Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Adaptive and anisotropic finite element approximation: Theory and algorithms

Jean-Marie Mirebeau

University Paris VI Laboratoire Jacques Louis Lions

December 6, 2010

Ph.D directed by Albert Cohen

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Motivation : anisotropic phenomena

The solutions of many PDE's exhibit a strongly anisotropic behavior.

- Boundary layers in fluid simulation.
- ► Spikes and edges of metallic objects in electromagnetism.
- Shockwaves in transport equations.

Figure: Fluid simulation around a supersonic plane (F. Alauzet).

Mesh optimization

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

A general objective: reduce at best the trade-off between accuracy and numerical complexity.

Accuracy: for example, the error between the solution and its approximation in some given norm.

• Complexity: typically tied to the cardinality of the mesh.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

An appetizer: given a function $f : \Omega \to \mathbb{R}$ and an integer N, construct a triangulation \mathcal{T} of Ω which minimizes

 $\|\nabla(f-\mathrm{I}_{\mathcal{T}} f)\|_{L^2(\Omega)},$

over all triangulations such that $\#(\mathcal{T}) \leq N$, with $I_{\mathcal{T}}$ the piecewise linear interpolant.

the numerical examples N = 500 and $f(x, y) := \tanh(10(\sin(5y) - 2x)) + x^2y + y^3$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

An appetizer: given a function $f : \Omega \to \mathbb{R}$ and an integer N, construct a triangulation \mathcal{T} of Ω which minimizes

 $\|\nabla(f - \mathbf{I}_{\mathcal{T}} f)\|_{L^2(\Omega)},$

over all triangulations such that $\#(\mathcal{T}) \leq N$, with $I_{\mathcal{T}}$ the piecewise linear interpolant.

In the numerical examples N = 500 and $f(x, y) := \tanh(10(\sin(5y) - 2x)) + x^2y + y^3.$

Figure: Sharp transition along the curve sin(5y) = 2x, of width 1/10.

Jean-Marie Mirebeau

Parameters

Position

Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

A classical result

Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain, let $f \in H^2(\Omega)$ and let \mathcal{T} be a triangulation.

Ciarlet-Raviart

On each $T \in \mathcal{T}$, the local error satisfies

$$\|\nabla (f - \mathbf{I}_T f)\|_{L^2(T)} \le C_0 \frac{h_T^2}{r_T} \|d^2 f\|_{L^2(T)},$$

where $h_T := \text{diam}(T)$ and r_T is the radius of the largest disc inscribed in T, and C_0 is an absolute constant.

Consequence: with $h = \max_{T \in T} h_T$

 $\|\nabla(f-\mathrm{I}_{\mathcal{T}} f)\|_{L^2(\Omega)} \leq C(\mathcal{T})h\|d^2f\|_{L^2(\Omega)},$

with $C(T) = C_0 \max_{T \in T} \frac{h_T}{r_T}$ that remains bounded for isotropic triangulations.

Jean-Marie Mirebeau

Parameters

Position

Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

A classical result

Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain, let $f \in H^2(\Omega)$ and let \mathcal{T} be a triangulation.

Ciarlet-Raviart

On each $T \in \mathcal{T}$, the local error satisfies

$$\|\nabla (f - \mathbf{I}_T f)\|_{L^2(T)} \le C_0 \frac{h_T^2}{r_T} \|d^2 f\|_{L^2(T)},$$

where $h_T := \text{diam}(T)$ and r_T is the radius of the largest disc inscribed in T, and C_0 is an absolute constant.

Consequence: with $h = \max_{T \in \mathcal{T}} h_T$

 $\|\nabla (f - \mathrm{I}_{\mathcal{T}} f)\|_{L^2(\Omega)} \leq C(\mathcal{T})h\|d^2f\|_{L^2(\Omega)},$

with $C(\mathcal{T}) = C_0 \max_{\mathcal{T} \in \mathcal{T}} \frac{h_T}{r_T}$ that remains bounded for isotropic triangulations.

Jean-Marie Mirebeau

Parameters

Position

Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

In terms of $\mathit{N}=\#(\mathcal{T})$, this gives

$$\sqrt{N} \|
abla (f - \mathrm{I}_{\mathcal{T}} f) \|_{L^2(\Omega)} \leq C'(\mathcal{T}) \| d^2 f \|_{L^2(\Omega)},$$

where $C'(\mathcal{T}) = C_0 \sqrt{|\Omega|} \frac{\max_{T \in \mathcal{T}} h_T^2 / r_T}{\min_{T \in \mathcal{T}} \sqrt{|T|}}$, that remains bounded for uniform triangulations:

$$h \sim h_T \sim r_T \sim \sqrt{|T|} \Rightarrow h \sim N^{-1/2}$$

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness

classes

Hierarchical triangulations

0

Conclusion

Isotropic meshes: the triangle seen as a disk. Theorem (Adaptive approximation: DeVore-Yu) For any $f \in W^{2,1}(\Omega)$, $\Omega =]0,1[^2$, there exists a sequence $(\mathcal{T}_N)_{N\geq 2}$ of (isotropic) triangulations of Ω , $\#(\mathcal{T}_N) \leq N$, such that

 $\sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|M(d^2 f)\|_{L^1(\Omega)}$

M(g): Hardy-Littlewood maximal function of g.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness

Hierarchical

triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness

classes

Hierarchical

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical

triangulation

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error ||∇(f - I_T f)||_{L²(T)}.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical

triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hiorarchics

triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

unangulation

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical

triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical

triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical

triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Key principle : error equidistribution

- ▶ Refine the triangle with largest local error ||∇(f − I_T f)||_{L²(T)}.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error ||∇(f - I_T f)||_{L²(T)}.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position

Aspect ratio and orientation

Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

classes

Hierarchical

triangulations

Conclusion

Aspect ratio: the triangle seen as an ellipse.

The ellipse of minimal area containing a triangle \mathcal{T} is defined by

$$(z-z_T)^{\mathrm{T}} \mathcal{H}_T(z-z_T) \leq 1,$$

where $\mathcal{H}_{\mathcal{T}}$ is a symmetric positive definite matrix and $z_{\mathcal{T}}$ is the barycenter of \mathcal{T} .

Jean-Marie Mirebeau

Anisotropic mesh generation

Given a metric $H : \Omega \to S_2^+$ produce a triangulation \mathcal{T} such that : for any $\mathcal{T} \in \mathcal{T}$ and any $z \in \mathcal{T}$,

 $H(z) \simeq \mathcal{H}_T$

Figure: A metric and an adapted triangulation (credit: J. Schoen)

Theoretical results by Boissonat & al, Shewchuk & al.

