The first test case corresponds to the traditional modelling procedure where the Earth

crust is assumed to be a homogeneous elastic material. It is schematically depicted on

Figure 4.16. For example, the well known Okada solution2 [Oka85], which is still widely

used to construct initial conditions for various tsunami propagation codes, is based on

these assumptions.

In the second test case, we add a sediment layer of thickness hs on top of the previous

configuration. This situation is depicted on Figure 4.17. Let us provide some comments

on the model for sediments chosen in this study. In fact, what we call sediments here

is an elastic layer which has the mechanical properties of sand according to [Mei94]. It

means that porosity and the two-phase nature of this medium are neglected. These effects

should be investigated in the future. As stated by Okal [Oka88], detailed oceanic models

of sedimentary structure have evidenced strong gradients of seismic velocities. The chosen

sedimentary model is not extreme; much looser and weaker structures are encountered in

nature.

Let us now discuss the results. First we present static solutions corresponding to the

test cases described above. Two solutions are plotted on Figure 4.18. In this case we take a

2The original paper by Okada was published in 1985. In the Russian literature this solution was

already known in 1978, after the publication of results by Gusiakov [Gus78]. Some particular cases of

Okada solution were known even earlier [MS71, FB76].



112 Tsunami wave modeling

d

L

O

hs x

z

Figure 4.17: Test case with a sediment layer in between the oceanic column and the hard rock.

parameter value

Fault depth, d 4000 m

Dip angle, δ 13◦

Fault length, L 2000 m

Slip along the fault, b 10 m

Fault propagation velocity, V 2500 m/s

Table 4.3: Values of fault parameters used in this study.

parameter sand granite

Shear modulus µ, Pa 2× 108 30× 109

Poisson’s ratio 0.3 0.27

Shear wave velocity
√
µ/ρ, m/s 330 3230

Table 4.4: Values of mechanical parameters for sand and granite.
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Figure 4.18: Volterra dislocation source. Static solutions with (dashed line) and without (solid

line) sediments. The thickness of the sediment layer is hs = 600 m.

sediment layer thickness hs equal to 600 m. In all figures of this section we plot the vertical

displacement at the free surface of the Earth crust (or at the seabed, in other words). The

values of the other parameters used in the computations are given in Tables 4.3 and 4.4.

As the reader can see, there is no significant difference between the two solutions. In other

words, sediments do not influence the static deformations due to a dislocation source.

Physically, we can understand this situation, since in the static case the sand layer is just

raised up by the deformed granite. Note that the parameters used here are not realistic.

Indeed the length of the fault L is quite small and we repeat that the fault is 1D. The slip

b is extremely large but since at this stage the problem is linear, the absolute value of the

slip is not that important.

There is another rather mathematical explanation. In fact, as mentioned above, the

steady Lamé equations3 do not depend on Young’s modulus but only on Poisson’s ratio.

Not surprisingly the Okada solution has the same property since the analytical expressions

contain the Lamé coefficients in the combination λ/(λ+µ), which depends only on Poisson’s

ratio ν. One can see in Table 4.4 that Poisson’s ratio ν is almost the same for sand and

granite. This is why the sediment layer does not have a strong effect on the steady solution.

Now, let us consider the dynamical effects. The results are presented on Figures 4.19–

3We assume that we neglect volume forces as well. So, the system of governing equations is homoge-

neous.
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(a) t = 1.0s (b) t = 1.5s

Figure 4.19: Dynamic sea-bed displacements at the beginning of the rupture process. The

thickness of the sediment layer is hs = 600 m.

4.21. In these computations we take the same thickness of the sand layer as in the static

case (hs = 600 m). It can be seen on Figure 4.19 that the deformation in the homogeneous

case is initiated earlier. This is to be expected since the shear wave velocity in the sand is

almost ten times slower than in the granite. Later, the deformation in the inhomogeneous

case starts to evolve. It is surprising that it produces much bigger displacements – see

Figure 4.20. In other words, taking into account the sediments increases considerably

the seabed deformations. When time evolves, both solutions eventually reach comparable

amplitudes (see Figure 4.21).

We performed other computations where the sediment layer thickness was reduced to

150 m. Results are presented on Figures 4.22–4.23. In this case, both solutions (homoge-

neous and inhomogeneous) evolve together and are almost indistinguishable within graph-

ical accuracy. These results suggest to study the dependence of the vertical displacement

amplitude on the sediment layer thickness.

4.2.3.1 Sediment amplification factor

In order to quantify the influence of sediments on the vertical seabed displacements,

we introduce a new quantity Sa that is called the sediment amplification factor. We give

first the formula for Sa and then explain our definition.

Definition 1. Let us denote by v0(x, t) and vs(x, t) the vertical displacements at the free

surface in a homogeneous half-space and at the top of the sediment layer respectively4.

4In the idealized situation of our test cases, it means that we evaluate the vertical displacements at
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(a) t = 2.0s (b) t = 2.5s

Figure 4.20: Dynamic sea-bed displacements. The solution, which takes into account the

presence of the sediments, produces much bigger vertical displacements. The thickness of the

sediment layer is hs = 600 m.

(a) t = 3.0s (b) t = 3.5s

Figure 4.21: Dynamic sea-bed displacements at the end of the simulation. The thickness of the

sediment layer is hs = 600 m.
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(a) t = 1.0s (b) t = 2.0s

Figure 4.22: Dynamic sea-bed displacements at the beginning. The thickness of the sediment

layer is hs = 150 m.

(a) t = 3.0s (b) t = 3.5s

Figure 4.23: Dynamic sea-bed displacements. End of the process. The thickness of the sediment

layer is hs = 150 m.
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Then, the sediment amplification factor is defined as follows:

Sa =

max
(x,t)
|vs(x, t)|

max
(x,t)
|v0(x, t)|

− 1.

Let us provide some explanations. First of all, it is clear that we compare the values

of two extreme amplitudes. The maximum is taken in both space and time, since both

processes are not synchronised in time5. Finally, we substract one because we want the

amplification factor to be equal to zero when sediments are absent.

Once this quantity Sa is defined, a parametric study must be performed. Here we are

mainly interested in the dependence on the sediment layer thickness. But it is better to

choose a dimensionless quantity. In this problem there are three lengths: the fault length

L, the fault depth d and the sediment layer thickness hs. It is natural to choose the ratio

hs/d as dimensionless parameter.

We performed a lot of computations for different values of hs/d and obtained the

curve shown on Figure 4.24. It leads to several comments. On the left, the curve starts

from zero and it is expected since the sediment layer disappears at this extremity. Thus,

its amplification is equal to zero as well. It is interesting that the amplification factor

has a maximum in the vicinity of hs/d = 0.12. It means that there exists an optimal

configuration when the sediment layer has its strongest effect. When we gradually increase

the dimensionless parameter hs/d past the maximum, the amplification decreases. In

the limit, one has to be careful as hs/d → ∞. Indeed one approaches an elastic half-

space completely filled with sediment and dislocation theory may no longer be appropriate,

especially if the material is loose.

4.2.4 Conclusions and perspectives

In the present study we investigated the influence of sedimentary layering on displace-

ments due to an earthquake. We showed that there is practically no effect in the case of

static deformation. This is to be expected in the framework of our model. Both curves

can be superimposed up to graphical accuracy. On the other hand, dynamics makes a

big difference. Our computations show that the vertical displacement amplitude can be

amplified by a factor up to 1.7. We point out that there exists some kind of “optimal”

sediment layer thickness, which provides the biggest amplification factor. Of course, this

z = 0.
5We saw on Figures 4.19 – 4.21 that the homogeneous solution evolves faster since sediments slow down

the properties of elastic wave propagation.
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Figure 4.24: Dependence of the sediment amplification factor Sa on the sand layer relative

depth hs/d.

optimal value depends on various mechanical parameters. It can be estimated in each

specific situation by similar numerical techniques.

There is another predictible effect of the sediment layer. It slows down considerably

the velocity of propagation of elastic and Rayleigh waves. In our simulations it is reflected

by the fact that the maximum amplitude is reached much later than in the homogeneous

case.

We introduced a new quantity Sa, that we called sediment amplification factor. This di-

mensionless quantity measures the relative increase of the vertical displacement amplitude

with respect to the homogeneous half-space solution. The dependence of this quantity Sa

on the dimensionless thickness of the sediment layer was studied. We showed that there

exists an optimal ratio hs/d ≈ 0.125 between sediment thickness and depth of the event

which provides the biggest amplification factor Sa ≈ 0.7.

It is of interest to see how these results apply to the 2004 Indian Ocean Earthquake,

which produced a megatsunami with local runup greater than 30 m at some locations

[SK06]. According to Figure 4.13, we can estimate the sediment thickness hs in the gen-

eration region to be about 3 km. In [LKA+05, NSS+05], the centroid depth d was set to

25 km for all fault subdivisions. If we compute the ratio of these parameters, we obtain

hs/d = 0.12. This value approximatively corresponds to the value (see Figure 4.24) which

provides the maximal sediment amplification factor. The natural question is: is it a coin-
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cidence? It is not possible to answer at this stage. Indeed the values we have used for the

fault size are not realistic. Most likely there can be an amplification in real situations but

not as large.

The overall conclusion of this study is that one may have to revise the initial conditions

used in some tsunami simulations. More precisely one has to take care of situations where

the generation region contains sediment deposits. Most likely it was the case of the Boxing

Day Tsunami of 2004 [SB06]. Several researchers had to take unphysically large values of

the slip along the fault6 in order to generate a significant tsunami wave (see for example

[IAK+07]). If one takes sediments into account, this value can be reduced while producing

the same wave amplitude.

We finally outline some directions for future research in this field. First of all, the

application of these techniques to real world events requires, of course, 3D computations,

even if we do not think that it will change qualitatively our results. On the other hand, the

fracturing through the sediments should be further investigated since it was conjectured to

provide a much bigger amplification factor [Fuk79, Oka88]. At the same time, the question

of the influence of sediment porosity has not been addressed in the present study and

is left for future investigations. We have the feeling that porosity may enhance sea-bed

deformations in the near field but it should be checked by thorough computations.

Finally it should be emphasized that the present study has focused on the deformation

of the sea-bed. The question of the amplification of tsunami waves is a different one. Even

if there is an effect in the near-field, it is not obvious that there is an effect in the far-field.

The normal mode theory used by Okal [Oka88] provides an ideal framework to study both

near-field and far-field effects. Moreover it is relatively easy to vary as many parameters

as possible (focal depth, rupture velocity, dip angle, slip angle, thickness of sediment layer,

fault size, sedimentary structure, etc).

6In terms of dislocations, it means the absolute value of the Burgers vector.
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4.3 The VOLNA code for the numerical modeling of tsunami

waves: generation, propagation and inundation

I seem to have been only like a boy playing on the seashore, and diverting myself in now and

then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth

lay all undiscovered before me.

Sir Isaac Newton

Abstract. A novel tool for tsunami wave modelling is presented. This

tool has the potential of being used for operational purposes: indeed, the

numerical VOLNA code is able to handle the complete life-cycle of a tsunami

(generation, propagation and run-up along the coast). The algorithm works

on unstructured triangular meshes and, thus, can be run in arbitrary complex

domains. It is often the case since natural coasts tend to be of fractal shape

[SBG04]. This paper contains the detailed description of the finite volume

scheme implemented in the code. We explain the numerical treatment of the

wet/dry transition. This point is crucial for accurate run-up computation.

Most existing tsunami codes use semi-empirical techniques at this stage, which

are not always sufficient. The main reason is that people evacuation is decided

on the base of inundation maps which are produced with this type of numerical

tools. Finally we present several realistic test cases that partially validate our

algorithm. Comparisons with analytical solutions and experimental data are

performed. Finally the main conclusions are outlined and the perspectives for

future research presented.

4.3.1 Introduction

After the Boxing Day tsunami [SB06] there is no need to explain the importance of

research on tsunami waves. One of the primary objectives in this field consists in estab-

lishing and developing Tsunami Warning Systems (TWS) [Tat97, TGB+05]. This task is

non trivial as explained by Synolakis [Syn05]:

For reference, the United States and Japan took more than 20 years to develop

validated numerical models to predict tsunami evolution. And it took the US

National Oceanic and Atmospheric Administration 30 years to fully develop its

bottom-pressure recorders, which have been reliably detecting tsunamis for the

past ten years.

After the Boxing Day tsunami, while developing their own national and regional capabili-

ties, countries in the Indian Ocean and the Caribbean Sea have asked the PTWC (Pacific
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Tsunami Warning Center) to act as their interim warning center. India and Australia now

have fully working national centers, while the National Oceanic and Atmospheric Admin-

istration of the U.S. has assisted both with instrumentation and the sophisticated forecast

technology used in the Pacific. Europe however is trying to reinvent the early warning

wheel. As a result, the Mediterranean remains the only world ocean or sea unprotected by

any warning system.

The mathematical modelling and computation of propagating tsunami waves play an

important rôle in TWS. Precision and robustness of the algorithm will affect performance

and reliability of the whole system.

The importance of tsunami generation modelling is often underestimated by the scien-

tific community. During several years the research of our group was focused on this topic

and many interesting results were obtained [DD07d, Dut07, DDK06, KDD07, DD09b,

DD10]. We tried to incorporate some recent developments [DD07d] from this field into the

VOLNA code.

It is difficult to find a topic in numerical analysis of hyperbolic PDEs which has

been studied more than the numerical solution to the Nonlinear Shallow Water Equa-

tions (NSWE). The numerical scheme presented in this paper is not completely novel. The

discretization methods used in VOLNA can be found in the modern literature on finite

volumes methods [Kro97, BO04]. The main purpose here is to present a tool for tsunami

wave modelling which covers the whole spectrum from generation to inundation. The

emphasis is on the technical work which is typical of a numerical analyst and software

developer. Tsunami practicioners can then concentrate on the physical aspects of tsunami

propagation.

Nowadays, one is facing a somewhat strange situation. On one hand, there are only a

few truly operational codes for tsunami wave modelling: MOST, NAMI, ComCot [Ima96,

TG97, GOSI97, LWC98]. The numerical schemes used in these codes essentially correspond

to the state of the art of the eighties. On the other hand, there is a plethora of NSWE codes

developed in academic environments [Gla88, Cas90, Tor92, BDDV98, AC99, VC99, AGN05,

BQ06, GNVC00, GHS03, ABB+04, KCY07, Geo06, GL06, ZCIM02, CIM+00, NPPN06,

CFGR+05, WMC06, Geo08, DKK08]. These codes use modern numerical methods but

most of them run have been developed for rectangular domains and Cartesian meshes. They

can be successfully used to test new numerical ideas, but these tools have little interest for

tsunami operational research. This is why we had the idea to develop VOLNA . We tried to

combine modern numerical techniques for hyperbolic systems with real world application-

oriented design. The VOLNA code can be run efficiently in realistic environments. It was

shown that natural coasts tend to have fractal forms [SBG04]. Hence, unstructured meshes

are a natural choice in this type of situations.
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Figure 4.25: Sketch of the fluid domain.

The present study is organised as follows. In Section 4.3.2 the physical context of the

study and some motivation for the choice of the mathematical model are presented. Section

4.3.3 contains a detailed description of the numerical method implemented in the VOLNA

code. Then, we show in Section 4.3.4 some computations, which validate and illustrate the

capabilities of VOLNA . Finally the main conclusions are outlined and the perspectives for

future research presented in Section 4.3.5.

4.3.2 Physical context and mathematical model

In this study we focus on long wave propagation over realistic bathymetry. A sketch of

the physical problem under investigation is given on Figure 4.25. Let us explain the main

assumptions and the domain of applicability of the VOLNA code.

Introduce some characteristic lengths. We denote by a0 the typical wave amplitude,

by h0 the average depth and by ℓ the characteristic wave length. Several dimensionless

numbers can be built from these three quantities, but traditionally one introduces the

following two:

ε =
a0
h0
, µ2 =

(
h0
ℓ

)2

.

The first parameter ε measures the wave nonlinearity (ε ≪ 1 means than nonlinearity is

weak) while the second parameter µ2 quantifies the importance of dispersive effects (µ≪ 1
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means than dispersion is weak). Taking a typical megatsunami offshore with roughly

a0 ≃ 0.5 m, h0 ≃ 4 km, ℓ ≃ 100 km

yields ε = 1.25×10−4 for the nonlinearity parameter and µ2 = 1.6×10−3 for the dispersion

parameter. Both are weak. Using asymptotic expansions in the small parameters ε≪ 1 and

µ2 ≪ 1, one can derive Serre-type equations [Ser53, Per67, MBS03, DD07b, DM10]. Note

that no operational codes based on the Serre equations exist. For example FUNWAVE is

not a truly operational code. Neglecting the dispersive effects yields the classical Nonlinear

Shallow Water Equations (NSWE):

Ht +∇ · (H~u) = 0, (4.63)

(H~u)t +∇ ·
(
H~u⊗ ~u+ g

2
H2
)
= gH∇h, (4.64)

where H = h + η is the total water depth and ~u = (u, v)(x, t) is the depth-averaged

horizontal velocity. Traditionally, g denotes the acceleration due to the gravity and h(x, t)

describes the bathymetry.

Remark 5. The bathymetry h(x, t) is allowed to be time-dependent. It is important for

the problem of tsunami generation by underwater earthquakes, submarine landslides, etc.

The coupling with seismology is done through this function. Namely, various simplified

earthquake models [DD07d, KDD07, DD09b, DD10] provide the seabed displacements which

are then transmitted to the ocean layer.

In this study, the NSWE (4.63) and (4.64) are chosen to model tsunami generation,

propagation and run-up. It is computationally advantageous to have a uniform model for

all stages of tsunami life since many technical problems are thus avoided. The validity of

the NSWE for tsunami generation was already examined in our previous study [KDD07],

where an excellent performance of this model was shown for nondispersive long waves. In

the present paper we show in Section 4.3.4 the ability of the NSWE to model the run-up

process. For this purpose, comparisons with a laboratory experiment are performed. Thus,

the chosen complete approach to tsunami wave modelling is very attractive from both the

operational and research viewpoints.

The governing equations (4.63) and (4.64) have several nice mathematical properties.

In particular, this system is strictly hyperbolic provided that H > 0. This property will

be used extensively in the construction of the numerical scheme (see Section 4.3.3).

Let us discuss the eigensystem of the advective flux. First, we introduce conservative

variables and rewrite the governing equations as a system of conservation laws:

∂w

∂t
+∇ · F(w) = S(w), (4.65)
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where the following notation was introduced:

w(x, t) : R2 × R
+ 7→ R

3, w = (w1, w2, w3) = (H,Hu,Hv),

F(w) =




Hu Hv

Hu2 + g
2
H2 Huv

Huv Hv2 + g
2
H2


 =




w2 w3
w2

2

w1
+ g

2
w2

1
w2w3

w1

w2w3

w1

w2
3

w1
+ g

2
w2

1


 ,S(w) =




0

gH ∂h
∂x

gH ∂h
∂y


 .

After projecting the flux F(w) on a normal direction7 ~n = (nx, ny), one can compute the

Jacobian matrix An. Its expression in physical variables has the following form:

An =
∂
(
F(w) · ~n

)

∂w
=




0 nx ny

−uun + gHnx un + unx uny

−vun + gHny vnx un + vny


 ,

where un = unx + vny is the velocity vector projected on ~n. The Jacobian matrix An has

three distinct eigenvalues:

λ1 = un − c, λ2 = un, λ3 = un + c, (4.66)

where c =
√
gH is the speed of gravity waves in the limit of infinite wavelength. This

quantity plays the same rôle as the sound speed in compressible fluid mechanics. It is now

obvious that the system (4.63), (4.64) is strictly hyperbolic provided that H > 0. The

eigenstructure of the Jacobian matrix An is fundamental for constructing the numerical

flux function (see Section 4.3.3.1) and thus, upwinding the discrete solution.

4.3.3 Discretization procedure

In this study we selected the most natural numerical method for this type of equa-

tions. Finite volume methods are a class of discretization schemes that have proven highly

successful in solving numerically of a wide class of systems of conservation laws. These

systems often come from compressible fluid dynamics. In electromagnetism, for exam-

ple, Discontinuous Galerkin methods have proven to be more efficient [CLS04]. When

compared to other discretization methods such as finite elements or finite differences, the

primary advantages of finite volume methods are robustness, applicability on very general

unstructured meshes, and the intrinsic local conservation properties. Hence, with this type

of discretization, mass, momentum and total energy are conserved exactly8.

7In the finite volume method one often projects onto the face normal.
8This statement is true in the absence of source terms and appropriate boundary conditions.
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In order to solve numerically the system of balance laws (4.63), (4.64) one uses again

the conservative form of governing equations (4.65). System (4.65) should be provided

with an initial condition

w(x, 0) = w0(x), x = (x, y) ∈ Ω (4.67)

and appropriate boundary conditions. The implementation of different boundary condi-

tions will be discussed below (see Section 4.3.3.7).

4.3.3.1 First order scheme

O

K
∂K

~nKL

L

Figure 4.26: An example of control volume K with barycenter O. The normal pointing from

K to L is denoted by ~nKL.

The computational domain Ω ⊂ R2 is triangulated into a set of non overlapping control

volumes that completely cover the domain. Let T denote a tesselation of the domain Ω

with control volume K such that

∪K∈TK̄ = Ω̄, K̄ := K ∪ ∂K.

For two distinct control volumes K and L in T, the intersection is an edge with oriented

normal ~nKL or else a vertex. We need to introduce the following notation for the neigh-

bourhood of K:

N(K) := {L ∈ T : area(K ∩ L) 6= 0} ,

a set of all control volumes L which share an edge in 2D or a face in 3D with the given

volume K. In this study, we denote by vol(·) and area(·) the area and length respectively.
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The choice of control volume tesselation is flexible in the finite volume method. In the

present study we selected the cell-centered approach (see Figure 4.27), which means that

degrees of freedom are associated to cell barycenters. There exists an alternative vertex-

centered method [BJ89, BO04] (see Figure 4.28) which requires the construction of dual

mesh even for first-order schemes. In the cell-centered finite volume scheme, the trian-

gles themselves serve as control volumes with solution unknowns attributed to triangles

barycenters. In the vertex-centered finite volume scheme, control volumes are formed as a

geometric dual to the triangle complex and solution unknowns stored on vertex basis.

Remark 6. Except for the construction of dual mesh in the vertex-centered approach,

these two methods are almost equivalent in the interior of the computational domain Ω.

However, the boundary conditions treatment is different and it is harder (or less natural

in the authors’ opinion) when data is stored at vertices. This is one more reason why we

selected cell centers to store the solution’s information.

Storage location

Control volume

Figure 4.27: Illustration for cell-centered finite volume method

The first steps in Finite Volume (FV) methods are classical. One starts by integrating

equation (4.65) on the control volume K (see Figure 4.26 for illustration) and one applies

Gauss-Ostrogradsky theorem for advective and diffusive fluxes. Then, in each control

volume, an integral conservation law statement is imposed:

d

dt

∫

K

w dΩ +

∫

∂K

F(w) · ~nKL dσ =

∫

K

S(w) dΩ (4.68)

Physically an integral conservation law states that the rate of change of the total amount of

a quantity (for example: mass, momentum, total energy) with density w in a fixed control
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Storage location

Control volume

Figure 4.28: Illustration for vertex-centered finite volume method

volume K is balanced by the flux F of the quantity through the boundary ∂K and the

production of this quantity S inside the control volume.

The next step consists in introducing the control volume cell average for each K ∈ T

wK(t) :=
1

vol(K)

∫

K

w(x, t) dΩ .

After the averaging step, the finite volume method can be interpreted as producing a

system of evolution equations for cell averages, since

d

dt

∫

K

w(x, t) dΩ = vol(K)
dwK

dt
.

Godunov was first [God59] to pursue and apply these ideas to the discretization of the gas

dynamics equations.

However, the averaging process implies piecewise constant solution representation in

each control volume with value equal to the cell average. The use of such a representation

makes the numerical solution multivalued at control volume interfaces. Thereby the cal-

culation of the fluxes
∫
∂K

(F(w) ·~nKL) dσ at these interfaces is ambiguous. A fundamental

aspect of finite volume methods is the idea of substituting the true flux at interfaces by a

numerical flux function

(
F(w) · ~n

)∣∣
∂K∩∂L ←− Φ(wK ,wL;~nKL) : R

3 × R
3 7→ R

3 ,

a Lipschitz continuous function of the two interface states wK and wL. The key ingredient

is the choice of the numerical flux function Φ. In general this function is calculated as an

exact or even better approximate local solution of the Riemann problem posed at these
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interfaces. In the present study we implemented several numerical fluxes (HLL, HLLC,

FVCF) described below.

Any numerical flux is assumed to satisfy the following properties:

Conservation. This property ensures that fluxes from adjacent control volumes sharing

an interface exactly cancel when summed. This is achieved if the numerical flux

function satisfies the identity

Φ(wK ,wL;~nKL) = −Φ(wL,wK ;~nLK).

Consistency. Consistency is obtained when the numerical flux with identical state argu-

ments (in other words it means that the solution is continuous through an interface)

reduces to the true flux of the same state, i.e.

Φ(w,w;~n) = (F(w) · ~n)(w).

In the following paragraphs 4.3.3.1.1 – 4.3.3.1.3 we give several examples of numerical

flux functions Φ(v,w;~n) which were implemented in the VOLNA code. These choices are

justified by efficiency, clarity and personal preferences of the authors. However, we do not

impose them and a final user can easily implement his favourite numerical flux function.

4.3.3.1.1 FVCF approach First we describe the scheme called Finite Volumes with

Characteristic Flux (FVCF) and proposed by Ghidaglia et al. in [Ghi95, GKC96, GKC01].

Consider a general system of conservation laws in 1D that can be written as follows:

∂w

∂t
+
∂f(w)

∂x
= 0 , (4.69)

where w ∈ Rm and f : Rm 7→ Rm. We denote by A(w) the Jacobian matrix ∂f(w)
∂w

and

we deal with the case where (4.69) is smoothly hyperbolic, that is to say: for every w

there exists a smooth basis (r1(w), . . . , rm(w)) of Rm consisting of eigenvectors of A(w).

That is ∃λk(w) ∈ R such that A(w)rk(w) = λk(w)rk(w). It is then possible to construct

(l1(w), . . . , lm(w)) such that tA(w)lk(w) = λk(w)lk(w) and lk(w) · rp(w) = δk,p.

Let R = ∪j∈Z[xj−1/2, xj+1/2] be a one dimensional mesh. The goal is to discretize (4.69)

by a finite volume method. We set ∆xj ≡ xj+1/2 − xj−1/2, ∆tn ≡ tn+1 − tn (we also have

R+ = ∪n∈N[tn, tn+1]) and

w̃n
j ≡

1

∆xj

∫ xj+1/2

xj−1/2

w(x, tn) dx , f̃n
j+1/2 ≡

1

∆tn

∫ tn+1

tn

f(w(xj+1/2, t)) dt .
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With these notations, we deduce from (4.69) the exact relation:

w̃n+1
j = w̃n

j −
∆tn
∆xj

(
f̃n
j+1/2 − f̃n

j−1/2

)
. (4.70)

Since the (f̃n
j+1/2)j∈Z cannot be expressed in terms of the (w̃n

j )j∈Z, one has to make an

approximation. In order to keep a compact stencil, it is more efficient to use a three point

scheme: the physical flux f̃n
j+1/2 is approximated by a numerical flux gnj (w

n
j , w

n
j+1). Let us

show how this flux is constructed here. Since A(w)∂w
∂t

= ∂f(w)
∂t

we observe that according

to (4.69)
∂f(w)

∂t
+ A(w)

∂f(w)

∂x
= 0 . (4.71)

This shows that the flux f(w) is advected by A(w) like w. The numerical flux gnj (w
n
j , w

n
j+1)

represents the flux at an interface. Using a mean value µn
j+1/2 of w at this interface, we

replace (4.71) by the linearization:

∂f(w)

∂t
+ A(µn

j+1/2)
∂f(w)

∂x
= 0 . (4.72)

It follows that, defining the k-th characteristic flux component to be fk(w) ≡ lk(µ
n
j+1/2)·

f(w), one has
∂fk(w)

∂t
+ λk(µ

n
j+1/2)

∂fk(w)

∂x
= 0 . (4.73)

This linear equation can be solved explicitly now:

fk(w)(x, t) = fk(w)(x− λk(µn
j+1/2)(t− tn), tn) . (4.74)

From this equation it is then natural to introduce the following definition.

Definition 2. For the conservative system (4.69), at the interface between the two cells

[xj−1/2, xj+1/2] and [xj+1/2, xj+3/2], the characteristic flux gCF is defined by the following

formula for k ∈ {1, . . . , m} :(
we take µn

j+1/2 ≡
(
∆xjw

n
j +∆xj+1w

n
j+1

)
/
(
∆xj +∆xj+1

))

lk(µ
n
j+1/2) · gCF,n

j (wn
j , w

n
j+1) = lk(µ

n
j+1/2) · f(wn

j ) , when λk(µ
n
j+1/2) > 0 ,

lk(µ
n
j+1/2) · gCF,n

j (wn
j , w

n
j+1) = lk(µ

n
j+1/2) · f(wn

j+1) , when λk(µ
n
j+1/2) < 0 , (4.75)

lk(µ
n
j+1/2) · gCF,n

j (wn
j , w

n
j+1) = lk(µ

n
j+1/2) ·

(
f(wn

j+1) + f(wn
j )

2

)
,

when λk(µ
n
j+1/2) = 0.
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Remark 7. At first glance, the derivation of (4.71) from (4.69) is only valid for continuous

solutions since A(w)∂f(w)
∂x

is a non conservative product. In fact, equation (4.71) can be

justified even in the case of shocks as proved in [Ghi98]. Let us briefly recall here the

key point. Assuming that the solution undergoes a discontinuity along a family of disjoint

curves, we can focus on one of these curves that we parameterize by the time variable t.

Hence, locally, on each side of this curve, w(x, t) is smooth and jumps across the curve

x = Σ(t). The Rankine-Hugoniot condition implies that f(w(x, t)) − σ(t)w(x, t), where

σ(t) ≡ dΣ(t)
dt

, is smooth across the discontinuity curve and therefore A(w)∂f(w)
∂x

can be

defined as A(w)∂f(w)
∂x
≡ A(w)∂(f(w)−σw)

∂x
+ σ ∂f(w)

∂x
.

Lemma 1. Formula (4.75) can be written as follows: gCF,n
j (wn

j , w
n
j+1) = gCF (µn

j ;w
n
j , w

n
j+1)

where

gCF (µ; v, w) ≡
∑

λk(µ)<0

(lk(µ) · f(w))rk(µ) +
∑

λk(µ)=0

(
lk(µ) ·

f(v) + f(w)

2

)
rk(µ)+

+
∑

λk(µ)>0

(lk(µ) · f(v))rk(µ) . (4.76)

Proof. This comes from the useful identity valid for all vectors Φ and µ in Rm:

Φ =

k=m∑

k=1

(lk(µ) · Φ)rk(µ). We also observe that (4.76) can be written under the following

condensed form:

gCF (µ; v, w) =
f(v) + f(w)

2
− U(µ; v, w)f(w)− f(v)

2
, (4.77)

where U(µ; v, w) is the sign of the matrix A(µ) which is defined by

sign(A(µ))Φ =
m∑

k=1

sign(λk)(lk(µ) · Φ)rk(µ).

The form (4.77) refers to what we have called a numerical flux leading to a flux scheme

[Ghi98].

Remark 8. Let us discuss the relation, in the conservative case, between the characteristic

numerical flux gCF and the numerical flux leading to Roe’s scheme [Roe81]. The latter

scheme relies on an algebraic property of the continuous flux f(w) which is as follows. It

is assumed that for all admissible states v and w, there exists a m×m matrix AROE(v, w)

such that f(v) − f(w) = AROE(v, w)(v − w) (Roe’s identity). Then the numerical flux

leading to Roe’s scheme is given by:

gROE(v, w) =
f(v) + f(w)

2
− |AROE(v, w)|w − v

2
. (4.78)
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But using Roe’s identity, we obtain that

gROE(v, w) =
f(v) + f(w)

2
− sign(AROE(v, w))

f(w)− f(v)
2

, (4.79)

which is of the form (4.77): Roe’s scheme is also a flux scheme. The characteristic flux

proposed in this paper is more versatile than Roe’s scheme in the sense that it does not rely

on an algebraic property of the flux. Hence for complex systems (like those encountered

in the context of two phase flows) this scheme appears like an efficient generalization of

Roe’s scheme. Moreover, as we shall see below, this scheme has a natural generalization

to arbitrary non conservative systems. Finally, the fact that the numerical flux is a linear

combination of the two fluxes induces a quite weak dependence on the state µ which appears

in formula (4.76), see [CG00].

4.3.3.1.2 HLL numerical flux Now we present another approximate Riemann solver

which was proposed by Harten, Lax and van Leer [HLvL83]. Nowadays this method is

known as the HLL scheme. While the exact solution to the Riemann problem contains a

large amount of detail, the HLL solver assumes fewer intermediate waves. The simplified

Riemann fan is illustrated on Figure 4.29. It consists of two waves separating three constant

states.

0

t

x

wL wR

w∗

sL

sR

Figure 4.29: Approximate Riemann fan corresponding to the HLL scheme.

Consider the following Riemann problem:

R(wL, wR) :





∂w
∂t

+ ∂F (w)
∂x

= 0,

w(x, 0) =

{
wL, x < 0,

wR, x > 0.

(4.80)

The intermediate state in the approximate Riemann fan will be denoted by w∗ and

two shock wave speeds are denoted by sL and sR respectively (see Figures 4.29 and 4.30
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wL

wR

w∗

R.-H.

R.-H.

Figure 4.30: Two states wL and wR connected by Rankine-Hugoniot curves represented in the

phase space.

for illustration). In order to determine the unknown intermediate state, we write the

Rankine-Hugoniot conditions twice:
{

sL(w
∗ − wL) = F ∗ − FL,

sR(wR − w∗) = FR − F ∗,

where FL,R := F (wL,R). It is straightforward to find the solution to this system:

w∗ =
sRwR − sLwL − (FR − FL)

sR − sL
,

F ∗ = FL + sL(w
∗ − wL) =

sRFL − sLFR + sLsR(wR − wL)

sR − sL
. (4.81)

Now we have all the elements to define the numerical flux of the HLL scheme:

ΦHLL(wL, wR) :=





FL, sL ≥ 0,

F ∗, sL < 0 ≤ sR,

FR, sR < 0.

During the presentation of the HLL scheme we missed one important point: how to es-

timate the wave speeds sL and sR? The answer is crucial for the overall performance of the

scheme. With appropriate choices for the wave speeds sL and sR, the HLL scheme possesses

very nice numerical properties. Namely, it satisfies an entropy inequality [Dav88], resolves

isolated shocks exactly [HLvL83] and preserves positivity [EMRS91]. In our code we im-

plemented the following choice for sL and sR which is motivated by analytical expressions

for the Jacobian eigenvalues (4.66):

sL = min(uL − cL, u∗ − c∗), sR = min(u∗ + c∗, uR + cR),

where cL,R :=
√
gHL,R is the gravity wave speed for the left and right states and

u∗ =
1

2
(uL + uR) + cL − cR, c∗ =

1

2
(cL + cR)−

1

4
(uR − uL).
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Numerical experiments show that this approximate Riemann solver is very robust with the

above choice for the wave speeds [CIM+00, ZCIM02].

However, the HLL scheme has one important shortcoming: it cannot resolve isolated

contact discontinuities. In the next section 4.3.3.1.3 we present another scheme which was

designed to remedy this problem.

Remark 9. Does the HLL scheme belong to the class of flux schemes or not? Recall that

a finite volume scheme is called a flux scheme if its numerical flux can be written in the

following form:

Φ =
F (wL) + F (wR)

2
− U(wL, wR)

F (wR)− F (wL)

2
,

where U(wL, wR) is some matrix. From the formula (4.81) for the flux F ∗ it follows that

the answer depends on the existence of a matrix M such that

wR − wL =M(FR − FL) or FR − FL =M−1(wR − wL).

Fortunately, the answer is positive for NSWE and the matrix M can be effectively con-

structed. It allows us to rewrite the HLL numerical flux in the shorthand form ΦHLL =

URFR + ULFL, where

UR =





0, sL ≥ 0,
sLsR
sR−sL

M − sL
sR−sL

I, sL < 0 ≤ sR,

I, sR < 0,

UL =





I, sL ≥ 0,

− sLsR
sR−sL

M + sR
sR−sL

I, sL < 0 ≤ sR,

0, sR < 0,

with I := (δij). In part, the robustness of the HLL scheme can be explained by this nice

property.

4.3.3.1.3 HLLC flux The HLL scheme presented briefly in the previous section was

later improved by Toro, Spruce and Speares [TSS94]. Their modification concerns essen-

tially the structure of the Riemann fan which is depicted on Figure 4.31. Namely, they

introduced a contact discontinuity between two shock waves of the HLL scheme. That is

why the novel scheme was called the HLLC scheme [FT95].

Here we do not provide details on the derivation of the HLLC scheme and refer to the

original articles and others which can feel this gap [BCCC97, KCY07].

We consider the same Riemann problem (4.80). In the HLLC approximation, the solu-

tion to this Riemann problem consists of three waves with speeds sL, s
∗ and sR separating

four constant states wL, w
∗
L, w

∗
R and wR. Wave speeds sL,R are estimated as in previous

section 4.3.3.1.2, while s∗ is given by this formula:

s∗ =
sLHR(uR − sR)− sRHL(uL − sL)
HR(uR − sR)−HL(uL − sL)

.
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0
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x

wL

wR

sL

sR
w∗

L w∗
R

s∗

Figure 4.31: Approximate Riemann fan corresponding to the HLLC scheme.

The intermediate states w∗
L,R = (H∗

L,R, (Hu)
∗
L,R, (Hv)

∗
L,R) are computed in this way:

H∗
L,R =

sL,R−uL,R

sL,R−s∗
HL,R,

(Hu)∗L,R =
sL,R−uL,R

sL,R−s∗
(Hu)L,R + g

2
H2

L,R
(2sL,R−s∗−uL,R)(s∗−uL,R)

(sL,R−s∗)3
,

(Hv)∗L,R =
sL,R−uL,R

sL,R−s∗
(Hv)L,R + g

2
H2

L,R
(2sL,R−s∗−uL,R)(s∗−uL,R)

(sL,R−s∗)3
.

Finally, the numerical flux of the HLLC scheme is defined as

ΦHLLC(wL, wR) :=





FL, sL ≥ 0,

F ∗
L := FL + sL(w

∗
L − wL), sL < 0 ≤ s∗,

F ∗
R := FR + sR(w

∗
R − wR), s∗ < 0 ≤ sR,

FR, sR < 0.

Remark 10. As in the previous scheme, one can check whether the HLLC scheme is a

flux scheme or not. It turns out that it is.

4.3.3.2 Semidiscrete scheme

After introducing the cell averages wK and numerical fluxes into (4.68), the integral

conservation law statement becomes

dwK

dt
+

∑

L∈N(K)

area(L ∩K)

vol(K)
Φ(wK ,wL;~nKL) =

1

vol(K)

∫

K

S(w) dΩ .

We denote by SK the approximation of the quantity 1
vol(K)

∫
K
S(w) dΩ. The source term

discretization is discussed in Section 4.3.3.4. Thus, the following system of ordinary differ-

ential equations (ODE) is called a semi-discrete finite volume method:

dwK

dt
+

∑

L∈N(K)

area(L ∩K)

vol(K)
Φ(wK ,wL;~nKL) = SK , ∀K ∈ T . (4.82)
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Figure 4.32: Shoreline left Riemann problem.

The initial condition for this system is given by projecting (4.67) onto the space of piecewise

constant functions

wK(0) =
1

volK

∫

K

w0(x) dΩ .

This system of ODE should also be discretized. There is a variety of explicit and implicit

time integration methods. Let wn
K denote a numerical approximation of the cell average

solution in the control volume K at time tn = n∆t. The simplest time integration method

is the forward Euler scheme
dwK

dt
∼= wn+1

K −wn
K

∆t
.

When applied to (4.82) it produces the fully-discrete finite volume scheme:

wn+1
K −wn

K

∆t
+

∑

L∈N(K)

area(L ∩K)

vol(K)
Φ(wn

K ,w
n
L;~nKL) = Sn

K , ∀K ∈ T . (4.83)

The time discretization used in this study is detailed in Section 4.3.3.5.

4.3.3.3 Run-up algorithm

As already pointed out above, the NSWE are strictly hyperbolic if H > 0, i.e. when

some water is present. The shoreline position is given by the following implicit relation

H(x, t) = 0. In these locations the system loses its strict hyperbolicity. Finally, in dry

regions, H < 0, the system is non-hyperbolic, i.e. ill-posed. All these facts mean that

there are some major theoretical difficulties in considering the inundation problem.

Very often some ad-hoc artificial techniques are implemented to circumvent run-up and

run-down problems (“slot technique” of Madsen et al. [MSS97], algorithm of Hibberd-

Peregrine [HP79], use of coordinate transformations [OHK97] and so on).

Analytically, shoreline boundary conditions have a very simple form:

H(xs(t), t) = 0,
dxs

dt
= ~u(xs(t), t),

where xs(t) is the shoreline position.
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Figure 4.33: Shoreline right Riemann problem.

The algorithm proposed by Brocchini et al. [BBMA01] was chosen for the VOLNA code.

It is based on the shoreline Riemann problem (see Figures 4.32 and 4.33 for illustration)

[Sto57]:

Rleft(wL) :





∂w
∂t

+ ∂F (w)
∂x

= 0,

w(x, 0) =

{
wL, x < 0,

0, x > 0.

Rright(wR) :





∂w
∂t

+ ∂F (w)
∂x

= 0,

w(x, 0) =

{
0, x < 0,

wR, x > 0.

The main idea to solve the shoreline Riemann problem is to pass to the limit wL → 0 or

wR → 0 in the solution to the classical Riemann problem (4.80). Technical details can

be found in [BBMA01]. However, we do not need to know the complete solution. It is

sufficient to extract the wave propagation speeds at the shoreline (see Figure 4.34). These

analytically determined speeds are imposed in an approximate Riemann solver when a

wet/dry transition is detected.

Consider two control volumes K and L which share a common face. We must find the

numerical flux Φ(wK ,wL, ~nKL) across this face. Let us summarize the key points of the

method:

Wet/wet interface: If HL > 0 and HR > 0, we apply in the usual way an approximate

Riemann solver which gives the numerical flux Φ.

Dry/dry interface: If HL = HR = 0, we just return the zero flux Φ = 0 since there is

no flow between two dry cells.

Wet/dry interface: If HR = 0 and HL > 0, we have a situation corresponding to the

left shoreline Riemann problem. Its solution yields the following choice of the wave

speeds:

sL := (~uL · ~nKL)− cL, sR := (~uL · ~nKL) + 2cL.

Then we apply the HLL or the HLLC scheme with the above values of sL and sR
(see Figure 4.34 for illustration).
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(HR, uR) ≡ 0
(HL, uL)

sR = uL + 2cL

sL = uL − cL
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Figure 4.34: Shoreline Riemann problem (left) and wave propagation speeds.

Dry/wet interface: If HR > 0 and HL = 0, we have a situation symmetric to the

previous case. One must solve the right shoreline Riemann problem. It provides the

following speeds:

sL := (~uR · ~nKL)− 2cR, sR := (~uR · ~nKL) + cR.

Here again, the HLL or the HLLC scheme is applied.

We would like to underline the simplicity of this approach. In fact, there is no special

treatment for the interface. This algorithm is run uniformly in the whole computational

domain leading to an easy and robust implementation. We validate this method in sections

4.3.4.2 – 4.3.4.4.

4.3.3.4 Source terms discretization

In this section we discuss some issues related to the source term discretization and we

explain a technique to remedy them.

Source terms of the form gH∇h arise in the horizontal momentum conservation equa-

tion (4.64). Obviously, this term is equal to zero when the bottom is even h = const.

However, it is not the case in the real world applications. The magnitude of this term is

proportional to the bed slope and may take large values when abrupt changes are present

in the bathymetry.

Another profound property of NSWE is that the system (4.63), (4.64) admits non-trivial

steady states. They can be determined from the following steady equations:

{
∇ · (H~u) = 0,

∇ ·
(
H~u⊗ ~u+ g

2
H2
)
= gH∇h
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It is not so trivial to find analytical solutions to these equations. However, an ideal numer-

ical scheme should preserve them. Recall that for 1D flows it is possible to describe the

whole family of steady states and this information can be used to design efficient source

term discretizations [LR98, VC99]. Since realistic applications require a 2D solver, we will

address this problem directly in 2D.

As explained above, it seems to be extremely difficult to construct a scheme which

preserves exactly all steady state solutions. Thus, we have to simplify the problem. We will

focus our attention on a simple class of steady solutions which are called in the literature

“lake at rest”:

~u = 0, η := H − h = const. (4.84)

The last relations can be expressed in discrete variables:

~uK = ~uL = 0, HK − hK = HL − hL = const. (4.85)

We briefly present the method chosen for our code and developed in [ABB+04, AB05]. It

is mainly based on the idea of the interface hydrostatic reconstruction.

The well-balanced algorithm takes as input the vector of conservative variables {wK}K∈T,

bathymetry data {hK}K∈T and is composed of the following steps:

• Assume that the control volumes K and L share a common face f = K ∩ L. In this

case, the interface bathymetry is defined as h∗KL := min(hK , hL). This step is done

only once at the initialization stage.

• The hydrostatic reconstructed interface water depth is given by

H∗
KL = (HK − hK + h∗KL)+, where z+ = max(z, 0).

