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Résumé en français

La Stéréo-vision se réfère à la perception visuelle en trois dimensions ( 3D) des structures
du monde vues par les deux yeux. En d’autres termes, grace à la stéréo-vision on a la capacité
de distinguer la profondeur relative des différents objets de la scène. Mais comment cela
est-il possible ?

Dans le cas des primates, les deux yeux regardent vers l’avant avec un chevauchement
important de leur champs de vision. En raison de ce chevauchement, les deux yeux ont une
vue presque identique du monde. Cependant, en raison de leur séparation horizontale, ils
voient le monde à partir de points de vue légèrement différents. Par conséquent, chacun
reçoit une image légèrement différente de la scéne en trois dimensions. La différence entre
les positions des points dans les deux images est appelée disparité binoculaire. Cette
disparité binoculaire est liée aux distances relatives des objets aux yeux.

Au lieu de directement comprendre le système visuel humain, on peut tenter de l’imiter
avec de la stéréo-vision par ordinateur. Cela se fait à l’aide de deux caméras, une pour
chaque oeil, et d’un ordinateur (qui se comporte comme le cerveau) qui s’interface avec les
caméras et traite les images stéréo pour finalement fournir les informations de profondeur.
Bien que le modèle stéréo artificiel ne suive pas exactement le système visuel humain, il s’en
inspire fortement. Même après 40 ans de recherche en stéréo-vision par ordinateur, il existe
encore de nombreux problèmes non résolus qui doivent être abordés. Dans cette thèse, notre
objectif est de répondre à certains de ces problème et de proposer des solutions possibles.

La stéréo-vision par ordinateur est utilisée dans de nombreux autres domaines que la
simulation de la vision humaine. C’est un outils utilisé dans le cadre de la navigation de
robotique, pour extraire la profondeur des objets d’une scène pour permètre de détecter et
d’éviter les obstacles qui s’y trouvent. Un des exemples les plus évident d’un tel système
est le (Goldberg et al. [2002]) Mars Rover qui a été équipé d’un système de caméras stéréo-
scopique et qui a roulé sur le sol de la planète Mars. La Stéréo-vision a également trouvé
des applications dans la restitution du relief topographique, l’architecture, l’ingénierie, la
fabrication et la géologie. Plus récemment, la vision stéréoscopique a été utilisée pour le
suivi de milliers de points sur un visage humain ou d’autres surfaces pour l’animation de
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personnages. Il y a aussi une demande pour des systèmes temps-réel de vision stéréo pour
détecter et suivre la pose de marqueurs pour des applications chirurgicales. En outre, des
recherches sont également en cours (Balakrishnan et al. [2007]) pour créer des systèmes
portables de stéréo-vision pour l’aide aux personnes mal-voyantes.

Stéréo-vision par ordinateur

La stéréo-vision par ordinateur, que nous appelerons plus simplement stéréo-vision dans
la suite, repose la configuration suivante. L’élement principal est le couple de caméras
(gauche et droite) qui sont placées l’une à coté de l’autre avec un décalage latéral. Ces
caméras capturent la scène à partir de deux points de vue différents, les images obtenues
sont ensuite transmises à un ordinateur. L’idée est maintenant de trouver les endroits dans
les images qui correspondent au même point physique dans l’espace. Avec cette information,
ainsi que la géométrie des caméras stéréo, il est possible de déterminer les emplacements en
trois dimensions de tous les points dans l’image. Les principaux problèmes qui doivent être
abordées en stéréo-vision sont les suivants: l’étalonnage , la mise en correspondance stéréo
et la reconstruction 3D. L’étalonnage consiste à déterminer les paramètres intrinsèques
et extrinsèques de la caméra. Par paramètres intrinsèques, on entend la distance focale,
la taille des pixels, et le point principal (où l’axe optique rencontre le plan image), et par
des paramètres extrinsèques, les positions relatives et les orientations de chaque caméra.
Le problème de mise en correspondance consiste à déterminer les emplacements des
points dans les images de chaque caméra qui sont les projections d’un même point physique
de l’espace 3D. La recherche de ces points est déterminée par la géométrie épipolaire des
caméras. La géométrie épipolaire est la géométrie projective intrinsèque entre les deux points
de vue. Il dépend des paramètres (éventuellement inconnus) intrinsèques et extrinsèques
des deux caméras. En termes de correspondance stéréo, la géométrie épipolaire limite la
recherche du point correspondant dans une image à une droite, appelée la droite épipolaire,
dans l’autre image. Autrement dit, la recherche est réduite d’une couverture totale de l’image
à une recherche 1D le long de la droite épipolaire. Cette contrainte imposée par la géométrie
épipolaire est appelée la contrainte épipolaire. En général, les droites épipolaires sont
inclinées. Par conséquent, la recherche de points correspondant prend du temps car les pixels
à comparer reposent sur des droites obliques dans l’espace image. Ce problème peut être
résolu en transformant les images gauche et droite de telle sorte que les droites épipolaires
des deux images sont alignées et parallèles à l’axe horizontal. C’est ce qu’on appelle le
processus de rectification. Les paramètres de la caméra obtenus à l’aide de l’étalonnage
peuvent être combiner avec les informations de correspondance pour reconstruire la scène
3D. Ceci est fait grâce à la triangulation, qui établie une relation entre la profondeur et
la disparité. étant donné les points correspondants dans les deux images, on peut calculer
leur disparité égale à la différence entre leurs positions. Cette disparité est inversement
proportionnelle à la profondeur, pour une calibration de la caméra connue. Par conséquent,
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en utilisant la carte de disparité et les paramètres de caméra, nous pouvons réaliser la
reconstruction 3D de la scène. Toutefois, le problème qui reste à résoudre est toujours:
comment trouver les correspondances stéréo?

Les méthodes utilisées pour la mise en correspondance stéréo

L’objectif est maintenant de mettre en correspondance les points des images gauche
et droite après réctification. On compare la similitude des pixels à des endroits candi-
dats, x = (xl, yl) et (xr, yr) = (xl + d, yl), en faisant varier les valeurs de d. Mais une
simple comparaison des intensités dans les images aux deux positions ne suffit pas car il
peut y avoir des régions sans texture, des motifs répétitifs et deux images peuvent avoir
différents éclairages qui peuvent conduire à des résultats ambigus. Certaines méthodes de
mise en correspondance (Hannah [1974], Marr and Poggio [1979], Pollard et al. [1985], Baker
and Binford [1981]) utilisent certaines caractéristiques dans les images, comme les bords,
les coins ou les contours, car ils sont plus résistants aux changements d’éclairage et pro-
duisent des correspondances avec une plus grande certitude. En raison de la large gamme
d’applications dans les domaines du rendu d’image et de la modélisation 3D, la plupart des
techniques d’aujourd’hui se concentrent sur la recherche d’un ensemble dense de correspon-
dances stéréo. Le problème consistant à trouver ces correspondances denses a été largement
étudié. Certaines méthodes suggérent de comparer les intensités de l’image dans le voisinage
autour de chaque point dans les deux images. Ces méthodes font l’hypothèse implicite de
lissage local dans le choix du voisinage. La distinction entre ces méthodes réside dans les
mesures utilisées pour la comparaison. Ces méthodes sont généralement appelées méthodes
locales. Les méthodes globales, d’autre part, définissent une fonction d’énergie qui implique
un coût basé sur les intensités des deux images et un terme de régularisation qui force les dis-
parités à être semblables dans un voisinage. Comme le problème de mise en correspondance
est mal determiné, une régularisation explicite est nécessaire pour obtenir une solution
physiquement plausible. Cette fonction d’énergie est ensuite minimisée afin d’obtenir la
carte de disparité finale. La plupart des méthodes récentes utilisent des techniques basées
sur la minimisation d’une énergie utilisant dans le contexte d’une modélisation probabiliste.
L’idée principale de ces méthodes consiste à utiliser les Champs de Markov (MRF), ainsi
que l’inférence bayésienne pour modéliser les disparités. D’une part les champs de Markov
définissent les interactions locales entre les disparités et d’autre part l’inférence bayésienne
permet à ces interactions d’être incluses dans une distribution a priori. Cette distribution
a priori définie l’homogénéité des disparités et le coût dérivant des intensités dans le couple
d’images stéréo est présenté comme la vraisemblance. Le théorème de Bayes permet de
calculer la distribution a posteriori en utilisant les a priori et la vraisemblance. L’avantage
d’utiliser une approche bayésienne est qu’elle offre une approche prometteuse pour ces prob-
lèmes mal contraints parce qu’elle traite le problème comme un problème d’inférence afin de
trouver l’estimation optimale. Dans de telles approches bayésienne-MRF l’objectif est alors
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de maximiser la probabilité a posteriori sur toutes les cartes de disparité possibles. Cette
maximisation/minimisation nécessite l’utilisation de techniques d’optimisation tels que, le
recuit simulé, champ moyen, la propagation des croyances ou Graph-cuts. Même si ces
techniques de modélisation saisissent les interactions locales entre les disparités voisines et
permettent d’intégrer les informations stéréo, certains problèmes cruciaux demeurent:

• Certaines zones de la scène qui sont visibles dans une image peuvent être ocultés dans
l’autre et cela peut conduire à des mises en correspondance incorrectes.
• Le terme de régularisation du modèle pourrait lisser toutes les disparités et conduire

à de mauvaises solutions aux limites des objets de la scène.
• Intégrer uniquement les intensités des image stéréo et le terme de lissage condiurait

à modéliser des disparités qui peuvent ne pas être compatible avec les propriétés
géométriques de la surface.

Afin de prendre en compte ces limitations, certaines informations supplémentaires sont
nécessaires dans la modélisation du problème de mise en correspondance. Des information
monoculaires tels que, le gradient, les contours ou l’information concernant la couleur d’une
image peuvent être utilisées dans le modèle pour fournir de meilleures solutions pour la
disparité. En outre, certaines contraintes géométriques supplémentaires doivent être incor-
porées pour obtenir des solutions valables vis-à-vis de la surface.

Contributions de la thèse

Dans cette thèse, nous nous concentrons sur l’extension des contraintes pour le problème
de mise en correspondance stéréo à partir d’indices monoculaires et de contraintes extra-
géométrique. A cette fin, nous proposons ce qui suit:

Estimation conjointe de la disparité et des frontières des objets

La première méthode se propose d’estimer conjointement les disparités et les bordures
des objets dans un cadre probabilisteunifié. L’idée ici est de s’attaquer au problème de la
localisation des discontinuités dans la carte de disparités qui correspondent aux bords des
objets dans le monde réel, ainsi que celle de l’estimation des disparités. Ce schéma implique
l’incorporation de l’informations venant des gradients d’intensité dans chaque image comme
information monoculaire. Tandis que les disparités sont détectés en utilisant les informations
stéréo (images gauche et droite), les indices monoculaires aideront à corriger la disparité au
niveau des discontinuités et à trouver les limites des objets. Nous modélisons les informations
stéréo et monoculaire dans un cadre MRF unifié. Cette partie de nos contributions a été
publié dans l’article Narasimha et al. [2008].
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Estimation de disparités compatibles avec la surface

La deuxième méthode tient compte des contraintes de surfaciques différentielle dans le
modèle de disparité. Ces contraintes proviennent des normales de la surface dans l’espace
des disparités. L’idée est de modéliser les disparités de telle manière à ce qu’elles se trouvent
sur le plan défini par les normales de la surface. Cette contrainte conduit à des solutions
qui sont compatibles avec les propriétés géometrique de la surface. L’idée est d’estimer
simultanément la disparité et les normales de la surface, en tenant compte explicitement de
leurs influences réciproque. Cela se fait par la modélisation à la fois des disparités et des
normales dans un cadre unifié. Ces travaux ont été publiés dans Narasimha et al. [2009] et
Narasimha et al. [2010].

Modélisation conjointe probabiliste à partir des champs aléatoires couplés

Le défi majeur des deux méthodes mentionnées ci-dessus est d’intégrer les informations
et les contraintes dans un cadre probabiliste unifié, dans lequel la relation entre les disparités
et les variables étudiées (les limites des objets ou les normales à la surface) peuvent être
établies de façon explicite. A cet égard, nous utilisons l’idée de couplage des champs de
Markov, qui permet de modéliser plus d’une variable aléatoire. Ce type de modélisation
permet de rendre explicite l’influence d’une variable sur une autre dans le modèle. Une
telle méthode probabiliste permet aussi d’utiliser des techniques d’optimisation séparées
pour maximiser les distributions a posteriori portant sur chacune des variables ; Elle donne
plus de souplesse dans la modélisation et l’optimisation. Une procédure de maximisation
alternative est ensuite utilisée pour réaliser une optimisation globale.

Résumé des chapitres

Nous allons maintenant donner une brève description des chapitres ultérieurs. Les
chapitres détaillant les principales contributions de la thèse sont indiqués par ⋆. L’organisation
de la thèse est la suivante:

Dans le chapitre 2, nous proposons un bref aperçu de la littérature du domaine
de la mise en correspondance stéréo. Dans ce chapitre, nous fournissons également
une introduction aux champs de Markov (MRF) et nous concentrons principalement
sur les techniques qui utilisent des modèles MRF pour l’appariement stéréo. Nous
fournissons un bref résumé des techniques d’optimisation pour les MRF utilisés pour
estimer les disparités. En outre, nous discutons de certaines ambiguités du problème
d’appariement stéréo, et les méthodes existantes pour les surmonter. Nous montrons
que l’utilisation des informations monoculaires et géométriques sont importants pour
la résolution du problème de correspondance stéréo. Cette discussion introduit les
motivations des méthodes proposées de la thèse.
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Dans le chapitre 3, nous décrivons l’idée de champs de Markov couplés (MRF cou-
plés) dans le cadre de nombreuses applications telles que, la restauration d’image,
l’estimation des frontières, la segmentation d’images, la segmentation de texture, ainsi
que dans l’appariement stéréo. Nous présentons également une stratégie d’optimisation
appelée maximisation alternative. Ces modèles et méthodes fournissent la plate-forme
sur laquelle les algorithmes proposés dans cette thèse sont construits.

⋆ Dans le chapitre 4, nous présentons une méthode pour intégrer les informations
monoculaires pour estimer conjointement les bords des objets les disparités dans un
cadre probabiliste unifié. Nous utilisons les MRF couplés pour modéliser les disparités
stéréo et l’information sur les limites des objets. Nous montrons que ce modèle permet
une amélioration mutuelle dans l’estimation des disparité et des frontières. Nous
utilisons la maximisation alternative qui fournit une méthode efficace pour estimer
les disparités et les frontières. Enfin, les résultats obtenus en utilisant la méthode
proposée sont présentés et discutés.

⋆ Dans le chapitre 5, nous proposons une méthode pour obtenir une estimation des
disparités qui soit compatible avec l’information de surface. Nous le faisons en éten-
dant les contraintes sur le problème d ’appariement stéréo pour intégrer l’information
géométrique venant de la surface. Nous présentons l’importance de ces contraintes
et montrons que l’ajout de ces contraintes implique l’estimation des normales à la
surface. Nous montrons la relation entre les normales à la surface dans l’espace de
profondeur et dans l’espace disparité. Nous proposons ensuite un modèle couplé pour
estimer simultanément les disparités et les normales à la surface dans l’espace des
disparités. La procédure de maximisation alternative utilisée pour estimer les deux
variables est discutée et les résultats sont présentés.

Dans le chapitre 6, nous résumons les méthodes proposées dans la thèse et mettons
en évidence certains des aspects importants qui les concernent. Nous concluons la
thèse en fournissant des orientations pour des travaux futurs.

Conclusion

Nous fournissons un bref résumé des deux modèles présentés dans les chapitre 4 et 5
de cette thèse, respectivement. Nous énumérons les caractéristiques communes des deux
modèles et, finalement, nous concluons en citant quelques pistes de recherches futures.
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Caractéristiques spécifiques de chacune des approches proposées

Caractéristiques de l’estimation de la disparité et des frontières

Nous réalisons une estimation conjointe des disparités et des frontières des objets par
l’unification des deux tâche dans un cadre unifié de Markov. Nous définissons un mod-
èle probabiliste commun original qui nous permet d’estimer les disparités à travers un
modèle MRF couplés. L’estimation des frontières aide à l’estimation des disparités afin
d’améliorer progressivement et conjointement la précision des deux estimations. Les retours
de l’estimation des frontières envers l’estimation des disparités se fait par le champ auxili-
aire dénommé le champ de déplacement. Ce champ indique les corrections qui doivent être
appliquées aux discontinuités dans la carte de disparité dans le but de les aligner avec les
limites des objets. Le modèle commun est un MRF lorsque nous considérons les dispar-
ités et se réduit en une chaîne de Markov lorsque nous nous concentrons sur le champ de
déplacement. Les caractéristiques spécifiques à ce modèle sont les suivantes:

• Le cadre MRF couplés a été présenté, impliquant deux MRFs : un pour les disparités,
l’autre pour le champ de déplacement.

• L’influence de l’estimation des frontières a été encodée dans le champ de déplacement
pour représenter les directions dans lesquelles des corrections doivent être appliquées
aux disparités.

• Le point central de l’idée d’appliquer des corrections sur les disparités au niveau
des discontinuités, provient de l’hypothèse que les discontinuités de la disparité se
produisent à proximité des frontières réelles et que les discontinuités de profondeur
sont en fait les limites des objets.

• Ces corrections ont été intégrées dans le MRF des disparités utilisant la notion de
voisinage adaptatif, qui est capable de traiter des systèmes de voisinage non-standard.

• Le champ de déplacement a été réduit à une chaîne de Markov de second ordre qui
n’est active qu’aux discontinuités des disparités. Cela nous permet de trouver les
vraies positions des frontières des objets sur la base des corrections appliquées au
niveau des discontinuités des disparité.

• L’inférence approximative des disparités a été réalisé en utilisant des algorithmes stan-
dards tels que BP ou champ moyen et l’inférence exacte du champ de déplacement en
utilisant l’algorithme de Viterbi.

• L’algorithme global permet l’extraction simultanée des frontières des objets et les
disparités grâce à l’utilisation d’une information monoculaire simple, dans notre cas,
le gradient de l’image.

xi



Caractéristiques de l’estimation des disparités et des normales

Le but de ce second algorithme est de récupérer les disparités en conformité avec les
propriétés de surface de la scène étudiée. Pour ce faire, nous estimons les disparités ainsi
que les normales dans l’espace disparité, en définissant les deux tâches dans un cadre unifié.
Nous avons défini un nouveau modèle probabiliste commun à travers deux champs aléatoires
pour favoriser à la fois les cohérences intra-champ (entre les disparités voisines, et entre les
normales voisines) et inter-champs (entre les disparités et les normales). L’information
géométrique est introduite dans les modèles à la fois pour les normales et les disparités puis
elle est optimisée en utilisant une procédure de maximisation alternative appropriée. Le
cadre général a les caractéristiques suivantes:

• Un modèle de disparités et de normales à la surface, avec les deux variables modélisées
comme des champs aléatoires conditionels (CRF) , a été proposé. Ces CRF sont
couplés pour intégrer l’influence réciproque de chaque variable.

• Les deux modèles ont été construits sous l’hypothèse que la scène étudiée est composée
de surfaces lisses par morceaux.

• Le CRF des disparités a été défini de telle sorte que le terme d’interaction implique des
dérivées au premier ordre des disparités, forçant ainsi les disparités proche à reposer
sur un même plan. Ces dérivés ont été extraites du modèle de la normale.

• L’optimisation du CRF des disparités a ensuite été réalisée en utilisant des algorithmes
de champ moyen.

• Deux modèles ont été présentés pour les normales, une discrète et une continue.

• Le modèle discret des normales requiert une discrétisation de l’espace des normales et
a été optimisé en utilisant des BP. Cependant, ce modèle nécessite une discrétisation
dense de l’espace des normales et s’est donc avéré inefficace lors de l’optimisation.

• Le modèle continu quant à lui fourni une meilleure alternative pour le modèle CRF
des normales. Le modèle permet l’utilisation de l’algorithme ICM pour l’extraction
des normales.

Les caractéristiques partagées par les deux approches proposées

Les deux approches présentées dans cette thèse partagent un certain nombre de carac-
téristiques communes, telles que:

• Nous proposons des modèles qui, dans un cadre probabiliste, ont permis des distri-
butions conditionnelles qui peuvent modeler explicitement les relations entre deux
variables.

• Les deux distributions conditionnelles ont améiloré la flexibilité du modèle global dans
le sens où elles peuvent être dépendante ou indépendante en fonction de l’information
intégrée.
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• L’utilisation de la technique de maximisation alternative pour l’optimisation des deux
champs conduit à l’amélioration mutuelle des deux variables en question.

• L’utilisation de l’approche multi-grille dans l’optimisation, permet une interaction à
longue portée dans un treillis, sans pour autant réduire la résolution de l’image, mais
seulement celle des coûts.

• Les approches proposées ont l’avantage supplémentaire de faire une distinction claire
entre le modèle probabiliste et la procédure d’optimisation ultérieure. Des techniques
d’optimisation séparées et pré-existentes peuvent être utilisées pour déduire les vari-
ables associées à chacun des champs aléatoires.

D’autres directions de recherche

Les deux modèles proposés dans cette thèse traitent de deux questions importantes
que sont la localisation des discontinuité dans les disparités et l’extraction des surfaces de
disparités. La suite naturelle de ces recherches est de combiner ces deux modèles afin que
nous puissions en même temps évaluer les disparités au niveau des discontinuités, extraire la
surface des disparités en utilisant des contraintes géométriques et obtenir les frontières des
objets. Il s’agirait de gérer trois champs aléatoires, chacun d’eux agissant sur les deux autres
d’une manière différente. Etant donné que les contraintes géométriques forcent les disparités
à être plus lisses et le modèle des frontières introduit des discontinuités, leur combinaison
n’est pas triviale.

En ce qui concerne la forme probabiliste des deux techniques proposées, nous nous
sommes concentrés sur la définition valide d’un cadre unifié pour modéliser les coopérations
et à utiliser le principe du MAP pour l’inférence. Ce modèle peut être approfondi par la
refonte de nos approches dans un cadre Expectation-Maximisation (Dempster et al. [1977]).
Un cadre de type EM fournirait également une procédure, théoriquement correctement bien
fondée, pour l’estimation des paramètres.
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Chapter 1
Stereo Vision

Stereo vision refers to the visual perception of three dimensional (3D) structures of the
world when seen by the two eyes. In other words, with stereo vision one has the ability
to distinguish the relative depth of different objects in the scene. But how exactly is this
achieved?

In the case of primates, they have two eyes facing forward with a large overlap in their
fields of view. As a result of this overlap, the two eyes see almost identical views of the
world. However because of the horizontal separation between them they see the world
from sightly different vantage points. Each eye receives a slightly different picture of the
three dimensional scene around us. The dissimilarity is the difference in the positions of the
points in two images, which is referred to as binocular disparity. This binocular disparity
is related to the relative distances of the objects from the eyes.

This fact can be verified through a quick experiment; hold two fingers up, one in front
of the other. While fixating on the closer finger, alternately open and close each eye. One
notices that the farther the far finger is from one’s eyes (while not moving the near finger),
the greater is the lateral shift in its position as one opens and closes each eye. Therefore,
it can be concluded that, the difference in line-of-sight shift manifests itself as disparity
between the left and right eye images.

Although this explanation seems obvious, it was not until 170 years ago that this fact
was completely understood. While simple facts about binocular disparities were known to
people since ancient times, these were considered as obstacles rather than the basis of stereo
vision. Leonardo da Vinci had correctly observed that the two eyes received different views
of the 3D scene. But he could not explain how one could see single world of the objects
given these different views. Vieth and Müller later discovered the idea of horopter, which
referred to the locus in space within which the object must lie to appear fused. However,
they disregarded the binocular disparities as being too small to be noticed by the two eyes.
It was Charles Wheatstone (Wheatstone [1838, 1852]), who through the invention of the

1



Stereo Vision

stereoscope demonstrated the significance of binocular disparity. He stated the principle of
the stereoscope as follows:

“It being established that the mind perceives an object of three dimensions by means of
two dissimilar pictures projected by it on the retina, the following question occurs. What
would be the visual effect of simultaneously presenting to each eye, instead the object itself,
its projection on a plane surface as it appears to that eye? To pursue this enquiry it is
necessary that means should be contrived to make the two pictures, which must necessarily
occupy different places, fall on similar parts of both eye.”

Figure 1.1: Wheatstone’s mirror stereoscope: Two mirrors at A′, A reflect the drawings at
E′, E and produce a 3D relief when viewed simultaneously from very close range. Repro-
duced from Wheatstone [1838].

The stereoscope, he invented, mainly consisted of two mirrors at right angles and two
vertical picture holders (see figure 1.1). He then presented a series of line drawings, shown
in figure 1.2, of simple objects with perspectives corresponding to right and the left eye,
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Figure 1.2: Line drawings presented each eye through the stereoscope. Reproduced from
Wheatstone [1838].
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separately to each eye. He observed that all these objects appeared (i) in three dimensions
when the pictures for left and right eyes corresponded, (ii) appeared flat when pictures in
the two eyes were the same and, (iii) appeared in reverse depth when the pictures with
disparity were reversed to the two eyes.

These experiments showed that the brain has the capability of measuring the difference
between the images from the two eyes and creating a sensation of depth. But how exactly
does the brain measure these differences? Helmholtz (Helmholtz [1925]) conjectured that as
the task of comparing the images from the two eyes is too complex, the brain first recognizes
the forms of the objects (like the object contours) and compares them before extending
to the entire scene. About 100 years after Julez [1959] (later in Julesz [1971]) through
the use of computer generated random-dot stereo images, also referred to as stereograms,
demonstrated that one could see stereo even in the absence of object contours. The random-
dot stereograms he generated, consisted of slightly shifted hidden pattern that was not visible
to each eye separately, but could be seen as 3D structure using a stereoscope. Julez therefore
concluded that binocular disparity was in fact a low-level cue like object contours or edges.
However, Ramachandran and Nelson [1976] showed that it was not the only cue used by
the brain. They found that brain while it was capable of extracting depth without the aid
of monocular cues like object boundaries, it sometimes did use such cues under noisy or
camouflaged environment. While a lot of research has been carried out to understand the
way the stereo processing is performed in the brain, it is still a very complex problem and
we are very far from the true answer (Cumming and DeAngelis [2001]).

Alternatively, one can take a computational point of view to the problem of stereo vision.
In computational stereo vision, instead of directly understanding the human visual system,
the goal is to imitate it. This is done by using two cameras for the two eyes and a computer
(that behaves like the brain) which interfaces with the cameras and processes the stereo
images to finally provide the depth information. While the artificial stereo system does not
entirely follow the human visual system it takes ideas from it which are useful in determining
the solution. Even with 40 years of research in computational stereo vision there are still
many unsolved problems which need to be addressed. In this thesis, our goal is to address
some of these issues and to provide possible solutions.

Apart from trying to imitate the human visual system, computational stereo has many
other applications. It has been used in robot navigation, to extract the depth of the objects
in the scene for obstacle avoidance. One the most conspicuous examples of such a system is
the Mars Rover (Goldberg et al. [2002]) which was equipped with a stereo camera to navigate
through the Mars terrain. Stereo vision has also found its applications in topographic relief
mapping, architecture, engineering, manufacturing and geology. More recently stereo vision
is used for tracking of thousands of points on the human face or other surfaces for character
animation. There is also a demand for real-time stereo vision systems to detect and track
the pose of markers for surgical applications. Furthermore, research is also being done
(Balakrishnan et al. [2007]) to create human-wearable stereo vision systems to assist the
blind.
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1.1 Computational stereo vision

Computational stereo vision, hereafter referred to as just stereo vision, has the following
set up. It mainly consists of two cameras (the left and right cameras) which are placed
next to each other with a lateral shift. A typical stereo camera system is shown in figure
1.3. computer which converts images into a digital form. These cameras capture the scene
from two different viewpoints, which are then fed to a computer. The idea now is to find
the locations in both the images that correspond to the same physical point in space. With
this information, along with the geometry of the stereo set up, it is possible to determine
the three-dimensional locations of all the points in the image. Primary problems that have
to be addressed in stereo vision are the following: calibration, stereo correspondence and 3D
reconstruction.

Figure 1.3: Two cameras are placed next to each other with a lateral shift to resemble the
human eyes.