Parameters

Position Area

Aspect ratio and orientation

Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Jean-Marie Mirebeau

$\pi = ax^2 + 2bxy + cy^2 : \text{homogeneous quadratic polynomial.}$ $L_G(\pi) := \inf_{\det H=1} \sup_{\mathcal{H}_T=H} \|\nabla(\pi - I_T \pi)\|_{L^2(T)}.$

Near) Minimizing matrix *H*

Parameters

Position Area Aspect ratio and orientation

Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Figure: Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π .

Explicit equivalent of L_G

$L_G(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\det \pi|},$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π .

 π

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Arbitrary degr Smoothness classes Hierarchical triangulations

Conclusion

$$f = ax^2 + 2bxy + cy^2$$
: homogeneous quadratic polynomial.
 $L_G(\pi) := \inf_{\det H=1} \sup_{\mathcal{H}_T=H} \|\nabla(\pi - I_T \pi)\|_{L^2(T)}.$

(Near) Minimizing matrix H

Figure: Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π .

Explicit equivalent of L_G

$$L_G(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\det \pi|},$$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π .

 π

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

$$T = ax^2 + 2bxy + cy^2$$
: homogeneous quadratic polynomial.
 $L_G(\pi) := \inf_{\det H=1} \sup_{\mathcal{H}_T=H} \|\nabla(\pi - I_T \pi)\|_{L^2(T)}.$

(Near) Minimizing matrix H

Figure: Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π .

Explicit equivalent of L_G

$$L_{G}(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\det \pi|},$$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π .

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and

orientation

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Local model :

$$f(x_0+x, y_0+y) = \alpha + (\beta x + \gamma y) + \underbrace{(ax^2 + 2bxy + cy^2)}_{\pi = \frac{1}{2}d^2 f(x_0, y_0)} + \mathcal{O}(|x|^3 + |y|^3)$$

Theorem

For any bounded polygonal domain Ω and any $f \in C^2(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

 $\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

An unusual estimate

 $\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_{\mathcal{G}}(d^2 f)\|_{L^1(\Omega)}$

 The quantity L_G(d²f(z)) ≃ √||d²f(z)|| ⁴√|det(d²f(z))| depends nonlinearly on f.
 Defining A(f) := ||L_G(d²f)||_{L¹} we generally do not have A(f + g) ≤ C(A(f) + A(g)).

The estimate holds asymptotically as $N \to \infty$.

An earlier estimate of this type was known for the *L^p*-norm. Theorem (Chen, Sun, Xu; Babenko)

If $f \in C^2(\Omega)$ and $1 \le p \le \infty$, then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} N \|f-\mathrm{I}_{\mathcal{T}_N} f\|_{L^p(\Omega)} \leq C \left\|\sqrt{|\det d^2 f|}\right\|_{L^\tau(\Omega)}, \ \ \frac{1}{\tau}:=1{+}\frac{1}{\rho}.$$

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

An unusual estimate

 $\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$

- The quantity $L_G(d^2f(z)) \simeq \sqrt{\|d^2f(z)\|} \sqrt[4]{|\det(d^2f(z))|}$ depends nonlinearly on f.
- Defining $A(f) := \|L_G(d^2f)\|_{L^1}$ we generally do not have $A(f+g) \le C(A(f) + A(g)).$

• The estimate holds asymptotically as $N \to \infty$.

An earlier estimate of this type was known for the L^{p} -norm. Theorem (Chen, Sun, Xu; Babenko)

 $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N} f\|_{L^p(\Omega)}} \leq C \left\|\sqrt{|\det d^2 f|}\right\|_{L^\tau(\Omega)}, \quad \frac{1}{\tau}:=1+\frac{1}{p}.$$

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation Angles

Question: raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

An unusual estimate

 $\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$

- ► The quantity $L_G(d^2f(z)) \simeq \sqrt{\|d^2f(z)\|} \sqrt[4]{|\det(d^2f(z))|}$ depends nonlinearly on f.
- Defining $A(f) := \|L_G(d^2f)\|_{L^1}$ we generally do not have $A(f+g) \le C(A(f) + A(g)).$
- The estimate holds asymptotically as $N \to \infty$.

An earlier estimate of this type was known for the L^p -norm. Theorem (Chen, Sun, Xu; Babenko) If $f \in C^2(\overline{\Omega})$ and $1 \le p \le \infty$, then there exists a sequence

$$\limsup_{N\to\infty} N \|f - \mathrm{I}_{\mathcal{T}_N} f\|_{L^p(\Omega)} \leq C \left\| \sqrt{|\det d^2 f|} \right\|_{L^\tau(\Omega)}, \quad \frac{1}{\tau} := 1 + \frac{1}{\rho}.$$

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation Angles

Question: raised

Equivalence of meshes and metrics Arbitrary degree

classes Liorarchical

triangulations

Conclusion

An unusual estimate

 $\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$

- ► The quantity $L_G(d^2f(z)) \simeq \sqrt{\|d^2f(z)\|} \sqrt[4]{|\det(d^2f(z))|}$ depends nonlinearly on f.
- Defining $A(f) := \|L_G(d^2f)\|_{L^1}$ we generally do not have $A(f+g) \le C(A(f) + A(g)).$
- The estimate holds asymptotically as $N \to \infty$.

An earlier estimate of this type was known for the L^{p} -norm. Theorem (Chen, Sun, Xu; Babenko) If $f \in C^{2}(\overline{\Omega})$ and $1 \leq p \leq \infty$, then there exists a sequence

 $(\mathcal{T}_N)_{N\geq N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N)\leq N$, such that

$$\limsup_{N \to \infty} \frac{N}{\|f - \mathrm{I}_{\mathcal{T}_N} f\|_{L^p(\Omega)}} \leq C \left\| \sqrt{|\det d^2 f|} \right\|_{L^\tau(\Omega)}, \quad \frac{1}{\tau} := 1 + \frac{1}{p}$$

Jean-Marie Mirebeau

Angles: the triangle seen as a triangle (!) $\pi = ax^2 + 2bxy + cy^2$: homogeneous quadratic polynomial.

$$L_{A}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - I_{\mathcal{T}} \pi)\|_{L^{2}(\mathcal{T})}$$

Parameters

Position Area Aspect ratio and orientation

Angles

Question: raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Figure: Interpolation of a parabola on a acute or obtuse mesh.

Jean-Marie Mirebeau

Angles: the triangle seen as a triangle (!) $\pi = ax^2 + 2bxy + cy^2$: homogeneous quadratic polynomial.

$$L_{A}(\pi) := \inf_{|T|=1} \|\nabla(\pi - I_{T} \pi)\|_{L^{2}(T)}$$

Parameters

Position	
Area	
Aspect ratio	and
orientation	
Angles	

, ingles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical

Canalusian

Figure: The minimizing triangle for L_A has acute angles and is more anisotropic than the minimizing ellipse for L_G .

