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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

i.i.d. model

@ Observations — (Xi,...,X,) = X"=i.i.d. r. v.'s with d.f F (x).
@ Basic hypothesis is simple: Ho : F (x) = Fo(x), x € R, for known
continuous function Fy (x).
@ Fix o € (0,1) and define the class of tests of asymptotic level 1 — «
Ko = {\TJ :lim Eg W,(X") < a}.

n—oo

The Cramér-von Mises test

Vo (X") = 1iwesca)s

where
W2 = n / [ﬁn (x) - Fo (X)}2 dFo (x),

and

. 1 <
Fn(X):EZI{XJSX}’ XGR,
j=1
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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

Limit distribution under simple hypothesis, case i.i.d.

We have the convergence 1
W = w? :/ B(t)* dt,
0

where B (-) is a standard Brownian bridge. Then the test ¥, € K, where

P{W2>ca}=oz.
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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

Limit distribution under simple hypothesis, case i.i.d.

We have the convergence 1
W = w? :/ B(t)* dt,
0
where B (-) is a standard Brownian bridge. Then the test ¥, € K, where
P{w>c}=a

W? representation

2 2

[e%e) 1 ) 2
— ; — V2¢&, sin(nmt), W? = ; (P &~ N(0,1).

W? distribution (Smirnov 1936)

nm —xu? /2

P(W?>x)= 1"“/ ¢ _du for x>0,
( ) Z( 2n—1)x U/ —D(u?)
where D(u) is the Fredholm determinant defined, for u > 0, by

o0 (- )0

n=1
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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

Anderson-Darling test

Anderson and Darling generalized the Cramér-von Mises test by adding a
weight function:

A 2 !
C=n [ v(E () B0~ ()] R ()= [ (B0,
0
where 1) is some non-negative function. Therefore the Anderson-Darling test
v, (X") = 1{C§>ca} S ’Ca,

if we choose ¢, as solution of the equation

P{/Olw(t)B(t)th > ca} =a.
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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

Anderson-Darling test

Anderson and Darling generalized the Cramér-von Mises test by adding a
weight function:

A 2 !
C=n [ v(E () B0~ ()] R ()= [ (B0,
0
where 1) is some non-negative function. Therefore the Anderson-Darling test
v, (X") = 1{C§>ca} S ’Ca,

if we choose ¢, as solution of the equation

P{/Olw(t)B(t)th > ca} =a.

@ Anderson-Darling (1952): 9(t) = [t(1 — t)]™*
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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

Anderson-Darling test

Anderson and Darling generalized the Cramér-von Mises test by adding a
weight function:

c: _n/w(Fo Fa(x) — Fo(x)] dFo (x :/ Y()B (1) dt,
where 1) is some non-negative function. Therefore the Anderson-Darling test
Vo (X") =1y € Ko,

if we choose ¢, as solution of the equation

{/w dt>c(,}:a.

@ Anderson-Darling (1952): ¥(t) = [t(1 — t)] !
@ Rodriguez-Viollaz (1995): #(t) = (1 — t*)~! or [t(2 — t)]*
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Classical goodness-of-fit tests
Ergodic diffusion

Anderson-Darling test

Anderson and Darling generalized the Cramér-von Mises test by adding a
weight function:

c: _n/w(Fo Fa(x) — Fo(x)] dFo (x :/ Y()B (1) dt,
where 1) is some non-negative function. Therefore the Anderson-Darling test
Vo (X") =1y € Ko,

if we choose ¢, as solution of the equation

{/w dt>c(,}:a.

@ Anderson-Darling (1952): 9(t) = [t(1 — t)]™*
@ Rodriguez-Viollaz (1995): #(t) = (1 — t*)~! or [t(2 — t)]*
@ Scott (1999): w(t) =t*
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Introduction
Classical goodness-of-fit tests
Ergodic diffusion

Anderson-Darling test

Anderson and Darling generalized the Cramér-von Mises test by adding a
weight function:

c: _n/w(Fo Fa(x) — Fo(x)] dFo (x :/ Y()B (1) dt,
where 1) is some non-negative function. Therefore the Anderson-Darling test
Vo (X") =1y € Ko,

if we choose ¢, as solution of the equation

{/w dt>c(,}:a.

