Adaptive
anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Adaptive and anisotropic finite element approximation: Theory and algorithms

Jean-Marie Mirebeau
University Paris VI
Laboratoire Jacques Louis Lions

December 6, 2010

Ph.D directed by Albert Cohen

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations Conclusion

Motivation : anisotropic phenomena

The solutions of many PDE's exhibit a strongly anisotropic behavior.

- Boundary layers in fluid simulation.
- Spikes and edges of metallic objects in electromagnetism.
- Shockwaves in transport equations.

Figure: Fluid simulation around a supersonic plane (F. Alauzet).

Adaptive

Mesh optimization

A general objective: reduce at best the trade-off between accuracy and numerical complexity.

- Accuracy: for example, the error between the solution and its approximation in some given norm.
- Complexity: typically tied to the cardinality of the mesh.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

An appetizer: given a function $f: \Omega \rightarrow \mathbb{R}$ and an integer N, construct a triangulation \mathcal{T} of Ω which minimizes

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(\Omega)},
$$

over all triangulations such that $\#(\mathcal{T}) \leq N$, with $\mathrm{I}_{\mathcal{T}}$ the piecewise linear interpolant.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations

An appetizer: given a function $f: \Omega \rightarrow \mathbb{R}$ and an integer N, construct a triangulation \mathcal{T} of Ω which minimizes

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(\Omega)}
$$

over all triangulations such that $\#(\mathcal{T}) \leq N$, with $\mathrm{I}_{\mathcal{T}}$ the piecewise linear interpolant.

In the numerical examples $N=500$ and

$$
f(x, y):=\tanh (10(\sin (5 y)-2 x))+x^{2} y+y^{3}
$$

Figure: Sharp transition along the curve $\sin (5 y)=2 x$, of width $1 / 10$.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes triangulations

A classical result

Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain, let $f \in H^{2}(\Omega)$ and let \mathcal{T} be a triangulation.

Ciarlet-Raviart

On each $T \in \mathcal{T}$, the local error satisfies

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)} \leq C_{0} \frac{h_{T}^{2}}{r_{T}}\left\|d^{2} f\right\|_{L^{2}(T)}
$$

where $h_{T}:=\operatorname{diam}(T)$ and r_{T} is the radius of the largest disc inscribed in T, and C_{0} is an absolute constant.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

A classical result

Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain, let $f \in H^{2}(\Omega)$ and let \mathcal{T} be a triangulation.

Ciarlet-Raviart

On each $T \in \mathcal{T}$, the local error satisfies

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)} \leq C_{0} \frac{h_{T}^{2}}{r_{T}}\left\|d^{2} f\right\|_{L^{2}(T)}
$$

where $h_{T}:=\operatorname{diam}(T)$ and r_{T} is the radius of the largest disc inscribed in T, and C_{0} is an absolute constant.

Consequence: with $h=\max _{T \in \mathcal{T}} h_{T}$

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(\Omega)} \leq C(\mathcal{T}) h\left\|d^{2} f\right\|_{L^{2}(\Omega)}
$$

with $C(\mathcal{T})=C_{0} \max _{T \in \mathcal{T}} \frac{h_{T}}{r_{T}}$ that remains bounded for isotropic triangulations.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

In terms of $N=\#(\mathcal{T})$, this gives

$$
\sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(\Omega)} \leq C^{\prime}(\mathcal{T})\left\|d^{2} f\right\|_{L^{2}(\Omega)},
$$

where $C^{\prime}(\mathcal{T})=C_{0} \sqrt{|\Omega|} \frac{\max _{T \in \mathcal{T}} h_{T}^{2} / r_{T}}{\min _{T \in \mathcal{T}} \sqrt{|T|}}$, that remains bounded for uniform triangulations:

$$
h \sim h_{T} \sim r_{T} \sim \sqrt{|T|} \Rightarrow h \sim N^{-1 / 2}
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics Arbitrary degree Smoothness classes
Hierarchical triangulations Conclusion

The parameters of a triangle.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions
raised
Equivalence of meshes and metrics

The parameters of a triangle.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position

Area

Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Isotropic meshes: the triangle seen as a disk.
Theorem (Adaptive approximation: DeVore-Yu)
For any $\left.f \in W^{2,1}(\Omega), \Omega=\right] 0,1\left[{ }^{2}\right.$, there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq 2}$ of (isotropic) triangulations of $\Omega, \#\left(\mathcal{T}_{N}\right) \leq N$, such that

$$
\sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq C\left\|M\left(d^{2} f\right)\right\|_{L^{1}(\Omega)}
$$

$M(g)$: Hardy-Littlewood maximal function of g.

Key principle : error equidistribution

Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution

Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution

Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution

Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution

Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Key principle : error equidistribution
Such sequences of triangulations may be obtained by a hierarchical refinement algorithm, starting from a coarse mesh.

- Refine the triangle with largest local error

$$
\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}} f\right)\right\|_{L^{2}(T)}
$$

- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters Position
Area
Aspect ratio and orientation Angles

Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics Arbitrary degree
Smoothness classes
Hierarchical triangulations Conclusion

Anisotropic mesh generation

Given a metric $H: \Omega \rightarrow S_{2}^{+}$produce a triangulation \mathcal{T} such that : for any $T \in \mathcal{T}$ and any $z \in T$,

$$
H(z) \simeq \mathcal{H}_{T}
$$

Figure: A metric and an adapted triangulation (credit: J. Schoen)

Theoretical results by Boissonat \& al, Shewchuk \& al.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics Arbitrary degree
$\pi=a x^{2}+2 b x y+c y^{2}:$ homogeneous quadratic polynomial.

$$
L_{G}(\pi):=\inf _{\operatorname{det} H=1} \sup _{\mathcal{H}_{T}=H}\left\|\nabla\left(\pi-\mathrm{I}_{T} \pi\right)\right\|_{L^{2}(T)} .
$$

$$
\text { (Near) Minimizing matrix } H
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions raised
$\pi=a x^{2}+2 b x y+c y^{2}:$ homogeneous quadratic polynomial.

$$
L_{G}(\pi):=\inf _{\operatorname{det} H=1} \sup _{\mathcal{H}_{T}=H}\left\|\nabla\left(\pi-\mathrm{I}_{T} \pi\right)\right\|_{L^{2}(T)}
$$

(Near) Minimizing matrix H

Figure: Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions raised
$\pi=a x^{2}+2 b x y+c y^{2}:$ homogeneous quadratic polynomial.