From the dicrete interpretation (4.85) of the well-balanced condition (4.84), we define

a new vector of the interface conservative variables:

w∗
KL :=

(
H∗

KL

H∗
KL~uK

)
. (4.86)

• From the balance of hydrostatic forces ∇
(
g
2
H2
)
= gH∇h, the adapted discretization

of the source terms is introduced:

S∗
K(wK ,w

∗
KL, ~nKL) :=

(
0

g
2
(H∗2

KL −H2
K)~nKL

)
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• The well-balanced scheme is obtained by replacing cell-centered values wK by new

interface values (4.86):

wn+1
K −wn

K

∆t
+

∑

L∈N(K)

area(L ∩K)

vol(K)
Φ(w∗, n

KL ,w
∗, n
LK ;~nKL) =

S∗
K(w

n
K ,w

∗, n
KL , ~nKL), ∀K ∈ T .

It can be proven [AB05] that the hydrostatic reconstruction strategy preserves the “lake

at rest” solutions and ensures the positivity property. We describe here only the first-order

algorithm for the sake of simplicity. The extension to the second order can be found in the

original papers and in [Aud04].

4.3.3.5 Time discretization

In the previous sections we considered the spatial discretization procedure with a finite-

volume scheme. It is a common practice in solving time-dependent PDEs to first discretize

the spatial variables. This approach is called method of lines:

wt + ∂xf(w) = S(w)
FV
=⇒ wt = L(w) (4.87)

In order to obtain a fully discrete scheme, we must discretize the time evolution operator.

In the present work we chose the so-called Strong Stability-Preserving (SSP) time dis-

cretization methods described in [Shu88, GST01, SR02]. Historically these methods were

initially called Total Variation Diminishing (TVD) time discretizations.

The main idea behind SSP methods is to assume that the first order forward Euler

method is strongly stable (see the definition below) under a certain norm for the method

of lines ODE (4.87). Then, we try to find a higher order scheme. Usually the relevant

norm is the total variation9 norm:

TV(wn) :=
∑

j

∣∣wn
j − wn

j−1

∣∣

and TVD discretizations have the property TV(wn+1) ≤ TV(wn).

Remark 11. Special approaches are needed for hyperbolic PDEs since they contain dis-

continuous solutions and the usual linear stability analysis is inadequate. Thus a stronger

measure of stability is usually required:

Definition 3. A sequence {wn} is said to be strongly stable in a given norm ||·|| provided
that ||wn+1|| ≤ ||wn|| for all n ≥ 0.

9The notion of total variation is used essentially for 1D discrete solutions.
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A general m-stage Runge-Kutta method for (4.87) can be written in the form

w(0) = wn, (4.88)

w(i) =
i−1∑

k=0

(
αi,kw

(k) +∆tβi,kL(w
(k))
)
, αi,k ≥ 0, i = 1, . . . , m, (4.89)

wn+1 = w(m). (4.90)

In [SO88] the following result is proved

Theorem 1. If the forward Euler method is strongly stable under the CFL restriction

∆t ≤ ∆tFE

||wn +∆tL(wn)|| ≤ ||wn|| ,
then the Runge-Kutta method (4.88) – (4.90) with βi,k ≥ 0 is SSP, ||wn+1|| ≤ ||wn||,
provided the following CFL restriction is fulfilled:

∆t ≤ c∆tFE , c = min
i,k

αi,k

βi,k
.

Here we give a few examples of SSP schemes which are commonly used in applications:

• Optimal10 second order two-stage SSP-RK(2,2) scheme with CFL = 1:

w(1) = w(n) +∆tL(w(n)),

w(n+1) =
1

2
w(n) +

1

2
w(1) +

1

2
∆tL(w(1));

• Optimal third order three-stage SSP-RK(3,3) scheme with CFL = 1:

w(1) = w(n) +∆tL(w(n)),

w(2) =
3

4
w(n) +

1

4
w(1) +

1

4
∆tL(w(1)),

W (n+1) =
1

3
w(n) +

2

3
w(2) +

2

3
∆tL(w(2));

• Third order four-stage SSP-RK(3,4) scheme with CFL = 2:

w(1) = w(n) +
1

2
∆tL(w(n)),

w(2) = w(1) +
1

2
∆tL(w(1)),

w(3) =
2

3
w(n) +

1

3
w(2) +

1

6
∆tL(w(n)),

w(n+1) = w(3) +
1

2
∆tL(w(3)).

10Optimality in the sense of CFL condition.
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The linear absolute stability region for the RK and SSP-RK schemes is the same. However

the nonlinear absolute stability regions are quite different [CP92].

We tested these different schemes in our numerical code and we decided to adopt SSP-

RK(3,4) due to its accuracy and wide stability region. In our opinion this scheme represents

a very good trade-off between precision and robustness.

4.3.3.6 Second order extension

If we analyze the above scheme, we understand that in fact, we have only one degree

of freedom per data storage location. Hence, it seems that we can expect to be first

order accurate at most. In the numerical community first order schemes are generally

considered to be too inaccurate for most quantitative calculations. Of course, we can

always make the mesh spacing extremely small but it cannot be a solution since it makes

the scheme inefficient. From the theoretical point of view the situation is even worse since

an O(h
1

2 ) L1-norm error bound for the monotone and E-flux schemes [Osh84] is known

to be sharp [Pet91], although an O(h) solution error is routinely observed in numerical

experiments. On the other hand, Godunov has shown [God59] that all linear schemes that

preserve solution monotonicity are at most first order accurate. This rather negative result

suggests that a higher order accurate scheme has to be essentially nonlinear in order to

attain simultaneously a monotone resolution of discontinuities and high order accuracy in

continuous regions.

A significant breakthrough in the generalization of finite volume methods to higher

order accuracy is due to N.E. Kolgan [Kol72, Kol75] and van Leer [vL79]. They proposed

a kind of post-treatment procedure currently known as solution reconstruction or MUSCL11

scheme. In the above papers the authors used linear reconstruction (it will be chosen in

this study as well) but this method has already been extended to quadratic approximations

in each cell [BF90].

4.3.3.6.1 Historical remark In general, when we read numerical articles which use the

MUSCL scheme, the authors often cite the paper by van Leer [vL79]. It is commonly

believed in the scientific community that B. van Leer was first to propose the gradient

reconstruction and slope limiting ideas. Unfortunately, because of political reasons, the

works of N.E. Kolgan [Kol72, Kol75] remained unknown for a long time. We would like

to underline the fact that the first publication of Kolgan came out seven years before van

Leer’s paper. Van Leer seems to be aware of this situation since in his recent review paper

[vL06] one can find “A historical injustice” section:

11MUSCL stands for Monotone Upstream-centered Scheme for Conservation Laws.
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“It has been pointed out to me by Dr. Vladimir Sabelnikov, formerly of TsAGI,

the Central Aerodynamical National Laboratory near Moscow, that a scheme

closely resembling MUSCL (including limiting) was developed in this laboratory

by V. P. Kolgan (1972). Kolgan died young; his work apparently received little

notice outside TsAGI.”

4.3.3.6.2 TVD and MUSCL schemes There is a property of scalar nonlinear conser-

vation laws, which was probably observed for the first time by Peter Lax [Lax73]:

The total increasing and decreasing variations of a differentiable solution be-

tween any pair of characteristics are conserved.

In the presence of shock waves, information is lost and the total variation decreases. For

compactly supported or periodic solutions, one can establish the following inequality

+∞∫

−∞

|dw(x, t2)| ≤
+∞∫

−∞

|dw(x, t1)| , t2 ≥ t1. (4.91)

This motivated Harten [Har83] to introduce the notion of discrete total variation of nu-

merical solution uh := {uj}

TV (wh) :=
∑

j

|wj+1 − wj| ,

and the discrete counterpart to (4.91)

TV (wn+1
h ) ≤ TV (wn

h).

If this property is fulfilled, then a finite volume scheme is said to be total variation dimin-

ishing (TVD). The following theorem was proved in [Har83]:

Theorem 2. (i): Monotone schemes are TVD

(ii): TVD schemes are monotonicity preserving, i.e. the number of solution extrema is

preserved in time.

Remark 12. From the mathematical point of view it would be more correct to say “the

total variation non-increasing (TVNI) scheme” but the “wrong” term TVD is generally

accepted in the scientific literature.
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In one space dimension the construction of TVD schemes is not a problem anymore.

Let us recall that in this study we are rather interested in two space dimensions (or even

three in future work). In these cases the situation is considerably more complicated. Even

if we consider the simplest case of structured cartesian meshes and apply a 1D TVD scheme

on a dimension-by-dimension basis, a result of Goodman and Leveque shows [GV85] that

TVD schemes in two or more space dimensions are only first order accurate. Motivated by

this negative result, weaker conditions yielding solution monotonicity preservation should

be developed.

In this work we will describe the construction and practical implementation of a second-

order nonlinear scheme on unstructured (possibly highly distorted) meshes. The main idea

is to find our solution as a piecewise affine function on each cell. This kind of linear

reconstruction operators on simplicial control volumes often exploit the fact that the cell

average is also a pointwise value of any valid (conservative) linear reconstruction evaluated

at the gravity center of a simplex. This reduces the reconstruction problem to that of

gradient estimation given cell averaged data. In this case, we express the reconstruction

in the form

wK(x) = w̄K + (∇w)K · (x− x0), K ∈ T , (4.92)

where w̄K is the cell averaged value given by the finite volume method, (∇w)K is the

solution gradient estimate (to be determined) on the cell K, x ∈ K and the point x0 is

chosen to be the gravity center for the simplex K.

It is very important to note that with this type of representation (4.92) we remain

absolutely conservative, i.e.

1

vol(K)

∫

K

wK(x) dΩ ≡ w̄K

due to the choice of the point x0. This point is crucial for finite volumes because of intrinsic

conservative properties of this method.

In next sections we describe briefly two common techniques: Green-Gauss integration

and least squares methods for solution gradient estimation on each cell. There are other

available techniques. We can mention here an implicit gradient reconstruction method pro-

posed in [MG96] and reused later in [AMS04], for example. We decided not to implement

this approach in our research code since this procedure is computationally expensive12.

12In order to reconstruct the solution gradient we have to solve a linear system of equations. Recall that

the gradient is estimated at each time step on each control volume. This factor slows down considerably

explicit time discretizations.
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O

K

∂K
~n

e

N1

N2

Figure 4.35: Illustration for Green-Gauss gradient reconstruction. Control volume K with

barycenter O and exterior normal ~n.

4.3.3.6.3 Green-Gauss gradient reconstruction This gradient reconstruction tech-

nique can be easily implemented on simplicial meshes. It is based on two very simple

ideas: the mean value approximation and Green-Gauss-Ostrogradsky formula.

Consider a control volumeK with barycenter O. The exterior normal to an edge e ∈ ∂K
is denoted by ~ne. This configuration is depicted on Figure 4.35. In order to estimate the

solution gradient on K (or in other words, to estimate its value at gravity center O) we

make the following mean value approximation

(∇w)K = (∇w)|O ∼=
1

vol(K)

∫

K

∇w dΩ,

and apply Green-Gauss-Ostrogradsky formula

(∇w)K ∼=
1

vol(K)

∫

∂K

w ⊗ ~n dσ =
1

vol(K)

∑

e∈∂K

∫

e

w ⊗ ~ne dσ ∼=

∑

e∈∂K

area(e)

vol(K)
w|e/2 ⊗ ~ne,

where w|e/2 denote the solution value at the face (or edge in 2D) centroid. The face value

needed to compute the reconstruction gradient can be obtained from a weighted average

of the values at the vertices on the face [HC89]. In 2D it simply becomes

w|e/2 =
wN1

+wN2

2
.

This approximation yields the following formula for gradient estimation:

(∇w)K ∼=
∑

e∈∂K

area(e)

vol(K)

(wN1
+wN2

)

2
⊗ ~ne.
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The gradient calculation is exact whenever the numerical solution varies linearly over the

support of the reconstruction.

This procedure requires the knowledge of the solution values at the mesh nodes {Ni}.
Recall that a cell centered finite volume scheme provides us with data located at cell gravity

centers. Thus, an interpolation technique is needed. The quality of Green-Gauss gradient

reconstruction greatly depends on the chosen interpolation method. The method chosen

here is explained in Section 4.3.3.6.6.

K
T1

T2

T3

O
O1

O2

O3

Figure 4.36: Illustration for least-squares gradient reconstruction. A triangle control volume

with three adjacent neighbors is depicted.

4.3.3.6.4 Least-squares gradient reconstruction method In this section we consider a

triangle13 control volume K with three adjacent neighbors T1, T2 and T3. Their barycenters

are denoted by O(x0), O1(x1), O2(x2) and O3(x3) respectively. In the following we denote

by wi the solution value at gravity centers Oi:

wi := w(xi), w0 := w(x0).

Our purpose here is to estimate ∇w = (∂xw, ∂yw) on the cell K. Using Taylor formula,

we can write down the three following relations:

w1 −w0 = (∇w)K · (x1 − x0) + O(h2), (4.93)

w2 −w0 = (∇w)K · (x2 − x0) + O(h2), (4.94)

w3 −w0 = (∇w)K · (x3 − x0) + O(h2). (4.95)

13Generalization to other simplicial control volumes is straightforward.
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If we drop higher order terms O(h2), these relations can be viewed as a linear system of

three equations for two unknowns14 (∂xw, ∂yw). This situation is due to the fact that

the number of edges incident to a simplex mesh in Rd is greater or equal (in this case see

Remark 13) to d thereby producing linear constraint equations (4.93) – (4.95) which will

be solved analytically here in a least squares sense.

First of all, each constraint (4.93) – (4.95) is multiplied by a weight ωi ∈ (0, 1) which

will be chosen below to account for distorted meshes. In matrix form our non-square

system becomes 

ω1∆x1 ω1∆y1
ω2∆x2 ω2∆y2
ω3∆x3 ω3∆y3


 (∇w)K =



ω1(w1 −w0)

ω2(w2 −w0)

ω3(w3 −w0)


 ,

where ∆xi = xi − x0, ∆yi = yi − y0. For further developments it is convenient to rewrite

our constraints in abstract form

[ ~L1, ~L2] · (∇w)K = ~f. (4.96)

We use a normal equation technique in order to solve symbolically this abstract form in a

least squares sense. Multiplying on the left both sides of (4.96) by [ ~L1
~L2]

t yields

G(∇w)K = ~b, G = (lij)1≤i,j≤2 =

(
( ~L1 · ~L1) ( ~L1 · ~L2)

( ~L2 · ~L1) ( ~L2 · ~L2)

)
(4.97)

where G is the Gram matrix of vectors
{
~L1, ~L2

}
and~b =

(
( ~L1 · ~f)
( ~L2 · ~f)

)
. The so-called normal

equation (4.97) is easily solved by Cramer’s rule to give the following result

(∇w)K =
1

l11l22 − l212

(
l22( ~L1 · ~f)− l12( ~L2 · ~f)
l11( ~L2 · ~f)− l12( ~L1 · ~f)

)
.

The form of this solution suggests that the least squares linear reconstruction can be

efficiently computed without the need for storing a non-square matrix.

Now we discuss the choice of weight coefficients {ωi}3i=1. The basic idea is to attribute

bigger weights to cells barycenters closer to the node N under consideration. One of the

possible choices consists in taking a harmonic mean of respective distances ri = ||xi−xN ||.
This purely metric argument takes the following mathematical form:

ωi =
||xi − xN ||−k

∑3
j=1 ||xj − xN ||−k

,

where k in practice is taken to be one or two (in our numerical code we choose k = 1).

14This simple estimation is done for the scalar case only w = (w). For more general vector problems

the numbers of equations and unknowns must be changed depending on the dimension of vector w.
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Remark 13. When a triangle shares an edge with the boundary ∂Ω (see Figure 4.38 for

illustration), the gradient reconstruction procedure becomes even simpler, since the num-

ber of constraints is equal to d and the linear system (4.93) – (4.95) becomes completely

determined:

w1 −w0 = (∇w)K · (x1 − x0) + O(h2),

w2 −w0 = (∇w)K · (x2 − x0) + O(h2),

or in componentwise form it reads
(
x1 − x0 y1 − y0
x2 − x0 y2 − y0

)
(∇w)K =

(
w1 −w0

w2 −w0

)
.

The unique solution to this linear system is given again by Cramer’s rule

(∇w)K =

(
(y2 − y0)(w1 −w0)− (y1 − y0)(w2 −w0)

(x1 − x0)(w2 −w0)− (x2 − x0)(w1 −w0)

)

(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)
.

4.3.3.6.5 Slope limiter The idea of incorporating limiter functions to obtain non-

oscillatory resolution of discontinuities and steep gradients dates back to Boris and Book

[BB73]. When the limiter is identically equal to 1, we have the unlimited form of the linear

interpolation. In the 1D case one can easily find in the literature about 15 different limiter

functions such as CHARM, minmod, superbee, van Albada and many others. On unstruc-

tured meshes the situation is quite different. In the present study we decided to choose the

Barth-Jespersen limiter proposed in [BJ89]. Here we do not discuss its construction and

properties but just give the final formula. We need to introduce the following notation

wmin
K := min

L∈N(K)
wL, wmax

K := max
L∈N(K)

wL .

The limited version of (4.92) is given by the following modified reconstruction operator

wK(x) = w̄K + αK(∇w)K · (x− x0), K ∈ T ,

where it is assumed that αK ∈ [0, 1]. Obviously, the choice αK = 0 corresponds to the first

order scheme while αK = 1 is the unlimited form. Barth and Jespersen [BJ89] propose the

following choice of αK :

αBJ
K := min

∀f∈∂K





w
max
K −w̄K

wK(xf )−w̄K
if wK(xf) > wmax

K ,
wmin

K −w̄K

wK(xf )−w̄K
if wK(xf) < wmin

K ,

1 otherwise.
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where xf denotes the face f centroid.

Although this limiter function does not fulfill all the requirements of finite volume

maximum principle on unstructured meshes [BO04], it can be shown that it yields finite

volume schemes possessing a global extremum diminishing property. Also this limiter

produces the least amount of slope reduction which can be advantageous for accuracy.

Note that in practical implementation minor modifications are required to prevent near

zero division for almost constant solution data.

4.3.3.6.6 Solution interpolation to mesh nodes We have seen above that several

gradient reconstruction procedures (in particular gradient estimation on the faces) require

the knowledge of the solution at mesh nodes (or vertices). This information is not directly

given by the finite volume method since we chose the cell-centered approach.

Oi+1

Oi

Oi−1

N

Figure 4.37: Triangles with their barycenters Oi sharing the same vertex N .

Let us consider a node N(xn, yn) of the tesselation T and a control volume Ki with

barycenter Oi(xi, yi) having this node as a vertex (see Figure 4.37 for illustration). The

MUSCL procedure provides a solution gradient on each cell. Thus, using the Taylor formula

or, equivalently, the representation (4.92) we can estimate the solution value at the node

N

wN = w̄Ki
+ (∇w)Ki

· (xN − xi). (4.98)

The problem is that we will have d(N) different values of the solution in the same point

depending on the control volume under consideration. Here d(N) is the degree of vertex

N in the sense of graph theory. One of the possible ways to overcome this contradiction

is averaging. One interesting technique was proposed in [HC89] and further improved in
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[KMC03]. In our turn, we slightly modified this method. The algorithm implemented in

our code is briefly described here.

First of all, let us look for the vertex value w̄N as a weighted sum of the values wNi

computed by formula (4.98) from each surrounding cell

w̄N =

∑d(N)
i=1 ωiwNi∑d(N)

i=1 ωi

.

The weighting factors {ωi}d(N)
i=1 are made to satisfy the condition of zero pseudo-Laplacian

L(xn) ≡
d(N)∑

i=1

ωi(xi − xn), L(yn) ≡
d(N)∑

i=1

ωi(yi − yn) . (4.99)

These conditions have a very simple interpretation. They are imposed so that the method

be exact for affine data over the stencil.

As in the original formulation by Holmes and Connell [HC89], the weighting factor ωi

is written as

ωi = 1 +∆ωi .

The weights {ωi} are determined by solving an optimization problem in which the

cost-function to be minimized is defined as

1

2

d(N)∑

i=1

(
ri∆ωi

)2 → min (4.100)

with two constraints given by (4.99). It should be noted that the cost function is slightly

different from the original formulation. The difference lies in the factor of

r2i ≡ || ~ON − ~OOi||2

which was introduced in [KMC03]. This modification effectively allows larger values of

weight ∆ωi for those cells closer to the node in question.

Employing the method of Lagrange multipliers, the original optimization problem,

which was to minimize the cost function given by (4.100) with the constraints (4.99) is

equivalent to minimizing the function L defined by

L =
1

2

d(N)∑

i=1

(
ri∆ωi

)2 − λ
d(N)∑

i=1

ωi(xi − xn)− µ
d(N)∑

i=1

ωi(yi − yn)→ min

which leads to

∆ωi =
λ(xi − xn) + µ(yi − yn)

r2i
.
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The two Lagrangian multipliers, λ and µ, are obtained from

λ =
ryIxy − rxIyy
IxxIyy − I2xy

, µ =
rxIxy − ryIxx
IxxIyy − I2xy

,

where

rx =

d(N)∑

i=1

(xi − xn), ry =

d(N)∑

i=1

(yi − yn).

Ixx =

d(N)∑

i=1

(xi − xn)2
r2i

, Iyy =

d(N)∑

i=1

(yi − yn)2
r2i

, Ixy =

d(N)∑

i=1

(xi − xn)(yi − yn)
r2i

.

The last step consists in renormalizing the weights {ωi}d(N)
i=1 to the range [0, 1].

Remark 14. The above algorithm is not computationally expensive since the weights

{ωi}d(N)
i=1 depend only on the tesselation T geometry. It means that they can be computed

and stored before the main loop in time and reused during the computations later.

Remark 15. Even if we suggest to use the above method (since it gives slightly better

results), we would like to give another idea (based on a purely metrics argument) of how

to construct the weights {ωi}d(N)
i=1 . This approach is considerably simpler than solving an

optimization problem and it was already used in the least squares gradient reconstruction

method (see Section 4.3.3.6.4). In fact, in order to calculate ωi one can simply take the

harmonic mean of distances between the node N under the question and respective cell

barycenter Oi (see Figure 4.37):

ωi :=
||xN − xi||−k

∑d(N)
j=1 ||xN − xi||−k

,

where k in practice is equal to 1 or 2.

This choice does not guarantee exact interpolation of globally linear functions.

4.3.3.7 Boundary conditions implementation

So far we have not discussed the implementation of boundary conditions. The flavor of

boundary conditions treatment for hyperbolic systems is given here and we refer to [GP05]

for a general discussion. This is a very important topic since they actually determine the

solution. Let us consider the space discretization of the system (4.69) by a cell centered

finite volume method. For instance for the time explicit discretization we have the scheme

(4.83). Of course this formula is not valid when K meets the boundary of Ω (see Figure4.38

for illustration). When this occurs, we have to find the numerical flux Φ(vnK , K, ∂Ω). In
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K

∂Ω

Figure 4.38: Control volume sharing a face with boundary ∂Ω.

practice, this flux is not given by the physical boundary conditions and moreover, in general,

(4.69) is an ill-posed problem if we try to impose either v or F (v) · ~n on ∂Ω. This can be

understood in a simple way by using the following linearization of this system:

∂w

∂t
+ An

∂w

∂n
= 0 , (4.101)

where ~n represents the direction of the external normal on K ∩ ∂Ω, An is the advection

matrix:

An ≡
(
∂F (w) · ~n

)

∂w
|w=w, (4.102)

and w is the state around which the linearization is performed. When (4.69) is hyperbolic,

the matrix An is diagonalizable on R and by a change of coordinates, this system becomes

an uncoupled set of m advection equations:

∂ξk
∂t

+ λk
∂ξk
∂n

= 0 , k = 1, . . . , m . (4.103)

Here the λk are the eigenvalues of An and according to their sign, waves are going either

into the domain Ω (λk < 0) or out of the domain Ω (λk > 0). Hence we expect that it is only

possible to impose p conditions on K ∩ ∂Ω where p ≡ ♯{k ∈ {1, . . . , m} such that λk < 0}.

Let us consider now a control volume K which meets the boundary ∂Ω. We take

w = wn
K and write the previous linearization. We denote by x the coordinate along the

outer normal so that (4.101) reads:

∂w

∂t
+ An

∂w

∂x
= 0 , (4.104)

which happens to be the linearization of the 1D (i.e. when nd = 1) system. First we label

the eigenvalues λk(w) of An by increasing order:

λ1(w) ≤ λ2(w) ≤ . . . ≤ λp(w) < 0 ≤ λp+1(w) . . . ≤ λm(w) . (4.105)
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(i) The case p = 0. In this case information comes from inside Ω and therefore we take:

Φ(wn
K , K, ∂Ω) = F (wn

K) · ~nK . (4.106)

In the Computational Fluid Dynamics literature this is known as the “supersonic

outflow” case.

(ii) The case p = m. In this case information comes from outside Ω and therefore we

take:

Φ(wn
K , K, ∂Ω) = Φgiven , (4.107)

where Φgiven are the given physical boundary conditions. In the Computational Fluid

Dynamics literature this is known as the “supersonic inflow” case.

(iii) The case 1 ≤ p ≤ m− 1. As already discussed, we need p scalar information coming

from outside of Ω. Hence we assume that we have on physical ground p relations on

the boundary:

gl(w) = 0 , l = 1, . . . , p. (4.108)

Remark 16. The notation gl(w) = 0 means that we have a relation between the components

of w. However, in general, the function gl is not given explicitly in terms of w. For example

gl(w) could be the pressure which is not, in general, one of the components of w.

Since we have to determine the m components of Φ(wn
K , K, ∂Ω), we need m − p

supplementary scalar conditions. Let us write them as

hl(w) = 0 , l = p + 1, . . . , m. (4.109)

In general (4.108) are referred to as “physical boundary conditions” while (4.109) are

referred to as “numerical boundary conditions”.

Then we take:

Φ(wn
K , K, ∂Ω) = F (w) · ~nK , (4.110)

where w is solution to (4.108)-(4.109) (see however Remark 19 and (4.116)).

Remark 17. The system (4.108)-(4.109) for the m unknowns w ∈ G is a m×m nonlinear

system of equations. We are going to study its solvability, see Theorem 3.

Let us first discuss the numerical boundary conditions (4.109). By analogy with what

we did on an interface between two control volumes K and L, we take (recall that w = wn
K):

l̃k(w) · (F (w) · ~nK) = l̃k(w) · (F (wn
K) · ~nK) , k = p + 1, . . . , m. (4.111)
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In other words, we set hk(w) ≡ l̃k(w
n
K) · (F (w) · ~nK) − l̃k(wn

K) · (F (wn
K) · ~nK). We have

denoted by (l̃1(w), . . . , l̃m(w)) a set of left eigenvectors of Ãn:
tÃnlk(w) = λklk(w) and by

(r1(w), . . . , rm(w)) a set of right eigenvectors of Ãn: Ãnrk(w) = λkrk(w). Moreover the

following normalization is taken: l̃k(w) · r̃p(w) = δk,p.

According to [GP05] we have the following result on the solvability of (4.108)-(4.109).

Theorem 3. In the case 1 ≤ p ≤ m− 1, assume that λp+1(w) > 0, and

det
1≤k,l≤p

(
m∑

i=1

rik(w)
∂gl
∂wi

(w)

)
6= 0 . (4.112)

With the choice (4.111) the nonlinear system (4.108)-(4.109) has one and only one solution

v, for v − w and gl(w) sufficiently small.

Remark 18. In this result we exclude the case where the boundary is characteristic i.e.

the case where one of the λk is equal to 0. This case cannot be dealt with at this level of

generality. On the other hand, wall boundary conditions belong to this category. They can

be discussed and handled directly on the physical system under consideration. In this section

we will show how to do it for the NSWE equations (see Paragraph 4.3.3.7.1). Moreover, the

treatment of wall boundaries of compressible Euler equations and some two-phase systems

[DDG08c, DDG10, DDG08a, Dut07] can be done in a similar way.

Remark 19. In practice, (4.108)-(4.109) are written in a parametric way. We have a

set of m physical variables w (e.g. pressure, densities, velocities,. . . ) and we look for w

satisfying:

gl(w) = 0 , l = 1, . . . , p , (4.113)

l̃k(w) · Φ = l̃k(w) · (F (wn
K) · ~nK) , (4.114)

Φ = F (w) · ~nK , (4.115)

and then we take:

Φ(wn
K , K, ∂Ω) = Φ . (4.116)

The system (4.113)-(4.114)-(4.115) is then solved by Newton’s method.

4.3.3.7.1 Impermeable boundary Consider the case of a rigid wall boundary

~u(x, t) · ~n = 0, x ∈ ∂Ω, (4.117)

and the hyperbolic system (4.63), (4.64). The flux Φ that we have to determine on the

boundary ∂Ω has the following form if we take into account (4.117):

Φ =
(
F · ~n

)∣∣
∂Ω

=




0
g
2
H2nx

g
2
H2ny


 . (4.118)
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Thus, we have to determine g
2
H2 on the boundary ∂Ω. For this purpose we employ a

complementary numerical boundary condition as it was explained above:

l3(wK) · Φ = l3(wK) · Fn(wK), (4.119)

where l3 is the left eigenvector corresponding to the positive eigenvalue λ3 = un+c = c > 0.

Solving equation (4.119) leads to the following value of the unknown component:

g

2
H2
∣∣∣
∂Ω

=
(
cHun +

g

2
H2
)∣∣∣

K
,

which determines completely the boundary flux (4.118).

4.3.3.7.2 Generating boundary Now let us consider a boundary where the total water

depth is prescribed:

H|∂Ω = H0(xs, t) > 0, xs ∈ ∂Ω.

Taking into account this information, the flux Φ to be determined has the following form:

Φ =
(
F · ~n

)∣∣
∂Ω

=




H0un
H0uun +

g
2
H2

0nx

H0vun +
g
2
H2

0ny


 . (4.120)

Hence, we have to find u and v on the generating boundary ∂Ω. The normal velocity will

be immediately deduced from this information un := unx + vny.

Throughout this section we will assume that the flow is “subsonic”, i.e. |~u · ~n| ≤ c.

We could also consider the “supersonic” case, but physically this situation is rather exotic.

Henceforth, we have one negative eigenvalue λ1 = un − c, one positive λ3 = un + c and

λ2 = un can be in principle of any sign. Thus we have to consider two cases: un < 0 and

un ≥ 0. In the first case we need a supplementary physical condition (on the tangential

velocity to the boundary), in the second one we use a supplementary numerical condition:

l2(wK) · Φ = l2(wK) · Fn(wK).

Both lead to the same conclusion: uτ |∂Ω = uτ |K , where uτ := uny − vnx is the tangential

velocity. Computations very similar to the previous section 4.3.3.7.1 lead to the following

solution:

un|∂Ω =
Hcun +

g
2
(H2 −H2

0 )

H0c
, u|∂Ω = un|∂Ω nx + uτny, v|∂Ω = un|∂Ω ny − uτnx.

Substituting these expressions into (4.120) gives the boundary flux Φ.
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4.3.4 Numerical results

The numerical tests presented here are of two kinds. The first one is a comparison with

analytical solutions (or approximate analytical solutions) : sections 4.3.4.1, 4.3.4.2, 4.3.4.4.

This allows us to test the correctness and precision of the numerical scheme. The second

one is a comparison with results from laboratory experiments : sections 4.3.4.3. This allows

us to test the capacity of the code to reproduce actual events, and in particular assess the

validity of the nonlinear shallow-water equations for tsunami modeling.

4.3.4.1 Convergence test

We begin the presentation of numerical tests by the simplest one – convergence test.

We would like to show the accuracy of the MUSCL scheme implementation. To do it, we

solve numerically the following scalar linear advection equation

∂w

∂t
+ ~u0 · ∇w = 0, ~u0 ∈ R

2

with smooth15 initial conditions. Moreover, it has almost compact support in order to

reduce the influence of boundary conditions. It is obvious that this equation will just

translate the initial form in the direction ~u0. So, we have an analytical solution which

can be used to quantify the numerical method error. On the other hand, to measure the

convergence rate, we constructed a sequence of refined meshes.

Figure 4.39 shows the error of the numerical method in L∞ norm as a function of the

mesh characteristic size. The slope of these curves represents an approximation to the

theoretical convergence rate. On this plot, the blue curve corresponds to the first order

upwind scheme while the other two (red and black) correspond to the MUSCL scheme

with least-squares (see Section 4.3.3.6.4) and Green-Gauss (see Section 4.3.3.6.3) gradient

reconstruction procedures respectively. One can see that the blue curve slope is equal

approximatively to 0.97 which means first order convergence. The other two curves have

almost the same slope equal to 1.90 indicating a second order convergence rate for the

MUSCL scheme. We remark that in our implementation of the second-order scheme the

least-squares reconstruction seems to give slightly more accurate results than the Green-

Gauss procedure.

The next figure represents the measured CPU time in seconds again as a function of

the mesh size. Obviously, this kind of data is extremely computer dependent but the

qualitative behaviour is the same on all systems. On Figure 4.40 one can see that the

“fastest” curve is the blue one (first order upwind scheme). Then we have two almost

15We intentionally choose a smooth initial condition since the discontinuities can decrease the overall

accuracy of the scheme.
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Figure 4.39: Numerical method error in L∞ norm.

superimposed (black and red) curves referring to the second-order gradient reconstruction

on variables. Here again one can notice that the least-squares method is slightly faster than

the Green-Gauss procedure. On this figure we represented one more curve (the highest one)

which corresponds to Green-Gauss gradient reconstruction on fluxes (it seems to be very

natural in the context of the FVCF scheme explained in Section 4.3.3.1.1). Our numerical

tests show that this method is quite expensive from the computational point of view and

we decided not to choose it.

The next three sections deal with the validation of VOLNA again a set of benchmarks for

tsunami modelling proposed at the Catalina 2004 workshop on long waves ; they are among

the 6 benchmarks currently recommended by the United States National Oceanic and

Atmospheric Administration (NOAA) for the evaluation of operational tsunami forecasting

models [SBT+07]. In order to help the reproductibility and comparison of numerical results,

all the following test cases make use of publicly available data16. Although, for each

benchmark, we present results for one mesh only, we have checked that the simulations

converge as the mesh resolution increases.

16http://www.cee.cornell.edu/longwave/index.cfm?page=benchmark
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Figure 4.40: CPU time for different finite volume schemes.

4.3.4.2 Tsunami run-up onto a plane beach

In this test case, we look at the runup of a tsunami wave over a plane sloping beach

(of slope 1
10
). The initial depression wave propagates leftwards (see figure 4.50). The

result of the simulation is compared to an analytical solution, obtained using the initial

value problem technique of Carrier, Wu and Yeh [CWY03]. Note that the computational

domain is approximately 50 km long, whereas the shoreline motion scale is 1 km ; hence,

we choose to refine the mesh by a factor 10 near the initial shoreline. The results presented

here correspond to a resolution of 8 meters in the direction of propagation. Moreover, the

initial free surface amplitude is a few meters high. Thus, due to the difference of spatial

scales between the bathymetry, the initial free surface and the computational domain

dimensions, the source term gH∇h is very steep (see figure 4.50), which renders the use

of a well-balanced scheme mandatory. This test case is one-dimensional. Since our code

is two-dimensional, we implement it using a two dimensional computational domain, with

translation invariance in the transverse direction.

We can see on Figures 4.41 and 4.42 that the numerical results match pretty well the

approximate analytical solution, especially near the shoreline location. This ensures the

accuracy of the runup algorithm presented in section 4.3.3.3.
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Figure 4.41: Catalina 1 benchmark — comparison between analytical (solid) and numerical

(dashed) values for free surface at time 160 seconds. The gray line represents the beach, and the

gray point the initial shoreline location.

Figure 4.42: Catalina 1 benchmark — comparison between analytical (solid) and numerical

(dashed) values for free surface at time 220 seconds. The gray line represents the beach, and the

gray point the initial shoreline location.
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Figure 4.43: Catalina 2 benchmark — comparison between numerical results and experimental

data at gage 5.

4.3.4.3 Tsunami run-up onto a complex 3-dimensional beach

This experiment reproduces at 1
400

scale the Monai valley tsunami, which struck the

Island of Okushiri (Hokkaido, Japan) in 1993, in a 205 meters long wave tank. The com-

putational domain reproduces the last 5 meters of the wave tank. The initial incident wave

offshore is given by experimental data, and fed as a time dependent boundary condition.

We compare the numerical results with the recorded data at three of the wave gages in-

stalled in the wave tank : gages number 5, 7 and 9, of respective coordinates (4.521, 1.196),

(4.521, 1.696) and (4.521, 2.196). This can be seen in Figures 4.43 – 4.45. The main wave

(between times 15 and 25 seconds) is very accurately described, at all gages considered.

Moreover, the maximal runup is adequately captured by the code. This value is extremely

high, and occured in Monai Valley (the corresponding canyon in the experimental setup,

along with the free surface at the moment of maximum elevation are shown in figure 4.52).

We obtain a maximal runup value of 8.05 centimeters, which corresponds to 32.2 meters

put back at field scale. This is remarkably close to the measured value of 31.7 meters.

Hence the numerical model is able to reproduce the laboratory scenario accurately, even

without bottom friction modelling (and thus without any free parameter). In this realistic

test case, the ability to refine the mesh near the zones of interest is a very nice asset.

We performed another computation using the set-up described above. Namely, we
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Figure 4.44: Catalina 2 benchmark — comparison between numerical results and experimental

data at gage 7.

Figure 4.45: Catalina 2 benchmark — comparison between numerical results and experimental

data at gage 9.
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Figure 4.46: Computed and reconstructed wave energy profiles for Catalina 2 benchmark prob-

lem.

solved equations (4.63), (4.64) completed by a conservation law for the wave energy. This

system was recently proposed by Dutykh & Dias and we refer to [DD09a] for technical

details and discussions. The total energy evolution is depicted on Figure 4.46. We repre-

sented two curves. The blue solid line corresponds to the solution of the augmented system

of equations. The black broken line refers to the total energy, estimated from conservative

variables:

E ≈ 1

2
ρH|~u|2 + 1

2
ρgη2,

where ρ is the constant fluid density and η = H − h is the free surface elevation with

respect to the undisturbed water level. In complete accordance with results reported in

[DD09a], the computed wave energy is not prone to numerical diffusion and has excellent

monotonicity properties. Just at the end of the simulation one can notice a little decrease

in both curves. In fact, it is induced by energy losses due to the wave run-up on the beach.
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4.3.4.4 Tsunami generation and runup due to a 2-dimensional landslide

In this test case, a translating Gaussian shaped mass, initially at the shoreline, trans-

lates rightwards and creates a wave (see figure 4.53). The seafloor can be described by the

following equation :

h(x, t) = H(x)− h0(x, t),

H(x) = x tan(β), and h0(x, t) = δ exp

[
−
(
2

√
xµ2

δ tan(β)
−
√
g

δ
µt

)]
,

x being the direction of propagation. Here, δ represent the maximum thickness of the

sliding mass, µ the ratio between δ and the horizontal length of the mass, and β the beach

slope. Notice that, at initial time, the submarine mass is partially underwater. Hence,

this test case corresponds to a subaerial landslide. A sketch of this experiment can be

seen in figure 4.53. This benchmark is one-dimensional, but is implemented using a two-

dimensional computational domain, as in section 4.3.4.2. The numerical results we present

are obtained as a one dimensional slice (which does not depend on the transverse variable).

The result of the numerical simulation is compared to an analytical solution, com-

puted as an approximate solution of the linear shallow water equations with a forcing

term [LLS03]. In Figure 4.47, we can see the comparison between the analytical and nu-

merical wave surface profiles at times 16, 32 and 48 seconds, for β = 5.7o, δ = 1 m, and

µ = 0.01 (see Figure 4.47). These values ensure that we are in the linear regime of the

shallow water equations (and thus that the analytical solution is a good approximation of

the nonlinear equations solution). Hence, the comparison is meaningful. Good agreement

is reached.

We also performed wave energy computation for this test-case. To our knowledge, the

energy evolution has not been shown yet for a landslide generated wave. Computation

results are presented on Figures 4.48 and 4.49 for two cases µ = 0.01 and µ = 0.1. In the

latter case the linear shallow water equations (LSWE) are not valid even on small time

scales. For more information, please refer to [LLS03].

Figure 4.48 shows the wave energy evolution with time. On Figure 4.49 we represented

two trajectories in the energy phase-space (Ek, Ep), where Ek is the kinetic energy and Ep

is the potential one. We would like to point out the approximate energy repartition on the

black curve (µ = 0.1).

4.3.4.5 Summary

Using different analytical benchmarks, we have validated all components of our code :

accuracy and order of convergence of the numerical scheme (section 4.3.4.1), run up algo-
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Figure 4.47: Catalina 3 benchmark — free surface profiles at three different times — comparison

between numerical results (dashed) and analytical formulas (solid lines), at times 16 (blue), 32

(red) and 48 (green) seconds.
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Figure 4.48: Energy evolution with time for the 2-dimensional landslide test-case.
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Figure 4.49: Trajectories in the energy phase-space (Ek, Ep) for the 2-dimensional landslide

test-case.

rithm and treatment of steep depth fields (section 4.3.4.2), and time varying bathymetry

in a conservative shallow-water framework (section 4.3.4.4). Moreover, we have shown

the capability of the code to model realistic events, using an experimental benchmark

(section 4.3.4.3).

4.3.5 Conclusions and perspectives

In the present paper we provided a detailed description of the VOLNA code, designed

for complete tsunami wave modelling. Namely, we are able to simulate the whole life-cycle

of a tsunami from generation to inundation. Special attention was payed to the run-up

algorithm described in Section 4.3.3.3. The overall performance test and validation were

done in Section 4.3.4.

The VOLNA code is operational and is able to run in complex and rapidly varying

conditions. The use of unstructured meshes allows for taking into account the geometry

of real coasts. Owing to the implementation of various types of boundary conditions, the

code VOLNA can be coupled to other solvers and treat exclusively the zones where the

NSWE are physically relevant.

Some new results were presented concerning the energy of tsunami waves [DD09a]. In

particular, we show the wave energy evolution for the Catalina 2 test case (run-up on a
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Figure 4.50: Catalina 1 benchmark — initial free surface profile (left) ; bathymetry and initial

free surface, at the same vertical scale (right).

complex 3D beach) and a landslide generated tsunami (Catalina 3 benchmark problem).

In the future we would like to add more physics to the VOLNA code: dissipative effects

[DD07c, Dut09b] (one could for example implement the dissipative terms from Bresch and

Desjardins [BD03]) and dispersive effects.
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Figure 4.51: Catalina 2 benchmark : initial free surface profile (left) ; bathymetry (right).

4.4 On the use of finite fault solution for tsunami gener-

ation problem

In physics, your solution should convince a reasonable person. In math, you have to convince a

person who’s trying to make trouble. Ultimately, in physics, you’re hoping to convince Nature.

And I’ve found Nature to be pretty reasonable.

Frank Wilczek

Abstract. The present study is devoted the tsunami wave generation

problem. The main goal of this work is twofold. First of all, we propose

a simple, computationally inexpensive model for the sea bed displacement

during an underwater earthquake. The main ingredient consists in the finite

fault solution for the slip distribution under some assumptions on the rup-

turing process dynamics. Once the bottom motion is reconstructed, then we

study waves induced on the free surface of the ocean. For this purpose we con-

sider three different models approximating the Euler equations of the water

wave theory. Namely, we deal with linearized Euler equations (also known as

Cauchy-Poisson problem), a Boussinesq system and a weakly nonlinear model.

An intercomparison of these three approaches is performed. All developments

in this study are illustrated on the real world example of the July 17, 2006

Java event.

4.4.1 Introduction

Tsunami waves have attracted a lot of attention of researchers. The scientific com-

munity interest has especially increased since the Tsunami Boxing day [SB06] in Decem-
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Figure 4.52: Maximal runup in Monai valley. The vertical scale is magnified by a factor 3.

ber 2004, killing nearly 230,000 people in fourteen countries. This event has also incited

countries concerned with tsunami hazard to develop respective Tsunami Warning Systems

(TWS) [Syn05, Bas06]. Perhaps, the most elaborated warning system have been settled

in the Pacific Ocean by efforts of NOAA’s specialists [TGB+05, GBM+05]. Similarly, the

Indian Ocean TWS has been developed by joint collaborative efforts of indonesian and

german specialists.

An operational tsunami wave modeling tool is an indispensable part of any warning

system [TGB+05, TDS07]. Henceforth, mathematical and numerical models in use should

be improved to produce more accurate results in less CPU time [Ima96, TG97, DPD10].

A numerical model of a tsunami wave propagation needs to be provided by an initial

condition. The present study is an attempt to improve the initial tsunami waveform

construction. The set of existing practices described in the literature constitutes the field of

the so-called tsunami generation modeling [Ham73, TT01, DD07d, Dut07, DD09b, DD10].

The Tsunami generation modelling initiated in the early sixties by the prominent work

of K. Kajiura [Kaj63], who proposed the use of the static sea bed displacement onto the

free surface as an initial condition. Classically, the celebrated Okada [Oka85, Oka92] and

sometimes Mansinha & Smylie17 [MS67, MS71] solutions are used to compute the co-

seismic sea bed displacements. This approach is still widely used by the tsunami wave

modeling community. However, some progress has been recently made in this direction

17In fact, Mansinha & Smylie solution is a particular case of the more general Okada solution.
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Figure 4.53: Sketch of the analytical landslide test case. The submarine mass displacement (in

gray) and free surface (dashed line) have been magnified by a factor 1000.

[OTM01, DD07d, Dut07, DD09b, RLF+08, SF09, DPD10].

In the present study we propose to exploit some recent advances in the seismology to re-

construct better co-seismic displacements of a tsunamigenic earthquake. More precisely, we

suggest the use of the so-called finite fault solution developed by C. Ji and his collaborators

[BLM00, JWH02] and based on static and seismic data inversion. This solution provides

us multiple fault segments with variable local slip, rake angle and several other parameters.

By applying the Okada solution to each subfault, we reconstruct the sea bed displacement

with higher resolution. To our knowledge, this technique was already employed to model

Kuril islands tsunamis 15 November 2006 and 13 January 2007, cf. [RLF+08]. Since the

Okada solution is constituted of relatively simple closed-form analytical expressions, all

computations can be done efficiently enough to be used in a real-time TWS (cf. [WL08]).

