Goodness-of-fit test for switching ergodic diffusion process

Anis Gassem

Laboratoire Manceau de Mathématiques Université du Maine

Directeur: Yury A. Kutoyants Co-directrice: Marina Kleptsyna

07 Juillet, 2010

Outline

- Introduction
 - Classical goodness-of-fit tests
 - Ergodic diffusion
- Switching diffusion
 - Simple hypothesis
 - Parameter estimation
 - Composite hypothesis
- General case
- 4 Open questions

i.i.d. model

- Observations $(X_1, \ldots, X_n) = X^n$ –i.i.d. r. v.'s with d.f F(x).
- Basic hypothesis is simple: \mathcal{H}_0 : $F(x) = F_0(x)$, $x \in \mathbb{R}$, for known continuous function $F_0(x)$.
- Fix $\alpha \in (0,1)$ and define the class of tests of asymptotic level $1-\alpha$

$$\mathcal{K}_{\alpha} = \left\{ \bar{\Psi} : \overline{\lim}_{n \to \infty} \mathbf{E}_0 \ \bar{\Psi}_n(X^n) \le \alpha \right\}.$$

The Cramér-von Mises test

$$\Psi_n(X^n) = 1_{\{W_n^2 > c_\alpha\}},$$

where

$$W_n^2 = n \int \left[\hat{F}_n(x) - F_0(x) \right]^2 dF_0(x),$$

and

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{X_j \le x\}}, \quad x \in \mathbb{R},$$

Limit distribution under simple hypothesis, case i.i.d.

We have the convergence

$$W_n^2 \Longrightarrow W^2 = \int_0^1 B(t)^2 dt,$$

where $B(\cdot)$ is a standard Brownian bridge. Then the test $\Psi_n \in \mathcal{K}_{\alpha}$, where

$$\mathbf{P}\left\{W^2>c_\alpha\right\}=\alpha.$$

Limit distribution under simple hypothesis, case i.i.d.

We have the convergence

$$W_n^2 \Longrightarrow W^2 = \int_0^1 B(t)^2 dt,$$

where $B(\cdot)$ is a standard Brownian bridge. Then the test $\Psi_n \in \mathcal{K}_{\alpha}$, where

$$\mathbf{P}\left\{W^2>c_\alpha\right\}=\alpha.$$

W^2 representation

$$B(t) = \sum_{n=1}^{\infty} \frac{1}{n\pi} \sqrt{2} \, \xi_n \, \sin(n\pi t), \quad W^2 = \sum_{n=1}^{\infty} \frac{\xi_n^2}{(n\pi)^2}, \quad \xi_n \sim \mathcal{N}(0,1).$$

W² distribution (Smirnov 1936)

$$\mathbf{P}\left(W^{2} > x\right) = \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \int_{(2n-1)\pi}^{2n\pi} \frac{e^{-xu^{2}/2}}{u\sqrt{-D(u^{2})}} du \quad \text{for} \quad x \ge 0,$$

where D(u) is the Fredholm determinant defined, for $u \ge 0$, by

$$D(u) = \prod_{n=1}^{\infty} \left(1 - \frac{u}{(n\pi)^2} \right) = \frac{\sin(\sqrt{u})}{\sqrt{u}}.$$

Anderson and Darling generalized the Cramér-von Mises test by adding a weight function:

$$C_{n}^{2}=n\int\psi\left(F_{0}\left(x\right)\right)\left[\hat{F}_{n}\left(x\right)-F_{0}\left(x\right)\right]^{2}dF_{0}\left(x\right)\Longrightarrow\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt,$$

where ψ is some non-negative function. Therefore the Anderson-Darling test

$$\Psi_n(X^n)=1_{\left\{C_n^2>c_\alpha\right\}}\in\mathcal{K}_\alpha,$$

if we choose c_{α} as solution of the equation

$$\mathsf{P}\left\{\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt>c_{\alpha}\right\}=\alpha.$$

Anderson and Darling generalized the Cramér-von Mises test by adding a weight function:

$$C_{n}^{2}=n\int\psi\left(F_{0}\left(x\right)\right)\left[\hat{F}_{n}\left(x\right)-F_{0}\left(x\right)\right]^{2}dF_{0}\left(x\right)\Longrightarrow\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt,$$

where ψ is some non-negative function. Therefore the Anderson-Darling test

$$\Psi_n(X^n) = 1_{\left\{C_n^2 > c_\alpha\right\}} \in \mathcal{K}_\alpha,$$

if we choose c_{α} as solution of the equation

$$\mathsf{P}\left\{\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt>c_{\alpha}\right\}=\alpha.$$

• Anderson-Darling (1952): $\psi(t) = [t(1-t)]^{-1}$

Anderson and Darling generalized the Cramér-von Mises test by adding a weight function:

$$C_{n}^{2}=n\int\psi\left(F_{0}\left(x\right)\right)\left[\hat{F}_{n}\left(x\right)-F_{0}\left(x\right)\right]^{2}dF_{0}\left(x\right)\Longrightarrow\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt,$$

where ψ is some non-negative function. Therefore the Anderson-Darling test

$$\Psi_n(X^n)=1_{\left\{C_n^2>c_\alpha\right\}}\in\mathcal{K}_\alpha,$$

if we choose c_{α} as solution of the equation

$$\mathsf{P}\left\{\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt>c_{\alpha}\right\}=\alpha.$$

- Anderson-Darling (1952): $\psi(t) = [t(1-t)]^{-1}$
- Rodriguez-Viollaz (1995): $\psi(t) = (1-t^2)^{-1}$ or $[t(2-t)]^{-1}$

Anderson and Darling generalized the Cramér-von Mises test by adding a weight function:

$$C_{n}^{2}=n\int\psi\left(F_{0}\left(x\right)\right)\left[\hat{F}_{n}\left(x\right)-F_{0}\left(x\right)\right]^{2}dF_{0}\left(x\right)\Longrightarrow\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt,$$

where ψ is some non-negative function. Therefore the Anderson-Darling test

$$\Psi_n(X^n)=1_{\left\{C_n^2>c_\alpha\right\}}\in\mathcal{K}_\alpha,$$

if we choose c_{α} as solution of the equation

$$\mathsf{P}\left\{\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt>c_{\alpha}\right\}=\alpha.$$

- Anderson-Darling (1952): $\psi(t) = [t(1-t)]^{-1}$
- Rodriguez-Viollaz (1995): $\psi(t) = (1-t^2)^{-1}$ or $[t(2-t)]^{-1}$
- Scott (1999): $\psi(t) = t^{-1}$

Anderson and Darling generalized the Cramér-von Mises test by adding a weight function:

$$C_{n}^{2}=n\int\psi\left(F_{0}\left(x\right)\right)\left[\hat{F}_{n}\left(x\right)-F_{0}\left(x\right)\right]^{2}dF_{0}\left(x\right)\Longrightarrow\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt,$$

where ψ is some non-negative function. Therefore the Anderson-Darling test

$$\Psi_n(X^n)=1_{\left\{C_n^2>c_\alpha\right\}}\in\mathcal{K}_\alpha,$$

if we choose c_{lpha} as solution of the equation

$$\mathsf{P}\left\{\int_{0}^{1}\psi(t)B\left(t\right)^{2}dt>c_{\alpha}\right\}=\alpha.$$

- Anderson-Darling (1952): $\psi(t) = [t(1-t)]^{-1}$
- Rodriguez-Viollaz (1995): $\psi(t) = (1-t^2)^{-1}$ or $[t(2-t)]^{-1}$
- Scott (1999): $\psi(t) = t^{-1}$
- Deheuvels and Martynov (2003): $\psi(t)=t^{2\beta}$, $\beta=\frac{1}{2\nu}-1>-1$

Composite null hypothesis

Cramér (1946)

$$\mathcal{H}_0^*: F(x) = F_*(x, \vartheta), \quad \vartheta \in \Theta,$$

where ϑ is an unknown parameter.