$$
L_{G}(\pi):=\inf _{\operatorname{det} H=1} \sup _{\mathcal{H}_{T}=H}\left\|\nabla\left(\pi-\mathrm{I}_{T} \pi\right)\right\|_{L^{2}(T)} .
$$

(Near) Minimizing matrix H

Figure: Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π.
Explicit equivalent of L_{G}

$$
L_{G}(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\operatorname{det} \pi|}
$$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Local model :

$$
f\left(x_{0}+x, y_{0}+y\right)=\alpha+(\beta x+\gamma y)+\underbrace{\left(a x^{2}+2 b x y+c y^{2}\right)}_{\pi=\frac{1}{2} d^{2} f\left(x_{0}, y_{0}\right)}+\mathcal{O}\left(|x|^{3}+|y|^{3}\right)
$$

Theorem
For any bounded polygonal domain Ω and any $f \in C^{2}(\bar{\Omega})$ there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations of Ω, $\#\left(\mathcal{T}_{N}\right) \leq N$, such that

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{I}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq C\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}(\Omega)}
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations

An unusual estimate

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq C\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}(\Omega)}
$$

- The quantity $L_{G}\left(d^{2} f(z)\right) \simeq \sqrt{\left\|d^{2} f(z)\right\|} \sqrt[4]{\left|\operatorname{det}\left(d^{2} f(z)\right)\right|}$ depends nonlinearly on f.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised Equivalence of meshes and metrics Arbitrary degree
Smoothness classes

An unusual estimate

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{I}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq C\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}(\Omega)}
$$

- The quantity $L_{G}\left(d^{2} f(z)\right) \simeq \sqrt{\left\|d^{2} f(z)\right\|} \sqrt[4]{\left|\operatorname{det}\left(d^{2} f(z)\right)\right|}$ depends nonlinearly on f.
- Defining $A(f):=\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}}$ we generally do not have

$$
A(f+g) \leq C(A(f)+A(g))
$$

\rightarrow The estimate holds asymptotically as $N \rightarrow$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics Arbitrary degree

An unusual estimate

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{I}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq C\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}(\Omega)}
$$

- The quantity $L_{G}\left(d^{2} f(z)\right) \simeq \sqrt{\left\|d^{2} f(z)\right\|} \sqrt[4]{\left|\operatorname{det}\left(d^{2} f(z)\right)\right|}$ depends nonlinearly on f.
- Defining $A(f):=\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}}$ we generally do not have

$$
A(f+g) \leq C(A(f)+A(g)) .
$$

- The estimate holds asymptotically as $N \rightarrow \infty$.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions
raised
Equivalence of meshes and metrics

Arbitrary degree

Smoothness
classes
Hierarchical triangulations

An unusual estimate

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq C\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}(\Omega)}
$$

- The quantity $L_{G}\left(d^{2} f(z)\right) \simeq \sqrt{\left\|d^{2} f(z)\right\|} \sqrt[4]{\left|\operatorname{det}\left(d^{2} f(z)\right)\right|}$ depends nonlinearly on f.
- Defining $A(f):=\left\|L_{G}\left(d^{2} f\right)\right\|_{L^{1}}$ we generally do not have

$$
A(f+g) \leq C(A(f)+A(g))
$$

- The estimate holds asymptotically as $N \rightarrow \infty$.

An earlier estimate of this type was known for the L^{p}-norm. Theorem (Chen, Sun, Xu; Babenko) If $f \in C^{2}(\bar{\Omega})$ and $1 \leq p \leq \infty$, then there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations of $\Omega, \#\left(\mathcal{T}_{N}\right) \leq N$, such that
$\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{p}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\tau}(\Omega)}, \quad \frac{1}{\tau}:=1+\frac{1}{p}$.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics

Angles: the triangle seen as a triangle (!) $\pi=a x^{2}+2 b x y+c y^{2}$: homogeneous quadratic polynomial.

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T} \pi\right)\right\|_{L^{2}(T)}
$$

Figure: Interpolation of a parabola on a acute or obtuse mesh.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations
Conclusion

Angles: the triangle seen as a triangle (!)
$\pi=a x^{2}+2 b x y+c y^{2}$: homogeneous quadratic polynomial.

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T} \pi\right)\right\|_{L^{2}(T)}
$$

(Near) Minimizing triangle

$$
\begin{gathered}
L_{G} \Rightarrow \frac{h_{T}}{r_{T}} \simeq \frac{1}{\sqrt{\epsilon}} \\
L_{A} \Rightarrow \frac{h_{T}}{r_{T}} \simeq \frac{1}{\epsilon}
\end{gathered}
$$

$$
\pi=x^{2} \epsilon+y^{2}
$$

Figure: The minimizing triangle for L_{A} has acute angles and is more anisotropic than the minimizing ellipse for L_{G}.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness
classes
Hierarchical triangulations
Conclusion

Angles: the triangle seen as a triangle (!)
$\pi=a x^{2}+2 b x y+c y^{2}$: homogeneous quadratic polynomial.

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T} \pi\right)\right\|_{L^{2}(T)}
$$

(Near) Minimizing triangle

$$
\begin{gathered}
L_{G} \Rightarrow \frac{h_{T}}{r_{T}} \simeq \frac{1}{\sqrt{\epsilon}} \\
L_{A} \Rightarrow \frac{h_{T}}{r_{T}} \simeq \frac{1}{\epsilon}
\end{gathered}
$$

$$
\pi=x^{2} \epsilon+y^{2}
$$

Figure: The minimizing triangle for L_{A} has acute angles and is more anisotropic than the minimizing ellipse for L_{G}.