The obvious sine qua non condition is that the corresponding finite fault inversion is also

performed in a reasonable time.

In our study we go further in reconstructing the dynamic sea bed displacement accord-

ing to the rupture propagation speed and the rise time also provided by the finite fault

solution. Constructed in this special way sea bed displacements are then coupled with

several water wave models. Among them there is a novel weakly nonlinear solver based on

a formulation ivolving the Dirichlet-to-Neumann operator which is approximatively com-

puted using the Fourier transform. Two remaining models are the linearized free surface

Euler equations and a Boussinesq type system. Developments presented in this study are

then illustrated on the example of July 17, 2006 Java event [AKLV06]. However, we un-
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Fault length, km 80.9

Fault width, km 40.0

Focal depth, km 20.0

Slip, m 2.5

Dip angle 10◦

Slip angle 95◦

Strike angle (CW from N) 289◦

Table 4.5: Seismic fault parameters for the Java 2006 event that are classically used for the

construction of the initial tsunami waveform [Yal08]. (The corresponding seismic moment can be

taken M0 = 2.52 × 1027N ·m (Mw = 7.56).)

derline that presented in this study methodology is quite general and can be applied to

any other tsunamigenic earthquake for which a finite fault solution is available.

The study is organized as follows. In Section 4.4.2 we describe the static and the

dynamic sea bed displacements, while in Section 4.4.3 we present a simple approximate

water wave solver with moving bottom. In Section 4.4.4 we study numerically the gener-

ation process of a real-world event. An intercomparison of three mentioned above models

is performed. A few important conclusions are drawn out in Section 4.4.5.

4.4.2 Co-seismic displacement construction

The problem of tsunami generation modeling is directly related to the problem of

the bottom motion during an underwater earthquake. Traditionally, the so-called Okada

solution [Oka85, Oka92] is used in cases of regimes characterized by an active fault of small

or intermidiate size i.e. constituted by one or a few segments (e.g. the great Sumatra

2004 earthquake, [SB06, IAK+07]). In this case the resulting vertical displacement field

is superposed at the free-surface. This approach is conventionally referred to as passive

tsunami generation [DDK06], contrary to the active generation which explicitly involves the

bottom motion dynamics [DD07d]. Since in this study we decided to illustrate our methods

on the example of July 17, 2006 Java event, we show on Figure 4.54 a typical single-fault

based initial condition used for the corresponding tsunami wave modeling [Yal08]. The

seismic parameters used to produce this vertical displacement are given in Table 4.5.

Remark 20. The celebrated Okada solution [Oka85, Oka92] is based on two main ingre-

dients — the dislocation theory of Volterra [Vol07] and Mindlin’s fundamental solution for

an elastic half-space [Min36]. Particular cases of this solution were known before Okada’s

work, for example the well-known Mansinha & Smylie’s solution [MS67, MS71]. Usually
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Figure 4.54: Static vertical displacement computed according to the single fault parameters

of Table 4.5. This solution is typically used as an initial condition for the Java 2006 tsunami

propagation simulations.

all these particular cases differ by the choice of the dislocation and the Burger’s vector

orientation [Pre65]. We recall the basic assumptions behind this solution:

• Fault is immersed into the linear homogeneous and isotropic half-space

• Fault is a Volterra’s type dislocation

• Dislocation has a rectangular shape

For more information on Okada’s solution we refer to [DD07d, DD07a, Dut07].

The finite fault solution is based on the multi-fault representation of the rupture

[BLM00, JWH02]. The rupture complexity is reconstructed using a joint inversion of

the static and seismic data. Fault’s surface is parametrized by multiple segments with

variable local slip, rake angle, rise time and rupture velocity. The inversion is performed

in an appropriate wavelet transform space. The objective function is a weighted sum of

L1, L2 norms and some correlative functions. With this approach seismologists are able

to recover rupture slip details [BLM00, JWH02]. These available seismic information are

exploited in this study to compute the sea bed displacements produced by an underwater

earthquake with higher geophysical resolution.
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(a) Top view. (b) Bathymetry side view.

Figure 4.55: Surface projection of the fault’s plane and the ETOPO1 bathymetric map of the

region we study. The symbol ⋆ indicates the hypocenter’s location at (107.345◦ ,−9.295◦). The

local Cartesian coordinate system is centered at the point (108◦,−10◦). This region is located

between (106◦,−8◦) and (110◦,−12◦).

The proposed approach will be directly illustrated on the Java’s 2006 event. The July

17, 2006 Java’s earthquake involved thrust faulting in the Java’s trench and generated

a tsunami wave that inundated the southern coast of Java [AKLV06, FKM+07]. The

estimates of the size of the earthquake (cf. [AKLV06]) indicate a seismic moment of

6.7×1020 N ·m, which corresponds to the magnitude Mw = 7.8. Later this estimation was

refined [Ji06] to Mw = 7.7. Like other events in this region, Java’s event had an unusually

low rupture speed of 1.0 – 1.5 km/s, and occurred near the up-dip edge of the subduction

zone thrust fault. According to C. Ammon et al [AKLV06], most aftershocks involved

normal faulting. The rupture propagated approximatively 200 km along the trench with

an overall duration of approximatively 185 s. The fault’s surface projection along with

ocean ETOPO1 bathymetric map are shown in Figure 4.55. We note that Indian Ocean’s

bathymetry considered in this study varies between 7186 and 20 meters in the shallowest

region.

Remark 21. We have to mention that the finite fault inversion for this earthquake was

also performed by the Caltech team [OK06]. They estimated the July 17, Southern Java

earthquake magnitude wasMw = 7.9. In this study we do not present numerical simulations

involving their data but it is straightforward to apply our algorithms to this case as well.

4.4.2.1 Static displacement

In order to illustrate the advantages of the proposed approach we will compute also

the static co-seismic displacements using the finite fault solution [Ji06]. The fault is
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P -wave celerity cp, m/s 6000

S-wave celerity cs, m/s 3400

Crust density ρ, kg/m3 2700

Dip angle, δ 10.35◦

Slip angle (CW from N) 288.94◦

Table 4.6: Geophysical parameters used to model elastic properties of the subduction zone in

the region of Java.

considered to be the rectangle with vertices located at (109.20508◦ (Lon), −10.37387◦
(Lat), 6.24795 km (Depth)), (106.50434◦, −9.45925◦, 6.24795 km), (106.72382◦, −8.82807◦,
19.79951 km), (109.42455◦, −9.74269◦, 19.79951 km) (see Figure 4.55 (a)). The fault’s

plane is conventionally divided into Nx = 21 subfaults along strike and Ny = 7 subfaults

down the dip angle, leading to the total number of Nx×Ny = 147 equal segments. Param-

eters such as subfault location (xc, yc), depth di, slip u and rake angle φ for each segment

are given in Table 4.7 and can be also downloaded at [Ji06]. The common elastic constants

to all subfaults parameters such as dip and slip angles are given in Table 4.6. (We note

that the slip angle is measured traditionally in the counter-clockwise direction from the

North. The relations between the elastic wave celerities cp, cs and Lamé coefficients λ, µ

used in Okada’s solution are outlined in Section 4.4.8.)

We compute the Okada’s solution at the sea bottom (substituting z = 0 in the geo-

physical coordinate system) and taking the vertical component of the displacement field

Oi(x; δ, λ, µ, . . .), where δ is the dip angle, λ, µ are the Lamé coefficients (see Appendix

4.4.8) and dots denote the dependence of the function O(x) on other 8 parameters, cf.

[DD07d]. The resulting co-seismic vertical bottom displacement ζ(x) can be computed as

a simple superposition of subfault contributions:

ζ(x) =

Nx×Ny∑

i=1

Oi(x; δ, λ, µ, . . .)

The graph of ζ(x) is presented in Figure 4.56. The specific static displacement can be

compared with the single fault classical approach depicted on Figure 4.54. It is worth to

mention that more than one local extrema can be found in this solution due to a higher

slip resolution.

Hereafter we will adopt the short-hand notation Oi(x) for the vertical displacement

component of the Okada’s solution for the ith segment having in mind its dependence on

various parameters from Tables 4.6 and 4.7.
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Figure 4.56: The vertical displacement of the finite fault solution, cf. [Ji06]. The corresponding

seismic moment is M0 = 3.53 × 1027 N ·m (Mw = 7.65).

4.4.2.2 Dynamic co-seismic displacements

Here, we go even further in the reconstruction of the bottom motion. By making some

assumptions on the time dependence of displacement fields, we can have an insight into

the dynamics of the sea bed motion.

The finite fault solution provides two additional parameters concerning the rupture

dynamics of the July 17, 2006 event — the rupture velocity vr = 1.1 km/s and the rise

time tr = 8 s. The epicenter is located at the point xe = (107.345◦,−9.295◦) (cf. [Ji06]).

Given the origin xe, the rupture velocity vr and ith subfault location xi (the full list is

provided in Table 4.7), we define the subfault activation times ti needed for the rupture to

achieve the corresponding segment i by the formulas:

ti =
||xe − xi||

vr
, i = 1, . . . , Nx ×Ny.

We will follow also the pioneering idea of J. Hammack [Ham72, Ham73] developed later

in [TT01, THT02, DD07d, DDK06, KDD07] where the maximum bottom deformation is

achieved during some finite time (known as the rise time) according to a specific (in ad

hoc manner) dynamic scenario. Various scenarios on the time dependence (instanteneous,

linear, trigonometric, exponential, etc) can be found in [Ham73, DDK06, DD07d]. In this



174 Tsunami wave modeling

−0.5 0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t, s

T
(t

)

Trigonometric scenario

Figure 4.57: Trigonometric scenario with rise time tr = 1 s.

study we will adopt the trigonometric scenario which can be described by the formula:

T (t) = H(t− tr) +
1

2
H(t)H(tr − t)

(
1− cos(πt/tr)

)
,

where H(t) is the Heaviside step function. For illustrative purposes this dynamic scenario

is represented on Figure 4.57.

Finally, we put together all ingredients in order to construct the dynamic sea bed

motion:

ζ(x, t) =

Nx×Ny∑

i=1

H(t− ti)T (t− ti)Oi(x). (4.121)

In the following sections we will present several approaches to couple this dynamic de-

formation with the hydrodynamic problem to predict waves induced on the ocean’s free

surface.

4.4.3 Fluid layer solution

Once the sea bed deformation is determined, a water wave problem has to be solved

in order to compute the free surface motion induced by the ocean bottom shaking. Tra-

ditionally this difficulty is circumvented by the simple translation of the static bottom

deformation onto the free surface [Kaj63], known as the passive generation approach

[DDK06, KDD07]. In this section we present three approximate models to the water
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Figure 4.58: Sketch of the physical domain for the water wave problem.

wave problem with moving bottom that we will use in combination with the finite-fault

solution to study the tsunami generation problem.

4.4.3.1 Linearized Euler equations

In the sequel we will consider an ideal incompressible fluid of constant density ρ in

the domain Ω ⊆ R2. The horizontal independent variables will be denoted by x = (x, y)

and the vertical by z. The origin of the cartesian coordinate system is chosen such that

the surface z = 0 corresponds to the still water level. The fluid is bounded below by the

bottom z = −h(x, t) and above by the free surface z = η(x, t). Usually we assume that

the total depth H(x, t) := h(x, t) + η(x, t) remains positive H(x, t) ≥ h0 > 0 under the

system dynamics ∀t ∈ [0, T ]. The sketch of the physical domain is shown in Figure 4.58.

Remark 22. Classically in water wave modeling, we make the assumption that the free

surface is a graph z = η(x, t) of a single-valued function. It means in practice that we

exclude some interesting phenomena, (e.g. wave breaking phenomena) which are out of

scope of this modeling paradigm.

The linearized water wave problem consists of the following set of equations [Ham72,

Ham73, DD07d]:

∆φ = ∇2φ+ ∂2zzφ = 0, (x, z) ∈ Ω× [−h, 0], (4.122)

∂tη − ∂zφ = 0, z = η(x, t), (4.123)

∂tφ+ gη = 0, z = η(x, t), (4.124)

∂th+ ∂zφ = 0, z = −h(x, t). (4.125)
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This set of equations is also often referred in the literature as the Cauchy-Poisson (CP)

problem after the pioneering work of A.-L. Cauchy [Cau27].

In view of the specific applications’ requirements on analytical techniques, we will

assume first that the domain Ω = R2, i.e. unbounded in the horizontal extent, and the

bottom has a special form:

h(x, t) = h0 − ζ(x, t),

where h0 is some uniform depth and ζ(x, t) is the sea bed displacement due to an under-

water earthquake. In Section 4.4.2.2 one possible construction of the bottom displacement

is proposed. Using integral transform methods (cf. [Ham73, TT01, DD07d, KDD07]), one

can derive the following expression for the free surface elevation η(x, t):

η(x, t) =
γ2

2
F−1

{ n∑

i=1

H(t− ti)ζ̂i(k)
(γ2 − ω2) cosh(|k|h0)

(
cos(ω(t− ti))− cos(γ(t− ti))+

H(t− ti − t0)[cos(ω(t− ti − t0)) + cos(γ(t− ti))]
)}
,

where γ =
π

tr
and tr is the rise time defined in Section 4.4.2.2. A similar expression can be

also derived for the velocity potential φ(x, z, t), however we do not directly need it in our

study.

This semi-analytical solution will be used below in numerical simulations. It has a

big advantage of being simple and, thus, computationally inexpensive. However, the flat

bottom assumption (h(x) = h0 = const) prevents us from using this solution beyond some

small evolution times. The validity of this approximation has already been addressed in

the literature [KDD07, SF09] and will be discussed at some point below.

4.4.3.2 The weakly-nonlinear model

A tsunami wave during its generation is well described even by the CP problem [DD07d,

KDD07, SF09]. The main reason for this simplicity is the fact that a wave of a half meter

amplitude represents only a tiny perturbation of a 4000 m water column. However, the real

world bathymetry is generally complex and may contain simultaneously various scales. For

example, the subduction zone bathymetry represented on Figure 4.55 ranges from 7000 to

20 m and thus, nonlinear effects may be locally important. In order to take into account all

realistic bathymetry features and study at least the initial stages of a tsunami propagation

we propose below a new numerical model.

Here we consider the physical setting and notation from Section 4.4.3.1. The governing

equations of the classical water wave problem are the following [Lam32, Sto58, Mei94,
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Whi99]:

∆φ = ∇2φ+ ∂2zzφ = 0, (x, z) ∈ Ω× [−h, η], (4.126)

∂tη +∇φ · ∇η − ∂zφ = 0, z = η(x, t), (4.127)

∂tφ+ 1
2
|∇φ|2 + 1

2
(∂zφ)

2 + gη = 0, z = η(x, t), (4.128)

∂th +∇φ · ∇h+ ∂zφ = 0, z = −h(x, t), (4.129)

with φ the velocity potential, g the acceleration due to gravity force and ∇ = (∂x, ∂y)

denotes the gradient operator in horizontal Cartesian coordinates.

Fluid incompressibility and flow irrotationality assumptions lead to the Laplace equa-

tion (4.126) for the velocity potential φ(x, z, t). The main difficulty of the water wave

problem lies on the boundary conditions. Equations (4.127) and (4.129) express the free

surface and bottom impermeability, while the Bernoulli condition (4.128) expresses the

free surface isobarity respectively.

Function h(x, t) represents the ocean’s bathymetry (depth below the still water level,

see Figure 4.58) and is assumed to be known. The dependence on time is included in

order to take into account the bottom motion during an underwater earthquake [DD07a,

DD07d, DDK06, Dut07]. In this study the bathymetry is decomposed in the permanent

part h0(x) (given e.g. by the ETOPO1 database, cf. Figure 4.55) and of the dynamic sea

bed displacement ζ(x, t) constructed above (4.121):

h(x, t) = h0(x)− ζ(x, t). (4.130)

Remark 23. Surface tension effects can also be included in the water wave problem. In

this case, the Bernoulli condition (4.128) has to be modified:

∂tφ+ 1
2
|∇φ|2 + 1

2
(∂zφ)

2 + gη =
σ

ρ
∇ ·
( ∇η√

1 + |∇η|2
)
, z = η(x, t),

where σ is the surface tension coefficient. However, this effect is negligible for the applica-

tions considered in the present study and will be ignored.

Remark 24. Recently, some weak dissipative effects have also beed included into the clas-

sical water wave problem (4.126) – (4.129). For more details on the visco-potential formu-

lation we refer to [DDZ08, DD07c, Dut07, Dut09b, Dut09a].

For the exposition below we will need also to compute unitary exterior normals to the

fluid domain. It is straightforward to obtain the following expressions for the normals at

the free surface and bottom respectively:

~nf =
1√

1 + |∇η|2

∣∣∣∣∣
−∇η
1

, ~nb =
1√

1 + |∇h|2

∣∣∣∣∣
−∇h
−1 .
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In 1968 V. Zakharov proposed a different formulation of the water wave problem based

on the trace of the velocity potential at the free surface [Zak68]:

ϕ(x, t) := φ(x, η(x, t), t).

This variable plays a role of the generalized momentum in the Hamiltonian description of

water waves [Zak68, DB06]. The second canonical variable is the free surface elevation η.

Another important ingredient is the normal velocity at the free surface vn which is

defined as:

vn(x, t) :=
√
1 + |∇η|2 ∂φ

∂~nf

∣∣∣∣
z=η

= (∂zφ−∇φ · ∇η)|z=η . (4.131)

Dynamic boundary conditions (4.127) and (4.128) at the free surface can be rewritten in

terms of ϕ, vn and η [CSS92, CS93, FCKG05]:

∂tη −Dη(ϕ) = 0,

∂tϕ+ 1
2
|∇ϕ|2 + gη − 1

2(1+|∇η|2)
[
Dη(ϕ) +∇ϕ · ∇η

]2
= 0.

(4.132)

Here we introduced the so-called Dirichlet-to-Neumann operator (D2N) [CM85, CS93]

which maps the velocity potential at the free surface ϕ to the normal velocity vn:

Dη : ϕ 7→ vn =
√
1 + |∇η|2 ∂φ

∂~nf

∣∣∣
z=η∣∣∣∣∣∣∣∣

∇2φ+ ∂2zzφ = 0, (x, z) ∈ Ω× [−h, η],
φ = ϕ, z = η,

√
1 + |∇h|2 ∂φ

∂~nb
= ∂th, z = −h.

The name of this operator comes from the fact that it makes a correspondance between

Dirichlet data ϕ and Neumann data
√

1 + |∇η|2 ∂φ

∂~nf

∣∣∣∣
z=η

at the free surface. For the sake

of completeness we provide in Section 4.4.7 the complete derivation of the Zakharov’s

formulation formulation for the water wave problem.

4.4.3.2.1 Numerical estimation of D2N operator It was shown that the water wave

problem can be reduced to a system of two PDEs governing the evolution of the canonical

variables η and ϕ. In order to solve this system of equations we have to be able to

compute efficiently Dη(ϕ). In this section we present a simple approximate method for

the computation of Dirichlet-to-Neumann (D2N) operator. This approach is based on

the extensive use of the Fourier transform. On the discrete level this transformation can

be efficiently implemented thanks to the Fast Fourier Transform (FFT) algorithm [CT65,

FJ05].
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The direct F and inverse F−1 Fourier transforms in 2D are defined as follows:

F[f ] = f̂(k) =

∫

R2

f(x)e−ik·x dx, F
−1[f̂ ] = f(x) =

1

(2π)2

∫

R2

f̂(k)eik·x dk.

In this study, the Fourier transform of a function f will be denoted f̂ = F[f ].

Let us recall the problem we have to solve:

∇2φ+ ∂2zzφ = 0, (x, z) ∈ Ω× [−h, η], (4.133)

φ = ϕ, z = η, (4.134)
√
1 + |∇h|2 ∂φ

∂~nb
= ∂th, z = −h. (4.135)

Once the function φ is determined, we have to compute its normal derivative at the free

surface
√

1 + |∇η|2 ∂φ

∂~nf

∣∣∣∣
z=η

.

Since a tsunami wave induces a special flow regime in which the horizontal extent

is much more important than variations in vertical direction, we can apply the Fourier

transform to the Laplace equation (4.133) as if it were posed in a strip-like domain:

d2φ̂

dz2
− |k|2φ̂ = 0.

The general exact solution to this ODE can be easily computed:

φ̂(k; z) = A(k) cosh(|k|z) +B(k) sinh(|k|z). (4.136)

Two unknown functions A(k) and B(k) have to be determined from boundary conditions

(4.134), (4.135). For our convenience we will rewrite the Neumann boundary condition at

the bottom (4.135) in this form:

∂φ

∂z

∣∣∣∣
z=−h

= −∂th− ∇φ|z=−h · ∇h ≡ f(x, t). (4.137)

The right-hand side will be denoted by f(x, t) that implicitly depends on the solution φ.

The application of the boundary conditions leads to the following system of linear

equations:

cosh(|k|η)A(k) + sinh(|k|η)B(k) = ϕ̂

−|k| sinh(|k|h)A(k) + |k| cosh(|k|h)B(k) = f̂ ,

which can be easily solved:

A(k) =

ϕ̂ cosh(|k|h)− f̂ sinh(|k|η)|k|
cosh(|k|H)

, B(k) =

ϕ̂ sinh(|k|h) + f̂
cosh(|k|η)
|k|

cosh(|k|H)
,
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where H = h + η is the total water depth. The knowledge of these functions leads the

determination of the velocity potential in the whole domain thanks to general solution

(4.136).

Finally, we compute the normal velocity at the free surface Dη(ϕ) = ∂zφ|z=η−∇φ|z=η ·
∇η. If we compute this quantity in Fourier transform space, the answer will be given

immediately by the inverse transformation F−1. The first term is readily given by the

formula:

∂zφ̂
∣∣∣
z=η

= ϕ̂|k| tanh(|k|H) + f̂ sech(|k|H).

To compute the second term we use the following approximate expression:

̂∇φ|z=η · ∇η = F

[
F−1

[
ikϕ̂
]
· F−1

[
ikη̂
]]
. (4.138)

Remark 25. From equation (4.137) it follows that function f(x, tn) depends implicitly on

the unknown solution φ(x, z, tn). In order to resolve this apparent contradiction, we apply

a fixed point-type iteration initialized with the value of f(x, tn−1) from the previous time

step:

f̂k+1 = −∂̂th− F

[
∇φ|z=−h (f̂

k) · ∇h
]
, f̂ 0 = f̂(k; tn−1).

The last product is computed in the physical space:

F

{
∇φ|z=−h (f

k) · ∇h
}
= F

[
F−1

[
∇̂φ
∣∣∣
z=−h

(f̂k)
]
· ∇h

]
,

where after simple computations one obtains:

∇̂φ
∣∣∣
z=−h

(fk) = ik
[
ϕ̂ sech(|k|H)− f̂k tanh(|k|H)

|k|
]
.

Our numerical experiments show that this iterative procedure is convergent and the tolerance

ε := ||fk+1 − fk||∞ ≤ 10−5 is reached after four iterations in average.

The resulting model is only weakly nonlinear since some information about the solution

is lost when we solve the Laplace equation (4.133) in a strip-like domain. However, the WN

model contrary to the CP model not only takes into account some nonlinear effects but

can be also efficiently applied to cases with realistic bathymetry. We note that this model

is analogous at some point to the first order approximation model proposed in [GN07].

4.4.3.3 Time integration

The application of the previously derived Fourier type spectral method to equations

(4.132) governing the evolution of canonical variables η and φ̃, leads to a system of ordinary

differential equations, i.e.

Φt = A(t,Φ), Φ(t0) = Φ0. (4.139)
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In order to integrate numerically this system of ODEs we apply an integrating multiplier

method analogous to one used in [FCKG05, XG09]. This method appears to decrease

the ODEs system stiffness and, therefore, allows for efficient application of explicit time

integration schemes. We start by extracting the linear part of equations (4.139):

Φt + L · Φ = N(Φ), (4.140)

where L =

(
0 −ω2

g

g 0

)
and ω =

√
g|k| tanh(|k|h0) is the wave frequency corresponding to

the wave number |k|. For a general bathymetry we choose the constant h0 to be the mean

water depth. The term N(Φ) incorporates remaining nonlinear terms:

N(Φ) =


 F

{
Dη(φ̃)

}
− ω2

g

ˆ̃
φ

F

{
1

2(1+|∇η|2)
[
Dη(φ̃) +∇φ̃ · ∇η

]2 − 1
2
|∇φ̃|2

}

 .

Linear terms can be integrated exactly by the following change of variables:

Ψ(t) := eL(t−t0)Φ(t), eL(t−t0) =

(
cos(ω(t− t0)) −ω

g
sin(ω(t− t0))

g
ω
sin(ω(t− t0)) cos(ω(t− t0))

)
.

Consequently, we solve in practice the following system of ODEs:

Ψt = eL(t−t0)N
(
e−L(t−t0)Ψ

)
≡ B(t,Ψ), Ψ(t0) = Φ0.

This simple modification allows us to take larger CFL number, thus, improving the overall

time stepping performance.

Finally, the last system of ODEs is discretized with the standard fourth-order Runge-

Kutta (RK4) scheme [HNW09]:

Ψn+1 = Ψn +
1
6
h(k1 + 2k2 + 2k3 + k4),

k1 = B(tn,Ψn),

k2 = B(tn +
1
2
h,Ψn +

1
2
hk1),

k3 = B(tn +
1
2
h,Ψn +

1
2
hk2),

k4 = B(tn + h,Ψn + hk3),

(4.141)

where the subscript refers to the discrete time instance Ψn := Ψ(tn) and h is the discrete

time step: tn+1 = tn + h.

We have to mention that in computations presented below, we use a slightly more com-

plex Runge-Kutta (4,5) scheme with an adaptive time step control (cf. [DP80]). However,

fundamentally it is not so different from the classical RK4 scheme (4.141) described above.
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4.4.3.4 The BBM-BBM type system

When the so-called long wave approximation is applied to the water wave problem

(4.126) – (4.129), one obtains the well-known nonlinear shallow water (or Saint-Venant)

equations [dSV71, Sto58, Whi99] which have been extensively used for tsunami simula-

tions [Ima96, TG97, TS98, DKK08, DPD10]. If we go further in asymptotic expansions,

some dispersive effects can be included and generally the resulting system is referred to as

Boussinesq equations [Bou72, MBS03, DD07b, DMS07, DMS09].

In this study we will also use a Boussinesq system of BBM-BBM type with variable

bottom derived in [Mit09]. The system in dimensional variables can be written as:

ηt +∇ · ((h0 + η)~u) +∇ · {Ah20[∇(∇h0 · ~u) +∇h0∇ · ~u]− bh20∇ηt}+
A∇ · (h20∇ζt) + ζt = 0,

~ut + g∇η + 1
2
∇|~u|2 +Bgh0[∇(∇h · ∇η) +∇h0∆η]− dh20∆~ut

−Bh0∇ζtt = 0,

(4.142)

where A, B, b and d are constants defined as:

A =

√
2

3
− 2

3
, B = 1−

√
2

3
, b = d =

1

6
.

The variable ~u(x, t) denotes the horizontal velocity of the fluid at z = −h+
√

2/3(η + h),

and bathymetry variables h(x, t), h0(x), ζ(x, t) defined in Senction 4.4.2.

We integrate numerically system (4.142) using the standard Galerkin/finite element

method with P1 elements for the spatial discretization coupled with the 2nd order explicit

Runge-Kutta method for the temporal discretization [HNW09].

In order to obtain a well-posed problem, we impose homogeneous Dirichlet boundary

conditions which absorb partially the wave while reflecting only small amplitude oscillatory

waves. Moreover, the specific numerical method appears to converge with optimal rate in

the L2 and L∞ norms whether we consider structured or unstructured grids contrary to

the respective initial boundary values problems with zero Dirichlet boundary conditions

on ~u for Peregrine’s system [Per67] where the analogous numerical method converges with

suboptimal orders on structured and unstructured grids. For more information on the

properties and the implementation of the numerical method for the BBM-BBM type system

we refer to [DMS07, Mit09].

4.4.4 Numerical results

In this section we compare the propagation of a solitary wave when used as initial

condition in both CP and WN models. More over we study the generation and the initial
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stages of the propagation of the tsunami wave of July 17, 2006 event. We also present a

comparison between the WN, CP and Boussinesq models.

4.4.4.1 Solitary wave propagation

Before performing Java 2006 tsunami generation simulations, we study the propagation

of a solitary wave solution to the full water wave problem using WN and CP models. The

initial condition is provided by the well-known Tanaka’s method [Tan86].

Consider the two-dimensional water wave problem in a channel of uniform depth h0 =

const. Since we look for travelling wave solutions, the flow field can be reduced to the

steady state by choosing a frame of reference moving with the wave speed c.

After passing to dimensionless variables, there remains only one scaling parameter —

the Froude number which is traditionally defined as Fr :=
c√
gh0

. Hereafter governing

equations are considered in dimensionless form.

The complex velocity potential is classically introduced as w = φ+ iψ, where ψ is the

stream function. We choose φ = 0 at the crest and ψ = 0 at the bottom. The fluid region

is then mapped onto the strip 0 < ψ < 1, −∞ < φ < ∞ on the plane w with ψ = 1

corresponding to the free surface.

We introduce the quantity Ω = log
dw

dz
= τ − iθ, where θ is the angle between the

velocity vector and horizontal axis Ox. The real part τ is expressed in terms of the

velocity magnitude q as τ = log q.

Boundary conditions to be satisfied are the Bernoulli condition at the free surface and

the bottom impermeability which are expressed as

dq3

dφ
= − 3

Fr2
sin θ, on ψ = 1 and θ = 0, on ψ = 0. (4.143)

Consequently, the problem now is transformed to the determination of complex function

Ω, analytic with respect to w within the region of the unit strip 0 < ψ < 1, decays at infinity

and satisfies two boundary conditions (4.143). By applying Cauchy’s integral theorem, one

can find the following integral equation on the free surface ψ = 1:

−θ(φ)− 2

π

∞∫

−∞

θ(φ)

(φ̃− φ)2 + 4
dφ̃ = −1

π

∞∫

−∞

(φ̃− φ)τ(φ̃)
(φ̃− φ)2 + 4

dφ̃+
1

π
p.v.

∞∫

−∞

τ(φ̃)

φ̃− φ
dφ̃,

where τ(φ) and θ(φ) denote the traces of corresponding functions at the free surface ψ = 1.

The last integral equation is solved iteratively with a method analogous to the one

proposed [Tan86]. The convergence is tested with respect to the Froude number. Several
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Figure 4.59: Solitary wave solutions of various amplitudes for the full water wave problem.

solitary wave solutions computed in this way are plotted on Figure 4.59 for illustrative

purposes.

In order to illustrate the advantages of the proposed weakly-nonlinear model over the

classical CP solution, we let a solitary wave with amplitude A/h0 = 0.1 propagate up to

T = 80.

We recall that the classical CP solution of (4.122)–(4.125) corresponding to the initial

free surface height η|t=0 = η0(x) and the velocity potential distribution at the free surface

ϕ|t=0 = ϕ0(x), takes the following form:

η(x, t) = F−1
{
η̂0(k) cos(ωt) +

ω

g
ϕ̂0(k) sin(ωt)

}
,

φ(x, z, t) = F−1
{(
ϕ̂0(k) cos(ωt)−

g

ω
η̂0(k) sin(ωt)

)

(
cosh(|k|z) + tanh(|k|h) sinh(|k|z)

)}
,

where η̂0(k) = F{η0(x)} and ϕ̂0(k) = F{ϕ0(x)} are Fourier transforms of initial conditions.

The solution profiles of both models are presented in Figures 4.60 (a)–(e). One can

observe that the weakly-nonlinear method retains much better the solitary wave while

shedding a small dispersive tail behind. The CP solution gradually transforms the initial
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wave into the dispersive tail according to the linear nature of equations (4.122)–(4.125).

In Figure 4.60 (f) we present the normalized amplitude error defined as:

ǫ(t) :=
|max

x
{η(x, t)} −A/h0|

A/h0
,

where max
x
{η(x, t)} denotes the discrete maximum of the numerical solution and A/h0 =

0.1 is the exact solitary wave amplitude. In both computations a uniform grid with 512

nodes is used. Here again we notice better performance of the WN solver comparing to

the CP solution. This specific experiment shows that the WN model includes necessary

nonlinear effects to study a tsunami generation and propagation phenomena.

4.4.4.2 The July 17, 2006 tsunami generation simulation

The main purpose of this study is to present a novel methodology for tsunami genera-

tion. This approach is illustrated on the example of 17 July 2006 Java tsunami since this

event is not completely understood yet and there is an available finite fault solution for

the respective underwater earthquake.

In this section we show some numerical results on water waves generated by moving

bottom. Namely, we exploit the bottom motion (4.121) constructed in Section 4.4.2.2.

The corresponding hydrodynamic problem is solved by three methods discussed above:

the linearized water wave problem (CP), BBM-BBM system and the new WN model.

The solution given by the WN model and the exact solutions to linearized Euler equa-

tions (4.122) – (4.125) are computed on a uniform grid of 512 × 512 points. The time

step ∆t is chosen adaptively according to the RK(4,5) method proposed in [DP80]. The

BBM-BBM system is solved on a triangular unstructured grid with 86276 elements. For

the time integration the classical RK2 scheme [HNW09] with the time step ∆t = 0.5 s is

employed.

Several snapshots of the free surface elevation computed by the WN model are shown

in Figures 4.61 (a) – (f). The analogous contour plots of the solutions of the CP and

the BBM-BBM models are almost identical and differences cannot be observed within the

graphical accuracy and therefore are not presented here. The parameters of the bottom

motion, bathymetry and computational domain geometry were explained in Section 4.4.2.

In this computation we can see a complex process of simultaneous wave evolution

together with rupture propagation during approximatively 210 s. Namely, the free surface

deformed by first subfaults starts to evolve while the rupture propagates along the fault.

This kind of fluid / moving bottom interaction cannot be described in the passive generation

framework.
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Figure 4.60: Tanaka’s solution propagation with the weakly-nonlinear method (solid line) and

Cauchy-Poisson (CP) solution (dashed line). Solitary wave amplitude is A/h0 = 0.1.
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(a) t = 20 s (b) t = 50 s

(c) t = 80 s (d) t = 140 s

(e) t = 200 s (f) t = 250 s

Figure 4.61: Snapshots of the free surface elevation computed with the Weakly Nonlinear

(WN) method. Water waves are generated by dynamic co-seismic bottom displacements (4.121)

reconstructed using the corresponding finite fault solution [Ji06].
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Figure 4.62: Location of the six numerical wave gauges (indicated by the symbol ⋄) superposed
with the static co-seismic bottom displacement.

In order to perform the intercomparison among the three models described above we

put six numerical wave gauges at the following locations: (a) (107.2◦, −9.388◦), (b) (107.4◦,
−9.205◦), (c) (107.6◦, −9.648◦), (d) (107.7◦, −9.411◦), (e) (108.3◦, −10.02◦), (f) (108.2◦,

−9.75◦). The locations of the wave gauges is represented by the symbol ⋄ on Figure 4.62

along with the static sea bed displacement. Wave gauges are intentionally put in places

where the largest waves were expected.

The six wave gauge records are presented in Figures 4.63 (a) – (f). The first impression

is that the overall agreement among all models is satisfactory. We underline that the

CP solution is very close to other solutions despite the fact that bathymetric features are

neglected. We also note that the specific BBM-BBM type system underestimates by a

small amount the maximum wave amplitude compared to the WN model. Our further

numerical tests showed some sensitivity of the BBM-BBM solution to the bottom motion

scenario [DD07d]. Namely, we can report, for example, that the exponential scenario led

to a slight overestimation of the wave amplitude comparing to other models.

4.4.5 Conclusions and perspectives

In the present work we considered an important problem of the tsunami generation

modeling. Namely, a new method for dynamic co-seismic sea bed displacements construc-
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(a) Gauge at (107.2◦,−9.388◦)
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(b) Gauge at (107.4◦,−9.205◦)
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(c) Gauge at (107.6◦,−9.648◦)
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(d) Gauge at (107.7◦,−9.411◦)
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(e) Gauge at (108.3◦,−10.02◦)
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(f) Gauge at (108.2◦,−9.75◦)

Figure 4.63: Free surface elevation computed numerically at six wave gauges located approxi-

mately at the local extrema of the static bottom displacement. The solid line — represents the

numerical solution given by the weakly nonlinear solver, dashed line −−− is the Cauchy-Poisson

solution and, finally, the dash-dotted line − ·− ·− refers to the BBM-BBM system solution. The

vertical axis is represented in meters.
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tion was proposed. This method basically relies on two main ingredients:

• the finite fault solution [BLM00, JWH02] giving us the slip distribution along the

fault

• dynamic sea bed deformation scenarios [Ham73, DDK06, DD07d] allowing us to take

into account available information of the rupture dynamics

To our knowledge this reconstruction of the bottom motion is new. All developments

presented in this paper are illustrated on the example of the July, 17 2006 Java event.

Along with the bottom motion construction, we discussed three models to solve approx-

imately the corresponding hydrodynamic problem and compute the induced free surface

motions. The July 17, 2006 tsunami generation case was computed with three different

models and a comparison was performed. We obtained a surprisingly good agreement be-

tween the CP solution and the solutions of the other two models. Recall that in the latter

the bottom is assumed to be flat. Some discrepancies might appear later in time since the

bathymetry plays a crucial role in the tsunami propagation.

Taking into account the simplicity and the relatively good accuracy of the new WN

approximation to the full water wave problem with time dependent variable bottom, we

suggest its use for the computation of the initial stages (≈ 300 s) of tsunami’s life. The

propagation and runup can be computed afterwards by other sophisticated tools [TG97,

IYO06, SBT+07, DPD10] some of them being already integrated into tsunami warning

systems [TGB+05, WL08].

However we point out that extreme runup values measured after the July, 17 Java 2006

event [FKM+07] are still to be investigated in future studies.

4.4.6 Appendix I: Finite fault parameters

Table 4.7: Subfault parameters given by the finite fault inversion [Ji06].

Lattitude, ◦ Longitude, ◦ Depth, km Slip, cm Rake, ◦

-10.33298 109.17112 6.81260 5.01844 121.65860

-10.28919 109.04183 6.81260 4.31652 80.93857

-10.24541 108.91254 6.81260 48.94745 85.43047

-10.20162 108.78325 6.81260 3.60585 101.68500

-10.15784 108.65396 6.81260 0.86479 67.04596

-10.11405 108.52467 6.81260 0.96921 99.45411

-10.07027 108.39538 6.81260 0.62447 71.54340

Continued on the next page
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Lattitude, ◦ Longitude, ◦ Depth, km Slip, cm Rake, ◦

-10.02648 108.26609 6.81260 0.02449 99.44887

-9.98270 108.13680 6.81260 2.71502 119.63240

-9.93891 108.00751 6.81260 0.57000 114.25760

-9.89513 107.87822 6.81260 14.54725 112.71920

-9.85134 107.74893 6.81260 31.66312 107.26750

-9.80756 107.61964 6.81260 2.74176 85.79224

-9.76377 107.49035 6.81260 3.35868 78.97166

-9.71999 107.36105 6.81260 67.95367 64.89334

-9.67620 107.23177 6.81260 62.33453 65.43832

-9.63242 107.10248 6.81260 35.33318 66.90181

-9.58863 106.97318 6.81260 1.75233 101.93900

-9.54485 106.84389 6.81260 40.63542 81.77631

-9.50106 106.71461 6.81260 84.20831 68.95723

-9.45728 106.58531 6.81260 25.12981 66.62241

-10.24093 109.20313 8.78887 0.68254 88.79068

-10.19714 109.07384 8.78887 30.70282 97.90491

-10.15336 108.94455 8.78887 76.07102 99.93182

-10.10957 108.81525 8.78887 0.56201 79.59160

-10.06579 108.68597 8.78887 0.95023 114.32920

-10.02201 108.55668 8.78887 64.78191 121.81120

-9.97822 108.42738 8.78887 81.31910 105.21240

-9.93443 108.29810 8.78887 137.60680 121.72020

-9.89065 108.16881 8.78887 85.81732 88.13734

-9.84686 108.03951 8.78887 30.61069 80.38488

-9.80308 107.91022 8.78887 60.08308 113.75000

-9.75929 107.78094 8.78887 46.98381 96.25403

-9.71551 107.65164 8.78887 21.69421 80.82516

-9.67173 107.52235 8.78887 11.01957 112.63110

-9.62794 107.39307 8.78887 27.85978 75.88463

-9.58416 107.26377 8.78887 5.96505 77.66200

-9.54037 107.13448 8.78887 3.85634 83.57522

-9.49658 107.00520 8.78887 3.23158 113.73070

-9.45280 106.87590 8.78887 29.89915 116.10890

-9.40902 106.74661 8.78887 65.25044 72.60931

-9.36523 106.61732 8.78887 19.62932 65.99193

-10.14888 109.23514 10.76514 20.60663 124.43320

-10.10510 109.10584 10.76514 69.91051 122.64720

Continued on the next page
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Lattitude, ◦ Longitude, ◦ Depth, km Slip, cm Rake, ◦

-10.06131 108.97655 10.76514 63.10052 99.23547

-10.01753 108.84727 10.76514 0.63700 74.09311

-9.97374 108.71797 10.76514 1.02761 117.53560

-9.92996 108.58868 10.76514 85.54328 123.64950

-9.88617 108.45940 10.76514 167.18620 104.56840

-9.84239 108.33010 10.76514 202.60880 122.12460

-9.79860 108.20081 10.76514 144.76970 81.50333

-9.75482 108.07152 10.76514 53.97212 72.84430

-9.71103 107.94223 10.76514 79.21021 98.66053

-9.66725 107.81294 10.76514 82.95619 80.81979

-9.62346 107.68365 10.76514 119.13390 74.36982

-9.57968 107.55436 10.76514 95.90159 116.24710

-9.53589 107.42507 10.76514 36.94965 102.32060

-9.49211 107.29578 10.76514 0.28681 81.49704

-9.44832 107.16649 10.76514 8.06018 98.40840

-9.40454 107.03720 10.76514 3.02927 116.89820

-9.36075 106.90791 10.76514 10.73559 74.60908

-9.31697 106.77862 10.76514 57.94233 75.39254

-9.27318 106.64933 10.76514 60.97223 64.77096

-10.05684 109.26714 12.74141 21.97392 121.10740

-10.01305 109.13785 12.74141 74.47045 119.75060

-9.96927 109.00856 12.74141 17.25334 124.09410

-9.92548 108.87927 12.74141 14.38904 87.41515

-9.88170 108.74998 12.74141 3.03040 106.36440

-9.83791 108.62069 12.74141 8.97587 101.53580

-9.79413 108.49140 12.74141 114.85160 115.94270

-9.75034 108.36211 12.74141 91.90382 115.95240

-9.70656 108.23282 12.74141 64.72478 100.08050

-9.66277 108.10353 12.74141 17.30368 123.06770

-9.61899 107.97424 12.74141 57.09099 68.20686

-9.57520 107.84495 12.74141 64.81193 79.84035

-9.53142 107.71566 12.74141 131.04410 76.45924

-9.48763 107.58636 12.74141 112.11020 99.51801

-9.44385 107.45708 12.74141 60.23628 97.77266

-9.40006 107.32778 12.74141 126.96870 80.27277

-9.35628 107.19849 12.74141 63.39000 65.00801

-9.31249 107.06921 12.74141 0.52621 94.79313

Continued on the next page
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Lattitude, ◦ Longitude, ◦ Depth, km Slip, cm Rake, ◦

-9.26871 106.93991 12.74141 1.52171 66.78681

-9.22492 106.81062 12.74141 10.96743 81.94861

-9.18114 106.68134 12.74141 2.38062 123.04830

-9.96479 109.29915 14.71768 22.40949 123.90350

-9.92100 109.16986 14.71768 48.62879 115.45630

-9.87722 109.04057 14.71768 5.99559 83.81007

-9.83343 108.91128 14.71768 7.22945 123.80940

-9.78965 108.78199 14.71768 0.10031 93.40998

-9.74586 108.65269 14.71768 0.36991 69.37087

-9.70208 108.52341 14.71768 104.18760 123.83230

-9.65829 108.39411 14.71768 46.12533 95.97049

-9.61451 108.26482 14.71768 0.28679 89.56866

-9.57072 108.13554 14.71768 2.06597 80.14312

-9.52694 108.00624 14.71768 30.55070 66.23147

-9.48315 107.87695 14.71768 73.72994 87.91253

-9.43937 107.74767 14.71768 112.90700 92.28181

-9.39558 107.61837 14.71768 74.73608 86.51558

-9.35180 107.48908 14.71768 121.73820 64.68654

-9.30801 107.35979 14.71768 231.20940 65.50779

-9.26423 107.23050 14.71768 96.55727 87.01543

-9.22044 107.10121 14.71768 28.29534 122.55670

-9.17666 106.97192 14.71768 0.84110 70.21989

-9.13287 106.84263 14.71768 7.99213 87.51706

-9.08909 106.71334 14.71768 1.33281 96.33266

-9.87274 109.33115 16.69394 43.31154 121.79150

-9.82896 109.20187 16.69394 87.17052 124.49750

-9.78517 109.07257 16.69394 61.47630 87.10537

-9.74139 108.94328 16.69394 31.53286 70.58137

-9.69760 108.81400 16.69394 0.70628 65.17896

-9.65382 108.68470 16.69394 5.74160 87.70702

-9.61003 108.55541 16.69394 93.47714 107.32000

-9.56625 108.42612 16.69394 93.55753 85.39201

-9.52246 108.29683 16.69394 47.25525 74.24297

-9.47868 108.16754 16.69394 24.65230 124.20110

-9.43489 108.03825 16.69394 35.63115 71.78733

-9.39111 107.90896 16.69394 25.11757 75.27779

-9.34732 107.77967 16.69394 68.15302 107.42980

Continued on the next page
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Lattitude, ◦ Longitude, ◦ Depth, km Slip, cm Rake, ◦

-9.30354 107.65038 16.69394 24.66007 112.77880

-9.25975 107.52109 16.69394 0.50688 79.86887

-9.21597 107.39180 16.69394 119.92850 75.03103

-9.17218 107.26250 16.69394 77.08335 110.83160

-9.12840 107.13322 16.69394 31.65430 123.83060

-9.08461 107.00393 16.69394 11.42768 66.47282

-9.04083 106.87463 16.69394 33.80650 115.65650

-8.99704 106.74535 16.69394 39.47481 65.15574

-9.78069 109.36316 18.67021 35.42621 111.95830

-9.73691 109.23387 18.67021 103.05030 124.62650

-9.69312 109.10458 18.67021 101.38220 122.70620

-9.64934 108.97529 18.67021 76.76701 68.20042

-9.60556 108.84600 18.67021 10.71945 77.79713

-9.56177 108.71671 18.67021 1.32449 100.72950

-9.51799 108.58742 18.67021 37.46857 124.59330

-9.47420 108.45813 18.67021 118.99580 100.38000

-9.43042 108.32883 18.67021 79.62616 91.56905

-9.38663 108.19955 18.67021 97.61735 109.86430

-9.34285 108.07026 18.67021 87.67753 87.57239

-9.29906 107.94096 18.67021 15.14859 64.75201

-9.25528 107.81168 18.67021 82.60960 71.66805

-9.21149 107.68239 18.67021 66.06397 98.55843

-9.16771 107.55309 18.67021 0.43085 67.81042

-9.12392 107.42381 18.67021 35.30429 124.04570

-9.08014 107.29452 18.67021 59.17323 124.55130

-9.03635 107.16522 18.67021 15.23214 66.82615

-8.99257 107.03593 18.67021 28.10358 76.08198

-8.94878 106.90664 18.67021 48.09923 124.24450

-8.90500 106.77735 18.67021 42.38682 124.42850

4.4.7 Appendix II: Zakharov’s formulation of the water wave problem

In the present section we are going to recast governing equations (4.126) – (4.129)

of the water wave problem in more compact and mathematically more convenient form

[Zak68, CS93].