@ Anderson-Darling (1952): 9(t) = [t(1 — t)]™*

@ Rodriguez-Viollaz (1995): #(t) = (1 — t*)~! or [t(2 — t)]*

@ Scott (1999): w(t) =t*

@ Deheuvels and Martynov (2003): o(t) = t*°, =+ —1 > —1



Introduction

Classical goodness-of-fit tests
Ergodic diffusion

Composite null hypothesis

Cramér (1946)

Hp : F(x) = Fu(x,9), 9 €O,

where ¥ is an unknown parameter.

Darling (1955)

= n/R (£ - F*(x,ﬁ")}2 dF.(x, dn),

where 1?,, is an estimate of ¢, © = (a, b). Under suitable regularity conditions,
if \/n (%, —9) => &€ ~ N(0,0%(%)). We have the convergence

C3:>c2:/

R

[B(F.(x,9) ¢ %F*(x, 9)] ® dF. (x, 9).

Note that C? depends on F.(x,?) and the test is no more distribution-free.
If Var(@n) goes to zero sufficiently rapidly, the limiting distributions of C? and
W2 are the same, and the test is distribution-free.
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Introduction
Cla g s-of-
Ergodic diffusion

The observation model

The model

Suppose that we observe a trajectory X" = {X;,0 < t < T} of the
ergodic diffusion process

dXt = S(Xt) dt + U(Xt) th, XO, 0 S t S 7—7

where

@ the conditions of the existence and uniqueness of the solution are
fulfilled,

o the trend coefficient S(-) is unknown to the observer,

o the diffusion coefficient o(-)? is continuous positive function and
known.
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Introduction

Clas:
Ergodic diffusion

The observation model with Assumptions

RP. The functions S(-) and o(-) are such that

* Y 5(v)
V(x) = exps —2 5 dve dy — +oo, as x — +o0,
0 o o(v)

G(S) = /R a(i/)z exp {Z/Oy :((‘l/)l dv} dy < oo.

Under conditions RP, the process X T has ergodic properties with the
invariant density given by

fs(x) = m exp {2/0X :((\:/))2 dv} , x€R.
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Introduction
ness-of-fit tests
Ergodic diffusion

Models under basic hypothesis H,

Switching diffusion

dX; = —psgn(Xe — 0) dt + dW,, Xo, 0<t<T

("] dXt = —Sgn(Xt) dt + th

o The limit distribution of the C-vM type statistics have been studied
o Explicit representation of the limiting processes have been found

@ dX; = —psgn(X; — 0) dt + dW,, p, 0 are unknown

e Asymptotic properties of the estimators have been studied
o The limit distribution of the C-vM type statistics have been studied

General case

So(x) is some known function

Explicit representations of the limit distribution of C-vM type statistics with
different weighted functions have been found
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Switching diffusion

Testing problem

Ho: The observed trajectory X7 = {X:,0 <t < T} is solution of SDE
dXt = —sgn(Xt) dt + th, )(07 0 S t S T, (1)

where Sp(x) = —sgn(x) is a discontinuous function and taking just two values
+1 and —1.
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Switching diffusion

Testing problem

Ho: The observed trajectory X7 = {X:,0 <t < T} is solution of SDE
dXt = —sgn(Xt) dt + th, )(07 0 S t S T, (1)

where Sp(x) = —sgn(x) is a discontinuous function and taking just two values
+1 and —1.

@ The conditions RP are fulfilled and (1) is an ergodic diffusion process.
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Switching diffusion

Testing problem

Ho: The observed trajectory X7 = {X:,0 <t < T} is solution of SDE
dXt = —sgn(Xt) dt + th, )(07 0 S t S T, (1)

where Sp(x) = —sgn(x) is a discontinuous function and taking just two values
+1 and —1.