Darling (1955)

$$C_n^2 = n \int_{\mathbb{R}} \left[\hat{F}_n(x) - F_*(x, \hat{\vartheta}_n) \right]^2 dF_*(x, \hat{\vartheta}_n),$$

where $\hat{\vartheta}_n$ is an estimate of ϑ , $\Theta = (a, b)$. Under suitable regularity conditions, if $\sqrt{n}(\hat{\vartheta}_n - \vartheta) \Longrightarrow \xi \sim \mathcal{N}(0, \sigma^2(\vartheta))$. We have the convergence

$$C_n^2 \Longrightarrow C^2 = \int_{\mathbb{R}} \left[B(F_*(x,\vartheta)) - \xi \frac{\partial}{\partial \vartheta} F_*(x,\vartheta) \right]^2 dF_*(x,\vartheta).$$

Note that C^2 depends on $F_*(x,\vartheta)$ and the test is no more distribution-free. If $\mathbf{Var}(\hat{\vartheta}_n)$ goes to zero sufficiently rapidly, the limiting distributions of C_n^2 and W_n^2 are the same, and the test is distribution-free.

The observation model

The model

Suppose that we observe a trajectory $X^T = \{X_t, 0 \le t \le T\}$ of the ergodic diffusion process

$$dX_t = S(X_t) dt + \sigma(X_t) dW_t, X_0, 0 \le t \le T,$$

where

- the conditions of the existence and uniqueness of the solution are fulfilled,
- the trend coefficient $S(\cdot)$ is unknown to the observer,
- the diffusion coefficient $\sigma(\cdot)^2$ is continuous positive function and known.

The observation model with Assumptions

 \mathcal{RP} . The functions $S(\cdot)$ and $\sigma(\cdot)$ are such that

$$V(x) = \int_0^x \exp\left\{-2\int_0^y \frac{S(v)}{\sigma(v)^2} dv\right\} dy \to \pm \infty, \quad \text{as} \quad x \to \pm \infty,$$
$$G(S) = \int_{\mathbb{R}} \frac{1}{\sigma(y)^2} \exp\left\{2\int_0^y \frac{S(v)}{\sigma(v)^2} dv\right\} dy < \infty.$$

Under conditions \mathcal{RP} , the process X^T has ergodic properties with the invariant density given by

$$f_S(x) = rac{1}{G(S)\,\sigma(x)^2}\,\exp\left\{2\int_0^xrac{S(v)}{\sigma(v)^2}\,dv
ight\},\quad x\in\mathbb{R}.$$

Models under basic hypothesis \mathcal{H}_0

Switching diffusion

$$dX_t = -\frac{\rho}{\rho}\operatorname{sgn}(X_t - \frac{\theta}{\theta})dt + dW_t, \quad X_0, \quad 0 \le t \le T$$

- $dX_t = -\operatorname{sgn}(X_t) dt + dW_t$
 - The limit distribution of the C-vM type statistics have been studied
 - Explicit representation of the limiting processes have been found
- $dX_t = -\rho \operatorname{sgn}(X_t \theta) dt + dW_t$, ρ , θ are unknown
 - Asymptotic properties of the estimators have been studied
 - The limit distribution of the C-vM type statistics have been studied

General case

 $S_0(x)$ is some known function

Explicit representations of the limit distribution of C-vM type statistics with different weighted functions have been found

Testing problem

Hypothesis

 \mathcal{H}_0 : The observed trajectory $X^T = \{X_t, 0 \leq t \leq T\}$ is solution of SDE

$$dX_t = -\operatorname{sgn}(X_t) dt + dW_t, \quad X_0, \quad 0 \le t \le T, \tag{1}$$

where $S_0(x) = -\operatorname{sgn}(x)$ is a discontinuous function and taking just two values +1 and -1.

Testing problem

Hypothesis

 \mathcal{H}_0 : The observed trajectory $X^T = \{X_t, 0 \leq t \leq T\}$ is solution of SDE

$$dX_t = -\operatorname{sgn}(X_t) dt + dW_t, \quad X_0, \quad 0 \le t \le T, \tag{1}$$

where $S_0(x) = -\operatorname{sgn}(x)$ is a discontinuous function and taking just two values +1 and -1.

ullet The conditions \mathcal{RP} are fulfilled and (1) is an ergodic diffusion process.

Testing problem

Hypothesis

 \mathcal{H}_0 : The observed trajectory $X^T = \{X_t, 0 \leq t \leq T\}$ is solution of SDE

$$dX_t = -\operatorname{sgn}(X_t) dt + dW_t, \quad X_0, \quad 0 \le t \le T, \tag{1}$$

where $S_0(x) = -\operatorname{sgn}(x)$ is a discontinuous function and taking just two values +1 and -1.

- ullet The conditions \mathcal{RP} are fulfilled and (1) is an ergodic diffusion process.
- Its density $f_{S_0}(x)$ and invariant distribution function $F_{S_0}(x)$ are:

$$f_{S_0}(x) = e^{-2|x|}, \quad F_{S_0}(x) = \mathbf{1}_{\{x>0\}} - \frac{1}{2}\operatorname{sgn}(x)\,e^{-2|x|}, \quad x \in \mathbb{R}.$$

Tests statistics

C-vM type tests statistics

$$\varphi_{T}(X^{T}) = 1_{\{V_{T}^{2} > d_{\alpha}\}}, \quad T \int_{\mathbb{R}} [f_{T}^{\circ}(x) - f_{S_{0}}(x)]^{2} dx,$$

$$\varphi_{T}(X^{T}) = 1_{\{W_{T}^{2} > c_{\alpha}\}}, \quad T \int_{\mathbb{R}} [f_{T}^{\circ}(x) - f_{S_{0}}(x)]^{2} dF_{S_{0}}(x).$$

These tests statistics were proposed by Dachian and Kutoyants (2007) and are based on the local time estimator:

$$f_T^{\circ}(x) = \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon T} \int_0^T 1_{\{|X_t - x| \le \varepsilon\}} dt = \frac{\Lambda_T(x)}{T} \quad \text{for} \quad x \in \mathbb{R},$$

where $\Lambda_T(x)$ is the local time of the diffusion process (Revuz et Yor, 1991).