Camera calibration involves determining the intrinsic and extrinsic parameters of the
camera. By intrinsic parameters, we mean the focal length, size of the pixels, and principal
point (where the optical axis meets the image plane), and by extrinsic parameters, the
relative positions and orientations of each camera. The location of the focal length, and
principle point must be determined to relate the image pixel coordinates to positions in the
image plane (see figure 1.4). The position and orientation of the cameras must be determined
to relate image plane coordinates to the world coordinate system (or absolute coordinates) in
which the camera resides (see figure 1.5). Therefore, the extrinsic parameters are required
to determine the rigid body transformation between the two cameras and the intrinsic
parameters to model the imaging process inside each camera. The problem of estimating
the calibration (parameters) is, at this point, well understood and high-quality toolkits are
available (e.g., Bouguet [2008] and links therein). For a more detailed discussion on this
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1.1 Computational stereo vision

topic, see Faugeras [1993], Hartley and Zisserman [2000] and Zhang [2000]. Throughout this
thesis, we assume the camera calibration to be fixed and the parameters known.

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 1.4: Intrinsic parameters involves the optical centre C, focal length f and the prin-
ciple point p. Reproduced from Hartley and Zisserman [2000].
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Figure 1.5: Extrinsic parameters relate the camera coordinate frame to world frame using
rotation R and translation t. Reproduced from Hartley and Zisserman [2000].

The correspondence problem consists of determining the locations in each camera
image that are the projection of the same physical point in 3D space. The search for
the corresponding points is determined by the epipolar geometry of the cameras. The
epipolar geometry is the intrinsic projective geometry between the two views. It depends
on the (possibly unknown) intrinsic and extrinsic parameters of the two cameras. The
camera parameters obtained using calibration can then be used along with correspondence
information to reconstruct the 3D scene. This is done using triangulation and the whole
process is referred as 3D reconstruction.
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1.1.1 Epipolar constraint

When a point X in 3D space is imaged by a stereo camera pair, it projects as points
x and x′ in the left and right images respectively. As shown in the figure 1.6, the image
points x and x′, 3D point X and the camera centres C and C′ are all co-planar. This
plane is referred to as the epipolar plane and is denoted by π. The line joining the camera
centres is referred to as the baseline. The point of intersection of the baseline and the image
plane is called the epipole (e and e′ shown in figure 1.6(b)). If we consider only the point
x in the left image, its corresponding point must lie on the line l′ where the epipolar plane
intersects the right image plane, because of the co-planarity (see figure 1.6(b)). This line
l′ is called as the epipolar line corresponding to x. Similarly, l is the epipolar line in the
left image corresponding to x′. All the epipolar lines l in the left image pass through the
epipole e and similarly all epipolar lines l′ in right image pass through e′. In terms of stereo
correspondence, the epipolar geometry constrains the search for the point corresponding to
x to the line l′. That is, the search is reduced from covering the entire image to a 1D search
along the epipolar line l′. This constraint imposed by the epipolar geometry is called the
epipolar constraint

In general, the epipolar lines are slanted. Therefore, the search for corresponding points
is time consuming as the pixels on skewed lines in the image space have to be compared
(figure 1.8). This problem can be overcome by transforming the left and the right images
such that the epipolar lines of the two are collinear and parallel to horizontal axis. This
process is referred to as rectification. The pixels corresponding to point features from a
rectified image pair will lie on the same horizontal scan-line and differ only in horizontal
displacement. This horizontal displacement, or disparity between rectified feature points is
related to the depth of the feature. recover 3D structure from 3D geometry notions like
cameras.

1.1.2 Rectification

The goal of rectification is to re-sample the left and the right images such that the
epipolar line in the re-sampled images run parallel and the disparities between the images
are in the horizontal direction only. In order to do so a pair of 2D projective transformations
are applied to the two images. In the calibrated case, the projective transformations simulate
the effect of rotating the cameras. These rotations make both (the left and right camera) the
optical axes perpendicular to the baseline. Let the projective space P

2 represent the set rays
passing through the origin of the 3D space. The points in this space, P2, are 2-dimensional
represented as homogenous 3-vectors, for example a 2D point (x, y) is represented as x ≃
(x, y, 1), where ≃ stands for equality upto a non-zero scale. Given a set of points xi ∈ P

2

and corresponding points set of points x′
i ∈ P

2, the projective transformation H gives the
mapping between the two, i.e., x′ ≃ Hx. Each one of the stereo images can be considered
as a projective plane P

2. The rectification process then involves finding two projective
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Figure 1.6: Epipolar geometry images reproduced from the book by Hartley and Zisserman
[2000].

transformations that maps the epipoles of each image to a point at infinity along the x-axis,
i.e., (1, 0, 0)T , subject to certain constraints. When the epipole is at infinity, all epipolar
lines are horizontal. For more details on the exact procedure of rectification refer to Hartley
and Zisserman [2000]. Other methods for rectification can also be found in Fusiello et al.
[2000], Loop and Zhang [1999] and Faugeras [1993].

The rectification process therefore converts general camera configuration to a simplified
one, as shown in the figure 1.7. We show the rectified images with parallel epipolar line
corresponding to the figure 1.8 in figure 1.9. With the rectified camera configuration now
the search for the corresponding points is only along the horizontal scan-line. Suppose
x = (xl, yl) is point in the left image and x′ = (xr, yr) is the corresponding point in the
right image. The disparity in the configuration is the difference in the x-coordinates of the
corresponding left and right pixel locations,i.e., d = xl−xr. We now show how this disparity
is related to the depth in 3D space.

1.1.3 Disparity-depth relationship: Triangulation

In order derive relationship between disparity and the depth we refer to the figure 1.7.
In this figure, X represents a scene point, which project on to x = (xl, yl) in the left image
and x′ = (xr, yr) in the right image. If coordinates (X,Y, Z) represent the point X in the
left camera coordinates, then because of the rectification of the corresponding position in
the right camera coordinate is (X − b, Y, Z) where b is the baseline. The image points and
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Figure 1.7: After rectification: The scene point X projected as x in the left image and x′

in the right image. As can be seen because of rectification the shift between corresponding
points x and x′ is only along the horizontal scanline.

the camera coordinates are related as follows:

xl = f
X

Z
or X =

Zxl
f

(1.1)

yl = f
Y

Z
or Y =

Zyl
f

(1.2)

xr = f
X − b

Z
or X − b =

Zxr
f

(1.3)

yr = f
Y

Z
or Y =

Zyr
f

(1.4)

where f represents the focal length of the camera and is assumed to be the same for both.
Using the above relationships, we can write:

xlZ

f
− b =

xrZ

f
(1.5)

Z = f
b

xl − xr
(1.6)
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(a) Epipolar lines depicted on an unrectified left im-
age

(b) Epipolar lines depicted on an unrectified right
image

Figure 1.8: Epipolar lines on real stereo image pair. As the image shows the epipolar lines
are in general slanted.

(a) Epipolar lines depicted on an rectified left image (b) Epipolar lines depicted on an rectified right image

Figure 1.9: Rectification process allows to make epipolar line parallel and thereby reducing
the search for corresponding points to be along scanlines
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If we denote the disparity by d = xl − xr, then disparity is related to depth as follows:

Z = f
b

d
(1.7)

From the above equation we see that the depth inversely proportional to disparity, for a
known baseline b and focal length f . The baseline and the focal length are the intrinsic
parameters of the camera and are found during camera calibration. Furthermore,

xr = xl + d yl = yr (1.8)

If we can now find corresponding points in the two images, i.e., x,x′, then we can find
the disparity d and estimate the depth Z to the corresponding 3D scene point. If the
correspondences are found at all points of the image then we can find the disparity at every
position in the image, this is referred to as a disparity map. Using disparity map and the
intrinsic camera parameters, we can perform the 3D reconstruction of the scene. However,
problem that remains to be addressed still is: how to find the stereo correspondences?

1.2 Methods for stereo correspondence

The goal is now to find corresponding points in the left and right images, given that
they are rectified. After rectification, one compares the similarity of pixels at candidate
corresponding locations x = (xl, yl) and (xr, yr) = (xl + d, yl), by varying the values of d.
However, simply comparing image intensities at two locations is not enough as there may
be textureless regions, repetitive patterns and two images may have different illuminations
which may lead to ambiguous matches.

Some of the early methods (Hannah [1974], Marr and Poggio [1979],Pollard et al. [1985],
Baker and Binford [1981]) matched only certain features in the images like edges or corners
or contours, as they are more robust to illumination changes and produced matches with
high certainty. This was also because of limitations in the computational resources at that
point of time. However, due to wide range applications in image rendering and 3 modelling,
most of the techniques today focus on finding a dense set of stereo correspondences.

The problem of finding dense correspondences has been studied intensely. Some methods
suggest comparing the image intensities in a local neighbourhood around every point in the
two images. These methods make an implicit assumption of smoothness in choosing a
neighbourhood. The distinction in these methods is the measures used for comparison.
These methods are usually referred to as local methods.

Global methods, on the other hand, define an energy function which involves a cost
based on image intensities of the two images and regularizing term which enforces the
disparities in the neighbourhood to be smooth. As the correspondence problem is ill-posed,
an explicit regularization is required to obtain a physically plausible solution. This energy
function is then minimized with respect to disparity to obtain the final disparity map.
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1.3 Contributions of the thesis

Most of the recent techniques use energy minimization-based techniques, which is motivated
by probabilistic modelling. The idea in these techniques is to use Markov Random Field
(MRF) along with Bayesian inference to model the disparities. While Markov Random
Fields specify the local interaction between the disparities, the Bayesian inference allows
this interaction to be included as a prior distribution. This prior distribution encodes the
smoothness of the disparities and the cost from the stereo image intensities is introduced as
the likelihood. The Bayes’ theorem allows to compute the posterior distribution using the
prior and the likelihood. The advantage of using a Bayesian approach is that it provides
a promising approach to such ill-posed problems because it treats the task at hand as
an inference problem, finding the optimal estimate. In such Bayesian-MRF approaches the
objective then is to maximize the posterior probability over all possible disparity maps. Such
maximization/minimization requires optimization techniques such as simulated annealing,
Mean Field, Belief propagation or Graph cuts.

Even though such modelling techniques capture the local interactions between the neigh-
bouring disparities and incorporate the stereo image information, some crucial problems still
remain:
• Some areas in the scene that are visible in one image may be occluded in the other

and this can lead to incorrect matches.
• Regularization term in the model could smooth over all disparities and lead to poor

solutions at the object boundaries.
• Incorporating just the stereo image intensities and smoothness term would model

disparities which may not be consistent with the geometric properties of the surface.
In order to tackle these issues some extra information or constraints are required in

modelling the correspondence problem. Monocular cues such as gradient, edges or colour
information pertaining a single image could be used within the model to provide better
solutions for disparity. In addition some extra geometric constraints have to be incorporated
to obtain surface-consistent solutions for the disparity.

1.3 Contributions of the thesis

In this thesis, we focus on extending the constraints on the stereo correspondence prob-
lem based on monocular cues and extra geometric constraints. To this end we propose the
following:

Cooperative disparity estimation and object boundary extraction

The first method proposes to cooperatively estimate disparities and object boundaries
in a joint probabilistic framework. The idea here is to tackle the problem of localizing
discontinuities in disparity which correspond to the object boundaries in the real world,
along with that of disparity estimation. This scheme involves incorporation of gradient
information from a single image as monocular cue. While the disparities are detected
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using the stereo cue (the left and the right images), the monocular cues help in correcting
the disparity at the discontinuities and finding the object boundaries. We model both the
stereo and monocular cues within a joint MRF-framework. This part of our contributions
can be found in the paper Narasimha et al. [2008].

Estimating surface consistent disparities

The second method incorporates surface differential geometric constraints into
the disparity model. These constraints are derived from the surface normals in disparity
space. The idea is to model the disparities in such a way that they lie on the plane defined by
the surface normals. This constraint leads to solutions that are consistent with the surface
geometric properties of the scene. The idea is to simultaneously estimate the disparity and
surface normals, considering explicitly the influence of one on the other. This is done by
modelling both the disparities and the normal in a joint framework. This work was originally
published in Narasimha et al. [2009] and Narasimha et al. [2010].

Joint probabilistic modelling using coupled random fields

The major challenge in both of the above mentioned methods is to incorporate these cues
and constraints with in a single joint probabilistic setting, in which the relationship between
the disparities and the variables under consideration (object boundary or surface normals)
can be explicitly established. In this regard we use the idea of coupled Markov Random
Fields, which allows to model more than one random variable. This kind of modelling
permits the influence of one variable on the other to be made explicit within the model.
Such a probabilistic set up also allows for separate optimization techniques to be used for
maximizing the posterior distributions pertaining to each of the variables, providing further
flexibility in modelling and optimization. An Alternating Maximization procedure is then
used to achieve overall optimization.

1.4 Outline of the thesis

We will now provide a brief description of the subsequent chapters. The chapters detail-
ing the main contributions of the thesis are indicated by ⋆. The organization of the thesis
is as follows:

In chapter 2, we provide a brief survey of the literature in stereo matching. In this
chapter, we also provide a introduction to Markov Random Fields (MRF) and focus
mainly techniques that use MRF models for stereo matching. We provide a brief
summary of optimization techniques for MRFs used to estimate the disparity map. In
addition, we discuss some of the ambiguities of the stereo matching and the existing
methods to overcome them. We show that the use of monocular and geometric cues
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are important for stereo matching problem. This discussion provides us with the
motivation for proposed methods of the thesis.

In chapter 3 we describe the idea of coupled Markov Random Field (coupled-MRF)
models in the context of many applications such as image restoration, boundary esti-
mation, image segmentation, texture segmentation, as well as in stereo matching. We
also present an optimization strategy called Alternation Maximization. These models
and methods provide the platform on which the algorithms proposed in this thesis are
built.

⋆ In chapter 4, we present a method for incorporating monocular cues in order to
co-operatively estimate object boundaries and disparities within a single joint prob-
abilistic framework. We use coupled-MRFs to model the stereo disparities and the
object boundary information. We show that such a model allows mutual improvement
in the estimation of both disparity and boundary estimates. We use the Alternation
Maximization that provides an efficient method for estimating both disparities and
boundaries. Finally, the results obtained using the proposed method are presented
and discussed.

⋆ In chapter 5, we propose a method to obtain surface consistent solutions for dis-
parity. We do so by extending the constraints on the stereo matching to incorporate
geometric contextual information about the surface properties. We present the signifi-
cance of such constraints and show that incorporation of these constraints involves the
estimation surface normals. We show the relationship between the surface normals
in the depth space and disparity space. We then propose a coupled-MRF model to
simultaneously estimate disparities and surface normals in the disparity space. The
alternation maximization procedure used to estimate the two variables is discussed
and results are presented.

In chapter 6, we summarize the methods proposed in the thesis and highlight some
of the significant aspects pertaining to them. We conclude the thesis by providing
some future directions for research.

14



Chapter 2
State of the art : Stereo Matching

As discussed in the previous chapter, one of the most difficult problems in stereo is that
of finding correspondences between points in the left and right images. This problem is
often referred to as the problem of stereo matching. The difference or shift in the position
of the matches between two images is referred to as disparity and when described over an
entire image is referred to as a disparity map. In order to reduce the search space of the
disparities, most methods make use of the epipolar constraint. In the previous chapter, we
demonstrated that this constraint reduces the search space to be along the scanline after
rectification. Furthermore, we showed how the disparity is inversely proportional to the
depth.

In this chapter we will discuss the papers corresponding to stereo matching, understood
as matching along the scanline taking account the epipolar constraint. The stereo matching
literature can broadly divided into two parts: dense stereo matching and sparse stereo
matching. Sparse stereo matching involves finding matches between image features such as
edges, lines or contours, leading to a disparity for each feature. The dense stereo matching
techniques, on the other hand, try to find disparities at every position in the image. As
in this thesis we are interested only in dense disparities, we will focus on the literature
survey of only such techniques. These methods use image intensity information and may or
may not use a regularization to eventually find the disparities at every pixel of the image.
Already, the research done in this topic itself is vast and cannot be covered completely in
one review. Therefore, we provide a survey of some important and relevant papers in this
chapter.

In the next section we will discuss briefly some of the early stereo algorithms and their
limitations. We then discuss in some detail how the stereo matching problem can be for-
mulated as an energy minimization problem (section 2.2.1). In section 2.2.2 we show the
relation of this energy to a Markov Random Field using Bayesian statistics. Optimization
of this energy is discussed in section 2.3, throwing light on some important techniques such
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2.1 Early stereo algorithms

as Mean Field, Belief Propagation and Graph Cuts. We then discuss the importance of
additional cues in stereo in section 2.4. In particular, we discuss papers that deal with three
aspects of stereo matching, namely, occlusions, disparity discontinuities and fronto-parallel
assumptions. Finally we provide the motivation for the methods proposed in this thesis in
section 2.5.

2.1 Early stereo algorithms

The traditional methods used for dense disparity extraction are the area-based ap-
proaches. The basic idea in such methods is to match small patches in the two images,
under the assumption that the disparity within a patch is almost constant. Matching costs
such as the sum of absolute differences (SAD) (Kanade [1994]), the sum of squared dif-
ferences (SSD) (Matthies et al. [1989]) and the normalized cross correlation (NCC) (Ryan
et al. [1980]) are used to measure the compatibility of the left and right images with a
candidate shift at every pixel. This cost describes the similarity between the patches in the
two images in terms of image intensities. A constant offset (bias) of pixel intensity values is
compensated by the zero-mean versions ZSAD, ZSSD, and ZNCC. For each pixel position,
the final disparity in such approaches is calculated by finding the minimum 1 of this cost.
As the search for the disparity is only along a scanline, the minimum of this cost describes
where along this line the most similar patch occurs (See figure 2.1, page 18).

Mathematically, the area-based cost C is defined in a 3D disparity space, also referred
to as disparity space image (DSI), having the width x ∈ [0, p] , height y ∈ [0, q] (where p
and q are the width and the height of the image) and disparity d ∈ [dmin, dmax]:

C : [0, p]× [0, q]× [dmin, dmax] −→ R (2.1)

(x, y, d) 7−→ Cx,y(d).

This function Cx,y(d) assigns a cost for every disparity d ∈ [dmin, dmax] associated with pixel
position (x, y). Assuming that the images are rectified, each element of cost Cx,y(d) ∈ C
maps the pixel (x, y) of left image to pixel (x + d, y) in the right image. The disparity
attributed to every point (x, y) is then:

d(x, y) = argmin
d∈[dmin,dmax]

Cx,y(d). (2.2)

For a right and left image pair IR, IL, if Cx,y(d) is defined as a SSD, the cost that is to be
minimized corresponds to the following:

Cx,y(d) =

m=w/2
∑

m=−w/2

n=h/2
∑

n=−h/2

(
IL(x+m, y + n)− IR(x+ d+m, y + n)

)2
(2.3)

1. maximum in case of correlation
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where the image patch, considered in the two images, is a 2D window of size w×h. However,
this cost is very sensitive to illumination differences and thus the zero mean version of the
cost (ZSSD) is generally used, which can be written as:

Cx,y(d) =
∑

m,n

(
(
IL(x+m, y + n)− ĪL(x, y))− (IR(x+ d+m, y + n)− ĪR(x, y)

)
)2

(2.4)

where ĪL(x, y) and ĪR(x, y) are the mean intensities within the window w×h. If the we use
the absolute difference in place of squared difference in the two equations above ( 2.3 and
2.4), they would then correspond to SAD and ZSAD respectively.

The normalized cross correlation (NCC) is defined as the product of the two intensity
vectors normalized over the 2D window:

Cx,y(d) =

∑

m,n

(
IL(x+m, y + n)IR(x+ d+m, y + n)

)

√
∑

m,n

(
IL(x+m, y + n)

)2
√
∑

m,n

(
IR(x+m, y + n)

)2
. (2.5)

The zero-mean normalized version (ZNCC) is usually preferred as it is not sensitive to the
gain or to the offsets of the camera:

Cx,y(d) =

∑

m,n

(
IL(x+m, y + n)− ĪL(x, y)

)(
IR(x+ d+m, y + n)− ĪR(x, y)

)

√
∑

m,n

(
IL(x+m, y + n)− ĪL(x, y)

)2
√
∑

m,n

(
IR(x+m, y + n)− ĪR(x, y)

)2
. (2.6)

All of the above methods assume constant disparity over the patches. This essentially
enforces a fronto-parallel constraint on the disparity. Also, the size of the patch determines
the smoothness of the output disparity. As can be seen in Figure 2.2, while a small window
provides a noisy output, a very large window might over-smooth the output. Therefore the
window size is an important parameter to be tuned. As the uniqueness of matches is enforced
only in one image (reference image), points in the other image may get matched to multiple
points in the reference image. Another limitation, which is widely addressed in area-based
(and other) literature, is that of localizing disparity discontinuities, which such methods
are incapable of handling. Variants of area-based methods have been suggested, such as
using adaptive windows (Kanade and Okutomi [1994]) and shiftable windows (Bobick and
Intille [1999]), to deal with this problem. Recently, Yoon and Kweon [2007] presented a
method where the weight of the pixel within a given window is adjusted based on the colour
similarity and spatial distance from the centre. However, such methods still retain the
fronto-parallel constraint. Such techniques are also referred to as local methods, as only the
local neighbourhood of the image is taken into consideration.

Among other local methods is the one suggested by Pollard et al. [1985]. Their paper
described an important concept called the disparity gradient limit. The disparity gradient
(DG) between two nearby points in a stereo image-pair is defined as the difference in their
disparities divided by their separation in visual angle. Pollard et al. based their idea on the
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2.1 Early stereo algorithms

Figure 2.1: Area-Based Approach: Match pixel windows in one image to the other. (a)
Shows the left image with image patch as 2D window (shown in red). (b) Shows the shifted
windows (shown in green) where the window with the minimum cost is shown in red. (c)
shows the cost function and how the minimum of the function is used to find the disparity.

Figure 2.2: SSD approach: Window Size effects the smoothness or otherwise of the disparity
map. While window size of 5 × 5 leads to noisy disparity map, a larger window size (of
20× 20) leads to over-smoothing of disparities.

psychophysical studies (by Burt and Julesz [1980]) demonstrating that the fusional capacity
of human vision breaks down when this gradient exceeds a critical value (approximately 1),
namely the DG limit. They, therefore, formulated the matching cost by assigning a finite
cost to all neighbours satisfying the DG limit and infinite to those beyond the limit. Similar,
studies on the use of disparity gradient were independently made by Prazdny [1985] at the
same time.
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State of the art : Stereo Matching

2.2 Energy minimization-based algorithms

Unlike the local methods, the global ones (Barnard [1989], Scharstein and Szeliski [1998],
Boykov et al. [2001]) explicitly model the problem of stereo matching as an energy function
and solve it as an optimization problem. In this framework, the estimated disparity map d

is the minimum of a global energy. The energy Etotal, also referred to as objective function
has two terms: i) the data term Edata that measures if the input images (left and right)
agree with the disparity and ii) the smoothness term Esmooth that encodes the interaction
between the neighbouring disparities. Mathematically, we first define a finite set

S = {x | x = (x, y), x ∈ [0, p], y ∈ [0, q]}, (2.7)

where p × q is the size of the image 2, and x corresponds to the pixel positions. This set
S has one-to-one correspondence with the image grid positions. A candidate disparity map
can then be defined as

d = {dx | dx ∈ [dmin, dmax] & x =∈ S}. (2.8)

The above equation signifies that every position x in the grid is associated with a disparity
dx which takes its values from the set/interval [dmin, dmax]. The energy for this disparity
map d can be written as,

Etotal(d) = Edata(d) + λEsmooth(d) (2.9)

where λ weights the influence of the two terms on the total energy. The minimization of
this energy Etotal with respect to all possible disparity maps D = [dmin, dmax]

p×q gives the
final disparity map d∗:

d∗ = argmin
d∈D

Etotal(d) (2.10)

2.2.1 Energy function formulation

The data term (Edata(d)) is usually defined as a function of image intensities, at a given
disparity:

Edata(d) =
∑

x

Vx(dx, I) (2.11)

where dx is the disparity at the position x in the image and the term Vx(dx, I) penalizes
the disparities which do not agree with the input image pair I = (IL, IR) (left and right
images) at that position. Though often only a pixel-wise difference between the intensities
two images is considered as a penalty, windowed differences as described in section 2.1 are
also used. As in case of windowed differences, the function Vx resides in DSI (2.1, page 16),
providing a cost of choosing for dx at the position x as the disparity based on the input image

2. We assume the right and left images are of the same size
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pair I. However, the measures in section 2.1 do not take into consideration the sampling of
the image. A measure quite commonly used to overcome this limitation is the one presented
by Birchfield and Tomasi [1999a]. Here, instead of comparing pixel values shifted by integral
amounts, they compare each pixel in the reference image to a linearly interpolated pixel in
the other image. This measure was first introduced in context of dynamic programming
and has been since used as a data cost in other energy minimization based approaches (For
example, Sun et al. [2003], Yang et al. [2009]).

The second term in (2.9) ensures that the neighbouring disparities have coherent values
and is therefore referred to as the smoothness term (Esmooth(d)). This smoothness term
is similar to the continuity constraint suggested by Marr and Poggio [1976]. In order to
formalize this term, we first model the interaction between the disparities at different posi-
tions. The interaction is usually defined as a function of differences between the disparities
in nearby positions. This set of nearby positions is referred to as a neighbourhood (Nx) of
the position x. Each pixel in Nx is called a neighbour of x. The term Esmooth(d) can be
now written as:

Esmooth(d) =
∑

x

∑

y∈Nx

Vx,y(dx, dy). (2.12)

Vx,y(dx, dy) is normally referred to as an interaction function. The form of this function
is an important aspect of the energy formulation and will be discussed in more detail in
later sections. Another thing to notice is that equation (2.12) considers only pairwise inter-
actions. This means that the model depends only on first order differences of disparities,
thus favouring fronto-parallel disparities. This model has been widely used for its simplicity
and because of the development of powerful optimization techniques such as Mean Field
Approximation (Strecha et al. [2006], Yuille et al. [1990]), Belief Propagation (Yang et al.
[2009], Xu and Jia [2008], Felzenszwalb and Huttenlocher [2006], Klaus et al. [2006], Sun
et al. [2005, 2003]) and Graph Cuts (Boykov et al. [2001], Kolmogorov and Zabih [2001]).

The definition of the interaction function Vx,y(dx, dy) is very important in determining
the smoothness of the final disparity map. Vx,y(dx, dy) could be chosen (Poggio et al. [1985])
as a monotonically increasing function such as:

Vx,y(dx, dy) = |dx − dy|
α, α = 1 or 2 (2.13)

Such a function penalizes very large disparity differences through very large costs. This
makes the final disparity map d very smooth and results in poor localization of disparity
discontinuities. To improve the localization of discontinuities Gamble and Poggio [1987]
weight the smoothness prior with intensity differences. This idea encourages the disparity
discontinuities to coincide with intensity/colour edges.

Alternatively, the interaction function can be modelled as a robust function. The deriva-
tive of a robust function goes to zero for large |dx − dy|, for example, the Potts or the
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truncated-linear function (figure 2.3(a) and 2.3(b)) :

Vx,y(dx, dy) =

{
0 if |dx − dy| < T
c otherwise

(Potts)

or

Vx,y(dx, dy) =

{
|dx − dy| if |dx − dy| < T
c otherwise

(Truncated linear)

(2.14)

This function assigns a small cost if the difference disparity between the neighbours is
small, and a constant penalty c for large differences. Parameter T determines the disparity
differences beyond which a constant penalty is to be applied. Hence, this interaction function
allows for disparity discontinues to occur, as the penalty for large disparity differences is
limited. Some more examples of robust functions are shown in Figure 2.3(c) and 2.3(d).
Further details on robust statistics can be found in the paper by Black and Rangarajan
[1996]. As a large part of the literature uses this kind of interaction, we call this a standard

(a) Potts (b) Truncated Linear

(c) Truncated Quadratic (d) Contaminated Gaussian

Figure 2.3: Examples of robust functions for Vx,y(dx, dy)

model. We will discuss in the section 2.4.3 about papers using higher order derivative models
for disparity.