@ The conditions RP are fulfilled and (1) is an ergodic diffusion process.

@ Its density fs,(x) and invariant distribution function Fs,(x) are:

2
M xeR.

olx 1 _
fSO(X) =e? lv FSo(X) = 1lioso0y — 2 sgn(x) e
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Switching diffusion

Tests statistics

C-vM type tests statistics

r(X) = Lgagy T [ 150 = (0

1) = Lgocsys T [ 120 = () dFs ().

These tests statistics were proposed by Dachian and Kutoyants (2007) and are
based on the local time estimator estimator:

f£(x) = lim

-
_ A (x)
Mo T/O 1{‘Xt,x‘§€} dt = T for x €R,

where A7(x) is the local time of the diffusion process (Revuz et Yor, 1991).
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Switching diffusion

Auxiliary result

LTE
The local time estimator f2(x) is unbiased and v/ T asymptotically normal
nr(x) = VT (F£(x) — fs(x)) = N (0, Re(x,x)) as T — oc.

Moreover, the process (n7(x), x € R) converges weakly to the zero mean
Gaussian process (n¢(x), x € R) with the covariance function

[Lie>xy = Fs(O[Lre>yy — Fs(&)]) .
o (Xe)* f5(6)?

Kutoyants (1997, 2004)

Riluy) = 4550 Es
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Switching diffusion

Auxiliary result

LTE
The local time estimator f2(x) is unbiased and v/ T asymptotically normal
nr(x) = VT (F£(x) — fs(x)) = N (0, Re(x,x)) as T — oc.

Moreover, the process (n7(x), x € R) converges weakly to the zero mean
Gaussian process (n¢(x), x € R) with the covariance function

[Lie>xy = Fs(O[Lre>yy — Fs(&)]) .
o (Xe)* f5(6)?

Kutoyants (1997, 2004)

Riluy) = 4550 Es

Davydov-Bosq(1999): LTE of the density of wide class of stationary processes.
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Switching diffusion

Auxiliary result

LTE

The local time estimator f2(x) is unbiased and v/ T asymptotically normal
nr(x) = VT (£ (x) — fs(x)) = N (0, Re(x,x)) as T — oo.

Moreover, the process (n7(x), x € R) converges weakly to the zero mean
Gaussian process (n¢(x), x € R) with the covariance function

[Lie>xy = Fs(O[Lre>yy — Fs(&)]) .
o (Xe)* f5(6)?

Kutoyants (1997, 2004)

Riluy) = 4550 Es

Davydov-Bosq(1999): LTE of the density of wide class of stationary processes.
Remark. Note that these statistics are not distribution-free even asymptotically
and the choice of thresholds ¢, and d,, for these tests is much more complicate
due the structure of the covariance of the process (7¢(x),x € R).
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Simple hypothesis
Parz io
Com

Switching diffusion

Karhunen-Loéve expansion in R

@ Z(t),t € R — centered Gaussian process
@ K(t,s) =EZ(t)Z(s) continuous in R?
° fR s,5) ds < oo, limjs_,o K(s,5) =0

The following decompositions hold a.s. (l.Novitskii, 1982, J.Buescu, 2004):

Karhunen-Loéve expansion and Parseval’s identity

=S VA enlt), W= /RZW‘“ =D MEteR,
—1 n=1

where {£,: n > 1} are i.i.d. N(0,1) and A, €5, n > 1 are the eigenvalues and
the eigenfunctions of the Hilbert-Schmidt operator C : L»[R] — L>[R]:

K(f) = /R K(t,s) f(s)ds.
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Switching diffusion

Test procedure

Let us introduce the Gaussian process (n¢(x), x € R) with zero mean and
covariance function given by

Rf(X, y) - 9 (1{va<o} eQ(X/\}/) + 1{x/\y20} e—2(x\/}/))

— (2(Ix| + lyl) + sgn(xy)) e 2D

Under hypothesis Ho, we have the convergence

Vi T /R [F2(x) — fiy ()] dx —> /R e
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Switching diffusion