Auxiliary result

LTE

The local time estimator $f_T^{\circ}(x)$ is unbiased and \sqrt{T} asymptotically normal

$$\eta_T(x) = \sqrt{T} \left(f_T^\circ(x) - f_S(x) \right) \Longrightarrow \mathcal{N} \left(0, R_f(x,x) \right) \quad \text{as} \quad T \to \infty.$$

Moreover, the process $(\eta_T(x), x \in \mathbb{R})$ converges weakly to the zero mean Gaussian process $(\eta_f(x), x \in \mathbb{R})$ with the covariance function

$$R_f(x,y) = 4f_S(x)f_S(y) \mathbf{E}_S\left(\frac{[1_{\{\xi>x\}} - F_S(\xi)][1_{\{\xi>y\}} - F_S(\xi)]}{\sigma(X_t)^2 f_S(\xi)^2}\right).$$

Kutoyants (1997, 2004)

Auxiliary result

LTE

The local time estimator $f_T^{\circ}(x)$ is unbiased and \sqrt{T} asymptotically normal

$$\eta_T(x) = \sqrt{T} \left(f_T^\circ(x) - f_S(x) \right) \Longrightarrow \mathcal{N} \left(0, R_f(x,x) \right) \quad \text{as} \quad T \to \infty.$$

Moreover, the process $(\eta_T(x), x \in \mathbb{R})$ converges weakly to the zero mean Gaussian process $(\eta_f(x), x \in \mathbb{R})$ with the covariance function

$$R_f(x,y) = 4f_S(x)f_S(y) \mathbf{E}_S\left(\frac{[1_{\{\xi>x\}} - F_S(\xi)][1_{\{\xi>y\}} - F_S(\xi)]}{\sigma(X_t)^2 f_S(\xi)^2}\right).$$

Kutoyants (1997, 2004)

Davydov-Bosq(1999): LTE of the density of wide class of stationary processes.

Auxiliary result

LTE

The local time estimator $f_T^{\circ}(x)$ is unbiased and \sqrt{T} asymptotically normal

$$\eta_T(x) = \sqrt{T} \left(f_T^{\circ}(x) - f_S(x) \right) \Longrightarrow \mathcal{N} \left(0, R_f(x, x) \right) \quad \text{as} \quad T \to \infty.$$

Moreover, the process $(\eta_T(x), x \in \mathbb{R})$ converges weakly to the zero mean Gaussian process $(\eta_f(x), x \in \mathbb{R})$ with the covariance function

$$R_f(x,y) = 4f_S(x)f_S(y) \mathbf{E}_S\left(\frac{[1_{\{\xi>x\}} - F_S(\xi)][1_{\{\xi>y\}} - F_S(\xi)]}{\sigma(X_t)^2 f_S(\xi)^2}\right).$$

Kutoyants (1997, 2004)

Davydov-Bosq(1999): LTE of the density of wide class of stationary processes. **Remark.** Note that these statistics are not distribution-free even asymptotically and the choice of thresholds c_{α} and d_{α} for these tests is much more complicate due the structure of the covariance of the process $(\eta_f(x), x \in \mathbb{R})$.

Karhunen-Loève expansion in $\mathbb R$

Assumptions

- $Z(t), t \in \mathbb{R}$ centered Gaussian process
- $K(t,s) = \mathbb{E}Z(t)Z(s)$ continuous in \mathbb{R}^2
- $\int_{\mathbb{R}} K(s,s) ds < \infty$, $\lim_{|s| \to \infty} K(s,s) = 0$

The following decompositions hold a.s. (I.Novitskii, 1982, J.Buescu, 2004):

Karhunen-Loève expansion and Parseval's identity

$$Z(t) = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \, \xi_n \, e_n(t), \quad W^2 = \int_{\mathbb{R}} Z(t)^2 dt = \sum_{n=1}^{\infty} \lambda_n \, \xi_n^2, \ t \in \mathbb{R},$$

where $\{\xi_n: n \geq 1\}$ are i.i.d. $\mathcal{N}(0,1)$ and $\lambda_n, e_n, n \geq 1$ are the eigenvalues and the eigenfunctions of the Hilbert-Schmidt operator $\mathcal{K}: L_2[\mathbb{R}] \to L_2[\mathbb{R}]$:

$$\mathcal{K}(f) = \int_{\mathbb{R}} K(t,s) f(s) ds.$$

Let us introduce the Gaussian process $(\eta_f(x), x \in \mathbb{R})$ with zero mean and covariance function given by

$$R_f(x,y) = 2\left(1_{\{x \lor y < 0\}}e^{2(x \land y)} + 1_{\{x \land y \ge 0\}}e^{-2(x \lor y)}\right) - (2(|x| + |y|) + \operatorname{sgn}(xy))e^{-2(|x| + |y|)}.$$

Theorem

Under hypothesis \mathcal{H}_0 , we have the convergence

$$V_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_0}(x) \right]^2 dx \Longrightarrow \int_{\mathbb{R}} \eta_f^2(x) dx.$$

Let us introduce the Gaussian process $(\eta_f(x), x \in \mathbb{R})$ with zero mean and covariance function given by

$$R_f(x,y) = 2\left(1_{\{x \lor y < 0\}}e^{2(x \land y)} + 1_{\{x \land y \ge 0\}}e^{-2(x \lor y)}\right) - (2(|x| + |y|) + \operatorname{sgn}(xy))e^{-2(|x| + |y|)}.$$

Theorem

Under hypothesis \mathcal{H}_0 , we have the convergence

$$V_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_0}(x) \right]^2 dx \Longrightarrow \int_{\mathbb{R}} \eta_f^2(x) dx.$$

Denote by d_{α} the critical value defined by the equation

$$\mathbf{P}_{S_0}\left\{\int_{\mathbb{R}}\eta_f^2(x)\,dx>d_\alpha\right\}=\alpha,$$

Proposition

The C-vM type test $\varphi_T(X^T) = 1_{\{V_T^2 > d_\alpha\}}$ belongs to \mathcal{K}_α and is consistent.

Explicit representation of $\eta_f(\cdot)$

Theorem

The Gaussian process $(\eta_f(x), x \in \mathbb{R})$ has a K-L expansion given by

$$\eta_f(x) = -\sum_{n=1}^{\infty} \frac{2 \, \xi_n}{z_{1,n}} \operatorname{sgn}(x) \, e^{-|x|} \, \frac{J_1\left(z_{1,n} \, e^{-|x|}\right)}{J_0\left(z_{1,n}\right)}$$

$$+\sum\limits_{n = 1}^\infty {\frac{{2\,{\xi _n'}}}{{{z_n'}}}\,{e^{ - \left| x \right|}}} \frac{{{\left({{Y_2}\left({{z_n'}} \right) + \frac{4}{{\pi z_n''^2}}} \right)\,{J_1}\left({{z_n'}\,{e^{ - \left| x \right|}}} \right) - {J_2}\left({{z_n'}} \right)\left({{Y_1}\left({{z_n'}\,{e^{ - \left| x \right|}}} \right) + \frac{{2\,{e^{\left| x \right|}}}}{{\pi z_n''}}} \right)}}{{{J_1}\left({{z_n'}} \right)\left({{Y_2}\left({{z_n'}} \right) + \frac{4}{{\pi z_n'^2}}} \right) - {Y_1}\left({{z_n'}} \right)\,{J_2}\left({{z_n'}} \right)}}$$

where $\{\xi_n, n \geq 1\}$, $\{\xi_n', n \geq 1\}$ denote two independent sequences of i.i.d. $\mathcal{N}(0,1)$ r.v.'s, $\{z_{1,n}, n \geq 1\}$ the positive zeros of $J_1(\cdot)$ and $\{z_n', n \geq 1\}$ solutions of equation

$$J_{2}\left(z\right)\left(Y_{0}\left(z\right)-2\left(\ln(z/2)+\gamma\right)/\pi\right)-\left(J_{0}\left(z\right)-1\right)\left(Y_{2}\left(z\right)+4/(\pi z^{2})\right)=0,$$

with $J_{\nu}(\cdot)$ and $Y_{\nu}(\cdot)$ the Bessel function of 1st and 2nd kind respectively.