We will show how the energy formulation in (2.9) can be given a Bayesian-MRF interpre-
tation. We give a Bayesian statistics-based justification to the minimization of the selected
energy function. We will show how the minimization of the energy function is equivalent to
finding the maximum a posteriori estimate of a certain Markov Random Field (MRF).
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2.2.2 Markov Random Fields and stereo

Geman and Geman [1984] were among the first to give a Bayesian interpretation to
such energy functions based on the Markov Random Field (MRF) framework. We refer
the readers to Li [2001] for more detailed introduction to MRFs. Like many problems in
computer vision the disparity estimation task can also be formulated as a labelling problem.
By a labelling problem, we mean assigning a label to every pixel position; in the present
case the labels are the disparities.

2.2.2.1 Disparity estimation as Labelling Problem

As in described in (2.7), we consider the finite set S of p× q pixels on a regular 2D-grid,
which are also referred to as sites. We define a neighbourhood system N = {Nx|x ∈ S} on
S. The neighbourhood Nx ∈ N satisfies two properties i) x 6∈ Nx and ii) if x ∈ Ny then
y ∈ Nx. The pair (S,N ) = G can be viewed as an undirected graph G where the nodes S
are linked through a neighbourhood relationship N . A clique C for (S,N ) is defined as a
subset of sites in S, where each member of the set is a neighbour of all the other members.
A more detailed study of such graphical models can be found in the book by Bishop [2007].

We denote by D = {Dx,x ∈ S} the unknown disparity values at each pixel x = (x, y).
The Dx’s are considered as random variables that take their values in a finite discrete set
of L disparity labels denoted by L = {d1, d2, . . . dk, . . . , dL}. The disparity labels in L
correspond to discrete set of values ranging from dmin to dmax. The disparity field D, also
referred to as configuration, takes its values in D = Lp×q. We use small letter d to denote
a specific realization of the random field D. This realization d corresponds a disparity map
and is similar to the one described in (2.8). The joint probability that a random variable
Dx takes the value dk ∈ L is denoted as P (Dx = dk) and abbreviated as P (dk). Similarly,
the joint probability P (D = d) is abbreviated by P (d). D is said to be a Markov Random
Field on S with respect to a neighbourhood system N if, and only if, the following two
conditions are satisfied:

i) P (d) > 0, ∀d ∈ D

ii) P (dx|dS−x) = P (dx|dNx
)

where S − x is the set difference and dNx
denotes all labels of sites in Nx. The first

property is called positivity and the second one is referred to as the Markovian property.
The Markovian property states that only neighbouring labels have direct interactions with
each other. One of the most important theoretical results, the Hammersley and Clifford
theorem (Besag [1974]), provides a mathematically tractable means of specifying the joint
probability of an MRF, through a Gibbs Random Field (GRF). This theorem states the
equivalence between MRFs and GRFs as: D is an MRF on S w.r.t. N if and only if D is a
GRF on S w.r.t. N . A GRF describes the random variables in terms of Gibbs distribution,
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which takes the following form:

P (d) =
1

Z
exp

(

−
∑

c∈C

Vc(d)

)

(2.15)

where Vc(d) is the clique potential defined over all the cliques c ∈ C. Therefore, Hammersley
and Clifford theorem establishes an equivalence between a MRF which is characterized
by its local property (the Markovian property) and a GRF which is characterized by its
global property (the Gibbs distribution). Considering only pairwise potentials and defining
Vc(d) = Vx,y(dx, dy) (where x and y are neighbours) as in (2.12), defines a joint distribution
for the disparity-MRF:

P (d) =
1

Z
exp

(

−
∑

x

∑

y∈Nx

Vx,y(dx, dy)

)

(2.16)

where Z is the normalizing factor.

2.2.2.2 MAP-MRF estimation

As the disparity field D is not directly observable, its realization d has to be estimated
based on observations. For this reason D is also referred to as latent or hidden variable.
The observed data, in our case the left and right images IL and IR, are together referred to
as I. In other words, the disparity value at each location can be seen as a hidden variable
and the actual data from the two images can be seen as observations and thus our MRF
model can be represented graphically as in Figure 2.4. The most popular way of estimating

I   x

disparity dx

observation (  )

Figure 2.4: Disparity MRF: the observed data I(x) refers to the left and right image data
and dx ∈ d refers to the disparity at the pixel position x = (x, y)

the values of disparity-MRF is through maximum a posterior (MAP) estimation. The goal
of the MAP-MRF is to estimate the realization dMAP given the data I. That is :

dMAP = argmax
d∈D

P (d|I) (2.17)
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Using Bayes’ rule the posterior can be written as:

P (d|I) =
P (I|d)P (d)

P (I)
(2.18)

Because P (I) is a constant for fixed I we can write the above equation as

P (d|I) ∝ P (I|d)P (d) (2.19)

The likelihood function P (I|d) expresses how probable the observed data is for different
settings of the disparity. By making an assumption that P (I|d) is conditionally independent
at every pixel position x with respect to d, we can write:

P (I|d) =
1

C
exp

(

−
∑

x

Vx(dx, I)

)

(2.20)

where C is the normalization constant. The P (d) is referred to as prior probability and is
defined as MRF (in the previous section). We can now write the posterior probability using
the equations (2.20) and (2.16) as

P (d|I) ∝ exp

(

−
∑

x

Vx(dx, I)− λ
∑

x

∑

y∈Nx

Vx,y(dx, dy)

)

(2.21)

where λ is weighting term between the likelihood and prior. Maximizing the above function
is equivalent to minimizing:

E(d) =
∑

x

Vx(dx, I) +
∑

x

∑

y∈Nx

Vx,y(dx, dy) (2.22)

We now note the equivalence of the above equation with the energy formulation in (2.9),
where the functions Vx(dx, I) and Vx,y(dx, dy) can be defined in the same way as in (2.11)
and (2.12), respectively. As Vx,y(dx, dy) determines the smoothness of the disparity map
and is part of the prior (2.16), it also referred to as smoothness prior.

The discussion until now has shown how we can formulate the energy function (section
2.2.1) and how it can interpreted using Bayesian-MRF framework. An important point to
be noted is that the forms of the interaction function (2.12 or 2.16) and the data function
(2.11 or 2.20) are very difficult to specify. This is due to inherent ambiguities of the stereo
matching problem itself, including the depth discontinuities, occlusions, image noise as well
as the complexity of the scene itself. Even if the forms of these functions are given, we
still have the problem of optimizing the stereo model to find the MAP-MRF estimates.
The problem of optimization is difficult because of the vast solution space D = Lp×q. It
is, therefore, necessary to make approximations both on the model and the optimization
algorithm.
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2.3 Optimization

The goal of optimization is to minimize the energy (2.22), to obtain the MAP-MRF
estimates for the disparities. Geman and Geman [1984] suggested the use of Simulated
Annealing (Kirkpatrick et al. [1983]) for optimizing such energy functions. While Simulated
Annealing can be proven in theory to achieve the global minimum, it is prohibitively slow
in practice, especially for stereo matching. In order to overcome this limitation Besag [1986]
introduced a greedy method called the Iterated Conditional Modes. Though this method
is computationally efficient, it is very sensitive to the initialization and thus ineffective in
finding good disparities.

Over the last few years approximate inference techniques such as Mean Field (Strecha
et al. [2006]), Belief Propagation (Yedidia et al. [2003], Sun et al. [2003]) and Graph Cuts
(Boykov et al. [2001], Kolmogorov and Zabih [2001]) have gathered a lot of attention in
stereo matching. Such algorithms allow fast approximate solution of MRF-based problems.
While they do not ensure global optimality, they give substantially more accurate results
than it were previously possible. In the next few sections, we will discuss in some detail
Mean Field, Belief Propagation and Graph cut algorithms as they are relevant to this thesis.

2.3.1 Mean Field Approximation

Mean Field theory has its roots in statistical physics and was intended for approximating
the behaviour of interacting spin systems in thermal equilibrium (Chandler and Percus
[1988]). It has been widely used in computer vision for image segmentation by Geiger and
Yuille [1991], Forbes and Fort [2007], blind image separation by Tonazzini et al. [2006],
motion analysis and tracking (Hua and Wu [2006], Medrano et al. [2009]), as well as stereo
disparity estimation by Yuille et al. [1990], Strecha et al. [2006].

The basic idea behind Mean Field is to approximate the true posterior distribution
P (d|I) of the MRF by a tractable distribution Q(d). This is done by assuming that the
approximate distribution Q(d) fully factorises over all the sites x as follows:

Q(d) =
∏

x∈S

Qx(dx) (2.23)

where Qx(dx) is a distribution over L possible disparity values of dx ∈ L at the site x. Solu-
tion of the Mean Field problem is sought by variational methods. Variational methods allow
the transformation of the probabilistic inference task (2.21) into an optimization problem.
The solution to the variational problem is often given in terms of fixed point equations.

In the case of Mean Field, the variational formulation of the problem is equivalent to
minimizing the Kullback-Leibler (KL) divergence (Yedidia et al. [2003], Wainwright and
Jordan [2005], Jaakkola [2000]) between the two distributions P (d|I) and Q(d):

KL
(
Q(d)

∥
∥P (d|I)

)
=
∑

d∈D

Q(d) log
Q(d)

P (d|I)
(2.24)
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The KL divergence is always positive and zero only if the variational distribution Q(d) is
equal to the true posterior distribution P (d|I). By substituting the equations (2.23) and
(2.21) in the equation for KL divergence we get:

KL
(
Q(d)

∥
∥P (d|I)) = −

∑

x

∑

dx∈L

Qx(dx)Vx(dx, I)

−
∑

x

∑

y∈Nx

∑

dx,dy∈L

Qx(dx)Qy(dy)Vx,y(dx, dy)

+
∑

x

∑

dx∈L

Qx(dx) logQx(dx) (2.25)

Finding the marginals Qx(dx) from the above equation is not straight-forward and requires
iterative re-substitution. As the Q(d) is fully factorized (2.23), the above equation can be
optimized one marginal component at a time.

The update equations (also the fixed point equations) are derived by minimizing the KL
divergence (2.25) with respect to each marginal Qx(dx) in Q(d) while keeping the remaining
marginals fixed. This is equivalent to taking the partial derivative ∂KL(·)

∂Qx(dx)
and setting it

to zero. It can be easily verified that, the minimization of (2.25) with respect marginals
Qx(dx) leads to the following:

Qx(dx)←
1

Z
exp

(

−
(

Vx(dx, I) +
∑

y∈Nx

∑

dy∈L

Qy(dy)Vx,y(dx, dy)
))

(2.26)

These update equations (collectively for all x) are also referred to as Mean Field equations.
The normalization Z ensures that

∑

dx∈L
Qx(dx) = 1. Successive application of the updates

correspond to iteratively enforcing different Mean Field equations. These equations indicate
that the updates are made “locally” by averaging the neighbours with respect to the other
component distributions. In other words, each x only sees the “mean effect” of the neighbours
Nx.

Yuille et al. [1990] were among the first to use Mean Field Approximation in the context
of stereo. They formulated their energy function on psycho-physical grounds, incorporating
discontinuities and the matching of different primitives instead of just intensities. However,
as mean-field approximates the true distribution with a much simpler form with marginals
over a single variable, it does not provide a good approximation of the true posterior. More
complicated forms for Q(·) can be used instead of the fully factorised version in (2.23)
(Wainwright and Jordan [2005] and Jaakkola [2000]). Nevertheless, Strecha et al. [2006]
used this approximation within an Expectation-Maximization framework, estimating both
disparities and occlusions, and showed results comparable to the state-of-the-art. Mean
Field approximation can also be interpreted as parallel message-passing algorithm, in the
spirit of message passing algorithms such as Belief Propagation. Here, each site x sends a
message Qx(dx) to its neighbours, which is in turn based on the message it received from
its neighbours in the previous time step.
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2.3.2 Belief Propagation

Belief Propagation (BP) was first introduced by Pearl [1986], and is best understood in
the context of probabilistic graphical models (See Section 2.2.2.1). BP is part of the most
popular class of algorithms called the message passing algorithms, where information or
“message” is passed from one site to another along the edges of a graph until convergence.
The BP is exact on trees (graphs with no cycles), but in graphs with cycles, like the MRF
shown in figure 2.4, there are no guarantees on convergence.Surprisingly, despite these issues,
BP provides good approximate results on such cyclic graphs. In particular good results are
obtained when BP is applied to stereo matching, where the graph G (See section 2.2.2.1)
with cycles represents the MRF model. When the BP is applied to graphs with cycles or
loops, it is often referred to as Loopy Belief Propagation (LBP) 3.

In order to explain the message passing in LBP algorithm we define the following nota-
tions: bx(dx) is the belief at the site x, and is equivalent to the approximate distribution
Qx(dx) in the previous section mx,y(dy) is the message sent by site x to y as to what state
the variable dy should be in. Note that both bx(dx) and mx,y(dy) are vectors of length
L corresponding to the number of states in the set L = d1, d2, . . . dk, . . . , dL. To improve
readability, we re-write the posterior distribution in (2.21) as follows:

P (d|I) ∝
∏

x

ψx(dx, I)
∏

x

∏

y∈Nx

φx,y(dx, dy) (2.27)

where ψx(dx, I) = exp
(
− Vx(dx, I)

)
and φx,y(dx, dy) = exp

(
− Vx,y(dx, dy)

)
. The belief at

every site x is proportional to the local evidence at that position, in our case the data or
the likelihood term ψx(dx, I) and to all the messages coming in to the x:

bx(dx) = k ψx(dx, I)
∏

y∈Nx

my,x(dx) (2.28)

where k is the normalizing constant ensuring that
∑

dx∈L
bx(dx) = 1. The messages are

updated iteratively as follows:

mx,y(dy)← max
dx∈L

ψx(dx, I) φx,y(dx, dy)
∏

z∈Nx\y

mz,x(x) (2.29)

The right-hand-side of the above equation takes into account the data term, the interaction
term and all the messages that are coming into x, except the one from y. The updates
for the two equations are diagrammatically shown in the the figure 2.5. These equations
represent what is called as the max-product BP. If the max-operation in (2.29) is replaced
by a sum it becomes sum-product BP. While, the max-product BP algorithm finds the MAP
estimate or minimum energy associated with the MRF, the sum-product algorithm can be
used to approximate the posterior probability p(d|I) of each label (in our case disparity) for
each pixel.

3. Note that in this thesis we use LBP and BP interchangeably.
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Figure 2.5: Update equations for Belief Propagation (a) shows diagrammatically the equa-
tion (2.28) where belief at x (shown in red) is calculated taking into account the messages
from the neighbours (myx) and the data ψx and (b) shows the equation (2.29) the message
mxy passed from x to y (shown in red). mxy includes messages passed from the neighbours
in Nx to x and the evidence ψx.

The equations (2.28) and (2.29) merely provide the update equations for BP. The princi-
ple of BP, however, can be explained using variational methods. Yedidia et al. [2003] showed
that fixed points of the BP (update equations) actually, correspond to the minimum of the
Bethe approximation, and to the global minimum if there are no loops. Unlike the Mean
Field approximation, where only the single site distributions are considered (2.23), the Bethe
approximation considers both pair-wise and single site distributions. A more detailed and
in-depth comparison of the Mean Field and Belief Propagation is provided in the paper by
Weiss [2001]. He found that despite its non-convergence, BP finds better local minima than
Mean Field approaches.

In the context of stereo matching, LBP was first used by Sun et al. [2003] to com-
pute disparities. However, if used directly this method is still computationally demanding.
Felzenszwalb and Huttenlocher [2006], therefore, provide methods for speeding up the LBP
approach. In particular, Felzenszwalb and Huttenlocher suggested the use of a multi-grid
approach where the computations are performed in a coarse to fine manner, thus providing
substantial speed up in stereo matching application. A large number of variants of BP
have also been developed over the years, among which the sequential-tree re-weighted BP
(sequential-TRW) by Kolmogorov [2006] has been noticeable. This is because sequential-
TRW achieves lower bound on energy, thus ensuring convergence. A comparison of sum-
product, max-product and sequential-TRW in context of stereo and other vision applications
such as photomontage and binary image segmentation is done by Szeliski et al. [2008]. This
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comparative study showed that the sequential-TRW consistently provided better results
than both forms of LPB.

2.3.3 Graph Cuts

Graph Cuts from combinatorial optimization can be used to minimize the MRF energy
function (2.22). Graph Cuts include the max-flow/min-cut algorithms in combinatorial
optimization. These techniques were first used in computer vision by Greig et al. [1989] in
the context of binary image restoration. Greig et al. showed that global minimum of the
energies of the form (2.22) could be achieved when the number of labels is limited to two
(binary labelling). Graph Cuts, while widely used in computer vision applications, are in
general limited to only binary labelling problems.

In order to apply Graph Cuts to multi-label problems (such as stereo correspondence),
Ishikawa [2003] transformed the graph to an equivalent binary problem. However, in their
framework the interaction functions were constrained to be convex. The problem with
having convex interaction function is that the resulting method performs poorly at the
disparity discontinuities. Alternatively, Boykov et al. [2001] proposed to apply the Graph
Cuts repeatedly on pairs of labelling within their inner-loops. They suggested two graph-
cut algorithms, namely expansion move and swap move algorithms. For a label α ∈ L,
expansion move allows any set of sites to change their labels to α. The local minimum is
found, if no expansion move for any label α yields a lower energy. The swap move algorithm
interchanges the labels of some subset of sites labelled α to β and vice versa. Similar to
expansion move the swap move finds the local minimum such that no other swap move will
produce a lower energy. These two algorithms produce very stable minima, and allow the
interaction function to be metric in the case of expansion move and semi-metric in case of
swap move algorithms. Kolmogorov and Zabih [2002b] showed further classes of interaction
functions that could be considered within the Graph Cuts framework.

The expansion and swap move algorithms have been applied to stereo correspondence
problem by Boykov et al. [2001], Kolmogorov and Zabih [2001] and Kolmogorov and Zabih
[2002a] with some success. The comparative study done by Tappen and Freeman [2003] of
BP and Graph Cuts showed that the two algorithms produced comparable results under
identical parameter settings. Tappen and Freeman, however, used the simple Potts model for
comparing the two algorithms. The extended comparison of BP, Graph Cuts and sequential-
TRW by Szeliski et al. [2008] showed that sequential-TRW and expansion move algorithms
performed the best for stereo matching. While they compared the algorithms based on the
energy, they found that some energies calculated were lower than that of the ground-truth.
This illustrates the need for more accurate modelling of the problem itself. The figure 2.6
shows the output disparity map obtained by using Mean Field, standard-BP and Graph-
cut on the map image from the Middlebury database. A coarse to fine strategy was used
in case of both Mean Field and BP based on the method suggested by Felzenszwalb and
Huttenlocher [2006]. As can be see the performance on this simple image is comparable in
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all the three cases.

Figure 2.6: (a) Shows Left image of the stereo pair map. (b) the disparity ground-truth.
(c), (d) (e) and (f) show the disparity maps estimated using Mean Field, BP, Graph Cuts
and Dynamic Programming respectively. (f) shows the “streaking” caused by the Dynamic
Programming algorithm (discussed in section 2.3.4).

2.3.4 Other methods

Among other discrete optimization methods to minimize (2.22, page 24) is Dynamic
Programming (DP) (Birchfield and Tomasi [1999a], Ohta and Kanade [1985], Torr and
Criminisi [2004]). While (2.22) is defined on a 2D-grid, the DP algorithm finds the global
minimum for independent scanlines (owing to the epipolar constraint). However, when used
in stereo matching DP suffers from “streaking” effect (See figure 2.6(f)). This is because of
the difficulty in enforcing the inter-line consistency. Moreover, DP makes use of the ordering
constraint, which may not always be true. Kolmogorov et al. [2006] suggested an extension
called layered DP to overcome the problem interline consistency.

Alternatively, the stereo problem can be expressed in continuous form with a continuous
disparity range. In such cases variational methods like the one suggested by Alvarez et al.
[2000] can be used to minimize the energy functional. Alvarez et al. derive the Euler-
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Lagrange equations, which are partial differential equations (PDE), whose solutions are the
fixed points of the energy functional. They seek the solution of these underlying PDEs using
a gradient descent method. In order to reduce the risk of being trapped in some irrelevant
local minima during the iterations, the authors use a focusing strategy based on a linear
scale-space. Faugeras and Keriven [1998] suggested the use of Level-Set methods to deform
an initial set of surfaces obtained the Euler-Lagrange PDEs. Convex programming methods
were also suggested by Miled and Pesquet [2006] and Pock et al. [2008]. Bhusnurmath and
Taylor [2008] used the interior point method to solve the matching problem by approximat-
ing the data term with a convex function and using Laplacian terms for interaction. While
these methods allow computation of sub-pixel disparities directly, they suffer from a major
drawback in that they require the energy functional to be convex and require the minimiza-
tion to be carried out on a convex set. This means that the final disparities produced will
be smooth across the boundaries. It is also more difficult to introduce occlusion handling,
given the restrictions on the energy function. Furthermore, methods using PDEs require
discretization which is not straightforward owing to numerical instability.

Another technique which allows the direct measurement of sub-pixel disparities is the
phase-based technique (Sanger [1988], Fleet et al. [1991]). This method finds a solution to
the correspondence problem by using the differences in the phase of local spatial frequency
components. Odd and even one-dimensional spatial Gabor filters, at different spatial fre-
quencies are convolved with the stereo pair. The difference between the phase at corre-
sponding points in the two images is used to find the stereo disparity. Two main limitations
of this method are: (1) the maximum disparity is limited by the filter width, therefore al-
lowing only small disparity range in practice. (2) phase information is very sensitive to local
image characteristics. This is mainly because of singularities in the phase-signal, which are
often by caused textureless regions in the images.

Finally there are methods like the one suggested Zitnick and Kanade [2000] which do
not fall into the category of either global or local methods. Zitnick and Kanade’s algorithm
is variant of Marr and Poggio [1976]’s and is inspired by human stereo vision. This algo-
rithm performs local computations by imposing constraints on uniqueness of matches and
smoothness. Furthermore, it uses a 3D support window to allow for slanting surfaces. While
the computations are carried out locally, the optimization is done iteratively using nonlinear
operations. This results in a behaviour similar to that of global optimization algorithms.

As stated by Szeliski et al., while there are number of methods to optimize, the main
requirement is actually to have an energy which is representative of the scene. However,
having an accurate function is not necessarily good as it may be too complex to optimize. As
result there is trade-off on what a good energy is and how this function could be optimized.
We will now continue our discussion how the model can be improved by incorporating
additional cues.
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2.4 Additional cues and constraints

The energy in (2.9), re-written below, is referred to as a basic stereo matching model:

E(d) =
∑

x

Vx(dx, I) +
∑

x

∑

y∈Nx

Vx,y(dx, dy)

As mentioned earlier, there are inherent ambiguities in the stereo model that need to be
taken into account:
• Occlusions: Some points in the scene are visible in one image but not in the other,

as a result there may be pixels in one image that do not have a correspondence in
the other. If this information is not incorporated in the energy model, then erroneous
results will be obtained in such regions.

• Depth discontinuities: While most algorithms use a discontinuity preserving func-
tion in the interaction term, to allow for disparity jumps, proper localization of the
discontinuities is still a problem.

• Fronto-parallel assumption: Most methods formulate the energy function in such
a way that they make an implicit or explicit assumption that the disparity over a
region is constant. This assumption leads to inconsistency in disparity values with
respect to the real surfaces in the scene.

In order to account for these issues, the energy model introduced in section 2.2.1 (and
in section 2.2.2.1) must be adapted. This is usually done by incorporating both binocular
and monocular cues (like colour, gradient etc., from the reference image), and taking into
consideration the geometrical properties of the scene itself. We will now discuss some of the
methods used to tackle each of these problems.

2.4.1 Occlusion handling: Additional binocular cues

The data term in (2.11) (or the likelihood term in (2.20)) usually assumes that a point on
the surface has the same colour when viewed from different angles. However, this is not true
as some points may be occluded by other parts in the scene. This means that some points in
the reference image may not actually have corresponding point in the other image. In order
to overcome this problem, one of the solutions is to cross check if disparities from the left
image to right are consistent with disparities from the right image to left (shown in figure
2.7). This technique was first introduced in Bolles and Woodfill [1993] using correlation,
but some recent papers such as the ones by Yang et al. [2009], Hirschmüller [2008], Xu and
Jia [2008] and Sun et al. [2005] have used similar checks within their MRF framework.

The figure 2.8, shows how the region (shown in red) occurring around the discontinuity,
is visible only in the right image not in the left. Thus illustrating that the occluded regions
occur mainly at the depth discontinuities. Belhumeur and Mumford [1992], Geiger et al.
[1995] and Bobick and Intille [1999] use this information within their energy minimization
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Figure 2.7: Cross Check applied to the texture images in (a) shows the occluded regions in
red. (b) is the disparity map with right image as reference and (c) is the one with left as
reference.

Figure 2.8: L and R represent the left and right cameras. Regions shown in green and blue
in the scene are visible both in the images. However, a part of scene near the discontinuity
(shown in red), is visible only to the right camera but not to the left.

algorithms to handle occluded regions. The model presented by Belhumeur and Mumford
[1992] uses horizontal and vertical line processes to represent the discontinuities and use
them as strong clue for modelling occlusions. Line processes are binary variables located
at sites between the disparity lattice (figure 2.4) that indicate the presence or absence of
a discontinuity between two adjacent disparities. Unlike Belhumeur and Mumford, Geiger
et al. [1995] formulate the problem in the matching space. The disparity map is represented
by a path in the matching space, which is broken either when a discontinuity is detected
or when an occluded region occurs. These algorithms make extensive use of the ordering
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constraint, which states that if an object is to the left of another in one stereo image, it is
also to the left in the other image. Alternatively, Zitnick and Kanade [2000] use a uniqueness
constraint that enforces a one-to-one mapping between the two images in 3D disparity image
space. Such constraints are not always true, depending on the scene geometry.

Most of recent algorithms model the occlusions taking into account the visibility of the
point in the two images. That is each correspondence is associated with a binary label in-
dicating if a given point is visible in the other image or not. Sun et al. [2005], Hirschmüller
[2008] and Yang et al. [2009] make the visibility explicit through cross checking. Sun et al.
[2005] iterate alternately between disparity and occlusion variables during optimization to
determine the two simultaneously. In contrast, Yang et al. and Hirschmüller infer the
disparities for the occluded pixels through the unoccluded ones. While Yang et al. use
plane-fit and hierarchical BP to propagate the disparities from the non-occluded to the oc-
cluded ones, Hirschmüller extrapolates the disparities from the background into the occluded
regions. Strecha et al. [2006] model the occlusion as an outlier process by constructing a
colour model for all the pixels which have no correspondences established. They model the
visibility and depth jointly as a Hidden-MRF and obtain the statistics of both inlier (dis-
parity) and outlier process using Expectation-Maximization. Kolmogorov and Zabih [2001]
and Ishikawa [2003] use a binary visibility constraint in Graph Cuts framework. Ishikawa
treats the stereo images symmetrically and enforces the uniqueness constraint. However, as
their interaction term is convex they do not produce good results at discontinuities. On the
other hand, Kolmogorov and Zabih handle occlusions along with a robust interaction term
within the Graph Cuts framework.

Xu and Jia [2008] use an outlier confidence approach, to deal with occlusions. Instead of
assigning a binary label to each pixel (occluded or unoccluded), they associate a confidence
measure to determine if a pixel is an outlier or not. They first estimate an initial disparity
map using BP. The outlier confidence is then estimated on this initial disparity map, based
on the beliefs generated and the inter-frame consistency. This estimated outlier confidence
is subsequently used in an overall global optimization again based on BP to obtain the final
disparity map. Methods such as that of Sun et al. [2005], Xu and Jia [2008] and Yang et al.
[2009] deal with left and right images symmetrically in order to handle both right and left
occlusions simultaneously. In contrast Min and Sohn [2008] handle the occlusions asymmet-
rically, that is only the left (or right) disparity field is used to estimate the occluded pixels.
This asymmetric occlusion detection is done using geometric and photometric constraints,
and is then used in a BP framework to determine the final disparity map.