Using the definition of the normal velocity (4.131), it is straightforward to rewrite the
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kinematic free surface condition (4.127):

∂tη −Dη(φ̃) = 0.

The time derivative and the horizontal gradient of the velocity potential trace at the

free surface can be computed:

∂tφ̃ = ∂tφ+ ∂tη ∂zφ|z=η = ∂tφ+Dη(φ̃) ∂zφ|z=η , (4.144)

and similarly one can compute the horizontal gradient:

∇φ̃ = ∇φ|z=η +∇η ∂zφ|z=η , (4.145)

In order to close the system, we have to express all derivatives of the potential φ computed

at the free surface, in terms of φ̃, η and Dη(φ̃).

From the definition of the normal velocity (4.131) and the D2N operator one readily

obtains:

∇φ|z=η · ∇η = ∂zφ|z=η −Dη(φ̃). (4.146)

Substituting the last identity into (4.145) multiplied by ∇η, leads to the following expres-

sion:

∂zφ|z=η =
Dη(φ̃) +∇φ̃ · ∇η

1 + |∇η|2 . (4.147)

Now we have all elements to find the horizontal derivatives of the velocity potential:

∇φ|z=η = ∇φ̃−∇η ∂zφ|z=η =
(1 + |∇η|2)∇φ̃−Dη(φ̃)∇η − (∇φ̃ · ∇η)∇η

1 + |∇η|2 . (4.148)

In order to rewrite Bernoulli condition (4.128) in new variables, we make the following

observation (using (4.145) and (4.146)):

1
2
|∇φ|2 + 1

2
(∂zφ)

2 = 1
2
∇φ · ∇φ+ 1

2
∂zφ ∂zφ =

= 1
2
∇φ · (∇φ̃− ∂zφ∇η) + 1

2
∂zφ(Dη(φ̃) +∇φ · ∇η) = 1

2
∇φ · ∇φ̃+ 1

2
Dη(φ̃)∂zφ, z = η.

Taking into account this observation and expression (4.144) for the time derivative of φ̃,

the Bernoulli condition takes this equivalent form:

∂tφ̃+ gη + 1
2
∇φ · ∇φ̃− 1

2
Dη(φ̃)∂zφ = 0, z = η.

After substituting expressions (4.147), (4.148) into the last equation and summarizing all

the developments made above, we get the following set of dynamic equations equivalent to

the complete water wave problem (4.126) – (4.129):

∂tη −Dη(φ̃) = 0,

∂tφ̃+ 1
2
|∇φ̃|2 + gη − 1

2(1+|∇η|2)
[
Dη(φ̃) +∇φ̃ · ∇η

]2
= 0.
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4.4.8 Appendix III: Relations between elastic constants

In the classical elasticity theory, coefficients in Lamé equations (governing the dis-

placements field in an elastic solid), can be expressed in terms of various sets of physical

parameters [Lov44, SS46]. The purpose of this Appendix is to recall some relations between

them.

Lamé coefficients λ and µ can be defined in terms of the Young’s modulus E (having

the dimension of the pressure [Pa]) and Poisson’s ratio ν (dimensionless coefficient 0 <

ν < 1/2):

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

and inversely:

E =
(3λ+ 2µ)µ

λ+ µ
, ν =

λ

2(λ+ µ)
.

The celerities of P and S waves have the following expressions in terms of Lamé coefficients:

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
,

where ρ is the density of elastic medium. It is straightforward to invert last relations:

µ = ρc2s, λ = ρc2p − 2µ.



Chapter 5

Simulation of inundation

On two occasions I have been asked [by members of Parliament]: ’Pray, Mr. Babbage, if you

put into the machine wrong figures, will the right answers come out?’ I am not able rightly to

apprehend the kind of confusion of ideas that could provoke such a question.

Charles Babbage

It is impossible to exaggerate the extent to which modern applied mathematics has been shaped

and fueled by the general availability of fast computers with large memories. Their impact on

mathematics, both applied and pure, is comparable to the role of the telescopes in astronomy

and microscopes in biology.

Peter Lax, Siam Rev. Vol. 31 No. 4
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5.1 Finite volume schemes for dispersive wave propaga-

tion and runup

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it

doesn’t agree with experiment, it’s wrong.

Richard Feynman

Abstract. Finite volume schemes are commonly used to construct approx-

imate solutions to conservation laws. In this study we extend the framework

of the finite volume methods to dispersive water wave models, in particular to

Boussinesq type systems. We focus mainly on the application of the method

to bidirectional nonlinear, dispersive wave propagation in one space dimen-

sion. Special emphasis is given to important nonlinear phenomena such as

solitary waves interactions, dispersive shock wave formation and the runup of

breaking and non-breaking long waves.

5.1.1 Introduction

The simulation of water waves in realistic and complex environments is a very challeng-

ing problem. Most of the applications arise from the areas of coastal and naval engineering,

but also from natural hazards assessment. These applications may require the computa-

tion of the wave generation [DD07d, KDD07], propagation [TG97], interaction with solid

bodies, the computation of long wave runup [TS94, TS98] and even the extraction of the

wave energy [Sim81]. Issues like wave breaking, robustness of the numerical algorithm in

wet-dry processes along with the validity of the mathematical models in the near-shore

zone are some basic problems in this direction [HP79]. During past years, the classical

Nonlinear Shallow Water Equations (NSWE) have been employed to solve some of these

problems [AC99, DPD10]:

Ht + (Hu)x = 0,

(Hu)t +
(
Hu2 + g

2
H2
)
x
= gHDx,

(5.1)

where H(x, t) := η(x, t)+D(x) is the total water depth, D(x) describes the depth below the

mean sea level while η(x, t) is the free surface elevation, u(x, t) denotes the depth-averaged

fluid velocity and g is the gravity acceleration constant. Mathematically, equations (5.1)

represent a system of conservation laws describing the propagation of infinitely long waves

with a hydrostatic pressure assumption. The wave breaking phenomenon is commonly
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assimilated to the formation of shock waves (or hydraulic jumps) which is a common

feature of hyperbolic PDEs. Consequently, the Finite Volumes (FV) method has become

the method of choice for these problems due to its excellent intrinsic conservative and shock-

capturing properties [AC99, DK03, DKK08, DPD10]. Furthermore, Nonlinear Shallow

Water Equations (NSWE) have been proven in practice to predict accurately the maximum

runup of long waves [HH70, Syn87, TS94, TS98, KS98].

On the other hand, various studies have shown that the inclusion of dispersive ef-

fects is beneficial for the description of long wave propagation and runup processes [Zel91,

WKGS95, LR02]. Moreover, J.A. Zelt [Zel91] reported a divergence in the prediction of

the rundown and in the prediction of the reflected wave-train after the wave climbing

on the beach when a dispersionless model is employed. According to J.A. Zelt results

[Zel91], his nonlinear dispersive model showed better performance. During the last fifty

years numerous dispersive models have been proposed for the simulation of long waves

[Ser53, Per67, BS76, Nwo93, KCKD00, MBS03, Mit09].

In this paper we will study numerically bidirectional water wave models. Specifically, we

consider the following family of Boussinesq type systems of water wave theory, introduced

in [BCS02], written in nondimensional, unscaled variables

ηt + ux + (ηu)x + a uxxx − b ηxxt = 0,

ut + ηx + uux + c ηxxx − d uxxt = 0,
(5.2)

where a, b, c, d ∈ R, η = η(x, t), u = u(x, t) are real functions defined for x ∈ R and t ≥ 0.

For more realistic situations we introduce a modified Boussinesq type system with

variable bottom topography based on Peregrine’s system, [Per67]. The new system in-

corporates a very important property — the invariance under vertical translations, thus

more appropriate for practical applications such as wave runup on non-uniform beaches.

In dimensional variables the model reads

Ht +Qx = 0,

Qt + (Q2/H + g
2
H2)x

−
[
H2

3
Qxxt − (1

3
H2

x − 1
6
HHxx)Qt +

1
3
HHxQxt

]
= gHDx.

(5.3)

where H(x, t) = η(x, t) +D(x), Q(x, t) = H(x, t)u(x, t).

There is a wide range of numerical methods in the literature for computing approximate

solutions to these models. Finite difference schemes [KWC+98, JFBM06, HMK+09], finite

element methods [BDM07, Mit09, DM08, AVSS09] and spectral methods [PD01, Ngu08]

have been proposed. More contemporary Discontinuous Galerkin (DG) schemes have also

been adapted with some success to dispersive wave equations [YS02, LSY04, ES06, ESB06]

while the application of Finite Volumes (FV) or hybrid FV/FD methods remain most



5.1 Finite volume schemes for dispersive waves 201

infrequent for this type of problems. To our knowledge, only a few very recent works are

in this direction [BB01, EIK05, BS08, TP09, SM09].

Finite volume method is well known for its accuracy, efficiency and robustness for

approximating solutions to conservation laws and in particular to Nonlinear Shallow Water

Equations (5.1). The aforementioned bidirectional models (5.2) and (5.3) are rewritten in

a conservative form and discretization by the finite volume method follows. Three different

numerical fluxes are employed

• a simple average flux (m-scheme),

• a central flux, (KT-scheme) [NT90, KT00], as a representative of central schemes,

• a characteristic flux (CF-scheme), as a representative of the linearized Riemann

solvers, [GKC96].

along with TVD, UNO and WENO reconstruction techniques, [Swe84, HO87, LOC94].

Time discretization is based on Runge-Kutta (RK) methods which preserve the TVD

property of the finite volume scheme, [SO88, GST01, SR02]. We use explicit RK methods

since we work with BBM type systems (5.2) and not with KdV equation which is well

known to be notoriously stiff. These methods have been studied thoroughly in the case

of nonlinear conservation laws. The average flux although is known to be unstable for

conservation laws is proved to be very accurate for nonlinear dispersive waves. On other

hand finite volume methods based on the central flux as well as on characteristic flux work

equally well for the numerical simulation of waves even in realistic environments.

The performance of the finite volume method applied to models (5.2) and to the new

system (5.3) is studied in a systematic way through a series of numerical experiments. In

particular, in this study we take up on the following points

• accuracy of the finite volume method in the propagation of solitary waves with very

satisfactory results.

• conservation of various invariant quantities during the formation of dispersive shocks

is studied numerically. The finite element as well as spectral methods break down

for these experiments. The finite volume method provides very accurate results.

• Interactions of solitary waves are computed with high accuracy. It is shown numer-

ically that Boussinesq type systems describe better overtaking collisions of solitary

waves than unidirectional models like KdV-BBM. We compare our results, whenever

possible, with experimental measurements with very good agreement
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• Finite volume method allows to use appropriate techniques to treat this transition

from wet to dry regions and vice versa. These techniques are applied successfully to

systems with dispersive terms modeling runup of long waves. On the other hand,

when the model fails due to wave breaking, the method allows to use locally the

nonlinear shallow water system, thus enabling us to resolve a wide spectrum of hy-

drodynamic phenomena using a single computational framework.

• it is shown numerically the advantage of using dispersive models over standard non-

linear shallow water equations in computing the wave runup and, in particular, in

capturing the reflected wave. We also illustrated on an example why it is important

to have the system invariance under vertical translations.

The paper is organized as follows. In Section 5.1.2 Boussinesq type systems are pre-

sented along with some of their basic properties. A new system with uneven bottom and

invariant under vertical translations is derived. In Section 5.1.3 the finite volume method

is presented for a general framework incorporating all models.

Section 5.1.4 presents a series of numerical experiments for the Boussinesq systems

(5.2). In this mathematical setting we validate the finite volume method and measure its

accuracy. We study the propagation as well as the interaction of solitary waves: we consider

in particular head-on and overtaking collisions, but also we present results concerning the

small dispersion effect. Finally, in Section 5.1.5 the new system with variable bottom,

(5.3) is studied. Numerical simulations of non-breaking and breaking long wave runup are

presented and compared with experimental data.

5.1.2 Mathematical models

We present briefly the mathematical models being considered and some of their main

properties.

5.1.2.1 Dispersive models with flat bottom

We consider the following family of Boussinesq type systems of water wave theory,

introduced in [BCS02], which may be written in nondimensional, unscaled variables

ηt + ux + (ηu)x + auxxx − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,
(5.4)
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where η = η(x, t), u = u(x, t) are real functions defined for x ∈ R and t ≥ 0. Coefficients

a, b, c and d are defined as

a = 1
2
(θ2 − 1

3
)ν, b = 1

2
(θ2 − 1

3
)(1− ν),

c = 1
2
(1− θ2)µ, d = 1

2
(1− θ2)(1− µ),

(5.5)

where 0 ≤ θ ≤ 1 and µ, ν ∈ R. The variables in (5.4) are non-dimensional and unscaled:

x and t are proportional to position along the channel and time, respectively, while η(x, t)

and u(x, t) are proportional to the deviation of the free surface above an undisturbed level,

and to the horizontal velocity of the fluid at a height y = −1 + θ(1 + η(x, t)), respectively.

In terms of these variables the channel bottom is located at y = −1, (θ = 0), while the free

surface corresponds to θ = 1. Boussinesq systems (5.4) with b = d conserve the energy

functional:

I1(t) =

∫

R

(η2(x, t) + (1 + η(x, t))u2(x, t)− c η2x(x, t)− a u2x(x, t)) dx, (5.6)

i.e. I1(t) = I1(0). The system (5.4) is derived under following assumptions:

ε := A/h0 ≪ 1 , σ := h0/λ≪ 1 S :=
Aλ2

h30
= O(1) ,

where S is the Stokes (or Ursell) number, A is a typical wave amplitude and λ is a char-

acteristic wavelength. If one takes S = 1 and switches to scaled, dimensionless variables,

one may derive from Euler equations a scaled version of (5.4) by appropriate asymptotic

expansion in powers of ε, cf. [BCS04]:

ηt + ux + ε(ηu)x + ǫ[auxxx − bηxxt] = O(ε2),

ut + ηx + εuux + ǫ[cηxxx − duxxt] = O(ε2),
(5.7)

from which we obtain (5.4) by unscaling and neglecting higher order terms O(ε2).

We list several examples of particular Boussinesq systems of the form (5.4) that we will

refer to in the sequel. The initial-value problem for all these systems has been shown to

be at least nonlinearly well-posed locally in time, cf. [BCS04].

(i) The ’classical’ Boussinesq system (µ = 0, θ2 = 1/3, i.e. a = b = c = 0, d = 1/3 in

(5.4)), whose initial-value problem is globally well-posed, [Ami84, Sch81],

ηt + ux + (ηu)x = 0,

ut + ηx + uux − 1
3
uxxt = 0.

(5.8)
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(ii) The BBM-BBM system (ν = µ = 0, θ2 = 2/3, i.e. a = c = 0, b = d = 1/6 in (5.4)),

whose initial-value problem is locally well-posed, [BC98]

ηt + ux + (ηu)x − 1
6
ηxxt = 0,

ut + ηx + uux − 1
6
uxxt = 0.

(5.9)

(iii) The Bona-Smith system (ν = 0, µ = (4 − 6θ2)/3(1 − θ2), i.e. a = 0, b = d =

(3θ2 − 1)/6, c = (2 − 3θ2)/3, 2/3 < θ2 < 1 in (5.4)), whose initial-value problem

is globally well-posed, cf. [BS76]. The limiting form of this system as θ → 1,

corresponding to a = 0, b = d = 1/3, c = −1/3, is the system actually studied by

Bona and Smith, [BS76]. These systems are given by

ηt + ux + (ηu)x − 3θ2−1
6
ηxxt = 0,

ut + ηx + uux +
2−3θ2

3
ηxxx − 3θ2−1

6
uxxt = 0.

(5.10)

The existence of solitary wave solutions to the above systems, in some cases the uniqueness

also, has been proved in [Che00, Che98, DM04] and in the case of the Bona-Smith type

systems (5.10) for each θ2 ∈ (7/9, 1) there exists one solitary wave in the closed form

[Che98]

η(ξ) = η0 sech
2(λξ),

u(ξ) = B η(ξ),
(5.11)

with
η0 =

9
2
· θ2−7/9

1−θ2
, cs =

4(θ2−2/3)√
2(1−θ2)(θ2−1/3)

,

λ = 1
2

√
3(θ2−7/9)

(θ2−1/3)(θ2−2/3)
, B =

√
2(1−θ2)
θ2−1/3

.
(5.12)

5.1.2.2 Dispersive models with variable bottom

For more realistic applications one should consider Boussinesq systems with variable

bottom. After the pioneering work of Peregrine, [Per67], who derived the following Boussi-

nesq type system
ηt + [(D + η)u]x = 0,

ut + gηx + uux − D
2
(Du)xxt − D2

6
uxxt = 0,

(5.13)

where η(x, t) and u(x, t) are defined as before, D(x) describes the water depth below

its rest position. Many other systems have been derived also, including systems with

improved dispersion characteristics [Nwo93], high-order Boussinesq systems [MBS03] and

other generalizations of (5.4), cf. [Mit09]. Most of these systems break Galilean invariance

and the invariance under vertical translations. This is a restrictive property especially in

the studies of realistic problems like the water wave runup on non-uniform beaches. We

note also that the complete water wave problem possesses these symmetries [BO82].
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To overcome this deficiency we develop a new system, analogous to the original Pere-

grine’s system, [Per67], which is invariant under vertical translations. To derive the system

we begin with (5.13) written in dimensionless scaled variables (in analogy with (5.7))

ηt + [(D + εη)u]x = 0,

ut + ηx + εuux − σ2
[
D
2
(Du)xxt − D2

6
uxxt

]
= O(ε2, εσ2).

(5.14)

Then by setting H = D + εη, we obtain

Ht + (Hu)x = 0,

(Hu)t + (εHu2 + 1
2ε
H2)x

−σ2
[
HD
2
(Du)xxt − HD2

6
(Du

D
)xxt

]
= 1

ε
HDx +O(ε2, εσ2).

(5.15)

Observing that
(
Du
D

)
xx

= [2D2
x

D3 − Dxx

D2 ](Du)−2Dx

D2 (Du)x+
1
D
(Du)xx and that H = D+O(ε)

we have that

Ht + (Hu)x = 0,

(Hu)t + (εHu2 + 1
2ε
H2)x

−σ2
[
D2

3
(Du)xxt − (1

3
D2

x − 1
6
DDxx)Dut +

1
3
DDx(Du)xt

]

= 1
ε
HDx +O(ε2, εσ2).

(5.16)

By setting Q = Hu, and using again the relation H = D +O(ε) we have

Ht +Qx = 0,

Qt + (εQ2/H + 1
2ε
H2)x

−σ2
[
H2

3
Qxxt − (1

3
H2

x − 1
6
HHxx)Qt +

1
3
HHxQxt

]
= 1

ε
HDx +O(ε2, εσ2).

(5.17)

and in dimensional variables, neglecting the higher order terms at the right-hand side:

Ht +Qx = 0,

Qt + (Q2/H + g
2
H2)x − P (H,Q) = gHDx.

P (H,Q) = H2

3
Qxxt − (1

3
H2

x − 1
6
HHxx)Qt +

1
3
HHxQxt

(5.18)

where H(x, t) = η(x, t) +D(x), Q(x, t) = H(x, t)u(x, t). We underline that system (5.18)

is invariant under vertical translations and therefore more appropriate for the study of long

wave runup. Moreover, the linearization of the system (5.18) coincides with the original

Peregrine’s system (5.14) and, therefore, inherits all its linear dispersive characteristics.

System (5.18) cannot be regarded as a correct asymptotic model to the Euler equations

since it contains terms of the order O(εσ2) and higher. On the other hand, such terms con-

sidered in the correct (small amplitude and long wave) regime are negligible and, therefore,
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their contribution will be negligible. Finally we note that ignoring the dispersive terms

P (H,Q) in (5.18) will lead Nonlinear Shallow Water equations (5.1).

We also note that even if Boussinesq systems are not valid in the near-shore region, in

practice they appear to predict well the behavior of small amplitude waves from moderately

deep to shallower waters, cf. [Zel91]. Of course, more accurate systems in the near-shore

zone have been derived such as the Sérre equations (sometimes referred also as Green-

Naghdi equations), cf. [Ser53, LB09, DM10]. These systems appeared in practice to model

better the breaking phenomena in the near shore zone but recent numerical studies of

the Sérre equations showed that unphysical oscillations might appear in analogy with the

Boussinesq equations during the wave breaking and the runup process, [CBB06, CBB07].

5.1.2.3 Source terms

Nonlinear shallow water model (5.1) and Boussinesq system (5.3) may be completed to

take into account some dissipative or friction effects which are very beneficial in describing

the wave breaking phenomena. Usually it is done by including appropriate source or

dissipative terms into momentum conservation equations (5.1) or (5.3). One of the possible

choices is the following :

Friction: F (u,H) = −cm g
u|u|
H1/3

, (5.19)

Viscosity: V (u,H) = µ
∂

∂x

(
H
∂u

∂x

)
, (5.20)

where cm is the Manning roughness coefficient and µ denotes the kinematic viscosity of the

fluid. The particular form of the source terms is suggested by empirical laws, which are

generally obtained for steady state flows. Similar models have been derived from Navier-

Stokes system for incompressible flows with a free surface. More complex friction laws can

be also formulated to model bottom rugosity effects, etc.

5.1.3 Numerical schemes

In the present section we generalize the finite volume method to systems (5.2) and (5.3)

of dispersive PDEs. In our work we rely on corresponding schemes for conservation laws.

Next we present briefly the finite volume framework for conservation laws. Based on this

framework we introduce finite volume schemes for the dispersive models.
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5.1.3.1 Finite volume method for conservation laws

We present briefly the finite volume method for conservation laws. Consider the initial

value problem

wt +
(
F (w)

)
x
= S(w), x ∈ R, t > 0

w(x, 0) = w0(x),
(5.21)

where w(x, t) is the state variable, F denotes the flux and S is the source term. Let

T = {xi}, i ∈ Z denotes a partition of R into cells Ci = (xi− 1

2
, xi+ 1

2
) where xi = (xi+ 1

2
+

xi− 1

2
)/2 denotes the midpoints of Ci. Let ∆xi = xi+ 1

2
− xi− 1

2
denotes the length of the

cell Ci, ∆xi+ 1

2
= xi+1 − xi. Without loss of generality we assume a uniform partition

T that is ∆xi = ∆xi+ 1

2
= ∆x, i ∈ Z. Let wi denotes the cell average of w on Ci i.e

wi(t) =
1
∆x

∫
Ci
w(x, t) dx. Then a simple integration of (5.21) over a cell Ci yields

d

dt
wi(t) +

1

∆x

(
F (w(xi+ 1

2
, t))− F (w(xi− 1

2
, t))
)
=

1

∆x

∫

Ci

S(w(x, t)) dx. (5.22)

5.1.3.1.1 Semidiscrete schemes We now define the semidiscrete finite volume approx-

imation of w(x, t). Let χCi
denotes the characteristic function of the cell Ci, we seek a

piecewise constant function wh(x, t) =
∑

i∈ZWi(t)χCi
(x) with

d
dt
Wi(t) +

1
∆x

(
Fi+ 1

2
− Fi− 1

2

)
= Si, i ∈ Z,

Wi(0) =
1
∆x

∫
Ci
w(x, 0) dx, i ∈ Z

(5.23)

where Fi+ 1

2
= F(WL

i+ 1

2

,WR
i+ 1

2

) is an approximation to F (w(xi+ 1

2
, t)) while Si approximates

the source term Si = Si(Wi) ≈ 1
∆x

∫
Ci
S(w(x, t)) dx. The values WL

i+ 1

2

,WR
i+ 1

2

are approxi-

mations to the point value w(xi+ 1

2
, t) from cells Ci, Ci+1 respectively and F is a numerical

flux function which is monotone and conservative. The values WL
i+ 1

2

,WR
i+ 1

2

are computed

by a reconstruction process described below (see Section 5.1.3.1.3).

5.1.3.1.2 The numerical fluxes There are many possible choices for the numerical flux

function F. In the present study we choose to work with three following fluxes

Fm(W,V ) = F

(
W + V

2

)
, (5.24)

F
KT (W,V ) =

1

2
{[F (V ) + F (W )]−A(W,V ) [V −W ]} (5.25)

FCF (W,V ) =
1

2
{[F (V ) + F (W )]−A(W,V ) [F (V )− F (W )]} . (5.26)
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The average flux (5.24) is the simplest one. It is well known that although this flux is

unstable for nonlinear conservation laws, it is proven very stable and accurate for nonlinear

dispersive models.

The central flux (5.25) is a Lax-Friedrichs type flux and is a representative of central

schemes [KT00, NT90]. The operator A is related to the characteristic speeds of the flow

and is defined as

A(W,V ) = max [ρ (DF (W )) , ρ (DF (V ))] , (5.27)

where DF denotes the Jacobian matrix and ρ(A) is the spectral radius of A.

The characteristic flux function (5.26), [GKC96, GKC01], is similar to the upwind flux

and the operator A in this case is defined by

A(W,V ) = sign

(
DF

(
W + V

2

))
. (5.28)

5.1.3.1.3 The reconstruction process The values WL
i+ 1

2

,WR
i+ 1

2

are approximations to

w(xi+ 1

2
, t) from cells Ci and Ci+1 correspondingly. The simplest possible choice is to take

the piecewise constant approximation in each cell

WL
i+ 1

2

= Wi, WR
i+ 1

2

=Wi+1. (5.29)

The resulting semidiscrete finite volume scheme is formally first order accurate in space.

To construct a higher order scheme in space, the piecewise constant data is replaced

by a piecewise polynomial representation. The main idea here is to construct higher order

approximations to w(xi+ 1

2
, t) using the computed cell averages Wi. For this purpose the

classical MUSCL type (TVD2) linear reconstruction [Kol75, vL79] as well as UNO2, [HO87]

or WENO type reconstructions, [LOC94], have been developed.

The classical TVD2 type linear reconstruction is given by following formulas:

WL
i+ 1

2

=Wi +
1

2
φ(ri)(Wi+1 −Wi), WR

i+ 1

2

=Wi+1 +
1

2
φ(ri+1)(Wi+2 −Wi+1), (5.30)

where ri = Wi−Wi−1

Wi+1−Wi
, and φ is an appropriate slope limiter, [Swe84]. There exist many

options in choosing a limiter function. Some of the most popular choices are

• MinMod (MM) limiter: φ(θ) = max(0,min(1, θ)),

• VanLeer (VL) limiter: φ(θ) = θ+|θ|
1+|θ| ,

• Monotonized Central (MC) limiter: φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)),

• Van Albada (VA) limiter: φ(θ) = θ+θ2

1+θ2
.
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The last three limiters have been shown to exhibit sharper resolution of discontinuities

since they do not reduce the slope as severely as (MM) near a discontinuity. The TVD2

reconstruction is second order accurate except at the local extrema where it reduces to the

first order. A remedy is to consider the UNO2 type reconstruction.

The UNO2 reconstruction is a linear interpolation which is second order accurate even

at local extrema, [HO87]. The values WL
i+ 1

2

,WR
i+ 1

2

are defined as

WL
i+ 1

2

=Wi +
1

2
Si, WR

i+ 1

2

=Wi+1 −
1

2
Si+1, (5.31)

where

Si = m(S+
i , S

−
i ), S±

i = di± 1

2
W ∓ 1

2
Di± 1

2
W,

di+ 1

2
W = Wi+1 −Wi, Di+ 1

2
W = m(DiW,Di+1W ),

DiW = Wi+1 − 2Wi +Wi−1, m(x, y) =
1

2
(sign(x) + sign(y))min(|x|, |y|).

Using either (TVD2) or (UNO2) reconstructions the semidiscrete finite volume scheme

(5.23) is formally second order accurate.

In order to achieve higher order accuracy we also employed WENO type reconstructions

for the values WR
i± 1

2

, WL
i± 1

2

. We implemented 3rd and 5th order accurate WENO methods

(also referred to as WENO3 and WENO5, respectively) as they are described in [LOC94].

For the sake of simplicity we only present the WENO3 case. In order to compute the

approximations WL
i+ 1

2

and WR
i− 1

2

, we first compute the 3rd order reconstructed values

W
(0)

i+ 1

2

=
1

2
(Wi +Wi+1), W

(1)

i+ 1

2

=
1

2
(−Wi−1 + 3Wi),

W
(0)

i− 1

2

=
1

2
(3Wi −Wi+1), W

(1)

i− 1

2

=
1

2
(Wi−1 +Wi).

We define the smoothness parameters

β0 = (Wi+1 −Wi)
2, β1 = (Wi −Wi−1)

2,

and the parameters d0 =
2
3
, d1 =

1
3
and d̃0 = d1, d̃1 = d0, along with the weights

ω0 =
α0

α0 + α1

, ω1 =
α0

α0 + α1

,

ω̃0 =
α̃0

α̃0 + α̃1

, ω̃1 =
α̃1

α̃0 + α̃1

,

where αi =
di

ǫ+βi
, α̃i =

d̃i
ǫ+βi

and ǫ to be a small, positive number (in our computations we

set ǫ = 10−15). Then the reconstructed values are given by the following formulas

WL
i+ 1

2

=
1∑

r=0

ωrW
(r)

i+ 1

2

, WR
i− 1

2

=
1∑

r=0

ω̃rW
(r)

i− 1

2

. (5.32)
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5.1.3.1.4 Discretization of source terms The finite volume discretization of the source

term S(w) in (5.21) depends on the particular choice. On the other hand the resulting

approximation should preserve the upwind nature and the overall scheme should be well

balanced. One possible discretization of the source term S(w) is given by:

1

∆x

∫

Ci

S(w) dx ≈
Si− 1

2
+ Si+ 1

2

2
, Si+ 1

2
= S

(
WL

i+ 1

2

+WR
i+ 1

2

2

)
. (5.33)

5.1.3.1.5 Fully discrete schemes Then we consider fully discrete schemes for (5.23).

Equation (5.23) is an initial value problem and can be discretized by various methods. In

our case we use a special class of Runge-Kutta methods which ensure the TVD property

of the finite volume scheme, [SO88, GST01, SR02].

Let ∆t be the time step and let tn+1 = tn+∆t, n ≥ 0 be discrete time levels. Assuming

that the approximation at tn, W n
i , i ∈ Z are known then W n+1

i are defined by

W n+1
i = W n

i −
∆t

∆x

s∑

j=1

bj

(
F

n,j

i+ 1

2

− F
n,j

i− 1

2

)
+∆t

s∑

j=1

bj S
n,j
i ,

W n,j
i = W n

i −
∆t

∆x

s∑

ℓ=1

ajℓ

(
F

n,ℓ

i+ 1

2

− F
n,ℓ

i− 1

2

)
+∆t

s∑

ℓ=1

ajℓ S
n,ℓ
i ,

(5.34)

where F
n,j

i+ 1

2

= F(W n,j
i ,W n,j

i+1), S
n,j
i = S(W n,j

i ). The set of constants A = (ajℓ), b =

(b1, . . . , bs) define an s−stage Runge-Kutta method. The following tableau are examples

of explicit TVD RK-methods which are of 2nd and 3rd order respectively

0 0 0

1 0 1
1
2

1
2

0 0 0 0

1 0 0 1
1
4

1
4

0 1
2

1
6

1
6

2
3

(5.35)

In our computations we mainly use the three stage 3rd order method.

5.1.3.2 Finite volume schemes for dispersive models

To construct the finite volume schemes for the dispersive PDEs the main idea is to

rewrite governing equations or systems in a conservative like form and discretize the re-

sulting conservation laws using the aforementioned framework. One can use any of the

numerical fluxes, Fm, FKT , FCF and reconstruction techniques TVD2, UNO2 or WENO.

Temporal discretization is based on the TVD-Runge-Kutta methods, (5.35).
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5.1.3.2.1 Boussinesq systems with flat bottom Boussinesq system (5.2) can be rewrit-

ten in a conservative like form as follows:

(I −D)vt + [F(v)]x + [G(v)]x = 0, (5.36)

where v = (η, u)T , F(v) = ((1+η)u, η+1
2
u2)T ,G(v) = (a uxx, c ηxx), andD = diag (b ∂2x, d ∂

2
x).

The simplest discretization is based on the average fluxes Fm for F and Gm for G. For

the other two choices of the numerical flux F the evaluation of Jacobian is needed. Let A

denotes the Jacobian of F, then

A =

(
u 1 + η

1 u

)
,

with eigenvalues λi = u ±√1 + η, i = 1, 2. It is readily seen, since F is a hyperbolic flux,

that A can be decomposed as A = LΛR thus for the characteristic flux FCF we have with

µ = W+V
2

, si = sign(λi), i = 1, 2

A(W,V ) =

(
1
2
(s1 + s2)

1
2

√
1 + µ1(s1 − s2)

s1−s2
2
√
1+µ1

1
2
(s1 + s2)

)
.

For evaluating the numerical fluxes F, G simple cell averages or higher order approximations

such as UNO2 (5.31) or WENO (5.32) can be used.

Remark 26. The discretization of the elliptic operator D is based on the standard centered

difference. This is a second order accurate approximation and it is compatible with the

TVD2 and UNO2 reconstructions. For higher order interpolation we need to modify the

elliptic and flux discretization to match the reconstruction’s order of approximation. Indeed,

the finite volume scheme is modified as

d

dt

[
Vi−1 + 10Vi +Vi+1

12
− (b, d)

Vi+1 − 2Vi +Vi−1

∆x2

]

+
Hi−1 + 10Hi +Hi+1

12
= 0

where Hi =
1
∆x

(Fi+ 1

2
−Fi− 1

2
)+ 1

∆x
(Gi+ 1

2
−Gi− 1

2
), is a fourth order accurate approximation.

Remark 27. In the sequel for the discretization of the dispersive term G we use mainly

the average numerical flux Gm defined as Gm
i+ 1

2

= (a, c)Yi+Yi+1

2
, where Yi =

Vi+1−2Vi+Vi−1

∆x2 .

In case of higher order WENO reconstructions we use the average numerical flux based on

the reconstructed values of Yi i.e. the flux Glm
i+ 1

2

= (a, c)
YL

i+1
2

+YR

i+1
2

2
, where YL

i+ 1

2

and YR
i+ 1

2

are reconstructed values of Yi on xi+ 1

2
.
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5.1.3.2.2 Boussinesq system with variable bottom We write system (5.18) in terms

of dependent variables v := (H,Q)T in the following conservative form

[D(v)]t + [F(v)]x = S(v), (5.37)

where

D(v) =

(
H

(1 + 1
3
H2

x − 1
6
HHxx)Q− 1

3
HHxQx − H2

3
Qxx

)
(5.38)

and

F(v) =

(
Q

Q2

H
+ g

2
H2

)
, S(v) =

(
0

gHDx

)
. (5.39)

We consider a uniform mesh and we denote byHi, Ui andDi the respective cell averages.

To discretize the dispersive terms in (5.38) we consider the following approximations:

1

∆x

∫ x
i+1

2

x
i−1

2

[
1 +

1

3
(Hx)

2 − 1

6
HHxx

]
Q dx ≈

(
1 +

1

3

(
Hi+1 −Hi−1

2∆x

)2

− 1

6
Hi

Hi+1 − 2Hi +Hi−1

∆x2

)
Qi,

1

∆x

∫ x
i+1

2

x
i− 1

2

1

3
HHxQx dx ≈

1

3
Hi

Hi+1 −Hi−1

2∆x

Qi+1 −Qi−1

2∆x
(5.40)

1

∆x

∫ x
i+1

2

x
i− 1

2

1

3
H2Qxx dx ≈

1

3
H2

i

Qi+1 − 2Qi +Qi−1

∆x2
. (5.41)

This discretization leads to a linear system with tridiagonal matrix denoted by Di that can

be inverted efficiently. For the time integration the explicit third-order TVD-RK method,

(5.35) is used. In the numerical experiments we observed that the fully discrete scheme

is stable and preserves the positivity of H during the runup under mild restriction on the

time step ∆t.

Therefore, the semidiscrete problem of (5.38) — (5.39) is written as a system of ODEs

in the form

Divit +
1

∆x
(Fi+ 1

2
− Fi− 1

2
) =

1

∆x
Si. (5.42)

Fi+ 1

2
can be chosen to be one of the numerical flux functions mentioned in the previous

sections. In the sequel we will use the KT and the CF numerical fluxes. In this case the

Jacobian of F is given by the matrix

A =

(
0 1

gH − (Q/H)2 2Q/H

)
,
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and the eigenvalues are λ1,2 = Q/H ±
√
gH. Therefore, the CF numerical flux takes the

form

Fi+ 1

2
=

F(vL
i+ 1

2

) + F(vR
i+ 1

2

)

2
−U(µ)

F(vR
i+ 1

2

)− F(vL
i+ 1

2

)

2
(5.43)

where µ = (µ1, µ2)
T ,

µ1 =
HL

i+ 1

2

+HR
i+ 1

2

2
, µ2 =

√
HL

i+ 1

2

UL
i+ 1

2

+
√
HR

i+ 1

2

UR
i+ 1

2√
HL

i+ 1

2

+
√
HR

i+ 1

2

and

U(µ) =

(
s2(µ2+c)−s1(µ2−c)

2c
s1−s2
2c

(s2−s1)(µ2
2
−c2)

2c
s1(µ2+c)−s2(µ2−c)

2c

)
, c =

√
gµ1, si = sign(λi). (5.44)

In order to guarantee the positivity of the reconstructed values Hi+ 1

2
on the interfaces of

the cells we employed the well balanced hydrostatic reconstruction algorithm, [ABB+04].

Here we briefly recall the great lines of this reconstruction algorithm.

In the cell Ci we compute first the reconstructions vi,r and vi,l at (i+
1
2
)− and (i− 1

2
)+,

respectively using either TVD2 or UNO2 with MinMod limiter. Moreover, we compute in

the same way the values ηi,l and ηi,r of the free surface elevation ηi = Hi−Di. Now we can

deduce the values Di,l = Hi,l − ηi,l and Di,r = Hi,r − ηi,r. Letting Di+ 1

2
= min(Di,r, Di,l)

we compute

HR
i+ 1

2

= max(0, Hi,r +Di,r −Di+ 1

2
), HL

i+ 1

2

= max(0, Hi+1,l +Di+1,l −Di+ 1

2
), (5.45)

and we deduce conservative reconstructed variables

vL
i+ 1

2

=

(
HL

i+ 1

2

HL
i+ 1

2

ui,r

)
, vR

i+ 1

2

=

(
HR

i+ 1

2

HR
i+ 1

2

ui+1,l

)
. (5.46)

Then the term Si can be written as Si = SL
i+ 1

2

+ SR
i+ 1

2

+ Sci, where

SL
i+ 1

2

=

(
0

g
2

[
(HL

i+ 1

2

)2 − (Hi,r)
2
]
)
, SR

i+ 1

2

=

(
0

g
2

[
(Hi,l)

2 − (HR
i+ 1

2

)2
]
)

and

Sci =

(
0

g
Hi,l+Hi,r

2
(zi,l − zi,r)

)
.

Numerical experiments show that the resulting scheme is well-balanced even for Boussinesq

system of equations.
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5.1.3.2.3 Boundary conditions In the case of Bona-Smith type systems with flat bot-

tom we consider herein only the initial-periodic boundary value problem which is known

to be well-posed [ADM09].

In case of the modified Peregrine’s system with an uneven bottom we use reflective

boundary conditions. We note that for the classical Boussinesq system posed in a bounded

domain I = [b1, b2], one needs to impose boundary conditions only in one of the two

dependent variables, cf. [FP05]. In the case of reflective boundary conditions it is sufficient

to take u(b1, t) = u(b2, t) = 0 cf. [AD]. In [AD] it was also observed that during solitary

waves reflection the derivatives ηx(b1, t) = ηx(b2, t) → 0, while for other wave types these

derivatives remained very small.

In our case we consider analogous reflective boundary conditions taking the cell averages

of u on the first and the last cell to be u0 = uN+1 = 0. We don’t impose explicitly boundary

conditions on H . The reconstructed values on the first and the last cell are computed using

neighboring ghost cells and taking odd and even extrapolation for u and H respectively.

These specific boundary conditions appeared to reflect incident waves on the boundaries

while conserving the mass.

5.1.4 Interactions of solitary waves

For the Boussinesq system (5.2) we present first results demonstrating the accuracy of

the finite volume scheme. We study the propagation as well as the interaction of solitary

waves. In particular we consider head-on and overtaking collisions.

5.1.4.1 Accuracy test, validation

We consider the initial value problem with periodic boundary conditions for the Bona-

Smith systems (5.10) with known solitary wave solutions (5.11) — (5.12) to study the

accuracy of the finite volume method. We fix θ2 = 8/10 in the system and an analytic

solitary wave of amplitude η0 = 1/2 is used as the exact solution in [−50, 50] computed up

to T = 100. The error is measured with respect to discrete L2 and L∞ norms, namely we

use:

E2
h(k) = ‖Uk‖h/‖U0‖h, ‖Uk‖h =

(
N∑

i=1

∆x|Uk
i |2
)1/2

,

E∞
h (k) = ‖Uk‖h,∞/‖U0‖h,∞, ‖Uk‖h,∞ = max

i=1,...,N
|Uk

i |,

where Uk = {Uk
i }Ni=1 denotes the solution of the fully-discrete scheme at the time tk = k∆t.

The expected theoretical order of convergence was confirmed for all finite volume methods
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(a) Average Flux

∆x Rate(E2
h) Rate(E∞

h )

0.5 1.910 1.978

0.25 1.910 1.954

0.125 1.923 1.937

0.0625 1.936 1.941

0.03125 1.946 1.948

(b) TVD2 MinMod

∆x Rate(E2
h) Rate(E∞

h )

0.5 2.042 2.032

0.25 2.033 2.029

0.125 2.026 2.023

0.0625 2.021 2.019

0.03125 2.017 2.016

Table 5.1: Rates of convergence.

we presented above. Two indicative cases are reported in Table 5.1 for the average flux

and TVD2 implementation with MinMod limiter.

We also check the preservation of the invariant (5.6) by computing its discrete coun-

terpart:

Ih1 =
∑

i

∆x

(
η2i + [(1 + ηi)ui]

2 − c
[
ηi+1 − ηi

∆x

]2
− a

[
ui+1 − ui

∆x

]2)
, (5.47)

as well as the discrete mass Ih0 = ∆x
∑

i ηi. On Figure 5.1 we represent the amplitude

and the invariant Ih1 of the same solitary wave as above up to T = 200. The comparison

of various methods is performed. We observe that the UNO2 reconstruction is more ac-

curate while KT and the CF schemes show comparable performance. We note that the

invariant Ih0 = 1.932183566158 conserved the digits shown for all numerical schemes. In

this experiment we took ∆x = 0.1, ∆t = ∆x/2.

5.1.4.2 Head-on collisions

The head-on collision of two counter-propagating solitary waves is characterized by

the change of the shape along with a small phase-shift of the waves as a consequence of

the nonlinearity and the dispersion. These effects have been studied extensively before

by numerical means using high order numerical methods such as finite differences, [BC98],

spectral and finite element methods [ADM10, DDLMM07, PD01], Boundary Integral Equa-

tion Method [CKT09] and recently experimentally in [CGH+06]. In Figure 5.2 we present

the numerical solutions of the BBM-BBM system (5.9) and the Bona-Smith system (5.10)

with θ2 = 9/11 (in dimensional and unscaled variables) along with the experimental data

from [CGH+06]. The spatial variable is expressed in centimeters while the time in seconds.

The solutions were obtained using the CF-scheme with UNO2 and WENO3 reconstruction

using ∆x = 0.05 cm and ∆t = 0.01 s. For this experiment we constructed solitary waves for
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(b) Evolution of Ih1

Figure 5.1: Conservation of the solitary wave amplitude and of the invariant Ih1 : G
m flux with

Minmod limiter

Boussinesq systems by solving the respective ODEs system in the spirit of [BDM07] such

that they fit to experimentally generated solitary waves before the collision. The speeds

of the right and left-traveling solitary waves are cr,s = 0.854 m/s and cl,s = 0.752 m/s

respectively.

