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Motivation : anisotropic phenomena

The solutions of many PDE’s exhibit a strongly anisotropic
behavior.

I Boundary layers in fluid simulation.

I Spikes and edges of metallic objects in electromagnetism.

I Shockwaves in transport equations.

Figure: Fluid simulation around a supersonic plane (F. Alauzet).
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Mesh optimization

A general objective: reduce at best the trade-off between
accuracy and numerical complexity.

I Accuracy: for example, the error between the solution and
its approximation in some given norm.

I Complexity: typically tied to the cardinality of the mesh.
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An appetizer: given a function f : Ω→ R and an integer N,
construct a triangulation T of Ω which minimizes

‖∇(f − IT f )‖L2(Ω),

over all triangulations such that #(T ) ≤ N, with IT the
piecewise linear interpolant.

In the numerical examples N = 500 and

f (x , y) := tanh(10(sin(5y)− 2x)) + x2y + y 3.
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Figure: Sharp transition along the curve sin(5y) = 2x , of width 1/10.
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A classical result

Let Ω ⊂ R2 be a polygonal domain, let f ∈ H2(Ω) and let T
be a triangulation.

Ciarlet-Raviart
On each T ∈ T , the local error satisfies

‖∇(f − IT f )‖L2(T ) ≤ C0
h2
T

rT
‖d2f ‖L2(T ),

where hT := diam(T ) and rT is the radius of the largest disc
inscribed in T , and C0 is an absolute constant.

Consequence: with h = maxT∈T hT

‖∇(f − IT f )‖L2(Ω) ≤ C (T )h‖d2f ‖L2(Ω),

with C (T ) = C0 maxT∈T
hT
rT

that remains bounded for
isotropic triangulations.
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In terms of N = #(T ), this gives

√
N ‖∇(f − IT f )‖L2(Ω) ≤ C ′(T ) ‖d2f ‖L2(Ω),

where C ′(T ) = C0

√
|Ω|maxT∈T h2

T /rT

minT∈T
√
|T |

, that remains bounded for

uniform triangulations:

h ∼ hT ∼ rT ∼
√
|T | ⇒ h ∼ N−1/2.
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The parameters of a triangle.

Position Area Aspect ratio Angles

and orientation

Uniform Isotropic Anisotropic Optimal

triangulation triangulation triangulation anisotropic

triangulation
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Isotropic meshes: the triangle seen as a disk.

Theorem (Adaptive approximation: DeVore-Yu)

For any f ∈W 2,1(Ω), Ω =]0, 1[2, there exists a sequence
(TN)N≥2 of (isotropic) triangulations of Ω, #(TN) ≤ N, such
that √

N ‖∇(f − ITN f )‖L2(Ω) ≤ C‖M(d2f )‖L1(Ω)

M(g) : Hardy-Littlewood maximal function of g .
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Key principle : error equidistribution

Such sequences of triangulations may be obtained by a
hierarchical refinement algorithm, starting from a coarse mesh.

I Refine the triangle with largest local error
‖∇(f − IT f )‖L2(T ).

I Propagate the refinement to preserve conformity.

I Iterate until prescribed number of triangles is met.
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Aspect ratio: the triangle seen as an ellipse.

The ellipse of minimal area containing a triangle T is defined by

(z − zT )THT (z − zT ) ≤ 1,

where HT is a symmetric positive definite matrix and zT is the
barycenter of T .
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Anisotropic mesh generation
Given a metric H : Ω→ S+

2 produce a triangulation T such
that : for any T ∈ T and any z ∈ T ,

H(z) ' HT

Figure: A metric and an adapted triangulation (credit: J. Schoen)

Theoretical results by Boissonat & al, Shewchuk & al.
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π = ax2 + 2bxy + cy 2 : homogeneous quadratic polynomial.

LG (π) := inf
det H=1

sup
HT =H

‖∇(π − IT π)‖L2(T ).

(Near) Minimizing matrix H

Figure: Level lines of π (red, dashed), ellipse (blue, thick) associated
to (near) optimal H which is proportional to the absolute value of the
matrix associated to π.