Once the occluded regions are determined, the problem now is to assign disparities to
these regions. While some of the algorithms described above provide solutions for this, the
important aspect that needs to be taken care of is that the disparity discontinuities are
retained. We will now discuss few algorithms along with the ones discussed here in detail,
to see how the disparity discontinuities are handled by existing approaches.
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2.4.2 Localizing disparity discontinuities: Colour and gradient cues

As we have seen in section 2.2.1, the interaction term (2.12) if modelled as a robust
function (see figure 2.3, 21) allows for jumps in disparities. This means that it does not
smooth across very different disparities. Despite this, the disparities are often wrongly
estimated in the neighbourhood of discontinuities. In other words, these functions do not
necessarily ensure proper localization of discontinuities as seen in figure 2.9. This figure
further illustrates that the disparity discontinuities are closely related to occluded region.

Figure 2.9: (a) Shows the original image. (b) Disparity Ground-truth. (c) Disparity
estimated using BP and using (e) as interaction function. (d) Absolute Error between (b)
and (c). Large errors have higher grey-values (lighter intensity values) and are concentrated
mainly at the disparity discontinuities. (e) Truncated Linear function.

As discussed in the previous section there are methods (Belhumeur and Mumford [1992],
Geiger et al. [1995] and Bobick and Intille [1999]) which deal with the problem of localizing
disparity discontinuity simultaneously with occlusions using line process. These methods
required another variable, i.e. line process, to be estimated along with disparity. Another
way of estimating disparities properly at discontinuities is to use cues, such as colour, edges.
Some of the early algorithms such as those by Baker and Binford [1981], Ohta and Kanade
[1985] used edge information from the two images. Baker and Binford [1981] performed
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the stereo matching based on the edges and then extended the initial solution to get the
disparities in the areas between the edges based on intensity information. In contrast, Ohta
and Kanade estimated dense disparity maps using DP and then used edge matching to
propagate the disparities across scan-lines. The popular technique, however, is to use colour
segmentation of the reference image and to associate smooth/planar disparity surface with
each segment, thereby aligning the disparity discontinuities with colour edges. In most
cases the reference image is over-segmented, that is segmented into large number of regions
irrespective of the whether it belongs to an object. This is done to ensure that the region
edges correspond to the colour edges by taking into account all discontinuities. Tao et al.
[2001] were among the first to use such a method. Their algorithm used a greedy search
to generate disparity hypotheses for each segment from its neighbouring segments. Each of
these hypotheses were then tested using a quality measure ascertained by warping of the
images. Bleyer and Gelautz [2004] used a similar approach to obtain proper disparities at the
discontinuities. However, they used a layered representation providing more robust solutions.
A layered representation allows segments with similar disparities to be approximated by the
same planar equation.

Sun et al. [2003] incorporate colour segmentation information in a BP framework as
an additional prior energy term. In contrast to the robust surface fitting techniques, this
energy simply penalizes disparities within a segment if they are different. As a result, this
constraint is not strong enough, and shows only marginal improvement in localizing the
discontinuities properly. Hong and Chen [2004] formulated the stereo matching problem
as an energy minimization problem in the segment domain instead of the traditional pixel
domain. They then used Graph Cuts to assign the corresponding disparity plane to each
segment. While this approach produced good results at discontinuities, it does not give
satisfactory results for highly textured images such as the map image in figure 2.6(a). This
is because in highly textured images over-segmentation does not ensure the inclusion of all
the discontinuities. In order to overcome this, Sun et al. [2005] used segmentation as a
soft constraint. They estimate the plane parameters in each segment using a robust plane
fitting algorithm. These plane parameters are then used as a soft constraint within their
stereo model, which is optimized using BP. Klaus et al. [2006] suggested the use of a data
measure which incorporated not only the intensity differences between the right and left
images but also the gradient difference between the two. With this as the data term they
used a similar energy formulation as Hong and Chen [2004] in the segment domain, and
used BP for optimization.

In an attempt to consider both colour segmentation and disparity at same time, Chang
et al. [2007] suggested a technique to estimate the disparity map in two steps: The first step
involves estimating a dense disparity map using a few reliable disparity values. This problem
is formulated as an energy minimization and optimized using Graph Cuts; The second step
involves finding denser reliable disparity values through cross check and modified mean-shift
filtering. The mean-shift filtering (see Comaniciu and Meer [2002] for details) is modified
to incorporate not only the colour and position but also the disparities. The two steps are
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iterated until convergence.
Zitnick and Kang [2007] use segmentation of both images and match the segments in-

stead. Furthermore, they do not use over-segmentation by mean-shift filtering like most
of the other segmentation-based approaches. Instead, they first partition the images into
grids of equally sized segments and refine the shape and size of each segment using iterative
K-means algorithm. With these segments as nodes of the MRF, disparity is estimated for
each segment. They assume constant disparity over each of these segments, and do not
consider any planar model. In same lines as the segment-based optimization techniques is
the one suggested by Wang and Zheng [2008]. The basic idea is to optimize the disparity
plane parameters of all the regions using a inter-regional cooperative optimization. The
initial plane parameters are determined by a window-based disparity estimation and plane
fitting within each segment. Xu and Jia [2008] perform a BP optimization at pixel-level,
but they introduce the segmentation and plane-fit in their data-term as a soft constraint,
as in Sun et al. [2005], to improve their results at discontinuities.

Recent work by Yang et al. [2009] involves the combination of several techniques: colour-
reweighted correlation suggest by Yoon and Kweon [2007], BP as suggested by Felzenszwalb
and Huttenlocher [2006], cross-check by Bolles and Woodfill [1993], colour segmentation by
Comaniciu and Meer [2002] and finally plane-fitting by Fischler and Bolles [1987]. They
first find initial right and left disparity maps using BP and then perform a cross-check. The
cross-check classifies the pixel disparities into stable. unstable, and occluded. A plane-fit is
performed on segments obtained by colour segmentation using only the stable pixels. The
data term is then modified to incorporate the plane-fit disparities as in Sun et al. [2005].
With this modified data term the overall BP optimization is carried out to estimate the
disparity map.

In summary, most of the segmentation-based stereo algorithms do the following: perform
colour segmentation as a preprocessing on either/or both of the reference images, determine
the initial disparity map using known algorithms such as window-based, BP, Graph Cuts,
perform plane fitting with each of the segment, and finally find the final disparity map
by optimizing either over the plane parameters or by using plane-fit disparity as a soft
constraint.

2.4.3 Disparity surfaces: Geometric constraints

As mentioned in section 2.2.1, a large part of the literature considers only the first order
difference in disparities, that is pairwise terms, in their interaction function (2.12). Using
such a function enforces a fronto-parallel assumption on the model. Such an assumption
supposes that the scene under consideration can be approximated by a set of fronto-parallel
planes (on which the disparity is constant) and thus biases the results towards “staircase”
solutions. The figure 2.10(a) shows the 3D view of the ground-truth disparity for the stereo-
pair in figure 2.9(a). The staircase solution produced by standard BP algorithm is shown
in figure 2.10(b) in 3D and corresponds to the disparity map in figure 2.9(c).
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Figure 2.10: (a) 3D image of the Ground-truth disparity in figure 2.9(b). (b) 3D image
showing the staircase effect due to fronto-parallel assumption.

Few attempts have been made to move beyond the fronto-parallel assumption in the
stereo correspondence problem. In order to address this problem, Devernay and Faugeras
[1994] proposed to extend the classical correlation method to estimate both the disparity and
its derivatives directly from the image data. This is achieved by deforming the correlation
window in one image based on the disparity and its derivatives. The derivatives are first
initialized using plane-fitting and then a classical minimization method such as Levenberg-
Marquardt is used to refine both the disparities and its derivatives directly. They then relate
these derivatives to differential properties of the surface such as those encoded by normals
and curvatures. However, in this paper the authors encounter numerical instability when
computing second-order or higher order disparity derivatives.

Birchfield and Tomasi [1999b] and Lin and Tomasi [2004] propose to perform iteratively
segmentation and correspondence. While Birchfield and Tomasi model the disparities within
each segment as a plane, Lin and Tomasi model them as splines. The limitation of this ap-
proach is that the proposed algorithm is likely to get stuck in local minima in the presence of
untextured surfaces. Furthermore, these methods do not consider the geometrical properties
of the surface itself. The segmentation based approaches mentioned in the previous section
allow the slanted surfaces to be recovered due to the plane-fitting used in their algorithms.
Although most of them perform very well on the Middlebury data set 4, these approaches
cannot handle curved surfaces.

Alternatively, Li and Zucker [2006a,b] explicitly take into account the differential ge-
ometric properties of the surface. Li and Zucker introduce the notion of geometric con-
sistency between nearby matching pairs using both depth (position disparity) and surface
normals. They measure the consistency of the normals by transporting them along the

4. http://www.middlebury.edu/stereo, by D. Scharstein, and R. Szeliski.
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surface. They show that contextual information can be enriched with extra geometric con-
straints for stereo correspondence. As a consequence, they propose to use surface normals
and curvatures to guide the disparity estimation towards a geometrically consistent map.
The initial disparities and its derivatives (which are related to the normals) are computed
using a method similar to that described by Devernay and Faugeras. However, in order to
overcome numerical instability issues encountered by Devernay and Faugeras, they perform
all the derivative computations in the depth space. The optimization is performed using
cooperative algorithms by Li and Zucker [2006a] and using BP by Li and Zucker [2006b].
One main limitation of this algorithm is that it precomputes the local surface normals.

As the smoothness prior takes into account only the first-order differences (pairwise
terms), one solution would be to use second-order (triple cliques) or higher-order priors. An
important issue in considering the higher-order cliques is that there not many techniques
that can optimize such functions as it becomes computationally infeasible. Bhusnurmath
and Taylor [2008] used an interior point method to find the optimal disparity from an
objective function that included first-order as well as second-order differences. However, in
order to apply this method, both the data term and interaction term are required to be
convex.

Recently, Woodford et al. [2009] used a second-order smoothness prior to encourage pla-
nar disparities in their Conditional Random Field (CRF) model. A CRF (Lafferty et al.
[2001]), like an MRF is an undirected graphical model, where the conditional probabilities
of the label sequence can depend on arbitrary, non-independent features of the observation
sequence, without forcing the model to account for the distribution of those dependen-
cies. To optimize the second-order CRF model (as applied to the correspondence problem),
Woodford et al. used an extension of Graph Cuts, namely the Quadratic Pseudo Boolean
Optimization (QPBO) algorithm. The QPBO algorithm only provides a partial labelling,
that is only subset of sites will be assigned disparities, leaving the rest unlabelled. Wood-
ford et al. therefore used an extension developed by Rother et al. [2007] to QPBO to solve
for the labels of unlabelled sites. This optimization allows for the use of triple cliques by
decomposing them into unary and pairwise cliques through the addition of a latent variable.
This method was suggested by Kolmogorov and Zabih [2002b] to take into account triple
cliques in Graph Cuts. While second-order priors account for planar surfaces, higher-order
priors are required to model curved surfaces. Although QPBO can handle triple cliques, it
is unclear how this can be extended to higher-order priors.

One of the most recent attempts to recover surfaces with different orders of smoothness
is by Smith et al. [2009]. They move away from the MRF-stereo model and propose a
non-parametric model for stereo matching. The main idea in their paper is to consider
each pixel as a feature vector composed of position and colour, and each image as a point
cloud in the the feature space. For each image they induce a dense graph with weighted
edges. The dense graph is then approximated by a sparse one using only the dominant
weights. They use a data term based on colour alone and the regularization is modelled
as a Gaussian mixture with respect to disparity, where the weights for the Gaussian are
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determined by both colour and position, i.e, from the feature vector. These regularization
weights are also the ones that determine the sparsity of the graph itself. Graph Cut is then
used to match the sparse graphs and to determine the disparities. The authors relate the
networks within the graph to pixel grouping hierarchy, which allow the pixels with similar
features to be grouped together, thus avoiding image segmentation. However, the density
of the graph connections plays a key role as it determines the smoothness or otherwise of
the final disparity map.

2.5 Motivation

As can be seen in the above sections, it is essential to use additional cues to overcome
some of the problems of stereo matching. In this thesis we deal with the two issues discussed
above, namely localization of disparity discontinuities and adding additional geometric con-
straints to relax the fronto-parallel assumption. We motivate our thesis as follows:

• We see that most of algorithms use preprocessing such as segmentation and plane-
fitting to localize disparity discontinuities. In our work, we make use of an important
observation that the disparity discontinuities (which are also 3D depth discontinuities)
occur usually at object boundaries. Thus, object boundaries are an important cue for
the disparity discontinuities and vice versa. We make use of this information to
cooperatively estimate both disparity and object boundaries (chapter 4).

• Recovering binocular disparities in accordance with the surface properties of the scene
under consideration involves either using higher-order neighbourhoods or including the
geometric contextual information in the energy function. As optimization of higher-
order neighbourhoods involves using “non-standard” techniques of optimization, we
take inspiration from Li and Zucker’s work where the geometric constraints are in-
cluded within pairwise MRF frame-work. While their work allows the use of standard
optimization techniques, the differential geometric constraints, which are included as
surface normals, are precomputed. We on the other hand, model the disparity and
normals in such a away that each can be estimated taking into account the other.
Therefore, simultaneously updating the two until, both disparities and surface nor-
mals are accurately estimate (chapter 5).

The next chapter introduces Coupled-Markov Random Fields to model the problems
stated above. In both of the above two cases, we use two random fields to model each
variable, that is one for disparity and the other for either discontinuities or normals, but
at same time includes information about one-another. Thus, we model two posterior dis-
tributions for each variable by including the information from the other as an observation.
We then find the MAP estimates for each of these sets of variables using an Alternating
Maximization framework.
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State of the art : Stereo Matching

Before we go into the details of each of these models, we first provide a brief state-of-the-
art on Coupled Random Fields in the next chapter. We discuss some aspects of alternating
maximization and how it can be used in our context to determine the MAP estimates of
the system under consideration.
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Chapter 3
Coupled Markov Random Fields

As mentioned in the previous chapter, we address two problems in this thesis, namely,
localization of disparity (depth) discontinuities and recovering disparities in accordance with
the surface properties of the scene. We see that, in stereo:
• Brightness edge may indicate the presence of depth edge and vice versa;

• The depth values of the surface should agree with the surface properties, such as
surface normals, of the scene.

Thus, the stereo matching problem is related to two problems, namely, the one of boundary
extraction and the other surface normal estimation. Intuitively, the solutions of each of
these individual problems could impose constraints on the other, thereby simultaneously
improving the results of the two. Such a cooperative setup can be modelled using Coupled
Markov Random Fields (coupled-MRFs). The main advantage of modelling a problem based
on coupled-MRFs is that it allows simultaneous estimation of several related functions from
one or more modalities of observations.

Let A and B be two MRFs representing related quantities and associated with observa-
tions I1 and I2. Coupled-MRFs allows to model A and B given the observation using the
Gibbs distribution as:

P (a,b|I1I2) =
1

Z
exp

(
− E(a,b|I1I2)

)
(3.1)

where Z is the normalization factor, a and b are realizations of A and B respectively, and
E(a,b|I1I2) represents the energy involving the two random variables and the observations.

In this chapter, we try illustrate the basic idea behind coupled-MRFs through the numer-
ous applications it has been used, such as: image segmentation, motion, boundary detection,
and stereo. In the next section we discuss related work concerning coupled-MRFs as applied
to different problems. We summarize some aspects are of the coupled-MRFs in section 3.2.
We then discuss one of the methods to optimize such coupled-MRFs, namely Alternating
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Maximization, in section 3.3. Finally in section 3.4, we present the highlights of the thesis
with reference to coupled-MRFs and Alternating Maximization.

3.1 Related work

The main idea behind coupled-MRFs, is to model the two or more related problems using
respective number of MRFs which are coupled. This coupling is nothing but the mutual
constraints imposed by the solutions of each individual problem and is incorporated within
the energy function(s) associated with the MRF. The hope is then to find an integrated
cooperative solution that significantly improves individual results of each sub-problem. We
now illustrate some applications where the coupled-MRFs are used to illustrate this idea.

3.1.1 Line process-based coupled-MRFs

In this section, we discuss papers that use the concept of line process, which was first
introduced by Geman and Geman [1984]. The line process variables are located at sites
between MRF lattice, which is based on image pixel grid, and indicate the presence or
absence of a discontinuity between two adjacent elements. The line process-MRF can be
visualized as the “dual” of the lattice where the edges become sites, and vice versa (See
figure 3.1).

Surface interpolation

Among the earliest algorithms to use such coupled-MRFs, is the one suggested by Mar-
roquin [1984]. He proposed an approach for surface interpolation from noisy sparse data
taking into account the discontinuities. Marroquin modelled the behaviour of a piecewise
smooth surface using two MRFs that are coupled: a continuous-valued one that corresponds
to the depth at each location, and a binary one composed of horizontal and vertical line pro-
cesses (See figure 3.1). Referring to the example (3.1) in the previous section A corresponds
to the depth, B to the binary line process and the noisy sparse depth data corresponds the
the observation I1 (given only single modality of observation). At every global iteration,
all the line and depth sites are visited sequentially. When a line site is visited, its state is
updated using the Metropolis algorithm (Kirkpatrick et al. [1983]). The depth values are
updated using a gradient descent algorithm. Thus, Marroquin created two processes that
are decoupled, where the continuous field finds its equilibrium instantaneously after the up-
date of the line process. From a conceptual viewpoint, this was first algorithm to illustrate
the advantage of performing the boundary detection and interpolation tasks at the same
time. It showed that, it was possible include prior knowledge about the smoothness of the
surface and about the geometry of the discontinuities, as well as the information provided
by the observations in the same energy minimization framework. However, this method had
the disadvantage that the line process was only determined by the sparse depth data. As
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consequence of this the estimated discontinuities were offset and ragged as compared to the
true ones.

Geiger and Girosi [1991] approached used a similar model as Marroquin for surface recon-
struction. But instead of using Metropolis algorithm for line process and gradient descent
for surface interpolation, Geiger and Girosi use a deterministic Mean Field approximation
(Yuille et al. [1990]) to compute the estimate of the mean values of the surface field and the
discontinuity field (line-process). Geiger and Yuille [1991] extended the work done by Geiger
and Girosi for image segmentation. Furthermore, Geiger and Yuille instead of considering
two line process fields (horizontal and vertical), used a single continuous line process field.

VV

H H H

V V

HHH

V V

Figure 3.1: The continuous valued MRF lattice is shown with solid lines and black dots.
The horizontal line-process and the vertical line-process variables are represented by “H”
and “V” within circles respectively, both of which lie between the continuous lattice. Note
that the line-process MRF can be seen as a dual lattice (shown using dotted lines) where
the continuous lattice edges become sites, and vice versa

Estimating discontinuities from several vision modules

Gamble and Poggio [1987] proposed a scheme integrating colour, texture, motion and
stereo, together referred to as vision modules, to find surface discontinuities. Each of these
vision modules were modelled using a coupled-MRF consisting of a continuous process and
a line process as done by Marroquin [1984], i.e., within a single energy function. The
discontinuity output of each of these modules are coupled to intensity edges obtained directly
from the image data. These outputs are then provided as an input to a simple linear classifier
to obtain the final discontinuity map. While they provided a method to integrate different
vision cues to find the discontinuities, they did not model the interaction between the
line processes of different vision modules. The absence of cooperation between the vision
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modules made it difficult to find reliable discontinuities.
Günsel et al. [1996] use an idea similar to Gamble and Poggio [1987] to find discon-

tinuities, but instead of using different visual cues as coupled-MRFs, they use the image
information at different scales. That is the vision modules in the case of Günsel et al.
consist of coupled-MRFs representing intensity and line process at different scales. Each of
these modules, along with the term that couples the line processes at different scales, are
then integrated into a single MRF. The posterior distribution corresponding to this MRF
is maximized using Thresholded Posterior Mean (TPM), instead of the Maximum A Pos-
teriori (MAP) estimate. In order to find the TPM estimate they use a modified Simulated
Annealing procedure.

Optical flow estimation

Similar to the previous approaches Heitz and Bouthemy [1993] handle the problem of
optical-flow (velocity vectors) estimation and discontinuity processing simultaneously in a
coupled-MRF framework. They use dense gradient and sparse edge-based measurements
to estimate both velocity and discontinuity maps. They use continuous-MRF for velocity
field and binary-MRF composed of line processes (both horizontal and vertical) to repre-
sent discontinuities that are located between velocity vectors. The additional feature of this
model is that it takes into account occluded regions corresponding to the discontinuities, by
considering not only the intensity edges but also the direction of the motion of the edges.
The optimization of the MRFs is carried out sequentially by updating the different sites of
velocity and discontinuity fields, using Iterated Conditional Modes (ICM introduced by Be-
sag [1986]). The main disadvantage of this approach was that the estimated discontinuities
were locally broken. The reason for this is the absence of any smoothness term associated
with line processes, to ensure their continuity.

Processing acoustic images

Murino and Trucco [1998] use a three-fold process for reconstruction, restoration and seg-
mentation of acoustic images. An acoustic camera transmits an acoustic signal and collects
the returns from targets. These are then processed in such a way that range information
and acoustical intensities can be retrieved for several viewing directions. This information is
usually viewed as (acoustic) image data, i.e., noisy range and confidence (acoustical intensi-
ties) images. While the range data represent the depth, the confidence data associated with
each depth measure denotes its reliability. The idea is then to reconstruct the 3D images
using the noisy input data. Murino and Trucco use three MRFs associated with confidence,
range and line process. The process of reconstruction consists of segmentation of the im-
ages using the line process and confidence field. The estimated confidence values are used
to smooth inside the object surfaces taking into account the discontinuities using the line
process. They express the three-fold process in a single energy function and optimize the
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fields using Simulated Annealing by sequentially updating the corresponding fields.

Image restoration

In line with the previous methods, Bedini et al. [2001] suggests a coupled-MRF approach
for edge-preserving image restoration. Here again, the image intensities are modelled as a
continuous field and the line process as a binary field. However, unlike previously mentioned
methods, Bedini et al. perform a mixed annealing where the intensities and the binary vari-
ables are updated alternately. The strategy assumes that the energy function with respect
to intensity is convex and quadratic, when the line process configuration is fixed. So, they
reformulate the continuous energy function as a least squares minimization and use deter-
ministic techniques such as conjugate gradient techniques. The line process variables are
estimated using Simulated Annealing, by drawing the samples conditioned on the inten-
sity process. This kind of mixed annealing process does not guarantee overall convergence.
However, as the Simulated Annealing procedure is used only for binary-line processes, and
not for the continuous valued MRF, the computational efficiency is improved.

Elimination of line process

Blake and Zisserman [1987] suggested a way of eliminating the line process, by replacing
it with a weak continuity constraint, when used in conjunction with a continuous variable.
This weak continuity constraint imposes a fixed penalty for discontinuities within the con-
tinuous energy function. Thereby allowing the discontinuities to occur and eliminating the
need for line process. Furthermore, Blake and Zisserman showed how this constraint allows
to retain all the properties of the line process. While they described a general energy model
over two variables; one continuous and the other line process, they did not consider a proba-
bilistic MRF framework. Black and Rangarajan [1996], further extended these findings and
showed that the such line process-based discontinuity models could be replaced by robust
functions (see chapter 2, section 2.2.1).

The idea of using robust functions instead of line process has been used widely in MRF-
based techniques, for example by Strecha et al. [2006], Felzenszwalb and Huttenlocher [2006],
Boykov et al. [2001]. In particular, Sun et al. [2003] and Xue et al. [2008] model the problem
of disparity estimation and multiple target tracking in coupled-MRF framework respectively.
Both Sun et al. and Xue et al. use one discrete multi-label-MRF and two binary-MRFs.
In the case of Sun et al., the three MRFs are used to represent disparity, discontinuity
line-process and occlusions. In contrast, Xue et al. use the MRFs to represent joint state of
multi-targets, existence of each target and occlusions between adjacent targets. Both Sun
et al. and Xue et al. eliminate the two binary-MRFs by introducing two robust functions
in their place. The main advantage of this elimination is that it allows for estimation only
the desired MRFs. Sun et al. and Xue et al. used Belief Propagation to estimate disparity
and target state for tracking respectively.
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3.1.2 Coupled-MRFs without line process

Most of the methods suggested above use a implicit/explicit binary discontinuity-MRF
within their coupled-MRF. Furthermore, the line process-MRF is interwoven with the con-
tinuous valued MRF (see figure 3.1). In the following section we discuss applications which
use coupled-MRF model without the interwoven line process.

Image segmentation

Wu and Chung [2007] propose a method for segmentation of images coupled with a
boundary model. The couple-MRF therefore consists of a label field for segmentation and
binary field for the boundary. The boundary field of Wu and Chung is different from the
normal line process field in that it does not exist on a dual lattice between the pixels, but on
the pixel sites directly. Their main contribution lies in modelling the interaction between the
boundary and label field. Unlike other approaches where the line process works implicitly
and is simple (horizontal and vertical), this method takes into account complex boundary
patterns. They first define all possible boundary patterns within a 3 × 3 window and
express the interaction between the two MRFs based on them. In other words, the energy
representing the interaction between label and boundary MRFs allows only the defined
patterns to exist, penalizing heavily the undefined boundary configurations. They argue
that defining boundary configuration within a window makes boundaries less sensitive to
noise, as compared to dealing with individual line processes (as done by Heitz and Bouthemy
[1993]). Optimization of the model is performed using ICM and is compared to the models
suggested by Geiger and Girosi [1991] and Geman and Geman [1984]. While Wu and
Chung’s method shows improvement over the others, it still requires the construction of all
possible boundary configuration within a window.

Texture segmentation

Xia et al. [2006] perform adaptive segmentation of textured images using coupled-MRFs.
The model consists of two mutually dependent components: one for estimating the feature
vectors (gray-level statistics and local texture content over a window) from an image and
other to label the image to achieve segmentation. Like Wu and Chung, Xia et al. describe
a coupled-MRFs, where each (feature vectors and labels) MRF is described on the same
set of image sites. In other words the feature-MRF resides on the same lattice as that of
the label-MRF lattice. Even though they do not use a binary line process like the other
methods, in this paper the features and the labelling are defined using a single energy
function representing the posterior distribution. While a simple MRF model would just
find the posterior probability of the segmentation labels given the feature vectors, Xia
et al. estimate the feature vectors themselves. The features are considered to be random
vectors and each of these vectors are modelled as an independent Gaussian distribution. The
segment labels are used to not only constrain the mean and variance of the Gaussian feature
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field, but also to account for the pairwise relationship between the neighbouring labels. This
pairwise relationship in the label field is modelled to favour neighbouring sites to have same
labels. The optimization is carried out alternately between the feature and label field using
Simulated Annealing. The labelling is assumed to be known when estimating features and
vice versa.

Cooperative estimation of optical flow and disparity

The methods discussed until now (including section 3.1.1) use a single energy with two
variables describing the same visual process in their coupled MRF model, for example sur-
face interpolation, optical flow, stereo and their respective corresponding discontinuities or
texture and their associated features. In contrast to such methods Nasrabadi et al. [1989]
and Sudhir et al. [1995] model two different visual processes, namely optical flow and dispar-
ity, using coupled-MRFs. While Nasrabadi et al.’s method suggested only the improvement
of disparity information using optical flow, Sudhir et al. introduced a cooperative mech-
anism between the two MRFs. This mechanism involves estimating both stereo disparity
and optical flow, but constraining the estimation of each by the information provided by
the other. Unlike the other described methods, Sudhir et al. define two energies; one for
estimating disparities given the optical flow and the other for estimating optical flow. Re-
ferring to the example equation (3.1), if optical flow is represented by variable A, disparity
by B and the observed images represented by I1 and I2. Let I1 and I2 represent stereo pairs
are different time instances. Now the energy function in (3.1) can be split into:

E(a,b|I1I2) = E1(a|bI1I2) + E2(b|aI1I2) (3.2)

with a and b representing the realizations of A and B respectively. Each of these energies
E1 and E2 incorporate discontinuity information within disparity and optical flow estima-
tion respectively, based on the consistency between the right and left images given at two
different time instances (I1 and I2). Sudhir et al. carry out the optimization of the two field
alternately using ICM for a fixed number of iterations.