Parseval's identity

$$V^{2} = \int_{\mathbb{R}} \eta_{f}^{2}(x) dx \stackrel{law}{=} \sum_{n=1}^{\infty} \frac{4}{z_{1,n}^{2}} \xi_{n}^{2} + \sum_{n=1}^{\infty} \frac{4}{z_{n}^{\prime 2}} \xi_{n}^{\prime 2}.$$

Parseval's identity

$$V^{2} = \int_{\mathbb{R}} \eta_{f}^{2}(x) dx \stackrel{law}{=} \sum_{n=1}^{\infty} \frac{4}{z_{1,n}^{2}} \xi_{n}^{2} + \sum_{n=1}^{\infty} \frac{4}{z_{n}^{\prime 2}} \xi_{n}^{\prime 2}.$$

Fubini's theorem

$$1 = \int_{\mathbb{R}} R_f(x, x) \, dx = \sum_{n=1}^{\infty} \frac{4}{z_{1,n}^2} + \sum_{n=1}^{\infty} \frac{4}{z_n'^2} \stackrel{\text{(a)}}{=} \frac{1}{2} + \sum_{n=1}^{\infty} \frac{4}{z_n'^2}$$

(a) - Rayleigh's formula
$$\sum_{n=1}^{\infty} \frac{1}{z_{\nu,n}^2} = \frac{1}{4(\nu+1)}$$
.

Parseval's identity

$$V^{2} = \int_{\mathbb{R}} \eta_{f}^{2}(x) dx \stackrel{law}{=} \sum_{n=1}^{\infty} \frac{4}{z_{1,n}^{2}} \xi_{n}^{2} + \sum_{n=1}^{\infty} \frac{4}{z_{n}^{\prime 2}} \xi_{n}^{\prime 2}.$$

Fubini's theorem

$$1 = \int_{\mathbb{R}} R_f(x, x) \, dx = \sum_{n=1}^{\infty} \frac{4}{z_{1,n}^2} + \sum_{n=1}^{\infty} \frac{4}{z_n'^2} \stackrel{\text{(a)}}{=} \frac{1}{2} + \sum_{n=1}^{\infty} \frac{4}{z_n'^2}$$

- (a) Rayleigh's formula $\sum_{n=1}^{\infty} \frac{1}{z_{\nu,n}^2} = \frac{1}{4(\nu+1)}$.
- ullet Numerical simulation (for $N=10^5$) gives

$$|\sum_{n=1}^{N} \frac{4}{z_n'^2} - \frac{1}{2}| \le 10^{-3}$$

Theorem

Under hypothesis \mathcal{H}_{0} , we have the convergence

$$W_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_0}(x) \right]^2 dF_{S_0}(x) \Longrightarrow \int_{\mathbb{R}} \eta_f^2(x) dF_{S_0}(x).$$

Theorem

Under hypothesis \mathcal{H}_0 , we have the convergence

$$W_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_0}(x) \right]^2 dF_{S_0}(x) \Longrightarrow \int_{\mathbb{R}} \eta_f^2(x) dF_{S_0}(x).$$

Denote by c_{α} the critical value defined by the equation

$$\mathbf{P}_{S_0}\left\{\int_{\mathbb{R}}\eta_f^2(x)dF_{S_0}(x)>c_\alpha\right\}=\alpha.$$

Proposition

The C-vM type test $\phi_T(X^T) = 1_{\{W_T^2 > c_\alpha\}}$ belongs to \mathcal{K}_α and is consistent.

Theorem

Under hypothesis \mathcal{H}_0 , we have the convergence

$$W_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_0}(x) \right]^2 dF_{S_0}(x) \Longrightarrow \int_{\mathbb{R}} \eta_f^2(x) dF_{S_0}(x).$$

Denote by c_{α} the critical value defined by the equation

$$\mathbf{P}_{S_0}\left\{\int_{\mathbb{R}}\eta_f^2(x)dF_{S_0}(x)>c_\alpha\right\}=\alpha.$$

Proposition

The C-vM type test $\phi_T(X^T) = 1_{\{W_T^2 > c_\alpha\}}$ belongs to \mathcal{K}_α and is consistent.

Making the transformation $t = F_{S_0}(x)$, we obtain

$$\int_{\mathbb{R}} \eta_f^2(x) dF_{S_0}(x) = \int_0^1 \tilde{\eta}_f^2(t) dt,$$

where the Gaussian process $(\tilde{\eta}_f(t), 0 \le t \le 1)$ has covariance function given by

$$K_f(s,t) = (1-|2s-1|)(1-|2t-1|)\ln\left[(1-|2s-1|)(1-|2t-1|)\right] + 4s \wedge t(1-s \vee t).$$

Explicit representation of $\tilde{\eta}_f(\cdot)$

Theorem

The Gaussian process $(\tilde{\eta}_f(t), 0 \leq t \leq 1)$ has a K-L expansion given by

$$\begin{split} \tilde{\eta}_f(t) &= \sum_{n \geq 1} (\xi_n/(n\pi)) \, \sqrt{2} \, \mathrm{sgn}(1/2-t) \, \mathrm{sin} \, (n \, \pi (1-|2 \, t-1|)) \\ &+ \sum_{n \geq 1} (\xi_n'/\nu_n) \, \sqrt{2} [(\alpha(\nu_n)/\nu_n - \dot{\alpha}(\nu_n)) \, \mathrm{sin} \, (\nu_n (1-|2 \, t-1|)) \\ &- (\mathrm{sin}(\nu_n)/\nu_n - \mathrm{cos}(\nu_n)) \, \alpha \, (\nu_n (1-|2 \, t-1|))] / \mathrm{Si}(\nu_n), \end{split}$$

where $\{\xi_n, n \geq 1\}$, $\{\xi_n', n \geq 1\}$ two independent sequences of i.i.d. $\mathcal{N}(0,1)$ r.v's and $\{\nu_n, n \geq 1\}$ the solutions of equation

$$G(r)\left[\sin(r)-r\cos(r)\right]-Si(r)\left[\alpha(r)-r\dot{\alpha}(r)\right]=0,$$

with $\alpha(r) = Ci(r)\sin(r) - Si(r)\cos(r)$, $\dot{\alpha}(r) = \frac{d}{dr}\alpha(r)$, $G(r) = \int_0^r \frac{\alpha(s)}{s} ds$ and $Ci(\cdot)$, $Si(\cdot)$ the cosine and sine integral respectively.