Test procedure

Let us introduce the Gaussian process (n¢(x), x € R) with zero mean and
covariance function given by

2(xAy

2(XW))

RF(X7 y) = 2 (1{><Vy<0}e ) + 1{x/\y20} e

— (2(Ix| + lyl) + sgn(xy)) e 2D

Under hypothesis Ho, we have the convergence

Vi T /R [F2(x) — fiy ()] dx —> /R e

Denote by d,, the critical value defined by the equation

Ps, {/n%(x) dx > da} =a,
R

The C-vM type test p7(XT) = 1{v254,y belongs to Ky and is consistent.
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Switching diffusion S'"‘p'e hyp"t"es's

Explicit representation of 7¢(-)

The Gaussian process (nr(x),x € R) has a K-L expansion given by

_‘ | Jl (Zln |X|)

Jo (z1,n)

~2q <Yz on n/2> 5 (o) -t (4 () + 27)
il h(z) (Ya (@) + 222 ) = Ya(2h) 4 (2h)

HMS

where {&,,n > 1}, {&5,,n > 1} denote two independent sequences of i.i.d.
N(0,1) r.v.’s, {z1,n,n > 1} the positive zeros of Ji(-) and {z},,n > 1} solutions
of equation

5 (2) (Yo (2) = 2(In(z/2) +7) /7) = (o (2) = 1) (Ya (2) + 4/(x2)) = O

with J,(-) and Y, (-) the Bessel function of 1st and 2nd kind respectively.
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Switching diffusion f"“p'e lipfreiicets

Parseval's identity

o Parseval's identity

V /fo)d /awz €”+Z /2 n'

lln
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Switching diffusion

Parseval's identity

o Parseval's identity

= [Ree > gy ber

n11” n=1""

@ Fubini's theorem

(a) - Rayleigh's formula >~ 2 221 = ﬁ-
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Switching diffusion Simple hypothesis

Parseval's identity

o Parseval's identity
I — 4
a
= [Ree > gy ber
n=1 1 n n=1 Zn

@ Fubini's theorem

(a) - Rayleigh's formula >~ 2 221 = 4(,,1+1)-

o Numerical simulation (for N = 10°) gives
N
4 1
— —Z|<10°3
2.l
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Switching diffusion

Test procedure

Under hypothesis Ho, we have the convergence
Wi=T / [F2(x) — fo (X)]° dFs, (x) = / n7(x)dFsy(x).
R R
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Switching diffusion

Test procedure

Under hypothesis Ho, we have the convergence
Wi=T / [F2(x) — fo (X)]° dFs, (x) = / n7(x)dFsy(x).
R R

Denote by c, the critical value defined by the equation

Ps, {/Rn%(x)dFSO(X) > ca} =a.

Proposition

The C-vM type test ¢7(X") = L{w2>c,) belongs to Ko and is consistent.
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Switching diffusion

Test procedure

Under hypothesis Ho, we have the convergence
Wi=T / [F2(x) — fo (X)]° dFs, (x) = / n7(x)dFsy(x).
R R

Denote by c, the critical value defined by the equation

Ps, {/Rn%(x)dFSO(X) > ca} =a.

Proposition

The C-vM type test ¢7(X") = L{w2>c,) belongs to Ko and is consistent.

Making the transformation t = Fs,(x), we obtain

1
[ edrs ) = [ e e
R 0
where the Gaussian process (7j¢(t),0 < t < 1) has covariance function given by

Ke(s,t) = (1—]2s—1])(1— |2t —1])In[(1 — |25 — 1])(1 — |2t — 1|)]
+4sAt(l—sVit).
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Switching diffusion Simple hypothesis

Col

Explicit representation of 7j¢(-)

The Gaussian process (7jr(t),0 < t < 1) has a K-L expansion given by
fir(t) = Y _(€n/(nm)) V2sgn(1/2 — t)sin (nm(1 — |2t — 1))
n>1