Estimation of disparity and occlusion

Similarly, Sun et al. [2005] use a coupled-MRF approach to estimate disparities and
occlusions. While disparity is treated as a multi-label discrete field, the occlusions are mod-
elled as a binary one. In this paper, they propose an algorithm that iteratively performs
these two steps: (1) infer the disparities in one view considering the occlusions of the other
view, and (2) infer the occlusions in one view from the disparities of the other view. They
call this model symmetric, as it takes into account the observation from both views. The
energy function for this model is similar to one in (3.2) with A standing for disparities, B
for occlusions and only one pair images I1 as observation. The optimization is performed
iteratively by alternating between disparity and occlusion estimation using Belief Propaga-
tion.
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3.2 Summary basic concepts of coupled-MRFs

From the examples provided in the previous section, we see that coupled-MRFs provide a
flexible way in which two related variables could be modelled and estimated simultaneously.
Depending on the structure of the energy function it is also possible to model each variable
separately, but taking into account the influence of the other. In the previous section, we
categorized the coupled-MRFs into two one which use line processes (section 3.1.1) and
the other which do not (section 3.1.2). The ones using line process with their framework
usually modelled a interwoven coupled-MRF, that is the line process existed between the
sites of the MRF-lattice. One exception to this is the work by Wu and Chung [2007], where
the line-process existed on the sites. On the other hand, methods which do not use line
process have both variable defined on the same MRF lattice. The table 3.1 provides brief
summary of most of the applications and the associated methods of optimization presented
in the previous section. There is one other way to categorize the methods presented in the
previous section that is based on overall optimization:

1) Methods that optimize the energy function by sequentially updating each variable.
Such techniques usually define a single energy function for all the variables, for example
Marroquin [1984], Gamble and Poggio [1987] (each vision module is described by one
energy function with two variables), Heitz and Bouthemy [1993], Murino and Trucco
[1998] and Günsel et al. [1996].

2) Methods that eliminate one of the variables, in particular line process, and optimize
the energy function over a single variable using standard techniques. The effect of the
line process is included as a robust function, like in Sun et al. [2003] and Xue et al.
[2008]

3) Methods that employ alternation to update each variable. In such cases, the each
energy function incorporates the influence of the other as an observation (Bedini et al.
[2001],Xia et al. [2006],Sun et al. [2005] and Sudhir et al. [1995]). These methods
employ a strategy where the optimization of the fields are carried out alternately to
estimate the each of the random variables involved. This procedure is often referred
to as Alternating Maximization 1. In such a procedure, the optimization of one of
the variables is carried out assuming that the other(s) is(are) known. Alternating
between the variables therefore allows finding estimates for the each variable involved
in the coupled-MRF. Also, its iterative nature allows the mutual improvement of the
solutions to the MRF-based problems involved.

In the next section we will discuss some of the aspects of this Alternation Maximization
procedure. We also show the mathematical soundness of this procedure, when involving the
probabilistic evaluation of the two variables.

1. Alternating Minimization if the corresponding energy is minimized, instead of maximizing the poste-
rior.
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Table 3.1: Summary of Methods using Coupled-MRFs
Coupled-MRF No. of Energy Overall Optimization

Applications
Variables functions optimization technique(s)

Surface interpolation Line process(LP) Metropolis algorithm

Marroquin [1984] and Surface depth
one Sequential

and gradient descent
Surface reconstruction

Geiger and Girosi [1991],
LP and Surface depth one Sequential Mean Field

Geiger and Yuille [1991]
Discontinuity estimation LP and image features Metropolis algorithm

Gamble and Poggio [1987] like colour, motion, stereo
one/module Sequential

for each module
Optical flow estimation

Heitz and Bouthemy [1993]
LP and Optical flow one Sequential ICM

Acoustic image processing

Murino and Trucco [1998]
LP, confidence and range one Sequential Simulated Annealing

Image segmentation LP (not interwoven)

Wu and Chung [2007] and segment labels
one Sequential ICM

Disparity Estimation Occlusion-LP, Eliminate

Sun et al. [2003] Discontinuity-LP
one

Line processes
BP

and Disparity
Muti-target tracking existence of target-LP, Eliminate

Xue et al. [2008] Occlusion-LP
one

Line processes
BP

and Multiple targets
Image restoration Mixed annealing Simulated Annealing

Bedini et al. [2001]
LP and image intensity one

Like Alternation and Least square
minimization

Texture segmentation features vectors

Wu and Chung [2007] (not binary or interwoven)
one Alternation Simulated Annealing

and segment labels
Optical flow and Disparity Optical flow

estimation Sudhir et al. [1995] and Disparity
two Alternation BP

(not binary or interwoven)
Disparity Estimation Occlusion

Sun et al. [2005] (binary but not interwoven)
two Alternation BP

and Disparity
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3.3 Alternating Maximization

The Alternating Maximization procedure can be used to solve optimization problems
over more than one variable in an iterative set-up. In order to understand the procedure, we
commence with a simple example where the goal is to solve a maximization problem over
two variables of the following form: given P, Q and a function f : P ×Q → R, maximize f
over P ×Q. That is, find

(P ∗, Q∗) = max
P∈P,Q∈Q

f(P,Q). (3.3)

Often maximizing over both variables simultaneously is not straightforward. However, max-
imizing with respect to one variable while keeping the other one fixed is in general, easy
and sometimes possible analytically. In such a situation, the Alternating Maximization
algorithm described next is well suited: start with an arbitrary initial point Q0 ∈ Q; for
iteration t, compute

P (t+1) = argmax
P∈P

f(P,Q(t)) (3.4)

Q(t+1) = argmax
Q∈Q

f(P (t+1), Q). (3.5)

In other words, instead of solving the original maximization problem over two variables,
the Alternating Maximization algorithm solves a sequence of maximization problems over
only one variable. The converged values are declared the solution to the original problem.
This example can be extended to multiple variables where the maximization of the function
f(P,Q,R, . . .) jointly over all variables is carried out by Alternating Maximizations over
individual subsets of variables P,Q,R, . . ..

We now explain this Alternating Maximization procedure in a probabilistic set up. Sup-
pose A and B are two MRFs. These example random fields may represent disparity, motion,
discontinuities or any such variables discussed above. The goal is to estimate realizations
of A and B that are consistent with a joint probabilistic model and the observed data, like
image(s) intensities or intensity gradients depending on the problem at hand. Ideally we
are interested in finding the MAP (Maximum A Posteriori) estimates of A and B,

(aMAP,bMAP) = argmax
a,b

p(a,b|I) . (3.6)

where a and b are specific realizations of A and B respectively, and I represents the observed
data. If we consider a to be disparities and b to be discontinuities; then the solution
space of the above becomes too large to be computationally tractable. As a result, this
global optimization problem has in general no straightforward solution. Thus, we consider
the Alternating Maximization approach to solve the above equation, where the posterior
probability is alternately maximized in the first and second variable. Starting from current
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estimates a(t) and b(t) at iteration t, we consider the following updating,

a(t+1) = argmax
a

p(a,b(t)|I) (3.7)

b(t+1) = argmax
b

p(a(t+1),b|I) . (3.8)

It follows easily that,
p(a(t+1),b(t+1)|I) ≥ p(a(t),b(t)|I) . (3.9)

While the above equation shows that the alternation procedure increases the posterior prob-
ability at each step, there is a possibility that it gets stuck in a local maximum owing to
the non-convexity of the problem. Therefore, there is no guarantee that such a procedure
leads to a global maximum. However, it is more adept at bypassing local maxima than
the other approaches which sequentially update all the random variables involved. Each
restricted iteration of Alternating Maximization is typically global, and is therefore able to
“hop” great distances through the reduced variable space in order to find an optimal iterate.
By using Bayes’ theorem it is very easy to show that the alternation in equation (3.7) is
equivalent to the following one,

a(t+1) = argmax
a

p(a|b(t), I) (3.10)

b(t+1) = argmax
b

p(b|a(t+1), I) . (3.11)

So the above equation shows that the inference of each of the variables a and b can be
performed by the using just the conditional distributions p(a|b, I) and p(b|a, I) respec-
tively. This greatly simplifies the modelling as there is no need to specify a completely
joint model. A specific model for each variable encoding the influence of the other in there
energy term would be sufficient to fully describe the problem involved. Furthermore, each
sub-problem can optimized using different techniques, thereby allowing more freedom in
type of optimization technique to be used.

3.4 Coupled-MRF in the proposed approach

As can be seen from the discussion in section 3.1 the coupled-MRF approach has been
used to tackle issues such as discontinuities and occlusion in stereo matching (chapter 2).
As discussed in chapter 2, the main focus of this thesis is; (1) to estimate disparities in
conjunction with boundaries;(2) to use surface geometric constraints to obtain disparities
and surface normals. In both of these cases we use two random fields, one for disparity
and the other for boundaries or surface normals. These two fields form parts of a coupled-
MRF (section 3.1), where the two MRFs reside on the same lattice (unlike the interwoven
line process-MRF shown in figure 3.1). In addition, each of these MRFs are described
by separate energy functions incorporating the influence of the other as a observation. In
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3.4 Coupled-MRF in the proposed approach

other words, we define conditional distributions for each MRF variable taking into account
the influence of the other, which are then optimized using the Alternating Maximization
procedure (section 3.3, Equation (3.10)). The advantages of using such a set up are as
follows:

• The consideration of two separate random fields increases modelling flexibility i.e, the
energy terms for two fields can be made more dependent or independent according to
the information to be incorporated.

• Local constraints on each random field can be independently applied.

• The use of a well based statistical estimation framework (Alternating Maximization)
resulting in cooperative estimation and mutual improvement of both the involved
variables.

• There is no restriction on the type of optimization used for each step of the Alternating
Maximization procedure.

These features allow us to model the stereo matching algorithm in a cooperative frame-
work where the disparities can be mutually improved taking into account the boundaries
or surface normals and vice versa. In the following chapters, which are the main contri-
butions of the thesis, we will present in detail two models in which disparity is estimated
cooperatively, one with boundaries and the other with surface normals.
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Chapter 4
Cooperative Disparity Estimation and

Object Boundary Extraction

In chapter 2, we demonstrated that additional cues such as colour and image gradient
are essential in order to efficiently model the stereo problem. One of the issues we discussed
was the localization of disparity discontinuities in the stereo matching problem. We saw
that most of the existing algorithms (see chapter 2 section 2.4.2) have a preprocessing step
in which they perform colour segmentation on either/or both of the reference images. They
then determine the initial disparity map using known algorithms such as Sun et al. [2003] or
Boykov et al. [2001] and find the final disparity map either by further optimizing over the
disparity-plane parameters or by plane-fitting the disparities within each of the segments
found during preprocessing.

In this chapter, we propose an approach which eliminates the need for preprocessing
and uses the relationship between the disparity discontinuities and object boundaries to
cooperatively estimate the two. We build on standard approaches for dense disparity esti-
mation, and propose an original approach which simultaneously corrects disparity and finds
the object boundaries. While these are usually considered as two separate tasks, in our
approach they are dealt with cooperatively, i.e. the presence of disparity discontinuities
aids the detection of object boundaries and vice versa. The proposed method relies on two
assumptions:

(i) The discontinuities in depth are usually at object boundaries (which is true for
natural images).

(ii) The disparity discontinuities obtained from naive disparity estimation are usually
at the vicinity of actual depth discontinuities.

Thus, if we locate the object boundaries which are in the vicinity of the disparity dis-
continuities, we can correct the disparity values so that they fit more closely to the ob-
ject boundaries. As mentioned in chapter 3, we use the coupled Markov Random Field
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(coupled-MRF) to jointly model disparities and object boundaries and estimate them using
the alternation maximization procedure 1. In the next section we give an overview of our
approach. This joint model is defined in section 4.2. The optimization techniques used and
the alternation procedure are discussed in section 4.3 and section 4.4 respectively. Exper-
imental results obtained using the proposed method are presented in section 4.5. Finally,
we discuss the features and limitations in section 4.6.

4.1 Overview of the proposed disparity-boundary estimation

In this chapter, we propose a method to carry out cooperatively both disparity and
object boundary estimations by setting the two tasks in a coupled-MRF framework. We
define two MRFs, one for disparity and the other one for displacement. The displacement
field models the corrections that need to be applied at disparity discontinuities in order
to align them to the object boundaries. In this way, the disparity discontinuities can be
then assumed to represent the object boundaries. In other words, the displacement field
acts as an auxiliary field which provides a feedback from the boundary estimation to the
disparity estimation. It is to be noted that we use the term displacement as it is associated
with both a magnitude and a direction. While magnitude is set to one, it is the direction
component of the displacement that is used for the correction of disparity discontinuities.
The function of the displacement model is therefore to estimate the directions in which the
discontinuities have to be moved. This information is incorporated in the disparity model
so that the disparity values at discontinuities are corrected, such that they represent the
actual object boundaries.

Note that depth discontinuities are a subset of image discontinuities. This is because
if the appearance of two overlapping objects is uncorrelated, then the boundary between
them will be evident in both the image and disparity map. There may however, be texture
boundaries within each object that are not associated with any disparity discontinuity.
In addition to that, the standard algorithms for disparity estimation do not localize the
discontinuities properly. This limitation can be attributed to smoothness constraint imposed
on the disparity modelling. In absence of explicit occlusion handling, even with use of
robust interaction function, the disparity discontinuities occur at “improper” locations. As
previously mentioned we assume that these “improper” disparity discontinuities occur in the
vicinity of the actual object boundaries. This assumption enables us to search of near by
gradient maxima which are most likely to be associated with the object boundary. Thus
justifying our approach to find simultaneously the disparities and object boundaries.

Our coupled-MRF framework is similar to that of Wu and Chung [2007] in that we do
not use a line process for boundary representation (Heitz and Bouthemy [1993], Geman et al.
[1990]). This means that the field representing the boundary does not exist between the
pixels (as in line processes) but on the pixel locations themselves. However, in contrast to

1. This work was originally published in the paper Narasimha et al. [2008].
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Wu and Chung, we do not focus directly on the boundaries but provide the directions toward
which discontinuities must be displaced, based on observed image gradient values. We have
seen that the coupled-MRFs models based on line processes (chapter 3) define only a single
energy for both line process and associated visual processes such as surface interpolation
Marroquin [1984], Geiger and Girosi [1991] or optical flow Heitz and Bouthemy [1993].
Unlike such methods, in our coupled-MRF we define one energy function associated with
each MRF which includes the influence of the other MRF. While this allows for flexibility in
modelling each function separately, it also enables to cooperatively estimate both disparity
and boundary.

The figure 4.1 gives a pictorial overview of the proposed method. It shows how the infor-
mation in the displacement field is used to determine the disparity values at the boundary
locations. The gradient map of the reference image (in our case the left image) is used as
evidence for the object boundaries. The displacement values give the direction in which the
disparity discontinuities have to be moved in order to be aligned with nearest maxima of
the gradient magnitude. If the direction at particular location is non-zero it means that
the disparity at that location may be wrong and should be corrected. Intuitively, from
the figure 4.1(a) we see that disparity at such locations can be corrected by replacing the
disparity at the current position by that of the neighbour in the opposite direction of the
displacement. The figure 4.1(b) show the that the disparity model applies the disparity
correction using estimated displacement values defined at each pixel location. This allows
us to obtain corrected disparity and object boundaries at the same time. The resulting
procedure involves alternation between estimation of disparity and displacement fields in
an iterative framework. The overall procedure for simultaneously estimating disparities and
displacements is as follows:

(i) Estimate an initial disparity map using a standard technique. In such a map disparity
discontinuities occur at improper locations.

(ii) Extract these locations and estimate the displacement field. This field mainly es-
timates directions in which the discontinuities have to be moved to align with the
nearby gradient maxima.

(iii) Re-estimate the disparities using disparities considering the influence of the dis-
placement field. This allows to rightly estimate the disparities in the location where
the corrections have to be applied.

(iv) Alternate between step (ii) and (iii) repeatedly until no corrections need to be
applied.

(v) The disparity discontinuities now represent the object boundaries and the disparities
are corrected.

The coupled-MRF model we propose results in a posterior distribution for both the dis-
parity and displacement fields. This means that the fields can the be estimated according
to the Maximum A Posteriori (MAP) principle. We use an Alternation Maximization pro-
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Image Disparity

Gradient Discontinuity

Displacement

(a) Displacement Model

Displacement Image

Corrected Disparity Object boundary

(b) Disparity Model

Figure 4.1: The figure shows how the displacement information is used for disparity cor-
rection and vice versa

cedure, described in chapter 3, to estimate the two variables. This results in two conditional
distributions; one for disparity and the other for displacement. While the disparities are
modelled as an MRF, the model reduces to a Markov chain when considering displacement
variables. The estimation of both disparities and displacement is alternated and done at
multiple scales. The disparity-MRF is then optimized using variational Mean Field and the
exact optimization of the Markov chain for displacement is carried out using the Viterbi
algorithm.

4.2 Joint disparity and displacement model

We consider a finite set S of p× q pixels on a regular 2-dimensional grid. The observed
data consists of the left and right images, IL and IR, which are together referred to as
I. In our setting, the left image is taken as the reference image and, in particular, object
boundaries are defined for this image. We denote by D = {Dx,x ∈ S} the unknown
disparity values at each pixel position x = (x, y). The values of Dx are considered as
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random variables that take their values in a finite discrete set L. D is referred to as the
disparity field or disparity map and takes its values in D = Lp×q. In addition, we consider
a displacement field denoted by A = {Ax,x ∈ S} where each Ax is made of two random
variables denoted by Mx and Ex. The variables Mx take their values in {−1, 0, 1} and
the variables Ex in the set of unit two-dimensional vectors denoted by U . Mathematically,
Ex ∈ R

2 and |Ex| = 1, or equivalently, Ex ∈ U . For each pixel location x, the Mx and Ex

random variables are related to object boundaries since they give respectively the direction
and the orientation in which the disparity discontinuity must be moved from its current
position to a new position so that it matches the object boundaries. More specifically, Ex

can be interpreted as the normal to the “disparity discontinuity contour” and a non-zero
Mx indicates the direction of displacement along this normal. This direction is the normal
direction if Mx = 1, it is the opposite direction if Mx = −1. If x ∈ S does not correspond to
a disparity discontinuity location, then Mx is assigned to 0. In what follows, we will write
M = {Mx,x ∈ S} with M ∈M = {−1, 0, 1}p×q and E = {Ex,x ∈ S} with E ∈ E = Up×q.

To explicitly take into account the fact that disparities and object boundaries are related,
we propose to define a joint probabilistic model, namely p(d,a|I). This is nothing but the
probability of a disparity and displacement fields given the observed images. Note that we
use d and a = (m, e) to denote specific realizations of the random fields D and A = (M,E)
respectively. Our goal is to estimate the realizations of d and a that are consistent with our
joint probabilistic model and the observed data I. Ideally we are interested in finding the
MAP (Maximum A Posteriori) estimates of D and A,

(dMAP ,aMAP ) = argmax
d,a∈D×M×E

p(d,a|I). (4.1)

Using the alternation maximization procedure described in chapter 3, the above equation
can be estimated using two conditional distributions for d and a as follows, at any given
iteration i:

d(i+1) = argmax
d∈D

p(d|a(i), I) (4.2)

a(i+1) = argmax
a∈M×E

p(a|d(i+1), I) (4.3)

Our task now reduces to defining the conditional distributions p(d|a, I) and p(a|d, I). The
figure 4.1, in fact illustrates the mechanisms of the two equations above. It is also worth
noting that, dealing with two such conditional distributions to account for cooperation
mechanisms between D and A is easier and more tractable than trying to define directly a
single joint distribution.

4.2.1 Displacement conditional disparity model

We first specify the disparity distribution conditional on the displacement field and the
observed data, p(d|a, I). The model is expressed as a Markov random field with an energy
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4.2 Joint disparity and displacement model

function consisting of two terms. The first one corresponds to a data dependent term and
the other to a regularizing or interaction term. The data term is similar to those in classical
disparity-MRF models (Felzenszwalb and Huttenlocher [2006]), whereas the interaction term
is modified to incorporate the displacement information. In a standard Markov random field
modelling, we have to consider a neighbourhood system N = {Nx,x ∈ S} where Nx is the
set of neighbours of x and for which the reciprocity condition (4.4) below is satisfied,

∀x,y ∈ S, x ∈ Ny ⇔ y ∈ Nx. (4.4)

In particular, we consider Nx as the set of the eight nearest pixels of pixel x. We define,
∀a ∈ M × E , the distribution p(d|a, I) as a MRF on d with the following distribution,
∀d ∈ D,

p(d|a, I) ∝ exp

(

−
∑

x∈S

Ud(dx, I)− βd
∑

x∈S

∑

y∈Nx

Vd(dx, dy,a)

)

(4.5)

where Ud and Vd are the data and the interaction terms respectively. The parameter βd
is an interaction parameter which allows to balance the effects of the data and interaction
terms.

Data term.

The first term Ud in (4.5), referred to as the data term, assigns a cost for each disparity
value chosen at location x based on the intensity difference between the left and the right
images. However to account for noise, Ud is formulated as a truncated linear function
(see chapter 2) depending on two scalar parameters λ1 and T1. IL(x) (respectively IR(x))
denotes the pixel value at location x in the left (resp. right) image:

Ud(dx, I) = min
(

λ1 |IL(x)− IR(x
′)|, T1

)

(4.6)

for pixel positions x = (x, y) and x′ = (x, y + dx), with candidate disparity dx ∈ L.

Interaction term.

The second term Vd in (4.5) is called the interaction term. This term defines how the
disparity at a location is influenced by its neighbours. In usual disparity-MRF models,
all the neighbours interact and their influence depends on their disparity values. In the
displacement conditional model, this influence depends also on the displacement field A.
For a given pixel location x, only some of the neighbours in Nx actually interact with x,
depending on the displacement values. This is because some locations in y ∈ Nx that may
correspond to disparity discontinuities which may have to be corrected depending on the
value of displacement (my, ey) at that location as shown in figure 4.2. We therefore, model
this function in such a way that only neighbours y ∈ Nx which do not require any correction
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z
x

Disparity 

discontinuity

neighbourhood

 influence of x 

neighbourhood

 influence of z 

Figure 4.2: If a point z (shown in green) does not lie near any disparity discontinuity then
all the neighbours interact. The interacting neighbours are shown as empty circles, with
arrows indicating their influence. On the other hand, for a point x (shown in red) which
lies near a disparity discontinuity (shown by thick black line) some of the neighbours may
not interact. The neighbours which constitute disparity discontinuities are shown as solid
circles, with the dashed arrows representing that their influence depends on the value of
(my, ey) for y ∈ Nx.

influence the pixel x. An intermediate Active neighbourhood field H(A) = {Hx(A),x ∈ S}
is then built to encode this specificity. For each pixel location x, the active neighbourhood
Hx(A) denotes the set of locations in Nx that interact with x. For a given realization
a = (m, e) of field A = (M,E), it is defined as follows. Let N 0

x denote the neighbours
of x for which the displacement field is 0, i.e. N 0

x = {y ∈ Nx,my = 0}. Then, define:
∀a ∈M× E ,

Hx(a) =

{

N 0
x if mx = 0

{
⌊x−mxex⌋

}
∩N 0

x if |mx| = 1
(4.7)
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where ex is the unit vector at location x when E = e. Note that ⌊x −mxex⌋ denotes the
closest point in S, when x−mxex does not belong to the grid. In particular, Hx(a) can be
the empty set if |mx| = 1 and |m⌊x−mxex⌋| = 1. The equation above shows there are three
possible scenarios for the neighbourhood:

Case I: The first case in (4.7) can be interpreted as follows. If the displacement value mx

is zero at location x, only those neighbours that have displacement values of zero will
interact with x. Intuitively, a zero displacement value means that at this location the
disparity value agrees with the current object boundary estimation, and is reliable in
that sense. In terms of active neighbourhoods, the case corresponds to x ∈ Hy(a)
and y ∈ Hx(a), if y ∈ N 0

x . This means that, when there is no evidence that a
displacement is required at a given location, then the only reliable neighbours are
those which themselves do not require a displacement (refer to figure 4.3, case I). For
this case, the interaction function is defined as a truncated linear:

Vd(dx, dy,a) = min
(

λ2|dx − dy|, T2
)

(4.8)

where λ2 and T2 are scalar parameters playing a role similar to λ1 and T1 in (4.6).

Case II: If the displacement value is 1, i.e., |mx| = 1, then it indicates that disparity at this
location has to be changed in order to better agree with object boundaries. Moreover,
it indicates what should be the value of this new disparity value. It follows that in the
second line of equality (4.7), only one neighbour at most should interact with x. This
neighbour, whose location is y = x −mxex, corresponds to the one which is located
in the opposite direction to the normal ex located at x. This is depicted pictorially
in figure 4.3 case II. In such a case the interaction function enforces the disparity at
x to be replaced by that of y. That is:

Vd(dx, dy,a) = T2

(

1− ✶{Dx=Dy}(dx, dy)
)

(4.9)

where T2 is scalar same as the one in (4.8). The function ✶{Dx=Dy}(dx, dy) is an
indicator function which takes the value 1 when dx = dy and 0 otherwise. This
indicator function enforces that the disparity dx be the same as dy. This function
stems from the intuition that the disparity at a location x where mx is non-zero, could
be corrected by replacing its value by disparity of its neighbour dy in the opposite
direction −mx, i.e., y = x−mxex.

Case III: The last case may happen when the displacement value |mx| = 1 and that of
the selected active neighbour has itself been assigned a non zero displacement value.
This means that the neighbour’s corresponding disparity value is likely to change and
therefor should not be used (see figure 4.3, case III). In that case, the set Hx(a) in the
second line of (4.7) is empty and the only reliable evidence is the data. The interaction
potential is set to 0:

Vd(dx, dy,a) = 0. (4.10)
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m = +/- 1
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Figure 4.3: The figure shows how the neighbourhood is activated based on A = (M,E).
Active neighbours are represented as circles with 1 written inside. Inactive neighbours are
shown as solid circles and the disparity discontinuity is indicated by dashed lines. Case I:
When mx = 0, all the neighbours with my = 0, ∀y ∈ N 0

x , contribute to the interaction
term. Case II: When |mx| = 1 the neighbour y in the opposite direction, −mx, is considered
if my = 0. Case III: When |mx| = 1 and the neighbour y in the opposite direction, −mx,
is |my| = 1, the interaction term is set to 0.
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From the above discussion we can now write the interaction function Vd, using equations
(4.8), (4.9) and (4.10). As we can see, Vd involves the displacement field A through the
active neighbourhood field H(A), for all a ∈M× E , and dx, dy ∈ L2 as follows,

Vd(dx, dy,a) =







min(λ2|dx − dy|, T2) if x ∈ Hy(a) & y ∈ Hx(a)

0 if x 6∈ Hy(a) & y 6∈ Hx(a)

T2
(
1− ✶{Dx=Dy}(dx, dy)

)
otherwise

(4.11)

The corresponding MRF is then defined over the standard eight-neighbourhood system N ,
although it behaves as one built on the active neighbourhood system given by H(a). The
definition in (4.11) has the advantage that it allows all active neighbourhood systems, even
those not satisfying the reciprocity condition (4.4). This idea of building an additional
random field to deal with sets of active neighbours is similar to that in Le Hégarat-Mascle
et al. [2007]. While they consider non-stationary neighbourhoods, Le Hégarat-Mascle et al.
defined a neighbourhood system that does not necessarily satisfy the reciprocity condition.

4.2.2 Disparity conditional displacement model

The distribution of displacement field A, conditional on disparity D and image information
I, will now be modelled. This requires the following structures to be defined. It requires
the definition of discontinuity chains representing the locations at which a disparity discon-
tinuity occurs considering a current value d of the disparity map D. Disparity discontinuity
extraction is done by using the robust function defined in the first line of (4.11). If the dif-
ference between the disparity at x and the disparity at any one of the neighbouring locations
lies above the threshold value T2, x is retained as a location at which a disparity disconti-
nuity occurs. This procedure gives a binary map of disparity discontinuity locations. This
map is then converted into a set of discontinuity chains denoted by C(D). More specifically,
the set C(D) is made of a number T (D) of connected components,

C(D) = {C1(D), . . . , CT (D)(D)} (4.12)

which can be of different sizes. The figure 4.4 shows a cartoon example of how the discon-
tinuity chains set C(D) is formed. For t = 1, . . . , T (D), each set Ct(D) is referred to as a
discontinuity chain but is itself made of two sets Ct(D) = {St(D),Wt(D)} where:

St(D) = { xt
1, . . . , x

t
K} ⊂ S (4.13)

is a set of K locations which are connected, namely for all k = 2, . . .K−1, xt
k is a neighbour

of xt
k−1 and xt

k+1 while the first and last locations have only one neighbour. For simplicity,
we use notation K for the size of the tth chain omitting the possible dependency on t and
D. The set Wt = {wt

1, . . . , wt
K} represents the normals to the chain associated to each

location xt
k. More generally, using notation:
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Disparity Map
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c  (D)2

c  (D)3

c  (D)4

  

(a) (b)

d
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Figure 4.4: Cartoon example showing the formation of discontinuity chain set C(D). (a)
represents a disparity map with two objects, one at disparity d1 and the other d2 (shaded
regions). (b) shows the extracted disparity discontinuity chains Ct(D) of different lengths.
In this example C(D) = {C1(D), C2(D), C3(D), C4(D)(D)}.