Explicit equivalent of L_{A}

$$
L_{A}(\pi) \simeq \sqrt{|\operatorname{det} \pi|}
$$

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Theorem
For any bounded polygonal domain Ω and any $f \in C^{2}(\bar{\Omega})$ there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations of Ω, $\#\left(\mathcal{T}_{N}\right) \leq N$, such that

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq\left\|L_{A}\left(\frac{d^{2} f}{2}\right)\right\|_{L^{1}(\Omega)}
$$

Theorem
For any bounded polygonal domain Ω and any $f \in C^{2}(\bar{\Omega})$ there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations of Ω, $\#\left(\mathcal{T}_{N}\right) \leq N$, such that

$$
\limsup _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}} f\right)\right\|_{L^{2}(\Omega)} \leq\left\|L_{A}\left(\frac{d^{2} f}{2}\right)\right\|_{L^{1}(\Omega)}
$$

Furthermore for any admissible sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations, $\#\left(\mathcal{T}_{N}\right) \leq N$, one has

$$
\liminf _{N \rightarrow \infty} \sqrt{N}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}} f\right)\right\|_{L^{2}(\Omega)} \geq\left\|L_{A}\left(\frac{d^{2} f}{2}\right)\right\|_{L^{1}(\Omega)}
$$

Admissibility :

$$
\sup _{N \geq N_{0}}\left(N^{\frac{1}{2}} \sup _{T \in \mathcal{T}_{N}} \operatorname{diam}(T)\right)<\infty
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics Arbitrary degree
Smoothness classes
Hierarchical triangulations
Conclusion

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle adapted" in size and shape to the Taylor development of f - Additional triangles at the interfaces ensure conformity

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions raised

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of f.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions raised

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of f.
- Additional triangles at the interfaces ensure conformity.

Parameters

Introduction: Parameters of a triangle

Questions raised in the thesis Equivalence of meshes and metrics Finite elements of arbitrary degree Anisotropic smoothness classes Hierarchical anisotropic triangulations

Conclusion and perspectives

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics Arbitrary degree

Metrics and triangulations on \mathbb{R}^{2}

Definition (Equivalence triangulation/metric)
A (conforming) triangulation \mathcal{T} of \mathbb{R}^{2} is C-equivalent to a metric $H \in C^{0}\left(\mathbb{R}^{2}, S_{2}^{+}\right)$if for all $T \in \mathcal{T}$ and $z \in T$ one has

$$
C^{-1} H(z) \leq \mathcal{H}_{T} \leq C H(z) .
$$

Figure: A metric and an equivalent triangulation, Credit : J. Schoen

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions

raised

Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Metrics and triangulations on \mathbb{R}^{2}

Definition (Equivalence triangulation/metric)
A (conforming) triangulation \mathcal{T} of \mathbb{R}^{2} is C-equivalent to a metric $H \in C^{0}\left(\mathbb{R}^{2}, S_{2}^{+}\right)$if for all $T \in \mathcal{T}$ and $z \in T$ one has

$$
C^{-1} H(z) \leq \mathcal{H}_{T} \leq C H(z)
$$

Definition (Equivalence collection of triangulations/ collection of metrics)
A collection \mathbb{T} of triangulations of \mathbb{R}^{2} is equivalent to a collection $\mathbb{H} \subset C^{0}\left(\mathbb{R}^{2}, S_{2}^{+}\right)$of metrics if there exists C such that

- $\forall \mathcal{T} \in \mathbb{T}, \exists H \in \mathbb{H}$, such that \mathcal{T} and H are C-equivalent.
- $\forall H \in \mathbb{H}, \exists \mathcal{T} \in \mathbb{T}$, such that \mathcal{T} and H are C-equivalent.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics Arbitrary degree

Isotropic triangulations

Theorem (reformulation of earlier work)
The collection \mathbb{T} of all triangulations \mathcal{T} satisfying for each $T \in \mathcal{T}$

$$
\operatorname{diam}(T)^{2} \leq 4|T|
$$

is equivalent to the collection \mathbb{H} of metrics H of the form

$$
H(z)=\frac{\mathrm{Id}}{s(z)^{2}} \quad \text { where } \quad\left|s(z)-s\left(z^{\prime}\right)\right| \leq\left|z-z^{\prime}\right|
$$

Triangulations produced by FreeFem

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics Arbitrary degree Smoothness classes

From isotropic to anisotropic metrics

Isotropic "Lipschitz" metrics
$H(z)=s(z)^{-2}$ Id. Two equivalent properties:

- (d) $\forall z, z^{\prime} \in \mathbb{R}^{2},\left|s(z)-s\left(z^{\prime}\right)\right| \leq\left|z-z^{\prime}\right|$
where d_{H} denotes the Riemannian distance

generalizations:

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions

raised

Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

From isotropic to anisotropic metrics

Isotropic "Lipschitz" metrics
$H(z)=s(z)^{-2}$ Id. Two equivalent properties:

- (d) $\forall z, z^{\prime} \in \mathbb{R}^{2},\left|s(z)-s\left(z^{\prime}\right)\right| \leq\left|z-z^{\prime}\right|$
- (r) $\forall z, z^{\prime} \in \mathbb{R}^{2},\left|\ln \left(\frac{s\left(z^{\prime}\right)}{s(z)}\right)\right| \leq d_{H}\left(z, z^{\prime}\right)$
where d_{H} denotes the Riemannian distance

$$
d_{H}\left(z, z^{\prime}\right):=\inf _{\substack{\gamma(0)=z \\ \gamma(1)=z^{\prime}}} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} d t
$$

Anisotropic "Lipschitz" metrics
$H(z)=S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions

raised

Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations
Conclusion

From isotropic to anisotropic metrics

Isotropic "Lipschitz" metrics
$H(z)=s(z)^{-2}$ Id. Two equivalent properties:

- (d) $\forall z, z^{\prime} \in \mathbb{R}^{2},\left|s(z)-s\left(z^{\prime}\right)\right| \leq\left|z-z^{\prime}\right|$
- (r) $\forall z, z^{\prime} \in \mathbb{R}^{2},\left|\ln \left(\frac{s\left(z^{\prime}\right)}{s(z)}\right)\right| \leq d_{H}\left(z, z^{\prime}\right)$
where d_{H} denotes the Riemannian distance

$$
d_{H}\left(z, z^{\prime}\right):=\inf _{\substack{\gamma(0)=z \\ \gamma(1)=z^{\prime}}} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} d t
$$

Anisotropic "Lipschitz" metrics
$H(z)=S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

- (D) $\forall z, z^{\prime} \in \mathbb{R}^{2}, \quad\left\|S(z)-S\left(z^{\prime}\right)\right\| \leq\left|z-z^{\prime}\right|$
- (R)

$$
\forall z, z^{\prime} \in \mathbb{R}^{2}, \quad \frac{1}{2}\left\|\ln \left(S(z)^{-1} S\left(z^{\prime}\right)^{2} S(z)^{-1}\right)\right\| \leq d_{H}\left(z, z^{\prime}\right)
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations

Conclusion

Graded Triangulations

Definition

A triangulation \mathcal{T} of \mathbb{R}^{2} is K-graded if for all $T, T^{\prime} \in \mathcal{T}$,

$$
T \text { intersects } T^{\prime} \Rightarrow K^{-1} \mathcal{H}_{T} \leq \mathcal{H}_{T^{\prime}} \leq K \mathcal{H}_{T}
$$