+ 3 (€ /va) V2[((n) /vn — élva)) sin (va(L — [2 — 1))

n>1

— (sin(vn) /va — cos(vn)) a (va(1 — |2 = 1]))]/Si(vs),

where {£n,n > 1}, {£),,n > 1} two independent sequences of i.i.d. N(0,1) r.v's
and {v,, n > 1} the solutions of equation

G(r)[sin(r) — rcos(r)] — Si(r) [er) — ra(r)] = 0,

with a(r) = Ci(r)sin(r) — Si(r) cos(r), a(r) = Sa(r), G(r) = [/ @ ds and
Ci(+), Si(-) the cosine and sine integral respectively.
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Switching diffusion Simple hypothesis

Parseval's identity

@ Parseval's identity

1 . o 2 X 2

2 ~2 aw n n
wh [y e e 3s
n=1 1"
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Switching diffusion

Parseval's identity

@ Parseval's identity

1 . o 2 X 2

2 ~2 aw n n
wh [y e e 3s
n=1 1"

@ Fubini's theorem

4 1 =1 1l @l =1
62/0 Kf(t;t)dt:ZW—F;;:a‘FZ;%

n=1 =1 N n=1
’ 2
(a) - Euler's formula Y2, % =z,
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Switching diffusion E,']’“p'e lipfreiicets

Parseval's identity

@ Parseval's identity

1 e 2 X 2
2 _ ~2 law n n
we= [Cay ey b
n=1 1
@ Fubini's theorem
- = Ke(t, t)dt = —_ = _
/O S N R
! e o] 1 2
(a) - Euler's formula 3 7, & = %.
5

o Numerical simulation (for N = 10°) gives

18
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Switching diffusion

Numerical Results, |

e Table 1: Values of some quantiles of the random variable V2.

o Figure 1: Thresholds choice of the random variable V2.

« de, ::

0.10 1.619 B

0.05 2.563 Zodf\

0.025 3.596 o4

0.010 5.868 02 ,
0.005 6.197 o1 \\

0 2 4 6 8 10
threshold
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Switching diffusion

Numerical Results, Il

e Table 2: Values of some quantiles of the random variable W2,
o Figure 2: Thresholds choice of the random variable W?2.

a Ca j:
0.10 1.501 N
0.05 2.420
0.025 3.433 "
0.010 5.050 d N
0.005 6.004 pe
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Switching diffusion S'mp'e lipfreiicets

Smirnov's formula

The approach that can be used here to calculate the quantiles for the
distribution of W? and V2 in Tables 1 and 2 is based on the Smirnov formula:

Yon *XU2/2
F(x):1+12( 1)" du for x>0.

/ 2)
[ Yyon—1 U |Du
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Switching diffusion

Smirnov's formula

The approach that can be used here to calculate the quantiles for the
distribution of W? and V2 in Tables 1 and 2 is based on the Smirnov formula:

Z 7)<u2/2
F(x)=14 = -1)" du for x>0.
n—1 Y2n—1 U\/|D (v?)]

@ For the distribution function of W? we have

D(u) = L\/\{u) (1—

with v, = {z1,n/2, z,/2}, for n > 1.

4u
P
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Switching diffusion f il lipfereidn

Smirnov's formula

The approach that can be used here to calculate the quantiles for the
distribution of W? and V2 in Tables 1 and 2 is based on the Smirnov formula:

7)<u2/2
F(x)=14 = Z -1)" du for x>0.
n=1

Y2n—1 U\/|D (u?)]

@ For the distribution function of W? we have
J1(2v/0) T 4u
D(U) = T H 1-— 2,2 .

with v, = {z1,n/2, z,/2}, for n > 1.

@ For the distribution function of V2 we have

D(u) = Si”\%a) ﬁ (1 - %) .

n=1 n

with v, = {nm, vy}, for n > 1.
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Switching diffusion

Parameter estimation

Let the observed process be
dX; = —psgn(Xy — O)dt + dW,, Xo, 0<t<T,

We suppose that ¥ = (p, 6) € © is unknown parameter and p > 0.
The process (X;):>0 is an ergodic diffusion with the invariant density

f(9,x)=pe 20 for xeR.