Explicit equivalent of L_A

 $L_{\mathcal{A}}(\pi) \simeq \sqrt{|\det \pi|}.$
Jean-Marie Mirebeau

Angles: the triangle seen as a triangle (!) $\pi = ax^2 + 2bxy + cy^2$: homogeneous quadratic polynomial.

$$L_{A}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - I_{\mathcal{T}} \pi)\|_{L^{2}(\mathcal{T})}$$

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical

Conclusion

(Near) Minimizing triangle

Figure: The minimizing triangle for L_A has acute angles and is more anisotropic than the minimizing ellipse for L_G .

Explicit equivalent of L_A

$$L_A(\pi) \simeq \sqrt{|\det \pi|}.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation

Angles

Question: raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Theorem

For any bounded polygonal domain Ω and any $f \in C^2(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathbf{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \le \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}$$

Furthermore for any admissible sequence $(T_N)_{N \ge N_0}$ of riangulations, $\#(T_N) \le N$, one has

 $\liminf_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \ge \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}$

$$\sup_{N\geq N_0} \left(N^{\frac{1}{2}} \sup_{T\in \mathcal{T}_N} \operatorname{diam}(T) \right) < \infty.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation

Angles

Question raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Theorem

For any bounded polygonal domain Ω and any $f \in C^2(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}.$$

Furthermore for any admissible sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations, $\#(\mathcal{T}_N) \le N$, one has

$$\liminf_{N\to\infty} \sqrt{N} \|\nabla (f - \mathbf{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \ge \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}$$

.

Admissibility :

$$\sup_{N\geq N_0} \left(N^{\frac{1}{2}} \sup_{T\in \mathcal{T}_N} \operatorname{diam}(T) \right) < \infty.$$

Jean-Marie Mirebeau

Parameters

- Position Area Aspect ratio and orientation
- Angles

Question raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

Initial triangulation of the domain.

- ▶ The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of *f*.
- Additional triangles at the interfaces ensure conformity.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation

Angles

Question raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of f.
- Additional triangles at the interfaces ensure conformity.

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation

Angles

Question raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of f.
- ► Additional triangles at the interfaces ensure conformity.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Introduction : Parameters of a triangle

Questions raised in the thesis

Equivalence of meshes and metrics Finite elements of arbitrary degree Anisotropic smoothness classes Hierarchical anisotropic triangulations

Conclusion and perspectives

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Equivalence of meshes and metrics

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Metrics and triangulations on \mathbb{R}^2 Definition (Equivalence triangulation/metric) A (conforming) triangulation \mathcal{T} of \mathbb{R}^2 is C-equivalent to a

metric $H\in C^0(\mathbb{R}^2,S_2^+)$ if for all $T\in\mathcal{T}$ and $z\in T$ one has

 $C^{-1}H(z) \leq \mathcal{H}_T \leq CH(z).$

Figure: A metric and an equivalent triangulation, Credit : J. Schoen

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Metrics and triangulations on \mathbb{R}^2 Definition (Equivalence triangulation/metric) A (conforming) triangulation \mathcal{T} of \mathbb{R}^2 is C-equivalent to a metric $H \in C^0(\mathbb{R}^2, S_2^+)$ if for all $\mathcal{T} \in \mathcal{T}$ and $z \in T$ one has

 $C^{-1}H(z) \leq \mathcal{H}_T \leq CH(z).$

Definition (Equivalence collection of triangulations/ collection of metrics)

A collection \mathbb{T} of triangulations of \mathbb{R}^2 is equivalent to a collection $\mathbb{H} \subset C^0(\mathbb{R}^2, S_2^+)$ of metrics if there exists C such that

▶ $\forall T \in \mathbb{T}, \exists H \in \mathbb{H}$, such that T and H are *C*-equivalent.

▶ $\forall H \in \mathbb{H}, \exists T \in \mathbb{T}$, such that T and H are *C*-equivalent.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Isotropic triangulations

Theorem (reformulation of earlier work)

The collection $\mathbb T$ of all triangulations $\mathcal T$ satisfying for each $\mathcal T\in\mathcal T$

 $\operatorname{diam}(T)^2 \leq 4|T|$

is equivalent to the collection $\mathbb H$ of metrics H of the form

$$H(z) = rac{\mathrm{Id}}{s(z)^2}$$
 where $|s(z) - s(z')| \le |z - z'|$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

From isotropic to anisotropic metrics Isotropic "Lipschitz" metrics $H(z) = s(z)^{-2}$ Id. Two equivalent properties: \bullet (d) $\forall z, z' \in \mathbb{R}^2$, $|s(z) - s(z')| \le |z - z'|$

► (r) $\forall z, z' \in \mathbb{R}^2$, $\left| \ln \left(\frac{s(z')}{s(z)} \right) \right| \le d_H(z, z')$

where *d_H* denotes the Riemannian distance

$$d_{H}(z,z') := \inf_{\substack{\gamma(0)=z\\\gamma(1)=z'}} \int_{0}^{1} \sqrt{\gamma'(t)^{\mathrm{T}} H(\gamma(t)) \gamma'(t)} dt.$$

Anisotropic "Lipschitz" metrics

 $H(z) = S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

(D) ∀z, z' ∈ ℝ², ||S(z) - S(z')|| ≤ |z - z'|
(R) ∀z, z' ∈ ℝ², ½ ||In (S(z)⁻¹S(z')²S(z)⁻¹)|| ≤ d_H(z)

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

From isotropic to anisotropic metrics Isotropic "Lipschitz" metrics $H(z) = s(z)^{-2}$ Id. Two equivalent properties: \blacktriangleright (d) $\forall z, z' \in \mathbb{R}^2$, $|s(z) - s(z')| \le |z - z'|$

► (r) $\forall z, z' \in \mathbb{R}^2$, $\left| \ln \left(\frac{s(z')}{s(z)} \right) \right| \le d_H(z, z')$

where d_H denotes the Riemannian distance

$$d_{\mathcal{H}}(z,z') := \inf_{\substack{\gamma(0)=z\\\gamma(1)=z'}} \int_0^1 \sqrt{\gamma'(t)^{\mathrm{T}} \, \mathcal{H}(\gamma(t)) \, \gamma'(t)} \, dt.$$

Anisotropic "Lipschitz" metrics

 $H(z) = S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

▶ (D) $\forall z, z' \in \mathbb{R}^2$, $||S(z) - S(z')|| \le |z - z'|$ ▶ (R) $\forall z, z' \in \mathbb{R}^2$, $\frac{1}{2} \left\| \ln \left(S(z)^{-1} S(z')^2 S(z)^{-1} \right) \right\| \le d_H(z)$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