Explicit equivalent of LG

LG (π) '
√
‖π‖ 4

√
| detπ|,

where ‖π‖ and detπ are the norm and determinant of the
symmetric matrix associated to π.
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Local model :

f (x0+x , y0+y) = α+(βx+γy)+(ax2 + 2bxy + cy 2)︸ ︷︷ ︸
π= 1

2
d2f (x0,y0)

+O(|x |3+|y |3)

Theorem
For any bounded polygonal domain Ω and any f ∈ C 2(Ω) there
exists a sequence (TN)N≥N0 of triangulations of Ω,
#(TN) ≤ N, such that

lim sup
N→∞

√
N ‖∇(f − ITN f )‖L2(Ω) ≤ C‖LG (d2f )‖L1(Ω)
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An unusual estimate

lim sup
N→∞

√
N ‖∇(f − ITN f )‖L2(Ω) ≤ C‖LG (d2f )‖L1(Ω)

I The quantity LG (d2f (z)) '
√
‖d2f (z)‖ 4

√
| det(d2f (z))|

depends nonlinearly on f .
I Defining A(f ) := ‖LG (d2f )‖L1 we generally do not have

A(f + g) ≤ C (A(f ) + A(g)).

I The estimate holds asymptotically as N →∞.

An earlier estimate of this type was known for the Lp-norm.

Theorem (Chen, Sun, Xu; Babenko)

If f ∈ C 2(Ω) and 1 ≤ p ≤ ∞, then there exists a sequence
(TN)N≥N0 of triangulations of Ω, #(TN) ≤ N, such that

lim sup
N→∞

N ‖f − ITN f ‖Lp(Ω) ≤ C

∥∥∥∥√| det d2f |
∥∥∥∥

Lτ (Ω)

,
1

τ
:= 1+

1

p
.
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Angles: the triangle seen as a triangle (!)
π = ax2 + 2bxy + cy 2 : homogeneous quadratic polynomial.

LA(π) := inf
|T |=1

‖∇(π − IT π)‖L2(T ).

Figure: Interpolation of a parabola on a acute or obtuse mesh.
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Angles: the triangle seen as a triangle (!)
π = ax2 + 2bxy + cy 2 : homogeneous quadratic polynomial.

LA(π) := inf
|T |=1

‖∇(π − IT π)‖L2(T ).

(Near) Minimizing triangle

Π � x2 Ε + y2

LG Þ
hT

rT

>

1

Ε

LA Þ
hT

rT

>

1

Ε

Figure: The minimizing triangle for LA has acute angles and is more
anisotropic than the minimizing ellipse for LG .

Explicit equivalent of LA

LA(π) '
√
| detπ|.
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Theorem
For any bounded polygonal domain Ω and any f ∈ C 2(Ω) there
exists a sequence (TN)N≥N0 of triangulations of Ω,
#(TN) ≤ N, such that

lim sup
N→∞

√
N ‖∇(f − ITN f )‖L2(Ω) ≤

∥∥∥∥LA

(
d2f

2

)∥∥∥∥
L1(Ω)

.

Furthermore for any admissible sequence (TN)N≥N0 of
triangulations, #(TN) ≤ N, one has

lim inf
N→∞

√
N ‖∇(f − ITN f )‖L2(Ω)≥

∥∥∥∥LA

(
d2f

2

)∥∥∥∥
L1(Ω)

.

Admissibility :

sup
N≥N0

(
N

1
2 sup

T∈TN
diam(T )

)
<∞.
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Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale
local patching strategy. (Not suited for applications)

I Initial triangulation of the domain.

I The interior of each cell is tiled with a triangle “optimally
adapted” in size and shape to the Taylor development of f .

I Additional triangles at the interfaces ensure conformity.
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Introduction : Parameters of a triangle

Questions raised in the thesis
Equivalence of meshes and metrics
Finite elements of arbitrary degree
Anisotropic smoothness classes
Hierarchical anisotropic triangulations

Conclusion and perspectives
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Equivalence of meshes and metrics
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Metrics and triangulations on R2

Definition (Equivalence triangulation/metric)

A (conforming) triangulation T of R2 is C -equivalent to a
metric H ∈ C 0(R2, S+

2 ) if for all T ∈ T and z ∈ T one has

C−1H(z) ≤ HT ≤ C H(z).