Non Graded

Graded

Theorem
For any $K \geq K_{0}$ the collection \mathbb{T} of K-graded triangulations is equivalent to the collection \mathbb{H} of metrics satisfying (R). Key ingredient mesh generation results by Labelle, Shewchuk.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Graded Triangulations

Definition

A triangulation \mathcal{T} of \mathbb{R}^{2} is K-graded if for all $T, T^{\prime} \in \mathcal{T}$,

$$
T \text { intersects } T^{\prime} \Rightarrow K^{-1} \mathcal{H}_{T} \leq \mathcal{H}_{T^{\prime}} \leq K \mathcal{H}_{T}
$$

Non Graded

Graded

Theorem

For any $K \geq K_{0}$ the collection \mathbb{T} of K-graded triangulations is equivalent to the collection \mathbb{H} of metrics satisfying (R).
Key ingredient : mesh generation results by Labelle, Shewchuk.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics Arbitrary degree
Smoothness classes

Heuristic of the construction of \mathcal{T} from H
Construct a collection $\mathcal{V} \subset \mathbb{R}^{2}$ of sites which satisfies:
covering For all $z \in \mathbb{R}^{2}, d_{H}(z, \mathcal{V}):=\min _{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}, d_{H}(v, w) \geq 1$. (or $\geq \delta_{0}>0$).

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions

raised

Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Heuristic of the construction of \mathcal{T} from H
Construct a collection $\mathcal{V} \subset \mathbb{R}^{2}$ of sites which satisfies:
covering For all $z \in \mathbb{R}^{2}, d_{H}(z, \mathcal{V}):=\min _{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}, d_{H}(v, w) \geq 1$. (or $\geq \delta_{0}>0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $\operatorname{Vor}(v):=\left\{z ;|z-v|=\min _{w \in \mathcal{V}}|z-w|\right\}$.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Heuristic of the construction of \mathcal{T} from H
Construct a collection $\mathcal{V} \subset \mathbb{R}^{2}$ of sites which satisfies:
covering For all $z \in \mathbb{R}^{2}, d_{H}(z, \mathcal{V}):=\min _{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}, d_{H}(v, w) \geq 1$. (or $\geq \delta_{0}>0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $\operatorname{Vor}(v):=\left\{z ;|z-v|=\min _{w \in \mathcal{V}}|z-w|\right\}$. Peyré, \& al $\operatorname{Vor}(v):=\left\{z ; d_{H}(z, v)=\min _{w \in \mathcal{V}} d_{H}(z, w)\right\}$.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree Smoothness classes

Hierarchical

 triangulations ConclusionHeuristic of the construction of \mathcal{T} from H
Construct a collection $\mathcal{V} \subset \mathbb{R}^{2}$ of sites which satisfies:
covering For all $z \in \mathbb{R}^{2}, d_{H}(z, \mathcal{V}):=\min _{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}, d_{H}(v, w) \geq 1$. (or $\left.\geq \delta_{0}>0\right)$.

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $\operatorname{Vor}(v):=\left\{z ;|z-v|=\min _{w \in \mathcal{V}}|z-w|\right\}$. Peyré, \& al $\operatorname{Vor}(v):=\left\{z ; d_{H}(z, v)=\min _{w \in \mathcal{V}} d_{H}(z, w)\right\}$. Shewchuk, \& al Define $\|u\|_{M}:=\sqrt{u^{\mathrm{T}} M u}$,

$$
\operatorname{Vor}(v):=\left\{z ;\|z-v\|_{H(v)}=\min _{w \in \mathcal{V}}\|z-w\|_{H(w)}\right\} .
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

QuasiAcute triangulations

Definition
A triangulation \mathcal{T} is K-QuasiAcute if

- \mathcal{T} is K-graded.
- There exists a K-refinement T^{\prime} of T such that any angle θ of any $T \in \mathcal{T}^{\prime}$ satisfies

$\mathcal{T}:$ K-QuasiAcute

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions

raised

Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

QuasiAcute triangulations

Definition

A triangulation \mathcal{T} is K-QuasiAcute if

- \mathcal{T} is K-graded.
- There exists a K-refinement \mathcal{T}^{\prime} of \mathcal{T} such that any angle θ of any $T \in \mathcal{T}^{\prime}$ satisfies

$$
\theta \leq \boldsymbol{\pi}-\frac{1}{K} .
$$

\mathcal{T} : K-QuasiAcute

$\mathcal{T}^{\prime}: K$-refinement of \mathcal{T}.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

QuasiAcute triangulations

Definition
A triangulation \mathcal{T} is K-QuasiAcute if

- \mathcal{T} is K-graded.
- There exists a K-refinement \mathcal{T}^{\prime} of \mathcal{T} such that any angle θ of any $T \in \mathcal{T}^{\prime}$ satisfies

$$
\theta \leq \boldsymbol{\pi}-\frac{1}{K} .
$$

Theorem
For all $K \geq K_{0}$ the collection \mathbb{T} of K-QuasiAcute triangulations is equivalent to the collection \mathbb{H} of metrics satisfying simultaneously (R) and (D).

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

Hierarchical

 triangulations ConclusionA comparison: how to capture a curvilinear discontinuity. Objective: layer of width δ of triangles covering a smooth curve, using an Isotropic, QuasiAcute or Graded triangulation.

$$
\begin{gathered}
\text { Isotropic } \\
\#(\mathcal{T}) \simeq \delta^{-1}
\end{gathered}
$$

Graded

$$
\#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}}
$$

QuasiAcute

$$
\#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}}|\ln \delta|
$$

No restriction
$\#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}}$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions raised

Finite elements
 of arbitrary degree $m-1$

Measuring error in L^{p} : J.-M. Mirebeau, Optimal meshes for finite elements of arbitrary order, Constructive Approximation, 2010.

Measuring error in $W^{1, p}$ semi-norm: 曾 J.-M. Mirebeau, Optimal meshes for finite elements of arbitrary order and $W^{1, p}$ norms, to appear in Numerische Mathematik, 2011.