From isotropic to anisotropic metrics Isotropic "Lipschitz" metrics $H(z) = s(z)^{-2}$ Id. Two equivalent properties: \blacktriangleright (d) $\forall z, z' \in \mathbb{R}^2$, $|s(z) - s(z')| \le |z - z'|$ \blacktriangleright (r) $\forall z, z' \in \mathbb{R}^2$, $\left| \ln \left(\frac{s(z')}{s(z)} \right) \right| \le d_H(z, z')$

where d_H denotes the Riemannian distance

$$d_{\mathcal{H}}(z,z') := \inf_{\substack{\gamma(0)=z\\\gamma(1)=z'}} \int_0^1 \sqrt{\gamma'(t)^{\mathrm{T}} \, \mathcal{H}(\gamma(t)) \, \gamma'(t)} \, dt.$$

Anisotropic "Lipschitz" metrics

 $H(z) = S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

▶ (D) ∀z, z' ∈ ℝ², ||S(z) - S(z')|| ≤ |z - z'|
▶ (R) ∀z, z' ∈ ℝ², ½ ||In (S(z)⁻¹S(z')²S(z)⁻¹)|| ≤ d_H(z, z')

Graded Triangulations

Definition

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

A triangulation \mathcal{T} of \mathbb{R}^2 is K-graded if for all $T, T' \in \mathcal{T}$,

 $T \text{ intersects } T' \quad \Rightarrow \quad K^{-1} \mathcal{H}_T \leq \mathcal{H}_{T'} \leq K \mathcal{H}_T.$

Non Graded

Graded

Theorem

For any $K \ge K_0$ the collection \mathbb{T} of K-graded triangulations is equivalent to the collection \mathbb{H} of metrics satisfying (R). Key ingredient : mesh generation results by Labelle, Shewchuk

Graded Triangulations

Definition

lean-Marie Mirebeau

Aspect ratio and Angles

Equivalence of meshes and metrics

Arbitrary degree Hierarchical triangulations

A triangulation \mathcal{T} of \mathbb{R}^2 is K-graded if for all $T, T' \in \mathcal{T}$,

T intersects $T' \Rightarrow K^{-1}\mathcal{H}_T < \mathcal{H}_{T'} < K\mathcal{H}_T$.

Theorem

For any $K > K_0$ the collection \mathbb{T} of K-graded triangulations is equivalent to the collection \mathbb{H} of metrics satisfying (R). Key ingredient : mesh generation results by Labelle, Shewchuk.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Heuristic of the construction of \mathcal{T} from H

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \geq 1$. (or $\geq \delta_0 > 0$).

nnect sites when Anisotropic Voronoi regions intersect. didean case Vor(v) := $\{z : |z - v| = \min_{w \in V} |z - w|\}$ evel & al Vor(v) := $\{z : d_H(z, v) = \min_{w \in V} d_H(z, w)\}$.

 $|z = w|_{H(w)} = \max\{z \in ||z = w|_{H(w)} = \min_{v \in W} ||z = w|_{H(w)}\}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Heuristic of the construction of ${\mathcal T}$ from ${\mathcal H}$

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \geq 1$. (or $\geq \delta_0 > 0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $Vor(v) := \{z ; |z - v| = \min_{w \in \mathcal{V}} |z - w|\}$. Peyré, & al $Vor(v) := \{z ; d_H(z, v) = \min_{w \in \mathcal{V}} d_H(z, w)\}$. Shewchuk, & al Define $||u||_M := \sqrt{u^T M u}$.

$$Vor(v) := \{z ; \|z - v\|_{H(v)} = \min_{w \in \mathcal{V}} \|z - w\|_{H(w)} \}.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Heuristic of the construction of \mathcal{T} from H

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \geq 1$. (or $\geq \delta_0 > 0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $Vor(v) := \{z ; |z - v| = \min_{w \in \mathcal{V}} |z - w|\}$. Peyré, & al $Vor(v) := \{z ; d_H(z, v) = \min_{w \in \mathcal{V}} d_H(z, w)\}$. Shewchuk, & al Define $||u||_{\mathcal{M}} := \sqrt{u^T M u}$.

$$Vor(v) := \{z ; \|z - v\|_{H(v)} = \min_{w \in \mathcal{V}} \|z - w\|_{H(w)} \}.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Heuristic of the construction of ${\mathcal T}$ from ${\mathcal H}$

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \geq 1$. (or $\geq \delta_0 > 0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $Vor(v) := \{z ; |z - v| = \min_{w \in \mathcal{V}} |z - w|\}$. Peyré, & al $Vor(v) := \{z ; d_H(z, v) = \min_{w \in \mathcal{V}} d_H(z, w)\}$. Shewchuk, & al Define $||u||_M := \sqrt{u^T M u}$,

$$Vor(v) := \{z ; \|z - v\|_{H(v)} = \min_{w \in \mathcal{V}} \|z - w\|_{H(w)} \}.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

QuasiAcute triangulations

Definition

A triangulation T is K-QuasiAcute if

► *T* is K-graded.

There exists a *K*-refinement T' of T such that any angle θ of any $T \in T'$ satisfies

 $heta \leq oldsymbol{\pi} - rac{1}{K}.$

T: K-QuasiAcute T': K-refinement of T.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

QuasiAcute triangulations

Definition

A triangulation T is K-QuasiAcute if

► *T* is *K*-graded.

There exists a K-refinement T' of T such that any angle θ of any T ∈ T' satisfies

 $heta \leq \pi - rac{1}{K}.$

T : K-QuasiAcute

 \mathcal{T}' : K-refinement of \mathcal{T} .

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Theorem

Definition

For all $K \ge K_0$ the collection \mathbb{T} of K-QuasiAcute triangulations is equivalent to the collection \mathbb{H} of metrics satisfying simultaneously (R) and (D).

 There exists a K-refinement T' of T such that any angle θ of any T ∈ T' satisfies

QuasiAcute triangulations

T is K-graded.

A triangulation T is K-QuasiAcute if

$$heta \leq \pi - rac{1}{K}.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

A comparison: how to capture a curvilinear discontinuity.

Objective: layer of width δ of triangles covering a smooth curve, using an Isotropic, QuasiAcute or Graded triangulation.

lsotropic $\#(\mathcal{T})\simeq \delta^{-1}$

 $\begin{array}{l} \mathsf{QuasiAcute} \\ \#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}} |\ln \delta| \end{array}$

 $\begin{array}{l} \mathsf{Graded} \\ \#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}} \end{array}$

No restriction $\#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Finite elements of arbitrary degree m-1

Measuring error in L^p : \Box J.-M. Mirebeau, *Optimal meshes for finite elements of arbitrary order*, Constructive Approximation, 2010.