Figure: A metric and an equivalent triangulation, Credit : J. Schoen
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Metrics and triangulations on R2

Definition (Equivalence triangulation/metric)

A (conforming) triangulation T of R2 is C -equivalent to a
metric H ∈ C 0(R2, S+

2 ) if for all T ∈ T and z ∈ T one has

C−1H(z) ≤ HT ≤ C H(z).

Definition (Equivalence collection of triangulations/
collection of metrics)

A collection T of triangulations of R2 is equivalent to a
collection H ⊂ C 0(R2,S+

2 ) of metrics if there exists C such
that

I ∀T ∈ T, ∃H ∈ H, such that T and H are C -equivalent.

I ∀H ∈ H, ∃T ∈ T, such that T and H are C -equivalent.
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Isotropic triangulations

Theorem (reformulation of earlier work)

The collection T of all triangulations T satisfying for each
T ∈ T

diam(T )2 ≤ 4|T |

is equivalent to the collection H of metrics H of the form

H(z) =
Id

s(z)2
where |s(z)− s(z ′)| ≤ |z − z ′|

Triangulations
produced by
FreeFem
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From isotropic to anisotropic metrics

Isotropic “Lipschitz” metrics

H(z) = s(z)−2 Id. Two equivalent properties:

I (d) ∀z , z ′ ∈ R2, |s(z)− s(z ′)| ≤ |z − z ′|
I (r) ∀z , z ′ ∈ R2,

∣∣∣ln( s(z ′)
s(z)

)∣∣∣ ≤ dH(z , z ′)

where dH denotes the Riemannian distance

dH(z , z ′) := inf
γ(0)=z
γ(1)=z ′

∫ 1

0

√
γ′(t)T H(γ(t)) γ′(t) dt.

Anisotropic “Lipschitz” metrics

H(z) = S(z)−2. Two natural (but non-equivalent)
generalizations:

I (D) ∀z , z ′ ∈ R2, ‖S(z)− S(z ′)‖ ≤ |z − z ′|
I (R)
∀z , z ′ ∈ R2, 1

2

∥∥ln
(
S(z)−1S(z ′)2S(z)−1

)∥∥ ≤ dH(z , z ′)
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Graded Triangulations

Definition
A triangulation T of R2 is K -graded if for all T ,T ′ ∈ T ,

T intersects T ′ ⇒ K−1HT ≤ HT ′ ≤ K HT .

Non Graded Graded

Theorem
For any K ≥ K0 the collection T of K -graded triangulations is
equivalent to the collection H of metrics satisfying (R).

Key ingredient : mesh generation results by Labelle, Shewchuk.
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Heuristic of the construction of T from H
Construct a collection V ⊂ R2 of sites which satisfies:

covering For all z ∈ R2, dH(z ,V) := minv∈V d(z , v) ≤ 1.

separation For all v 6= w ∈ V, dH(v ,w) ≥ 1. (or ≥ δ0 > 0).

Connect sites when Anisotropic Voronoi regions intersect.

Euclidean case Vor(v) := {z ; |z − v | = minw∈V |z − w |}.
Peyré, & al Vor(v) := {z ; dH(z , v) = minw∈V dH(z ,w)}.

Shewchuk, & al Define ‖u‖M :=
√

uTMu,

Vor(v) := {z ; ‖z − v‖H(v) = min
w∈V
‖z − w‖H(w)}.

1

2

3

4
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6
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QuasiAcute triangulations

Definition
A triangulation T is K -QuasiAcute if

I T is K -graded.

I There exists a K -refinement T ′ of T such that any angle
θ of any T ∈ T ′ satisfies

θ ≤ π − 1

K
.

T : K -QuasiAcute T ′ : K -refinement of T .