In this talk we only consider the $W^{1,2}$ semi-norm and L^{2} norm.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

$\mathrm{I}_{T}^{m-1}:$ Lagrange interpolant of degree $m-1$.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

I_{T}^{m-1} : Lagrange interpolant of degree $m-1$.
Theorem (Optimal asymptotic interpolation error) For any bounded polygonal domain Ω, and any $f \in C^{m}(\bar{\Omega})$ there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations of Ω, $\#\left(\mathcal{T}_{N}\right) \leq N$, such that

$$
\limsup _{N \rightarrow \infty} N^{\frac{m-1}{2}}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}}^{m-1} f\right)\right\|_{L^{2}(\Omega)} \leq\left\|L_{A}\left(\frac{d^{m} f}{m!}\right)\right\|_{L^{\frac{2}{m}}(\Omega)}
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Position

Area
Aspect ratio and orientation Angles

Questions
raised

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)} .
$$

I_{T}^{m-1} : Lagrange interpolant of degree $m-1$.
Theorem (Optimal asymptotic interpolation error)
For any bounded polygonal domain Ω, and any $f \in C^{m}(\bar{\Omega})$ there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations of Ω, $\#\left(\mathcal{T}_{N}\right) \leq N$, such that
$\limsup _{N \rightarrow \infty} N^{\frac{m-1}{2}}\left\|\nabla\left(f-I_{\mathcal{T}_{N}}^{m-1} f\right)\right\|_{L^{2}(\Omega)} \leq\left\|L_{A}\left(\frac{d^{m} f}{m!}\right)\right\|_{L^{\frac{2}{m}}(\Omega)}$.
Furthermore for any admissible sequence of triangulations $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}, \#\left(\mathcal{T}_{N}\right) \leq N$, one has

$$
\liminf _{N \rightarrow \infty} N^{\frac{m-1}{2}}\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}_{N}}^{m-1} f\right)\right\|_{L^{2}(\Omega)} \geq\left\|L_{A}\left(\frac{d^{m} f}{m!}\right)\right\|_{L^{\frac{2}{m}}(\Omega)} .
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

Proposition (Explicit minimizing triangle, $m=2$ or 3)
Any acute triangle $T,|T|=1$, such that \mathcal{H}_{T} is proportional to the following matrix is a (near) minimizer of the optimization defining $L_{A}(\pi)$.

$$
m=2, \pi=a x^{2}+2 b x y+c y^{2}, \text { matrix: }\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)^{2}
$$

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

Proposition (Explicit minimizing triangle, $m=2$ or 3)

Any acute triangle $T,|T|=1$, such that \mathcal{H}_{T} is proportional to the following matrix is a (near) minimizer of the optimization defining $L_{A}(\pi)$.

- $m=2, \pi=a x^{2}+2 b x y+c y^{2}$, matrix: $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)^{2}$
- $m=3, \pi=a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3}$, matrix:

$$
\mathcal{M}_{A}(\pi):=\sqrt{\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)^{2}+\left(\begin{array}{ll}
b & c \\
c & d
\end{array}\right)^{2}}
$$

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

Proposition (Explicit minimizing triangle, $m=2$ or 3)

Any acute triangle $T,|T|=1$, such that \mathcal{H}_{T} is proportional to the following matrix is a (near) minimizer of the optimization defining $L_{A}(\pi)$.

- $m=2, \pi=a x^{2}+2 b x y+c y^{2}$, matrix: $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)^{2}$
- $m=3, \pi=a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3}$, matrix:

$$
\mathcal{M}_{A}(\pi):=\sqrt{\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)^{2}+\left(\begin{array}{ll}
b & c \\
c & d
\end{array}\right)^{2}}
$$

Explicit minimizing triangle for $m>3$: open problem.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree Smoothness classes

Optimal metric for the approximation of f
(heuristic)
Set

$$
H(z):=\lambda(\operatorname{det} M(z))^{\frac{-1}{2 m}} M(z)
$$

where $\lambda>0$ is a sufficiently large constant and

- $(m=2), M(z) \simeq\left[d^{2} f(z)\right]^{2}$.
- $(m=3), M(z) \simeq \mathcal{M}_{A}\left(d^{3} f(z)\right)$.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree Smoothness classes

Optimal metric for the approximation of f
(heuristic)
Set

$$
H(z):=\lambda(\operatorname{det} M(z))^{\frac{-1}{2 m}} M(z)
$$

where $\lambda>0$ is a sufficiently large constant and

- $(m=2), M(z) \simeq\left[d^{2} f(z)\right]^{2}$.
- $(m=3), M(z) \simeq \mathcal{M}_{A}\left(d^{3} f(z)\right)$.

Mesh generation:

1. Produce a QuasiAcute triangulation \mathcal{T} which is C-equivalent to H.
2. Interpolate f on the refinement \mathcal{T}^{\prime} on which angles are uniformly bounded.
\Rightarrow Optimal estimate up to a fixed multiplicative constant.

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

Polynomials on $\mathbf{H}_{m}: Q(\pi)=\tilde{Q}\left(a_{0}, \cdots, a_{m}\right)$ if
$\pi=a_{0} x^{m}+a_{1} x^{m-1} y+\cdots+a_{m} y^{m}$.
Proposition (Explicit equivalent of L_{A})
There exists a polynomial Q on \boldsymbol{H}_{m}, of degree r, such that

$$
L_{A}(\pi) \simeq|Q(\pi)|^{1 / r}
$$

uniformly.

For all $\pi \in \mathbf{H}_{m}$ (homogeneous polynomials of degree m)

$$
L_{A}(\pi):=\inf _{|T|=1}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{L^{2}(T)}
$$

Polynomials on $\mathbf{H}_{m}: Q(\pi)=\tilde{Q}\left(a_{0}, \cdots, a_{m}\right)$ if
$\pi=a_{0} x^{m}+a_{1} x^{m-1} y+\cdots+a_{m} y^{m}$.
Proposition (Explicit equivalent of L_{A})
There exists a polynomial Q on \boldsymbol{H}_{m}, of degree r, such that

$$
L_{A}(\pi) \simeq|Q(\pi)|^{1 / r}
$$

uniformly.

- $m=2, L_{A}(\pi) \simeq \sqrt{|\operatorname{det} \pi|}$.
- $m=3, L_{A}(\pi) \simeq \sqrt{\operatorname{det} \mathcal{M}_{A}(\pi)}$.
- $m \geq 4$: explicit polynomials Q are obtained using Hilbert's theory of invariants.