We observe that Boussinesq models converge to the same numerical solution with all

numerical schemes we tested. Generally a very good agreement with the experimental

data was obtained. The maximum height predicted by the numerical solution during the

collision process is slightly higher in the case of the BBM-BBM system but the difference is

negligible within the specific experimental scale. Furthermore, we observe similar underes-

timation of the maximum amplitude of colliding waves compared to the experimental data,

[CGH+06]. This discrepancy might be explained by a possible ”splash” phenomenon during

the collision reported also earlier by T. Maxworthy, [Max76]. After the collision we observe

that the phase shift of the solitary waves is the same in both numerical and experimental

data, while the shape of the experimental solitary waves were not stabilized due to interac-

tions with other small amplitude dispersive waves. We note that after the head-on collision

of the waves small amplitude dispersive tails were developed, [BC98, ADM10, DDLMM07].

The discrete mass for the Bona-Smith system is Ih0 = 0.0059904310418 and for the

BBM-BMM system is Ih0 = 0.0059199389479 for all fluxes and reconstructions used. The

variances in Ih1 are mainly due to different types of reconstruction and not to the choice of

numerical fluxes. In Table 5.2 these values are reported.
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(b) t = 18.80067s
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(c) t = 19.00956s
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Figure 5.2: Head-on collision of two solitary waves: —: BBM-BBM, −−: Bona-Smith (θ2 =

9/11), •: experimental data of [CGH+06]
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Figure 5.2: (Cont’d) Head-on collision of two solitary waves. —: BBM-BBM, −−: Bona-Smith

(θ2 = 9/11), •: experimental data of [CGH+06]

(a) Bona-Smith

Ih1

m-flux 0.000944236

UNO2 0.00094423

TVD2 0.00094

WENO3 0.00094423

(b) BBM-BBM

Ih1

m-flux 0.00092793

UNO2 0.00092793

TVD2 0.00092

WENO3 0.00092793

Table 5.2: Preservation of the invariant Ih1 .
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5.1.4.3 Overtaking collisions

The overtaking collision of two solitary waves similarly to the head-on collision incor-

porates nonlinear and dispersive effects. Overtaking collision has been studied recently

in the case of bidirectional models in [ADM10]. The interaction is similar to that of the

unidirectional models but it was found that a new N-shape wavelet is generated during

the interaction. This wavelet is of small amplitude and travels in the opposite direction to

solitary waves and its shape depends on the Boussinesq system in use. Furthermore, as it

was observed numerically and experimentally in [CGH+06], the interaction of two solitary

waves during an overtaking collision is characterized by a mass exchange and not by a

simple superposition of the solitary pulses. These pulses remain separate retaining two

different maxima contrary to unidirectional models where they merge into a single pulse

momentarily.

To study this interaction we solve numerically the Bona-Smith system (5.10) with θ2 =

9/11. Following the same process as before two solitary waves were generated numerically

with speeds c1,s = 1.2 and c2,s = 1.4. We solved the system using all fluxes, UNO2 and

WENO3 reconstructions with discretization parameters ∆x = 0.01, ∆t = 0.005 up to

T = 600. During simulations we were able to observe the generation and propagation

of a small N-shape wavelet. In all computations the invariants were Ih0 = 4.6098804880,

Ih1 = 5.116 conserving the digits shown for all methods.

In Figure 5.3 we present the interaction of two solitary waves. Figure 5.4 shows a

magnification on the generation of a small wavelet along with the generation of dispersive

tails as an effect of the inelastic interaction of two waves. In Figure 5.5 we observe that

the overtaking collision is accompanied by an exchange of mass between pulses while both

peaks are permanently present. The situation is different for unidirectional models where

two pulses merge during a few time-steps to travel as a single pulse. Up to the graphic res-

olution we could not see any difference in numerical solutions between UNO2 and WENO3

reconstructions.

5.1.4.4 Small dispersion effect

In this section we study the small dispersion effects on solitary waves of the classical

Boussinesq system. The motivation for this study is the lack of theory supporting the

breaking phenomena in Boussinesq systems contrary to the KdV equation. For this reason

we employed the Boussinesq system with a = b = c = 0, d = 10−5 and we take the

solitary wave of the Boussinesq systems (5.8) as an initial condition. In Figure 5.6 we

present numerical results obtained with CF-UNO2 and CF-WENO3 schemes. In these

experiments we take ∆x = 0.001 and ∆t = ∆x/2. The invariant Ih0 is 1.629096452537
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Figure 5.3: Overtaking collision of two solitary waves of the Bona-Smith system with θ2 = 9/11.
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Figure 5.4: Generation of a wavelet during the overtaking collision of two solitary waves of the

Bona-Smith system with θ2 = 9/11.
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Figure 5.5: Overtaking collision of two solitary waves of the Bona-Smith system with θ2 = 9/11:

mass exchange process.
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Figure 5.6: Small dispersion effect onto classical Boussinesq equations solutions.

preserving the digits shown during all simulations. The invariant Ih1 is not preserved by

this model since the coefficient b is not equal to d. The oscillations generated in the case

of the WENO3 reconstruction were larger compared to those generated by the UNO2

reconstruction. Moreover, a new W-shaped wavelet is generated traveling to the left. This

small wavelet finishes by producing a secondary breaking very similar to that of the initial

solitary wave.

5.1.5 Boussinesq system with variable bottom: runup of long waves

Nonlinear Shallow Water Equations are routinely used to predict a tsunami wave runup

and, subsequently, constitute inundation maps for tsunami hazard areas. One of the main

questions we address in this study is whether the inclusion of dispersive effects is beneficial

for the description of the wave/beach interaction. In this section we perform a comparison

of numerical solutions to Boussinesq equations (5.18), Nonlinear Shallow Water Equations
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Figure 5.7: Sketch of the problem setup.

(NSWE) (5.1) (solved by the same numerical method) and experimental measurements

made by C.E. Synolakis [Syn87] and J.A. Zelt [Zel91]. In these experiments we consider a

bottom of the form

−D(x) =

{
−x tan β, x ≤ cotβ,

−1, x > cot β,

schematically depicted in Figure 5.7.

In all experiments over a flat bottom, D(x) = D0, we use an approximate solitary wave

solution of the following form:

η0(x) = Assech
2 (λ(x−X0)) , λ =

√
3As

4(1 + As)
,

u0(x) = −cs
η0(x)

D0 + η0(x)
, cs = g

√
6(1 + As)√
3 + 2As

· (1 + As) log(1 + As)−As

As
,

where As denotes the amplitude, cs is the correct speed of the solitary wave propagation

for classical Boussinesq equations and λ is the wavelength of the KdV soliton.

The first three experiments we tested are described in [Syn87] and deal with the runup

of solitary waves on a beach with a mild slope of 1 : 19.85. The first is a non-breaking

solitary wave with dimensionless and scaled amplitude As/D0 = 0.0185, the second one is

a nearly breaking solitary wave with As/D0 = 0.04, while the third experimental setup is

a breaking solitary wave with As/D0 = 0.28.

System (5.18) has some advantages over other asymptotically equivalent models with

variable bottom. Namely, coupled with our robust discretization procedure, it shows ex-

cellent stability properties even for nearly breaking waves on the shore. However, for the

simulation of strong breaking events, it is beneficial to include some friction or dissipative

terms taking into account turbulence generation.



5.1 Finite volume schemes for dispersive waves 225

We also considered two experiments from [Zel91] concerning the runup of solitary waves

on a beach with steep slope 1 : 2.74. These experiments shed some light on the differences

between dispersive and non-dispersive models.

Finally we consider a non-uniform sloping beach that contains a small lake demon-

strating the capability of the modified Peregrine’s system to handle simultaneously and

correctly dispersive effects in two basins with different mean sea levels.

In the sequel t denotes the dimensionless time scaled by the quantity
√
g/D0. Fur-

thermore, we denote by R the height of the last dry cell at a specific time instance. In

our computations a cell is considered as dry if the total water depth Hi inside is less than

5 · 10−14. The quantity R will also be referred to as runup. The maximum runup will be

denoted by R∞. In all experiments the discretization parameters were taken to be equal

∆x = 0.05, ∆t = ∆x/10, unless otherwise mentioned. Further, we compute in all cases the

discrete mass Ih0 and show the preserved digits. We use the KT and CF schemes combined

with the TVD2 and UNO2 reconstructions. The CF-scheme appeared to be less dissipative

and we emphasize the results of this method.

5.1.5.1 Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.0185

We consider first the simplest case — the runup of a non-breaking solitary wave. In

this experiment we take an initial solitary wave with the amplitude As = 0.0185, D0 = 1

and X0 = 19.85 in I = [−10, 70] and a mildly sloping beach 1 : 19.85. This specific

solitary wave does not break [Syn87] and the solution remains smooth during the runup

and the rundown processes. In Figure 5.8 we show several profiles of numerical solutions

to Boussinesq and Nonlinear Shallow Water Equations along with the experimental data

of [Syn87]. We observe that both models converge to the same solution. The runup as

well as the rundown in this experiment is predicted very well. The runup value R for both

models is almost the same. The maximum runup is R∞ ≈ 0.085 for the Boussinesq system,

while for NSWE is R∞ ≈ 0.088. The experimental value reported in [Syn87] is equal to

R∞ ≈ 0.078. In Figure 5.9 the runup R as a function of time is represented. The discrete

mass is preserved Ih0 = 60.3667671231 conserving the digits shown for both models.

5.1.5.2 Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.04

We consider the same sloping beach as before. We study the runup of a solitary wave

with amplitude As = 0.04, placed initially at X0 = 19.85 in I = [−10, 70]. The solitary

wave does not break during the runup phase. Breaking occurs during the rundown process

as in experimental observations [Syn87]. Results of the numerical simulations are presented

in Figure 5.10. In Figure 5.11 the evolution of the runup value is shown. The maximum
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Figure 5.8: Solitary wave runup on a sloping beach: As = 0.0185 case.
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Figure 5.9: Runup value R as a function of time: As = 0.0185 case.



5.1 Finite volume schemes for dispersive waves 227

runup for the Boussinesq system is R∞ ≈ 0.20 and R∞ ≈ 0.21 for NSWE. The experimental

value reported in [Syn87] is R∞ ≈ 0.156.

In Figure 5.12 we perform a comparison with tide gauge data (free surface elevation

measured in [Syn87]) collected at 32.1 m from the still shoreline position. We observe again

a good agreement between the dispersive and nondispersive models. The discrete mass is

preserved, Ih0 = 60.5210181987 conserving the digits shown.

5.1.5.3 Runup of a solitary wave on a gradual slope β = 2.88◦ with As/D0 = 0.28

Finally we present the stiffest case of a solitary wave with amplitude As = 0.28, placed

initially at X0 = 19.85 in I = [−10, 60]. This specific initial condition is characterized by

the wave breaking phenomenon before even reaching the shoreline. Strictly speaking, in

this case Boussinesq model is not valid unless a wave breaking mechanism is considered,

cf. [Zel91].

In order to ensure the stability of the simulation and to study the runup, instead of

smoothing, filtering or adding extra dissipative terms, we simply excluded the contribution

of the term Qxxt in the vicinity of the shoreline (where Di < 0.3). Wave transition between

these two regions appeared to be smooth as one may witness on Figure 5.13. After this

slight modification, the algorithm became more robust for large amplitude breaking waves

without creating any unphysical oscillations.

In this experiment the friction appeared to play a significant role during the runup

process, contrary to previous cases. The maximum runup computed without taking into

account the friction of the bottom was far away from the experimentally measured values.

For this reason, and only in this specific test case we included the empirical friction term

(5.19) into the momentum conservation equation (5.18), with coefficient cm = 2 ·10−4. The

friction term is discretized according to formula (5.33). This discretization preserves the

positivity of all numerical schemes we tested. Mass conservation in this experiment was

perfect Ih0 = 51.7504637472 preserving the digits shown.

In Figure 5.13 we show the propagation of a breaking wave including its runup and run-

down. We observe a significant difference between NSWE and the dispersive model during

the wave propagation. Discrepancies are present in the amplitude and in the phase speed

simultaneously. However the dispersive model solution approximates better the measure-

ments of J.A. Zelt [Zel91]. Nevertheless, we have to underline that the runup and rundown

are fairly well described by both models. The maximum runup value according to the

dispersive and nondispersive models is R∞ ≈ 0.47 which is in the range of [0.42, 0.53]

of the theoretical prediction of C.E. Synolakis, [Syn87]. There is no single experimental

value reported for the maximum runup in [Syn87] due to practical difficulties in generat-

ing a solitary wave of so big amplitude. Finally, we mention that the specific technique
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Figure 5.10: Solitary wave runup on a sloping beach: As = 0.04 case.
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(b) t = 62

Figure 5.10: (Cont’d) Solitary wave runup on a sloping beach: As = 0.04 case.
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Figure 5.11: Runup value R as a function of time: As = 0.04 case.
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Figure 5.12: Free surface elevation measured at x = 32.1 m.
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(d) t = 25

Figure 5.13: Solitary wave runup on a sloping beach: As = 0.28 case.

of C.E. Synolakis for handling the breaking wave leads to more accurate results for the

rundown process than one presented in [Zel91].

5.1.5.4 Solitary wave runup on a steep slope β = 20◦

Now we present two experiments pointing out some further differences in solutions to

dispersive and nondispersive models. These experiments were performed by J.A. Zelt,

[Zel91] and consist also in the runup on a steep slope of a solitary wave with an average

amplitude. We will consider here two waves with amplitudes As = 0.12 and As = 0.2

initially located at X0 = 8.85 and X0 = 10.62 respectively, in the total computational

domain I = [−10, 30]. These waves propagate onto a steep sloping beach 1 : 2.74. A very

fine grid of ∆x = 0.01, ∆t = ∆x/100 is used to guarantee the accuracy and stability of

simulations.

As it was observed in [Zel91] both waves do not break during the runup but the second
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Figure 5.13: (Cont’d) Solitary wave runup on a sloping beach: As = 0.28 case.
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Figure 5.14: Runup value R as a function of time.

one generates a strong breaking event during the rundown. The friction effects do not play

any important role in these experiments. Consequently, no friction term is included into

the models.

Figure 5.14 shows the runup value R as a function of time. We observe that for

both models there is a phase lag compared to the experimental data. We believe that

this discrepancy can be removed by changing the definition of the last dry cell. We also

observe that NSWE over-predict the maximum runup and the minimum rundown while

the Boussinesq model predicts correctly the extrema in both cases.

Figure 5.15 shows the rundown of the solitary wave of amplitude As = 0.2 during the

breaking event. One may observe that the experimental data consist of two curves due

to the difficulty in measuring the surface elevation of the breaking wave due to 3D effects

which become important. On Figure 5.16 the free surface elevation tide gauge data is

presented. The gauge is located 8.85 meters away from the still shoreline position. The

reflected wave appears in both cases to be highly dispersive thus, the Boussinesq model

provides a much better approximation. In the case As = 0.2, the mass remained equal to

Ih0 = 29.770808175, while in the case case As = 0.12 then Ih0 = 29.4861671693 conserving

the digits shown.

5.1.5.5 Solitary wave runup on a gradual slope β = 2.88◦ with a pond

We repeat the experiment of Section 5.1.5.2 in I = [−10, 50] with solitary wave ampli-

tude equal to As = 0.04. However, we modify the bottom by adding a small pond over

the shoreline described by the exponential function 0.1 e−(x+4)2 . The Boussinesq system

preserves the correct dispersion characteristics for the waves reaching the pond. In Figure
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(d) t = 22.29

Figure 5.15: Rundown of the wave with amplitude As = 0.2.
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Figure 5.16: The amplitude at the wave gauge A.
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5.17 we present the overall process. It is worth noting that after the pond was filed a break-

ing wave was reflected back. As the wave slides down, a small hydraulic jump appears. In

the case of NSWE this jump propagates as a shock wave due to hyperbolic character of

equations. On the other hand, the Boussinesq system develops it into an Airy type wave

according to its dispersive characteristics. In Figure 5.18 we show the solution at two wave

gauges located at x = −3.4 and x = 8 for both the dispersive and nondispersive models.

The mass during the simulations is constantly equal to Ih0 = 40.5198087147.

5.1.6 Conclusions

Initially, the finite volume method was proposed by S. Godunov [God99] to find approx-

imate solutions to hyperbolic conservation laws. In the present study we made a further

attempt to generalize this method to the framework of dispersive PDEs. This type of

equations arises naturally in many physical problems. In the water wave theory disper-

sive equations have been well known since pioneering works of J. Boussinesq [Bou71a] and

Korteweg-de Vries [KdV95]. Currently, the so-called Boussinesq-type models become more

and more popular as an operational model for coastal hydrodynamics and other fields of

engineering.

Most often Boussinesq equations are solved with some finite difference schemes. Mean-

while, the finite volume method has conquered the ”hyperbolic” community. Currently,

Nonlinear Shallow Water Equations (NSWE) are routinely discretized with robust, effi-

cient, higher order, shock-capturing schemes [DK03, DKK08, DPD10]. Since Boussinesq

equations can be viewed mathematically as a dispersive perturbation to NSWE, it is tempt-

ing to apply the finite volume method to discretize them.

We tested several choices of numerical fluxes (average, Kurganov-Tadmor, characteristic

fluxes), various reconstruction methods ranging from classical (TVD2, UNO2) to modern

approaches (WENO3, WENO5). Various choices of limiters have been also tested out.

Advantages of specific methods are discussed and some recommendations are outlined.

For operational modeling of the wave runup we derived a modification of Peregrine’s

system [Per67] which has some advantages over its classical counterpart. The new system

together with proposed novel discretization procedure are validated by extensive compar-

isons with experimental data of C.E. Synolakis [Syn87] and J.A. Zelt [Zel91].

We paid a special attention to the comparison of dispersive (Boussinesq) and nondisper-

sive (NSWE) models. Nowadays NSWE have become the model of choice for operational

tsunami modeling including the inundation zone estimation [TG97, SBT+08]. The question

of dispersive effects importance arises recurrently in the tsunami wave modeling community

[KML05, DT07]. Our results show that NSWE are sufficient to predict maximum runup



5.1 Finite volume schemes for dispersive waves 235

−5 0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

η

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(a) t = 37.58

−5 0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

η

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(b) t = 48.31

−5 0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

η

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(c) t = 55.22

−5 0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

η

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(d) t = 58.67

−5 0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

η

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(e) t = 65.57

−5 0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

η

 

 

Boussinesq (CF−UNO2)
Shallow water (CF−UNO2)

(f) t = 72.47

Figure 5.17: Long wave runup on a beach with a pond.
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Figure 5.17: (Cont’d): Long wave runup on a beach with a pond.
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Figure 5.18: Evolution of the free surface elevation at two wave gauges.
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values. However, the dispersive effects can be beneficial for more accurate description of

long wave propagation, runup and rundown.
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5.2 On the relevance of the dam break problem in the

context of nonlinear shallow water equations

In mathematics you don’t understand things. You just get used to them.

Johann von Neumann

If builders built buildings the way programmers wrote programs, then the first woodpecker that

came along would destroy civilization.

Gerald Weinberg

Abstract. The classical dam break problem has become the de facto stan-

dard in validating the nonlinear shallow water equations solvers. Moreover,

the NSWE are widely used for flooding simulations. While applied mathemat-

ics community is essentially focused on developing new numerical schemes, we

tried to examine the validity of the mathematical model under consideration.

The main purpose of this study is to check the pertinence of the NSWE for

flooding processes. From the mathematical point of view, the answer is not ob-

vious since all derivation procedures assumes the total water depth positivity.

We performed a comparison between the two-fluid Navier-Stokes simulations

and the NSWE solved analytically and numerically. Several conclusions are

drawn out and perspectives for future research are outlined.

5.2.1 Introduction

During the last century there were more than 200 failures of dams greater than 15 m

high [Sin96, ZR00]. They have caused a loss of more than 8000 lives and millions of dollars

worth of damage. Consequently, dam break flows have become an important practical

problem in civil engineering. Numerical models have become essential as a predictive tool

in evaluating the risks associated with the failure of the hydraulic structures. That is why,

the number of numerical studies has drastically increased during past decades.

To our knowledge, the dam break problem was studied analytically for the first time in

the PhD thesis of Pohle (1950), [Poh50], who used a lagrangian description to solve this

problem. The classical analytical solution for the dam break problem in the context of

the NSWE can be found in the book of Stoker (1957), [Sto57]. Later, this solution was

generalized to the constant slope case by Mangeney et al. (2000), [MHR00]. Note, that

Hunt (1982), [Hun82], also considered the sloping channel case and he obtained a closed-

form solution using a kinematic wave approximation. Among classical works on this topic,

we have to mention the prominent paper by Benjamin (1968), [Ben68]. Recently, Korobkin

& Yilmaz (2008), [KO08], studied the initial stages of the dam break flow in the framework

of potential free surface flows.
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It is interesting, however, to recall some other known analytical solutions to NSWE even

if they are not directly related to the dam break problem. Wave run-up on a sloping beach

was investigated by Carrier & Greenspan (1958), [CG58, CWY03], using a hodograph

transformation1. This solution is extensively used in the tsunami waves community to

validate the run-up algorithm of various NSWE solvers [Ima96, TG97, TS98, SBT+07,

SB06, IYO06, DPD10]. The transform of Carrier & Greenspan was employed later by

Synolakis and his collaborators to study analytically tsunami run up on a sloping beach,

cf. e.g. [Syn87, TS94, TS96, KS06]. There is also an analytical solution by Liu et al.

(2003), [LLS03] to linearized shallow water equations on a sloping beach. They used a

forcing term to model an underwater landslide. This solution is also currently used to test

numerical codes [DPD10].

On the other hand, the dam break problem and various lock exchange flows were ex-

tensively studied experimentally, cf. e.g. [MM52, Woo70, KC91, HLD96, SCB98, BDP00,

Bel04, SDL04]. In this study, we do not directly appeal to them, since our main concern is

to study the validity of NSWE as an approximation to more complex mathematical models

in some extreme situations.

Numerical studies are also countless. We can divide them conventionally in two big

groups. In the first group, authors solved this problem in the framework of the NSWE, cf.

e.g. [Wub88, AC99, Tse99, ZR00, Her00, CIM+00, ZCIM02, GV04, Bok05, XS05, BQ06,

BX07, PD08] and in the second one more advanced models were used, cf. e.g. [HW65,

NH71, HN81, HMN00, SL03, OFDI04, BMM05, Ooi06, OFDI06, BDF+07, OIF+07, CLLL08].

Obviously, this list does not pretend to be exhaustive.

The authors decided to perform this study because there is an apparent contradiction

between the mathematical origins of the NSWE and some applications of this model.

When we look carefully at any derivation procedure of NSWE, we will see that an implicit

assumption of water depth positivity is adopted. Moreover, these equations are designed

to model infinitely long waves. That is why, strictly speaking, these equations can be

valid only in fluid regions. However, using various numerical techniques (sometimes ad-

hoc, semiempirical) this model is routinely used for wetting/drying (run-up/run-down)

simulations, cf. e.g. [TG97, TS98]. This process is considerably more complex and the

validity of the NSWE is not obvious a priori. Recall, that the shoreline can be considered

as a triple point: water, air and solid (soil) meet their. Of course, this situation is simplified

for mathematical modelling.

We choose a Direct Numerical Simulation (DNS) by the two-fluid Navier-Stokes equa-

1In this case, the hodograph transformation means that Riemann invariants were chosen as independent

variables. After this change of variables, governing equations become linear and they are further solved

by Hankel transform.
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tions [SZ99, PZ99] as the reference solution. This system contains all the necessary physical

effects ranging from viscosity to the surface tension. Moreover, the ambient fluid (air) is

resolved. In the absence of experimental data, these simulations can be assimilated to an

idealized experiment. Up to graphical resolution, our numerical results are very similar to

the experiments of J. Martin and W. Moyce [MM52] and we remain clearly in the laminar

régime. Remind that we take also a realistic density ratio 1:1000 as for the air/water

interface (see Table 5.3). The results of the DNS are compared with several solutions to

the NSWE. Namely, the analytical solution by Stoker (see Section 5.2.3.3) was used in our

comparison. Numerical solutions to the NSWE were obtained using the VOLNA code, cf.

[Dut07, PD08, DPD10].

The present study is organized as follows. In Section 5.2.2 we present two mathematical

models which are used in this study. In the same section we also discuss several mathe-

matical properties and extensions of the NSWE. In Section 5.2.3 we review some known

analytical solutions to the NSWE of the dam break problem. After discussing briefly

the numerical techniques, (Section 5.2.4), we present and discuss our numerical results in

Section 5.2.5. Conclusions are outlined in Section 5.2.6.

5.2.2 Mathematical models

In this section we briefly present two mathematical models which are used in the sequel.

The first model is the well-known Nonlinear Shallow Water Equations (NSWE) which were

derived for the first time by Saint-Venant (1871), cf. [dSV71]. The second model is the two-

fluid Navier-Stokes equations written under the assumption of fluids immiscibility. These

equations are much more complete from physical and mathematical points of view. That

is why, the two-fluid model is supposed to provide us reliable results.

5.2.2.1 Nonlinear Shallow Water Equations

The Nonlinear Shallow Water Equations can be written in the following conservative

form (2DH):

Ht +∇ · (H~u) = 0, (5.48)

(H~u)t +∇ ·
(
H~u⊗ ~u+ g

2
H2I

)
= gH∇h, (5.49)

where H(x, t) is the total water depth and ~u(x, t) : R2 × R+ 7→ R2 is the depth-averaged

horizontal velocity. Traditionally, g denotes the acceleration due to the gravity, h(x, t) is

the bathymetry function and I is the identity tensor.

We do not provide here the derivation of these equations since it is more than classical

and can be found in various sources [Sto57, Mei94].
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Remark 28. The bathymetry function h(x, t) can be time-dependent. It is especially im-

portant for tsunami generation problem by submarine earthquakes, landslides, etc. The

coupling with seismology is usually done through this function. Namely, various earth-

quake models, cf. e.g. [DD07d, DD09b, DD10, KDD07] give us the seabed displacements

which are then transmitted to the ocean layer. Obviously, in this study we consider the

fluid propagation over the flat bottom in view of applying analytical techniques.

Governing equations (5.48), (5.49) form the system of balance laws (conservation laws,

if the bottom is even h = const). Moreover, this system is strictly hyperbolic provided

that H > 0. This property is extensively used in the construction of various numerical

schemes and, in particular, in the Characteristic Flux approach, cf. [GKC96, Ghi98, Ghi01,

GKC01, DPD10], which is also implemented in the code VOLNA .

Let us discuss the eigensystem of the advective flux. First, we introduce the so-called

conservative variables and rewrite the governing equations as a system of conservation

laws:
∂ ~w

∂t
+∇ · F(~w) = S(~w), (5.50)

where we introduced the following notations:

~w(x, t) : R2 × R
+ 7→ R

3, ~w = (w1, w2, w3) = (H,Hu,Hv),

F(~w) =




Hu Hv

Hu2 + g
2
H2 Huv

Huv Hv2 + g
2
H2


 =




w2 w3
w2

2

w1
+ g

2
w2

1
w2w3

w1

w2w3

w1

w2
3

w1
+ g

2
w2

1


 .

After projecting the flux F(~w) on a unit normal direction ~n = (nx, ny), |~n| = 1, one can

compute the Jacobian matrix An. Its expression in the physical variables has the following

form:

An =
∂
(
F(~w) · ~n

)

∂ ~w
=




0 nx ny

−uun + gHnx un + unx uny

−vun + gHny vnx un + vny


 ,

where un = ~u · ~n is the velocity vector projected on ~n. The Jacobian matrix An has three

distinct eigenvalues:

λ1 = un − c, λ2 = un, λ3 = un + c, (5.51)

where c =
√
gH is the gravity wave speed in infinite wavelength limit. This quantity plays

the same rôle as the speed of sound in compressible fluid mechanics. The hyperbolicity

condition for the system (5.48), (5.49) follows immediately from (5.51) and the definition of

c. The eigenstructure of the Jacobian matrix An is fundamental for constructing numerical

flux function, cf. [DPD10], and thus, upwinding the discrete solution.
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5.2.2.1.1 Properties Nonlinear Shallow Water Equations have many other interesting

properties. Some of them will be briefly recalled here. To reveal these properties, we shall

take the water wave theory point of view.

Let us recast equations (5.48), (5.49) in the following nonconservative form in one space

dimension:

∂tη + ∂x
(
(h+ η)u

)
= 0, (5.52)

∂tu+
1

2
∂x|u|2 + g∂xη = 0. (5.53)

These equations possess a (non-canonical) Hamiltonian structure [Sal88, ZK97, Rad99]:

∂t

(
η

u

)
+

(
0 ∂x
∂x 0

)(
δH
δη
δH
δu

)
= 0,

where the Hamiltonian H is defined as

H :=
1

2

+∞∫

−∞

gη2 dx+
1

2

+∞∫

−∞

(h + η)u2 dx.

Moreover, the pair of equations (5.52), (5.53) possesses an infinity of conservation laws

[Ben74, Miu74].

Equations (5.52), (5.53) can be also derived from Luke’s Lagrangian variational prin-

ciple [Luk67] if we introduce the velocity potential function φ(x, t) such that ~u = ∇φ. In

this case, the Lagrangian reads

L =

t2∫

t1

x2∫

x1

{
(η + h)

(
φt +

1

2
|∇φ|2

)
+

1

2
gη2
}
dx dt.

Governing equations (5.52), (5.53) are obtained by varying L with respect to η and φ.

Recently, a generalized variational principle was proposed by Clamond & Dutykh, cf.

[CD10]. Their approach allows for more flexibility and can be used to derive various

generalized shallow and deep water approximations.

5.2.2.1.2 Extensions The Nonlinear Shallow Water Equations (5.48), (5.49) arise after

a series of approximations applied to complete set of equations. Strictly speaking, they

model the propagation and transformation of infinitely long water waves. That is why,

their validity for run-up and flooding simulations is not so obvious a priori.

The validity region of these equations can be extended by adding some new physical

effects. The inclusion of the dispersion is beneficial for description of shorter wavelengths.
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Ω+(t)
Ω−(t)

S

Figure 5.19: Two immiscible fuids separated by an interface.

As a result, one can derive Boussinesq equations, [Bou71b, Bou72, MBS03, BCS02, BCS04,

BCL05, BDM07], Serre equations, [Ser53, Bar04], Green-Naghdi model, [GLN74, GN76,

KBEW01, Li02], and several others.

Another physical effect is the dissipation. Situations where dissipation becomes im-

portant for water waves are discussed in [ZG71, BPS81, Wu81, DD07c, Dut09b, Dut09a].

If one neglects the bottom boundary layer effects [DD07c, Dut09b], dissipative equations

(5.52), (5.53) take the following form, cf. [DDZ08, DD07c, Dut09b]:

∂tη +∇ ·
(
(h+ η)~u

)
= ν∇2η,

∂t~u+
1

2
∇|~u|2 + g∇η = ν∇2~u,

where ν is the kinematic viscosity. Corresponding dissipative Boussinesq equations can be

found in [Kha97, LO04, LSVO06, DD07c, Dut09b].

When equations are recast in the conservative form (5.48), (5.49), there is also an

alternative approach to include the dissipation initiated by Gerbeau & Perthame and

followed by other authors, cf. e.g. [GP01, BD03, BD06, Mar07].

5.2.2.2 Two-fluid Navier-Stokes equations

Let us consider two immiscible and incompressible2 fluids (water and air, for example)

occupying domain Ω = Ω+∪Ω−, where they are separated by an interface S. This situation

is schematically depicted in Figure 5.19. We note that we do not make any assumption on

the interface complexity and topology. In what follows we will denote by superscripts ±
all quantities related to the heavy and light fluids respectively.

2The case of the two compressible and miscible fluids was recently studied by Dias, Dutykh and

Ghidaglia, cf. [Dut07, DDG10, DDG08c, DDG08a].
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In each fluid we can write mass and momentum balance equations:

∇ · ~u = 0, (5.54)

ρ±(∂t~u+ ~u · ∇~u) +∇p = ∇ · (2µ±D) + σκδS~n+ ρ±~g. (5.55)

The latter may be written in conservative form:

∂t(ρ
±~u) +∇ · (ρ±~u⊗ ~u+ pI) = ∇ · (2µ±D) + σκδS~n+ ρ±~g,

where ~u is the fluid velocity, ρ± are the fluids densities, µ± are the fluids dynamic viscosities,

D = 1
2
(∂iuj + ∂jui) is the rate of deformation tensor. The surface tension term is a force

concentrated at the interface, σ is the surface tension coefficient, κ is the curvature of

the interface, ~n is the unit normal to the interface and δS is the distribution (Dirac mass

function) concentrated on the interface S.

Governing equations (5.54), (5.55) have to be completed by the following jump condi-

tions across the interface:

• Velocity continuity

[~u]S = 0 (5.56)

• Tangential stress condition

[µ~t ·D · ~n]S = 0, (5.57)

• Normal stress condition

[~n · (−pI + 2µD) · ~n]S = σκ, (5.58)

where ~t is a tangent vector (~t ·~n = 0) to the interface and notation [·]S represents the jump

of a quantity across the surface S.

However, for numerical computations it is advantageous to introduce a characteristic

function φ, (cf. [Ish75, TK96, GKC01, DDG10, DDG08c, DDG08a]) defined as:

φ =

{
1, x ∈ Ω+(t),

0, x ∈ Ω−(t).

Thus, φ and ~n are related by the formula ∇φ = ~nδS. In the absence of phase change, φ is

simply advected by the fluid motion:

∂tφ+∇ · (φ~u) = 0. (5.59)
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In order to write a unique formulation for the entire domain, we express the density and

the viscosity as functions of φ:

ρ = φρ+ + (1− φ)ρ−, µ = φµ+ + (1− φ)µ−.

Thus, we have the following momentum balance equation:

ρ(∂t~u+ ~u · ∇~u) +∇p = ∇ · (2µD) + σκδS~n+ ρ~g. (5.60)

Along with the mass conservation equation (5.54) and the volume fraction advection equa-

tion (5.59), it forms the two-fluid Navier-Stokes equations with an interface, which are

solved numerically below.

Remark 29. We can recover jump conditions (5.56) – (5.58) if we investigate the govern-

ing equations (5.54), (5.59), (5.60) in the neighborhood of the surface S and making use of

the formula ∇φ = ~nδS.

5.2.3 Analytical solutions

In this section we review known analytical solutions related to the dam break problem

that we use in the comparison with the numerical results.

5.2.3.1 Linear solution

The simplest analytical solution for the dam break problem can be derived when we con-

sider Linear Shallow Water Equations (LSWE). The latter can be obtained in a straight-

forward manner from (5.52), (5.53):

∂tη + ∂x(h0u) = 0,

∂tu+ g∂xη = 0.

In some situations, it is advantageous to eliminate the velocity variable u to obtain

∂2η

∂t2
− ∂

∂x

(
c20
∂η

∂x

)
= 0, c0 :=

√
gh0. (5.61)

The Initial Value Problem (IVP) for (5.61) corresponding to the dam break takes the

following form:

η(x, 0) = h0H(x), ∂tη(x, 0) = 0,

where H(x) is the Heaviside function. This IVP can be easily solved using the Fourier

transform:

η(x, t) = h0

(1
2
+

1

π

+∞∫

0

sin(kx)

k
cos(c0kt) dk

)
.
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Figure 5.20: Sketch of the solution to the LSWE.

The sketch of this solution is presented in Figure 5.20. Namely, it consists of two waves

propagating in opposite directions with velocities ±c0. Hence, the front speed is equal to

−c0. Of course, this result is nonphysical as it will be shown below.

Similar solutions can be constructed considering the linearized Euler equations for either

one or two fluids separated by an interface.

5.2.3.2 Small time asymptotics

Several small time asymptotics were proposed to solve the dam break problem. One of

the first solutions was derived by Pohle (1950), [Poh50]. Such methods generally require

the use of lagrangian description. The prominent book by Stoker, [Sto57], also contains

such a solution:

X(a, b, t) = a− g

2π
t2 log

(
cos2 πb

4h0
+ sinh2 πa

4h0

sin2 πb
4h0

+ sinh2 πa
4h0

)
+ o(t2), (5.62)

Y (a, b, t) = b− g

π
t2 arctan

(
sin πb

2h0

sinh πa
2h0

)
+ o(t2), (5.63)

where (X, Y ) are new coordinates of the particle (a, b) at time t. Recently this solution

was generalized by Korobkin & Oguz (2008) [KO08]. We tried to compare the solution

(5.62), (5.63) to our numerical results and found that its validity time is too short for any

practical use. That is why this solution is not plotted bellow.

Note, that expressions (5.62) and (5.63) are singular at the shoreline (a, b) = (0, 0).

Thus, some special care is needed to get an asymptotic expansion valid in the vicinity of

this point, cf. [KO08].
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H ≡ 0, u ≡ 0
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H ≡ h0, u ≡ 0

O

y

Figure 5.21: Sketch of the initial condition for the shallow water computations.

5.2.3.3 Nonlinear solution

The classical book by J.J. Stoker, [Sto57], contains an analytical solution for the dam

break problem. Consider the classical initial condition:

H(x, 0) =

{
h0, x ≥ 0,

0, x < 0.
u(x, 0) ≡ 0, ∀x ∈ R.

Schematically it is depicted on Figure 5.21.

Then, by considering the Riemann invariants and using the method of characteristics,

[Lax73, GR90, GR96, CG09], one can derive the following solution:

H(x, t) =





0, x < −2c0t,
1
9g

(
x
t
+ 2c0

)2
, −2c0t ≤ x ≤ c0t,

h0, x > c0t,

(5.64)

u(x, t) =





0, x < −2c0t,
2
3

(
x
t
− c0

)
, −2c0t ≤ x ≤ c0t,

0, x > c0t,

(5.65)

where c0 :=
√
gh0 is the gravity wave speed in the undisturbed region. The front position

is given by the characteristic outgoing from the fluid region:

xf (t) = −2c0t.

Recall that recently this solution was generalized to the constant slope case by Man-

geney et al. (2000), [MHR00].

Remark 30. The run-up algorithm used in our numerical code VOLNA is based on this

analytical result. Namely, we impose just obtained front speed when the wet/dry transition

is detected. This simple approach was validated and shown to be very robust. For more

details we refer to Dutykh et al. (2009), [DPD10].
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5.2.4 Numerical methods

The main purpose of this study is to draw out some conclusions on the validity of

NSWE for wetting (flooding) process simulations. That is why, we do not provide here

any details about numerical methods used to compute solutions. The interested reader can

consult references given below to get technical details.

In order to solve numerically the two-fluid Navier-Stokes equations (5.54), (5.60) and

(5.59), we applied the finite volumes method, cf. e.g. [Jas96, Rus02, Ope07]. Namely, a

freely available solver interDyMFoam of the OpenFOAM CFD Toolbox [Ope07] was used.

The interface between two fluids is reconstructed from the volume fraction φ distribution

using the VOF method, cf. [HN81, SZ99, PZ99]. Let us underline that all two-fluid

computations presented in this study are 3D with only one cell in z-direction. Everywhere

we impose the classical no-slip boundary condition.

Nonlinear Shallow Water Equations are solved with our operational numerical code

VOLNA , cf. [Dut07, DPD10]. This code was developed in close collaboration with R. Pon-

cet and F. Dias when the first author was at CMLA, ENS de Cachan. The VOLNA code

uses unstructured triangular meshes and is able to run in arbitrary complex coastal regions.

The numerical method is a second-order finite volumes MUSCL-TVD scheme along with

the SSP-RK3(4) method for the discretization in time, cf. [SR02]. Details on adopted

discretization procedure can be found in [Dut07, PD08, DPD10]. All the computations

we performed are in 2D and only one-dimensional cross sections are presented below. On

the lateral boundaries we impose the wall boundary condition ~u · ~n = 0. This choice is

consistent with two-fluid computation and allows us to have an insight into the impact

process.

5.2.5 Results comparison and discussion

In this section we perform a comparison between a two-fluid simulation (DNS), the

analytical solution by Stoker (1957) and numerical solutions to the NSWE by the VOLNA

code. The initial set-up for the VOLNA code is shown in Figure 5.21. Sketch of the initial

condition for the DNS is depicted on Figure 5.22. The simulation time and propagation

distance is chosen so that the right boundary do not influence obtained results. All param-

eters used in computations are given in Table 5.3. These parameters are chosen suitable

to simulate the air/water interaction.

The snapshots of our simulations are given on Figures 5.23 – 5.29. On the left image

(a) we represent the volume fraction φ distribution provided by the DNS. On the right

image (b) we plot together the analytical solution (5.64) (red dotted line) and simulation

results by the VOLNA code (black solid line) for the free surface elevation η. The analytical
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Figure 5.22: Sketch of the initial condition for two-fluid numerical simulation (DNS).

parameter value

gravity acceleration, g, m/s2 1.0

fluid column height, h0, m 0.25

fluid column length, ℓ, m 1.0

total domain height, H , m 0.5

fluid density, ρ+, kg/m3 1000.0

fluid viscosity, ν+, m2/s 10−6

air density, ρ−, kg/m3 1.0

air viscosity, ν−, kg/m3 10−6

surface tension, σ, kg 0.07

Table 5.3: Parameters used in numerical simulations.

(a) Two-fluid simulation
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Figure 5.23: Initial deformation of the water column under the gravity force (t = 0.2 s).
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(a) Two-fluid simulation
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Figure 5.24: Transition to the propagation regime (t = 0.4 s).

(a) Two-fluid simulation

−1 −0.5 0 0.5 1

0

0.05

0.1

0.15

0.2

0.25

x

η

 

 
Volna
Analytical solution

(b) NSWE

Figure 5.25: Heavy fluid entering into the propagation regime (t = 0.6 s).

(a) Two-fluid simulation
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Figure 5.26: Heavy fluid in the propagation regime (t = 0.8 s).
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(a) Two-fluid simulation
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Figure 5.27: Heavy fluid in the propagation regime (t = 1 s).
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Figure 5.28: Heavy fluid front before the interaction with the left wall (t = 1.2 s).

(a) Two-fluid simulation
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Figure 5.29: Heavy fluid front before the interaction with the left wall (t = 1.4 s).
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Figure 5.30: Velocity field magnitude at t = 1.4 s.

solution is almost superposed with our numerical simulation as it is expected. This result

can be considered as one more validation test of the wetting/drying algorithm used in the

VOLNA code.

In the beginning of the simulation, the water column is slightly deformed due to the

gravity force (Figure 5.23). Only a small time interval is needed for the heavy fluid to

acquire the kinetic energy and to enter into the propagation régime depicted on Figures

5.24 – 5.29. Analytical solution (5.64) prescribes a parabolic form of the interface. However,

the DNS shows somehow different shape. Lower fluid layers undergo stronger acceleration

than in NSWE and thus propagate faster. Nonuniform distribution of the velocity field

along the heavy fluid is illustrated on Figure 5.30. This creates a strong distortion of the

interface which is elongated near the bottom (it can be easily seen in Figures 5.28 – 5.29).

This effect is not present in NSWE simulations since, the vertical flow structure is not

resolved by this approximate model. Consequently, in NSWE we obtain a piecewise linear

distribution of the velocity field as it follows from analytical solution (5.65).

Let us notice another one fact. In Figure 5.29 one can observe that the NSWE solution

has already achieved the left vertical wall. From this moment, the analytical solution is not

valid anymore. However, the two-fluid simulation has not yet reached the left boundary.

This discrepancy comes from the time lag due to initial acceleration stage, on one hand,

and slightly different front propagation speeds, on the other hand. Bottom boundary layer

may have some effect onto the propagation speed of the heavy fluid front [Dut07, Dut09b].

From these simulations, we extracted the wave front position, shown in Figure 5.31

as a function of time for two different initial heights: h0 = 0.25 m (as in simulations

presented above) and h0 = 0.125 m. Qualitatively these two results are similar. We can

underline again a very good agreement between numerical and analytical NSWE results.

On the other hand, there is a slightly increasing difference in the front position with the

two-fluid DNS. It can be attributed to the initial acceleration stage (t ≤ 0.25 s) which is
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Figure 5.31: Comparison of the front position according to three different models: blue line

with circles corresponds to the DNS, black line shows the front position predicted by VOLNA

solver (NSWE) and the red dotted line is the analytical solution (5.64).

h0 = 0.25 m h0 = 0.125 m

Two-fluid (DNS) −0.81 −0.58
VOLNA (NSWE) −0.96 −0.68

Analytical (NSWE) −1.0 −0.71
Analytical (LSWE) −0.5 −0.35

Table 5.4: Front speed predicted by four different approaches.

present in the two-fluid model. Another explanation consists in the front velocity which

can be determined by measuring the slope to the curve t → xf (t). Determined in this

way front speeds (in permanent régime, t ≥ 0.25 s) are given in Table 5.4. The LSWE

give completely wrong results showing again that the nonlinearity plays the crucial rôle in

this process. It is also worth to note that the numerical front speed by the VOLNA code

is closer to the DNS. This positive fact can be attributed to the effect of the numerical

diffusion on unstructured meshes.

5.2.5.1 Impact process

In the previous section we presented results concerning the initial and propagation

stages of the dam break problem. However, we continued computations until the interaction

with the left wall and even slightly beyond. The goal is to test again the validity of
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(a) Two-fluid simulation
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Figure 5.32: Interaction with the left vertical wall at t = 1.6 s.

(a) Two-fluid simulation
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Figure 5.33: Interaction with the left vertical wall at t = 2.2 s.

the NSWE in such extreme conditions. For this kind of situations we do not know any

analytical solution. Thus, we compare only DNS and VOLNA code results. In two-fluid

simulation we use the same no-slip condition as on all solid boundaries. Wall boundary

condition implementation in VOLNA solver is detailed in [DPD10]. Here we can say that it

is based on consideration of incoming characteristics. The general methodology is presented

in works of J.-M. Ghidaglia and F. Pascal [GP02b, GP02a, GP05].