Adaptive
anisotropic

approx:
Theory and
algorithms

Jean-Marie
Mirebeau

Parameters

Position

Area

Aspect ratio and
orientation

Angles

Questions
raised

Equivalence of
meshes and
metrics

Arbitrary degree

Smoothness
classes

Hierarchical
triangulations

Conclusion

QuasiAcute triangulations

Definition
A triangulation T is K -QuasiAcute if

I T is K -graded.

I There exists a K -refinement T ′ of T such that any angle
θ of any T ∈ T ′ satisfies
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QuasiAcute triangulations

Definition
A triangulation T is K -QuasiAcute if

I T is K -graded.

I There exists a K -refinement T ′ of T such that any angle
θ of any T ∈ T ′ satisfies

θ ≤ π − 1

K
.

Theorem
For all K ≥ K0 the collection T of K-QuasiAcute triangulations
is equivalent to the collection H of metrics satisfying
simultaneously (R) and (D).
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A comparison: how to capture a curvilinear discontinuity.

Objective: layer of width δ of triangles covering a smooth
curve, using an Isotropic, QuasiAcute or Graded triangulation.

Isotropic QuasiAcute

#(T ) ' δ−1 #(T ) ' δ−
1
2 | ln δ|

Graded No restriction

#(T ) ' δ−
1
2 #(T ) ' δ−

1
2
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Finite elements
of arbitrary degree m − 1

Measuring error in Lp: � J.-M. Mirebeau, Optimal meshes for
finite elements of arbitrary order, Constructive Approximation,
2010.

Measuring error in W 1,p semi-norm: � J.-M. Mirebeau,
Optimal meshes for finite elements of arbitrary order and W 1,p

norms, to appear in Numerische Mathematik, 2011.

In this talk we only consider the W 1,2 semi-norm and L2 norm.
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For all π ∈ IHm (homogeneous polynomials of degree m)

LA(π) := inf
|T |=1

‖∇(π − Im−1
T π)‖L2(T ).

Im−1
T : Lagrange interpolant of degree m − 1.

Theorem (Optimal asymptotic interpolation error)

For any bounded polygonal domain Ω, and any f ∈ Cm(Ω)
there exists a sequence (TN)N≥N0 of triangulations of Ω,
#(TN) ≤ N, such that

lim sup
N→∞

N
m−1

2 ‖∇(f − Im−1
TN f )‖L2(Ω) ≤

∥∥∥∥LA

(
dmf

m!

)∥∥∥∥
L

2
m (Ω)

.

Furthermore for any admissible sequence of triangulations
(TN)N≥N0 , #(TN) ≤ N, one has

lim inf
N→∞

N
m−1

2 ‖∇(f − Im−1
TN f )‖L2(Ω)≥

∥∥∥∥LA

(
dmf

m!

)∥∥∥∥
L

2
m (Ω)

.
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For all π ∈ IHm (homogeneous polynomials of degree m)

LA(π) := inf
|T |=1

‖∇(π − Im−1
T π)‖L2(T ).

Proposition (Explicit minimizing triangle, m = 2 or 3)

Any acute triangle T , |T | = 1, such that HT is proportional to
the following matrix is a (near) minimizer of the optimization
defining LA(π).

I m = 2, π = ax2 + 2bxy + cy 2, matrix:

(
a b

b c

)2

I m = 3, π = ax3 + 3bx2y + 3cxy 2 + dy 3, matrix:

MA(π) :=

√√√√( a b

b c

)2

+

(
b c

c d

)2

.

Explicit minimizing triangle for m > 3: open problem.
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Optimal metric for the approximation of f
(heuristic)

Set
H(z) := λ(det M(z))

−1
2m M(z),

where λ > 0 is a sufficiently large constant and

I (m = 2), M(z) ' [d2f (z)]2.

I (m = 3), M(z) 'MA(d3f (z)).

Mesh generation:

1. Produce a QuasiAcute triangulation T which is
C -equivalent to H.

2. Interpolate f on the refinement T ′ on which angles are
uniformly bounded.

⇒ Optimal estimate up to a fixed multiplicative constant.
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Conclusion

For all π ∈ IHm (homogeneous polynomials of degree m)

LA(π) := inf
|T |=1

‖∇(π − Im−1
T π)‖L2(T ).