Parseval's identity

$$W^2 = \int_0^1 \tilde{\eta}_f^2(t) dt \stackrel{law}{=} \sum_{n=1}^\infty \frac{\xi_n^2}{n^2 \pi^2} + \sum_{n=1}^\infty \frac{\xi_n'^2}{\nu_n^2}.$$

Parseval's identity

$$W^{2} = \int_{0}^{1} \tilde{\eta}_{f}^{2}(t) dt \stackrel{law}{=} \sum_{n=1}^{\infty} \frac{\xi_{n}^{2}}{n^{2}\pi^{2}} + \sum_{n=1}^{\infty} \frac{\xi_{n}^{\prime 2}}{\nu_{n}^{2}}.$$

• Fubini's theorem

$$\frac{4}{9} = \int_0^1 K_f(t,t) dt = \sum_{n=1}^\infty \frac{1}{n^2 \pi^2} + \sum_{n=1}^\infty \frac{1}{\nu_n^2} \stackrel{\text{(a)}}{=} \frac{1}{6} + \sum_{n=1}^\infty \frac{1}{\nu_n^2}$$

(a) - Euler's formula $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Parseval's identity

$$W^{2} = \int_{0}^{1} \tilde{\eta}_{f}^{2}(t) dt \stackrel{law}{=} \sum_{n=1}^{\infty} \frac{\xi_{n}^{2}}{n^{2}\pi^{2}} + \sum_{n=1}^{\infty} \frac{\xi_{n}^{\prime 2}}{\nu_{n}^{2}}.$$

Fubini's theorem

$$\frac{4}{9} = \int_0^1 K_f(t,t) dt = \sum_{n=1}^\infty \frac{1}{n^2 \pi^2} + \sum_{n=1}^\infty \frac{1}{\nu_n^2} \stackrel{\text{(a)}}{=} \frac{1}{6} + \sum_{n=1}^\infty \frac{1}{\nu_n^2}$$

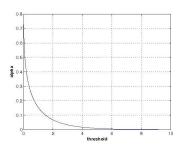
- (a) Euler's formula $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- Numerical simulation (for $N=10^5$) gives

$$\left|\sum_{n=1}^{N} \frac{1}{\nu_n^2} - \frac{5}{18}\right| \le 1.2 \times 10^{-3}$$

Numerical Results, I

- **Table 1**: Values of some quantiles of the random variable V^2 .
- **Figure 1**: Thresholds choice of the random variable V^2 .

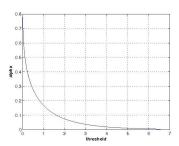
α	d_{lpha}
0.10	1.619
0.05	2.563
0.025	3.596
0.010	5.868
0.005	6.197



Numerical Results, II

- **Table 2**: Values of some quantiles of the random variable W^2 .
- **Figure 2**: Thresholds choice of the random variable W^2 .

α	c_{lpha}
0.10	1.501
0.05	2.420
0.025	3.433
0.010	5.050
0.005	6.004



Smirnov's formula

The approach that can be used here to calculate the quantiles for the distribution of W^2 and V^2 in Tables 1 and 2 is based on the Smirnov formula:

$$F(x) = 1 + \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^n \int_{\gamma_{2n-1}}^{\gamma_{2n}} \frac{e^{-xu^2/2}}{u\sqrt{|D(u^2)|}} du \quad \text{for} \quad x \ge 0.$$

Smirnov's formula

The approach that can be used here to calculate the quantiles for the distribution of W^2 and V^2 in Tables 1 and 2 is based on the Smirnov formula:

$$F(x) = 1 + \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^n \int_{\gamma_{2n-1}}^{\gamma_{2n}} \frac{e^{-xu^2/2}}{u\sqrt{|D(u^2)|}} du \quad \text{for} \quad x \ge 0.$$

• For the distribution function of W^2 we have

$$D(u) = \frac{J_1(2\sqrt{u})}{\sqrt{u}} \prod_{n=1}^{\infty} \left(1 - \frac{4u}{z_n^2}\right).$$

with
$$\gamma_n = \{z_{1,n}/2, z'_n/2\}$$
, for $n \ge 1$.

Smirnov's formula

The approach that can be used here to calculate the quantiles for the distribution of W^2 and V^2 in Tables 1 and 2 is based on the Smirnov formula:

$$F(x) = 1 + \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^n \int_{\gamma_{2n-1}}^{\gamma_{2n}} \frac{e^{-xu^2/2}}{u\sqrt{|D(u^2)|}} du \quad \text{for} \quad x \ge 0.$$

• For the distribution function of W^2 we have

$$D(u) = \frac{J_1(2\sqrt{u})}{\sqrt{u}} \prod_{n=1}^{\infty} \left(1 - \frac{4u}{z_n'^2}\right).$$

with $\gamma_n = \{z_{1,n}/2, z'_n/2\}$, for $n \ge 1$.

• For the distribution function of V^2 we have

$$D(u) = \frac{\sin(\sqrt{u})}{\sqrt{u}} \prod_{n=1}^{\infty} \left(1 - \frac{u}{\nu_n^2}\right).$$

with $\gamma_n = \{n\pi, \nu_n\}$, for $n \ge 1$.

Parameter estimation

Let the observed process be

$$dX_t = -\rho \operatorname{sgn}(X_t - \theta)dt + dW_t, \quad X_0, \quad 0 \le t \le T,$$

We suppose that $\vartheta=(\rho,\theta)\in\Theta$ is unknown parameter and $\rho>0$. The process $(X_t)_{t\geq0}$ is an ergodic diffusion with the invariant density

$$f(\vartheta, x) = \rho e^{-2\rho|x-\theta|}, \text{ for } x \in \mathbb{R}.$$

The likelihood ratio function is

$$L(\vartheta, X^T) = \exp\left\{-\rho \int_0^T \operatorname{sgn}(X_t - \theta) dX_t - \frac{\rho^2}{2} T\right\}.$$

The MLE $\hat{\vartheta}_{\mathcal{T}}$ and BE $\tilde{\vartheta}_{\mathcal{T}}$ are defined as usual by the relations

$$L\left(\hat{\vartheta}_{\mathcal{T}}, X^{\mathcal{T}}\right) = \sup_{\vartheta \in \Theta} L\left(\vartheta, X^{\mathcal{T}}\right), \quad \tilde{\vartheta}_{\mathcal{T}} = \frac{\int_{\Theta} y \, p\left(y\right) \, L\left(y, X^{\mathcal{T}}\right) \, dy}{\int_{\Theta} p\left(y\right) \, L\left(y, X^{\mathcal{T}}\right) \, dy}.$$

Parameter estimation

Introduce the normalized likelihood ratio process

$$Z_{T}(w) = \frac{L(\vartheta + \varphi_{T} w, X^{T})}{L(\vartheta, X^{T})}, \quad \varphi_{T} = \begin{pmatrix} T^{-1/2} & 0 \\ 0 & T^{-1} \end{pmatrix}, \quad w = (u, v) \in \mathbb{R}^{2},$$

and the random vectors $\hat{w} = (\hat{v}, \hat{u})$ and $\tilde{w} = (\tilde{v}, \tilde{u})$ defined with the help of the following stochastic process:

$$Z_{\vartheta}(w) = Z_{\rho}(v) Z_{\theta}(u),$$

where

$$Z_{\rho}(v) = \exp\left\{v\,\zeta - rac{v^2}{2}
ight\}, \qquad Z_{\theta}(u) = \exp\left\{2\,
ho^{3/2}\,W(u) - 2\,
ho^3\,|u|
ight\},$$

as follows:

$$Z_{\vartheta}(\hat{w}) = \sup_{w \in \mathbb{R}^2} Z_{\vartheta}(w), \qquad \tilde{w} = \frac{\int_{\mathbb{R}^2} w \, Z_{\vartheta}(w) \, dw}{\int_{\mathbb{R}^2} Z_{\vartheta}(w) \, dw},$$

where $W(\cdot)$ is a two-sided Wiener process and ζ is $\mathcal{N}(0,1)$ random variable independent of $W(\cdot)$.