S(D) = ∪
T (D)
t=1 S

t(D) (4.14)

and
W(D) = ∪

T (D)
t=1 W

t(D), (4.15)

for x ∈ S(D), we will denote by wx ∈ W(D) the normal at location x. Thus Ct(D)
provides the positions and normals for all the points in the tth chain. figure 4.5 illustrates
the construction of the discontinuity chains.

discontinuity chain

xｋ+1

xｋ
xｋ-1

wｋ
wｋ-1 wｋ+1

c  (D)t

t

t

t

t

t

t

Figure 4.5: Illustration of discontinuity chain construction
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The conditional distribution of field A given D and I is defined using the discontinuity
chains C(D): ∀a = (m, e) ∈M× E ,d ∈ D,

p(a|d, I) ∝ ✶{Ex=wx,∀x∈S(d)}(e)
︸ ︷︷ ︸

normals

p(m|d, I)
︸ ︷︷ ︸

displacement

(4.16)

In (4.16), the first term (called normals in the equation) indicates that, at the discontinuity
locations, the displacement field normals are the same as the discontinuity chains normals,
with probability one conditionally to D = d. Once the normals are fixed, we are now
interested in finding the direction along this normal that the chains should be moved in
order to align with the object boundary. The probability distribution p(m|d, I) in (4.16)
encodes exactly this information. As the corrections need to be applied only at the disparity
discontinuities and not on the entire grid S, the distribution p(m|d, I) is defined as follows:

p(m|d, I) ∝ ✶{Mx=0, ∀ x∈S(d)}(m)

T (d)
∏

t=1

p
(
mt|Ct(d), I

)
(4.17)

where S(d) is the complement of set S(d) and mt = {mx|x ∈ S
t(d)}. However, for the sake

of clarity, the displacement at location xt
k is denoted by mt

k such that mt = {mt
1, . . . ,m

t
K}.

The first term in (4.17) ensures that the non-zero displacements can occur only at dis-
continuity locations with probability one. The second term in the right-hand-side of (4.17),
is the product of probabilities defined on the discontinuity chains. These discontinuity
chains are assumed to be independent and therefore the probability distribution of each
of these chains can be individually expressed as a second order Markov chain as follows:
∀mt ∈ {−1, 0, 1}K ,d ∈ D,

p(mt|Ct(d), I) =
K∏

k=3

p
(

mt
k

∣
∣mt

k−1,m
t
k−2, C

t(d), I
)

P
(

mt
1,m

t
2

∣
∣Ct(d), I

)

(4.18)

Until now we have shown how the displacement field is reduced to a Markov chain. We
will now describe the chain distributions for each of these chains. As each of the chain
distributions will be defined in a similar manner, from now on we drop the superscript
t. The first terms in the right-hand-side of (4.18) are defined using a data term and an
interaction term as specified below,

p(mk|mk−1,mk−2, C(d), I) ∝ exp
(

− Uc

(
mk, C(d), |∇IL|

)
− βc Vc

(
mk,mk−1,mk−2, C(d)

))

(4.19)
where βc is an interaction parameter acting as a weight between the two terms Uc and
Vc. The data term Uc tries to move the chains towards the highest gradients in the image,
whereas the interaction terms Vc, enforces the chains to be smooth. These two terms Uc

and Vc are described in detail in what follows.
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Figure 4.6: The figure 4.6(a) indicates how the data term favours a location in direction of
gradient maximum. The figure 4.6(b) shows the vectors ~uk−1 and ~uk. The interaction term
assigns a score based on the angle between the vectors ~uk−1 and ~uk.

Data term.

The data term Uc associates a cost for moving the point xk on either side of the normal
wk. In order to determine this cost, we first choose points on both sides of the normal
using a range of locations distant from −ǫ to ǫ where ǫ is an integer value to be fixed (in
the figure 4.6(a) ǫ = 2 ). Then, we determine the difference in the gradient magnitude
between the current position and the points chosen along the normal. If this difference is
strictly negative, it means that moving the current chain point xk to that position along
the normal leads it a higher gradient position. Hence, the direction of motion towards this
position is favoured. For example, in the figure 4.6(a) this positions of higher gradient are
xk + ǫwk where ǫ = −1 or −2 and therefore the preferred direction of motion is negative
i.e., mk = −1 is preferred. This can be written as,

Uc

(

mk, C(d),
∣
∣∇IL

∣
∣

)

= 1− 2 ✶{
Mk=sk

(
|∇IL|,wk

)}(mk) (4.20)

where

sk
(∣
∣∇IL

∣
∣,wk

)
= sgn

(

arg min
ℓ∈[−ǫ,ǫ]

(

|∇IL(xk)| −
∣
∣∇IL(yℓ)

∣
∣

))

(4.21)

where yℓ = xk + ℓwk and |∇IL| is the gradient magnitude in the reference image IL. Also,
sgn denotes the function that is 1 when its argument is strictly positive, −1 when it is
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strictly negative and 0 otherwise. The last term in (4.18) is evaluated based only on the
data term.

Interaction term

The interaction term enforces smoothness by favouring those m-values which make the
angle between the vectors defined by the positions (xk−2,xk−1) and (xk−1,xk) as close to
zero as possible. The position vectors defined by xk−2,xk−1,xk ∈ C(d) are denoted by ~uk−1

and ~uk as shown in figure 4.6(b) and expressed as follows:

~uk−1 = (xk−1 +mk−1wk−1)− (xk−2 +mk−2wk−2) (4.22)

~uk = (xk +mkwk)− (xk−1 +mk−1wk−1) . (4.23)

The Vc term therefore assigns a score based on the angle between vectors ~u and ~v and is
defined as,

Vc

(

mk,mk−1,mk−2, C(d)
)

= −
〈~uk−1, ~uk〉

|~uk−1||~uk|
(4.24)

where 〈 . , . 〉 denotes the scalar product (see figure 4.6(b)). Note that (4.19) defined a
second-order Markov chain which can be easily turned into a first-order Markov chain, so
that optimal displacement values can be found using the standard Viterbi algorithm.

Furthermore, we consider an additional heuristic that prevents any discontinuity chain
point already at a gradient peak to move from its position. This ensures that the contour
chains do not move inside the object boundaries. This could happen as there may be
positions with higher gradient within the object depending how textured the image is. As
termination of the overall algorithm (Alternation Maximization, section 4.4) is determined
by the number of moving points, i.e., non-zerom-values, this heuristic aids in attaining faster
convergence. The displacement labels obtained at all chain positions are then embedded
back in to image. This means that every pixel location is given a displacement label of
zero except at the location where the discontinuity chain was formed. The pixel locations
now consist of the following information: direction of movement, which is the normal to
the discontinuity-chain at that point and magnitude set to 1 or 0, in order to curb fast
movement to wrong gradient maxima. This completes the description our coupled-MRF
model for the disparity and displacement fields. We have shown how each field (D or A)
uses the information from the other within their model. In the next section, we propose an
optimization scheme to find estimates of the unknown fields D and A which are consistent
with the observed image set I.

4.3 Optimization

From discussion in section (4.2), we use directly the conditional distributions p(d|a, I)
and p(a|d, I) (equations (4.2) and (4.3)) defined in the previous section, within our alter-
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nating maximization framework. Also as discussed in section 4.2.1 the distribution involved
in (4.2) is the MRF model defined by (4.5). For this distribution a direct optimization is
intractable. Maximization in (4.2) can therefore performed approximately using algorithms
such as Mean Field or Belief Propagation (BP).

As discussed in chapter 2 section 2.3.1, in order to compute the conditional in p(d|a, I)
in a tractable manner using Mean Field, it is approximated by a simpler, factorisable dis-
tribution Q(d) =

∏

x∈S Qx(dx). The task then is to find Q(d), which is as close as possible
to the true posterior in (4.5), where the distance between both distributions is measured by
the Kullback-Leibler (KL) divergence. The minimization of the KL divergence with respect
marginals Qx(dx) is done iteratively. This leads to the following set of update equations
defined for all x ∈ S, also referred to as Mean Field equations:

Qx(dx)←
1

Z
exp

(

−
(

Ud(dx, I) +
∑

y∈Nx

∑

dy∈L

Qy(dy)Vd(dx, dy,a)
))

(4.25)

where Z is the normalizing constant.
If the same optimization is performed using BP instead of Mean Field, then as in chapter

2 section 2.3.2, the beliefs at every position x is computed as follows:

Qx(dx) =
1

Z
exp

(

− Ud(dx, I)
) ∏

y∈Nx

my,x(dx) (4.26)

where Z is the normalizing constant. Note that we use the same notation Qx(dx) as in
(4.25) to denote the beliefs in the equation above. The messages m are updated iteratively
by taking into account the data term, the interaction term and all the messages that are
coming into x, except the one from y, as follows:

mx,y(dy)← max
dx∈L

exp
(

− Ud(dx, I)
)

exp
(

− Vd(dx, dy,a)
) ∏

z∈Nx\y

mz,x(dx) (4.27)

For both optimization it is to be noted that the affect of displacement a is seen in the
neighbourhood system N that is built on the active neighbourhood system given by H(a).
The disparity value at every position can then be found as follows:

d∗x = argmax
dx∈L

Qx(dx) (4.28)

Alternatively, we could compute the expected disparity as:

d∗x =
∑

dx∈L

dx Qx(dx) (4.29)

The equation (4.28) and (4.29) are equivalent, if Qx(dx) has a single symmetric isolated
mode at d∗x. In all our experiments we have used (4.28) to compute the disparity values at
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every position. While the optimization for the disparity MRF in (4.5) is an approximate
one, the one for finding displacement values in (4.16) is exact. This is because during our
construction (section 4.2.2) we used discontinuity Markov chains instead of the 2D field.
The exact inference of this Markov chain is done using Viterbi algorithm. We now provide
brief discussion implementation of the Viterbi algorithm in our case.

4.3.1 Viterbi algorithm

As described in section 4.2.2, the Markov chain constructed to find the displacement
field values is of the second order. There are two ways to infer the values for this chain; one
is to use a second-order Viterbi algorithm (Cutting et al. [1992]); the second is to convert
the chain into a first order and use standard the Viterbi algorithm proposed by Rabiner
[1989]. Inference in our case is done using the latter approach, as the Markov chain in our
case can be easily converted to a first order one.

We convert the second order model in nodes into a first order model in difference-vectors
between the nodes. We see from (4.24) that the interaction term Vc (mk,mk−1,mk−2, C(d)),
even though dependent on mk,mk−1 and mk−2, can be seen as first order chain in ~uk and
~uk−1. Therefore, without any further modification the we can now use the standard Viterbi
algorithm to find the displacement values. The Viterbi algorithm finds the optimal sequence,

M∗ = {m∗
1,m

∗
2,m

∗
3, . . . ,m

∗
k . . .m

∗
K−1,m

∗
K}, (4.30)

given the observations disparity d and image I. For a given discontinuity chain C(d), we
have the sequence M = {m1,m2,m3, . . . ,mk . . .mK−1,mK}, where mk ∈ {−1, 0, 1} ∀ k =
1, 2, . . . ,K. The goal is to find optimal sequence M∗, also referred to as optimal path, which
maximizes the probability in the equation (4.19). In order to do so we define for every
position k

δk(m) = max
m1,m2,m3,...,mk−1

p(m1,m2,m3, . . . ,mk = m | C(d), I) (4.31)

where m = {−1, 0, 1} and δk(m) is the best score along a single path at position k. By
induction, for m,n ∈ {−1, 0, 1}

δk+1(n) = max
m

(

δk(m)p(mk+1 = n|mk = m,mk−1, C(d), I)

)

(4.32)

To retrieve the sequence M∗ we have to keep track of the argument of the recursive equation
above for each k and n. This is done by introducing an array ψk(n). Here it is to be noted
that we already know m1 and m2, as they are determined using only the evidence I and
C(d). Therefore, the complete procedure is then to determine the path m∗

3, . . . ,m
∗
K given

the disparity and image information p(m|C(d), I) is as follows:
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• Initialization, we start with m3:

δ3(m) = P
(
m1,m2

∣
∣C(d), I

)
S
(
m,m2, C(d),∇|IL|

)
where (4.33)

S
(
m,m2, C(d), |∇IL|

)
= exp

(

− Uc

(
m, C(d), |∇IL|

)
− βc Vc

(
m,m1,m2, C(d)

))

,

ψ3(m) = 0; (4.34)

where m ∈ {−1, 0, 1}.

• Recursion:

δk(n) = max
m∈{−1,0,1}

(

δk−1(m)S
(

n,m, C(d),∇|IL|
)
)

(4.35)

ψk(n) = argmax
m∈{−1,0,1}

(

δk−1(m)S
(

n,m, C(d),∇|IL|
)
)

(4.36)

where 4 ≤ k ≤ K and n ∈ {−1, 0, 1}.

• Termination:

∆ = max
m∈{−1,0,1}

(

δK(m)

)

(4.37)

m∗
K = argmax

m∈{−1,0,1}

(

δK(m)

)

(4.38)

– The optimal path M∗ is determined using back tracking:

m∗
k = ψk+1(m

∗
k+1) (4.39)

The above procedure is carried for all the discontinuity chains. As mentioned before,
these displacement labels are embedded back into image. The optimization for both the
disparity and for the discontinuity chains is carried out at different scales. We use the
coarse-to-fine strategy proposed by Felzenszwalb and Huttenlocher [2006] to achieve this.
We will now discuss this coarse to fine procedure in some detail before presenting the results
of the proposed technique.

4.3.2 Multi-grid optimization

The coarse-to-fine approach presented by Felzenszwalb and Huttenlocher [2006] is ap-
plied to the disparity-MRF part of the framework and the boundary estimation is performed
at each scale without modification to the its optimization. The optimization such as BP or
Mean Field for disparity-MRF takes many iterations as information needs to flow over long
distances in the grid. To circumvent this problem Felzenszwalb and Huttenlocher [2006]
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present a multi-grid approach, which allows long range interactions to be captured by short
paths in coarse grids.

The main idea is not to change the overall problem structure, that is leaving the graph
structure and the energy function unchanged, but to use the hierarchy to initialize proba-
bilities (messages in case of BP) at successively finer levels. The method to perform this is
as follows: The optimization is carried out at one level of resolution and the probabilities at
this level are used to initialize the next finer level. This way, at each level the probabilities
move closer to the fixed point faster and thereby converging more rapidly.

We recall that we represent the 2D image grid as S. The hierarchy of grids is represented
as S0,S1, . . . ,S l, . . . where S0 = S, i.e., full resolution and S l corresponds to a block of w×w
pixels of the original grid S, where w = 2l. At each level l, the image pixels in each w × w
block are assigned the same disparity. Figure 4.7 illustrates this construction for two levels.
The idea is to find the disparity map dl at each level for the sites S l minimizing the energy,

E(dl) =
∑

(x,y)∈Sl

U l
d(d(x,y), I)−βd

∑

(x,y)∈Sl

V l
d(d(x,y), d(x+1,y),a)+βd

∑

(x,y)∈Sl

V l
d(d(x,y), d(x,y+1),a)

(4.40)
This equation is the same as the energy within the exponential in (4.5), except that it is
expressed in terms of the image grid represented at coarseness level l. The functions U l

d

and V l
d are data and interaction cost at level l. As each block of w × w is assigned a single

disparity, the data cost U l
d is calculated as sum of data costs for the pixels within that block,

U l
d(d(x,y), I) =

w−1∑

u=0

w−1∑

v=0

Ud(d(w x+u,w y+u), I) (4.41)

for all d(w x+u,w y+u) ∈ L. The interaction at each level is still retained in (4.11), except
that instead of treating each pixel, each block is considered. Here it is important to spec-
ify that since the displacement chains are constructed at each level separately, the active
neighbourhood can therefore be created at each level by considering each w×w block a one
large pixel.

Once the probabilities are found using either BP or Mean Field at the coarsest level of the
hierarchy, they are then used to initialize at next level and so on until the original resolution
is reached. A key point in the overall optimization is that, at each level it is performed on
the same set of disparity labels, but with different sized blocks of pixels. Furthermore, this
approach differs from other multi-scale approaches which are commonly used in computer
vision, such as the Gaussian pyramid of Burt and Adelson [1983], in that they are based
on reducing the resolution of image. In our case the effect of reducing the image resolution
is to rapidly decrease the number of distinguishable disparities from one level to another.
For example, the disparities between 0 and 16 become indistinguishable by fourth level.
In contrast, the method presented here only reduces the resolution at which the disparity
labels are estimated, by accumulating the data cost over larger spatial neighbourhoods.
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Level  1

Level  0

Figure 4.7: The two levels of the multi-grid method are illustrated. Each node at every
level l corresponds to a 2× 2 block of nodes in the level l − 1.

The disparity and displacement estimation is carried out alternately at each level. While
the disparity-MRF is modified as described above, the displacement values at the level
l are found using the image at the resolution l and disparity dl. An important point
is that the active neighbourhood H(a) is constructed at every level for the correction of
disparities at discontinuities. However, the displacement calculation at each resolution is
carried out independently of the other levels. In other words, unlike disparity-MRF, there
is no initialization of displacement probabilities from lower resolution to higher resolution.
The overall alternation procedure at each scale is explained in the following section.

4.4 Alternating Maximization procedure

The resulting alternation procedure for each scale is described below including the in-
termediate discontinuity chain extraction. At iteration q = 0 and at the coarsest scale, the
displacement field values are assumed to be zero. The very first step (4.2) is performed
using a Mean Field or BP approach to get a first estimate of the disparity map. Note that
we drop the superscript l for each level to improve readability. The two following steps are
carried out alternately at each scale l,

1. Update Displacement field a(q) into a(q+1) = (m(q+1), e(q+1)):

(i) Extract disparity discontinuities as a binary map from current disparity map d(q).

(ii) Convert the binary map into a set of discontinuity chains C(d(q)).

(iii) At discontinuity locations, i.e., for x ∈ S(d(q)), set e
(q+1)
x to the normal wx in

C(d(q)). For the remaining locations, m(q+1)
x is set to zero so that e

(q+1)
x can be set

arbitrarily.
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(iv) Estimate new m-values for each discontinuity chain Ct(d(q)) in C(d(q)) using the
Viterbi algorithm for the Markov chain as defined in (4.18) and (4.19).

2. Update Disparity field d(q) into d(q+1):

(i) Determine the active neighbourhood system using by a(q+1) (see (4.7)).

(ii) Obtain optimal disparity estimates, d(q+1), using Mean Field or BP for the Markov
random field model (4.5).

The alternation is carried out until a large percentage (in our experiments 90%) of the
displacement values are equal to zero at each scale. This indicates that no more corrections
are required for the disparities and the disparity discontinuities now correspond to the object
boundaries.

4.5 Experimental results

In this section, we report the experimental evaluation of our algorithm. We first discuss
the parameter settings used for the results presented in the this chapter.

Parameter settings :

The disparity range and therefore the value of L is fixed to different values depending
on each image pair. The parameters used in the experiments are found heuristically. In
the data term (4.6), the parameter λ1 determines the number of intensity level differences
permitted with a low penalty. Depending on the noise level in the image, λ1 and also T1 are
set within the range of λ1 = 0.4 to 1.4 and T1 = 5 to 10, respectively. The parameter λ2 in
the interaction function (4.11) determines the smoothness of truncated-linear (figure 2.3(b),
21). As small value for this parameters means that large differences in the neighbouring
disparities will have smaller penalties and therefore will favour smoother disparity maps.
The value T2 gives a constant penalty for disparity difference greater than itself. A small
value for this parameter favours discontinuities and therefore may result in noisy disparity
map, whereas a very large value would result in an effect similar to that of linear function,
i.e., very smooth disparity maps. The T2 parameter is also used for the discontinuity chain
formation, where it influences the number of chains formed. This is further discussed in
section 4.6. In the following results, λ2 is set to 1 and T1 ranges between 2.0 to 2.4. The
search range for Uc, given by an integer w in (4.20) determines how far the function should
search for a gradient maximum in the image. This mainly depends on how textured or
noisy the image is. If the image fairly smooth and this parameter is chosen to be small
it may not find any global maxima in its vicinity and therefore, may favour no correction.
On the other hand, if the image is textured and a w is set to a large value then it may
favour the movement of the discontinuity chain to a gradient maximum which does not
belong to a object boundary, but to a texture. In our case for textured images w value is
set to 2 for textured images and to 5 otherwise. The alternation carried out for 4 levels.
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The parameters βd and βc, which determine the influence of the data and the interaction
term, are set to 1. With these parameters we will now present the result obtained using the
proposed approach.

We first show the result on a simple texture stereo-image pair, where the left reference
image is shown in figure 4.8(a). This simple stereo pair consists of only two disparity values:
0 and 30. Even though for this simple example it is possible to find the exact disparity map
without the boundary extraction, we use it to illustrate the evolution of the algorithm. figure
4.8(b) shows the corresponding gradient image used as evidence/data for the displacement
estimation. In figures 4.8(c) and 4.8(d) we show the disparity and corresponding object
boundary iteration q = 0 at the coarsest scale (l = 3). The final results of disparity and
boundary for the original image (finest scale l = 0) are shown in figures. 4.8(e) and 4.8(f).
We see how the boundary and disparity are simultaneous corrected to give a much accurate
result.

We will now present the result of the proposed approach on more realistic images. Two
of the pairs correspond to the map (figure 4.9(a)) and the venus (figure 4.10(a)) images from
the Middlebury database. Two others are images acquired in our laboratory; book (figure
4.11(a)) and hat (figure 4.12(a)) . It is to be noted that for all the stereo pairs only the
original reference images (left) are presented in the figures.

The results for the map stereo pair clearly show the advantage of including the boundary
estimation. In the case of highly textured images, such as the map image, the standard
boundary detection approaches usually fail to segregate the objects. The disparity map
in figure 4.9(c) is the one obtained without boundary estimation. As can be seen in figure
4.9(d) the disparity discontinuities are at improper locations but in the vicinity of the actual
object boundaries. The proposed cooperative approach, using the gradient information
(figure 4.9(b)), is able to obtain a corrected disparity map, and the object boundaries as
shown in figures 4.9(e) and 4.9(f) respectively.

Similar results are observed for the venus and book images. With the standard Mean
Field algorithm the disparity is correct at almost all regions except at the boundaries. This
is illustrated in figures 4.10(c) and 4.11(c) and the boundaries corresponding to them are
shown in figures 4.10(d) and 4.11(d) respectively. The corrected disparity maps obtained
using our approach can be seen in figures 4.10(e) and 4.11(e). The actual object boundaries
are shown in figures 4.10(f) and 4.11(f).

Finally, we present results on the hat image, which is particularly interesting as the
object of interest has smooth boundaries. As can be seen from figure 4.12(c), the standard
Mean Field algorithm that only estimates disparity information fails to obtain good results.
Our method provides more satisfactory results for disparity (figure 4.12(e)) and boundary
estimation (figure 4.12(f)).

All the previous examples show results of our approach considering only Mean Field
for the optimization of the disparity-MRF. The figures 4.13 and 4.14 show results of the
proposed approach on map and venus using BP instead. As can be seen from the results
for disparity (figures 4.13(b) and 4.14(b)) and boundary (figures 4.13(c) and 4.14(c)) the
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(a) Left Reference Image (b) Gradient Magnitude

(c) Initial Disparity at coarsest level 4 (d) Disparity discontinuities associated with
4.8(c)

(e) Disparity map using proposed approach
(Mean Field)

(f) Object boundary with 4.8(e)

Figure 4.8: Results on texture image: Shows evolution of the algorithm using the coarse-to-
fine strategy suggested by Felzenszwalb and Huttenlocher [2006].
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(a) Left Reference Image (b) Gradient Magnitude

(c) Standard Mean Field result (d) Disparity discontinuities associ-
ated with 4.9(c)

(e) Disparity map using proposed
approach (Mean Field)

(f) Object boundary with 4.9(e)

Figure 4.9: Results on map image: These figures show the performance of the algorithm on
a highly textured image. figure 4.9(d) show how the boundaries are improperly localized
using a standard Mean Field approach. Figures 4.9(e) and 4.9(f) show the result using the
proposed cooperative approach.
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(a) Left Reference Image (b) Gradient Magnitude

(c) Standard Mean Field result (d) Disparity discontinuities associated
with 4.10(c)

(e) Disparity map using proposed ap-
proach (Mean Field)

(f) Object boundary with 4.10(e)

Figure 4.10: Results on venus image using proposed approach:figures 4.10(e) and 4.10(f)
show the result using the proposed cooperative approach.
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(a) Left Reference Image (b) Gradient Magnitude

(c) Standard Mean Field result (d) Disparity discontinuities associated with
4.11(c)

(e) Disparity map using proposed approach
(Mean Field)

(f) Object boundary with 4.11(e)

Figure 4.11: Results on book image:figures 4.11(e) and 4.11(f) show the result using the
proposed cooperative approach.
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(a) Left Reference Image (b) Gradient Magnitude

(c) Standard Mean Field result (d) Disparity discontinuities associated with
4.12(c)

(e) Disparity map using proposed approach
(Mean Field)

(f) Object boundary with 4.12(e)

Figure 4.12: Results on hat image: This example is interesting because of its smooth bound-
aries. We see the improved performance of proposed approach in figures 4.12(e) and 4.12(f)
as compared to the results obtained by standard Mean Field in figure 4.12(c)
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(a) BP results without co-
operative boundary extraction

(b) Disparity map using proposed
approach (BP)

(c) Object boundary with 4.13(b)

Figure 4.13: Results on map image using BP. These results are similar to the ones obtained
in figures 4.9(e) and 4.9(f)

(a) BP results without co-
operative boundary extraction

(b) Disparity map using pro-
posed approach (BP)

(c) Object boundary with
4.14(b)

Figure 4.14: Results on venus image using BP. These results are similar to the ones obtained
in figures 4.10(e) and 4.10(f)

results are not very different from those obtained using Mean Field. This illustrates that
any other state-of-the-art MRF-based algorithm could as well be used for the optimization
of the disparity-MRF. Furthermore, all these results clearly illustrate the advantage of our
joint probabilistic model and confirm that such a cooperative approach is the right direction
for obtaining more accurate disparity results along with better object boundary information.

4.6 Discussion

The main originality of the approach presented in this chapter is the definition of a model
that explicitly considers relationships between disparity and object boundaries through con-
ditional distributions. As a result, we observed a significant gain in disparity and boundary
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(a) T2 = 2.5 (b) T2 = 1.2

Figure 4.15: Discontinuity chains extracted using two different values of T2

estimations as illustrated in our experiments. The features of this algorithm are as follows:

• A probabilistic setting that focuses on defining a correct Markovian framework to
model cooperation between disparity and object boundary information.

• This probabilistic setting incorporates two important information in its modelling:

– The disparity discontinuities usually occur at object boundaries.

– The disparities found using standard Mean Field or BP do not localize discontinu-
ities in disparity properly (chapter 2 section 2.4.2). However, these disparities are
usually in the vicinity of the “true” object boundary.

• In this context, we introduce an active neighbourhood field which allows the disparity-
MRF to be correctly defined over the standard 8-neighbourhood system, similar to
one proposed by Le Hégarat-Mascle et al. [2007]..

• The standard MRF neighbourhoods strictly obey the reciprocity condition (4.4). The
active neighbourhood introduced in this chapter, allows interaction even between those
neighbours which do not satisfy this condition, in a mathematically sound manner.

• The displacement model allows finding the direction in which the disparity correction
is to be applied and also the position of the true object boundary. For this simply the
image gradient and the disparity information is used as evidence.

• This displacement field can be modelled as a standard Markov chain, which allows for
exact inference.

• Use of a multi-grid approach based on Felzenszwalb and Huttenlocher [2006] allows
long range interaction within the MRF lattice in just few iterations. This approach
permits us to retain the accuracy of disparity information by not reducing the resolu-
tion of the image, but only that of the data cost.