Measuring error in $W^{1,p}$ semi-norm: J.-M. Mirebeau, *Optimal meshes for finite elements of arbitrary order and* $W^{1,p}$ *norms*, to appear in Numerische Mathematik, 2011.

In this talk we only consider the $W^{1,2}$ semi-norm and L^2 norm.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

For all $\pi \in H_m$ (homogeneous polynomials of degree *m*) $\mathcal{L}_{\mathcal{A}}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1}\pi)\|_{L^2(\mathcal{T})}.$

I_T^{m-1} : Lagrange interpolant of degree m-1.

Theorem (Optimal asymptotic interpolation error) For any bounded polygonal domain Ω , and any $f \in C^m(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\max_{N\to\infty} N^{\frac{m-1}{2}} \|\nabla (f - \mathbf{I}_{T_N}^{m-1} f)\|_{L^2(\Omega)} \le \left\| L_A\left(\frac{d^m f}{m!}\right) \right\|_{L^{\frac{2}{m}}(\Omega)}$$

Furthermore for any admissible sequence of triangulations $(T_N)_{N\geq N_0}$, $\#(T_N) \leq N$, one has

 $\liminf_{N \to \infty} N^{\frac{m-1}{2}} \|\nabla(f - \mathbb{I}_{I_N}^{m-1} f)\|_{L^2(\Omega)} \ge \left\|L_A\left(\frac{d^m f}{m!}\right)\right\|_{L^{\frac{2}{m}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

For all $\pi \in H_m$ (homogeneous polynomials of degree m) $L_A(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1} \pi)\|_{L^2(\mathcal{T})}.$

 I_T^{m-1} : Lagrange interpolant of degree m-1.

Theorem (Optimal asymptotic interpolation error) For any bounded polygonal domain Ω , and any $f \in C^m(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} N^{\frac{m-1}{2}} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N}^{m-1} f)\|_{L^2(\Omega)} \leq \left\| L_A\left(\frac{d^m f}{m!}\right) \right\|_{L^{\frac{2}{m}}(\Omega)}$$

.

Furthermore for any admissible sequence of triangulations $(\mathcal{T}_N)_{N \ge N_0}, \#(\mathcal{T}_N) \le N$, one has

 $\liminf_{N\to\infty} N^{\frac{m-1}{2}} \|\nabla (f-\mathbf{I}_{T_N}^{m-1}f)\|_{L^2(\Omega)} \ge \left\|L_A\left(\frac{d^m f}{m!}\right)\right\|_{L^{\frac{2}{m}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree Smoothness

classes Hierarchical triangulations

Conclusion

For all $\pi \in H_m$ (homogeneous polynomials of degree *m*) $L_A(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1}\pi)\|_{L^2(\mathcal{T})}.$

 I_T^{m-1} : Lagrange interpolant of degree m-1.

Theorem (Optimal asymptotic interpolation error) For any bounded polygonal domain Ω , and any $f \in C^m(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} N^{\frac{m-1}{2}} \|\nabla (f - \mathrm{I}_{T_N}^{m-1} f)\|_{L^2(\Omega)} \le \left\| L_A\left(\frac{d^m f}{m!}\right) \right\|_{L^{\frac{2}{m}}(\Omega)}$$

.

Furthermore for any admissible sequence of triangulations $(\mathcal{T}_N)_{N \ge N_0}$, $\#(\mathcal{T}_N) \le N$, one has

$$\liminf_{N\to\infty} N^{\frac{m-1}{2}} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N}^{m-1} f)\|_{L^2(\Omega)} \ge \left\| L_A\left(\frac{d^m f}{m!}\right) \right\|_{L^{\frac{2}{m}}(\Omega)}$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

For all
$$\pi \in H_m$$
 (homogeneous polynomials of degree m)
$$L_A(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1}\pi)\|_{L^2(\mathcal{T})}.$$

Proposition (Explicit minimizing triangle, m = 2 or 3) Any acute triangle T, |T| = 1, such that \mathcal{H}_T is proportional to the following matrix is a (near) minimizer of the optimization defining $L_A(\pi)$.

$$\blacktriangleright m = 2, \ \pi = ax^2 + 2bxy + cy^2, \ matrix: \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)^2$$

• m = 3, $\pi = ax^3 + 3bx^2y + 3cxy^2 + dy^3$, matrix:

$$\mathcal{M}_{\mathcal{A}}(\pi) := \sqrt{\left(\begin{array}{cc} a & b \\ b & c \end{array}\right)^2 + \left(\begin{array}{cc} b & c \\ c & d \end{array}\right)^2}$$

Explicit minimizing triangle for m > 3: open problem.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

For all
$$\pi \in H_m$$
 (homogeneous polynomials of degree *m*)
$$L_A(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1}\pi)\|_{L^2(\mathcal{T})}.$$

Proposition (Explicit minimizing triangle, m = 2 or 3) Any acute triangle T, |T| = 1, such that \mathcal{H}_T is proportional to the following matrix is a (near) minimizer of the optimization defining $L_A(\pi)$.

•
$$m = 2$$
, $\pi = ax^2 + 2bxy + cy^2$, matrix: $\begin{pmatrix} a & b \\ b & c \end{pmatrix}^2$

• m = 3, $\pi = ax^3 + 3bx^2y + 3cxy^2 + dy^3$, matrix:

$$\mathcal{M}_{\mathcal{A}}(\pi) := \sqrt{\left(egin{array}{c} a & b \ b & c \end{array}
ight)^2 + \left(egin{array}{c} b & c \ c & d \end{array}
ight)^2}$$

Explicit minimizing triangle for m > 3: open problem.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

For all
$$\pi \in H_m$$
 (homogeneous polynomials of degree m)
$$L_A(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1} \pi)\|_{L^2(\mathcal{T})}.$$

Proposition (Explicit minimizing triangle, m = 2 or 3) Any acute triangle T, |T| = 1, such that \mathcal{H}_T is proportional to the following matrix is a (near) minimizer of the optimization defining $L_A(\pi)$.

•
$$m = 2$$
, $\pi = ax^2 + 2bxy + cy^2$, matrix: $\begin{pmatrix} a & b \\ b & c \end{pmatrix}^2$

• m = 3, $\pi = ax^3 + 3bx^2y + 3cxy^2 + dy^3$, matrix:

$$\mathcal{M}_{\mathcal{A}}(\pi) := \sqrt{\left(egin{array}{c} a & b \ b & c \end{array}
ight)^2 + \left(egin{array}{c} b & c \ c & d \end{array}
ight)^2}$$

Explicit minimizing triangle for m > 3: open problem.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence or meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Optimal metric for the approximation of f (heuristic)

Set

$$\mathcal{H}(z) := \lambda(\det M(z))^{rac{-1}{2m}} M(z),$$

where $\lambda > 0$ is a sufficiently large constant and \blacktriangleright $(m = 2), M(z) \simeq [d^2 f(z)]^2$.