Parameter estimation

proposition

The MLE and BE are

• Consistent, i.e., for any $\nu > 0$

$$\mathbf{P}_{\vartheta}^{(\mathcal{T})}\left\{|\hat{\vartheta}_{\mathcal{T}} - \vartheta| > \nu\right\} \longrightarrow 0, \qquad \mathbf{P}_{\vartheta}^{(\mathcal{T})}\left\{|\tilde{\vartheta}_{\mathcal{T}} - \vartheta| > \nu\right\} \longrightarrow 0$$

Have different limit distributions

$$\varphi_T^{-1}(\hat{\vartheta}_T - \vartheta) \Longrightarrow \hat{w}, \qquad \varphi_T^{-1}(\tilde{\vartheta}_T - \vartheta) \Longrightarrow \tilde{w}$$

• The moments converge: for any p > 0

$$\mathbf{E}_{\vartheta} \left| \varphi_{T}^{-1} \left(\hat{\vartheta}_{T} - \vartheta \right) \right|^{P} \longrightarrow \mathbf{E}_{\vartheta} \left| \hat{w} \right|^{P}, \quad \mathbf{E}_{\vartheta} \left| \varphi_{T}^{-1} \left(\tilde{\vartheta}_{T} - \vartheta \right) \right|^{P} \longrightarrow \mathbf{E}_{\vartheta} \left| \tilde{w} \right|^{P}$$

The proof is based on the two remarkable Theorems 1.10.1 and 1.10.2 by Ibragimov and Khasminskii (1981).

Hypothesis

 $\mathcal{H}_* \colon \mathsf{The} \ \mathsf{observed} \ \mathsf{trajectory} \ X^{\mathsf{T}} = \{X_t, 0 \leq t \leq T\} \ \mathsf{is} \ \mathsf{solution} \ \mathsf{of} \ \mathsf{SDE}$

$$dX_t = -\rho \operatorname{sgn}(X_t - \theta) dt + dW_t, \quad X_0, \quad 0 \le t \le T,$$

where $S_*(x, \vartheta) = -\rho \operatorname{sgn}(x - \theta)$ and $\vartheta = (\rho, \theta) \in \Theta$ is unknown parameter.

Hypothesis

 \mathcal{H}_* : The observed trajectory $X^T = \{X_t, 0 \leq t \leq T\}$ is solution of SDE

$$dX_t = -\rho \operatorname{sgn}(X_t - \theta) dt + dW_t, \quad X_0, \quad 0 \le t \le T,$$

where $S_*(x,\vartheta) = -\rho \operatorname{sgn}(x-\theta)$ and $\vartheta = (\rho,\theta) \in \Theta$ is unknown parameter.

To test \mathcal{H}_* we use these statistics constructed with the help of the MLE or BE,

$$V_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_*}(x, \hat{\vartheta}_T) \right]^2 dx,$$

$$W_T^2 = T \int_{\mathbb{D}} \left[f_T^{\circ}(x) - f_{S_*}(x, \hat{\vartheta}_T) \right]^2 dF_{S_0}(x, \hat{\vartheta}_T).$$

Hypothesis

 \mathcal{H}_* : The observed trajectory $X^T = \{X_t, 0 \leq t \leq T\}$ is solution of SDE

$$dX_t = -\rho \operatorname{sgn}(X_t - \theta) dt + dW_t, \quad X_0, \quad 0 \le t \le T,$$

where $S_*(x,\vartheta) = -\rho \operatorname{sgn}(x-\theta)$ and $\vartheta = (\rho,\theta) \in \Theta$ is unknown parameter.

To test \mathcal{H}_{\ast} we use these statistics constructed with the help of the MLE or BE,

$$V_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_*}(x, \hat{\vartheta}_T) \right]^2 dx,$$

$$W_T^2 = T \int_{\mathbb{R}} \left[f_T^{\circ}(x) - f_{S_*}(x, \hat{\vartheta}_T) \right]^2 dF_{S_0}(x, \hat{\vartheta}_T).$$

Let us introduce the following Gaussian process

$$\zeta(x,\vartheta) = \eta(x,\vartheta) - \xi \frac{\partial}{\partial a} f_{S_*}(x,\vartheta), \quad \xi \sim \mathcal{N}(0,1).$$

Theorem

$$V_n^2 \Longrightarrow V^2 = \int_{\mathbb{R}} \zeta(x, \vartheta)^2 dx, \quad W_n^2 \Longrightarrow W^2 = \int_{\mathbb{R}} \zeta(x, \vartheta)^2 dF_{S_*}(x, \vartheta).$$

Denote by $d_{\alpha}(\vartheta)$ and $c_{\alpha}(\vartheta)$ the critical values defined by the equations

$$\mathbf{P}\left\{V^2 > d_{\alpha}(\vartheta)\right\} = \alpha, \quad \mathbf{P}\left\{W^2 > c_{\alpha}(\vartheta)\right\} = \alpha.$$

Proposition

The tests $\varphi_{\mathcal{T}}(X^{\mathcal{T}}) = 1_{\{V_{\mathcal{T}}^2 > d_{\alpha}(\hat{\vartheta})\}}$ and $\phi_{\mathcal{T}}(X^{\mathcal{T}}) = 1_{\{W_{\mathcal{T}}^2 > c_{\alpha}(\hat{\vartheta})\}}$ belong to \mathcal{K}_{α} .

Denote by $d_{\alpha}(\vartheta)$ and $c_{\alpha}(\vartheta)$ the critical values defined by the equations

$$\mathbf{P}\left\{V^2 > d_{\alpha}(\vartheta)\right\} = \alpha, \quad \mathbf{P}\left\{W^2 > c_{\alpha}(\vartheta)\right\} = \alpha.$$

Proposition

The tests
$$\varphi_T(X^T) = 1_{\{V_T^T > d_\alpha(\hat{\vartheta})\}}$$
 and $\phi_T(X^T) = 1_{\{W_T^2 > c_\alpha(\hat{\vartheta})\}}$ belong to \mathcal{K}_α .

Now, we consider the case of the one-dimensional parameter $\vartheta=\theta$, in this case, the choice of the thresholds c_α and d_α does not depend on the hypothesis \mathcal{H}_* and these constants are solutions of the equation

$$\mathbf{P}_{S_0}\left\{\int_{\mathbb{R}}\eta_f^2(x)\,dx>d_\alpha\right\}=\alpha,\quad \mathbf{P}_{S_0}\left\{\int_{\mathbb{R}}\eta_f^2(x)\,dF_{S_0}(x)>c_\alpha\right\}=\alpha.$$

Proposition

The tests $\varphi_T(X^T) = 1_{\{V_T^2 > d_\alpha\}}$ and $\phi_T(X^T) = 1_{\{W_T^2 > c_\alpha\}}$ belong to \mathcal{K}_α .