The comparison results are presented on Figures 5.32 and 5.33. For instance, the wave

amplitude on Figure 5.33 (a) reaches the upper boundary (its height is 0.5 m), while NSWE

numerical solution amplitude does not exceed 0.2 m.

From these results it is obvious that the wave impact process is not correctly modelled

by NSWE. It is possible to foresee this conclusion if one recalls two main constutive

assumptions behind NSWE:

• The pressure is hydrostatic



5.2 On the relevance of Nonlinear Shallow Water Equations 255

• Vertical velocity and acceleration are neglected

Notice, that for infinitely long waves, these two hypotheses are equivalent. Since, the

dynamic pressure dominates in the impact process, we get qualitatively wrong results (it

is especially clear from Figure 5.33).

5.2.6 Conclusions and perspectives

In the present study we tried to examine the validity of the NSWE for wetting (flooding)

process modelling. As a test-case we chose the classical dam break problem which is the

de facto standard in this field. This problem was solved in the context of two completely

different models in terms of physical precision and, by consequence, of different complexity.

The two-fluid DNS was chosen as the reference solution since all necessary physical effects

are included in it.

Comparison results presented above show good overall performance of the NSWE. In

order to appreciate more these results, one should take into account also the computational

cost of the DNS and relatively inexpensive shallow water simulations.

However, we revealed several drawbacks of the depth-integrated model. Namely, the

free surface shape differs from the parabolic profile predicted by NSWE. This discrepancy

is attributed to the non-piecewise linear distribution of the velocity field inside the water

column. To compare, see Figure 5.30 for the DNS result and formula (5.65) for the ana-

lytical prediction by NSWE. The experimental and theoretical study of P.K. Stansby et

al (1998) [SCB98] also revealed some differences during the initial stages. However, their

objection concerned essentially some new jet-like phenomena just after release. For later

times, they found relatively close agreement with NSWE.

We went beyond the initial purpose of this study and continued our simulations until

the impact process with the left wall. It was shown that the NSWE strongly underestimate

the wave height. This discrepancy has its origins in the hydrostatic pressure assumption.

Actually, the dynamic pressure becomes dominant during the impact process. Its excess

is responsible of spectacular splashes that we may have a chance to observe in nature.

Concerning the front propagation speed, we obtained slightly different values between

the DNS and the NSWE solutions. We have to note that in a physical experiment this

quantity strognly depends on the soil conditions. The standard no-slip boundary condition

is clearly insufficient to describe all kinds of soils. We believe that future research activities

will focus on developing wall function laws and realistic boundary conditions for Navier-

Stokes equations (two-fluid or with free surface). On the other hand, NSWE are also

improvable. To produce physically correct results, these equations should be completed

by friction laws (Chézy, Manning, Darcy-Weisbach and other laws) with properly adjusted
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coefficients. Recently, bottom boundary layer effects on long waves were studied [Dut09b].

Another direction consists in extending NSWE to account for bed material transport as it

was recently proposed by Fraccarollo & Capart (2002) [FC02].
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Chapter 6

Two-phase flows

We live in a Newtonian world of Einsteinian physics ruled by Frankenstein logic.

David Russell
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6.1 Velocity and energy relaxation in two-phase flows

The second law of thermodynamics holds, I think, the supreme position among the laws of

nature. If someone points out to you that your pet theory of the Universe is in disagreement

with Maxwell’s equations - then so much the worse for Maxwell’s equations. If it is found to be

contradicted by observation - well, those experimentalists do bungle things up sometimes. but if

your theory is found to be against the second law of thermodynamics I can give you no hope;

there is nothing to do but to collapse in deepest humiliation.

Arthur S. Eddington

Abstract. In the present study we investigate analytically the process of

velocity and energy relaxation in two-phase flows. We begin our exposition by

considering the so-called six equations two-phase model [Ish75, Rov06]. This

model assumes each phase to possess its own velocity and energy variables.

Despite recent advances, the six equations model remains computationally

expensive for many practical applications. Moreover, its advection operator

may be non-hyperbolic which poses additional theoretical difficulties to con-

struct robust numerical schemes [GKC01]. In order to simplify this system, we

complete momentum and energy conservation equations by relaxation terms.

When relaxation characteristic time tends to zero, velocities and energies are

constrained to tend to common values for both phases. As a result, we ob-

tain a simple two-phase model which was recently proposed for simulation of

violent aerated flows [DDG10]. The preservation of invariant regions and in-

compressible limit of the simplified model are also discussed. Finally, several

numerical results are presented.

6.1.1 Introduction

Currently, single phase flows modeling is essentially understood besides the problem of

turbulence. In two-phase flows the situation is completely different. Nowadays there is no

general consensus on the two-phase flow modeling. Turbulence modeling in two-phase flows

is even more tricky [Llo05]. The two-phase models are based on space and time (ensemble)

averaging of the local governing equations of each phase. Consequently, these models can

only provide information on the average flow behaviour. The derivation of the proper

model is far from being achieved [Ish75, DL79, DCL79, BD82, SW84, DW94, IH06]. One

of the main difficulties lies in the determining the mass, momentum and energy transfers

in the presence of steep gradients across the interfaces. Very often more or less accurate

empirical correlations are used to describe such interface processes. In the same time, two-

phase flows are very frequent in industry and in nature. Typical examples include water
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waves (especially during the wave breaking), petroleum and gas flow in pipes, nuclear

reactors [SFW+05], etc.

The most important industrial application of two-phase flows is the simulation of a wide

spectrum of accident scenarios in Pressurized (or Boiling) Water Reactors (PWR, BWR).

Extensive experimental programmes for the PWRs are extremely expensive. Currently,

new reactor design requires more and more numerical simulations of basic reactor features

[SFW+05]. The goal is to reduce experimental programmes to a minimum. On the other

hand, industrial codes (such as CATHARE [Bes90], RELAP5 [Ran85], THYC [ACOR95]

or Neptune CFD [BG05, GCMM09, GBBea07], for example) need to be supplemented by a

large number of empirical closures which prevents reliable code application outside of their

validity domain. Also these codes use robust but higly diffusive numerical schemes which

make it difficult the computation of strong variable gradients proper to many accident

conditions.

Two-phase models play also an important role in simulation of interfaces between two

immiscible compressible fluids. This problem is very challenging from numerical point of

view. All existing methods to address this problem can be conventionally divided into four

big groups:

• Volume of fluid (VOF) [HN81, SZ99]

• Level set method [OS88, OS94]

• Lagrangian interface tracking [GGLT00]

• Diffuse interface method [Lar90, AMW98, Shy98]

In the last approach we do not compute precisely the interface position. Due to numerical

diffusion, the volume fraction takes intermediate values between 0 and 1 even if it is

initialized by values in {0, 1}. The resulting mixture of two fluids has to be properly

modelled in the transition region. Two-phase models that we will discuss below provide a

sound physical description of mixing zones. The diffuse interface approach is less accurate

than mentioned above methods (unless some special sharpening techniques are employed)

but it is much simpler to implement and can naturally handle arbitrary topological changes

in the flow.

Recently, a single velocity/single energy two-phase model was proposed [Dut07, DDG08b,

DDG08c, DDG10] in ad-hoc way as a model for violent aerated flows. By analogy with the

six equations model, this system was called the four equations model since in one space

dimension it consists of two equations of the mass conservation, one equation of the mo-

mentum and one of the energy conservation. Two-phase models where both fluids share

the same velocity were previously considered in [ACK02, Del05], for example.
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The main goal of the present paper is to show the connection between the six equations

model [GKC01, GP05, Rov06, IH06] (two equations of mass, momentum and energy conser-

vation) and recently proposed four equations model [Dut07, DDG08b, DDG08c, DDG10]

with single velocity and single energy. Physically it is done by introducing relaxation terms

into momentum and energy relaxation equations. These relaxation terms constrain veloci-

ties and energies to tend to a common value. Then, after taking the singular limit when the

characteristic relaxation time goes to zero, one obtains a simplified model. Mathematically,

it is achieved by employing a Chapman-Enskog type expansion [CC95]. This technique has

been already successfully applied to the so-called Baer-Nunziato model [BGN86, BN86] in

[MG05]. The present study is greatly inspired by their work. This type of reduction from

the barotropic six equations model were recently done in [MDG09].

The present manuscript is organized as follows. We start our exposition by present-

ing the so-called six equations model in Section 6.1.2. Then, we complete this model by

relaxation terms and derive in Section 6.1.3 a single velocity, single energy model. Preser-

vation of invariant regions and incompressible limit of the resulting four equations model

are studied in Sections 6.1.4 and 6.1.5 correspondingly. Then we present some numerical

results in Section 6.1.6. Finally, this paper is ended by drawing out main conclusions of

this study and some perspectives for future research (Section 6.1.7).

6.1.2 Mathematical model

Consider a fluid domain Ω ⊆ R3 which is filled by two miscible fluids. All physical

quantities related to the heavy and light fluids will be denoted by the superscripts + and

− correspondingly. For example, if we consider a plunging breaker with important mixing

processes, then water velocity, density, viscosity, etc. will be denoted with the superscript

+, while variables related to the air will have the superscript −. When the interfaces are

so multiple that it is impossible any more to follow them, the classical modelling procedure

consists in applying a volume average operator [Ish75, Rov06]. At this level of description,

two additional variables naturally appear. The so-called volume fractions α±(x, t), x ∈ Ω

are defined as

α±(x, t) := lim
|dΩ|→0

x∈dΩ

|dΩ±|
|dΩ| , (6.1)

the heavy fluid occupies volume dΩ+ ⊆ dΩ and the light one the volume dΩ− ⊆ dΩ (see

Figure 6.2) such that

|dΩ| = |dΩ+|+ |dΩ−|. (6.2)

After taking the limit in relation (6.2), one readily finds

α+(x, t) + α−(x, t) ≡ 1, ∀(x, t) ∈ Ω× [0, T ]. (6.3)
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Figure 6.1: A quasi uniform air/water mixture after the wave breaking has occured.

dΩ+(t)
dΩ−(t)

S

Figure 6.2: An elementary fluid volume dΩ occupied by two phases.

The volume fractions α± characterize the volume occupied by the corresponding phase per

unit volume of the mixture.

After applying the averaging procedure, we obtain the so-called six equations model

[Ish75, SW84, GKC01, Rov06]:

∂t(α
±ρ±) +∇ · (α±ρ±~u±) = 0, (6.4)

∂t(α
±ρ±~u±) +∇ · (α±ρ±~u± ⊗ ~u±) + α±∇p = ∇ · (α±

τ
±) + α±ρ±~g, (6.5)

∂t(α
±ρ±E±) +∇ · (α±ρ±H±~u±) + p ∂tα

± =

∇ · (α±
τ
±~u±)−∇ · (α±~q ±) + α±ρ±~g · ~u±, (6.6)
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where ρ±(x, t), ~u±(x, t), E±(x, t) are densities, velocities and energies of each fluid respec-

tively. The total energyE± is the sum of the internal and kinetic energies E± := e±+1
2
|~u±|2.

The specific total enthalpy H± is defined as H± := h± + 1
2
|~u±|2 = E± +

p

ρ±
, where h± is

just the specific enthalpy. Finally, ~g stands for the vector of the gravity acceleration.

The symbol τ± denotes the viscous stress tensor of each phase. If we assume both

fluids to be Newtonian, the viscous stress tensor τ± can be written as

τ
± = λ± trD(~u±)Id + 2µ±D(~u±), trD(~u±) = ∇ · ~u±, (6.7)

where Id := (δij)1≤i,j≤3 is the identity tensor, D(~u) := 1
2

(
∇~u+ t(∇~u)

)
is the deformation

rate and λ±, µ± are viscosity coefficients. For ideal gases, for example, these coefficients

are related by Stokes relation λ±+ 2
3
µ± = 0. Recall that the derivation procedure presented

in the next section does not require any particular form of the tensor τ±.

Finally, the heat flux in each fluid is denoted by ~q ± (see Equation (6.6)). As with

viscous stress tensor, we do not assume any particular form of the heat flux. However, in

most cases the Fourier’s law [Fou22] is adopted:

~q ± := −K±∇T±,

where K± is the thermal conductivity coefficient and T± is the thermodynamic tempera-

ture.

Remark 31. When a material demonstrates flagrant anisotropic properties, it is advised

to use the generalized Fourier’s law [IH06]:

~q ± := −K± · ∇T±,

where K± is the conductivity tensor. The same remark applies to the viscous stress tensor

τ
± as well.

In order to close the system (6.4) – (6.6), we have to provide two equations of state

which relate the pressure p to other thermodynamic variables p = p±(ρ±, e±). We assume

the equations of state to satisfy some general thermodynamic assumptions:

p±(ρ±, e±) > 0,
∂p±(ρ±, e±)

∂ρ±

∣∣∣∣
s±
> 0, for ρ± > 0. (6.8)

The symbol ∂p±(ρ±,e±)
∂ρ±

∣∣∣
s±

denotes the partial differentiation with respect to the density ρ±

while the entropy s± is kept constant. Physically this quantity corresponds to the squared

velocity of pressure waves in each fluid (see Lemma 2).



6.1 Velocity and energy relaxation in two-phase flows 265

Remark 32. We reiterate that the model (6.4) – (6.6) is a one pressure model, i.e. two

phases share the same pressure. Models with two pressures can also be derived [SW84,

BN86, BGN86, RH88, MG05]. In this situation, an extra closure (algebraic or differential)

must be added. In many cases this additional closure represents a relaxation process which

will tend to equilibrate the pressures.

Remark 33. The momentum balance Equation (6.5) can be rewritten differently:

∂t(α
±ρ±~u±) +∇ ·

(
α±ρ±~u± ⊗ ~u± + α±pId

)
− p∇α± = ∇ · (α±

τ
±) + α±ρ±~g. (6.9)

These two forms are obviously equivalent for smooth solutions. However, it is not the case

for discontinuous ones. We believe that this form is more relevant from physical point of

view, since the flux of momentum involves the pressure. In our analytical investigations

we consider smooth solutions, however for numerics we advise using the last form (6.9).

Remark 34. While considering two-phase flows, it is useful to introduce several additional

quantities which play an important rôle in the description of such flows. The mixture

density ρ and mass fractions m± are naturally defined as

ρ(x, t) := α+ρ+ + α−ρ− > 0, ∀(x, t) ∈ Ω× [0, T ], (6.10)

m± :=
α±ρ±

ρ
, consequently m+ +m− = 1.

The total density ρ is assumed to be strictly positive everywhere in the domain Ω. Hence,

the void creation is forbidden in our modeling paradigm. Important quantities ρ, m± will

appear several times below.

The six-equations two-phase model presented in this section contains some other sim-

plifications. Namely, we neglect capillarity effects which could be taken into account in

the form of the Korteweg term [Kor01, BDGG09]. Moreover, terms modeling mass, mo-

mentum and energy exchange between the phases are neglected as well. In general, their

form depends strongly on the flow regime under consideration and is a subject of current

debates.

Remark 35. Even if the Jacobian matrix of the advection operator in (6.4) – (6.6) is not

diagonalizable over R, the existence of global weak solutions was recently proven at least

in barotropic case [BDGG09] if we supplement the model by viscous and surface tension

effects [Kor01]. Previously, it was already shown that viscosity and thermal diffusivity

are indeed sufficient for the evolution problem well-posedness in the linearized or in the

nonlinear sense for small data [Ara80, Ram00].
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Despite recent advances in numerical methods [GKC96, GKC01, Rov06] and several

simplifications made above, the system (6.4) – (6.6) is still very complex to solve nu-

merically for industrial scale problems. One of the main difficulties lies in the advection

operator which is known to be generally non-hyperbolic. In the next section we will de-

rive a simplified two-phase model which has fewer variables and possesses the requested

hyperbolic structure for quite general equations of state.

6.1.3 Relaxation process

In this section we will supplement momentum and energy conservation Equations (6.5),

(6.6) by relaxation terms. Physically, they represent the friction or drag force between two

phases. When time evolves, this mechanism will ensure the convergence of two velocities

~u± and energies E± to common for both phases values ~u and E. Augmented Equations

(6.5), (6.6) take the following form:

∂t(α
±ρ±~u±) +∇ · (α±ρ±~u± ⊗ ~u±) + α±∇p = ∇ · (α±

τ
±) + α±ρ±~g ± ~Fd, (6.11)

∂t(α
±ρ±E±) +∇ · (α±ρ±H±~u±) + p ∂tα

± =

∇ · (α±
τ
±~u±)−∇ · (α±~q ±) + α±ρ±~g · ~u± ± Ed. (6.12)

In the present study we choose friction terms ~Fd and Ed in this form:

~Fd :=
κ

ε

α−ρ−α+ρ+

α+ρ+ + α−ρ−
(~u+ − ~u−), Ed :=

κ

ε

α−ρ−α+ρ+

α+ρ+ + α−ρ−
~u · (~u+ − ~u−),

where ~u := m+~u++m−~u− is the barycentric velocity, κ = O(1) is a dimensionless constant

and ε is a small parameter which controls the magnitude of the relaxation term. Physically

it represents the characteristic relaxation time. In the following we are going to take the

singular limit as the relaxation parameter ε→ 0. This goal is achieved with a Chapman-

Enskog type expansion [CC95].

This kind of computations has already been successfully carried out for the Baer-

Nunziato model [BN86]. In this section we follow in great lines the work of Guillard

& Murrone [MG05]. However, the computation details are substantially different.

The first step consists in rewriting the governing Equations (6.4), (6.11), (6.12) in

quasilinear form. To shorten the notation, we will also use the material derivative which

is classically defined for any smooth scalar function φ(x, t) as

d±φ

dt
:=

∂φ

∂t
+ ~u± · ∇φ.

In computations below, we will need the following technical lemma:
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Lemma 2. Consider two compressible fluids with general equations of state p = p±(ρ±, e±).

Then, partial derivatives of pressure p are given by:

∂p

∂s±

∣∣∣∣
ρ±

=
T±

θ±
,

∂p

∂ρ±

∣∣∣∣
s±
≡ (c±s )

2 =
1

θ±

( p

(ρ±)2
− χ±

)
,

where s±, c±s are the entropy and the sound velocity in the phase ± respectively. We also

denote by χ± := ∂e±

∂ρ±

∣∣∣
p
and by θ± := ∂e±

∂p

∣∣∣
ρ±
.

Proof. Obviously, one can write:

dp =
∂p

∂ρ±

∣∣∣∣
s±
dρ± +

∂p

∂s±

∣∣∣∣
ρ±
ds±. (6.13)

Similarly, if one takes into account the definitions of χ± and θ±:

de± = χ±dρ± + θ±dp. (6.14)

Now we will use the Gibbs relation [Ish75, Cal85, IH06]:

de± = T±ds± +
p

(ρ±)2
dρ±. (6.15)

After expanding de± and dp according to (6.14), (6.13) correspondingly, we get the following

differential inequality:

( p

(ρ±)2
− χ± − θ± ∂p

∂ρ±

∣∣∣∣
s±

)
dρ± +

(
T± − θ± ∂p

∂s±

∣∣∣∣
ρ±

)
ds± = 0.

Since this equality must be true for arbitrary de± and dp, we conclude the proof by requiring

the coefficients to be equal to zero.

Theorem 4. Smooth solutions to Equations (6.4), (6.11), (6.12) satisfy the following

system:

α±ρ±T±d
±s±

dt
= α±

τ
± : ∇~u± −∇ · (α±~q ±)± (Ed − ~Fd · ~u±), (6.16)

α±ρ±
d±~u±

dt
+ α±∇p = ∇ · (α±

τ
±) + α±ρ±~g ± ~Fd, (6.17)

α±ρ±θ±
d±p

dt
± (ρ±)2(c±s )

2θ±(∂tα
+ ±∇ · (α±~u±)) =

α±
τ
± : ∇~u± −∇ · (α±~q ±)± (Ed − ~Fd · ~u±), (6.18)

where s± is the entropy, (c±s )
2 and θ± are defined in Lemma 2.
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Proof. The mass conservation Equation (6.4) is straightforwardly rewritten using the ma-

terial derivative:
d±(α±ρ±)

dt
+ α±ρ±∇ · ~u± = 0. (6.19)

If we multiply the latter by ~u± and subtract the result from (6.11), we will obtain announced

above Equation (6.17). Similarly, multiplying Equation (6.19) by E± and subtracting it

from (6.12) leads to the total energy equation in quasilinear form:

α±ρ±
d±E±

dt
+∇ · (α±p~u±) + pα±

t =

∇ · (α±
τ
±~u±)−∇ · (α±~q ±) + α±ρ±~g · ~u± ± Ed. (6.20)

The kinetic energy evolution equation is straightforwardly obtained after taking the scalar

product of (6.17) with ~u±:

α±ρ±
d±(1

2
|~u±|2)
dt

+ α±~u± · ∇p = ~u± · ∇ · (α±
τ
±) + α±ρ±~g · ~u± ± ~Fd · ~u±. (6.21)

Recall that the total energy E± is constituted of internal and kinetic energies: E± =

e±+ 1
2
|~u±|2. Consequently, the internal energy evolution equation is derived by subtracting

(6.21) from (6.20):

α±ρ±
d±e±

dt
+ p∇ · (α±~u±) + pα±

t = α±
τ
± : ∇~u± −∇ · (α±~q ±)± (Ed − ~Fd · ~u±). (6.22)

In order to introduce the entropy variable s± into our considerations, we will make use of

the Gibbs relation. After multiplying (6.15) by α±ρ± and passing to the material derivative,

one gets:

α±ρ±T±d
±s±

dt
= α±ρ±

d±e±

dt
− α±p

ρ±
d±ρ±

dt
.

Substituting (6.22) into the last relation and taking into account (6.19), leads to the re-

quested entropy Equation (6.16).

From lemma 2 we directly obtain the following equality:

α±ρ±θ±
d±p

dt
= α±ρ±

( p

(ρ±)2
− χ±

)d±ρ±
dt

+ α±ρ±T±d
±s±

dt
.

After substituting (6.16) and replacing
(

p
(ρ±)2

− χ±) by θ±(c±s )2, we obtain (6.18) and the

proof is completed.

Computations that we will perform below will be clearer if the governing Equations

(6.16) – (6.18) are recast in the vectorial form:

A(Vε)
∂Vε
∂t

+B(Vε)∇Vε = ∇ ·T(Vε) + S(Vε) +
R(Vε)

ǫ
, (6.23)
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where we introduced several notations. The vector Vε represents six unknown physical

variables Vε :=
t(s+, s−, ~u+, ~u−, p, α+) and ∂Vε

∂t
is the componentwise partial time derivative.

Symbol ∇Vε denotes this vector:

∇Vε := t
(
∇s+,∇s−, (·∇)~u+, (·∇)~u−,∇p,∇α+

)
.

Matrices A(Vε) and B(Vε) are defined as

A(Vε) :=




a+T 0 0 0 0 0

0 a−T 0 0 0 0

0 0 α+ρ+Id 0 0 0

0 0 0 α−ρ−Id 0 0

0 0 0 0 a+θ p+θ
0 0 0 0 a−θ −p−θ




B(Vε) :=




a+T ~u
+ 0 0 0 0 0

0 a−T ~u
− 0 0 0 0

0 0 α+ρ+~u+ 0 α+Id 0

0 0 0 α−ρ−~u− α−Id 0

0 0 α+p+θ Id 0 a+θ ~u
+ p+θ ~u

+

0 0 0 α−p−θ Id a−θ ~u
− −p−θ ~u−




,

where several symbols were introduced to shorten the notation:

p±θ := (ρ±)2(c±s )
2θ±, a±T := α±ρ±T±, a±θ := α±ρ±θ±.

In these matrix notations the size of zero entries must be chosen to make the multiplication

operation possible.

On the right hand side of (6.23), the work of viscous forces is denoted by symbol

∇ ·T(Vε) which is defined as

∇ ·T(Vε) :=
t(α+

τ
+ : ∇~u+ −∇ · (α+~q +), α−

τ
− : ∇~u− −∇ · (α−~q −),

∇ · (α+
τ
+),∇ · (α−

τ
−), α+

τ
+ : ∇~u+ −∇ · (α+~q +), α−

τ
− : ∇~u− −∇ · (α−~q −)).

The source term S(Vε) := t(0, 0, α+ρ+~g, α−ρ−~g, 0, 0) incorporates the gravity force and

R(Vε) contains the relaxation terms:

R(Vε) := κ
α+ρ+α−ρ−

α+ρ+ + α−ρ−

t(
~u− ~u+,−(~u− ~u−),

1,−1, ~u− ~u+,−(~u− ~u−)
)
× (~u+ − ~u−).
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Since we expect the limit Vε → V to be finite as ε → 0, necessary the limiting vector V

lies in the hypersurface R(V ) = 0. In terms of physical variables, it implies ~u = ~u+ = ~u−.

Consequently, we find our solution in the form of the following Chapman-Enskog type

expansion [CC95]:

Vε = V + εW + O(ε2).

After substituting this expansion into (6.23) and taking into account the fact that R(V ) ≡
0, at the leading order in ǫ one obtains:

A(V )
∂V

∂t
+B(V )∇V = ∇ ·T(V ) + S(V ) +R′(V )W, (6.24)

where

R′(V ) := κ
α+ρ+α−ρ−

α+ρ+ + α−ρ−




0 0 0 0 0 0

0 0 0 0 0 0

0 0 Id −Id 0 0

0 0 −Id Id 0 0

0 0 0 0 0 0

0 0 0 0 0 0




Henceforth, we make a technical assumption of the presence of both phases in any point

x ∈ Ω of the flow domain. Mathematically it means that 0 < α+ < 1. Since α+ + α− = 1,

obviously the same inequality holds for α−. Otherwise, the relaxation process physically

does not make sense and we will have some mathematical technical difficulties.

Under the aforementioned assumption, the matrix A(V ) is invertible. Hence, we can

multiply on the left both sides of (6.24) by PA−1(V ) where the projection matrix P is to

be specified below:

P
∂V

∂t
+PA−1(V )B(V )∇V = PA−1(V )∇ ·T(V ) +PR̃′(V )W +PA−1(V )S(V ), (6.25)

where R̃′(V ) := A−1(V )R′(V ) and has the following components

R̃′(V ) = κ
α+ρ+α−ρ−

α+ρ+ + α−ρ−




0 0 0 0 0 0

0 0 0 0 0 0

0 0
1

α+ρ+
Id − 1

α+ρ+
Id 0 0

0 0 − 1

α−ρ−
Id

1

α−ρ−
Id 0 0

0 0 0 0 0 0

0 0 0 0 0 0




The vector of physical variables V has six components (in 1D):

V = t(s+, s−, ~u, ~u, p, α+)
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and only five are different. In order to remove the redundant information, we will intro-

duce the new vector U defined as U := t(s+, s−, ~u, p, α+). The Jacobian matrix of this

transformation can be easily computed:

J :=
∂V

∂U
=




1 0 0 0 0

0 1 0 0 0

0 0 Id 0 0

0 0 Id 0 0

0 0 0 1 0

0 0 0 0 1




.

In new variables Equation (6.25) becomes:

PJ
∂U

∂t
+PA−1(U)B(U)J∇U = PA−1(U)∇ ·T(U) +PR̃′(U)W +PA−1(U)S(U). (6.26)

Now we can formulate two conditions to construct the matrix P. First of all, the

vector W is unknown and we need to remove it from Equation (6.26). Hence, we require

PR̃′(V ) = 0. Then, we would like the governing equations to be explicitly resolved with

respect to time derivatives. It gives us the second condition PJ = Id. The existence and

effective construction of the matrix P satisfying two aforementioned conditions

PR̃′(V ) = 0, PJ = Id,

are discussed below. Presented in this section results follow in great lines [MG05].

We will consider a slightly more general setting. Let be vector V ∈ Rn and its reduced

counterpart U ∈ Rn−k, k < n. In such geometry, R̃′(V ) ∈ Matn,n(R), J ∈ Matn,n−k(R)

and, consequently, P ∈ Matn−k,n(R). Here, the notation Matm,n(R) denotes the set of

m × n matrices with coefficients in R. We have to say also that from algebraic point of

view, matrices R̃′(V ) andR′(V ) are completely equivalent. Thus, for the sake of simplicity,

the following propositions will be formulated in terms of the matrix R′(V ).

Lemma 3. The columns of the Jacobian matrix J form a basis of ker
(
R′(V )

)
.

Proof. If we differentiate the relation R(V ) = 0 with respect to U , we will get the identity

R′(V )J = 0. It implies that range
(
J
)
⊆ ker

(
R′(V )

)
. By direct computation one verifies

that dim range
(
R′(V )

)
= k. From the well-known identity range

(
R′(V )

)
⊕ ker

(
R′(V )

)
=

Rn, one concludes that dim ker
(
R′(V )

)
= n − k. But in the same time, the rank of J is

equal to n− k as well. It proves the result.

Theorem 5. We suppose that for all V , range
(
R′(V )

)
∩ ker

(
R′(V )

)
= {0} then there

exists a matrix P ∈ Matn−k,n(R) such that PR′(V ) = 0 and PJ = Idn−k.
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Proof. Assumption range
(
R′(V )

)
∩ ker

(
R′(V )

)
= {0} implies that

range
(
R′(V )

)
⊕ ker

(
R′(V )

)
= R

n.

From Lemma 3 it follows that range
(
J
)
= ker

(
R′(V )

)
. Thus, the space Rn can be also

represented as a direct sum range
(
R′(V )

)
⊕range

(
J
)
. We will define P to be the projection

on ker
(
R′(V )

)
≡ range

(
J
)
. Since obviously R′(V ) ∈ range

(
R′(V )

)
and J ∈ range

(
J
)
, we

have two required identities: PJ = Idn−k and PR′(V ) = 0.

Now, in order to compute effectively the projection matrix P, we will construct an

auxiliary matrix D(V ) = [J1, . . . , Jn−k, I1, . . . , Ik], where J i is the column i of the matrix

J and {I1, . . . , Ik} are vectors which form a basis of range
(
R′(V )

)
. We remark that

PD(V ) = [Idn−k, 0]. Lemma 3 implies that the matrix D(V ) is invertible. Thus, the

projection P can be computed by inverting D(V ):

P = [Idn−k, 0] ·D−1(V ). (6.27)

Let us apply this general framework to our model (6.25), where n = 6 and k = 1. The

matrix D(V ) and its inverse D−1(V ) take this form:

D(V ) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 Id 0 0 m−Id

0 0 Id 0 0 −m+Id

0 0 0 1 0 0

0 0 0 0 1 0




, D−1(V ) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 m+Id m−Id 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 Id −Id 0 0




,

where m± are mass fractions defined in Remark 34.

Now, the projection matrix P can be immediately computed by (6.27):

P =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 m+Id m−Id 0 0

0 0 0 0 1 0

0 0 0 0 0 1



.

Finally, after computing all matrix productsPA−1(U)B(U)J, PA−1(U)∇·T(U), PA−1(U)S(U)

present in Equation (6.26), we obtain the following model:

α±ρ±T±ds
±

dt
= α±

τ
± : ∇~u± −∇ · (α±~q ±), (6.28)

ρ
d~u

dt
+∇p = ρ~g +∇ · τ , (6.29)
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Π
(dp
dt

+ ρc2s∇ · ~u
)
=
ρ−(c−s )

2

θ+ρ+
(
α+

τ
+ : ∇~u−∇ · (α+~q +)

)

+
ρ+(c+s )

2

θ−ρ−
(
α−

τ
− : ∇~u−∇ · (α−~q −)

)
, (6.30)

Π
(dα+

dt
+ α+α−δ∇ · ~u

)
=

α−

θ+ρ+
(
α+

τ
+ : ∇~u−∇ · (α+~q +)

)

− α+

θ−ρ−
(
α−

τ
− : ∇~u−∇ · (α−~q −)

)
, (6.31)

where ρ = α+ρ+ + α−ρ− is the mixture density (6.10), c2s physically is the sound velocity

in the mixture:

Πρc2s := ρ+(c+s )
2ρ−(c−s )

2. (6.32)

To shorten the notation, we also introduced a quantity δ defined by

Πδ := ρ+(c+s )
2 − ρ−(c−s )2 (6.33)

and Π := α−ρ+(c+s )
2 + α+ρ−(c−s )

2.

The viscous stress tensor of the mixture is defined as τ := α+
τ
++α−

τ
−. If both fluids

are assumed to be Newtonian (6.7), we can express it in closed form:

τ := λ trD(~u)Id + 2µD(~u), λ := α+λ+ + α−λ−, µ := α+µ+ + α−µ−.

Similarly, the thermal flux ~q in the mixture is given by this formula:

~q := α+~q + + α−~q −.

For practical computations it is better to rewrite Equations (6.28) – (6.31) in conserva-

tive form [Lax73, GR96] which is valid for discontinuous solutions as well. After repeating

in inverse sense computations from Theorem (4) one obtains the following system:

∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (6.34)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u+ pId) = ρ~g +∇ · τ , (6.35)

∂t(ρE) +∇ · (ρH~u) = ρ~u · ~g +∇ · (τ~u)−∇ · ~q . (6.36)

If we neglect viscous stress τ and thermal flux ~q , we will obtain the so-called four

equations model recently proposed by F. Dias, D. Dutykh and J.-M. Ghidaglia [Dut07,

DDG08c, DDG10, DDG08b] for simulation of violent aerated flows. Formal computations

presented in this study can be considered as a step towards justification of the four equa-

tions model. It can be also shown [DDG10], that the advection operator of Equations

(6.34) – (6.36) is hyperbolic for quite general equations of state (6.8). Hence, derived here

four equations model is very attractive from modeling and computational point of view.
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6.1.4 Invariant regions

Consider only the hyperbolic part of the system (6.34) – (6.36) together with source

terms due to gravity:

∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (6.37)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u+ pId) = ρ~g, (6.38)

∂t(ρE) +∇ · (ρH~u) = ρ~u · ~g. (6.39)

In this section we would like to study the preservation of invariant regions under the

dynamics of the system (6.37) – (6.39). This property is very important in practice for

stability of computations. Namely, from physical sense and from definition (6.1) of volume

fractions α± it follows that 0 ≤ α± ≤ 1, ∀(x, t) ∈ Ω × [0, T ]. The question we address

here is whether the region 0 ≤ α± ≤ 1 remains invariant under the system (6.37) – (6.39)

dynamics. This property can be checked only for α+, for example, since α++α− = 1. If the

answer is negative, the model can be hardly applied to any practical situation. Positive

result was already proved for a barotropic model with two velocities in [BDGG09]. In

the same work of Bresch et al. (2009) it was also shown that two-phase mixtures of

compressible/incompressible fluids do not preserve the invariant regions.

The notion of invariant regions is due to Chueh, Conley and Smoller [CCS77]. Inde-

pendently it was also introduced by Weinberger [Wei75] for scalar parabolic equations.

In order to handle this problem, it is more convenient to rewrite Equations (6.37) –

(6.39) in terms of the so-called physical variables W =t (~u, p, α+, s). The derivation of the

equation for the velocity ~u evolution is straightforward. Equations for thermodynamical

variables p, α+ and s are trickier to obtain. However, it was already done in [DDG08b,

DDG10] and partially above (see Equations (6.28) – (6.31)):

Lemma 4. Smooth solutions to Equations (6.37) – (6.39) satisfy the following quasilinear

system:

∂t~u+ ~u · ∇~u+ ∇p
ρ

= ~g, (6.40)

∂tp+ ~u · ∇p+ ρc2s∇ · ~u = 0, (6.41)

∂tα
+ + ~u · ∇α+ + α+α−δ∇ · ~u = 0, (6.42)

∂ts+ ~u · ∇s = 0, (6.43)

where ρc2s and δ are defined in (6.32) and (6.33) respectively.

Proof. For the proof see, for example, Dias et al. (2009) [DDG10] where the authors worked

with an auxiliary variable α := α+ − α−. Taking into account the relation α+ + α− = 1,



6.1 Velocity and energy relaxation in two-phase flows 275

one can express the volume fractions in terms of α: α± =
1± α
2

. Consequently, α+α− =

1− α2

4
.

Corollary 1. System (6.40) – (6.43) which governs the evolution of physical variables can

be recast under the following matricial form:

∂W

∂t
+M(W )

∂W

∂x
= S(W ), (6.44)

where W = (~u, p, α+, s), source terms S(W ) = t(~g, 0, 0, 0) and if ~n = (n1, n2, n3) is a

normal direction, un = ~u · ~n is a normal velocity, then

M(W )~n =

3∑

i=1

Mi(W )ni =




un 0 0 1
ρ
n1 0 0

0 un 0 1
ρ
n2 0 0

0 0 un
1
ρ
n3 0 0

ρc2sn1 ρc2sn2 ρc2sn3 un 0 0

α+α−δn1 α+α−δn2 α+α−δn3 0 un 0

0 0 0 0 0 un




.

Now we can state the main result:

Theorem 6. For smooth solutions to Equations (6.37) – (6.39), the region 0 ≤ α± ≤ 1

remains invariant under the system dynamics.

Proof. The proof is based on the theory of J. Smoller [Smo94]. We know that the value

α− = 0 corresponds to W5 = α+ = 1. Obviously, the case α+ = 0 can be treated

similarly with the same conclusions. The matrices Mi(W ) are smooth functions of W in

the neighborhood of W which satisfies W5 ∈ [0, 1]. We would like to check whether the

boundary W5 = 1 is invariant under the dynamics of (6.44). According to the theory of

invariant regions by Chueh, Conway and Smoller ([CCS77]), this will be the case if and

only if d(W5 − 1) = dW5 = (0, 0, 0, 0, 1, 0) is a left eigenvector of matrices Mi(~u, p, 1, s) for

all admissible values of ~u, p and s. By straightforward computation one can easily check

that

(0, 0, 0, 0, 1, 0) ·Mi(~u, p, 1, s) = ~ui(0, 0, 0, 0, 1, 0).

The theorem is shown now.

Remark 36. The present result shows also that if negative values of volume fractions α±

are reported in simulations, they are due to some numerical instabilities and have nothing

to do with mathematical properties of the four equations model (6.37) – (6.39).
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6.1.5 Incompressible limit

In practice, there are many situations when governing equations can be further sim-

plified by filtering out acoustic effects. For various combustion models it was done by A.

Majda and his collaborators [Maj82, KM82, MS85]. More recently these techniques were

applied to some two-phase models [KPTV00, Del05, Del07].

In the present section we derive the incompressible limit of the four equations model

(6.34) – (6.36). For the sake of simplicity we will neglect thermal fluxes which are not

important for the exposition below and do not directly affect acoustic waves propagation.

Hence, in this section we consider the following set of equations in nonconservative form

for convenience:

∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (6.45)

ρ∂t~u+ ρ(~u · ∇)~u+∇p = ρ~g +∇ · τ , (6.46)

ρ∂te+ ρ~u · ∇e+ p∇ · ~u = τ : ∇~u, (6.47)

where we expressed the energy balance in terms of the internal energy e.

In order to estimate the relative importance of various terms, we introduce dimension-

less variables. In this section we use the special low Mach number scaling which reveals

acoustic effects magnitude. The characteristic length, time, and velocity scales are denoted

by ℓ, t0 and U0 respectively. For example, ℓ can be chosen as a linear dimension of the fluid

domain Ω. The density, viscosity and sound velocity scales are chosen to be those of the

heavy fluid, i.e. ρ+0 , ν
+
0 and c+0s correspondingly. Since we are interested in acoustic effects,

the natural pressure scale is given by ρ+0 (c
+
0s)

2. If we summarize these remarks, dependent

and independent dimensionless variables (denoted with primes) are defined as:

x′ :=
x

ℓ
, t′ :=

t

t0
, (ρ±)′ :=

ρ±

ρ+0
, (µ±)′ :=

µ±

ρ+0 ν
+
0

,

~u′ :=
~u

U0
, p′ :=

p

ρ+0 (c
+
0s)

2
, e′ :=

e

U2
0

.

Since the volume fraction is dimensionless by definition (6.1) we keep this variable un-

changed.

After dropping the tildes, nondimensional system (6.45) – (6.47) of equation becomes:

St ∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (6.48)

St ρ∂t~u+ ρ(~u · ∇)~u+ 1

Ma2
∇p = 1

Fr2
ρ~g +

1

Re
∇ · τ , (6.49)

St ρ∂te+ ρ~u · ∇e+ 1

Ma2
p∇ · ~u =

1

Re
τ : ∇~u, (6.50)

where several scaling parameters appear:
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• Strouhal number St :=
ℓ

U0t0
. In this study we will assume the Strouhal number

to be equal to one St ≡ 1, i.e. t0 =
ℓ

U0
.

• Mach number Ma :=
U0

c+0s
which measures the relative importance of the flow speed

and the sound speed in the medium.

• Froude number Fr :=
U0√
gℓ

compares inertia and gravity forces.

• Reynolds number Re :=
U0ℓ

ν+0
gives the measure of the ratio of inertial to viscous

forces.

In this section we will consider the asymptotic limit as Ma→ 0. Consequently, all physical

variables α±, ρ±, p, ~u and e are expanded in formal series in powers of the Mach number:

φ = φ0 +Ma φ1 +Ma2φ2 + . . . , φ ∈ {α±, ρ±, p, ~u, e}. (6.51)

Formal expansion (6.51) is then substituted into the system (6.48) – (6.50). Our goal is

to derive a system which governs the evolution of physical variables at the lowest order in

the Mach number (e.g. ~u0, α
±
0 , etc.). Equation (6.49) at orders Ma−2 and Ma−1 leads:

∇p0 = ∇p1 = 0.

In other words, p0 = p0(t) and p1 = p1(t) are only functions of time. Internal energy

balance equation (6.50) gives us the incompressibility constraint ∇ · ~u0 = 0 at the leading

order Ma−2 and, correspondingly, ∇ · ~u1 = 0 at the order Ma−1.

Relation (6.3) after asymptotic expansion (6.51) becomes

α+
k (x, t) + α−

k (x, t) = δ0k,

where δ0k is the Kronecker delta symbol equal to 1 if k = 0 and 0 otherwise. Thus, at the

leading order in Mach number we keep usual relations:

α+
0 + α−

0 = 1, ρ0 = α+
0 ρ

+
0 + α−

0 ρ
−
0 .

Equations (6.48), (6.49) at the order Ma0 become:

∂t(α
±
0 ρ

±
0 ) +∇ · (α±

0 ρ
±
0 ~u0) = 0, (6.52)

ρ0∂t~u0 + ρ0(~u0 · ∇)~u0 +∇π =
1

Fr2
ρ0~g +

1

Re
∇ · τ 0, (6.53)
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where by π we denote the pressure oscillations p2 at the order Ma2.

Finally, some information on the behaviour of ρ±0 can be deduced from the Gibbs

relation (6.15) which takes the following dimensionless form:

T±ds± = de± − p

Ma2(ρ±)2
dρ±.

After dividing by dt and expanding the Gibbs relation as in (6.51) we get these results:

dρ±0
dt

= 0,
dρ±1
dt

= 0. (6.54)

In particular, it means that if in each phase the density ρ±0,1 was initially constant1, it

remains so under the system dynamics. Moreover, taking into account the first relation in

(6.54) and the flow incompressibility constraint ∇ · ~u0 = 0, one can easily deduce from the

mass conservation Equations (6.52) that volume fractions α±
0 are also simply transported

by the flow:

∂tα
±
0 + ~u0 · ∇α±

0 = 0.

If we summarize all the developments made above and turn back to physical variables,

we will get the following system of equations which governs an incompressible two-phase

flow:

∂tα
± + ~u · ∇α± = 0, (6.55)

∇ · ~u = 0, (6.56)

ρ∂t~u+ ρ(~u · ∇)~u+∇π = ρ~g +∇ · τ , (6.57)

where we dropped the index 0 to simplify the notation. The mixture density ρ and the vis-

cous stress tensor τ are defined as above. This system should be completed by appropriate

boundary and initial conditions.

Remark 37. Two-fluid incompressible models, such as the system just derived above (6.55)

– (6.57), are often used in many practical situations such as wave breaking [CKZL99] and

others [SZ99]. For powder-snow avalanches applications, the volume fraction Equation

(6.55) is completed by a diffusive term according to the Fick’s law:

∂tα
± + ~u · ∇α± = ∇ · (νf∇α±).

This extra term allows to take into account the mixing between two fluids due to turbu-

lence effects, for example. For more details on this extension we refer to [JR93, ESH04,

DARB10].
1This assumption is often made in applications. For example, pure water and pure air are assumed

to have constant densities under normal conditions. However, the mixture density can undergo strong

variations (e.g. after the wave breaking).
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6.1.6 Numerical results

In the present section we will consider only the advective part of the system (6.34) –

(6.36), i.e. we neglect viscous and thermal fluxes:

∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (6.58)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u+ pId) = ρ~g, (6.59)

∂t(ρE) +∇ · (ρH~u) = ρ~u · ~g. (6.60)

Actually, the system we consider here is stiffer than the original Equations (6.34) – (6.36)

since it does not contain any diffusive effects. The resulting equations have been shown

to be hyperbolic for any reasonable equation of state [DDG10, DDG08b]. For illustrative

purposes we assume here that both fluids are governed by stiffened gas type laws:

p± + π± = (γ± − 1)ρ±e±, e± = c±v T
± +

π±

γ±ρ±
,

where γ±, π± and c±v are some constants determined by physical properties of pure fluids

under consideration. Also we assume that two fluids are in the thermodynamic equilibrium:

p ≡ p+ = p−, T ≡ T+ = T−.

We refer to [Dut07, DDG10, DDG08b] for more details on the construction of this equation

of state and the discussion of some properties of such two-phase mixtures.

6.1.6.1 Numerical schemes

For the numerical study we choose the finite volumes method [Kro97, BO04] since it

is the method of choice for the systems of conservation laws due to its excellent local

conservative properties. More precisely, we use the cell-centered approach [BJ89, Bar94]

which is more natural in our opinion. For simplicity we assume that the system of equations

is solved in R2. However the extension to 3D for cartesian meshes is straightforward. We

briefly describe below the discretization procedure adopted in this study. References are

also provided if more details of the discretization method are needed.