• We have shown that the disparity-MRF can be optimized using either Mean Field or
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BP. Similarly, it is not necessary that the displacement Markov chain be optimized
using Viterbi algorithm only. However, given the simple nature in which it is modelled,
standard viterbi performs sufficiently well.

While the proposed approach had numerous advantageous features, there are certain
limitations which have not been addressed. In particular, we did not investigate the problem
of automatically estimating the parameters and they are currently fixed manually. Another
important limitation lies in the extraction of discontinuity chains. The discontinuity chains
are extracted taking into account the robust function defined in (4.8), where a position
whose disparity difference is greater than the threshold value T2, is retained as a point on
discontinuity chain. While in most cases this chain is sufficient to demarcate the object
boundary, sometimes (see figure 4.15(a)) not all the chain points are extracted. This is
mainly because of threshold parameter T2. We see in figure 4.15(b) that if this parameter
is reduced to extract more chain points, it wrongly extracts chains which are within the
objects. These chains within the objects occur due to the fronto-parallel assumption of
the disparity-MRF model. This assumption causes a staircase affect in disparity whenever
there is a sloping object surface in the scene of the stereo-pair. As the disparity values are
corrected only at points of the chain and left unchanged otherwise, the final result for both
disparity and boundary is only as accurate as the chain extracted.

In the next chapter, we deal with the extraction of disparity without the fronto-parallel
assumption. This is done mainly by taking into consideration the surface-geometric prop-
erties of the objects in the scene. We will use some of the basic aspects already presented
in this as well as previous chapters, namely, coupled-MRFs, Alternation Maximization and
multi-grid optimization.
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Chapter 5
Estimating Disparity for Slanted and

Curved Surfaces

As discussed in section 2.4.3 of chapter 2, most of the recent algorithms in stereo disparity
estimation make an inherent fronto-parallel assumption in their modelling, thus biasing the
results towards piecewise-constant “staircase solutions”. As seen in section 2.4.3, a number of
attempts have been made to obtain a disparity maps in accordance with surface geometric
properties. For example, Devernay and Faugeras [1994] proposed to extend the classical
correlation method to compute both the disparity and its derivatives and related them to
the differential properties of the surface. As most of these computations are performed
on the disparity, this method becomes numerically unstable while considering higher-order
derivatives. Lin and Tomasi [2004] estimate the scene structure as a set of smooth surface
patches, while performing segmentation and correspondence iteratively. However, unlike
Devernay and Faugeras, they do not consider the geometrical properties of the surface
itself. Approaches like Yang et al. [2009], Zitnick and Kang [2007], Xu and Jia [2008] and
Sun et al. [2005] perform segmentation-based stereo matching (see section 2.4.2 of chapter
2 for details) within a Bayesian-MRF framework. In such a framework, these approaches
are able to recover slanted surfaces due to the plane-fitting performed on the estimated
disparities within segmented regions. These approaches implicitly assume fronto-parallel
planes in the definition of their objective function and cannot handle curved surfaces. In
order to overcome this limitation, Woodford et al. [2009] and Smith et al. [2009] present
a framework incorporating higher-order priors to encode the surface properties. While
Woodford et al. [2009] use a new quadratic pseudo-boolean optimization, Smith et al. [2009]
suggest a non-parametric approach casting the pixels and disparity together as networks
using sparse graphs which are matched then using graph cuts.

In this chapter, we propose an algorithm that recovers binocular disparities in accordance
with the surface properties of the scene under consideration. For example, for a stereo
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(a) Left reference image (b) Disparity ground truth

(c) Staircase solution obtained by
standard Belief Propagation

(d) Output considering scene geomet-
ric constraints

Figure 5.1: Sawtooth Image: staircase (c) versus surface consistent (d) disparity maps.

input of figure 5.1(a) with ground-truth figure 5.1(b), the result obtained from a Belief
Propagation algorithm without post-processing is figure 5.1(c). The novelty our algorithm
is that it attempts to provide surface consistent solutions, as illustrated in figure 5.1(d).
Our method is inspired by Li and Zucker [2006b, 2010]’s work, which explicitly accounts
the differential geometric contextual information, in a Markov Random Field (MRF) based
disparity estimation framework. Li and Zucker use additional geometric constraint to ensure
both depth and surface normals estimates are consistent with the surface, which they refer
to as geometric consistency. They perform all the derivative computations in the depth
space to ensure numerically stability. Li and Zucker therefore requires the knowledge of the
internal camera parameters. One of drawbacks of this algorithm is that precomputes the
local surface normals.

We propose to carry out cooperatively both disparity and normal estimations using
coupled random fields that to encode consistency between disparities and surface properties.
In this chapter, disparity as well as normals are modelled as Conditional Random Fields
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(CRFs). The geometric contextual information is included within each of these models to
favour solutions consistent with the scene surfaces – possibly slanted and/or curved. The
models are built under the assumption that the scene in question is made of piecewise
smooth surfaces and disparity is used as observed data. The proposed joint model results in
a posterior distribution, for both the disparity and normal fields 1. The estimated disparities
and surface normals are determined according to a Maximum A Posteriori (MAP) principle.
The global optimization is performed using Alternation Maximization (chapter 3, section
3.3). The idea here, we recall, is to alternately maximize two conditional probabilities;
the first one pertains to disparities given the normals and the observation, and the second
conditional is for normals given the disparities and the observation.

In the next section we will give a brief background on the surface differential geometry.
Subsequently, we will discuss our joint model in detail section 5.2. The alternation maxi-
mization procedure along with the parameter settings for the experiments are presented in
section 5.3. Finally, we show the experimental results obtained using the proposed approach
and its features are discussed in section 5.4 and section 5.5 respectively.

5.1 Background

In this section, we explain the idea of geometric contextual information that is used to
take into account the surface properties of the scene during disparity estimation. Details of
on the differential geometry of the surface can be found in Li and Zucker [2010, 2006b] and
Do Carmo [1976]. We also explain the importance of estimating the surface normals along
with the disparities to obtain geometrically consistent solutions.

The idea behind geometric consistency is understood by studying the change in the
position and surface normal as we move along this surface. That is, given two neighbouring
points p and q on surface S, the idea is to analyze how the position and surface normals
change as we move along a certain tangential direction say v. To understand this, we
consider a position and a normal vector field. We define a vector Xp, in the position vector
field, which is located at p (i.e., Xp = p), as shown in figure 5.2(a). This vector Xp can also
be seen as a positional measurement at p. If we move along the tangential vector v to the
neighbouring position q, we can compute, through first-order approximation, the position
vector X∗

q as follows:
X∗

q = Xp + ∇vXp (5.1)

where operator ∇v represents the covariant derivative, which measures initial the rate of
change of Xp as the point p moves along the direction ∇v. The covariant derivative is
usually expressed in terms of the directional derivatives and in case of ∇vXp can shown
to be the same as the tangent vector v (see Li and Zucker [2010]). We also have direct a
measurement of the position vector at position q, which is denoted as Xq. The discrepancy

1. This work was originally published in the papers Narasimha et al. [2009] and Narasimha et al. [2010].
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between Xq and X∗
q measures the geometric consistency between the nearby candidate

position vectors at p and q. The first-order approximation imposes that the position vectors
lie on the same planar surface, as shown in figure 5.2(a).

Similarly for surface normals, lets consider the surface normal Np, in a normal vector
field, at the position p on the surface S. If we move along the tangent vector v to position
q, the computed surface normal N∗

q using first-order approximation is the following:

N∗
q = Np +∇vNp (5.2)

where∇vNp is the covariant derivative. This derivative, which related to the shape operator
Sp(v) = −∇vNp, gives an infinitesimal description of the way the surface S is curving in
the 3D space. The discrepancy between the measured normal Nq and N∗

q encodes the
consistency of candidate normals at position p and q. If a planar surface is assumed , then
the two normals at position p and q must be the same.

Therefore, the principle of geometric consistency between two neighbouring points p and
q is that the information at p (i.e., Xp,Np,∇vXp,∇vNp), and the computed geometric
information (X∗

q, N∗
q) should agree with the measurements at q (Xq, Nq), if the two points

are on the same surface.
In the case Li and Zucker [2006b], they include this measure in two separate models;

one for slanted and the other for curved surfaces. In both the cases they transform the
interaction function for the disparity-MRF in such a way as to include a general planar
model for the disparity. The normal consistency is computed through first order difference
while considering slanted surfaces. For curved surfaces an additional covariant derivative
of the surface normal is used. Li and Zucker’s model uses precomputed normals to ensure
such surface geometric consistency of disparity. The pre-computation of the normals is done
using a method similar to Devernay and Faugeras [1994]. First a SSD score is computed
using a deformed window and then the direction set method is used to find the floating
point values of the disparity and its derivatives, denoted by {d, ∂d∂u ,

∂d
∂v}, where (u, v) are the

x and y image-pixel coordinates. These derivatives are then used to compute the normal N
at any location (u, v) as follows:

N =
(− ∂d

∂u , −
∂d
∂v , 1)

T

√
(
∂d
∂u

)2
+
(
∂d
∂v

)2
+ 1)

(5.3)

Li and Zucker update these normals by averaging neighbouring normals. This kind of update
does not take into account the disparity changes occurring in the course of optimization and
therefore relies largely on the precomputed normals.

We, on the other hand, suggest the use a separate random field to estimate the normals
based on the disparity and vice-versa. Furthermore, we use a planar model, thus assuming
that the scene in question is made of piecewise smooth surfaces. The argument supporting
this assumption is that if we consider a small enough neighbourhood, it should fairly ap-
proximate both slanted and curved surfaces, thereby eliminating the need for two separate
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v

Xp

Xq Xq
∗

Xp∇v

S

(a) Disparity Consistency

Xp
Np∇v

Np

Nq

Nq
∗

v

S

(b) Normal Consistency

Figure 5.2: Geometric consistency over a surface S: (a) The difference between X∗
q (shown

in red) calculated using Xp and ∇vXp and the measured Xq allows for the positional
consistency. (b) Similarly, the difference between N∗

q (shown in red) calculated using Np

and ∇vNp and the measured Nq allows for the surface normal consistency.
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models. Since we are only interested in first-order approximation (piecewise planar-model),
we avoid any numerical instability issues as encountered by Devernay and Faugeras [1994].
Moreover, disparity consistent updates of the normals allow the surface properties to be
closely followed even within a planar model assumption, which was not handled in Li and
Zucker’s method.

This discussion therefore illustrates the need for linking the models for surface normals
and disparity. It is to be noted that, in our approach, the normals are estimated in the
disparity space rather than the Euclidean space. Before we describe the joint model for
disparity and normal, we digress a little to explain the relationship between the normals
in the disparity and Euclidean spaces. This is important to show that even if we estimate
the normals in the disparity space, there is simple transformation that can be applied to
convert them into surface normals in the Euclidean space.

5.1.1 Relationship between the normals in disparity and Euclidean space

In this section we derive the transformation required to convert the normals in disparity
space to Euclidean space or depth space. We recall that we have a calibrated stereo camera
set up and that the stereo images are rectified. Let (ul, v) and (ur, v) be the corresponding
point in the left and right images respectively, and d = xl − xr be the disparity. We denote
the baseline, i.e., the distance between the two camera centres, by b and the focal length by
f . The parameters f and b are known because of stereo calibration. Furthermore, we know
from the stereo camera geometry that for a 3D scene point P = (X,Y, Z):

ul =
X + b/2

Z/f
, ur =

X − b/2

Z/f
, v =

Y

Z/f
, and d =

fb

Z
(5.4)

This relation between 3D scene point P and the image co-ordinates can be written in the
matrix form as follows:







X + b/2
X − b/2

Y
Z/f






=







1 0 0 b/2
1 0 0 −b/2
0 1 0 0
0 0 1/f 0







︸ ︷︷ ︸

H







X
Y
Z
1






≃







ul
ur
v
1







(5.5)

where ≃ stands for equality upto a non-zero scale and this case scale is Z/f . We denote
the 4 × 4 matrix in the above equation as H. In order to simplify our task of deriving
transformation of normals, we work on a cyclopean point. A cyclopean point is one which
lies half way between the baseline. The cyclopean point (uc, vc) can therefore be expressed
as

uc =
ul + ur

2
vc = v (5.6)

and the disparity remains the same, d = ul − ur. The relation between the image locations
and the cyclopean point can again be written in a matrix form as:
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





uc
vc
d
1






∼







1/2 1/2 0 0
0 0 1 0
1 −1 0 0
0 0 0 1







︸ ︷︷ ︸

G







ul
ur
v
1







(5.7)

Representing the 4×4 matrix in the above equation as G and using the equations (5.5) and
(5.7) we can write:







uc
vc
d
1






≃ GH







X
Y
Z
1







and







X
Y
Z
1






≃ (GH)−1







uc
vc
d
1







(5.8)

where

GH =







1 0 0 0
0 1 0 0
0 0 0 b
0 0 1/f 0







and (GH)−1 =







1 0 0 0
0 1 0 0
0 0 0 f
0 0 1/b 0







respectively. (5.9)

The above equation, (5.9), provides the transformation matrix for projection and back-
projection from cyclopean to Euclidean coordinate system and vice-versa. Now, let this
point P = (X,Y, Z) lie on a plane πππ in 3D space:

π1X + π2 Y + π3X + π4 = 0 (5.10)

where {π1, π2, π3, π4} represent the plane coefficients. The first three coefficients correspond
to the plane normal, n = (π1, π2, π3) and last one π4/‖n‖ is the distance of the plane from
the origin. In homogenous co-ordinates the plane normal can therefore be represented as a
4-vector πππ = (π1, π2, π3, π4)

T . If the projective transformation of a point in space is given
by (GH)−1 then the plane transformation is ((GH)−1)−T = (GH)T . Refer to Hartley and
Zisserman [2000] for more detailed study on projective transformations. Therefore, any
normal n in disparity space (represented as πππ in homogenous coordinates) can be back
projected into Euclidean space using the following transformation:

(GH)T =







1 0 0 0
0 1 0 0
0 0 0 1/f
0 0 b 0






. (5.11)

It is to be noted that from now on normals refer to the surface normals in the disparity
space and the transformation in (5.11) can be easily applied to obtain the surface normals
in Euclidean or depth space.
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5.2 Joint disparity and normal model

We now revert to the modelling aspects of the normals and disparity. The mutual
influence of the disparity and normals on one another is modelled using the coupled random
fields framework. Note that we use the term coupled random fields instead of coupled-MRF.
This is because both the disparities as well as the normals are modelled as a Conditional
Random Field (CRF). A CRF (Lafferty et al. [2001]) is like an MRF except that the normals
conditional probability can depend on arbitrary, non-independent observation sequence.
Furthermore, it does so without forcing the model to account for the distribution of those
dependencies. This allows us to model the surface normals by considering the entire disparity
field, but not the disparity model itself, and vice-versa. This modification does not affect
the Alternation Maximization procedure (chapter 3) that we use to find the MAP solutions
for disparity and normals through the conditional probabilities.

We use similar notations as in chapter 4, where S of p × q is the set of pixels on a
regular 2D-grid. The observed data are made of left and right images, and is denoted by
I = (IL, IR), The disparity field is D = {Dx,x ∈ S}, where each of the random variables
Dx take their values in a finite discrete set of L disparity labels L and D = Lp×q. Similarly,
we consider a surface normal field N = {Nx,x ∈ S}. Each Nx = (Nu, Nv, Nd) takes its
values from the space N and the configuration space is denoted by N = N

p×q. We use small
letters d and n to denote specific realizations of the random fields D and N. The MAP
estimates of D and N are expressed as:

(dMAP ,nMAP ) = argmax
d,n

p(d,n|I) (5.12)

The Alternation Maximization procedure, at a given iteration i, can be performed as follows
(for details see chapter 3, section 3.3):

d(i+1) = argmax
d∈D

p(d|n(i), I) (5.13)

n(i+1) = arg max
n∈N

p(n|d(i+1), I) (5.14)

In the following sections, we will define the two conditional distributions p(d|n, I) and
p(n|d, I). The disparity model, p(d|n, I), is based on the one defined by Li and Zucker
[2006b]. For the surface normals, p(n|d, I), we propose two possible models:

• The first model uses standard BP to estimate the normals. In order to use BP, we
model the normal-CRF over a discrete normal space. This discretization of the normal
space is achieved by subdividing an icosahedron to represent dense set of directions.

• The second model does not discretize the normal space. The optimization used is
the Iterated Conditional Modes (ICM), which allows for estimation normals without
discretization. The model itself takes its inspiration from the deterministic procedure
called normal voting proposed by Page et al. [2002].
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5.2.1 Disparity model given the normals

We first specify the disparity distribution conditionally to the normal field and the
observed data. The model is expressed as a CRF with an energy function consisting of
two terms, a data dependent term and a regularizing or interaction term. The data term
is similar to the one described by Yoon and Kweon [2007] who use a weighted window
matching metric for stereo matching. Our interaction term is a symmetric modified version
of the one presented in Li and Zucker [2006b]. Although the interpretation is similar,
we propose to include geometric information via surface normals considered as a separate
random field. Expressing compatibility between the disparity and normal fields enables us
to encode geometric constraints without computing disparity derivatives directly from the
disparity field. Furthermore, we achieve results similar to Li and Zucker [2006b] using only
first order differential information but obtained from the normal field. More specifically, we
define, p(d|n, I) as a CRF on D, for every n ∈ N :

p(d|n, I) ∝ ΦD(d, I)ΨD(d,n). (5.15)

Data term

The first term in (5.15) represents the data term, similar to the one described by Yoon
and Kweon [2007]. This term assigns a cost at each location x based on a weighted window
matching metric that takes into account both the colour and the proximity of the pixels
within the window. Furthermore, it takes into account the weights in both left and right
image-windows, as considering only the reference image-window (left) the computed differ-
ence can be erroneous when the right image-window has pixels from different depths. We
formulate this cost as a robust function

ΦD(d, I) = exp

(

−
∑

x∈S

min
(

φ(IL, IR, dx), 2T
))

, (5.16)

where,

φ(IL, IR, dx) =

∑

y∈Wx,ȳ∈Wx̄

w(x,y)w(x̄, ȳ)e
(

IL(y), IR(ȳ)
)

∑

y∈Wx,ȳ∈Wx̄

w(x,y)w(x̄, ȳ)
. (5.17)

In order to understand the equation (5.17), consider a candidate correspondence x̄ in
the right image for the point x in the left, i.e x̄ = x − (dx, 0). To compute the cost for a
candidate disparity dx, we first determine the pixel-wise cost as follows:

e
(

IL(x), IR(x̄)
)

= |IL(x)− IR(x̄)| (5.18)
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where IL(x) and IR(x̄) represent the intensity values 2 at the positions x and x̄ of the left
and the right images, respectively and | · | represents the absolute value. This cost computed
for each pixel within the windows Wx and Wx̄ centred at x and x̄ respectively. Each pixel
within the window y ∈ Wx (respectively for ȳ ∈ Wx̄) is weighted according its colour
difference:

∆cxy =
∑

c∈{r,g,b}

|Ic(x)− Ic(y)| (5.19)

where Ic is the intensity of the colour channel c and is associated with the left image (IL).
The pixels within the window Wx are further weighted depending on the spatial proximity
∇gxy of y to x:

∆gxy = ‖x− y‖. (5.20)

So the overall expression for the weight associated to each pixel with in the window Wx as
follows:

w(x,y) = exp

(

−
∆cxy
γc
−

∆gxy
γg

)

. (5.21)

A similar weight w(x̄, ȳ) is computed for x̄, ȳ ∈ Wx̄. The idea behind using such a cost
is that, apart from considering colour proximity it also considers the geometric proximity
between the pixels.

Interaction term

The interaction term,ΨD(d,n) in (5.15), has a standard pair-wise form:

ΨD(d,n) =
∏

x∈S

∏

y∈Nx

exp

(

−
ψ(dx, dy,n)

σD

)

(5.22)

where x = (ux, vx) and y = (uy, vy) are the neighbouring pixels on the image grid. We
consider a standard 8-neighbourhood system Nx as in chapter 4. The term ψ(dx, dy,n)
specifies how the neighbouring disparities interact but also encodes geometric constraints
via consistency with the surface normal field n. In the spirit of the co-planar model in Li
and Zucker [2006b], we model the interaction term in such a way that favours neighbouring
disparities lying on the same planar surface (See figure 5.3). This is done by a first order
Taylor approximation of the the disparity at x as follows:

dx +
∂dx
∂u

∆u+
∂dx
∂v

∆v (5.23)

where the ∆u and ∆v are small changes in x and y component directions of the position
x. In order to include this model in the interaction term, we first define the derivatives
in (5.23) in terms of the surface normal information. For a given realization of the surface

2. For colour images I(x) represents the average of the RGB channels.
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normals n, the surface normal at position x can be written as nx = (nu, nv, nd). Thus, the
disparity partial derivatives can be computed as:

∂dx
∂u

= −
nu
nd

;
∂dx
∂v

= −
nv
nd
, (5.24)

with ∆u = (uy − ux) and ∆v = (vy − vx). Moreover, the interaction function takes into
account the disparity and normal information from two neighbouring positions x and y.
Therefore ψ(dx, dy,n) is the same as ψ(dx, dy,nx,ny) and is expressed as follows:

ψ(dx, dy,nx,ny) =
(∣
∣
∣dy − dx −

∂dx
∂u

(uy − ux)−
∂dx
∂v

(vy − vx)
∣
∣
∣

)

+
(∣
∣
∣dx − dy −

∂dy
∂u

(ux − uy)−
∂dy
∂v

(vx − vy)
∣
∣
∣

)

. (5.25)

nx
ny

bxby

Figure 5.3: The disparity at dx imposes dy (shown in red) to lie on the same planar surface
based on the normals nx and ny at positions x and y respectively. The black circle indicates
the fronto-parallel value of dy.

Disparity optimization

The optimization for disparity is done using standard techniques such as Mean field ap-
proximation or BP. For details of such techniques see section 2.3 (page 25) of chapter 2.
To incorporate the differential properties, these techniques have to be modified to take into
consideration floating point disparities instead of integer. In order to do so, we compute
an interpolated disparity map obtained using a segmentation and plane-fitting procedure:
The interpolated values are derived by first segmenting the intensity image (left) and the
performing plane-fitting on the disparities within each of these image segments. These in-
terpolated disparities enable us to follow Li and Zucker [2006b] by considering so-called
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floating disparity labels. Li and Zucker use the deformed window approach by Devernay
and Faugeras [1994] to find both disparity and its derivatives. As the disparity derivatives
in our case is obtained from the separate normal model, it is sufficient if we can find just
the interpolated disparities.

Now we use a similar approach as Li and Zucker to find the floating disparities. Starting
from a discrete set of L integer disparity labels L = {d1, . . . , dL}, we allow them to move
to another set of L possibly non-integer labels. In order to prevent a bias towards planar
solutions, the plane-fitting procedure is carried out at every iteration so that each new set
of non-integer labels are generated taking into account the differential geometric constraints
within the model. Considering at iteration t, a current continuous value d at pixel x, we
find l such that d ∈ [dl dl+1) and then change the disparity label dl to the non-integer label
d. Moreover, as can be seen, not all the plane-fit values are chosen, the effect of such an
procedure is therefore to capture finer geometric features by adapting the initial disparity
discretized grid to the image scene. Importantly, this can be done while keeping the discrete
pair-wise MRF formulation. This provides an efficient alternative to the quickly intractable
increase of L.

5.2.2 Discrete normal model given disparity

As previously discussed, we present two ways to model the normal-CRF. We will first
begin with the discrete normal model. As explained before, the normal field N = {Nx,x ∈
S} is defined such that each Nx takes its values in the normal space N. We discretize this
space by sampling the directions on a unit sphere. In order to obtain uniformly distributed
samples we use an icosahedron. Each face of the icosahedron is subdivided 4 times and in
doing so, we obtain K = 162 vertices. The normal vector directions are obtained by the
line joining the centre and the vertices of the subdivided icosahedron as shown in figure
5.4. This space of discrete directions is denoted by NK and the normal configuration space
is then N = N

p×q
K . The normal model is now defined in manner similar to the disparity

model:
p(n|d, I) ∝ ΦN (n,d, I) ΨN (d,n) , (5.26)

where the interaction term ΨN (n,d) is the same as in the disparity model (5.15), that
is ΨD(d,n). The rationale is that ΨD(d,n), as defined by (5.22) and (5.25) (in section
5.2.1), corresponds to consistency conditions which are joint between d and n. In (5.25),
the dependence in n actually reduces to a dependence on nx and ny, as the normal model
is conditioned on the disparity d.

Data term

The discrete normal model differs then mainly in the form of the data term ΦN (n,d, I). The
idea is to focus on data information that can directly and specifically impact the normal
field values. The particularity is that for normal estimation, data information cannot be
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Figure 5.4: The red lines represent the directions for the normals from the origin, obtained
by subdivided icosahedron.

expressed in terms of I only, but depends also on the current disparity field d. Assuming
a current d, we compute an observed normal value px, for each pixel x ∈ S, using a plane-
fitting procedure. A set of planes is found by first segmenting the image (in our case the
left image IL) into small regions and then approximating the surface corresponding to d in
each region by a plane. For a given region, the normal to its plane provides then the value
of px for all x in the region. We therefore define a data term that favours small distances
between the current normals n and the observed normals denoted by p = {px, x ∈ S}:

ΦN (n,d, I) = exp
(

−
∑

x∈S

||nx − px||
2
)

. (5.27)

It is to be noted that in the above equation the dependence on I and d is through px. The
segmentation and plane fitting process is essential for two reasons:

1) When the regions are small enough, the resulting set of planes provides a reasonable
approximation of the possibly curved disparity surface as a piecewise linear surface.

2) The regions are found according to the colour/grey-level properties of the various
objects in the scene so that the resulting normals are likely to reflect a number of
discontinuities.

Furthermore, this data term (5.27) prevents smoothing of the discontinuities (because of
2)), thereby balancing the regularizing term (5.22) which is performed across regions.

With this discrete model and the defined data and interaction terms, a standard BP
can be used to find the best normals at every pixel. However, this model poses a large
problem due to discretization of the normal field. A dense discretization requires 162 or more
directions to be uniformly defined over a unit sphere. Even if we use a multi-grid approach,
the BP has to perform optimization over at least 162 labels, which is computationally
inefficient. Furthermore, even though a plane-fitting and segmentation procedure has its
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advantages, it greatly biases the final solution to a planar solution. These serious drawbacks
provide a motivation to find a better model without the discretization of the normal space
and where no planefitting-segmentation procedure is required.

5.2.3 Normal model without discretization

To overcome the drawbacks of the discrete normal model we introduce a disparity con-
ditional normal model which is a Conditional Random Field with a simple Gaussian distri-
bution:

p(n|d, I) ∝
∏

x∈S

∏

y∈Nx

exp

(

−
‖nx − ~Exy(d, I,ny)‖

2

2σ2

)

(5.28)

where Nx is the 8-neighbourhood set. The above equation represents a pairwise relationship
between the normal at x and its neighbours y ∈ Nx. Instead of just computing an Euclidean
distance between the two normals at positions x and y, we compute the distance between
nx and the vector ~Exy, which is the influence of the neighbouring normal ny taking into
account disparity d and the image I information. The vector ~Exy is determined using a
method inspired by Page et al. [2002]. We express ~Exy as:

~Exy = wxy(d, I) ~Nxy, (5.29)

where,
~Nxy = ny − 2 cos

(
θxy(S,d)

)
( ~xy/‖ ~xy‖) (5.30)

The first term in the above equation is the current normal estimate at site y. The θxy in
the second term, is the angle between the normal at y and the vector ~xy, from x to y, where
x = (x, dx) and y = (y, dy):

cos
(
θxy(S,d)

)
=

nT
y ~xy

‖ ~xy‖
. (5.31)

The equation (5.30) motivated by assuming that the surface is locally of constant curvature.
We assume that the surface passing through x and y is a unique sphere of constant curvature.
As shown in figure 5.5, the sphere centre is on the intersection of the bisector plane and the
line through y with direction ny. Reflecting this line at the bisector results in ~Nxy at the
point x, which can then be compared to the actual normal nx using the equation (5.28).
Moreover, the equation (5.31) is equal to zero that if the two points (x, dx) and (y, dy) are
on a plane consistent with ny. So the second term in (5.30) can also be seen as the error
between ~xy and the plane described by ny. The weight wxy(d, I) is described as

wxy(d, I) = exp

(

−
|dx − dy|+ |∇I(x)|

σN

)

(5.32)
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xy

ny
y

nx
xyN

����ctor
sphere centre

x

Figure 5.5: The normal ny is reflected at the bisector of ~xy to obtain ~Nxy which is compared
with nx through the equation (5.28).

where |∇I(x)| represents the gradient magnitude at x of the reference image 3. The image
gradient is used to weight the influence of the neighbours so as to prevent normals from
being smoothed across boundaries.