Asymptotically distribution-free tests

Hypothesis

 \mathcal{H}_0 : The observed trajectory X^T is solution of the SDE

$$\mathrm{d}X_t = S_0(X_t)\,\mathrm{d}t + \sigma(X_t)\,\mathrm{d}W_t, \quad 0 \le t \le T.$$

where $S_0(\cdot)$ is some known function.

Asymptotically distribution-free tests

Hypothesis

 \mathcal{H}_0 : The observed trajectory X^T is solution of the SDE

$$dX_t = S_0(X_t) dt + \sigma(X_t) dW_t, \quad 0 \le t \le T.$$

where $S_0(\cdot)$ is some known function.

Remind here the following results by Kutoyants (2010)

$$V_T^2 = T \int_{\mu}^{\infty} h(x) \left[f_T^{\circ}(x) - f_{S_0}(x) \right]^2 dF_{S_0}(x),$$

where μ is the median of invariant law $(F_0(\mu) = 1/2)$ and

$$h(x) = \frac{2F_{S_0}(x) - 1}{4\phi(\mu)^2 \sigma(x)^2 f_{S_0}(x)^4} \psi(\phi(x)/\phi(\mu)) \mathbf{1}_{\{x \ge \mu\}},$$

with $\psi(\cdot)$ is continuous and positive function and

$$\phi(x) = \int_{-\infty}^{\infty} \frac{\left(1_{\{y>x\}} - F_{S_0}(y)\right)^2}{\sigma(y)^2 f_{S_0}(y)} dy.$$

Asymptotically distribution-free tests

The second statistic is based on the empirical distribution function

$$\hat{F}_{T}(x) = \frac{1}{T} \int_{0}^{T} 1_{\{X_{t} < x\}} dt.$$

The corresponding statistic is:

$$W_T^2 = T \int_{\mathbb{R}} H(x) \left[\hat{F}_T(x) - F_{S_0}(x) \right]^2 dF_{S_0}(x),$$

where

$$H(x) = \frac{\Phi'(x)}{f_{S_0}(x) \left[F_{S_0}(x) - 1\right]^2} \psi(\Phi(x)),$$

and

$$\Phi\left(x\right) = \int_{-\infty}^{x} \frac{F_{\mathcal{S}_{0}}\left(y\right)^{2}}{\sigma\left(y\right)^{2} f_{\mathcal{S}_{0}}\left(y\right)} \mathrm{d}y + \left(\frac{F_{\mathcal{S}_{0}}\left(x\right)}{F_{\mathcal{S}_{0}}\left(x\right) - 1}\right)^{2} \int_{x}^{\infty} \frac{\left(F_{\mathcal{S}_{0}}\left(y\right) - 1\right)^{2}}{\sigma\left(y\right)^{2} f_{\mathcal{S}_{0}}\left(y\right)} \mathrm{d}y.$$

Limit distributions

It is shown that

$$V_T^2 \Longrightarrow \int_0^\infty \psi(t) W_{t+1}^2 dt, \qquad W_T^2 \Longrightarrow \int_0^\infty \psi(t) W_t^2 dt.$$
 (2)

Denote by d_{α} and c_{α} the critical values defined by the equations

$$\mathbf{P}_{S_0}\left\{\int_0^\infty \psi(t)\,W_{t+1}^2\,dt>d\alpha\right\}=\alpha,\quad \mathbf{P}_{S_0}\left\{\int_0^\infty \psi(t)\,W_t^2\,dt>c_\alpha\right\}=\alpha.$$

Hence the tests $\hat{\phi}_{\mathcal{T}}(X^{\mathcal{T}}) = 1_{\left\{V_{\mathcal{T}}^2 > d_{\alpha}\right\}}$ and $\tilde{\phi}_{\mathcal{T}}(X^{\mathcal{T}}) = 1_{\left\{W_{\mathcal{T}}^2 > c_{\alpha}\right\}}$ belong to \mathcal{K}_{α} and are asymptotically distribution-free.

Limit distributions

It is shown that

$$V_T^2 \Longrightarrow \int_0^\infty \psi(t) W_{t+1}^2 dt, \qquad W_T^2 \Longrightarrow \int_0^\infty \psi(t) W_t^2 dt.$$
 (2)

Denote by d_{α} and c_{α} the critical values defined by the equations

$$\mathbf{P}_{S_0}\left\{\int_0^\infty \psi(t)\,W_{t+1}^2\,dt>d_\alpha\right\}=\alpha,\quad \mathbf{P}_{S_0}\left\{\int_0^\infty \psi(t)\,W_t^2\,dt>c_\alpha\right\}=\alpha.$$

Hence the tests $\hat{\phi}_{\mathcal{T}}(X^T) = 1_{\left\{V_T^2 > d_{\alpha}\right\}}$ and $\tilde{\phi}_{\mathcal{T}}(X^T) = 1_{\left\{W_T^2 > c_{\alpha}\right\}}$ belong to \mathcal{K}_{α} and are asymptotically distribution-free.

Objective

We provide the explicit expressions of the limit statistics in (2) via direct calculation of Laplace transforms, for the particular cases

$$\psi(t) = (t+1)^{-2\beta}, \quad \beta = \frac{1}{2\nu} + 1 > 1 \quad \text{and} \quad \psi(t) = e^{-2t}.$$

Direct calculation of the Laplace transform

Riccati-Volterra type integral equation

Let $\gamma(t,s)$ be a unique solution of the equation

$$\gamma(t,s) = K(t,s) + u \int_0^s \gamma(t,r) \gamma(s,r) dr, \quad 0 \le s \le t,$$

such that $\gamma(s,s) = \gamma(s) \geq 0$.

Laplace transform and Fredholm determinant

The following equality holds, for $u < \frac{1}{\lambda_1}$

$$\mathbf{E}\exp\left(\frac{u}{2}\int_0^\infty Z(s)^2\,ds\right) = \exp\left(\frac{u}{2}\int_0^\infty \gamma(s,s)\,ds\right),\,$$

$$D(u) = \prod_{n=1}^{\infty} (1 - \lambda_n u) = \exp\left(-u \int_0^{\infty} \gamma(s, s) \, ds\right),$$

 $\lambda_{\it n}, \it n \geq 1$ -eigenvalues of the covariance operator of the process $\{Z(t), t \geq 0\}$.