•
$$(m=3)$$
, $M(z) \simeq \mathcal{M}_A(d^3f(z))$.

1

Mesh generation:

- Produce a QuasiAcute triangulation T which is C-equivalent to H.
- Interpolate f on the refinement T' on which angles are uniformly bounded.

 \Rightarrow Optimal estimate up to a fixed multiplicative constant.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Optimal metric for the approximation of f (heuristic)

Set

$$H(z) := \lambda(\det M(z))^{\frac{-1}{2m}}M(z),$$

where $\lambda > 0$ is a sufficiently large constant and $(m = 2), M(z) \simeq [d^2 f(z)]^2.$ $(m = 3), M(z) \simeq \mathcal{M}_A(d^3 f(z)).$

Mesh generation:

- 1. Produce a QuasiAcute triangulation \mathcal{T} which is *C*-equivalent to *H*.
- 2. Interpolate f on the refinement T' on which angles are uniformly bounded.

 \Rightarrow Optimal estimate up to a fixed multiplicative constant.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence or meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

For all $\pi \in H_m$ (homogeneous polynomials of degree *m*)

$$L_{\mathcal{A}}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1} \pi)\|_{L^{2}(\mathcal{T})}.$$

Polynomials on
$$\mathbf{H}_m$$
: $Q(\pi) = \tilde{Q}(a_0, \cdots, a_m)$ if $\pi = a_0 x^m + a_1 x^{m-1} y + \cdots + a_m y^m$.

Proposition (Explicit equivalent of L_A)

There exists a polynomial Q on H_m , of degree r, such that $L_{\sf A}(\pi)\simeq |Q(\pi)|^{1/r}$

uniformly.

 $\mathbf{P} = 2, \ L_A(\pi) \simeq \sqrt{|\det \pi|}.$ $\mathbf{P} = 3, \ L_A(\pi) \simeq \sqrt{\det \mathcal{M}_A(\pi)}$

▶ m ≥ 4 : explicit polynomials Q are obtained using Hilbert's theory of invariants.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

For all $\pi \in H_m$ (homogeneous polynomials of degree *m*)

$$L_{\mathcal{A}}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - \mathrm{I}_{\mathcal{T}}^{m-1} \pi)\|_{L^{2}(\mathcal{T})}.$$

Polynomials on
$$\mathbf{H}_m$$
: $Q(\pi) = \tilde{Q}(a_0, \cdots, a_m)$ if $\pi = a_0 x^m + a_1 x^{m-1} y + \cdots + a_m y^m$.

Proposition (Explicit equivalent of L_A)

There exists a polynomial Q on H_m , of degree r, such that

$$L_A(\pi) \simeq |Q(\pi)|^{1/r}$$

uniformly.

- m = 2, $L_A(\pi) \simeq \sqrt{|\det \pi|}$. • m = 3, $L_A(\pi) \simeq \sqrt{\det \mathcal{M}_A(\pi)}$.
- ► m ≥ 4 : explicit polynomials Q are obtained using Hilbert's theory of invariants.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence or meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Optimizing only the aspect ratio:

$$L_{G}(\pi) := \inf_{\det H=1} \sup_{\mathcal{H}_{T}=H} \|\nabla(\pi - \mathrm{I}_{T}^{m-1}\pi)\|_{2}.$$

Proposition (Explicit minimizing ellipse, m = 2 or 3)

The matrix H such that det H = 1 and which is proportional to the following is a (near) minimiser of the optimization problem defining $L_G(\pi)$.

•
$$m = 2$$
, $\pi = ax^2 + 2bxy + cy^2$, matrix : $\begin{vmatrix} a & b \\ b & c \end{vmatrix}$.
• $m = 3$, $\pi = ax^3 + 3bx^2y + 3cxy^2 + dy^3$

$$\mathcal{M}_{G}(\pi) := \mathcal{M}_{A}(\pi) + \left(\frac{-\operatorname{disc}(\pi)}{\|\pi\|}\right)_{+}^{\frac{1}{3}} \operatorname{Id}_{+}$$

where disc $\pi = 4(ac - b^2)(bd - c^2) - (ad - bc)^2$.
Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence or meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Optimizing only the aspect ratio:

$$L_{G}(\pi) := \inf_{\det H=1} \sup_{\mathcal{H}_{T}=H} \|\nabla(\pi - \mathrm{I}_{T}^{m-1}\pi)\|_{2}.$$

Proposition (Explicit minimizing ellipse, m = 2 or 3)

The matrix H such that det H = 1 and which is proportional to the following is a (near) minimiser of the optimization problem defining $L_G(\pi)$.

•
$$m = 2, \pi = ax^2 + 2bxy + cy^2, matrix : \left| \begin{pmatrix} a & b \\ b & c \end{pmatrix} \right|.$$

• $m = 3, \pi = ax^3 + 3bx^2y + 3cxy^2 + dy^3$

$$\mathcal{M}_{G}(\pi) := \mathcal{M}_{\mathcal{A}}(\pi) + \left(rac{-\operatorname{\mathsf{disc}}(\pi)}{\|\pi\|}
ight)_{+}^{rac{1}{3}}\operatorname{\mathsf{Id}},$$

where disc
$$\pi=4(ac-b^2)(bd-c^2)-(ad-bc)^2.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence or meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Anisotropic metric (heuristic)

Set

$$H(z) := \lambda (\det M(z))^{\frac{-1}{2m}} M(z)$$

where $\lambda > 0$ is a constant and

•
$$(m = 2), M(z) := ||[d^2 f(z)]|| |[d^2 f(z)]|.$$

• $(m = 3), M(z) := \mathcal{M}_G(d^3 f(z)).$

Interpolate f on a mesh \mathcal{T} which is C-equivalent to H \Rightarrow estimate in terms of L_G .

Figure: Interpolation with anisotropic P_2 elements.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Anisotropic metric (heuristic)

Set

$$H(z) := \lambda (\det M(z))^{\frac{-1}{2m}} M(z)$$

where $\lambda > 0$ is a constant and

•
$$(m = 2), M(z) := ||[d^2 f(z)]|| |[d^2 f(z)]|.$$

• $(m = 3), M(z) := \mathcal{M}_G(d^3 f(z)).$

Interpolate f on a mesh \mathcal{T} which is C-equivalent to H \Rightarrow estimate in terms of L_G .

Numerical experiments : $\|\nabla (f - I_T^{m-1} f)\|_{L^2}$, with 500 triangles.