The likelihood ratio function is
T e
L(9,XT) =exp {—p/ sgn(X; — 0) dX; — 0} T} .
0

The MLE 1§T and BE 1§T are defined as usual by the relations

s T no i Jeyrly L(%XT)dy
L(rXT) = sup LOXT) . = T X dy
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Switching diffusion

Parameter estimation

Introduce the normalized likelihood ratio process
_L@+erwXT) (T2 g
ZT(W) - L(7.9,XT) y  PT = 0 T-1 )
and the random vectors w = (¥, &) and W = (¥, i) defined with the help

of the following stochastic process:

Zy(w) = Z,(v) Zo(u),

where
2

v
Zp(v)—exp{vc—Q}, Zo(w) = exp {2072 W(w) ~ 207 ul}
as follows:

Jo2 w Zy (w) dw
Zy(W) = sup Zy(w), =R 7
o) = sup, o) i Zo (w) aw

where W(-) is a two-sided Wiener process and ¢ is A/(0,1) random
variable independent of W().

A. Gassem Soutenance de these



Switching diffusion

Parameter estimation

The MLE and BE are

o Consistent, i.e., for any v >0
p(" {|1§T — 9| > 1/} —o, P {|1§T — 9| > u} —0
o Have different limit distributions
o7 (Ir —9) = W, o7 (1 —9) = W
@ The moments converge: for any p > 0

=1/9 2 ~|P =-1/9 = ~ P
Ey o7 (07 —9)] — Ey|W|", Eylo7 (7 —17)] — Ey ||

The proof is based on the two remarkable Theorems 1.10.1 and 1.10.2 by
Ibragimov and Khasminskii (1981).
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Switching diffusion

Testing problem

H.: The observed trajectory X7 = {X:,0 <t < T} is solution of SDE
dX; = —psgn(Xe — 0) dt + dW;, Xo, 0<t<T,

where S.(x,9) = —psgn(x — 0) and 9 = (p,0) € © is unknown parameter.
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Switching diffusion e

hypothesis

Testing problem

H.: The observed trajectory X7 = {X:,0 <t < T} is solution of SDE
dX; = —psgn(Xe — 0) dt + dW;, Xo, 0<t<T,

where S.(x,9) = —psgn(x — 0) and 9 = (p,0) € © is unknown parameter.

To test H. we use these statistics constructed with the help of the MLE or BE,

V2= T/R [f;’(x) ~fs, (x,ﬂr)r dx,

~ 2 ~
Wi = T/ [F7(x) = fo. (x,07)] dFs, (x, 7).
R
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Switching diffusion tio
mation

ypothesis

Testing problem

H.: The observed trajectory X7 = {X:,0 <t < T} is solution of SDE
dX; = —psgn(Xe — 0) dt + dW;, Xo, 0<t<T,

where S.(x,9) = —psgn(x — 0) and 9 = (p,0) € © is unknown parameter.

To test H. we use these statistics constructed with the help of the MLE or BE,

V2= T/R [f;’(x) ~fs, (x,ﬂr)r dx,

~ 2 ~
Wi = T/ [F7(x) = fo. (x,07)] dFs, (x, 7).
R

Let us introduce the following Gaussian process

C(x,9) = n(x,9) — € gpfs* (. 0), €~ N(O,1).

((x,9)? dFs, (x, ).

V,,2:>V2:/C(X,19)2dx, W3:>W2:/
R R
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Switching diffusion

Testing problem

Denote by du(¥) and cq (V) the critical values defined by the equations

P {v2 > da(ﬁ)} —a, P {W2 > ca(ﬁ)} - a

Proposition

The tests p7(XT) = Liv2sd,(9yy and or(XT) = Liwzsc,(d)y belong to Ka.
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Switching diffusion

Testing problem
Denote by du(¥) and cq (V) the critical values defined by the equations

P {v2 > da(ﬁ)} —a, P {W2 > ca(ﬁ)} - a

Proposition

The tests p7(XT) = Liv2sd,(9yy and or(XT) = Liwzsc,(d)y belong to Ka.