6.1.6.1.1 Space discretization System (6.58) – (6.60) can be written as

∂ ~w

∂t
+∇ · F(~w) = S(~w) , (6.61)

where

~w = (wi)
5
i=1 := (α+ρ+, α−ρ−, ρu1, ρu2, ρE) ,
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and, for every ~n = (n1, n2) ∈ R2,

F(~w) · ~n = (α+ρ+~u · ~n, α−ρ−~u · ~n, ρ~u · ~nu1 + pn1,

ρ~u · ~nu2 + pn2, ρH~u · ~n) , (6.62)

S(~w) = (0, 0, ρg1, ρg2, ρ~g · ~u) .
Then, the Jacobian matrix A(~w) · ~n is defined by

An(~w) := A(~w) · ~n =
∂(F(~w) · ~n)

∂ ~w
. (6.63)

In order to compute A(~w) ·~n, one writes Equation (6.62) for F(~w) ·~n in terms of ~w and

p:

F(~w) · ~n =
(
w1
w3n1 + w4n2

w1 + w2
, w2

w3n1 + w4n2

w1 + w2
, w3

w3n1 + w4n2

w1 + w2
+ pn1,

w4
w3n1 + w4n2

w1 + w2

+ pn2, (w5 + p)
w3n1 + w4n2

w1 + w2

)
.

The Jacobian matrix (6.63) then has the following expression:

A(~w) · ~n =


un
α−ρ−

ρ
−un α+ρ+

ρ
α+ρ+

ρ
n1

α+ρ+

ρ
n2 0

−un α−ρ−

ρ
un

α+ρ+

ρ
α−ρ−

ρ
n1

α−ρ−

ρ
n2 0

−u1un + ∂p
∂w1

n1 −u1un + ∂p
∂w2

n1 un + u1n1 +
∂p
∂w3

n1 u1n2 +
∂p
∂w4

n1
∂p
∂w5

n1

−u2un + ∂p
∂w1

n2 −u2un + ∂p
∂w2

n2 u2n1 +
∂p
∂w3

n2 un + u2n2 +
∂p
∂w4

n2
∂p
∂w5

n2

un
(

∂p
∂w1
−H

)
un
(

∂p
∂w2
−H

)
un

∂p
∂w3

+Hn1 un
∂p
∂w4

+Hn2 un
(
1 + ∂p

∂w5

)



,

where un = ~u · ~n.
The computational domain Ω ⊂ R2 is decomposed into a set of control volumes T such

that Ω = ∪K∈TK. We integrate Equation (6.61) on K:

d

dt

∫

K

~w dΩ+
∑

L∈N(K)

∫

K∩L
F(~w) · ~nKL dσ =

∫

K

S(~w) dΩ , (6.64)

where ~nKL denotes the unit normal vector onK∩L pointing into L andN(K) = {L ∈ T : area(K ∩ L) 6=
Then, setting

~wK(t) :=
1

vol(K)

∫

K

~w(x, t) dΩ ,

we approximate (6.64) by

d~wK

dt
+

∑

L∈N(K)

area(L ∩K)

vol(K)
Φ(~wK , ~wL;~nKL) = SK ,
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where the numerical flux

Φ(~wK , ~wL;~nKL) ≈
1

area(L ∩K)

∫

K∩L
F(~w) · ~nKL dσ

is explicitly computed by the FVCF formula of Ghidaglia et al. [GKC01]:

Φ(~wK , ~wL;~n) =
F(~wK) · ~n + F(~wL) · ~n

2

− sign(An(µ(~wK , ~wL)))
F(~wK) · ~n− F(~wL) · ~n

2
. (6.65)

Here the Jacobian matrix An(µ) is defined in (6.63), µ(~wK , ~wL) is an arbitrary mean

between ~wK and ~wL and sign(M) is the matrix whose eigenvectors are those of M but

whose eigenvalues are the signs of that ofM . In this section we did not deal with boundary

conditions. We refer to [GP05] for more details.

6.1.6.1.2 Higher order extension In the previous section we described the first order

scheme which might be too diffusive for most practical applications. That is why we

present here a higher-order extension which is a variant of MUSCL2 limiting technique

[Kol75, Kol72, vL79, vL06]. This numerical method ensures stability and non-oscillatory

behaviour of numerical solutions. To describe this scheme we switch to Cartesian notation

since a bigger stencil is needed for the gradient reconstruction procedure. In this notation

~wi denotes the average of conservative variables in the cell i and ~wL,R

i+ 1

2

denotes respectively

reconstructed left and right states at cell faces. According to the method adopted in the

current study [Bar94, BO04, TMD07], cell faces values are computed as:

~wL
i+ 1

2

= ~wi +
1

4

(
(1− κ)φ(rLi )(~wi − ~wi−1) + (1 + κ)φ

( 1
rLi

)
(~wi+1 − ~wi)

)
, (6.66)

~wR
i+ 1

2

= ~wi+1 −
1

4

(
(1− κ)φ(rRi )(~wi+2 − ~wi+1) + (1 + κ)φ

( 1

rRi

)
(~wi+1 − ~wi)

)
, (6.67)

where κ ∈ [−1, 1) is a free parameter and

rLi :=
~wi+1 − ~wi

~wi − ~wi−1

, rRi :=
~wi+1 − ~wi

~wi+2 − ~wi−1

.

Then, reconstructed values ~wL,R

i+ 1

2

are used to compute the numerical flux (6.65) of the

FVCF scheme.

The function φ(r) is called the limiter function and is incorporated to obtain non-

oscillatory resolution of discontinuities and steep gradients [BB73, Swe84]. We tested in

practice two following limiter functions:

2Acronym MUSCL stands for Monotone Upstream-centered Scheme for Conservation Laws [vL79]
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• M3 limiter proposed in [ZD98, TMD07]:

φM3(r) = 1−
(
1 +

2Nr

1 + r2

)(
1− 2r

1 + r2

)N
, N = 2, (6.68)

• MinMod limiter with compression parameter [Bar94, BO04]:

φMM(r) = max{0,min{r, β}}, β ∈
(
1,

3− κ
1− κ

]
. (6.69)

In the smooth unlimited form (φ(r) ≡ 1), the truncation error ε for a scalar conservation

law with the smooth flux f(u) is given by [Bar94, BO04]:

ε = −
(
κ− 1

3

)

4
∆x2

∂3f(u)

∂x3
.

Consequently, for κ = 1
3
, the scheme provides theoretically in smooth regions an overall

spatial discretization with O(∆x3) error. In computations presented below, we use the

optimal choice of this parameter together with M3 limiter (6.68).

Remark 38. If the limiter function is symmetric, i.e.

φ(r)

r
≡ φ

(1
r

)
,

the reconstruction formulas (6.66), (6.67) are independent of the parameter κ and degen-

erate to the classical MUSCL2 scheme. It is straightforward to show that limiter functions

(6.68) and (6.69) are not symmetric.

6.1.6.1.3 Time discretization In the previous section we briefly described the spatial

discretization procedure with some finite-volume scheme. It is a common practice in solving

time-dependent PDEs to first discretize the spatial variables. This approach is called a

method of lines:
∂ ~w

∂t
+∇ · F(~w) = S(~w)

FV
=⇒ ~wt = L(~w),

where L(~w) is a space discretization operator. In order to obtain a fully discrete scheme,

we have to discretize the time evolution operator. In the present work we decided to retain

the so-called Strong Stability-Preserving (SSP) time discretization methods described in

[Shu88, GST01, SR02]. Historically these methods were initially called Total Variation

Diminishing (TVD) time discretizations. However, this term is not completely correct.

In computations presented below we use the following third order four-stage SSP-RK(3,4)
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Velocity, u Density, ρ± Volume fraction, α+ Pressure, p

Heavy fluid, + 0.0 1.0 0.98 1.0

Light fluid, − 0.0 0.125 0.02 0.1

Table 6.1: Initial condition parameters for the two-fluid Sod shock tube problem.

scheme with CFL = 2:

~w(1) = ~w(n) +
1

2
∆tL(~w(n)),

~w(2) = ~w(1) +
1

2
∆tL(~w(1)),

~w(3) =
2

3
~w(n) +

1

3
~w(2) +

1

6
∆tL(~w(n)),

~w(n+1) = ~w(3) +
1

2
∆tL(~w(3)),

where ~w(n) = ~w(·, tn) and ~w(n+1) = ~w(·, tn+1).

The time step is chosen adaptively to satisfy the following stability condition [CFL67]:

∆t ≤ CFL ·∆xmin

max{|u+ cs|max, |u− cs|max}
,

where ∆xmin is the minimal mesh spacing, u is the velocity and cs is the sound speed in

the mixture (6.32).

Remark 39. Presented above time step restriction is used together with the first order

finite volumes scheme. The application of the MUSCL3 scheme requires the following

modification of the CFL condition:

∆t ≤ 1− κ
2− κ ·

CFL ·∆xmin

max{|u+ cs|max, |u− cs|max}
.

6.1.6.2 Two-fluid Sod shock tube problem

We present here a two-fluid generalization of the classical Sod shock tube problem

[Sod78]. The sketch of the initial condition is given on Figure 6.3. The gravity force is

not taken into account in this test case, i.e. ~g = ~0. Values of all parameters used in this

computation are given in Tables 6.1 and 6.2.

The simulation was stopped at time T = 0.4 s and the computation results are presented

on Figures 6.4 and 6.5. On all Figures we show the total density ρ plots and perform a

comparison between FVCF and MUSCL3 schemes. Figure 6.4 shows the behaviour of the
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L = 2

ℓ = 1

α+, ρ+, p+ α−, ρ−, p−

u = 0 u = 0

Figure 6.3: Sketch of the initial condition for the Sod shock tube test case.

γ± π±, Pa c±v ,
J

kg·K

Heavy fluid, + 2.6 0.0 661.0

Light fluid, − 1.4 0.0 661.0

Table 6.2: Equation of state parameters for the two-fluid Sod shock tube problem.
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Figure 6.4: Convergence of the solution with h-refinement.
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Figure 6.5: Convergence of the solution with p-refinement.

solution when the mesh is refined. Left image shows the results of the first order FVCF

scheme, while the right one refers to the MUSCL3 extension. The improvement of the

solution is obvious in both cases. In particular, we would like to underline the excellent

shock resolution by the higher order scheme (Figure 6.4 (b)).

We perform also the comparison between two schemes (see Figure 6.5) for the same

mesh size. As it was expected, higher order scheme greatly improves the sharp resolution

of discontinuities for nearly comparable CPU time. Thus, there is an obvious interest in

using MUSCL type schemes for practical applications.

This test case clearly shows the convergence of the numerical solution when the mesh

is refined (h-convergence), but also with respect to the scheme order (p-convergence).

Consequently, it validates our numerical code. In all subsequent computations we use the

MUSCL3 scheme with the optimal choice of the parameter κ = 1
3
.

6.1.6.3 Water drop test case

The sketch of this numerical experiment is given on Figure 6.6. The values of parameters

are given in Table 6.3. Initially the velocity field is taken to be zero and the pressure field

is uniform in all domain p0 = 10 Pa. The gravity force is taken to be g = 10 m/s2 and

the computational domain is discretized with a uniform grid of 100× 100 control volumes.

Results of this simulation are presented in Figures 6.7 – 6.10. A similar test case has

already been considered in [Dut07, DDG10, DDG08b] and results are in good qualitative

agreement.
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ℓ

b
(x0, y0)

r0

α−, ρ−

g

Figure 6.6: Sketch of the initial condition and computational domain geometry for the water

drop test case. In our simulation we took the following values of geometrical parameters: ℓ = 1.0

(the domain is square), r0 = 0.15, x0 = 0.5 and y0 = 0.7. The gravity acceleration is taken to be

g = 10 m/s2.

γ± π±, Pa c±v ,
J

kg·K ρ±, kg
m3 α+

Heavy fluid, + 1.6 0.0 1.0 5.0 0.99

Light fluid, − 1.4 0.0 1.0 1.0 0.01

Table 6.3: Equation of state parameters for the water drop test case.

(a) t = 0.1 s (b) t = 0.2 s

Figure 6.7: Water drop test case: initial acceleration and deformation stage.
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(a) t = 0.3 s (b) t = 0.4 s

Figure 6.8: Water drop test case: falling and further deformation of the drop.

(a) t = 0.5 s (b) t = 0.6 s

Figure 6.9: Water drop hitting the tank bottom.
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(a) t = 0.7 s (b) t = 0.8 s

Figure 6.10: Water drop flow on the bottom.

6.1.7 Perspectives and conclusions

In this study we considered several two-fluid models. We began the exposition by the

so-called six equations model (6.4) – (6.6). Despite recent progress [ACOR95, GKC96,

TKP99, GKC01, BG05, SFW+05, BQ06, Rov06, NKDVLG08, GCMM09], this system

still represents some major difficulties for the numerical solution. Namely, the advection

operator may be non-hyperbolic and contains non-conservative terms to be defined in some

sense for discontinuous solutions. That is why, the six equations model was simplified

through the velocity and energy relaxation process (see Section 6.1.3). In this way, we

formally derived the so-called four equations model (6.34) – (6.36) recently proposed as a

model for violent aerated flows [Dut07, DDG08c, DDG10, DDG08b]. Thus, the present

work can be considered as an attempt towards further comprehension and at least formal

justification of single velocity, single energy two-phase models. The resulting system (6.34)

– (6.36) is hyperbolic for any reasonable equation of state [DDG10] and possesses several

nice properties. In particular, in Section 6.1.4 we show that invariant regions α± ∈ [0, 1] are

preserved under the system dynamics. This property is necessary for the well-posedness of

the system. In Section 6.1.5 we also formally derived the incompressible limit as the Mach

number tends to zero. As a result, we recover usual two-fluid incompressible Navier-Stokes

equations [PZ99, SZ99, CKZL99] if both fluids are assumed to be Newtonian. Finally,

several numerical results are presented in Section 7.1.3.



Chapter 7

Two-fluid flows

Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the

fruits of mathematics.

Leonardo da Vinci

The Book of Nature is written in mathematical characters, without whose help it is impossible

to comprehend a single word, without which one wanders in vain through a dark labyrinth.

Galileo Galilei
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7.1 Mathematical modeling of powder-snow avalanche flows

No snowflake in an avalanche ever feels responsible.

Voltaire

There is no branch of mathematics, however abstract, which may not some day be applied to

phenomena of the real world.

Nikolai Lobatchevsky

Abstract. Powder-snow avalanches are violent natural disasters which

represent a major risk for infrastructures and populations in mountain re-

gions. In this study we present a novel model for the simulation of avalanches

in the aerosol regime. The second scope of this study is to get more insight

into the interaction process between an avalanche and a rigid obstacle. An in-

compressible model of two miscible fluids can be successfully employed in this

type of problems. We allow for mass diffusion between two phases according to

the Fick’s law. The governing equations are discretized with a contemporary

fully implicit finite volume scheme. The solver is able to deal with arbitrary

density ratios. Encouraging numerical results are presented. Volume fraction,

velocity and pressure fields are presented and discussed. Finally we point out

how this methodology can be used for practical problems.

7.1.1 Introduction

Snow avalanches are commonly defined as abrupt and rapid gravity-driven flows of

snow down a mountainside, often mixed with air, water and sometimes debris (see Figure

7.1). Avalanches are physical phenomena of great interest, mainly because they represent

a big risk for those who live or visit areas where this natural disaster can occur. During

last several decades, the risk has increased due to important recreational and construction

activities in high altitude areas. We remember recent events at Val d’Isère in 1970 and in

Nothern Alps in 1999 [Anc01].

The avalanches arise from an instability in a pile of granular material like sand or snow

[TM08]. The destabilization phase of an avalanche life is still a challenging problem. There

are many factors which influence the release process. One can recall snowpack structure,

liquid contain, shape and curvature of starting zone and many others [Anc01]. In this

study we focus especially on sliding and stopping phases.

The serious research work on this natural phenomenon was preceded by the creation of

scientific nivology at the end of the XIXth century. Among the pioneers we can mention

Johann Coaz (swiss engineer) [Coa81] and P. Mougin (french forest engineer, author of the

first avalanche model using an analogy with a sliding block) [Mou22, Mou31]. The work of
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Figure 7.1: Two illustrations of powder-snow avalanche flows.

P. Mougin was ignored until the 1950s when A. Voellmy developed a similar model [Voe55].

Its somehow improved versions are still used by engineers nowadays.

We would like to point out here important contributions of the Soviet school by S.S.

Grigorian, M.E. Eglit, A.G. Kulikovskiy, Y.L. Yakimov and many others [GEY67, KE73,

BE73, BKK+75, KS77b, Egl83, Egl91, BL98, Egl98, BEN02]. They were at the origin of

all modern avalanche models used nowadays in the engineering practice and, sometimes, in

scientific research. Their works were mainly devoted to the derivation and comprehension of

mathematical models while occidental scientists essentially looked for quantitative results.

Conventionally we can divide all avalanches in two idealized types of motion: flowing

and powder-snow avalanches. A flowing avalanche is characterized by a high-density core

ranging from 100 to 500 kg/m3 and consists of various types of snow: pasty, granular,

slush, etc. The flow depth is typically about a few meters which is much smaller than

the horizontal extent. This argument is often used to justify numerous depth-integrated

models of the Savage-Hutter type1 [SH89, SH91]. These avalanches can cause extensive

damage because of the important snow masses involved in the flow in spite of their low

speed.

On the other hand, powder-snow avalanches are large-scale turbidity currents descend-

ing slopes at high velocities [RH04]. They seriously differ from flowing avalanches. These

1In hydrodynamics and hydraulics this type of modeling is also known as shallow water or Saint-Venant

equations [dSV71].
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Figure 7.2: Protecting wall in armed concrete at Taconnaz (Haute-Savoie, France) destroyed

by the powder-snow avalanche of the 11 February 1999. The height is 7 m and the thickness is

1.5 m (Photo by C. Ancey).

clouds can reach 100 m in height and very high front velocities of the order of 100 m/s.

They grow continously and the average density is fairly low (from 4 to 25 kg/m3). These

spectacular avalanches (see Figure 7.1) occur only under certain conditions (after abundant

fresh snowfalls, cold, dry and weakly cohesive snow on strong slopes) and they produce a

devastating pressure wave which breaks the trees, buildings, tears off the roofs, etc. During

the propagation stage, they are able to cross the valleys and even to climb up on the op-

posite slope. Hence, measurements by intrusive probes are almost impossible. Avalanches

in aerosol are not very frequent events in Alps but in the same time we cannot say they

are very seldom. In the technical literature there is an opinion that an avalanche in aerosol

is less destructive than a flowing one since the transported mass is much smaller. Never-

theless, recent events of the winter 1999 in Switzerland, Austria and France revealed the

important destructive potential of the powder-snow avalanches (see Figure 7.2).

Recently several systematic measurements campaigns in situ were conducted in Norway,

Switzerland and Japan [MS84, NTK90, NMKI93, NSKL95, DGBA00]. Researchers shed

some light on the internal structure of big avalanches. More precisely, they show that there

exists a dense part of the avalanche which remains permanently in contact with the bed.

This dense core is covered by the aerosol suspension of snow particles in the air. From these

results it follows that mentioned above two types of avalanches may coexist in nature and

proposed above classification is rather conventional. Perhaps, future studies will perform

a coupling between the dense core and powder-snow envelope in the spirit of SAMOS code

[SZ04].

Let us review various existing approaches to the mathematical modeling of snow avalanches.
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Generally, we have two big classes of mathematical models: probabilistic and deterministic.

In the present study we deal with a deterministic model and we refer to the works of K.

Lied and D.M. McClung [LB80, ML87, McC00, McC01] for more information on statisti-

cal approaches to avalanche modeling. Deterministic models can be further divided into

continuous and discrete ones depending whether the material under consideration can be

approximated as a continuum medium or not. For the review and some recent results on

dense granular flows we refer to following works [NKMN98, MN01, Raj02b, Raj02a, Raj05]

and the references therein. Some promising results were obtained with discrete models

based on cellular automata [DGRS+99, ADGM+00, DSI06].

The first contemporary avalanche models appeared in 1970 by soviet scientists Ku-

likovskiy and Sveshnikova [KS77b, BL98]. Later, their idea was exploited by Beghin

[Beg79, BB83, BO91] and others [HTD77, FP90, AU99, Anc04, RH04]. We call this type of

modeling 0D-models since the avalanche is assimilated to semi-elliptic cloud with variable

in time volume V (t), momentum (ρU)(t), etc. All quantities of interest are assimilated

to the center of mass and their dynamics is governed by conservation laws expressed as

Ordinary Differential Equations (ODE).

On the next complexity level we have various depth-integrated models. The governing

equations are of Shallow Water (or Saint-Venant [dSV71]) type. In general, they are de-

rived by depth averaging process or some asymptotic expansion procedure from complete

set of equations. Thus, a physical 3D (or 2D) problem results in a 2D model (1D corre-

spondingly). From computational point of view these models are very affordable even for

desktop computers. On the other hand, they provide us very approximative flow structure,

especially in the vertical direction.

In France, G. Brugnot and R. Pochat were among the pioneers [BP81] while in Soviet

Union this direction was explored in the beginning of 1970 by N.S. Bakhvalov et M.E. Eglit

[BE73, BKK+75]. Currently, each country concerned with the avalanche hazard, has its

own code based on this type of equations. Probably the most representative model is that

developed by S. Savage and K. Hutter [SH89]. Nowadays this set of equations is generally

referred as the Savage-Hutter model. We refer to [Hop83, Hut96] as general good reviews

of existing theoretical models and laboratory experiments.

This approach was further developed by incorporating more complex rheologies and

friction laws [GWH98, Hut91, HG93, MCVB+03, HWP05, FNBB+08]. To conclude on

this part of our review, we have to say that this modeling is more relevant to the flowing

avalanche regime which is characterized by the small ratio of the flow depth h to the

horizontal extent ℓ (i.e. h
ℓ
≪ 1).

Finally, we come to the so-called two-fluid (or two-phase) models. In this paradigm

both phases are resolved and, a priori, no assumption is made on the shallowness of the



294 Two-fluid flows

flow under consideration. Another advantage consists in fact that efforts exerted by the

ambient air on the sliding mass are naturally taken into account. From computational

point of view, these models are the most expensive [NG98, ESH04, Eti04, EHS05]. In the

same time, they offer quite complete information on the flow structure.

As it follows from the title, in this study we are mainly concerned with powder-snow

avalanches. We would like to underline that our modeling paradigm allows for taking

into account the dense core at the first approximation order. The density is completely

determined by the snow volume fraction distribution. This parameter can be used to

introduce a stratification in the initial condition, for example. Otherwise, it will happen

automatically due to mixing and sedimentation processes in the flow, provided we follow

its evolution for sufficiently long time.

We retained a simple incompressible two-fluid model which is described in detail in

Section 7.1.2. Two phases are allowed to interpenetrate, forming a mixing zone in the

vicinity of the interface. We make no Boussinesq-type hypothesis [Anc04] about the density

ratio. Moreover, our solver is robust and is able to deal with high density ratios (we

tested up to 3000). In nature, the flow under consideration is obviously highly turbulent

but at the present stage we do not incorporate any explicit turbulence modeling beyond

resolved scales. In the present study we focus mainly on the physically sound description

of incompressible highly inhomogeneous two-phase flows.

Good understanding of these natural phenomena can improve the risk assessment of

such natural hazards. Large scale experiments are not feasible2. Field measurements

during the event are very hazardous and the events are rare. Laboratory experiments on

powder-snow avalanches are essentially limited to Boussinesq clouds3 [Kel95, NBNBH02,

Pri03, NB03, PNBNF04] while it is not the case in nature. Thus, we do not really know

how these results apply to real-world events. Fortunately, some progress has been made

recently to remedy this situation [TM08].

Numerical simulations of avalanches provide useful information on the dynamics of

these flows. Computer experiments may become in term the main tool in testing various

situations. Experiments in silico should be complementary to those in situ or in laboratory.

Direct Numerical Simulations (DNS) provide complete information about all flow quantities

of interest such as the local density, the velocity field variations, the dynamic pressure and

the energy. Recall that this information is not easily accessible by means of measurements.

2However, we would like to notice that there are two experimental sites: one in Switzerland (Sion

Valley) and another one in France (Col d’Ornon). Unfortunately, field measurements provide very limited

information on the flow structure [DGA01], even if some a posteriori analysis may be beneficial [TM07].
3The Boussinesq regime corresponds to the situation when ρ+

−ρ−

ρ+ ≪ 1 where ρ± are densities of

the heavy and light fluids respectively. This asymptotics allows to introduce the so-called Boussinesq

approximation.



7.1 Mathematical modeling of powder-snow avalanche flows 295

dΩ1 dΩ2

Figure 7.3: An elementary fluid volume dΩ occupied by two phases.

The present paper is organized as follows. In Section 7.1.2 we present the governing

equations and some constitutive relations. Special attention is payed to the presence of

strong density gradients in the flow and to the kinetic energy balance of the resulting

system. The next Section 7.1.3 contains a brief description of the numerical methods and

numerous computation results are presented. Finally, this paper is ended by outlining main

conclusions and a few perspectives for future studies (see Section 7.1.4).

7.1.2 Mathematical model

In the present study we assume that an avalanche is a two-fluid flow formed by air

and snow particles in suspension. The whole system moves under the force of gravity. For

simplicity we assume that the mixture is a Newtonian fluid. The last assumption is not

so restrictive as it can appear. The flow under consideration is such that the Reynolds

number is very high (Re ∼ 109). Therefore, the transient behaviour is essentially governed

by the convective terms and not by the fluid rheology. On the contrary, the rheology is

very important in the flowing regime.

In two-fluid flows it is natural to operate with the so-called volume fractions [Ish75,

TK96, TKP99, GKC01]. Consider an elementary fluid volume dΩ surrounding an interior

point P ∈ dΩ. Let us assume that the first fluid occupies volume dΩ1 ⊆ dΩ and the second

the volume dΩ2 ⊆ dΩ (see Figure 7.3) such that

|dΩ| ≡ |dΩ1|+ |dΩ2|. (7.1)

The volume fraction of the fluid i = 1, 2 in the point P is defined as

φi(P ) := lim
|dΩ|→0

P∈dΩ

|dΩi|
|dΩ| .

From relation (7.1) it is obvious that φ1(P ) + φ2(P ) ≡ 1, for any point P in the fluid

domain. Henceforth, it is sufficient to retain only the heavy fluid volume fraction φ1, for

example, which will be denoted just by φ, for the sake of simplicity.

If we assume that constant densities and kinematic viscosities of the heavy and light

fluids are respectively ρ± and ν±, the mixture density ρ and the dynamic viscosity µ are
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defined as follows:

ρ = φρ+ + (1− φ)ρ−, µ = φρ+ν+ + (1− φ)ρ−ν−. (7.2)

In the following we assume that ρ+ 6= ρ−, otherwise the two-fluid modeling does not make

much sense.

After some simple algebraic computations, the mixture dynamic viscosity µ can be

expressed in terms of the mixture density ρ as:

µ = µ0 + ν̌ρ, (7.3)

where µ0 has the dimension of the dynamic viscosity [kg/(m ·s)] and ν̌ scales with the kine-

matic one [m2/s]. These coefficients are related to the densities and kinematic viscosities

of constitutive fluids in this way:

µ0 :=
ν−ρ−ρ+ − ν+ρ+ρ−

ρ+ − ρ− , ν̌ :=
ν+ρ+ − ν−ρ−
ρ+ − ρ− .

Compressible Navier-Stokes equations with viscosities of the form (7.3) were studied math-

ematically in [Sy05].

Remark 40. In view of our applications, the snow kinematic viscosity ν+ can be parame-

terized as a function of temperature T and snow density ρ+ according to [DAH+07]:

ν+ =
µ0

ρ+
e−αT eβρ

+

,

where µ0 = 3.6× 106 N · s ·m−2, α = 0.08 K−1, β = 0.021 m3/kg.

Now we can state the governing equations of our physical problem. In this study

we assume that both phases are constrained to have the same velocity variable ~u. This

assumption is not very restrictive. The formal justification of single-velocity two-phase

models can be found in [MG05, MDG09, MDG10]. Also, this type models have already

been successfully applied to a number of practical problems [Dut07, DDG08c, BPB09,

DDG10, DDG08a].

The flow is assumed to be isentropic. The mass and momentum conservation equations

have the classical form:

∂tρ+∇ · (ρ~u) = 0, (7.4)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = ∇ ·
(
2µD(~u)

)
+ ρ~g, (7.5)

where ~g is the acceleration due to gravity, p is the hydrodynamic pressure and D(~u) =
1
2

(
∇~u+ (∇~u)t

)
is the strain rate tensor.
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The fluid mixing is taken into account by Fick’s type law [Fic55a, Fic55b] resulting in

the following quasi-compressible equation:

∇ · ~u = −∇ · (κ∇ log ρ), (7.6)

where the coefficient κ has the dimension of kinematic viscosity and will be defined below.

For the moment, we assume κ to be constant, consequently, the right-hand side of equation

(7.6) can be equivalently rewritten as −κ∆ log ρ.

Remark 41. Examples of closures similar to (7.6) of the form

∇ · ~u = ±∇ · (∇φ(ρ))

may be found in [Gra55, KS77a, BadV83, Maj84, AKM90, FS01] (the sign ± depends on

monotonicity properties of the function φ(ρ)). It may lead to models of low Mach number

combustion [Maj84] with φ(ρ) =
1

ρ
, salt or pollutant motion in a shallow layer [FS01]

and other practical situations involving highly inhomogeneous fluids [BadVSV82, BadV83,

BES07].

Remark 42. Since we model an avalanche propagation along a sloping solid boundary, we

take the gravity acceleration in the following form:

~g = (g sin θ,−g cos θ),

where θ is the slope of the hill and usually g := |~g| = 9.81 m/s2.

7.1.2.1 Model based on fluid volume velocity

In this section we transform governing equations (7.4), (7.5) and (7.6) to operate with

more representative physical variables giving also a more convenient mathematical form.

Namely, we introduce the new velocity variable defined as

~v := ~u+ κ∇ log ρ, (7.7)

which is sometimes referred in the literature as the mean volume velocity (cf. [FS01]) or the

fluid volume velocity (cf. [Bre05a]). In this study we will retain the last term. It has been

pointed out recently [Bre05b, Bre06] that the fluid volume velocity ~v is more pertinent for

flows involving high density gradients. Now, let us rewrite the system (7.4), (7.5) and (7.6)

in terms of new variable ~v.

First of all, from Fick’s law (7.6) it follows immediately that the flow is incompressible

within the fluid volume velocity ~v:

∇ · ~v = 0.
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The mass conservation equation (7.4) takes the following simple form:

∂tρ+∇ · (ρ~v) = ∇ · (κρ∇ log ρ).

By taking into account the fact that κ is constant and the field ~v is divergence-free (∇ ·
(ρ~v) = ~v · ∇ρ), we can rewrite the last equation as:

∂tρ+ ~v · ∇ρ = κ∆ρ. (7.8)

The latter equation is of parabolic type. The diffusive term comes from the Fick’s law

governing the mixing process between two fluids. In the case when κ = 0, the initial sharp

interface between two phases would be simply advected by the velocity field ~v (coinciding

with ~u, when κ ≡ 0), thus, preventing any mixing. Henceforth, we consider the case κ > 0.

Remark 43. The mass conservation equation (7.8) can be equivalently rewritten in terms

of the volume fraction φ using the mixture density representation (7.2):

∂tφ+ ~v · ∇φ = κ∆φ. (7.9)

Finally, we have to transform the momentum conservation equation (7.5) according to

the change of the velocity variable (7.7). This operation will require several computations

briefly presented below. For convenience, we work with equation (7.5) recasted in non-

conservative form using the mass conservation (7.4):

ρ∂t~u+ ρ(~u · ∇)~u+∇p = ρ~g +∇ · (2µD(~u)). (7.10)

The three terms ρ∂t~u, ρ(~u · ∇)~u and ∇ · (2µD(~u)) involving ~u have to be rewritten:

ρ∂t~u ≡ ρ∂t~v − κρ∂t
(∇ρ
ρ

)
, (7.11)

ρ(~u · ∇)~u ≡ ρ(~v · ∇)~v − κρ(∇ log ρ · ∇)~v − κρ(~v · ∇)∇ log ρ (7.12)

+κ2ρ(∇ log ρ · ∇)∇ log ρ, (7.13)

∇ · (2µD(~u)) ≡ ∇ · (2µD(~v))− κ∇ · (2µ∇∇ log ρ). (7.14)

In order to obtain the evolution equation for the quantity
∇ρ
ρ

arising in (7.11), we use the

mass conservation equation (7.8):

ρ∂t
(∇ρ
ρ

)
+∇

(
~v · ∇ρ

)
− (~v · ∇ρ)∇ρ

ρ
= κ∆∇ρ− κ∆ρ∇ρ

ρ
.

Consequently, relation (7.11) can be rewritten using the last result:

ρ∂t~u ≡ ρ∂t~v + κ∇(~v · ∇ρ)− κ(~v · ∇ρ)∇ρ
ρ

+ κ2
∇ρ
ρ

∆ρ− κ2∆∇ρ.
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After all these developments, the momentum conservation equation (7.10) becomes:

ρ∂t~v + ρ(~v · ∇)~v +∇p+ κ∇(~v · ∇ρ)− κ(~v · ∇ρ)∇ρ
ρ︸ ︷︷ ︸

(I)

+ κ2
∇ρ
ρ

∆ρ

︸ ︷︷ ︸
(II)

−κ2∆∇ρ

− κρ(∇ log ρ · ∇)~v − κρ(~v · ∇)∇ log ρ︸ ︷︷ ︸
(I)

+ κ2ρ(∇ log ρ · ∇)∇ log ρ︸ ︷︷ ︸
(II)

=

ρ~g +∇ · (2µD(~v))− κ∇ · (2µ∇∇ log ρ).

One can remark that terms in groups (I) and (II) can be simplified to give κt∇~v∇ρ and

κ2∇ ·
(∇ρ

ρ
⊗ ρ
)
correspondingly:

ρ∂t~v + ρ(~v · ∇)~v +∇p+ κt∇~v∇ρ− κ∇ρ∇~v − κ2∆∇ρ+ κ2∇ ·
(∇ρ
ρ
⊗ ρ
)

︸ ︷︷ ︸
(∗)

=

ρ~g +∇ · (2µD(~v))− 2ν̌κ∇ · (ρ∇∇ log ρ)︸ ︷︷ ︸
(∗)

− 2κµ0∇ · (∇∇ log ρ)︸ ︷︷ ︸
(∗∗)

. (7.15)

In order to obtain last two terms on the right-hand side of (7.15), expression (7.3) for the

mixture dynamic viscosity µ was used.

However, equation (7.15) can be further simplified if we make a special choice for the

constant κ arising in the Fick’s law (7.6). More specifically, we take κ ≡ 2ν̌, where ν̌ is the

mixture kinematic viscosity defined in equation (7.3). For this choice of Fick’s diffusion

coefficient κ, the terms marked with (∗) in (7.15) disappear, since it is straightforward to

check the following differential identity:

∇ · (ρ∇∇ log ρ) ≡ ∆∇ρ−∇ ·
(∇ρ
ρ
⊗ ρ
)
.

Finally, the term (**) in equation (7.15) can be written as a gradient:

∇ · (∇∇ log ρ) ≡ ∇∆ log ρ.

Consequently, it can be incorporated in the definition of the pressure:

π(x, t) := p(x, t) + 4ν̌µ0∆ log ρ. (7.16)

If we summarize developments made above, we can state the governing equations of

the proposed model:

∇ · ~v = 0, (7.17)

∂tρ+ ~v · ∇ρ = 2ν̌∆ρ, (7.18)

ρ∂t~v + ρ(~v · ∇)~v +∇π + 2ν̌t∇~v∇ρ− 2ν̌∇ρ∇~v = ρ~g +∇ · (2µD(~v)) (7.19)
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Equations (7.17), (7.18) and (7.19) have to be completed by appropriate initial and bound-

ary conditions to form a well-posed problem.

Initially, the velocity, pressure and density (or equivalently, volume fraction) fields have

to be imposed. Concerning boundary conditions, the usual no-slip condition ~v = ~0 can be

imposed. Another possibility is to impose the following partial slip condition:

~v · ~n = 0,
(
(1− α)~v + α(D(~v) · ~n)

)
· τ = 0, (7.20)

where τ is the tangent vector to the boundary and α ∈ [0, 1] is the friction parameter. We

have to say that the latter is known to be physically more relevant [Eti04].

If it is required by a computational algorithm as in our case, for example, governing

equations can be recast in the conservative form. Using the incompressibility condition

(7.17), the mass conservation equation (7.18) becomes:

∂tρ+∇ · (ρ~v) = ∇ · (2ν̌∇ρ).

If we sum up equation (7.19) with mass conservation (7.18) multiplied by ~v, we will obtain

the following equation with advective terms written in the conservative form:

∂t(ρ~v) +∇ · (ρ~v ⊗ ~v) +∇π + 2ν̌t∇~v∇ρ− 2ν̌∇ρ∇~v =

ρ~g + 2ν̌~v∆ρ+∇ · (2µD(~v)). (7.21)

The dimensionless form and discretization of these equations will be discussed briefly below

in Sections 7.1.2.3 and 7.1.3 correspondingly.

7.1.2.2 Kinetic energy evolution

In this section we would like to derive an integral identity which describes the kinetic

energy evolution associated to the system (7.17) – (7.19). Throughout all developments in

this section we assume the no-slip condition ~v = 0 on the fluid domain Ω boundary ∂Ω.

The same result will hold if we assume periodic boundaries or appropriate decay conditions

at the infinity.

First, we multiply the mass conservation equation (7.18) by
|~v|2
2

, momentum con-

servation (7.19) by ~v, sum them up and integrate over the fluid domain Ω. After a few

integrations by part, using the incompressibility (7.17) and boundary conditions, we obtain
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the following identity:

∂t

∫

Ω

ρ
|~v|2
2
dx =

∫

Ω

ρ~g · ~v dx+

∫

Ω

2ν̌∆ρ
|~v|2
2
dx+

∫

Ω

2ν̌(∇ρ∇~v)~v dx

︸ ︷︷ ︸
(I)

+

∫

Ω

∇ · (2ν̌ρD(~v))~v dx−
∫

Ω

2ν̌(t∇~v∇ρ)~v dx

︸ ︷︷ ︸
(II)

+

∫

Ω

∇ · (2µ0D(~v))~v dx

︸ ︷︷ ︸
(III)

Two terms from the group (I) cancel each other after one integration by parts:
∫

Ω

2ν̌∆ρ
|~v|2
2
dx = −

∫

Ω

2ν̌∇ρ · ∇
( |~v|2

2

)
dx = −

∫

Ω

2ν̌(∇ρ∇~v)~v dx.

The group (II) terms can be also transformed to give:

−
∫

Ω

2ν̌ρ|D(~v)|2 dx+

∫

Ω

2ν̌ρt∇~v : ∇~v dx ≡ −
∫

Ω

2ν̌ρ|A(~v)|2 dx,

where A(~v) := 1
2

(
∇~v − t∇~v

)
is the antisymmetric part of the velocity gradient ∇~v and

A : B = aijbij is the usual contracted product of two square matrices A = (aij)1≤i,j≤n,

B = (bij)1≤i,j≤n.

Finally, the term (III) similarly can be transformed as:
∫

Ω

∇ · (2µ0D(~v))~v dx ≡ −
∫

Ω

2µ0|D(~v)|2 dx

Thus, we come to the following integral identity governing the kinetic energy evolution

associated to the system (7.17) – (7.19) (in closed conditions):

∂t

∫

Ω

ρ
|~v|2
2
dx =

∫

Ω

ρ~g · ~v dx−
∫

Ω

2µ0|D(~v)|2 dx

︸ ︷︷ ︸
(a)

−
∫

Ω

2ν̌ρ|A(~v)|2 dx

︸ ︷︷ ︸
(b)

. (7.22)

In this integral equality each term has a specific physical sense. The term on the left-hand

side represents the rate of kinetic energy change per a unit of time. On the right-hand side

the first term is the work done by the gravity force, thus, describing the energy input into

the system. Two last terms represent various dissipative processes. The first term (a) can

be seemingly ascribed to the dissipation due to viscous forces, while the second one (b)

comes from mixing processes between two phases.

Despite the fact that governing equations (7.17) – (7.19) are more complicated than

classical Navier-Stokes equations, due to the judicious choice of Fick’s constant κ we were

able to get a kinetic energy balance in simple and physically sound form (7.22).



302 Two-fluid flows

7.1.2.3 Dimensional analysis

In this section we perform a dimensional analysis of the governing equations (7.17)

– (7.19) in order to reveal important scaling parameters. Henceforth, starred variables

denote dimensional quantities throughout this section.

The initial avalanche height h0 and the heavy fluid density ρ+ are chosen to be the

characteristic length and density scales correspondingly. The velocity field is adimension-

alized by a typical flow speed u0. Finally, from characteristic length and velocity, it is

straightforward to deduce the time scale. Consequently, the scaling for the independent

variables is

x∗ = h0x, t∗ =
h0
u0
t,

and dimensionless dependent variables ρ, ~u, p are introduced in this way:

ρ∗ = ρ+ρ, ~u∗ = u0 ~u, π∗ = ρ+u20 π, µ∗ = ρ+ν̌µ

The governing equations (7.17) – (7.19) in dimensionless form become:

∇ · ~v = 0,

∂tρ+ ~v · ∇ρ =
1

Re
∆ρ,

ρ∂t~v + ρ(~v · ∇)~v +∇π +
1

Re
t∇~v∇ρ− 1

Re
∇ρ∇~v =

1

Fr2
ρ~g +

1

Re
∇ · (µD(~v))

This procedure reveals two important scaling parameters – the Reynolds number Re

[Rey83] and the Froude number Fr [B2́8] which are defined as

Re :=
h0u0
2ν̌

, Fr :=
u0√
gh0

.

Recall that the Reynolds number Re gives a measure of the ratio of inertial forces to viscous

forces. In practice this number characterizes different flow regimes, such as laminar or

turbulent flow. The Froude number is a ratio of inertia and gravitational forces. It is a

hydrodynamic equivalent of the Mach number. For free-surface flows it specifies the nature

of the flow (subcritical or supercritical) [DVB02].

Remark 44. We would like to discuss the difference between the physical pressure field

p(x, t) and the modified pressure π(x, t). If we turn to dimensionless variables in equation

(7.16), we will obtain the following relation:

π(x, t) = p(x, t) +
µ

Re2
∆ log ρ.

Taking into account the typical values of the Reynolds number in our applications, we can

conclude that this difference is completely negligible, at least from the practical point of

view, since Re−2 ≪ 1.
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In fact, there are two additional scaling parameters δ and λ hidden in definitions of the

density ρ and dynamic viscosity of the mixture:

ρ :=
ρ∗

ρ+
= φ+ (1− φ)δ, δ :=

ρ−

ρ+
,

µ :=
µ∗

ρ+ν̌
= (1− δ)φ+

δλ(1− δ)
1− δλ , λ :=

ν−

ν+
,

where we substituted the following representation of the Fick’s coefficient:

ν̌ = ν+
1− δλ
1− δ . (7.23)

Actually, the densities ratio δ can be related to the well-known Atwood number At (cf.

[GGL+01, LJ05]):

At :=
ρ+ − ρ−
ρ+ + ρ−

=
1− δ
1 + δ

.

The powder-snow avalanche regime is characterized by very high values of Reynolds number

Re and low density ratios δ [MS93, Anc03]:

Re ∼ 106, 0.05 ≤ δ ≤ 0.25.

Thus, the flow is clearly turbulent. Nevertheless, in the present study we do not consider

any turbulence modeling beyond the scales resolved by the numerical method.

There is much less available information on the snow viscosity and snow rheology, in

general [DAH+07]. The viscosity ratio parameter λ can be related (using equation (7.23))

to the so-called Schmidt number Sc which represents the ratio of the fluid viscosity to mass

diffusivity:

Sc :=
ν+

2ν̌
=

1− δ
2(1− δλ)

This number was named after the German engineer Ernst Heinrich Wilhelm Schmidt (1892

– 1975) and it is used to characterize fluid flows with simultaneous momentum and mass

diffusion processes [YXS02, SS03]. For powder-snow avalanches, M. Clément-Rastello re-

ported [CR01] the following values of the Schmidt number:

0.5 ≤ Sc ≤ 1.

When the Reynolds number is sufficiently high (inertial regime), two scaling parameters

to be respected are the density ratio δ = ρ−

ρ+
and the Froude number Fr := u0√

gh0
. Recall

that in the Boussinesq regime (δ → 0), only the Froude number has to be respected. We

quote [PNBNF04] reporting on this important issue:
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. . . Satisfying the Froude number and density ratio similarities in the laboratory

means that a very high velocity is necessary, which calls for a very large channel.

It is not possible to satisfy the density ratio similarity, because dimensionless

number differs by several orders of magnitude between the processes that unfold

in nature and those reproduced in the laboratory. . .

As a result, the interpretation of laboratory results is quite ambiguous. At this point,

numerical simulation should be considered as a complementary tool to physical modeling.

7.1.3 Numerical methods and simulation results

In this study we perform Direct Numerical Simulations (DNS) of a snow cloud moving

down a steep slope. Our solver is based on a freely available CFD toolbox OpenFOAM .

All computations performed in this study are 3D with only one cell in z direction for the

sake of efficiency. In principle, the extension to truly 3D configurations is possible with

this code.