	Uniform	Isotropic	Based on L_G	Based on L_A
\mathbf{P}_1	110	51	11	?
\mathbf{P}_2	79	14	0.88	?

Adaptive			
anisotropic			
approx:			
Theory and			
algorithms			

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes Hierarchical triangulations

Conclusion

Anisotropic smoothness classes: from finite element approximation to image models

Figure: A cartoon function, and an adapted triangulation. Picture : Gabriel Peyré

A. Cohen, J.-M. Mirebeau, *Anisotropic smoothness classes: from finite element approximation to image models*, Journal of Mathematical Imaging and Vision, 2010.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

Approximation of cartoon functions

If $g = \sum_{1 \le i \le r} g_i \chi_{\Omega_i}$ where $g_i \in C^2(\overline{\Omega}_i)$ and $\partial \Omega_i$ is piecewise C^2 , then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations such that

$$\| \mathbf{v} \| \mathbf{g} - \mathbf{I}_{\mathcal{T}_N} \mathbf{g} \|_{L^2(\Omega)} \leq C(\mathbf{g}).$$

On the other hand, we have for smooth functions:

heorem (Chen,Sun Xu; Babenko)

f $f\in C^2(\overline{\Omega})$ and $(\mathcal{T}_N)_{N\geq N_0}$ is an optimally adapted sequence hen

$$\limsup_{N \to \infty} N \|f - I_{T_N} f\|_{L^2(\Omega)} \le C \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}(\Omega)}$$

How to connect these estimates ?

Does $\left\|\sqrt{\left|\det d^2g\right|}\right\|_{L^{\frac{2}{3}}}$ make sense if g is a cartoon function ?

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence or meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulation:

Conclusion

Approximation of cartoon functions

If $g = \sum_{1 \le i \le r} g_i \chi_{\Omega_i}$ where $g_i \in C^2(\overline{\Omega}_i)$ and $\partial \Omega_i$ is piecewise C^2 , then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations such that

$$\mathbf{V} \|g - \mathrm{I}_{\mathcal{T}_N} g\|_{L^2(\Omega)} \leq C(g).$$

On the other hand, we have for smooth functions:

Theorem (Chen, Sun Xu; Babenko)

If $f \in C^2(\overline{\Omega})$ and $(\mathcal{T}_N)_{N \geq N_0}$ is an optimally adapted sequence then

$$\limsup_{N \to \infty} \frac{N}{\|f - I_{\mathcal{T}_N} f\|_{L^2(\Omega)}} \le C \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}(\Omega)}$$

How to connect these estimates ? Does $\left\|\sqrt{\left|\det d^2g\right|}\right\|_{L^{\frac{2}{3}}}$ make sense if g is a cartoon function ?

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

Approximation of cartoon functions

If $g = \sum_{1 \le i \le r} g_i \chi_{\Omega_i}$ where $g_i \in C^2(\overline{\Omega}_i)$ and $\partial \Omega_i$ is piecewise C^2 , then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations such that

$$\mathbf{N} \| g - \mathrm{I}_{\mathcal{T}_N} g \|_{L^2(\Omega)} \leq C(g).$$

On the other hand, we have for smooth functions:

Theorem (Chen, Sun Xu; Babenko)

If $f\in C^2(\overline{\Omega})$ and $(\mathcal{T}_N)_{N\geq N_0}$ is an optimally adapted sequence then

$$\limsup_{N \to \infty} \frac{N}{\|f - I_{\mathcal{T}_N} f\|_{L^2(\Omega)}} \le C \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}(\Omega)}$$

How to connect these estimates ? Does $\left\|\sqrt{\left|\det d^2g\right|}\right\|_{L^{\frac{2}{3}}}$ make sense if g is a cartoon function ?

Jean-Marie Mirebeau

Parameters

Position Area

Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

For any $f \in C^2(\overline{\Omega})$ $J(f) := \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}}.$

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where [g] is the jump of g, and κ the curvature of E. Compare with

 $TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

For any $f \in C^2(\overline{\Omega})$ $J(f) := \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}_{\infty}}.$

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where [g] is the jump of g, and κ the curvature of E. Compare with

 $TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

y
$$f \in \mathcal{C}^2(\overline{\Omega})$$
 $J(f) := \left\| \sqrt{|\det d^2 f|} \right\|_{L^{rac{2}{3}}}$

If g is a cartoon function with discontinuity set E we define

.

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

For an

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where
$$[g]$$
 is the jump of g, and κ the curvature of E.

Compare with

 $TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence o meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

ny
$$f \in C^2(\overline{\Omega})$$
 $J(f) := \left\| \sqrt{|\det d^2 f|} \right\|_{L^{rac{2}{3}}}$

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

For a

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where [g] is the jump of g, and κ the curvature of E. Compare with

$$TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

Piecewise constant functions

$$TV(g) = \int_{\Gamma} |[g]|$$

$$J(g)^{\frac{2}{3}} = \int_{\Gamma} |[g]|^{\frac{2}{3}} |\kappa|^{\frac{1}{3}}$$

Figure: $TV(g) \simeq J(g)$

Figure: $TV(g) \ll J(g)$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

A. Cohen, N. Dyn, F.Hecht, J.-M. Mirebeau, *Adaptive multiresolution analysis based on anisotropic triangulations*, accepted in Maths of Comp 2010

A. Cohen, J.-M. Mirebeau, *Greedy bisection generates optimally adapted triangulations*, accepted in Maths of Comp 2010

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Hierarchical sequences of anisotropic triangulations

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree

Smoothness classes

Hierarchical triangulations

Conclusion

Given a triangulation of a domain and a function f:

Select the triangle on which the L² interpolation error is maximal ||f − I_T f ||_{L²(T)}.

Bisect it along one median, so as to minimize the resulting L^1 interpolation error.

Repeat these steps until targeted number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Given a triangulation of a domain and a function f:

- Select the triangle on which the L² interpolation error is maximal ||f − I_T f ||_{L²(T)}.
- Bisect it along one median, so as to minimize the resulting L¹ interpolation error.

Repeat these steps until targeted number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Given a triangulation of a domain and a function f:

- Select the triangle on which the L² interpolation error is maximal ||f − I_T f ||_{L²(T)}.
- Bisect it along one median, so as to minimize the resulting L¹ interpolation error.

Repeat these steps until targeted number of triangles is met.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Given a triangulation of a domain and a function f:

- Select the triangle on which the L² interpolation error is maximal ||f − I_T f ||_{L²(T)}.
- Bisect it along one median, so as to minimize the resulting L¹ interpolation error.
- Repeat these steps until targeted number of triangles is met.