Now, we consider the case of the one-dimensional parameter ¢ = 6, in this
case, the choice of the thresholds ¢, and d, does not depend on the
hypothesis H, and these constants are solutions of the equation

Ps, { e da} —a, Py, { JRCCE } o

Proposition

The tests p7(X7) = L{v254,y and dr(XT) = L{w2>c,y belong to Ka.
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General case

Asymptotically distribution-free tests

Ho: The observed trajectory X" is solution of the SDE
dXt :So (Xt)dt+U(Xt)th, OS tS T.

where So(-) is some known function.

A. Gassem Soutenance de these



General case

Asymptotically distribution-free tests

Ho: The observed trajectory X" is solution of the SDE
dXt :So (Xt)dt+U(Xt)th, OS tS T.

where So(-) is some known function.

Remind here the following results by Kutoyants (2010)
VE=T [ R0 [7(6) — (T P, (),
w
where p is the median of invariant law (Fo(u) = 1/2) and

%) = 2F50 (X) -1 ; .
M) = o e G (/20 Lz

with () is continuous and positive function and

%) = *~ (1{y>><} — Fs, (y))Z
o= | S
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General case

Asymptotically distribution-free tests

The second statistic is based on the empirical distribution function

N 1 /7
Fr (X) = 7/0 1{X[<x} dt.

The corresponding statistic is:

W2 =T /R H(x) [ﬁT(x) _ FSO(X)}2 dFs, (x),
where &' (x)

) = e O TFe (=17

Y (®(x)),
and

o (x) = / Fs, (v)° dH( Fs, (x) ) Y (a1

—oo J(y)2 fsy (¥) Fs, (x) —1 x U(}’)z fs (v)
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General case

Limit distributions

It is shown that

V:i— /Ooo W(t) W2, dt, W2 — /OOO P(t)W2dt.  (2)
Denote by d, and ¢, the critical values defined by the equations
Ps, {/Ooo Y(t) W2, dt > da} =a, Pg, {/OOO P(t) W2 dt > ca} =a.

Hence the tests ¢7(XT) = 1{v%>da} and ¢7(XT) = 1{W%>ca} belong
to K, and are asymptotically distribution-free.
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General case

Limit distributions

It is shown that
V2 — / W(t) W2, dt, w2 — / P(t)W2dt.  (2)
0 0

Denote by d, and ¢, the critical values defined by the equations

Ps, {/“ P(t) Wi, dt > da} =a, Ps, {/‘” W(t) W2 dt > ca} ~ o
0 0

Hence the tests ¢7(XT) = 1{v%>da} and ¢7(XT) = 1{W%>ca} belong
to K, and are asymptotically distribution-free.

Objective

We provide the explicit expressions of the limit statistics in (2) via direct
calculation of Laplace transforms, for the particular cases

YO =+, f=oo+1>1 and ()=,
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General case

Direct calculation of the Laplace transform

Riccati-Volterra type integral equation

Let v(t, s) be a unique solution of the equation

(t,s) = K(t,5)+ u / (t, 1) y(s,r) dr, 0<s<t,
0

such that (s, s) = v(s) > 0.

Laplace transform and Fredholm determinant

The following equality holds, for u < )\%

Tog <g /Ooo Z(s)? ds) =g (% /Ooo A65) ds) ,

oo

D(u) = [J(1 = Aou) = exp (—u/ooo (s, s) ds) ,

n=1

An, n > 1 -eigenvalues of the covariance operator of the process {Z(t),t > 0}.

Kleptsyna and.Le Breton (2002)



General case

Case: (t) = e 2t

Let {z0,n,n > 1} and {d,, n > 1} be respectively sequences of positive zeros of
the Bessel function Jo(+) and solutions of equation:

Jo(6n) = 9n J1(6n) = 0.