In order to implement model (7.17) – (7.19) we modified the standard solver twoLiquid-

MixingFoam which discretizes incompressible two-fluid Navier-Stokes equations with Fick’s

diffusion term in the volume fraction transport equation (7.9). The main modification

concerns the momentum balance equation. Namely, we had to incorporate two noncon-

servative terms 2ν̌t∇~v∇ρ and 2ν̌∇ρ∇~v. For information, we provide here a piece of the

code written in the internal OpenFOAM language which corresponds to the discretization

of equation (7.21):

fvVectorMatrix UEqn

(

fvm::ddt(rho, U) +

fvm::div(rhoPhi, U) -

fvm::laplacian(muf, U) -

U*fvc::div(DabRho*(mesh.Sf()&fvc::interpolate(fvc::grad(rho))))+

DabRho*(fvc::grad(U)().T() & fvc::grad(rho)) -

DabRho*(fvc::grad(U)() & fvc::grad(rho)) -

fvc::div(muf*(mesh.Sf() & fvc::interpolate(fvc::grad(U)().T())))

);

Time derivatives were discretized with the classical implicit Euler scheme. An upwind

second order finite volume method was employed in space. For more details on the retained

discretization scheme we refer to [Jas96, Rus02, Ope07]. The choice of the finite volume

method is justified by its excellent stability and local conservation properties (especially

in comparison to FEM [ESH04, Eti04, EHS05]).



7.1 Mathematical modeling of powder-snow avalanche flows 305

h0

ℓ

~g

h

hs

x

y
z

Figure 7.4: Sketch of the computational domain and initial condition description.

parameter value

gravity acceleration g, m/s2 9.8

slope, θ 32◦

friction parameter, α 0.3

heavy fluid density, ρ+, kg/m3 20

light fluid density, ρ−, kg/m3 1

heavy fluid kinematic viscosity, ν+, m/s2 4.8×10−4

light fluid kinematic viscosity, ν−, m/s2 1.0×10−4

Table 7.1: Values of various parameters used for numerical simulations. The friction parameter

is used in the partial slip boundary condition (7.20).

7.1.3.1 Description of numerical computations

In this study we try to reproduce in silico a classical lock-exhange type flow with an

obstacle placed in the computational domain. The sketch of the fluid domain and the

initial condition description are given on Figure 7.4. Experiment consists in releasing a

heavy fluid which flows under the gravity force along an inclined channel. The values

of all physical parameters are provided in Table 7.1, while computational domain and

discretization parameter are given in Table 7.2.

The objective of this study is twofold. Besides presenting numerical results on a gravity-

driven two-fluid flow, we also would like to shed some light onto the interaction process

between an avalanche and an obstacle. At the present stage we assume the obstacle to

be absolutely rigid but this assumption can be relaxed in future investigations. Results
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parameter value

domain height, h, m 0.8

total length, ℓ, m 2.7

mesh height, ∆y, m 0.0026

mesh length, ∆x, m 0.0033

initial avalanche height, h0, m 0.3

obstacle height, hs, m 0.2h0

obstacle thickness, m 0.04

Table 7.2: Computational domain dimensions and discretization parameters.

presented here are obtained for the obstacle height hs = 0.2h0, where h0 is the initial mass

height. We would like to underline also the presence of the stratification in our initial

condition. We assume that there is a dense core of the height h0/3 composed of the pure

heavy fluid (φ = 1, consequently ρ = ρ+), which is surrounded by a lighter snow layer with

the volume fraction φ = 0.4. All results presented below are computed for simplicity with

the usual no-slip boundary condition ~v = ~0. However, we performed several tests with the

partial slip condition (7.20) leading generally to better results with respect to the snow

entrainment at the bottom. Moreover, the friction coefficient α allows for some tuning

depending on local soil conditions.

7.1.3.2 Simulation results

Snapshots of the volume fraction evolution are presented on Figures 7.5 – 7.7. At the

beginning, the initial rectangular mass gradually transforms under the force of gravity into

more classical elliptic form (see Figure 7.5). Then, this mass enters into the sliding regime

(see Figure 7.6) until the interaction with the obstacle (see Figure 7.7).

Our simulations clearly show that a Kelvin-Helmholtz type instability [Hel68, Kel71,

Cha81, DR04] develops locally during the propagation stage. Previous simulations in-

volving Adaptive Mesh Refinement (AMR) techniques confirmed this observation [Eti04,

EHS05]. On the other hand, the interaction process with the obstacle creates a jet di-

rected upward. This jet has a mushroom-like shape typical for Rayleigh-Taylor instability

[Ray83, Tay50, DR04].

Several authors pointed out an intriguing feature of the avalanche type flows [DGA01,

RH04]. Namely, it was shown by radar measurements that the maximum velocity inside

the avalanche exceeds the front velocity by 30% – 40%. For this purpose we visualize the

velocity field magnitude during the propagation stage (see Figures 7.8 and 7.9). Qualita-
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Figure 7.5: Avalanche at t = 10 s. The color scale ranges from 0 to the maximum value 1.0.

Figure 7.6: Avalanche at t = 25 s. The color scale ranges from 0 to the maximum value 0.984.

Figure 7.7: Avalanche at t = 60 s. The color scale ranges from 0 to the maximum value 0.553.
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Figure 7.8: Velocity field magnitude at t = 25 s. The color scale ranges from 0 m/s to the

maximum value 3.07 m/s.

Figure 7.9: Velocity field magnitude at t = 60 s. The color scale ranges from 0 m/s to the

maximum value 6.57 m/s.

tively, our computations are in conformity with these experimental results.

The same simulation was also performed with the so-called (in this study) standard

model used in [ESH04] and implemented also in OpenFOAM as the twoLiquidMixingFoam

solver:

∇ · ~v = 0,

∂tρ+ ~v · ∇ρ = 2ν̌∆ρ,

ρ∂t~v + ρ(~v · ∇)~v +∇p = ρ~g +∇ · (2µD(~v))

The standard model differs from governing equations (7.17) – (7.19) essentially by two

non-conservative terms in the momentum balance equation along with small differences in

the pressure definition.

The magnitude of the difference between velocity fields obtained with the standard and

novel models is represented on Figure 7.10. One can see that differences are not negligi-

ble and attain its maximum value of 2.91 m/s near the lower boundary. Corresponding

difference field of two volume fraction distributions are shown on Figure 7.11. Here the

maximum value of the difference 0.344 is attained in the avalanche front.
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Figure 7.10: Magnitude of two velocity fields difference computed according to the standard

and new models at t = 60 s. The color scale ranges from 0 m/s to the maximum value 2.91 m/s.

Figure 7.11: Difference of the volume fraction distributions computed according to the standard

and new models at t = 60 s. The color scale ranges from −0.344 to the maximum value 0.269.
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Figure 7.12: Kinetic energy evolution during the simulation. The continuous blue line corre-

sponds to computations performed with equations (7.17) – (7.19), while the dashed black line is

produced using the standard model.

During the simulation we also computed the kinetic energy evolution. The comparison

result is presented on Figure 7.12. The energy grows almost linearly in time during the

propagation stage for both models. The differences start to appear just before the inter-

action process with the obstacle. These results indicate that proposed above model (7.17)

– (7.19) allows for higher energy levels under equal numerical conditions.

Remark 45. The idea to use the kinetic energy loss to estimate the efficiency of a dike

was already proposed by Beghin and Closet in 1990 [BC90]. However, they had very limited

information on the flow structure (especially velocity and density profiles). That is why

they decided to approximate this quantity by the ratio |U2 − U ′2| /U2. Here U ′ is the front

velocity at certain distance below the dike and U is the front velocity of the reference

avalanche measured at the same point.

7.1.3.3 Impact pressures

For many practical applications we have to estimate the loading exerted on a structure

by an avalanche impact. Incidentally, the avalanche hazard level is attributed depending

on the estimated impact pressure values [Lié06]. Moreover, this information is crucial for

the design of buildings and other structures exposed to this natural hazard.
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In engineering practice, it is common to determine the impact pressures according to

the following formula [MS93]:

Pd = Kpref = Kρ̄U2
f (7.24)

where K is a parameter depending on the obstacle configuration, ρ̄ is the average avalanche

density and Uf is the front velocity. For small obstacles it is advised to take K = 1 and

for big ones K = 2 sinα, where α is the incidence angle. However, as it is pointed out in

[BO91], it is difficult to estimate the maximum pressure exerted by an avalanche since we

have only very limited information on the vertical structure of the flow.

Remark 46. The given above formula (7.24) is applicable to avalanches in inertial regime.

When we deal with a gravity flow regime (in Fluid Mechanics we call it the Stokes flow

[HB83]), the situation is more complicated since the flow is governed by the rheology which

is essentially unknown [AM04]. In this case, engineers use another expression [ABB+06]:

Pd = 2ρ̄g(h− z).

For aerosol avalanches, Beghin and Closet [BC90] proposed the following empirical law

to estimate the impact pressure:

Pd =
K

2
Ka(z)ρ̄U

2
f ,

where Ka(z) is a dimensionless factor taking into account for the velocity variations in the

upward direction. They also suggested an idealized form of the factor Ka(z):

Ka(z) =





10, z < 0.1h,

19− 90z, 0.1h ≤ z ≤ 0.2h,

1, z > 0.2h,

(7.25)

where h is the impacting avalanche height. It was shown later [NB03] that this approxi-

mation underestimates the dynamic pressure in all parts of the flow.

The big advantage of the presented here approach is that we have the complete infor-

mation on the mass but also the pressure distribution in the whole domain. On Figure 7.13

one can see the distribution of the dynamic pressure at t = 60 s during the impact process.

It is important to note that an ”aspiration” zone is revealed near the obstacle base along

with a high pressure field at the top. In civil engineering this shear-type loading is known

to be particularly dangerous for structures.

The methodology presented in this study allows to determine the impact pressures with

required accuracy. The pressure profiles along the impacted wall can be easily extracted

from numerical computations, thus, replacing empirical formulas such as (7.25). Our nu-

merical experiments show also that the form of the vertical pressure distribution does not
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Figure 7.13: Dynamic pressure distribution in the computational domain at t = 60 s. The color

scale ranges from −77.5 Pa to the maximum value 4.04 Pa.

change drastically when we vary the obstacle height in some reasonable limits. It means

that precomputed pressure profiles may be scaled and reused for different obstacles within

engineering accuracy [BC90, MS93].

7.1.4 Conclusions and perspectives

In the present paper we derive a novel model for the flow of two miscible inhomogeneous

fluids. The mixing between two fluids is assumed to be modeled by the Fick’s law (7.6).

Then, we reformulate the model in terms of the so-called volume-based velocity [Bre05a,

Bre05b] in which the flow is exactly incompressible. It is also shown that the novel model

allows for a physically sound evolution of the kinetic energy.

We show some preliminary results on the numerical modeling of powder-snow avalanches.

We compute the evolution of an avalanche from the beginning until hitting against a trape-

zoidal obstacle. Impact pressures extracted from these computations can be used for the

design of protecting structures.

For the moment the obstacle is assumed to be absolutely rigid. In future studies this

assumption can be relaxed and efforts exerted on the obstacle could be coupled with a

solid mechanics part [KB01]. This research axis seems to be still underexplored. However,

there is already interesting experimental material on the avalanche interaction with solid

obstacles [LSBH95, Pri03, PNBNF04, NB03, BR04].

There is also an important question of boundary conditions. All computational results

presented above were obtained with the usual no-slip condition. The development of other

types of physically sound boundary conditions which lead to well-posed mathematical

problems is highly needed.

Recall that a powder-snow avalanche front can reach the speed up to 100 m/s. Conse-
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quently, the Mach number Ma attains relatively high values:

Ma :=
uf
cs
≈ 0.3,

where cs is the sound speed in the air. It means that compressible effects may be important

during the propagation stage. In general, impact events are followed by strong compres-

sions. Hence, in future works we are planning to take into account the compressibility in

some weak and strong senses [DDG08c, DDG10, DDG08a, Dut07] and to perform the com-

parisons with the present results. Obviously, at this point a validation against experimental

data is highly recommended.

The rheology of avalanches should be further investigated [AM04] and future models

will take this information into account. At this stage, close collaboration between physicists

and mathematicians is needed to bring the answers on challenging questions.
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Appendix A

Barotropic two-phase models

What it means really to understand an equation – that is, in more than in a strictly

mathematical sense – was described by Dirac. He said: ”I understand what an equation means

if I have a way of figuring out the characteristics of its solution without actually solving it.” So

if we have a way of knowing what should happen in given circumstances without actually

solving the equations, then we ”understand” the equations, as applied to those circumstances.

A physical understanding is a completely unmathematical, imprecise, and inexact thing, but

absolutely necessary for a physicist.

Richard Feynman
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A.1 Two-fluid barotropic models for powder-snow avalanche

flows

Abstract. In the present study we discuss several modeling issues of

powder-snow avalanche flows. We take a two-fluid modeling paradigm. For

the sake of simplicity, we will restrict our attention to barotropic equations.

We begin the exposition by a compressible model with two velocities for each

fluid. However, this model may become non-hyperbolic and thus, represents

serious challenges for numerical methods. To overcome these issues, we derive

a single velocity model as a result of a relaxation process. This model can be

easily shown to be hyperbolic for any reasonable equation of state. Finally,

an incompressible limit of this model is derived.

A.1.1 Introduction

Snow avalanches represent a serious problem for society in mountain regions. The

avalanche winter of 1999 attracted a lot of attention to this hazardous natural phenomenon

[ABB+06, Lie06]. Further development of mountain regions requires an adequate level

of avalanche safety. Therefore, avalanche protective measures (deflecting and catching

dams) become increasingly important [JGIL09]. During the same winter, several avalanches

overran avalanche dams, underlining the need for further research in this field. Proper

design of protecting structures necessitates profound understanding of the snow avalanches

flow and of the interaction process with dams and other obstacles [DARB10, NBNBH02].

Natural snow avalanches are believed to consist of three different layers: a dense core, a

fluidised layer and a suspension cloud. Sometimes the surrounding powder cloud is absent

and we speak about an avalanche in the flowing régime. Obviously, transition boundaries

between these layers are not sharp and this classification is rather conventional.

The dense core consists of snow particles in persistent frictional contact [Iss03]. The

density is of the order of 300 kg/m3 and the depth of this layer does not exceed 3 m.

The fluidised régime is characterized by particle’s mean-free-paths up to several particle’s

diameters. This dynamics at microscopic level explains more fluid-like behaviour at large

scales. The density of this layer is in the range of 50 - 100 kg/m3 and the height is about

3 - 5 m. To model successfully this kind of flows it is crucial to know the complex fluid

rheology. Finally, these two interior layers can be covered by the powder cloud which is a

turbulent suspension of snow particles in the air. The density ranges from 4 to 20 kg/m3

and an avalanche in aerosol régime can reach the height of 100 m or more [RH04]. This

flow is driven essentially by turbulent advection and particles collisions are unimportant.

In the present study we are concerned with some questions of powder-snow avalanche

modelling. Since the interface cannot be defined for this type of flows, we choose the
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modelling paradigm of two-phase flows. In this approach the governing equations of each

phase are spatially averaged to come up with the description of the fluid mixture [Ish75,

Rov06].

It is known [RH04] that the front of such an avalanche can develop the speed1 uf ≈
100 m/s. For comparison, the speed of sound c0 in the air is about 300 m/s. It means that

the local Mach number Ma can reach the value of

Ma :=
uf
c0
≈ 0.33.

Hence, compressible effects may become important. That is why, we begin our exposition

with a compressible model. Then, we gradually simplify it to come up with an incompress-

ible one at the end of the present text. The goal is achieved by taking the limit as the

Mach number tends to zero.

The present text is organized as follows. In Section A.1.2 we present a barotropic

compressible two-phase model with two velocities. Then, this model is simplified in Section

A.1.3 using a velocity relaxation process. The incompressible limit of resulting system is

derived in Section A.1.4. Finally, several conclusions and perspectives are drawn out in

Section A.1.5.

A.1.2 Two-phase flow modelling

Let us consider a domain Ω ⊆ R3 where a simultaneous flow of two barotropic fluids

occurs. All quantities related to the heavy and light fluids will be denoted by + and −
correspondingly. In view of application to snow avalanches, one can consider the heavy

fluid of being constituted of snow particles and the light fluid is the air. When the mixing

process is extremely complicated and it is impossible to follow the interface between two

fluids, the classical modelling procedure consists in applying a volume average operator

[Ish75, Rov06]. Thereby, we make appear two additional variables α±(x, t), x ∈ Ω which

are called the volume fractions and defined as:

α±(x, t) := lim
|dΩ|→0

x∈dΩ

|dΩ±|
|dΩ| ,

the heavy fluid occupies volume dΩ+ ⊆ dΩ and the light one the volume dΩ− ⊆ dΩ (see

Figure A.1) such that

|dΩ| ≡ |dΩ+|+ |dΩ−|. (A.1)

From the relation (A.1) it is obvious that α+(x, t) + α−(x, t) ≡ 1, ∀x ∈ Ω.

1When we estimate the Mach number magnitude, the particle characteristic velocity should be taken.

However, this information is not easily accessible and we took the maximum front velocity. It can lead to

some overestimation of the Mach number.
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After performing the averaging process, one obtains two equations of mass and momen-

tum conservation:

∂t(α
±ρ±) +∇ · (α±ρ±~u±) = 0, (A.2)

∂t(α
±ρ±~u±) +∇ · (α±ρ±~u± ⊗ ~u±) + α±∇p = ∇ · (α±

τ
±) + α±ρ±~g, (A.3)

where ρ±(x, t), ~u±(x, t), τ±(x, t) are densities, velocities and viscous stress tensors of each

fluid respectively. Traditionally, the vector ~g denotes the gravity acceleration. We assume

that both fluids share the same pressure2 p = p±(ρ±) and equations of state of each phase

fulfill minimal thermodynamical requirements:

p±(ρ±) > 0,
∂p±(ρ±)

∂ρ±
> 0, for ρ± > 0. (A.4)

In order to obtain a well-posed problem, governing equations (A.2), (A.3) should be com-

pleted by appropriate initial and boundary conditions.

If we assume both fluids to be Newtonian, the viscous stress tensor τ
± takes the fol-

lowing classical form:

τ
± = λ± trD(~u±)Id + 2µ±D(~u±), trD(~u±) = ∇ · ~u±, (A.5)

where Id := (δij)1≤i,j≤3 is the identity tensor, D(~u) :=
1

2

(
∇~u±+t(∇~u±)

)
is the deformation

rate and λ±, µ± are viscosity coefficients. For ideal gases, for example, these coefficients

are related by Stokes relation λ± + 2
3
µ± = 0. In application to powder-snow avalanches,

viscosity coefficients λ±, µ± should be understood in the sense of eddy viscosity.

Remark 47. From physical point of view, presented here model (A.2), (A.3) is far from

being complete. For example, one could supplement it by capillarity effects in the Korteweg

form. Also we omited all the terms which model mass, momentum and energy exchange

2In general, this kind of assumptions is reasonable, since relaxation processes will tend to equilibrate

the system when time evolves.

dΩ+(t)
dΩ−(t)

S

Figure A.1: An elementary fluid volume dΩ occupied by two phases.
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between two phases. Generally, their form is strongly dependent on the physical situation

under consideration.

Remark 48. While considering two-phase flows, it is useful to introduce several additional

quantities which play an important rôle in the description of such flows. The mixture

density ρ and mass fractions m± are naturally defined as:

ρ(x, t) := α+ρ+ + α−ρ− > 0, ∀(x, t) ∈ Ω× [0, T ],

m± :=
α±ρ±

ρ
, m+ +m− = 1.

The total density ρ is assumed to be strictly positive everywhere in the domain Ω. Hence,

the void creation is forbidden in our modeling.

Important quantities ρ, m± will appear several times below.

In principle, one could use equations (A.2), (A.3) to model various two-phase flows.

However, this system remains quite expensive for large scale simulations required by real-

life applications. The major difficulty comes from the advection operator associated to

model (A.2), (A.3) which can be non-hyperbolic [BDGG09, Rov06]. In the next section we

will derive a simplified two-fluid model which is proposed as a candidate for powder-snow

avalanche compressible simulations.

A.1.3 Velocity relaxation

We would like to reduce the number of variables in the system (A.2), (A.3). The main

idea is to introduce the common velocity field for both phases. For this purpose, we will

introduce a relaxation term to the momentum conservation equation (A.3):

∂t(α
±ρ±~u±) +∇ · (α±ρ±~u± ⊗ ~u±) + α±∇p = ∇ · (α±

τ
±) + α±ρ±~g ± κ

ǫ
(~u+ − ~u−), (A.6)

where κ = O(1) is a constant and ǫ is a small parameter which controls the magnitude of

the relaxation term. Physically this additional term represents the friction between two

phases. In the following, we are going to take the singular limit as the relaxation parameter

ǫ→ 0. This is achieved with Chapman-Enskog type expansion. In this way, we constrain

velocities ~u±(x, t) to tend to the common value ~u(x, t). This technique has been already

successfully applied to the Baer-Nunziato model [BN86] in [MG05].

The first step consists in rewriting the governing equations (A.2), (A.6) in the quasi-

linear form. To shorten notations, we will also use the material time derivative which is

classically defined for any smooth scalar function φ(x, t) as

d±φ

dt
:=

∂φ

∂t
+ ~u± · ∇φ.
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Lemma 5. Smooth solutions to equations (A.2), (A.6) satisfy the following system:

α±d
±p

dt
+ ρ±(c±s )

2d
±α±

dt
+ α±ρ±(c±s )

2∇ · ~u± = 0, (A.7)

α±ρ±
d±~u±

dt
+ α±∇p = ∇ · (α±

τ
±) + α±ρ±~g ± κ

ǫ
(~u+ − ~u−), (A.8)

where (c±s )
2 := ∂p±

∂ρ±

∣∣∣
s±

represents the sound speed in each phase ±.

Proof. This result follows from direct calculations. First of all, we remark that the mass

conservation equation (A.2) can be rewritten using the material derivative as follows:

d±(α±ρ±)

dt
+ α±ρ±∇ · ~u± = 0. (A.9)

Using equations of state p = p±(ρ±), we can express the density material derivative in

terms of the pressure and the sound speed:

d±ρ±

dt
=

1

(c±s )
2

d±p

dt
.

Now, it is straightforward to derive equation (A.7) from (A.9).

Finally, if we multiply equation (A.9) by ~u± and subtract it from the momentum

conservation equation (A.6), we will get desired result (A.8).

Equations (A.7), (A.8) can be also recast in the matrix form which is particularly useful

for further developments:

A(Vε)
∂Vε
∂t

+B(Vε)∇Vε = ∇ ·T(Vε) + S(Vε) +
R(Vε)

ǫ
, (A.10)

where we introduced several notations. The vector Vε represents four unknown physical

variables Vε :=
t(p, α+, ~u+, ~u−) with respective time and space derivatives:

∂Vε
∂t

:= t(∂tp, ∂tα
+, ∂t~u

+, ∂t~u
−), ∇Vε := t

(
∇p,∇α+, (·∇)~u+, (·∇)~u−

)
.

Matrices A(Vε) and B(Vε) are defined as

A(Vε) :=




α+ ρ+(c+s )
2 0 0

α− −ρ−(c−s )2 0 0

0 0 α+ρ+Id 0

0 0 0 α−ρ−Id


 ,

B(Vε) :=




α+~u+ ρ+(c+s )
2~u+ α+ρ+(c+s )

2Id 0

α−~u− −ρ−(c−s )2~u− 0 α−ρ−(c−s )
2Id

α+Id 0 α+ρ+~u+ 0

0 α−Id 0 α−ρ−~u−


 .
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In these matrix notations the size of zero entries must be chosen to make the multiplication

operation possible.

On the right hand side of (A.10), the work of viscous forces is denoted by symbol ∇ ·
T(Vε) :=

t(0, 0,∇·τ+,∇·τ−). The source term S(Vε) :=
t(0, 0, α+ρ+~g, α−ρ−~g) incorporates

the gravity force and R(Vε) := t(0, 0, κ(~u+ − ~u−),−κ(~u+ − ~u−)) contains the relaxation

terms.

Since we expect the limit Vε → V to be finite as ǫ → 0, necessary the limiting vector

V lies in the hypersurface R(V ) = 0. In terms of physical variables, it implies ~u+ ≡ ~u−.

Consequently, we find our solution in the form of the following Chapman-Enskog type

expansion:

Vε = V + ǫW + O(ǫ2).

After substituting this expansion into (A.10) and taking into account that R(V ) ≡ 0, at

the leading order in ǫ one obtains:

A(V )
∂V

∂t
+B(V )∇V = ∇ ·T(V ) + S(V ) +R′(V )W, (A.11)

where

R′(V ) :=




0 0 0 0

0 0 0 0

0 0 κId −κId
0 0 −κId κId




Henceforth, we make a technical assumption of the presence of both phases in any point

x ∈ Ω of the flow domain. Mathematically it means that 0 < α+ < 1. Since α+ + α− = 1,

the same inequality holds for α−. Otherwise, the relaxation process physically does not

make sense and we will have some mathematical technical difficulties.

Under the aforementioned assumption, the matrix A(V ) is invertible. Hence, we can

multiply on the left both sides of (A.11) by PA−1(V ) where the projection matrix P is to

be specified below:

P
∂V

∂t
+PA

−1(V )B(V )∇V = PA
−1(V )∇ ·T(V ) +PR̃′(V )W +PA

−1(V )S(V ), (A.12)

where R̃′(V ) := A−1(V )R′(V ) and has the following components

R̃′(V ) =




0 0 0 0

0 0 0 0

0 0
κ

α+ρ+
Id − κ

α+ρ+
Id

0 0 − κ

α−ρ−
Id

κ

α−ρ−
Id



.
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The vector of physical variables V has four (in 1D) components t(p, α+, ~u, ~u) and only

three are different. In order to remove the redundant information, we will introduce the

new vector U defined as U := t(p, α+, ~u). The Jacobian matrix of this transformation can

be easily computed:

J :=
∂V

∂U
=




1 0 0

0 1 0

0 0 Id

0 0 Id


 .

In new variables equation (A.12) becomes:

PJ
∂U

∂t
+PA

−1(U)B(U)J∇U = PA
−1(U)∇ ·T(U) +PR̃′(U)W +PA

−1(U)S(U). (A.13)

Now we can formulate two conditions to construct the matrix P. First of all, the

vector W is unknown and we need to remove it from equation (A.13). Hence, we require

PR̃′(V ) = 0. Then, we would like the governing equations to be explicitly resolved with

respect to time derivatives. It gives us the second condition PJ = Id. The existence and

effective construction of the matrix P satisfying two aforementioned conditions

PR̃′(V ) = 0, PJ = Id,

are discussed below. Presented in this section results follow in great lines [MG05].

We will consider a slightly more general setting. Let be vector V ∈ Rn and its reduced

counterpart U ∈ Rn−k, k < n. In such geometry, R̃′(V ) ∈ Matn,n(R), J ∈ Matn,n−k(R)

and, consequently, P ∈ Matn−k,n(R). Here, the notation Matm,n(R) denotes the set of

m × n matrices with coefficients in R. We have to say also that from algebraic point of

view, matrices R̃′(V ) and R′(V ) are completely equivalent. Thus, for simplicity, in the

following propositions we will reason in terms of R′(V ).

Lemma 6. The columns of the Jacobian matrix J form a basis of ker
(
R′(V )

)
.

Proof. If we differentiate the relation R(V ) = 0 with respect to U , we will get the identity

R′(V )J = 0. It implies that range
(
J
)
⊆ ker

(
R′(V )

)
. By direct computation one verifies

that dim range
(
R′(V )

)
= k. From the well-known identity range

(
R′(V )

)
⊕ ker

(
R′(V )

)
=

Rn, one concludes that dim ker
(
R′(V )

)
= n − k. But in the same time, the rank of J is

equal to n− k as well. It proves the result.

Theorem 7. We suppose that for all V , range
(
R′(V )

)
∩ ker

(
R′(V )

)
= {0} then there

exists a matrix P ∈ Matn−k,n(R) such that PR′(V ) = 0 and PJ = Idn−k.
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Proof. Hypothesis range
(
R′(V )

)
∩ker

(
R′(V )

)
= {0} implies that range

(
R′(V )

)
⊕ker

(
R′(V )

)
=

Rn. From Lemma 6 it follows that range
(
J
)
= ker

(
R′(V )

)
. Thus, the space Rn can be also

represented as a direct sum range
(
R′(V )

)
⊕range

(
J
)
. We will define P to be the projection

on ker
(
R′(V )

)
≡ range

(
J
)
. Since obviously R′(V ) ∈ range

(
R′(V )

)
and J ∈ range

(
J
)
, we

have two required identities: PJ = Idn−k and PR′(V ) = 0.

Now, in order to compute effectively the projection matrix P, we will construct an

auxiliary matrix D(V ) = [J1, . . . , Jn−k, I1, . . . , Ik], where J i is the column i of the matrix

J and {I1, . . . , Ik} are vectors which form a basis of range
(
R′(V )

)
. We remark that

PD(V ) = [Idn−k, 0]. Lemma 6 implies that the matrix D(V ) is invertible. Thus, the

projection P can be computed by inverting D(V ):

P = [Idn−k, 0] ·D−1(V ).

Let us apply this general framework to our model (A.12), where n = 4 and k = 1. The

matrix D(V ) and its inverse D−1(V ) take this form:

D(V ) =




1 0 0 0

0 1 0 0

0 0 Id
κ

α+ρ+
Id

0 0 Id − κ

α−ρ−
Id



, D−1(V ) =




1 0 0 0

0 1 0 0

0 0 m+Id m−Id

0 0
m+m−ρ

κ
Id −m

+m−ρ

κ
Id



,

where m± are mass fractions defined in Remark 48.

Now, the projection matrix P can be immediately computed:

P =



1 0 0 0

0 1 0 0

0 0 m+Id m−Id


 .

Finally, after computing all matrix productsPA−1(U)B(U)J, PA−1(U)∇·T(U), PA−1(U)S(U)

present in equation (A.13), we obtain the desired single velocity model:

∂p

∂t
+ ~u · ∇p+ ρc2s∇ · ~u = 0, (A.14)

∂α+

∂t
+ ~u · ∇α+ + α+α−δ∇ · ~u = 0, (A.15)

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = ρ~g +∇ · τ , (A.16)

where ρ = α+ρ+ +α−ρ− is the mixture density and c2s is the sound velocity in the mixture

which is determined by this formula:

ρc2s :=
ρ+ρ−(c+s )

2(c−s )
2

α−ρ+(c+s )
2 + α+ρ−(c−s )

2
,
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and δ is given by

δ :=
ρ+(c+s )

2 − ρ−(c−s )2
α−ρ+(c+s )

2 + α+ρ−(c−s )
2
.

Finally, τ := λ trD(~u)Id + 2µD(~u) is the viscous stress tensor of the mixture. Viscosity

coefficients λ, µ are naturally defined as

λ := α+λ+ + α−λ−, µ := α+µ+ + α−µ−.

Equations (A.14) – (A.16) can be recast in the conservative form which is more con-

venient for numerical computations and theoretical analysis. To achieve this purpose, we

replace the pressure p in (A.14) by ρ± using the equation of state:

∂ρ±

∂t
+ ~u · ∇ρ± +

ρc2s
(c±s )

2
∇ · ~u = 0.

The last equation is multiplied by α±, the second equation (A.15) is multiplied by ρ± and

we sum them to come up with two mass conservation equations. Transformation of the

momentum conservation equation (A.16) is straightforward. The resulting conservative

system takes this form:

∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (A.17)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = ∇ · τ + ρ~g. (A.18)

These equations represent a barotropic version of the four-equations model proposed in

[DDG10, Dut07].

It can be shown that the advection operator of the model (A.17), (A.18) is hyperbolic

for any reasonable equation of state (A.4). Moreover, this system contains fewer variables

which allow more efficient computations required in practice.

A.1.4 Incompressible limit

The main scope of this paper is certainly around compressible two-fluid models. How-

ever, we decided to derive an incompressible limit of the single velocity model (A.17),

(A.18) for the case when acoustic effects should be filtered out. The presence of acoustic

waves represent, for example, a major restriction for the time step, if an explicit scheme is

used.

For the sake of simplicity, we will neglect dissipative effects which do not affect the

acoustic wave propagation. Thus, in this section we consider the following system of
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equations:

∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (A.19)

ρ∂t~u+ ρ(~u · ∇)~u+∇p = ρ~g. (A.20)

(A.21)

For convenience, we rewrite equation (A.18) in nonconservative form.

In order to estimate the relative importance of various terms, we introduce dimension-

less variables. The characteristic length, time, and velocity scales are denoted by ℓ, t0 and

U0 respectively. For example, ℓ may be chosen as the diameter of the fluid domain Ω, t0
is the biggest vortex turnover time and U0 is the typical flow velocity. The density and

the sound velocity scales are chosen to be those of the heavy fluid, i.e. ρ+0 and c+0s corre-

spondingly. Since we are interested in acoustic effects, the natural pressure scale is given

by ρ+0 (c
+
0s)

2. If we summarize these remarks, dependent and independent dimensionless

variables (denoted with primes) are defined as:

x′ :=
x

ℓ
, t′ :=

t

t0
, ~u′ :=

~u

U0
, (ρ±)′ :=

ρ±

ρ+0
, p′ :=

p

ρ+0 (c
+
0s)

2
.

Remark 49. There is nothing to do for the volume fractions α±, since this quantity is

dimensionless by definition.

After dropping the tildes, nondimensional system of equation becomes:

St ∂t(α
±ρ±) +∇ · (α±ρ±~u) = 0, (A.22)

St ρ∂t~u+ ρ(~u · ∇)~u+ 1

Ma2
∇p = 1

Fr2
ρ~g, (A.23)

where several scaling parameters have appeared:

• Strouhal number St :=
ℓ

U0t0
. In this study we will assume the Strouhal number to

be equal to one, i.e. t0 =
ℓ

U0
.

• Mach number Ma :=
U0

c+0s
which measures the relative importance of the flow speed

and the sound speed in the medium.

• Froude number Fr :=
U0√
gℓ

compares inertia and gravitational force. This parameter

will not play an important rôle in the present study.
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All physical variables α±, ρ±, p and ~u are expanded in formal series in powers of the Mach

number:

φ = φ0 +Maφ1 +Ma2φ2 + . . . , φ ∈ {α±, ρ±, p, ~u}. (A.24)

Formal expansion (A.24) is then substituted into the system (A.22), (A.23). At the orders

Ma−2 and Ma−1, we obtain

∇p0 = ∇p1 = 0.

In other words, p0 = p0(t) and p1 = p1(t) are only functions of time. At the order Ma0 we

get the following system of equations:

∂t(α
±
0 ρ

±
0 ) +∇ · (α±

0 ρ
±
0 ~u0) = 0, (A.25)

ρ0∂t~u0 + ρ0(~u0 · ∇)~u0 +∇π =
1

Fr2
ρ0~g, (A.26)

(A.27)

where by π we denote p2.

Using the same asymptotic expansion (A.24), one can show that at the leading order

we keep usual relations between densities and volume fractions:

α+
0 + α−

0 = 1, ρ0 = α+
0 ρ

+
0 + α−

0 ρ
−
0 . (A.28)

In order to investigate the behaviour of ρ±0 , we will invert the equation of state3 ρ± =

ρ±(p) = (p±)−1(p) and expand it in powers of Ma:

ρ±(p) = ρ±(p0) + Ma
∂ρ±

∂p

∣∣∣∣
p0

p1 +Ma2
( ∂ρ±
∂p

∣∣∣∣
p0

p2 +
∂2ρ±

∂p2

∣∣∣∣
p0

p21

)
+ O(Ma3)

On the other hand, from (A.24) we know that

ρ± = ρ±0 +Maρ±1 +Ma2ρ±2 + . . .

Matching these expansions at two lowest orders shows that ρ±0,1 are functions only of the

time variable:

ρ±0 = ρ±(p0(t)) =: r±0 (t), ρ±1 =
∂ρ±

∂p

∣∣∣∣
p0(t)

p1(t) =: r±1 (t).

It is possible to show that ρ±0,1 are just constants. Consider the Gibbs relation which reads

T±ds± = de± − p

(ρ±)2
dρ±.

3The function p = p±(ρ±) is invertible since it is a strictly increasing function
∂p

∂ρ±
> 0.
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Since we consider isentropic flows, ds± ≡ 0 and, consequently, the Gibbs relation takes a

much simpler form:

de± =
p

(ρ±)2
dρ±. (A.29)

It can be shown by considering the total energy conservation equation [MDG10], that the

internal energy e± naturally scales with U2
0 . After dividing (A.29) by dt and switching

to dimensionless variables, equation (A.29) takes the following form (after droping the

primes):
de±

dt
=

p

Ma2(ρ±)2
dρ±

dt
.

Expanding e± in the series (A.24) and looking at two leading terms, leads to the desired

result:
dρ±0,1
dt

= 0 ⇒ ρ±0,1 = const.

The incompressibility condition ∇ · ~u0 = 0 is obtained by summing up mass conservation

equations (A.25) and taking into account relation (A.28).

If we summarize all developments made above and switch back to dimensional variables,

the resulting incompressible system will become:

∂tα
± +∇α± · ~u = 0, (A.30)

∇ · ~u = 0, (A.31)

ρ∂t~u+ ρ(~u · ∇)~u+∇π = ρ~g +∇ · τ , (A.32)

where we dropped the index 0 and added again dissipative effects. Viscous stress tensor

τ is still defined by expression (A.5), as in compressible case. In this case, we can speak

about two-fluid Navier-Stokes equations. This system of equations (A.30) – (A.32) is much

easier to solve numerically than its compressible analogue (A.17), (A.18). In particular,

this simplification is due to removed stiffness of acoustic waves.

A.1.5 Conclusions and perspectives

In this study we presented several barotropic two-fluid models which can be used for

numerical simulation of powder-snow avalanche flows. One of the main objectives of this

paper was to reveal the connection between barotropic models with single and two veloci-

ties. The extension to more general fluids is in progress [MDG10].

Our exposition began with compressible two-phase model (A.2), (A.3) possessing two

velocity variables. Then, using a relaxation process, we constrained the system to have a

common velocity for both phases. Mathematically it was achieved with a Chapman-Enskog

type expansion. Resulting model (A.17), (A.18) is hyperbolic for any reasonable equation
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of state (A.4). Finally, two-fluid Navier-Stokes equations (A.30) – (A.32) were derived as

an incompressible limit of the single velocity model (A.17), (A.18).

Hence, we presented three different two-fluid models which are related by formal deriva-

tion procedures. Simplifications made above, represent a good trade-off between accuracy

and computational complexity. The final choice should be made after determining the flow

régime and main goals of the simulation.

We did not incorporate yet any turbulence modeling. In this study we were focused

essentially on the advection operators. However, it is obvious that the physical flow under

consideration is fully turbulent in its aerosol part [RH04]. As the first physical approxi-

mation, turbulence effects can be taken into account by adding eddy viscosity terms and,

thus, by modifying the viscous stress tensor τ . It will be done in future studies.



Perspectives

You have your way. I have my way. As for the right way, the correct way, and the only way, it

does not exist.

Friedrich Nietzsche

Scientific works presented in this manuscript are devoted to Fluid Mechanics in the large

sense. More specifically, my primary scientific interests lie essentially in the fields of water

waves and two-phase flows. The need of extensive numerical simulations of mathematical

models arising in these domains yields my deep interest in numerical methods for PDEs.

My future research activities will certainly deal with these branches of applied mathematics.

Among various projects for the future, I can briefly describe a few ones which are the most

crystallized in my mind.

Concerning tsunami waves, in collaboration with Dimitrios Mitsotakis and Leonid

Chubarov we are going to prepare a sequel to our study with Frédéric Dias on tsunami

wave energy, published in Proceedings of Royal Society in 2009. With Dimitrios we have

also some ideas which could be used to develop a pseudo-spectral solver for the full water

wave problem in non-periodic domains. It is an important direction to be explored. In

collaboration with Theodoros Katsaounis we develop IMEX finite volume schemes for stiff

dispersive KdV-BBM type equations.

In the topic of two-phase flows we would like to investigate the numerical simulation

of quasi-incompressible flows with the four equations model. Godunov-type schemes are

known to fail in this regime and we would like to develop an all-Mach version of the Finite

Volumes Characteristic Flux (FVCF) approach. It would be a natural sequel to our works

initiated with Frédéric Dias and Jean-Michel Ghidaglia and continued later in LAMA in

collaboration with Marguerite Gisclon and Yannick Meyapin.

Since some time I feel an intellectual attraction to probabilities and stochastic processes.

The cultural differences with continuous mechanics are enormous but I hope to overtake

them during next several years. The inclusion of stochastic effects or random exterior

conditions into mechanical models seems to me very exciting.
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Mém. Acad. Berlin, 196, 1781. 51



360 BIBLIOGRAPHY

[Lam32] H. Lamb. Hydrodynamics. Cambridge University Press, 1932. 176

[Lar90] B. Larrouturou. How to preserve the mass fraction positivity when comput-

ing compressible multi-component flows. J. Comput. Phys., 95:59–84, 1990.

261

[Lax73] P.D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical

Theory of Shock Waves. SIAM, Philadelphia, Penn., 1973. 142, 247, 273

[LB80] K. Lied and S. Bakkehøi. Empirical calculations of snow avalanche run-out

distances based on topographic parameters. Journal of Glaciology, 26:165–

177, 1980. 293

[LB09] D. Lannes and P. Bonneton. Derivation of asymptotic two-dimensional

time-dependent equations for surface water wave propagation. Phys. Fluids,

21:016601, 2009. 206

[Li02] Y.A. Li. Hamiltonian structure and linear stability of solitary waves of the

Green-Naghdi equations. J. Nonlin. Math. Phys., 9, 1:99–105, 2002. 53, 243

[Lie06] K. Lied. Satsie: Avalanche studies and model validation in europe. Technical

report, European Commission, 2006. 316
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[Ngu08] H.Y. Nguyen. Modèles pour les ondes interfaciales et leur intégration
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records for 1987 to 1988 Gulf of Alaska earthquake parameters. Bulletin of

the Seismological Society of America, 85:747–754, 1995. 83



370 BIBLIOGRAPHY

[Sal88] R. Salmon. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech., 20:225–

256, 1988. 47, 68, 242

[SB06] C.E. Synolakis and E.N. Bernard. Tsunami science before and beyond Box-

ing Day 2004. Phil. Trans. R. Soc. A, 364:2231–2265, 2006. 18, 68, 83, 105,

119, 120, 166, 169, 239

[SBG04] B. Sapoval, A. Baldassarri, and A. Gabrielli. Self-stabilized fractality of

seacoasts through damped erosion. Phys. Rev. Lett., 93:098501 [4 pages],

2004. 120, 121

[SBT+07] C.E. Synolakis, E.N. Bernard, V.V. Titov, U. Kanoglu, and F.I. Gonza-

lez. Standards, criteria, and procedures for NOAA evaluation of tsunami

numerical models. Technical report, NOAA/Pacific Marine Environmental

Laboratory, 2007. 156, 190, 239

[SBT+08] C.E. Synolakis, E.N. Bernard, V.V. Titov, U. Kânoglu, and F.I. González.
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dans les canaux. La Houille blanche, 8:374–388 & 830–872, 1953. 46, 53,

123, 200, 206, 243

[SF09] T. Saito and T. Furumura. Three-dimensional tsunami generation simu-

lation due to sea-bottom deformation and its interpretation based on the

linear theory. Geophys. J. Int., 178:877–888, 2009. 168, 176

[SFW+05] H. Staedtke, G. Franchello, B. Worth, U. Graf, P. Romstedt, A. Kum-
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[TG97] V.V. Titov and F.I. González. Implementation and testing of the method

of splitting tsunami (MOST) model. Technical Report ERL PMEL-112,

Pacific Marine Environmental Laboratory, NOAA, 1997. 121, 167, 182,

190, 199, 234, 239



374 BIBLIOGRAPHY

[TGB+05] V.V. Titov, F.I. Gonzalez, E. N. Bernard, M.C. Eble, H.O. Mofjeld, J.C.

Newman, and A.J. Venturato. Real-time tsunami forecasting: Challenges

and solutions. Natural Hazards, 35:41–58, 2005. 120, 167, 190

[THT02] M.I. Todorovska, A. Hayir, and M.D. Trifunac. A note on tsunami ampli-

tudes above submarine slides and slumps. Soil Dynamics and Earthquake

Engineering, 22:129–141, 2002. 173

[TK96] I. Toumi and A. Kumbaro. An approximate linearized Riemann solver for

a two-fluid model. J. Comput. Physics, 124:286–300, 1996. 244, 295

[TKDV00] K. Trulsen, I. Kliakhandler, K. B. Dysthe, and M. G. Velarde. On weakly

nonlinear modulation of waves on deep water. Phys. Fluids, 12:2432–2437,

2000. 46

[TKP99] I. Toumi, A. Kumbaro, and H. Paillère. Approximate Riemann solvers and

flux vector splitting schemes for two-phase flow. Technical report, CEA

Saclay, 1999. 288, 295

[TM07] B. Turnbull and J.N. McElwaine. A comparison of powder-snow avalanches

at Vallée de la Sionne, Switzerland, with plume theories. Journal of Glaciol-

ogy, 53(180):30–40, 2007. 294

[TM08] B. Turnbull and J.N. McElwaine. Experiments on the non-Boussinesq flow

of self-igniting suspension currents on a steep open slope. J. Geophys. Res.,

113:F01003, 2008. 290, 294

[TMD07] B. Thornber, A. Mosedale, and D. Drikakis. On the implicit large eddy sim-

ulations of homogeneous decaying turbulence. J. Comput. Phys., 226:1902–

1929, 2007. 281, 282

[Tor92] E.F. Toro. Riemann problems and the WAF method for solving the two-

dimensional shallow water equations. Philosophical Transactions: Physical

Sciences and Engineering, 338:43–68, 1992. 121

[TP09] M. Tonelli and M. Petti. Hybrid finite-volume finite-difference scheme

for 2DH improved Boussinesq equations. Coastal Engineering, 56:609–620,

2009. 201

[TRM+05] V.V. Titov, A.B. Rabinovich, H.O. Mofjeld, R.E. Thomson, and F.I.
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