Optimizing only the aspect ratio:

$$
L_{G}(\pi):=\inf _{\operatorname{det} H=1} \sup _{\mathcal{H}_{T}=H}\left\|\nabla\left(\pi-I_{T}^{m-1} \pi\right)\right\|_{2}
$$

Proposition (Explicit minimizing ellipse, $m=2$ or 3)

The matrix H such that $\operatorname{det} H=1$ and which is proportional to the following is a (near) minimiser of the optimization problem defining $L_{G}(\pi)$.

$$
m=2, \pi=a x^{2}+2 b x y+c y^{2}, \text { matrix : }\left|\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\right| .
$$

Optimizing only the aspect ratio:

$$
L_{G}(\pi):=\inf _{\operatorname{det} H=1} \sup _{\mathcal{H}_{T}=H}\left\|\nabla\left(\pi-\mathrm{I}_{T}^{m-1} \pi\right)\right\|_{2}
$$

Proposition (Explicit minimizing ellipse, $m=2$ or 3)

The matrix H such that $\operatorname{det} H=1$ and which is proportional to the following is a (near) minimiser of the optimization problem defining $L_{G}(\pi)$.

- $m=2, \pi=a x^{2}+2 b x y+c y^{2}$, matrix : $\left|\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\right|$.
- $m=3, \pi=a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3}$

$$
\mathcal{M}_{G}(\pi):=\mathcal{M}_{A}(\pi)+\left(\frac{-\operatorname{disc}(\pi)}{\|\pi\|}\right)_{+}^{\frac{1}{3}} I \mathrm{~d}
$$

$$
\text { where } \operatorname{disc} \pi=4\left(a c-b^{2}\right)\left(b d-c^{2}\right)-(a d-b c)^{2}
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree Smoothness classes

Anisotropic metric (heuristic)

Set

$$
H(z):=\lambda(\operatorname{det} M(z))^{\frac{-1}{2 m}} M(z)
$$

where $\lambda>0$ is a constant and

- $(m=2), M(z):=\left\|\left[d^{2} f(z)\right]\right\|\left|\left[d^{2} f(z)\right]\right|$.
- $(m=3), M(z):=\mathcal{M}_{G}\left(d^{3} f(z)\right)$.

Interpolate f on a mesh \mathcal{T} which is C-equivalent to H \Rightarrow estimate in terms of L_{G}.

Figure: Interpolation with anisotropic \mathbf{P}_{2} elements.

Adaptive

Anisotropic metric (heuristic)

Set

$$
H(z):=\lambda(\operatorname{det} M(z))^{\frac{-1}{2 m}} M(z)
$$

where $\lambda>0$ is a constant and

- $(m=2), M(z):=\left\|\left[d^{2} f(z)\right]\right\|\left|\left[d^{2} f(z)\right]\right|$.
- $(m=3), M(z):=\mathcal{M}_{G}\left(d^{3} f(z)\right)$.

Interpolate f on a mesh \mathcal{T} which is C-equivalent to H \Rightarrow estimate in terms of L_{G}.

Numerical experiments : $\left\|\nabla\left(f-\mathrm{I}_{\mathcal{T}}^{m-1} f\right)\right\|_{L^{2}}$, with 500 triangles.

Uniform Isotropic Based on L_{G} Based on L_{A}

\mathbf{P}_{1}	110	51	11	$?$
\mathbf{P}_{2}	79	14	0.88	$?$

Adaptive
anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics

Anisotropic smoothness classes:

 from finite element approximation to image models

Figure: A cartoon function, and an adapted triangulation. Picture : Gabriel Peyré

曾
A. Cohen, J.-M. Mirebeau, Anisotropic smoothness classes: from finite element approximation to image models, Journal of Mathematical Imaging and Vision, 2010.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised meshes and metrics
Arbitrary degree
Smoothness classes Hierarchical triangulations

Approximation of cartoon functions
If $g=\sum_{1 \leq i \leq r} g_{i} \chi_{\Omega_{i}}$ where $g_{i} \in C^{2}\left(\bar{\Omega}_{i}\right)$ and $\partial \Omega_{i}$ is piecewise C^{2}, then there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations such that

$$
N\left\|g-I_{\mathcal{I}_{N}} g\right\|_{L^{2}(\Omega)} \leq C(g) .
$$

On the other hand, we have for smooth functions:

If $f \in C^{2}(\bar{\Omega})$ and $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ is an optimally adapted sequence then

How to connect these estimates ? Does
ma'ke sense if g is a cartoon function ?

Approximation of cartoon functions
If $g=\sum_{1 \leq i \leq r} g_{i} \chi_{\Omega_{i}}$ where $g_{i} \in C^{2}\left(\bar{\Omega}_{i}\right)$ and $\partial \Omega_{i}$ is piecewise C^{2}, then there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations such that

$$
N\left\|g-\mathrm{I}_{\mathcal{T}_{N}} g\right\|_{L^{2}(\Omega)} \leq C(g) .
$$

On the other hand, we have for smooth functions:
Theorem (Chen,Sun Xu; Babenko)
If $f \in C^{2}(\bar{\Omega})$ and $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ is an optimally adapted sequence then

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

Approximation of cartoon functions
If $g=\sum_{1 \leq i \leq r} g_{i} \chi_{\Omega_{i}}$ where $g_{i} \in C^{2}\left(\bar{\Omega}_{i}\right)$ and $\partial \Omega_{i}$ is piecewise C^{2}, then there exists a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations such that

$$
N\left\|g-\mathrm{I}_{\mathcal{I}_{N}} g\right\|_{L^{2}(\Omega)} \leq C(g) .
$$

On the other hand, we have for smooth functions:
Theorem (Chen,Sun Xu; Babenko)
If $f \in C^{2}(\bar{\Omega})$ and $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ is an optimally adapted sequence then

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

How to connect these estimates ?
Does $\left\|\sqrt{\left|\operatorname{det} d^{2} g\right|}\right\|_{L^{\frac{2}{3}}}$ make sense if g is a cartoon function ?