The following equalities hold:

Nl

Ee (5 [~ Widt) = [h(va] F, u<
0

D(z) = ﬁl (1 - zgz) = h(vz), z€C,

(NI

Eexp (g /Ooo ethWfHdt) = [b(Vu) = Vuh(Vu)] "2, u< &,

D(z) = ﬁ (1-2) = 4va) - v zec
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General case

The direct consequence is the following:

Corollary

The following equalities hold:

e _ law 62
A = / 2tW2dt—Zz,
0 1 20,n

B2 — Oofzth d/ﬂvmfi
= [Temmaamy
1n

where {&,,n > 1}, are i.i.d. N(0,1) random variables.
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General case

Tables of the limit distribution

The following Tables provide some values of quantiles of distributions of
A? and B?. Calculations were based on the explicit form of the Smirnov
formula

X 20,20 e—xu2/2

P(A2>x)==) (-1t — ———— du,
( ) ™ ,,2:;( ) 20,20—1 U/ _JO(U)

2 O2n efxu2/2
P(B>>x)==> (-1)" du.
(it don—1 Uy/ |_/0(U) - qu(U)‘
P(A2>X) X P(Bz>x) X
0.10 0.552 0.10 1.832
0.05 0.747 0.05 2.552
0.01 1.229 0.01 4.323
0.005 1.445 0.005 5.113
0.001 1.954 0.001 6.982
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General case

Case: ¥(t) = (t+1)72°
Let {z,,n, n > 1} the sequence of positive zeros of the Bessel function J,(+)

The following equalities hold:

tom (3 v irwia) = e RN o<

D(z):H<l—421;nZ> :|'(V-l—1)%7 zeC.

Corollary

The following identity holds:

e —2B81,1,2 Iaw 2
/(t+1) W? dt 2 ZZ”

0

where {&,,n > 1}, are i.i.d. AV(0,1) random variables.
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General case

Case: ¥(t) = (t+1)72°

Remark. It is shown by Deheuvels and Martynov (2003) that

E exp (g /01 t2(ﬁ’2)B(t)2dt) = [I’(z/+ 1) W]% u< i

Thus, the following equality holds:

oo 1
/ (t4+ 1) ¥ W2dt'Z / 2P~ B(t)? dt.
0 0
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General case

Case: ¥(t) = (t+1)72°

Remark. It is shown by Deheuvels and Martynov (2003) that

E exp (g /01 t2(ﬁ’2)B(t)2dt) = [I’(z/+ 1) W]% u< iyl

Thus, the following equality holds:

oo 1
/ (t4+ 1) ¥ W2dt'Z / 2P~ B(t)? dt.
0 0

Theorem (Deheuvels and Martynov 2003)
The following equalities hold:

1
oo -3 2
E exp (%/ (t+1)*2BWt2+1dt> {r( ) Jv— 1(21/\[)} Cu< Z,-11
0

(/) w
p(z) =] (1 - 24”712) — () Zuiﬁ)y”fl)’ zeC.

v
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General case

Publications

@ Gassem, A., On parameter estimation for switching diffusion process,
Statistics & Probability Letters, Volume 79, Issue 24, 2484-2492,
20009.

@ Gassem, A., Goodness-of-fit test for switching diffusion, Statistical
Inference for Stochastic processes, Volume 13, Number 2, 97-123,
2010.

@ Gassem, A., On Cramér-von Mises type test based on local time of
switching diffusion process, a paraitre dans: Journal of Statistical
Planning and Inference.

@ Gassem, A., On the goodness-of-fit testing for switching diffusion
process, soumis.

@ Gassem, A., On limit distributions of some goodness-of-fit tests
statistics for ergodic diffusion processes, soumis.
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Open questions

Open questions

@ extension of the direct Laplace transform calculations method to R

@ Switching diffusion

o explicit representation of the Fredholm determinant
o explicit representation of weighted functions
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Merci de votre attention
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