Kleptsyna and Le Breton (2002)

Case:
$$\psi(\mathbf{t}) = \mathbf{e}^{-2\mathbf{t}}$$

Let $\{z_{0,n}, n \geq 1\}$ and $\{\delta_n, n \geq 1\}$ be respectively sequences of positive zeros of the Bessel function $J_0(\cdot)$ and solutions of equation:

$$J_0(\delta_n) - \delta_n J_1(\delta_n) = 0.$$

Theorem

The following equalities hold:

$$\begin{split} \mathbf{E} \exp \left(\frac{u}{2} \int_0^\infty e^{-2t} W_t^2 dt \right) &= \left[J_0(\sqrt{u}) \right]^{-\frac{1}{2}}, \quad u < z_{0,1}^2, \\ D(z) &= \prod_{n=1}^\infty \left(1 - \frac{z}{z_{0,n}^2} \right) = J_0(\sqrt{z}), \quad z \in \mathbb{C}, \\ \mathbf{E} \exp \left(\frac{u}{2} \int_0^\infty e^{-2t} W_{t+1}^2 dt \right) &= \left[J_0(\sqrt{u}) - \sqrt{u} \, J_1(\sqrt{u}) \right]^{-\frac{1}{2}}, \quad u < \delta_1^2, \\ D(z) &= \prod_{n=1}^\infty \left(1 - \frac{z}{\delta_n^2} \right) = J_0(\sqrt{z}) - \sqrt{z} \, J_1(\sqrt{z}), \quad z \in \mathbb{C}. \end{split}$$

Case:
$$\psi(\mathbf{t}) = \mathbf{e}^{-2\mathbf{t}}$$

The direct consequence is the following:

Corollary

The following equalities hold:

$$A^2 = \int_0^\infty e^{-2t} W_t^2 dt \stackrel{law}{=} \sum_{n=1}^\infty \frac{\xi_n^2}{z_{0,n}^2},$$

$$B^2 = \int_0^\infty e^{-2t} W_{t+1}^2 dt \stackrel{law}{=} \sum_{n=1}^\infty \frac{\xi_n^2}{\delta_n^2},$$

where $\{\xi_n, n \geq 1\}$, are i.i.d. $\mathcal{N}(0,1)$ random variables.

Tables of the limit distribution

The following Tables provide some values of quantiles of distributions of A^2 and B^2 . Calculations were based on the explicit form of the Smirnov formula

$$\mathbf{P}(A^2 > x) = \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \int_{z_{0,2n-1}}^{z_{0,2n}} \frac{e^{-xu^2/2}}{u\sqrt{-J_0(u)}} du,$$

$$\mathbf{P}(B^2 > x) = \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \int_{\delta_{2n-1}}^{\delta_{2n}} \frac{e^{-xu^2/2}}{u\sqrt{|J_0(u) - u J_1(u)|}} du.$$

$P(A^2 > x)$	X
0.10	0.552
0.05	0.747
0.01	1.229
0.005	1.445
0.001	1.954

$\mathbf{P}\left(B^2>x\right)$	X
0.10	1.832
0.05	2.552
0.01	4.323
0.005	5.113
0.001	6.982

Case:
$$\psi(\mathbf{t}) = (\mathbf{t} + \mathbf{1})^{-2\beta}$$

Let $\{z_{\nu,n}, n \geq 1\}$ the sequence of positive zeros of the Bessel function $J_{\nu}(\cdot)$

Theorem

The following equalities hold:

$$\begin{split} \mathbf{E} \exp \left(\frac{u}{2} \int_0^\infty (t+1)^{-2\beta} W_t^2 dt \right) &= \left[\Gamma(\nu+1) \, \frac{J_\nu(2\nu\sqrt{u})}{(\nu\sqrt{u})^\nu} \right]^{-\frac{1}{2}}, \quad u < \frac{z_{\nu,1}^2}{4\nu^2}, \\ D(z) &= \prod_{n=1}^\infty \left(1 - \frac{4\nu^2 z}{z_{\nu,n}^2} \right) &= \Gamma(\nu+1) \, \frac{J_\nu(2\nu\sqrt{z})}{(\nu\sqrt{z})^\nu}, \quad z \in \mathbb{C}. \end{split}$$

Corollary

The following identity holds:

$$\int_0^\infty (t+1)^{-2\beta} W_t^2 dt \stackrel{\text{law}}{=} 4\nu^2 \sum_{n=1}^\infty \frac{\xi_n^2}{z_{\nu,n}^2},$$

where $\{\xi_n, n \geq 1\}$, are i.i.d. $\mathcal{N}(0,1)$ random variables.

Case:
$$\psi(t) = (t + 1)^{-2\beta}$$

Remark. It is shown by Deheuvels and Martynov (2003) that

$$\mathbf{E} \exp \left(\frac{u}{2} \int_0^1 t^{2(\beta-2)} B(t)^2 dt \right) = \left[\Gamma(\nu+1) \frac{J_{\nu}(2\nu\sqrt{u})}{(\nu\sqrt{u})^{\nu}} \right]^{-\frac{1}{2}} \quad u < \frac{z_{\nu,1}^2}{4\nu^2}.$$

Thus, the following equality holds:

$$\int_0^\infty (t+1)^{-2\beta} W_t^2 dt \stackrel{law}{=} \int_0^1 t^{2(\beta-2)} B(t)^2 dt.$$

Case:
$$\psi(\mathbf{t}) = (\mathbf{t} + \mathbf{1})^{-2\beta}$$

Remark. It is shown by Deheuvels and Martynov (2003) that

$$\mathbf{E} \exp \left(\frac{u}{2} \int_0^1 t^{2(\beta-2)} B(t)^2 dt \right) = \left[\Gamma(\nu+1) \frac{J_\nu(2\nu\sqrt{u})}{(\nu\sqrt{u})^\nu} \right]^{-\frac{1}{2}} \quad u < \frac{z_{\nu,1}^2}{4\nu^2}.$$

Thus, the following equality holds:

$$\int_0^\infty (t+1)^{-2\beta} W_t^2 dt \stackrel{law}{=} \int_0^1 t^{2(\beta-2)} B(t)^2 dt.$$

Theorem (Deheuvels and Martynov 2003)

The following equalities hold:

$$\begin{split} \mathbf{E} \exp \left(\frac{u}{2} \int_0^\infty (t+1)^{-2\beta} W_{t+1}^2 dt \right) &= \left[\Gamma(\nu) \, \frac{J_{\nu-1}(2\nu\sqrt{u})}{(\nu\sqrt{u})^{\nu-1}} \right]^{-\frac{1}{2}}, \quad u < \frac{z_{\nu-1,1}^2}{4\nu^2}, \\ D(z) &= \prod_{j=0}^\infty \left(1 - \frac{4\nu^2 z}{z^2} \right) = \Gamma(\nu) \, \frac{J_{\nu-1}(2\nu\sqrt{z})}{(\nu\sqrt{z})^{\nu-1}}, \quad z \in \mathbb{C}. \end{split}$$

Publications

- Gassem, A., On parameter estimation for switching diffusion process, Statistics & Probability Letters, Volume 79, Issue 24, 2484-2492, 2009.
- Gassem, A., Goodness-of-fit test for switching diffusion, Statistical Inference for Stochastic processes, Volume 13, Number 2, 97-123, 2010.
- Gassem, A., On Cramér-von Mises type test based on local time of switching diffusion process, à paraître dans: Journal of Statistical Planning and Inference.
- Gassem, A., On the goodness-of-fit testing for switching diffusion process, soumis.
- Gassem, A., On limit distributions of some goodness-of-fit tests statistics for ergodic diffusion processes, soumis.

Open questions

- ullet extension of the direct Laplace transform calculations method to ${\mathbb R}$
- Switching diffusion
 - explicit representation of the Fredholm determinant
 - explicit representation of weighted functions

Merci de votre attention