Polynomials on IHm : Q(π) = Q̃(a0, · · · , am) if
π = a0xm + a1xm−1y + · · ·+ amym.

Proposition (Explicit equivalent of LA)

There exists a polynomial Q on IHm, of degree r , such that

LA(π) ' |Q(π)|1/r

uniformly.

I m = 2, LA(π) '
√
| detπ|.

I m = 3, LA(π) '
√

detMA(π).

I m ≥ 4 : explicit polynomials Q are obtained using
Hilbert’s theory of invariants.
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Optimizing only the aspect ratio:

LG (π) := inf
det H=1

sup
HT =H

‖∇(π − Im−1
T π)‖2.

Proposition (Explicit minimizing ellipse, m = 2 or 3)

The matrix H such that det H = 1 and which is proportional to
the following is a (near) minimiser of the optimization problem
defining LG (π).

I m = 2, π = ax2 + 2bxy + cy 2, matrix :

∣∣∣∣∣
(

a b

b c

)∣∣∣∣∣ .
I m = 3, π = ax3 + 3bx2y + 3cxy 2 + dy 3

MG (π) :=MA(π) +

(
− disc(π)

‖π‖

) 1
3

+

Id,

where discπ = 4(ac − b2)(bd − c2)− (ad − bc)2.
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Anisotropic metric (heuristic)
Set

H(z) := λ(det M(z))
−1
2m M(z)

where λ > 0 is a constant and
I (m = 2), M(z) := ‖[d2f (z)]‖ |[d2f (z)]|.
I (m = 3), M(z) :=MG (d3f (z)).

Interpolate f on a mesh T which is C -equivalent to H
⇒ estimate in terms of LG .

Figure: Interpolation with anisotropic IP2 elements.



Adaptive
anisotropic

approx:
Theory and
algorithms

Jean-Marie
Mirebeau

Parameters

Position

Area

Aspect ratio and
orientation

Angles

Questions
raised

Equivalence of
meshes and
metrics

Arbitrary degree

Smoothness
classes

Hierarchical
triangulations

Conclusion

Anisotropic metric (heuristic)
Set

H(z) := λ(det M(z))
−1
2m M(z)

where λ > 0 is a constant and
I (m = 2), M(z) := ‖[d2f (z)]‖ |[d2f (z)]|.
I (m = 3), M(z) :=MG (d3f (z)).

Interpolate f on a mesh T which is C -equivalent to H
⇒ estimate in terms of LG .

Numerical experiments : ‖∇(f − Im−1
T f )‖L2 , with 500

triangles.

Uniform Isotropic Based on LG Based on LA

IP1 110 51 11 ?

IP2 79 14 0.88 ?
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Anisotropic smoothness classes:
from finite element approximation to image models

Figure: A cartoon function, and an adapted triangulation. Picture :
Gabriel Peyré

� A. Cohen, J.-M. Mirebeau, Anisotropic smoothness classes:
from finite element approximation to image models, Journal of
Mathematical Imaging and Vision, 2010.
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Approximation of cartoon functions

If g =
∑

1≤i≤r giχΩi
where gi ∈ C 2(Ωi ) and ∂Ωi is piecewise

C 2, then there exists a sequence (TN)N≥N0 of triangulations
such that

N‖g − ITN g‖L2(Ω) ≤ C (g).

On the other hand, we have for smooth functions:

Theorem (Chen,Sun Xu; Babenko)

If f ∈ C 2(Ω) and (TN)N≥N0 is an optimally adapted sequence
then

lim sup
N→∞

N ‖f − ITN f ‖L2(Ω) ≤ C

∥∥∥∥√| det d2f |
∥∥∥∥

L
2
3 (Ω)

How to connect these estimates ?

Does
∥∥∥√| det d2g |

∥∥∥
L

2
3

make sense if g is a cartoon function ?
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For any f ∈ C 2(Ω)

J(f ) :=

∥∥∥∥√| det d2f |
∥∥∥∥

L
2
3

.