Adaptive

 anisotropic approx: Theory and algorithmsJean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics Arbitrary degree
Smoothness classes
Hierarchical triangulations

For any $f \in C^{2}(\bar{\Omega})$

$$
J(f):=\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}} .
$$

$$
\text { If } g \text { is a cartoon function with discontinuity set } E \text { we define }
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics Arbitrary degree
Smoothness classes Hierarchical triangulations
Conclusion

For any $f \in C^{2}(\bar{\Omega})$

$$
J(f):=\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}} .
$$

If g is a cartoon function with discontinuity set E we define

$$
J(g):=\lim _{\delta \rightarrow 0} J\left(g * \varphi_{\delta}\right),
$$

where $\varphi_{\delta}:=\delta^{-2} \varphi\left(\delta^{-1}\right)$ is a mollifier.
 Compare with

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes Hierarchical triangulations
Conclusion

For any $f \in C^{2}(\bar{\Omega})$

$$
J(f):=\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}}
$$

If g is a cartoon function with discontinuity set E we define

$$
J(g):=\lim _{\delta \rightarrow 0} J\left(g * \varphi_{\delta}\right)
$$

where $\varphi_{\delta}:=\delta^{-2} \varphi\left(\delta^{-1}\right)$ is a mollifier.
Proposition

$$
J(g)^{\frac{2}{3}}=\left\|\sqrt{\left|\operatorname{det} d^{2} g\right|}\right\|_{L^{\frac{2}{3}}(\Omega \backslash E)}^{\frac{2}{3}}+C(\varphi)\|[g] \sqrt{|\kappa|}\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}
$$

where $[g]$ is the jump of g, and κ the curvature of E.

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters

For any $f \in C^{2}(\bar{\Omega})$

$$
J(f):=\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}} .
$$

If g is a cartoon function with discontinuity set E we define

$$
J(g):=\lim _{\delta \rightarrow 0} J\left(g * \varphi_{\delta}\right),
$$

where $\varphi_{\delta}:=\delta^{-2} \varphi\left(\delta^{-1}\right)$ is a mollifier.
Proposition

$$
J(g)^{\frac{2}{3}}=\left\|\sqrt{\left|\operatorname{det} d^{2} g\right|}\right\|_{L^{\frac{2}{3}}(\Omega \backslash E)}^{\frac{2}{3}}+C(\varphi)\|[g] \sqrt{|\kappa|}\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}
$$

where $[g$] is the jump of g, and κ the curvature of E.
Compare with

$$
T V(g)=\|\nabla g\|_{L^{1}(\Omega \backslash E)}+\|[g]\|_{L^{1}(E)} .
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations

Conclusion

Piecewise constant functions

$$
T V(g)=\int_{\Gamma}|[g]|
$$

$$
J(g)^{\frac{2}{3}}=\left.\int_{\Gamma}\left|[g]^{\frac{2}{3}}\right| \kappa\right|^{\frac{1}{3}}
$$

Figure: $T V(g) \simeq J(g)$

Figure: $T V(g) \ll J(g)$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Hierarchical sequences of anisotropic triangulations

A. Cohen, N. Dyn, F.Hecht, J.-M. Mirebeau, Adaptive multiresolution analysis based on anisotropic triangulations, accepted in Maths of Comp 2010
贯 A. Cohen, J.-M. Mirebeau, Greedy bisection generates optimally adapted triangulations, accepted in Maths of Comp 2010

Adaptive
anisotropic approx:
Theory and algorithms

Jean-Marie
Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness
classes
Hierarchical triangulations

Hierarchical sequences of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Adaptive
anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics Arbitrary degree
Smoothness

classes

Hierarchical triangulations

Hierarchical sequences of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Adaptive
anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness
classes
Hierarchical triangulations

Hierarchical sequences of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Adaptive
anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness
classes
Hierarchical triangulations

Hierarchical sequences of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Hierarchical sequences of anisotropic triangulations

Hierarchical sequences of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Hierarchical sequences of anisotropic triangulations

Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions

raised

Equivalence of meshes and metrics
Arbitrary degree
Smoothness

classes

Hierarchical triangulations

Hierarchical sequences of anisotropic triangulations

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Figure: An isotropic hierarchical refinement algorithm, used for PDEs

Hierarchical sequences of anisotropic triangulations

Hierarchical sequences of anisotropic triangulations

Hierarchical sequences of anisotropic triangulations

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness
classes
Hierarchical triangulations

Given a triangulation of a domain and a function f :

- Select the triangle on which the L^{2} interpolation error is maximal $\left\|f-\mathrm{I}_{T} f\right\|_{L^{2}(T)}$.
- Bisect it along one median, so as to minimize the resulting L^{1} interpolation error.

Figure: Algorithm proposed by: N. Dyn, F. Hecht, A. Cohen

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised
Equivalence of meshes and metrics Arbitrary degree triangulations

Given a triangulation of a domain and a function f :

- Select the triangle on which the L^{2} interpolation error is maximal $\left\|f-\mathrm{I}_{T} f\right\|_{L^{2}(T)}$.
- Bisect it along one median, so as to minimize the resulting L^{1} interpolation error.

Figure: Algorithm proposed by: N. Dyn, F. Hecht, A. Cohen

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions
raised

Given a triangulation of a domain and a function f :

- Select the triangle on which the L^{2} interpolation error is maximal $\left\|f-\mathrm{I}_{T} f\right\|_{L^{2}(T)}$.
- Bisect it along one median, so as to minimize the resulting L^{1} interpolation error.

Figure: Algorithm proposed by: N. Dyn, F. Hecht, A. Cohen

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters

Given a triangulation of a domain and a function f :

- Select the triangle on which the L^{2} interpolation error is maximal $\left\|f-\mathrm{I}_{T} f\right\|_{L^{2}(T)}$.
- Bisect it along one median, so as to minimize the resulting L^{1} interpolation error.
- Repeat these steps until targeted number of triangles is met.

Figure: Algorithm proposed by: N. Dyn, F. Hecht, A. Cohen

Adaptive anisotropic approx: Theory and algorithms Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Restores isotropy.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

If T_{1}, T_{2} are obtained by bisecting the longest edge of T then

$$
\max \left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\} \leq \sigma(T) .
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

If T_{1}, T_{2} are obtained by bisecting the longest edge of T then

$$
\max \left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\} \leq \sigma(T) .
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

If T_{1}, T_{2} are obtained by bisecting the longest edge of T then

$$
\max \left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\} \leq \sigma(T) .
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

If T_{1}, T_{2} are obtained by bisecting the longest edge of T then

$$
\max \left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\} \leq \sigma(T) .
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

If T_{1}, T_{2} are obtained by bisecting the longest edge of T then

$$
\max \left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\} \leq \sigma(T) .
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Arbitrary degree
Smoothness

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy. Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

If T_{1}, T_{2} are obtained by bisecting the longest edge of T then

$$
\max \left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\} \leq \sigma(T) .
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Arbitrary degree

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.
Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

One of the eight children $\left(T_{i}\right)_{i=1}^{8}$ of T obtained by bisecting recursively three times the longest edge satisfies

$$
\sigma\left(T_{i}\right) \leq 0.69 \sigma(T) \text { or } \sigma\left(T_{i}\right) \leq 5
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Arbitrary degree