Hierarchical triangulations

Conclusion

Serves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define $\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$

Proposition

If T_1, T_2 are obtained by bisecting the longest edge of T then

Hierarchical triangulations

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define $\sigma(T) := \frac{|b|^2 + |c|^2}{|A||T|}.$

Proposition

If T_1, T_2 are obtained by bisecting the longest edge of T then

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define $\sigma(T) := \frac{|b|^2 + |c|^2}{|A||T|}.$

Proposition

If T_1, T_2 are obtained by bisecting the longest edge of T then

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define $\sigma(T) := \frac{|b|^2 + |c|^2}{|T|}.$

Proposition

If T_1, T_2 are obtained by bisecting the longest edge of T then

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Proposition

If T_1, T_2 are obtained by bisecting the longest edge of T then

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define $\sigma(T) := \frac{|b|^2 + |c|^2}{|\Delta||T|}.$

If T_1, T_2 are obtained by bisecting the longest edge of T then

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Proposition

If T_1, T_2 are obtained by bisecting the longest edge of T then
lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Proposition

One of the eight children $(T_i)_{i=1}^8$ of T obtained by bisecting recursively three times the longest edge satisfies

 $\sigma(T_i) \leq 0.69\sigma(T)$ or $\sigma(T_i) \leq 5$.

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Proposition

One of the eight children $(T_i)_{i=1}^8$ of T obtained by bisecting recursively three times the longest edge satisfies

 $\sigma(T_i) \leq 0.69\sigma(T)$ or $\sigma(T_i) \leq 5$.

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Proposition

One of the eight children $(T_i)_{i=1}^8$ of T obtained by bisecting recursively three times the longest edge satisfies

 $\sigma(T_i) \leq 0.69\sigma(T)$ or $\sigma(T_i) \leq 5$.

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Proposition

One of the eight children $(T_i)_{i=1}^8$ of T obtained by bisecting recursively three times the longest edge satisfies

 $\sigma(T_i) < 0.69\sigma(T)$ or $\sigma(T_i) < 5$.

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Proposition

One of the eight children $(T_i)_{i=1}^8$ of T obtained by bisecting recursively three times the longest edge satisfies

 $\sigma(T_i) < 0.69\sigma(T)$ or $\sigma(T_i) < 5$.

lean-Marie Mirebeau

Aspect ratio and

Hierarchical triangulations

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Arbitrary degree Preserves isotropy. Restores isotropy. For any triangle T with edges $|a| \ge |b| \ge |c|$ we define

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Proposition

One of the eight children $(T_i)_{i=1}^8$ of T obtained by bisecting recursively three times the longest edge satisfies

 $\sigma(T_i) < 0.69\sigma(T)$ or $\sigma(T_i) < 5$.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Question raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Proposition (Identification of the bisection)

The algorithm applied to $f(x, y) = x^2 + y^2$ chooses to cut the longest edge of the selected triangle.

Preserves isotropy.Restores isotropy.For any triangle T with edges $|a| \ge |b| \ge |c|$ we define

$$\sigma(T) := \frac{|b|^2 + |c|^2}{4|T|}.$$

Markov chain argument \Rightarrow almost all triangles adopt an isotropic aspect ratio.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

- Equivalence meshes and metrics
- Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Theorem

The algorithm applied to any strongly convex function $f \in C^2(\overline{\Omega})$ produces a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations which satisfies the (optimal) estimate

 $\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N}f\|_{L^2(\Omega)}} \leq C \|\sqrt{|\det d^2f|}\|_{L^{\frac{2}{3}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

- Equivalence of meshes and metrics
- Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Theorem

The algorithm applied to any strongly convex function $f \in C^2(\overline{\Omega})$ produces a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations which satisfies the (optimal) estimate

 $\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N}f\|_{L^2(\Omega)}} \leq C \|\sqrt{|\det d^2 f|}\|_{L^{\frac{2}{3}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

- Equivalence meshes and metrics
- Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Theorem

The algorithm applied to any strongly convex function $f \in C^2(\overline{\Omega})$ produces a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations which satisfies the (optimal) estimate

 $\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N}f\|_{L^2(\Omega)}} \leq C \|\sqrt{|\det d^2 f|}\|_{L^{\frac{2}{3}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

- Equivalence of meshes and metrics
- Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Theorem

The algorithm applied to any strongly convex function $f \in C^2(\overline{\Omega})$ produces a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations which satisfies the (optimal) estimate

 $\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N}f\|_{L^2(\Omega)}} \leq C \|\sqrt{|\det d^2 f|}\|_{L^{\frac{2}{3}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics

Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Theorem

The algorithm applied to any strongly convex function $f \in C^2(\overline{\Omega})$ produces a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations which satisfies the (optimal) estimate

 $\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N}f\|_{L^2(\Omega)}} \leq C \|\sqrt{|\det d^2 f|}\|_{L^{\frac{2}{3}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

- Equivalence of meshes and metrics
- Arbitrary degree Smoothness classes

Hierarchical triangulations

Conclusion

Theorem

The algorithm applied to any strongly convex function $f \in C^2(\overline{\Omega})$ produces a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations which satisfies the (optimal) estimate

 $\limsup_{N\to\infty} \frac{N}{\|f-\mathrm{I}_{\mathcal{T}_N}f\|_{L^2(\Omega)}} \leq C \|\sqrt{|\det d^2 f|}\|_{L^{\frac{2}{3}}(\Omega)}$

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion and perspectives

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion:

► A result of algorithmic geometry for QuasiAcute triangulations.

- Sharp asymptotic estimates for \mathbb{P}_m interpolation error on optimal mesh, for H^1 but also L^p and $W^{1,p}$ norms.
- Some quantities remain meaningful for cartoon functions. e.g. J(f) = ||√det(d²f)||₁²/₃.
 - Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- \blacktriangleright Numerical applications to P_2 elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension d > 2.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- ► Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
 - Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.
- Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- \blacktriangleright Numerical applications to P_2 elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension d > 2.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. J(f) = ||√det(d²f)||₁²/₃.
 - Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- ▶ Numerical applications to P₂ elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension d > 2.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. J(f) = ||√det(d²f)||₁²/₃.
- Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- \blacktriangleright Numerical applications to P_2 elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension d > 2.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. J(f) = ||√det(d²f)||₁²/₃.
- Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- Numerical applications to P_2 elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension d > 2.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Parameters

Position Area Aspect ratio and orientation Angles

Questions raised

Equivalence of meshes and metrics Arbitrary degree Smoothness classes Hierarchical triangulations

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. J(f) = ||√det(d²f)||₁²/₃.
- Combining hierarchy and anisotropy is possible (without conformity).

Perspectives:

- Numerical applications to P_2 elements in PDEs.
- Realistic mesh generation algorithms for QuasiAcute triangulations.
- Extension to dimension d > 2.
- Non asymptotic error estimates.