If g is a cartoon function with discontinuity set E we define

J(g) := lim
δ→0

J(g ∗ ϕδ),

where ϕδ := δ−2ϕ(δ−1·) is a mollifier.

Proposition

J(g)
2
3 =

∥∥∥∥√| det d2g |
∥∥∥∥ 2

3

L
2
3 (Ω\E)

+ C (ϕ)
∥∥∥[g ]

√
|κ|
∥∥∥ 2

3

L
2
3 (E)

where [g ] is the jump of g, and κ the curvature of E .

Compare with

TV (g) = ‖∇g‖L1(Ω\E) + ‖[g ]‖L1(E).
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Piecewise constant functions

TV (g) =

∫
Γ
|[g ]|

J(g)
2
3 =

∫
Γ
|[g ]|

2
3 |κ|

1
3

Figure: TV (g) ' J(g)

1

0

Figure: TV (g)� J(g)
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Hierarchical sequences
of anisotropic triangulations

� A. Cohen, N. Dyn, F.Hecht, J.-M. Mirebeau, Adaptive
multiresolution analysis based on anisotropic triangulations,
accepted in Maths of Comp 2010

� A. Cohen, J.-M. Mirebeau, Greedy bisection generates
optimally adapted triangulations, accepted in Maths of Comp
2010
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Hierarchical sequences
of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs
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Conclusion

Given a triangulation of a domain and a function f :

I Select the triangle on which the L2 interpolation error is
maximal ‖f − IT f ‖L2(T ).

I Bisect it along one median, so as to minimize the resulting
L1 interpolation error.

I Repeat these steps until targeted number of triangles is
met.

Figure: Algorithm proposed by : N. Dyn, F. Hecht, A. Cohen
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Proposition (Identification of the bisection)

The algorithm applied to f (x , y) = x2 + y 2 chooses to cut the
longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.

For any triangle T with edges |a| ≥ |b| ≥ |c| we define

σ(T ) :=
|b|2 + |c |2

4|T |
.

Proposition

If T1,T2 are obtained by bisecting the longest edge of T then

max{σ(T1), σ(T2)} ≤ σ(T ).
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Proposition (Identification of the bisection)

The algorithm applied to f (x , y) = x2 + y 2 chooses to cut the
longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.

For any triangle T with edges |a| ≥ |b| ≥ |c| we define

σ(T ) :=
|b|2 + |c |2

4|T |
.

Proposition

One of the eight children (Ti )
8
i=1 of T obtained by bisecting

recursively three times the longest edge satisfies

σ(Ti ) ≤ 0.69σ(T ) or σ(Ti ) ≤ 5.
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Proposition (Identification of the bisection)

The algorithm applied to f (x , y) = x2 + y 2 chooses to cut the
longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.

For any triangle T with edges |a| ≥ |b| ≥ |c| we define

σ(T ) :=
|b|2 + |c |2

4|T |
.

Markov chain argument ⇒ almost all triangles adopt an
isotropic aspect ratio.
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Theorem
The algorithm applied to any strongly convex function
f ∈ C 2(Ω) produces a sequence (TN)N≥N0 of triangulations
which satisfies the (optimal) estimate

lim sup
N→∞

N ‖f − ITN f ‖L2(Ω) ≤ C‖
√
| det d2f |‖

L
2
3 (Ω)

Figure: Algorithm applied to
f (x , y) = x2 + 100y 2
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Conclusion:
I A result of algorithmic geometry for QuasiAcute

triangulations.

I Sharp asymptotic estimates for IPm interpolation error on
optimal mesh, for H1 but also Lp and W 1,p norms.

I Some quantities remain meaningful for cartoon functions.
e.g. J(f ) = ‖

√
det(d2f )‖

L
2
3

.

I Combining hierarchy and anisotropy is possible (without
conformity).

Perspectives:
I Numerical applications to IP2 elements in PDEs.
I Realistic mesh generation algorithms for QuasiAcute

triangulations.
I Extension to dimension d > 2.
I Non asymptotic error estimates.

Thank you for your attention.
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