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.
Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

One of the eight children $\left(T_{i}\right)_{i=1}^{8}$ of T obtained by bisecting recursively three times the longest edge satisfies

$$
\sigma\left(T_{i}\right) \leq 0.69 \sigma(T) \text { or } \sigma\left(T_{i}\right) \leq 5
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Arbitrary degree

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.
Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

One of the eight children $\left(T_{i}\right)_{i=1}^{8}$ of T obtained by bisecting recursively three times the longest edge satisfies

$$
\sigma\left(T_{i}\right) \leq 0.69 \sigma(T) \text { or } \sigma\left(T_{i}\right) \leq 5
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.
Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

One of the eight children $\left(T_{i}\right)_{i=1}^{8}$ of T obtained by bisecting recursively three times the longest edge satisfies

$$
\sigma\left(T_{i}\right) \leq 0.69 \sigma(T) \text { or } \sigma\left(T_{i}\right) \leq 5
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Arbitrary degree

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.
Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

One of the eight children $\left(T_{i}\right)_{i=1}^{8}$ of T obtained by bisecting recursively three times the longest edge satisfies

$$
\sigma\left(T_{i}\right) \leq 0.69 \sigma(T) \text { or } \sigma\left(T_{i}\right) \leq 5
$$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.
Restores isotropy.
For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

Proposition

One of the eight children $\left(T_{i}\right)_{i=1}^{8}$ of T obtained by bisecting recursively three times the longest edge satisfies

$$
\sigma\left(T_{i}\right) \leq 0.69 \sigma(T) \text { or } \sigma\left(T_{i}\right) \leq 5
$$

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y)=x^{2}+y^{2}$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.

For any triangle T with edges $|a| \geq|b| \geq|c|$ we define

$$
\sigma(T):=\frac{|b|^{2}+|c|^{2}}{4|T|}
$$

Markov chain argument \Rightarrow almost all triangles adopt an isotropic aspect ratio.

Theorem

The algorithm applied to any strongly convex function $f \in C^{2}(\bar{\Omega})$ produces a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations which satisfies the (optimal) estimate

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

Figure: Algorithm applied to

$$
f(x, y)=x^{2}+100 y^{2}
$$

Theorem

The algorithm applied to any strongly convex function $f \in C^{2}(\bar{\Omega})$ produces a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations which satisfies the (optimal) estimate

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

Figure: Algorithm applied to

$$
f(x, y)=x^{2}+100 y^{2}
$$

Theorem

The algorithm applied to any strongly convex function $f \in C^{2}(\bar{\Omega})$ produces a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations which satisfies the (optimal) estimate

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

Figure: Algorithm applied to

$$
f(x, y)=x^{2}+100 y^{2}
$$

Theorem

The algorithm applied to any strongly convex function $f \in C^{2}(\bar{\Omega})$ produces a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations which satisfies the (optimal) estimate

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

Figure: Algorithm applied to

$$
f(x, y)=x^{2}+100 y^{2}
$$

Theorem

The algorithm applied to any strongly convex function $f \in C^{2}(\bar{\Omega})$ produces a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations which satisfies the (optimal) estimate

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

$$
f(x, y)=x^{2}+100 y^{2}
$$

Theorem

The algorithm applied to any strongly convex function $f \in C^{2}(\bar{\Omega})$ produces a sequence $\left(\mathcal{T}_{N}\right)_{N \geq N_{0}}$ of triangulations which satisfies the (optimal) estimate

$$
\limsup _{N \rightarrow \infty} N\left\|f-\mathrm{I}_{\mathcal{I}_{N}} f\right\|_{L^{2}(\Omega)} \leq C\left\|\sqrt{\left|\operatorname{det} d^{2} f\right|}\right\|_{L^{\frac{2}{3}}(\Omega)}
$$

$$
f(x, y)=x^{2}+100 y^{2}
$$

Adaptive anisotropic approx: Theory and algorithms
Jean-Marie Mirebeau
Parameters
Position
Area
Aspect ratio and
orientation
Angles
Questions
raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness
classes
Hierarchical
triangulations
Conclusion

Conclusion and perspectives

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised
Equivalence of meshes and metrics
Arbitrary degree
Smoothness classes
Hierarchical triangulations

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_{m} interpolation error on optimal mesh, for H^{1} but also L^{p} and $W^{1, p}$ norms. - Some cuantities remain meaninoful for cartoon functions. e.g. $J(f)=\|\left.\sqrt{\operatorname{det}\left(d^{2} f\right)}\right|_{L^{\frac{2}{3}}}$

Adaptive anisotropic approx: Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation Angles

Questions raised

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for \mathbf{P}_{m} interpolation error on optimal mesh, for H^{1} but also L^{p} and $W^{1, p}$ norms.

Adaptive anisotropic approx:
Theory and algorithms

Jean-Marie Mirebeau

Parameters
Position
Area
Aspect ratio and orientation
Angles
Questions raised

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for \mathbf{P}_{m} interpolation error on optimal mesh, for H^{1} but also L^{p} and $W^{1, p}$ norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f)=\left\|\sqrt{\operatorname{det}\left(d^{2} f\right)}\right\|_{L^{\frac{2}{3}}}$.

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for \mathbf{P}_{m} interpolation error on optimal mesh, for H^{1} but also L^{p} and $W^{1, p}$ norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f)=\left\|\sqrt{\operatorname{det}\left(d^{2} f\right)}\right\|_{L^{\frac{2}{3}}}$.
- Combining hierarchy and anisotropy is possible (without conformity).

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for \mathbf{P}_{m} interpolation error on optimal mesh, for H^{1} but also L^{p} and $W^{1, p}$ norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f)=\left\|\sqrt{\operatorname{det}\left(d^{2} f\right)}\right\|_{L^{\frac{2}{3}}}$.
- Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- Numerical applications to \mathbf{P}_{2} elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension $d>2$.
- Non asymptotic error estimates.

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for \mathbf{P}_{m} interpolation error on optimal mesh, for H^{1} but also L^{p} and $W^{1, p}$ norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f)=\left\|\sqrt{\operatorname{det}\left(d^{2} f\right)}\right\|_{L^{\frac{2}{3}}}$.
- Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- Numerical applications to \mathbf{P}_{2} elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension $d>2$.
- Non asymptotic error estimates.

Thank you for your attention.