While Page et al. describe a deterministic voting procedure that uses Eigen decomposi-
tion to determine the normals, we maximize p(n|d, I) using an approximate MAP estimate
of n. This is done by using an Iterated Conditional Modes (ICM) procedure (Besag [1986]),
in which n is set iteratively ∀x ∈ S as follows,

nMAP
x ≈

1

Card(Nx)

∑

y∈Nx

~Exy(d, I,ny) (5.33)

where Card(Nx) is the cardinality of the set Nx. The ICM algorithm proceeds first by
choosing an initial configuration for normals n. Then, it iterates over each site x and
calculates the value that maximizes (5.28) given the current values for all the normals ny in
its neighbourhood Nx. At the end of an iteration, the new values for each normal become
the current values, and the next iteration begins. The algorithm is guaranteed to converge,
and may be terminated according to a chosen criterion of convergence. The use of an ICM
algorithm for the maximization of (5.28) here eliminates the need for discretizing the normal
space. Furthermore, as it can be seen from equations (5.33) and (5.29) that the normals are
not determined by a simple mean, but their estimation incorporates disparity information
and the piecewise smooth assumption. This model, therefore, does not require an auxiliary
step to find segments and plane-fits, thereby preventing the bias towards planar solutions,
which was seen in discrete normal model.

3. For colour images I(x) represents the average of the RGB channels.
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5.3 Overall optimization procedure

The resulting alternation procedure is the following: at iteration t = 0, all the normal
field values are assumed to be {0, 0, 1} and the first step (5.13) is performed to get a first
estimate of the disparity map. That is we maximize p(d|n(0), I) through standard BP or
Mean Field. Then, denoting by n(t) and d(t) the current estimates of the normal and
disparity fields, the two steps below are carried out alternately,

1) Update the normal field n(t) into n(t+1) by:

• If discrete normal model described in section 5.2.2 is used perform the following
steps :

(i) segmenting the left image into small regions;

(ii) computing for each of the obtained regions, the observed normals p = {px,x ∈
S} from a plane fitting procedure using d(t) and I on each of the obtained region;
and

(iii) updating the normal field using BP for the model defined in (5.26).

• Else update normal field n(t) into n(t+1) by applying ICM on (5.28) described in
section 5.2.3.

2) Update the disparity field d(t) into d(t+1) by:

(i) computing the first order disparity derivatives using n(t+1) and

(ii) updating disparity estimates into d(t+1) with BP or Mean Field applied to the
conditional disparity model (5.15).

The described alternation steps are performed at multiple scales using the multi-grid ap-
proach described in chapter 4, section 4.3.2. We recall that this method allows for long
range interaction to take place in few iterations. For both disparity as well as normals, the
probabilities (messages in the case of BP) at the coarsest level of the grid hierarchy are used
to initialize the next level and so on until the original grid. Furthermore, in both the cases
(disparity and normals) the multi-grid optimization does not reduce the image resolution,
but only the resolution of the computed cost. This is done by accumulating these costs over
larger spatial neighbourhoods.

5.4 Experimental results

This section is divide into two parts; the first part compares the results of discrete normal
model presented in section 5.2.2 and the model presented in section 5.2.3. We highlight the
deficiencies of the discrete model and show the superiority of the non-discrete approach in
the first part. The second part of the results section shows results pertinent only to the
non-discrete model. We present results on both synthetic and real images. Before we discuss
the two parts in detail, we briefly present the parameter settings used in the models.
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Parameter settings :

The disparity range and therefore the value of L is fixed to different values depending on
each image pair. The Alternation Maximization is carried out for a prescribed number
of iterations (in our case we obtained good results with 5 iterations) at 4 different scales,
ranging from coarse to fine. The other parameters are found heuristically as follows:

Parameters for disparity model: For the data term in (5.17): The window size W
determines the support of neighbouring intensities for the given disparity values. Larger
window can also be used as each of the pixels inside the window are weighted by colour and
proximity (Yoon and Kweon [2007]). Even though the data term is calculated once overall
the image and disparities, a larger window may take longer time to process. Therefore,
in our case W is set to 5 × 5. The parameters γc and γg determine the influence of the
neighbouring pixels within the window. The parameters γc and γg are set to 10 and 21
respectively. The T parameter of the robust function is fixed to the average pixel cost
computed over all pixels and disparity labels. For the interaction term (5.22) the parameter
σD determines the smoothness of the disparity map. As a robust formulation for interaction
is not used a very large value of σD may lead to too much smoothing of the disparities across
discontinuities. The value of σD is therefore set between 1.0 to 2.5. We consider a first order
neighbourhood where each pixel has 8 neighbours for the interaction term (5.22). The Mean
Field processes is performed until the total average energy change is less than 0.01 which
corresponds to about 4− 5 iterations in practice.

Parameters for BP-based normal model: For normal initialization the image segmen-
tation is performed using the Mean Shift algorithm of Comaniciu and Meer [2002] for both
grey level and colour images, with range and distance sigma set to 6 and 5 respectively and
a minimum region size of 80 pixels. It is to be noted that the segmentation is carried out
once per scale. The plane fitting is performed using RANSAC (Fischler and Bolles [1987])
with 500 iterations and the maximum distance set to 0.3. The normal BP process is also
performed for 5 iterations.

Parameters for ICM-based normal model: In (5.32) of the normal model (5.28), the
σN parameter determines the influence of the neighbouring normals based on the disparity
difference and magnitude of the image intensity gradient. If σN value is small, only those
neighbouring normals which have similar disparities and image intensities will have an in-
fluence. This parameter mainly influences the smoothness of output normals, where a large
value of σN allows the influence of most of the neighbours. The smoothness of the normal
output in turn determines that of the disparity. For our experiments we found that setting
σN to 1.2 provides good results. The ICM for normals was carried out for 20 iterations.
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5.4.1 Comparing the performance of the two normal models

In order to compare the two algorithms for normal estimation we use two example
images. The first example is the corridor and the second one, the head images.

We first begin our discussion with the corridor image (courtesy University of Bonn) (fig-
ure 5.6(a)). This stereo pair consists of images of the size 256 with the disparity range [0, 11].
While the ground-truth disparity is available (figure 5.6(b)), the normal “ground-truth” is
generated using the surfnorm function in MATLAB. The surfnorm function computes sur-
face normals for the surface defined by any X, Y , and Z, in our case these correspond the
pixel coordinates for X and Y , and Z corresponds to the ground-truth disparity values. This
function determines the surface normals based on a cross product of the tangent vectors.
The tangent vectors are determined using the first difference between the neighbouring posi-
tions. In other words, tangent vectors are the gradients computed in the x and y-directions.
As these gradients are not defined at discontinuities, we slightly smooth the ground-truth
disparities with a Gaussian filter (with a standard deviation of 1.0). We use the normals,
shown in figure 5.6(e), computed using this function as groundtruth for surface normals.

In figures. 5.6(c) and 5.6(d) we show the disparity maps obtained using Mean Field
optimization and each of the two methods of normal estimation within alternation, namely
ICM and BP respectively. We see that the disparity map obtained alternating with ICM-
based normal estimation is much smoother compared to the one obtained using BP-based
normal estimation. We further show the results of the normals obtained using ICM and
BP as an arrow diagram in the the two figures 5.6(f) and 5.6(g). We see that the normals
obtained using the ICM procedure are noisier compared to that of BP. However, it is difficult
to compare the arrow diagrams as we do not completely see the difference in two results.
We therefore convert the two normals into colour coded normal images.

We use an HSV colour-code 4 to represent the normals. The colour coding is done as
follows: Let nx = (nu, nv, nd) for x = (u, v) and disparity at the location dx = d. Now the
colour code is obtained by mapping the azimuth θ and elevation φ of each normal to hue H
and saturation S, respectively, and setting the value V to 1. The azimuth θ and elevation φ
are computed in the standard way:

θ = π + arctan
nv
nu

φ = arccosnd (5.34)

The range colours obtained using such a technique can be visualized by normals on
a sphere. figure 5.7(a) shows spherical disparity surface. The normals obtained using
surfnorm function in MATLAB is shown in figure 5.7(b) as an arrow diagram. The different
directions associated with the sphere can be seen better on the flattened arrow map in figure
5.8(a). The figure 5.8(b) shows the range of colours obtained using the equation (5.34). It
can be seen that the fronto-parallel normal is represented as white (middle of the sphere).

4. Note that the same colour code is used for all the other normal-maps
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(a) Original Image of size 256 ×

256

(b) Disparity Groundtruth (c) Disparity estimated using
Normals in figure 5.6(f) (below)

(d) Disparity estimated using
Normals in figure 5.6(g) (below)

(e) Normals Groundtruth (f) Normal Estimation using
ICM

(g) Normal Estimation using BP

Figure 5.6: Disparity and Normals obtained for the corridor image using the ICM and BP
for Normal estimation
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(a) Disparity Surface
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(b) Normals as arrow map

Figure 5.7: Example showing the normals for a spherical surface
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(a) Flattened arrow map of
figure 5.7(b)

(b) Colour Coded normals for
figure 5.7(b)

Figure 5.8: Example showing the normals as colour for the spherical surface

(a) Normals Groundtruth (b) Normals Initialization
through plane-fitting

(c) ICM Normals (d) BP Normals

Figure 5.9: Comparing the normals obtained for the corridor image using the two ap-
proaches to groundtruth. The normals are colour coded into HSV colours using (5.34). The
highlighted regions in 5.9(d) shows how the normals obtained using BP follow the plane-fit
solution in 5.9(b).

Now, using such a colour code for the normals in figures 5.6(e), 5.6(g) and 5.6(f), we
compare the results obtained by BP and ICM procedures. We see that even though the
normals obtained using the BP procedure are not noisy they have large errors, especially at
the highlighted regions of the figure 5.9(d), as compared to the ground-truth in figure 5.6(e).
Comparing the results of the normals obtained using BP figure 5.9(d) to its initialization
obtained using segmentation/plane-fit figure 5.9(b), we see that the bias towards the plane
fit solution is quite large. But this is natural because as the image is mainly made of
planar surfaces the final solution tends to stay close to the plane-fit normals. We see that
the normals obtained using ICM based approach (figure 5.9(c)) better approximates the
groundtruth (figure 5.9(a)) as compared to the BP based solution.

We now compare results obtained on much smoother surface like the head image shown in
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(a) Original Image of size 219×255 (b) Disparity estimated using Nor-
mals in figure 5.11(c)

(c) Disparity estimated using Nor-
mals in figure 5.11(d)

Figure 5.10: Disparity estimated using Normals from BP and ICM

figure 5.10(a) (courtesy of University of Manchester and University of Sheffield ). This image
is of size 219× 255 and has a disparity range of [−30, 10]. The figure 5.10 shows the results
obtained using the normals obtained from ICM and BP optimizations. In the absence of
groundtruth, disparity results obtained using the two solutions seems satisfactory. However,
comparing the results of the normals using ICM and BP (figure 5.11(c) and 5.11(d)), we see
that the results obtained using the BP approach do not conform to the surface variations.
This discrepancy is mainly due to the discretization of the normal space. In absence of dense
discretization the final solution either tends to the closest normal in discrete-normal space.
As a result, if the surface is close to being fronto-parallel most solutions will tend to fronto-
parallel solutions, nx = (0, 0, 1) indicated by white in the figure 5.11(d). But increasing the
discretization of the normal space makes the procedure computationally inefficient. Already,
with K = 162 levels of discretization the BP procedure takes 60 seconds for a 32 × 32
image, as compared to ICM procedure which takes 1 second. Furthermore, this estimation
procedure also depends on the size of the regions obtained during segmentation. This is
because a certain minimum region size is required in order for the RANSAC procedure (used
for plane-fitting in our approach) to provide a good plane representation of the region,
and thus the initialization for the normal optimization. Due to these limitations of the
discrete BP approach, we now concentrate on the ICM-based continuous normal estimation
procedure.

5.4.2 Further results using ICM-based normal estimation

We now show some more results obtained through alternation of Mean Field-based
disparity and ICM-based normal estimation. We show the results on wood, cloth1 and
cloth2 images from the Middlebury database corresponding to figures 5.12, 5.13, and 5.14
respectively, with a disparity range of [0, 60] pixels in all cases. In each of these figures,
we show the left original image, the ground-truth disparity, estimated disparity using Mean
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(a) Image Segmentation result (b) Normals Initialization through
plane-fitting colour coded

(c) Normal Estimation using ICM (d) Normal Estimation using BP

(e) Normal Estimation using ICM (f) Normal Estimation using BP

Figure 5.11: . The figure 5.11(b) shows the initial normal map obtained by plane-fitting
disparities within the segments of figure 5.11(a). Disparity and Normals obtained for the
head image using the BP and ICM for Normal estimation are shown in figures 5.11(d) and
5.11(c)
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Field and estimated normals using ICM.
In order to obtain a quantitative comparison of the result, we compute the bad pixels

error maps for corridor, wood1, cloth1 and cloth3 disparities. We use the Middlebury evalu-
ation software by Scharstein and Szeliski [2002] to compute the this error map. This error
is thresholded, that is all disparity differences which are less that 1.0 pixels are set to 0
and the rest set to 1. The error maps corresponding to each of these images are shown in
figures 5.15(a), 5.15(b), 5.15(c) and 5.15(d) respectively. In figures 5.16 and 5.16, we show
the error plots comparing our approach to standard BP along with sub-pixel interpolation
(Scharstein and Szeliski [2002]). These plots obtained by varying the error threshold from
0.25 to 1.5. We see that our algorithm consistently performs well in all of the cases. It
is to be noted that in each case the percentage error is calculated by ignoring the first L
columns, where L stands for disparity range. From all the bad pixel maps we see that most
errors occur at the disparity discontinuities which have not been explicitly handled in the
algorithms.

5.5 Discussion

To summarize, we proposed a new joint probabilistic model with the following features:
• The proposed approach moves beyond the fronto-parallel assumption and estimates

surface consistent disparity solutions.

• It embeds the estimation of surface properties in the model rather than refining the
results using post-processing like Yang et al. [2009], Klaus et al. [2006].

• Unlike Devernay and Faugeras [1994], it does not require the direct computation of
high-order disparity derivatives.

• The proposed approach does not precompute the normals as in Li and Zucker [2006b],
instead uses a separate random field to estimate the normals based on the disparity
and vice-versa.

• Two CRFs one for disparity and other for normals are defined and the geometric
contextual information pertaining to the scene is included in each of these models.

• The alternating procedure results in mutual improvement of both disparities and
normals.

• The consideration of two conditional models allows for more dependence or indepen-
dence according to the information to be incorporated, thereby increasing flexibility.

• We propose two different models for normals; one which discretizes the normals space
and optimizes the normal field using BP and; the other which uses an ICM based
optimization and resides in the continuous space.

• We demonstrate that the BP normal estimation has several limitations:

108



Estimating Disparity for Slanted and Curved Surfaces

(a) Original Image of size 277× 343

(b) Disparity Ground-truth (c) Disparity estimated using Normals in fig-
ure 5.12(e)

(d) Ground-truth Normals (e) Normal Estimation using ICM

Figure 5.12: Disparity and Normals obtained for the wood image using the ICM for Normal
estimation
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(a) Original Image of size 370× 417

(b) Disparity Ground-truth (c) Disparity estimated using Normals in
figure 5.13(e)

(d) Ground-truth Normals (e) Normal Estimation using ICM

Figure 5.13: Disparity and Normals obtained for the wood image using the ICM for Normal
estimation
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(a) Original Image of size 370× 417

(b) Disparity Ground-truth with dispar-
ity range

(c) Disparity estimated using Normals in
figure 5.14(e)

(d) Ground-truth Normals (e) Normal Estimation using ICM

Figure 5.14: Disparity and Normals obtained for the wood image using the ICM for Normal
estimation
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(a) Corridor Error (b) Wood Error

(c) Cloth1 error (d) Cloth3 error

Figure 5.15: Bad pixels error for Disparity with a threshold of 1.0
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(a) Corridor Error Plot
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(b) Wood1 error plot

Figure 5.16: Bad pixels error plots for disparity maps of corridor and Wood1 for error
threshold ranging from 0.25 to 1.5
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(a) Cloth1 error plot
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(b) Cloth3 error plot

Figure 5.17: Bad pixels error plots for disparity maps of Cloth1 and Cloth3 for error
threshold ranging from 0.25 to 1.5
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– it requires dense discretization of the normal space, which makes the optimization
computationally inefficient.

– requires an initialization for normals, which in our case is provided by using image
segmentation and plane-fitting of disparities. This biases the final solution to the
plane-fit normals.

– the procedure is sensitive to the region size as the the plane-fitting procedure to
obtain the initial normals requires enough number of points for a proper fit.

• We show that the ICM-based Normal estimation overcomes these limitations and gives
better disparity as well as normal solutions.

We also see that in case of the disparity model, special modifications have to be made to
the disparity optimization to allow for non-integer disparities. Although there are algorithms
that allow direct estimation of sub-pixel disparities, like (Faugeras and Keriven [1998],
Bhusnurmath and Taylor [2008], and Fleet et al. [1991]), they are all restrictive in their
modelling of the energy functional. While Faugeras and Keriven [1998], and Bhusnurmath
and Taylor [2008] require the energy functional to be convex (poor performance at object
boundaries), Fleet et al.’s model is restrictive in terms of the maximum disparity range
and is sensitive to image characteristics, such as textureless regions. Another recently
introduced algorithm by Woodford et al. [2009] though allows for higher-order cliques resorts
to image segmentation and disparity plane-fitting to generate real valued disparity maps.
This being the case, an important yet difficult direction of research would be look for or
develop a continuous optimization technique, which does not put too many restrictions on
the formulation of the energy functional. Pock et al. [2008] suggest a technique to lift
the non-convex energy functional to a higher dimension where it becomes convex and can
therefore be optimized using convex programming. It would be interesting to see how our
models can fit into such a framework.
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Chapter 6
Conclusion

The problem of stereo matching can be summarized as - identifying the corresponding
points in the left and the right images which are the projections of the same scene point.
While the epipolar constraint reduces the search space, there are a number of ambiguities
in matching two images (textureless regions, occlusions, discontinuities) which make the
problem ill-posed. In this thesis, we focussed on Bayesian random Field techniques to handle
ill-posedness of the stereo-matching problem. The motivation for using this technique was
that instead of making a hard choice for a possible match, it relaxed the decision by the
introduction of probabilities. Apart from being able to deal with uncertainties in stereo
matching, it allows to incorporate explicit smoothness assumption with in the model. While
the smoothness of the disparity output is important there are further constraints that should
be included, for example, disparities should not be smoothed across object boundaries or
the disparities should be consistent with geometric properties of the surface or regions
with similar colour should have similar disparities. Our goal throughout this thesis was to
incorporate such constraints using monocular cues and differential geometric information
about the surface.

To this end, in this thesis we considered two important problems associated with stereo
matching. The first was that of localizing disparity discontinuities. The second aimed
to recover the binocular disparities in accordance with the surface properties of the scene
under consideration. We presented a possible solution for each of these problems; In order
to deal with disparity discontinuities, we proposed to cooperatively estimating disparities
and object boundaries. This was motivated by the fact that the disparity discontinuities
occur near object boundaries. The second method dealt with recovering surface consistent
disparity and surface normal estimates by estimating the two simultaneously.

In the next section we provide a brief summary of the two models presented in this
thesis. In section 6.2, we list the shared features of the two models and finally, conclude by
mentioning some future directions of research in section 6.3.
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6.1 Specific features of each of the proposed approaches

Features of the disparity boundary estimation

We carry out cooperatively both disparity and object boundary estimations by setting
the two tasks in a unified Markovian framework. We define an original joint probabilistic
model that allows us to estimate disparities through a coupled MRF model. Boundary
estimation cooperates with disparity estimation to gradually and jointly improve accuracy
of both the estimates. The feedback from boundary estimation to disparity estimation is
made through the auxiliary field referred to as the displacement field. This field suggests
the corrections that need to be applied at disparity discontinuities in order that they align
with the object boundaries. The joint model is an MRF when considering disparities which
reduces to a Markov chain when focusing on the displacement field. The features specific
to this model are as follows:

• The coupled-MRF framework was proposed involving two MRFs one for the disparity
and the other for the displacement field.

• The influence of the boundary estimation was encoded in the displacement field as
directions in which disparity corrections needed to be applied.

• The core of this idea of applying corrections to the disparities at the discontinuities
comes from the assumptions that the disparity continuities occur in the vicinity of the
actual boundaries and that the depth discontinuities are in fact object boundaries.

• These corrections were incorporated in the disparity-MRF using the idea of active
neighbourhood field, which is able to deal with non-standard neighbourhood systems.

• The displacement field was reduced to a second-order Markov chain which is active
only at disparity discontinuities. This allows us to find the position of the true object
boundary based on the corrections applied at the disparity discontinuities.

• The approximate inference of disparity was done using standard algorithms such as
BP or Mean Field and exact inference of the displacement field using the Viterbi
algorithm.

• The overall algorithm allowed for the simultaneous extraction of the object boundary
and the disparities through use of a simple monocular cue, in this case the image
gradient.

Features of the disparity normal estimation

The goal of this second algorithm is to recover binocular disparities in accordance with
the surface properties of the scene under consideration. To do so, we estimate the disparity
as well as the normals in the disparity space, by setting the two tasks in a unified framework.
We defined a novel joint probabilistic model through two random fields to favour both intra
field (within neighbouring disparities and neighbouring normals) and inter field (between

118



Conclusion

disparities and normals) consistency. Geometric contextual information is introduced in the
models for both normals and disparities and then optimized using an appropriate alternating
maximization procedure. The overall framework has the following features:

• A disparity and surface normal model, with the two variables modelled as CRFs, was
proposed. These CRFs are coupled to incorporate the influence of each variable on
the other.

• The two models were built under the assumption that the scene in question is made
of piecewise smooth surfaces.

• The disparity-CRF was defined such that the interaction term involved first-order
disparity derivatives, thereby enforcing the nearby disparities to lie on the same plane.
These derivatives were extracted from the normal model.

• The optimization of the disparity-CRF was then carried out using standard Mean
Field algorithm.

• Two models were presented for normals, one discrete and the other continuous.

• The discrete normal model involved discretization of normal space and was optimized
using standard BP. However, this model require dense discretization of the normal
space and therefore proved inefficient during optimization.

• The continuous model on the other hand provided a better alternative for the normal-
CRF model. The model allowed for the extraction of the normals using the ICM
algorithm.

6.2 Shared features of the two proposed approaches

The two approaches presented in this thesis share a number of common features, such
as:

• We propose models which, in a probabilistic setting, allowed for conditional distribu-
tions that could model explicitly relationships between two variables.

• The two conditional distributions improved the flexibility of overall model in that they
could be made dependent or independent according to the incorporated information.

• The use of the Alternation Maximization technique for optimization of the two fields
results in mutual improvement of both variables involved.

• The use of multi-grid approach in optimization allows for long range interaction within
a lattice, without reducing the resolution of the image, but only that of the costs.

• The proposed approaches have the further advantage of making a clear distinction
between the probabilistic model and the subsequent optimization procedure. Separate
and off-the-shelf optimization techniques can be used to infer variables associated with
each of the random fields.
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6.3 Further directions of research

The two models suggested in this thesis deal with the two important issues of disparity
discontinuity localization and the extraction of disparity surfaces. The natural direction of
research is to combine these two models so that we simultaneously correct disparities at the
discontinuities, extract the disparity surface using surface geometric constraints and obtain
object boundaries. This would involve dealing with three random fields, each of which
influences the other in a different way. Given that surface geometric constraints enforce
smoother disparities and the boundary model instigates discontinuities, the probabilistic
interaction of the normal and boundary model with disparity, and vice-versa is not straight
forward to model.

As for the probabilistic setting of the two proposed techniques, we focused on defining a
valid unified framework to model cooperations, and used the MAP principle for inference.
This model can be further investigated by recasting our approaches into an Expectation
Maximization (EM) (Dempster et al. [1977]) like framework. For example, one way would
be to develop a fully Bayesian model as in Scherrer et al. [2008], where the two interacting
variables are set in an EM framework. The idea proposed by Scherrer et al. [2008] is as
follows: suppose we have two sets of random variables A and B both of which are modelled
as MRFs, with Θ representing the random variable for the parameters, and let y represent
the observation information. Now the posterior distribution we are interested in maximizing
is p(a,b, θ|y), where a,b and θ are realizations of random variables A, B and Θ respectively.
In case of Scherrer et al., the E-step of the EM procedure is not performed exactly but using
the alternation maximization procedure. So, the E-step involves alternation between the
expectations of conditional probabilities, p(a|b,y, θ) and p(b|a,y, θ). The M-step finds the
estimate of θ by maximizing p(θ|a,b,y). This kind of model provides alternatives in which,
rather than using the the realizations of fields A and B for estimating one another, their full
distributions could be used. As outlined above, such an EM-like framework also provides a
good theoretically based parameter estimation procedure.
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Résumé

La profondeur des objets dans la scène 3-D peut être récupérée à partir d’une paire
d’images stéréo en trouvant des correspondances entre les deux points de vue. Cette tâche
consiste à identifier les points dans les images gauche et droite, qui sont les projections
du même point de la scène. La différence entre les emplacements des deux points corre-
spondants est la disparité, qui est inversement proportionnelle à la profondeur 3D. Dans
cette thèse, nous nous concentrons sur les techniques Bayésiennes qui contraignent les es-
timations des disparités en appliquant des hypothèses de lissage explicites. Cependant, il
ya des contraintes supplémentaires qui doivent être incluses, par exemple, les disparités ne
doivent pas être lissées au travers des bords des objets, les disparités doivent être compati-
bles avec les propriétées géométriques de la surface. L’objectif de cette thèse est d’intégrer
ces contraintes en utilisant des informations monoculaires et des informations géométrique
différentielle sur la surface. Dans ce but, cette thèse considère deux problèmes importants
associés à stéréo : le premier est la localisation des discontinuités des disparités et le second
vise à récupérer les disparités binoculaires en conformité avec les propriétés de surface de la
scène. Afin de faire face aux discontinuités des disparités, nous nous proposons d’estimer
conjointement les disparités et les frontières des objets. Cette démarche est motivée par le
fait que les discontinuités des disparités se trouvent à proximité des frontières des objets.
La seconde méthode consiste à contraindre les disparités pour qu’elles soient compatibles
avec la surface et les normales à la surface en estimant les deux en même temps.

Mots clés: Stéréo-vision, Champs de Markov, Estimation de la disparité, l’inférence
Bayésienne
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Abstract

The depth of objects in 3-D scene can be recovered from a stereo image-pair by finding
correspondences between the two views. This stereo matching task involves identifying the
corresponding points in the left and the right images, which are the projections of the same
scene point. The difference between the locations of the two corresponding points is the
disparity, which is inversely related to the 3-D depth. In this thesis, we focus on Bayesian
techniques that constrain the disparity estimates. In particular, these constraints involve
explicit smoothness assumptions. However, there are further constraints that should be
included, for example, the disparities should not be smoothed across object boundaries, the
disparities should be consistent with geometric properties of the surface, and regions with
similar colour should have similar disparities. The goal of this thesis is to incorporate such
constraints using monocular cues and differential geometric information about the surface.To
this end, this thesis considers two important problems associated with stereo matching; the
first is localizing disparity discontinuities and second aims at recovering binocular disparities
in accordance with the surface properties of the scene under consideration. We present a
possible solution for each these problems. In order to deal with disparity discontinuities, we
propose to cooperatively estimating disparities and object boundaries. This is motivated
by the fact that the disparity discontinuities occur near object boundaries. The second one
deals with recovering surface consistent disparities and surface normals by estimating the
two simultaneously.

Keywords: Stereo Vision, Markov Random Field, Disparity Estimation, Bayesian In-
ference
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